
DATA-DRIVEN SIMILARITY MEASURES FOR

MATRIMONIAL APPLICATION

CHIA YONG FANG

UNIVERSITI TUNKU ABDUL RAHMAN



DATA-DRIVEN SIMILARITY MEASURES FOR MATRIMONIAL

APPLICATION

CHIA YONG FANG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Honours) Software Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2020



ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : Chia Yong Fang

ID No. : 1700288

Date : 10/9/2020



iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DATA-DRIVEN SIMILARITY

MEASURES FOR MATRIMONIAL APPLICATION” was prepared by CHIA

YONG FANG has met the required standard for submission in partial fulfilment of

the requirements for the award of Bachelor of Science (Honours) Software

Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Too Chian Wen

Date : 10/9/2020

Signature :

Co-Supervisor : Khor Kok Chin

Date : 10/9/2020



iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2020, Chia Yong Fang. All right reserved.



v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Dr. Too

Chian Wen and co-supervisor, Dr Khor Kok Chin for their invaluable advice,

guidance and their enormous patience throughout the development of the research.

In addition, I would also like to express my gratitude to everyone who had

helped me and contributed to the development of this project.



vi

ABSTRACT

Marriage is a life-long commitment that completes our life. It will widen our

horizons and the meaning of life on this Earth. However, the marriage rate in

Malaysia continues to decline. Late marriage is one of the reasons that led to the

decline of the marriage rate. Many people tend to get married later because of the

difficulties in seeking a suitable spouse. Offline dating is time-consuming and

limited by geographic proximity. Due to the convenience provided by the Internet,

online dating has become a new trend in seeking potential partners. Hence, this

project aims to develop a web-based matrimonial application that enables people to

find their potential partner for marriage. Five similarity measures were proposed in

this project to overcome the limitations of rule-based approach and Standard Query

Language (SQL). The five similarity measures included Jaccard Coefficient, Cosine

Similarity, Euclidean Distance, Manhattan Distance and Minkowski Distance. The

application used the similarity measures to perform matching based on user

preferences.

In this project, the adopted software development methodology was phased

development, which divided the development process into several phases. After the

completion of system implementation, remote usability testing was conducted to

evaluate which similarity measure is effective in finding matches that suit user

preferences. The sample user data used for testing were collected from 85 people

through a questionnaire. The test results showed that the match result obtained by

Manhattan Distance was better then the other similarity measures. At the end of the

project, all the objectives had been achieved. People can use the application to find

their potential matches for marriage as per their priorities.



vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES xi

LIST OF TABLES xvi

LIST OF SYMBOLS / ABBREVIATIONS xix

LIST OF APPENDICES xx

CHAPTER

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Project Objectives 3

1.4 Proposed Solution 4

1.5 Proposed Approach 5

1.6 Project Scope 6

1.6.1 Target Users 6

1.6.2 Features Covered 7

2 LITERATURE REVIEW 9

2.1 Existing Online Related System 9

2.1.1 MalaysianCupid.com 9

2.1.2 Match.com 14

2.1.3 OkCupid.com 18

2.1.4 Shaadi.com 22

2.1.5 Badoo 26

2.1.6 Comparisons on Existing Online Related System 29

2.2 Matching Algorithm 31

2.2.1 Rule-based Approach 31

2.2.2 Database Query / Exact Matching 31



viii

2.2.3 Similarity Measure 32

2.2.4 Comparison of Matching Algorithms 36

2.3 Software Development Methodology 38

2.3.1 Waterfall Methodology 38

2.3.2 Prototyping Methodology 39

2.3.3 Phased Development Methodology 41

2.3.4 Extreme Programming 42

2.3.5 Comparison of Software Development

Methodologies 44

2.4 Usability Testing 46

2.4.1 Lab Usability Testing 48

2.4.2 Remote Usability Testing 49

2.4.3 Guerrilla Usability Testing 50

2.4.4 Comparison of Usability Testing Methods 51

3 METHODOLOGY ANDWORK PLAN 53

3.1 Introduction 53

3.2 Software Development Methodology 53

3.2.1 Planning Phase 53

3.2.2 Analysis and Design Phase 54

3.2.3 Phased Implementation 55

3.2.4 Testing Phase 56

3.2.5 Deployment 56

3.3 Development Tools 57

3.3.1 ReactJs 57

3.3.2 Firebase 57

3.3.3 Express.js 58

3.4 Project Planning 59

3.4.1 Work Breakdown Structure 59

3.4.2 Gantt Chart 64

4 PROJECT INITIAL SPECIFICATION 67

4.1 Introduction 67

4.2 Functional Requirements 67

4.3 Non-functional Requirements 67

4.4 Use Case Diagram 69



ix

4.5 Use Case Description 70

4.6 Fact Findings 77

5 SYSTEM DESIGN 79

5.1 System Architecture Design 79

5.1.1 Data Flow Diagram 81

5.1.2 Activity Diagram 86

5.2 Data Model Diagram 93

5.2.1 Logical Data Model Diagram 93

5.2.2 Physical Data Model Diagram 94

5.2.3 Data Dictionary 95

5.3 Preliminary User Interface Design 98

6 IMPLEMENTATION 104

6.1 Web API Endpoint 104

6.2 Application Implementation 105

6.2.1 Main Page 105

6.2.2 Registration 106

6.2.3 Login 109

6.2.4 Search Potential Matches 110

6.2.5 View Member Profile 115

6.2.6 View Chat Message 120

6.2.7 View Favourite List 123

6.2.8 View Personal Profiles 125

7 TESTING 131

7.1 Unit Testing 131

7.2 Application Programming Interface (API) Testing 147

7.3 End-to-end Testing 161

7.4 Usability Testing 165

7.4.1 Test Scenario 165

7.4.2 User Satisfaction Survey Form 168

7.4.3 Usability Test Result 170

7.5 User Acceptance Testing 174

8 CONCLUSION AND RECOMMENDATIONS 177

8.1 Conclusion 177



x

8.2 Limitation and Suggestion 178

8.3 Future Enhancements 179

REFERENCES 180

APPENDICES 185



xi

LIST OF FIGURES

Figure 1.1 System High-Level Architecture 4

Figure 1.2 Phased Development–based Methodology 6

Figure 2.1 Home Page of MalaysianCupid.com Site 9

Figure 2.2 Instant Messaging Function 10

Figure 2.3 Sample Input List for User Profile Information 11

Figure 2.4 Page Showing the Relevant Profiles After Matching 11

Figure 2.5 Advanced Search Feature of MalaysianCupid.com 12

Figure 2.6 Profile Information of Matched Member 13

Figure 2.7 Home Page of Match.com 14

Figure 2.8 Search Feature of Match.com 15

Figure 2.9 Search Filter Option 15

Figure 2.10 Page for Editing User Information 16

Figure 2.11 Page Showing the Matched Profiles 16

Figure 2.12 Sample User Profile Information Page of Match.com 17

Figure 2.13 Sample Question to be Answered During Sign Up 18

Figure 2.14 Home Page of OkCupid.com 19

Figure 2.15 Discovery Feature of OkCupid.com 19

Figure 2.16 Search Feature of OkCupid.com 20

Figure 2.17 Sample User Profile Information Page of OkCupid.com 21

Figure 2.18 Messaging Function 21

Figure 2.19 Home Page of Shaadi.com 22

Figure 2.20 Search Feature of Shaadi.com 23

Figure 2.21 Sample Input List for User Profile Information 23

Figure 2.22 Page Showing the Matched Profiles 24

Figure 2.23 Sample User Profile Information Page of Shaadi.com 25

Figure 2.24 Matching Status of Preferences 25

Figure 2.25 Home Page of Badoo 26

Figure 2.26 Sample User Profile Information Page of Badoo 27

Figure 2.27 Page Showing the Matched Profiles 28

Figure 2.28 Chat Function 28

Figure 2.29 Basic Structure of SQL 31



xii

Figure 2.30 Jaccard Coefficient Implementation in Python 33

Figure 2.31 Cosine Similarity Implementation in Python 34

Figure 2.32 Minkowski Distance Implementation in Python 34

Figure 2.33 Euclidean Distance Implementation in Python 35

Figure 2.34 Manhattan Distance Implementation in Python 36

Figure 2.35 Waterfall Model Life Cycle 38

Figure 2.36 Evolutionary Prototyping Methodology 39

Figure 2.37 Phased Development Methodology 41

Figure 2.38 Extreme Programming 42

Figure 2.39 Items in SUS 47

Figure 2.40 Summary of the Steps Involved in Remote

Moderated Usability Testing 49

Figure 3.1 Work Breakdown Structure Part 1 59

Figure 3.2 Work Breakdown Structure Part 2 60

Figure 3.3 Work Breakdown Structure Part 3 61

Figure 3.4 Work Breakdown Structure Part 4 61

Figure 3.5 Work Breakdown Structure Part 5 62

Figure 3.6 Work Breakdown Structure Part 6 63

Figure 3.7 Work Breakdown Structure Part 7 63

Figure 3.8 Gantt Chart of Planning Phase 64

Figure 3.9 Gantt Chart of Analysis Phase 64

Figure 3.10 Gantt Chart of Phase1 65

Figure 3.11 Gantt Chart of Phase 2 65

Figure 3.12 Gantt Chart of Phase 3 66

Figure 3.14 Gantt Chart of Phase 4, Testing Phase and

Deployment Phase 66

Figure 4.1 Use Case Diagram 69

Figure 4.2 Important Criteria for Selecting a Life Partner 77

Figure 5.1 Three-tier Architecture 79

Figure 5.2 System Architecture Design 77

Figure 5.3 Context Diagram 81

Figure 5.4 Level 0 DFD 82

Figure 5.5 Level 1 DFD for Create Account 83

Figure 5.6 Level 1 DFD for Search potential Matches 83



xiii

Figure 5.7 Level 1 DFD for View Member Profile 84

Figure 5.8 Level 1 DFD for Manage Favourite List 84

Figure 5.9 Level 1 DFD for Manage Chat Message 85

Figure 5.10 Level 1 DFD for Manage Personal Profile 85

Figure 5.11 “Create Account” Activity Diagram 86

Figure 5.12 “Login Account” Activity Diagram 87

Figure 5.13 “Search Potential Matches” Activity Diagram 88

Figure 5.14 “View Profile Details” Activity Diagram 89

Figure 5.15 “View Favourite List” Activity Diagram 90

Figure 5.16 “View Chat Message” Activity Diagram 91

Figure 5.17 “View Personal Profile” Activity Diagram 92

Figure 5.18 Logical Data Model Diagram 93

Figure 5.19 Firebase Schema Design 94

Figure 5.20 UI – Overview Layout of the application 98

Figure 5.21 UI – Search Result Page (Exact Match) 98

Figure 5.22 UI – Display Profile Details (Exact Match) 99

Figure 5.23 UI – Search Result Page (Similarity Measures) 99

Figure 5.24 UI – Display Profile Details (Similarity Measures) 100

Figure 5.25 UI – Instant Message Feature 100

Figure 5.26 UI – Chat List Page 101

Figure 5.27 UI – Chat Message Page 101

Figure 5.28 UI – Favourite List Page 102

Figure 5.29 UI – Personal Profile Page 102

Figure 5.30 UI – Edit Profile Page (Personal Information) 103

Figure 5.31 UI – Edit Profile Page (Preferences) 103

Figure 6.1 Visitor’s Main Page 105

Figure 6.2 Registration Page 106

Figure 6.3 Create Profile Page - Part 1 107

Figure 6.4 Create Profile Page - Part 2 107

Figure 6.5 Create Profile Page - Part 3 108

Figure 6.6 Create Profile Page - Part 4 108

Figure 6.7 Section Code for Create Profile (Server) 109

Figure 6.8 Login Page 110

Figure 6.9 Set Match Preferences Page 110



xiv

Figure 6.10 Section Code for Get Exact Matching Result (Server) 111

Figure 6.11 Match Result Page (Exact Matching) 112

Figure 6.12 Section Code for Get Similarity Measures Result

(Server) - Part 1 113

Figure 6.13 Section Code for Get Similarity Measures Result

(Server) - Part 2 114

Figure 6.14 Match Result Page (Similarity Measures) 115

Figure 6.15 Section Code for Check Like Status (Front-end) 116

Figure 6.16 Section Code for Check Favourite (Server) 116

Figure 6.17 Member Profile Page (Without Similarity Measure) 117

Figure 6.18 Member Profile Page (With Similarity Measure) 117

Figure 6.19 Section Code for Update Like Status (Front-end) 118

Figure 6.20 Section Code for Update Favourite (Server) 118

Figure 6.21 Section Code for Load Message (Front-end) 119

Figure 6.22 Instant Message Pop-up Window 119

Figure 6.23 Section Code for Send Message (Front-end) 120

Figure 6.24 Section Code for Get Chat Messages (Front-end) 120

Figure 6.25 Section Code for Get Member Data (Server) 121

Figure 6.26 Chat List Page 121

Figure 6.27 Individual Chat History Page 122

Figure 6.28 Section Code for Send Message (Front-end) 122

Figure 6.29 Menu Option 123

Figure 6.30 Chat History Delete Confirmation Message 123

Figure 6.31 Section Code for Delete Chat History (Front-end) 123

Figure 6.32 Section Code for Get Favourite List (Server) 124

Figure 6.33 Favourite List Page 124

Figure 6.34 Section Code for Delete Profile from Favourite

(Server) 125

Figure 6.35 Section Code for Get Profile Details (Server) 125

Figure 6.36 Section Code for Get Number of Likes (Front-end) 125

Figure 6.37 Personal Profile Page 126

Figure 6.38 Pop-up for Update Profile Picture 127

Figure 6.39 Section Code for Update Profile Picture (Server) 127

Figure 6.40 Edit Personal Information Page 128



xv

Figure 6.41 Edit Match Preferences Page 129

Figure 6.42 Section Code for Update Profile Details (Server) 129

Figure 6.43 Section Code for Update Profile Preferences (Server) 130

Figure 7.1 Section Code of Unit Testing 145

Figure 7.2 Test Coverage of Unit Test 145

Figure 7.3 Result of Unit Test 146

Figure 7.4 Result of API Test 159

Figure 7.5 Sample Section Code for API Test - Part 1 159

Figure 7.6 Sample Section Code for API Test - Part 2 160

Figure 7.7 Result of End-to-end Test 164

Figure 7.8 Sample Section Code for End-to-end Test 164

Figure 7.9 User Satisfaction Survey Form - Part 1 168

Figure 7.10 User Satisfaction Survey Form - Part 2 169

Figure 7.11 Overall User Satisfaction 170



xvi

LIST OF TABLES

Table 2.1 Comparison Matrix of Various Applications Similar to the

Matrimonial System 29

Table 2.2 Limitations of Rule-based Approach 31

Table 2.3 Limitations of Database Query 32

Table 2.4 Strengths and Limitation of Jaccard Coefficient 33

Table 2.5 Strengths and Limitations of Cosine Similarity 34

Table 2.6 Strengths and Limitations of Minkowski Distance 35

Table 2.7 Strength and Limitations of Euclidean Distance 35

Table 2.8 Strengths and Limitations of Manhattan Distance 36

Table 2.9 Pros and Cons of Waterfall Methodology 39

Table 2.10 Pros and Cons of Prototyping Methodology 40

Table 2.11 Pros and Cons of Phased Development Methodology 42

Table 2.12 Pros and Cons of Extreme Programming 43

Table 2.13 Comparison matrix of various methodologies 44

Table 2.14 Pros and Cons of Usability Testing 47

Table 2.15 Pros and Cons of Lab Usability Testing 49

Table 2.16 Pros and Cons of Moderated Remote Usability Testing 50

Table 2.17 Pros and Cons of Guerrilla Usability Testing 51

Table 2.18 Comparison on Attributes of Different Usability Testing Types 51

Table 4.1 Use Case - Create Account 70

Table 4.2 Use Case - Login Account 71

Table 4.3 Use Case - Search Potential Matches 72

Table 4.4 Use Case - View Profile Details 73

Table 4.5 Use Case - View Favourite List 51

Table 4.6 Use Case - View Chat Message 51

Table 4.7 Use Case - View Personal Profile 51

Table 5.1 Data Dictionary of Users Collection 95

Table 5.2 Data Dictionary of Preferences Attribute in Users Collection 95

Table 5.3 Data Dictionary of Favourites Collection 96

Table 5.4 Data Dictionary of Chats JSON tree 96

Table 5.5 Data Dictionary of Receivers Attribute in Chats JSON tree 97

Table 5.6 Data Dictionary of Likes JSON tree 97



xvii

Table 6.1 List of Web API Endpoints 104

Table 7.1 Unit Test Case - Home 131

Table 7.2 Unit Test Case - Create Profile 132

Table 7.3 Unit Test Case - Search Profile 133

Table 7.4 Unit Test Case - Search Result 134

Table 7.5 Unit Test Case - Show Profile 135

Table 7.6 Unit Test Case - Instant Message 136

Table 7.7 Unit Test Case - Chat List 137

Table 7.8 Unit Test Case - Individual Chat 138

Table 7.9 Unit Test Case - Favourite 139

Table 7.10 Unit Test Case - Personal Profile 140

Table 7.11 Unit Test Case - Upload Photo 141

Table 7.12 Unit Test Case - Edit Profile 142

Table 7.13 Unit Test Case - Edit Info 143

Table 7.14 Unit Test Case - Edit Preferences 144

Table 7.15 API Test Case - Create Profile 147

Table 7.16 API Test Case - Get Personal Info 147

Table 7.17 API Test Case - Update Profile Picture 148

Table 7.18 API Test Case - Update Profile Details 149

Table 7.19 API Test Case - Update Profile Preferences 149

Table 7.20 API Test Case - Get Exact Match Result 150

Table 7.21 API Test Case - Get Similarity Match Result (Jaccard) 151

Table 7.22 API Test Case - Get Similarity Match Result (Cosine) 152

Table 7.23 API Test Case - Get Similarity Match Result (Euclidean) 153

Table 7.24 API Test Case - Get Similarity Match Result (Manhattan) 154

Table 7.25 API Test Case - Get Similarity Match Result (Minkowski) 155

Table 7.26 API Test Case - Check Favourite 156

Table 7.27 API Test Case - Update Favourite 156

Table 7.28 API Test Case - Get Favourite List 157

Table 7.29 API Test Case - Delete Favourite 157

Table 7.30 API Test Case - Get Member Data 158

Table 7.31 API Test Case - Get Profile Picture 158

Table 7.32 End-to-end Test Cases 161

Table 7.33 Usability Testing Test Scenarios 165



xviii

Table 7.34 User Feedback on System’s Performance and Functionality 170

Table 7.35 User Feedback on Match Methods 172

Table 7.36 User Acceptance Test Cases - Create Profile 174

Table 7.37 User Acceptance Test Cases - Search Potential Matches 174

Table 7.38 User Acceptance Test Cases - View Potential Matches Profiles 175

Table 7.39 User Acceptance Test Cases - Manage Chat History 175

Table 7.40 User Acceptance Test Cases - Manage Favourite List 176

Table 7.41 User Acceptance Test Cases - Manage Personal Profile 176



xix

LIST OF SYMBOLS / ABBREVIATIONS

API Application Programming Interface

HTTP HyperText Transfer Protocol

SDLC Software Development Life Cycle

SQL Structured Query Language

XP Extreme Programming



xx

LIST OF APPENDICES

APPENDIX A: The continued rise of meeting online for

heterosexual couples 185

APPENDIX B: Total Fertility Rate in Malaysia 186

APPENDIX C: Questionnaire for Collecting Match Preferences 188

APPENDIX D: Questionnaire for Collecting User Data 191

APPENDIX E: Usability Test Results 201

APPENDIX F: User Acceptance Test Results 218



1

CHAPTER 1

1INTRODUCTION

1.1 Introduction

This chapter provides an overview of this project such as project background,

problem statements, project objectives, proposed solution, proposed approach and

project scope.

Marriage is one of the most important events in one’s life. It is a bond that unites

two souls together into one. Back in the days, without the use of the Internet, people

used to find their life partner through third persons or relatives. However, traditional

offline dating is very time-consuming and based on spatial proximity. People hard to

find the perfect match due to limited choices. They might only explore small pools of

potential partners within the same community.

As the world becomes technologically advanced, many aspects of our society

have transformed. Nearly 60% of the seven billion people in the world can access the

Internet (InternetWorldStats.com, 2019). With the Internet, distance and language

barriers are broken. Our society has constantly exposed to communication

technologies that keep evolving. People can interact with anyone from different

corners of the world almost instantaneously via multiple channels (Finkel, et al.,

2012). Hence, individuals tend to change the way to meet each other and establish a

relationship. A new phenomenon has emerged, which people are becoming more

interested in finding the life partner via online that suits their views and ideologies.

According to Rosenfeld, Thomas and Hausen (2019), the traditional ways of meeting

partners through offline have all been declining sharply since 2000 (Appendix A).

The introduction of graphical web around 1995 and the introduction of the

smartphone after 2007 had caused the rapid rise of meeting online (Rosenfeld,

Thomas and Hausen, 2019).

The new phenomenon has led to the growth of online matrimonial application

development. With the help of the online matrimonial application, finding a life

partner become easier. Compared to traditional dating, online dating has some

significant benefits for daters. Before deciding to meet a potential partner in person,

an individual may collect an initial understanding of their compatibility with

potential partners. It can be obtained through online instead of relying on family



2

members or any third person to select an unacquainted single (Finkel et al., 2012).

Online dating sites also enable users’ access to many potential partners who vary in

demography and lifestyle characteristics.

1.2 Problem Statement

1. Late Marriage in Malaysia

Late marriage is a recent trend in Malaysia, particularly in the non-muslim

community (Stevenson and Wolfers, 2017; Department of Statistics Malaysia,

2019a). The women are facing difficulties in finding suitable partners according to

the Malaysia Population Research Hub (2019). Good opportunities for education and

employment had led women to postpone marriage (Yuen, 2019). As women are

getting better qualification for jobs and more economically independent than before,

they tend to have higher expectations for choosing a marriage partner. Women might

demand greater equality and shared responsibilities in a marital relationship.

According to the research done by Campbell, Chin and Stanton (2016), people tend

to enter a new relationship with others with characteristics that suit their ideal

preferences more closely.

There are several effects of late marriage. For example, it is not easy to find a

partner that meet the expectations as the circle of suitable candidate might become

smaller due to age increase. Besides, late marriage is one of the reasons that led to

low fertility rate as women will delay childbearing. The infertility rate will also

increase as females and males get older (NICHD, 2020). According to the data from

Department of Statistics Malaysia (2019b), the total fertility rate per woman in age

group (15 to 49) was decreased from 4.9 babies in 1970 to 1.8 babies in 2018

(Appendix B). The total fertility rate is known as the average number of children to

be born per woman in her lifetime.

2. Limitation in Rule-based System and SQL Query

The rule-based system uses a series of rules that are usually expressed as “if-then”

clauses to derive actions (Kwasny and Faisal, 1990). According to Ross (2004), the

if-then rules can be expressed as “IF cause (antecedent) THEN effect (consequent)”.

The rule-based system has some weaknesses. Using the rule-based approach may

cause a combinatorial explosion as the classification of data often contains a huge

number of rules (Liu, Ma, & Wong, 2001). Generating all the rules and conditions



3

for a complex system is quite difficult and time-consuming, while those rules and

conditions might be important for accurate classification. Hence, it is not suitable for

the online matrimonial application as users can set a lot of searching preferences to

find for potential matches. It will generate a huge number of rules for the system.

Furthermore, almost all applications that work with databases analysis and

manipulate relational data through SQL (Bourgeois and Bourgeois, 2014). The SQL

query is excellent at finding exact matches. For example, when the user specifies

conditions to construct the queries, the system will use the conditions to refine the

database records and retrieve the results. However, it might lead to no result being

returned when no record in the database meets the SQL conditions.

1.3 Project Objectives

1. To develop a web-based application by providing a solution that enables an

individual to find their potential matches for marriage as per their priorities.

2. To perform matching through similarity measures based on the requirements and

priorities set by users.



4

1.4 Proposed Solution

To solve the problems stated above, a similarity measures based matrimonial

application is proposed. The target user will be individuals who are single and wish

to explore the opportunities and resources to find for a suitable life partner. The

application combines “data” and “calculation” to help an individual finds the perfect

soulmate. It will implement five algorithms to calculate the similarity of the potential

partners based on the selections.

Figure 1.1 The High-Level Architecture of the System

In this project, React is used to develop the front-end of the application. It is a

Javascript library for creating reactive and iterative user interface (Reactjs, 2020).

React can handle the logic flow of the system, update and render the right component.

It helps to increase development productivity by allowing code reuse.

Furthermore, express.js and Firebase platform are implemented to provide some

Backend-as-a-Service solutions for web-based applications. When users sign up for

an account, Firebase Authentication will create a new user record (email address and

password). Firebase Authentication also provides convenience for developers as it

provides added security and helps to prevent abuse during sign-up and authentication

(Firebase, 2020).

The express.js will act as the server that integrates with Firebase to handle all

HTTP request received from the web-based application. After sign up, users will be

prompted to enter their personal information such as demographics and lifestyle



5

characteristics along with an option to upload their photo. The application will send

HTTP requests to the express.js to do all the validations for storing or retrieving data

from Firestore and uploading or downloading files from Firebase Cloud Storage.

Besides, users can search for profiles that match their requirement and priorities.

After the users have set the specifications, the server will retrieve user data from

Firestore and perform the matching algorithms. The result of matching will be

returned to the application and shown to the user.

In this project, we use similarity measures to find the perfect match for an

individual. The application will calculate the similarity between an individual with

the requirements by using five algorithms which are Jaccard Coefficient, Cosine

Similarity, Euclidean Distance, Manhattan Distance and Minkowski Distance.

1.5 Proposed Approach

Figure 1.2 Phased Development–based Methodology (Tegarden, Dennis and Wixom,

2009)

The development methodology implemented in this project is Phased Development.

By applying this methodology, the overall system will be divided into several

versions and each version is developed logically and sequentially. The most



6

fundamental function will go into the first version (Tegarden, Dennis, and Wixom,

2009). Once the preceding version is completed, the next version will start to build.

i. Version 1: Basic functionality and user interface

In version 1, the front-end of the system was developed. All the basic

functionality and user interface was designed and implemented.

ii. Version 2: Firebase Authentication Implementation

In version 2, a user authentication function was implemented. Firebase

Authentication was used to handle the authentication event. Firebase

Authentication was designed to allow users authenticate with email address and

password.

iii. Version 3: Server-side and Firebase Implementation

The version 3 started to set up the express.js server and Firebase that would

integrate with front-end functionality. The express.js server was designed to

handle the HTTP requests and integrate with Firestore and Firebase Cloud

Storage. Besides, Real-time database was also set up to handle all messaging

data in the application. Database of the system was designed to build a good and

simple database model.

iv. Version 4: Algorithm implementation

This version started to implement the algorithms for data mining. The express.js

integrated with Firestore to retrieve the required data for the data mining

process. The five algorithms which were Jaccard Coefficient, Cosine Similarity,

Euclidean Distance, Manhattan Distance and Minkowski Distance were

designed and implemented in express.js.

1.6 Project Scope

1.6.1 Target Users

In this project, the target users will be the individuals who are single with age

between 22 and 26 and wish to find for a suitable life partner for marriage.

According to the data from the Department of Statistics Malaysia (2019a), the

average marriage age in Malaysia is between 26 and 28. An individual has to



7

establish a stable relationship with the partner before getting married. Hence, this

project aims to help the individuals find for their potential matches based on their

priorities and encourage early marriage. The system will match two individuals

through similarity measures.

1.6.2 Features Covered

The features below would be included in the application to achieve the project’s

objectives.

i. Collect user data for data mining

This system must provide the user interface for the users to input their personal

information. For example, users need to provide their name, gender, age,

religion, height, posture, marital status, mother tongue, education level,

education field, occupation, smoking habits, child wish, hobby, etc. along with

an option to upload their photo. All the user data will be stored in the database.

This feature is important as the system needs user data to perform matching.

Besides, the users can get a basic understanding of their potential matches

through these details before deciding to approach them.

ii. User can set searching preference with priority

This system must enable users to set their searching preferences. The user can

set their priority from highest to lowest. The priority included age, religion,

height, posture, marital status, mother tongue, education level, education field,

occupation, smoking habits, child wish, hobby etc. The system will perform

matching and find for potential matches based on user’s requirement and

priorities.

iii. Matching based on user preferences by applying five algorithms

The system must be able to capture those matching requirements set by the user

and sent as an input to the server for data analysis. The server will calculate the

similarity percentage of a profile with the requirements set by the user by using

similarity measures. There are five algorithms will be implemented for

similarity measures, which are Jaccard Coefficient, Cosine Similarity, Euclidean

Distance, Manhattan Distance and Minkowski Distance.



8

iv. Display profile that matches the user’s requirements and priorities after the

matching algorithm performed.

Once the server completes the matching through similarity measures, the system

must be able to display a list of profiles that match the user’s preferences. The

system will display the profiles in the descending order of similarity. The profile

with the highest percentage will be displayed on the top. It will make the profile

selection process simpler as the user can easily recognize which profile is closer

to their ideal partner.

v. Personal chat function

The system must provide the chat function for the user and his/her potential

match. If the user is interested in one of the profiles that suit his/her

requirements, the user can choose to start a conversation with the match and get

to know each other.

vi. Like function

The system must provide a “Like” function for the user. This feature is similar

to the “Like” function on Instagram. When viewing a profile, the system must

allow the user to “like” the profile. The number of likes will indicate the

popularity of a particular profile. This is a quantitative measurement for the

outlook of the members.



9

CHAPTER 2

2LITERATURE REVIEW

2.1 Existing Online Related System

There are five similar systems being studied in this section. Five websites were

studied, analysed and evaluated based on their features and functionalities.

2.1.1 MalaysianCupid.com

(Available at https://www.malaysiancupid.com/)

MalaysianCupid.com is an online dating and matchmaking sites operated by Cupid

Media Pty Ltd. Cupid Media Pty Ltd is a company specializing in developing

database-driven dating sites. It provides a platform for Malaysian singles to find their

perfect and true love match through sophisticated search and messaging facilities.

(a) Members Online

Upon logging in, the user will be redirected to the home page of

MalaysianCupid.com. The home page will display the members who are currently

online. User can browse the page, send interest or add the profile to favourites. This

“members online” feature provides a simple filtering function that enables the user to

browse through the profiles that match their requirements.

Figure 2.1 Home Page of MalaysianCupid.com Site



10

There is a chat button below each photo for instant messaging. User can choose to

chat with the interested profile. However, the instant messaging function is not

available for free standard members.

Figure 2.2 Instant Messaging Function

(b) Matching Profiles

Before searching for matches, the user needs to update his/her personal info in the

profile section. The profile section includes the user’s basic info, appearance,

lifestyle, cultural values, interests and personality profile. The system will also use

the information to help the user find more accurate matches.



11

Figure 2.3 Sample Input List for User Profile Information

After updating the profile, the user can set their match criteria to search for the

perfect match. The search engine will use the match criteria to filter the huge

selection of profiles in the database and find for exact matches. A list of exact match

profiles will be displayed for user viewing.

Figure 2.4 Page Showing the Relevant Profiles After Matching



12

(c) Searching Profiles

The system provides an advanced searching feature. Similar to the matching features,

user can fill in the criteria such as appearance, lifestyle and cultural values for

searching. There is also the CupidTag search option that enables the user to search

for the members’ tags that he/she wishes to meet.

Figure 2.5 Advanced Search Feature of MalaysianCupid.com

(d) Profiles Viewing

By clicking into one of the profiles displayed by the system, the user can view the

complete information of the profile, including the specific details of the profile’s

match preferences. User can send interest, add the profile to favourites or send a

message.



13

Figure 2.6 Profile Information of Matched Member



14

2.1.2 Match.com

(Available at https://my.match.com/home)

Match.com is one of the oldest dating site founded by IAC in the year 1993. It aims

to prove the feasibility of an online classified ads platform for dating. It provides a

platform for singles to express themselves through various writing sections.

(a) Top Pick / Recommended

In the home page, there is a special feature that displays the recommended profiles to

the user. Recommended are members of the user’s area that are selected based on

user preferences. The user can choose to skip or like the profiles.

Figure 2.7 Home Page of Match.com

(b) Search for Profiles

The system provides a searching feature called ‘Discover’. Similar to the matching

features, user can fill in the criteria such as gender, age, location, interests, personal

information and lifestyle for searching. The system also provides the option to search

by keyword.



15

Figure 2.8 Search Feature of Match.com

Figure 2.9 Search Filter Option

(c) Matching Profile

In Match.com, user can provide their detailed personal information before finding for

suitable matches. With the information provided, the system will match the user with

the right one. The profile consists of the self-written profile summary, a list of

personal info, interests and a photo gallery.



16

Figure 2.10 Page for Editing User Information

There are two matching features in Match.com, which are mutual search and reverse

search. Mutual search will display the profiles when both the user and the member

meet the criteria set by each other. Reverse search will display the profile if the user

matches the particular profile’s preferences.

Figure 2.11 Page Showing the Matched Profiles

(d) Profiles Viewing

The user can view the profile’s summary, personal information and the specific

details of the profile’s match preferences. Besides, the percentage of the user and the

particular profile’s compatibility will be displayed. It is calculated based on the user



17

and the particular member’s interests and what they are looking for. User can send

interest or send a message.

Figure 2.12 Sample User Profile Information Page of Match.com



18

2.1.3 OkCupid.com

(Available at https://www.okcupid.com)

OkCupid is a dating website that launched in the year 2004. According to the proof

from the website, it has over 91 million connections made every year and 50

thousand dates made every week. OkCupid combines user-generated questions and

mathematics to determine members' compatibility. Users will need to answer several

questions when signing up for an account.

Figure 2.13 Sample Question to be Answered During Sign Up

(a) Double Take

After logging, users will be able to see the Double Take feature in the home page of

OkCupid.com. Double Take feature will display the potential profiles based on the

criteria set by users and the overall match percentage with the users based on their

answers. Users can choose to “Pass” the profile if they are not interested, or “Like” if

they want to.



19

Figure 2.14 Home Page of OkCupid.com

(b) Discovery

The Discovery feature enables users to search for people who share similar interest.

Users can type in general topics like hiking or more specific keywords like lonely.

The system will scan the members’ profiles to find for the keyword. Besides, the

Discovery feature will display the comments of the users’ potential matches on

snapshot and questions. Users can search for people who care about the same

questions.

Figure 2.15 Discovery Feature of OkCupid.com



20

(c) Search for Profiles

The website provides a searching feature. Users can set the search criteria such as

gender, age, location, looks, background, availability, vices and the members’

answer to a question. The system displays a profiles’ list that exactly match the

criteria.

Figure 2.16 Search Feature of OkCupid.com

(d) Profiles Viewing

The user can view the profile’s summary, personal information and the specific

details of the profile’s match preferences. Besides, the percentage of compatibility

between the user and the profile will be displayed. It is calculated based on the user

and the member’s answers in the personality quiz. The user can view the questions

that they agree or disagree with. The user can also send a message to the members

that he/she interested. However, the members will only see the message if they liked

the user back.



21

Figure 2.17 Sample User Profile Information Page of OkCupid.com

Figure 2.18 Messaging Function



22

2.1.4 Shaadi.com

(Available at https://www.shaadi.com/)

Shaadi.com is the oldest matrimonial service in the world that caters to India, Canada,

UK, Australia, Singapore, and the USA. According to Anupam Mittal, the founder of

Shaadi.com, Shaadi.com was founded to increase the chances to meet potential life

partners through a superior matchmaking experience.

(a) Today’s Matches

After logging, users will be able to see the Today Match feature on the home page of

Shaadi.com. Today Match feature will display the daily matches recommended by

Shaadi.com based around user’s partner preference. Users can choose to click “Yes”

for the profile they interested, or “No” in the other way.

Figure 2.19 Home Page of Shaadi.com

(b) Search for Profiles

The system provides two searching features, which are basic search and advanced

search. The advanced search enables the users to search profiles based on their

preferences, including sensitive details such as income, educational achievement, and

lifestyle. The system also provides the option to search by keyword.



23

Figure 2.20 Search Feature of Shaadi.com

(c) Matching Profile

User can provide complete biodata to increase the probability of matching with other

members. The biodata includes lifestyle, location, religious background, astro details,

family details, education, career and interests. Through the information provided, if

the members are interested in the user, they can have a better understanding of the

user before approaching.

Figure 2.21 Sample Input List for User Profile Information



24

Besides, the user can set their partner preferences. The system will find potential

matches based on user preferences. A list of exact match profiles will be displayed

for user viewing. Users can also use the filter option provided to refine the matched

profiles.

Figure 2.22 Page Showing the Matched Profiles

(d) Profiles Viewing

The user can access the profile’s personal information and the specific details of the

profile’s match preferences. However, only paid members can view the contact

information. The system will display the number of the profile’s partner preference

that the user matched.



25

Figure 2.23 Sample User Profile Information Page of Shaadi.com

Figure 2.24 Matching Status of Preferences



26

2.1.5 Badoo

(Available at https://badoo.com/encounters)

Badoo is the largest dating-focused social discovery network in the world. It is good

for people looking for friendship or casual dating.

(a) Encounters

After logging, users will be able to see the Encounter feature on the home page. This

feature enables users to search for matches quickly. It will show the member’s

picture with some personal information such as name and age. Users can choose to

click “Like” for the profile they interested, or “Skip”.

Figure 2.25 Home Page of Badoo

By clicking the name on the profile, users can view the detailed information.



27

Figure 2.26 Sample User Profile Information Page of Badoo

(b) Matching

Two people are matched if both of them choose to “Like” each other. After matched,

they are able to chat with each other.



28

Figure 2.27 Page Showing the Matched Profiles

Figure 2.28 Chat Function



29

2.1.6 Comparisons on Existing Online Related System

Table 2.1 Comparison Matrix of Various Applications Similar to the Matrimonial

System

Features
Application Name

Malaysian

Cupid.com

Match.

com

OkCupid.

com

Shaadi.

com

Badoo

Recommended/Pote

ntial Profile

No Yes Yes No No

View Online

Members

Yes No No No No

Matchmaking Yes Yes No Yes Yes

Profile Searching Yes Yes Yes Yes No

Viewing Profile Yes Yes Yes Yes Yes

Add to Favourite Yes Yes No Yes Yes

Chat Yes Yes Yes Yes Yes

Compatibility

Percentage

No Yes Yes No No

In conclusion, each of the systems has its speciality and unique features. Those

systems have provided some interface design concept for the project. Besides, the

existing online related systems also provide a variety of features that are appropriate

for my project. This project will include all of the features mentioned below. These

features are selected as they will contribute to the project’s objective.

i. Profile Matching

This feature is important because it can help the user to find for their potential

life partner. After the user set his/her match criteria, the system will perform

similarity measures to find for the profiles that match the user’s preferences.

The system will display the result list obtained. The user can select the suitable

profile to approach.



30

ii. Viewing Profile

This feature is chosen because the user can know about the members’

information. The user can have a better understanding of that particular member

before deciding to approach. It can assist the user in decision making for

choosing the desired partner.

iii. Add to Favourite

The reason for choosing this feature is due to the convenience it provides. If the

user is interested in one of the profiles, the user can add the profile to favourite.

This feature enables the user to compare a list of profiles that are added to the

favourite easily. The user can choose the most suitable profile after making a

comparison.

iv. Chat Function

The user can interact with the members that he/she interested. This feature is

useful to help the user in establishing a relationship with the potential life

partner. The user may be able to know the potential partner more thoroughly

through the conversation.

v. Compatibility Percentage

The compatibility percentage will be replaced with the similarity percentage.

For each profile that matches the user’s requirements, the application will

display the similarity percentage of the profile with the user’s preferences.

Implementing this feature will make the user easier to select the desired partner.

The higher percentage indicates that the member is closer to their partner

preference. Hence, this feature can help the user to make the decision more

correctly.



31

2.2 Matching Algorithm

2.2.1 Rule-based Approach

The rule-based system has a knowledge base represented as a collection of “rules”

that are typically known as “if-then” clauses. According to Ross (2004), the if-then

rules can be expressed as:

“IF cause (antecedent) THEN effect (consequent)”

If the inputs like the premise, antecedent and condition are given, the output as a

consequent can be derived. A rule can hold multiple inputs on the left-hand side

(antecedent), but only one output on the right-hand side (consequent). Liu, Gegov

and Cocea (2016) stated that the rules would be conjunctive if all the rules are joined

by ‘and’ connector, or disjunctive if rules are linked by ‘or’ connectives. In general,

the use of expert knowledge or learning from real data can help in designing the

rules.

Table 2.2 Limitations of Rule-based Approach

Limitation  Combinatorial explosion may occur due to large number of

rules.

 Difficult and time-consuming to generate all the rules and

conditions for a complex system.

 Not suitable for continuous variable.

 The existence of inconsistent rules may lead to uncertainty in

classification.

2.2.2 Database Query / Exact Matching

Structured Query Language (SQL) is a standard language used to interact with a

relational database (Almeida, 2016). SQL statements are used to perform tasks in

databases like store, manipulate or retrieve data. The basic structure of a SQL query

consists of the following elements:

Figure 2.29 Basic Structure of SQL (Almeida, 2016)



32

The initial clauses, “Select” and “From” are mandatory whereas other elements are

optional. One of the most important features of SQL query is the ability to filter data

in databases, such as to pick only those records that fulfil certain requirements. The

"Where" clause can be used to restrict the elements of a table that will be shown. For

example, in the program that implemented the SQL query, if the user sets the search

criteria, the criteria as the condition of a “Where” clause will be passed directly to

the underlying database for processing. A list of exact matches will be returned and

displayed to the user. However, if the leading column of an index on the table does

not match with any columns in that “Where” clause, a full table scan will be

performed. It will lead to slow performance.

Table 2.3 Limitations of Database Query

Limitation  No probabilistic matching.

 Exact matching might cause no result to be returned if all the

records in the database do not meet the constraints.

 Ordering is not well determined.

 Slow performance if a full table scan occurs.

2.2.3 Similarity Measure

The similarity measure is the measure of the relation between a pair of objects

(Polamuri, 2015). It determines how much identical two data items are. Similarity

measures can also be defined as the distance with dimensions representing features

of the objects. Two objects that have a high degree of similarity normally will have

small distance among them. Similarity is usually measured in the range between 0

and 1, which 0 represents no similarity and 1 indicates the complete similarity. There

are five most popular similarity measures that will be discussed in the following

subsections.

1. Jaccard Coefficient

Jaccard Coefficient measures the similarity of two sets of data (Polamuri, 2015). To

measure the similarity between two data sets through Jaccard Coefficient, the

division between the size of the intersection and the size of the union of two data sets



33

is calculated. The Jaccard coefficient takes a value between [0, 1] with 1 indicating

the two data sets are completely similar and 0 indicating otherwise. When Jaccard

coefficient between two sets of data is one, the number of elements in the

intersection is the same as the union, which A∩B = A∪B. The mathematical

representation of Jaccard Coefficient:

(2.1)

where ∩ = intersect, ∪ = union

Figure 2.30 Jaccard Coefficient Implementation in Python (Polamuri, 2015)

Table 2.4 Strengths and Limitations of Jaccard Coefficient

Strength  It is good for measuring the similarity of binary data

 It is invariant to rotation

Limitation  It is strongly oriented to weight common elements.

 It may give incorrect results when data sets contain missing

observations.

2. Cosine Similarity

Cosine similarity measures the normalised dot product of the two attributes by

finding the cosine angle between the two vectors (Polamuri, 2015). The outcome of

the cosine similarity is between zero and one. If the angle between two vectors is 0o,

the two vectors will have a similarity of 1. In the other hand, the two vectors at 90o

have the similarity of 0, independent of the magnitude. The larger the angle between

two vectors, the smaller their similarity. The mathematical representation of Cosine

Similarity:

(2.2)

where θ = angle between two vectors



34

Figure 2.31 Cosine Similarity Implementation in Python (Polamuri, 2015)

Table 2.5 Strengths and Limitations of Cosine Similarity (Shirkhorshidi,

Aghabozorgi and Wah, 2015)

Strength  It is invariant to rotation

 It is independent of vector length

Limitation  It is variant to the linear transformation

3. Minkowski Distance

Minkowski distance is a generalisation of the Euclidean and Manhattan distances

(Polamuri, 2015). It is a similarity measurement between two points in the normed

vector space. The order of Minkowski metric, λ can be manipulated to calculate the

distance in three different ways. When λ=1, it can be defined as Manhattan Distance.

When λ=2, it is same as Euclidean Distance. When λ=ꝏ , it is Chebyshev Distance.

Minkowski distance can represent the absolute distance between objects

independently of their distance from the origin. The mathematical representation of

Minkowski Distance:

(2.3)

where λ = the order of Minkowski metric

Figure 2.32 Minkowski Distance Implementation in Python (Polamuri, 2015)

https://www.sciencedirect.com/topics/computer-science/minkowski-distance


35

Table 2.6 Strengths and Limitations of Minkowski Distance (Shirkhorshidi,

Ghabozorgi and Wah, 2015)

Strength  It can perform well with the dataset clusters that are isolated

or compacted

Limitation  The large-scale features may dominate the others

4. Euclidean Distance

Euclidean Distance is the most used distance function in many applications

(Polamuri, 2015). The Euclidean distance measures the straight-line distance

between two points by following the Pythagorean rule. The result of Euclidean

Distance is usually greater than or equal to zero where zero indicates that two points

are identical and the higher value shows less similarity. The mathematical

representation of Euclidean Distance:

(2.4)

Figure 2.33 Euclidean Distance Implementation in Python (Polamuri, 2015)

Table 2.7 Strengths and Limitations of Euclidean Distance (Shirkhorshidi,

Aghabozorgi and Wah, 2015)

Strength  It can perform well when applying to datasets with isolated or

compact clusters.

Limitation  The two data vectors that do not have shared attribute values

tend to have a smaller distance, comparing to other pair of data

vectors that contain the same attribute values.

 The large-scaled feature tends to dominate over others



36

5. Manhattan Distance

Manhattan Distance is a measure to obtain the difference between two points along

axes at right angles (Polamuri, 2015). It calculates the absolute sum of the difference

between their Cartesian coordinates which are the x-coordinates and y-coordinates.

Manhattan distance metric is also recognized as the taxicab metric, rectilinear

distance, or city block distance. The mathematical representation of Manhattan

Distance:

(2.5)

Figure 2.34 Manhattan Distance Implementation in Python (Polamuri, 2015)

Table 2.8 Strengths and Limitations of Manhattan Distance (Shirkhorshidi,

Aghabozorgi and Wah, 2015)

Strength  Similar to Minkowski Distance, it can perform well when

applying to datasets clusters that are compact or isolated.

Limitation  It is sensitive to outliers.

2.2.4 Comparison of Matching Algorithms

Based on the reviews on the rule-based approach, database query and similarity

measure, similarity measures are proposed to apply in this project. The rule-based

approach is not suitable because each match preference will be a rule. As the

application provides numerous match preferences, a large number of rules might be

generated and causing a combinatorial explosion. Furthermore, it is not suitable for

continuous variable like height. For the database query, exact matching will be

performed instead of probabilistic matching. Exact matching might cause no result to

be returned if all the records in the database do not meet the constraints. Besides, the

ordering of the result returned is not well determined. Full table scan might occur and

lead to slow performance.

The matrimonial application provides several match preferences for the users to

select, such as age, religion, height, posture, marital status, mother tongue, education



37

level, education field, occupation, smoking habits, child wish, hobby etc. Through

similarity measures, the users can receive a list of results, sorted by similarity.

Similarity measures can eliminate the drawback of exact matching. Even if no record

in the database can exactly match the preferences set by the user, the system will still

be able to return a list of low similarity results.



38

2.3 Software Development Methodology

Software Development Life Cycle (SDLC) is typically known as the process of

developing software in a systematic manner and maintaining the quality of the

product as per the standard. The SDLC framework involves several activities from

the pre-development planning to post-development software testing and evaluation.

All software project will undergo the phases of planning, analysis, designing,

implementation and testing.

A methodology is a formalized approach that implements SDLC (Tegarden,

Dennis and Wixom, 2009). The software development methodologies provide the

basis for planning and controlling the entire process of development. There are a

wide variety of software development methodologies in the current market. In the

case of this project, four software development methodologies will be considered

which are the waterfall, prototyping, phased development and agile.

2.3.1 Waterfall Methodology

Figure 2.35 Waterfall Model Life Cycle (Tegarden, Dennis and Wixom, 2009)

The waterfall is the most well-known traditional software development methodology

(Alshamrani and Bahattab, 2015). It is a linear and sequential approach in developing

software. Before moving to the next phase, the current phase must be completed. In a

waterfall process, the output of each phase will be the input of the subsequent phase.

The key deliverables for each phase need verification and validation from the project

sponsor (Tegarden, Dennis and Wixom, 2009). Once the key deliverables are

approved, the phase end and the following phase begins. It is difficult to go



39

backwards in the SDLC as the iterations can be costly. Significant rework will be

required by repeating the previous phase for any adjustment. Furthermore, this

methodology involves an extensive amount of written or electronic documentation.

The following shows some pros and cons of the Waterfall methodology.

Table 2.9 Pros and Cons of Waterfall Methodology

Pros System development progress can be monitored and controlled easily as

each step has a clearly documentation.

Faults in one phase can be detected before starting the following phase

(Kannan, Jhajharia and Verma, 2014).

Requirements are clearly understood before proceeding to the

development.

Cons Not suitable for projects that have ambiguous objectives. New

requirements that arise during the development phase will not be

considered.

Inflexible and high amounts of risk and uncertainty (Alshamrani and

Bahattab, 2015).

It is time-consuming and costly as each phase may take a long time to

process (Kannan, Jhajharia and Verma, 2014).

Stakeholders are only involved at the beginning and end of project

development.

2.3.2 Prototyping Methodology

Figure 2.36 Evolutionary Prototyping Methodology (Tegarden, Dennis and Wixom,

2009)



40

Prototyping is an approach that supports the development of the system’s initial

version with a minimal number of features in a quickly way before actual

implementation of the system (Rodríguez-Martínez, Mora and Alvarez, 2009). The

prototypes can help developers to have better understand the user requirements as the

users can view the overall design of the proposed system and provide feedback.

Through the prototyping approach, a product can be built and refined subsequently to

meet user expectation. The comments from users or project sponsor will be analysed

to implement more features in the next version prototype (Tegarden, Dennis and

Wixom, 2009). Once all the requirements have been clarified, the actual system will

be implemented based on the approved prototype. The following shows some pros

and cons of the Prototyping methodology.

Table 2.10 Pros and Cons of Prototyping Methodology

Pros Higher likelihood of user acceptance of the final system due to user

engagement throughout the development process

Useful in understanding the user requirement. Prototype can help

developers to resolve any unclear requirements.

Reduce the time and cost as the errors can be found in the early

development stage.

Cons Difficult to be managed and controlled due to frequently changed

requirements.

The scope might be expanded significantly and increase the complexity

of the prototypes (Beynon-Davies, Tudhope and Mackay, 1999).

Users might have false expectations that the prototype is the complete

system



41

2.3.3 Phased Development Methodology

Figure 2.37 Phased Development Methodology (Tegarden, Dennis and Wixom,

2009)

The phased development methodology is a sequential approach which breaks the

whole system into several phases or versions (Tegarden, Dennis and Wixom, 2009).

In the phased development methodology, the overall system concept will be defined

in the analysis phase. Then, the requirements will be categorized into a variety of

versions. After the analysis phase, the design and implementation phase will begins

with the requirements defined for the first version only. The first version of the

system consists of the most important and fundamental requirements. Each version

has its unique process of analysis, design and implementation. Once the

implementation of the first version is completed, additional analysis will be

conducted on the previously defined requirements, which will be coupled with the

user feedback on their experience with the first version. Then, the second version

will start to be designed and implemented. The iteration process will continue until

the system is completed and accepted by users. The following shows some pros and

cons of the phased development methodology.



42

Table 2.11 Pros and Cons of Phased Development Methodology

Pros Defects are easy to be identified and handled during each iteration.

Quickly getting a workable system to users can create business value

early (Tegarden, Dennis and Wixom, 2009).

Risk of failure and changing the requirement can be reduced.

(Alshamrani and Bahattab, 2015)

Cons Require good planning and design to identify the important and

fundamental features for the first version (Alshamrani and Bahattab,

2015)

User works with the intentionally incomplete system (Tegarden, Dennis

and Wixom, 2009)

2.3.4 Extreme Programming

Figure 2.38 Extreme Programming (Tegarden, Dennis and Wixom, 2009)

According to Geambasu, et al. (2011), extreme programming (XP) is a technique for

developing software based on the principles of simplicity, communication, feedback,

respect and courage. Extreme Programming allows the requirements to be modified

at any stage throughout the project life. In XP, user stories are written to describe the

user requirements (Tegarden, Dennis and Wixom, 2009). Then, the system will be

organized into smaller incremental parts to implement the stories. Simple analysis,

design and implementation phases will be performed iteratively after the planning

phase. Small releases of iterative versions of the system will be released frequently to

customers. Testing and efficient coding practices are important. Sharma, Sakar and

Gupta (2012) suggested that the bugs that have been detected during the testing will

be removed in the next iteration. Besides collecting user feedback through functional



43

tests, the development team can also collect system feedback through unit tests

(Geambasu, et al., 2011). Those feedback will be used to evaluate the system and

ensure the user requirements are correctly met. The following shows some pros and

cons of the extreme programming methodology.

Table 2.12 Pros and Cons of Extreme Programming

Pros Flexible schedule and enable the changing of requirements throughout

the project life (Sharma, Sarkar and Gupta, 2012).

Ensure user satisfaction due to user involvement throughout the

development (Sharma, Sarkar and Gupta, 2012).

The bugs can be identified quickly and easily due to frequent software

testing (Yadav, Yasvi and Shubhika, 2019).

Cons Unable to maintain a large and complex system that built with XP due to

lack of analysis and design documentation (Tegarden, Dennis and

Wixom, 2009).

Not suitable for a large and complex system as the communications

between large groups might not be effective.

Required skill programmers to incorporate frequent changes in the

project (Yadav, Yasvi and Shubhika, 2019).

Twice of development cost due to the practice of pair programming. One

work will require two people to do instead of one.



44

2.3.5 Comparison of Software Development Methodologies

Table 2.13 Comparison matrix of various methodologies (Tegarden, Dennis and

Wixom, 2009)

Factors for

comparison

Waterfall Prototyping Phased

Development

Extreme

Programming

Unclear user

requirement

Poor Good Good Good

System

complexity

Good Poor Good Poor

Short Time

Schedule

Poor Good Good Good

With Unfamiliar

Technology

Poor Poor Good Poor

After reviewing and comparing on several development methodologies, phased

development methodology is selected to be adopted for the development of the

matrimonial application. This methodology is chosen as it is suitable for the project

with unfamiliar technology. In this project, Firebase will be implemented in the

back-end of the system. The phased development methodology provides an

opportunity to investigate and understand the Firebase in depth before completing the

system design (Tegarden, Dennis and Wixom, 2009). It allows the developer to adapt

to the system in smaller incremental steps instead of leaping towards a major new

product. Furthermore, this methodology supports the project with a short-time

schedule. It is appropriated for this project as the working product is required within

a short period of approximately two to three months.

Waterfall is more suitable for large and complex projects. The strict controls and

clearly defined development steps of the Waterfall methodology may cause the

application development take a long time to process. Furthermore, waterfall

methodology is more appropriate for the projects that have clearly defined user

requirement. Any changing requirement requires a rework by repeating the previous

process stages. It will significantly affect the project schedule. Hence, waterfall

methodology will not be employed in this project that has a short-time schedule.



45

For prototyping methodology, it is not suitable for this project that uses

unfamiliar technology. The prototypes in the early phases usually only touch on the

surface of the new technology. It has a high possibility that the weakness or problems

in the new technology are recognized after a few prototypes were developed.

Furthermore, a complex system needs to be analysed and designed in details.

However, the prototyping methodology only performs basic analysis and design,

then immediately start on the prototype development. Consequently, prototyping

methodology will not be adopted in this project.

As Extreme Programming practices pair programming, it is only suitable for the

development team that has a minimum of two members and a maximum of 10

members. However, this project has only one developer. Besides, this methodology

lacks detailed documentation that may increase the risk of scope creep. Problems

may arise when implementing the unfamiliar technology in the later stage of the

project. However, there is no proper documentation can be referred to solve the

problem. Therefore, the XP methodology will not be considered in this project even

though this methodology is responsive to changing requirement and supporting

short-time schedule.



46

2.4 Usability Testing

According to Usability.gov (2020a), usability testing is the evaluation of a product or

service by testing it with real users. It measures how easy a product is to use and how

easy it is for the users to achieve their goal. Usability testing is different from

traditional testing, such as bug testing. Usability testing is carried out with actual end

users of the product, while traditional testing might only involve the developer,

designer or project manager. Participants are required to complete typical tasks

during usability testing. Then, the observers will record the participants’ performance

for evaluation. Usability testing aims to recognize any usability problems, collect

qualitative and quantitative data and evaluate user satisfaction toward the product.

Nielsen (1993) classified usability into five sub-attributes, which are learnability,

efficiency, memorability, errors, and satisfaction.

 Learnability describes the ability of users to perform fundamental tasks

when they first experience the design.

 Efficiency measures the time spent by the users to accomplish the tasks.

 Memorability refers to the ability of the users to recollect how to use the

system after a period of not using it.

 Errors measure the error rate of the system and the user ability to recover

from mistakes.

 Satisfaction measures the comfort and acceptability of users when using the

system.

Learnability, efficiency, and memorability can be evaluated by selecting users

from different categories for the test, such as novices and experts. Satisfaction is

typically measured by the users’ rating with the system.



47

Table 2.14 Pros and Cons of Usability Testing

Pros

(Usability.gov,

2020a)

It helps to identify the ease of use of the system.

User feedback can be used to evaluate the application

performance and make improvement.

Issues and potential problems can be identified before launching

the application

It offers insight into how satisfied users are with the product.

Cons (Dicks,

2002)

It is hard to predict success in long-term usage

Testing environment is different from the real work environment

It is only possible to undertake with a small sample of potential

users and the test participants might not fully represent the target

population.

Furthermore, the System Usability Scale (SUS) can be used to evaluate the

usability of a system (Usability.gov, 2020b). It consists of ten questions with five

response choices. Among the ten questions, odd-numbered items worded positively,

whereas even-numbered items worded negatively.

Figure 2.39 Items in SUS (Lewis and Sauro, 2009)

According to Lewis and Sauro (2009), participants will rate each question from

1 to 5 based on their degree of agreement, which ranges from strongly agree to

strongly disagree. Before the SUS score is calculated, the odd items’ score is

subtracted by 1, whereas the score of even items is subtracted by 5. Then, the sum of

the all item score will be multiplied by 2.5. Hence, the SUS score will be range from

0 to 100. The average SUS score is 68 (Usability.gov, 2020b). If the score is below



48

68, it indicates that there would be some problems with the system usability. SUS is

comparatively quick, simple and inexpensive but a reliable way to gauge the system

usability. It can help to differentiate between usable and unusable systems

effectively.

2.4.1 Lab Usability Testing

Lab usability testing is a testing that runs in a controlled environment and supervised

by a moderator. Participants are required to complete a number of tasks by following

the pre-defined scenarios in the usability laboratory. Testing sessions are conducted

individually and the performance of participants will be recorded. The data collected

will be used to calculate the performance times, identify and explain errors. User

opinions’ about the system can be evaluated through the user satisfaction

questionnaires and interviews. Example of steps for conducting usability testing in

the lab:

1. A representative group of users are selected to participate

2. The facilitator explains the test session to the participants.

3. Participants read the test scenario aloud and begin to perform tasks

according to the scenario.

4. The participants’ behaviours, comments, errors, and completion on

each task will be observed and recorded.

5. Participants need to complete follow-up questions after complete

the testing.

6. After the test session, the data collected will be evaluated.

Table 2.15 Pros and Cons of Lab Usability Testing

Pros It provides extra insight into user behaviour through non-verbal cues such

as facial expression and body language

Controlled environment for testing enables participants to be more

concentrated on the tasks

Cons Higher cost compared to other types of testing.

Scheduling issues might affect the timeline of testing.



49

2.4.2 Remote Usability Testing

Remote usability testing is a way to conduct usability testing in participants’ natural

environment (Usability.gov, 2020c). Unlike traditional usability testing, the remote

usability testing session can be carried out even though the researcher and the

participants located in different geographical locations. There are two types of

remote usability testing, which are moderated and unmoderated (Usability.gov,

2020c). During moderated remote testing, the moderator will observe and

communicate with the participants when they perform the testing. Moderated tests

can be performed through real-time screen-sharing. Unmoderated remote testing is

conducted with participants complete the tasks independently without interaction

with the moderator. However, unmoderated remote testing is not recommended as it

is harder to control as no moderator involved.

Figure 2.40 Summary of the Steps Involved in Remote Moderated Usability Testing

(Moran and Pernice, 2018)



50

Table 2.16 Pros and Cons of Moderated Remote Usability Testing

Pros It helps to save time and cost as the cost of hiring a professional usability

lab can be eliminated.

Testing in a natural environment can provide a better insight into true

user behaviour.

It provides an opportunity to connect with participants from various

geographical regions.

Cons The environment is hard to control.

Non-verbal cues such as facial expression and body language will be

missed out.

Internet connectivity and internet speed are important as the remote

testing relies on third-party screen-sharing tools.

2.4.3 Guerrilla Usability Testing

Traditional usability testing uses a specific place to conduct the test. However,

guerrilla usability testing sets up a minimalist system that imitates the functionality

of traditional labs in public spaces (Collado, Mora and Parham, 2013). Participants

are approached in public areas instead of formal recruitment. Cafe, offices,

classroom or almost any place can be used to host the usability testing sessions. The

deliverables of guerrilla usability testing are typically qualitative rather than

quantitative. The design and functionality can be validated quickly. Steps for

conducting guerrilla usability testing (Babich, 2017) are as follow:

1. Pick the right location and approach people

2. Explains the test session to the participants

3. Start the testing session.

4. The participants’ behaviours, comments, errors, and completion

of each task will be observed and recorded.

5. Participants have to complete follow-up questions after complete

the testing.

6. After the test session, the data collected will be evaluated.



51

Table 2.17 Pros and Cons of Guerrilla Usability Testing

Pros It is low cost compared to formal testing

Testing in a natural environment can provide a better insight into true user

behaviour.

A quick way to collect a large number of data

Cons The participants may not be relevant to the target audience.

Can lead to bias and over-dependency if all the participants are drawn in

the same place.

2.4.4 Comparison of Usability Testing Methods

Table 2.18 Comparison on Attributes of Different Usability Testing Types

Attributes Lab Usability

Testing

Remote Usability

Testing (Moderated)

Guerrilla Usability

Testing

Geographic

Diversity

Poor

Limited to a single

location

Good

Not limited to a

single location

Good

No geographic

limitations

Recruiting Difficult

Geographic pool is

limited to the

testing location.

Easier

No geographic

limitation for

recruitment

Easier

Approaching

participants in public

areas instead of

formal recruitment

Qualitative

Insights

Good

Direct observation

of user reactions.

Participants’ facial

expressions and

body language can

be captured.

Poor

Direct observation of

user reactions.

However,

participants’

non-verbal cues will

be missed out.

Good

Direct observation of

user reactions.

Non-verbal cues

from the participants

can be captured.

Cost High

High compensation

costs for users and

facilitator time.

Low

No facility costs

Low

Inexpensive to set up

and run testing in

public areas.



52

After reviewing and comparing several usability testing types, remote usability

testing is selected to be adopted in this project. The most appropriate type of usability

testing that will be applied in this project is typically dependent on project budget

and time constraints. Remote usability testing is a low-cost method as it is simple to

set up and no need much equipment. Hence, it can help to save more project budget.

Besides, due to the outbreak of COVID-19 in Malaysia, it is more suitable to perform

remote usability testing, rather than lab usability testing and guerrilla usability testing.

Although remote usability testing is unable to provide insight into user’s non-verbal

behaviour, it can avoid direct contact with the participants and help in preventing the

spread of COVID-19.



53

CHAPTER 3

3METHODOLOGY ANDWORK PLAN

3.1 Introduction

This chapter explained the details of the methodology applied in this project, which

is the phased development methodology. The work plan along a timeline was also

discussed in the sub-section, including the work breakdown structure and the Gantt

chart. The development tools will also be stated in this chapter.

3.2 Software Development Methodology

As the phased development methodology was implemented for this project, the

development of similarity measures based matrimonial application was separated

into several phases. The most important and fundamental part of the system was

included in the first version.

3.2.1 Planning Phase

The problem statement of this matrimonial application was determined through some

researches during the planning phase. It was found that there is an inclining trend in

the number of marriages in Malaysia. Some people tend to late marriage as finding a

suitable partner that meet the expectations is not easy. Besides, the limitations of the

rule-based approach and SQL query were also identified after conducting in-depth

analysis and interpretation.

Based on the defined problems, the project objectives were declared. The

objective provided the direction for the development of application so that it can

solve the issues faced by Malaysian nowadays. A clear objective can help to increase

the chance leading to a successful outcome. The objectives defined for this project

were as follow:

1. To develop a web-based application by providing a solution that enables an

individual to find their potential matches for marriage as per their priorities.

2. To perform matching through similarity measures based on the requirements

and priorities set by users.

After clarified the problem statements and objectives, the proposed approach,

proposed solution as well as the project scope were identified. For the proposed



54

approach, various types of software development methodologies were compared to

find out the most suitable methodology for this project. The system architecture was

demonstrated as an overview of the application’s process flow. In this project, the

target users were the individuals aged between 22 and 26 and wish to find for a

suitable life partner for marriage. The necessary features to be delivered in the

application were also defined in the project scope.

According to the project’s objective and scope, a work plan had been

determined, including the work breakdown structure and Gantt chart. By following

the work plan during the project life cycle, the project can be completed within the

timeline. It is a guideline to monitor and control the project.

3.2.2 Analysis and Design Phase

During the analysis phase, the overall system concept was identified. Some existing

related systems were reviewed and analysed to determine the project requirements. A

survey was also conducted to understand user requirements.

A total of 5 systems were being reviewed. Matrimonial application has the

similar goal with the dating application, which is finding a partner. Hence, some

dating applications were selected to be reviewed. Through observing and analysing

the existing related system, the potential features that were useful for this project

were identified. Those features were incorporated into the proposed system to create

a comprehensive application. The existing systems also provided a better idea on the

UI design of the matrimonial application.

A list of match preferences was collected from the existing related system. Then,

an online survey was conducted with the distribution of a questionnaire that

consisted of the list obtained. The purpose of the survey was to investigate user

preferences during the selection of a life partner. There were a total of 25

respondents attended the survey. After analysing the responses from the respondents,

the first 12 match preferences selected by most of the respondents were chosen to be

implemented in the application.

After recognizing the features needed by the application, the development

process was divided into four sequentially developed versions. The versions

included:

1. Basic functionality and user interface

2. Firebase Authentication implementation



55

3. Server-side and Firebase implementation

4. Algorithm implementation

A prototype was prepared after the initial requirements had been collected. The

prototype was used to demonstrate how users use the application to achieve their

goals. It also showed the initial design of the application’s user interface.

3.2.3 Phased Implementation

The system implementation was divided into three phases. Each phase has its unique

process of analysis, design and implementation. When the current phase ended and

the next phase began, additional analysis was conducted on requirements that were

defined in the previous phase. Furthermore, testing was conducted before entering

the next phase. It was to ensure the current implementation can run properly and will

not break the previous implementation.

i. Phase 1: Basic functionality and user interface

In this phase, the front-end of the system was developed. The first version of the

application included the most fundamental requirements, which implemented all

the basic functionality and user interface.

ii. Phase 2: Firebase Authentication Implementation

Firebase Authentication was designed to enforce the authentication mechanism

that can prevent unauthorized access to the application. In this project, only

email/password sign-in method was enabled.

iii. Phase 3: Server-side and Firebase Implementation

The express.js and Firebase were set up to integrate with front-end functionality

in phase 3. Database of the system was designed to set up the entity tables and

define the relationship between each entity. Firestore, Real-time Database and

Firebase Cloud Storage were responsible for storing data required in the

application. Lastly, express.js was implemented as the server side to work with

the HTTP requests and integrate with Firestore and Firebase Cloud Storage.



56

iii. Phase 4: Algorithm implementation

For phase 4, the matching algorithms for the application were implemented on

the server-side (express.js). The server integrated with Firestore to retrieve the

required user data for matching. The results of the matching algorithms will be

returned to the application and displayed to users.

3.2.4 Testing Phase

After the final version had been finalized, unit testing, API testing and end-to-end

testing were performed to ensure that the application will work as expected. Besides,

usability testing was conducted to find out which matching algorithm is most suitable

to help users find their life partner.

Before conducting the usability testing, dataset for testing was collected from 40

males and 45 females through questionnaires. They provided their personal

information, such as demographic info, background and lifestyle. Before storing their

data into the application, the data was transformed from strings to numerical values.

For example, “Male” in the gender field was represented by 1, while “Female” was

represented by 2. Such transformation was necessary so that similarity measures can

be applied to the data later.

Then, eight participants (six males and two females) who aged between 22 and

26 were recruited for the usability testing. The testing sessions were conducted

through one-to-one meetings in Microsoft Team. After all the tests completed, user

acceptance testing was conducted to ensure that the system’s functionality fulfils the

users’ expectations.

3.2.5 Deployment

Before deployment, the final version of the system was strictly tested to ensure the

whole system can work properly. Once all the tests had been passed, the

documentation for the application was finalized and the application was deployed.



57

3.3 Development Tools

3.3.1 ReactJs

React.js is a JavaScript library that used to develop the user interfaces, specifically

for the single-page application. The reason for using React in this project is because

it is easy to learn and has a wide variety of documentation, tutorials and training

resources. Besides, it allows code reuse which can help to increase the development

productivity. All components in React are isolated. Each component has its logic and

controls its rendering. Hence, components are reusable and change in one component

will not affect others. Code re-usability can help to boost productivity and facilitates

further maintenance.

3.3.2 Firebase

This project implemented Firebase as the back-end service for application

development. Firebase is a comprehensive app development platform that provides a

lot of infrastructures for developing an application. The infrastructures provided

include Cloud Firestore, Firebase Authentication, Cloud Storage and Real-time

Database.

1. Firebase Authentication

Firebase Authentication offers an easy and secure sign-in process. It offers an

end-to-end identity solution, including email, password and popular federated

identity providers such as Google and Facebook. It is also easy to implement and

flexible for customization.

2. Cloud Firestore

Cloud Firestore is a NoSQL document that enables for quickly storing,

synchronizing and querying data for applications at the global scale. All data are

stored as documents and collections. NoSQL is suitable for storing a large

amount of data that are required for the data mining process in this project.

Furthermore, Cloud Firestore enables synchronization data across devices, either

online or offline.



58

3. Cloud Storage

Cloud Storage was implemented in this project for storing and serving

user-generated content such as user profile photos. It provides a simple and

durable object storage service that scales to exabytes of data. The Firebase Cloud

Storage can be used to upload and download files regardless of network quality.

It will help save users’ time and bandwidth as the users can retry the operation

right where they stopped.

4. Real-time Database

By implementing Real-time Database, data are synchronized for users in

real-time, even if the application goes offline. It is very useful for chat

functionality in the application. All the users will be able to instantly receive

updates with the latest data as they share the same instance of Real-time

Database.

3.3.3 Express.js

Express.js is a Node.js web application framework with route support that can be

used to build and handle API. In this project, express.js acted as the server that

helps the application to interact with Firestore and Firebase Cloud Storage. The

application will send the HTTP request to the server by calling the specific API.

The server will then process the request and send the response back to the

application. Express.js enables the code easier to maintain as the code will run in

a managed environment. Besides, this project used express.js for data mining

process. It was used to process and query user data based on the similarity

measures.



59

3.4 Project Planning

3.4.1 Work Breakdown Structure

Figure 3.1 Work Breakdown Structure Part 1



60

Figure 3.2 Work Breakdown Structure Part 2



61

Figure 3.3 Work Breakdown Structure Part 3

Figure 3.4 Work Breakdown Structure Part 4



62

Figure 3.5 Work Breakdown Structure Part 5



63

Figure 3.6 Work Breakdown Structure Part 6

Figure 3.7 Work Breakdown Structure Part 7



64

3.4.2 Gantt Chart

Figure 3.8 Gantt Chart of Planning Phase

Figure 3.9 Gantt Chart of Analysis Phase



65

Figure 3.10 Gantt Chart of Phase 1

Figure 3.11 Gantt Chart of Phase 2



66

Figure 3.12 Gantt Chart of Phase 3

Figure 3.13 Gantt Chart of Phase 4, Testing Phase and Deployment Phase



67

CHAPTER 4

4PROJECT INITIAL SPECIFICATION

4.1 Introduction

This chapter discussed the requirements of the proposed system. Use case diagram

was introduced to demonstrate the overall flow of the application. The detailed

information of the flows was defined in the use case descriptions. This chapter also

covered some preliminary system design.

4.2 Functional Requirements

1. The system must enable users to sign-in with their email and password.

2. The system must enable first-time users to register for a new account.

3. The system must authenticate users after the users enter their email and

password.

4. The system must allow users to select the desired search criteria before

searching for potential matches.

5. The system must be able to perform similarity measures based on the search

preference set by users.

6. The system must allow users to view a list of potential matches that are sorted

in descending order of similarity after performing the similarity measures.

7. The system must allow users to view the details of the desired profiles such

as basic information, background and lifestyle.

8. The system must allow users to add the desired profiles to the favourite list.

9. The system must allow users to send a message to the interested profiles.

10. The system must allow users to view and modify their personal profile

details.

4.3 Non-functional Requirements

1. Usability

a) The system shall be built in a user-friendly way by presenting a simple

and consistent graphical user interface.

b) The system shall be able to operate easily by users to achieve their

objectives.



68

2. Performance

a) The system shall respond to user requests in less than 1 second.

b) The system should ensure the results of similarity measure are correct.

c) The system shall be able to manage concurrent request from multiple

users with a failure rate below 0.5%.

3. Security

a) The system shall protect the personal information of the users and

restrict unauthorized users for accessing the system.

b) The system shall allow users to use their email address for verification

if they forget their password.

4. Development

a) Each user record shall be stored on a well-built and efficient database

schema.

b) The methodology adopted in this project is phased development.

5. Operational

a) The system shall function well and accessible at any time as long as

users are connected to the internet.



69

4.4 Use Case Diagram

Figure 4.1 Use Case Diagram



70

4.5 Use Case Description

Table 4.1 Use Case - Create Account

Use Case: Create Account ID: 1

Stakeholder:

User – a person who is new to the system and want to use the system for finding the

potential life partner.

Description:

Use case that describes how a user creates an account.

Triggering event: User wants to access the system.

Related Use Cases:

Association: User

Include: Login Account, Add Profile Details

Basic Paths:

1. User will enter an interface to create an account.

2. User enters his/her email and password.

3. An account is successfully created and the system redirects the user to a

page that prompt user input for his/her profile details.

4. User enters his/her personal details, including demographic info,

background and lifestyle.

5. User uploads his/her profile picture.

6. The system stores user’s profile details and photo into the database and

redirect the user to the home page of the system.

Exceptional Paths:

2.1 User re-enters the email if the email is being used



71

Table 4.2 Use Case - Login Account

Use Case: Login Account ID: 2

Stakeholder:

User – a person who wants to access the system and already has an account.

Description:

Use case that describes how a user sign-in into the system.

Triggering event: User who wants to login the system.

Related Use Cases:

Association: User

Extend: Add Profile Details

Basic Paths:

1. User will enter an interface to login.

2. User enters his/her email and password.

3. The system verifies the user’s identity.

4. The system redirects the user to the home page of the system

Exceptional Paths:

2.1 User enters invalid email or incorrect password

2.1.1 The system prompts the user to input the required information again.



72

Table 4.3 Use Case - Search Potential Matches

Use Case: Search Potential Matches ID: 3

Actor’s Information:

User – a person who wants to find the potential life partner.

Description:

Use case that describes how a user searches for the potential matches by inputting

some match preferences.

Triggering event: User wants to find for potential matches.

Related Use Cases:

Association: User

Include: Enter Match Preferences

Extend: View Profile Details

Basic Paths:

1. User selects his/her desired match preferences.

2. The system processes the match preferences and redirect the user to the

page that consists of a list of matched profiles.

3. User can edit his/her desired match preferences if not satisfies with the

results.

4. The system displays a new matched profile list to the user.

Exception Paths:

4.1 User clicks on one of the profiles that he/she interested in.

4.1.1 The system redirects the user to the page that consists of the particular

profile’s details (refer to use case ID: 4).



73

Table 4.4 Use Case - View Profile Details

Use Case: View Profile Details ID: 4

Stakeholder:

User – a person who wants to view a particular profile.

Description:

Use case that describes how a user view the personal information of a profile.

Triggering event: User wants to view an interested profile.

Related Use Cases:

Association: User

Extend: Send Message & Add to Favourite

Basic Paths:

1. The system displays the detailed information of the profile, including

demographic info, background and lifestyle.

2. User views the details.

2.1 If the user wishes to start a conversation with the particular profile,

sub-path 2.1 will be performed.

2.2 If the user wishes to store a particular profile, sub-path 2.2 will be

performed.

Sub-paths:

2.1 User click on the “Chat” icon.

2.1.1 The system prompts the user for the message he/she wants to send.

2.1.2 The system sends the user’s message to the particular profile.

2.2 User click on the “Favourite” icon.

2.2.1 The system saves the particular profile into the user’s favourite list.



74

Table 4.5 Use Case - View Favourite List

Use Case: View Favourite List ID: 5

Actor’s Information:

User – a person who wants to access the profiles that he/she added into the

favourite list.

Description:

Use case that describes how a user view the profiles that have been added into the

favourite list.

Triggering event: User wants to view the favourite list.

Related Use Cases:

Association: User

Extend: View Profile Details & Remove Profile from List

Basic Paths:

1. User clicks on the “Favourite List” option on the navigation bar.

2. The system directs the user to the pages that consists of a list of profiles that

added to favourite.

3. User views the list of profiles.

3.1 If the user wishes to view the profile details, sub-path 3.1 will be

performed.

3.2 if the user wishes to remove unwanted profiles, sub-path 3.2 will be

performed.

Sub-paths:

3.1 User clicks on the desired profile.

3.1.1 The system redirects the user to the page that consists of the particular

profile’s details (refer to use case ID: 4).

3.2 User clicks on the “Trash” icon on the profile.

3.2.1 The system removes the profile from the favourite list.



75

Table 4.6 Use Case - View Chat Message

Use Case: View Chat Message ID: 6

Actor’s Information:

User – a person who wants to view the inbox message.

Description:

Use case that describes how a user accesses the chat message.

Triggering event: User wants to view the chat message.

Related Use Cases:

Association: User

Extend: Send Message & Reply Message

Basic Paths:

1. User clicks on the “Message” on the navigation bar.

2. The system redirects the user to the pages that consists of a chat list.

3. User clicks on one of the chats.

4. The system displays the chat history between the user and the particular

profile.

5. User views the conversation with a particular profile.

5.1 If there is a new message, sub-path5.1 will be performed.

5.2 If the user wants to delete the whole chat history, sub-path 5.2 will be

performed.

Sub-paths:

5.1 User enters the message he/she wants to reply and click “Send” icon.

5.1.1 The system sends the reply message to the particular profile.

5.2 User clicks on the “Trash” icon.

5.2.1 The system clears the chat history and remove the conversation from the

chat list.



76

Table 4.7 Use Case - View Personal Profile

Use Case: View Personal Profile ID: 7

Actor’s Information:

User – a person who wants to view his/her own profile information.

Description:

Use case that describes how a user views the personal profile information.

Triggering event: User wishes to view his/her personal profile information.

Related Use Cases:

Association: User

Extend: Edit Profile Information

Basic Paths:

1. User clicks on the “My Profile” option on the navigation bar.

2. The system redirects the user to the page that shows his/her personal details,

including demographic info, background and lifestyle.

3. User view for his/her personal information

3.1 If the user wishes to modify his/her personal info, sub-path 3.1 will be

performed.

Sub-paths:

3.1 User clicks on the “Edit” icon.

3.1.1 The system redirects the user to the page that showing a list of user’s

personal information.

3.1.2 User edits one of the details.

3.1.3 The system updates the new details to the database and redirects the user

back to the personal profile page.



77

4.6 Fact Findings

An online survey had been conducted with 25 respondents to investigate user

preferences during the selection of a life partner. In the questionnaire, there are a

total of 23 criteria for the respondents to select. The respondents were requested to

select 10 partner criteria that they will consider when selecting the life partner.

Figure 4.2 Important Criteria for Selecting a Life Partner



78

Based on Figure 4.2, about 80% of the respondents thought that appearance is the

most important criteria in selecting the life partner. Hence, appearance criteria will

be implemented in the application by displaying the user’s profile picture. Besides,

except the appearance, the top 12 match preferences selected by most of the

respondents will be selected to be implemented in the application as user profile

information. According to Figure 4.2, age, height, posture, religion, marital status,

mother tongue, location, education level, job, hobby/interest, thought on child and

smoking habit was selected by most of the respondents. Hence, when users sign up in

the application, they will be prompted to enter their information for creating the user

profiles.



79

CHAPTER 5

5SYSTEM DESIGN

5.1 System Architecture Design

Three-tier architecture (client-server architecture) is implemented in this project. A

standard three-tier architecture consists of 3 layers, which are presentation tier,

application tier and data tier. According to Chen, et al. (2003), the presentation tier is

the graphical user interface that manages data input and output from end-user. The

middle tier is usually responsible for business logic, such as data queries, and

transaction. The data tier consists of the database server that is responsible for storing

and retrieving information needed for the application.

Figure 5.1 Three-tier Architecture

Figure 5.2 System Architecture Design



80

In this project, ReactJs was used to develop the presentation tier of the

application. React is a simple and easy to learn library that can help in collecting

user’s input and displaying the data received from the application tier (server). React

can communicate with the server by sending the HTTP request.

Express.js was implemented as the application logic layer. It was responsible for

the application’s core functionality, such as data processing for similarity measures.

By implementing the application logic layer, the technical details will be hiding from

the end-users. Express.js was designed to integrate with Firebase and handle all

HTTP request received from the web-based application.

Firebase provides some services that can be used to develop the data tier. For

example, Firestore can be used to store user data while Firebase Cloud Storage can

be used to store image files. Hence, if the server receives HTTP requests from the

presentation tier, it can process the request by storing/retrieving data from Firestore

and Firebase Cloud Storage.

Besides, ReactJs was designed to integrate with Firebase Authentication for the

authentication mechanism. Firebase Authentication was responsible for handling

users’ sign in or sign up event. ReactJs was also designed for directly accessing the

Firebase Real-time Database. Firebase Real-time Database was not implemented in

server-side due to its data synchronization. By integrating with ReactJs, the client

was able to receive the real-time update within milliseconds as Firebase Real-time

Database will listen for data changes.



81

5.1.1 Data Flow Diagram

Figure 5.3 Context Diagram



82

Figure 5.4 Level 0 DFD



83

Figure 5.5 Level 1 DFD for Create Account

Figure 5.6 Level 1 DFD for Search Potential Matches



84

Figure 5.7 Level 1 DFD for View Member Profile

Figure 5.8 Level 1 DFD for Manage Favourite List



85

Figure 5.9 Level 1 DFD for Manage Chat Message

Figure 5.10 Level 1 DFD for Manage Personal Profile



86

5.1.2 Activity Diagram

Figure 5.11 “Create Account” Activity Diagram



87

Figure 5.12 “Login Account” Activity Diagram



88

Figure 5.13 “Search Potential Matches” Activity Diagram



89

Figure 5.14 “View Profile Details” Activity Diagram



90

Figure 5.15 “View Favourite List” Activity Diagram



91

Figure 5.16 “View Chat Message” Activity Diagram



92

Figure 5.17 “View Personal Profile” Activity Diagram



93

5.2 Data Model Diagram

5.2.1 Logical Data Model Diagram

Figure 5.18 Logical Data Model Diagram



94

5.2.2 Physical Data Model Diagram

Figure 5.19 Firebase Schema Design

The users table, preferences table and favourite table was implemented in Firestore.

The attributes of preferences are embedded in the Users collection. In this project,

the preferences information and user information are always retrieved and displayed

together as user profile information. Thus, the need to join in query can be reduced

by combining both tables and the data retrieving speed will be improved.

The chats table and likes table were implemented in Firebase Real-time

Database. However, the data are structured as a JSON tree in Firebase Real-time

Database. In this project, one user can chat with many members, while the user can

send many messages to a member. Hence, the database structure was implemented as

the schema design in Figure 5.4. Besides, the likes table stored the uid of the

members that liked by the user. The number of likes received by the user will be

shown in the personal profile page.



95

5.2.3 Data Dictionary

Table 5.1 Data Dictionary of Users Collection

Field Name Data Type Caption PK / FK Nullable

uid string Identification for every user PK No

email string User’s registered email address - No

gender number User’s gender - No

name string User’s name - No

age number User’s age - No

height number User’s height - No

state number User’s living state / province - No

status number User’s current marital status - No

posture number User’s body type / posture - No

religion number User’s religion - No

tongue number User’s native language - No

education number User’s education level - No

field number User’s field of study - No

smoke number User’s smoking habit - No

childWish number User’s desire for a child - No

occupation number User’s current occupation - No

interest array User’s hobbies / interests - No

profilePic string The link of user profile picture

in Firebase Cloud Storage

- No

summary string A short brief to describes user - Yes

preferences object User’s match preferences - No

Table 5.2 Data Dictionary of Preferences Attribute in Users Collection

Field Name Data Type Caption PK / FK Nullable

gender number Preferred partner’s gender PK No

minAge number Preferred partner’s age range

(minimum age)

- No

maxAge number Preferred partner’s age range

(maximum age)

- No



96

minHeight number Preferred partner’s height range

(minimum height)

- No

maxHeight number Preferred partner’s height range

(maximum height)

- No

state number Preferred partner’s living state /

province

- No

status number Preferred partner’s current

marital status

- No

posture number Preferred partner’s body type /

posture

- No

religion number Preferred partner’s religion - No

tongue number Preferred partner’s native

language

- No

education number Preferred partner’s education

level

- No

field number Preferred partner’s field of study - No

smoke number Preferred partner’s smoking

habit

- No

childWish number Preferred partner’s desire for a

child

- No

Table 5.3 Data Dictionary of Favourites Collection

Field Name Data Type Caption PK / FK Nullable

favouriteId string Identification for favourite PK No

list array User’s Favourite list - No

uid string Identification for user that the

favourite list belongs to

FK No



97

Table 5.4 Data Dictionary of Chats JSON tree

Field Name Data Type Caption PK / FK Nullable

id string Identification for each chat (uid

of the user who send the chat)

PK No

receivers array of

object

Chat message receiver - No

Table 5.5 Data Dictionary of Receivers Attribute in Chats JSON tree

Field Name Data Type Caption PK / FK Nullable

id string Identification for each receiver

(uid of the receiver)

PK No

messages array of

object

Chat message content

 id: identification of message

 from: user who send the

message

 text: content of the message

 timestamp: the time when

the sender send the message

- No

read number The number of messages that

has been read by user

- Yes

Table 5.6 Data Dictionary of Likes JSON tree

Field Name Data Type Caption PK / FK Nullable

id string Identification for each like (uid

of the user who send the chat)

PK No

likedProfile array of

object

A list of profiles liked by user

 id: identification of liked

profile (uid of the liked

profile)

- Yes

receivedLike number Number of likes received from

other members

- Yes



98

5.3 Preliminary User Interface Design

Figure 5.20 UI – Overview Layout of the application

Figure 5.21 UI – Search Result Page (Exact Match)



99

Figure 5.22 UI – Display Profile Details (Exact Match)

Figure 5.23 UI – Search Result Page (Similarity Measures)



100

Figure 5.24 UI – Display Profile Details (Similarity Measures)

Figure 5.25 UI – Instant Message Feature



101

Figure 5.26 UI – Chat List Page

Figure 5.27 UI – Chat Message Page



102

Figure 5.28 UI – Favourite List Page

Figure 5.29 UI – Personal Profile Page



103

Figure 5.30 UI – Edit Profile Page (Personal Information)

Figure 5.31 UI – Edit Profile Page (Preferences)



104

CHAPTER 6

6IMPLEMENTATION

6.1 Web API Endpoint

There are 13 API endpoints used in this project. All the API endpoints were

implemented in the server (Express.js).

Table 6.1: List of Web API Endpoints

Route Type Description

/api/createProfile POST Create a profile for the new user

/api/getPersonalInfo POST Get personal profile information

/api/updateProfilePic POST Update user’s profile picture

/api/updateProfileDetails POST Update user’s personal information

(demographic, background and

lifestyle)

/api/updateProfilePreferences POST Update user’s personal information

(match preferences)

/api/getExactMatchResult POST Get matching results by exact

matching

/api/getSimilarityResult POST Get matching results by similarity

measures (Jaccard Coefficient, Cosine

Similarity, Euclidean Distance,

Manhattan Distance and Minkowski

Distance)

/api/checkFavourite POST Get the favourite list to check whether

the currently viewed profile was

added into favourite



105

/api/updateFavourite POST Update favourite list to remove

currently viewed profile

/api/getFavouriteList POST Get a list of profiles that added to

favourite

/api/deleteFavourite POST Update the favourite list to remove the

unwanted profile

/api/getMemberData POST Get the profile information of the

receivers in the chat list

/api/getProfilePicture POST Get user profile picture to be

displayed in the chat

6.2 Application Implementation

6.2.1 Main Page

This is the first screen the visitors will encounter when they enter the application. If

the visitors wish to access the application, they have to register/login an account.

Figure 6.1 Visitor’s Main Page



106

6.2.2 Registration

For the new users, they can choose to click the “Join Us Now” button to register a

new account. They will be redirected to the registration page. The users have to enter

their email address and password for the application. If the users already had an

account, they can press the “Login” button to be redirected to the login page.

Figure 6.2 Registration Page

After the users successfully register their accounts, they are required to enter their

personal information. They have to enter their demographic, background and

lifestyle information along with their profile picture. All details are required to fill in,

except for the “About You” section. The users may choose whether to fill in or leave

it blank.



107

Figure 6.3 Create Profile Page - Part 1

Figure 6.4 Create Profile Page - Part 2



108

Figure 6.5 Create Profile Page - Part 3

Figure 6.6 Create Profile Page - Part 4

After complete, the users can click the “Submit” button. The application will send a

POST request to API endpoint (/api/createProfile) on the server. The server will store

the image into Firebase Cloud Storage. Then, the server will add a new document to

Firestore users collection to store the user data and the image URL retrieved from

Firebase Cloud Storage. After that, the registration process is completed.



109

Figure 6.7 Section Code for Create Profile (Server)

6.2.3 Login

For the existing users, they can choose to click “Sign In” button to login their

account. They will be redirected to the login page. The users have to enter their email

address and password for the application. If the users do not have an account, they

can press the “Sign Up Free” button to be redirected to the registration page.



110

Figure 6.8 Login Page

6.2.4 Search Potential Matches

After the users register or login successfully, they will be redirected to the home page.

In the home page, the users can set their match preferences to search for potential

matches. There are 12 options for users to select. After the users set their match

preferences, they can click the “Submit” button to view the search results.

Figure 6.9 Set Match Preferences Page

All the match preferences will be transformed form strings into numerical values.

Then, the application will send the match preferences through a POST request to API



111

endpoint (/api/getExactMatchResult) on the server. The server will perform exact

matching to retrieve the match results from Firestore users collection. It will only

return the profiles that exactly match the preferences set by users.

Figure 6.10 Section Code for Get Exact Matching Result (Server)



112

If the users are not satisfied with the results, they can edit the match preferences by

clicking the “Edit” button. The users will be redirected back to the Set Match

Preferences Page (Figure 6.9).

Figure 6.11 Match Result Page (Exact Matching)

There are 6 match methods can be chosen by the users, which are Exact matching,

Jaccard Coefficient, Cosine Similarity, Euclidean Distance, Manhattan Distance and

Minkowski Distance. Exact Matching is the default match method. When the users

select other match methods, the application will send the match type and user

preferences through a POST request to API endpoint (/api/getSimilarityResult). The

server will retrieve a list of profiles from Firestore users collection for similarity

measures. Normalization will be performed to scale the value of user preferences and

members’ data between 0 and 1. This is to avoid the large scale variable for

dominating the measure.



113

Figure 6.12 Section Code for Get Similarity Measures Result (Server) - Part 1



114

Then, the server will perform the similarity measures based on the match method

selected by users. The similarity of each profile with the user’s match preferences

will be calculated. The server will only return the top 10 profiles with highest

similarity percentages as the response to the application.

Figure 6.13 Section Code for Get Similarity Measures Result (Server) - Part 2



115

When displaying the match results, the application will also display the similarity

percentage beside the member’s name. Since the higher percentage indicates that the

member is closer to their partner preference, the similarity percentage makes it easier

for the users to pick the desired partner.

Figure 6.14 Match Result Page (Similarity Measures)

6.2.5 View Member Profile

When users click on one of the profiles, they can view the member’s detailed

information. Before displaying the profile information, the application will retrieve

the number of likes received by the profile from Firebase Real-time Database. The

users can know how many people liked the profile. The number of likes will indicate

the popularity of the profile. The application will also check if the users have liked

the current profile by retrieving a list of liked profiles from Firebase Real-time

Database. If the list contains the profile, the application will display a filled “Love”

icon. Else an outline “Love” icon will be shown.



116

Figure 6.15 Section Code for Check Like Status (Front-end)

Furthermore, the application will check whether the current profile was added to

favourites. The application will send a POST request to API endpoint

(/api/checkFavourite) on the server. The server will return the favourite list retrieved

from Firestore favourites collection as the response.

Figure 6.16 Section Code for Check Favourite (Server)

If the current profile exists in the favourite list, the “Favourite” button will be

displayed as pink colour instead of white colour. Besides, if the users search the

matches by similarity measures, the application will display the similarity percentage

in the profile as Figure 6.17. The display of similarity percentage will make the user

easier to select the desired partner when viewing the profile information.



117

Figure 6.17 Member Profile Page (Without Similarity Measure)

Figure 6.18 Member Profile Page (With Similarity Measure)



118

If the users wish to like/unlike the profile, they can click the “Love” button. The

application will update the like status in Firebase Real-time Database. If the user

likes the profile, the number of likes will be increased. On the other hand, if the user

unlike the profile, the number of likes will be decreased.

Figure 6.19 Section Code for Update Like Status (Front-end)

If the users wish to add the profile to favourite or remove the profile from favourite,

they can click the “Favourite” button. The application will send a POST request to

API endpoint (/api/updateFavourite) on the server. The server will update the

favourite list in Firestore favourites collection. After that, the users can check the

favourite list on the Favourite List Page.

Figure 6.20 Section Code for Update Favourite (Server)



119

If the users wish to send a message to the profile, they can click the “Chat” button. A

pop-up window will be displayed. The application will retrieve any chat history

between the user and the target profile from Firebase Real-time Database. The users

can view chat history through the window.

Figure 6.21 Section Code for Load Message (Front-end)

Figure 6.22 Instant Message Pop-up Window

After the users enter the message and click “Send” button, the application will update

the messages in Firebase Real-time Database. The message sent will be synced with

the receiver. Hence, the receiver can receive the new message within milliseconds.



120

Figure 6.23 Section Code for Send Message (Front-end)

6.2.6 View Chat Message

When the users click the “Message” option on the navigation bar, they will be

redirected to the Chat List Page. The application will get the messages from Firebase

Real-time Database. The read attribute is used to detect the unread messages. If there

is any unread message, a red badge will be displayed to inform the users about the

unread message.

Figure 6.24 Section Code for Get Chat Messages (Front-end)

The application will also send a POST request to API endpoint (/api/getMemberData)

on the server to get receiver’s data from Firestore. The server will retrieve the

requested user data from users collection and return it as a response to the

application.



121

Figure 6.25 Section Code for Get Member Data (Server)

The chat list will display the most recent conversations between users and the

receivers. The chat list will also display some information of the receivers such as

name, age and living state.

Figure 6.26 Chat List Page

The users can click into one of the chat to view the chat history or send messages. If

the users wish to delete the chat history, they can click the “Delete” button to clear

the whole chat history. There is also a button next to the “Delete” button which

allows the users to view the receiver’s profile.



122

Figure 6.27 Individual Chat History Page

When a user sends a message, the application will update the messages in Firebase

Real-time Database. The message sent will be synced with the receiver. Hence, the

receiver can receive the new message within milliseconds.

Figure 6.28 Section Code for Send Message (Front-end)



123

When the users click the “Menu” button with three dots on the top-right, they can

choose to view the member’s profile or delete the chat history.

Figure 6.29 Menu Option

If the users choose to delete the chat history, a delete confirmation message will be

pop-up. Once the users choose “Agree”, the chat history will be removed

permanently from the Firebase Real-time Database. However, the users will only

delete their records. The receivers will still be able to view the chat history.

Figure 6.30 Chat History Delete Confirmation Message

Figure 6.31 Section Code for Delete Chat History (Front-end)

6.2.7 View Favourite List

When the users click the “Favourite” option on the navigation bar, they will be

redirected to Favourite List Page. The application will send a POST request to API

endpoint (/api/getFavouriteList) on the server. The server will retrieve the favourite

list from Firestore favourites collection. Then, the server will retrieve the member

data according to the list. The favourite list and the data of the members on the list

will be returned to the application.



124

Figure 6.32 Section Code for Get Favourite List (Server)

The result of the favourite list will be displayed in the Favourite List Page (Figure

6.27). The users can click on one of the profile to view the detailed profile

information. The users can also delete the unwanted profiles from the favourite list.

Figure 6.33 Favourite List Page

If the “Delete” button is clicked, the selected profile will be removed from the

favourite list. The application will send a POST request to the API endpoint

(/api/deleteFavourite) on the server. The server will update the favourite list in

Firestore favourite collection to remove the unwanted profiles.



125

Figure 6.34 Section Code for Delete Profile from Favourite (Server)

6.2.8 View Personal Profiles

When the users click the button on the top-right of the navigation, they can choose to

view their profile. The application will send a POST request to API endpoint

(/api/getProfileDetails) on the server to retrieve their profile information. The user

data will be retrieved from Firestore users collection and returned as a response to

the application. The response will then be displayed in the Personal Profile Page.

Besides, the application will display the number of likes retrieved from Firebase

Real-time Database. The users are able to know how many people liked their

profiles.

Figure 6.35 Section Code for Get Profile Details (Server)

Figure 6.36 Section Code for Get Number of Likes (Front-end)



126

Figure 6.37 Personal Profile Page

If the users wish to change their profile pictures, they can click the “Edit” button

beside the profile picture. A small window with the user profile picture will pop-up.

The users can change the profile picture by uploading a new photo through the

“Upload Photo” button.



127

Figure 6.38 Pop-up for Update Profile Picture

When the users click the “Confirm” button, the application will send a POST request

to API endpoint (/api/updateProfilePic) on the server. The server will update the

image stored in Firebase Cloud Storage. Then, the server will update profile picture

attribute in Firestore users collection with the image URL that retrieved from

Firebase Cloud Storage.

Figure 6.39 Section Code for Update Profile Picture (Server)



128

If the users wish to change their profile information, they can click the “Edit” button

beside their name (Figure 6.30). The users will be redirected to the Edit Page. They

can choose to edit their personal information or their match preferences.

Figure 6.40 Edit Personal Information Page



129

Figure 6.41 Edit Match Preferences Page

If the users edit the personal information in Figure 6.33 and click the “Submit”

button, the application will send a POST request to API endpoint

(/api/updateProfileDetails). If the users edit the preferences in Figure 6.34, the

application will send the POST request to API endpoint

(/api/updateProfilePreferences). The server will update the user data in Firestore

users collection.

Figure 6.42 Section Code for Update Profile Details (Server)



130

Figure 6.43 Section Code for Update Profile Preferences (Server)



131

CHAPTER 7

7TESTING

7.1 Unit Testing

Unit testing was conducted with all components in the application client-side. When

performing unit testing, Enzyme was combined with Jest to test the components. Jest

is an open-source Javascript testing framework. It offers the “matchers” that enables

the assertion easier to read. Similar to Jest, Enzyme is also one of the Javascript

testing frameworks. By using the shallow rendering of Enzyme, each component can

be tested as a unit. The tables below show the unit test cases of each component in

the application.

Table 7.1 Unit Test Case - Home

ID 1

Module Name Home

Description Test the Home Page Functionality

Steps Details Expected Result Actual Result Status

1 Render Home

component

Should call

componentDidMount

method when load

componentDidMount

was called

Pass



132

Table 7.2 Unit Test Case - Create Profile

ID 2

Module Name Create Profile

Description Test the Create Profile Page Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Render

Create

Profile

component

N/A Should render create profile page

correctly with 1 form, 1 stepper,

15 text labels, 3 next buttons, 3

back buttons and 1 submit button

1 form, 1 stepper, 15 text labels, 3

next buttons, 3 back buttons and 1

submit button were displayed

Pass

2 Enter

personal

details

Name: Chia Yong

Fang

State: Pahang

Interest: Art / Painting

/ Drawing', 'Bars /

Pubs / Nightclubs'

Should change state value when

input for personal details changed

State: { Name: “Chia Yong Fang”,

State: Pahang, Interest: ['Art /

Painting / Drawing', 'Bars / Pubs /

Nightclubs']

}

Pass

3 Submit Form N/A Should call the method that

handles form submission after

click submit button

The handleSubmit method was called

after clicked submit button

Pass



133

Table 7.3 Unit Test Case - Search Profile

ID 3

Module Name Search Profile

Description Test the Search Profile Page Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Render Search

Profile

component

N/A Should render search profile page

correctly with 1 form, 1 header, 12

search criteria, 12 search labels, 4

numeric input fields, 1 clear button and

1 submit button

1 form, 1 header, 12 search

criteria, 12 search labels, 4

numeric input fields, 1 clear button

and 1 submit button were

displayed

Pass

2 Enable age range

input and height

range input

N/A Should enable inputs for age range and

height range after unchecked “Any”

checkbox

Inputs for age range and height

range were enabled

Pass

3 Disable age range

input and height

range input

N/A Should disable inputs for age range and

height range after checked “Any”

checkbox

Inputs for age range and height

range were disabled

Pass

4 Enter preferences Gender:

Female

State: Pahang

Should change state value when input

for preferences changed

State: { Gender: Female, State:

Pahang }

Pass

5 Submit Form N/A Should call method that handle form

submission after click submit button

The handleSubmit method was

called after clicked submit button

Pass



134

Table 7.4 Unit Test Case - Search Result

ID 4

Module Name Search Result

Description Test the Search Result Page Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Before API call

success

N/A Should render a loading sign A loading spinner was

displayed

Pass

2 Render Search

Result component

after API call

success

Mock API response

to return 2 members’

profile details.

Should render search result page

correctly with 2 profile cards, 2 chat

buttons and 2 favourite buttons

2 profile cards, 2 chat buttons

and 2 favourite buttons were

displayed

Pass

3 Choose similarity

measure as the

matching method

N/A Should call the method that handles

similarity measures and render

similarity percentage

The handleSimilarity method

is called and similarity

percentages were displayed

for 2 member profiles

Pass

4 Click send message

button in the child

component

N/A Should call the method that handles

sending message

The handleMessage method

was called

Pass

5 Click favourite

button

N/A Should call the method that handles

add/remove favourite

The handleFavourite method

was called

Pass



135

Table 7.5 Unit Test Case - Show Profile

ID 5

Module Name Show Profile

Description Test the Search Result Page Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Before API call success N/A Should render a loading sign A loading spinner was displayed Pass

2 Render Show Profile

component after API call

success (Exact Match)

N/A Should render show profile page

correctly with 5 tables, 2 cells per

table row, 1 profile name field, 1

profile demographic field, 1 chat

button and 1 favourite button

5 tables, 2 cells per table row, 1

profile name field, 1 profile

demographic field, 1 chat button

and 1 favourite button were

displayed

Pass

3 Render Show Profile

component after API call

success (Similarity

Measures)

N/A Should render similarity percentage The similarity percentages were

displayed

Pass

4 Click view picture

button

N/A Should render Upload Profile

component

Upload Profile component was

rendered

Pass

5 Click chat button N/A Should render Instant Message

component

Instant Message component was

rendered

6 Click favourite button N/A Should call the method that handles

add/remove favourite

The updateFavourite method was

called

Pass



136

7 Click send message

button in the child

component

N/A Should call the method that handles

sending message

The handleMessage method was

called

Pass

Table 7.6 Unit Test Case - Instant Message

ID 6

Module Name Instant Message

Description Test the Instant Message Pop-up Window Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Render Instant

Message component

N/A Should render instant message pop-up

window correctly with 1 header, 1 content

division, 1 close button, 1 send button and

1 input text field.

1 header, 1 content division, 1

close button, 1 send button and 1

input text field were displayed

Pass

2 Click send message

button

N/A Should call the method that handles

sending message

The handleMessage method was

called

Pass

3 Click enter key N/A Should call the method that handles

sending message

The handleMessage method was

called

Pass

4 Enter message Text:

“Bye”

Should change state value when giving

input for message changed

State: { text: “Bye” } Pass



137

Table 7.7 Unit Test Case - Chat List

ID 7

Module Name Chat List

Description Test the Chat List Page Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Before API call

success

N/A Should render a loading sign A loading spinner was

displayed

Pass

2 Render Chat List

component after API

call success

Mock Firebase Real-time

Database response to

return 2 chat details.

Should render chat list page

correctly with 2 chat record

divisions

2 chat record divisions were

displayed

Pass

3 Render Chat List

component after API

call success (without

any chat record)

Mock Firebase Real-time

Database response to

return empty record.

Should display message “Browse

your matches and start a

conservation today” with 1 search

button

Message “Browse your

matches and start a

conservation today” and 1

search button were

displayed

Pass



138

Table 7.8 Unit Test Case - Individual Chat

ID 8

Module Name Individual Chat

Description Test the Individual Chat Page Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Before API call

success

N/A Should render a loading sign A loading spinner was

displayed

Pass

2 Render Individual

Chat component after

API call success

Mock Firebase

Real-time Database

response to return

chat details.

Should render individual chat

page correctly with 1 banner that

consists of user information, 1

option menu, 1 chat display

section, 1 send button and 1 input

text field

1 banner, 1 option menu, 1

chat display section, 1 send

button and 1 input text field

were displayed

Pass

3 Enter message Text: “Bye” Should change state value when

input for message changed

State: { text: “Bye” } Pass

4 Click send message

button

N/A Should call the method that

handles sending message

The handleMessage method

was called

Pass

5 Click enter key N/A Should call the method that

handles sending message

The handleMessage method

was called

Pass



139

Table 7.9 Unit Test Case - Favourite

ID 9

Module Name Favourite

Description Test the Favourite Page Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Before API call

success

N/A Should render a loading sign A loading spinner was

displayed

Pass

2 Render Favourite

component after API

call success

Mock API response to

return 1 member

profile.

Should render the favourite

page correctly with 1 profile

and 1 delete button

1 profile and 1 delete button

were displayed

Pass

3 Render Favourite

component after API

call success (without

any favourite record)

Mock API response to

return empty record.

Should display message “You

haven't added any favourites

yet” with 1 search button

Message “You haven't added

any favourites yet” and 1

search button were displayed

Pass

4 Click delete button on

one profile

N/A Should call the method that

handles delete profile from

favourite

The handleDelete method was

called

Pass



140

Table 7.10 Unit Test Case - Personal Profile

ID 10

Module Name Personal Profile

Description Test the Personal Profile Page Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Before API call

success

N/A Should render a loading sign A loading spinner was displayed Pass

2 Render Personal

Profile component

after API call success

Mock API

response to

return 1

member

profile.

Should render show profile page

correctly with 5 tables, 2 cells per table

row, 1 profile name field, 1 profile

demographic field, 1 update picture

button and 1 edit profile button

5 tables, 2 cells per table row, 1

profile name field, 1 profile

demographic field, 1 update

picture button and 1 edit profile

button were displayed

Pass

3 Click edit profile

button

N/A Should call the method that handles

edit

The handleEdit method was

called

Pass

4 Click update picture

button

N/A Should render Upload Photo

component

Upload Photo component was

rendered

5 Click confirm button in

Upload Photo

component (child

component)

N/A Should call the method that handles

update profile photo

The handleUpdateProfile

method was called

Pass



141

6 Click close button in

Upload Photo

component

N/A Should call the method that handles

close Upload Photo component

The handleClose method was

called

Pass

Table 7.11 Unit Test Case - Upload Photo

ID 11

Module Name Upload Photo

Description Test the Upload Photo Pop-up Window Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Click update photo

button from the

parent component

N/A Should render upload photo pop-up window

correctly with 1 upload button, 1 confirm

button and 1 close button

1 upload button, 1 confirm

button and 1 close button

were displayed

Pass

2 Click view photo

button from the

parent component

N/A Should render upload photo pop-up window

correctly with without upload button and

cancel button

The upload button and

cancel button were not

displayed

Pass

3 Click confirm button N/A Should render a loading sign A loading spinner was

displayed

Pass



142

Table 7.12 Unit Test Case - Edit Profile

ID 12

Module Name Edit Profile

Description Test the Edit Page’s Navigation Bar Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Before API call

success

N/A Should render a loading sign A loading spinner was displayed Pass

2 Render edit

navigation bar after

API call success

Mock API

response to return 1

member profile

details.

Should render edit navigation

bar correctly with 2 navigation

tabs and 1 back button

2 navigation tabs and 1 back

button were displayed

Pass

3 Click back button N/A Should call method that handle

back to previous page action

The handleBack method was

called

Pass

4 Click one of the

navigation tab

N/A Should call method that handle

the changing of info panel

The handleChange method was

called

Pass



143

Table 7.13 Unit Test Case - Edit Info

ID 13

Module Name Edit Info

Description Test the Edit Info Panel Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Render Edit Info

Panel when loading

Mock member

profile details

Should render edit info panel

correctly with 1 form, 3

sub-headers, 16 input labels, and

1 submit button. User

information should also be

displayed correctly.

1 form, 3 sub-headers, 16 input

labels, and 1 submit button were

displayed. User name, living state

and profile summary were

displayed correctly.

Pass

2 Click the radio button

to select gender

N/A Should checked radio button for

male/female when clicked

The radio button for gender was

checked when clicked

Pass

3 Enter personal

information

Name: Chia Yong

Fang

State: Pahang

Should change state value when

giving input for personal

information changed

State: { Name: “Chia Yong

Fang”, State: Pahang }

Pass

4 Click submit button N/A Should call the method that

handle submit form

The handleSubmit method was

called

Pass



144

Table 7.14 Unit Test Case - Edit Preferences

ID 14

Module Name Edit Preferences

Description Test the Edit Preferences Panel Functionality

Steps Details Test Data Expected Result Actual Result Status

1 Render Edit

Preferences Panel

when load

Mock member

preferences

details

Should render edit info panel correctly

with 1 form, 1 sub-headers, 12 input

labels, 1 clear button and 1 submit button.

User preferences should also be displayed

correctly.

1 form, 1 sub-headers, 12 input

labels, 1 clear button and 1

submit button. User preferences

for age range and child wish

were displayed correctly.

Pass

2 Enable age range

input and height

range input

N/A Should enable inputs for age and height

range after unchecked “Any” checkbox

Inputs for age range and height

range were enabled

Pass

3 Disable age range

input and height

range input

N/A Should disable inputs for age range and

height range after checked “Any”

checkbox

Inputs for age range and height

range were disabled

Pass

4 Enter preferences Gender:

Female

State: Pahang

Should change state value when giving

input for preferences changed

State: { Gender: Female, State:

Pahang }

5 Submit Form N/A Should call the method that handles form

submission after click submit button

The handleSubmit method was

called after clicked submit button

Pass



145

Figure 7.1 Section Code of Unit Testing

Figure 7.2 Test Coverage of Unit Test



146

Figure 7.3 Result of Unit Test



147

7.2 Application Programming Interface (API) Testing

API endpoint testing was conducted to test APIs functionality and performance. The

testing section was set up in the application’s server-side (Express.js). Jest and

Supertest were used as the testing tools to conduct API testing. Supertest is an HTTP

assertion library that enables the sending of HTTP requests to Node.js HTTP servers.

In addition, Jest is used to validate the test results.

Table 7.15 API Test Case - Create Profile

ID 1

Name Create Profile

Input Send a POST request to ‘/api/createProfile’ by providing:

1. user id: ‘yw7GCczWDGcZbPX6aA3MezhABZ32’

2. profile picture: ‘profile.jpg’ in data URI format

3. user’s personal information: {

age: 24, childWish: 3, education: 5, field: 13, gender: 2,

height: 154, interest: ["1", "7", "13", "19", "21", "29",

"30"], name: "Chia Yong Fang", occupation: 26, posture:

2, religion: 1, smoke: 1, state: 1, status: 1, tongue: 1,

summary: "Hello", preferences: { childWish: 3,

education: 0, field: 0, gender: 1, maxAge: 0, maxHeight:

0, minAge: 0, minHeight: 0, posture: 0, religion: 0,

smoke: 1, state: 0, status: 1, tongue: 1 }

}

Expected Result Response status: 204

Actual Result Response status: 204

Test Status Pass



148

Table 7.16 API Test Case - Get Personal Info

ID 2

Name Get Personal Info

Input Send a POST request to ‘/api/getPersonalInfo’ by providing:

1. user id: ‘Q1aATWz9u3UZWetOlo6vkaNju2j1’

Expected Result Return an object as response body which contains:

 uid: ‘Q1aATWz9u3UZWetOlo6vkaNju2j1’

Actual Result Return an object as response body which contains

 uid: ‘Q1aATWz9u3UZWetOlo6vkaNju2j1’

Test Status Pass

Table 7.17 API Test Case - Update Profile Picture

ID 3

Name Update Profile Picture

Input Send a POST request to ‘/api/updateProfilePic’ by providing:

1. user id: ‘Q1aATWz9u3UZWetOlo6vkaNju2j1’

2. profile picture: ‘profile.jpg’ in data URI format

Expected Result Response status: 200

Actual Result Response status: 200

Test Status Pass



149

Table 7.18 API Test Case - Update Profile Details

ID 4

Name Update Profile Details

Input Send a POST request to ‘/api/updateProfileDetails’ by providing:

1. user’s personal information: {

age: 24, childWish: 3, education: 5, field: 13, gender: 2,

height: 154, interest: ["1", "7", "13", "19", "21", "29",

"30"], name: "Chia Yong Fang", occupation: 26, posture:

2, religion: 1, smoke: 1, state: 1, status: 1, tongue: 1, uid:

'Q1aATWz9u3UZWetOlo6vkaNju2j1', summary: "Just

browsing for fun, quite open minded and quirky to say

the least. Just doing my thing and meeting like minded

people." }

}

Expected Result Response status: 204

Actual Result Response status: 204

Test Status Pass

Table 7.19 API Test Case - Update Profile Preferences

ID 5

Name Update Profile Preferences

Input Send a POST request to ‘/api/updateProfilePreferences’ by

providing:

1. user id: 'Q1aATWz9u3UZWetOlo6vkaNju2j1'

2. preferences: {

childWish: 3, education: 0, field: 0, gender: 1, maxAge: 0,

maxHeight: 0, minAge: 0, minHeight: 0, posture: 0,

religion: 0, smoke: 1, state: 0, status: 1, tongue: 1

}

Expected Result Response status: 204

Actual Result Response status: 204

Test Status Pass



150

Table 7.20 API Test Case - Get Exact Match Result

ID 6

Name Get Exact Match Result

Input Send a POST request to ‘/api/getExactMatchResult’ by

providing:

1. user id: 'Q1aATWz9u3UZWetOlo6vkaNju2j1'

2. preferences: {

childWish: '3', education: '5', field: '13', gender: '1',

maxAge: '0', maxHeight: '0', minAge: '0', minHeight: '0',

tongue: '1', posture: '2', religion: '2', smoke: '1', state: '12',

status: '1'

}

Expected Result Response status: 200

Return an array of object as response body which contains:

 object with uid ‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’

Actual Result Response status: 200

Return an array of object as response body which contains:

 object with uid ‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’

Test Status Pass



151

Table 7.21 API Test Case - Get Similarity Match Result (Jaccard)

ID 7

Name Get Similarity Match Result (Jaccard)

Input Send a POST request to ‘/api/getExactMatchResult’ by

providing:

1. user id: 'Q1aATWz9u3UZWetOlo6vkaNju2j1'

2. type: ‘jaccard’

3. p-index: 0

4. preferences: {

childWish: '3', education: '5', field: '13', gender: '1',

maxAge: '0', maxHeight: '0', minAge: '0', minHeight: '0',

tongue: '1', posture: '2', religion: '2', smoke: '1', state: '12',

status: '1'

}

Expected Result Response status: 200

Return an array of object as response body which contains:

 objects with uid ‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’

and similarity 100.0%.

 objects with uid ‘WknKtEmYcVc9cYYkoRSyLet2JCy1’

and similarity 83.33%.

Actual Result Response status: 200

Return an array of object as response body which contains:

 object with uid ‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’

and similarity 100.0%.

 object with uid ‘WknKtEmYcVc9cYYkoRSyLet2JCy1’ and

similarity 83.33%.

Test Status Pass



152

Table 7.22 API Test Case - Get Similarity Match Result (Cosine)

ID 8

Name Get Similarity Match Result (Cosine)

Input Send a POST request to ‘/api/getExactMatchResult’ by

providing:

1. user id: 'Q1aATWz9u3UZWetOlo6vkaNju2j1'

2. type: ‘cosine’

3. p-index: 0

4. preferences: {

childWish: '3', education: '5', field: '13', gender: '1',

maxAge: '0', maxHeight: '0', minAge: '0', minHeight: '0',

tongue: '1', posture: '2', religion: '2', smoke: '1', state: '12',

status: '1'

}

Expected Result Response status: 200

Return an array of object as response body which contains:

 objects with uid ‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’

and similarity 100.0%.

 objects with uid ‘KX14LPGtsxYA1tnPzNrtgVOYJpr1’ and

similarity 99.59%.

Actual Result Response status: 200

Return an array of object as response body which contains:

 object with uid ‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’

and similarity 100.0%.

 object with uid ‘KX14LPGtsxYA1tnPzNrtgVOYJpr1’ and

similarity 99.59%.

Test Status Pass



153

Table 7.23 API Test Case - Get Similarity Match Result (Euclidean)

ID 9

Name Get Similarity Match Result (Euclidean)

Input Send a POST request to ‘/api/getExactMatchResult’ by

providing:

1. user id: 'Q1aATWz9u3UZWetOlo6vkaNju2j1'

2. type: ‘euclidean’

3. p-index: 0

4. preferences: {

childWish: '3', education: '5', field: '13', gender: '1',

maxAge: '0', maxHeight: '0', minAge: '0', minHeight: '0',

tongue: '1', posture: '2', religion: '2', smoke: '1', state: '12',

status: '1'

}

Expected Result Response status: 200

Return an array of object as response body which contains:

 objects with uid ‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’

and similarity 100.0%.

 objects with uid ‘KX14LPGtsxYA1tnPzNrtgVOYJpr1’ and

similarity 76.72%.

Actual Result Response status: 200

Return an array of object as response body which contains:

 object with uid ‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’

and similarity 100.0%.

 object with uid ‘KX14LPGtsxYA1tnPzNrtgVOYJpr1’ and

similarity 76.72%.

Test Status Pass



154

Table 7.24 API Test Case - Get Similarity Match Result (Manhattan)

ID 10

Name Get Similarity Match Result (Manhattan)

Input Send a POST request to ‘/api/getExactMatchResult’ by

providing:

1. user id: 'Q1aATWz9u3UZWetOlo6vkaNju2j1'

2. type: ‘manhattan’

3. p-index: 0

4. preferences: {

childWish: '3', education: '5', field: '13', gender: '1',

maxAge: '0', maxHeight: '0', minAge: '0', minHeight: '0',

tongue: '1', posture: '2', religion: '2', smoke: '1', state: '12',

status: '1'

}

Expected Result Response status: 200

Return an array of object as response body which contains:

 object with uid ‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’

and similarity 100.0%.

 object with uid ‘KX14LPGtsxYA1tnPzNrtgVOYJpr1’ and

similarity 63.61%.

Actual Result Response status: 200

Return an array of object as response body which contains:

 object with uid ‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’

and similarity 100.0%.

 object with uid ‘KX14LPGtsxYA1tnPzNrtgVOYJpr1’ and

similarity 63.61%.

Test Status Pass



155

Table 7.25 API Test Case - Get Similarity Match Result (Minkowski)

ID 11

Name Get Similarity Match Result (Minkowski)

Input Send a POST request to ‘/api/getExactMatchResult’ by

providing:

1. user id: 'Q1aATWz9u3UZWetOlo6vkaNju2j1'

2. type: ‘minkowski’

3. p-index: 3

4. preferences: {

childWish: '3', education: '5', field: '13', gender: '1',

maxAge: '0', maxHeight: '0', minAge: '0', minHeight: '0',

tongue: '1', posture: '2', religion: '2', smoke: '1', state: '12',

status: '1'

}

Expected Result Response status: 200

Return an array of object as response body which contains:

 objects with uid ‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’

and similarity 100.0%.

 objects with uid ‘KX14LPGtsxYA1tnPzNrtgVOYJpr1’ and

similarity 79.94%.

Actual Result Response status: 200

Return an array of object as response body which contains:

 object with uid ‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’

and similarity 100.0%.

 object with uid ‘KX14LPGtsxYA1tnPzNrtgVOYJpr1’ and

similarity 79.94%.

Test Status Pass



156

Table 7.26 API Test Case - Check Favourite

ID 12

Name Check Favourite

Input Send a POST request to ‘/api/checkFavourite’by providing:

1. user id: ‘Q1aATWz9u3UZWetOlo6vkaNju2j1’

Expected Result Response status: 200

Return an list as response body which contains:

 uid: ‘WZeVJykKnPUdG6w8YC2sAv7R3772’

Actual Result Response status: 200

Return an list as response body which contains:

 uid: ‘WZeVJykKnPUdG6w8YC2sAv7R3772’

Test Status Pass

Table 7.27 API Test Case - Update Favourite

ID 13

Name Update Favourite

Input Send a POST request to ‘/api/updateFavourite’ by providing:

1. user id: ‘Q1aATWz9u3UZWetOlo6vkaNju2j1’

2. new favourite list: ['WZeVJykKnPUdG6w8YC2sAv7R3772',

'rSmD4vUJP6NMHsk8FPvPCgPwfAm1']

Expected Result Response status: 204

Actual Result Response status: 204

Test Status Pass



157

Table 7.28 API Test Case - Get Favourite List

ID 14

Name Get Favourite List

Input Send a POST request to ‘/api/getFavouriteList’ by providing:

1. user id: ‘Q1aATWz9u3UZWetOlo6vkaNju2j1’

Expected Result Response status: 200

Return response body:

 array of objects that contains object with uid

‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’ and similarity

100.0%.

 favourite list that contains data

'WZeVJykKnPUdG6w8YC2sAv7R3772'

Actual Result Response status: 200

Return response body:

 Array of objects that contains object with uid

‘rSmD4vUJP6NMHsk8FPvPCgPwfAm1’ and similarity

100.0%.

 Favourite list that contains data

'WZeVJykKnPUdG6w8YC2sAv7R3772'

Test Status Pass

Table 7.29 API Test Case - Delete Favourite

ID 15

Name Delete Favourite

Input Send a POST request to ‘/api/getFavouriteList’ by providing:

1. user id: ‘Q1aATWz9u3UZWetOlo6vkaNju2j1’

2. new favourite list:

['WZeVJykKnPUdG6w8YC2sAv7R3772']

Expected Result Response status: 204

Actual Result Response status: 204

Test Status Pass



158

Table 7.30 API Test Case - Get Member Data

ID 16

Name Get Member Data

Input Send a POST request to ‘/api/getMemberData’ by providing:

1. list: ['WZeVJykKnPUdG6w8YC2sAv7R3772',

'rSmD4vUJP6NMHsk8FPvPCgPwfAm1']

Expected Result Response status: 200

Return an array of objects as response body which contains:

 object with uid 'WZeVJykKnPUdG6w8YC2sAv7R3772'

Actual Result Response status: 200

Return an array of objects as response body which contains:

 object with uid 'WZeVJykKnPUdG6w8YC2sAv7R3772'

Test Status Pass

Table 7.31 API Test Case - Get Profile Picture

ID 17

Name Get Profile Picture

Input Send a POST request to ‘/api/getProfilePic’ by providing:

1. user id: ‘Q1aATWz9u3UZWetOlo6vkaNju2j1’

Expected Result Response status: 200

Actual Result Response status: 200

Test Status Pass



159

Figure 7.4 Result of API Test

Figure 7.5 Sample Section Code for API Test - Part 1



160

Figure 7.6 Sample Section Code for API Test - Part 2



161

7.3 End-to-end Testing

In this project, end-to-end testing was used to test the application’s actual flow from start to finish. It can ensure that the application flow

will work as expected. Besides, Puppeteer and Jest were used as the testing tools to perform end-to-end testing. Puppeteer is an

automation testing tool that enables headless browsing of Chrome. It can interact with the application like a real user.

Table 7.32 End-to-end Test Cases

ID Test Case Steps Expected Result Status

1 Search profile with

missing value of gender

field

Login → Select match preferences

except gender field → Click “Submit”

button

The application is able to display an alert

message with text ‘Gender field cannot be

empty’.

Pass

2 Search profile with exact

matching

Login → Select match preferences →

Click “Submit” button

The application is able to display matched

profile.

Pass

3 Search profile with

similarity measure

Login → Select match preferences →

Click “Submit” button → Select

“Jaccard Coefficient” radio button

The application is able to display profile list

with similarity percentage.

Pass

4 View member profile Login → Select match preferences →

Click “Submit” button → Click first

profile

The application is able to display member

profile page with correct name and

demographic info.

Pass

5 Add profile to favourite

when viewing member

profile

Login → Select match preferences →

Click “Submit” button → Click first

profile → Click “Favourite” button

The application is able to display a message

with text ‘Added to Favourite’.

Pass



162

6 Send instant message

when viewing member

profile

Login → Select match preferences →

Click “Submit” button → Click first

profile → Click “Chat” button → Enter

message in the pop-up window → Click

“Send” button

After user sends the message, the application

is able to display the message as chat history

in the pop-up window.

Pass

7 View chat list Login → Click “Messages” on

navigation

The application is able to display a list of

chat records. For each chat in the list, the

newest message will be shown.

Pass

8 Send message to profile

in chat list

Login → Click “Messages” on

navigation → Click on the first record

→ Enter message → Click “Send”

button

After user sends the message, the application

is able to display the message as chat history.

Pass

9 Delete chat history Login → Click “Messages” on

navigation → Click on the first record

→ Click “Delete” button

The application is able to remove the chat

record and display the updated chat list.

Pass

10 View favourite list Login → Click “Favourite” on

navigation

The application is able to display a list of

profiles added to favourite.

Pass

11 View profile in favourite

list

Login → Click “Favourite” on

navigation → Click on the first profile

The application is able to display member

profile page with correct name.

Pass

12 Delete favourite Login → Click “Favourite” on

navigation → Click “Delete” button

The application is able to remove the profile

from favourite and display the updated

Pass



163

favourite list.

13 View personal profile Login → Click “Avatar” icon on

navigation → Click “Profile” option

The application is able to display user’s

personal information

Pass

14 Update profile picture Login → Click “Avatar” icon on

navigation → Click “Profile” option →

Click “Edit” button beside the profile

picture

The application is able to get the new profile

picture from the specified file directory.

Pass

15 Update profile info Login → Click “Avatar” icon on

navigation → Click “Profile” option →

Click “Edit Profile” button → Edit

“About Me” field → Click “Submit”

button

The application is able to display a message

with text ‘Update Successfully’.

Pass

16 Update profile

preferences

Login → Click “Avatar” icon on

navigation → Click “Profile” option →

Click “Edit Profile” button → Click

“Preferences” tab → Edit some fields →

Click “Submit” button

The application is able to display a message

with text ‘Update Successfully’.

Pass

17 Logout Login → Click “Avatar” icon on

navigation → Click “Logout” option

The application is able to redirect the user to

home page after logout

Pass



164

`

Figure 7.7 Result of End-to-end Test

Figure 7.8 Sample Section Code for End-to-end Test



165

7.4 Usability Testing

A usability testing on the matrimonial application was carried remotely with 8

participants. The usability testing can help to collect information on how real users

interact with the application. Besides, usability testing was used to find out which

similarity measure is better.

7.4.1 Test Scenario

All the participants were requested to complete all the test scenario provided. The

interaction of participants with the application was observed.

Table 7.33 Usability Testing Test Scenarios

ID Scenario Name Scenario Description

1 Create a profile Imagine that you are a user who wishes to use the

MatriMatch application for finding a partner.

Task:

i. You want to create a profile in the application

so that you can search for the desired partner.

By creating a profile, you might also have the

chance to exist in other members’ search result.

How do you create a profile?

2 Search for potential

matches

Imagine that you are a user who wishes to find for a

partner that suit your preferences.

Task:

i. You wish to set the search criteria and view the

search result.

ii. After viewing the search result, you wish to edit

the search criteria.

How would you set the search criteria and view for



166

a search result?

How would you edit the search criteria?

3 View member profiles Imagine that you are a user who uses the

application to view the potential partner.

Task:

i. You wish to view more information about a

particular member.

ii. You want to favourite two profiles that you

interested in.

iii. You would like to start a conversation with one

of the profiles.

How would you view the member’s profile

information?

How would you favourite an item?

How would you send a message to the profile you

interest?

4 View chat history Imagine that you are a user who wishes to view

your chat history with one of the members in the

application.

Task:

i. You want to view the chat between you and one

of the members in the application.

ii. You want to delete the current chat history.

How would you view the chat history?

How would you delete the chat history?

5 View favourite list Imagine that you are a user who wishes to view

your favourite list.

Task:



167

i. You want to view the favourite list

ii. You want to delete an unwanted profile from

the list

How would you view the favourite list?

How would you delete a profile from the favourite

list?

6 Edit personal profile Imagine that you are a user who wishes to change

your profile information and profile picture.

Task:

i. You want to view the profile information.

ii. You want to change the profile picture.

iii. You want to update your match preferences in

“Looking For” section.

iv. You want to edit your profile summary as

follow:

Profile summary:

Love watching drama

Chilling and watching movies with friends

How would you change the profile summary?

How would you change your match preferences?

How would you change the profile picture?



168

7.4.2 User Satisfaction Survey Form

After the testing section ended, the participants were requested to fill in the user

satisfaction survey form. The survey form included the System Usability Scale (SUS)

and several questions regarding the accuracy of the similarity measures in finding the

matches. The survey form gathered the participants’ responses and opinions upon the

performance of the system and the favourite match method.

Figure 7.9 User Satisfaction Survey Form - Part 1



169

Figure 7.10 User Satisfaction Survey Form - Part 2



170

7.4.3 Usability Test Result

Based on the results obtained from the SUS survey, The SUS scores collected from

each participant ranged from 70 – 92.5. The findings demonstrated that the mean of

the SUS score was 80.5, which was far better than the minimum score required, 68.

According to the grading scale defined by Sauro and Lewis (2012), the SUS score

between 78.9 and 80.7 can be interpreted as a grade of A-. Grade A- reflects that the

users have good experience with the application.

Figure 7.11 Overall User Satisfaction

The table below showed the feedback collected from 8 participants regarding the

performance and functionality of the system. Some participants had provided some

valuable comments for system improvement. Their suggestions will be considered in

future enhancement.



171

Table 7.34 User Feedback on System’s Performance and Functionality

Participant

No.
Like Best? Like Least? Comments

1 Sufficient

information to find

the matching person

Need to repeat

filling person

criteria

Can use more simple

words in the app or

frequently used word

2 Display percentage Always need to

submit the

preferences one

more time when

clicking the home

navigation button.

Prefer multiple

selection on the

preferences data

3 More filtering

options are provided

Need to move the

mouse a lot

Non-responsive UI, can

try to improve the user

experience when using

it

4 Able to display the

degree of similarity

regarding on my

preferences with

other members in

this application

The delete function

in the chat section

Some of the icons can

make it bigger such as

the profile icon (on the

top-right side), better

indication after user

interaction with the

system, such as the

favourite button. Delete

function in the chat

section need some

amendments,

suggestions on

displaying beside the

chat box.

5 Different matching

methods are very

fascinating.

The matching

method showed

might be a little bit

The application is good

if it’s view as a dating

app. If it’s for marriage



172

Explanation or

justification

provided is the best.

weird and difficult

to comprehend for

normal users.

app, more information

provided would be way

more superior.

6 Chat function Have to refill

preference every

time login.

Change join us button

to a brighter colour

7 Filter preferences

and message people

Looking preferences

does not update

with search

preferences

Maybe have more

photo to explore

8 Display percentage Need to resubmit

the preferences for

viewing the results

after press the home

button

Maybe can add a photo

gallery that allows user

to put more personal

photos

In the survey form, the participants were also requested to select the match

method that can help to find the potential matches close to their preferences. From

the top 5 and top 10 search results returned by each similarity measure, they needed

to elect the profiles that suit their preference. Table 7.35 showed the results obtained

from the participants during usability testing. The numbers in bold indicated that the

best similarity measures selected by the participants. For the top 5 search results, half

of the participants selected Manhattan Distance as the best similarity measure. They

satisfied with all of the top 5 search results. On the other hand, there were 5

participants satisfied with the top 10 search results of Manhattan Distance. The

number of search results they agreed with was higher compared to other similarity

measures.



173

Table 7.35 User Feedback on Similarity Measures

Participant

Similarity Measures

Top 5 Search Result Top 10 Search Result

Jac Cos Euc Man Min Jac Cos Euc Man Min

1 2 3 2 5 1 5 6 3 7 3

2 3 2 2 2 2 5 2 2 3 2

3 4 4 5 4 4 8 8 8 9 9

4 3 3 3 5 3 6 6 5 6 5

5 4 2 2 2 2 4 4 2 7 4

6 1 3 1 2 2 5 7 4 4 3

7 3 5 5 5 5 8 6 7 7 9

8 4 4 4 5 4 7 6 6 9 6

Notes: Jac = Jaccard Coefficient; Cos = Cosine Similarity; Euc = Euclidean

Distance; Man = Manhattan Distance; Min = Minkowski Distance

In conclusion, this survey showed that Manhattan Distance is more capable of

helping the participants to find the potential matches close to their ideal type. For a

application, it is essential to understand what suits the users well, what was their least

favourite part and why. Since majority of the participants satisfied with the search

results of Manhattan Distance, only Manhattan Distance will be implemented in the

final system as the match method. User feedbacks were considered in order to

increase user satisfactions.



174

7.5 User Acceptance Testing

User acceptance testing was conducted to ensure that the system’s functionality

fulfils the users’ expectations. There was a total of 5 end-users took part in this

testing. The following tables show the user acceptance test cases executed by the

participants.

Table 7.36 User Acceptance Test Cases - Create Profile

ID 1

Start Time

End Time

Module Create Profile

Test Descriptions Status (Pass / Fail) Comments

Able to register an account

Able to insert personal information

Able to upload profile picture

Table 7.37 User Acceptance Test Cases - Search Potential Matches

ID 2

Start Time

End Time

Module Search Potential Matches

Test Descriptions Status (Pass / Fail) Comments

Able to set match preferences

Able to view search results if there are

profiles matched the preferences (Exact

Matching)

Able to edit match preferences

Able to select different match methods

Able to view search results for Jaccard

Coefficient, Cosine Similarity, Euclidean

Distance, Manhattan Distance and

Minkowski Distance



175

Table 7.38 User Acceptance Test Cases - View Potential Matches Profiles

ID 3

Start Time

End Time

Module View Potential Matches Profiles

Test Descriptions Status (Pass / Fail) Comments

Able to view member profile information

Able to zoom member profile picture

Able to add member to favourite

Able to remove member from favourite

Able to send instant message to member

Able to like the member

Table 7.39 User Acceptance Test Cases - Manage Chat History

ID 4

Start Time

End Time

Module Manage Chat History

Test Descriptions Status (Pass / Fail) Comments

Able to view chat list

Able to view the chat records with one of the

members

Able to delete the chat history

Able to show confirmation message before

delete the chat history

Able to view the latest chat list



176

Table 7.40 User Acceptance Test Cases - Manage Favourite List

ID 5

Start Time

End Time

Module Manage Favourite List

Test Descriptions Status (Pass / Fail) Comments

Able to view favourite list

Able to view member profile information

that added to favourite

Able to remove member from favourite

Able to show confirmation message before

remove the profile from favourite

Able to view the latest favourite list

Table 7.41 User Acceptance Test Cases - Manage Personal Profile

ID 6

Start Time

End Time

Module Manage Personal Profile

Test Descriptions Status (Pass / Fail) Comments

Able to view personal profile information

Able to update profile picture

Able to view number of likes received

Able to update profile information

Able to update match preferences



177

CHAPTER 8

8CONCLUSION AND RECOMMENDATIONS

8.1 Conclusion

This project had been completed within six months by following the Software

Development Life Cycle. According to the research performed in the planning phase,

it had been found that online dating has become a new trend for people to meet their

potential life partner. Besides, the marriage rate in Malaysia declined over the last

few years. Some people feel that it is not easy to find the right partner as the pool of

suitable candidate might become smaller due to age increases. It was also discovered

that there are some limitations to the rule-based approach and SQL query.

Therefore, with the matrimonial application, individuals can find their potential

matches based on their preferences. After understanding the problem domains, the

project objectives were declared as follow:

 To develop a web-based application by providing a solution that enables an

individual to find their potential matches for marriage as per their priorities.

 To perform matching through similarity measures based on the requirements

and priorities set by users.

Various research had been done on several existing similar applications,

matching algorithms, software development methodologies and usability testing. All

the findings were analysed and translated into the requirements of the application.

Moreover, a survey was conducted to analyse the needs of end-users on the match

preferences.

After all the necessary specifications had been gathered, the application was

designed to satisfy the requirements. Use case diagram, system architecture diagram,

data model diagram and preliminary user interfaces design were created to provide a

deeper insight into how the application operates.

The development process of the matrimonial application was divided into

several phases. The application was developed based on the system design

specifications defined in the previous phase. Five similarity measures were

implemented in the application, namely Jaccard Coefficient, Cosine Similarity,

Euclidean Distance, Manhattan Distance and Minkowski Distance.



178

After the implementation phase completed, unit testing, API testing and

end-to-end testing were conducted to ensure that the application will operate as

expected. Usability testing was used to evaluate which similarity measure is best

suited for the application. Through usability testing, Manhattan Distance was found

to be more appropriate for the matrimonial application. Lastly, user acceptance

testing was conducted to ensure that the system’s functionality fulfils the users’

expectations.

In conclusion, a similarity measure based matrimonial application had been

delivered at the end of the development life cycle. All the objectives had been

accomplished, which were:

 Develop the web-based matrimonial application that enables an individual to

find their potential matches for marriage as per their priorities.

 Implement the similarity measures in the application that enables the users

to search for a potential partner based on their requirements.

8.2 Limitation and Suggestion

Although the system developed has met all the requirements, there are some

limitations to be noted. First, through usability testing, it was found that most of the

participants preferred using Manhattan Distance as the match method. During the test,

the participants tended to focus more on appearance when selecting for the matched

profiles. Hence, the participants had been advised to make their selection based on

the member criteria rather than appearance.

It was unable to deny that physical attraction is a significant factor in selecting a

partner. According to the study from Ha, Overbeek and Engels (2009), people tend to

pursue relationships with those who attractive to them. Some participants also

mentioned that the first impression is very important while selecting the partner that

match their preferences.

A “Like” function had been added into the application to deal with this condition.

The users can express their preferences for each profile by clicking the “Like” button.

This is a quantitative measurement to reflect the physical appearance. The number of

likes will indicate the popularity of a profile. However, the “Like” function was just

a temporary solution. In future research and development, a better approach may be

provided to include physical appearance into the measurement.



179

Second, the dataset collected for the usability testing is small because it only

consists of 40 male data and 45 female data. A male user, for example, can only

search through 45 female members for potential matches. Besides, the results for the

five similarity measures will be similar due to the small dataset. Hence, future

research may need to be conducted once more data is collected.

8.3 Future Enhancements

Although the application had been completed, there was still room for improvement.

Besides, the participants of usability testing had given some valuable

recommendations for potential improvement of the application. Those

recommendations will also be considered in future enhancement to improve system

functionality.

 Enable multiple selections on match preferences. For example, users can

choose “Chinese” and “English” as their preferred mother tongue.

 Develop a profile photo album function that enables the users to upload

more profile photo.

 Collect more user detailed information when the users register their

accounts. For example, the application will prompt users for their annual

income, weight and family background.

 Enhance member profile interface by highlighting the profile details that

match user’s preferences. This can help the users to identify the matched

member details more easily.

 Develop a function that will recommend some potential matches for user

everyday, which is similar to Double Take feature in OkCupid.com. The

users can choose to approach or “pass” the recommended profile.



180

REFERENCES

Almeida, F., 2016. Practical SQL Guide For Relational Databases. [ebook] ISSUU
Publishing, pp.8-22. Available at:
<https://www.researchgate.net/publication/319852714_Practical_SQL_Guide_for_R
elational_Databases> [Accessed 15 March 2020].

Alshamrani, A. and Bahattab, A., 2015. A Comparison Between Three SDLC
Models Waterfall Model, Spiral Model, and Incremental/Iterative Model. IJCSI
International Journal of Computer Science Issues, [online] 12(1), pp.106-111.
Available at: <https://www.ijcsi.org/papers/IJCSI-12-1-1-106-111.pdf> [Accessed
12 Feb. 2020].

Arnaboldi, V., Passarella, A., Conti, M., Dunbar, R. I. M., 2015. Online social
networks : human cognitive constraints in Facebook and Twitter personal graphs.
Amsterdam: Elsevier.

Babich, N., 2017. A Guide To The Art Of Guerrilla UX Testing. [online] Medium.
Available at:
<https://medium.springboard.com/a-guide-to-the-art-of-guerrilla-ux-testing-69a1411
d34fb> [Accessed 12 March 2020].

Beynon-Davies, P., Tudhope, D. and Mackay, H.,1999. Information Systems
Prototyping in Practice. Journal of Information Technology, [online] 14(1),
pp.107-120. Available at:
<https://www.researchgate.net/publication/233602440_Information_systems_prototy
ping_in_practice> [Accessed 21 Feb. 2020].

Bourgeois, D. T., 2014. Information Systems For Business And Beyond. 1st ed.
[ebook] Saylor Academy Open Textbook Challenge. Available at:
<https://bus206.pressbooks.com/> [Accessed 13 March 2020].

Campbell, L., Chin, K. and Stanton, S., 2016. Initial Evidence that Individuals Form
New Relationships with Partners that More Closely Match their Ideal Preferences.
Collabra, 2(1), p.2.

Chen, S. C., Gulatit, S., Hamid, S., Huang, X., Luo, L., Morisseau-Leroy, N., Powell,
M. D., Zhan, C. and Zhang, C., 2003. A three-tier system architecture design and
development for hurricane occurrence simulation. In: International Conference on
Information Technology: Research and Education. [online] Newark, New Jersey,
USA: IEEE, pp.113-117. Available at:
<https://pdfs.semanticscholar.org/5a99/d4cdc10988ba2c7a920d1ac2d06b9cdc3eef.p
df> [Accessed 24 June 2020].

Collado, J., Mora, P. and Parham, E., 2013. A guerrilla usability lab with free
software. interactions, [online] 20(3), p.62. Available at:

https://www.ijcsi.org/papers/IJCSI-12-1-1-106-111.pdf


181

<https://interactions.acm.org/archive/view/may-june-2013/a-guerrilla-usability-lab-w
ith-free-software> [Accessed 7 Mar. 2020].

Department of Statistics Malaysia, 2019a. Marriage and Divorce Statistics, Malaysia,
2019. [online] Available at:
<https://newss.statistics.gov.my/newss-portalx/ep/epFreeDownloadContentSearch.se
am?cid=198734> [Accessed 15 Feb. 2020].

Department of Statistics Malaysia, 2019b. Vital Statistics, Malaysia, 2019. [online]
Available at:
<https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=165&bul_id
=bE5PcWNLaFBMUy9FK3ZhOEpTdG0xdz09&menu_id=L0pheU43NWJwRWVS
ZklWdzQ4TlhUUT09> [Accessed 15 Feb. 2020].

Dicks, R. S., 2002. Mis-Usability: On the Uses and Misuses of Usability Testing. In:
SIGDOC 02: Proceedings of the 20st annual international conference on Computer
documentation. [online] New York, United States: ACM, pp.26-30. Available at:
<https://tecfa.unige.ch/tecfa/maltt/ergo/1415/UtopiaPeriode4/articles/Dicks_2002.pdf
> [Accessed 7 Mar. 2020].

Finkel, E. J., Eastwick, P. W., Karney, B. R., Reis, H. T., & Sprecher, S., 2012.
Online Dating: A Critical Analysis From the Perspective of Psychological Science,
Psychological Science in the Public Interest, 13(1), p3-66.

Firebase, 2020. Privacy and Security in Firebase. [online] Available at:
<https://firebase.google.com/support/privacy> [Accessed 8 Feb. 2020].

Geambasu, C., Jianu, I., Jianu, I. and Gavrila, A., 2011. INFLUENCE FACTORS
FOR THE CHOICE OF A SOFTWARE DEVELOPMENT
METHODOLOGY. Accounting and Management Information Systems, [online]
10(4), pp.479-494. Available at:
<https://core.ac.uk/download/pdf/6261795.pdf >[Accessed 23 Feb. 2020].

Ha, T., Overbeek, G. and Engels, R.C., 2010. Effects of attractiveness and social
status on dating desire in heterosexual adolescents: An experimental study. Archives
of Sexual Behavior, 39(5), pp.1063-1071.

Internetworldstats.com., 2020. World Internet Users Statistics and 2019 World
Population Stats. [online] Available at:
<https://www.internetworldstats.com/stats.htm> [Accessed: 4 Feb. 2020].

Kannan, V., Jhajharia, S. and Verma, S., 2020. Agile vs waterfall: A Comparative
Analysis. International Journal of Science, Engineering and Technology Research
(IJSETR), [online] 3(10), pp.2680-2686. Available at:
<http://ijsetr.org/wp-content/uploads/2014/10/IJSETR-VOL-3-ISSUE-10-2680-2686.
pdf> [Accessed 19 Feb. 2020].



182

Kwasny S.C., Faisal K.A., 1990. Overcoming Limitations of Rule-Based Systems:
An Example of a Hybrid Deterministic Parser. In: G. Dorffner, eds. Konnektionismus
in Artificial Intelligence und Kognitionsforschung. Informatik-Fachberichte. Berlin:
Springer. pp.48-57.

Lewis, J. and Sauro, J., 2009. The Factor Structure of the System Usability Scale.
In: Human Centered Design: First International Conference, HCD 2009. [online]
Berlin, Heidelberg: Springer, pp.94-103. Available at:
<https://measuringu.com/wp-content/uploads/2017/07/Lewis_Sauro_HCII2009.pdf>
[Accessed 19 March 2020].

Liu B., Ma Y., Wong CK., 2001. Classification Using Association Rules:
Weaknesses and Enhancements. In: R. L. Grossman, C. Kamath, P. Kegelmeyer, V.
Kumar, R. Namburu, ed. (2013) Data Mining for Scientific and Engineering
Applications. Massive Computing. New York: Springer. pp.591-605.

Liu, H., Gegov, A. and Cocea, M., 2016. Rule-based systems: a granular computing
perspective. Granular Computing, [online] 1(4), pp.259-274. Available at:
<https://link.springer.com/article/10.1007/s41066-016-0021-6> [Accessed 13 March
2020].

Malaysia Population Research Hub, 2019. Malaysian Getting Married Later in Life.
[online] Available at:
<http://mprh.lppkn.gov.my/2019/04/09/malaysian-getting-married-later-in-life/>
[Accessed 15 Feb. 2020].

Moran, K. and Pernice, K., 2020. Remote Moderated Usability Tests: How and Why
to Do Them. [online] Nielsen Norman Group. Available at:
<https://www.nngroup.com/articles/moderated-remote-usability-test/> [Accessed 7
Mar. 2020].

NICHD (National Institute of Child Health and Human Development), 2020. What
age-related factors may be involved with infertility in females and males?. [online]
Available at:
<https://www.nichd.nih.gov/health/topics/infertility/conditioninfo/causes/age>
[Accessed 18 Feb. 2020].

Nielsen, J., 1993. Usability engineering. 1st ed. United States: Academic Press, Inc.,
pp.26-37.

Polamuri, S., 2015. Five most popular similarity measures implementation in python.
[online] Available at:
<https://dataaspirant.com/2015/04/11/five-most-popular-similarity-measures-implem
entation-in-python/> [Accessed 1 Mar. 2020].

Reactjs.org., 2020. React – A JavaScript library for building user interfaces. [online]
Available at: <https://reactjs.org/> [Accessed 8 Feb. 2020].



183

Rodríguez-Martínez, L. C., Mora, M. and Alvarez, J., 2009. A
Descriptive/Comparative Study of the Evolution of Process Models of Software
Development Life Cycles (PM-SDLCs). In: 2009 Mexican International Conference
on Computer Science. [online] IEEE, pp.298-303. Available at:
<https://ieeexplore.ieee.org/document/5452522> [Accessed 20 Feb. 2020].

Rosenfeld, M., Thomas, R. and Hausen, S., 2019. Disintermediating your friends:
How online dating in the United States displaces other ways of meeting. Proceedings
of the National Academy of Sciences, 116(36), pp.17753-17758.

Ross, T., 2010. Fuzzy logic with engineering applications. 3rd ed. USA: John Wiley
& Sons Ltd.

Sauro, J. and Lewis, J. R., 2012. Quantifying The User Experience: Practical
Statistics For User Research. United State: Elsevier Inc., pp.203-204.

Sharma, S., Sarkar, D. and Gupta, D., 2012. Agile Processes and Methodologies : A
Conceptual Study. International Journal on computer science and Engineering,
[online] 4(5), pp.892–899. Available at:
<https://www.researchgate.net/publication/267706023_Agile_Processes_and_Metho
dologies_A_Conceptual_Study> [Accessed 21 February 2020].

Shirkhorshidi, A., Aghabozorgi, S. and Wah, T., 2015. A Comparison Study on
Similarity and Dissimilarity Measures in Clustering Continuous Data. PLOS ONE,
10(12).

Stevenson, B. and Wolfers, J., 2007. Marriage and Divorce: Changes and Their
Driving Forces. Journal of Economic Perspectives, 21(2), pp.27-52.

Tegarden, D., Dennis, A. and Wixom, B., 2009. Systems analysis design UML
version 2.0. 3rd ed. United States: John Wiley & Sons.

Usability.gov., 2020a. Usability Testing | Usability.gov. [online] Available at:
<https://www.usability.gov/how-to-and-tools/methods/usability-testing.html>
[Accessed 1 Mar. 2020].

Usability.gov., 2020b. System Usability Scale (SUS) | Usability.Gov. [online]
Usability.gov. Available at:
<https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html>
[Accessed 19 March 2020].

Usability.gov., 2020c. Remote Testing | Usability.gov. [online] Available at:
<https://www.usability.gov/how-to-and-tools/methods/remote-testing.html>
[Accessed 7 Mar. 2020].



184

Yadav, K., Yasvi, M. and Shubhika, 2019. Review On Extreme Programming-XP.
In: International Conference on Robotics, Smart Technology and Electronics
Engineering. [online] Available at:
https://www.researchgate.net/publication/332465869_Review_On_Extreme_Progra
mming-XP [Accessed 23 Feb. 2020].

Yuen, M. K., 2019. Feature: Malaysia's shrinking families. [online] The Star Online.
Available at:
<https://www.thestar.com.my/news/nation/2019/11/10/malaysia039s-shrinking-famil
ies> [Accessed 15 Feb. 2020].



185

APPENDICES

APPENDIX A: The continued rise of meeting online for heterosexual couples



186

APPENDIX B: Total Fertility Rate in Malaysia



187

APPENDIX C: Questionnaire for Collecting Match Preferences



188



189



190



191

APPENDIX D: Questionnaire for Collecting User Data



192



193



194



195



196



197



198



199



200



201

APPENDIX E: Usability Test Results



202



203



204



205



206



207



208



209



210



211



212



213



214



215



216



217



218

APPENDIX F: User Acceptance Test Results



219



220



221



222



223



224



225



226



227



228



229



230



231



232



233


	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	1INTRODUCTION
	1.1Introduction
	1.2Problem Statement
	1.3Project Objectives
	1.4Proposed Solution
	1.5Proposed Approach
	1.6Project Scope
	1.6.1Target Users
	1.6.2Features Covered


	2LITERATURE REVIEW
	2.1Existing Online Related System
	2.1.1MalaysianCupid.com
	2.1.2Match.com
	2.1.3OkCupid.com
	2.1.4Shaadi.com
	2.1.5Badoo
	2.1.6Comparisons on Existing Online Related System

	2.2Matching Algorithm
	2.2.1Rule-based Approach
	2.2.2Database Query / Exact Matching
	2.2.3Similarity Measure
	2.2.4Comparison of Matching Algorithms

	2.3Software Development Methodology
	2.3.1Waterfall Methodology
	2.3.2Prototyping Methodology
	2.3.3Phased Development Methodology
	2.3.4Extreme Programming
	2.3.5Comparison of Software Development Methodologies

	2.4Usability Testing
	2.4.1Lab Usability Testing
	2.4.2Remote Usability Testing
	2.4.3Guerrilla Usability Testing
	2.4.4Comparison of Usability Testing Methods


	3METHODOLOGY AND WORK PLAN
	3.1Introduction
	3.2Software Development Methodology
	3.2.1Planning Phase
	3.2.2Analysis and Design Phase
	3.2.3Phased Implementation
	3.2.4Testing Phase
	3.2.5Deployment

	3.3Development Tools
	3.3.1ReactJs
	3.3.2Firebase
	3.3.3Express.js

	3.4Project Planning
	3.4.1Work Breakdown Structure
	3.4.2Gantt Chart


	4PROJECT INITIAL SPECIFICATION
	4.1Introduction
	4.2Functional Requirements
	4.3Non-functional Requirements
	4.4Use Case Diagram
	4.5Use Case Description
	4.6Fact Findings

	5SYSTEM DESIGN
	5.1System Architecture Design
	5.1.1Data Flow Diagram
	5.1.2Activity Diagram

	5.2Data Model Diagram
	5.2.1Logical Data Model Diagram
	5.2.2Physical Data Model Diagram
	5.2.3Data Dictionary

	5.3Preliminary User Interface Design

	6IMPLEMENTATION
	6.1Web API Endpoint
	6.2Application Implementation
	6.2.1Main Page
	6.2.2Registration
	6.2.3Login
	6.2.4Search Potential Matches
	6.2.5View Member Profile
	6.2.6View Chat Message
	6.2.7View Favourite List
	6.2.8View Personal Profiles


	7TESTING
	7.1Unit Testing
	7.2Application Programming Interface (API) Testing
	7.3End-to-end Testing
	7.4Usability Testing
	7.4.1Test Scenario
	7.4.2User Satisfaction Survey Form
	7.4.3Usability Test Result

	7.5User Acceptance Testing

	8CONCLUSION AND RECOMMENDATIONS
	8.1Conclusion
	8.2Limitation and Suggestion
	8.3Future Enhancements

	REFERENCES
	APPENDICES
	APPENDIX A: The continued rise of meeting online f
	APPENDIX B: Total Fertility Rate in Malaysia
	APPENDIX C: Questionnaire for Collecting Match Pre
	APPENDIX D: Questionnaire for Collecting User Data
	APPENDIX E: Usability Test Results
	APPENDIX F: User Acceptance Test Results


