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ABSTRACT 

 

Vision is one of the most important human senses and it plays a critical role in 

understanding the surrounding environment. However, millions of people in 

the world experience visual impairment. These people face difficulties in their 

daily navigation since they are unable to see the obstacles in their surroundings. 

Despite there are many options such as white canes and different advanced 

technologies to help visually impaired people when navigating, some of the 

options are unreliable, expensive, and hard to access. Hence, a mobile 

application is proposed to help visually impaired people to recognise objects in 

their surroundings using real-time object detection and object recognition 

techniques. This project also has applied transfer learning on multiple pre-

trained models to train the models that are able to classify 40 classes of objects. 

The performance of the trained models is compared to select a suitable model 

to be implemented in the mobile application. The Evolutionary Prototyping 

Model is the development methodology adopted in this project. It involves 

developing the application in a series of iterations and refining the application 

based on feedback collected in each iteration. A literature review was 

conducted on similar existing mobile applications to understand the machine 

learning framework used for the implementation of object detection and 

recognition, and also identify the important features and workflow within the 

application. Finally, an Android-based mobile application was developed 

successfully and passed all testing. In conclusion, this project has helped 

visually impaired people to determine the objects in their surrounding in a 

more cost-effective, accessible and reliable way. They are being informed of 

the names and directions of the detected objects in the surroundings through 

voice feedback without requiring any network connection or photo capturing.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Introduction 

This chapter proposes the background, problem statement, goal and sub-

objectives, proposed solution, proposed approach, and project scope of the 

project. 

 

1.2 Background 

Smartphones have become a very significant device in our lives. They allow 

us to access various services and information more easily. Nevertheless, there 

are millions of people unable to see the environment in this world due to visual 

impairment. Visually impairment hinders the people from carrying out a lot of 

daily activities. It is a challenge for them to travel independently since they are 

unable to see the obstacles around them. They always require someone to 

guide them when navigating around to prevent injuries and accidents. 

Furthermore, they also face difficulties to complete their daily tasks such as 

reading and finding an object. They may need help from others to complete 

these tasks. However, these already increase the burden of family members 

and friends of a visually impaired person.  

With the common use of smartphones, visually impaired people are 

able obtain benefits from smartphone applications. Several types of mobile 

applications have been invented to help the visually impaired people, such as 

text readers that read out text on books and documents, color readers that 

notify the visually impaired user regarding the colour information of an object, 

navigation assistance that helps visually impaired users to navigate around by 

telling the route, and other applications. These applications allow visually 

impaired people to do some simple tasks independently without having to seek 

help from others. The project is proposed to aid the visually impaired people 

using computer vision, object detection, and object recognition techniques by 

building a mobile application that detects and recognizes objects in the 

surroundings and gives audio feedback. 
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1.3 Problem Statement 

Vision is critical in our daily lives. However, according to the World Health 

Organization (2019), there were more than 2.2 billion people worldwide 

suffering from visual impairment. These people are unable to view the 

surrounding objects unlike a person with normal vision. They face challenges 

in detecting obstacles when navigating (Rajwani et al., 2018; Thakare et al., 

2017). Although there are several options available for visually impaired 

people to help them when navigating, such as white canes and advanced 

technologies, they still encounter a few problems when accessing or using the 

tools. 

 

1.3.1 Safety Issues When Navigating Using White Canes  

In Malaysia, the white cane is accepted as a symbol of blindness (National 

Council For The Blind Malaysia, 2020). White canes are widely used by 

visually impaired people in detecting obstacles since they are cheap and easy 

to get (Khan, Khusro and Ullah, 2018; Santos et al., 2020; Chanana et al., 

2017). The canes are painted white to make others notice them easily, 

especially when navigating (Industries For The Blind And Visually Impaired, 

2020).  

But, white canes cannot help them to determine the type of objects in 

front of them. Therefore, visually impaired people usually identify the object 

in front of them based on their own experience (Parikh, Shah and Safvan 

Vahora, 2018). Unfortunately, Santos et al. (2020) and Chanana et al. (2017) 

states that they may make incorrect expectations, which can cause them injury. 

Besides, white canes are also unable to detect the obstacles above the 

waist level (Khan, Khusro and Ullah, 2018; Santos et al., 2020; Chanana et al., 

2017). According to Santos et al. (2020), 40% of visually impaired people 

experienced at least one head accidents every year. Santos et al. (2020) also 

reported that 23% of accidents had medical consequences. Therefore, white 

canes expose visually impaired people to the risks of colliding with the 

obstacles above the waist level, such as tree branches, windows, and floating 

shelves.   
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1.3.2 Accessibility and Affordability Issues of Advanced Technologies 

Several types of technologies that involve special devices have been developed 

to help visually impaired people. One of the examples is smart glasses with a 

camera to capture the user’s surroundings and send images to a smartphone for 

processing (Thakare et al., 2017). Smart stick with ultrasonic, infrared, or laser 

sensors also has been developed to inform user information of obstacles 

(Sharma et al., 2017). Moreover, Radio Frequency Identification (RFID) tag 

and RFID reader is used to assist visually impaired people. RFID tags are 

attached to the objects so that the user can identify and locate objects more 

easily (Abdul Malik Shaari and Nur Safwati, 2017). However, although these 

technologies are able to help the visually impaired users to do their tasks 

independently and safely, most of these technologies are expensive and hard to 

access (Anitha, Subalaxmi and Vijayalakshmi, 2019; Awad et al., 2018; 

Rajwani et al., 2018). 

 

1.4 Goal and Sub-Objectives 

This section discusses goal and sub-objectives. 

 

1.4.1 Goal  

The goal of this project is to implement an Android-based mobile application 

that detects and recognises multiple objects captured by the smartphone’s 

camera in real-time and provides audio feedback to assist visually impaired 

people identifying surrounding objects more easily. The object detection and 

recognition are achieved using transfer learning from existing pre-trained 

object recognition models. The system also incorporates new classes for 

detection and recognition.  

Since only a smartphone is needed to identify surrounding objects 

without any other hardware, this can solve the accessibility issues of advanced 

technologies because smartphones are easier to be accessed than these special 

devices. Furthermore, smartphones are more affordable than these advanced 

technologies. The price of smart glasses ranges from USD2,950 to USD5,950, 

while the price of smart sticks ranges between RM579 and RM699, which are 

more expensive than a low-end smartphone (BAWA, 2020; Wewalk, 2020; 

IrisVision Global, 2021). 
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1.4.2 Sub-Objectives 

i. To apply transfer learning to multiple pre-trained object detection 

models then train the models to detect and recognize 40 classes of 

objects. This also helps to fine-tune the pre-trained models and 

improve the models performance. 

ii. To develop a real-time application that is able to analyse the 

surrounding scene and detect a maximum of 10 objects within the 

camera’s field-of-view. 

iii. To evaluate the training performance and recognition accuracy of 

different pre-trained object detection models before and after transfer 

learning. 

iv. To develop an application that uses voice feedback to notify the user of 

the names and directions of detected objects. This helps to reduce the 

safety issues encountered when navigating with the white cane. 

 

1.5 Final Solution 

With the rapid advancement of technology, smartphones have become a 

familiar and highly available device (Rajwani et al., 2018; Khan Shishir et al., 

2019; Anitha, Subalaxmi and Vijayalakshmi, 2019). According to TheStar 

(2018), smartphone penetration in Malaysia stood at 70% in the third quarter 

of 2017. Hence, the final solution proposed an Android mobile application to 

assist visually impaired people to detect objects around them using real-time 

object detection and object recognition techniques. Since the smartphone is the 

only device needed, this solution is more cost-effective and easier to access 

rather than the technologies that need special devices. Furthermore, it is safer 

than white canes because the application is able to determine and inform the 

types of obstacles so that visually impaired people can avoid making wrong 

assumptions when navigating. The application also helps users to detect and 

identify obstacles above the waist level. An overall system architecture was 

designed to describe the solution, as illustrated below. 
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Figure 1.1: Proposed System Overview 

 

In this system, a visually impaired user opens the mobile application 

and scans his or her surroundings using the smartphone camera. The scene 

captured through the continuous stream rather than taking a picture of a 

specific scene. Hence, the visually impaired user does not have difficulty in 

taking a good quality picture and does not need to capture a picture every time. 

Furthermore, the scene captured will not be stored in the smartphone memory 

so that the user does not have to delete the images from time to time.  

The scene scanned is then sent to the Tensorflow Object Detection API 

(Application Programming Interface) for detecting and recognising objects in 

the scene. Due to time limitations, an API is utilised in developing the 

application since it provides a list of operations so that a developer does not 

need to write code from scratch. The Tensorflow Object Detection API is an 

open source machine learning framework. It has been developed by Google 

Brain Team in 2015. It prepares a collection of pre-trained object detection 

and recognition models for a developer to deploy directly into the application 

and a developer also can choose to train his or her own model using this 

framework.  

Other than Tensorflow Object Detection API, there are other types of 

object detection API available, such as Google Cloud Vision API, Microsoft 
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Cognitive Toolkit, and Pytorch. Although Google Cloud Vision API provides 

more features such as colour recognition, landmark recognition, handwritten 

text recognition, and others, it is free for the first 1000 units per month only 

for each feature. Both Microsoft Cognitive Toolkit and Pytorch are open 

source. However, Microsoft Cognitive Toolkit does not support object 

detection models for mobile devices (Argawal, 2018). Pytorch provides more 

pretrained models than Tensorflow, but it has less community compared to 

Tensorflow so it will be harder to get the tutorials (Lobo, 2017). Moreover, 

Rane, Patil and Barse (2019) state that using Pytorch, the process is less 

efficient and is less reliable than Tensorflow. Hence, the main reason for 

choosing Tensorflow Object Detection API is that it is open source and has the 

largest community.  

Instead of applying the existing pre-trained models into the application 

directly, transfer learning was applied to retrain the existing pre-trained 

models to recognise new classes and improve the accuracy of the recognition 

results of the object detection model. The final object detection model has 

been trained to detect and recognise the objects in environment context, 

especially indoor and outdoor obstacles. Its purpose is to make navigation of 

visually impaired people easier. 

The object detection model within the application detects and 

recognises an object based on its knowledge trained on the dataset. After that, 

the object detection model will return the label, coordinate, and confidence 

score of each object detected. As the visually impaired user is difficult to see 

the name and the direction of the object displayed on the mobile screen, the 

name and direction are spoken out in audio feedback by using Android text-to-

speech API. The audio feedback is provided to the user through smartphone 

speakers or earphones. 

 

1.6 Final Approach 

The methodology applied in the development of this application was the 

evolutionary prototyping model. The development of the complete system was 

done by undergoing a series of iterations until an acceptable prototype was 

built. The first phase of the model was requirements gathering. Next, design, 

prototyping, and user evaluation phases were performed repeatedly until the 
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prototype was accepted by users. The design and development of the prototype 

were incrementally improved based on the users’ feedback in every iteration. 

After the users was satisfied with the prototype, the final prototype was 

developed into the complete system. Figure 1.2 below illustrates the overview 

of the evolutionary prototyping model. 

 

 

Figure 1.2: Evolutionary Prototyping Model 

 

By applying this methodology, users are involved actively in the 

software development process. A developer can get feedback from users and 

find out the limitations, errors, and missing requirements in the prototype early. 

This is able to reduce the cost of rework since the cost of bugs tends to 

increase as the project proceeds. Furthermore, the complete system will be 

more user friendly and able to meet the users’ requirements more accurately as 

the system is improved according to users’ opinions. 

 

1.7 Project Scope 

The section discusses delimitations, limitations, and assumptions of the project. 

 

1.7.1 Delimitations 

This project is aimed to develop an Android-based mobile application that 

detects and recognizes objects in real-time. 
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Users can access this application by installing it on their Android 

smartphone. The main target users of this application are people who have a 

vision impairment or blindness. By using this application, visually impaired 

users can scan their surroundings using their smartphone’s camera without 

taking a photo of the objects and saving the photo into the memory. This 

application is able to recognize at least 90 classes of objects. It will detect, 

recognize, and locate up to 10 objects within the scene captured by the camera. 

The location of each object detected is surrounded with a rectangular box 

(boundary box) and its name is labeled, along with a score representing the 

confidence of the accuracy of the detection. The detection results of an object 

are only displayed and informed when the confidence score is above 0.6 to 

maintain the accuracy of the application. Besides that, audio feedback is 

provided to inform users about the name of objects detected through 

headphones or the smartphone’s speaker. 

 

1.7.2 Limitations 

Certain scope is not covered in this project due to time constraints and wide 

coverage of the existing scope. The following are the uncovered scope of this 

project: 

 

i. The development of this application that does not support iOS-based 

platforms.  

Although iOS smartphones have a large population, this project takes the 

Android-based application as initial prototype development due to limited time. 

The application on iOS-based platforms will be developed in the future.  

 

ii. Color detection and recognition 

This application is not able to recognize the colors of the detected objects due 

to the wide scope. Colour detection and recognition is useful because it can 

assist the visually impaired users to determine the colors of the detected 

objects instead of their name only. Besides, color detection and recognition 

also assists people with color blindness to identify colors.  
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iii. Object detection and recognition in the dark 

The accuracy of object detection and recognition results in the dark is affected 

by the camera quality of the smartphone. The application may not work well if 

the smartphone’s camera has a poor performance when shooting in the dark. 

 

1.7.3 Assumptions 

i. Assume that users are not completely blind.  

ii. Assume that users are not deaf-blind people. 

iii. Assume that users have allowed the system to access their smartphone 

cameras. 

iv. Assume that the smartphone of users has enough battery for them to 

use this application for navigation. 

v. Assume that the minimum API level of the user's smartphone is 23 

(Android 6.0). 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter studies on concepts of object detection and object recognition, 

state-of-art methods, transfer learning, existing object detection and object 

recognition mobile application, and API based object detection and object 

recognition mobile application for visually impaired user. 

 

2.2 Object Detection and Object Recognition Concepts 

2.2.1 Object Detection and Object Recognition 

For the term “object detection”, researchers have put forward different views. 

Liu et al. (2019) and Argawal (2018) propose that object detection consists of 

recognising objects in an image and localising them by drawing bounding 

boxes around them. Several authors including Badave et al. (2020), 

Michelucci (2019, p.198), Zhao et al. (2019), and Alsing (2018) add that 

object detection involves object classification and object localisation. Object 

classification is a process of identifying and recognising the category of each 

object into the classes which were defined previously in a given image 

(Badave et al., 2020; Michelucci, 2019, p.198; Zhao et al., 2019). This process 

involves labelling the name of the objects detected in the image. Badave et al. 

(2020), Michelucci (2019, p.198), and Zhao et al. (2019) state that object 

localisation is the process of labelling the location of each object in the image 

by drawing a rectangular box around the object, known as a boundary box. 

However, the bounding box drawn is always rectangular in shape and object 

localisation does not draw the exact shape of the object.  

However, Garrido and Joshi (2018, p.170) argue that object detection 

only includes localising objects rather than classifying them. They suggest that 

object detection means detecting whether there are any objects in an image. 

The object can be anything because the category of the object is not the 

concern in object detection. This means that in object detection, a computer 

does not need to know what the object is. When an object is detected, a 
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boundary box will be drawn around the detected object in the image to notify 

people that something is detected and indicate the location of the object.  

Furthermore, Garrido and Joshi (2018, p.170) also introduce the term 

“object recognition”. According to Garrido and Joshi (2018, p.170), object 

recognition refers to the process of determining what the object is in the image 

based on previous knowledge or experience. Hence, to implement object 

recognition, a dataset is used to train a model so that the model can identify the 

category of different objects based on its knowledge. Opposite to object 

detection, object recognition does not inform the location of the object inside a 

given image. In addition to outputting the name of the object, Garrido and 

Joshi (2018. P. 170) also point out advanced object recognition can extract 

other information related to the object detected such as colour, species, and 

type. 

 

2.2.2 Intersect over Union 

Nonetheless, for localising the object in an image, IoU (Intersect over Union) 

is applied to identify the amount of overlap between predicted boundary box 

and the ground-truth (actual object boundary). Its formula is shown below: 

 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
 

 

Figure 2.1: Formula of Intersect over Union (Alsing, 2018) 

Michelucci (2019, p.198) notes that IoU is equal to 1 when there is an 

ideal case of perfect overlap, while IoU is equal to 0 when there is no 
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overlapping. Alsing (2018) points out that IoU must be equal or greater than 

0.5 to consider the detection as true positive. False positive is a condition that 

there are duplicate boundary boxes or IoU is lesser than 0.5. False negative is 

returned when an object is not detected at all. The study (Alsing, 2018) shows 

that the predicted match will only be true positive if it is not used previously to 

eliminate the duplicate detections of objects.  

Furthermore, Alsing (2018) also mentions that boundary boxes and 

classes of all objects detected are arranged in descending order of probability. 

A cut-off threshold can be used to discard the results below a specific score to 

increase the accuracy of the model. 

 

2.3 State-of-Art Methods for Object Detection and Object 

Recognition 

The state-of-art methods for object detection and object recognition can be 

categorised into two types that are Region Proposal Based Framework and 

Unified Based Framework (Zhao et al., 2019).  

Region Proposal Based Framework is a two stages method. It produces 

proposed regions from the input image and classifies each proposed region 

into different classes (Zhao et al., 2019; Liu et al., 2019). The examples of 

Region Proposal Based Framework are R-CNN, Fast R-CNN, and Faster R-

CNN.  

However, computations in Region Proposal Based Framework are 

expensive for mobile devices since the devices have smaller storage and 

computational capability (Liu et al., 2019). Hence, Unified Based Framework, 

which is a one-stage method, has been developed. Unified Based Framework 

predicts boundary box coordinates and class probabilities directly without 

proposing regions from the input image (Zhao et al., 2019). This can reduce 

the time needed in object detection and recognition. Two common examples of 

Unified Based Framework are SSD and YOLO. 

 

2.3.1 Region-based Convolutional Neural Network (R-CNN) 

According to Argawal (2018), Zhao et al. (2019) and Liu et al. (2019), R-CNN 

involves three stages as listed below. Figure 2.2 illustrates the stages in R-

CNN.  
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i. Around 2000 proposed regions are extracted from an input image by 

scanning the image by using an algorithm named Selective Search.  

ii. Every proposed region is wrapped and resized into the fit size. At this 

stage, CNN is used to extract a high-level feature representation of 

each proposed region. 

iii. Object classification and localisation are performed. Linear SVMs 

(Support Vector Machines) are utilised to classify the proposed regions 

and assign the boundary boxes based on the features extracted by CNN. 

Each proposed region is given a score on the examples of positive and 

negative regions. Bounding box regressor is applied to the scored 

regions to generate the boundary box that surrounds the specific object 

in the image. 

 

Figure 2.2: Architecture in R-CNN (Argawal, 2018) 

 

However, there are certain limitations of R-CNN. Argawal (2018), 

Alsing (2018) Zhao et al. (2019) and Liu et al. (2019) agree that training an R-

CNN is time-consuming since every stage is required to be trained separately. 

Besides, Zhao et al. (2019) and Liu et al. (2019) point out that the training 

process also consumes a large amount of disk space. It is because features 

extracted from the proposed regions are stored in the disk. Besides, the 

detection and recognition process of R-CNN is slow. According to Argawal 

(2018), it takes 47 seconds to detect and recognise objects in one image on a 

GPU. Hence, this causes R-CNN is not suitable to be applied in the real-time 

object detection and recognition applications. 
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2.3.2 Fast Region-based Convolutional Neural Network (Fast R-CNN) 

To improve R-CNN, Fast R-CNN is proposed. According to Argawal (2018) 

and Liu et al. (2019), the processes involved in Fast R-CNN is stated below 

and illustrated in Figure 2.3: 

i. The image is input to a single CNN that contains several convolutional 

layers to generate a convolution feature map. 

ii. Same as R-CNN, the image is scanned by Selective Search to generate 

proposed regions. Each proposed region is then warped and fed into a 

RoI (Region of Interest) pooling layer.  

iii. A fixed-length feature for every proposed region is extracted by the 

RoI pooling layer and to be passed into a sequence of CNN fully 

connected layers. 

iv. The fully connected (FC) layers consist of two branches, which are 

softmax classifier and bounding box regressor. Softmax classifier 

identifies the class of the object while bounding box regressor adjusts 

the bounding boxes. 

 

Figure 2.3: Architecture in Fast R-CNN (Argawal, 2018) 

Alsing (2018) and Argawal (2018) mentions that Fast R-CNN is nine 

times faster than R-CNN in speed. Additionally, Alsing (2018) and Liu et al. 

(2019) also indicate that Fast-RCNN makes the training process more efficient 

because the classifier and bounding box regression can be trained 

simultaneously without separating them. Other than that, Argawal (2018) adds 

that one CNN is needed to be trained to extract the entire image in Fast R-

CNN, rather than many CNNs are trained to extract each proposed region in 
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the image by using R-CNN. However, the Selective Search Algorithm that 

applied in Fast R-CNN is slow and expensive. It brings negative impacts to the 

performance of Fast R-CNN. 

 

2.3.3 Faster Region-based Convolutional Neural Network (Faster R-

CNN) 

Faster R-CNN is an improvement of Fast R-CNN. Many papers (Argawal, 

2018; Alsing, 2018; Liu et al., 2019; Zhao et al., 2019) state that Faster R-

CNN improves the performance by replacing the Selective Search and Edge 

Box within Fast R-CNN by Region Proposal Network (RPN). RPN is faster 

than Selective Search and Edge Box as it shares the convolutional features of 

entire images with the detection network and this increases the efficiency and 

the accuracy in generating proposed regions from the input image (Zhao et al., 

2019; Alsing, 2018).  

According to the studies (Zhao et al., 2019; Liu et al., 2019; Argawal, 

2018; Alsing, 2018), as shown in Figure 2.4, there are several processes in 

Faster R-CNN: 

i. The image is input into CNN to produce proposed regions. 

ii. RPN takes the image to produce k proposed regions that have different 

aspect ratios for every convolutional feature map location. Each of 

them is called an anchor.   

iii. Every anchor is fed into the fully connected layers that can be divided 

into two parts, which are classifier and bounding box regressor. An 

objectness score and four coordinates of the boundary box is assigned 

to each anchor.   

iv. The proposed regions are chosen by comparing the objectness score 

with the threshold. If a region has an objectness score that is higher 

than the threshold, the region and the convolutional feature map will be 

chosen and passed to the detector. 
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Figure 2.4: Architecture in Faster R-CNN (Liu et al., 2019) 

Since RPN shares the convolutional features with Fast R-CNN, the 

cost of region proposal is almost free (Argawal, 2018; Zhao et al., 2019; Liu et 

al., 2019). Therefore, the proposal for Faster R-CNN makes real-time object 

detection and object recognition possible. Nevertheless, Zhao et al. (2019) say 

that performance bottleneck is still a problem since some time is needed to 

deal with different components in Faster R-CNN. 

 

2.3.4 You Only Look Once (YOLO) 

As YOLO is a method that treats object detection and recognition as a 

regression problem from image pixels to spatial location of the boundary 

boxes, it is able to unify classification and localisation tasks (Alsing, 2018; 

Zhao et al., 2019). Several of papers (Liu et al., 2019; Zhao et al., 2019; Alsing, 

2018) explain that YOLO will divide the input image into a grid that contains 

S*S cells, as shown in Figure 2.5. Every grid cell is limited to predict only one 

class of object within the cell. Each of them will predict B boundary box, C 

class probabilities, and confidence scores.  The entire process in YOLO does 

not involve generating proposed regions from the input. The features from the 

whole image are used in a global way (Liu et al., 2019). 
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Figure 2.5: Concept of YOLO in Object Detection and Recognition (Zhao et 

al., 2019) 

YOLO performs fast after eliminating the region proposals. It can 

process images in real-time at 45 Frames per second (FPS) while Fast YOLO 

at 155 FPS. Moreover, YOLO has a lesser chance of predicting false-positives 

in the background because it looks at the entire image when processing the 

image (Liu et al., 2019; Zhao et al., 2019). However, Liu et al. (2019) add that 

YOLO tends to have more localisation errors than Fast R-CNN due to its 

course division of grid. In addition to course division of grid, YOLO faces 

difficulties in handling small objects since each cell grid is allowed to classify 

one object only. 

 

2.3.5 Single-Shot Multibox Detector (SSD) 

Argawal (2018) defined SSD as a method that can predict the boundary box 

and the class of objects in a single shot simultaneously. An input image is 

required to go through all convolutional layers to create convolutional feature 

maps with different sizes. Convolutional filters are utilised to produce anchors 

for each feature map and predict class probabilities and coordinates of the 

boundary box. Instead of using fixed-size grids like YOLO, SSD uses a set of 

anchors that have different sizes and scales (Zhao et al., 2019). Zhao et al. 

(2019) state that objects with different sizes can be handled by merging 



18 

detection results from multiple feature maps with different resolutions. Since it 

is a Unified Based Framework, region proposals are not implemented. The 

architecture in SSD is illustrated in Figure 2.6. 

 

Figure 2.6: Architecture in SSD (Liu et al., 2019) 

SSD has an outstanding performance. According to Liu et al. (2019), 

SSD operates at 59 FPS, so it is faster than Faster R-CNN (7 FPS) and YOLO 

(45 FPS). Although SSD has excellent speed performance, its accuracy is not 

degraded severely, but has an excellent performance too. Zhao et al. (2019) 

and Liu et al. (2019) found that the accuracy of SSD can compete with Region 

Proposal Framework such as Faster R-CNN. Furthermore, varying scales of 

feature maps in SSD results in higher detection accuracy than YOLO, 

especially when detecting and recognising small objects. In conclusion, SSD is 

a method that allows real-time speed and maintaining high-quality detection at 

the same time. 

 

2.4 Transfer Learning  

2.4.1 Transfer Learning and Traditional Machine Learning 

Transfer learning is a famous method used in machine learning nowadays. 

Transfer learning allows the knowledge to be transferred from the previously 

trained model to a new model. Hence, the new model can be built and trained 

in a time-saving way and with fewer data. On the other hand, traditional 

machine learning learns the task from scratch. Figure 2.7 illustrates the 

difference between the learning process of traditional machine learning and 

transfer learning. 
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Figure 2.7: Traditional Learning and Transfer Learning (Pan and Yang, 2009) 

 

 Sarkar (2018) mentions that traditional transfer learning is isolated. No 

knowledge is transferred from a model to another model. According to Weiss, 

Khoshgoftaar, and Wang (2016), in traditional machine learning, training data 

and testing data are assumed to be chosen from the same domain. Hence, the 

characteristics of feature space and data distribution should be the same. When 

there are differences between data distribution of training data and testing data, 

the performance of the model will be degraded. For example, we are going to 

train a model that detects objects in the kitchen. If the training dataset is 

related to object detection at the kitchen, traditional machine learning allows 

the target model to achieve good detection results. Nevertheless. if the training 

dataset is obtained from object detection at the park, the differences in domain 

data will cause the detection results to be degraded. However, Weiss, 

Khoshgoftaar, and Wang (2016) mention that in real-world scenarios, that are 

cases where it is hard to collect the training data that corresponds to the feature 

space and data distribution of testing data. 

Thus, transfer learning is needed to improve a learner from the target 

domain by transferring the knowledge from a related domain (Weiss, 

Khoshgoftaar, and Wang, 2016). In the example regarding object detection at 

the kitchen, object detection at the kitchen and the park still have some 

common characteristics. Both of them detects objects, so certain low-level 

features such as edges, intensity, corners, and shapes can be shared among 

them (Sarkar, 2018). Furthermore, several papers (Argawal, 2018; Patil and 

Gaikwad, 2018; Sarkar, 2018; Weiss, Khoshgoftaar, and Wang, 2016) mention 
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that transfer learning requires less target training data compared to traditional 

machine learning. Moreover, Argawal (2018) and Zhang, Yang and Sinnott 

(2019) point out that the benefits of performing transfer learning on a pre-

trained model are to shorten the training time and improve the performance of 

the model. 

 

2.4.2 Formal Definitions of Transfer Learning 

Pan and Yang (2009) introduce some notations and definitions to explain 

transfer learning. This section will list and discuss the notations and definitions 

used for the rest of the paper. 

According to Pan and Yang (2009) and Weiss, Khoshgoftaar, and 

Wang, (2016), a domain, D, contains two parts. The first part is a feature space 

𝒳 while the second part is a marginal probability distribution P(X), where X = 

{x1, ..., xn} ∈𝒳. According to the example provided by Weiss, Khoshgoftaar, 

and Wang (2016), if the machine learning task is software module defect 

classification and every software metric is treated as a feature, and then 𝒳 is 

the space of all possible feature vectors, xi is i th feature vector corresponding 

to some software modules, while X is a learning sample.  

 Given a particular domain, a task, T, consists of two elements. One of 

the element is a label space Y  while another element is a predictive function f 

(·).  The function f (·) is learned from the training data that consists of feature 

and label pairs {xi, yi} where xi ∈  X and yi ∈  Y (Sarkar, 2018; Weiss, 

Khoshgoftaar, and Wang, 2016; Pan and Yang, 2009). The function f (·) is 

used to predict the corresponding label f (x), of an instance x. Refer to the 

example of software module defect classification, Y is a set contains all labels, 

which are True and False, while yi is the value of True or False. 

 From the definitions discussed above, Pan and Yang (2009) denote 

domain by D = {𝒳, P(X)} and denote a task by T = {Y, f (·)}. Relate back to 

transfer learning, source domain data is denoted as DS  = {(xS1
, yS1

), ..., (xSn, 

ySn)}, where xSi ∈𝒳S is the data instance of DS while ySi ∈  YS is the 

corresponding class label. Also, Pan and Yang (2006) denote target domain 

data as DT  = {(xT1
, yT1

 ), ..., (xTn, yTn )}, which the input xTi ∈𝒳T while yTi ∈ 

YT is the corresponding class label for xTi.  
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 Given a source domain DS with corresponding source task TS and a 

target domain DT with corresponding target task TT, the goal of transfer 

learning is to improve the target predictive function  fT (·) in DT by utilising 

the knowledge in DS and TS, by which DS ≠DT or TS ≠TT (Sarkar, 2018; 

Weiss, Khoshgoftaar, and Wang, 2016; Pan and Yang, 2009).  

Pan and Yang (2009) and Weiss, Khoshgoftaar, and Wang (2016) 

discuss that since D = {𝒳, P(X)}, DS ≠DT  represents two conditions, which 

are illustrated in the following using the software module defect example: 

i. 𝒳 S ≠ 𝒳 T, where the feature space of the source domain and target 

domain are different. In the example, the metrics of the source software 

project are different from that of the target software project.   

ii. P(XS) ≠ P(XT), where the marginal probability of the source domain 

and target domain are different. For example,  the source software is an 

application software while the target software is a driver software. 

Similarly, Pan and Yang (2009) and Weiss, Khoshgoftaar, and Wang 

(2016) state that since T = {Y, P(Y | X)}, TS ≠TT implies the two conditions 

below: 

i. YS ≠YT, where the label spaces between the source task and target task 

are different. For example, the source software has binary classes to 

detect module defect, such as True for defect module while False for 

non-defect module. The target software uses three classes to classify 

three levels of defect software module. 

ii. P(YS |XS) ≠ P(YT |XT ), where the conditional probability distributions of 

source and target domains are different. It is corresponding to the 

condition where the source software modules and the target software 

modules are very unbalanced in terms of classes defined. 

 

2.4.3 Transfer Learning Settings 

Transfer learning can be classified into three settings, those are transductive 

transfer learning, inductive transfer learning, and unsupervised transfer 

learning, according to the nature of the source and target domains and tasks 
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(Sarkar, 2018; Pan and Yang, 2009). Table 2.1 summarises the different 

settings of transfer learning. 

 

Table 2.1: Different Settings of Transfer Learning 

Transfer 

Learning 

Settings 

Related Areas Source 

Domain 

Labels 

Target 

Domain 

Labels 

Tasks 

Inductive 

Transfer 

Learning  

Multi-task 

Learning 

Available Available Classification, 

Regression 

Self-taught 

Learning 

Unavailable Available Classification, 

Regression 

 

Transductive 

Transfer 

Learning 

Sample 

Selection Bias, 

Domain 

Adaptation,  

Co-variate 

Shift 

Available Unavailable Classification, 

Regression 

 

Unsupervised 

Transfer 

Learning 

 Unavailable Unavailable Dimensionality 

Reduction, 

Clustering 

 

 

2.4.3.1 Inductive Transfer Learning 

Pan and Yang (2009) propose that in inductive transfer learning, the target task 

is different from the source task, whether the source and target domains are 

same or not. Besides, inductive transfer learning requires some labelled data in 

the target domain to induce an object predictive model fT(·) for the target 

domain.  

Inductive transfer learning can be further classified into multi-task 

learning and self-taught learning according to the labelling situations in the 

source domain. According to Pan and Yang (2009), inductive transfer learning 

multi-task learning are similar if the source domain has a lot of labelled data. 
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If labelled data in the source domain are not available, inductive transfer 

learning will be similar to self-taught learning (Pan and Yang, 2009). 

  

2.4.3.2 Transductive Transfer Learning 

The source and target tasks in transductive transfer learning setting are the 

same, only their domains are different. Within the transductive transfer 

learning setting, there is a lot of labelled data in the source domain while the 

target domain does not have available labelled data (Sarkar, 2018; Pan and 

Yang, 2009). Depends on whether feature spaces among both source and 

target domains are diffenrent or their marginal probabilities are different, 

transductive transfer learning is able to be further classified into domain 

adaptation, sample selection bias, and co-variate shift (Sarkar, 2018; Pan and 

Yang, 2009).  

  

2.4.3.3 Unsupervised Transfer Learning 

In unsupervised transfer learning, Pan and Yang (2009) propose that the target 

task is different to the source task, but both of them are related to each other. 

Hence, solving unsupervised tasks in the target domain is the main focus of 

this setting (Sarkar, 2018; Pan and Yang, 2009). Some examples of tasks 

include dimensionality reduction, clustering, and density estimation (Pan and 

Yang, 2009). In this setting, labelled data are not available in both source 

domain and target domain. 

 

2.4.4 Transfer Learning in The Project 

The above research found that transfer learning provides many benefits for 

model training. Due to time constraints and computational resource limitations, 

the project has applied transfer learning to train object detection models. 

 

2.4.4.1 Pre-trained Models Selected 

Tensorflow has provided a collection of open source object detection models 

pre-trained on the Kitti dataset, COCO dataset, Open Images dataset, and other 

datasets. Since the problem solved in the COCO dataset is similar to this 

project, the pre-trained models which were previously trained on COCO 

dataset was chosen to implement transfer learning. The COCO dataset is a 
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large and high-quality dataset for computer vision. It includes 80 object classes 

and provides more than 200,000 labelled images (COCO, 2021). 

 The pre-trained models used for transfer learning are SSD Mobilenet 

V1 COCO and Faster R-CNN Inception V2 COCO. The transfer learning 

performance between these two models was compared. 

 

2.4.4.2 Transfer Learning Settings Applied 

In this project, inductive transfer learning was applied. Both source and target 

models were trained with annotated data. Besides, the models trained in this 

project and the pre-trained models chosen have different tasks due to their 

difference in label spaces. Table 2.2 shows the label spaces of both pre-trained 

models and target models. 

 

Table 2.2: List of Object Classes for Pre-trained Models and Target Models 

 Pre-trained Model Target Model 

Common 

Objects 

Classes 

 Person 

 Bicycle 

 Car 

 Motorcycle 

 Bus 

 Train  

 Truck 

 Bench 

 Cat 

 Dog 

 Umbrella 

 Ball 

 Skateboard 

 Bottle 

 Knife 

 Chair 

 Couch 

 Potted plant 

 Bed 

 Table 

 Toilet 

 Computer 

 Mouse 

 Cell phone 

 Sink 

 Refrigerator 

 Clock 

 Vase 

 Scissors 

Different 

Objects 

Classes 

 Book 

 Hair drier 

 Toothbrush 

 Television 

 Remote 

 Microwave 

 Oven 

 Teddy bear 

 Toaster 

 Keyboard 

 Airplane 

 Boat 

 Traffic light 

 Tie 

 Suitcase 

 Frisbee 

 Skis 

 Snowboard 

 Kite 

 Baseball bat 

 Baseball 

glove 

 Surfboard 

 Tennis racket 

 Wine glass 

 Cup 

 Window 

 Door 

 Plush toy 

 Bin 

 Tree 

 Bag 

 Street sign 

 Fan 

 Street lamp 

 Shelf 

 Staircase 
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 Fire hydrant 

 Stop sign 

 Parking 

meter 

 Bird 

 Horse 

 Sheep  

 Cow 

 Elephant 

 Bear 

 Zebra 

 Giraffe 

 Backpack 

 Handbag 

 Fork 

 Spoon 

 Bowl 

 Banana 

 Apple 

 Sandwich 

 Orange 

 Broccoli 

 Carrot 

 Hotdog 

 Pizza  

 Donut 

 Cake 

 

According to Table 2.2, the target models detect and recognise certain 

object classes that are not included in the COCO dataset, such as bin, window, 

and tree. However, they also detect and recognise certain common classes, 

such as mouse, table, train, bus, and truck. Differences in object classes 

recognised cause YS ≠YT and then TS≠TD. 

Moreover, the target domains are different but related to the domains 

of the pre-trained models. The target models are designed to detect and 

recognise objects in the environment context, especially indoor and outdoor 

obstacles. However, the COCO dataset focuses more on the general context. 

Hence, the target domain can be considered as a subdomain of the COCO 

dataset domain.  

 

2.4.4.3 Transfer Learning Strategies Applied 

This project reused the feature extractor parameters from the existing object 

detection checkpoint of the pre-trained models and used these features to 

detect and recognise the custom classes. According to Alsing (2018), Gao and 

Mosalam (2018), Marcelino (2018), and Sarkar (2018), as shown in Figure 2.8, 

this process is known as off-the-shelf feature extraction and it involves a series 

of steps below. 

i. Remove the last fully connected layer in the base CNN, which provides 

the final class label for the pre-trained model. 
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ii. Freeze the convolutional base in the pre-trained model. 

iii. The pre-trained model is then treated as a fixed feature extractor. Use 

these features to train a new classifier that detects and recognises the 

target classes.  

 

Figure 2.8: Off-The-Shelf Feature Extraction 

 

This strategy is useful when the computational power is limited and the 

target dataset is small (Marcelino, 2018; Gao and Mosalam, 2018). Other than 

that, Gao and Mosalam (2018) mention that this strategy is able to reduce the 

training time greatly. 

 

2.5 Existing Object Detection and Object Recognition Mobile 

Application 

With the popularity of smartphones and the invention of various object 

detection have brought forth the launching of various mobile applications. 

Each of them has different purposes and usages. They tend to detect and 

recognise objects in different contexts. The applications take the scene 

captured by the smartphone camera as input and display the results in text and 

Convolutional base  
(feature extraction) 

Classifier 
(object 
classification) 
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boundary boxes.  Table 2.3 below shows some papers of mobile applications 

that apply object detection and object recognition techniques.  

 

Table 2.3: Papers of Mobile Applications that Apply Object Detection and 

Object Recognition Techniques 

Paper Target 

User 

Detection and 

Recognition 

Category 

Purpose 

Object Detection in 

Refrigerators using 

Tensorflow (Argawal, 

2018) 

Everyone Grocery food Recognise objects kept 

in a refrigerator and 

tell the user whether 

the object could be 

present in a 

refrigerator 

FoodTracker: A Real-

time Food Detection 

Mobile Application by 

Deep Convolutional 

Neural Networks 

(Sun, Radecka, and 

Zilic, 2019) 

Everyone 

who cares 

about 

health 

Food Recognise food and 

return nutrition facts to 

the user 

Object Detection and 

Its Implementation on 

Android Devices (Li 

and Zhang, 2017) 

Road user Person and car Detect and recognise 

objects on the road 

such as car, pedestrian, 

and cyclist 

Classification of 

Vegetables using 

TensorFlow (Patil and 

Gaikwad, 2018) 

Supermark

et cashier 

Vegetable To help cashier staff in 

classifying the species 

of vegetables 

purchased by 

customers 
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TensorFlow: A 

Vegetable 

Classification System 

and Its Performance 

Evaluation 

(Ruedeeniramana, 

Ikeda and Barolli, 

2017) 

Farmer Vegetable To help farmers in 

classifying the species 

of vegetable 

A Mobile Application 

for Cat Detection and 

Breed Recognition 

Based on Deep 

Learning (Zhang, 

Yang and Sinnott, 

2019) 

Everyone Cat Classify different 

species of cats  

 

Although the pre-trained model is sufficient to classify different classes 

of objects, a number of authors (Argawal, 2018; Patil and Gaikwad, 2018; 

Zhang, Yang and Sinnott, 2019) justify that they retrain the model with the 

dataset of the targeted context to improve the accuracy of the object 

recognition in that context. For instance, Zhang, Yang and Sinnott (2019) have 

trained the pre-trained model with an additional 14 classes of cat species. The 

authors (Argawal, 2018; Patil and Gaikwad, 2018; Zhang, Yang and Sinnott, 

2019) claim that the method to fine-tune the model is called transfer learning.  

Li and Zhang (2017) found that the accuracy of their application 

degrade when the scene becomes darker or blurry. For example, the scene 

becomes blurry when it is rainy or foggy, while the scene gets darker on a 

cloudy day or at night. Besides, Zhang, Yang and Sinnott (2019) also test their 

application in complex scenarios. The scenarios include one cat, parts of cats, 

multiple cats, and many objects not related to cats appear in the scene. 

Moreover, some papers (Sun, Radecka and Zilic, 2019; Li and Zhang, 2017; 

Ruedeeniramana, Ikeda, and Barolli, 2017; Zhang, Yang and Sinnott, 2019) 
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found that the uniqueness of the characteristics of the object can increase the 

accuracy of the recognition results. However, small variations among different 

objects and varying instances of a specific type of an object such as colours, 

sizes, and shapes will decrease the quality of the results too. All of these 

factors should be considered when developing an object detection and 

recognition application. 

 

2.6 API Based Object Detection and Object Recognition Mobile 

Application for Visually Impaired User  

In addition to object detection and object recognition mobile applications 

invented for people with normal vision, some researchers have not forgotten 

the visually impaired community. They have developed object detection and 

object recognition mobile applications to help visually impaired people to 

identify objects in their surroundings. These applications are able to give a lot 

of benefits to the visually impaired people since it does not need any other 

device, easy to access, and cost-effective (Anitha, Subalaxmi and 

Vijayalakshmi, 2019; Awad et al., 2018; Rajwani et al., 2018).  

         Many related papers (Badave et al.. 2020; Vaidya et al., 2020; Khan 

Shishir et al., 2019; Anitha, Subalaxmi and Vijayalakshmi, 2019; Jakhete et al., 

2019; Felix, Kumar, and Veeramuthu, 2018; Awad et al., 2018; Rajwani et al., 

2018) state that their applications scan or capture images of the objects to 

make object detection and recognition and use a text-to-speech engine to 

provide voice feedback to the visually impaired users through smartphone’s 

speaker or earphones.  

 

2.6.1 Mode 

Some of these applications (Vaidya et al., 2020; Awad et al., 2018; Rajwani et 

al., 2018; Parikh, Shah and Vahora, 2018; Felix, Kumar, and Veeramuthu, 

2018) require the users to capture the image of the objects every time they 

want to detect and recognise the objects. The image captured is then sent to a 

deep learning model in the cloud or the server through the Internet for image 

processing. Nevertheless, Khan Shishir et al. (2019) argue that it may be 

difficult for visually impaired people to take a proper image since they are not 

able to see. Furthermore, Khan Shishir et al. (2019) also add that the images 
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captured will be stored in the smartphone memory, so the visually impaired 

users require to delete the images frequently.  

Therefore, in order to solve the problems mentioned above, some 

papers (Badave et al., 2020; Khan Shishir et al., 2019; Anitha, Subalaxmi and 

Vijayalakshmi, 2019; Jakhete et al., 2019) propose mobile applications that do 

not require the visually impaired people to take pictures of their surroundings. 

The visually impaired people just need to scan their surroundings using their 

smartphone’s camera without taking a picture of the objects. These 

applications will detect and recognise the objects in a frame using real-time 

object detection (Badave et al., 2020; Khan Shishir et al., 2019; Anitha, 

Subalaxmi and Vijayalakshmi, 2019). According to Anitha, Subalaxmi and 

Vijayalakshmi (2019), this approach allows the visually impaired users to 

identify objects without pressing the capture image button every time. 

Moreover, Khan Shishir et al. (2019) state that visually impaired users do not 

need to worry about taking a high-quality picture. 

  

2.6.2 Application Programming Interface (API) 

There are several object detection API that can be used to implement object 

detection and object recognition in mobile applications. Tensorflow Object 

Detection API is utilised by the majority of authors (Badave et al.. 2020; Khan 

Shishir et al., 2019; Anitha, Subalaxmi and Vijayalakshmi, 2019; Jakhete et al., 

2019) to develop their applications. A few authors (Felix, Kumar, and 

Veeramuthu, 2018; Rajwani et al., 2018) use Google Cloud Vision API while 

some authors (Vaidya et al., 2020; Awad et al., 2018) do not use any APIs in 

the implementation of object detection and object recognition. For those who 

do not use API, they generally many libraries such as OpenCV, Tensorflow, 

CNNdroid, or other libraries for image processing. The accuracy of each API 

is stated in Table 2.4. 
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Table 2.4: Comparison between Recognition Accuracy of Different APIs 

Paper API used Accuracy 

Eye Assistant : Using mobile application to 

help the visually impaired (Khan Shishir et 

al., 2019) 

Tensorflow Object 

Detection API 

More than 

80% 

Android Based Object Detection System 

for Visually Impaired (Badave et al., 2020) 

Tensorflow Object 

Detection API 

Around 

87% 

A Smart Personal AI Assistant for Visually 

Impaired People (Felix, Kumar and 

Veeramuthu, 2018) 

Google Cloud 

Vision API 

Around 

85% 

Real-Time Object Detection for Visually 

Challenged People (Vaidya et al., 2020) 

None More than 

75% 

 According to Table 2.4, the object detection and recognition 

application that does not use API have the lowest accuracy. The applications 

that employ Tensorflow’s Object Detection API and Google Cloud Vision API 

have a similarity in their accuracy. Thus, performance of the APIs are better 

than the proprietary algorithms in terms of recognition accuracy. 

The papers (Felix, Kumar, and Veeramuthu, 2018; Rajwani et al., 2018) 

that apply Google Vision API in their application state that the image captured 

is uploaded to Google Cloud through the network connection. Google Cloud 

Vision API will then analyse the image by comparing the features of the input 

image with the images in the dataset to obtain the label. After the analysis of 

the image is done, the label is sent back to the application. Hence, the 

disadvantage of utilising Google Cloud Vision API is it requires a network 

connection for image processing. Moreover, the applications also need the 

users to capture an image of the object every time. Furthermore, privacy issues 

arise when the image is uploaded to the Google Cloud. Besides, another 

downside of Google Cloud Vision API is it is not open-source. It is just free 

for the first 1000 units per month for each service. However, both papers 

(Felix, Kumar, and Veeramuthu, 2018; Rajwani et al., 2018) mention that 
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Google Cloud Vision API provides a larger variety of services, including face 

detection, logo detection, landmark detection, and image properties detection. 

Google Cloud Vision API is able to classify more classes of objects. 

According to Khan Shishir et al. (2019), in the applications that use 

Tensorflow Object Detection API, the image captured will be sent to the 

trained object detection model. The model will then extract the features in the 

image and perform object recognition by assigning labels. The whole process 

does not require any network connection or remote server and it is happening 

in real-time (Khan Shishir et al., 2019). Another strengths of Tensorflow 

Object Detection API are it is open-source and it prepares a collection of pre-

trained object detection and recognition models for a developer to adopt the 

model directly into the application. Pre-trained models that employ different 

kind of state-of-art methods are available, such as SSD and Faster R-CNN. 

However, according to Badave et al. (2020), Tensorflow Object Detection API 

is required to be retained to recognise various dishes, colours, and landmarks. 

Both Google Cloud Vision API and Tensorflow Object Detection API have 

their strengths and weaknesses. Table 2.5 summarises the comparison between 

Google Cloud Vision API and Tensorflow Object Detection API. 

 

Table 2.5: Comparison between Google Cloud Vision API and Tensorflow 

Object Detection API 

API 
Google Cloud Vision API Tensorflow Object Detection 

API 

Open-source No Yes 

Features Object detection, face 

detection, logo detection, 

landmark detection, and 

image properties detection 

Object detection 

Internet 

connection 

Required Does not required 

Pre-trained 

models available 

Less More 

Community Smaller Larger 
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2.6.3 Conclusion 

From the study of existing object detection and object recognition mobile 

application for visually impaired user, the application can be developed into 

two ways. The first way is the application requires the users to capture photo 

of the object for recognition. The second way is the application scans and 

recognises the users’ surroundings automatically without capturing images. 

Many researchers found that the second way is better in helping the visually 

impaired people. However, existing applications that use Google Cloud Vision 

API are implemented in the first way since the users need to capture an image 

for uploading to Google Cloud for image processing. This also causes the 

application cannot recognize objects when there is no Internet connection. On 

the other hand, Tensorflow Object Detection API allows the application to be 

implemented in the first way or second way. Most of the existing applications 

that implement Tensorflow Object Detection API do not require Internet 

connection to run. In this project, the second way was applied together with 

Tensorflow Object Detection API to improve the usability of the application.   
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CHAPTER 3 

 

3 PROJECT METHODOLOGY AND PLANNING 

 

3.1 Introduction 

The chapter discusses the software development methodology, work 

breakdown structure, Gantt chart, and development tools applied in this project. 

 

3.2 Software Development Methodology 

 

Figure 3.1: Evolutionary Prototyping Model 

 

This project adopted the Evolutionary Prototyping Model as the development 

methodology. Evolutionary Prototyping Model involves developing the 

application incrementally until the final system meeting the entire scope is 

delivered.   

 

3.2.1 Requirements Gathering 

During this phase, the requirements of this project were collected through 

conducting research. The focus areas of the study included machine learning 
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framework applied and functionalities provided by some existing object 

detection and object recognition mobile applications. The requirement 

gathering was carried out via a literature review. 

 The literature review was conducted on several existing object 

detection and recognition mobile applications designed for visually impaired 

people. The purpose of the literature review was to understand the machine 

learning framework or API used by similar existing applications. The speed 

and accuracy of the frameworks or APIs were studied to find out the suitable 

tool that provides quality assistance to the visually impaired people. 

 Furthermore, another goal of the literature review was to isolate out the 

important functionalities provided by those similar existing applications. From 

the research, the standard workflow and features available in those related 

applications could be identified. Some strengths and weaknesses of the 

applications also could be found and reviewed to improve this project. 

 

3.2.2 Iteration Process 

This project has three iterations of prototype development. The application 

would be refined and improved after each iteration. In the first iteration, real-

time object detection and recognition was the feature to be developed. The 

application will detect and recognise the objects scanned by the smartphone’s 

camera and return the name and confidence score of the object in textual form. 

Boundary boxes are designed to label the location for each detected object. 

The second iteration involved training multiple models to recognise 40 classes 

of objects using transfer learning and select the most suitable model for real-

time implementation. In the last iteration, it involved the development of the 

feature that provides voice feedback to inform users the names of objects 

detected. In this iteration, the features that allow user to stop and play the 

voice feedback and adjust speech rate of voice feedback were developed. 

There are three phases in each iteration, which are design, prototyping, and 

prototype review. 
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3.2.2.1 Design 

For the design phase, the system architecture, workflow and interface of the 

application was designed. The design of the application should follow the 

requirements and feedbacks collected. This phase was repeated after each 

iteration of prototyping review. 

 

3.2.2.2 Prototyping 

The prototype system was developed based on the design done in the previous 

phase. The prototype was responsible for presenting the user interface and 

features in the application. It demonstrated the ways of application works and 

how it looks like.  

 

3.2.2.3 Prototype Review 

After the prototype had been developed, users would test and evaluate the 

prototype. Their feedback and comments were recorded and reviewed. These 

feedbacks and comments were essential to this project for developing a better 

prototype in the next iteration and final system. The prototype was then 

refined based on the feedback and comments collected from users and 

continued with the next iteration.  

 

3.2.3 Testing 

During the testing phase, different types of testing had been performed on the 

application to ensure that the final system meet the desired quality and 

requirements. Bugs found in the testing were fixed. The types of testing that 

used in this project are unit testing, integration testing, and usability testing. 

After all tests passed, the application was ready for deployment. 

 

3.3 Project Plan 

Project plan was developed to manage the schedule of the project. This aided 

in ensuring that a proper schedule is adhered to and the project can be 

completed by the deadline. Work Breakdown Structure and Gantt chart were 

utilized in project planning.  

 



37 

 

3.3.1 Work Breakdown Structure 

A work breakdown structure breaks the scope of the project into smaller 

activities. The work breakdown structure of this project is attached as 

“Appendix A: Work Breakdown Structure”.  

 

3.3.2 Gantt Chart 

Gantt chart is used to display project schedule information by listing the 

project activities in the work breakdown structure and their start and finish 

dates. The Gantt chart of this project refers to “Appendix B: Gantt Chart”. 

 

3.4 Development Tools 

3.4.1 Programming Languages 

3.4.1.1 Java 

Java is one of the official languages for Android applications development. 

Besides, addition to the Android platform, Java can run on several platforms 

such as Windows, Mac OS, and Unix. Object-oriented properties of Java allow 

extension of the application simply and effectively.   

 

3.4.1.2 Extensible Markup Language (XML) 

XML is a markup language like HTML. In Android, XML is often used in 

designing the layout of the application. It is easy to be understood by humans 

and computers and compatible with Java completely (IBM, 2020). The 

structure of XML makes it easier to do modifications. 

 

3.4.1.3 Python 

Python is an interpreted programming language. It is famous because its 

syntax is similar to English, which makes it easier to read and understand. 

Besides, its syntax is clear and less complex (W3 Schools, 2021). In this 

project, Python was used in machine learning to train an object detection 

model. 
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3.4.2 Framework 

3.4.2.1 Tensorflow Lite 

Tensorflow Lite is an open-source framework for deep learning. It is a 

machine learning model explicitly designed for mobile devices to meet the 

limitations of mobile phone processing and memory resources. Tensorflow 

Lite already provided a collection of pre-trained models that solve different 

types of machine learning problems. In this project, Tensorflow Lite was used 

for object detection and recognition.  

 

3.4.2.2 Camera 2 API 

Camera 2 API provides a framework for accessing and configuring cameras on 

the devices. It allows the user to capture images and videos in the application 

developed. Other than capturing images and videos, a developer can customise 

the camera feature through this API. In this application, Camera 2 API was 

applied to capture the real-time scene. 

 

3.4.3 Tools and Integrated Development Environment (IDE) 

3.4.3.1 Android Studio 

Android Studio is an official IDE for development of Android application. It 

contains a variety of features that helps to increase development speed and 

improve application quality. These features include emulator, testing tools, 

drag and drop interfaces editor, and real-time CPU and memory statistics 

(Developers, 2020). 

 

3.4.3.2 Google Colaboratory 

Google Colaboratory is a free cloud environment built based on Jupyter 

Notebook. It allows Python code to be executed in a web browser. Most 

importantly, it provides free access to computing resources such as GPU and 

TPU for users to train machine learning models. It also offers commands to 

access data in Google Drive. The Google Colaboratory notebooks are stored in 

Google Drive in Jupyter Notebook format (.ipynb). 

 A test was carried to compare the Tensorflow training performance in 

various environments, which were local machine CPU and Google 
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Colaboratory CPU, GPU, and TPU. GPU offered by Google Colaboratory is 

12GB NVIDIA Tesla K80 GPU. GPU on the local machine was not tested 

because it did not meet the minimum CUDA architecture requirements 

supported by Tensorflow, that was CUDA architecture must be higher than 3.5. 

Table 3.1 displays the system information of the local machine.  

 

Table 3.1: System Information of Tested Local Machine 

Operating System Windows 7 Home Premium 

System Type 64-bit operating system 

Processor  Intel(R) Core(TM) i5-2430M CPU @ 2.40GHz 

RAM 8GB 

 

Table 3.2 summarises the training performance in different 

environments. The model to be retrained in this testing is the SSD Mobilenet 

V1 COCO pre-trained model. According to the results, the training speed on 

Google Colaboratory CPU is twice as fast as the training speed on the local 

machine CPU. On the other hand, the training speed on Google Colaboratory 

GPU and TPU are several times faster than the training speed on CPU of both 

local machine and Google Colaboratory. Therefore, in order to train the object 

detection model more efficiently, free GPU and TPU on Google Colaboratory 

were utilised in this project. 

 

Table 3.2: Comparison of Training Performance 

Environment Average time needed for per step (seconds) 

CPU on Local Machine 23 

CPU on Google Colaboratory 12 

GPU on Google Colaboratory 0.5 

TPU on Google Colaboratory 1.3 

 

3.4.3.3 LabelImg 

LabelImg is an open source image annotation tool written in Python. It 

provides users with an easy way to label boundary boxes of various object 
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classes in images. LabelImg allows annotations to be saved as XML files, 

either in PASCAL VOC format or YOLO format. 

 

 

Figure 3.2: Interface of LabelImg Annotation Tool 

 

3.4.3.4 Tensorboard 

Tensorboard is a built-in visualisation tool of Tensorflow. It visualises the 

information in the event files output by Tensorflow program. This assists users 

to track and visualise experiment metrics such as accuracy and loss and also 

visualise model graph. 

 

3.4.3.5 Anaconda Navigator 

Anaconda Navigator is available for Windows, macOS, and Linux. It is a 

desktop GUI covered in the Anaconda distribution. It allows users to launch 

applications and manage various conda packages and environments more 

easily without using command-line commands (Anaconda, 2021). 

 

3.4.4 Version Control System 

3.4.4.1 Github 

Github is a version control system that manages multiple versions of the 

source code and other documentation through recording every commit to a file 

or a set of files. It enables developers to view project history and restore the 
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required files to a specific previous version quickly. This means that if you 

break the code or lose the file, you can recover it easily with minimal overhead. 
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CHAPTER 4 

 

4 PROJECT SPECIFICATION 

 

4.1 Introduction 

This chapter discuss the requirements discovery, requirements specification, 

use case modelling, and preliminary user interface design. 

4.2 Requirements Discovery 

In fact-finding, comparison between similar existing object recognition mobile 

applications for visually impaired people qA performed to find out the basic 

requirements. A total amount of seven similar existing applications proposed 

by researchers were studied to identify the requirements and features. All of 

these applications capture surroundings through the smartphone's back camera. 

The final output is then provided in audio form through the smartphones’ 

speaker or earphones.  

4.2.1 Features of Similar Existing Mobile Applications 

4.2.1.1 Eye Assistant : Using Mobile Application to Help the Visually 

Impaired (Khan Shirshir et al., 2019) 

Eye Assistant is an Android application proposed by Khan Shishir, Rashid 

Fahim, Habib, and Farah in 2019 in order to provide assistance to visually 

impaired people. The main features of the mobile application are recognising 

objects and recognising text in real-time environments. All features in the 

application are accessible without requiring any Internet connection. 

 To use the application, the user first opens the application and two 

options are displayed on the screen. As shown in Figure 4.1, the first option is 

“Detect Text” and the second option is “Detect Object”. A user can choose 

whether to read text or recognise objects. If the user chooses the “Detect Text” 

option, the camera will open and the application will read out the text detected 

to the user. If the user chooses the “Detect Object” option, the smartphone’s 

camera will also open and the application recognises the object detected in the 

scene then informs the user the name of each object. Besides, the name of the 
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object detected and its confidence score are displayed on the screen. The 

accuracy of the application in recognising every object is larger than 80%. 

 

Figure 4.1: Options Available to Users on the Intelligence Eye Home Screen 

 

 

Figure 4.2: Screenshot of Real-Time Object Recognition in Intelligence Eye 
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4.2.1.2 Android Based Object Detection System for Visually Impaired 

(Badave et al., 2020) 

The paper has been proposed by Badave, Jagtap, Kaovasia, Rahatwad, 

and Kulkarni in 2020. The name of the application is not mentioned in the 

paper. The application is developed in Android platforms. The main feature of 

the application is to locate and recognise objects in surroundings. 

 The application opens the camera and scans objects immediately 

without requiring the user to input any additional commands or options once it 

is opened. The application will recognise the objects, calculate their distance 

from the user, and determine the direction of the objects. Three directions are 

used in the application, that are left, right, and center. After scene processing is 

done, the application will tell the user about the name and direction of each 

object and the distance between the user and the object. For instance, the audio 

feedback is “A cat is at 2 metres at the right”. As shown in Figure 4.3, on the 

mobile screen, the name of the object and the confidence score of the 

recognition results are shown. The boundary box is used to indicate the 

location of the object in the scene.  

Moreover, if there are multiple objects in the scene, the application 

does not speak out all objects that appear in the scene. It will assign priorities 

to different detected objects and speak out the object with the highest priority 

only. The object that causes potential danger to the user such as a car, is given 

the highest priority. Furthermore, to improve the application, the recognition 

results that are below than 70% will be discarded, meaning that the objects 

will not be informed to the user. Besides, the application can recognise objects 

with 87% accuracy. There are three languages available in the application, that 

are English, Hindi, and Marathi.  
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Figure 4.3: Screenshot of Object Recognition 

 

4.2.1.3 A Smart Personal AI Assistant for Visually Impaired People 

(Felix, Kumar and Veeramuthu, 2018) 

Felix, Kumar, and Veeramuthu have proposed a paper regarding an 

Android assistant application for visually impaired people in 2018. There are 

several features available in the application, those are object recognition, 

landmark recognition, text recognition, currency recognition, and chat bot.  

A chat bot accepts voice commands from the user then returns suitable 

audio responses. A user can ask the chat bot about his or her current location 

and guidance to reach a destination. Furthemore, when the user asks the 

application for surrounding information, the application will reply to the user 

about the names of object detected in the images and their distance from the 

user. Other than that, the application also can alert the user about the obstacles 

in the surrounding through speech. Additionally, a user also can ask the 

application to read out the printed or handwritten text through text 

recognition.  

However, the application must work under Internet connection, It is 

also developed in English only. 
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Figure 4.4: Image and Text Recognition in the Applicaton 

 

4.2.1.4 Real-Time Object Detection for Visually Challenged People 

(Vaidya et al, 2020) 

 This is another paper regarding object recognition application for 

visually impaired users. It is proposed by Vaidya, Shah, Shah, and 

Shankarmani in 2020. The application is developed in web and Android 

platforms. The only feature of the application is recognising objects in real-

time and the application can run without requiring Internet connection.  

 Once the application is opened, the camera will be launched 

automatically and it will capture the surroundings view. User needs to press on 

the button “Start/Stop Yolo '' to recognise the objects in the view. After the 

view captured is processed successfully, the application informs the name of 

the objects detected and the absolute location of the objects through voice 

output. The application also displays the name and the confidence score of 

each object and the boundary box that encloses the object. 
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 The average computational time required for recognition is 2000ms. 

The application can detect and recognise more than 75% of the objects 

accurately at a time.  

 

Figure 4.5: Object Recognition on the Android Application 

 

4.2.1.5 Intelligent Eye: A Mobile Application for Assisting Blind People 

(Awad et al., 2018) 

Intelligent Eye is also an Android application developed to perform 

object recognition to assist visually impaired people. It has been proposed by 

Awad, Haddad, Khneisser, Mahmoud, Yaacoub,and Malli in 2018. The 

application provides a set of features, including light detection, colour 

recognition, object recognition, and banknote recognition. All features can be 

accessed without Internet connection. 

When opening the application, a homescreen with several options in 

Figure 4.6 is displayed. A user needs to choose an option by clicking a 

particular button. Light detection is performed by using the embedded light 

sensor in a smartphone. The values of light intensity are read. Then, the 

application plays sound beeps with different pitches based on the light 

intensity. The user can stop the beeps by clicking the “Stop” button. To make 

the application provide an audio description regarding the nature of the light, 

the user is required to click the “Discover button”. On the other hand, colour 

detection is performed by recognising the colour of the object in the image 
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captured. The colour name of the object is then notified to the user through 

speech. For object recognition, the user needs to take an image of the object. 

The application will then display and read out the first three relevant detection 

results together with their relevance scores. Adding the relevance scores of the 

three detection results brings a sum of 100%. For banknote recognition, the 

user also needs to capture an image of the banknote. The value of the banknote 

is then detected and read out. 

 

Figure 4.6: Homescreen of Intelligence Eye 

 

Figure 4.7: Image Capturing and Object Recognition in Intelligence Eye 
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Figure 4.8: Banknote Capturing and Recognition in Intelligence Eye 

 

4.2.1.6 Real Time Object Detection for Visually Challenged Persons 

(Anitha, Subalaxmi and Vijayalakshmi, 2019) 

 Anitha, Subalaxmi, and Vijayalakshmi have developed a real-time 

object recognition mobile application on Android platform.  Object 

recognition is the only feature provided by the application. The application 

also does not require Internet connection to work.  

 After users open the application, the smartphone’s camera is launched 

automatically and the application starts to detect and recognise the objects in 

the scene without requiring any commands or input from the user. As 

illustrated in Figure 4.9, the first three relevant detection results are displayed 

on the screen together with the probability. Sum of probabilities for all 

detection results is 100%. At the same time, the application will give a voice 

output to inform the detected object with the highest probability. 
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Figure 4.9: Object Recognition in the Application 

 

4.2.1.7 Object Recognition App for Visually Impaired (Jakhete et al., 

2019) 

The paper has been proposed by Jakhete, Bagmar, Dorle, Rajurkar, and 

Pimplikar in 2019. This paper proposes an Android application that assists 

visually impaired people to recognise objects in real-time. The main features 

of the application is to locate the objects and provide the names of objects.  

The application will detect and recognise objects in the scene 

automatically without requiring any user input after the application is opened. 

The application will then generate an audio output to inform about the object 

detected that has the maximum confidence in the scene captured. The scenes 

are chosen at a particular time interval to prevent the hindrance of the audio 

output. At the same time, the label, boundary boxes, and confidence score of 

all objects detected are shown on the screen.  
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Figure 4.10: Object Detection and Recognition in the Application 

 

4.2.2 Comparison between Existing Mobile Application 

Table 4.1: Comparison between Existing Object Recognition Mobile 

Applications for Visually Impaired People 

Paper/ 

Application

* 

A B C D E F G 

Platform Android Android Android Android, 

web 

Android Android Android 

Number of 

objects can 

be 

recognised 

in a scene 

One Multiple One Multiple One One Multiple 
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Information 

provided in 

object 

recognition 

audio 

feedback 

Names of 

object 

detected 

Name, 

direction, 

and 

distance of 

only one 

object in 

the scene 

with the 

highest 

priority 

Names and 

distances of 

objects 

detected  

Names 

and 

absolute 

locations 

of objects 

detected 

First three 

relevant 

detection 

results 

together 

with their 

relevance 

scores 

Name of 

only one 

object in 

the scene 

with the 

highest 

confidenc

e score 

Name of 

only one 

object in 

the scene 

with the 

highest 

confidence 

score 

Additional 

functions 

Text 

recognition 

No Landmark 

recognition

, text 

recognition

, currency 

recognition

, and chat 

bot 

No Light 

detection, 

colour 

detection, 

and 

banknote 

recognition 

No No 

Interactivity Yes (Click 

on buttons 

to choose 

recognising 

text or 

object) 

No Yes (in 

voice 

command 

form) 

Yes (Click 

on a 

button to 

start or 

stop 

processing 

image) 

Many No  No 

Interface 

navigability 

Simple Very 

simple 

More 

interfaces 

Very 

simple 

A lot of 

interfaces 

Very 

simple 

Very 

simple 

Internet 

connection  

No No Yes No No No No 
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Languages English English, 

Hindi, and 

Marathi 

English English English English English 

 

* A: Eye Assistant : Using Mobile Application to Help the Visually Impaired 

(Khan Shirshir et al., 2019); B: Android Based Object Detection System for 

Visually Impaired (Badave et al., 2020); C: A Smart Personal AI Assistant for 

Visually Impaired People (Felix, Kumar and Veeramuthu, 2018); D: Real-

Time Object Detection for Visually Challenged People (Vaidya et al, 2020); E: 

Intelligent Eye: A Mobile Application for Assisting Blind People (Awad et al., 

2018); F: Real Time Object Detection for Visually Challenged Persons 

(Anitha, Subalaxmi and Vijayalakshmi, 2019); G: Object Recognition App for 

Visually Impaired (Jakhete et al., 2019) 

 

4.2.3 Conclusion 

Object recognition is the most important function to be included in the object 

recognition mobile application for visually impaired people. All applications 

in Table 4.1 include this function. Due to time constraints, this project focused 

on this important function only.  

However, each application can recognise a different number of objects 

in the scene. In this project, an application that can recognise up to 10 objects 

in a scene was developed. Furthermore, there are some differences in 

information provided in audio feedback among the applications compared. In 

this project, the application developed will notify the visually impaired user 

about names of the objects detected within a scene. The names are reported 

following the descending order of accuracy scores. The reason to recognise 

and report multiple objects in the scene is to increase the safety of the users 

when navigating. This tries to prevent the users from colliding with any 

obstacles in their path. 

Furthermore, the level of interactivity between the application and the 

user of each existing application is different. Some existing applications 

capture scenes and recognise objects in the surrounding without requiring any 

input from the user. On the other hand, some applications require the user to 



54 

 

click on buttons or give commands before capturing scenes and recognising 

objects. Nevertheless, it is not a good idea to include too many visual 

interactions and interfaces since the visually impaired users are not able to see 

the screen. In this project, the application does not need the user to capture an 

image of the objects for object recognition. This can prevent the problem of 

inaccurate recognition results due to poor image quality.  

The application to be developed in this project does not require Internet 

connection to run. It enables the application to be used when the Internet 

signal is not good or the user does not have Internet access.  

Although object recognition is the only service to be developed, this 

project also developed some other features to improve user experience. Rather 

than just scanning surroundings and telling the name, location, and confidence 

score of each detected object like the applications studied, this application 

allows the user to stop or play speech and set speech rate of voice feedback. 

The user gains more control over audio feedback settings through 

implementation of these features. Besides, this project developed the 

application that supports English only since English is the international 

language. 

 

4.3 Requirement Specification 

4.3.1 Functional Requirements 

The functional requirements for the application are: 

i. The application shall be able to detect and recognise at least 90 classes 

of objects. 

ii. The application shall be able to detect and recognise up to 10 objects in 

a scene within 2 metres away from the camera’s field-of-view. 

iii. The application shall be able to launch the camera once getting camera 

access permission from the user. 

iv. The application shall be able to scan and capture the surrounding 

objects automatically once the camera is launched without requiring 

the user to click anything to capture the image. 

v. The application shall be able to indicate the location of a detected 

object using a boundary box. 
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vi. The application shall be able to display the predicted name and the 

confidence score of each object detected. 

vii. The application shall be able to provide voice feedback to alert the user 

of the detected objects. 

viii. The application shall be able to discard incorrect recognition results 

with a confidence score of less than 60%. 

ix. The application shall be able to enable users to stop the feedback 

speech. 

x. The application shall be able to enable users to play the speech after 

stopping the speech. 

xi. The application shall be able to enable users to set the speech rate of 

the voice feedback. 

 

4.3.2 Non Functional Requirements 

4.3.2.1 Availability  

i. The application shall be available for 24/7. 

ii. The application shall be available to work normally offline.  

 

4.3.2.2 Usability 

i. The application shall be user friendly by providing a simple user 

interface and system flow which are able to be used by the visually 

impaired user easily and conveniently although they have problems in 

watching the screen. 

 

4.3.2.3 Performance 

The application shall be able to detect and recognise objects and give voice 

feedback to the users within five seconds. 
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4.4 Use Case Modeling 

4.4.1 Use Case Diagram 

 

Figure 4.11: Use Case Diagram of the Application 

 

4.4.2 Use Case Description 

Table 4.2: Scan Surroundings Use Case 

Use Case ID 1 

Use Case Name Scan surroundings 

Actors User  

Description User wants to scan his or her surroundings using the 

smartphone's camera. 
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Pre-condition User opens the application. 

Post-condition - 

Relationships: 

 Association:   n/a 

 Include:   n/a 

 Extend:   n/a 

 Generalization: n/a  

Flow of Events: 

1. User clicks on the icon of the application. 

2. System launches the camera automatically and captures the surrounding 

view. 

Alternative flow of events: 

2.1 If the application is launched on the device for the first time, system 

requests camera access permission from user. 

2.1.1 User choose to allow the camera access by clicking the “Allow”  

button. 

2.1.2.1 Use case continues. 

2.1.2 User choose to deny the camera access request by clicking the 

“Deny” button. 

2.1.2.1 System exits. 

            2.1.2.2 Use case terminates. 

 

Table 4.3: Detect and Recognise Objects Use Case 

Use Case ID 2 

Use Case Name Detect and recognise objects 

Actors User  

Description User wants to detect and recognise objects in the 

surroundings. 



58 

 

Pre-condition User scans the surroundings using the smartphone’s 

camera. 

Post-condition - 

Relationships: 

 Association:   User 

 Include:   Scan surroundings  

 Extend:   Receive speech feedback 

 Generalization: n/a  

Flow of Events: 

1. Perform Scan surroundings use case. 

2. User holds the camera against the objects wanted to be recognised. 

3. System detects and recognises objects in the scene captured. 

4. System assigns a label, boundary box coordinates, and confidence score 

for each object detected. 

Alternative flow of events: 

2.1 The camera is covered. 

       2.1.1 The system cannot detect and recognise any objects. 

       2.1.2 Use case terminates. 

 

Table 4.4: View Information of Detected Objects Use Case 

Use Case ID 3 

Use Case Name View information of detected objects 

Actors User  

Description User wants to view the information of detected objects 

displayed on the smartphone screen.  

Pre-condition System detects and recognises an object in the scene 

captured and its confidence score is larger than 60%. 

Post-condition - 
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Relationships: 

 Association:   n/a 

 Include:   n/a 

 Extend:   n/a 

 Generalization: n/a  

Flow of Events: 

1. Perform Detect and recognise objects use case. 

2. System indicates the location of each object detected by using a boundary 

box to surround the object. 

3. System displays the name and confidence score of each object detected. 

4. User views the name, boundary box, and confidence score of each object 

detected.  

Alternative flow of events: 

2.1 The recognition result of an object is lower than 60%. 

       2.1.1 System discards the recognition result. 

       2.1.2 System does not display the information of the object on the screen. 

 

Table 4.5: Receive Speech Feedback Use Case 

Use Case ID 4 

Use Case Name Receive speech feedback 

Actors User  

Description User wants to get speech feedback about the objects in the 

surroundings through the smartphone’s speaker or 

earphones.  

Pre-condition System detects and recognises an object in the scene 

captured and its confidence score is larger than 60%. 

Post-condition - 
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Relationships: 

 Association:   n/a 

 Include:   n/a 

 Extend:   n/a 

 Generalization: n/a  

Flow of Events: 

1. Perform Detect and recognise objects use case. 

2. System sorts the recognition results in descending order of confidence 

score. 

3. System speaks out the names of the objects in the recognition results 

according to the order. 

4. User receives the speech feedback about the information of objects in the 

surroundings. 

Alternative flow of events: 

2.1 The recognition result of an object is lower than 60%. 

       2.1.1 System discards the recognition result. 

       2.1.2 System does not inform user about the name of the object. 

 

Table 4.6: Stop Speech Use Case 

Use Case ID 5 

Use Case Name Stop speech 

Actors User  

Description User wants to stop speech feedback from system.  

Pre-condition User opens the application. 

Post-condition - 
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Relationships: 

 Association:   User 

 Include:   n/a 

 Extend:   Play speech 

 Generalization: n/a  

Flow of Events: 

1. User clicks on the “Stop/Play Speech” button. 

2. System stops giving the speech feedback. 

3. User does not receive speech feedback from system anymore. 

Alternative flow of events: - 

 

Table 4.7: Play Speech Use Case 

Use Case ID 6 

Use Case Name Play speech 

Actors User  

Description User wants to play the stopped speech feedback.  

Pre-condition User stops the speech feedback. 

Post-condition - 

Relationships: 

 Association:   n/a 

 Include:   n/a 

 Extend:   Play speech 

 Generalization: n/a  

Flow of Events: 

1. User clicks on the “Stop/Play Speech” button. 

2. Perform Receive speech feedback use case.  
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Alternative flow of events: - 

 

Table 4.8: Set Speech Rate Use Case 

Use Case ID 7 

Use Case Name Set speech rate 

Actors User  

Description User wants to set the rate of the speech feedback provided 

by system.  

Pre-condition User opens the application. 

Post-condition - 

Relationships: 

 Association:   User 

 Include:   n/a 

 Extend:   n/a 

 Generalization: n/a  

Flow of Events: 

1. User clicks on the “Set speech rate” button. 

2. System displays a list of speech rate. 

3. User selects the speech rate he or she wants. 

4. System saves the speech rate chosen by user. 

5. System updates the speech rate of the voice feedback. 

Alternative flow of events:  

3.1 User does not select a speech rate. 

      3.1.1 Use case terminates 
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4.5 Proposed User Interface Design 

The figures below illustrate the proposed user interface design. The design was 

finished in the first iteration of the project development. The design is able to 

work and recognise objects. 

 This is the screen displayed when the user opens the application. The 

application will launch the camera automatically then detect and recognise 

objects in the scene. The name, location, and confidence score of each object 

are returned. 

 

 

Figure 4.12: UI Design for Object Recognition Screen 
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Figure 4.13: Recognition for Multiple Objects 
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CHAPTER 5 

 

5 PROJECT IMPLEMENTATION 

 

 

5.1 Introduction 

As mentioned in the earlier chapters, SSD Mobilenet V1 and Faster R-CNN 

Inception V2 are the models pre-trained on the COCO dataset. The COCO 

dataset focuses more on the objects within the general context, while the fine-

tuned models focus on the objects within the environmental context, especially 

indoor and outdoor obstacles. Transfer learning has been applied to the pre-

trained models to train the models to detect and recognise 40 classes of objects 

stated in Table 5.1. Also, the fine-tuned models were trained to detect and 

recognise certain object classes that are not included in the COCO dataset. The 

detailed comparison of object classes in the pre-trained and fine-tuned models 

are available in Table 2.2 in Chapter 2. 

 

Table 5.1: Object Classes to be Trained in Transfer Learning 

Person Cat Couch Plush toy 

Bicycle Dog Potted plant Bin 

Car Umbrella Bed Bag 

Motorcycle Ball Table Street sign 

Bus Skateboard Scissors Fan 

Train  Bottle Toilet Tree 

Truck Knife Window Street lamp 

Bench  Chair Door Shelf 

Staircase Mouse Sink Clock 

Computer Cell phone Refrigerator Vase 

 

 This chapter discusses the activities carried before, during, and after 

the model training. It also describes the implementation of the fine-tuned 

model on the mobile application. Figure 5.1 shows a summary of the training 

processes. 
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Figure 5.1: Summary of the Training Process 

 

5.2 Pre-training 

Before starting the transfer learning, the train and test datasets were prepared 

and the pre-trained models were chosen.  

 

5.2.1 Dataset Preparation 

First and foremost, a train dataset and test dataset must be prepared before 

starting to train a model. Since the pre-trained models are trained on the 

COCO dataset, most of the images in the train dataset are chosen from the 

COCO dataset. The dataset was then processed to ensure that every object 

class has at least 200 examples in the train dataset to improve the performance 
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of the trained model. The final train dataset contains 8004 training images, 

while the test dataset consists of 674 testing images.  

Then, the train and test dataset were annotated manually. The 

annotated classes and coordinates of boundary boxes of all objects in an image 

are stored in an XML file. After that, for each train dataset and test dataset, all 

XML files of the dataset were converted into a single CSV file, which was 

further converted into a TF Record file. TF Record is a standard format 

accepted by Tensorflow and they store the data into binary strings and serve as 

input for machine learning framework. 

 

 

Figure 5.2: Display of Certain Records in CSV File 

 

5.2.2 Pre-trained Model Selection 

Afterwards, the pre-trained models were selected to conduct transfer learning. 

As mentioned in the earlier chapters, the pre-trained models to be used in this 

project are SSD Mobilenet V1 COCO Model and Faster R-CNN Inception V2 

COCO Model from the Tensorflow Zoo. These models do not perform well at 
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detecting and recognising the 40 classes required for this project. Hence, 

transfer learning was done to fine-tune the pre-trained models with the 

required datasets so they are able to predict the 40 classes more effectively. 

 

5.3 Training  

There are several steps involved in model training, which are preparing a 

labelmap file, loading data into memory, and then running the training. 

 

5.3.1 Preparation of Labelmap File 

A labelmap file that contains string class names with their corresponding 

integer IDs is created and saved in pbtxt format. This labelmap file and the TF 

records are requisite for the model training.   

 

Figure 5.3: Display of Some Classes in Labelmap File 

 

5.3.2 Data Loading 

Since the volume of the training data is too large, it requires a large amount of 

memory. It is difficult to load all images into the local memory. This causes 

the training to be killed at the beginning. Hence, the data is loaded by batches 

during the training. Nevertheless, this solution still consumes a large amount 

of memory and decreases the efficiency of the training significantly. Thus, 

Google Colaboratory that provides 35 GB of memory was used to train the 
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model. All files required for training were uploaded to Google Drive to be 

accessed by Google Colaboratory. GPU on Google Colaboratory also has been 

used to speed up the training process. 

 

5.3.3 Model Training 

The checkpoint of the pre-trained model was used as the starting point for the 

transfer learning process and was used to initialise the weights of the CNN. 

Then, the last fully connected layer which is a classifier that returns the 

predicted class label for the pre-trained model was removed from the pre-

trained model. The rest of the layers in the pre-trained model were frozen and 

used to train a new classifier that detects and recognises the required classes.  

During the training, every input image was resized to a fixed size of 

300x300 pixels to improve the training efficiency. Furthermore, dropout and 

data augmentation were applied to prevent the model from overfitting. 

Dropout is a mechanism where a subset of neurons was removed in each 

training iteration to construct many networks from the same single CNN. Data 

augmentation is a mechanism to create artificial images by making 

modifications such as transformations and rotations on the existing images.   

Horizontal flips were used during the training process. In this project, the 

model was trained for 200000 steps before being evaluated.  

 

5.4 Export Trained Model 

After the model training was finished, the model was converted into a graph 

for running the detections. For the SSD model, it was exported to frozen SSD 

Tensorflow Lite Graph and then further converted to Tensorflow Lite file. 

Tensorflow Lite is an optimised version of the trained model for lightweight 

mobile use. As Faster R-CNN was not supported by Tensorflow Lite, the 

Faster R-CNN model was exported into Frozen Inference Graph. These graphs 

allow the trained model to run on the mobile application. 

 

5.5 Evaluation 

The models were evaluated after the training was completed. The evaluation 

results will be discussed in the next chapter.  
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5.6 Implementation of Mobile Application 

An Android-based object detection and recognition mobile application was 

developed to help the visually impaired people to identify the objects in their 

surroundings. This mobile application was written in Java.  

 

5.6.1 Object Detection and Recognition on Mobile Application 

The application will start to detect and recognise objects in the scene once the 

application is launched without requiring the user to click any button. After the 

application is launched successfully, the application will retrieve the scene 

captured by the smartphone’s camera. Next, the scene is passed to the trained 

Tensorflow model for detecting and recognising the objects in the scene. After 

scene processing, the class, coordinates of boundary box, and confidence score 

of each detected object are returned by the model. Android Graphics library is 

used to draw the rectangle boundary box and text on the screen. Figure 5.4 

illustrates the overall process flow of object detection and recognition on the 

mobile application. 

 

 

Figure 5.4: Process Flow for Object Detection and Recognition on Mobile 

Application  

 

Launch application

Capture surronding scene though camera

Trained model processes captured scene

Trained model returns class, coordinate of boundary 
box, and confidence score of each object

Application draws boundary box and text on screen
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5.6.2 Mobile Application User Interface 

Figure 5.5 and Figure 5.6 shows the home screen of the application. Since this 

application is developed for visually the impaired people, the application is 

designed in a simple way and have few buttons and screens to reduce the 

inconvenience when they use the application. The user is allowed to stop the 

voice feedback and play the voice feedback after being stopped. Furthermore, 

the user also can adjust the speech rate of the voice feedback. 

 

 

Figure 5.5: Screen when Detecting Single Object  
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Figure 5.6: Screen when Detecting Multiple Objects  

 

5.6.3 Reporting of Directions of Detected Objects 

In order to inform the user about the directions of the objects detected, the 

screen of the mobile screen is split into three parts, those are left, middle, and 

right. The direction of each object is decided by identifying which part of the 

screen it falls into. Figure 5.7 displays how the screen is split into three parts. 

The object which lies in the first 1/3 of screen width is considered on the left, 

while the object which lies in the last 1/3 of screen width is considered on the 

right. The object is considered in the middle if it lies in the rest of the area. 

The names and directions of the detected objects are spoken out every three 

seconds. 
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Figure 5.7: Splitting of Mobile Screen into Three Parts 

 

5.6.4 Adjusting Speech Rate 

The user is allowed to adjust the speech rate to the speed they are comfortable 

with. The application allows the user to choose three types of speech rate, 

those are slow, normal, and fast. The normal speech rate is 1.0. Slow speech 

rate has a speed of 0.5, while the fast speech rate has a speed of 1.5. The 

selected speech rate then will be saved into Shared Preferences, so the user 

does not need to readjust the speech rate again every time after closing the 

application. Figure 5.8 displays the screen when the user adjusts the speech 

rate. 
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Figure 5.8: Adjust Speech Rate Screen 
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CHAPTER 6 

 

6 RESULTS AND DISCUSSIONS 

 

 

6.1 Introduction 

This chapter will explain the effects of training settings on the performance of 

the model training. Also, the performance of the trained model was evaluated 

and discussed after the model training was done. 

    

6.2 Training Settings 

The performance of the model training can be affected by the training batch 

size used and the types of model to be trained. This sections will explore how 

the batch size and model types can affect the speed and effectiveness of the 

training. 

 

6.2.1 Batch Size 

Batch size defines the number of training samples used in one iteration. An 

experiment regarding the configuration of batch size was conducted on CPU 

on the local machine. The observations are recorded in Table 6.1. Figure 6.1 to 

Figure 6.4 visualises the development of the loss function during the model 

training when using four different batch size settings. 

 

Table 6.1: Comparison of Training Performance When Using Different Batch 

Size 

Batch size Average time needed for 

per step (seconds) 

Total training time Number of 

steps trained 

4 4 2 h 31 min 2456 

12 12 5 h 17 min 1517 

24 23 2 h 57 min 1034 

36 40 5 h 41 min 493 
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Figure 6.1: Development of Total Loss During Training When Batch Size=4 

(After 2 h 31 min of Training) 

 

 

Figure 6.2: Development of Total Loss During Training When Batch Size=12 

(After 5 h 17 min of Training) 
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Figure 6.3: Development of Total Loss During Training When Batch Size=24 

(After 2 h 57 min of Training) 

 

 

Figure 6.4: Development of Total Loss During Training When Batch Size=36 

(After 5 h 41 min of Training) 

 

A few issues arise when the batch size increases. Firstly, as shown in 

Table 6.1, the average time needed to run per step increases as the batch size 

increases. Besides, large batch size also consumes more system memory in the 

training. Furthermore, it will require more training time for the model to 

achieve the same accuracy compared to a batch size of 24 due to the decrease 

in iteration time. From Figure 6.3 and Figure 6.4, the model is able to achieve 
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loss below 2 consistently within 2 hours 57 minutes by using the batch size of 

24, while the model that uses a batch size of 36 needs more than five hours of 

training to achieve loss below 2.    

However, problems also arise when the batch size is too small. 

Although the average time needed per step decreases, the model may not able 

to converge within the expected steps. As observed in Figure 6.3, the model 

that uses the batch size of  24 can achieve loss below 2 consistently after 

training for almost 450 steps. However, in Figure 6.1, loss of the model that 

uses a batch size of 4 is still very inconsistent after the model is trained for 

more than 2400 steps. Also, in Figure 6.2, the model that applies a batch size 

of 12 requires more than 1450 steps to reach loss below 2 consistently. 

Hence, the batch size applied in this project is 24, which is the default 

value set by Tensorflow. 

 

6.2.2 Training Time of Different Models 

The training time required for different models to reach 200000 steps are 

recorded in Table 6.2. 

 

Table 6.2: Comparison of Training Time Between SSD and Faster R-CNN 

Models 

Model Average time needed for 

per step (seconds) 

Total Training Time to 

Reach 200k Steps 

SSD 1.235 130 h 23 min 

Faster R-CNN 0.293 20 hours 

 

According to Table 6.2, the pre-trained Faster R-CNN model is almost 

six times faster than the pre-trained SSD to run each training step. Furthermore, 

the SSD pre-trained model consumes 130 hours 23 minutes (almost five days) 

to fine-tune until 200000 steps. On the other hand, Faster R-CNN just needs 

about 20 hours to complete the 200000 steps. This shows that Faster R-CNN 

has a much faster training speed compared to SSD. 
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6.3 Evaluation  

The evaluation was carried out to compare the performance of both SSD 

Mobilenet V1 COCO Model and Faster R-CNN Inception V2 COCO Model 

before and after transfer learning. Certain types of evaluation metrics such as 

mAP, precision, recall, and confusion matrix are used to calculate the 

performance of the overall models and each class on the test dataset which 

contains 674 examples of 40 classes. All the evaluation results displayed in the 

following sections are calculated on this test dataset only. 

 

6.3.1 Comparison of Performance between Pre-trained and Fine-tuned 

Models 

The performance between both pre-trained and fine-tuned models were 

compared to prove how transfer learning can help in improving the accuracy 

of the model. Figure 6.5, 6.6, and 6.7 displays some examples of detection 

results of different models. 
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(i) Pre-trained SSD Model                                    (ii) Fine-tuned SSD Model 

 

 

(iii) Pre-trained Faster R-CNN Model                  (iv) Fine-tuned Faster-RCNN Model 

Figure 6.5: Detections Results of Different Models in Toilet 

 

 In Figure 6.5, the pre-trained and fine-tuned models are able to detect 

and recognise “toilet” and “sink” correctly. Since “window” is not present in 

the COCO dataset, so the pre-trained models are not able to detect and 

recognise the objects “window” in the scene. Also, the fine-tuned SSD and 

Faster R-CNN models have higher confidence score for their detected objects 

compared to that of their pre-trained models. Moreover, the pre-trained Faster 

R-CNN model detects two sinks instead of one sink. 
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(i) Pre-trained SSD Model                                  (ii) Fine-tuned SSD Model 

 

 

(iii) Pre-trained Faster R-CNN Model                 (iv) Fine-tuned Faster-RCNN Model 

Figure 6.6: Detections Results of Different Models in Bedroom 

 

 Since “window”, “shelf”, and “fan” are not existing in the COCO 

dataset, the pre-trained models should not detect and recognise these objects in 

Figure 6.6. However, the pre-trained SSD model fails at detecting and 

recognising “bed” and “chair” successfully, while the pre-trained Faster R-

CNN model misclassifies “bed” as “couch”.  It can be observed that the fine-

tuned models are able to detect and recognise more objects in the scene at a 

higher confidence score compared to the pre-trained models. 
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(i) Pre-trained SSD Model                                    (ii) Fine-tuned SSD Model 

 

(iii) Pre-trained Faster R-CNN Model                  (iv) Fine-tuned Faster-RCNN Model 

Figure 6.7: Detections Results of Different Models at Outside 

 

 In Figure 6.7, “tree” should not be detected and recognised by the pre-

trained models because the class is not present in the COCO dataset. All 

models can detect and recognise “bus” and “car” successfully, except the pre-

trained SSD model.  

 From these examples, it can be observed that the fine-tuned models 

have a better performance than the pre-trained models most of the time, 

regardless of the state-of-art methods applied. In this section, the performance 

between the pre-trained models and their fine-tuned models is compared 

according to the mAP (Mean Average Precision). 

 

6.3.1.1 Mean Average Precision 

The performance of the machine learning models can be compared using mAP 

values. This project used the PASCAL VOC 2010 detection metric, which 

takes an IoU of 0.5 when evaluating the quality of the object detection models. 

This means that the metric only considers a predicted object as true positive 

when IoU is equal or larger than 0.5 with respect to the ground-truth boundary 
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box. Figure 6.8 and 6.9 present the AP values for the 40 object classes of the 

pre-trained and fine-tuned SSD and Faster R-CNN models. 
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Figure 6.8: AP Values of Pre-trained and Fine-tuned SSD Models 
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Figure 6.9: AP Values of Pre-trained and Fine-tuned Faster R-CNN Models 
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Table 6.3: mAP Values of Pre-trained and Fine-tuned SSD and Faster R-CNN 

Models 

Object Detection Model mAP  

Pre-trained SSD 0.3942 

Fine-tuned SSD 0.5708 

Pre-trained Faster R-CNN 0.4271 

Fine-tuned Faster R-CNN 0.8961 

 

 As shown in Figure 6.8 and Figure 6.9, the AP value of each object 

class increases significantly after the model undergoes transfer learning, 

especially the growth rate of the AP value of the Faster R-CNN model is very 

dramatic.  

According to Table 6.3, the mAP score of the fine-tuned SSD model is 

more than 0.17 higher than its pre-trained model. From Figure 6.8, the AP 

scores of the pre-trained SSD model fall within a range of 0.075 (“knife”) and 

0.8482 (“bus”). All object classes have AP scores that are lower than 0.64 

except “cat” (0.8084) and “bus” (0.8482). On the other hand, the lowest AP 

score of the fine-tuned SSD model is 0.1264 (“street lamp”) and its highest AP 

score is 0.9277 (“bed”). 

The fine-tuned Faster R-CNN model has a mAP value which is higher 

than that of its pre-trained model by almost 0.47. Before the Faster R-CNN 

model undergoes transfer learning, the AP scores of the model lie within the 

range between 0.0417 (“knife”) and 0.8344 (“cat”). Only two classes achieve 

AP values above 0.8. Those are “bus”(0.8244) and “cat”(0.8344). After the 

Faster R-CNN model undergoes transfer learning, most of the classes of the 

fine-tuned model can reach AP values above 0.8, except “bin” (0.6642), “knife” 

(0.6922), “scissors” (0.6942), and “staircase” (0.7582), thereby achieving a 

high mAP value that is close to 0.9.  

 

6.3.2 Comparison of Performance between Fine-tuned SSD and Faster 

R-CNN Models 

The performance of the fine-tuned SSD and Faster R-CNN models are 

compared to find out which state-of-art methods have better accuracy in object 
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detection and recognition. In this section, the performance of the fine-tuned 

SSD and Faster R-CNN models are compared using confusion matrix, recall, 

precision, and mAP.  

 

6.3.2.1 Confusion Matrix 

 A confusion matrix is a table that visualises the performance of a machine 

learning model in making predictions. The matrix compares the actual target 

object classes with the predicted target object classes. Figure 6.10 shows the 

multiclass confusion matrix of the fine-tuned SSD Model while Figure 6.11 

illustrates the multiclass confusion matrix of the fine-tuned Faster R-CNN 

Model.   

Figure 6.10: Multiclass Confusion Matrix of Fine-tuned SSD Model  
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Figure 6.11: Multiclass Confusion Matrix of Fine-tuned Faster R-CNN Model  

 

 According to Figure 6.10 and Figure 6.11, it can be observed that the 

fine-tuned Faster R-CNN model is more likely to misclassify an object than 

the fine-tuned SSD model. Although both models use the same test set for 

evaluation, the fine-tuned Faster R-CNN model is more sensitive than the fine-

tuned SSD model at detecting the objects in the scene and this is the reason the 

fine-tuned Faster R-CNN model has more misclassifications. This is related to 

true positive and false negative, which will be discussed in the next section. 

 

6.3.2.2 True Positive, False Negative, and False Positive  

The amount of true positives, false negatives, and false positives can be 

calculated from the information obtained in the confusion matrix. Table 6.4 

tabulates the number of true positives, false negatives, and false positives for 

each object class of the fine-tuned SSD and Faster R-CNN models. Besides, 
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Figure 6.12 visualises the comparison of the total amount of true positives, 

false negatives, and false positives between the fine-tuned SSD and R-CNN 

models. 

 

Table 6.4: True Positive, False Negative, and False Positive of Fine-tuned SSD 

and Faster R-CNN Models 

Class   Fine-tuned SSD  Fine-tuned Faster R-CNN  

TP FN FP TP FN FP 

bag 26 94 0 108 11 5 

ball 26 15 1 41 0 1 

bed 54 15 7 67 4 18 

bench 15 40 3 44 12 7 

bicycle 20 59 3 71 10 6 

bin 2 25 0 15 12 2 

bus 24 5 1 27 0 10 

bottle 31 132 2 133 30 9 

car 87 94 17 148 33 13 

cat 48 6 8 50 0 3 

cell phone 33 54 0 75 12 8 

chair 87 150 14 202 30 22 

clock 29 25 1 48 6 2 

computer 99 37 12 129 6 9 

couch  42 13 16 53 2 13 

dog  51 14 5 66 2 6 

door 19 23 0 38 2 11 

fan 2 7 0 9 2 2 

knife 6 34 0 26 14 4 

motorcycle 34 24 8 53 7 6 

mouse 21 43 1 50 12 2 

person 602 560 55 1072 102 98 

plush toy 49 8 9 55 0 0 

potted plant 34 47 3 74 5 6 

refrigerator 7 6 0 13 0 3 

street lamp 3 46 0 41 7 9 

scissors 8 34 2 33 7 9 

shelf 107 65 15 153 18 28 

sink 21 21 1 39 2 1 

staircase 8 13 2 14 4 1 

skateboard 37 43 0 76 3 1 

street sign 18 25 2 43 0 2 



90 

 

 

 

Figure 6.12: Total Number of True Positives, False Negatives, and False 

Positives against Fine-tuned Models 

  

 According to Figure 6.12, the total number of true positives of the fine-

tuned Faster R-CNN model is more than 2600 higher than that of the fine-

tuned SSD model. True positive is the condition in which the model predicts 

the class of an object correctly. The higher the total number of true positives, 

the better the model performance. This means that the fine-tuned Faster R-

CNN model is able to classify the objects in the scene more accurately 

compared to the fine-tuned SSD model. 

 Apart from that, Figure 6.12 also shows that the total number of false 

negatives of the fine-tuned SSD model is almost five times higher than that of 

the fine-tuned Faster R-CNN model. False negative indicates a condition in 

which the groud-truth exists in a scene but the model fails to detect and 
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recognise this object. The number of false negatives should be as few as 

possible to achieve good accuracy. This shows that the fine-tuned SSD model 

is more likely to fail to detect and recognise objects present in the scene 

compared with the fine-tuned Faster R-CNN model. 

 Compared with the fine-tuned SSD model, the fine-tuned Faster R-

CNN model has a better performance in the total number of true positives and 

false negatives. However, when comparing the total number of false positives, 

the performance of the fine-tuned Faster R-CNN model is worse than the fine-

tuned SSD model. The total number of false positives of the fine-tuned Faster 

R-CNN model is almost twice more than that of the fine-tuned SSD model. 

False positive is the condition that a model labels an object in the scene when 

the object really does not exist in that scene, so the occurrence of this 

condition should be as few as possible. Figure 6.12 shows that the fine-tuned 

Faster R-CNN model tends to make this kind of errors more often compared to 

the fine-tuned SSD model.  

 

6.3.2.3 Precision and Recall 

After completing the transfer learning, the precision and recall of the fine-

tuned SSD and Faster R-CNN models are calculated to measure the quality of 

the models. Precision measures the ratio of correct recognitions and detections 

(Alsing, 2018). Recall measures how good is a model in finding true positive 

(Alsing, 2018). Their formulas are shown below. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

 The precision and recall values for 40 classes of each fine-tuned model 

are recorded in Table 6.5 below. 

 

 

 



92 

 

Table 6.5: Precision and Recall Values for 40 Classes of Fine-tuned SSD and 

Faster R-CNN Models 

Class Precision Recall 

Fine-tuned 

SSD  

Fine-tuned 

Faster R-CNN 

Fine-tuned 

SSD  

Fine-tuned 

Faster R-CNN 

bag 1.0000 0.9558 0.2167 0.9000 

ball 0.9630 0.9762 0.6341 1.0000 

bed 0.8852 0.7882 0.7606 0.9437 

bench 0.8333 0.8627 0.2679 0.7857 

bicycle 0.8696 0.9221 0.2469 0.8765 

bin 1.0000 0.8824 0.0714 0.5357 

bus 0.9600 0.7297 0.8276 0.9310 

bottle 0.9394 0.9366 0.1890 0.8110 

car 0.8365 0.9193 0.4754 0.8087 

cat 0.8571 0.9434 0.8889 0.9259 

cell phone 1.0000 0.9036 0.3793 0.8621 

chair 0.8614 0.9018 0.3580 0.8313 

clock 0.9667 0.9600 0.5370 0.8889 

computer 0.8919 0.9348 0.7279 0.9485 

couch 0.7241 0.8030 0.7500 0.9464 

dog 0.9107 0.9167 0.7500 0.9706 

door 1.0000 0.7755 0.4524 0.9048 

fan 1.0000 0.8182 0.1818 0.8182 

knife 1.0000 0.8667 0.1500 0.6500 

motorcycle 0.8095 0.8983 0.5667 0.8833 

mouse 0.9545 0.9615 0.3281 0.7813 

person 0.9163 0.9162 0.5123 0.9123 

plush toy 0.8448 1.0000 0.8596 0.9649 

potted plant 0.9189 0.9250 0.4198 0.9136 

refrigerator 1.0000 0.8125 0.5000 0.9286 

street lamp 1.0000 0.8200 0.0612 0.8367 

scissors 0.8000 0.7857 0.1905 0.7857 

shelf 0.8770 0.8453 0.6221 0.8895 

sink 0.9545 0.9750 0.5000 0.9286 

staircase 0.8000 0.9333 0.3810 0.6667 

skateboard 1.0000 0.9870 0.4625 0.9500 

street sign 0.9000 0.9556 0.4186 1.0000 

table 0.9266 0.7846 0.5941 0.9000 

toilet 0.8889 0.9474 0.6154 0.9231 

tree 0.9423 0.8319 0.4224 0.8103 

truck 0.8519 0.8958 0.4340 0.8113 
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train 0.8182 0.7667 0.7200 0.9200 

umbrella 0.8400 0.9767 0.4773 0.9545 

vase 0.9750 0.9070 0.4756 0.9512 

window 0.9194 0.8571 0.5182 0.9273 

Average 0.9109 0.8895 0.4736 0.8745 

 

 As evident from Table 6.5, the average precision of the fine-tuned SSD 

model is slightly higher than the average precision of the fine-tuned Faster R-

CNN model, which are 0.9109 and 0.8895 respectively. It is because the fine-

tuned SSD model returns a smaller amount of false positives. This means that 

the fine-tuned SSD model is more able to make correct detection compared to 

the Faster R-CNN model.  

However, the average recall of the fine-tuned SSD model is nearly 0.4 

lower than that of the fine-tuned Faster R-CNN model, which are 0.4736 and 

0.8745 respectively. It is caused by large number of false negatives returned 

by the fine-tuned SSD models. Therefore, the fine-tuned SSD model perform 

poorly when finding the true positive in the scene compared with the fine-

tuned Faster R-CNN model. 

 Many studies (Liu et al., 2019; Zhao et al., 2019; Alsing, 2018; 

Argawal, 2018) mention that there is an inverse relationship between precision 

and recall. As the precision increases, the recall decreases or vice versa. So, 

when a model returns lesser false positives, it also returns lesser true positives. 

In this case, the higher precision and lower recall of the fine-tuned SSD model 

can be used to represent this situation. On the contrary, if a model can detect 

and recognise many true positives, however it will return many false positives 

too. This is why the fine-tuned Faster R-CNN model has lower precision than 

the fine-tuned SSD model, but has a higher recall. Thus, striking a balance 

between precision and recall is very vital. According to the results, the fine-

tuned Faster R-CNN performs better than the fine-tuned SSD model in finding 

a balance between precision and recall. 

 

6.3.2.4 Mean Average Precision 

The mean average precision of the fine-tuned SSD and Faster R-CNN model 

are calculated and compared. As mentioned in the earlier sections, this project 
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used the PASCAL VOC 2010 detection metric, which takes an IoU of 0.5 

when calculating the mAP. Figure 6.13 and Figure 6.14 present the AP and 

mAP values for the 40 object classes of the fine-tuned SSD and Faster R-CNN 

models respectively. 
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Figure 6.13: Comparison of AP Values for 40 Classes between Fine-tuned 

SSD and Faster R-CNN Models 
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Figure 6.14: Comparison of mAP Values between Fine-tuned SSD and Faster 

R-CNN Models 
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6.3.2.5 Speed and Accuracy Tradeoff of Different Object Detection and 

Recognition Models 

 

 

Figure 6.15: Speed and Accuracy Comparison of Fine-tuned Models 

 

The inference time and accuracy of the fine-tuned SSD and Faster R-CNN 

models are compared in Figure 6.15. The number of seconds required for 
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required for inference also increases.  
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In this chapter, the performance between pre-trained and the fine-tuned 

models was evaluated and compared. Figure 6.16 visualises the mAP values of 

different pre-trained and fine-tuned models. It can be observed that after 

transfer learning, the mAP values of the models increase significantly, 

regardless of their state-of-art method applied.  

Other than that, the performance of the fine-tuned SSD and Faster R-

CNN model also was compared. As displayed in Figure 6.16, the accuracy of 

the fine-tuned Faster R-CNN model is much higher than that of the fine-tuned 

SSD model by almost 0.33. However, due to the trade-off between accuracy 

and inference time, the fine-tuned Faster R-CNN requires 7.2 seconds of 

inference time, which is four times as long as that of the fine-tuned SSD model 

with an inference time of 1.8 seconds.  

 

 

Figure 6.16: Comparison of mAP Values between Different Models  
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CHAPTER 7 

 

7 SYSTEM TESTING 

 

7.1 Introduction 

Testing was carried to ensure the application meets the specifications and 

works properly. This chapter discusses unit testing and integration testing 

conducted on the application developed. 

 

7.2 Unit Testing  

Before a component is combined with other components in the application, 

unit testing was carried out on each unit of the component to find out and 

resolve the bugs. In this project, the application is classified into several 

modules and unit testing was conducted on each module. 

 

7.2.1 Object Detection and Recognition Module 

 

Table 7.1: Unit Test for Object Detection and Recognition  

Test Case Test Steps Test Data Expected Result Status 

Scan user’s 

surroundings  

1. Open 

application  

Surrounding scene. Surroundings scenes 

are captured and 

displayed a in 

continuous stream. 

Pass 

An object is 

detected and 

recognised at a 

confidence score 

higher than 

threshold 

1. Capture a 

scene with one 

object 

A scene with a 

computer, which 

returns a confidence 

score higher than 

60%. 

The name, boundary 

box, and confidence 

score of the detected 

computer are 

displayed. 

 

Pass 
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More than one 

object is detected 

and recognised at 

confidence score 

higher than 

threshold 

1. Capture a 

scene with 

multiple 

objects 

A scene with a 

cellphone and 

scissors, which both 

objects return  

confidence scores 

higher than 60%. 

The names, boundary 

boxes, and confidence 

scores of the detected 

cellphone and scissors 

are displayed. 

Pass 

An object is 

detected and 

recognised at a 

confidence score 

lower than 

threshold 

1. Capture a 

scene with an 

object 

A scene with a 

computer,  which 

returns a confidence 

score lower than 

60%. 

No object names, 

bounding boxes, and 

confidence scores are 

displayed. 

Pass 

Multiple objects 

are detected and 

recognised at 

confidence scores 

below the 

threshold, and 

some are above 

the threshold 

1. Capture a 

scene with 

multiple 

objects 

A scene with a cell 

phone and scissors,  

which returns a 

confidence score 

lower than 60% and 

higher than 60% 

respectively. 

Only the name, 

boundary box, and 

confidence score of 

the detected scissors 

are displayed. 

Pass 

No objects are 

detected and 

recognised 

1. Capture a 

scene without 

objects 

A scene with a blank 

wall. 

No object names, 

bounding boxes, and 

confidence scores are 

displayed. 

Pass 
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7.2.2 Speech Feedback Module 

 

Table 7.2: Unit Test for Speech Feedback 

Test Case Test Steps Test Data Expected Result Status 

An object on the 

left is detected and 

recognised at a 

confidence score 

higher than 

threshold 

1. Capture a 

scene 

2. Process the 

scene 

captured 

Detection results 

return a mouse with a 

midpoint located in 

the first left 1/3 area 

of the screen and a 

confidence score 

higher than 60%. 

“Mouse on the left” is 

spoken out. 

Pass 

An object at the 

middle is detected 

and recognised at a 

confidence score 

higher than 

threshold 

1. Capture a 

scene 

2. Process the 

scene 

captured 

Detection results 

return a mouse with a 

midpoint located  

between first left 1/3 

and first right 1/3 

area of the screen and 

a confidence score 

higher than 60%. 

“Mouse is straight 

forward” is spoken 

out. 

Pass 

An object on the 

right is detected 

and recognised at a 

confidence score 

higher than 

threshold 

1. Capture a 

scene 

2. Process the 

scene 

captured 

Detection results 

return a mouse with a 

midpoint located in 

the first right 1/3 area 

of the screen and a 

confidence score 

higher than 60%. 

“Mouse on the right” 

is spoken out. 

 

 

 

 

Pass 

An object is 

detected and 

recognised at a 

confidence score 

lower than 

threshold 

1. Capture a 

scene 

2. Process the 

scene 

captured 

Detection results 

return a mouse with a 

midpoint located in 

the first left 1/3 area 

of the screen and a 

confidence score 

lower than 60%. 

No object name and 

direction is spoken 

out. 

 

 

 

 

Pass 
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More than one 

object is detected 

and recognised at 

confidence scores 

higher than 

threshold 

1. Capture a 

scene 

2. Process the 

scene 

captured 

Detection results 

return a mouse and 

scissors with 

midpoints located in 

the first left 1/3 and 

the first right 1/3 area 

of the screen 

respectively, and both 

confidence scores 

higher than 60%.  

“Mouse on the left and 

scissors on the right” 

is spoken out. 

Pass 

Multiple objects 

are detected and 

recognised at 

confidence scores 

below the 

threshold, and 

some are above the 

threshold 

1. Capture a 

scene 

2. Process the 

scene 

captured 

Detection results 

return a mouse and 

scissors with 

midpoints located in 

the first left 1/3 and 

the first right 1/3 area 

of the screen 

respectively, and  

their confidence 

scores are lower and 

higher than 60% 

respectively. 

“Scissors on the right” 

is spoken out. 

Pass 

No objects are 

detected and 

recognised 

1. Capture a 

scene 

2. Process the 

scene 

captured 

Detection results 

return null. 

No object name and 

direction is spoken 

out. 

Pass 
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Identical scenes 

are detected and 

recognised for a 

few seconds 

1. Capture 

multiple 

similar scenes 

2. Process 

several 

similar scenes  

Detection results 

return a mouse with a 

midpoint located in 

the first left 1/3 area 

of the screen and a 

confidence score 

higher than 60%. 

“Mouse on the left” is 

spoken out every 3 

seconds. 

 

Pass 

 

7.2.3 Set Speech Rate Module 

Table 7.3: Unit Test for Set Speech Rate 

Test Case Test Steps Test Data Expected Result Status 

Adjust speech 

rate to slow 

1. Click the 

“Adjust Speech 

Rate” button 

2. Click the 

“Slow” button 

 The speech rate is 

adjusted to 0.5 (slow). 

Pass 

Adjust speech 

rate to normal 

1. Click the 

“Adjust Speech 

Rate” button 

2. Click the 

“Normal” button 

 The speech rate is 

adjusted to 1.0 

(normal). 

Pass 

Adjust speech 

rate to fast 

1. Click the 

“Adjust Speech 

Rate” button 

2. Click the “Fast” 

button 

 The speech rate is 

adjusted to 1.5 (fast). 

Pass 

Do not select a 

speech rate  

1. Click the 

“Adjust Speech 

Rate” button 

2. Click the 

phone’s exit button 

without selecting a 

speech rate 

The existing speech 

rate is normal. 

The speech rate 

remains at 1.0 

(normal). 

Pass 
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7.2.4 Play/Stop Speech Module 

 

Table 7.4: Unit Test for Play and Stop Speech 

Test Case Test Steps Test Data Expected Result Status 

Stop Speech 1. Click the “Play/Stop 

Speech” button 

 Voice feedback is 

stopped. 

 

Play Speech 1. Click the “Play/Stop 

Speech” button 

2. Click the “Play/Stop 

Speech” button one 

more time 

 Voice feedback is 

available. 

 

 

7.3 Integration Test 

Integration testing was performed after unit testing was completed. The main 

goal of integration testing is to identify the existence of bugs after integrating 

the modules tested in unit testing.   

 

Table 7.5: Integration Test 

Test Case Test Steps Expected Result Status 

Detect and 

recognise 

objects in the 

scene 

1. Open application 

2. Scan the surrounding 

using the phone’s 

camera 

 The names, boundary boxes, and 

confidence scores of each object are 

displayed on the screen.  

 The names and the directions of the 

objects are spoken out every 3 

seconds. 

Pass 

No object is 

detected and 

recognised in 

the scene 

1. Open application 

2. Scan the surrounding 

using the phone’s 

camera 

 No object name, boundary box, and 

confidence score are displayed on 

the screen.  

 No object names and direction are 

spoken out. 

Pass 
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Stop speech 

feedback 

1. Open application 

2. Scan the surrounding 

using the phone’s 

camera 

3. Click the “Play/Stop 

Speech” button 

 The names, boundary boxes, and 

confidence scores of each object is 

displayed on the screen.  

 The names and the directions of the 

objects are not spoken out. 

Pass 

Play speech 

feedback 

1. Open application 

2. Scan the surrounding 

using the phone’s 

camera 

3. Click the “Play/Stop 

Speech” button 

4. Click the “Play/Stop 

Speech” button again 

 The names, boundary boxes, and 

confidence scores of each object are 

displayed on the screen.  

 The names and the directions of the 

objects are spoken out after 

pressing the “Play/Stop Speech” 

button twice. 

 The speech rate is the same as the 

speech rate before clicking the 

“Play/Stop Speech” button. 

Pass 

Adjust speech 

rate to slow 

1. Open application 

2. Click the “Adjust 

Speech Rate” button 

3.  Click the “Slow” 

button 

4. Scan the surrounding 

using the phone’s 

camera 

 The speech rate in the shared 

preferences is updated to 0.5. 

 The message “speech rate is slow” 

is spoken out verbally. 

 The names and the directions of the 

objects are spoken out every 3 

seconds with a speech rate of 0.5 

(slow). 

Pass 



106 

 

Adjust speech 

rate to normal 

1. Open application 

2. Click the “Adjust 

Speech Rate” button 

3.  Click the “Normal” 

button 

4. Scan the surrounding 

using the phone’s 

camera 

 The speech rate in the shared 

preferences is updated to 1.0. 

 The message “speech rate is 

normal” is spoken out verbally. 

 The names and the directions of the 

objects are spoken out every 3 

seconds with a speech rate of 1.0 

(normal). 

Pass 

Adjust speech 

rate to fast 

1. Open application 

2. Click the “Adjust 

Speech Rate” button 

3.  Click the “Fast” 

button 

4. Scan the surrounding 

using the phone’s 

camera 

 The speech rate in the shared 

preferences is updated to 1.5. 

 The message “speech rate is fast” is 

spoken out verbally. 

 The names and the directions of the 

objects are spoken out every 3 

seconds with a speech rate of 1.5 

(fast). 

Pass 

Do not select a 

speech rate on 

the Adjust 

Speech Rate 

page 

1. Open application 

2. Click the “Adjust 

Speech Rate” button 

3.  Click the phone’s 

exit button without 

selecting a speech rate 

4. Scan the surrounding 

using the phone’s 

camera 

 The speech rate in the shared 

preferences is not updated. 

 The speech rate remains unchanged 

and the names and the directions of 

the objects are spoken out every 3 

seconds with this speech rate. 

Pass 
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7.4 Usability Test 

Usability test involves real-world users to test and evaluate the application. Its 

goal is to identify whether the system is suited to real-world scenarios. Due to 

the Cov-19 pandemic and standard operating procedures enforced by the 

Malaysian government to control the spread of the Cov-19, the difficulty of 

reaching out to visually impaired people has increased. Hence, there is a 

limited number of testers. In this project, a usability test has been conducted 

by two users including the author’s grandparents, who are suffering from 

vision loss. 

 The users require to answer a list of questions after testing the 

application. For every question, the users need to give a score between 1 and 5, 

which 1 means strongly disagree while 5 means strongly agree.  

 

Table 7.6: Usability Test Results 

Questions User 1 User 2 

The application is helpful in 

identifying objects in surrounding. 

3 4 

The application identifies objects 

in surrounding accurately. 

2 3 

The application identifies objects 

in surrounding at a fast speed. 

4 3 

The voice feedback is clear and 

easy to understand. 

3 4 

The application is unnecessarily 

complex. 

1 2 

The application has a familiar user 

interface. 

4 3 

The application is easy to use. 4 4 

I can learn to use this application 

quickly. 

4 5 

I do not need to remember many 

things to use the application.  

3 4 
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I feel more confident when 

navigating using the application. 

3 4 

What did you like best about the 

application? 

Easy to use, simple user 

interface 

Good concept to help 

person with vision 

problem. No need Wifi. 

What did you like least about the 

application? 

Voice feedback is 

robotic. The application 

detects objects that are 

very far away 

sometimes, lead to 

confusion.  

Hard to identify objects 

when the camera is 

shaking. Sometime detect 

things wrongly. 

How would you describe this 

application to a colleague? 

It is okay, but still need 

improvement before a 

person with low vision 

can fully rely on the 

application.  

Nice application to help 

people in need. 

Final comments Hope it can identify all 

objects in daily lives and 

provide more detailed 

descriptions such as 

object colour and its 

distance. 

 

The application should 

support other languages 

because not all people 

learn English. Hope that 

the application can use 

less time to detect thing 

and the time taken for 

detection is not affected 

by camera shaking. 

 

 

 

 

 

 

 

 



109 

 

CHAPTER 8 

 

8 CONCLUSIONS 

 

8.1 Introduction 

This chapter discusses the conclusions, challenges and future enhancements of 

the project. 

 

8.2 Conclusions 

After six months, the project has accomplished the planned objectives 

successfully. Two different pre-trained models, which are SSD Mobilenet V1 

COCO and Faster R-CNN Inception V2 COCO were chosen to implement 

transfer learning. By using transfer learning, this project has retrained the pre-

trained models to detect and recognise 40 classes. Most of the trained object 

classes are the obstacles that visually impaired people may encounter when 

navigating. The train and test datasets that include these 40 classes were 

collected and labelled for model training. After transfer learning, the 

performance of models before and after transfer learning was compared based 

on mAP, confusion matrix, recall, and precision. Moreover, the speed-

accuracy trade-off of the models trained was studied. Finally, the SSD fine-

tuned model was selected to be implemented on the mobile application due to 

its good accuracy and short inference time.     

An object detection and recognition mobile application has been 

developed using Tensorflow Object Detection API, which provides an 

interface for communication between the application and the trained SSD 

model. This mobile application provides contributions to the visually impaired 

community. It provides a cost-effective way to recognise the types of objects 

in the surroundings. Visually impaired people just need a smartphone to use 

this application, without a need to buy other special hardware. A smartphone is 

cheaper and more accessible compared to other advanced technologies. And 

then, they are allowed to use the application anywhere, anytime, without an 

Internet connection.  
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Furthermore, this application assists visually impaired people to carry 

out daily activities and navigate more freely and safely. Visually impaired 

people can be informed of the names and directions of the detected objects in 

the surroundings through voice feedback of the smartphone’s speaker or 

earphone. The direction of the object is classified into left, middle, or right. 

Hence, they do not need to guess the type of objects in the surrounding and 

this prevents injuries due to making wrong assumptions. Apart from that, 

visually impaired people are able to stop and play the voice feedback if 

necessary. Besides, they can also adjust the frequency of speech to a 

comfortable level, so they can understand the feedback more clearly. 

 

8.3 Challenges 

There are few challenges encountered when developing this project. The 

challenges are listed below: 

i. Required a lot of self-learning to pick up Tensorflow and setup the 

Tensorflow environment. 

ii. Lack of powerful computing resources to train the object detection 

model. 

iii. Required a lot of time to label the images manually for transfer 

learning. 

 

8.4 Future Enhancements 

A future enhancement of the project is planned. Although the additional 

features are not available in the current application, they are useful for visually 

impaired people and will be added to the application in the future. The future 

enhancements are listed as following: 

i. Recognise text and currency. 

ii. Provide multiple languages such as Chinese, Germany and French. 

iii. Develop an iOS version of the application. 
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APPENDIX B: Gantt Chart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



119 

 

 



120 

 

 


