

OBJECT RECOGNITION MOBILE APP

FOR VISUALLY IMPAIRED USER

WON WEI CHENG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Honours) Software Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2021

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : Won Wei Cheng

ID No. : 1803164

Date : 13-4-2021

Wei Cheng

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled OBJECT RECOGNITION

MOBILE APP FOR VISUALLY IMPAIRED USER was prepared by

WON WEI CHENG has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Science (Honours)

Software Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr Yong Yoke Leng

Date : 14 April 2021

Signature :

Co-Supervisor :

Date :

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made

of the use of any material contained in, or derived from, this report.

©2021, Won Wei Cheng. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful

completion of this project. I would like to express my gratitude to my research

supervisor, Dr. Yong Yoke Leng for her invaluable advice, guidance and her

enormous patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving

parents and friends who had helped and given me encouragement and support

during the development of the project.

v

ABSTRACT

Vision is one of the most important human senses and it plays a critical role in

understanding the surrounding environment. However, millions of people in

the world experience visual impairment. These people face difficulties in their

daily navigation since they are unable to see the obstacles in their surroundings.

Despite there are many options such as white canes and different advanced

technologies to help visually impaired people when navigating, some of the

options are unreliable, expensive, and hard to access. Hence, a mobile

application is proposed to help visually impaired people to recognise objects in

their surroundings using real-time object detection and object recognition

techniques. This project also has applied transfer learning on multiple pre-

trained models to train the models that are able to classify 40 classes of objects.

The performance of the trained models is compared to select a suitable model

to be implemented in the mobile application. The Evolutionary Prototyping

Model is the development methodology adopted in this project. It involves

developing the application in a series of iterations and refining the application

based on feedback collected in each iteration. A literature review was

conducted on similar existing mobile applications to understand the machine

learning framework used for the implementation of object detection and

recognition, and also identify the important features and workflow within the

application. Finally, an Android-based mobile application was developed

successfully and passed all testing. In conclusion, this project has helped

visually impaired people to determine the objects in their surrounding in a

more cost-effective, accessible and reliable way. They are being informed of

the names and directions of the detected objects in the surroundings through

voice feedback without requiring any network connection or photo capturing.

i

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS i

LIST OF TABLES v

LIST OF FIGURES vii

LIST OF SYMBOLS / ABBREVIATIONS x

LIST OF APPENDICES xi

CHAPTER

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Background 1

1.3 Problem Statement 2

1.3.1 Safety Issues When Navigating Using White

Canes 2

1.3.2 Accessibility and Affordability Issues of

Advanced Technologies 3

1.4 Goal and Sub-Objectives 3

1.4.1 Goal 3

1.4.2 Sub-Objectives 4

1.5 Final Solution 4

1.6 Final Approach 6

1.7 Project Scope 7

1.7.1 Delimitations 7

1.7.2 Limitations 8

1.7.3 Assumptions 9

2 LITERATURE REVIEW 10

ii

2.1 Introduction 10

2.2 Object Detection and Object Recognition Concepts 10

2.2.1 Object Detection and Object Recognition 10

2.2.2 Intersect over Union 11

2.3 State-of-Art Methods for Object Detection and Object

Recognition 12

2.3.1 Region-based Convolutional Neural Network

(R-CNN) 12

2.3.2 Fast Region-based Convolutional Neural

Network (Fast R-CNN) 14

2.3.3 Faster Region-based Convolutional Neural

Network (Faster R-CNN) 15

2.3.4 You Only Look Once (YOLO) 16

2.3.5 Single-Shot Multibox Detector (SSD) 17

2.4 Transfer Learning 18

2.4.1 Transfer Learning and Traditional Machine

Learning 18

2.4.2 Formal Definitions of Transfer Learning 20

2.4.3 Transfer Learning Settings 21

2.4.4 Transfer Learning in The Project 23

2.5 Existing Object Detection and Object Recognition

Mobile Application 26

2.6 API Based Object Detection and Object Recognition

Mobile Application for Visually Impaired User 29

2.6.1 Mode 29

2.6.2 Application Programming Interface (API) 30

2.6.3 Conclusion 33

3 PROJECT METHODOLOGY AND PLANNING 34

3.1 Introduction 34

3.2 Software Development Methodology 34

3.2.1 Requirements Gathering 34

3.2.2 Iteration Process 35

3.2.3 Testing 36

3.3 Project Plan 36

iii

3.3.1 Work Breakdown Structure 37

3.3.2 Gantt Chart 37

3.4 Development Tools 37

3.4.1 Programming Languages 37

3.4.2 Framework 38

3.4.3 Tools and Integrated Development

Environment (IDE) 38

3.4.4 Version Control System 40

4 PROJECT SPECIFICATION 42

4.1 Introduction 42

4.2 Requirements Discovery 42

4.2.1 Features of Similar Existing Mobile

Applications 42

4.2.2 Comparison between Existing Mobile

Application 51

4.2.3 Conclusion 53

4.3 Requirement Specification 54

4.3.1 Functional Requirements 54

4.3.2 Non Functional Requirements 55

4.4 Use Case Modeling 56

4.4.1 Use Case Diagram 56

4.4.2 Use Case Description 56

4.5 Proposed User Interface Design 63

5 PROJECT IMPLEMENTATION 65

5.1 Introduction 65

5.2 Pre-training 66

5.2.1 Dataset Preparation 66

5.2.2 Pre-trained Model Selection 67

5.3 Training 68

5.3.1 Preparation of Labelmap File 68

5.3.2 Data Loading 68

5.3.3 Model Training 69

5.4 Export Trained Model 69

5.5 Evaluation 69

iv

5.6 Implementation of Mobile Application 70

5.6.1 Object Detection and Recognition on Mobile

Application 70

5.6.2 Mobile Application User Interface 71

5.6.3 Reporting of Directions of Detected Objects 72

5.6.4 Adjusting Speech Rate 73

6 RESULTS AND DISCUSSIONS 75

6.1 Introduction 75

6.2 Training Settings 75

6.2.1 Batch Size 75

6.2.2 Training Time of Different Models 78

6.3 Evaluation 79

6.3.1 Comparison of Performance between Pre-

trained and Fine-tuned Models 79

6.3.2 Comparison of Performance between Fine-

tuned SSD and Faster R-CNN Models 86

6.4 Summary 97

7 SYSTEM TESTING 99

7.1 Introduction 99

7.2 Unit Testing 99

7.2.1 Object Detection and Recognition Module 99

7.2.2 Speech Feedback Module 101

7.2.3 Set Speech Rate Module 103

7.2.4 Play/Stop Speech Module 104

7.3 Integration Test 104

7.4 Usability Test 107

8 CONCLUSIONS 109

8.1 Introduction 109

8.2 Conclusions 109

8.3 Challenges 110

8.4 Future Enhancements 110

REFERENCES 111

APPENDICES 116

v

LIST OF TABLES

Table 2.1: Different Settings of Transfer Learning 22

Table 2.2: List of Object Classes for Pre-trained Models

and Target Models 24

Table 2.3: Papers of Mobile Applications that Apply

Object Detection and Object Recognition

Techniques 27

Table 2.4: Comparison between Recognition Accuracy of

Different APIs 31

Table 2.5: Comparison between Google Cloud Vision API

and Tensorflow Object Detection API 32

Table 3.1: System Information of Tested Local Machine 39

Table 3.2: Comparison of Training Performance 39

Table 4.1: Comparison between Existing Object

Recognition Mobile Applications for

Visually Impaired People 51

Table 4.2: Scan Surroundings Use Case 56

Table 4.3: Detect and Recognise Objects Use Case 57

Table 4.4: View Information of Detected Objects Use Case 58

Table 4.5: Receive Speech Feedback Use Case 59

Table 4.6: Stop Speech Use Case 60

Table 4.7: Play Speech Use Case 61

Table 4.8: Set Speech Rate Use Case 62

Table 5.1: Object Classes to be Trained in Transfer

Learning 65

Table 6.1: Comparison of Training Performance When

Using Different Batch Size 75

Table 6.2: Comparison of Training Time Between SSD and

Faster R-CNN Models 78

vi

Table 6.3: mAP Values of Pre-trained and Fine-tuned SSD

and Faster R-CNN Models 86

Table 6.4: True Positive, False Negative, and False

Positive of Fine-tuned SSD and Faster R-

CNN Models 89

Table 6.5: Precision and Recall Values for 40 Classes of

Fine-tuned SSD and Faster R-CNN Models 92

Table 7.1: Unit Test for Object Detection and Recognition 99

Table 7.2: Unit Test for Speech Feedback 101

Table 7.3: Unit Test for Set Speech Rate 103

Table 7.4: Unit Test for Play and Stop Speech 104

Table 7.5: Integration Test 104

Table 7.6: Usability Test Results 107

vii

LIST OF FIGURES

Figure 1.1: Proposed System Overview 5

Figure 1.2: Evolutionary Prototyping Model 7

Figure 2.1: Formula of Intersect over Union (Alsing, 2018) 11

Figure 2.2: Architecture in R-CNN (Argawal, 2018) 13

Figure 2.3: Architecture in Fast R-CNN (Argawal, 2018) 14

Figure 2.4: Architecture in Faster R-CNN (Liu et al., 2019) 16

Figure 2.5: Concept of YOLO in Object Detection and

Recognition (Zhao et al., 2019) 17

Figure 2.6: Architecture in SSD (Liu et al., 2019) 18

Figure 2.7: Traditional Learning and Transfer Learning

(Pan and Yang, 2009) 19

Figure 2.8: Off-The-Shelf Feature Extraction 26

Figure 3.1: Evolutionary Prototyping Model 34

Figure 3.2: Interface of LabelImg Annotation Tool 40

Figure 4.1: Options Available to Users on the Intelligence

Eye Home Screen 43

Figure 4.2: Screenshot of Real-Time Object Recognition in

Intelligence Eye 43

Figure 4.3: Screenshot of Object Recognition 45

Figure 4.4: Image and Text Recognition in the Applicaton 46

Figure 4.5: Object Recognition on the Android Application 47

Figure 4.6: Homescreen of Intelligence Eye 48

Figure 4.7: Image Capturing and Object Recognition in

Intelligence Eye 48

Figure 4.8: Banknote Capturing and Recognition in

Intelligence Eye 49

viii

Figure 4.9: Object Recognition in the Application 50

Figure 4.10: Object Detection and Recognition in the

Application 51

Figure 4.11: Use Case Diagram of the Application 56

Figure 4.12: UI Design for Object Recognition Screen 63

Figure 4.13: Recognition for Multiple Objects 64

Figure 5.1: Summary of the Training Process 66

Figure 5.2: Display of Certain Records in CSV File 67

Figure 5.3: Display of Some Classes in Labelmap File 68

Figure 5.4: Process Flow for Object Detection and

Recognition on Mobile Application 70

Figure 5.5: Screen when Detecting Single Object 71

Figure 5.6: Screen when Detecting Multiple Objects 72

Figure 5.7: Splitting of Mobile Screen into Three Parts 73

Figure 5.8: Adjust Speech Rate Screen 74

Figure 6.1: Development of Total Loss During Training

When Batch Size=4 (After 2 h 31 min of

Training) 76

Figure 6.2: Development of Total Loss During Training

When Batch Size=12 (After 5 h 17 min of

Training) 76

Figure 6.3: Development of Total Loss During Training

When Batch Size=24 (After 2 h 57 min of

Training) 77

Figure 6.4: Development of Total Loss During Training

When Batch Size=36 (After 5 h 41 min of

Training) 77

Figure 6.5: Detections Results of Different Models in

Toilet 80

Figure 6.6: Detections Results of Different Models in

Bedroom 81

ix

Figure 6.7: Detections Results of Different Models at

Outside 82

Figure 6.8: AP Values of Pre-trained and Fine-tuned SSD

Models 84

Figure 6.9: AP Values of Pre-trained and Fine-tuned Faster

R-CNN Models 85

Figure 6.10: Multiclass Confusion Matrix of Fine-tuned

SSD Model 87

Figure 6.11: Multiclass Confusion Matrix of Fine-tuned

Faster R-CNN Model 88

Figure 6.12: Total Number of True Positives, False

Negatives, and False Positives against Fine-

tuned Models 90

Figure 6.13: Comparison of AP Values for 40 Classes

between Fine-tuned SSD and Faster R-CNN

Models 95

Figure 6.14: Comparison of mAP Values between Fine-

tuned SSD and Faster R-CNN Models 96

Figure 6.15: Speed and Accuracy Comparison of Fine-

tuned Models 97

Figure 6.16: Comparison of mAP Values between

Different Models 98

x

LIST OF SYMBOLS / ABBREVIATIONS

D Domain

T Task

𝒳 Feature Space

Y Label Space

API Application Programming Interface

IoU Intersect over Union

mAP Mean Average Precision

CNN Convolutional Neural Network

R-CNN Region-based Convolutional Neural Network

YOLO You Look Only Once

FPS Frame Per Second

SSD Single-Shot Multibox Detector

HTML HyperText Markup Language

XML Extensible Markup Language

IDE Integrated Development Environment

CPU Central Processing Unit

GPU Graphics Processing Unit

TPU Tensor Processing Unit

CUDA Compute Unified Device Architecture

PASCAL Pattern Analysis, Statistical Modelling and Computational

Learning

VOC Visual Object Classes

GUI Graphical User Interface

COCO Common Objects in Context

CSV Comma-Separated Values

xi

LIST OF APPENDICES

APPENDIX A: Work Breakdown Structure 116

APPENDIX B: Gantt Chart 118

1

CHAPTER 1

1 INTRODUCTION

1.1 Introduction

This chapter proposes the background, problem statement, goal and sub-

objectives, proposed solution, proposed approach, and project scope of the

project.

1.2 Background

Smartphones have become a very significant device in our lives. They allow

us to access various services and information more easily. Nevertheless, there

are millions of people unable to see the environment in this world due to visual

impairment. Visually impairment hinders the people from carrying out a lot of

daily activities. It is a challenge for them to travel independently since they are

unable to see the obstacles around them. They always require someone to

guide them when navigating around to prevent injuries and accidents.

Furthermore, they also face difficulties to complete their daily tasks such as

reading and finding an object. They may need help from others to complete

these tasks. However, these already increase the burden of family members

and friends of a visually impaired person.

With the common use of smartphones, visually impaired people are

able obtain benefits from smartphone applications. Several types of mobile

applications have been invented to help the visually impaired people, such as

text readers that read out text on books and documents, color readers that

notify the visually impaired user regarding the colour information of an object,

navigation assistance that helps visually impaired users to navigate around by

telling the route, and other applications. These applications allow visually

impaired people to do some simple tasks independently without having to seek

help from others. The project is proposed to aid the visually impaired people

using computer vision, object detection, and object recognition techniques by

building a mobile application that detects and recognizes objects in the

surroundings and gives audio feedback.

2

1.3 Problem Statement

Vision is critical in our daily lives. However, according to the World Health

Organization (2019), there were more than 2.2 billion people worldwide

suffering from visual impairment. These people are unable to view the

surrounding objects unlike a person with normal vision. They face challenges

in detecting obstacles when navigating (Rajwani et al., 2018; Thakare et al.,

2017). Although there are several options available for visually impaired

people to help them when navigating, such as white canes and advanced

technologies, they still encounter a few problems when accessing or using the

tools.

1.3.1 Safety Issues When Navigating Using White Canes

In Malaysia, the white cane is accepted as a symbol of blindness (National

Council For The Blind Malaysia, 2020). White canes are widely used by

visually impaired people in detecting obstacles since they are cheap and easy

to get (Khan, Khusro and Ullah, 2018; Santos et al., 2020; Chanana et al.,

2017). The canes are painted white to make others notice them easily,

especially when navigating (Industries For The Blind And Visually Impaired,

2020).

But, white canes cannot help them to determine the type of objects in

front of them. Therefore, visually impaired people usually identify the object

in front of them based on their own experience (Parikh, Shah and Safvan

Vahora, 2018). Unfortunately, Santos et al. (2020) and Chanana et al. (2017)

states that they may make incorrect expectations, which can cause them injury.

Besides, white canes are also unable to detect the obstacles above the

waist level (Khan, Khusro and Ullah, 2018; Santos et al., 2020; Chanana et al.,

2017). According to Santos et al. (2020), 40% of visually impaired people

experienced at least one head accidents every year. Santos et al. (2020) also

reported that 23% of accidents had medical consequences. Therefore, white

canes expose visually impaired people to the risks of colliding with the

obstacles above the waist level, such as tree branches, windows, and floating

shelves.

3

1.3.2 Accessibility and Affordability Issues of Advanced Technologies

Several types of technologies that involve special devices have been developed

to help visually impaired people. One of the examples is smart glasses with a

camera to capture the user’s surroundings and send images to a smartphone for

processing (Thakare et al., 2017). Smart stick with ultrasonic, infrared, or laser

sensors also has been developed to inform user information of obstacles

(Sharma et al., 2017). Moreover, Radio Frequency Identification (RFID) tag

and RFID reader is used to assist visually impaired people. RFID tags are

attached to the objects so that the user can identify and locate objects more

easily (Abdul Malik Shaari and Nur Safwati, 2017). However, although these

technologies are able to help the visually impaired users to do their tasks

independently and safely, most of these technologies are expensive and hard to

access (Anitha, Subalaxmi and Vijayalakshmi, 2019; Awad et al., 2018;

Rajwani et al., 2018).

1.4 Goal and Sub-Objectives

This section discusses goal and sub-objectives.

1.4.1 Goal

The goal of this project is to implement an Android-based mobile application

that detects and recognises multiple objects captured by the smartphone’s

camera in real-time and provides audio feedback to assist visually impaired

people identifying surrounding objects more easily. The object detection and

recognition are achieved using transfer learning from existing pre-trained

object recognition models. The system also incorporates new classes for

detection and recognition.

Since only a smartphone is needed to identify surrounding objects

without any other hardware, this can solve the accessibility issues of advanced

technologies because smartphones are easier to be accessed than these special

devices. Furthermore, smartphones are more affordable than these advanced

technologies. The price of smart glasses ranges from USD2,950 to USD5,950,

while the price of smart sticks ranges between RM579 and RM699, which are

more expensive than a low-end smartphone (BAWA, 2020; Wewalk, 2020;

IrisVision Global, 2021).

4

1.4.2 Sub-Objectives

i. To apply transfer learning to multiple pre-trained object detection

models then train the models to detect and recognize 40 classes of

objects. This also helps to fine-tune the pre-trained models and

improve the models performance.

ii. To develop a real-time application that is able to analyse the

surrounding scene and detect a maximum of 10 objects within the

camera’s field-of-view.

iii. To evaluate the training performance and recognition accuracy of

different pre-trained object detection models before and after transfer

learning.

iv. To develop an application that uses voice feedback to notify the user of

the names and directions of detected objects. This helps to reduce the

safety issues encountered when navigating with the white cane.

1.5 Final Solution

With the rapid advancement of technology, smartphones have become a

familiar and highly available device (Rajwani et al., 2018; Khan Shishir et al.,

2019; Anitha, Subalaxmi and Vijayalakshmi, 2019). According to TheStar

(2018), smartphone penetration in Malaysia stood at 70% in the third quarter

of 2017. Hence, the final solution proposed an Android mobile application to

assist visually impaired people to detect objects around them using real-time

object detection and object recognition techniques. Since the smartphone is the

only device needed, this solution is more cost-effective and easier to access

rather than the technologies that need special devices. Furthermore, it is safer

than white canes because the application is able to determine and inform the

types of obstacles so that visually impaired people can avoid making wrong

assumptions when navigating. The application also helps users to detect and

identify obstacles above the waist level. An overall system architecture was

designed to describe the solution, as illustrated below.

5

Figure 1.1: Proposed System Overview

In this system, a visually impaired user opens the mobile application

and scans his or her surroundings using the smartphone camera. The scene

captured through the continuous stream rather than taking a picture of a

specific scene. Hence, the visually impaired user does not have difficulty in

taking a good quality picture and does not need to capture a picture every time.

Furthermore, the scene captured will not be stored in the smartphone memory

so that the user does not have to delete the images from time to time.

The scene scanned is then sent to the Tensorflow Object Detection API

(Application Programming Interface) for detecting and recognising objects in

the scene. Due to time limitations, an API is utilised in developing the

application since it provides a list of operations so that a developer does not

need to write code from scratch. The Tensorflow Object Detection API is an

open source machine learning framework. It has been developed by Google

Brain Team in 2015. It prepares a collection of pre-trained object detection

and recognition models for a developer to deploy directly into the application

and a developer also can choose to train his or her own model using this

framework.

Other than Tensorflow Object Detection API, there are other types of

object detection API available, such as Google Cloud Vision API, Microsoft

6

Cognitive Toolkit, and Pytorch. Although Google Cloud Vision API provides

more features such as colour recognition, landmark recognition, handwritten

text recognition, and others, it is free for the first 1000 units per month only

for each feature. Both Microsoft Cognitive Toolkit and Pytorch are open

source. However, Microsoft Cognitive Toolkit does not support object

detection models for mobile devices (Argawal, 2018). Pytorch provides more

pretrained models than Tensorflow, but it has less community compared to

Tensorflow so it will be harder to get the tutorials (Lobo, 2017). Moreover,

Rane, Patil and Barse (2019) state that using Pytorch, the process is less

efficient and is less reliable than Tensorflow. Hence, the main reason for

choosing Tensorflow Object Detection API is that it is open source and has the

largest community.

Instead of applying the existing pre-trained models into the application

directly, transfer learning was applied to retrain the existing pre-trained

models to recognise new classes and improve the accuracy of the recognition

results of the object detection model. The final object detection model has

been trained to detect and recognise the objects in environment context,

especially indoor and outdoor obstacles. Its purpose is to make navigation of

visually impaired people easier.

The object detection model within the application detects and

recognises an object based on its knowledge trained on the dataset. After that,

the object detection model will return the label, coordinate, and confidence

score of each object detected. As the visually impaired user is difficult to see

the name and the direction of the object displayed on the mobile screen, the

name and direction are spoken out in audio feedback by using Android text-to-

speech API. The audio feedback is provided to the user through smartphone

speakers or earphones.

1.6 Final Approach

The methodology applied in the development of this application was the

evolutionary prototyping model. The development of the complete system was

done by undergoing a series of iterations until an acceptable prototype was

built. The first phase of the model was requirements gathering. Next, design,

prototyping, and user evaluation phases were performed repeatedly until the

7

prototype was accepted by users. The design and development of the prototype

were incrementally improved based on the users’ feedback in every iteration.

After the users was satisfied with the prototype, the final prototype was

developed into the complete system. Figure 1.2 below illustrates the overview

of the evolutionary prototyping model.

Figure 1.2: Evolutionary Prototyping Model

By applying this methodology, users are involved actively in the

software development process. A developer can get feedback from users and

find out the limitations, errors, and missing requirements in the prototype early.

This is able to reduce the cost of rework since the cost of bugs tends to

increase as the project proceeds. Furthermore, the complete system will be

more user friendly and able to meet the users’ requirements more accurately as

the system is improved according to users’ opinions.

1.7 Project Scope

The section discusses delimitations, limitations, and assumptions of the project.

1.7.1 Delimitations

This project is aimed to develop an Android-based mobile application that

detects and recognizes objects in real-time.

8

Users can access this application by installing it on their Android

smartphone. The main target users of this application are people who have a

vision impairment or blindness. By using this application, visually impaired

users can scan their surroundings using their smartphone’s camera without

taking a photo of the objects and saving the photo into the memory. This

application is able to recognize at least 90 classes of objects. It will detect,

recognize, and locate up to 10 objects within the scene captured by the camera.

The location of each object detected is surrounded with a rectangular box

(boundary box) and its name is labeled, along with a score representing the

confidence of the accuracy of the detection. The detection results of an object

are only displayed and informed when the confidence score is above 0.6 to

maintain the accuracy of the application. Besides that, audio feedback is

provided to inform users about the name of objects detected through

headphones or the smartphone’s speaker.

1.7.2 Limitations

Certain scope is not covered in this project due to time constraints and wide

coverage of the existing scope. The following are the uncovered scope of this

project:

i. The development of this application that does not support iOS-based

platforms.

Although iOS smartphones have a large population, this project takes the

Android-based application as initial prototype development due to limited time.

The application on iOS-based platforms will be developed in the future.

ii. Color detection and recognition

This application is not able to recognize the colors of the detected objects due

to the wide scope. Colour detection and recognition is useful because it can

assist the visually impaired users to determine the colors of the detected

objects instead of their name only. Besides, color detection and recognition

also assists people with color blindness to identify colors.

9

iii. Object detection and recognition in the dark

The accuracy of object detection and recognition results in the dark is affected

by the camera quality of the smartphone. The application may not work well if

the smartphone’s camera has a poor performance when shooting in the dark.

1.7.3 Assumptions

i. Assume that users are not completely blind.

ii. Assume that users are not deaf-blind people.

iii. Assume that users have allowed the system to access their smartphone

cameras.

iv. Assume that the smartphone of users has enough battery for them to

use this application for navigation.

v. Assume that the minimum API level of the user's smartphone is 23

(Android 6.0).

10

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

This chapter studies on concepts of object detection and object recognition,

state-of-art methods, transfer learning, existing object detection and object

recognition mobile application, and API based object detection and object

recognition mobile application for visually impaired user.

2.2 Object Detection and Object Recognition Concepts

2.2.1 Object Detection and Object Recognition

For the term “object detection”, researchers have put forward different views.

Liu et al. (2019) and Argawal (2018) propose that object detection consists of

recognising objects in an image and localising them by drawing bounding

boxes around them. Several authors including Badave et al. (2020),

Michelucci (2019, p.198), Zhao et al. (2019), and Alsing (2018) add that

object detection involves object classification and object localisation. Object

classification is a process of identifying and recognising the category of each

object into the classes which were defined previously in a given image

(Badave et al., 2020; Michelucci, 2019, p.198; Zhao et al., 2019). This process

involves labelling the name of the objects detected in the image. Badave et al.

(2020), Michelucci (2019, p.198), and Zhao et al. (2019) state that object

localisation is the process of labelling the location of each object in the image

by drawing a rectangular box around the object, known as a boundary box.

However, the bounding box drawn is always rectangular in shape and object

localisation does not draw the exact shape of the object.

However, Garrido and Joshi (2018, p.170) argue that object detection

only includes localising objects rather than classifying them. They suggest that

object detection means detecting whether there are any objects in an image.

The object can be anything because the category of the object is not the

concern in object detection. This means that in object detection, a computer

does not need to know what the object is. When an object is detected, a

11

boundary box will be drawn around the detected object in the image to notify

people that something is detected and indicate the location of the object.

Furthermore, Garrido and Joshi (2018, p.170) also introduce the term

“object recognition”. According to Garrido and Joshi (2018, p.170), object

recognition refers to the process of determining what the object is in the image

based on previous knowledge or experience. Hence, to implement object

recognition, a dataset is used to train a model so that the model can identify the

category of different objects based on its knowledge. Opposite to object

detection, object recognition does not inform the location of the object inside a

given image. In addition to outputting the name of the object, Garrido and

Joshi (2018. P. 170) also point out advanced object recognition can extract

other information related to the object detected such as colour, species, and

type.

2.2.2 Intersect over Union

Nonetheless, for localising the object in an image, IoU (Intersect over Union)

is applied to identify the amount of overlap between predicted boundary box

and the ground-truth (actual object boundary). Its formula is shown below:

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛

Figure 2.1: Formula of Intersect over Union (Alsing, 2018)

Michelucci (2019, p.198) notes that IoU is equal to 1 when there is an

ideal case of perfect overlap, while IoU is equal to 0 when there is no

12

overlapping. Alsing (2018) points out that IoU must be equal or greater than

0.5 to consider the detection as true positive. False positive is a condition that

there are duplicate boundary boxes or IoU is lesser than 0.5. False negative is

returned when an object is not detected at all. The study (Alsing, 2018) shows

that the predicted match will only be true positive if it is not used previously to

eliminate the duplicate detections of objects.

Furthermore, Alsing (2018) also mentions that boundary boxes and

classes of all objects detected are arranged in descending order of probability.

A cut-off threshold can be used to discard the results below a specific score to

increase the accuracy of the model.

2.3 State-of-Art Methods for Object Detection and Object

Recognition

The state-of-art methods for object detection and object recognition can be

categorised into two types that are Region Proposal Based Framework and

Unified Based Framework (Zhao et al., 2019).

Region Proposal Based Framework is a two stages method. It produces

proposed regions from the input image and classifies each proposed region

into different classes (Zhao et al., 2019; Liu et al., 2019). The examples of

Region Proposal Based Framework are R-CNN, Fast R-CNN, and Faster R-

CNN.

However, computations in Region Proposal Based Framework are

expensive for mobile devices since the devices have smaller storage and

computational capability (Liu et al., 2019). Hence, Unified Based Framework,

which is a one-stage method, has been developed. Unified Based Framework

predicts boundary box coordinates and class probabilities directly without

proposing regions from the input image (Zhao et al., 2019). This can reduce

the time needed in object detection and recognition. Two common examples of

Unified Based Framework are SSD and YOLO.

2.3.1 Region-based Convolutional Neural Network (R-CNN)

According to Argawal (2018), Zhao et al. (2019) and Liu et al. (2019), R-CNN

involves three stages as listed below. Figure 2.2 illustrates the stages in R-

CNN.

13

i. Around 2000 proposed regions are extracted from an input image by

scanning the image by using an algorithm named Selective Search.

ii. Every proposed region is wrapped and resized into the fit size. At this

stage, CNN is used to extract a high-level feature representation of

each proposed region.

iii. Object classification and localisation are performed. Linear SVMs

(Support Vector Machines) are utilised to classify the proposed regions

and assign the boundary boxes based on the features extracted by CNN.

Each proposed region is given a score on the examples of positive and

negative regions. Bounding box regressor is applied to the scored

regions to generate the boundary box that surrounds the specific object

in the image.

Figure 2.2: Architecture in R-CNN (Argawal, 2018)

However, there are certain limitations of R-CNN. Argawal (2018),

Alsing (2018) Zhao et al. (2019) and Liu et al. (2019) agree that training an R-

CNN is time-consuming since every stage is required to be trained separately.

Besides, Zhao et al. (2019) and Liu et al. (2019) point out that the training

process also consumes a large amount of disk space. It is because features

extracted from the proposed regions are stored in the disk. Besides, the

detection and recognition process of R-CNN is slow. According to Argawal

(2018), it takes 47 seconds to detect and recognise objects in one image on a

GPU. Hence, this causes R-CNN is not suitable to be applied in the real-time

object detection and recognition applications.

14

2.3.2 Fast Region-based Convolutional Neural Network (Fast R-CNN)

To improve R-CNN, Fast R-CNN is proposed. According to Argawal (2018)

and Liu et al. (2019), the processes involved in Fast R-CNN is stated below

and illustrated in Figure 2.3:

i. The image is input to a single CNN that contains several convolutional

layers to generate a convolution feature map.

ii. Same as R-CNN, the image is scanned by Selective Search to generate

proposed regions. Each proposed region is then warped and fed into a

RoI (Region of Interest) pooling layer.

iii. A fixed-length feature for every proposed region is extracted by the

RoI pooling layer and to be passed into a sequence of CNN fully

connected layers.

iv. The fully connected (FC) layers consist of two branches, which are

softmax classifier and bounding box regressor. Softmax classifier

identifies the class of the object while bounding box regressor adjusts

the bounding boxes.

Figure 2.3: Architecture in Fast R-CNN (Argawal, 2018)

Alsing (2018) and Argawal (2018) mentions that Fast R-CNN is nine

times faster than R-CNN in speed. Additionally, Alsing (2018) and Liu et al.

(2019) also indicate that Fast-RCNN makes the training process more efficient

because the classifier and bounding box regression can be trained

simultaneously without separating them. Other than that, Argawal (2018) adds

that one CNN is needed to be trained to extract the entire image in Fast R-

CNN, rather than many CNNs are trained to extract each proposed region in

15

the image by using R-CNN. However, the Selective Search Algorithm that

applied in Fast R-CNN is slow and expensive. It brings negative impacts to the

performance of Fast R-CNN.

2.3.3 Faster Region-based Convolutional Neural Network (Faster R-

CNN)

Faster R-CNN is an improvement of Fast R-CNN. Many papers (Argawal,

2018; Alsing, 2018; Liu et al., 2019; Zhao et al., 2019) state that Faster R-

CNN improves the performance by replacing the Selective Search and Edge

Box within Fast R-CNN by Region Proposal Network (RPN). RPN is faster

than Selective Search and Edge Box as it shares the convolutional features of

entire images with the detection network and this increases the efficiency and

the accuracy in generating proposed regions from the input image (Zhao et al.,

2019; Alsing, 2018).

According to the studies (Zhao et al., 2019; Liu et al., 2019; Argawal,

2018; Alsing, 2018), as shown in Figure 2.4, there are several processes in

Faster R-CNN:

i. The image is input into CNN to produce proposed regions.

ii. RPN takes the image to produce k proposed regions that have different

aspect ratios for every convolutional feature map location. Each of

them is called an anchor.

iii. Every anchor is fed into the fully connected layers that can be divided

into two parts, which are classifier and bounding box regressor. An

objectness score and four coordinates of the boundary box is assigned

to each anchor.

iv. The proposed regions are chosen by comparing the objectness score

with the threshold. If a region has an objectness score that is higher

than the threshold, the region and the convolutional feature map will be

chosen and passed to the detector.

16

Figure 2.4: Architecture in Faster R-CNN (Liu et al., 2019)

Since RPN shares the convolutional features with Fast R-CNN, the

cost of region proposal is almost free (Argawal, 2018; Zhao et al., 2019; Liu et

al., 2019). Therefore, the proposal for Faster R-CNN makes real-time object

detection and object recognition possible. Nevertheless, Zhao et al. (2019) say

that performance bottleneck is still a problem since some time is needed to

deal with different components in Faster R-CNN.

2.3.4 You Only Look Once (YOLO)

As YOLO is a method that treats object detection and recognition as a

regression problem from image pixels to spatial location of the boundary

boxes, it is able to unify classification and localisation tasks (Alsing, 2018;

Zhao et al., 2019). Several of papers (Liu et al., 2019; Zhao et al., 2019; Alsing,

2018) explain that YOLO will divide the input image into a grid that contains

S*S cells, as shown in Figure 2.5. Every grid cell is limited to predict only one

class of object within the cell. Each of them will predict B boundary box, C

class probabilities, and confidence scores. The entire process in YOLO does

not involve generating proposed regions from the input. The features from the

whole image are used in a global way (Liu et al., 2019).

17

Figure 2.5: Concept of YOLO in Object Detection and Recognition (Zhao et

al., 2019)

YOLO performs fast after eliminating the region proposals. It can

process images in real-time at 45 Frames per second (FPS) while Fast YOLO

at 155 FPS. Moreover, YOLO has a lesser chance of predicting false-positives

in the background because it looks at the entire image when processing the

image (Liu et al., 2019; Zhao et al., 2019). However, Liu et al. (2019) add that

YOLO tends to have more localisation errors than Fast R-CNN due to its

course division of grid. In addition to course division of grid, YOLO faces

difficulties in handling small objects since each cell grid is allowed to classify

one object only.

2.3.5 Single-Shot Multibox Detector (SSD)

Argawal (2018) defined SSD as a method that can predict the boundary box

and the class of objects in a single shot simultaneously. An input image is

required to go through all convolutional layers to create convolutional feature

maps with different sizes. Convolutional filters are utilised to produce anchors

for each feature map and predict class probabilities and coordinates of the

boundary box. Instead of using fixed-size grids like YOLO, SSD uses a set of

anchors that have different sizes and scales (Zhao et al., 2019). Zhao et al.

(2019) state that objects with different sizes can be handled by merging

18

detection results from multiple feature maps with different resolutions. Since it

is a Unified Based Framework, region proposals are not implemented. The

architecture in SSD is illustrated in Figure 2.6.

Figure 2.6: Architecture in SSD (Liu et al., 2019)

SSD has an outstanding performance. According to Liu et al. (2019),

SSD operates at 59 FPS, so it is faster than Faster R-CNN (7 FPS) and YOLO

(45 FPS). Although SSD has excellent speed performance, its accuracy is not

degraded severely, but has an excellent performance too. Zhao et al. (2019)

and Liu et al. (2019) found that the accuracy of SSD can compete with Region

Proposal Framework such as Faster R-CNN. Furthermore, varying scales of

feature maps in SSD results in higher detection accuracy than YOLO,

especially when detecting and recognising small objects. In conclusion, SSD is

a method that allows real-time speed and maintaining high-quality detection at

the same time.

2.4 Transfer Learning

2.4.1 Transfer Learning and Traditional Machine Learning

Transfer learning is a famous method used in machine learning nowadays.

Transfer learning allows the knowledge to be transferred from the previously

trained model to a new model. Hence, the new model can be built and trained

in a time-saving way and with fewer data. On the other hand, traditional

machine learning learns the task from scratch. Figure 2.7 illustrates the

difference between the learning process of traditional machine learning and

transfer learning.

19

Figure 2.7: Traditional Learning and Transfer Learning (Pan and Yang, 2009)

 Sarkar (2018) mentions that traditional transfer learning is isolated. No

knowledge is transferred from a model to another model. According to Weiss,

Khoshgoftaar, and Wang (2016), in traditional machine learning, training data

and testing data are assumed to be chosen from the same domain. Hence, the

characteristics of feature space and data distribution should be the same. When

there are differences between data distribution of training data and testing data,

the performance of the model will be degraded. For example, we are going to

train a model that detects objects in the kitchen. If the training dataset is

related to object detection at the kitchen, traditional machine learning allows

the target model to achieve good detection results. Nevertheless. if the training

dataset is obtained from object detection at the park, the differences in domain

data will cause the detection results to be degraded. However, Weiss,

Khoshgoftaar, and Wang (2016) mention that in real-world scenarios, that are

cases where it is hard to collect the training data that corresponds to the feature

space and data distribution of testing data.

Thus, transfer learning is needed to improve a learner from the target

domain by transferring the knowledge from a related domain (Weiss,

Khoshgoftaar, and Wang, 2016). In the example regarding object detection at

the kitchen, object detection at the kitchen and the park still have some

common characteristics. Both of them detects objects, so certain low-level

features such as edges, intensity, corners, and shapes can be shared among

them (Sarkar, 2018). Furthermore, several papers (Argawal, 2018; Patil and

Gaikwad, 2018; Sarkar, 2018; Weiss, Khoshgoftaar, and Wang, 2016) mention

20

that transfer learning requires less target training data compared to traditional

machine learning. Moreover, Argawal (2018) and Zhang, Yang and Sinnott

(2019) point out that the benefits of performing transfer learning on a pre-

trained model are to shorten the training time and improve the performance of

the model.

2.4.2 Formal Definitions of Transfer Learning

Pan and Yang (2009) introduce some notations and definitions to explain

transfer learning. This section will list and discuss the notations and definitions

used for the rest of the paper.

According to Pan and Yang (2009) and Weiss, Khoshgoftaar, and

Wang, (2016), a domain, D, contains two parts. The first part is a feature space

𝒳 while the second part is a marginal probability distribution P(X), where X =

{x1, ..., xn} ∈𝒳. According to the example provided by Weiss, Khoshgoftaar,

and Wang (2016), if the machine learning task is software module defect

classification and every software metric is treated as a feature, and then 𝒳 is

the space of all possible feature vectors, xi is i th feature vector corresponding

to some software modules, while X is a learning sample.

 Given a particular domain, a task, T, consists of two elements. One of

the element is a label space Y while another element is a predictive function f

(·). The function f (·) is learned from the training data that consists of feature

and label pairs {xi, yi} where xi ∈ X and yi ∈ Y (Sarkar, 2018; Weiss,

Khoshgoftaar, and Wang, 2016; Pan and Yang, 2009). The function f (·) is

used to predict the corresponding label f (x), of an instance x. Refer to the

example of software module defect classification, Y is a set contains all labels,

which are True and False, while yi is the value of True or False.

 From the definitions discussed above, Pan and Yang (2009) denote

domain by D = {𝒳, P(X)} and denote a task by T = {Y, f (·)}. Relate back to

transfer learning, source domain data is denoted as DS = {(xS1
, yS1

), ..., (xSn,

ySn)}, where xSi ∈𝒳S is the data instance of DS while ySi ∈ YS is the

corresponding class label. Also, Pan and Yang (2006) denote target domain

data as DT = {(xT1
, yT1

), ..., (xTn, yTn)}, which the input xTi ∈𝒳T while yTi ∈

YT is the corresponding class label for xTi.

21

 Given a source domain DS with corresponding source task TS and a

target domain DT with corresponding target task TT, the goal of transfer

learning is to improve the target predictive function fT (·) in DT by utilising

the knowledge in DS and TS, by which DS ≠DT or TS ≠TT (Sarkar, 2018;

Weiss, Khoshgoftaar, and Wang, 2016; Pan and Yang, 2009).

Pan and Yang (2009) and Weiss, Khoshgoftaar, and Wang (2016)

discuss that since D = {𝒳, P(X)}, DS ≠DT represents two conditions, which

are illustrated in the following using the software module defect example:

i. 𝒳 S ≠ 𝒳 T, where the feature space of the source domain and target

domain are different. In the example, the metrics of the source software

project are different from that of the target software project.

ii. P(XS) ≠ P(XT), where the marginal probability of the source domain

and target domain are different. For example, the source software is an

application software while the target software is a driver software.

Similarly, Pan and Yang (2009) and Weiss, Khoshgoftaar, and Wang

(2016) state that since T = {Y, P(Y | X)}, TS ≠TT implies the two conditions

below:

i. YS ≠YT, where the label spaces between the source task and target task

are different. For example, the source software has binary classes to

detect module defect, such as True for defect module while False for

non-defect module. The target software uses three classes to classify

three levels of defect software module.

ii. P(YS |XS) ≠ P(YT |XT), where the conditional probability distributions of

source and target domains are different. It is corresponding to the

condition where the source software modules and the target software

modules are very unbalanced in terms of classes defined.

2.4.3 Transfer Learning Settings

Transfer learning can be classified into three settings, those are transductive

transfer learning, inductive transfer learning, and unsupervised transfer

learning, according to the nature of the source and target domains and tasks

22

(Sarkar, 2018; Pan and Yang, 2009). Table 2.1 summarises the different

settings of transfer learning.

Table 2.1: Different Settings of Transfer Learning

Transfer

Learning

Settings

Related Areas Source

Domain

Labels

Target

Domain

Labels

Tasks

Inductive

Transfer

Learning

Multi-task

Learning

Available Available Classification,

Regression

Self-taught

Learning

Unavailable Available Classification,

Regression

Transductive

Transfer

Learning

Sample

Selection Bias,

Domain

Adaptation,

Co-variate

Shift

Available Unavailable Classification,

Regression

Unsupervised

Transfer

Learning

 Unavailable Unavailable Dimensionality

Reduction,

Clustering

2.4.3.1 Inductive Transfer Learning

Pan and Yang (2009) propose that in inductive transfer learning, the target task

is different from the source task, whether the source and target domains are

same or not. Besides, inductive transfer learning requires some labelled data in

the target domain to induce an object predictive model fT(·) for the target

domain.

Inductive transfer learning can be further classified into multi-task

learning and self-taught learning according to the labelling situations in the

source domain. According to Pan and Yang (2009), inductive transfer learning

multi-task learning are similar if the source domain has a lot of labelled data.

23

If labelled data in the source domain are not available, inductive transfer

learning will be similar to self-taught learning (Pan and Yang, 2009).

2.4.3.2 Transductive Transfer Learning

The source and target tasks in transductive transfer learning setting are the

same, only their domains are different. Within the transductive transfer

learning setting, there is a lot of labelled data in the source domain while the

target domain does not have available labelled data (Sarkar, 2018; Pan and

Yang, 2009). Depends on whether feature spaces among both source and

target domains are diffenrent or their marginal probabilities are different,

transductive transfer learning is able to be further classified into domain

adaptation, sample selection bias, and co-variate shift (Sarkar, 2018; Pan and

Yang, 2009).

2.4.3.3 Unsupervised Transfer Learning

In unsupervised transfer learning, Pan and Yang (2009) propose that the target

task is different to the source task, but both of them are related to each other.

Hence, solving unsupervised tasks in the target domain is the main focus of

this setting (Sarkar, 2018; Pan and Yang, 2009). Some examples of tasks

include dimensionality reduction, clustering, and density estimation (Pan and

Yang, 2009). In this setting, labelled data are not available in both source

domain and target domain.

2.4.4 Transfer Learning in The Project

The above research found that transfer learning provides many benefits for

model training. Due to time constraints and computational resource limitations,

the project has applied transfer learning to train object detection models.

2.4.4.1 Pre-trained Models Selected

Tensorflow has provided a collection of open source object detection models

pre-trained on the Kitti dataset, COCO dataset, Open Images dataset, and other

datasets. Since the problem solved in the COCO dataset is similar to this

project, the pre-trained models which were previously trained on COCO

dataset was chosen to implement transfer learning. The COCO dataset is a

24

large and high-quality dataset for computer vision. It includes 80 object classes

and provides more than 200,000 labelled images (COCO, 2021).

 The pre-trained models used for transfer learning are SSD Mobilenet

V1 COCO and Faster R-CNN Inception V2 COCO. The transfer learning

performance between these two models was compared.

2.4.4.2 Transfer Learning Settings Applied

In this project, inductive transfer learning was applied. Both source and target

models were trained with annotated data. Besides, the models trained in this

project and the pre-trained models chosen have different tasks due to their

difference in label spaces. Table 2.2 shows the label spaces of both pre-trained

models and target models.

Table 2.2: List of Object Classes for Pre-trained Models and Target Models

 Pre-trained Model Target Model

Common

Objects

Classes

 Person

 Bicycle

 Car

 Motorcycle

 Bus

 Train

 Truck

 Bench

 Cat

 Dog

 Umbrella

 Ball

 Skateboard

 Bottle

 Knife

 Chair

 Couch

 Potted plant

 Bed

 Table

 Toilet

 Computer

 Mouse

 Cell phone

 Sink

 Refrigerator

 Clock

 Vase

 Scissors

Different

Objects

Classes

 Book

 Hair drier

 Toothbrush

 Television

 Remote

 Microwave

 Oven

 Teddy bear

 Toaster

 Keyboard

 Airplane

 Boat

 Traffic light

 Tie

 Suitcase

 Frisbee

 Skis

 Snowboard

 Kite

 Baseball bat

 Baseball

glove

 Surfboard

 Tennis racket

 Wine glass

 Cup

 Window

 Door

 Plush toy

 Bin

 Tree

 Bag

 Street sign

 Fan

 Street lamp

 Shelf

 Staircase

25

 Fire hydrant

 Stop sign

 Parking

meter

 Bird

 Horse

 Sheep

 Cow

 Elephant

 Bear

 Zebra

 Giraffe

 Backpack

 Handbag

 Fork

 Spoon

 Bowl

 Banana

 Apple

 Sandwich

 Orange

 Broccoli

 Carrot

 Hotdog

 Pizza

 Donut

 Cake

According to Table 2.2, the target models detect and recognise certain

object classes that are not included in the COCO dataset, such as bin, window,

and tree. However, they also detect and recognise certain common classes,

such as mouse, table, train, bus, and truck. Differences in object classes

recognised cause YS ≠YT and then TS≠TD.

Moreover, the target domains are different but related to the domains

of the pre-trained models. The target models are designed to detect and

recognise objects in the environment context, especially indoor and outdoor

obstacles. However, the COCO dataset focuses more on the general context.

Hence, the target domain can be considered as a subdomain of the COCO

dataset domain.

2.4.4.3 Transfer Learning Strategies Applied

This project reused the feature extractor parameters from the existing object

detection checkpoint of the pre-trained models and used these features to

detect and recognise the custom classes. According to Alsing (2018), Gao and

Mosalam (2018), Marcelino (2018), and Sarkar (2018), as shown in Figure 2.8,

this process is known as off-the-shelf feature extraction and it involves a series

of steps below.

i. Remove the last fully connected layer in the base CNN, which provides

the final class label for the pre-trained model.

26

ii. Freeze the convolutional base in the pre-trained model.

iii. The pre-trained model is then treated as a fixed feature extractor. Use

these features to train a new classifier that detects and recognises the

target classes.

Figure 2.8: Off-The-Shelf Feature Extraction

This strategy is useful when the computational power is limited and the

target dataset is small (Marcelino, 2018; Gao and Mosalam, 2018). Other than

that, Gao and Mosalam (2018) mention that this strategy is able to reduce the

training time greatly.

2.5 Existing Object Detection and Object Recognition Mobile

Application

With the popularity of smartphones and the invention of various object

detection have brought forth the launching of various mobile applications.

Each of them has different purposes and usages. They tend to detect and

recognise objects in different contexts. The applications take the scene

captured by the smartphone camera as input and display the results in text and

Convolutional base
(feature extraction)

Classifier
(object
classification)

27

boundary boxes. Table 2.3 below shows some papers of mobile applications

that apply object detection and object recognition techniques.

Table 2.3: Papers of Mobile Applications that Apply Object Detection and

Object Recognition Techniques

Paper Target

User

Detection and

Recognition

Category

Purpose

Object Detection in

Refrigerators using

Tensorflow (Argawal,

2018)

Everyone Grocery food Recognise objects kept

in a refrigerator and

tell the user whether

the object could be

present in a

refrigerator

FoodTracker: A Real-

time Food Detection

Mobile Application by

Deep Convolutional

Neural Networks

(Sun, Radecka, and

Zilic, 2019)

Everyone

who cares

about

health

Food Recognise food and

return nutrition facts to

the user

Object Detection and

Its Implementation on

Android Devices (Li

and Zhang, 2017)

Road user Person and car Detect and recognise

objects on the road

such as car, pedestrian,

and cyclist

Classification of

Vegetables using

TensorFlow (Patil and

Gaikwad, 2018)

Supermark

et cashier

Vegetable To help cashier staff in

classifying the species

of vegetables

purchased by

customers

28

TensorFlow: A

Vegetable

Classification System

and Its Performance

Evaluation

(Ruedeeniramana,

Ikeda and Barolli,

2017)

Farmer Vegetable To help farmers in

classifying the species

of vegetable

A Mobile Application

for Cat Detection and

Breed Recognition

Based on Deep

Learning (Zhang,

Yang and Sinnott,

2019)

Everyone Cat Classify different

species of cats

Although the pre-trained model is sufficient to classify different classes

of objects, a number of authors (Argawal, 2018; Patil and Gaikwad, 2018;

Zhang, Yang and Sinnott, 2019) justify that they retrain the model with the

dataset of the targeted context to improve the accuracy of the object

recognition in that context. For instance, Zhang, Yang and Sinnott (2019) have

trained the pre-trained model with an additional 14 classes of cat species. The

authors (Argawal, 2018; Patil and Gaikwad, 2018; Zhang, Yang and Sinnott,

2019) claim that the method to fine-tune the model is called transfer learning.

Li and Zhang (2017) found that the accuracy of their application

degrade when the scene becomes darker or blurry. For example, the scene

becomes blurry when it is rainy or foggy, while the scene gets darker on a

cloudy day or at night. Besides, Zhang, Yang and Sinnott (2019) also test their

application in complex scenarios. The scenarios include one cat, parts of cats,

multiple cats, and many objects not related to cats appear in the scene.

Moreover, some papers (Sun, Radecka and Zilic, 2019; Li and Zhang, 2017;

Ruedeeniramana, Ikeda, and Barolli, 2017; Zhang, Yang and Sinnott, 2019)

29

found that the uniqueness of the characteristics of the object can increase the

accuracy of the recognition results. However, small variations among different

objects and varying instances of a specific type of an object such as colours,

sizes, and shapes will decrease the quality of the results too. All of these

factors should be considered when developing an object detection and

recognition application.

2.6 API Based Object Detection and Object Recognition Mobile

Application for Visually Impaired User

In addition to object detection and object recognition mobile applications

invented for people with normal vision, some researchers have not forgotten

the visually impaired community. They have developed object detection and

object recognition mobile applications to help visually impaired people to

identify objects in their surroundings. These applications are able to give a lot

of benefits to the visually impaired people since it does not need any other

device, easy to access, and cost-effective (Anitha, Subalaxmi and

Vijayalakshmi, 2019; Awad et al., 2018; Rajwani et al., 2018).

 Many related papers (Badave et al.. 2020; Vaidya et al., 2020; Khan

Shishir et al., 2019; Anitha, Subalaxmi and Vijayalakshmi, 2019; Jakhete et al.,

2019; Felix, Kumar, and Veeramuthu, 2018; Awad et al., 2018; Rajwani et al.,

2018) state that their applications scan or capture images of the objects to

make object detection and recognition and use a text-to-speech engine to

provide voice feedback to the visually impaired users through smartphone’s

speaker or earphones.

2.6.1 Mode

Some of these applications (Vaidya et al., 2020; Awad et al., 2018; Rajwani et

al., 2018; Parikh, Shah and Vahora, 2018; Felix, Kumar, and Veeramuthu,

2018) require the users to capture the image of the objects every time they

want to detect and recognise the objects. The image captured is then sent to a

deep learning model in the cloud or the server through the Internet for image

processing. Nevertheless, Khan Shishir et al. (2019) argue that it may be

difficult for visually impaired people to take a proper image since they are not

able to see. Furthermore, Khan Shishir et al. (2019) also add that the images

30

captured will be stored in the smartphone memory, so the visually impaired

users require to delete the images frequently.

Therefore, in order to solve the problems mentioned above, some

papers (Badave et al., 2020; Khan Shishir et al., 2019; Anitha, Subalaxmi and

Vijayalakshmi, 2019; Jakhete et al., 2019) propose mobile applications that do

not require the visually impaired people to take pictures of their surroundings.

The visually impaired people just need to scan their surroundings using their

smartphone’s camera without taking a picture of the objects. These

applications will detect and recognise the objects in a frame using real-time

object detection (Badave et al., 2020; Khan Shishir et al., 2019; Anitha,

Subalaxmi and Vijayalakshmi, 2019). According to Anitha, Subalaxmi and

Vijayalakshmi (2019), this approach allows the visually impaired users to

identify objects without pressing the capture image button every time.

Moreover, Khan Shishir et al. (2019) state that visually impaired users do not

need to worry about taking a high-quality picture.

2.6.2 Application Programming Interface (API)

There are several object detection API that can be used to implement object

detection and object recognition in mobile applications. Tensorflow Object

Detection API is utilised by the majority of authors (Badave et al.. 2020; Khan

Shishir et al., 2019; Anitha, Subalaxmi and Vijayalakshmi, 2019; Jakhete et al.,

2019) to develop their applications. A few authors (Felix, Kumar, and

Veeramuthu, 2018; Rajwani et al., 2018) use Google Cloud Vision API while

some authors (Vaidya et al., 2020; Awad et al., 2018) do not use any APIs in

the implementation of object detection and object recognition. For those who

do not use API, they generally many libraries such as OpenCV, Tensorflow,

CNNdroid, or other libraries for image processing. The accuracy of each API

is stated in Table 2.4.

31

Table 2.4: Comparison between Recognition Accuracy of Different APIs

Paper API used Accuracy

Eye Assistant : Using mobile application to

help the visually impaired (Khan Shishir et

al., 2019)

Tensorflow Object

Detection API

More than

80%

Android Based Object Detection System

for Visually Impaired (Badave et al., 2020)

Tensorflow Object

Detection API

Around

87%

A Smart Personal AI Assistant for Visually

Impaired People (Felix, Kumar and

Veeramuthu, 2018)

Google Cloud

Vision API

Around

85%

Real-Time Object Detection for Visually

Challenged People (Vaidya et al., 2020)

None More than

75%

 According to Table 2.4, the object detection and recognition

application that does not use API have the lowest accuracy. The applications

that employ Tensorflow’s Object Detection API and Google Cloud Vision API

have a similarity in their accuracy. Thus, performance of the APIs are better

than the proprietary algorithms in terms of recognition accuracy.

The papers (Felix, Kumar, and Veeramuthu, 2018; Rajwani et al., 2018)

that apply Google Vision API in their application state that the image captured

is uploaded to Google Cloud through the network connection. Google Cloud

Vision API will then analyse the image by comparing the features of the input

image with the images in the dataset to obtain the label. After the analysis of

the image is done, the label is sent back to the application. Hence, the

disadvantage of utilising Google Cloud Vision API is it requires a network

connection for image processing. Moreover, the applications also need the

users to capture an image of the object every time. Furthermore, privacy issues

arise when the image is uploaded to the Google Cloud. Besides, another

downside of Google Cloud Vision API is it is not open-source. It is just free

for the first 1000 units per month for each service. However, both papers

(Felix, Kumar, and Veeramuthu, 2018; Rajwani et al., 2018) mention that

32

Google Cloud Vision API provides a larger variety of services, including face

detection, logo detection, landmark detection, and image properties detection.

Google Cloud Vision API is able to classify more classes of objects.

According to Khan Shishir et al. (2019), in the applications that use

Tensorflow Object Detection API, the image captured will be sent to the

trained object detection model. The model will then extract the features in the

image and perform object recognition by assigning labels. The whole process

does not require any network connection or remote server and it is happening

in real-time (Khan Shishir et al., 2019). Another strengths of Tensorflow

Object Detection API are it is open-source and it prepares a collection of pre-

trained object detection and recognition models for a developer to adopt the

model directly into the application. Pre-trained models that employ different

kind of state-of-art methods are available, such as SSD and Faster R-CNN.

However, according to Badave et al. (2020), Tensorflow Object Detection API

is required to be retained to recognise various dishes, colours, and landmarks.

Both Google Cloud Vision API and Tensorflow Object Detection API have

their strengths and weaknesses. Table 2.5 summarises the comparison between

Google Cloud Vision API and Tensorflow Object Detection API.

Table 2.5: Comparison between Google Cloud Vision API and Tensorflow

Object Detection API

API
Google Cloud Vision API Tensorflow Object Detection

API

Open-source No Yes

Features Object detection, face

detection, logo detection,

landmark detection, and

image properties detection

Object detection

Internet

connection

Required Does not required

Pre-trained

models available

Less More

Community Smaller Larger

33

2.6.3 Conclusion

From the study of existing object detection and object recognition mobile

application for visually impaired user, the application can be developed into

two ways. The first way is the application requires the users to capture photo

of the object for recognition. The second way is the application scans and

recognises the users’ surroundings automatically without capturing images.

Many researchers found that the second way is better in helping the visually

impaired people. However, existing applications that use Google Cloud Vision

API are implemented in the first way since the users need to capture an image

for uploading to Google Cloud for image processing. This also causes the

application cannot recognize objects when there is no Internet connection. On

the other hand, Tensorflow Object Detection API allows the application to be

implemented in the first way or second way. Most of the existing applications

that implement Tensorflow Object Detection API do not require Internet

connection to run. In this project, the second way was applied together with

Tensorflow Object Detection API to improve the usability of the application.

34

CHAPTER 3

3 PROJECT METHODOLOGY AND PLANNING

3.1 Introduction

The chapter discusses the software development methodology, work

breakdown structure, Gantt chart, and development tools applied in this project.

3.2 Software Development Methodology

Figure 3.1: Evolutionary Prototyping Model

This project adopted the Evolutionary Prototyping Model as the development

methodology. Evolutionary Prototyping Model involves developing the

application incrementally until the final system meeting the entire scope is

delivered.

3.2.1 Requirements Gathering

During this phase, the requirements of this project were collected through

conducting research. The focus areas of the study included machine learning

35

framework applied and functionalities provided by some existing object

detection and object recognition mobile applications. The requirement

gathering was carried out via a literature review.

 The literature review was conducted on several existing object

detection and recognition mobile applications designed for visually impaired

people. The purpose of the literature review was to understand the machine

learning framework or API used by similar existing applications. The speed

and accuracy of the frameworks or APIs were studied to find out the suitable

tool that provides quality assistance to the visually impaired people.

 Furthermore, another goal of the literature review was to isolate out the

important functionalities provided by those similar existing applications. From

the research, the standard workflow and features available in those related

applications could be identified. Some strengths and weaknesses of the

applications also could be found and reviewed to improve this project.

3.2.2 Iteration Process

This project has three iterations of prototype development. The application

would be refined and improved after each iteration. In the first iteration, real-

time object detection and recognition was the feature to be developed. The

application will detect and recognise the objects scanned by the smartphone’s

camera and return the name and confidence score of the object in textual form.

Boundary boxes are designed to label the location for each detected object.

The second iteration involved training multiple models to recognise 40 classes

of objects using transfer learning and select the most suitable model for real-

time implementation. In the last iteration, it involved the development of the

feature that provides voice feedback to inform users the names of objects

detected. In this iteration, the features that allow user to stop and play the

voice feedback and adjust speech rate of voice feedback were developed.

There are three phases in each iteration, which are design, prototyping, and

prototype review.

36

3.2.2.1 Design

For the design phase, the system architecture, workflow and interface of the

application was designed. The design of the application should follow the

requirements and feedbacks collected. This phase was repeated after each

iteration of prototyping review.

3.2.2.2 Prototyping

The prototype system was developed based on the design done in the previous

phase. The prototype was responsible for presenting the user interface and

features in the application. It demonstrated the ways of application works and

how it looks like.

3.2.2.3 Prototype Review

After the prototype had been developed, users would test and evaluate the

prototype. Their feedback and comments were recorded and reviewed. These

feedbacks and comments were essential to this project for developing a better

prototype in the next iteration and final system. The prototype was then

refined based on the feedback and comments collected from users and

continued with the next iteration.

3.2.3 Testing

During the testing phase, different types of testing had been performed on the

application to ensure that the final system meet the desired quality and

requirements. Bugs found in the testing were fixed. The types of testing that

used in this project are unit testing, integration testing, and usability testing.

After all tests passed, the application was ready for deployment.

3.3 Project Plan

Project plan was developed to manage the schedule of the project. This aided

in ensuring that a proper schedule is adhered to and the project can be

completed by the deadline. Work Breakdown Structure and Gantt chart were

utilized in project planning.

37

3.3.1 Work Breakdown Structure

A work breakdown structure breaks the scope of the project into smaller

activities. The work breakdown structure of this project is attached as

“Appendix A: Work Breakdown Structure”.

3.3.2 Gantt Chart

Gantt chart is used to display project schedule information by listing the

project activities in the work breakdown structure and their start and finish

dates. The Gantt chart of this project refers to “Appendix B: Gantt Chart”.

3.4 Development Tools

3.4.1 Programming Languages

3.4.1.1 Java

Java is one of the official languages for Android applications development.

Besides, addition to the Android platform, Java can run on several platforms

such as Windows, Mac OS, and Unix. Object-oriented properties of Java allow

extension of the application simply and effectively.

3.4.1.2 Extensible Markup Language (XML)

XML is a markup language like HTML. In Android, XML is often used in

designing the layout of the application. It is easy to be understood by humans

and computers and compatible with Java completely (IBM, 2020). The

structure of XML makes it easier to do modifications.

3.4.1.3 Python

Python is an interpreted programming language. It is famous because its

syntax is similar to English, which makes it easier to read and understand.

Besides, its syntax is clear and less complex (W3 Schools, 2021). In this

project, Python was used in machine learning to train an object detection

model.

38

3.4.2 Framework

3.4.2.1 Tensorflow Lite

Tensorflow Lite is an open-source framework for deep learning. It is a

machine learning model explicitly designed for mobile devices to meet the

limitations of mobile phone processing and memory resources. Tensorflow

Lite already provided a collection of pre-trained models that solve different

types of machine learning problems. In this project, Tensorflow Lite was used

for object detection and recognition.

3.4.2.2 Camera 2 API

Camera 2 API provides a framework for accessing and configuring cameras on

the devices. It allows the user to capture images and videos in the application

developed. Other than capturing images and videos, a developer can customise

the camera feature through this API. In this application, Camera 2 API was

applied to capture the real-time scene.

3.4.3 Tools and Integrated Development Environment (IDE)

3.4.3.1 Android Studio

Android Studio is an official IDE for development of Android application. It

contains a variety of features that helps to increase development speed and

improve application quality. These features include emulator, testing tools,

drag and drop interfaces editor, and real-time CPU and memory statistics

(Developers, 2020).

3.4.3.2 Google Colaboratory

Google Colaboratory is a free cloud environment built based on Jupyter

Notebook. It allows Python code to be executed in a web browser. Most

importantly, it provides free access to computing resources such as GPU and

TPU for users to train machine learning models. It also offers commands to

access data in Google Drive. The Google Colaboratory notebooks are stored in

Google Drive in Jupyter Notebook format (.ipynb).

 A test was carried to compare the Tensorflow training performance in

various environments, which were local machine CPU and Google

39

Colaboratory CPU, GPU, and TPU. GPU offered by Google Colaboratory is

12GB NVIDIA Tesla K80 GPU. GPU on the local machine was not tested

because it did not meet the minimum CUDA architecture requirements

supported by Tensorflow, that was CUDA architecture must be higher than 3.5.

Table 3.1 displays the system information of the local machine.

Table 3.1: System Information of Tested Local Machine

Operating System Windows 7 Home Premium

System Type 64-bit operating system

Processor Intel(R) Core(TM) i5-2430M CPU @ 2.40GHz

RAM 8GB

Table 3.2 summarises the training performance in different

environments. The model to be retrained in this testing is the SSD Mobilenet

V1 COCO pre-trained model. According to the results, the training speed on

Google Colaboratory CPU is twice as fast as the training speed on the local

machine CPU. On the other hand, the training speed on Google Colaboratory

GPU and TPU are several times faster than the training speed on CPU of both

local machine and Google Colaboratory. Therefore, in order to train the object

detection model more efficiently, free GPU and TPU on Google Colaboratory

were utilised in this project.

Table 3.2: Comparison of Training Performance

Environment Average time needed for per step (seconds)

CPU on Local Machine 23

CPU on Google Colaboratory 12

GPU on Google Colaboratory 0.5

TPU on Google Colaboratory 1.3

3.4.3.3 LabelImg

LabelImg is an open source image annotation tool written in Python. It

provides users with an easy way to label boundary boxes of various object

40

classes in images. LabelImg allows annotations to be saved as XML files,

either in PASCAL VOC format or YOLO format.

Figure 3.2: Interface of LabelImg Annotation Tool

3.4.3.4 Tensorboard

Tensorboard is a built-in visualisation tool of Tensorflow. It visualises the

information in the event files output by Tensorflow program. This assists users

to track and visualise experiment metrics such as accuracy and loss and also

visualise model graph.

3.4.3.5 Anaconda Navigator

Anaconda Navigator is available for Windows, macOS, and Linux. It is a

desktop GUI covered in the Anaconda distribution. It allows users to launch

applications and manage various conda packages and environments more

easily without using command-line commands (Anaconda, 2021).

3.4.4 Version Control System

3.4.4.1 Github

Github is a version control system that manages multiple versions of the

source code and other documentation through recording every commit to a file

or a set of files. It enables developers to view project history and restore the

41

required files to a specific previous version quickly. This means that if you

break the code or lose the file, you can recover it easily with minimal overhead.

42

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

This chapter discuss the requirements discovery, requirements specification,

use case modelling, and preliminary user interface design.

4.2 Requirements Discovery

In fact-finding, comparison between similar existing object recognition mobile

applications for visually impaired people qA performed to find out the basic

requirements. A total amount of seven similar existing applications proposed

by researchers were studied to identify the requirements and features. All of

these applications capture surroundings through the smartphone's back camera.

The final output is then provided in audio form through the smartphones’

speaker or earphones.

4.2.1 Features of Similar Existing Mobile Applications

4.2.1.1 Eye Assistant : Using Mobile Application to Help the Visually

Impaired (Khan Shirshir et al., 2019)

Eye Assistant is an Android application proposed by Khan Shishir, Rashid

Fahim, Habib, and Farah in 2019 in order to provide assistance to visually

impaired people. The main features of the mobile application are recognising

objects and recognising text in real-time environments. All features in the

application are accessible without requiring any Internet connection.

 To use the application, the user first opens the application and two

options are displayed on the screen. As shown in Figure 4.1, the first option is

“Detect Text” and the second option is “Detect Object”. A user can choose

whether to read text or recognise objects. If the user chooses the “Detect Text”

option, the camera will open and the application will read out the text detected

to the user. If the user chooses the “Detect Object” option, the smartphone’s

camera will also open and the application recognises the object detected in the

scene then informs the user the name of each object. Besides, the name of the

43

object detected and its confidence score are displayed on the screen. The

accuracy of the application in recognising every object is larger than 80%.

Figure 4.1: Options Available to Users on the Intelligence Eye Home Screen

Figure 4.2: Screenshot of Real-Time Object Recognition in Intelligence Eye

44

4.2.1.2 Android Based Object Detection System for Visually Impaired

(Badave et al., 2020)

The paper has been proposed by Badave, Jagtap, Kaovasia, Rahatwad,

and Kulkarni in 2020. The name of the application is not mentioned in the

paper. The application is developed in Android platforms. The main feature of

the application is to locate and recognise objects in surroundings.

 The application opens the camera and scans objects immediately

without requiring the user to input any additional commands or options once it

is opened. The application will recognise the objects, calculate their distance

from the user, and determine the direction of the objects. Three directions are

used in the application, that are left, right, and center. After scene processing is

done, the application will tell the user about the name and direction of each

object and the distance between the user and the object. For instance, the audio

feedback is “A cat is at 2 metres at the right”. As shown in Figure 4.3, on the

mobile screen, the name of the object and the confidence score of the

recognition results are shown. The boundary box is used to indicate the

location of the object in the scene.

Moreover, if there are multiple objects in the scene, the application

does not speak out all objects that appear in the scene. It will assign priorities

to different detected objects and speak out the object with the highest priority

only. The object that causes potential danger to the user such as a car, is given

the highest priority. Furthermore, to improve the application, the recognition

results that are below than 70% will be discarded, meaning that the objects

will not be informed to the user. Besides, the application can recognise objects

with 87% accuracy. There are three languages available in the application, that

are English, Hindi, and Marathi.

45

Figure 4.3: Screenshot of Object Recognition

4.2.1.3 A Smart Personal AI Assistant for Visually Impaired People

(Felix, Kumar and Veeramuthu, 2018)

Felix, Kumar, and Veeramuthu have proposed a paper regarding an

Android assistant application for visually impaired people in 2018. There are

several features available in the application, those are object recognition,

landmark recognition, text recognition, currency recognition, and chat bot.

A chat bot accepts voice commands from the user then returns suitable

audio responses. A user can ask the chat bot about his or her current location

and guidance to reach a destination. Furthemore, when the user asks the

application for surrounding information, the application will reply to the user

about the names of object detected in the images and their distance from the

user. Other than that, the application also can alert the user about the obstacles

in the surrounding through speech. Additionally, a user also can ask the

application to read out the printed or handwritten text through text

recognition.

However, the application must work under Internet connection, It is

also developed in English only.

46

Figure 4.4: Image and Text Recognition in the Applicaton

4.2.1.4 Real-Time Object Detection for Visually Challenged People

(Vaidya et al, 2020)

 This is another paper regarding object recognition application for

visually impaired users. It is proposed by Vaidya, Shah, Shah, and

Shankarmani in 2020. The application is developed in web and Android

platforms. The only feature of the application is recognising objects in real-

time and the application can run without requiring Internet connection.

 Once the application is opened, the camera will be launched

automatically and it will capture the surroundings view. User needs to press on

the button “Start/Stop Yolo '' to recognise the objects in the view. After the

view captured is processed successfully, the application informs the name of

the objects detected and the absolute location of the objects through voice

output. The application also displays the name and the confidence score of

each object and the boundary box that encloses the object.

47

 The average computational time required for recognition is 2000ms.

The application can detect and recognise more than 75% of the objects

accurately at a time.

Figure 4.5: Object Recognition on the Android Application

4.2.1.5 Intelligent Eye: A Mobile Application for Assisting Blind People

(Awad et al., 2018)

Intelligent Eye is also an Android application developed to perform

object recognition to assist visually impaired people. It has been proposed by

Awad, Haddad, Khneisser, Mahmoud, Yaacoub,and Malli in 2018. The

application provides a set of features, including light detection, colour

recognition, object recognition, and banknote recognition. All features can be

accessed without Internet connection.

When opening the application, a homescreen with several options in

Figure 4.6 is displayed. A user needs to choose an option by clicking a

particular button. Light detection is performed by using the embedded light

sensor in a smartphone. The values of light intensity are read. Then, the

application plays sound beeps with different pitches based on the light

intensity. The user can stop the beeps by clicking the “Stop” button. To make

the application provide an audio description regarding the nature of the light,

the user is required to click the “Discover button”. On the other hand, colour

detection is performed by recognising the colour of the object in the image

48

captured. The colour name of the object is then notified to the user through

speech. For object recognition, the user needs to take an image of the object.

The application will then display and read out the first three relevant detection

results together with their relevance scores. Adding the relevance scores of the

three detection results brings a sum of 100%. For banknote recognition, the

user also needs to capture an image of the banknote. The value of the banknote

is then detected and read out.

Figure 4.6: Homescreen of Intelligence Eye

Figure 4.7: Image Capturing and Object Recognition in Intelligence Eye

49

Figure 4.8: Banknote Capturing and Recognition in Intelligence Eye

4.2.1.6 Real Time Object Detection for Visually Challenged Persons

(Anitha, Subalaxmi and Vijayalakshmi, 2019)

 Anitha, Subalaxmi, and Vijayalakshmi have developed a real-time

object recognition mobile application on Android platform. Object

recognition is the only feature provided by the application. The application

also does not require Internet connection to work.

 After users open the application, the smartphone’s camera is launched

automatically and the application starts to detect and recognise the objects in

the scene without requiring any commands or input from the user. As

illustrated in Figure 4.9, the first three relevant detection results are displayed

on the screen together with the probability. Sum of probabilities for all

detection results is 100%. At the same time, the application will give a voice

output to inform the detected object with the highest probability.

50

Figure 4.9: Object Recognition in the Application

4.2.1.7 Object Recognition App for Visually Impaired (Jakhete et al.,

2019)

The paper has been proposed by Jakhete, Bagmar, Dorle, Rajurkar, and

Pimplikar in 2019. This paper proposes an Android application that assists

visually impaired people to recognise objects in real-time. The main features

of the application is to locate the objects and provide the names of objects.

The application will detect and recognise objects in the scene

automatically without requiring any user input after the application is opened.

The application will then generate an audio output to inform about the object

detected that has the maximum confidence in the scene captured. The scenes

are chosen at a particular time interval to prevent the hindrance of the audio

output. At the same time, the label, boundary boxes, and confidence score of

all objects detected are shown on the screen.

51

Figure 4.10: Object Detection and Recognition in the Application

4.2.2 Comparison between Existing Mobile Application

Table 4.1: Comparison between Existing Object Recognition Mobile

Applications for Visually Impaired People

Paper/

Application

*

A B C D E F G

Platform Android Android Android Android,

web

Android Android Android

Number of

objects can

be

recognised

in a scene

One Multiple One Multiple One One Multiple

52

Information

provided in

object

recognition

audio

feedback

Names of

object

detected

Name,

direction,

and

distance of

only one

object in

the scene

with the

highest

priority

Names and

distances of

objects

detected

Names

and

absolute

locations

of objects

detected

First three

relevant

detection

results

together

with their

relevance

scores

Name of

only one

object in

the scene

with the

highest

confidenc

e score

Name of

only one

object in

the scene

with the

highest

confidence

score

Additional

functions

Text

recognition

No Landmark

recognition

, text

recognition

, currency

recognition

, and chat

bot

No Light

detection,

colour

detection,

and

banknote

recognition

No No

Interactivity Yes (Click

on buttons

to choose

recognising

text or

object)

No Yes (in

voice

command

form)

Yes (Click

on a

button to

start or

stop

processing

image)

Many No No

Interface

navigability

Simple Very

simple

More

interfaces

Very

simple

A lot of

interfaces

Very

simple

Very

simple

Internet

connection

No No Yes No No No No

53

Languages English English,

Hindi, and

Marathi

English English English English English

* A: Eye Assistant : Using Mobile Application to Help the Visually Impaired

(Khan Shirshir et al., 2019); B: Android Based Object Detection System for

Visually Impaired (Badave et al., 2020); C: A Smart Personal AI Assistant for

Visually Impaired People (Felix, Kumar and Veeramuthu, 2018); D: Real-

Time Object Detection for Visually Challenged People (Vaidya et al, 2020); E:

Intelligent Eye: A Mobile Application for Assisting Blind People (Awad et al.,

2018); F: Real Time Object Detection for Visually Challenged Persons

(Anitha, Subalaxmi and Vijayalakshmi, 2019); G: Object Recognition App for

Visually Impaired (Jakhete et al., 2019)

4.2.3 Conclusion

Object recognition is the most important function to be included in the object

recognition mobile application for visually impaired people. All applications

in Table 4.1 include this function. Due to time constraints, this project focused

on this important function only.

However, each application can recognise a different number of objects

in the scene. In this project, an application that can recognise up to 10 objects

in a scene was developed. Furthermore, there are some differences in

information provided in audio feedback among the applications compared. In

this project, the application developed will notify the visually impaired user

about names of the objects detected within a scene. The names are reported

following the descending order of accuracy scores. The reason to recognise

and report multiple objects in the scene is to increase the safety of the users

when navigating. This tries to prevent the users from colliding with any

obstacles in their path.

Furthermore, the level of interactivity between the application and the

user of each existing application is different. Some existing applications

capture scenes and recognise objects in the surrounding without requiring any

input from the user. On the other hand, some applications require the user to

54

click on buttons or give commands before capturing scenes and recognising

objects. Nevertheless, it is not a good idea to include too many visual

interactions and interfaces since the visually impaired users are not able to see

the screen. In this project, the application does not need the user to capture an

image of the objects for object recognition. This can prevent the problem of

inaccurate recognition results due to poor image quality.

The application to be developed in this project does not require Internet

connection to run. It enables the application to be used when the Internet

signal is not good or the user does not have Internet access.

Although object recognition is the only service to be developed, this

project also developed some other features to improve user experience. Rather

than just scanning surroundings and telling the name, location, and confidence

score of each detected object like the applications studied, this application

allows the user to stop or play speech and set speech rate of voice feedback.

The user gains more control over audio feedback settings through

implementation of these features. Besides, this project developed the

application that supports English only since English is the international

language.

4.3 Requirement Specification

4.3.1 Functional Requirements

The functional requirements for the application are:

i. The application shall be able to detect and recognise at least 90 classes

of objects.

ii. The application shall be able to detect and recognise up to 10 objects in

a scene within 2 metres away from the camera’s field-of-view.

iii. The application shall be able to launch the camera once getting camera

access permission from the user.

iv. The application shall be able to scan and capture the surrounding

objects automatically once the camera is launched without requiring

the user to click anything to capture the image.

v. The application shall be able to indicate the location of a detected

object using a boundary box.

55

vi. The application shall be able to display the predicted name and the

confidence score of each object detected.

vii. The application shall be able to provide voice feedback to alert the user

of the detected objects.

viii. The application shall be able to discard incorrect recognition results

with a confidence score of less than 60%.

ix. The application shall be able to enable users to stop the feedback

speech.

x. The application shall be able to enable users to play the speech after

stopping the speech.

xi. The application shall be able to enable users to set the speech rate of

the voice feedback.

4.3.2 Non Functional Requirements

4.3.2.1 Availability

i. The application shall be available for 24/7.

ii. The application shall be available to work normally offline.

4.3.2.2 Usability

i. The application shall be user friendly by providing a simple user

interface and system flow which are able to be used by the visually

impaired user easily and conveniently although they have problems in

watching the screen.

4.3.2.3 Performance

The application shall be able to detect and recognise objects and give voice

feedback to the users within five seconds.

56

4.4 Use Case Modeling

4.4.1 Use Case Diagram

Figure 4.11: Use Case Diagram of the Application

4.4.2 Use Case Description

Table 4.2: Scan Surroundings Use Case

Use Case ID 1

Use Case Name Scan surroundings

Actors User

Description User wants to scan his or her surroundings using the

smartphone's camera.

57

Pre-condition User opens the application.

Post-condition -

Relationships:

 Association: n/a

 Include: n/a

 Extend: n/a

 Generalization: n/a

Flow of Events:

1. User clicks on the icon of the application.

2. System launches the camera automatically and captures the surrounding

view.

Alternative flow of events:

2.1 If the application is launched on the device for the first time, system

requests camera access permission from user.

2.1.1 User choose to allow the camera access by clicking the “Allow”

button.

2.1.2.1 Use case continues.

2.1.2 User choose to deny the camera access request by clicking the

“Deny” button.

2.1.2.1 System exits.

 2.1.2.2 Use case terminates.

Table 4.3: Detect and Recognise Objects Use Case

Use Case ID 2

Use Case Name Detect and recognise objects

Actors User

Description User wants to detect and recognise objects in the

surroundings.

58

Pre-condition User scans the surroundings using the smartphone’s

camera.

Post-condition -

Relationships:

 Association: User

 Include: Scan surroundings

 Extend: Receive speech feedback

 Generalization: n/a

Flow of Events:

1. Perform Scan surroundings use case.

2. User holds the camera against the objects wanted to be recognised.

3. System detects and recognises objects in the scene captured.

4. System assigns a label, boundary box coordinates, and confidence score

for each object detected.

Alternative flow of events:

2.1 The camera is covered.

 2.1.1 The system cannot detect and recognise any objects.

 2.1.2 Use case terminates.

Table 4.4: View Information of Detected Objects Use Case

Use Case ID 3

Use Case Name View information of detected objects

Actors User

Description User wants to view the information of detected objects

displayed on the smartphone screen.

Pre-condition System detects and recognises an object in the scene

captured and its confidence score is larger than 60%.

Post-condition -

59

Relationships:

 Association: n/a

 Include: n/a

 Extend: n/a

 Generalization: n/a

Flow of Events:

1. Perform Detect and recognise objects use case.

2. System indicates the location of each object detected by using a boundary

box to surround the object.

3. System displays the name and confidence score of each object detected.

4. User views the name, boundary box, and confidence score of each object

detected.

Alternative flow of events:

2.1 The recognition result of an object is lower than 60%.

 2.1.1 System discards the recognition result.

 2.1.2 System does not display the information of the object on the screen.

Table 4.5: Receive Speech Feedback Use Case

Use Case ID 4

Use Case Name Receive speech feedback

Actors User

Description User wants to get speech feedback about the objects in the

surroundings through the smartphone’s speaker or

earphones.

Pre-condition System detects and recognises an object in the scene

captured and its confidence score is larger than 60%.

Post-condition -

60

Relationships:

 Association: n/a

 Include: n/a

 Extend: n/a

 Generalization: n/a

Flow of Events:

1. Perform Detect and recognise objects use case.

2. System sorts the recognition results in descending order of confidence

score.

3. System speaks out the names of the objects in the recognition results

according to the order.

4. User receives the speech feedback about the information of objects in the

surroundings.

Alternative flow of events:

2.1 The recognition result of an object is lower than 60%.

 2.1.1 System discards the recognition result.

 2.1.2 System does not inform user about the name of the object.

Table 4.6: Stop Speech Use Case

Use Case ID 5

Use Case Name Stop speech

Actors User

Description User wants to stop speech feedback from system.

Pre-condition User opens the application.

Post-condition -

61

Relationships:

 Association: User

 Include: n/a

 Extend: Play speech

 Generalization: n/a

Flow of Events:

1. User clicks on the “Stop/Play Speech” button.

2. System stops giving the speech feedback.

3. User does not receive speech feedback from system anymore.

Alternative flow of events: -

Table 4.7: Play Speech Use Case

Use Case ID 6

Use Case Name Play speech

Actors User

Description User wants to play the stopped speech feedback.

Pre-condition User stops the speech feedback.

Post-condition -

Relationships:

 Association: n/a

 Include: n/a

 Extend: Play speech

 Generalization: n/a

Flow of Events:

1. User clicks on the “Stop/Play Speech” button.

2. Perform Receive speech feedback use case.

62

Alternative flow of events: -

Table 4.8: Set Speech Rate Use Case

Use Case ID 7

Use Case Name Set speech rate

Actors User

Description User wants to set the rate of the speech feedback provided

by system.

Pre-condition User opens the application.

Post-condition -

Relationships:

 Association: User

 Include: n/a

 Extend: n/a

 Generalization: n/a

Flow of Events:

1. User clicks on the “Set speech rate” button.

2. System displays a list of speech rate.

3. User selects the speech rate he or she wants.

4. System saves the speech rate chosen by user.

5. System updates the speech rate of the voice feedback.

Alternative flow of events:

3.1 User does not select a speech rate.

 3.1.1 Use case terminates

63

4.5 Proposed User Interface Design

The figures below illustrate the proposed user interface design. The design was

finished in the first iteration of the project development. The design is able to

work and recognise objects.

 This is the screen displayed when the user opens the application. The

application will launch the camera automatically then detect and recognise

objects in the scene. The name, location, and confidence score of each object

are returned.

Figure 4.12: UI Design for Object Recognition Screen

64

Figure 4.13: Recognition for Multiple Objects

65

CHAPTER 5

5 PROJECT IMPLEMENTATION

5.1 Introduction

As mentioned in the earlier chapters, SSD Mobilenet V1 and Faster R-CNN

Inception V2 are the models pre-trained on the COCO dataset. The COCO

dataset focuses more on the objects within the general context, while the fine-

tuned models focus on the objects within the environmental context, especially

indoor and outdoor obstacles. Transfer learning has been applied to the pre-

trained models to train the models to detect and recognise 40 classes of objects

stated in Table 5.1. Also, the fine-tuned models were trained to detect and

recognise certain object classes that are not included in the COCO dataset. The

detailed comparison of object classes in the pre-trained and fine-tuned models

are available in Table 2.2 in Chapter 2.

Table 5.1: Object Classes to be Trained in Transfer Learning

Person Cat Couch Plush toy

Bicycle Dog Potted plant Bin

Car Umbrella Bed Bag

Motorcycle Ball Table Street sign

Bus Skateboard Scissors Fan

Train Bottle Toilet Tree

Truck Knife Window Street lamp

Bench Chair Door Shelf

Staircase Mouse Sink Clock

Computer Cell phone Refrigerator Vase

 This chapter discusses the activities carried before, during, and after

the model training. It also describes the implementation of the fine-tuned

model on the mobile application. Figure 5.1 shows a summary of the training

processes.

66

Figure 5.1: Summary of the Training Process

5.2 Pre-training

Before starting the transfer learning, the train and test datasets were prepared

and the pre-trained models were chosen.

5.2.1 Dataset Preparation

First and foremost, a train dataset and test dataset must be prepared before

starting to train a model. Since the pre-trained models are trained on the

COCO dataset, most of the images in the train dataset are chosen from the

COCO dataset. The dataset was then processed to ensure that every object

class has at least 200 examples in the train dataset to improve the performance

67

of the trained model. The final train dataset contains 8004 training images,

while the test dataset consists of 674 testing images.

Then, the train and test dataset were annotated manually. The

annotated classes and coordinates of boundary boxes of all objects in an image

are stored in an XML file. After that, for each train dataset and test dataset, all

XML files of the dataset were converted into a single CSV file, which was

further converted into a TF Record file. TF Record is a standard format

accepted by Tensorflow and they store the data into binary strings and serve as

input for machine learning framework.

Figure 5.2: Display of Certain Records in CSV File

5.2.2 Pre-trained Model Selection

Afterwards, the pre-trained models were selected to conduct transfer learning.

As mentioned in the earlier chapters, the pre-trained models to be used in this

project are SSD Mobilenet V1 COCO Model and Faster R-CNN Inception V2

COCO Model from the Tensorflow Zoo. These models do not perform well at

68

detecting and recognising the 40 classes required for this project. Hence,

transfer learning was done to fine-tune the pre-trained models with the

required datasets so they are able to predict the 40 classes more effectively.

5.3 Training

There are several steps involved in model training, which are preparing a

labelmap file, loading data into memory, and then running the training.

5.3.1 Preparation of Labelmap File

A labelmap file that contains string class names with their corresponding

integer IDs is created and saved in pbtxt format. This labelmap file and the TF

records are requisite for the model training.

Figure 5.3: Display of Some Classes in Labelmap File

5.3.2 Data Loading

Since the volume of the training data is too large, it requires a large amount of

memory. It is difficult to load all images into the local memory. This causes

the training to be killed at the beginning. Hence, the data is loaded by batches

during the training. Nevertheless, this solution still consumes a large amount

of memory and decreases the efficiency of the training significantly. Thus,

Google Colaboratory that provides 35 GB of memory was used to train the

69

model. All files required for training were uploaded to Google Drive to be

accessed by Google Colaboratory. GPU on Google Colaboratory also has been

used to speed up the training process.

5.3.3 Model Training

The checkpoint of the pre-trained model was used as the starting point for the

transfer learning process and was used to initialise the weights of the CNN.

Then, the last fully connected layer which is a classifier that returns the

predicted class label for the pre-trained model was removed from the pre-

trained model. The rest of the layers in the pre-trained model were frozen and

used to train a new classifier that detects and recognises the required classes.

During the training, every input image was resized to a fixed size of

300x300 pixels to improve the training efficiency. Furthermore, dropout and

data augmentation were applied to prevent the model from overfitting.

Dropout is a mechanism where a subset of neurons was removed in each

training iteration to construct many networks from the same single CNN. Data

augmentation is a mechanism to create artificial images by making

modifications such as transformations and rotations on the existing images.

Horizontal flips were used during the training process. In this project, the

model was trained for 200000 steps before being evaluated.

5.4 Export Trained Model

After the model training was finished, the model was converted into a graph

for running the detections. For the SSD model, it was exported to frozen SSD

Tensorflow Lite Graph and then further converted to Tensorflow Lite file.

Tensorflow Lite is an optimised version of the trained model for lightweight

mobile use. As Faster R-CNN was not supported by Tensorflow Lite, the

Faster R-CNN model was exported into Frozen Inference Graph. These graphs

allow the trained model to run on the mobile application.

5.5 Evaluation

The models were evaluated after the training was completed. The evaluation

results will be discussed in the next chapter.

70

5.6 Implementation of Mobile Application

An Android-based object detection and recognition mobile application was

developed to help the visually impaired people to identify the objects in their

surroundings. This mobile application was written in Java.

5.6.1 Object Detection and Recognition on Mobile Application

The application will start to detect and recognise objects in the scene once the

application is launched without requiring the user to click any button. After the

application is launched successfully, the application will retrieve the scene

captured by the smartphone’s camera. Next, the scene is passed to the trained

Tensorflow model for detecting and recognising the objects in the scene. After

scene processing, the class, coordinates of boundary box, and confidence score

of each detected object are returned by the model. Android Graphics library is

used to draw the rectangle boundary box and text on the screen. Figure 5.4

illustrates the overall process flow of object detection and recognition on the

mobile application.

Figure 5.4: Process Flow for Object Detection and Recognition on Mobile

Application

Launch application

Capture surronding scene though camera

Trained model processes captured scene

Trained model returns class, coordinate of boundary
box, and confidence score of each object

Application draws boundary box and text on screen

71

5.6.2 Mobile Application User Interface

Figure 5.5 and Figure 5.6 shows the home screen of the application. Since this

application is developed for visually the impaired people, the application is

designed in a simple way and have few buttons and screens to reduce the

inconvenience when they use the application. The user is allowed to stop the

voice feedback and play the voice feedback after being stopped. Furthermore,

the user also can adjust the speech rate of the voice feedback.

Figure 5.5: Screen when Detecting Single Object

72

Figure 5.6: Screen when Detecting Multiple Objects

5.6.3 Reporting of Directions of Detected Objects

In order to inform the user about the directions of the objects detected, the

screen of the mobile screen is split into three parts, those are left, middle, and

right. The direction of each object is decided by identifying which part of the

screen it falls into. Figure 5.7 displays how the screen is split into three parts.

The object which lies in the first 1/3 of screen width is considered on the left,

while the object which lies in the last 1/3 of screen width is considered on the

right. The object is considered in the middle if it lies in the rest of the area.

The names and directions of the detected objects are spoken out every three

seconds.

73

Figure 5.7: Splitting of Mobile Screen into Three Parts

5.6.4 Adjusting Speech Rate

The user is allowed to adjust the speech rate to the speed they are comfortable

with. The application allows the user to choose three types of speech rate,

those are slow, normal, and fast. The normal speech rate is 1.0. Slow speech

rate has a speed of 0.5, while the fast speech rate has a speed of 1.5. The

selected speech rate then will be saved into Shared Preferences, so the user

does not need to readjust the speech rate again every time after closing the

application. Figure 5.8 displays the screen when the user adjusts the speech

rate.

74

Figure 5.8: Adjust Speech Rate Screen

75

CHAPTER 6

6 RESULTS AND DISCUSSIONS

6.1 Introduction

This chapter will explain the effects of training settings on the performance of

the model training. Also, the performance of the trained model was evaluated

and discussed after the model training was done.

6.2 Training Settings

The performance of the model training can be affected by the training batch

size used and the types of model to be trained. This sections will explore how

the batch size and model types can affect the speed and effectiveness of the

training.

6.2.1 Batch Size

Batch size defines the number of training samples used in one iteration. An

experiment regarding the configuration of batch size was conducted on CPU

on the local machine. The observations are recorded in Table 6.1. Figure 6.1 to

Figure 6.4 visualises the development of the loss function during the model

training when using four different batch size settings.

Table 6.1: Comparison of Training Performance When Using Different Batch

Size

Batch size Average time needed for

per step (seconds)

Total training time Number of

steps trained

4 4 2 h 31 min 2456

12 12 5 h 17 min 1517

24 23 2 h 57 min 1034

36 40 5 h 41 min 493

76

Figure 6.1: Development of Total Loss During Training When Batch Size=4

(After 2 h 31 min of Training)

Figure 6.2: Development of Total Loss During Training When Batch Size=12

(After 5 h 17 min of Training)

77

Figure 6.3: Development of Total Loss During Training When Batch Size=24

(After 2 h 57 min of Training)

Figure 6.4: Development of Total Loss During Training When Batch Size=36

(After 5 h 41 min of Training)

A few issues arise when the batch size increases. Firstly, as shown in

Table 6.1, the average time needed to run per step increases as the batch size

increases. Besides, large batch size also consumes more system memory in the

training. Furthermore, it will require more training time for the model to

achieve the same accuracy compared to a batch size of 24 due to the decrease

in iteration time. From Figure 6.3 and Figure 6.4, the model is able to achieve

78

loss below 2 consistently within 2 hours 57 minutes by using the batch size of

24, while the model that uses a batch size of 36 needs more than five hours of

training to achieve loss below 2.

However, problems also arise when the batch size is too small.

Although the average time needed per step decreases, the model may not able

to converge within the expected steps. As observed in Figure 6.3, the model

that uses the batch size of 24 can achieve loss below 2 consistently after

training for almost 450 steps. However, in Figure 6.1, loss of the model that

uses a batch size of 4 is still very inconsistent after the model is trained for

more than 2400 steps. Also, in Figure 6.2, the model that applies a batch size

of 12 requires more than 1450 steps to reach loss below 2 consistently.

Hence, the batch size applied in this project is 24, which is the default

value set by Tensorflow.

6.2.2 Training Time of Different Models

The training time required for different models to reach 200000 steps are

recorded in Table 6.2.

Table 6.2: Comparison of Training Time Between SSD and Faster R-CNN

Models

Model Average time needed for

per step (seconds)

Total Training Time to

Reach 200k Steps

SSD 1.235 130 h 23 min

Faster R-CNN 0.293 20 hours

According to Table 6.2, the pre-trained Faster R-CNN model is almost

six times faster than the pre-trained SSD to run each training step. Furthermore,

the SSD pre-trained model consumes 130 hours 23 minutes (almost five days)

to fine-tune until 200000 steps. On the other hand, Faster R-CNN just needs

about 20 hours to complete the 200000 steps. This shows that Faster R-CNN

has a much faster training speed compared to SSD.

79

6.3 Evaluation

The evaluation was carried out to compare the performance of both SSD

Mobilenet V1 COCO Model and Faster R-CNN Inception V2 COCO Model

before and after transfer learning. Certain types of evaluation metrics such as

mAP, precision, recall, and confusion matrix are used to calculate the

performance of the overall models and each class on the test dataset which

contains 674 examples of 40 classes. All the evaluation results displayed in the

following sections are calculated on this test dataset only.

6.3.1 Comparison of Performance between Pre-trained and Fine-tuned

Models

The performance between both pre-trained and fine-tuned models were

compared to prove how transfer learning can help in improving the accuracy

of the model. Figure 6.5, 6.6, and 6.7 displays some examples of detection

results of different models.

80

(i) Pre-trained SSD Model (ii) Fine-tuned SSD Model

(iii) Pre-trained Faster R-CNN Model (iv) Fine-tuned Faster-RCNN Model

Figure 6.5: Detections Results of Different Models in Toilet

 In Figure 6.5, the pre-trained and fine-tuned models are able to detect

and recognise “toilet” and “sink” correctly. Since “window” is not present in

the COCO dataset, so the pre-trained models are not able to detect and

recognise the objects “window” in the scene. Also, the fine-tuned SSD and

Faster R-CNN models have higher confidence score for their detected objects

compared to that of their pre-trained models. Moreover, the pre-trained Faster

R-CNN model detects two sinks instead of one sink.

81

(i) Pre-trained SSD Model (ii) Fine-tuned SSD Model

(iii) Pre-trained Faster R-CNN Model (iv) Fine-tuned Faster-RCNN Model

Figure 6.6: Detections Results of Different Models in Bedroom

 Since “window”, “shelf”, and “fan” are not existing in the COCO

dataset, the pre-trained models should not detect and recognise these objects in

Figure 6.6. However, the pre-trained SSD model fails at detecting and

recognising “bed” and “chair” successfully, while the pre-trained Faster R-

CNN model misclassifies “bed” as “couch”. It can be observed that the fine-

tuned models are able to detect and recognise more objects in the scene at a

higher confidence score compared to the pre-trained models.

82

(i) Pre-trained SSD Model (ii) Fine-tuned SSD Model

(iii) Pre-trained Faster R-CNN Model (iv) Fine-tuned Faster-RCNN Model

Figure 6.7: Detections Results of Different Models at Outside

 In Figure 6.7, “tree” should not be detected and recognised by the pre-

trained models because the class is not present in the COCO dataset. All

models can detect and recognise “bus” and “car” successfully, except the pre-

trained SSD model.

 From these examples, it can be observed that the fine-tuned models

have a better performance than the pre-trained models most of the time,

regardless of the state-of-art methods applied. In this section, the performance

between the pre-trained models and their fine-tuned models is compared

according to the mAP (Mean Average Precision).

6.3.1.1 Mean Average Precision

The performance of the machine learning models can be compared using mAP

values. This project used the PASCAL VOC 2010 detection metric, which

takes an IoU of 0.5 when evaluating the quality of the object detection models.

This means that the metric only considers a predicted object as true positive

when IoU is equal or larger than 0.5 with respect to the ground-truth boundary

83

box. Figure 6.8 and 6.9 present the AP values for the 40 object classes of the

pre-trained and fine-tuned SSD and Faster R-CNN models.

84

Figure 6.8: AP Values of Pre-trained and Fine-tuned SSD Models

0.4698

0.6379

0.1816

0.1238

0.0952

0.8482

0.2480

0.8084

0.1803

0.2373

0.5185

0.3977

0.4079

0.5606

0.0750

0.4069

0.2882

0.4525

0.2206

0.4286

0.3063

0.4551

0.3446

0.6276

0.5281

0.6000

0.2929

0.5367

0.3865

0.4104

0.8048

0.9277

0.3352

0.3510

0.3579

0.1584

0.9080
0.3842

0.8885
0.4740

0.4932

0.6367

0.8338

0.7772

0.8456

0.6826

0.3795

0.1484

0.6419

0.3139

0.5970

0.8865

0.5353

0.4929

0.3065
0.6977

0.6357

0.5784

0.5627

0.1264

0.5488

0.7558

0.7177

0.6649

0.5371

0.6196

0.6049

0.5123

0.6993

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

bag

ball

bed

bench

bicycle

bin

bottle

bus

car

cat

cell phone

chair

clock

computer

couch

dog

door

fan

knife

motorcycle

mouse

person

plush toy

potted plant

refrigerator

scissors

shelf

sink

skateboard

staircase

street lamp

street sign

table

toilet

train

tree

truck

umbrella

vase

window

Fine-tuned SSD Pre-trained SSD

85

Figure 6.9: AP Values of Pre-trained and Fine-tuned Faster R-CNN Models

0.6088

0.6629

0.0714

0.1807

0.1877

0.8244

0.3543

0.8344

0.2864

0.2730

0.5278

0.4230

0.2934

0.5860

0.0417

0.4742

0.4685

0.5458

0.2769

0.3929

0.3442

0.5272

0.4974

0.1721

0.5647

0.6199

0.4865

0.4854

0.3749

0.8966

0.9977

0.9532

0.8414

0.9158

0.6642

0.8583

0.9727

0.8261

0.9508

0.8938

0.8788

0.8952

0.9505

0.9576

0.9705

0.9116

0.8504

0.6922

0.9375

0.8460

0.9194

0.9828

0.8960

0.9219

0.6942

0.9030

0.9339

0.9592

0.7582

0.8822

0.9926

0.9161

0.9601

0.9388

0.8177

0.8849

0.9545

0.9470

0.9199

bag

ball

bed

bench

bicycle

bin

bottle

bus

car

cat

cell phone

chair

clock

computer

couch

dog

door

fan

knife

motorcycle

mouse

person

plush toy

potted plant

refrigerator

scissors

shelf

sink

skateboard

staircase

street lamp

street sign

table

toilet

train

tree

truck

umbrella

vase

window

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

Fine-tuned Faster R-CNN Pre-trained Faster R-CNN

86

Table 6.3: mAP Values of Pre-trained and Fine-tuned SSD and Faster R-CNN

Models

Object Detection Model mAP

Pre-trained SSD 0.3942

Fine-tuned SSD 0.5708

Pre-trained Faster R-CNN 0.4271

Fine-tuned Faster R-CNN 0.8961

 As shown in Figure 6.8 and Figure 6.9, the AP value of each object

class increases significantly after the model undergoes transfer learning,

especially the growth rate of the AP value of the Faster R-CNN model is very

dramatic.

According to Table 6.3, the mAP score of the fine-tuned SSD model is

more than 0.17 higher than its pre-trained model. From Figure 6.8, the AP

scores of the pre-trained SSD model fall within a range of 0.075 (“knife”) and

0.8482 (“bus”). All object classes have AP scores that are lower than 0.64

except “cat” (0.8084) and “bus” (0.8482). On the other hand, the lowest AP

score of the fine-tuned SSD model is 0.1264 (“street lamp”) and its highest AP

score is 0.9277 (“bed”).

The fine-tuned Faster R-CNN model has a mAP value which is higher

than that of its pre-trained model by almost 0.47. Before the Faster R-CNN

model undergoes transfer learning, the AP scores of the model lie within the

range between 0.0417 (“knife”) and 0.8344 (“cat”). Only two classes achieve

AP values above 0.8. Those are “bus”(0.8244) and “cat”(0.8344). After the

Faster R-CNN model undergoes transfer learning, most of the classes of the

fine-tuned model can reach AP values above 0.8, except “bin” (0.6642), “knife”

(0.6922), “scissors” (0.6942), and “staircase” (0.7582), thereby achieving a

high mAP value that is close to 0.9.

6.3.2 Comparison of Performance between Fine-tuned SSD and Faster

R-CNN Models

The performance of the fine-tuned SSD and Faster R-CNN models are

compared to find out which state-of-art methods have better accuracy in object

87

detection and recognition. In this section, the performance of the fine-tuned

SSD and Faster R-CNN models are compared using confusion matrix, recall,

precision, and mAP.

6.3.2.1 Confusion Matrix

 A confusion matrix is a table that visualises the performance of a machine

learning model in making predictions. The matrix compares the actual target

object classes with the predicted target object classes. Figure 6.10 shows the

multiclass confusion matrix of the fine-tuned SSD Model while Figure 6.11

illustrates the multiclass confusion matrix of the fine-tuned Faster R-CNN

Model.

Figure 6.10: Multiclass Confusion Matrix of Fine-tuned SSD Model

88

Figure 6.11: Multiclass Confusion Matrix of Fine-tuned Faster R-CNN Model

 According to Figure 6.10 and Figure 6.11, it can be observed that the

fine-tuned Faster R-CNN model is more likely to misclassify an object than

the fine-tuned SSD model. Although both models use the same test set for

evaluation, the fine-tuned Faster R-CNN model is more sensitive than the fine-

tuned SSD model at detecting the objects in the scene and this is the reason the

fine-tuned Faster R-CNN model has more misclassifications. This is related to

true positive and false negative, which will be discussed in the next section.

6.3.2.2 True Positive, False Negative, and False Positive

The amount of true positives, false negatives, and false positives can be

calculated from the information obtained in the confusion matrix. Table 6.4

tabulates the number of true positives, false negatives, and false positives for

each object class of the fine-tuned SSD and Faster R-CNN models. Besides,

89

Figure 6.12 visualises the comparison of the total amount of true positives,

false negatives, and false positives between the fine-tuned SSD and R-CNN

models.

Table 6.4: True Positive, False Negative, and False Positive of Fine-tuned SSD

and Faster R-CNN Models

Class Fine-tuned SSD Fine-tuned Faster R-CNN

TP FN FP TP FN FP

bag 26 94 0 108 11 5

ball 26 15 1 41 0 1

bed 54 15 7 67 4 18

bench 15 40 3 44 12 7

bicycle 20 59 3 71 10 6

bin 2 25 0 15 12 2

bus 24 5 1 27 0 10

bottle 31 132 2 133 30 9

car 87 94 17 148 33 13

cat 48 6 8 50 0 3

cell phone 33 54 0 75 12 8

chair 87 150 14 202 30 22

clock 29 25 1 48 6 2

computer 99 37 12 129 6 9

couch 42 13 16 53 2 13

dog 51 14 5 66 2 6

door 19 23 0 38 2 11

fan 2 7 0 9 2 2

knife 6 34 0 26 14 4

motorcycle 34 24 8 53 7 6

mouse 21 43 1 50 12 2

person 602 560 55 1072 102 98

plush toy 49 8 9 55 0 0

potted plant 34 47 3 74 5 6

refrigerator 7 6 0 13 0 3

street lamp 3 46 0 41 7 9

scissors 8 34 2 33 7 9

shelf 107 65 15 153 18 28

sink 21 21 1 39 2 1

staircase 8 13 2 14 4 1

skateboard 37 43 0 76 3 1

street sign 18 25 2 43 0 2

90

Figure 6.12: Total Number of True Positives, False Negatives, and False

Positives against Fine-tuned Models

 According to Figure 6.12, the total number of true positives of the fine-

tuned Faster R-CNN model is more than 2600 higher than that of the fine-

tuned SSD model. True positive is the condition in which the model predicts

the class of an object correctly. The higher the total number of true positives,

the better the model performance. This means that the fine-tuned Faster R-

CNN model is able to classify the objects in the scene more accurately

compared to the fine-tuned SSD model.

 Apart from that, Figure 6.12 also shows that the total number of false

negatives of the fine-tuned SSD model is almost five times higher than that of

the fine-tuned Faster R-CNN model. False negative indicates a condition in

which the groud-truth exists in a scene but the model fails to detect and

1982 2067

220

3637

401 418

0

500

1000

1500

2000

2500

3000

3500

4000

True Positive False Negative False Positive

T
o

ta
l

N
u

m
b

er

Total Number of True Positives, False Negatives, and

False Positives against Fine-tuned Models

Fine-tuned SSD

Model

Fine-tuned Faster

R-CNN Model

table 101 62 8 153 8 42

toilet 24 15 3 36 2 2

tree 49 66 3 94 21 19

truck 23 24 4 43 2 5

train 18 7 4 23 1 7

umbrella 21 23 4 42 2 1

vase 39 43 1 78 4 8

window 57 50 5 102 6 17

91

recognise this object. The number of false negatives should be as few as

possible to achieve good accuracy. This shows that the fine-tuned SSD model

is more likely to fail to detect and recognise objects present in the scene

compared with the fine-tuned Faster R-CNN model.

 Compared with the fine-tuned SSD model, the fine-tuned Faster R-

CNN model has a better performance in the total number of true positives and

false negatives. However, when comparing the total number of false positives,

the performance of the fine-tuned Faster R-CNN model is worse than the fine-

tuned SSD model. The total number of false positives of the fine-tuned Faster

R-CNN model is almost twice more than that of the fine-tuned SSD model.

False positive is the condition that a model labels an object in the scene when

the object really does not exist in that scene, so the occurrence of this

condition should be as few as possible. Figure 6.12 shows that the fine-tuned

Faster R-CNN model tends to make this kind of errors more often compared to

the fine-tuned SSD model.

6.3.2.3 Precision and Recall

After completing the transfer learning, the precision and recall of the fine-

tuned SSD and Faster R-CNN models are calculated to measure the quality of

the models. Precision measures the ratio of correct recognitions and detections

(Alsing, 2018). Recall measures how good is a model in finding true positive

(Alsing, 2018). Their formulas are shown below.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

 The precision and recall values for 40 classes of each fine-tuned model

are recorded in Table 6.5 below.

92

Table 6.5: Precision and Recall Values for 40 Classes of Fine-tuned SSD and

Faster R-CNN Models

Class Precision Recall

Fine-tuned

SSD

Fine-tuned

Faster R-CNN

Fine-tuned

SSD

Fine-tuned

Faster R-CNN

bag 1.0000 0.9558 0.2167 0.9000

ball 0.9630 0.9762 0.6341 1.0000

bed 0.8852 0.7882 0.7606 0.9437

bench 0.8333 0.8627 0.2679 0.7857

bicycle 0.8696 0.9221 0.2469 0.8765

bin 1.0000 0.8824 0.0714 0.5357

bus 0.9600 0.7297 0.8276 0.9310

bottle 0.9394 0.9366 0.1890 0.8110

car 0.8365 0.9193 0.4754 0.8087

cat 0.8571 0.9434 0.8889 0.9259

cell phone 1.0000 0.9036 0.3793 0.8621

chair 0.8614 0.9018 0.3580 0.8313

clock 0.9667 0.9600 0.5370 0.8889

computer 0.8919 0.9348 0.7279 0.9485

couch 0.7241 0.8030 0.7500 0.9464

dog 0.9107 0.9167 0.7500 0.9706

door 1.0000 0.7755 0.4524 0.9048

fan 1.0000 0.8182 0.1818 0.8182

knife 1.0000 0.8667 0.1500 0.6500

motorcycle 0.8095 0.8983 0.5667 0.8833

mouse 0.9545 0.9615 0.3281 0.7813

person 0.9163 0.9162 0.5123 0.9123

plush toy 0.8448 1.0000 0.8596 0.9649

potted plant 0.9189 0.9250 0.4198 0.9136

refrigerator 1.0000 0.8125 0.5000 0.9286

street lamp 1.0000 0.8200 0.0612 0.8367

scissors 0.8000 0.7857 0.1905 0.7857

shelf 0.8770 0.8453 0.6221 0.8895

sink 0.9545 0.9750 0.5000 0.9286

staircase 0.8000 0.9333 0.3810 0.6667

skateboard 1.0000 0.9870 0.4625 0.9500

street sign 0.9000 0.9556 0.4186 1.0000

table 0.9266 0.7846 0.5941 0.9000

toilet 0.8889 0.9474 0.6154 0.9231

tree 0.9423 0.8319 0.4224 0.8103

truck 0.8519 0.8958 0.4340 0.8113

93

train 0.8182 0.7667 0.7200 0.9200

umbrella 0.8400 0.9767 0.4773 0.9545

vase 0.9750 0.9070 0.4756 0.9512

window 0.9194 0.8571 0.5182 0.9273

Average 0.9109 0.8895 0.4736 0.8745

 As evident from Table 6.5, the average precision of the fine-tuned SSD

model is slightly higher than the average precision of the fine-tuned Faster R-

CNN model, which are 0.9109 and 0.8895 respectively. It is because the fine-

tuned SSD model returns a smaller amount of false positives. This means that

the fine-tuned SSD model is more able to make correct detection compared to

the Faster R-CNN model.

However, the average recall of the fine-tuned SSD model is nearly 0.4

lower than that of the fine-tuned Faster R-CNN model, which are 0.4736 and

0.8745 respectively. It is caused by large number of false negatives returned

by the fine-tuned SSD models. Therefore, the fine-tuned SSD model perform

poorly when finding the true positive in the scene compared with the fine-

tuned Faster R-CNN model.

 Many studies (Liu et al., 2019; Zhao et al., 2019; Alsing, 2018;

Argawal, 2018) mention that there is an inverse relationship between precision

and recall. As the precision increases, the recall decreases or vice versa. So,

when a model returns lesser false positives, it also returns lesser true positives.

In this case, the higher precision and lower recall of the fine-tuned SSD model

can be used to represent this situation. On the contrary, if a model can detect

and recognise many true positives, however it will return many false positives

too. This is why the fine-tuned Faster R-CNN model has lower precision than

the fine-tuned SSD model, but has a higher recall. Thus, striking a balance

between precision and recall is very vital. According to the results, the fine-

tuned Faster R-CNN performs better than the fine-tuned SSD model in finding

a balance between precision and recall.

6.3.2.4 Mean Average Precision

The mean average precision of the fine-tuned SSD and Faster R-CNN model

are calculated and compared. As mentioned in the earlier sections, this project

94

used the PASCAL VOC 2010 detection metric, which takes an IoU of 0.5

when calculating the mAP. Figure 6.13 and Figure 6.14 present the AP and

mAP values for the 40 object classes of the fine-tuned SSD and Faster R-CNN

models respectively.

95

Figure 6.13: Comparison of AP Values for 40 Classes between Fine-tuned

SSD and Faster R-CNN Models

0.4104

0.8048

0.9277

0.3352

0.3510

0.3579

0.1584

0.9080

0.3842

0.8885

0.4740

0.4932

0.6367

0.8338

0.7772

0.8456

0.6826

0.3795

0.1484

0.6419

0.3139

0.5970

0.8865

0.5353

0.4929

0.3065

0.6977

0.6357

0.5784

0.5627

0.1264

0.5488

0.7558

0.7177

0.6649

0.5371

0.6196

0.6049

0.5123

0.6993

0.8966

0.9977

0.9532

0.8414

0.9158

0.6642

0.8583

0.9727

0.8261

0.9508

0.8938

0.8788

0.8952

0.9505

0.9576

0.9705

0.9116

0.8504

0.6922

0.9375

0.8460

0.9194

0.9828

0.8960

0.9219

0.6942

0.9030

0.9339

0.9592

0.7582

0.8822

0.9926

0.9161

0.9601

0.9388

0.8177

0.8849

0.9545

0.9470

0.9199

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000

bag

ball

bed

bench

bicycle

bin

bottle

bus

car

cat

cell phone

chair

clock

computer

couch

dog

door

fan

knife

motorcycle

mouse

person

plush toy

potted plant

refrigerator

scissors

shelf

sink

skateboard

staircase

street lamp

street sign

table

toilet

train

tree

truck

umbrella

vase

window

Fine-tuned Faster R-CNN Fine-tuned SSD

96

Figure 6.14: Comparison of mAP Values between Fine-tuned SSD and Faster

R-CNN Models

It can be seen from Figure 6.13 that the AP values for all 40 object

classes of the fine-tuned Faster R-CNN model are higher than that of the fine-

tuned SSD model. The AP values of each object class of the fine-tuned Faster

R-CNN model fall within the range between 0.6642 and 0.9977. The classes

with the lowest and highest AP values are the classes “bin” and “ball”

respectively. For the fine-tuned SSD model, it has the lowest AP value of

0.1264 and highest value of 0.9277, which are the object classes “street lamp”

and “bed” respectively. Moreover, as displayed in Figure 6.14, the mAP

values of the Faster R-CNN model is more than 0.3 higher than that of the

fine-tuned SSD models. It can prove that the Faster R-CNN model always has

better accuracy than the SSD model.

SSD Faster

mAP 0.5708 0.8961

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

m
A

P

97

6.3.2.5 Speed and Accuracy Tradeoff of Different Object Detection and

Recognition Models

Figure 6.15: Speed and Accuracy Comparison of Fine-tuned Models

The inference time and accuracy of the fine-tuned SSD and Faster R-CNN

models are compared in Figure 6.15. The number of seconds required for

object detection and recognition of the fine-tuned SSD model is almost five

seconds shorter than the fine-tuned Faster R-CNN model, with the number of

seconds of 1.8 seconds. Furthermore, the fine-tuned Faster R-CNN model has

a better mAP performance than the fine-tuned SSD model, with a mAP score

of 0.8961. However, as the mAP values increases, the number of seconds

required for inference also increases.

6.4 Summary

As a summary of the chapter, it can be seen that the batch size and types of

model are able to affect the training performance. A large batch size consumes

a larger amount of memory and requires more time to achieve certain accuracy,

while a small batch size causes the model unable to converge within the

expected steps. And then, the pre-trained Faster R-CNN model requires a

shorter training time than that of the pre-trained SSD model.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

m
A

P

Inference Time (seconds)

Fine-tuned SSD

Fine-tuned Faster R-CNN

98

In this chapter, the performance between pre-trained and the fine-tuned

models was evaluated and compared. Figure 6.16 visualises the mAP values of

different pre-trained and fine-tuned models. It can be observed that after

transfer learning, the mAP values of the models increase significantly,

regardless of their state-of-art method applied.

Other than that, the performance of the fine-tuned SSD and Faster R-

CNN model also was compared. As displayed in Figure 6.16, the accuracy of

the fine-tuned Faster R-CNN model is much higher than that of the fine-tuned

SSD model by almost 0.33. However, due to the trade-off between accuracy

and inference time, the fine-tuned Faster R-CNN requires 7.2 seconds of

inference time, which is four times as long as that of the fine-tuned SSD model

with an inference time of 1.8 seconds.

Figure 6.16: Comparison of mAP Values between Different Models

In this project, the application developed is expected to have good

accuracy and shorter inference time. Hence, the fine-tuned SSD model was

chosen to be implemented in the developed Android application.

0.3942
0.4271

0.5708

0.8961

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SSD Faster R-CNN

m
A

P

Pre-trained

Fine-tuned

99

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

Testing was carried to ensure the application meets the specifications and

works properly. This chapter discusses unit testing and integration testing

conducted on the application developed.

7.2 Unit Testing

Before a component is combined with other components in the application,

unit testing was carried out on each unit of the component to find out and

resolve the bugs. In this project, the application is classified into several

modules and unit testing was conducted on each module.

7.2.1 Object Detection and Recognition Module

Table 7.1: Unit Test for Object Detection and Recognition

Test Case Test Steps Test Data Expected Result Status

Scan user’s

surroundings

1. Open

application

Surrounding scene. Surroundings scenes

are captured and

displayed a in

continuous stream.

Pass

An object is

detected and

recognised at a

confidence score

higher than

threshold

1. Capture a

scene with one

object

A scene with a

computer, which

returns a confidence

score higher than

60%.

The name, boundary

box, and confidence

score of the detected

computer are

displayed.

Pass

100

More than one

object is detected

and recognised at

confidence score

higher than

threshold

1. Capture a

scene with

multiple

objects

A scene with a

cellphone and

scissors, which both

objects return

confidence scores

higher than 60%.

The names, boundary

boxes, and confidence

scores of the detected

cellphone and scissors

are displayed.

Pass

An object is

detected and

recognised at a

confidence score

lower than

threshold

1. Capture a

scene with an

object

A scene with a

computer, which

returns a confidence

score lower than

60%.

No object names,

bounding boxes, and

confidence scores are

displayed.

Pass

Multiple objects

are detected and

recognised at

confidence scores

below the

threshold, and

some are above

the threshold

1. Capture a

scene with

multiple

objects

A scene with a cell

phone and scissors,

which returns a

confidence score

lower than 60% and

higher than 60%

respectively.

Only the name,

boundary box, and

confidence score of

the detected scissors

are displayed.

Pass

No objects are

detected and

recognised

1. Capture a

scene without

objects

A scene with a blank

wall.

No object names,

bounding boxes, and

confidence scores are

displayed.

Pass

101

7.2.2 Speech Feedback Module

Table 7.2: Unit Test for Speech Feedback

Test Case Test Steps Test Data Expected Result Status

An object on the

left is detected and

recognised at a

confidence score

higher than

threshold

1. Capture a

scene

2. Process the

scene

captured

Detection results

return a mouse with a

midpoint located in

the first left 1/3 area

of the screen and a

confidence score

higher than 60%.

“Mouse on the left” is

spoken out.

Pass

An object at the

middle is detected

and recognised at a

confidence score

higher than

threshold

1. Capture a

scene

2. Process the

scene

captured

Detection results

return a mouse with a

midpoint located

between first left 1/3

and first right 1/3

area of the screen and

a confidence score

higher than 60%.

“Mouse is straight

forward” is spoken

out.

Pass

An object on the

right is detected

and recognised at a

confidence score

higher than

threshold

1. Capture a

scene

2. Process the

scene

captured

Detection results

return a mouse with a

midpoint located in

the first right 1/3 area

of the screen and a

confidence score

higher than 60%.

“Mouse on the right”

is spoken out.

Pass

An object is

detected and

recognised at a

confidence score

lower than

threshold

1. Capture a

scene

2. Process the

scene

captured

Detection results

return a mouse with a

midpoint located in

the first left 1/3 area

of the screen and a

confidence score

lower than 60%.

No object name and

direction is spoken

out.

Pass

102

More than one

object is detected

and recognised at

confidence scores

higher than

threshold

1. Capture a

scene

2. Process the

scene

captured

Detection results

return a mouse and

scissors with

midpoints located in

the first left 1/3 and

the first right 1/3 area

of the screen

respectively, and both

confidence scores

higher than 60%.

“Mouse on the left and

scissors on the right”

is spoken out.

Pass

Multiple objects

are detected and

recognised at

confidence scores

below the

threshold, and

some are above the

threshold

1. Capture a

scene

2. Process the

scene

captured

Detection results

return a mouse and

scissors with

midpoints located in

the first left 1/3 and

the first right 1/3 area

of the screen

respectively, and

their confidence

scores are lower and

higher than 60%

respectively.

“Scissors on the right”

is spoken out.

Pass

No objects are

detected and

recognised

1. Capture a

scene

2. Process the

scene

captured

Detection results

return null.

No object name and

direction is spoken

out.

Pass

103

Identical scenes

are detected and

recognised for a

few seconds

1. Capture

multiple

similar scenes

2. Process

several

similar scenes

Detection results

return a mouse with a

midpoint located in

the first left 1/3 area

of the screen and a

confidence score

higher than 60%.

“Mouse on the left” is

spoken out every 3

seconds.

Pass

7.2.3 Set Speech Rate Module

Table 7.3: Unit Test for Set Speech Rate

Test Case Test Steps Test Data Expected Result Status

Adjust speech

rate to slow

1. Click the

“Adjust Speech

Rate” button

2. Click the

“Slow” button

 The speech rate is

adjusted to 0.5 (slow).

Pass

Adjust speech

rate to normal

1. Click the

“Adjust Speech

Rate” button

2. Click the

“Normal” button

 The speech rate is

adjusted to 1.0

(normal).

Pass

Adjust speech

rate to fast

1. Click the

“Adjust Speech

Rate” button

2. Click the “Fast”

button

 The speech rate is

adjusted to 1.5 (fast).

Pass

Do not select a

speech rate

1. Click the

“Adjust Speech

Rate” button

2. Click the

phone’s exit button

without selecting a

speech rate

The existing speech

rate is normal.

The speech rate

remains at 1.0

(normal).

Pass

104

7.2.4 Play/Stop Speech Module

Table 7.4: Unit Test for Play and Stop Speech

Test Case Test Steps Test Data Expected Result Status

Stop Speech 1. Click the “Play/Stop

Speech” button

 Voice feedback is

stopped.

Play Speech 1. Click the “Play/Stop

Speech” button

2. Click the “Play/Stop

Speech” button one

more time

 Voice feedback is

available.

7.3 Integration Test

Integration testing was performed after unit testing was completed. The main

goal of integration testing is to identify the existence of bugs after integrating

the modules tested in unit testing.

Table 7.5: Integration Test

Test Case Test Steps Expected Result Status

Detect and

recognise

objects in the

scene

1. Open application

2. Scan the surrounding

using the phone’s

camera

 The names, boundary boxes, and

confidence scores of each object are

displayed on the screen.

 The names and the directions of the

objects are spoken out every 3

seconds.

Pass

No object is

detected and

recognised in

the scene

1. Open application

2. Scan the surrounding

using the phone’s

camera

 No object name, boundary box, and

confidence score are displayed on

the screen.

 No object names and direction are

spoken out.

Pass

105

Stop speech

feedback

1. Open application

2. Scan the surrounding

using the phone’s

camera

3. Click the “Play/Stop

Speech” button

 The names, boundary boxes, and

confidence scores of each object is

displayed on the screen.

 The names and the directions of the

objects are not spoken out.

Pass

Play speech

feedback

1. Open application

2. Scan the surrounding

using the phone’s

camera

3. Click the “Play/Stop

Speech” button

4. Click the “Play/Stop

Speech” button again

 The names, boundary boxes, and

confidence scores of each object are

displayed on the screen.

 The names and the directions of the

objects are spoken out after

pressing the “Play/Stop Speech”

button twice.

 The speech rate is the same as the

speech rate before clicking the

“Play/Stop Speech” button.

Pass

Adjust speech

rate to slow

1. Open application

2. Click the “Adjust

Speech Rate” button

3. Click the “Slow”

button

4. Scan the surrounding

using the phone’s

camera

 The speech rate in the shared

preferences is updated to 0.5.

 The message “speech rate is slow”

is spoken out verbally.

 The names and the directions of the

objects are spoken out every 3

seconds with a speech rate of 0.5

(slow).

Pass

106

Adjust speech

rate to normal

1. Open application

2. Click the “Adjust

Speech Rate” button

3. Click the “Normal”

button

4. Scan the surrounding

using the phone’s

camera

 The speech rate in the shared

preferences is updated to 1.0.

 The message “speech rate is

normal” is spoken out verbally.

 The names and the directions of the

objects are spoken out every 3

seconds with a speech rate of 1.0

(normal).

Pass

Adjust speech

rate to fast

1. Open application

2. Click the “Adjust

Speech Rate” button

3. Click the “Fast”

button

4. Scan the surrounding

using the phone’s

camera

 The speech rate in the shared

preferences is updated to 1.5.

 The message “speech rate is fast” is

spoken out verbally.

 The names and the directions of the

objects are spoken out every 3

seconds with a speech rate of 1.5

(fast).

Pass

Do not select a

speech rate on

the Adjust

Speech Rate

page

1. Open application

2. Click the “Adjust

Speech Rate” button

3. Click the phone’s

exit button without

selecting a speech rate

4. Scan the surrounding

using the phone’s

camera

 The speech rate in the shared

preferences is not updated.

 The speech rate remains unchanged

and the names and the directions of

the objects are spoken out every 3

seconds with this speech rate.

Pass

107

7.4 Usability Test

Usability test involves real-world users to test and evaluate the application. Its

goal is to identify whether the system is suited to real-world scenarios. Due to

the Cov-19 pandemic and standard operating procedures enforced by the

Malaysian government to control the spread of the Cov-19, the difficulty of

reaching out to visually impaired people has increased. Hence, there is a

limited number of testers. In this project, a usability test has been conducted

by two users including the author’s grandparents, who are suffering from

vision loss.

 The users require to answer a list of questions after testing the

application. For every question, the users need to give a score between 1 and 5,

which 1 means strongly disagree while 5 means strongly agree.

Table 7.6: Usability Test Results

Questions User 1 User 2

The application is helpful in

identifying objects in surrounding.

3 4

The application identifies objects

in surrounding accurately.

2 3

The application identifies objects

in surrounding at a fast speed.

4 3

The voice feedback is clear and

easy to understand.

3 4

The application is unnecessarily

complex.

1 2

The application has a familiar user

interface.

4 3

The application is easy to use. 4 4

I can learn to use this application

quickly.

4 5

I do not need to remember many

things to use the application.

3 4

108

I feel more confident when

navigating using the application.

3 4

What did you like best about the

application?

Easy to use, simple user

interface

Good concept to help

person with vision

problem. No need Wifi.

What did you like least about the

application?

Voice feedback is

robotic. The application

detects objects that are

very far away

sometimes, lead to

confusion.

Hard to identify objects

when the camera is

shaking. Sometime detect

things wrongly.

How would you describe this

application to a colleague?

It is okay, but still need

improvement before a

person with low vision

can fully rely on the

application.

Nice application to help

people in need.

Final comments Hope it can identify all

objects in daily lives and

provide more detailed

descriptions such as

object colour and its

distance.

The application should

support other languages

because not all people

learn English. Hope that

the application can use

less time to detect thing

and the time taken for

detection is not affected

by camera shaking.

109

CHAPTER 8

8 CONCLUSIONS

8.1 Introduction

This chapter discusses the conclusions, challenges and future enhancements of

the project.

8.2 Conclusions

After six months, the project has accomplished the planned objectives

successfully. Two different pre-trained models, which are SSD Mobilenet V1

COCO and Faster R-CNN Inception V2 COCO were chosen to implement

transfer learning. By using transfer learning, this project has retrained the pre-

trained models to detect and recognise 40 classes. Most of the trained object

classes are the obstacles that visually impaired people may encounter when

navigating. The train and test datasets that include these 40 classes were

collected and labelled for model training. After transfer learning, the

performance of models before and after transfer learning was compared based

on mAP, confusion matrix, recall, and precision. Moreover, the speed-

accuracy trade-off of the models trained was studied. Finally, the SSD fine-

tuned model was selected to be implemented on the mobile application due to

its good accuracy and short inference time.

An object detection and recognition mobile application has been

developed using Tensorflow Object Detection API, which provides an

interface for communication between the application and the trained SSD

model. This mobile application provides contributions to the visually impaired

community. It provides a cost-effective way to recognise the types of objects

in the surroundings. Visually impaired people just need a smartphone to use

this application, without a need to buy other special hardware. A smartphone is

cheaper and more accessible compared to other advanced technologies. And

then, they are allowed to use the application anywhere, anytime, without an

Internet connection.

110

Furthermore, this application assists visually impaired people to carry

out daily activities and navigate more freely and safely. Visually impaired

people can be informed of the names and directions of the detected objects in

the surroundings through voice feedback of the smartphone’s speaker or

earphone. The direction of the object is classified into left, middle, or right.

Hence, they do not need to guess the type of objects in the surrounding and

this prevents injuries due to making wrong assumptions. Apart from that,

visually impaired people are able to stop and play the voice feedback if

necessary. Besides, they can also adjust the frequency of speech to a

comfortable level, so they can understand the feedback more clearly.

8.3 Challenges

There are few challenges encountered when developing this project. The

challenges are listed below:

i. Required a lot of self-learning to pick up Tensorflow and setup the

Tensorflow environment.

ii. Lack of powerful computing resources to train the object detection

model.

iii. Required a lot of time to label the images manually for transfer

learning.

8.4 Future Enhancements

A future enhancement of the project is planned. Although the additional

features are not available in the current application, they are useful for visually

impaired people and will be added to the application in the future. The future

enhancements are listed as following:

i. Recognise text and currency.

ii. Provide multiple languages such as Chinese, Germany and French.

iii. Develop an iOS version of the application.

111

REFERENCES

Abdul Malik Shaari and Nur Safwati, 2017. Position and Orientation Detection

of Stored Object Using RFID Tags. Procedia Engineering, [e-journal] 184,

pp.708-715. http://dx.doi.org/10.1016/j.proeng.2017.04.146.

Alsing, O., 2018. Mobile Object Detection using TensorFlow Lite and

Transfer Learning. Degree, Kth Royal Institute of Technology School of

Electrical Engineering and Computer Science. Available at:

<https://www.diva-portal.org/smash/get/diva2:1242627/FULLTEXT01.pdf>

[Accessed 14 July 2020].

Anitha, J., Subalaxmi, A. and Vijayalakshmi, G., 2019. Real Time Object

Detection for Visually Challenged Persons. International Journal of

Innovative Technology and Exploring Engineering (IJITEE), [online]

Available at: <https://www.ijitee.org/wp-

content/uploads/papers/v8i8/H6339068819.pdf> [Accessed 23 July 2020].

Argawal, K., 2018. Object Detection in Refrigerators using Tensorflow. B.

Tech, Uttar Pradesh Technical University. Available at:

<http://venus.library.uvic.ca/handle/1828/10464> [Accessed 3 July 2020].

Awad, M., Haddad, J.E., Khneisser, E., Mahmoud, T., Yaacoub, E. and Malli,

M., 2018. Intelligent eye: A mobile application for assisting blind people.

2018 IEEE Middle East and North Africa Communications Conference

(MENACOMM), [e-journal] pp.1 - 6.

http://dx.doi.org/10.1109/menacomm.2018.8371005.

Badave, A., Jagtap, R., Kaovasia, R., Rahatwad, S. and Kulkarni, S., 2020.

Android Based Object Detection System for Visually Impaired. 2020

International Conference on Industry 4.0 Technology (I4Tech), [e-journal] pp.

34-38. http://dx.doi.org/10.1109/i4tech48345.2020.9102694.

BAWA, 2020. A New Era of Accessibility. [online] Available at:

<https://www.bawa.tech/> [Accessed 23 February 2021].

Chanana, P., Paul, R., Balakrishnan, M. and Raol, P.V.M., 2017. Assistive

technology solutions for aiding travel of pedestrians with visual impairment.

Journal of Rehabilitation and Assistive Technologies Engineering, [e-journal]

4, pp.1 - 16. http://dx.doi.org/10.1177/2055668317725993.

COCO, 2020. COCO: Common Objects in Context. [online] Available at:

<https://cocodataset.org/#home> [Accessed 12 December 2020].

http://dx.doi.org/10.1109/menacomm.2018.8371005
http://dx.doi.org/10.1177/2055668317725993

112

Developers, 2020a. Android Studio. [online] Available at:

<https://developer.android.com/studio> [Accessed 16 August 2020].

Developers, 2020b. Camera API. [online] Available at:

<https://developer.android.com/guide/topics/media/camera> [Accessed 16

August 2020].

dos Santos, A.D.P., Medola, F.O., Cinelli, M.J., Garcia Ramirez, A.R. and

Sandnes, F.E., 2020. Are electronic white canes better than traditional canes?

A comparative study with blind and blindfolded participants. Universal Access

in the Information Society (2020), [e-journal]

http://dx.doi.org/10.1007/s10209-020-00712-z.

Felix, S.M., Kumar, S. and Veeramuthu, A., 2018. A Smart Personal AI

Assistant for Visually Impaired People. 2018 2nd International Conference on

Trends in Electronics and Informatics (ICOEI), [e-journal] pp. 1245-1250.

http://dx.doi.org/10.1109/ICOEI.2018.8553750.

Gao, Y. and Mosalam, K.M., 2018. Deep Transfer Learning for Image-Based

Structural Damage Recognition. Computer-Aided Civil and Infrastructure

Engineering, [e-journal] 33(9), pp.1 - 21. https://doi.org/10.1111/mice.12363.

Garrido, G. and Joshi, P., 2018. OpenCV 3.x with Python By Example. 2nd ed.

Birmingham: Packt Publishing Ltd.

Google Cloud, 2020. Detect multiple objects. [online] Available at:

<https://cloud.google.com/vision/docs/object-

localizer#vision_localize_objects-java> [Accessed 17 July 2020].

IBM, 2020. Advantages of XML. [online] Available at:

<https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_73/rzamj/rza

mjintroadvantages.htm> [Accessed 18 August 2020].

Industries For The Blind And Visually Impaired, 2020. The White Cane and

its Meaning. [online] Available at: <https://ibvi.org/blog/the-white-cane-and-

its-

meaning/#:~:text=Use%20of%20the%20white%20cane,easier%20for%20othe

rs%20to%20see> [Accessed 13 July 2020].

IrisVision Global, 2021. Top 5 Electronic Glasses for the Blind and Visually

Impaired. [online] Available at: <https://irisvision.com/electronic-glasses-for-

the-blind-and-visually-impaired/> [Accessed 23 February 2021].

Jakhete, S.A., Bagmar, P., Dorle, A., Rajurkar, A. and Pimplikar, P., 2019.

Object Recognition App for Visually Impaired. 2019 IEEE Pune Section

International Conference (PuneCon), [e-journal] pp.1 - 4.

http://dx.doi.org/10.1109/PuneCon46936.2019.9105670.

113

Khalid, H., 2018. Difference Between Evolutionary Prototyping and Throw-

away Prototyping. Prototype Info Sharing Blog, [blog] 4 January. Available

at: <https://prototypeinfo.com/evolutionary-prototyping-and-throw-away-

prototyping/> [Accessed 25 July 2020].

Khan, I., Khusro, S. and Ullah, I., 2018. Technology-assisted white cane:

evaluation and future directions. PeerJ, [e-journal] pp.1- 27.

http://dx.doi.org/10.7717/peerj.6058.

Khan Shishir, M.A., Rashid Fahim, S., Habib, F.M. and Farah, T., 2019. Eye

Assistant : Using mobile application to help the visually impaired. 2019 1st

International Conference on Advances in Science, Engineering and Robotics

Technology (ICASERT), [e-journal].

http://dx.doi.org/10.1109/icasert.2019.8934448.

Li, Z. and Zhang, R., 2017. Object Detection and Its Implementation on

Android Devices. [online] Available at:

http://cs231n.stanford.edu/reports/2017/pdfs/627.pdf [Accessed 17 July 2020].

Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X. and Pietikäinen,

M., 2019. Deep Learning for Generic Object Detection: A Survey.

International Journal of Computer Vision, [e-journal] 128, pp. 261-318.

http://dx.doi.org/10.1007/s11263-019-01247-4.

Lobo, S., 2017. Is Facebook-backed PyTorch better than Google’s

TensorFlow? [online] Available at: <https://hub.packtpub.com/dl-wars-

pytorch-vs-tensorflow/> [Accessed 13 July 2020].

Marcelino, P., 2018. Transfer learning from pre-trained models. [online]

Available at: <https://towardsdatascience.com/transfer-learning-from-pre-

trained-models-f2393f124751> [Accessed 26 January 2021].

Michelucci, U., 2019. Advanced Applied Deep Learning: Convolutional

Neural Networks and Object Detection. Dübendorf: Apress. Available at:

<https://doi.org/10.1007/978-1-4842-4976-5> [Accessed 13 July 2020].

National Council For The Blind Malaysia, 2020. What is Blindness? [online]

Available at: <http://ncbm.org.my/index/understanding-the-blind/> [Accessed

13 July 2020].

Pan, S.J. and Yang, Q., 2009. A Survey on Transfer Learning. IEEE

Transactions on Knowledge and Data Engineering, [e-journal] 22(10),

pp.1345 – 1359. http://dx.doi.org/10.1109/TKDE.2009.191.

Parikh, N., Shah, I. and Vahora, S., 2018. Android Smartphone Based Visual

Object Recognition for Visually Impaired Using Deep Learning. 2018

International Conference on Communication and Signal Processing (ICCSP),

[e-journal] pp.420 - 425. http://dx.doi.org/10.1109/ICCSP.2018.8524493.

114

Patil, O., and Gaikwad, V., 2018. Classification of Vegetables using

TensorFlow. Internatinal Journal for Research in Applied Science &

Engineering Technology, [e-journal] 6(4), pp. 2926-2934.

http://doi.org/10.22214/ijraset.2018.4488.

PyTorch, 2020. Torchvision.models. [online] Available at:

<https://pytorch.org/docs/stable/torchvision/models.html#object-detection-

instance-segmentation-and-person-keypoint-detection> [Accessed 16 July

2020].

Rajwani, R., Purswani, D., Kalinani, P., Ramchandani, D. and Dokare, I.,

2018. Proposed System on Object Detection for Visually Impaired.

International Journal of Information Technology (IJIT), [online] Available at:

<http://www.ijitjournal.org/volume-4/issue-2/IJIT-V4I2P1.pdf> [Accessed 23

July 2020].

Rane, M., Patil, A. and Barse, B., 2019. Real Object Detection Using

TensorFlow. International Conference on Communications and Cyber-

Physical Engineering (ICCCE), [e-journal] pp.39 - 45.

http://dx.doi.org/10.1007/978-981-13-8715-9_5.

Ruedeeniraman, N., Ikeda, M. and Barolli, L., 2017. TensorFlow: A Vegetable

Classification System and Its Performance Evaluation. Innovative Mobile and

Internet Services in Ubiquitous Computing, [e-journal] 994, pp. 132-141.

https://doi.org/10.1007/978-3-030-22263-5.

Sarkar, D., 2018. A Comprehensive Hands-on Guide to Transfer Learning

with Real-World Applications in Deep Learning. [online] Available at:

<https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-

learning-with-real-world-applications-in-deep-learning-212bf3b2f27a>

[Accessed 26 January 2021].

Sharma, S., Gupta, M., Kumar, A., Tripathi, M. and Gaur, M.S., 2017.

Multiple distance sensors based smart stick for visually impaired people. 2017

IEEE 7th Annual Computing and Communication Workshop and Conference

(CCWC), [e-journal]. http://dx.doi.org/10.1109/CCWC.2017.7868407.

Sun, J., Radecka, K. and Zilic, Z., 2019. FoodTracker: A Real-time Food

Detection Mobile Application by Deep Convolutional Neural Networks. The

16th International Conference on Machine Vision Applications, [online]

Available at: https://arxiv.org/pdf/1909.05994.pdf [Accessed 7 July 2020].

Tensorflow, 2020. Deploy machine learning models on mobile and IoT

devices. [online] Available at: <https://www.tensorflow.org/lite/> [Accessed

19 August 2020].

115

Thakare, P.U., Shubham, K., Ankit, P., Ajinkya, R. and Om, S., 2017. Smart

Assistance System for the Visually Impaired. International Journal of

Scientific and Research Publications, [online] Available at:

<http://www.ijsrp.org/research-paper-1217/ijsrp-p7254.pdf> [Accessed 24

July 2020].

The Star, 2018. Mobile cellular penetration reaches 131.8%. The Star, [online]

14 February. Available at: <https://www.thestar.com.my/business/business-

news/2018/02/14/mobile-cellular-penetration-reaches-1318/> [Accessed 1 July

2020].

Tutorials Point, 2020. Java Tutorial. [online] Available at:

<https://www.tutorialspoint.com/java/index.htm> [Accessed 18 August 2020].

Vaidya, S., Shah, N., Shah, N. and Shankarmani, R., 2020. Real-Time Object

Detection for Visually Challenged People. 2020 4th International Conference

on Intelligent Computing and Control Systems (ICICCS), [e-journal] pp.311 -

316. http://dx.doi.org/10.1109/ICICCS48265.2020.9121085.

Weiss, K., Khoshgoftaar, T.M. and Wang, D.D., 2016. A survey of transfer

learning. Journal of Big Data, [e-journal] 3(9), pp. 1 – 40.

https://doi.org/10.1186/s40537-016-0043-6.

Wewalk, 2020. Revolutionary Smart Cane and Smartphone App. [online]

Available at: <https://wewalk.io/en/> [Accessed 23 February 2021].

World Health Organization, 2019. Blindness and vision impairment. [online]

Available at: <https://www.who.int/news-room/fact-sheets/detail/blindness-

and-visual-impairment> [Accessed 30 June 2020].

Zhang, X., Yang, L., and Sinnott, R., 2019. A Mobile Application for Cat

Detection and Breed Recognition Based on Deep Learning. 2019 IEEE 1st

International Workshop on Artificial Intelligence for Mobile (AI4Mobile), [e-

journal] pp. 7-12. http://doi.org/10.1109/AI4Mobile.2019.8672684.

Zhao, Z.Q., Zheng, P., Xu, S.T. and Wu, X., 2019. Object Detection with

Deep Learning: A Review. IEEE Transactions on Neural Networks and

Learning Systems, [e-journal] 30(11), pp. 1-21.

http://dx.doi.org/10.1109/TNNLS.2018.2876865.

http://dx.doi.org/10.1109/ICICCS48265.2020.9121085

116

APPENDICES

APPENDIX A: Work Breakdown Structure

117

118

APPENDIX B: Gantt Chart

119

120

