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ABSTRACT 

 

Since the discovery of Graphene, two-dimensional (2D) material or 

monolayer has been attracting huge interest. By stacking two different 

monolayers on top of one another, we can obtain heterostructure, which has 

different physical properties compared with the individual monolayers. In 

this work, using the first-principles method within the Density Functional 

Theory (DFT) framework, we have discovered a new stable heterostructure 

by stacking monolayer Ge (Germanene) and monolayer SiGe (Siligene). The 

new heterostructure is stable as evidenced by the lack of negative frequency 

in the phonon dispersion, and exhibits metallic characteristic as indicated by 

the presence of electronic states at the Fermi level. Under more than 6% 

tensile strain or 4% compressive strain, the heterostructure starts to fracture 

mechanically with ultimate tensile strength of about 18 GPa. Besides, the 

metallic characteristic of the heterostructure shifts from metallic to 

semimetallic under 6% biaxial tensile strain. When oxygen atoms are 

adsorbed onto the surface of the heterostructure, a band gap of 0.24 eV is 

induced. The metallic heterostructure may be applicable for future 

development of nano scale battery anode or IC interconnects. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Introduction to 2D Materials 

2D materials or two-dimensional materials refer to a family of material which 

consists of substances made up of a layer of atoms, which are also known as 

monolayer. An example of 2D material is shown in Figure 1.1. 

 

 

Figure 1.1: Atomic Structure of Graphene, a 2D Material (Graphene, n.d.) 

 

2D materials first debuted on the stage of material science with the 

successful synthesis of Graphene in 2004, a 2D allotrope of carbon (Novoselov, 

2004). Graphene was dubbed ‘miracle material’ as it possesses many exotic 

properties such as a very high electron mobility of 15 000 cm2/Vs (compared to 

bulk Silicon with 1400 cm2/Vs) and high tensile strength (Novoselov et al., 

2012). Even though Graphene has seen a lot of optoelectronic applications, it 

has limitations on its application to electronics due to the absence of a bandgap 

which limits the ability for graphene to switch off (Liu et al., 2013). Since then, 

other 2D materials have been continuously discovered and predicted, such as 

hexagonal boron nitrides, silicene, transition metal dichalcogenides (TMD), 

MXenes, and perovskite (Zhang, Chhowalla and Liu, 2018). More recently, 2D 

Pcnitogens (Group V elements) have been studied, such as monolayer 

phosphorus (Li et al., 2014). 2D materials have attracted a considerable amount 

of attention because of their novel properties, with graphene as the prime 

example (Butler et al., 2013). 
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Many bulk materials are actually made up of stacked monolayers that 

have weak van der Waals bonding between the layers, which allow them to be 

exfoliated mechanically (Novoselov et al., 2005). 2D materials are also better 

at withstanding larger strain compared to their bulk counterparts (Dai, Liu and 

Zhang, 2019), and exhibit different properties, such as having a direct band gap 

compared to its bulk having an indirect band gap (Song, Hu and Zeng, 2013). 

The ultrathin 2D material can also be bent or folded easily (Zhang, Akatyeva 

and Dumitrica, 2011), which allows the 2D material to be applied in origami 

(Zhu and Li, 2014). Biomedical applications are also feasible because of its 

flexibility and stretchability, while still having equal or better electronic 

conductivity than metal and silicon (Akinwande et al., 2017), in which graphene 

has seen applications as electrodes for simultaneous electrophysiology and 

neuroimaging (Kuzum et al., 2014). 

The electronic and optical properties of 2D materials can also be tuned 

by straining the material, which can change the band gap, or shift the band gap 

from indirect to direct (Roldán et al., 2015). Atoms or molecules can be 

adsorbed onto the surface of 2D materials, changing their band structure, density 

of states, and charge density (Garay-Tapia, Romero and Barone, 2012). 

 

1.2 Introduction to Heterostructure 

Heterostructures are structures that are made by stacking two or more identical 

or different monolayers on top of each other. They are also known as Van der 

Waals’ heterostructures as they are supported by Van der Waals’ forces which 

act between the monolayer, holding them together (Geim and Grigorieva, 2013).  

Heterostructure was first explored experimentally by (Ponomarenko et 

al., 2011). They stacked two graphene layers together and sandwiched them 

between two boron nitrides. The heterostructure showed Anderson localization, 

which is not observed on single-layer graphene. Thus, they have shown that 

heterostructure can have properties that are very different from its constituent 

monolayers, which has sparked huge interest in the research of heterostructures. 

 

1.3 Problem Statement 

The search for a material that has high charge carrier mobility and a sizable band 

gap is important for nanoelectronics application as a high-performance field-
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effect transistor (Quhe et al., 2012). According to Akinwande et al. (2019), the 

quest has becoming more pressing as the Moore’s law is coming to an end as 

the downscaling of field-effect transistor made from bulk semiconductor is 

limited by issues such as short-channel effect. The introduction of FinFETs 

temporarily solved the issue, but they are also limited by the size and the 

numbers of fins, which again is linked to similar limitations. Hence, slim 

channel materials that have high charge carrier mobility are highly sought after 

to overcome this issue. As mentioned in Section 1.1, graphene is unfortunately 

unable to solve the issue posed as graphene does not have a band gap despite its 

other significant electronic properties. 

Since the synthesis of graphene, many other different monolayers have 

been explored, with some of them such as monolayer MoS2 having great 

promise for application in nanoelectronics (Akbari et al., 2018). However, the 

search for more materials should be continued as there is always a possibility 

that an exotic material is waiting to be discovered.  

 

1.4 Aim and Objectives 

This final year project aims to predict a new heterostructure based on monolayer 

Ge (germanene) and monolayer SiGe (siligene) and study the mechanical and 

electronic properties of this new heterostructure using the first-principle method 

within the density functional theory (DFT) framework. To reach this final goal, 

four objectives need to be completed. 

The first objective is to study and conduct a literature review for the 

monolayers involved in the heterostructure, which are germanene and siligene. 

Literature review is important to allow us to understand the properties of the 

monolayers, which will aid us in predicting and understanding the properties of 

the heterostructure at the end of our research. By simulating the monolayers, we 

can compare the obtained results with published literature to verify whether the 

parameters used are appropriate. 

The second objective is to study the structural and mechanical properties 

of the heterostructure such as the structural parameters, phonon dispersion, and 

stress-strain response. From the structural parameters, we can determine the 

structure of the heterostructure, whereas the phonon dispersion of the 

heterostructures, which is computed using density functional perturbation 
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theory (DFPT), is important to determine the feasibility of synthesising the 

structure experimentally. Understanding the stress-strain response of the 

heterostructure will allow us to understand how much strain can the 

heterostructure handle before breaking down, and from there, we can know the 

maximum strain that we can apply to the heterostructure to tune its electronic 

properties. 

The third objective is to investigate the electronic properties of the 

heterostructure. This can be done by calculating and plotting the electronic band 

structure. From there, we can determine the type of the material, whether it is a 

semiconductor, metal, or semimetal. We can also plot the density of states to 

further confirm its characteristics. 

The fourth objective is to probe the tunability of the heterostructure. By 

applying strain or adsorbing atoms onto the surface of the heterostructure, the 

electronic properties can be tuned, which can extend the applicability of the 

heterostructure and attracts more interest. 

 

1.5 Scope and Limitation of the Study 

The scope of this study is to provide us information on the feasibility of the 

Germanene-Siligene structure and their structural, mechanical, and electronic 

properties, as well as tunability of the electronic properties by implementing the 

Density Functional Theory with the Gradient Generalized Approximation 

(GGA) functional.  Structural properties investigated include the lattice constant, 

buckling distance, phonon dispersion; mechanical properties include the stress-

strain curve; electronic properties include electronic band structure and density 

of states. The tunability of electronic properties will be studied by applying 

biaxial tensile and compressive strain on the heterostructure, and oxygen 

adsorption. 

One of the limitations faced is the limited computational resource. The 

calculation of our heterostructure is limited to a 1×1 supercell, which only 

consists of 1 repeating unit of our structure. If a larger supercell is possible, we 

can consider investigating the effect of transition metal intercalation, which are 

better done with a larger (3×3 or 4×4) supercell. Furthermore, the k points grid 

used in this experiment is 25×25×1, which is adequate, but a denser grid would 

increase the accuracy of the results.  
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Another limitation is the limited duration of this project, which is 

restricted to 8 months. The phonon dispersion calculation takes up to 2-3 months 

to complete. Any error made in setting up the calculation would require a restart 

of the calculation that is already running for some time, thus wasting the 

precious time allocated. Sometimes, the phonon dispersion may require a denser 

q point grid to avoid numerical error caused by approximation or interpolation. 

Denser q mesh would possibly require an addition of several months to the 

computational time. Hence, we must choose a smaller q mesh to complete the 

project in the given time.  
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CHAPTER 2 

 

2 THEORETICAL BACKGROUND 

 

2.1 Quantum Mechanics Preliminaries  

Schrödinger’s Equation is a partial differential equation which takes the form 

 

𝑖ℏ 
𝜕Ψ(𝑟, 𝑡) 

𝜕𝑡
= �̂�Ψ(𝑟, 𝑡) (2.1) 

 

where 𝑖 is imaginary number, ℏ is the Planck’s constant, �̂� is the Hamiltonian, 

and Ψ(𝑟, 𝑡) is the wavefunction. Hamiltonian is system-specific, but the general 

form is 

 

�̂� = −
ℏ2

2𝑚
∇2 + 𝑉(𝑟, 𝑡) (2.2) 

 

where 𝑚 is the mass of the particle examined, ∇2 is the Laplacian, and 𝑉 is the 

potential function of the system. 

For a system consisting of time-independent potential, we can allow the 

wavefunction to be separable, i.e. Ψ(𝑟, 𝑡) = 𝜓(𝑟)𝑓(𝑡) , which allows the 

Schrödinger’s Equation to be split into two differential equation, with both equal 

to a constant, which is assigned as 𝐸𝑛. 

 

𝑖ℏ 
𝜕𝑓(𝑡) 

𝜕𝑡
= 𝐸𝑛𝑓(𝑡) (2.3) 

�̂�𝜓(𝑟) = 𝐸𝑛𝜓(𝑟) (2.4) 

 

Equation 2.3 is easily solved, with solution 𝑓(𝑡) = 𝑒−
𝑖𝐸𝑛𝑡

ℏ . Equation 2.4 is an 

eigenvalue equation and is system dependent. The eigenvalue equation can have 

infinitely many solutions, which are known as eigenstates, 𝜓𝑛, and each of them 

has an eigenvalue, 𝐸𝑛, assigned to them, which may or may not be degenerate. 

The eigenvalue is the energy of the system in a particular eigenstate, and they 

can be arranged in ascending order i.e., 𝐸0 ≤ 𝐸1 ≤ ⋯ < 𝐸𝑛 ≤ 𝐸𝑛+1 . . . < ⋯ 
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such that there is a minimum value, 𝐸0  which is known as the ground state 

energy. The full set of eigenstates forms a complete basis in the function space, 

and any arbitrary wavefunction can be expressed in terms of the superposition 

of the eigenstates. 

 

2.1.1 Variational Principle 

In Quantum Mechanics, there are many different systems which can be either 

impossible or required too much work to solve. Fortunately, we can exploit the 

completeness of eigenstates to obtain information about the system such as the 

ground state energy without actually solving the differential equation. As stated 

in the previous section, any arbitrary wavefunction, 𝜙(𝑟), within the provided 

constraint, can be written in terms of the superposition of the eigenstates, i.e. a 

Fourier series: 

 

𝜙(𝑟) = ∑ 𝑐𝑛𝜓𝑛

∞

𝑛=0

(2.5) 

 

The expectation value of energy can be written as a functional (the positional 

dependence is omitted for brevity). 

 

𝐸[𝜙] =
∫ 𝜙∗�̂�𝜙 𝑑3𝑟 

∫ 𝜙∗𝜙 𝑑3𝑟 
(2.6) 

 

Combining Equation 2.5 and 2.6, 

 

𝐸[𝜙] =
∑ 𝑐𝑛𝑐𝑚

∗ ∫ 𝜓𝑚
∗ �̂�𝜓𝑛 𝑑3𝑟∞

𝑛,𝑚=0  

∑ 𝑐𝑛𝑐𝑚
∗ ∫ 𝜓𝑚

∗ 𝜓𝑛 𝑑3𝑟∞
𝑛,𝑚=0   

(2.7) 

 

Using Equation 2.4,  

 

𝐸[𝜙] =
∑ 𝑐𝑛𝑐𝑚

∗ 𝐸𝑛∫ 𝜓𝑚
∗ 𝜓𝑛 𝑑3𝑟∞

𝑛,𝑚=0  

∑ 𝑐𝑛𝑐𝑚
∗ ∫ 𝜓𝑚

∗ 𝜓𝑛 𝑑3𝑟∞
𝑛,𝑚=0  

 (2.8) 
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Since the eigenstates can be made to be orthonormal by using Gram-Schmidt 

orthonormal process, such that  ∫ 𝜓𝑚
∗ 𝜓𝑛 𝑑3𝑟 = 𝛿𝑚𝑛 , the expression can be 

simplified to 

 

𝐸[𝜙] =
∑ |𝑐𝑛|2𝐸𝑛

∞
𝑛=0  

∑ |𝑐𝑛|2∞
𝑛=0

(2.9) 

 

With this equation, we can establish an inequality: 

 

𝐸[𝜙] =
∑ |𝑐𝑛|2𝐸𝑛

∞
𝑛=0  

∑ |𝑐𝑛|2∞
𝑛=0  

≥
𝐸0 ∑ |𝑐𝑛|2∞

𝑛=0  

∑ |𝑐𝑛|2∞
𝑛=0  

= 𝐸0 (2.10) 

 

which states that any arbitrary trial wavefunction has energy higher or equal to 

the ground state energy. The true ground state energy can be approached by 

refining the guess of trial wavefunction iteratively.  
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2.1.2 Identical Particles 

In quantum mechanics, elementary particles of the same type occupying space 

close to each other must be regarded as identical and lose their distinguishability, 

such that their collective wavefunction cannot be written as 

 

𝜓(𝒓𝟏, 𝒓𝟐, … , 𝒓𝑵) = Π𝑖
𝑁χ𝑖( 𝒓𝒊) (2.11) 

 

where 𝜒𝑖 represent the individual wavefunction for the ith particle. Instead, the 

wavefunction should be expressed as the superposition of the individual 

wavefunctions with all of the different possible combinations between the 

individual wavefunctions and the position labels (𝒓𝟏, 𝒓𝟐, . . ) exhausted. Two 

different superpositions are possible depending on the type of the elementary 

particles involved, which are boson and fermion. Since protons and electrons 

are fermions, we will only include the discussion for fermion.  

Fermions, upon exchanging one pair of position labels, i.e. 𝒓𝟏 ↔ 𝒓𝟐, the 

wavefunction is asymmetric and changes its sign, 𝜓 →  −𝜓 . The collective 

wavefunction of a system of identical fermions can be expressed concisely using 

Slater’s determinant:  

 

𝜓(𝒓𝟏, 𝒓𝟐, … , 𝒓𝒏) =
1

√𝑁!
|

𝜒1(𝒓𝟏) 𝜒2(𝒓𝟏) ⋯ 𝜒𝑁(𝒓𝟏)

𝜒1(𝒓𝟐) 𝜒2(𝒓𝟐) ⋯ 𝜒𝑁(𝒓𝟐)
⋮ ⋮ ⋱ ⋮

𝜒1(𝒓𝑵) 𝜒2(𝒓𝑵) ⋯ 𝜒𝑁(𝒓𝑵)

| (2.12) 

 

2.1.3 Hellmann-Feynman theorem 

Hellman-Feynman theorem states: 

 

𝑑𝐸𝜆

𝑑𝜆
= ∫ 𝜓𝜆

∗ 𝑑�̂�𝜆

𝑑𝜆
𝜓𝜆𝑑𝒓 (2.13) 

 

or more elegantly in Dirac bra-ket notation: 

 

𝑑𝐸𝜆

𝑑𝜆
= ⟨𝜓𝜆 |

𝑑�̂�𝜆

𝑑𝜆
| 𝜓𝜆⟩ (2.14) 
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This theorem is applied in condensed matter physics to compute the atomic 

forces acting on nuclei of the system. The expression for such force on the jth 

nucleus is (where {�⃗⃗�} implies the set of vectors 𝑅1
⃗⃗⃗⃗⃗, 𝑅2

⃗⃗ ⃗⃗⃗, … , 𝑅𝑛
⃗⃗ ⃗⃗ ⃗ ): 

 

�⃗�𝑗 = −
𝜕𝐸{�⃗⃗�}

𝜕𝑅1
⃗⃗⃗⃗⃗

= ⟨𝜓{�⃗⃗�} |
𝑑�̂�{�⃗⃗�}

𝑑𝑅𝑗
⃗⃗ ⃗⃗

| 𝜓{�⃗⃗�}⟩  (2.15) 

 

2.2 Density Functional Theory (DFT) 

In any material, there are many protons and electrons, and each of them create 

a Coulomb’s potential around them. In the study of condensed matter physics, 

we are required to take into account the motions and interactions of every single 

particle in the system. The Hamiltonian of such many-body system is given as 

(boldface indicates vector): 

 

 

 

�̂�(𝑹, 𝒓) = − ∑
ℏ2

2𝑚
∇𝒓

2

𝑖

− ∑
ℏ2

2𝑚
∇𝑹

2

𝑁

+
1

2
∑

𝑒2

|𝒓𝒊 − 𝒓𝒋|
𝑖≠𝑗 

− ∑
𝑍𝑁𝑒2

|𝑹𝑵 − 𝒓𝒊|
𝑁,𝑖

+
1

2
∑

𝑍𝑁𝑍𝑁′𝑒2

|𝑹𝑵 − 𝑹𝑵′|
𝑁,𝑁′

(2.16)

 

 

 

 

To reduce the complexity of the task, Born-Oppenheimer (BO) approximation 

is applied, which removes two terms in the Hamiltonian by assuming that the 

protons are static on the basis that they are much heavier than the electrons. The 

resultant BO Hamiltonian is thus much cleaner: 

 

�̂�𝐵𝑂(𝑹, 𝒓) = − ∑
ℏ2

2𝑚
∇𝒓

2

𝑖

+
1

2
∑

𝑒2

|𝒓𝒊 − 𝒓𝒋|
𝑖≠𝑗 

− ∑
𝑍𝑁𝑒2

|𝑹𝑵 − 𝒓𝒊|
𝑁,𝑖

(2.18) 

 

In the 1960s, Walter Kohn and Pierre Hohenberg derived two theorems 

which laid the fundamental of DFT. The first theorem states that the external 

Kinetic energy 

of electrons 

Kinetic energy 

of protons 

Coulomb interaction 

between electrons 

Coulomb interaction 

between electrons and 

protons 

Coulomb interaction 

between protons 
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potential (Coulomb interaction between the protons and electrons) and 

subsequently the BO Hamiltonian is a unique functional of electron density, 

which is denoted by 𝜌(𝒓) (Harrison, 2003): 

 

𝐸[𝜌] = 𝐹[𝜌(𝒓)] + 𝑉𝑒𝑥𝑡[𝜌] (2.19) 

 

where 𝑉𝑒𝑥𝑡[𝜌(𝒓)] is the external potential functional 

 

𝑉𝑒𝑥𝑡[𝜌] = − ∫ ∑
𝑍𝑁𝑒2

|𝑹𝑵 − 𝒓𝒊|
𝑁,𝑖

𝜌(𝒓) 𝑑𝒓 (2.20) 

 

 and 𝐹[𝜌(𝒓)] is the other functional which are still unknown, as the theorem 

does not provide us. However, we can split it further based on our knowledge 

of the Hamiltonian: 

 

𝐹[𝜌] = 𝑇[𝜌] + 𝑉𝑒𝑒[𝜌] (2.21) 

 

where the first term on the right-hand side is the kinetic energy functional and 

the second term is the electron-electron Coulomb interaction functional. 

The 2nd Kohn-Hohenberg theorem then states that for any trial electron 

density that satisfies the integral  

 

∫ 𝜌𝑡(𝒓)𝑑𝒓 = 𝑛 (2.22) 

 

which n is the total number of electrons, then the functional stated in Equation 

2.19 becomes 

 

𝐸[𝜌𝑡] ≥ 𝐸0 (2.23) 

 

which we know to be true from the variational principle with the Hamiltonian 

determined by trial wavefunction. 

 

 



12 

The two theorems above combined yield the fundamental statement of 

DFT (Harrison, 2003):  

 

𝛿[𝐸[𝜌] − 𝜇(∫ 𝜌(𝒓)𝑑𝒓 − 𝑁)] = 0 (2.24) 

 

which is a Lagrange multiplier with constraint 𝜇. The equation states that the 

true ground state electron density minimises the functional 𝐸[𝜌] and gives the 

true ground state energy when acted on by the functional. 

The fundamental statement of DFT has merely stated that the true 

ground state electron density minimizes the energy functional without providing 

any direction to obtain the functional. 

Kohn then worked with Lu Jeu Sham and they suggested the use of non-

interacting electron orbitals to construct anti-symmetric wavefunction with 

Slater’s determinant (Kohanoff, 2006): 

 

Φ = det[𝜙1𝜙2 … 𝜙𝑛] (2.25) 

 

where 𝜙𝑖, 𝑖 = 1,2,3, … , 𝑛, are the non-interacting electron orbitals of the system. 

Then, we can construct electron density: 

 

𝜌(𝒓) = ∑|𝜙𝑖|2

𝑛

𝑖=1

(2.26) 

  

By doing so, the non-interacting kinetic energy functional can be constructed: 

 

𝑇𝑠[𝜌] = −
ℏ2

2𝑚
∑ ∫ 𝜙𝑖

∗∇2𝜙𝑖 𝑑𝒓

𝑛

𝑖=1

 (2.27)  

 

where the subscript s denotes that it is not exact. Because the electrons are 

assumed to be non-interacting, and they would attain different value otherwise.  

They then took the Hartree energy term from Hartree-Fock method as 

the electron-electron Coulomb interaction functional, which can be explicitly 

written as (Harrison, 2003): 
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𝑉𝐻[𝜌] =
𝑒2

2
∫

𝜌1(𝒓𝟏)𝜌2(𝒓𝟐)

|𝒓𝟏 − 𝒓𝟐|
𝑑𝒓𝟏𝑑𝒓2 (2.28) 

 

Note that the energy functional no longer takes the form of Eqn. 2.19, 

the new energy functional is: 

 

𝐸[𝜌] = 𝑇𝑠[𝜌] + 𝑉𝑒𝑥𝑡[𝜌] + 𝑉𝐻[𝜌] + 𝐸𝑋𝐶[𝜌] (2.29) 

 

From the Eqn. 2.29 above, we can see that a new functional 𝐸𝑋𝐶[𝜌] has been 

introduced. The new functional is known as exchange-correlation (XC) 

functional and is introduced to take into account the error made by assuming the 

electrons are non-interacting: 

 

𝐸𝑋𝐶[𝜌] = (𝑇[𝜌] − 𝑇𝑠[𝜌]) + (𝑉𝑒𝑒[𝜌] − 𝑉𝐻[𝜌]) (2.30) 

 

After we substitute the electron density (Eqn. 2.24) into the energy 

functional (Eqn. 2.28), we plug the result into the fundamental statement of DFT 

(Eqn. 2.22), we arrive at what is known as Kohn-Sham (KS) equation: 

 

[−
ℏ2

2𝑚
∇2 + 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻(𝒓) + 𝑉𝑋𝐶(𝒓)] 𝜙𝑖(𝒓) = 𝜀𝑖𝜙𝑖(𝒓) (2.31)  

 

which is the Schrödinger’s equation for the non-interacting one-electron orbital, 

where we can further define the KS Hamiltonian to be: 

 

𝐻𝐾𝑆 = [−
ℏ2

2𝑚
∇2 + 𝑉𝑒𝑥𝑡(𝒓) + 𝑉𝐻(𝒓) + 𝑉𝑋𝐶(𝒓)] (2.32) 

 

where, 𝑉𝑋𝐶, is the XC potential, defined as the functional derivative of the XC 

functional,  

 

𝑉𝑋𝐶(𝒓) =
𝛿𝐸𝑋𝐶(𝒓)

𝛿𝜌(𝒓)
(2.33) 
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The exact form of XC functional remains unknown. Fortunately, efforts to 

approximate the functional has been thus far successful using empirical data and 

Monte-Carlo method, which will be further discussed in the next section.  

KS equation can be solved by diagonalizing the KS Hamiltonian, which 

allows us to obtain the full set of orbitals, and from there, we can construct the 

updated electron density. The whole problem is solved iteratively by using a 

multistep process known as self-consistent field (SCF) calculation, which can 

be summarized in the flow chart shown in Figure 2.1. 

After convergence has been achieved for SCF calculation, forces can be 

calculated using Hellmann-Feynman force (Eqn. 2.15), whereas the energy of 

the system can be calculated by substituting the final electron density into the 

energy functional (Eqn. 2.29). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Self-Consistent Field (SCF) Calculation Loop Flow Chart 

 

Initial/Trial electron density, 𝜌𝑖𝑛𝑖 

Construct KS Hamiltonian, 𝐻𝐾𝑆 

Solve KS Equation: 

𝐻𝐾𝑆𝜙𝑖(𝒓) = 𝜀𝑖𝜙𝑖(𝒓) 

Construct new electron density 

𝜌𝑛𝑒𝑤(𝒓) = ∑|𝜙𝑖|2

𝑛

𝑖=1

 

Compare the electron densities, 

check if 

|𝜌𝑛𝑒𝑤 − 𝜌𝑛𝑒𝑤| < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

No 

𝜌𝑖𝑛𝑖 = 𝜌𝑛𝑒𝑤 

Compute forces and energy 

Yes 
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2.2.1 Exchange-Correlation (XC) Functional 

Exchange-Correlation functional, 𝐸𝑋𝐶  is the last missing piece in this DFT 

scheme discussion. The research field for this functional is currently very active, 

and many different approximations have been implemented, such as Local 

Density Approximation (LDA), Generalized Gradient Approximation (GGA), 

meta-GGA, and Hybrid Functional. The computational resources required is 

typically in this ascending order: LDA, GGA, meta-GGA, Hybrid, due to the 

factors that the functionals take into account. However, more sophisticated 

functional does not always give better result, and the improvement of using 

complicated functional may be outweighed by the increase of computational 

cost.  

Generalized Gradient Approximation is the functional used in this 

project. It considers the local electron density, 𝜌, and the first-order gradient 

term, ∇2𝜌, whereas LDA only consider the local electron density, hence it is 

known as ‘local density’ approximation. According to Harrison (2003), the 

typical form of GGA functional is: 

 

𝐸𝑋𝐶 = ∫ 𝜌(𝒓)𝜀𝑋𝐶[𝜌(𝒓), ∇𝜌(𝒓)]𝑑𝒓 (2.34) 

 

where 𝜀𝑋𝐶[𝜌(𝒓), ∇𝜌(𝒓)]  is a semilocal function which has many different 

variations, which include BLYP, PW91, PBE, and others. In this project, the 

Perdew-Burke-Ernzerhof Generalized Gradient Approximation (PBE-GGA) 

functional is utilized. 

 

2.2.2 Pseudopotential 

Pseudopotential is an approximation method which freezes the core or non-

valence electrons which are highly localized and does not involve in chemical 

reaction. They are replaced with a smooth density while keeping the important 

physical characteristics of the core electrons (Sholl and Stecker, 2009). This 

method significantly reduces the number of electrons involves in the 

computation, which subsequently reduces the computation time. There are 3 

main types of pseudopotentials, which are norm-conserving, ultrasoft, and 

plane-augmented wave (PAW).  
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CHAPTER 3 

 

3 LITERATURE REVIEW 

 

3.1 Germanene 

Germanium belongs to the same group as carbon in the periodic table, which is 

Group 14. In 1994, Takeda and Shiraishi predicted the possibility of germanium 

monolayer, which is further confirmed 15 years later by Cahangirov et al. 

(2009). 

 

3.1.1 Structural Properties 

By calculating and plotting the phonon dispersion (see Figure 3.1(b)), 

Cahangirov et al. (2009) showed that the low-buckled (LB) honeycomb 

structure (shown in Figure 3.1(a)) is stable for Germanene, in agreement with 

what Takeda and Shirashi (1994) had predicted. They also considered the 

possibility of planar and high-buckled structures, but they are shown to be 

unstable as they have large imaginary frequencies in the Brillouin Zone. The LB 

honeycomb structure was further confirmed by using Ab-initio molecular 

dynamics at 800 K with time steps of 2 femtoseconds for 10 picoseconds which 

the structure remained intact. Germanene has been successfully synthesized 

experimentally in 2014 (Dávila et al., 2014), proving its experimental feasibility. 

Structural constants i.e. lattice constant and buckling distance from 

different sources are tabulated in Table 3.1. From the table, we can see that the 

reported value for lattice constant from different sources are very close to each 

other, with at most a difference of 0.156 Å or 4% difference.  

 

    

Figure 3.1: (a) Top view and (b) Phonon Dispersion for LB Germanene (Şahin 

et al., 2009) 

a) b) 
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Table 3.1: Structural Constants of Germanene from Multiple Sources 

Sources XC Functional 
Lattice 

Constant, Å 

Buckling 

Distance, Å 

Cahangirov et al. 

(2009) 
LDA 3.97 0.64 

Lebègue and 

Eriksson (2009) 

LDA 4.034 (Not included) 

GGA 4.126 (Not included) 

Ni et al. (2012) GGA 4.063 0.676 

Houssa et al. (2010) LDA 4.03 (Not included) 

Yan et al. (2015) LDA 3.95 0.64 

 

3.1.2 Electronic Properties and Tunability 

By calculating and plotting the electronic band structure (shown in Figure 3.2), 

Cahangirov et al. (2009) stated that Germanene is semimetallic with a linear 

crossing point at the K point of the Brillouin Zone (BZ), which indicates the 

charge carriers behave like massless Dirac fermion. They also stated the band 

structure around K point is symmetrical, which has attributed the ambipolar 

properties to Germanene. The results of Houssa et al. (2010) agree with 

Cahangirov et al. (2009). 

In chapter 1, we mentioned that the vertical electric field and strain can 

be applied to possibly tune the band structure or change the band gap. The effect 

of vertical electric field was first investigated in 2012 by Ni et al., which 

reported a linear relation between band gap opening and electric field. At 

electric field strength of 1 V/Å, the band gap of Germanene is opened to about 

0.1 eV, which is larger than the thermal energy of about 0.026 eV at room 

temperature. They also noted that since the GGA functional underestimates 

band gap, the real band gap opening should be much greater than the value 

calculated. This properties of Germanene allows it to be applied in 

nanoelectronics, especially as field-effect transistor. 

The effect of biaxial strain on the electronic properties of germanene was 

investigated by Yan et al. (2015). They reported a movement of conduction 

band maximum (CBM) to Fermi level at Γ point of the BZ when 3% biaxial 

tensile strain is applied to Germanene. The CBM sinks further below the Fermi 

level when 5% strain is applied. The findings imply that the Germanene 
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undergoes a transition from semimetal to metal when 3% or more biaxial strain 

is applied. 

When biaxial compressive strain is applied, there are no notable changes 

reported by Yan et al. (2015), with only a shift of the CBM at Γ point further 

away from the Fermi level.  They further investigated the stability of the strained 

germanene by plotting the phonon dispersion. The phonon dispersion shows 

small negative modes, but the authors remarked that it was caused by the 

interpolation error, which can be corrected by increasing the density of q grid. 

 

 

Figure 3.2: (Left to Right) Electronic Band Structure, Density of States, and 

Zoomed-in View of  Electronic Band Structure at K Point Showing 

Dirac Point for LB Germanene. (Cahangirov et al., 2009) 
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3.2 Siligene  

Siligene or monolayer SiGe was first studied by Pan et al., (2011) along with 

other group IV monolayers using DFT. Siligene was then investigated 

thoroughly by Zhou et al., (2013), in which they stated that they hope that this 

combination will be more stable than Germanene while maintaining the Dirac 

point at the K point of the Brillouin Zone. 

 

3.2.1 Structural Properties 

Both authors have stated that the only stable structure for siligene is low-buckled 

honeycomb (shown in Figure 3.3(a)) which they have confirmed by plotting 

phonon dispersion (see Figure 3.3(b)), which does not contain any negative 

frequencies mode. Zhou et al. (2013) also plotted the phonon dispersion for 

high-buckled honeycomb siligene which shows negative frequencies mode, thus 

proving its instability. They further investigated the stability by calculating the 

contribution of lattice vibration to the free energy, in which the outcome 

suggests siligene is stable, with the stability even higher than silicene which has 

been experimentally fabricated.  

The structural constants of siligene from various sources are shown in 

Table 3.2. We notice that all the published values have very good agreement on 

both lattice constant and buckling distance which is about 3.94 Å and 0.58 Å, 

respectively, even when the XC functional used are different. Figure 3.3(a) 

shows the top view of LB siligene. 

 

 

Figure 3.3: (a) Top View of LB Siligene with the Parallelogram Indicating 1×1 

Supercell (Sakib, Ahmed and Subrina., 2018). (b) Phonon 

Dispersion for Siligene (Zhou et al., 2013). 

 

a) b) 



20 

Table 3.2: Structural Constants of Siligene from Multiple Sources 

Sources 
XC 

Functional 

Lattice 

Constant, Å 

Buckling 

Distance, Å 

Pan et al. (2011) LDA 3.94 0.57 

Zhou et al. (2013) GGA 3.939 0.579 

Jamdagni et al. 

(2015) 
LDA 3.95 0.57 

Sakib, Ahmed and 

Subrina (2018) 
GGA 3.94 0.59 

Sannyal, Ahn, and 

Jang (2019) 
GGA 3.91 0.58 

 

3.2.2 Electronic Properties and Tunability 

According to Pan et al. (2011), siligene is a band gapless semimetal with band 

crossings at the K point of the BZ. The findings of Zhou et al. (2013) agree with 

the findings of Pan et al. (2011) and they stated further that the band crossings 

at K point are linear, which resembles a Dirac cone (see Figure 3.4), thus giving 

both electrons and holes a massless Dirac fermion characteristics, similar to 

germanene. Contrary to other findings, Jamdagni et al. (2015) and Sakib, 

Ahmed and Subrina (2018) reported a small band gap of 0.15 eV and 0.6 eV 

respectively, while they both agree on the presence of Dirac cone at K point of 

the BZ. The differences are likely to be due to the different functionals or 

parameters used as the band gap is small and thus any delicate parameter 

changes could have affected the results. 

 

 

Figure 3.4: Electronic Band Structure for Siligene. Inset is Showing the 3D 

Dirac Cone at K point. (Zhou et al., 2013). 
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Under both tensile and compressive uniaxial strain, the band gap of 

siligene has shown to increase almost linearly with deviation from linear 

behaviour starting at 6% strain while the mass of the charge carriers (electron 

and photon) only increase slightly, thus preserving the very high charge carrier 

mobility (Sakib, Ahmed and Subrina, 2018). For uniaxial compressive strain 

above 6%, siligene undergoes a direct metallic transition while for uniaxial 

tensile strain, the band gap of siligene transitioned from direct to indirect. 

The effects of biaxial strain and vertical electric field were investigated 

by Jamdagni et al. (2015). Under biaxial tensile strain, the band gap (which was 

reported to be 0.15 eV by the same author) becomes smaller and smaller, 

eventually reaching zero at 6% strain. For biaxial compressive strain, the band 

gap increases somewhat parabolic-like until 6% strain at 0.55 eV, before falling 

to zero drastically at 8% strain. When an external vertical electric field is applied 

to siligene, the band gap opens up further and varies almost linearly with 

external electric field strength, up to about 0.80 eV when 1 V/Å electric field is 

applied.  

The impressive tunability of siligene under both mechanical strain and 

electric field renders siligene a very attractive candidate for nanoelectronics and 

optoelectronics applications. However, siligene is yet to be synthesized 

experimentally.  

 

3.3 Justification for the Choice of Monolayers 

The lattice mismatch between Germanene and Siligene is low, with only about 

2.2% difference. This is a good indication that the defects arise due to lattice 

mismatch during the crystal growth of the 2D SiGe/Ge heterostructure could be 

reduced as well. Moreover, both Germanene and Siligene have low-buckled 

honeycomb structure. This indicates that the heterostructure will be easier to 

grow. 

Furthermore, both of the monolayers contain Dirac cone in their 

electronic band structure which is an indication of high charge carrier mobility. 

Hence, it is likely that the combined heterostructure will have Dirac cone as well 

which is desirable for nanoelectronics applications. 

The tunability of both monolayers are attractive features as well. There 

is a high possibility that the heterostructure will inherit this attribute. 
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3.4 Band Gap Tuning using Oxygen Adsorption 

By adsorbing oxygen atoms onto the surface of a monolayer graphene 

experimentally, Takahashi et al. (2014) has successfully opened a band gap of 

0.45 eV in the bandgap-less graphene. 

Similarly, Du et al. (2014) oxidized silicene, which has no band gap in 

its pristine form, and successfully opened a band gap of about 0.18 eV. They 

also note that the silicene monolayer retains its structure when fully covered by 

oxygen adatom.  

Oxygen adsorption is a promising method to tune the electronic 

properties of monolayers and open band gap in a bandgap-less material, 

expanding the possibility of nanoelectronics applications. 
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CHAPTER 4 

 

4 METHODOLOGY AND WORK PLAN 

 

4.1 Computation using Quantum ESPRESSO 

In this research, Quantum Espresso (QE) is employed to implement DFT 

calculation. The logo of QE is shown in Figure 4.1. QE is an open-source 

computational package where ESPRESSO is an acronym for opEn-Source 

Package for Research in Electronic Structure, Simulation, and Optimization. QE 

was first released in 2009 by Giannozzi et al., and further improved the 

functionality in 2017. The package requires the use of a Linux-based operating 

system such as Ubuntu and supports parallel processing with the help of MPI 

package. Other than QE, there is also VASP available for DFT calculation. QE 

is chosen over VASP as QE is an open-source package which is also free to use. 

 

 

Figure 4.1: The Logo of Quantum ESPRESSO. (Giannozi, 2009) 

 

QE supports many different types of calculations such as SCF 

calculation, molecular dynamics (MD), phonon dispersion calculation, and 

quantum transport. The features used in this research are SCF and phonon 

dispersion calculation, which are separated in several subpackages, which 

includes Pw, Bands, Dos, Projwfc, and ph. Pw is used for geometrical 

optimizations and self-consistent field (SCF) calculations; Bands processes the 

output file of SCF calculation and produces electronic band structure; dos and 

Projwfc are used to obtain DOS and PDOS, respectively; Ph is used for phonon 

dispersion calculation within density functional perturbation theory (DFPT) 

framework. 
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4.2 Visualizing crystal structure using XCrySDen 

XCrySDen is a graphical visualizer package developed by Kokalj (1999). It is 

used to visualize the input and output files of several DFT software such as 

Quantum ESPRESSO, VASP and others. Using XCrySDen, we can view the 

crystal structure, measure interatomic distance between any of the two atoms 

involved, and measure bond angle.  When setting up the crystal structure for 

geometrical relaxation, we can use XCrySDen to help determine and verify 

where the position of the atoms. The user interface of XCrySDen is shown in 

Figure 4.2(a), while Figure 4.2(b) demonstrates how to measure bond distance. 

 

 

Figure 4.2: (a) User Interface of XCrySDen. (b) Example of Measuring Atomic 

Distance using XCrySDen. 

  

a) 

b) 
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4.3 Carrying out Calculation  

To run any calculation, an input file containing various parameters is 

required. Figure 4.3(b) and Figure 4.3(c) shows an example of geometrical 

optimization and phonon input file respectively. After creating the required 

input file, the computation can be executed by running a command in a Linux 

terminal, as shown in Figure 4.3(a).  

For SCF calculation, we are required to specify convergence threshold 

for total energy, total force, and individual SCF cycle, crystal structure such as 

the lattice vector and atomic positions, kinetic energy cutoff, structural 

optimization algorithm (for geometrical optimization), atomic species, type of 

van der Waals’ correction, XC functional, pseudopotential, and k-grid. For the 

phonon dispersion calculation, the required parameters are q-grid and 

convergence threshold.  

A typical QE calculation steps are shown in Figure 4.4. 

  

 

        

 

Figure 4.3: (a) Command Required to Initiate the Computation. Sample Input 

File for (b) Geometrical Relaxation and (c) Phonon Calculation 

  

b) c) 

a) 
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Figure 4.4: Flowchart for DFT Calculation using Quantum ESPRESSO.  

 

  

Setup initial atomic coordinates, 

lattice vector, and other parameters. 

Perform geometrical optimization 

using pw. Verify structure does not 

deform using XCrySDen. 

 

Obtain optimized coordinates and 

lattice vector. Perform SCF 

calculation using pw. 

Perform Non-SCF calculation using 

pw.  

Run post-processing using bands, 

dos, projwfc to obtain electronic 

band structure, density of states.  

Perform phonon dispersion 

calculation. 
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4.4 XC Functional and Parameters 

The XC functional used in this project is Perdew–Burke–Ernzerhof (PBE) based 

Generalized Gradient Approximation functional, whereas the pseudopotential 

employed is Troullier-Martins type norm-conserving pseudopotential. For k-

points grid, Monkhorst-Pack uniform 25 × 25 × 1 k-points grid is used for SCF 

calculation, whereas 10 × 10 × 1 is used for geometrical optimization. The 

geometrical optimization algorithm used is the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) algorithm. Kinetic energy cut-off of 80 Ry is applied in all of 

the computations. A 20 Å vacuum is established along the perpendicular 

direction of the supercell to minimize any interaction between layers. The van 

der Waals’ correction used is Grimme-D2 type. For phonon dispersion 

calculation, a q-grid of 8 × 8 × 1 is used.  

Figure 4.5 shows the Brillouin zone and high symmetry point for 

hexagonal lattice. For electronic band structure and phonon dispersion 

calculation, the high-symmetry points chosen are: Γ, K, M with path Γ → K →

M → Γ, which is the research standard for honeycomb structure. 

 

 

Figure 4.5: Brillouin Zone for Hexagonal Lattice. High Symmetry Points are 

Labelled in Red. (Setyawan and Curtarolo, 2010) 
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4.5 Work Plan 

In this project, we aim to replicate and compare the properties for the 

monolayers, namely Germanene and Siligene with published literature, and 

investigate the structural, mechanical and electronic properties of the 2D 

SiGe/Ge heterostructure. To explore the heterostructure, we need the atomic 

coordinates of the monolayers before we can proceed with the computation. 

After the calculations for monolayers are completed, the work for 

heterostructure can begin. The work starts with the geometrical optimization of 

the structure, followed by electronics properties calculation and phonon 

dispersion calculation. Then both compressive and tensile biaxial strain to the 

heterostructure up to 10% are applied to the heterostructure, to probe its stress-

strain response and effect of biaxial strain on its electronic properties. Finally, 

oxygen is adsorbed onto the surface of the heterostructure using 1×1 supercell 

to study the effect of oxygen adatom on the electronic properties of the 

heterostructure.  

 

4.6 Work Stages 

The work for this project can be divided into five main stages. The first main 

stage is the relaxation or geometrical optimization of the monolayers, which are 

siligene and germanene. This is done by first creating an input file containing 

initial atomic coordinates and lattice vectors along with other required 

parameters. A command input is then used to start the computation. During the 

relaxation, the atomic coordinates and lattice vectors will change iteratively 

depending on the force which is calculated using Hellman-Feynman theorem 

coded within the PW package, until convergence is reached. After that, we can 

execute the self-consistent field (SCF) calculation using the final coordinates 

from the relaxation. The SCF calculation computes the fermi energy, and 

outputs the raw files which can be used to generate electronic band structure and 

phonon dispersion calculation. We then compare our results with published 

literature.  If there is no significant disparity, we continue to the next stage. 

The second main stage is the combination of the two monolayers. The 

final relaxed coordinates of the two monolayers are combined with the help of 

XCrySDen. Then, geometrical optimization is done to obtain the optimized 



29 

structure. SCF calculation is the next step, which outputs data that we can extract 

the electronic band diagram and density of states from. 

The third main stage is the phonon dispersion calculation, which is the 

most time-consuming task. An input file along with the iterative convergence 

parameters are included along with the density of the q grid. These 2 parameters 

will directly affect the computational time. After the calculation is completed, 

the raw data are extracted for graph plotting and analysis. 

The fourth main stage is the tuning of the electronic properties by the 

use of biaxial tensile and compressive strain, and oxygen adsorption. After the 

computations are done, we can extract the electronic band structures and analyse 

the effect of biaxial strain and oxygen adsorption. The stress-strain curve of the 

heterostructure can also be collected from the output data of biaxial strain 

calculation.  

The last stage is graph plotting and analysis of the data collected. 

Electronic band structure, DOS, and phonon dispersion are plotted by using 

Origin 2015, a professional graph plotting software. The graphs are then 

analysed thoroughly to identify the mechanical and electronic properties of the 

heterostructure. 
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CHAPTER 5 

 

5 RESULTS AND DISCUSSION 

 

5.1 Germanene 

5.1.1 Structural Properties 

The only stable structure for Germanene is low-buckled honeycomb (shown in 

Figure 5.1), as discussed in section 3.1.1, thus other structures are not considered 

in this study.  

 

                    

Figure 5.1: (a) Top and (b) Side View of The Germanene Monolayer in a 2×2 

Supercell from XCrySDen. The Red Lines Denotes (a) Lattice 

Constant and (b) Buckling Distance 

 

The lattice constant and buckling distance of this study is tabulated in 

Table 5.1 along with other published results using the same functional, which is 

GGA. From Table 5.1, we can see that the lattice constant agrees closely with 

published results, especially with Ni et al. (2012). If we include the results that 

used GGA (from Table 3.1), we see that the value reported here is in between 

the LDA and GGA studies. The buckling distance is slightly higher than the 

value published by Ni et al. (2012), with only a small difference of 0.026 Å. 

 

Table 5.1: Structural Constants of Germanene Compared with Publication 

Using Same GGA Functional. 

Sources Lattice Constant, Å Buckling Distance, Å 

Lebègue and 

Eriksson (2009) 
4.126 (Not included) 

Ni et al. (2012) 4.063 0.676 

This study 4.002 0.702 
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5.1.2 Electronic Properties 

The electronic band structure plotted in Figure 5.2 is in agreement with the 

published result from Cahangirov et al. (2009) shown in Figure 5.2(b). Band 

gap is absence from the electronic band structure and a Dirac cone is present at 

the K point of the Brillouin zone.  

 

      

Figure 5.2: Electronic Band Structure for Germanene from This Study. 
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5.2 Siligene  

5.2.1 Structural Properties 

As reported, siligene has a stable low-buckled honeycomb structure (shown in 

Figure 5.3). In this study, low-buckled honeycomb siligene is studied and the 

findings for structural properties are compared with published results mentioned 

in section 3.2.1. The results are tabulated together in Table 5.2. As can be 

observed from Table 5.2, the calculated lattice constant and buckling distance 

are both in good agreement with previous calculations that employed GGA 

functional. 

 

 

Figure 5.3: (a) Top and (b) Side View of Siligene in a 2×2 Supercell from 

XCrySDen. The Red Lines Denotes (a) Lattice Constant and (b) 

Buckling Distance 

 

Table 5.2: Structural Constants of Siligene along with Published Results Using 

GGA Functional. 

Sources Lattice Constant, Å Buckling Distance, Å 

Zhou et al. (2013) 3.939 0.579 

Sakib, Ahmed and 

Subrina (2018) 
3.94 0.59 

Sannyal, Ahn, and 

Jang (2019) 
3.91 0.58 

This study 3.913 0.601 
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5.2.2 Electronic Properties 

The electronic band structure for siligene is plotted in Figure 5.4, which agrees 

closely with the published result (see Figure 3.4). The band structure shows a 

linear dispersion or Dirac cone at K Point of the Brillouin Zone. From the band 

structure, it is clear that siligene is bandgapless. Thus, the results agree with Pan 

et al. (2011) and Zhou et al. (2013) which mentioned that band gap is absent in 

siligene, while disagreeing with Jamdagni et al. (2015) and Sakib, Ahmed and 

Subrina (2018), which reported a band gap of 0.15 eV and 0.6 eV respectively.  

 

   

Figure 5.4:  Electronic Band Structure for Siligene from This Study  
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5.3 Siligene-Germanene Heterostructure 

Germanene and siligene have very similar low-buckled structure, including their 

lattice constants and buckled distance, with a small difference of 0.1 Å in both 

cases. Thus, stacking them up is straightforward, which yields 10 possible 

combinations, which are then known as Siligene-Germanene Heterostructure or 

in short 2D SiGe/Ge. There are two main different types of stacking, which are 

AA and AB stacking. They are shown in Figure 5.5. Among AA stacking, there 

are 4 different ways of stacking, whereas for AB stacking there are 6 different 

ways, because of the buckled structure of both germanene and siligene.  

After geometrical optimization, all AA structures have changed into the 

same planar AA structure, whereas all AB structures have deformed except the 

structure shown in Figure 5.5(d)(vi). From this section onwards, the two 

structures will be named as AA structure and AB structure respectively.  

 

 

 
 

          

 

                                           
 

 

 

 

  
 

 

Figure 5.5: 1×1 Supercell of (a) AA Stacked 2D SiGe/Ge Heterostructure and 

(b) AB stacking with (i) Top View and (ii) Tilted View. (c) (i-iv) 

Side View of Four Different AA Stacking. d) (i-vi) Side View of Six 

Different AB Stacking.  

a) AA stacking b) AB stacking 

c) Possible AA stacking 

d) Possible AB stacking 

i) ii) iii)  iv) 

i) ii) iii)  iv) v) vi) 

i) ii) i) ii) 
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5.3.1 Structural Properties 

The structural constants of both AA and AB structure are tabulated in Table 5.3. 

Figure 5.6 shows the planar AA structure and buckled AB structure from 

different views. The AA structure has a large lattice constant compared to the 

constituent monolayers (siligene and germanene), whereas for the AB structure, 

the lattice constant is in situated between the value of the two monolayers. 

From the buckling distance, we can observe that the AA structure is 

planar, as the buckling distance is negligible, which is in contrast with both of 

the monolayers; AB structure has a low-buckled (LB) structure. The buckling 

distance of AB structure is larger than the two monolayers, which are 0.7015 

and 0.6005 Å, respectively for germanene and siligene. 

 

Table 5.3: Structural Constants of the 2D SiGe/Ge Heterostructures. 

Structure 

Lattice 

Constant / 

Å 

Buckling 

Distance 

(Ge-Ge) / Å 

Buckling 

Distance  

(Si-Ge) / Å 

Formation 

energy per 

atom / eV 

AA 4.302 0.031 0.053 -0.184 

AB 3.934 0.873 0.699  -0.167  

 

 

  

 

    

Figure 5.6: (i) Top view from Germanene side, (ii) Top View from Siligene, and  

(iii) Side View for Optimized (a) Planar AA Structure and (b) 

Buckled AB Structure. 

a) AA structure 

b) AB structure 

i) 

i) 

ii) 

ii) 

iii) 

iii) 
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The formation energy per atom, represented by 𝐸𝑓𝑜𝑟𝑚, is calculated by 

using the formula below: 

 

𝐸𝑓𝑜𝑟𝑚 =
𝐸𝑡𝑜𝑡𝑎𝑙(𝐻𝑒𝑡𝑒𝑟𝑜𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) − 𝐸𝑡𝑜𝑡𝑎𝑙(𝐺𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑒) − 𝐸𝑡𝑜𝑡𝑎𝑙(𝑆𝑖𝑙𝑖𝑔𝑒𝑛𝑒)

𝑛𝑜. 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 
(5.1) 

 

where 𝐸𝑡𝑜𝑡𝑎𝑙 is the total energy of the structure obtained from the output 

of SCF calculation and number of atoms equals to 4 for this study because a 1×1 

supercell contains 4 atoms. Negative formation energy indicates the structure is 

energetically favourable, while the larger the magnitude indicates better 

cohesion of the structure. From Table 5.3, the formation energy per atom of the 

AA structure is larger in magnitude when compared to the AB structure, which 

indicates a better cohesion for the AA structure comparatively.  

The phonon dispersion for both AA and AB structure are shown in 

Figure 5.7. The phonon dispersion for the AB structure displays a negative 

frequency of about 16 cm-1 at Γ point, which is a sign of dynamical instability. 

While the AA structure also have negative frequency with the maximum 

negative frequency being 5 cm-1. However, the negative frequency does not 

occur at Γ point, but at other points not included in the calculation, which are 

interpolated instead. Calculating the phonon dispersion at the particular 

interpolated points reveal that those points are positive (displayed as black 

square in the Figure 5.7a), and the phonon dispersion does not contain any 

negative frequency, indicating the structure is dynamically stable. As the AB 

structure is unstable, no further discussion on the structure will be made. 

 

  

Figure 5.7: Phonon Dispersion for (a) AA Structure (Black Square Indicates    

Corrected Value) and (b) AB Structure.  

a) b) 
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5.3.2 Mechanical Properties 

Figure 5.8 shows the stress-strain characteristic of the heterostructure obtained 

by applying biaxial strain to the heterostructure. Negative strain means 

compressive strain while positive strain implies tensile strain. In the stress-strain 

curve, we can observe an almost linear trend with a negative slope from -4% to 

6% strain. The trend is discontinued at both -6% strain and 8% strain, where the 

slopes change sign. This indicates that the heterostructure has started to display 

mechanical fracturing. The ultimate tensile strength for the heterostructure is 

about 18 kbar or 1.8 GPa. 

 

 

Figure 5.8: Stress-Strain Curve for 2D SiGe/Ge Heterostructure when Biaxial 

Strain is Applied. 

 

5.3.3 Electronic Properties 

The electronic band structure of the heterostructure along with the DOS and 

partial DOS (PDOS) are plotted in Figure 5.9. The Fermi level indicates that the 

heterostructure has a metallic characteristic. This is further confirmed by the 

DOS, where at the Fermi level, there are comparatively substantial amount of 

electronic states.   

In both of the monolayers, there is a gaped Dirac cone at the K point. In 

the heterostructure, the Dirac cone remains at the K point but is situated below 

the Fermi level.  Further attempt to tune the electronic properties and shift the 

tip of the Dirac cone to the Fermi level could result in a high carrier mobility. 
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The PDOS shows the contribution of p orbital of each atom in the unit 

cell towards the electronic state, wherein the plot indicates an equal amount of 

contribution from each atom, which is likely due to the similarity in the 

composition between germanene and siligene with silicon and germanium 

having only a small difference in electronegativity. Note that the value plotted 

for the PDOS are multiplied by two for better clarity, as their magnitudes are 

low in comparison with the total DOS. The s orbitals are omitted due to their 

negligible contribution to electronic states. 

 

 

Figure 5.9: Electronic Band Structure with DOS for the Heterostructure. The 

Dirac Point is Circled in Red. 

 

5.3.4 Effects of Biaxial Strain 

The effects of both compressive and tensile biaxial strain on electronic band 

structure are shown in Figure 5.10 and 5.11 respectively, where the effect of up 

to 4% compressive strain and 6% for tensile strain are shown.  

For tensile strain, we can observe the two lobes near K and M points are 

shrinking vertically, while the Fermi level shifts downward. The heterostructure 

eventually converts from metallic to semimetallic at 6% tensile strain. It is worth 

noting that a tiny band gap may have been opened for the heterostructure at 6% 

tensile strain. A DOS has been plotted to verify the existence of said band gap. 

Unfortunately, a small but non-negligible amount of electronic states exist 

which signifies a semimetallic behaviour.  
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Under compressive strain, a gap at the Γ point is slowly opening but the 

two lobes remain unchanged. At 4% compressive strain, a gap has been fully 

opened at Γ point. However, the Fermi level still lies across the two lobes which 

implies metallic behaviour.  

 

 

 
 

Figure 5.10: Electronic Band Structure for Compressive Strain: (a) 2% and            

(b) 4% . 

 

 

 

 
 

Figure 5.11:  Electronic Band Structure for Tensile Strain: (a) 2%, (b) 4%, and 

(c) 6%. DOS is Attached for 6% Tensile Strain. 

a) b) 

a) b) 

c) 
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5.3.5 Oxygen Adatom Functionalization 

In an attempt to open a band gap, oxygen adsorption has been explored. There 

are 8 possible adsorption sites that have different environment as shown and 

labelled numerically in Figure 5.12(a) and Figure 5.12(b). After geometrical 

optimization, only position 2,3, 6 and 7 are not deformed. For position 2 and 6, 

the planar heterostructure becomes buckled, while for position 6 and 7, the 

heterostructure remains planar. The most energetically favourable configuration 

is position 7 (shown in Figure 5.12(c)), thus it is the only selected configuration 

for subsequent calculation. 

The electronic band structure and DOS of the selected configuration is 

plotted in Figure 5.12(d). From the plot, we notice that a band gap has been 

opened which lies at the gamma point. The band gap obtained from the DOS is 

about 0.24 eV. The opening of band gap of the heterostructure gives rise to 

possible nanoelectronics applications.  

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 5.12:  Possible Adsorption site for 2D SiGe/Ge Heterostructure shown 

on a 1×1 Supercell, where (a) is the Top View from Germanene 

and (b) Siligene of the Heterostructure. The Side View of the 2×2 

Selected Configuration is Displayed in (c). The Electronic Band 

Structure and DOS for the Selected Configuration is Plotted in (d).  

 

 

1 

2
3 

4 8 

5 

6 

7 

a) b) c) 

d) 
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CHAPTER 6 

 

6 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

In this study, the density functional theory has been employed by using 

Quantum ESPRESSO package to replicate and compare the results of 

monolayer Ge (germanene) and monolayer SiGe (siligene), and to predict and 

study the 2D SiGe/Ge heterostructure by combining germanene and siligene, 

with a focus on the structural, mechanical, and electronic properties. The 

structural and electronic properties of germanene and siligene are in good 

agreement with previous studies. Germanene and siligene both have a low-

buckled (LB) honeycomb structure with semimetallic characteristics and 

contain a Dirac cone at the K point of BZ. 

It was found that there are 10 possible different ways to stack siligene 

and germanene together, but only 2 of them do not deform after geometrical 

optimization. After plotting phonon dispersion, it was revealed that only one of 

them is dynamically stable. The stable structure is AA-stacked with a planar 

honeycomb structure.  

By plotting electronic band structure and DOS, it was revealed that the 

heterostructure has metallic characteristic. The heterostructure has ultimate 

strength of about 18 GPa and starts to breakdown after 6% biaxial tensile strain 

or 4% biaxial compressive strain. 

The effect of biaxial strain on the electronic properties of the 

heterostructure was studied. A shift from metallic to semimetallic characteristic 

under 4% or more compressive strain were revealed. The electronic band 

structure was also tuned by adsorbing oxygen atoms onto the surface of the 

heterostructure, which successfully opened a band gap of 0.24 eV.  

This metallic heterostructure may be a promising upcoming material for 

applications such as battery anode and IC interconnects. The band gap opening 

of the heterostructure when oxygen is adsorbed may also open up possibilities 

of nanoelectronics application. 
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6.2 Recommendations for future work 

In our study of oxygen adatom, the computation was carried out on a 1×1 

supercell which is inadequate. To address this problem, a larger supercell of 3×3 

needs to be used which drastically increases the computation time and 

computational resources needed, which are limited as mentioned previously. 

Adatoms other than oxygen should be explored which are again not permitted 

by the limitations. 

Extensions to this work that can be done include the study of the effect 

of vertical electric field on the electronic band structure to find an alternative 

method to open a band gap. This is a promising method as shown by both 

Jamdagni et al. (2015) and Ni et al. (2012), where they have successfully opened 

a band gap in siligene and germanene, respectively. The opened band gap 

magnitude also varies almost linearly with the electric field strength for both 

materials.  

Further extensions to explore the application of the heterostructure such 

as battery anode and gas sensing application will be interesting as well. The 

result from Sannyal, Ahn, and Jang (2019) suggests siligene to be a good 

candidate as an anode material of an alkali metal ion battery, with high 

theoretical charging capabilities and good voltage profiles. A very recent 

publication by Sun et al. (2020) explored the gas sensing capabilities of siligene 

using DFT. The result indicates that the siligene has good gas sensing 

capabilities especially for NO2 and NH3 gases. The heterostructure may inherit 

the same properties from the monolayers or have an even better performance. 
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