

WEB-BASED SOURCE TO SOURCE CONVERTER

CHOOI KAR JIAN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Honours) Software Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

APRIL 2021

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : Chooi Kar Jian

ID No. : 1703498

Date : 6/4/2021

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “WEB-BASED SOURCE TO

SOURCE CONVERTER” was prepared by CHOOI KAR JIAN has met the

required standard for submission in partial fulfilment of the requirements for the

award of Bachelor of Science (Honours) Software Engineering at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date :

Chean Swee Ling

3 May 2021

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2021, Chooi Kar Jian. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project. I would like to express my gratitude to my research supervisor,

Miss Chean Swee Ling for his invaluable advice, guidance and his enormous

patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving

parents and friends who had helped and given me encouragement to complete

this project.

Lastly, I would like to thank REXTESTER for allowing me to use their

API for this project.

vi

ABSTRACT

Software maintenance activity in the software development life cycle is

becoming more difficult over time. Hence, many companies are interested in

using automated code translation techniques to maintain their software.

However, the existing automated code translators are still error prone and

inefficient. Thus, this project is developed to improve accuracy of code

conversion between high level languages, eliminate the need of manual

conversion and promote universally compatible code conversion. The core

functionality of the project will be developed based on a transpiler which

convert codes into an abstract intermediate representation and to the desired

target language. In this project, a code transpilation framework are developed

with a frontend website. The code conversion model could achieve 90%

accuracy. The result of the usability testing also showed that the system

achieved a positive usability result. In conclusion, the project has been

implemented successfully as it met the project’s objectives.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF SYMBOLS / ABBREVIATIONS xiv

LIST OF APPENDICES xv

CHAPTER

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Background of problem 2

1.3 Problem Statement 3

1.3.1 Cost ineffectiveness of manual conversion 3

1.3.2 Error prone code conversion system 4

1.3.3 Language specific architecture 4

1.4 Project Objectives 5

1.5 Project Approach 6

1.5.1 Transpiler Architecture 6

1.5.2 General architecture of the system 7

1.6 Scope of the Project 8

1.6.1 Transpiler modules 8

1.6.2 Supported conversion structure 10

1.6.3 Web page features 11

1.6.4 Uncovered scope 11

viii

2 LITERATURE REVIEW 12

2.1 Introduction 12

2.2 Similar System 12

2.2.1 Java2Python 12

2.2.2 Tangible Software solution 13

2.3 Past Work 15

2.3.1 JPT: A Simple Java-Python Translator 15

2.3.2 Programming language Inter-conversion 15

2.4 Transpiler architecture 16

2.5 Concerns in code conversion process 18

2.6 Intermediate representation 20

2.7 Development methodology 21

2.8 Summary 24

3 METHODOLOGY AND WORK PLAN 25

3.1 Introduction 25

3.2 Iterative incremental model 25

3.2.1 Planning phase 26

3.2.2 Analysis and Design phase 27

3.2.3 Implementation and Testing phase 27

3.2.4 Project Closing 28

3.3 Work Breakdown Structure 29

3.3.1 Gantt Chart 31

3.4 Development tools and technologies 34

3.4.1 Visual Studio Code 34

3.4.2 Git and GitHub 34

3.4.3 AxureRP 9 34

3.4.4 React 34

3.4.5 Node.js 35

3.4.6 Jest 35

3.5 Summary 35

4 PROJECT SPECIFICATION 36

ix

4.1 Introduction 36

4.2 Requirements Specification 36

4.2.1 Functional Requirement 36

4.2.2 Non-Functional Requirement 37

4.3 Use Case 38

4.3.1 Use Case Diagram 38

4.3.2 Use Case Description 39

4.4 Class Diagram 41

4.5 High-level architecture 42

4.6 System specification 43

4.6.1 Lexer 43

4.6.2 Parser 45

4.7 User Interface Design 47

4.8 Summary 48

5 SYSTEM IMPLEMENTATION 49

5.1 Introduction 49

5.2 First iteration phase 50

5.2.1 Design of frontend website 50

5.2.2 Features implemented for frontend website 51

5.3 Second iteration phase 53

5.4 Third and subsequent iteration phase 54

5.4.1 Lexer 54

5.4.2 Parser 56

5.4.3 Code Generator 59

5.4.4 Dictionary & Language 60

6 SYSTEM TESTING 61

6.1 Introduction 61

6.2 Testing approach 62

6.3 Unit Test 63

6.4 Integration test 66

6.5 Test coverage 68

x

6.5.1 UI test 69

6.6 Usability Testing 70

6.6.1 System Usability Scale (SUS) 70

6.6.2 Descriptive feedback 71

6.7 Evaluation of accuracy 72

7 CONCLUSIONS AND RECOMMENDATIONS 73

7.1 Achievements 73

7.2 Limitations 74

7.3 Future Enhancement 75

REFERENCES 76

APPENDICES 78

xi

LIST OF TABLES

Table 4-1 Use Case Description - Convert code 39

Table 4-2 Use Case Description - Compile code 40

Table 4-3 Lexical grammar 43

Table 4-4 System reserved keywords 44

Table 4-5 Components in abstract syntax representation 46

Table 6-1 Unit Test Cases – Lexer 63

Table 6-2 Unit Test Cases – Parser 64

Table 6-3 Unit Test Cases - Dictionary 64

Table 6-4 Unit Test Cases - Code Generator 65

Table 6-5 Integration test cases 66

Table 6-6 Different context of access modifier 67

Table 6-7 Frontend UI test cases 69

Table 6-8 SUS score table 71

Table 6-9 Criteria to measure transpilation framework

accuracy 72

xii

LIST OF FIGURES

Figure 1-1 Architecture of the proposed transpiler 6

Figure 1-2 General architecture of the system 7

Figure 1-3 Lexical analysis process 8

Figure 1-4 AST parsing process 9

Figure 1-5 Code Generation Process 9

Figure 2-1 Code conversion through code snippet 13

Figure 2-2 Code Conversion through file upload 13

Figure 2-3 Waterfall model (Rastogi, V., 2015) 21

Figure 2-4 V-Shaped model (Kumar and Bhatia, 2014) 22

Figure 2-5 Iterative model (Rastogi, 2015) 22

Figure 3-1 Proposed iterative and incremental model 25

Figure 3-2 Overview of the project schedule 31

Figure 3-3 Planning phase 31

Figure 3-4 Analysis and Design phase 32

Figure 3-5 Implementation and Testing phase 32

Figure 3-6 Closing phase 33

Figure 4-1 Use Case Diagram 38

Figure 4-2 Class Diagram 41

Figure 4-3 High level architecture 42

Figure 4-4 Main page 47

Figure 5-1 Source-to-source converter website 50

Figure 5-2 Demonstration of code conversion 51

Figure 5-3 Free code compiler API from REXTESTER 51

file:///C:/Users/ckj27/Desktop/In%20Progress/FYP%20Doc/My%20FYP/Finalized/FYP%202_ChooiKarJian_1703498/FYP2_ChooiKarJian_Latest.docx%23_Toc69258811
file:///C:/Users/ckj27/Desktop/In%20Progress/FYP%20Doc/My%20FYP/Finalized/FYP%202_ChooiKarJian_1703498/FYP2_ChooiKarJian_Latest.docx%23_Toc69258812
file:///C:/Users/ckj27/Desktop/In%20Progress/FYP%20Doc/My%20FYP/Finalized/FYP%202_ChooiKarJian_1703498/FYP2_ChooiKarJian_Latest.docx%23_Toc69258813
file:///C:/Users/ckj27/Desktop/In%20Progress/FYP%20Doc/My%20FYP/Finalized/FYP%202_ChooiKarJian_1703498/FYP2_ChooiKarJian_Latest.docx%23_Toc69258814
file:///C:/Users/ckj27/Desktop/In%20Progress/FYP%20Doc/My%20FYP/Finalized/FYP%202_ChooiKarJian_1703498/FYP2_ChooiKarJian_Latest.docx%23_Toc69258815
file:///C:/Users/ckj27/Desktop/In%20Progress/FYP%20Doc/My%20FYP/Finalized/FYP%202_ChooiKarJian_1703498/FYP2_ChooiKarJian_Latest.docx%23_Toc69258816
file:///C:/Users/ckj27/Desktop/In%20Progress/FYP%20Doc/My%20FYP/Finalized/FYP%202_ChooiKarJian_1703498/FYP2_ChooiKarJian_Latest.docx%23_Toc69258817
file:///C:/Users/ckj27/Desktop/In%20Progress/FYP%20Doc/My%20FYP/Finalized/FYP%202_ChooiKarJian_1703498/FYP2_ChooiKarJian_Latest.docx%23_Toc69258818
file:///C:/Users/ckj27/Desktop/In%20Progress/FYP%20Doc/My%20FYP/Finalized/FYP%202_ChooiKarJian_1703498/FYP2_ChooiKarJian_Latest.docx%23_Toc69258819
file:///C:/Users/ckj27/Desktop/In%20Progress/FYP%20Doc/My%20FYP/Finalized/FYP%202_ChooiKarJian_1703498/FYP2_ChooiKarJian_Latest.docx%23_Toc69258820
file:///C:/Users/ckj27/Desktop/In%20Progress/FYP%20Doc/My%20FYP/Finalized/FYP%202_ChooiKarJian_1703498/FYP2_ChooiKarJian_Latest.docx%23_Toc69258821

xiii

Figure 5-4 Code editor settings 52

Figure 5-5 Frontend API calls to backend 53

Figure 5-6 API set up at backend system 53

Figure 5-7 Example C# source code 54

Figure 5-8 Source code split into lexemes 54

Figure 5-9 Lexemes were processed into tokens 55

Figure 5-10 Example C# code 56

Figure 5-11 Class analysis 57

Figure 5-12 Structural analysis 57

Figure 5-13 Intermediary code 58

Figure 5-14 Result of conversion 59

Figure 5-15 Language packs are assigned dynamically 60

Figure 5-16 Conversion rules 60

Figure 6-1 Automated testing workflow 62

Figure 6-2 Test coverage 68

Figure 7-1 Appendix A (1) source code to be parsed 78

Figure 7-2 Appendix A (2) JSON representing AST 80

file:///C:/Users/ckj27/Desktop/In%20Progress/FYP%20Doc/My%20FYP/Finalized/FYP%202_ChooiKarJian_1703498/FYP2_ChooiKarJian_Latest.docx%23_Toc69258843

xiv

LIST OF SYMBOLS / ABBREVIATIONS

AST Abstract Syntax Tree

API Application Programming Interface

DOM Document Object Model

SDLC Software Development Life Cycle

SUS System Usability Scale

UML Unified Modelling Language

UI User Interface

WBS Work Breakdown Structure

REST Representational State Transfer

ANTLR Another Tool for Language Recognition

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

xv

LIST OF APPENDICES

APPENDIX A: JSON parsing to represent AST 78

APPENDIX B: Test Scenario 81

APPENDIX C: User Satisfaction Survey 82

1

CHAPTER 1

1 INTRODUCTION

1.1 Introduction

Software needs to be maintained in order to keep up with growing requirements of the

current world. Software maintenance are becoming more cumbersome as software

complexity increases over time. While some company chooses to spend large

expenditure on software maintenance each year, other companies opt to reimplement

and migrate their software program into another platform for better performance and

maintainability. Code migration into another programming language can be achieved

through transpilation process. A transpiler has the same concept as the compilers, but

instead of converting the codes into lower-level language, transpiler will convert the

codes into same abstraction level of programming language.

Transpiler is certainly useful for automated source code conversion but it may

still require manual intervention from the programmers because the technology is

relatively new. Hence, this project is initiated to analyse the issues of the transpilation

process and propose suitable solution to resolve the issues. This chapter shall discuss

the background of the problem, problem statements, project objectives, proposed

solution, proposed approach and the scope of the project.

2

1.2 Background of problem

Software maintenance is one of the most important activity in software development

life cycle. In fact, 70% of the resources are allocated to maintain the software codes

(Christa et al., 2017). According to Hunt and Thomas (2002), programmers tend to fix

software bugs using update patches without understanding the underlying problem that

causes the failure to happen. These software patches will not only increase the

complexity of the codes but also increase the difficulty of software maintenance

process for the future programmers. In addition, the codes tend to be more complex

especially in a software project development that involves a lot of developers (Midha,

2008).This is due to the code inconsistency and different style of programming

introduced by different developers in the development team. As a consequence, large

amount of time and effort will be wasted to understand the logic and the relationship

of the source code rather than fixing it (Smith, Capiluppi and Fernández-Ramil, 2006).

This ideology is supported by Subramanian, Pendharkar and Wallace (2006) who

stated that the software maintenance cost is directly affected by the code complexity

of the software.

 Based on Lumb (2018), many companies are turning their attention towards

automated code translation techniques to update and maintain their software. Despite

convenience that the system provides, the code translation process still needs

programmers to be involved because the system was not able to identify the

dependencies between different modules. Hence the code translation process is done

partially rather than fully automated. Furthermore, source code translation must be

done properly because it comes with risks that could cause the software to fail

(Kontogiannis et al., 2010). Despite all the negative effect that might come with the

code translation system, automated code conversion tends to have lower risk compared

to the other approach of updating or maintaining the system (Dahaner et al., 2018).

 It is undoubtedly true that code maintenance is a time consuming and resource

heavy process. Programming languages will receive updates periodically to ensure that

it is good enough to cater for the growing software requirements. Hence, this paper

shall look into the problems of source-to-source translation and shall propose a

solution to resolve the stated problems.

3

1.3 Problem Statement

This section shall describe the problems in two approaches in code conversion process.

The first statement will address the problems in the manual code conversion process

and the second statement shall cover the problems in the currently available code

conversion system. The following issues shall be resolved with the completion of the

project.

1.3.1 Cost ineffectiveness of manual conversion

Source code conversion process is very tedious and time consuming especially without

the usage of automation software. Although there are software tools that can aid the

conversion process, some company still perform manual code conversion using man

labour. Ultimately, this approach is not cost efficient and effective for the software

company because of the reasons stated as below:

i. Time consuming

Source code conversion requires deep understanding of the original code

before the it can be carried out. Hence, programmers will spend most of the

time understanding the codes rather than performing the code conversion

(George et al., 2010). Besides that, the time taken for the process is affected by

the complexity of the codes which means that longer duration will be required

to convert a complicated software than a simple and well-defined software.

ii. Inconsistent conversion

Manual code conversion is prone to mistakes especially the software which is

not well documented. The programmer who does not completely understand

the workflow of the software might risks losing the of the business rules when

performing manual rewrite of the program (Ilyushin and Namiot, 2016). Other

than that, the translated code might be inconsistent due to the unique

programming styles from different programmers who are involved in the

project. As a result, future maintenance task on the software will become

difficult.

4

iii. Expensive

Manual source code conversion is costly because most of the project

expenditures are spent on human resource for the project. Besides that, the cost

of the conversion project will increase significantly with the duration of the

project. According to George et al. (2010), rewriting the program manually

will take years and requires a lot of manpower. Worst of all, there are chances

that manual rewriting of a program will results in broken functionality which

will cause financial damage to the company.

1.3.2 Error prone code conversion system

One of the main concerns for a code conversion system is the accuracy of the translated

source code. The main goal of the system is to translate the source code into another

programming languages without changing the meaning to the original code. However,

the accuracy of the translated code depends on the ability of the code conversion

system to capture the code structure and translate it to the target language correctly.

Incorrect translation will modify the definition of business rules and program flow. As

a result, intervention from the programmers is required and the system are only able

to perform partial translation rather than a full translation (George et al., 2010).

1.3.3 Language specific architecture

Code conversion process involves a sequence of task to break down the codes so that

it can be translated into another programming language. However, the internal

components that are responsible to process the codes are highly dependent on a specific

programming language. This reduces the flexibility to convert between languages as

new intermediate representation of the codes are required to be generated for each

conversion process (George et al., 2010). As a result, the efficiency of the conversion

process will be affected.

5

1.4 Project Objectives

This project aims to achieve the following objectives:

i. To identify the issues and practice of the current code conversion process.

ii. To develop a web-based transpiler that is universally compatible with

mainstream programming languages.

iii. To design a code transpilation framework.

iv. To achieve code translation accuracy score of 90% for the proposed source

to source converter.

6

1.5 Project Approach

To effectively solve the problems identified in the code conversion process, a web-

based source to source converter has been developed. A web interface was prepared to

allow user interaction with the system. The primary purpose of the solution is to

provide automated source code conversion using transpiler technology.

1.5.1 Transpiler Architecture

A transpiler was used as the back-end processing of the source-to-source converter

system. The architecture of the compiler is similar to the compiler which consists of

front-end analysis and back-end synthesis phase (Aho et al., 2007).

 The front-end of the transpiler are responsible for tokenizing and parsing the

source code into an AST meanwhile the back end of the transpiler will process the

abstract syntax tree to the target code. The detailed implementation of the transpiler

will be discussed in the later chapters.

Transpiler

Scanner

(Lexical analysis)

Parser

(Syntax analysis)

Front end

(Analysis phase)

Target Code

Generator

Back end

(Synthesis phase)

Figure 1-1 Architecture of the proposed transpiler

7

1.5.2 General architecture of the system

A web page was designed to allow user interaction with the proposed system.

After user input the source code into the web page, then the server will process and

translate the codes. Finally. The code in the targeted programming language will be

returned to the user. The communication between the web page and the server is using

RESTful API. The details of the communication between webpage and the server will

be discussed in the later chapters.

Figure 1-2 General architecture of the system

8

1.6 Scope of the Project

This section includes the scope of the project which defines the backend transpiler

module, supported conversion structure, the front-end features as well as the

uncovered scope. Due to the time constraints and limited knowledge, the project scope

has been narrowed down to focus on the conversion of the source code. Nevertheless,

the code conversion system shall provide a web interface for the user to interact with

the system.

1.6.1 Transpiler modules

A transpiler will be used as the backend processing of the system to translate the source

codes. The transpiler will be written in JavaScript language since it provides a lot of

flexibility. The backend processing system shall be divided into the following modules:

i. Universal Lexer

Lexical analysis will be carried out on the original source code by a lexer.

The source code will be broken down into tokens where they are

differentiated into literals, symbols and language specific keywords.

ii. Universal Parser

A parser will take the sequence of tokens that are generated by the lexer to

be parsed into an abstract syntax tree (AST). AST is an intermediary

product that represents the abstract representation of the source code which

are not dependent on any programming language.

Figure 1-3 Lexical analysis process

Source Code

 Console.WriteLine(“Hi”);

Lexer

Tokens

. WriteLine (“Hi”) ; Console

9

iii. Code generator

The target code will be generated by the code generator using the AST

created by the parser. The elements in the AST will be mapped onto the

target language’s syntax and generate the code that have equivalent

function from the source code.

Parser

Abstract

Syntax

Tree

Tokens

 cou << “Hi” ;

Code

Generator

Abstract

Syntax Tree

Target code

System.out.println(“Hi”);

Figure 1-4 AST parsing process

Figure 1-5 Code Generation Process

10

1.6.2 Supported conversion structure

Conversion of source code between two same level abstraction programming language

is complicated because of their unique syntax and features. Hence, the proposed code

conversion system is designed to convert the basic programming structure as the

following:

A. Programming Fundamentals

i. Variables

ii. Mathematical operators (+, -, *, /)

iii. Logical operators (AND, OR, NOT)

iv. Selection operations (IF, IF...ELSE, SWITCH)

v. Looping operations (FOR, WHILE)

B. Object Oriented Programming

i. Class

ii. Object

iii. Inheritance

iv. Polymorphism

11

1.6.3 Web page features

As stated above, a web interface was provided to the user so they could interact with

the system with minimal effort. The following features are included in the front-end

website of the project:

A. Code conversion

The user shall be able to input the source code as plain text or as a programming

language specific file (e.g., code.cpp). The webpage should communicate with

the server for the translation of the source code. The output of the server will

then be passed back to the user via the web page.

B. Code compilation

A code compiler will be integrated into the web interface using a third-party

API. The user of the website can compile and execute the code. The rationality

of this feature is to provide convenience to the user so that they could perform

code debug at the website.

1.6.4 Uncovered scope

The project will not cover the following features:

i. API migration

ii. Database migration

iii. Code optimization

iv. Code semantic analysis

12

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

Code conversion is not an easy process because it requires deep understanding of the

programming languages and the conversion workflow. Therefore, literature review

was conducted to gain understanding on areas related to the proposed idea of the

project. Studies will be carried out to further improve the project. This literature

review aims to:

1. Review similar system and past work

2. Understand the concept of a transpiler

3. Identify potential issue in code conversion process

4. Determine project methodologies to be used

2.2 Similar System

There are existing code conversion systems that can be accessed online whether it is

published commercially or open sourced. Review on two popular code conversion

system will be conducted to learn about the backend code conversion process and the

additional functionalities that are provided to the users.

2.2.1 Java2Python

Java2Python is an open sourced code translation system that translates codes from Java

language to Python language. Melhase {2012) explained that the system uses the

concept of mapping where the identifiers and common operations were mapped from

the source to target. However, problem arise when identifier name conflicts with

keyword from another programming language. To solve the issue, explicit lexical

transformation will be required to modify the identifier name so no error will occur in

the translated program. The code conversion process is simple, the source codes are

tokenized and sorted to build an abstract syntax tree using ANTLR. Then, tree traversal

process will start extracting nodes from the tree and map them into target language.

13

2.2.2 Tangible Software solution

Tangible software solution is a company that specialize in creating code conversion

software. Their software could translate between various programming languages

which includes C++. C#, Java and VB.NET. The software was published

commercially, and there is limitation on the conversion output for the free version.

There were no implementation details for the code conversion process. However,

analysis have been done on the software application to assess the features and user

interaction design. The user interface is minimalistic and provides code conversion

process through file upload or code snippet.

Figure 2-1 Code conversion through code snippet

Figure 2-2 Code Conversion through file upload

14

Similar System Strength Weaknesses

Java2Python • Perform conversion using

existing technology

(ANTLR).

• Perform conversion by

breaking down codes into

tokens and forming a abstract

syntax tree before mapping

them into the target language.

• No user interface to

enable user

interaction.

• Only converts

between Java and

Python.

Tangible Software

solution

• Offers more programming

language selection to the user

to perform code conversion.

• Have simple user interface for

user to convert codes by

importing the files.

• Limited conversion to

free users.

Table 2-1 Comparison table on existing application

15

2.3 Past Work

The idea of translating programming languages has been discussed over the years

because the code translation system has potential in various areas of software

development lifecycle. Literature review will be conducted on two past research papers

to discuss the common practise and future recommendation on the code translation

process.

2.3.1 JPT: A Simple Java-Python Translator

In the research done by Coco, Osman and Osman (2018), they proposed that the code

conversion shall analyse the similarities and differences between two different

programming languages before performing code conversion. This is because different

programming languages have different features that are unique to other languages,

hence understanding of both programming languages are required to ensure that the

code conversion process can be performed accurately and effectively. The paper

proposed that the intermediate language that is created during the code conversion

process can be written in XML format because XML are both human readable and

machine readable. It will be easier for debugging effort. However, the process of

parsing the source code to XML representation format is very time consuming and

resource intensive. Hence, more effort will be needed to ensure that the intermediate

language created will be efficient and effective.

2.3.2 Programming language Inter-conversion

George et al. (2010) had analysed many research papers that was relevant to the code

conversion process and found out that the implementation of an intermediate language

would benefit the code conversion process. The intermediate language should be

abstract which means that it is not dependent on any programming language. Hence,

it will be affective to store the logic of the program in an algorithmic format without

disturbing the original structure of the program during the code conversion process.

The converter can be designed in such a way that it could convert the common

components of both programming languages and have the ability to map special

functions between the programming languages. Lastly, George et al. (2010) suggested

that predefined library can be prepared to convert algorithm between languages more

efficiently.

16

2.4 Transpiler architecture

This project will involve transpilation process from a program called as a transpiler

which is very similar to a compiler. Hence, an understanding of compiler technology

is required before implementing the transpiler as the backend service of the proposed

system.

In programming context, a compiler is a program that translate higher level

abstraction source code into lower level target code that are semantically equivalent

(Aho et al., 2007). A typical compilation process will take high level language codes

such as Java or C# and convert them into an intermediate representation of the source

codes. Then, the intermediate representation of the source codes will be translated into

the target language through mapping techniques. Unfortunately, most of the compilers

are not universally adaptable to different programming languages as the internal

modules of the compiler are highly specific to a programming language (Plaisted,

2013). In other words, many compilers are only able to recognise a specific syntax of

a programming language.

 A transpiler have similar components and workflow as the compiler which

consists of a lexer, a parser and a code generator and the only difference between them

is the abstraction level of the target language (Kulkarni, Chavan and Hardikar, 2015).

Instead of conversion of source code to lower-level target codes, a transpiler would

convert source code between programming languages that have the same level of

abstraction. For example, a transpiler can convert Java code into C# code and vice

versa. Other than that, the workflow of the transpiler and compiler are similar. The

main tasks that need to be carried out by the program are:

a. Lexical analysis

According to Farhanaaz and Sanju (2016), lexical analysis is responsible for breaking

down the source codes into lexemes using a language pre-processor. In other words,

the lexical analysis will decompose lines of codes into tokens and remove any white

spaces from the codes. Each lexeme contains a tag that describe the type of data they

store. For example, “int” token will be tagged as a built-in system data type. Before

breaking down the lines of codes, a symbol table will be needed to define the language

specific keywords such as “goto” in C language. Then, the lexer will analyse the codes

17

and tokenize the lines of codes according to the symbol table and place them into a

queue to be passed to the parser to carry out syntactic analysis.

b. Syntactic analysis

The tokens that are generated from the lexer will be passed to the parser where

syntactic analysis will take place. According to Kulkarni, Chavan and Hardikar (2015),

syntactic analysis will parse the tokens to form a tree that is called as a syntax tree.

The syntax tree can be considered as the intermediate representation of the source code

because the syntax tree will only store all the details about the source code. There are

two type of syntax tree with different abstraction level, a parse tree and an abstract

syntax tree. A parse tree is highly specific to the source code. In other words, the tree

is language dependent and less flexible. On another hand, the abstract syntax tree only

preserve the structure and the process of the source code which means that it is not tied

to any programming languages (Ilyushin and Namiot, 2016).

c. Code generation

After the intermediate representation of the code is generated, it will be passed to the

code generator. The responsibility of a code generator is to generate the target code

using the intermediate representation. If an abstract syntax tree was used, tree traversal

will be performed on the tree to extract the nodes and map it to the corresponding

target code programming language.

 Based on the research done by Mu (2019), there are two architectures that

define the workflow of a transpiler. The first architecture is called as Trans-To-IR

(TTIR) which parses source codes to AST and then transformed the AST into language

specific IR. The IR is then compiled and run by the interpreter. The advantage of this

architecture is the converted code will be optimized and efficient and the disadvantage

is the converted code are not human readable, hence it is impossible to perform

debugging process on the converted code. The second architecture is called as Source-

Lang-To-Target-Lang (SLTL). In this architecture, the source code will be parsed to

AST and then translated to the target language. The advantage of this architecture is it

promotes re-use of parser modules because the structure of intermediate representation

is defined. Other than that, the target code generated is human readable. However, this

architecture does not come with code optimization.

18

2.5 Concerns in code conversion process

A transpiler contains multiple components that work together to produce a

specific functionality, that is, to translate a source code between different

programming languages at the same level of abstraction without modifying the

structure or business rules of the original source code. However, the process of

building a transpiler system is not easy because it involves deep understanding of the

system construction process. Moreover, testing the correctness of the transpiler will be

a challenge because of the system complexity and the uncertainty to correctly evaluate

the performance of a built transpiler. Hence, research is done on relevant articles and

past research papers to find out the possible factors that will affect the decision making

during the construction of the project and the evaluation method to test the correctness

of the transpiler system.

 According to Ilyushin and Namiot (2016), there are a few requirements that

need to be achieved while building a transpiler. The first requirement to be achieved

is to ensure that the transpiler could translate a source program to a different

programming language program without modifying the original structure or semantic.

This statement was supported by George et al. (2010) who commented that the aim of

performing programming language conversion is to transform the codes into another

language while ensuring the consistency of the program structure between the source

code and the translated code.

Other than that, Ilyushin and Namiot (2016) also pointed out that both of the

source program and translated program must be able to produce the same output. This

is because the translation of codes should not affect or modify the functionality of the

original program. It is important to ensure that the translated program could inherit the

business rules defined from the original program so the translated program will not

affect the business process. Lastly, the code conversion process should have minimal

user interaction with the system. In other words, the system should be able to perform

automated code conversion without interception from the user.

 As mentioned above, the main concern of the transpiler is to ensure that the

program structure and process can be translated to the target programming language.

Hence, the accuracy of the transpiler can be measured according to the similarity of

source program and translated program’s structure and output. An abstract

intermediate representation of both source program and target program can be

19

compared to measure the accuracy of the program translation process. This idea was

motivated by Plaisted (2013) who suggests that two sets of codes which are

syntactically equivalent should be able to produce a similar abstract representation. He

also suggests that the implementation of an abstract intermediate representation during

the code conversion process can effectively preserve the structural information of the

source program.

 After reviewing the relevant journal and past research papers, it is clear that a

transpiler plays an important role in code conversion process because it can eliminate

manual code conversion process which are error prone. However, intervention of

programmers will still be needed for the process because different programming

languages have their own specialized features. On the other hand, the idea of creating

an abstract intermediate representation during code conversion process is adopted

widely when constructing the transpiler. This is because it provides an abstraction level

that could capture important component in the source program such as the working of

an algorithm without dependency on any programming language syntax. On top of that,

the abstract intermediate representation could be transformed into different

programming languages because it is universal and contains only the details of

implementation.

 In short, a transpiler need to be able to convert a source program into another

programming language without losing the structure and process of the original source

program. Other than that, the entire code conversion process must be done with

minimal user intervention to the process. Finally, the accuracy of the transpiler can be

measured by comparing the abstract intermediate representation and output between

the source program and the target program.

20

2.6 Intermediate representation

The transpilation process will involve a generation of an abstract intermediate

representation which could represent both of the source code and target code. An

understanding of intermediate representation is needed because it is crucial for the

success of the code conversion process in the proposed system. This section shall

summarize the observation and results regarding the performance of the different

intermediate language that can be used to generate the intermediate representation.

 Intermediate representation of the source code can be generated to help the

code conversion process because it can effectively preserve the structure of the source

code and translate the tree into the target code (George et al., 2010). After conducting

research on few relevant research papers, intermediate representation is most

commonly written in three different languages which are XML, JSON and YAML.

Based on the performance evaluation done by Eriksson and Hallberg (2011), YAML

is better at storing deep hierarchical data or very complex data compared to XML and

JSON. Other than that, JSON could provide better performance and parsing speed

compared to YAML and XML. XML have the worst performance among the three

because it uses tags to encapsulate the codes which uses a lot of resources. Hence, the

performance of XML is poor. They also proposed a list of criteria for the selection of

the intermediate representation.

 The main selection criteria for the project depends on the functionality,

readability and the performance of each intermediate language. JSON is the most

suitable for the proposed project because it has the best performance in data retrieval

process. Besides that, JSON is easy to be parsed and retrieved. The readability of the

intermediate representation is given lower priority because it is not important for this

project.

21

2.7 Development methodology

A software development methodology is a framework that can guide a developer to

carry out software project more efficiently and more organised. It is important to

choose a software development methodology based on the nature of the project to

ensure the project can be carried out successfully. According to Kumar and Bhatia

(2014), different methodology have different concept on the lifecycle. In this section,

seven different models will be compared.

 There are two main types of software development methodology that are

predictive life cycle and adaptive software development life cycle (Schawalbe, 2020).

Predictive life cycle will be suitable for project which the cost, time and requirements

can be well defined at the early stage. One of an example of predictive life cycle is

waterfall model. Waterfall model can be considered as the oldest methodology that

still exists today. The methodology is not flexible because each phase needs to be

signed off by the stakeholders before the next stage can begin. It also means that the

requirements must be well defined at the early stage because the any changes from the

previous phase would result in project schedule delay.

Figure 2-3 Waterfall model (Rastogi, V., 2015)

22

 V-Shaped model is also one of the predictive life cycle models which means

that the requirements of the project must be well defined at the early stage. This model

is similar to the waterfall model, but it involves user in the early stages for software

testing. It is certain that both waterfall model and V-Shaped model are inflexible in

requirements change.

Moreover, predictive life cycle model also includes iterative model. Iterative

model is different from the waterfall and V-Shaped model in the sense that it does not

require all the requirements to be specified before the project started (Rastogi, 2015).

The idea of this model is that the entire software development is divided into few

iterations with waterfall model in each iteration. One of the benefits of this model is

feedback can be gained from the previous iterations.

Figure 2-4 V-Shaped model (Kumar and Bhatia, 2014)

Figure 2-5 Iterative model (Rastogi, 2015)

23

On the other hand, adaptive life model consists of agile model which give

emphasize on the customer satisfaction by providing continuous software delivery

(Rastogi, 2015). In other words, the agile development could respond to the changing

requirements rapidly in a quick succession. The main priority for this model is to

achieve customer satisfaction.

Each methodology has their own unique workflow. The choice of software

development methodology to be adopted depends on the nature of project. Iterative

and iteration methodology is most suitable for the project because this project contains

a lot of uncertainties from the technology that are not widely discussed. Hence,

requirements might change from time to time so that the project can achieve the final

goals of the project. Other than that, the proposed project contains multiple domain of

knowledge such as back-end server and front-end webpage that could be messy in the

later stage. Hence, iterative incremental model is adopted because it can effectively

separate the development into few iterations to implement the most important feature

at the beginning.

24

2.8 Summary

In brief, this literature review had covered 4 different areas that could benefit the

development phase of the proposed system. First of all, the proposed system shall

implement similar backend architecture and design that is similar to the existing

system because they are proven to be beneficial for the system. Besides that, additional

features will be added to the proposed system to provide convenience for the system

user.

 Secondly, the concept of a transpiler is similar to a compiler which contains

internal components such as lexer, parser and code generator. The proposed system

shall be able to perform lexical analysis, syntactic analysis and target code generation

to perform code conversion process to another programming language.

 Next, the proposed system shall include a backend transpiler that can perform

code conversion between programming language without compromising the structure

and process from the original source program. Other than that, the accuracy of the

conversion can be measured by comparing the abstract intermediate representation and

the output of the source program and translated problem.

 Lastly, comparisons between different software development lifecycle models

have led to a conclusion that iterative incremental model is the most suitable

development methodology for the project.

25

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter will cover the details of the phases in software development life cycle,

work breakdown structure as well as the Gantt chart of the project development.

3.2 Iterative incremental model

Iterative incremental model will be used as the software development life cycle model

of this project. The main concept of the model is to break down the entire software

development process into few phases and implement each phase according to priority

of the planned deliverables. In order words, higher priority deliverables will be

implemented in the first iteration of the software project.

 The software development will be divided into three main phases for this

project. Each phase will contain requirement gathering, analysis and design,

implementation and testing process as shown in the diagram below. The backend

transpiler shall be implemented in the first iteration of the project as it is an important

component in the project. Then, the frontend website will be delivered in the second

iteration. Lastly, the connectivity of the frontend website and backend system will be

established in the final iteration of the project.

Figure 3-1 Proposed iterative and incremental model

26

3.2.1 Planning phase

3.2.1.1 Preliminary phase

Project planning is crucial for a project success because it sets expectations and

understanding of the project that will be performed. In the planning phase, the first

task to accomplish is to understand the background of the problem and identify the

underlying issues of code conversion process. Few problems that are related to the

code conversion process were found through relevant articles and journals. The first

problem was the inefficiency and ineffectiveness of manual conversion. The second

problem is the language specific architecture of most of the code conversion system

and lastly, the error prone code conversion system.

 After the problems are identified, few objectives were determined to provide a

direction for the project so the main goal of the project could be achieved. The first

objective of the proposed project is to identify the issues and practice of current code

conversion process. The second objective is to develop a web-based transpiler that is

universally compatible with mainstream programming languages. The third objective

is to achieve code conversion accuracy score of 90% for the proposed source to source

converter. These objectives were defined to achieve the main goal of the project, that

is to provide a code conversion system that is universally compatible to improve code

conversion process.

3.2.1.2 Requirements gathering and elicitation

Planning phase also includes information gathering process to define the requirements

of the project. The purpose of the information gathering process is to investigate the

approaches to carry out code conversion process, to analyze the user interface design

and features provided by other relevant systems and to study about the intermediate

language that is used to create an intermediate representation for the system. By

gathering the information needed, requirements of the system can be outlined. Other

than that, literature review will be conducted on past research papers to gather

information regarding the best practices of code conversion process, and the issues and

concerns that might affect the project.

27

3.2.1.3 Project scheduling

After the requirements of the system are gathered, the scope of the project can be

defined to showcase all the necessary activities and tasks that need to be implemented.

The project scope will describe all the work that needs to be done to achieve the project

goal. A work breakdown structure is prepared to record all the project scope in an

organized manner. The tasks can be broken down into work packages to distribute the

tasks into different categories. Lastly, the work packages in the WBS will be scheduled

using a Gantt chart so the project can be performed in a timely manner.

3.2.2 Analysis and Design phase

Analysis and design phase will provide the UML diagrams such as use case diagram,

class diagram and system architecture to deliver visualization of the system design and

workflow. The use case diagram was prepared to show the allowed user interaction

with the system. The use cases will be explained in detail using use case description

tables. Other than that, class diagram will also be prepared to showcase the relationship

between different classes and the components of the back end transpiler system. Lastly,

a prototype will be prepared to show the user interface of the webpage that work with

the back-end server to provide a way for the user to interact with the system.

3.2.3 Implementation and Testing phase

The implementation and testing phase will be divided into three different iterations.

The order of the phases will depend on the priority of the deliverable. Each iteration

will consist of an implementation phase and a testing phase.

3.2.3.1 Iteration 1

The first iteration of the project implementation will be focusing on building the back-

end service of the system. In other words, the deliverable of the first iteration would

be the most crucial for the entire project. Since this project concern about the code

conversion process the most, hence the transpiler need to be created before other

modules. The transpiler is the main component of the proposed project. It will take the

longest to finish because the system complexity is very high. Unit testing and

integration testing will be performed on the modules to eliminate the bugs in the

software codes as early as possible.

28

3.2.3.2 Iteration 2

The second iteration of the project will focus on the front-end webpage for the system.

The user interface is the second most important for the project because it provides a

platform where the user can interact with the system. After the completion of the

webpage, user acceptance testing can be performed to analyze the user interaction with

the system so changes can be made depending on the performance of the users.

3.2.3.3 Iteration 3

The final iteration of the project implementation process will focus on connecting the

back-end service to the front-end website. Upon the completion of the integration of

the back end transpiler and the front-end webpage, system testing can be performed to

test the connectivity of the front-end and the back-end system.

3.2.4 Project Closing

After the implementation and testing of the system, documentation can be prepared for

the project. The document shall include the lesson learnt throughout the project as well

as the changes made during the implementation phase. The project would be

considered as completed upon the achievement of project goals.

29

3.3 Work Breakdown Structure

1. Planning

1.1. Study background of the problem

1.2. Define problem statements

1.3. Formulate project objectives

1.4. Propose project solution

1.5. Define project scope

1.5.1. Identify transpiler modules

1.5.2. Identify supported conversion Structure

1.5.3. Identify web page features

1.5.4. Identify uncovered scope

1.5.5. Identify technologies and tools used

1.6. Literature review

1.6.1. Review similar system and past work

1.6.2. Understand the concept of a transpiler

1.6.3. Identify potential issue in code conversion process

1.6.4. Determine project methodologies to be used

1.7. Define system specification

1.7.1. Define lexer dictionary

1.7.2. Define AST structure

1.8. Schedule project timeline

1.8.1. Create WBS

1.8.2. Create Gantt chart

2. Analysis and Design

2.1. Create UML Diagrams

2.1.1. Design Use Case Diagram

2.1.2. Prepare Use Case Description

2.1.3. Design Class Diagram

2.1.4. Design level architecture diagram

2.2. Develop Prototype

3. Implementation and Testing

3.1. Phase 1 (Create back-end function)

3.1.1. Create Lexer module

30

3.1.2. Create Parser module

3.1.3. Create Code generator module

3.1.4. Carry out unit testing

3.1.5. Carry out integration testing

3.2. Phase 2 (Create front-end webpage)

3.2.1. Design webpage

3.2.2. Publish webpage

3.3. Phase 3 (Implement entire software)

3.3.1. Connect front-end and back-end

3.3.2. Carry out system testing

4. Closing

4.1. Finalize the documentation of the system

4.2. Prepare presentation slides

31

3.3.1 Gantt Chart

Figure 3-2 Overview of the project schedule

Figure 3-3 Planning phase

32

Figure 3-4 Analysis and Design phase

Figure 3-5 Implementation and Testing phase

33

Figure 3-6 Closing phase

34

3.4 Development tools and technologies

This section defines the development tools and technologies that will used in the

project development.

3.4.1 Visual Studio Code

Visual Studio Code will be used as the main code editor for this project because it has

a lot of features that could improve programming experience such as syntax

highlighting and auto indentation. Since the proposed project involves intensive usage

JavaScript and JSON files, this code editor is suitable for the project because it has

support for hundreds of programming languages. Other than that, it also supports open-

source plug-ins or extension to ease the coding process.

3.4.2 Git and GitHub

Git is a popular distributed version control system that can provide convenience to the

developer in managing software folders meanwhile GitHub is a cloud-based repository

to store project files. These tools are important for the project because it allows the

developers to track the changes made to the program codes and revert the project back

to previous version.

3.4.3 AxureRP 9

AxureRP is a prototyping tool to create high-fidelity prototype for software project. It

is very convenient because the prototyping process does not involve any coding and

uses drag-and-drop concept to design the prototype for the project. AxureRP 9 will be

used to showcase the initial design of the front-end webpage.

3.4.4 React

React is a JavaScript oriented library that contains components for user interface

development in the front-end system. React framework will be used in the project to

implement the front-end webpage because it uses virtual DOM which promotes reuse

of components in the project.

35

3.4.5 Node.js

Node.js is an open-sourced JavaScript-based server environment. It will be used as the

backend server of the system which will communicate with the front-end webpage.

The benefit of using node.js is that it allows third party packages or modules to be

integrated to the project. Another reason to use Node.js is because time could be saved

from learning other programming languages as the proposed project is mainly based

on JavaScript programming language.

3.4.6 Jest

Jest is a testing framework maintained by Facebook that is specifically built for

JavaScript. It is a popular testing framework for unit testing and integration testing for

all types of project which includes React and Node.js. The testing framework will be

implemented to carry out testing for the developed codes.

3.5 Summary

In short, this project will adopt iterative incremental development model which is

divided into three phases. Other than that, the entire project duration will take up 302

days which includes public holidays and weekends.

36

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

This chapter will describe the initial specification for this project which includes the

requirements specification and the system design for both front-end development and

back-end development. In addition, UML diagrams were modelled to allow

visualization of the entire system process and workflow.

4.2 Requirements Specification

This section will list out all the functional requirements and non-functional

requirements that would be implemented in the system. The user stated in the

requirements is referring to the user who wants to use the system for code conversion

or code compilation.

4.2.1 Functional Requirement

i. The system shall allow user to import source code file from local computer.

ii. The system shall allow user to convert Java code to C# code and vice versa.

iii. The system shall be able to compile Java code and C# code.

iv. The system shall allow user to modify the website’s theme.

v. The system shall allow user to export converted file with programming

language specific file extension.

vi. The system shall prepare integrated code editor text area for user to enter

programming codes.

vii. The system shall allow user to choose programming languages to be

converted.

viii. The backend server must be able to handle multiple conversion process

simultaneously.

ix. The system must display converted programming codes to the user upon

completion of code conversion process.

x. The system must display the compilation result to the user.

37

4.2.2 Non-Functional Requirement

i. Usability

a. The web application shall be designed to accommodate different screen

sizes.

b. The web application shall be easy to learn and intuitive.

ii. Performance

a. The web page shall be able to be loaded within 3 seconds.

b. The system shall handle multiple concurrent requests without causing

a server crash.

c. The system shall be able to perform operation asynchronously and

output results within 10 seconds.

iii. Availability

a. The web application shall be available to users at all time with the

condition that they have access to Internet.

38

4.3 Use Case

This section will describe the set of actions that can be performed by the user. Since

the project is mainly focusing on the code conversion process, hence there are only

two simple use cases that can be performed by the user. The description of the use case

will define the specific workflow for each use case.

4.3.1 Use Case Diagram

Figure 4-1 Use Case Diagram

39

4.3.2 Use Case Description

Use Case Name: Convert code ID: UC01 Priority: High

Actor User Type: Detail, Essential

Brief

Description

This use case describes how the users use the source code

converter to convert program codes.

Trigger The system user wants to convert program code into different

programming language code.

Relationships -

Flow of events Normal Event Flow

1. User navigates to main page.

2. User select programming language to convert.

3. User input the program codes by pasting the program codes

into the textbox or by uploading the program codes file.

4. User clicks on “Convert” button.

5. The system converts the program code and return the results

to the user. If no codes are found, perform sub-flow 5.1.

Alternative Event Flow

5.1 The system sends error message.

Table 4-1 Use Case Description - Convert code

40

Use Case Name: Compile code ID: UC02 Priority: Low

Actor User Type: Detail, Essential

Brief

Description

This use case describes how the users can compile program codes

using the system.

Trigger The system user wants to compile the source program codes or

the translated program codes.

Relationships -

Flow of events Normal Event Flow

1. User navigates to main page.

2. User select programming language to compile.

3. User input the program codes by pasting the program codes

into the textbox or by uploading the program codes file.

4. User clicks on “Compile” button.

5. The system compiles the program code and return the results

to the user. If no codes are found, perform sub-flow 5.1.

Alternative Event Flow

5.1 The system sends error message.

Table 4-2 Use Case Description - Compile code

41

4.4 Class Diagram

Figure 4-2 Class Diagram

42

4.5 High-level architecture

Figure 4-3 High level architecture

43

4.6 System specification

This section shall describe the back-end system specification. This section contains

two sub-section which will describe the grammar dictionary for the lexer to conduct

tokenization of the program codes and the structure of the abstract syntax

representation after parsing process.

4.6.1 Lexer

Token type Regex rule Example triggers

Variable [_a-z]([_a-zA-Z0-9])* _variable, variable_1

Operator [+\-*/%<>=!&|] <=, &&, ||

Class [A-Z][a-zA-Z]* Integer, ArrayList

StringLiteral ["].*?["] “Hello World!”

NumLiteral \d.[0-9]* 12345

Table 4-3 Lexical grammar

44

Token type: ReservedKeyword

Shared Keyword • abstract

• break

• byte

• case

• catch

• char

• class

• continue

• default

• double

• else

• enum

• false

• finally

• float

• for

• if

• int

• interface

• long

• new

• null

• override

• private

• protected

• public

• return

• short

• static

• switch

• this

• throw

• true

• try

• void

• while

Java specific • boolean

• extends

• final

• implements

• import

• instanceof

• package

• super

C# specific • bool

• const

• foreach

• in

• is

• namespace

• object

• readonly

• ref

• sizeof

• struct

• typeof

Table 4-4 System reserved keywords

45

4.6.2 Parser

Refer to appendix A for complete parsing example.

4.6.2.1 JSON structure description

Title Description Example

access Describes the access modifier of the block or

variables

public, private, protected

type Describes the type of the block class, method, function, variable, collection

kind Describes the data type of class or variables, can

be used for generic programming structure

string, int, <T>

name Describes the identifier for the block obj1, instanceVar1, employee_name

body Describes the body of the block
public class Class {

 private String instanceVar1;

 private int instanceVar2;

 public Class(String a) {

 this.instanceVar1 = a;

 }

 public String method1(String b) {

 return instanceVar1.concat(b);

 }

}

The box represents a block

46

content Describes the value of the variable this.instanceVar1 = a;

Refer to appendix A(2), line 37-39

arguments Describes the value passed to function calls return instanceVar1.concat(b);

Refer to appendix A(2), line 65-67

additional Describes special operations from object or

string

return instanceVar1.concat(b);

Refer to appendix A(2), line 63-68

parameter Describes the header parameter of a method public Class(String a) {

 this.instanceVar1 = a;

}

Refer to appendix A(2), line 24-30

return Describes the return value of method public String method1(String b) {

 return instanceVar1.concat(b);

}

Refer to appendix A(2), line 71

Table 4-5 Components in abstract syntax representation

47

4.7 User Interface Design

The front-end system only contains one main page that allows user to interact with the

system.

Figure 4-4 Main page

48

4.8 Summary

In short, this chapter describes the functional and non-functional requirements for the

proposed system. Besides that, the specifications of the back-end system are also

defined to standardize the structure of the abstract syntax representation and the

tokenization process. Last but not least, UML diagrams are modelled to visualize the

system structure and workflow.

49

CHAPTER 5

5 SYSTEM IMPLEMENTATION

5.1 Introduction

The entire development phase of the project was divided into three main stages as

described in Chapter 3. However, there are changes in the ordering of implementation

due to the complexity of the backend processing system.

 During the first stage in the development phase, a frontend website has been

developed using React frontend library. The connectivity between the frontend website

and basic structure of the backend system are configuring in the second stage. An

automated testing framework was implemented to ensure that the project is tested after

every code update. The core functionality of the system was implemented in the last

stage of the implementation phase as it requires a lot of fine tuning and incremental

updates.

50

5.2 First iteration phase

During the planning phase, the backend system was planned to be implemented first.

However, implementation of the backend system will take up a lot of effort because it

is the main focus of the entire project. Furthermore, a lot of incremental and iterative

changes will need to be implemented for the improvement of the backend processing

logic. Hence, the frontend website is developed before implementing the backend

processing system.

5.2.1 Design of frontend website

The website was designed and developed based on the prototype defined in chapter 4.

However, dark theme was used as the main colour palette for the website because the

target audience of this website are the computer programmers who will look at

computer screens for hours at a time. Kim et al. (2019) found out that dark mode will

not only reduces visual fatigue for the users, but it will also improve usability of the

website or content that they were browsing. React frontend library was used to create

the website; it allows the website to update its appearance after state changes.

Figure 5-1 Source-to-source converter website

51

5.2.2 Features implemented for frontend website

There were few functionalities for the frontend website aforementioned in the earlier

chapters. The users could use the system to perform code conversion, code compilation

and configure the settings of the website. The user could enter the codes manually into

the code editors of the website or select the input file from the left side file manager.

Figure 5-2 Demonstration of code conversion

In the report, it was mentioned that the website could allow the users to compile

the code based on their languages. However, the API supplier have stopped their free

API from 10th April 2021 onwards. Due to time constraint to search for new code

compiler API, the website will be unable to compile codes.

Figure 5-3 Free code compiler API from REXTESTER

 Other than that, the website also allows the user to customize the code editor

settings using the options that were presented on the side bar. The user could customize

52

the font size of the code editor, toggle autocomplete keyword setting, and toggle

autocomplete snippet setting. React Ace is the code editor extension that were

incorporated into the website to allow users enter codes. The extension is open-sourced

and specifically made for React projects.

Figure 5-4 Code editor settings

53

5.3 Second iteration phase

The second iteration phase in this project mainly focused on connecting the frontend

and the backend of the system. The structure of the backend system was initiated, and

a simple API were created using Axios at the backend JavaScript system. To connect

the frontend website and the backend system, the frontend React code have consumed

the backend API. The source language, target language and code were passed to the

backend API in JSON format. The backend API will produce JSON replies.

Figure 5-5 Frontend API calls to backend

Figure 5-6 API set up at backend system

54

5.4 Third and subsequent iteration phase

The third and subsequent iteration phase will mainly focus on developing the backend

processing system. The backend processing system was built based on the core concept,

a transpiler. As mentioned in earlier chapters, a transpiler consists of two front end

analysis modules that are the lexer and the parser. After performing analysis on the

code, the intermediary product will be passed to a backend synthesis module that is

the code generator. Each module has their purposes and output.

5.4.1 Lexer

The source code will first pass through a lexer. The lexer is responsible for splitting

the source codes into lexemes, and then into tokens. The purpose of splitting the source

code into literal chunks is to create convenience for the later stages of the code

conversion process. The comments or string literal were undisturbed to maintain the

formatting of the text as much as possible.

Figure 5-7 Example C# source code

Figure 5-8 Source code split into lexemes

55

Figure 5-9 Lexemes were processed into tokens

 Each lexeme was processed into a token. The token carries information such

as the type of the token and the value of the token. If the system detects a keyword, an

abstract keyword will be provided to the token. The abstract keyword is not specific

to any language. In other words, it could be used universally with different languages.

The vocabulary of the abstract language will increase as more programming language

are added into the system.

 After the source code is processed into a token stream as shown in Figure 5-9,

it will be passed to the next analyser module, a Parser.

56

5.4.2 Parser

The parser will perform analysis on the token stream that were generated by the lexer.

The two major analysis process that the parser will perform is structural analysis,

object-oriented class analysis. The token stream will then be parsed into intermediary

code which is not specific to any programming languages.

Figure 5-10 Example C# code

 The codes that were shown in Figure 5-10 demonstrated object-oriented

programming that were written in C# programming language. There four classes

written in the codes includes an interface, two abstract classes and a normal class. The

class analysis will find out all the classes in the code along with the details of the class

which includes the access modifier, class type, class name, relationship between

classes, instance variable declared in the class and the functions defined in the class.

 On the other hand, a structural analysis has been carried out on the source code

to find out the boundaries of the codes. The main search criteria for the structure are

with brackets. This analysis technique is not suitable for programming languages that

uses indentation and whitespace to identify code blocks such as Python. The structural

analysis is useful for processing of complex codes in the later stage.

57

Figure 5-11 Class analysis

Figure 5-12 Structural analysis

58

 The token stream is parsed into intermediary codes where abstract information

of the codes are remained. The intermediary code does not store the “meaning” of each

code, but only store the value of the codes. The text or string literal are pasted back

together to maintain the original value of the source code. Finally, the class analysis

and structural analysis result are bound together with the intermediary source code to

form an Abstract Syntax Representation.

 There were some discrepancies between the implementation phase and the

planning phase. Originally, an Abstract Syntax Tree (AST) was supposed to be

produced by the parser. However, the abstract syntax tree that were proposed in the

earlier chapters are bias towards object-oriented programming languages as the

structure of the AST revolves around classes and objects. After a few iterations of the

project, a decision was made to change the structure of the parser so it could produce

an intermediary code that were less bias towards any type of programming languages.

A class analysis module was added to analyse the object-oriented languages

meanwhile a structural analysis module was added to analyse the overall structure of

the program to correctly identify the position of the block of codes.

Figure 5-13 Intermediary code

59

5.4.3 Code Generator

After the front-end analysis phase by the lexer and parser, the abstract syntax

representation that contains the intermediary codes, class analysis result and structural

analysis result is passed to the backend synthesiser - code generator. The code

generator is responsible to convert the intermediary codes into the target language

chosen by the user with the help of the class analysis, structural analysis and dictionary.

Some of the keywords might need special processing by the code generator.

Figure 5-14 Result of conversion

 The system successfully converts the C# code from figure 5-10 to Java code in

figure 5-14. The system is able to detect the keywords that require special processing

such as “namespace” keyword from C# programming language. Other than that, the

system also successfully captures the relationship between different classes.

60

5.4.4 Dictionary & Language

The dictionary plays a crucial role in the system as it provides all the information about

the conversion between the programming languages and the intermediary keyword.

Moreover, the dictionary also contains the standard procedure when a special keyword

that requires additional processing is found. The structure of the dictionary was

repeatedly improved to accommodate more programming languages to be added in the

future. Currently, the system only supports C# and Java programming languages.

Figure 5-15 Language packs are assigned dynamically

Figure 5-16 Conversion rules

61

CHAPTER 6

6 SYSTEM TESTING

6.1 Introduction

This chapter will describe the testing that have been executed after each

implementation phase. A few types of testing method have been used in this project to

identify bugs at the early phase to prevent software failure in the later stage of the

development. The four testing methods that were carried out are unit testing,

integration testing, UI test and user acceptance test.

 Unit testing and integration testing were implemented using Jest which is a

testing framework that were built specifically for JavaScript that works in different

project such as Node.js and React that this project is using. The user interface of the

website is tested manually to ensure that every components of the website are

functioning as expected. Lastly, 30 volunteers are gathered to perform user acceptance

test for the website.

62

6.2 Testing approach

Test-Driven Development (TDD) approach have been adopted in this project as the

testing methodology. In this methodology, test code are written before the production

code (Mäkinen and Münch, 2014). The three main steps of this approach are to start

the development project with a failing test. After the tests are written for a module, the

development of the module can begin. The development code is written repetitively

until all test case passes. Finally, the new codes will be refactored and the whole

process will start again.

 An automated testing system have been implemented with the usage of GitHub

workflow. Whenever codes are pushed to the GitHub repository, the preconfigured

workflow will run the test against the new codes. This approach was taken to ensure

that the new codes that are implemented in the system does not break other modules.

Figure 6-1 Automated testing workflow

63

6.3 Unit Test

Unit testing have been implemented on few modules of the backend processing system

which includes the lexer, parser, dictionary and code generator. Each module will be

tested independently to verify its correctness.

Test case Expected Result Status

Split string of codes into

lexemes

Every literal and symbol must be

separated in an array except for

comments and text to maintain

original formatting

Pass

Parse lexemes into tokens A token is created for every

lexeme
Pass

Token type assignment

(Symbols)

The token type for the symbols is

assigned correctly.
Pass

Token type assignment

(Keyword – Java)

The token type for Java keywords

is assigned correctly.
Pass

Token type assignment

(Keyword – C#)

The token type for C# keywords is

assigned correctly
Pass

Token type assignment

(Text)

The token type for comments or

text is assigned correctly.
Pass

Token type assignment

(Literal)

Token type for all non-keyword or

symbol literal is assigned

correctly.

Pass

Table 6-1 Unit Test Cases – Lexer

64

Table 6-2 Unit Test Cases – Parser

Test case Expected Result Status

Populate language file

into dictionary

Language file is assigned to the

dictionary accurately.
Pass

Find keyword Able to translate language specific

to intermediate keyword
Pass

Get translated keyword Able to translate intermediate

keyword to language specific

keyword.

Pass

Table 6-3 Unit Test Cases - Dictionary

Test case Expected Result Status

Parse code into

intermediary code format

Able to parse code into abstract

syntax form by assigning abstract

keywords and maintain value of the

code.

Pass

Perform class analysis Able to produce an array of classes

that accurately describes the

information of the class.

Pass

Perform structural

analysis

Able to produce an array of objects

containing the entire structural

boundary of the code.

Pass

Parse code into AST Able to parse stream of tokens into

an AST that contains the

intermediary codes, class analysis

details and structural analysis

details.

Pass

65

Test case Expected Result Status

Perform class relation

analysis

Able to analyse relationship

between classes.
Failed

Translate source keyword

to target keyword

Able to convert keyword from

source language to target language
Pass

Perform code tweaking

for specialized keyword

Able to perform set procedure to

modify the codes for specialized

keyword

Pass

Perform code conversion

from AST to target code

Able to produce an entire code in

target language with information

provided by AST.

Pass

Table 6-4 Unit Test Cases - Code Generator

 The test case “perform class relation analysis” failed because the system is

designed in a way that it will analyse all the classes during the parsing phase. All the

classes in the source code will be identified, then the relationship between the class

will be analysed depends on the type of classes. For instance, a relation to an interface

class denotes that the base class is implementing the interface while a relation to an

abstract class means that the base class is extending the abstract class. This test case

will fail if the interface or abstract class are not present in the source code, hence the

system cannot find the relation between the classes.

66

6.4 Integration test

Integration test have been implemented on the entire backend processing system to test

if the system is capable to convert codes in different scenarios with all the modules

working together. The purpose of this testing is to find out defects in the interaction

between the modules.

Test case
Expected

Result

Compilation

Result
Status

Perform code

conversion with

multiline comments

The position and the content of

the comments should be same

as the original code.

Pass Failed

Perform code

conversion with

mathematical

operators

The mathematical operators

should maintain the same as

the original source code.
Pass Pass

Perform code

conversion with

selection structure

The selection structure should

maintain the same as the

original source code.

Pass Pass

Perform code

conversion with loop

structure

The looping structure should

maintain the same as the

original source code.

Pass Pass

Perform code

conversion with

class inheritance

The converted code should

maintain the same class

relationship as the original

source code

Failed Failed

Perform code

conversion with

access modifier

The context of the access

modifier for both of the source

code and target code should

maintain the same.

Failed Pass

Table 6-5 Integration test cases

67

 The first integration test case failed because the system failed to capture the

formatting of the original comments in the source code. The system does not

emphasize on ensuring every whitespace is captured during the conversion process

because it was converted into an intermediary code where the codes are abstract and

meaningless. Hence the whitespaces that were included in the comments or string

literals are not captured by the system. Despite the test case failed, the converted codes

could produce the same output as the original source code.

 The integration test case to test the code conversion with class inheritance

failed in both expected compilation result and conversion result because the system

was not able to detect the class relationship between the classes if the parent class is

not included in the source code. The system will assume that all the classes will be

extended and cause the final result to be inaccurate.

 Lastly, the test case to perform code conversion with access modifier failed

because compilation output of the converted code is different from the compilation

result of the original source code. The output differs because the context of the access

modifier of C# and Java programming language is different. For instance, “protected”

keyword in C# programming language allows class to be accessible within the class

and within the derived class. However, “protected” keyword in Java programming

language allow the class to be accessible within derived class and anywhere in the

same assembly or package. Hence, the converted code might convert the access

modifiers successfully but the context of the accessibility of the code components still

differs.

C# Java Accessibility

no modifier

private

private Accessible only within the class

protected - Accessible within the class and derived class

internal no modifier Accessible within same assembly or within

same package

protected internal protected Can be accessed within derived class and

anywhere in the assembly or package.

public public Can be accessed anywhere

Table 6-6 Different context of access modifier

68

6.5 Test coverage

The test coverage result below shows that more than 85% of the entire codebase is

covered by the automated testing.

Figure 6-2 Test coverage

69

6.5.1 UI test

User interface test is implemented for the frontend website to ensure that all the

components on the website is working as expected.

Test case Expected Result Status

Upload file to

website

The website could import files of

predefined extension (txt, .cs or .java)
Pass

Populate file

content to

code editor

The content of the file at the sidebar

will populate the code editor after

clicking it.

Pass

Change

website

appearance

Any changes to the appearance control

should change the appearance or

settings of the website.

Pass

Convert code The website should be able to send

request to convert the code and display

the code via the developed backend

API.

Pass

Compile code The website should be able to compile

the code using an external API.
Pass

Table 6-7 Frontend UI test cases

70

6.6 Usability Testing

Usability testing for the frontend website is carried out using the remote computer

software such as TeamViewer and AnyDesk. The purpose of this test is to get the user

experience of real users when they are using the website. 30 volunteers are gathered

to perform this testing. The demographic of the volunteers are programmers who are

studying in university.

 The volunteers are given a set of instructions that simulate a scenario

(Appendix B). The volunteers will try to complete the set of actions on their own

without any instructions to complete the scenario. The entire test process is observed.

After all the scenarios have been executed, the volunteers are required to fill in a user

satisfaction survey to measure the system usability scale (SUS). The results of the

survey will be tabulated and analysed for any further improvement for the frontend

website. The questions and responses that were used in this usability testing can be

found in Appendix C.

6.6.1 System Usability Scale (SUS)

The SUS survey consists of 10 statements which the users will rate them from the

lowest (1) to the highest (5) score. The calculation of the SUS score has few specific

steps to follow:

i. The user score is subtracted by 1 for every odd numbered question

ii. The user score is subtracted from 5 for every even numbered question

iii. The total score is sum up and multiplied by 2.5

 The evaluation of the website usability can be derived from the final SUS score

that were calculated. The category of evaluation is as below:

i. 80.3 and above means that the website is well design and usable to the users.

ii. 68 is the average SUS score which means that the website is usable but

need improvements.

iii. 51 or under means that the website needs a lot of improvement in terms of

usability and design.

71

Question
Total Score for 30

participants
Average Score

Question 1 101 3.37

Question 2 105 3.5

Question 3 104 3.47

Question 4 101 3.37

Question 5 102 3.4

Question 6 108 3.6

Question 7 106 3.53

Question 8 108 3.6

Question 9 107 3.57

Question 10 108 3.6

Total Score 35.01

SUS score 87.53

Table 6-8 SUS score table

 The results from the user satisfaction survey form are tabulated and calculated

into SUS score. The results from the SUS score shows that the websites that were

developed for this project is good and easy to be understandable by the users.

6.6.2 Descriptive feedback

Four descriptive questions were provided to the volunteers to get their feedback on the

things that they liked the most about the website, the things that they least like about

the website, a description about the website and additional comments.

 From the collected survey, the users are happy with that the code conversion

system works and the simplistic design of the website. However, some UI elements of

the website needs improvement as it was less responsive and confusing to the users.

The overall response from the users are positive but improvement are still needed to

improve

72

6.7 Evaluation of accuracy

The accuracy of the transpilation framework can be calculated based on few products

that were produced during the code conversion process. To measure the accuracy of

the model, the converted code must have the same structure as the original source code,

the compilation result that were produced by the converted codes must be the same as

the original source code, and the intermediate code must be the same between the

source code and the converted code. The following table shows the distribution of

weights between the three criteria to measure the accuracy of the transpilation

framework.

Criteria Weight Score
Weighted

Score

Correctness of converted code structure 20% 22/25 17.6%

Correctness of the compilation result of

the converted code

50% 23/25 46%

Similarity of the intermediate code 30% 22/25 26.4%

Accuracy of the model 90%

Table 6-9 Criteria to measure transpilation framework accuracy

 Based on the tabulation of scores, each criterion was given a weight as a

significance of the criteria to the model accuracy. The accuracy of the compilation

result is the most important criteria because it will affect the behaviour of the entire

system and its output. The similarity of the intermediate code and correctness of

converted code structure were less important because some code might need to be

changed during the code conversion process resulting alteration of the code structure.

 The score of each criterion was taken from the test case that were created for

this project. To further increase the reliability of the measurement of the accuracy,

more real-world test cases were needed. The transpilation framework was able to

convert most of the basic programming structure with an accuracy of 90%.

73

CHAPTER 7

7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Achievements

This project has successfully met all the objectives and requirements that are stated in

the document, which includes the following:

i. To identify the issues and practice of the current code conversion process.

ii. To develop a web-based transpiler that is universally compatible with

mainstream programming languages.

iii. To design a code transpilation framework.

iv. To achieve code translation accuracy score of 90% for the proposed source

to source converter.

The web-based source to source compiler were able to conform to most of the

initial project specification, to provide a web-based tool for high level programming

language code conversion. The system was developed to enhance the current code

conversion practices by creating an intermediate abstraction layer in the conversion

process.

Despite many challenges faced during the development of the project, the

resources and information gathered from the internet is sufficient to ensure that the

development of the project is successfully executed. The system and framework

created have provided contributions as follows:

i. Create an intermediate language that promotes universal code conversion

between different programming languages.

ii. Replacing traditional XML data storage method with JSON format to

enhance code retrieval and update process.

iii. Reduce inconsistencies for code conversion process

iv. Increase accuracy of code conversion between different programming

languages

v. Reduce the need to perform manual intervention during code conversion

process.

74

7.2 Limitations

There are few limitations of project that cannot be solved in time due to the project

time constraint. Hence, the project is still considered as an early phase and proof of

concept as few of the functionalities could not be fulfilled. The limitations of the

system are:

i. Some keywords from the programming languages are incompatible or have

different context from each other.

ii. Libraries from different programming languages are not compatible with

each other as the methods they provide might differ from each other.

iii. Code conversion for object-oriented programming is still error-prone due

to different context of the object-oriented keywords.

iv. Lack of test cases that demonstrate real world code which could aid in

improving the design of the code structure.

75

7.3 Future Enhancement

At the moment, the design of the transpilation framework is still immature and require

lots of research and improvements to ensure that the intermediary language produced

during the conversion process could support all mainstream programming languages.

In the future, I hope few limitations of the system can be solved or improved by

introducing new enhancement to the system as follows:

i. Develop libraries of algorithms and modules in such abstract languages or

subsets of application languages

ii. Improve structural analysis to improve scalability

iii. Improve abstract syntax to accommodate different languages

iv. Introduce real world programming codes to test the system to improve the

code structure design for better conversion accuracy.

76

REFERENCES

Aho, A. V. et al. (2007) Compilers : principles, techniques, & tools. second edi.

Pearson Education.

Christa, S. et al. (2017) ‘Software maintenance: From the perspective of effort and

cost requirement’, in Advances in Intelligent Systems and Computing. Springer Verlag,

pp. 759–768. doi: 10.1007/978-981-10-1678-3_73.

Coco, E. J., Osman, H. A. and Osman, N. I. (2018) ‘JPT : A Simple Java-Python

Translator’, Computer Applications: An International Journal, 5(2), pp. 01–18. doi:

10.5121/caij.2018.5201.

Dahaner, M. et al. (2018) Empowering Graduates for Knowledge, Emerging

Technologies for Developing Countries. doi: 10.1007/978-3-319-67837-5.

Eriksson, M. and Hallberg, V. (2011) Comparison between JSON and YAML for data

serialization.

George, D. et al. (2010) ‘Programming Language Inter-conversion’, International

Journal of Computer Applications, 1(20), pp. 68–74. doi: 10.5120/419-619.

Ilyushin, E. and Namiot, D. (2016) ‘On source-to-source compilers’, International

Journal of Open Information Technologies, 04(05). doi: 10.4236/jsea.2013.64a005.

Kontogiannis, K. et al. (2010) ‘Code migration through transformations: An

experience report’, in Proceedings of CASCON - 1st Decade High Impact Papers. New

York, New York, USA: ACM Press, pp. 201–213. doi: 10.1145/1925805.1925817.

Kulkarni, R., Chavan, A. and Hardikar, A. (2015) ‘Transpiler and it’s Advantages’,

(IJCSIT) International Journal of Computer Science and Information Technologies,

6(2), pp. 1629–1631.

Kumar, G. and Bhatia, P. K. (2014) ‘Comparative analysis of software engineering

models from traditional to modern methodologies’, in International Conference on

Advanced Computing and Communication Technologies, ACCT. Institute of Electrical

and Electronics Engineers Inc., pp. 189–196. doi: 10.1109/ACCT.2014.73.

Mäkinen, S. and Münch, J. (2014) ‘Effects of test-driven development: A comparative

analysis of empirical studies’, in Lecture Notes in Business Information Processing.

Springer Verlag, pp. 155–169. doi: 10.1007/978-3-319-03602-1_10.

Melhase, T. (2012) Java2Python. Available at:

https://github.com/natural/java2python/blob/master/doc/intro.md (Accessed: 2

September 2020).

77

Midha, V. (2008) Does Complexity Matter? The Impact of Change in Structural

Complexity on Software Maintenance and New Developers’ Contributions in Open

Source Software. Available at: http://aisel.aisnet.org/icis2008/37 (Accessed: 13 July

2020).

Mu, L. (2019) ‘gLua: A modern Lua transpiler in Scheme A technical report Guile Lua

rebirth View project A flexible middle-ware for managing massive multi-robots View

project gLua: A modern Lua transpiler in Scheme A technical report’. doi:

10.6084/m9.figshare.9210428.

Plaisted, D. A. (2013) ‘Source-to-Source Translation and Software Engineering’,

Journal of Software Engineering and Applications, 06(04), pp. 30–40. doi:

10.4236/jsea.2013.64a005.

Rastogi, V. (2015) Software Development Life Cycle Models-Comparison,

Consequences, IJCSIT) International Journal of Computer Science and Information

Technologies. Available at: www.ijcsit.com168 (Accessed: 3 September 2020).

Schawalbe, K. (2020) Information Technology Project Management. 9th edn.

Smith, N., Capiluppi, A. and Fernández-Ramil, J. (2006) ‘Agent-based simulation of

open source evolution’, in Software Process Improvement and Practice, pp. 423–434.

doi: 10.1002/spip.280.

78

APPENDICES

APPENDIX A: JSON parsing to represent AST

 public class Class {
 private String instanceVar1;
 private int instanceVar2;

 public Class(String a) {
 this.instanceVar1 = a;
 }

 public String method1(String b) {
 return instanceVar1.concat(b);
 }
}

Figure 7-1 Appendix A (1) source code to be parsed

79

80

Figure 7-2 Appendix A (2) JSON representing AST

81

APPENDIX B: Test Scenario

Test Scenario

Scenario 1: Perform code conversion from C# to Java

Imagine that you are a user who wishes to use the source code converter website to

perform code conversion from C# language to Java language.

How would you perform the action?

Scenario 2: Perform code conversion from Java to C#

Imagine that you are a user who wishes to use the source code converter website to

perform code conversion from Java language to C# language.

How would you perform the action?

Scenario 3: Input file(s) into the website for code conversion

Imagine that you are a user who wishes to input some files into the website for code

conversion.

How would you import the file?

Scenario 4: Change appearance of the website

Imagine that you are a user who wishes to change the appearance and settings of the

website.

How would you change the settings?

82

APPENDIX C: User Satisfaction Survey

83

84

85

86

87

