
i

DEVELOPMENT OF AN EYE TRACKER AND WHEELCHAIR

SYSTEM THAT CAN SELF NAVIGATE IN A CLOSED

ENVIRONMENT

CHONG WEI SENG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Mechanical Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

May 2020

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : CHONG WEI SENG

ID No. : 1504337

Date : 16/05/2020

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DEVELOPMENT OF AN EYE

TRACKER AND WHEELCHAIR SYSTEM THAT CAN SELF

NAVIGATE IN A CLOSED ENVIRONMENT” was prepared by CHONG

WEI SENG has met the required standard for submission in partial fulfilment

of the requirements for the award of Bachelor of Engineering (Honour)

Mechanical Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : IR. PROF. DATO’ DR. GOH SING YAU

Date : 16/05/2020

Signature :

Co-Supervisor : IR DANNY NG WEE KIAT

Date : 16/05/2020

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2020, Chong Wei Seng. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project. I would like to express my gratitude to my research supervisor,

PROF. DATO’ IR DR GOH SING YAU for his invaluable advice and gives his

opinion based on his professional experience. Besides that, I also would like to

thank my research co-supervisor IR DANNY NG WEE KIAT for his guidance

and his enormous patience throughout the development of the research.

vi

ABSTRACT

A wheelchair is used to support people with mobility difficulties due to injuries

or motor disabilities. For patients with serious motor disabilities who might not

be able to move their hands, a joystick wheelchair that needs to be operated by

hand is not feasible. Therefore, an eye tracker controlled wheelchair that only

needs the user’s eye movement to control the wheelchair can be used by such

patients. The aim of this project is to design and develop an eye tracker

controlled wheelchair to help such patients. Two methods will be developed to

control the wheelchair. The first method is to directly control the wheelchair by

the instant eye movement of a user. The user can control the wheelchair to move

in four directions: moving forward and backward, as well as turning left and

right. The second method is developed for the user when the user needs to move

from one location to another location. The user can use an eye tracker to select

a location through a screen interface. The wheelchair will move to the

destination with a navigation system while avoiding obstacles along the path.

There are six locations provided for selection. For both methods, a node was

developed for the eye tracker to retrieve the user’s eye movement. Another node

was developed to collect the information from the eye tracker and uses this

information to control the simulated wheelchair according to the eye movement,

or to send the request to carry out the navigation. For the navigation, the

mapping of the environment was completed using RVIZ to get the coordinates

of the locations. The simulated wheelchair will move to the destination based

on the user’s selected location while avoiding obstacles.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

LIST OF APPENDICES xii

CHAPTER

1 INTRODUCTION 1

 General Introduction 1

 Importance of the Study 2

 Problem Statement 2

 Aim and Objectives 3

 Scope and Limitation of the Study 3

 Contribution of the Study 3

 Outline of the Report 4

2 LITERATURE REVIEW 5

 Introduction 5

 Eye-tracking Methods 5

2.2.1 Electrooculography 5

2.2.2 Video-oculography 7

2.2.3 Video-Based Combined Pupil/Corneal

Reflection 9

 Eye Controlled Wheelchair Projects 10

 Introduction to Tobii 14

 Summary 15

3 METHODOLOGY AND WORK PLAN 16

 Introduction 16

viii

 Hardware 16

3.2.1 Eye Tracker 16

3.2.2 Wheelchair 16

3.2.3 Eye tracker mounting 17

 Software 17

3.3.1 Ubuntu 17

3.3.2 Tobii Core SDK 17

3.3.3 Robot Operating System (ROS) 18

3.3.4 Gazebo 18

3.3.5 RVIZ 19

 Command-based Coding 21

 Move to goal/ Destination-based Coding 22

 Communication between Two Laptops 22

4 RESULTS AND DISCUSSION 24

 Assembly of Wheelchair and Eye Tracker 24

 Calibration Process 26

 Command-based Action 27

 Destination-based Action 30

5 CONCLUSIONS AND RECOMMENDATIONS 35

 Conclusions 35

 Recommendations for Future Works 35

REFERENCES 37

APPENDICES 39

ix

LIST OF FIGURES

FIGURE TITLE PAGE

2.1 The Position of the Electrodes to Obtain EOG. 6

2.2 Features from High-resolution Eye Images. 9

2.3 Purkinje Reflections.. 10

2.4 Relative Positions of the Pupil and First Purkinje

Reflections. 10

2.5 Command Interface. 11

2.6 High-level Schematic of a System. 12

2.7 Outputs of the Image Processing Software. 13

2.8 Eye-tracker. 14

3.1 A Gazebo World. 19

3.2 SLAM Launch File in RVIZ. 20

3.3 Generated Map of Gazebo World. 20

3.4 Command-based Control Interface. 21

3.5 Destination-based Control Interface. 22

3.6 Setting of Windows Environment Variables. 23

3.7 Modify “/etc/hosts’’ File to Resolve the Master’s Name

to IP. 23

4.1 (a) Wheelchair Base, and (b) Motor Driver with Micro-

Controller. 24

4.2 Wheelchair with Tray. 25

4.3 Eye Tracker Mounting 26

4.4 Calibration Dots in Calibration Process 27

4.5 Exports ROS_MASTER_URI and Starts ROS

Master. 28

x

4.6 Console Window in Windows OS Laptop. 28

4.7 Terminal of Ubuntu Running the “controller” Node. 29

4.8 ROS Nodes and ROS Topics in Command-based Action.

 29

4.9 Display of the Selected Location. 30

4.10 Running of the “map_navigation_node”. 30

4.11 Initial Position of the Simulated Wheelchair in

RVIZ 31

4.12 The Simulated Wheelchair is Navigating to the

Destination. 31

4.13 The Simulated Wheelchair Reached the Destination 31

4.14 ROS Nodes, Topics and Service in Destination-based

Action. 34

xi

LIST OF ABBREVIATIONS

BCI Brain-Computer Interface

CRP Corneal-Retinal Potential

DAQ Data Acquisition

EEG Electroencephalograhy

EGTS Eye-gaze Tacking System

EOG Electro-oculography

EPW Electric Powered Wheelchair

GUI Graphical User Interface

HCI Human-Computer Interface

IROG

ROS

InfraRed Oculography

Robot Operating System

VOG Video-oculography

xii

LIST OF APPENDICES

APPENDIX A: Command-based Code in Window OS Laptop 39

APPENDIX B: Command-based Code in Ubuntu Laptop 41

APPENDIX C: Destination-based Code in Window OS Laptop 43

APPENDIX D: Destination-based Code in Ubuntu Laptop 45

1

1 INTRODUCTION

 General Introduction

A wheelchair is usually used by patients in a hospital who suffer moderate or

severe injuries. The conventional wheelchair needs help from other people to

move the patient around unless the patient is in good condition and is able to

move his hands. The conventional wheelchair is only suitable for temporary use.

For the patients who suffer permanent paralysis, they need to sit in the

wheelchair for the rest of their lives. Hence, the conventional wheelchair is no

longer suitable to use. Therefore, the electric wheelchair with joystick control is

introduced. Besides that, patients also can have an autonomous wheelchair that

is equipped with a navigation system and is able to avoid obstacles along the

path. To consider different kinds of patients and different levels of severity of

injuries, many types of control interfaces are introduced including voice control,

tongue control, brain-computer interface, body-machine interface, eye control

and electromyography-based interfaces (Mandel, Laue and Autexier, 2018).

Among the control interfaces mentioned, eye control is the most suitable as it is

mostly applicable to all kinds of the patient except for those patients who suffer

eye diseases. Eye control can even be used by patients who suffer from motor

neuron diseases and may not be able to move their hands and legs.

Eye movement is one of the fastest motions produced by the human body

and it can quickly reflect the response of the human brain. Hence, the eye

movement is one of the best inputs for the control interface. In order to measure

eye movement, an eye tracker is needed. In fact, eye tracking is not a new

technology and is widely used nowadays. According to iMotions (2015), eye-

tracking applications are generally utilized in eight types of research including

academic and scientific research, market research, psychological research,

medical research, usability research, packing research, PC and gaming research

and lastly human factors and simulation. For instance, in medical research, the

eye tracker can be used and work together with conventional research methods

or biosensors to diagnose diseases like Autism Spectrum Disorder (ASD),

Parkinson's and Alzheimer's disease, Obsessive Compulsive Disorder (OCD)

2

and Attention Deficit Hyperactivity Disorder (ADHD). Besides that, eye

tracking also helps in fields of neuroscience and psychology to understand how

and why eye movements are made as well as how we gather information with

our eyes.

 Importance of the Study

This study may provide some insights into the application of the eye-tracking

system. The eye-tracking system is widely used in different fields of study.

However, there is still some room for improvement and further studies can be

conducted to integrate it into our daily life. This study will show the application

of the eye-tracking system on a human-computer interface. Besides that, the

results of this study may further improve the autonomous wheelchair which will

improve the quality of life of paralyzed patients.

 Problem Statement

An eye-tracking assistive wheelchair has brought good news for the paralyzed

patients as they can finally leave their bed and move around. The video-

oculography method is a preferable eye-tracking method to work with the

wheelchair compare to other methods as it is non-invasive and has better eye-

movement detection (Furman and Wuyts, 2012).

A lot of similar projects were conducted with different types of eye

trackers and also different eye-tracking methods. However, there are still some

limitations. First, the users can make a selection of the command action on the

interface. However, the time to activate the command action usually takes time.

For example, the users have to gaze on certain commands action areas for at

least a few seconds to activate the command. If the time taken to activate the

command is too short, for instance, one second, sometimes it might be the wrong

input as the users might just idle around on the screen. Hence, the optimum time

taken and the method to make a selection can be further investigated. Besides

that, when the users focus on the screen that is usually placed in front of them,

they might ignore the circumstances around them, and the interface also only

displays the scene in front of them. They cannot know what is behind them.

Moreover, they might also overlook the obstacles on the ground.

3

 Aim and Objectives

The main aim of this project is to design an eye tracker/autonomous wheelchair

system for patients with severe motor disabilities. The wheelchair will bring the

users to the desired destination with a navigation system (destination-based

action) and the users also can directly control the wheelchair (command-based

action). Therefore, they need to select a destination and also control the

wheelchair via their eye movement with the aid of an eye tracker device installed

on the wheelchair. The specific objectives are

1. To write programming codes for command based action and destination

based action.

2. To design a suitable and appropriate layout of the interfaces for the users

to input commands.

3. To install an eye tracker on the wheelchair with a mounting to hold it in

position and minimize vibration when the wheelchair is moving.

 Scope and Limitation of the Study

In this project, the application of the eye tracker on the electric-powered

wheelchair is studied. Besides that, the eye-tracking technique to trace the eye

movement is video-oculography (VOG). Table-mounted type of eye-tracking

system is used as it is non-invasive and it is more convenient for our targeted

users - half and fully-paralyzed individuals.

 Contribution of the Study

By the end of this project, a user is able to control the wheelchair with two

different methods, which are direct control and with the navigation system. It is

beneficial to the target user as he or she can move around freely no matter it is

just a short distance or a far destination. The communication between two

laptops with different operating systems and programming languages used is

successfully established.

4

 Outline of the Report

For Chapter 2, there are some literature reviews on the eye-tracking methods

and some eye-controlled wheelchair project. There is also a brief introduction

to the Tobii company as its product is used in the project. The following chapter

includes the hardware and software involved in this project. Besides that, the

step to set up communication between the two laptops and also the two methods

of controlling the wheelchair would also introduced. The result would be shown

in Chapter 4. The conclusion and recommendations for the project are outlined

in Chapter 5.

5

2 LITERATURE REVIEW

 Introduction

There are some eye-tracking methods which include electro-oculography

(EOG), video-oculography (VOG), InfraRed Oculography (IROG), scleral

search coil and video-based combined pupil/corneal reflection (Hari and

Jaswinder, 2012). The usage of the methods depends on the requirements,

constraints, the conditions and what is the application. Besides that, there are

two types of systems which are table-mounted system and head-mounted system.

The eye-tracking system is also applied to an electric-powered

wheelchair to help the patients that suffer neurological diseases that affect their

movement in daily life. There are some projects on electric power wheelchair

using different eye-tracking methods.

 Eye-tracking Methods

There are many eye-tracking methods available. However, in this paper, the

three prevalent methods are discussed. They are Electrooculography (EOG),

Video-oculography (VOG) and Video-based combined pupil/corneal reflection.

2.2.1 Electrooculography

Electrooculography (EOG) is a method that detecting the eye movement by

measuring the standing potential of retinal-corneal that result from the

depolarizations and hyperpolarizations found between the retina and the cornea

(Navarro, Vazquez and Guillen, 2018). The standing potential can be illustrated

as an electrical dipole with a positive pole at the cornea and a negative pole at

the fundus. This potential is obtained by measuring the voltage induced across

the electrodes that placed around the eyes as the eye movement changes. Thus,

EOG is obtained as a result of electric impulses triggered with different vertical

and horizontal eye movements like gaze, wink, frown and blink. The amplitude

of EOG can be varied from 50 to 3500μV and the frequency varies from 0 to

100Hz (Choudhari, et al., 2019). Besides that, the linear gaze angle is

±30 degrees and every degree in eye movement causes 20 μV changes in

6

voltage. Generally, five electrodes are placed around the eyes in order to obtain

the EOG. The position of the five electrodes is shown in Figure 2.1. The

electrode D and E are used to detect the horizontal eye movement while the

electrode B and C detect the vertical eye movement. Electrode A acts as a

reference and is placed on the forehead.

Figure 2.1: The Position of the Electrodes to Obtain EOG. (Navarro, Vazquez

and Guillen, 2018)

According to Haslwanter and Clarke (2010), there are five sources of

artifacts for EOG. First, the fluctuation of the corneal-retinal potential (CRP).

The CRP is subject to impromptu fluctuation and has a high dependence on the

amount of light. The CRP can reduce by up to 50% when thr human eye is

adapted to dark circumstances. Next, the electrode drift is another source of

artifacts. The electrode will produce slow drift potentials if there is improper

care or damage on the electrode. High electrode impedance at the electrode-to-

skin interface also can introduce signal drift and noise. The third source of

artifacts is the placement of the electrode. The wrong placement of electrode

can lead to crosstalk between vertical and horizontal components and directional

asymmetries. A proper calibration measure is taken to correct these artifacts.

The following source of artifacts is biological artifacts. The low-level signal is

always confused by the electrocardiogram activity and muscle potentials. Lastly,

the non-linearities in the vertical eye-position signal can also be the source of

artifacts and it is caused by the bone structure around the eye and eyelid

movement.

7

EOG method is more reliable than electroencephalography (EEG) as

EOG is easier to detect than EEG. It is due to more consistent signal patterns

that characterize EOG. In addition, the eye movement is easier to perform.

Hence, it is used in many EOG-based human-computer interfaces (HCI). For

instance, the blinking of an eye is treated as a ''click'' and used to make selection

(Li, et al., 2017).

2.2.2 Video-oculography

Video-oculography (VOG) is a method that including various eye recording

techniques to record the eye movement comprising the measurement of

detectable eye features under translation or rotation, for instance, the limbus

position, the pupil apparent shape and corneal reflection of the directed light

source (Duchowski, 2007). It is video-based and is not invasive. VOG device

usually has a camera that send images to the computer to process the images.

There are generally two methods to be used in VOG for eye-tracking and it is

depending on the condition of application such as the specification of the camera

and also hardware, the desired head movement, cost and some other factors. The

two methods are appearance-based and feature-based methods.

The appearance-based method is suitable for low-resolution images in

various environments. The problem of gaze estimation is solved by mapping

function from eye images to directions of the eye is looking. All the eye region

pixel values are treated as high-dimensional feature vectors and as input for

estimating gaze directions. On the other hand, gaze direction which is the output

can be illustrated as x-y coordinates on the screen. It is a great advantage for

low-quality images compared to the techniques used in the feature-based

method. Although the precision of these methods is not satisfactory for some

applications, they make the system become less restrictive and are robust when

applied to comparably low-resolution cameras, for instance with a computer or

a phone application or human-computer interaction. According to Larrazabu,

Garci Cena and Martinez (2019), these methods have the main issue which is

that the eye appearance depends on many considerations besides gaze direction.

The considerations include the condition of imaging, the position of the head

and the identities of subjects. Due to this issue, it is mandatory to have a person-

specific training. Moreover, about thousands of individual training samples are

8

needed to determine the mapping coefficient because of the high dimensional

feature vectors that necessary to be mapped into gaze direction. Estimating gaze

direction from only eye appearance is still challenging even with the current

research evolution in the study of computer vision. In short, the quality and

diversity of the training data, as well as the generalization ability of the

regression algorithm, will determine the performance of the appearance-based

methods.

The feature-based methods are the methods that use extracted local

features, for instance, eye corners, eye reflections or contours which are the most

popular used method in VOG. In these methods, geometrically derived eye

features from high-resolution eye images (Figure 2.2) are used and they are

captured by focusing on the eye of the user. These methods are categorized into

two main groups which are: 2D mapping-based gaze estimation methods and

3D model-based gaze estimation methods. For 3D model-based methods, the

3D gaze direction vector is directly computed from eye features based on the

geometric eye model. Next, the gaze direction is intersected with the object

being view in order to estimate the point of gaze. This 3D model-based method

requires accurate user-dependent parameters such as cornea radii, angles

between visual and optical axes, the distance between cornea center and pupil

center to determine the cornea center and the eye vector. This method has very

high accuracy on handling the head movements but requires a relatively

complex initial set up process in which a single camera is needed with numbers

of calibrated light sources or stereo cameras. Although the calibration process

time can be reduced or avoided by using a very simplified eye model, the

accuracy of results would be decreased significantly. For the 2D- mapping-

based gaze estimation methods, they are based on finding the mapping function

from 2D feature space like Pupil-Center-Corneal-Reflection (PCCR), contours,

etc. to a gaze point, for instance, computer screen coordinates (Larrazabu, Garci

Cena and Martinez, 2019). According to the authors, the direct measurement of

the eye model parameter is not necessary throughout the system setup. They are

comprised of the mapping function learning which simplifying the setup process

itself.

9

Figure 2.2: Features from High-resolution Eye Images. (Larrazabu, Garci Cena

and Martinez, 2019)

2.2.3 Video-Based Combined Pupil/Corneal Reflection

The point of regard is the direction or point of gaze on the perpendicular plane

from the eyes. In order to get the point of regard measurement, the head

movement should be fixed to the corresponding position of the eye relative to

the head with the point of regard. The other way is measuring multiple ocular

features to separate head movement from eye rotation. The features mentioned

above are pupil center and corneal reflection.

Infra-red is generally used as a light source and the corneal reflection of

the light source is measured relative to the pupil center. The direction or distance

between the cornel reflection and pupil center is obtained to determine the point

of regard of gaze direction. Corneal reflections are also known as Purkinje's

images or Purkinje reflections. There are four Purkinje images formed and

usually first Purkinje image is located by the video-based eye tracker. The four

Purkinje reflections are a reflection from the outer surface of the cornea (P1),

reflection from the rear surface of the cornea (P2), reflection from the outer

surface of the lens (P3) and reflection from the rear surface of the lens (P4). The

Purkinje reflection is illustrated in Figure 2.3. The P4 is an inverted image that

is different from others and it is visible from within the eye itself. It is also

reflected and formed at the same plane as the P1 with almost the same size with

it but the intensity is less than 1% of that of P1 due to the change in the index of

refraction at the rear of the lens.

10

Figure 2.3: Purkinje Reflections. (Duchowski, 2007)

In order to isolate the eye movement from the head movement, two

reference points are needed. The difference in position between corneal

reflection and pupil center remains comparatively unchanged with minor head

movements but it changes with pure eye rotation. In the calibration process of

the eye tracker, the point of regard of a viewer can be measured on a planar

surface that is perpendicular. Figure 2.4 below shows the relative positions of

the pupil and First Purkinje reflections as the rotation of the left eye to fixate

nine corresponding calibration points. The small white circle near the pupil in

Figure 2.4 is the Purkinje’s reflection (Duchowski, 2007).

Figure 2.4: Relative Positions of the Pupil and First Purkinje Reflections.

(Duchowski, 2007)

 Eye Controlled Wheelchair Projects

Some engineers in Taiwan developed a powered wheelchair that controlled by

using an eye-tracking system (Lin, et al., 2006). According to their article, a

pupil-tracking goggle was used with a video CCD camera and a frame grabber

11

to analyze the pupil images. The pupil-tracking goggle allowed for consistent

eye-tracking regardless of the head movement. In order to capture clearer and

accurate pupil image without affecting the field of view of the user, a pinhole

CCD camera was mounted under the rim of googles. A light bulb was also

installed to brighten the image captured. Then, the gaze direction acted as

"mouse" to select the command for the wheelchair. The interface for the

command was divided into nine zones, as shown in Figure 2.5, which upper and

lower zone represent forward and backward movement while the left and right

zone represent the left and right movement respectively. On the other hand, the

four corners and the middle zone represented stop command when the gaze

direction falls onto it. The direction and the speed of the wheelchair depend on

Figure 2.5: Command Interface. (Lin, et al., 2006)

 the duration and the command zone that the users look at. The input command

for a certain direction increases continuously until the increment value set is

reached when the user gazes in that direction, then the control command is sent

out. The movement of the wheelchair depends on the increment magnitude of

the control command which ranges from 1 to 10. The larger the increment value,

the more the difficulty to make a fine adjustment to change the direction.

However, it is also time-consuming to make a large angle of rotation if the

increment value is small. As a result of the practical test, they decided to set the

increment value to 5 in a spacious room and increment value of 3 to be used in

a school hallway.

12

Besides that, Gneo, et al. (2011) proposed a high-level schematic of a

system (Figure 2.6) that integrates an eye-gaze tracking system (EGTS) and

brain-computer interface (BCI) which using electroencephalogram (EEG). The

eye movement in EGTS was used to select the desired command and the BCI

acted as a mouse click to activate the selected command action. In the paper, the

authors claimed that there was a lack of the systems that allow the user to

directly look where the users want to go and in the existing systems, require the

user to look at the GUI continuously in order to control the electric-powered

wheelchair (EPW). Therefore, the current eye-controlled EPWs arise the two

main problems. First problem is that the undesired command may be generated

when the user is gazing at somewhere else, so-called Midas touch. Next, the

user is required to stay focused in the desired direction as the GUI hardware

might obstruct the visibility. EEG-actuated devices are generally to be

considered slow for controlling complex robot movement. However, EEG-

based BCI might be an effective binary switch for movement activation. The

authors believed that the BCI activation command is reliable compared to the

eye dwell time as some authors considered the eye-control techniques is still

immature. In a nutshell, the proposal by the authors allowed the user to look

around and search for the desired location, then activate the command action by

EEG based BCI, overcoming the need to stare at the GUI and Midas touch.

Figure 2.6: High-level Schematic of a System. (Gneo, et al., 2011)

Next, in the paper published by Pai, Ayare and Kapadia (2012), a new

method to control and guide the wheelchair was discussed based on human-

13

computer interaction (HCI). Some eye-tracking techniques are discussed and

the preferred technique was using a video camera. The hardware and software

used were also discussed in this paper. The hardware included a camera that

mounted on to the headgear, laptop, micro-controller and wheelchair controller.

On the other hand, the software included micro-controller programming and

Matlab which was used for image processing. In the image processing stage,

each frame that divided the video was split into 3x3 sectors and the images were

converted to grayscale. The sector that the pupil presented was recorded. A

signal will be sent to the micro-controller if the pupil remains in that certain

sector for a consecutive number of frames. The image processing is shown in

Figure 2.7.

Figure 2.7: Outputs of the Image Processing Software. (Pai, Ayare and

Kapadia, 2012)

 A group of engineers from Villanova University also came out with a

paper suggesting a design of an eye-controlled wheelchair (Plesnick, Repice and

Loughnane, 2014). The eye tracker used contains an infrared sensor in the

middle of the eye tracker and two infrared sources patched at both ends of the

eye tracker which is shown in Figure 2.8. The infrared sources emitted the light

into the user’s eye. Then, the infrared reflection was detected by the sensor and

the eye location data was transferred to the computer. The calibration process

was needed to calibrate the user's eye location. Labview program was used to

translate the data from eye tracker and to send analog and digital voltage into

14

the Data Acquisition (DAQ) unit in order to control the wheelchair. It was

discovered that the original joystick of the powered wheelchair attached to the

main control module and generated basic analog voltages that directly

proportional to the physical movement of the joystick. These voltages were used

to determine the movement of the wheelchair and were detected by the control

module through the pin connection that connected with the joystick. The

joystick was removed and replaced by the DAQ unit. The control interface has

four command blocks which indicate four directions (forward, backward, left

and right). The user was required to gaze at the command block for at least 15

seconds in order to activate the command and move the wheelchair. It was done

to prevent the wheelchair from executes an accidental command input.

Figure 2.8: Eye-tracker. (Plesnick, Repice and Loughnane, 2014)

 Introduction to Tobii

Tobii is a Swedish high-technology company which was founded in 2001. It

develops and sells eye control/ tracking products. Tobii is recognized as a global

leader in the field of eye-tracking. Tobii has many products that include licenses

to the globally largest portfolio of eye-tracking patents, encompass critical

aspects of algorithms, hardware design and user experience concepts. Tobii has

three business units, which are Tobii Pro, Tobii Dynavox and Tobii Tech.

 Tobii Pro is the unit that develops and provides eye-tracking solutions

with deep and unique objectives for understanding human behaviour. It provides

services to businesses and also researchers all around the world. This business

unit has formed a consultancy organization that helps companies to improve

15

efficiency and quality on the production line. The business unit also performs

marketing research.

 Tobii Dynavox specializes in providing assistive technology solutions

in helping and empowering individuals with disabilities or with special needs to

communicate and live more independent lives. This business unit develops and

designs products which include eye-tracking and touch-based communication

software and devices.

 Tobii Tech is the world's leading supplier of eye-tracking technology

and focuses on market development intending to integrate eye-tracking and

user-facing sensors and software into consumer electronics and other volume

products. This business unit is at a commercially early stage. It focuses on areas

include XR, personal computing and cases in the market area like healthcare.

 Summary

There are a variety of eye-tracking methods and also image processing

techniques available as well as the type of eye-tracking system. The eye-

tracking system can be head-mounted or table-mounted. It is depending on what

is the application going to carry out. But most of the cases in eye-controlled

wheelchair, VOG method is used. Besides that, the eye-tracker used also should

not be invasive if possible. Tobii is a reliable company in providing all the

technology services related to eye-tracking. Tobii has three business units, Tobii

Pro, Tobii Dynavox and Tobii Tech which are recognized as the market leader

in their respective fields.

16

3 METHODOLOGY AND WORK PLAN

 Introduction

This project uses an eye-tracking system to control the wheelchair. There are

two methods to control the wheelchair. First, the users can control the

wheelchair by moving their eyes and look at the screen interface in four

directions which represent forward, backward, left, and right. The next method

is to choose a destination from the screen interface through an eye tracker and

the wheelchair will move to the destination automatically. Mapping of the place

will be done and input to the laptop. It is just like the Google Map and the users

just need to select a location, then the wheelchair will travel to that location

automatically while avoiding any obstacles along the way with the aid of sensors.

This will benefit the users who move to certain locations frequently as they do

not need to keep inputting the commands. It will be tiring if they need to travel

to a far location.

 Hardware

There are some hardware used in this project such as an eye tracker, an

autonomous wheelchair and eye-tracker mounting.

3.2.1 Eye Tracker

The eye tracker used in this project is Tobii eye-tracker 4C. The components

comprise Eye core, EyeChip, Illumination Module, Host Interfaced module, and

EyeSensor Module.

3.2.2 Wheelchair

An electric-powered wheelchair used in the project came with an original

joystick. However, the joystick was then removed and was replaced with the

eye tracker for controlling the wheelchair. Besides that, some modifications and

features were added to the wheelchair. For example, a tray was installed to place

the laptop in front of the user.

17

3.2.3 Eye tracker mounting

The eye tracker was mounted at the bottom edge of the laptop screen initially

with a mounting bracket that is attached to the laptop with an adhesive strip.

There is a slot at the back of the eye tracker in the centre to fit into the mounting

bracket. It was found out that the eye tracker was not stable and was shaking

when the wheelchair was moving. It will affect the performance of the eye

tracker as the calibration that was done earlier will be varied. As a result, the

eye tracker cannot track the eye position accurately. Therefore, a metal eye-

tracker mounting was made to clamp the eye tracker separately from the laptop

and to hold it at the two ends. Rubber cushions are added between the clamps

and eye tracker to reduce the vibration.

 Software

There are some open-source operating system and simulation tools will be used

to develop the eye-tracker and wheelchair system in this project such as Ubuntu

and Robot Operating System (ROS). The simulation of the wheelchair is

conducted with using Gazebo and RVIZ to test the written codes.

3.3.1 Ubuntu

Ubuntu is an open-source operating system based on the Debian GNU/Linux

distribution. It is freely available with both community and professional support.

Ubuntu allows people to use it with their language and can customize their

software to fit with their research or application.

3.3.2 Tobii Core SDK

The Tobii SDK provides the developer with Application Programming Interface

(API) and framework to build gaze interaction application enhanced with the

knowledge of the gaze and attention of the user. The developer can create a new

interface, the addition of features and deeper immersion to provide the user with

the next level of experience. It also provides some samples of the programming

code of the Tobii eye tracker. Therefore, modifications of the code are easily

carried out to fit the eye tracker with our project.

18

3.3.3 Robot Operating System (ROS)

With using ROS, the code is easily separated into packages containing small

programs, which is called a node. ROS node is an executable file within the

ROS package. The nodes can communicate with each other by using the ROS

client library. A ROS Master is launched prior to the nodes and topics. It

provides the naming and registration services of nodes. Besides that, it tracks

the publishers and subscribers to topics as well as services.

A node can publish or subscribe to a topic. A topic is like a medium

where the nodes can publish or subscribe to messages from it. There can be

multiple nodes to publish or subscribe to a topic. ROS nodes have their message

data type when publishing messages to a topic. Therefore, each topic is also

classified by the ROS message type and the nodes will only receive a message

of the same type. For example, the programming code that obtains the eye

tracker position is considered as a node named "user_eye". It publishes the

coordinate positions of the user's eye to a topic named "eye_direction". Then,

another node using named "controller" subscribe to the topic to obtain the

information as input to control the wheelchair.

In addition, there is also a function called service. It allows the software

developer to create a client or server communication between nodes. It can be

used to change the setting and parameter of the robot or ask for a specific action.

For example, change the color background or add another robot in the

simulation.

ROS is mainly using two languages which are C++ and Python. The developer

can use roscpp library to write C++ code and rospy library to write Python code.

Interestingly, the developer can have two nodes using different languages and

still communicate with each other.

3.3.4 Gazebo

Gazebo is a robotic tool for robot simulation. It provides an accurate and

efficient indoor and outdoor environment for robot simulation. Gazebo provides

fundamental shapes such as a sphere, cylinder, and cubes for designing a simple

robot model. Gazebo also provides 2D and 3D design interface in order to make

the robot model more realistic and dynamic. Besides that, we can build a world

19

or an environment in Gazebo in which the robot is going to be tested in the real

world. We can add objects via libraries such as the dustbin, table, wardrobe or

any obstacles. In addition, we can plugin in a 2D layout of a house and build a

3D house based on the fundamental structure in the layout by using a building

editor. To make the environment more realistic, Gazebo also has physical

options such as forces, resistances, weights and etc. Gazebo also has robust

sensors models, for instance, stereo camera, depth camera, laser, scanning lidar,

and other general sensors. Figure 3.1 below shows the image of a Gazebo World.

Figure 3.1: A Gazebo World.

3.3.5 RVIZ

RVIZ is a 3D visualization tool of the robot under ROS packages. We can have

the vision to look at the world from the robot's eye through a camera that is

installed in the robot. There are two main methods of inputting data and

information into RVIZ. First, RVIZ understands sensor and state information

such as laser scan, point clouds, camera and coordinate frames. Second, through

the visualization markers that let the programmer input primitives like cubes,

arrows, lines and also colour. The combination of sensor data and custom

visualization markers make RVIZ a powerful tool for the development of robot.

Simultaneous Localization and Mapping (SLAM) is a technique to

construct, draw or dating a map of an unknown space. It is one of the features

20

of Turtlebot. It is done by using a Gmapping ROS package and laser distance

sensor. To do a virtual SLAM, we set up a robot in Gazebo world and launch

the SLAM file in RVIZ as shown in Figure 3.2. Then, we remotely control the

robot in Gazebo and control it to move all around the Gazebo environment to

do the mapping. By then, a map is formed in RVIZ and it is shown in Figure

3.3. It is the same when using a wheelchair instead of a robot in Gazebo to do

mapping in the real world.

Figure 3.2: SLAM Launch File in RVIZ.

Figure 3.3: Generated Map of Gazebo World.

21

When the environment is mapped, coordinates can be obtained in the

map. Therefore, navigation can be done after the coordinate of the location is

obtained. The robot will move to the desired location while avoiding any

obstacles along the path with the aid of Laser Distance Sensor.

 Command-based Coding

The first step to start this project was to rewrite the code provided by Tobii SDK

samples to get the eye stream data which is the coordinate of the user's eye when

looking at the screen. It is done on the Windows OS laptop. After the

coordinates of the screen interface is known, the eye positions of the users can

be categorized into four directions which are forward, backward, left, and right.

For instance, when a user wants to control the wheelchair to move forward, the

user needs to gaze at the forward area. If the eye position of the user falls within

the area around two seconds, the forward command will be sent to the Ubuntu

laptop. Figure 3.4 shows the control interface of command-based action.

Figure 3.4: Command-based Control Interface.

Next, in the Ubuntu laptop, a C++ ROS code was written to receive the

command output from the Windows OS laptop and then the command output

was used to set the parameter. The parameter was based on the velocity. For

example, the linear velocity is positive for the forward direction and is negative

for the backward direction. Besides that, the angular velocity is positive when

turning left and is negative when turning right. This parameter is then sent to

22

the ROS topic that controls the wheelchair and the wheelchair will move

according to the parameter.

 Move to goal/ Destination-based Coding

This ROS code was done in Windows OS laptop and it was almost the same

with the coding above. The difference was that the coordinates were treated as

a selection toward a destination instead of immediate command of action. There

are six destinations listed on the screen interface and the user requires to gaze at

the desired destination for around two seconds to select it. Then, the output will

be sent to the Ubuntu laptop. The figure below shows the control interface of

destination-based action.

Figure 3.5: Destination-based Control Interface.

To enable the autonomous navigation, mapping of the place was done

using Gazebo and RVIZ in Ubuntu. After the mapping was done, the

coordinates of the destination were obtained. Then, the coordinates were

recorded in the programming code and were served as inputs to the wheelchair.

 Communication between Two Laptops

There are two laptops used in this project. First, the Windows OS laptop which

connected with the eye tracker. The second laptop is the Ubuntu laptop which

runs ROS and controls the wheelchair.

23

To set up communication between two laptops, the first step is to

configure the ROS master. There should be only one master for handling the

system. Since only the Ubuntu laptop has ROS, we run the roscore on the

Ubuntu laptop to configure the ROS master.

Next, in the Windows OS laptop, we are using ROS.Net which is a series

of C# projects that allow a MANAGED .NET application to communicate

traditional ROS nodes. The code of the Tobii eye tracker is also using C#. To

use ROS.Net, the IPv4 address of the Windows OS laptop is set as

ROS_HOSTNAME in windows environment variables as shown in Figure 3.6.

Besides that, Figure 3.7 shows that the "/etc/hosts'' file is modified to resolve

the master's name to IP address. The HOST_NAME and IP address in

“/etc/hosts” file are from Ubuntu Laptop. After all the configurations above

have been completed, the two laptops can communicate with each other. The

output of the code written in Windows laptop can be sent to Ubuntu Laptop in

the form of ROS nodes and ROS topics with one ROS master.

Figure 3.6: Setting of Windows Environment Variables.

Figure 3.7: Modify “/etc/hosts’’ File to Resolve the Master’s Name to IP.

24

4 RESULTS AND DISCUSSION

 Assembly of Wheelchair and Eye Tracker

The assembly and the modification of the wheelchair were completed. Figure

4.1 (a) shows the base of the wheelchair which includes the rotors, the batteries,

the motor driver with micro-controller (Figure 4.1(b)), and also the wire

connections. Besides that, a tray was installed in order to place the laptop in

front of the user which is shown as Figure 4.2.

(a)

(b)

Figure 4.1: (a) Wheelchair Base, and (b) Motor Driver with Micro-Controller.

25

Figure 4.2: Wheelchair with Tray.

Besides that, a mounting was also made to hold the two ends of the eye

tracker to minimize vibration when the wheelchair is moving. There are rubber

cushions between the clamps and the eye tracker to absorb the vibration. Figure

4.3 shows the position of the eye tracker and the mounting on the tray.

(a)

26

(b)

Figure 4.3: Eye Tracker Mounting

 Calibration Process

A calibration process of the Tobii eye tracker is required when a user uses the

eye tracker. The user is required to do the calibration process every time as the

position of the eye may be different when the user sits in the wheelchair the next

time. The recorded calibration data previously may have some variation with

the current eye position. The calibration process will measure the geometric

characteristics of the user’s eye and the characteristics are used to integrate with

an internal, anatomical 3D eye model to calculate the gaze data. The model

obtains the data such as the shapes, light refraction, and refraction properties of

different parts of the eyes (TobiiPro, n.d.). An eye tracker consists of a camera,

illuminator that emits infrared light, and algorithms. During the calibration, the

eye tracker will emit infrared light. The light is reflected in the user’s eye and

the reflection will be captured by the camera. The calibration requires the user

to look at the green dots, which are shown in Figure 4.4, that are displayed on

the screen until the dots explode. The camera will capture the eye image of the

user when he looks at the dots. After some calculation and filtering via the

algorithm, the eye tracker can track the eye movement of the user on the screen.

27

(a)

(b)

(c)

Figure 4.4: Calibration Dots in Calibration Process

 Command-based Action

After all the configurations were properly set as mentioned in section 3.6, the

two laptops were able to communicate with each other. The first step to run the

command-based action was to export the ROS_MASTER_URI in Ubuntu

laptop and start the ROS master which is shown in Figure 4.5.

28

Figure 4.5: Exports ROS_MASTER_URI and Starts ROS Master.

In the Windows laptop, the command based code with the node named

“user_eye” was launched and an eye tracker was connected to the laptop. As

shown in Figure 4.6, the connection between the two laptops was established.

Then, the control interface in Figure 3.4 would be shown on the screen. The user

can start to control the wheelchair by using the eye tracker. In the Ubuntu laptop,

the “controller” node was run and the command was successfully received as

shown in Figure 4.7. The output was then sent to control the wheelchair.

Figure 4.6: Console Window in Windows OS Laptop.

29

Figure 4.7: Terminal of Ubuntu Running the “controller” Node.

 Figure 4.8 below shows a bigger picture of the whole process. The oval shape

in the figure represents ROS nodes and rectangular shape represents ROS topics.

In Windows laptop, a ROS node named "user_eye" was created and the

command was published through a ROS topic named "eye_direction". In the

Ubuntu laptop, a "controller" node subscribed to the "eye_direction" topic to get

the command sent by the "user_eye" node. Then, the "controller" node

published a new command to the "cmd_vel" topic which was subscribed by the

"/gazebo" node. The "/gazebo" is the node that represents the wheelchair. As a

result, the robot was controlled according to the command received from the

"cmd_vel" topic.

Figure 4.8: ROS Nodes and ROS Topics in Command-based Action.

30

 Destination-based Action

For the destination based action, the destination-based code in Window

OS laptop was run after the ROS master had launched. The ROS node and the

ROS topic were the same as command-based which are "user_eye" and

"eye_direction". The output in Figure 4.6 was shown again to indicate that the

connection between the two laptops was established. Then, the screen interface

as in Figure 3.5 was shown to ask the user to choose a location. After the user

gazed at a particular selection for around two seconds, a location would be

selected and displayed on the screen as shown in Figure 4.9. While in the

Ubuntu laptop, the "map_navigation_node" was run. Once the node received

data from the "eye_direction" topic, the node sent out the coordinate of location

that the user selected and called for the “move_base” service (navigation). Then,

the wheelchair moved to the destination according to the planned path while

avoiding the obstacles. Figure 4.10 shows the output of the code.

Figure 4.9: Display of the Selected Location.

Figure 4.10: Running of the “map_navigation_node”.

In RVIZ, the simulated wheelchair was first located at the initial position

which is shown in Figure 4.11. The “map_navigation_node” would receive data

which was the selection of the user after it had subscribed to the “eye_direction”

topic. Then, the “map_navigation_node” request for the service from the

“move_base” server to carry out the navigation. The simulated wheelchair was

then computed a planned path based on the coordination of the selected location

and moved according to the path to the destination. It is shown in Figure 4.12.

The path may be changing accordingly when the simulated wheelchair detects

31

an obstacle or it finds a shorter distance. Figure 4.13 shows that the simulated

wheelchair has reached the destination.

Figure 4.11: Initial Position of the Simulated Wheelchair in RVIZ

Figure 4.12: The Simulated Wheelchair is Navigating to the Destination.

Figure 4.13: The Simulated Wheelchair Reached the Destination

32

The figures below show the overview of all the nodes, topics, and some

plugins. It is the same as the command-based code, in the Windows laptop, a

node named “user_eye” was created and the output was then published to a topic

named “eye_direction”. While in the Ubuntu laptop, the “map_navigation_node”

was subscribed to the “eye_direction” topic and obtained the output that was

published by the “user_eye” node. All of these can be seen in Figure 4.14(a).

There is a “move_base” node shown in Figure 4.14(b). The “move_base”

node is the major component in the navigation stack. It has some configuration

options (components in the red rectangle shape outline in Figure 4.14(b)). For

example, the “move_base/global_costmap” is the configuration used to create a

long-term path over the environment to do the navigation while the

“move_base/local_costmap” is used for local planning and obstacle avoidance.

The “move_base” node also subscribe to some topics. First, it is the “/map”

topic. It is to set up an environment where the robot is located. The second

subscribed topic is “tf”. It is the topic that the simulated wheelchair publishes

information about the relationship between the coordinate frames. The third

subscribed topic is “odom” which stores information about the estimation of

position and velocity of the simulated wheelchair. Next, the “move_base” node

also subscribes to the “scan” topic which has the data of the laser and uses the

data in the obstacle avoidance. Besides that, the “move_base_simple/goal”

provides a non-action interface to “move_base” for users that do not care about

tracking the execution status of their goals.

After all the computation, the “move_base” node will publish messages

to “cmd_vel”. Then, the “gazebo” node subscribes to the “cmd_vel” to get the

information and publishes the data to some topics to control the simulated

wheelchair. It is shown in Figure 4.14(c).

33

(a)

(b)

34

(c)

Figure 4.14: ROS Nodes, Topics and Service in Destination-based Action.

35

5 CONCLUSIONS AND RECOMMENDATIONS

 Conclusions

In this project, an eye tracker controlled wheelchair is developed. There are two

controlling methods, namely the command-based method and destination-based

method. The user can choose to use either method depending on the travel

distance. They are four controlling commands provided for command-based

action: forward, backward, left, and right. For the destination-based action, six

locations are determined for selection. Both of the controlling methods were

successfully developed and simulated with robotic tools.

The eye tracker was originally mounted with a mounting bracket

attached to the bottom of the screen frame. However, it was found that the eye

tracker was shaking and was not stable whenever the wheelchair moved. Hence,

a metal eye tracker mounting was made to clamp the eye tracker separately from

the laptop and to hold it at the two ends to increase its stability and to reduce

vibration. Besides that, rubber cushions were also added between the clamps

and eye tracker to further absorb the vibration. Therefore, it is more stable than

the original suggested mounting method by Tobii in which the eye tracker was

only supported at the centre with a mounting bracket attached to the laptop

frame.

An eye tracker controlled wheelchair is suitable for most of the users. A

joystick wheelchair that needs to be operated by hand is not feasible for stroke

patients or patients with severe motor disabilities. Therefore, an eye tracker

controlled wheelchair that provides two controlling methods in this project is a

better choice to be used to improve the mobility of paralyzed patients.

 Recommendations for Future Works

It is recommended that the screen interface can be improved. The graphic and

the layout can be designed in a way that is more user-friendly. In this project,

the codes for command-based and destination based are written separately. It is

suggested that both of the codes can be combined in one code and the user can

36

switch between command-based action and destination-based action freely. It is

also recommended that the eye tracker can be improved so it can be used in

Ubuntu. Therefore, only one laptop is needed. Besides that, the mounting of the

eye tracker can be manufactured using a light but strong material instead of

using metal as in this project.

37

REFERENCES

Choudhari, A.M., Porwal, P., Jonnalagedda, V. and Meriaudeau, F., 2019. An

Electrooculography based Human Machine Interface for Wheelchair Control.

Biocybernetic and Biomedical Engineering, 39(3), pp. 673-685

Duchowski, A.T., 2017. Eye Tracking Methodology. Second Edition. New York:

Springer International Publishing.

Furman, J.M. and Wuyts, F.L., 2012. Vestibular Laboratory Testing. In:

Aminoff, M.J., Sixth Edition. 2012. Philadelphia: Sauders. pp. 699-723.

Gaitech EDU, 2016. Map-Based Navigation. [Online]. Available at:

<https://edu.gaitech.hk/turtlebot/map-navigation.html> [Accessed 12 April

2020].

Gneo, M., Severini, G., Conforto., S., Schmid, M. and D’Alessio, T., 2011.

Towards a Brain-Activated and Eye-Controlled Wheelchair. International

Journal of Bioelectromagnetism, 13(1), pp. 44-45.

Hari, S. and Jaswinder, S., 2012. Human Eye Tracking and Related Issues: A

Review. International Journal of Scientic and Research Publication, 2(9), pp.

1-9.

Haslwanter,T. and Clarke, A.H., 210. Eye movement measurement: electro-

oculography and video-oculography. Handbook of Clinical Neurophysiology,

Volume 9, pp. 61-79.

iMotions, 2015. Top 8 Eye Tracking Appications in Research. [blog] 4 August

2015. Available at <https://imotions.com/blog/top-8-applications-eye-tracking-

research/> [Accessed 28 June 2019]

Larrazabal, A.J., Garci Cena, C.E. and Martinez, C.E., 2019. Video-

oculography eye tracking towards clinical application: A review. Computer in

Bioogy and Medicine, Volume 108, pp. 57-66.

Li, Y., He, S., Huang, Q., Gu, Z. and Yu, Z.L., 2017. A EOG-based Switch and

Its Application for “Start/Stop” Control of a wheelchair. Neurocomputing,

Volume 275, pp. 1350-1357.

Lin, C-S., Ho, C-W., Chen, W-C., Chiu, C-C. and Yeh, M-S., 2006. Power

Wheelchair controlled by eye-tracking system. Optica Application, 36(2-3), pp.

401-402.

Mandel, C., Laue, T. and Autexier, S., 2018. Smart Wheelchair. Smart

Wheelchair and Brain-Computer Interfaces. pp. 291-322

Navarro, R.B., Vazquez, L.B. and Guillen, E.L., 2018. EOG-based wheelchair

control. In: Diez, P., 2018. Smart Wheelchair and Brain-computer Interfaces.

Madrid: Academic Press. pp. 381-403.

https://edu.gaitech.hk/turtlebot/map-navigation.html
https://imotions.com/blog/top-8-applications-eye-tracking-research/
https://imotions.com/blog/top-8-applications-eye-tracking-research/

38

Pai, S., Ayare, S. and Kapadia, R., 2012. Eye Controlled Wheelchair.

International Journal of Scientific & Engineering Research, 3(10), pp. 1-5.

Plesnick, S., Repice, D. and Loughnane, P., 2014. Eye-Controlled Wheelchair.

2014 IEEE Canada International Humanitarian Technology Conference-

(IHTC), pp. 1-4.

TobiiPro, n.d. What happens during the eye tracker calibration. [online].

Available at < https://www.tobiipro.com/learn-and-support/learn/eye-tracking-

essentials/what-happens-during-the-eye-tracker-calibration/>. [Accessed 13

May 2020].

https://www.tobiipro.com/learn-and-support/learn/eye-tracking-essentials/what-happens-during-the-eye-tracker-calibration/
https://www.tobiipro.com/learn-and-support/learn/eye-tracking-essentials/what-happens-during-the-eye-tracker-calibration/

39

APPENDICES

APPENDIX A: Command-based Code in Window OS Laptop

40

41

APPENDIX B: Command-based Code in Ubuntu Laptop

42

43

APPENDIX C: Destination-based Code in Window OS Laptop

44

45

APPENDIX D: Destination-based Code in Ubuntu Laptop

46

