PERFORMANCE STUDY OF IOT CONNECTIVITY: LORA
NETWORK

SIOW JIAYIE

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Engineering

(Honours) Electronic and Communications Engineering

Lee Kong Chian Faculty of Engineering and Science
Universiti Tunku Abdul Rahman

April 2020

DECLARATION

| hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. | also declare
that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature : %\’\/

Name : Siow Jia Yie

ID No. 1505254

Date : 15/5/2020

APPROVAL FOR SUBMISSION

| certify that this project report entitled “PERFORMANCE STUDY OF 10T
CONNECTIVITY: LORA NETWORK?” was prepared by SIOW JIA YIE
has met the required standard for submission in partial fulfilment of the
requirements for the award of Bachelor of Engineering (Honours) Electronic

and Communications Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature

Supervisor : Ir Dr. Tham Mau Luen

Date : 17/5/2020

The copyright of this report belongs to the author under the terms of the
copyright Act 1987 as qualified by Intellectual Property Policy of Universiti
Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2020, Siow Jia Yie. All right reserved.

ACKNOWLEDGEMENTS

| am thankful to everyone who had contributed to the successful completion of
this project. First of all, I would like to express my special thanks of gratitude
to my Final Year Project (FYP) supervisor Ir Dr. Tham Mau Luen for advising
me with his selfless guidance and help in completing this project.

In addition, | want to thank my parents and friends who support and
encourage me throughout this project. They gave me significant amount of

encouragements that supported me to complete this project successfully.

ABSTRACT

The deployment of wireless sensor networks (WSNSs) yields a convenient and
economical solution for collecting information automatically. However, there
are several limitations such as wide geographic area, bandwidth scarcity, lack
of network infrastructure and shortage of power supply. Long range (LoRa) is
one of the most promising low power wide area network (LPWAN)
technologies that allow long-range transmissions. LoRa can be classified into
two parts, namely LoRa at physical layer and Long Range Wide Area Network
(LoRaWAN) at data link layer. Such architecture motivates the study of two use
cases in this thesis. In the first scenario, LORA gateway and node are
implemented in order to evaluate the system performance of LoRaWAN in an
indoor environment. The impacts on airtime, received signal strength indicator
(RSSI) and signal-to-noise ratio (SNR) are explored under different spreading
factors (SF) and transmission distances. In the second scenario, the LoORaWAN
environment is shifted to Long Range Peer to Peer (LoRa P2P) image
transmission that involves only the LoRa physical layer. Two nodes are set up
in this scenario. Constrained by LoRA maximum transmission unit (MTU),
images are segmented into multiple packets, which are transferred by either
stop-and-wait protocol or LoRa Multi-Packet Transmission Protocol. As in the
first scenario, similar performance metrics are assessed. Experimental results
from these two studies reveal that LORA transmissions using LORAWAN and
LoRA P2P are feasible, as long as the distance is within 35m in an indoor

environment.

DECLARATION

TABLE OF CONTENTS

APPROVAL FOR SUBMISSION
ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES

LIST OF SYMBOLS / ABBREVIATIONS
LIST OF APPENDICES

CHAPTER
1 INTRODUCTION
1.1 General Introduction
1.2 Importance of the Study
1.3 Problem Statement
1.4 Aim and Objectives
15 Scope and Limitation of the Study
1.6 Contribution of the Study
1.7 Outline of the Report
2 LITERATURE REVIEW
2.1 Introduction
2.2 LPWAN standards
22.1 NB-loT
2.2.2 Sigfox
223 LoRa
2.3 Comparison of LPWAN standards
2.4 Related work
2.5 Summary
3 LORAWAN

Vi

Xiv

XVi

cO 0O OO o O o1 o1 o0 B B W W DN DN PP

[
o O

5

vii

3.1 Introduction 11
3.2 Selection of frequency 11
3.3 Equipment used 11
3.4 LoRa Gateway setup 16
35 LoRa Node setup 18
3.6 LoRa Packet Structure 27
3.7 LoRaWAN network architecture 28
3.8 Performance evaluation of LoRaWAN 29
3.8.1 The impact on airtime under different SFs and
payload lengths 29
3.8.2 The impacts on RSSI and SNR under different
transmission distances 31
LORA P2P 36
4.1 Introduction 36
4.2 Equipment used 36
4.3 LoRa P2P Packet Structure 38
4.4 Design of Transmission Protocol 38
4.4.1 Stop and Wait Protocol 40
4.4.2 LoRa Multi-Packet Transmission Protocol 42
4.5 Image Processing 47
451 Image Compression 47
45.2 Image Conversion 49
45.3 Image Building 51
4.6 Design of Transmission Protocol 51
4.7 Performance evaluation of LoRaP2P 51
4.7.1 Stop and wait transmission protocol vs. LoRa
Multi-Packet Transmission Protocol 52
4.7.2 The impacts on number of packet loss,
transmission time, RSSI and SNR under different
transmission distances 54
4.7.3 The impacts on number of packet loss and
transmission time when using different image qualities
59
CONCLUSIONS AND RECOMMENDATIONS 62

5.1

5.2
REFERENCES
APPENDICES

Conclusions

Recommendations for future work

viii

62
63
64
67

LIST OF TABLES

Table 2.1: Three classes of LoORaWAN. 7
Table 3.1: Raspberry Pi Zero W specifications. 13
Table 3.2: RAK831 concentrator board specifications. 14
Table 3.3: RAK811 LoRa Module Specifications. 15
Table 3.4: AT command used for configuration. 25
Table 3.5: Number of DR of RAK811 LoRa module. 27
Table 3.6: LoRa configuration paramaters. 30

Table 3.7: Airtime (in milliseconds) for different SFs and
payload lengths. 30

Table 3.8: Configuration parameters. 33

Table 3.9: Results of the impacts on RSSI and SNR under
different transmission distances. 34

Table 4.1: Dragino LoRa module specifications. 37

Table 4.2: 5MP Camera Board for Raspberry Pi

specifications. 38
Table 4.3: Results of image conversion. 50
Table 4.4: Configuration parameters. 53

Table 4.5: Average transmission time when using stop and
wait protocol and LoRa Multi-Packet
Transmission Protocol. 54

Table 4.6: Configuration parameters. 55
Table 4.7: Results of the impacts on number of packet loss,
transmission time, RSSI and SNR under
different transmission distances. 57

Table 4.8: Configuration parameters. 59

Table 4.9: Results of effect of quality of image on number
of packet loss and transmission time. 60

LIST OF FIGURES

Figure 2.1: Summary of Sigfox, NB-loT and LoRa (Mekki

etal., 2019). 8
Figure 3.1: LoRaWAN frequency plan of AS920-923

(TheThingsNetwork, n. d.). 11
Figure 3.2: Raspberry Pi Zero W. 12
Figure 3.3: RAK831 concentrator board. 14
Figure 3.4: RAK811 LoRa Module. 15
Figure 3.5: LoRa gateway setup. 16

Figure 3.6: Checking of LoRa gateway’s IP address. 17

Figure 3.7: LoRa gateway is accessed through SSH using

PUTTY. 17

Figure 3.8: Gateway ID. 17
Figure 3.9: TTN console page after registration of gateway.
18

Figure 3.10: Boot mode for RAK811 Wisnode. 18
Figure 3.11: Laptop’s USB port and RAK811 Wisnode
connection. 19

Figure 3.12: RST button on RAK811 WisNode. 19

Figure 3.13: UART, port, baudrate, and parity configuration
in STM32CubeProgrammer. 20

Figure 3.14: Correct log in STM32CubeProgrammer. 20

Figure 3.15: Data on RAK811 WisNode is erased and new
file is opened. 20

Figure 3.16: Bootloader file (RAK811_BOOT_V3.0.2.bin)
is loaded and downloaded to RAK811. 21

Figure 3.17: Message of file download complete. 21

Figure 3.18: “BOOT” pin and the “GND” pin connection.
22

Figure 3.19: Showing of BOOT MODE of RAK811 in RAK
serial port tool. 22

Figure 3.20: Burning of firmware into RAK811 using RAK
LoRaButton Upgrade Tool V1.0. 23

Figure 3.21: Log data when the RST button of RAKS811
Wisnode is pressed. 23

Figure 3.22: Registration of application in The Thing
Networks. 23

Figure 3.23: Registration of device in The Thing Networks.
24

Figure 3.24: Configuration parameters in The Thing
Networks. 24

Figure 3.25: Configuration of RAK811 Wisnode by using
RAK Serial Port Tool. 25

Figure 3.26: Joining LoRa network by using AT command
“at+join”. 26

Figure 3.27: Sending data with AT command
“att+send=lora:2:12345678”. 26

Figure 3.28: Gateway traffic shown in The Thing Networks.

27
Figure 3.29: LoRa application traffic in The Thing Networks.
27
Figure 3.30: LoRa Packet Structure. 28
Figure 3.31: LoRa Packet Structure explanations. 28

Figure 3.32: Standard network architecture of LoRaWAN.
29

Figure 3.33: Network architecture of LoRaWAN in this
study. 29

Figure 3.34: Airtime against payload length with different
SFs. 31

Figure 3.35: Building of Evergreen Scotpine Condominium.
32

Xi

Figure 3.36: Floor map of Evergreen Scotpine

Condominium. 32

Figure 3.37: Floor map (Gateway). 34
Figure 3.38: Gateway at G floor. 34
Figure 3.39: Floor map (LoRa Wisnode). 34
Figure 3.40: Laptop and RAK811 LoRa Module at 3" floor.
34

Figure 4.1: Dragino LoRa module. 37
Figure 4.2: 5MP Camera Board for Raspberry Pi. 38
Figure 4.3: A single packet. 39

Figure 4.4: C language and corresponding description. 39
Figure 4.5: Adding header. 40
Figure 4.6: Stop-and-wait protocol. 40

Figure 4.7: Stop and wait protocol’s transmitter coding
flowchart. 41

Figure 4.8: Stop and wait protocol’s receiver coding
flowchart. 42

Figure 4.9: LoRa Multi-Packet Transmission Protocol. 43

Figure 4.10: LoRa Multi-Packet Transmission Protocol with
timeout session. 44

Figure 4.11: LoRa Multi-Packet Protocol with resending
request. 44

Figure 4.12: LoRa Multi-Packet Transmission Protocol’s
transmitter coding flowchart. 45

Figure 4.13: LoRa Multi-Packet Transmission Protocol’s
receiver flowchart. 46

Figure 4.14: 3280 x 2464 full-resolution image
(ImageTx.jpg). 47

Figure 4.15: 240 x 160 pixel resized image. 48

Figure 4.16: Quality: 10, Size = 2KB, PSNR = 25.58 dB.49

Xii

Figure 4.17: Quality: 25, Size = 4KB, PSNR = 29.75 dB.49
Figure 4.18: Quality: 50, Size = 7KB, PSNR = 28.12 dB.49

Figure 4.19: Quality: 95, Size = 24KB, PSNR = 32.12 dB.

49
Figure 4.20: LoRa P2P transmitter. 52
Figure 4.21: LoRa P2P receiver. 52

Figure 4.22: VNC viewer monitoring and controlling. 53

Figure 4.23: Floor map of Evergreen Scotpine
Condominium (Receiver). 56

Figure 4.24: Placement of receiver at G floor. 56

Figure 4.25: Floor map of Evergreen Scotpine
Condominium (Transmitter). 56

Figure 4.26: Placement of transmitter at 1° floor. 56

Figure 4.27: Transmitter monitoring using mobile SSH
through SSH connection. 56

Figure 4.28: Receiver monitoring using VNC viewer in
laptop through SSH connection. 57

Xiii

ABP
ACK
BLE
BPSK
Csl
CRC
CSS
EDs
FFC
FSK
GFSK
GSM
HDMI
loT

IP

ISM
JPEG
LoRa
LoRa P2P
LoRaWAN
LOS
LPWAN
LTE
M2M
MAC
MTU
NB-loT
OOK
(0K}
OTAA
PC

PIL

LIST OF SYMBOLS / ABBREVIATIONS

Authentication By Personalisation
Acknowledgement

Bluetooth Low Energy

Binary Phase Shift Keying
Camera Serial Interface

Cyclic Redundancy Check

Chirp Spread Spectrum
End-devices

Flat Flex Connectors

Frequency shift keying

Gaussian frequency shift keying
Global System for Mobile Communications
High-Definition Multimedia Interface
Internet of Things

Internet Protocol

Industrial, Scientific, and Medical
Joint Photographic Experts Group
Long range

Long range Peer to Peer

Long range wide-area network
Line of sight

Low Power Wide Area Network
Long-term evolution

Machine to Machine

Medium Access Control
Maximum Transmission Unit
Narrowband Internet of Things
On-off keying

Operating System

Over-the-Air Activation

personal computer

Python Imaging Library

Xiv

PSNR
P2pP
RFID
RPI
RSSI
RX
SD
SNR
SPI
SSH
TTN
X
UART
USB
Wi-Fi
WSNs
WUSN

XV

peak signal-to-noise ratio
peer-to-peer

radio-frequency identification
Raspberry Pi

Received Signal Strength Indicator
Receiver

Secure Digital

Signal-to-noise ratio

Serial Peripheral Interface

Secure Shell

The Things Network

Transmitter

Universal Asynchronous Receiver/Transmitter
Universal Serial Bus

Wireless Fidelity

Wireless Sensor Networks

Wireless Underground Sensor Networks

LIST OF APPENDICES

APPENDIX A: Raspberry Pi Zero W Datasheet 67
APPENDIX B: RAK 831 datasheet 68
APPENDIX C: RAK 811 datasheet 79
APPENDIX D: Manual to write LoRa gateway image to

Micro SD 81
APPENDIX E: Registration of gateway in TTN 85
APPENDIX F: Dragino LoRa GPS HAT Single Channel

LoRa & GPS modules Datasheet 88
APPENDIX G: SX1276 datasheet 94

APPENDIX H: Stop and Wait Protocol Transmitter codes
110

APPENDIX I: Stop and Wait Protocol Receiver code 125

APPENDIX J: LoRa Multi-Packet Transmission Protocol
Transmitter code 141

APPENDIX K: LoRa Multi-Packet Transmission Protocol
Receiver code 157

APPENDIX L: Header adding python code (addheader.py)
in transmitter 174

APPENDIX M: Image compress python code (compress.py)
in transmitter 176

APPENDIX N: Conversion of image to hexadecimal format
python code (storebytes.py) in transmitter
177

APPENDIX O: Conversion of hexadecimal data to image
and dropbox uploading python code
(hextoimage.py) in receiver 178

APPENDIX P: Time printing python code (timezone.py) in
both transmitter and receiver 180

XVi

CHAPTER 1

INTRODUCTION

1.1 General Introduction

The applications and interest for Internet of Things (loT) have increased
significantly in this century. Business consultancy group McKinsey and Gartner
indicates that connected devices reached up to 26.7 billion nationwide in 2019
(Security, 2020). The connected devices are projected to increase by three times
in 2020. A report from Strategy Analytics predicts that connected devices will
increase to 38.6 billion in 2025 and grow up to 50 billion in 2030 (Help Net
Security, 2019).

There are different types of wireless communication technologies such
as Bluetooth, RFID, ZigBee, Wi-Fi, 2G/3G/4G, which can be used to support
loT network. However, these technologies are inadequate when taking network
coverage, power consumption and implementation cost into consideration
(Rubio-Aparicio et al., 2019).

Low Power Wide Area Networks (LPWANS) start to attact the attention
of public with the trending of 10T as they offer functionalities to 0T devices to
send packets for wide communication ranges with optimal energy consumption
and appropriate for large scale deployments (Ayoub et al., 2018). LPWAN
technologies utilize a relatively low frequency such as 433 MHz, 868 MHz and
915 MHz. This allows a larger reliability against unwanted signal while using
lower power as compared to typical Wi-Fi which functions at 2.4 GHz
frequency bands (Muaz Abdul Rahman et al., 2018). In line of sight (LOS)
condition, LPWAN technologies can reach up to range of 15 km.

LPWAN technologies are classified into two groups, cellular and non-
cellular. Cellular are not the main choices of the designers because they use
licensed bands which have high initialisation fees and the users are restricted by
operators when using it. Non-cellular technologies such as Long Range (LoRa)
and Sigfox are more desirable because they use unlicensed bands which are free
and the users are independent to use it (Dogan et al., 2019). Long Range Wide
Area Network (LoRaWAN) caught the attention of researchers, communities

and organizations among all these LPWAN technologies because LoRaWAN is

widely recognized to have the best capability for providing the LPWAN
technology to various applications of 10T.

LoRa can be introduced two different parts which are the physical layer,
Semtech’s patented modulation technique based on the modified form of chirp
spread spectrum (CSS) and LoRaWAN data link layer protocol designed and
standardized by LoRa Alliance (Masadan et al., 2018). Using CSS technology,
LoRa has more robustness against degradation while supporting large numbers
of devices and having long communication range (Ahmad et al., 2018).
Meanwhile, LoRaWAN uses LoRa modulation in physical layer. A LoRaWAN
system typically made up of nodes connected to 10T system via a gateway. The
gateway is used to let the nodes to connect the network server and the internet.
The node acts as a transducer that will output appropriate electrical signal based

on triggered events.

1.2 Importance of the Study

The performance analysis for indoor environment of LoRaWAN will be
discussed in this study for possible applications and future research areas.
Besides that, this study discusses the limitation in image transmission by using
LoRa and how image transmission can be done in a peer-to-peer (P2P) network

model.

1.3 Problem Statement
For the implementation of 10T, the most famous technologies used are Wi-Fi
and cellular previously. Although the high data rate can be achieved with Wi-Fi
but Wi-Fi has high power usage and only allows short range communication.
On the other hand, cellular has the characteristics of high data rate and long-
range communication but cellular encounter problems from high power
consumption and high implementation cost (Vatcharatiansakul et al., 2017).
New explorations within the 10T requires additional communication
technologies that can provide better IoT implementation in terms of cost, power,
range and complexity. The power usage profile of the IoT end devices (EDs)
should be carefully planned to expand the battery’s lifetime as they are mostly
battery-operated sensor nodes. As EDs are spread over large operation area,

communication range need to be increased up to several km. Taking everything

into account, this can be only be realized by using LPWAN technologies.
Although some LPWAN technologies emerge, LoRaWAN is the promising

technology to overcome these issues.

1.4 Aim and Objectives
In this project, the objectives are to implement the LORA gateway, to connect
the gateway to LORA nodes, and to evaluate the system performance of
LoRaWAN in an indoor environment. This experiment consists of one gateway,
one ED, and one network server. The gateway is implemented by connecting
Raspberry Pi Zero W to LoRa gateway concentrator module RAK831 via Serial
Peripheral Interface (SPI) interface. At the same time, the ED is made up of
RAK811 LoRa module. The AT command is sent from the serial port tool in
the laptop to configure RAK811 LoRa module. The performance evaluation will
be studied in terms of airtime, signal-to-noise ratio (SNR) and received signal
strength indicator (RSSI) under different spreading factors (SFs) and
transmission distances.

Besides that, this project aims to build a Long Range Peer to Peer (LoRa
P2P) communication system to do image transmission and to study the system
performance of LoRa P2P in an indoor environment in term of transmission

time, number of packet loss, RSSI and SNR.

15 Scope and Limitation of the Study
This is a two-part study. For Part 1 of study, the proposed prototype consists of
a gateway and a node. The focus of this study is on the performance evaluation
of system in terms of airtime spent when using different SFs and RSSI and SNR
of signal when placing the end node RAK811 at different locations. For the
second part, the investigations about the image transmission using LoRa P2P
will be carried out. The prototype in Part 2 consists of a two LoRa nodes. The
transmission protocol that is suitable for image transmission will be studied. The
performance study in terms of number of packet loss, transmission time, RSSI
and SNR for LoRa P2P image transmission also will be focused.

Due to the hardware limitations of end node RAKS811, for the
LoRaWAN performance evaluation, only spreading factors of SF7, SF8, SF9

and SF10 can be tested in this study. There are also some issues experienced

when testing the RAK811 with Arduino board due to immaturity of the
hardware and the developer still debugs and updates the firmware for better
compatibly. In addition, the performance study of LoRa at outdoor environment
and long-range LoRa transmission cannot be conducted due to covid-19
lockdown during the performance testing of this study. Due to time and cost
constraint, only one node and one gateway are set up for LoRaWAN, more

nodes should be deployed for more variations of evaluation.

1.6 Contribution of the Study

As far as we know, the actual performance of LoRaWAN has rarely been
studied in local. Most of them are carried out in simulation, which can’t emulate
the realistic behaviours of the actual network. The challenge is further magnified
when the scenario is image transmission. This work aims to bridge this gap by
investigate the real performance of both LoRaWAN and LoRA P2P image
transmission. A lightweight transmission protocol is designed for reliable image
transmission in order to shorten the transmission time. Overall, the findings are

deemed valuable as they may serve as guidelines for local deployment.

1.7 Outline of the Report

This report includes five chapters. The introduction about this study is covered
in Chapter 1. Chapter 2 presents the related work of LoRa’s performance
analysis and applications done by previous researchers. Chapter 3 and Chapter
4 includes the methodology, results and discussion for LoRaWAN and LoRa
P2P respectively. Last but not least, the conclusion about this study and

recommendation for improvement of system are included in Chapter 5.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction
In this chapter, famous standards of LPWAN such as Narrowband Internet of
Things (NB-10T), LoRa and Sigfox are introduced. Besides that, the related

work of LoRa applications and performance evaluations are discussed.

2.2 LPWAN standards
NB-1oT, LoRa and Sigfox are three well-known technologies used in large scale
connectivity of loT devices for long-range transmissions. The technical

differences of NB-10T, LoRa and Sigfox are explained in this chapter.

2.2.1 NB-loT
NB-IoT is a modern cellular technology introduced in June 2016 to provide
wide range coverage for 10T. It was designed to offer outstanding coexistence
performance with LTE (long-term evolution) and GSM (global system for
mobile communications) under licensed frequency bands (Wang et al., 2017). It
allows massive connectivity of 10T devices, high power efficiency, low bit rate
and latency smaller than 10 seconds. NB-10T requires 180 kHz frequency
bandwidth, which is compatible to the size of one resource block in GSM and
LTE. NB-loT can be worked in three operations modes: stand-alone, guard-
band, and in-band.

e Stand-alone: Utilizing the currently used GSM frequencies bands

e Guard-band: Utilizing the unused resources blocks reserved in the

guard-band of LTE carrier

¢ In-Band: Utilizing the resources blocks reserved in the LTE carrier

NB-loT uses frequency division multiple access (FDMA) and the
orthogonal frequency division multiple access (OFDMA) in the downlink and
uplink respectively. In the uplink, it uses with single carrier, and utilizes the
quadrature phase shift keying modulation (QPSK) (Wang et al., 2017). For the
downlink, there is 200 kbps data rate. For the uplink, there is 20 kbps data rate.

The maximum length of each payload is 1600 bytes (Mekki et al., 2019).
Adhikary, Lin and Eric Wang (2017) discussed that ten years of battery lifetime
can be offered for NB-10T when transmitting average 200 bytes per day.

2.2.2 Sigfox

Sigfox is a cellular system approach which allows EDs use the Binary Phase
Shift Keying (BPSK) modulation to connect to base stations (Usman Raza,
Parag Kulkarni, and Mahesh Sooriyabandara, 2017). Sigfox uses unlicensed
Industrial, Scientific, and Medical (ISM) bands which are 433 MHz, 868 MHz,
and 915 MHz. Sigfox concentrates the radiation in an ultra-narrow band and
undergoes low levels of signal interference. This leading to small power
consumption, low cost design of antenna, and high sensitivity of receiver (RX)
in order to achieve maximum throughput of 100 bps. The maximum uplink and
downlink payload lengths are 12 bytes and 8 bytes respectively. This may causes
it to face difficulty when sending and receiving large data sizes on various 10T
applications. Its coverage is about 3 to 10 km in city and about 30 to 50 km in
countryside. Sigfox only supported uplink communication in the beginning.
After that, Sigfox developed to significant link asymmetry two-way
communication technology. The downlink communication only can be done
before uplink communication after each the ED must wait to obtain a response
from the base station which suitable for data collection but inappropriate for
controlling and commanding. (Mekki et al., 2019).

223 LoRa

LoRa is a technology which covers physical layer and offers low power wireless
transmission with low data rate and long range. It operates within unlicensed
band and it is a technology that performs the modulation of signals in the sub-
GHz ISM band using CSS that the signal is spread with narrowband over a
broader channel bandwidth. Low levels of noise levels can be achieved by the
signal. It also consists of high interference resilience. Therefore, it is difficult
for detecting and jamming (Reynders et al., 2016). The symbol rate and the
number of bits per symbol depend on SF could change between 7 and 12 to
achieve the data rate and range trade-off. The synchronous transmission

utilizing different SFs is possible in a similar frequency channel because of the

orthogonal spreading codes for different SFs. Communication range of LoRa is
limited for different environments. For instance, the range from 2 to 5 km in city
and 45 km in countryside is possible. Depending on SF and bandwidth of
channel, the achievable rate of data is between 290 bps and 50 kbps (De
Carvalho Silva et al., 2017). The transmission’s payload can range from 2 to
255 octets. When aggregation of channel is used, the rate of data can achieve up
to 50 kbps (Widianto et al., 2019).

LoRaWAN is a data link layer protocol developed by LoRa Alliance in
2015. LoRaWAN uses LoRa modulation in the physical layer. EDs will transmit
data to gateways that are connected to network server over a single wireless hop.
Three classes are defined by LoRaWAN with different functionalities. Class A
devices are able to do bidirectional communication, have least power
consumption as they have longest sleeping time. Class A devices only can
receive data after they had sent message, thus having higher latency. Class B
devices are capable to do bidirectional communication, can receive data with
scheduled time slot, thus increasing the downlink possibilities. Class B devices’
receiving time slots also can be synchronized with beacon frames sent by
gateway. Class C devices have bidirectional communication capabilities, but
they have highest power consumption because they open the receiving windows
all the time, thus providing lowest latency. The only time Class C devices cannot

receive data is when they are transmitting information (Lavric and Popa, 2017).

Table 2.1: Three classes of LoRaWAN.

Class Energy Consumption Description

A Lowest Downlink after
transmission
B Efficient with | Scheduled downlink

scheduled downlink with beacon frames or

random time slots

C Highest Devices listen non-stop.

Shortest downlink

latency.

2.3

Comparison of LPWAN standards

The features of Sigfox, NB-lIoT and LoRa are outlined as shown in Figure 2.1.

MNE-10T

Modulation BPSE PSR CEE

Frequency Unheensed I5M bands Lioensed LTE frequency Unbioensed 15M bands

Bandwdth 100 Hz 200 kHz 250kHz and §25kHz

Maxemom 140 {Uplink), 4/Downdink) Ul mated Unlamited

messages'day

Aacmmum payboad 12 bytes (Uplink), 8 bytes 1600 bytes 243 bytes

lemgth Divamlmk)

Range 10 Kma {urban), 40 km {rural} 1 km {uzbam], 10 km (rural) 5§ km (urban), 20 km {rumal)

Localization Yes, Recerved Sipnal Strempth No(under specification) Yes, Time Dafferemes Of Armival
Iesdscatos (RSS0) (TDOA)

Adxptive daia rate Mo Mo Yes

Allow private petwork Mo Na Y

Interference mmumity Very high Low Viery hagh

Aunthentication

I"'IIIZ‘F_\TI|II'¥'I

Stapdardization

&

Mot supparied

Sipfox company & collabomting

Yes (LTE encryption)

IGPP

Yes (AES 128k)

LoRa-Alliance

with ETS[on the standardization of

Saplfon-based network

Figure 2.1: Summary of Sigfox, NB-1oT and LoRa (Mekki et al., 2019).

2.4

Lavric and Popa (2017) evaluated the LoRa technology to overcome the barriers

Related work

that hamper the growth of the 10T such as connectivity, energy management,
security and complexity. The authors proposed that LoRa is a modulation
technique that provides the wide range information transmission and is an
appropriate solution in overcoming the 10T challenges. To enhance the
performance of uplink in LoRa networks, the use of spatial and time diversity
through numerous receive antennas and replication of message were analysed
by Hoeller et al. (2018), they concluded that low density networks replication
and numerous receive antennas are favourable. A evaluation of performance of
a LoRa network was done by Galinina et al. (2018). The authors proposed that
the good quality signal can be maintained consistently in the open space.
However, the quality is significantly bad in testing in the city and forest because
of the existence of dense obstacles and noise. This issue can be tackled by lifting
the gateway to a higher position that free LOS. To investigate RSSI and packet

loss of LoRa, the experiment was conducted by Muaz Abdul Rahman,

Hafizhelmi Kamaru Zaman and Afzal Che Abdullah (2018). The measurement
of SNR between the RX and transmitter (TX) was also carried out. As a result,
LoRa ED has ability to fight against multipath and signal fading with a higher
SF. In several realistic scenes, the performance evaluation of LoRaWAN has
been discussed by Sanchez-Iborra et al. (2018). The proposed work shows that
there is a data rate and link robustness trade-off. Therefore, the configuration
parameters of LoRaWAN need to be adjusted depending on the distance
between the base station and the node and conditions of propagation. When the
distance between two end points is increased, lower data rates offer more link
robustness with the decreasing of transmission rate dramatically. A nomadic test
was also carried out to investigate the consequence of mobility on system
performance. The results of this experiment confirmed that when using low
transmission data rates, LoRaWAN has less obvious vulnerability but this effect
is significant when using high data rates. The authors summarised that
LoRaWAN presents a high adaptability level to be used in several applications
of 10T. Thus, the transmission system is capable to set up low power
consumption long links with high robustness and even under conditions of
mobility by selecting the most suitable configuration.

LoRaWAN analysis for Health Care Systems was addressed by
Buyukakkaslar et al. (2017). In this study, transmission of medical data in health
care systems in a realistic hospital environment was done. The authors
summarised that LoRaWAN can be a technology in delivering sensor data for
long range. Besides that, Wan et al. (2018) carried out LoRa propagation testing
in soil and Xue-Fen et al. (2018) presented measurement of soil propagation for
wireless underground sensor networks (WUSN) by using the LoRa-based
smartphone. The results show that LoRa can be potential technology for WUSN
as it has the strengths of low cost, high flexibility and reliability. LPWAN
vehicle diagnostic system which is LoRa based for achieving safety of driving
was presented (Chou et al., 2017). LoRa-based environmental sensing system
for monitoring of status of a large farm in real time was discussed by Ji et al.
(2019). LoRa module is used as transceiver system for air pollution monitoring
system (Rosmiati et al., 2019). From these works, LoRa technology can be
applied in different areas such as smart hospitals, smart cities, smart buildings,

10

location tracking, industrial, agriculture, transport, and environmental
protection.

For reliable image transmission using LoRa, a transmission protocol
called Multi-Packet LoRa Protocol (MPLR) was proposed by Chen et al. (2019).
This protocol decreases the number of acknowledgements (ACKSs) and waiting
time by batching data packets transmission. The practicability of real-time wide-
area agricultural environments visual monitoring systems was showed by Ji et
al. (2019). The reduction of bandwidth usage and performance enhancement can
be achieved by sending the modified image patches. Besides that, Jebril et al.
(2018) carried out the P2P image transmission using LoRa to monitor the
outdoor environment in Malaysia successfully. In this monitoring system, novel
image encryption technique was used. Pham (2016) proved that image
transmission with LoRa technology is possible while remaining the low power
consumption for image sensors. In addition, to allow the implementation of
advanced image sensor devices, an modified Carrier Sense Multiple Access
(CSMA) mechanism for packet collision avoidance and mechanism of activity

time for overcoming limitation of duty-cycle were proposed by Pham (2018).

2.5 Summary

The first mentioned research has presented the differences of NB-loT, LoRa and
Sigfox. Sigfox and LoRa have long range coverage cost-effective devices with
long lifetime of battery. On the other hand, LoRa will provide the dependable
communication which supports mobility and assist the local network
deployment. Conversely, NB-lIoT will provide the high expense 10T markets
that offers better quality of service and low latency. This chapter also discussed

the related work of LoRa’s performance analysis and applications.

CHAPTER 3

LORAWAN

11

3.1 Introduction
The methodology and results obtained from performance study of LoRaWAN
will be introduced in this chapter. The selection of frequency of this project also

will be explained.

3.2 Selection of frequency

There are different operating frequencies for LoRa in different countries. LoRa
utilizes unlicensed frequency bands like 433 MHz, 868 MHz and 915 MHz.
There is a list of frequency plan used in The Things Network (TTN). These
frequency plans are documented from LoRaWAN regional parameters
(TheThingsNetwork, n. d.). In Malaysia, LoRaWAN frequency plan of AS920-
923 (“AS1”) will be used as shown in Figure 3.1 (TheThingsNetwork, n. d.).

ak
Communities Learn Support Forun

Madagascar EUB63-870 CRASA follows CEPT Rec. 70-03

EU433

Malawi EUB63-870 CRASA follows CEPT Rec. 70-03
EU433

Malaysia AS920-923
("AS1")

Figure 3.1: LoRaWAN frequency plan of AS920-923 (TheThingsNetwork, n.
d.).

3.3 Equipment used
The equipment and components used in this study will be introduced. The
hardware required are LoRa gateway concentrator module RAK831, Raspberry
Pi Zero W, converter board, RAK811 Lora Module and laptop. The software
required are The Things Network, Raspbian Operating System (OS), PuTTY,
RAK Serial Port Tool and Advanced IP Scanner.

The concentrator module RAK831 can be used in various types of
application such as IoT, Machine to Machine (M2M) and Smart Metering. By

12

using different SFs on multiple channels, it can receive up to 8 LoRa packets
simultaneously. The concentrator module RAK831 can be integrated into a
gateway as a complete RF front end of this gateway. Robust communication
between a LoRa gateway and a large amount of LoRa EDs distributed over a
long range is possible with the use of concentrator module RAK831. A host
system is required for the RAK831 to operate properly. A personal computer
(PC) or microcontroller (MCU) acts as the host processor connected to RAK831
via Universal Serial Bus (USB) or SPI.

Raspberry Pi Zero W is used as host system for RAK831 for proper
operation. It is a perfect single board computer for 10T. Raspberry Pi Zero W
can be controlled wirelessly. Micro secure digital (SD) card is worked together
with Raspberry Pi Zero W to store the data. All the components and
specifications of Raspberry Pi Zero W are shown in Figure 3.2 and Table 3.1

respectively.

RASPBERRY Pl ZERO

RUN PINS FOR RESET SWITCH

40 PIN GPIO HEADER

MICROSD CARD

Figure 3.2: Raspberry Pi Zero W.

13

Table 3.1: Raspberry Pi Zero W specifications.

Operating Voltage 5V

Operating Current 254

Processor BCM 2835 50C

Clock Speed 1 GHz

RAM 312 NB

Built-in Wireless BCM43143, 80211 b/g/n wireless

LAN, Bluetooth 4.1, and Bluetooth
Low Energy (BLE)

Memory Micro-SD

Display and Audio Min1i High-Definittion Multimedia
Interface (HDMTI)

USE port Micro-B USB for OTG

Power input Micro-B USB for power

GPIO Unpopulated 40-pin GPIO connector

The RAKS831 concentrator board must communicate with the host
processor (Raspberry Pi Zero W board) via SPI. The connections can be made
with floating wires as both boards have header connectors. However, to ease the
connection, the adaptor board provided by RAK Wireless that snaps in to both
boards can be used. All the components and specifications of RAK831
concentrator board is shown in Figure 3.3 and Table 3.2 respectively.

GPS PPS Input

SX1301

PIN 24

Status LEDs

SX1257, radio_0, radio_1

Figure 3.3: RAK831 concentrator board.

Table 3.2: RAK831 concentrator board specifications.

14

Antenna

| ¥ Connector

Supply voltage

5V

Compact size

B0.0 > 30.0 x 5.0 mm

Frequency band

433,470, 868 and 915 MHz

Sensitivity down

Down to -142.5 dBm

Maximum link budget 162 dB

Interface SPI

Processor §3{1301 base band
Output power level Upto23 dBm

Range

urban environment

Up to 15 km (LOS), several km in

RAK811 LoRa Module is low-power small size solution for long range

wireless communication. It supports LoRa P2P communications which can

allow users to create their own long range LoRa network privately. Integration
of Semtech’s SX1276 and STM32L provide user a serial AT commands with

Universal Asynchronous Receiver/Transmitter (UART) Interface. All the

components and specifications of RAK811 LoRa Module is shown in Figure

3.4 and Table 3.3 respectively.

15

Uart Switch Pin

NSRS - =T §yyY =Y T
Power Supply/Uart
‘ jz Bl RAKsII
- ¥ S
Power Test Pin B HE e g5 H

e e =

LU~ i g 2

| b4

R3Ea) Srov e [Ny 8 9

. : ? 5
Reset Key :‘[J:- —«‘i.L_ 5 g

Boot Switch Pin

Figure 3.4: RAK811 LoRa Module.

Table 3.3: RAK811 LoRa Module Specifications.

Protocol supported LoRaWAN

Frequency Band supported Global license-free ISM band

Activation method Over-the-Air Activation (OTAA) or
Authentication By Personalisation
(ABP)

Interface UART

Maximum output power 100 MW (20 dBm)

High sensitivity -148 dBm

Range Greater than 15 km

Capacity Up to 1 million devices

Power consumption 500 nA on standby

Modulation scheme LoRa, frequency shift keying (FSK),

Gaussian frequency shift keying
(GFSK). On-off keying (OOK)

Communication way Birectional 2-way communications

Battery life Over 10 years

The Things Network is founded by Johan Stokking and Wienke
Giezeman in 2015. It is a worldwide, open, free of charge and decentralized

internet of things network. The things can be linked to the internet using low

16

power with the network. It usually operates with the use of the LoRaWAN
technology as LoRa is a low energy and wide range wireless technology that
uses an open data frequency.

Raspbian OS is the Debian-based operating system of Raspberry Pi
which consists of various versions including Raspbian Stretch and Raspbian
Buster.

PUTTY is a terminal emulator for platforms of Windows and Unix.
Several network protocols can be supported by PUTTY, consisting Secure Shell
(SSH) Protocol, rlogin and raw socket connection. Raspberry Pi Zero W can be
controlled wirelessly by other devices with the set up of Wi-Fi and SSH
connection.

RAK Serial Port Tool is a serial communication tool developed by
RAKwireless to make the setup more compatible and convenience. However,
this tool only supports Windows OS. For other OS, other serial communication
tool serial can be used on user’s own preference.

Advanced IP Scanner is a powerful scanner to obtain the Internet

Protocol (IP) address of the devices on the network.

3.4 LoRa Gateway setup
1. The gateway is set up by using the adaptor board provided by RAK
Wireless that snaps in to LoRa gateway concentrator module RAK831
and Raspberry Pi Zero W as shown in Figure 3.5.

/4

Figure 3.5: LoRa gateway setup.

2. The latest firmware is burned into SD card as shown in APPENDIX D.
After burning, the SD card is installed into Raspberry Pi Zero W.

17

3. The IP address of LoRa gateway is checked by using Advanced IP
Scanner as shown in Figure 3.6.

E Advanced IP Scanner

- O
File VWiew Settings Help
-]
- EZEE| T &
192.168.1.1-254 Search
Status Mame IP Manufacturer
: RTK_GW.realtek 192.168.1.1 Netcore Technology Inc
L rak-gateway.realtek 192.168.1.2 Raspberry Pi Foundation
[raspberrypi.realtek 192.168.1.3 Raspberry Pi Foundation
rak-gateway.realtek 192.168.1.4 Raspberry Pi Foundation

Figure 3.6: Checking of LoRa gateway’s IP address.

4. The LoRa gateway is accessed through SSH using PuTTY as shown in

Figure 3.7. RPI’s username and password are “pi” and “raspberry”
respectively.

EF 192.168.1.4 - PuTTY

Figure 3.7: LoRa gateway is accessed through SSH using PuTTY.

5. Acommand “sudo gateway-config” is entered. The gateway ID is shown
in Figure 3.8.

RAK2245 M-ateway LD:BEZVTEBFFPRRTEA3FG I Version: 2.9.2R)
ation opt =

PECECEEEREEREPPERPRRREPERERREREERERERRERREEREEEEEEEERE R

Set pl passworc

Setup RAK Gateway LoRa concentrator
Restart packet-forwarder

Edit packet-forwarder comnfig
Configure WIFI

Configure LAN

oo o o R

< ®K > < Quit >
IAIIIAAATAAAITAAAAIAIAAAIIIAIITIAIIIAIIAIIIIAIIIIAFAAC

Figure 3.8: Gateway ID.

18

6. “Setup RAK Gateway LoRa concentrator” is chosen to set the LoRa
server and frequency to TTN and AS923 respectively.

7. The gateway is registered in TTN as shown in APPENDIX E. Once the
gateway is registered, the gateway overview is displayed as shown in

Figure 3.9.
Gateways O eui-b827ebfffe7e43fé
GATEWAY OVERVIEW T settings
Gateway ID eui-b827ebfffe7e43f6

Description UTARLORA
Owner (O jyloves I Transferownership
Status connected
Frequency Plan Asia 920-923MHz

Router ttn-router-asia-se
Gateway Key @ Tttt cicceceiiccieciciococcceccsiiiooes B

Last Seen 1second ago
Received Messages 0

Transmitted Messages O

Figure 3.9: TTN console page after registration of gateway.

35 LoRa Node setup
1. Pre-configuration is needed to operate with RAK811. First, for boot
mode, the “BOOT” pin and “3V3” pin are connected as shown in Figure
3.10.

Figure 3.10: Boot mode for RAK811 Wisnode.

2. RAKS8I11 WisNode is connected with laptop’s USB port as shown in
Figure 3.11.

19

Figure 3.11: Laptop’s USB port and RAK811 Wisnode connection.

3. The RST button on RAK811 WisNode as shown in Figure 3.12 is

pressed.

Figure 3.12: RST button on RAK811 WisNode.

4. The STM32CubeProgrammer tool is used to burn a bootloader into
RAKS811 WisNode. The UART type is selected, then the port, baudrate,
and parity as shown in figure below:

s D RO Y X Lyy

3
CubeProgrammer

Memory & File edition

[I—

Address Data width 32-bit

Baudrate

Parity

Figure 3.13: UART, port, baudrate, and parity configuration in
STM32CubeProgrammer.

5. “Connect” button at the top right corner is pressed. Figure 3.14 shows

the correct log.

2

Address [0x08000000 |~ | Size |00 Datawidth | 32-bit - [Read]
Address 0 4 8 C ASCI

0x08000000 20000808 08000191 08000199 08000198 -

0x08000010 0800019D 0800019F 080001a1 00000000

0x08000020 00000000 00000000 00000000 080001A3 I .

0x08000030 08000145 00000000 08000147 08001669 i

0x08000040 08000148 08000148 08000148 08000148 . e

0x08000050 08000128 080001AB 080001AB 080001AB WL

0x08000060 08000128 08000148 08000148 08000148

0x08000070 08000148 08000148 08000148 08000148

0x08000080 08000148 08000148 08000148 08000148

0x08000090 08000148 08000148 08000148 08000148

0x080000A0 00000000 08000148 08000148 08000148

0x08000080 08000128 08000148 08000148 08000148

0x080000C0 08000148 08000148 08000148 08000148

0x080000D0 08000148 08000148 08000148 08000148 &

Figure 3.14: Correct log in STM32CubeProgrammer.

6. All data on RAK811 WisNode is erased and “Open file” button is

pressed as presented in Figure 3.15.

008000000 | w | Size | 0wd0 Data width | 32:bit -

Address
Address [} 4 e c Ascll

0x08000000 20000808 08000191 08000199 08000198 L

0x08000010 08000190 0B00019F 08000141 00000000

0x08000020 00000000 00000000 00000000 08000143 R

008000030 08000145 00000000 08000147 08001669 T ———
0x08000040 08000148 08000148 080 Confirmation x
008000050 08000148 08000148 08¢) .
— o ss000128 s e v you sure you want o arsse fullchip fash memary
006000070 08000148 08000148 08¢

006000080 08000148 05000148 08¢ I |
006000090 08000148 05000148 08 OuDTRE Us000TE =

00800000 00000000 08000148 08000148 08000148 ..

08000148 08000148 08000148 08000148 «
08000148 08000148 08000148 08000148 «
08000148 08000148 08000148 08000148 «

Cancel

Verbosity level @

B

Size ; 24 Bytes
IPLOADING .
: 1073 Bytes
CxB00DGDO

2:43:29 & Time elapsed during the read operation is: 00:00:01.157

Figure 3.15: Data on RAK811 WisNode is erased and new file is opened.

21

7. The latest bootloader file (RAK811 BOOT V3.0.2.bin) is loaded and
downloaded to RAK811 as shown in Figure 3.16.

0x0 - | Size 0400 Data width | 32-bit =

Address [4 2 c
0x00000000 20000808 08000191 08000199 08000198
0x00000010 08000190 0800019F 080001A1 00000000
0x00000020 00000000 00000000 00000000 0800013
0x00000030 080001A5 00000000 080001A7 08001669
0x00000040 0800018 080001A8 080001A8 08000148
0x00000050 080001A8 080001A8 080001AB 080001AB
0x00000060 080001A8 080001A8 080001AB 080001AB
0x00000070 08000148 08000148 080001AB 0800014B
0x00000080 08000148 08000148 080001AB 08000148
0x00000090 08000148 08000148 080001AB 08000148
0x000000A0 00000000 080001A8 080001AB 080001AB
0x00000080 080001A8 080001A8 080001AB 08000148
0x000000C0 080001A8 080001A8 080001AB 08000148
0x000000D0 08000148 08000148 080001AB 08000148

Log Verbosity level

22:44:12 : Size : 1024 Bytes
22:44:12 : Address : 0x8000000
22:44:12 : Read progress:

: Time elapsed during the read operation is: 00:00:01.140
8 : Read File: Di\Downloads\RAKSLL BOOT_V3.0.2\RAKSLL BOOT_V3.0.2.bin
i Number of segments: 1

ment (017 address— 0x0. siza— 0x1ECH

Figure 3.16: Bootloader file (RAK811_BOOT_V3.0.2.bin) is loaded and
downloaded to RAK811.

8. A message is pop out from the window to inform the user bootloader is
burned into RAK811 WisNode successfully.

080001A1 00000000 lcocaooco
00000000 080001A3 ..., £...
080001A7 08001669 | SRR T T

080 Message ped
08(

08 o File download complete

08(

08
080UDTAE UBUDUIAE R
080001AB 080001AB PP R TUFE a
080001AB 080001AB GocoBoooBeooBaca
080001AB 080001AB [Y TT T
080001AB 080001AB BrcoBoao@roaBaca

Figure 3.17: Message of file download complete.

9. “Disconnect” button is pressed, the STM32CubeProgrammer tool is
closed, RAKS811 is powered down and the “BOOT” pin and the “GND”

pin are connected as shown in Figure 3.18.

22

=5

Figure 3.18: “BOOT” pin and the “GND” pin connection.

10. Then, RAK811 WisNode is connected with the laptop’s USB interface
again. The RST button is pressed and BOOT MODE of RAK811 is
displayed by using RAK serial port tool as shown in Figure 3.19. This
means that the bootloader is burned into RAK811 WisNode successfully.

& RAK SERIAL PORT TOOL

s
’ RAK com:|coms -|BaudRate: 115200 -] [cLose |

RECEIVING CLEAR RECV
<BOOT MODE=

Figure 3.19: Showing of BOOT MODE of RAK811 in RAK serial port tool.

11. The latest firmware (RAK811 HF V3.0.0.13.T3) is burned into
RAKS11 by using RAK LoRaButton Upgrade Tool V1.0 as shown in
Figure below.

23

¥ RAK LoRaButton Upgrade Tool V1.0

Location

D:\Downloads\RAKB11 H_Latest_Firmware\RAKB11_HF_V3...

Figure 3.20: Burning of firmware into RAK811 using RAK LoRaButton
Upgrade Tool V1.0.

12. The correct COM port is chosen while baud rate is 115200. The log as

shown in Figure 3.21 is displayed when the RST button of RAKS811
Wisnode is pressed.

& RAK SERIAL PORT TOOL

’RAK COM:[coM3 -

RECEIVING

BaudRate: 115200 -

CLEAR RECV

UART1 work mode: RUI_UART_NORAMAL

Current work_mode:LoRaWAN, join_mode:OTAA, Class: A
Initialization OK

Figure 3.21: Log data when the RST button of RAK811 Wisnode is pressed.

13. The application is created in the TTN.

THETHINGS CONSOLE licati
T NG CONSOLE Applications ~ Gateways Support

Applications > Add Application

Application 1D
The unique identifier of your application on the network

wisnodesyl

Description
A human readable description of your new app

Wisnode Test 12 Oct

Application EUI
Anapplication EUl will be issued for The Things Netwark block for convenience, you can add your own in the application settings page.

EUl issues d by The Things Network
Handler registration
Select the handler you want to register this application to

ttn-handler-asia-se

Figure 3.22: Registration of application in The Thing Networks.

24

14. The device is registered under the application.

Applications & wisnodesiyl > Devices

Device ID

This is the unique identifier for the device in this app. The device ID will be immutable.
realtest

Device EUI

The device EUl is the unigue identifier for this device on the network. You can change the EUI |ates
’ this field will be generated

App Key

The App Key will be used to secure the communication between you device and the network.
Vi this feld will be generated

App EUI

7@ B3 DS 7E DO 92 3A E9

Cancel

Figure 3.23: Registration of device in The Thing Networks.

15. The default activation method is OTAA. Device EUI, Application EUI
and App Key are used on RAK811 WisNode as shown in Figure 3.24.

Applications wisnodesjyl Devices) reaites

Application 1D

Device ID realtest

Activation Method

DeviceEUI © = eessers21lezesee g

ApplicationEUI © = 7¢ 8305 TED@ 82 3A E9 3
AppKey © = @ 2
Device Address < = 260424CC g
Network SessionKey © e R T R I S PSP &
App SessionKey = o ®% 80 5% 54 84 EE EE Se Be e Ee G4 B wE su b 3l

Status + 2daysago
Framesup 22 rgse frame coynter

Frames down 0

Figure 3.24: Configuration parameters in The Thing Networks.

25

16. The configuration of RAK811 is done by using the AT command in

Table 3.4.

& RAK SERIAL PORT TOOL

‘ RAK com:|coms

BaudRate: 115200

RECEIVING CLEAR RECV
»=at+set_canfig=lorajoin_mode:0 "
0K

> =at+set_config=lora:class:0

0K

=»=at+set_config=loraregion:AS923

0K
»>=at+set_config=lora:dev_eui:00450F4211B2B600
oK

»=at+set_config=loraiapp_eui:70B3DS7EDDO23AED

at+set_config=lora:app_key:FC745B37ABBSA307B5ABC2E41D1DA3
BB
0K

SENDING(With \rin)

at
+set_config=lora:app_key:FC7T45B37A885A307BSABC2EA]
D1DA3BE

v

Figure 3.25: Configuration of RAK811 Wisnode by using RAK Serial Port

- o X
Command
0 01 [at+join
O 02 [at+send=lora:2:12345678
[02 [at+set_config=lorap2p:860525000:12:0:1:8:20
] at+set_config=devicerrestart
0 05 [at+set_config=deviceigps:1
00 05 [at+set_config=lorawork_mode:1
00 07 at+set_config=loragoin mode
O 07 [at+set_config=loraiclass:0
0 02 [ateset_config=lorairegian:A5823
O 10 [at+set_config=loraconfirm:1
] at+set_config=lora:ch_mask:7:0
O 12 [at+set_config=lora:dev_eui:00450F4211B28600
00 12 at+set_config=loraiapp_eui:70B3DSTEDO023AES
0 14 at+set_config=loraiapp_key:FC745837A885A30785A5C2 [I
O 75 at+set config=loradev addr:
01 15 [at+set_config=lorainwks_key:
00 17 [at+set_config=loraiapps_key:
] at+set_config=lora:send_interval:1:5
m] at+get_config=iora:status
B 20 [at+get_config=loraichannel
O All/None

Tool.

Table 3.4: AT command used for configuration.

AT command

Description

at+set_config=lora:join_mode:0

Set the OTAA join
LoRaWAN.

mode for

at+set_config=lora:class:0

Set the class A for LoRa.

at+set_config=lora:region: AS923

Set the AS923 region for LoRa.

at+set_config=lora:dev_eui:00450
F4211B2B600

Set the device EUI for OTAA.

at+set_config=Ilora:app_eui:70B3
D57EDO023AE9

Set the application EUI for OTAA

at+set_config=lora:app_key:FC74
5B37A885A307B5ABC2E41D1D
A3BB

Set the application key for OTAA.

17. OTAA mode is joined by using AT command “at+join” as shown in

Figure 3.26.

26

& RAK SERIAL PORT TOOL

‘ RAK com:|coms BaudRate: 115200 m

RECEIVING CLEAR RECV

==at+jain

at+join

OTAA:

DevEui:00450F4211B2B600
\AppEui:70B3D57EDOO23AES
\AppKey:FC745B37A885A307B5ABC2E41D1DAZEE
OTAA Join Start...

[LoRal:Join Success

OK

SENDING(With \r\n)

B ‘ﬂ

Time 00:00:00 | PASS: O |FAIL: O | SW Version: V1.2.1 | Make:2018-1

Figure 3.26: Joining LoRa network by using AT command “at+join”.

18. The payload is sent by by using AT command
“at+send=lora:2:12345678” as shown in Figure 3.27.

& RAK SERIAL PORT TOOL

’ RAK com:|coms BaudRate: 115200 m
RECEIVING

»»at+join

at+join

OTAA:

DevEui:00450F4211B2B600
\AppEui:70B3DS7EDO023AEY
\AppKey:FCT45B37AB85A307B5ABC2E41D1DA3BE
OTAA Join Start...

[LoRa]Join Success

OK

»>at+send=lora:2:12345678

at+sen: 12345678

[LoRa]: RUI_MCPS_UNCONFIRMED send success
OK

SENDING(With \r\n)
at+send=lora:2:12345678

Time 00:00:00 |PASS: 0 |FAIL 0 |SW Version: V1.2.1 | Make:2018-12-24

Figure 3.27: Sending data with AT command “at+send=lora:2:12345678”.

19. The traffic of gateway and node are monitored from TTN as presented

in Figure 3.28 and Figure 3.29 respectively.

27

GATEWAY TRAFFIC

frequency mod. CR datarate airtime (ms

323.6 4/5 SF10 BW125 329.7

323.6 4/5 SF10 BW125 370.7 appeui: 70B3D57ED0023AES deveui: 00 450F 42 11B2B6 00

by

Figure 3.28: Gateway traffic shown in The Thing Networks.

Uplink

Figure 3.29: LoRa application traffic in The Thing Networks.

20. The SF of RAK811 LoRa module can be configured to SF7, SF8, SF9
and SF10 with different AT commands according to Table 3.5.

Table 3.5: Number of DR of RAK811 LoRa module.

Number of | AT command Configuration Indicative
DR physical bit
rate [bit/s]

at+set_config=lora:dr:2 | LoRa: SF10/125kHz | 980

at+set_config=lora:dr:3 | LoRa: SF9/125kHz | 1760

at+set_config=Ilora:dr:4 | LoRa: SF8/125kHz | 3125

gl B~ WO DN

at+set_config=lora:dr:5 | LoRa: SF7/125kHz | 5470

3.6 LoRa Packet Structure
LoRa packet is made up of 2 preambles, a header, the payload and a Cyclic
Redundancy Check (CRC) as shown in Figure 3.30 and their corresponding

explanations are shown in Figure 3.31. The spreading factors can be varied from

28

SF7 to SF12. Besides that, the coding rate of payload can be chosen from 4/8,
4/7, 416, and 4/5. Higher sensitivity can be obtained from higher coding rate.

nPreamble Symbols nHeader Symbols

Preamble Header Header Payload Payload
CRC CRC

Explicit mode only

Coding Rate = 4/8 Coding Rate

Spreading Factor

Figure 3.30: LoRa Packet Structure.

Content Explanation

Preamble Tt 18 used to synchronize RX with the

flow of incoming data.

Header (Implicit or Explicit) Mostly 1 explicit mode.

Explicit mode: Header will give the
information of the payload (payload
length in bytes, code rate of forward
error correction (FEC) and existence
of CR.C for the payload).

Implicit mode: the header doesn’t
exist in the packet, all information of
payload must be configurated

manually.

Payload The payload 15 vaniable. For example,
the sensor data can be sent as the
payload.

Payload CRC An optional CRC may be appended.

Figure 3.31: LoRa Packet Structure explanations.

3.7 LoRaWAN network architecture
The standard network architecture of LoRaWAN is shown in Figure 3.32. The
EDs communicate with gateway using LoRa through a single hop with

29

LoRaWAN. The packets from EDs are forwarded by gateway to network server
through Wi-Fi, Ethernet or satelilite.

END
DEVICE
WI-FI etc
END NETWORK
DEVICE GATEWAY SE RVER

END
DEVICE

Figure 3.32: Standard network architecture of LoRaWAN.

In this study, the network architecture of LoRaWAN is shown in Figure 3.33.

RAKs11 LORA MODULE RAKS31 LORA GATEWAY Ethernet/ TI'!E‘THIQIESS
N w K
Wi-Fi etc

_ ' NETWORK
SERVER

Figure 3.33: Network architecture of LoRaWAN in this study.

3.8 Performance evaluation of LoORaWAN
The LoRaWAN performance evaluation in an indoor environment is studied.
The experiment is composed of one ED, one gateway and one server. The
gateway is composed of RAK831, the ED is composed of RAK811 connected
to laptop via the UART interface which sends data by using AT command and
the server used is TTN server. The performance evaluation consists of:

1. The impact on airtime under different SFs and payload lengths.

2. The impacts on RSSI and SNR under different transmission distances.

3.8.1 Theimpact on airtime under different SFs and payload lengths
3.8.1.1 Experimental Setup

30

1. LoRa gateway concentrator module RAK831 is powered on.
2. RAKS811 Wisnode is connected through an USB port and programmed
using RAK Serial Port Tool.

3. The fixed parameters are configurated as stated in Table 3.6.

Table 3.6: LoRa configuration paramaters.

Bandwidth 125 kHz
Coding Rate 4/5
Frequency band used AS923
Distance between gateway and node | O m

4. Steps 1 to 3 are repeated by varying SF7 to SF10.
5. Steps 1 to 4 are repeated by sending the payload with length of 14 bytes,
17 bytes, 29 bytes and 32 bytes.

6. The results are recorded in Table 3.7.

3.8.1.2 Result and discussion

In this study, different SFs are used for different payload lengths to investigate
the impact on airtime. The airtime for different SFs and payload lengths are
obtained from TTN and presented in Table 3.7 below. The corresponding chart

is plotted as shown in Figure 3.34.

Table 3.7: Airtime (in milliseconds) for different SFs and payload lengths.

Payload length (bytes) | 14 17 29 32
SF

7 46.3 51.5 66.8 71.9
8 82.4 92.7 123.4 133.6
9 164.9 164.9 226.3 246.8
10 288.8 329.7 411.6 452.6

31

Airtime against payload length with different SFs

Airtime(ms)
500
450
400
350
300
250
200
150

100 o e
50 > — = *—
14

0
17 29 32

Payload length(bytes)
«=@==SF7 ==@==SF8 SF9 ==@=SF10

Figure 3.34: Airtime against payload length with different SFs.

The most robust transceiver setting in this study is the transceiver with
spreading factor of SF10, the airtime of 288.8 ms is obtained when sending 14
bytes payload. In contrast, the transceiver with spreading factor of SF7
consumed the shortest airtime of 46.3 ms in the same scenario. The higher the
spreading factor, the better the reconstitution of the signal. However, this leads
to significant increment in airtime.

The results also show that the transmission time increases as the payload
length increases. This is because the longer the length the payload sent, the
larger the payload needed to be encoded by the ED and decoded by the gateway.

3.8.2 The impacts on RSSI and SNR under different transmission
distances

3.8.2.1 Location

The impacts on RSSI and SNR under different transmission distances are

studied in Evergreen Scotpine Condominium. Figure 3.35 and Figure 3.36 show

the building and the floor map of Evergreen Scotpine Condominium

respectively. It is 13 story building and made from thick concrete structure. The

floor map is the same for each floor. The height is approximately 5m for each

floor.

32

Figure 3.35: Building of Evergreen Scotpine Condominium.

Apartment Store Lift Apartment

Staircase Staircase

Lobby 3 boor

Apartment
Apartment

Figure 3.36: Floor map of Evergreen Scotpine Condominium.

3.8.2.2 Experimental Setup
1. LoRa gateway concentrator module RAK831 is powered on.
2. RAKS811 Wisnode is connected through an USB port and programmed
using RAK Serial Port Tool.
3. The fixed parameters are configurated as stated in Table 3.8

33

Table 3.8: Configuration parameters.

Payload size (Bytes) 17
Coding Rate 4/5

SF 7
Bandwidth 125kHz
Frequency band used AS923

4. The gateway RAK®831 is located at G floor of condominium as shown
in Figure 3.38 and pointed out by the blue point in Figure 3.37.

5. The RAK811 LoRa Module is placed at 1% floor as shown in Figure 3.40
and the location of RAK811 LoRa Module is represented by red point
in Figure 3.39.

6. 17 bytes payload is sent from node.

7. The SNR and RSSI values of the gateway and the node are recorded.

8. The experiment is repeated by placing the RAK811 LoRa Module at G,
2nd 31 6t 9t and 12" floors.

9. For each variation of distance, the experiments are repeated 10 times.

The SNR and RSSI values are averaged as shown in Table 3.9.

Apartment

Store

Lift

Apartment

Staircase

..d Gateway

Lobby

Staircase

3 Door

Apartment

Apartment

Figure 3.37: Floor map (Gateway).

o

Figure 3.38: Gateway at G floor.

Apartment Store Lift Apartment
Staircase .-_ LoRa Wisnode Staircase
Lobby 3 Door
Apartment
Apartment
Figure 3.39: Floor map (LoRa
Wisnode).

Figure 3.40: Laptop and RAK811

LoRa Module at 3™ floor.

34

3.8.2.3 Result and discussion

In this study, different transmission distances are used to investigate the impacts
on SNR and RSSI. All the SNR and RSSI values are based on the average values
of 10 runs as shown in Table 3.9.

Table 3.9: Results of the impacts on RSSI and SNR under different

transmission distances.

Location of end-

Distance (m)

Average SNR

Average RSSI

device (dB) (dBm)
G 0 9.5 -6.6
1st 5 8.68 -74.1
2nd 10 8.24 -88.73
3rd 15 5.87 -94.71
6th 30 2.67 -101.6

35

9th 60 -5.31 -106.22
12nd 90 -5.42 -106.73

From the Table 3.9, as the distance increases, the average RSSI
decreases. The average RSSI when the node RAK811 is placed at G floor is -
6.6 dBm but the drastic drop of average RSSI to -74.1 dBm occurred when the
transmitter is placed at 1st floor. This rapidly dropping of signal strength is
believed caused by the multiple signal path that presents within the building
where the gateway is placed. The average RSSI gradually decrease to -88.73
dBm, -94.71 dBm, -101.6 dBm, -106.22 dBm, -106.73 dBm for the distance of
10 m, 15 m, 30 m, 60 m and 90 m respectively. The average RSSI at G floor is
largest since the signals transmit without the blocking of ceilings and walls. The
RSSIs become smaller when the node set farther from the gateway because the
more signals are interrupted by the ceilings and walls.

SNR of the signal means the ratio of useful signal power to the noise
power. There is possibility to get either positive or negative SNR. Negative SNR
represents that power of signal is smaller than the power of noise. Generally,
positive SNR has to be obtained during transmission. LoRa SNR values are
between -20 dB and 10 dB typically. From Table 3.9, the average SNR when
the node RAKS811 is placed at G floor is 9.5 dB which means the received signal
is less corrupted. Table 3.9 also shows that the distance increases, the average
SNR decreases. It is believed that power signal suffers more attenuation and
more noise power is added during transmission as the distance increases.
Although there are two average SNR values are obtained below 0 dBm, LoRa
modulation allows EDs to demodulate signals with the SNR value between -7.5
dB and -20 dB under the power level of noise floor due to its robustness.

CHAPTER 4

36

LORA P2P

4.1 Introduction
The phrase ““a picture is worth a thousand words” refers to multiple information
can be expressed by a single still image. In agriculture, images can provide plant
breeding and yielding information. Besides that, images can help to monitor the
forest, the real time situations about environment issues such as forest fire can
be observed. They can also capture real time physical condition of the remote
loT system. This benefits system operation. For example, a heavy rainfall may
disturb the data collection; an automated system or human being could alternate
the soil moisture reading.

The LoRaWAN is not suitable to be used for image transmission. This
is because there are limitations of the data each ED can send according to Fair
Access Policy of TTN (TheThingsNetwork, 2020). In order to achieve long-

range image transmission, LoRa P2P communication technique is used.

4.2 Equipment used
The equipment and components used in this project for LoRa P2P will be
introduced. The hardware required are Dragino LoRa module, Raspberry Pi
Zero W, 5MP Camera Board for Raspberry Pi and laptop. The software
required are Raspbian OS, PuTTY, Advanced IP Scanner and VNC viewer.
Dragino LoRa module is designed for RPI. This transceiver module has
high noise immunity and allows long-range transmission with minimum current
consumption. All the components and specifications of Dragino LoRa module

is shown in Figure 4.1 and Table 4.1 respectively.

GND

I

AoRaD00 | RPIRXD |/ iiemanios

RPiTXD PPS LoRa DIO1

LoRa NSS

...........

Figure 4.1: Dragino LoRa module.

Table 4.1: Dragino LoRa module specifications.

Maximum link budget 168 dB

Power amplifier +14 dBm
Programmable bit rate 300 kbps
Sensitivity -148 dBm

RX current 10.3 mA
Maximum payload length 256 bytes
Dynamix Range RSSI 127dB
Resolution of fully integrated | 61 Hz

synthesizer

Maximum output power 100 mW (20 dBm)

37

5MP Camera Board is specially designed for Raspberry Pi and is

compatible with most of the RPI in the market. It attaches to RPI with the use

of Flat Flex Connectors (FFC) cable and communicates with RPI through

Camera Serial Interface (CSI).

38

83
L

g s
= £
3

sg"

CAM1_DPO

Ground

2.CAM1_DNO

Ground
15.+#3.3V

1
2
3
4
5
6
7

Figure 4.2: 5SMP Camera Board for Raspberry Pi.

Table 4.2: 5SMP Camera Board for Raspberry Pi specifications.

Compatibility Raspberry P1 1.2, 3 and zero series

Still picture resolution 2592 x 1944

Video supports 1080p at 30fps, 720p at 60fps and
640=480p 60/90 recording

Size 20 mm x 25 mm X Smm

Interface 15 pin MIPI CSI

Weight ig

Module SMP (megapixel) omnivision 5647

camera module

The Raspbian Operating System (OS), Advanced IP Scanner and
PUTTY are the same in previous chapter. VNC viewer is a tool for controlling

another computer (Raspberry Pi Zero W) by graphical desktop-sharing system.

4.3 LoRa P2P Packet Structure
The LoRa P2P packet structure is the same as in Chapter 3.6. The explanations
on configuration for TX and RX are shown in APPENDIX G.

4.4 Design of Transmission Protocol

The sending and receiving of data need to be controlled. If the sending rate is
higher than the receiving rate, then the data will get lost. The flow control can
keep track the sending and receiving process in order to make sure the data can

be transmitted successfully.

39

Prior to this study, some considerations must be figured out. Constrained
by LORA maximum transmission unit (MTU) of 255 bytes, the fragmentation
needs to be done to segment the long image payload into multiple packets. In
this study, the packet size of 128 bytes is used. It consists of 4 bytes identity
number (ID) to prevent the repetition of packet and 124 bytes useful information
as shown in Figure 4.3. The overhead of 4 bytes ID is only 3.125%.

4 bytes 124 bytes
I S \ .
| 1 |

m Useful payload Asingle packet

Figure 4.3: A single packet.

By using Raspberry Pi to implement Dragino LoRa module, C
programming language is used as main language along with python. In order to
send the image from TX to RX, the conversion of image into text is necessary.
By using python, the Joint Photographic Experts Group (JPEG) image will be
converted into hexadecimal format and stored in a text file (ImageTx.txt). After
that, the bytes contained in the text file will be calculated using strlen function
in <string.h> library and the number of packets to be sent will be evaluated using
simple division and ceil function in <math.h>. For example, for a message with
payload length of 130, the number of packets to bent sent is 2 as shown in Figure
4.4 below.

C language Answer

numBytes = strlen(packet); numBytes = 130.0

packet_no = ceil(numBytes/PAYLOADSIZE); packet_no = ceil(130.0/124)=2

Figure 4.4: C language and corresponding description.

Next, the headers will be added and stored in the text file (ImageTx_h.txt)
to differentiate and give the identity to the packet segmented. The first packet
with header 0000 contains the information about how many packets the RX will
receive to make sure all the packets can be received correctly. This situation can

be illustrated with the Figure 4.5 below.

40

130 bytes
|

12345678901234567890-------=+r=rr==r=wemreszssmsmnmreane- ABCD 12

‘ Aclding heaclar

4 bytes 124 bytes E 4 bytes 124 bytes 4 bytes 6 bytes

| | | | |
Y h I~ f B |

0000 looo------------------ooonoonooz 0001 0002 lnscnu

First packet | Second packet | Third packet
Figure 4.5: Adding header.

4.4.1 Stop and Wait Protocol

To ensure of arrival of multiple packets, reliable transport protocols are needed.
In this study, two transport protocols are used. First protocol used is stop and
wait protocol as shown in Figure 4.6. The sender will wait for ACK after
sending out one packet and only proceed to send next packet after receiving
ACK from RX. The sending and receiving process will be repeated until

“DONE” ACK is received by transmitter.

Transmitter (TX) Receiver (RX)
= Packet o
Timeout \
®- =
= { Packet o
B (Packet 1

Figure 4.6: Stop-and-wait protocol.

4411 TX

TX will start to send the packets after the hexadecimal representation of image
is stored in text file (ImageTx_h.txt). After sending first packet, TX will wait to
receive ACK from RX. If the ACK is 1, this indicates that the packet is received
successfully by RX, then the TX will send out next packet. However, if the ACK
is 0, TX will resend the packet. The sending and receiving processes will
continue until the “DONE” ACK is received by TX, this ACK represents that
all the packets are received by RX and the image is built successfully. The new

image transmission process will start after this. Figure 4.7 shows the flowchart

for writing C program of TX when using stop and wait protocol.

START

—~"While starting to send ~~ NO

mMage process

»{ END

~SYES
\ 4

e Take, compressand convert
mage into hexadecima
string

. add header to hexadecima
string

o calculate the number of

packets need to be sent

=
J

~While sending process is not ~~—_

o)

complete

Send The e Resend the
packet to the packet to the

receiver receiver

———p—=—""__ While acknowledgement is not received ___——

g SN YES

YES

¢

YES

Figure 4.7: Stop and wait protocol’s transmitter coding flowchart.

< If ACK=DONE >

42

4412 RX

RX will start to receive the packet sent from TX after receiving process is
initiated. After receiving the packet, RX will send ACK to TX to inform the
arrival of packet. The receiving and sending processes are repeated until all the
packets are received successfully by receiver. After receiving all the packets,
RX will start to build the image and upload the image into Dropbox. RX will
send a “DONE” ACK to TX after constructing the image. New receiving
process will start after this. Figure 4.8 shows the flowchart for writing C

program of RX when using stop and wait protocol.

(START)
: NO
hile starting to (" EnD

3 WH e the first YES

Send ACK about

arrival of first packet

—While the packets is received comp

O

o~ and no timeout for receiving imag

Y
) 4 e
NO # : NO
~"While packet is received and
<_ If allthe packets are re — hile packe e E} :'m S)
Sl Y countdown to send ACK _~
VES S
— — Y _YES
Build the image and YES NO
upload the image to ‘t‘f.'; f the packet is receive
dropbox
Send ACK1 for Send ACKO for
sending next packet resending

Figure 4.8: Stop and wait protocol’s receiver coding flowchart.

4.4.2 LoRa Multi-Packet Transmission Protocol
Another reliable transport protocol is designed in order to lessen the

transmission time and obtain higher transmission rate. This self-defined

43

protocol given a name called LoRa Multi-Packet Transmission Protocol as
shown in Figure 4.9. For the ideal condition, the TX will send all the data
packets to the RX consecutively with interval of 5 seconds. The sending and

receiving process will repeat until “DONE” ACK is received by TX.

Transmitter (TX) Receiver (RX)

Packet o
Packet 3
Packet 2
Packet 3
Packet 4
Packet 5
Packet g
Packet 7
Packet g
Packet 9
Packet 109
Packet 11
Packet 12

{ ACK

New Packet o

New Packet 1

Figure 4.9: LoRa Multi-Packet Transmission Protocol.

However, the transmission loss may occur during the transmission. The
“DONE” ACK sent from RX to TX may be lost. In this situation, by providing
timeout which specified period of time is given to TX to wait for ACK. After

timeout, new packet will be transmitted as presented in Figure 4.10.

Transmitter (TX)

P —

Timeout

S

Packet 9
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5
Packet 6
Packet 7
Packet g
Packet 9
Packet 10
Packet 11
Packet 1

£ ACK

New Packer o
New Packet 1

44

Receiver (RX)

Figure 4.10: LoRa Multi-Packet Transmission Protocol with timeout session.

For the transmission loss in the sending process, RX will send ACK to

TX to request for resending. After receiving ACK, sender will resend the

requested packet to the RX again as shown in Figure 4.11.

Transmitter (TX)

Packet
Packet 1
Packet 2
Packet 3
Packet 4
Packet 5
Packet 6
Packet 7
Packet g
Packet 9

Packet 10

Packet 11

Packet 12

RESEND 3

Packet 3

RESEND 6

Packet 6

ACK

New Packet o

Receiver (RX)
- R
i x
T

>

Figure 4.11: LoRa Multi-Packet Protocol with resending request.

4421 TX

45

TX will begin to send the packets consecutively with interval of 5 seconds after

the hexadecimal representation of image is stored in text file (ImageTx_h.txt).
After sending out all the packets, TX will wait to receive ACK from RX. If the

receiving ACK is integer n, this shows that the nth packet needs to be resent.

TX will resend the packet and wait to receive ACK again. The receiving and

resending processes will keep going until “DONE” ACK is received by RX. The

new image transmission process will start after this or after all sessions are

timeout. Figure 4.12 shows the flowchart for writing C program of TX when

using LoRa Multi-Packet Transmission protocol.

_—"While starting to send -

mage proce

END

e Take, compress and convert
mage into hexadecimal
string

. add header to hexadecima
string

o calculate the number of

packets need to be sent

_—While sending p

e Point the packet that need
to be sent NO
e send the packetto the

receiver

ending process is complete and countd

end new image

s not completed B

YES %

T~y VEs

Wait to receive
acknowledgement

from receiver

cknow
ending nth miss:

edgement ab

T ves
A 4

Resend nth packet to receiver ‘

Figure 4.12: LoRa Multi-Packet Transmission Protocol’s transmitter coding

flowchart.

46

4422 RX

RX will start to receive the packet sent from TX after receiving process is
initiated. After the receiving session is expired, the receiver will check whether
all the packets are received successfully or not. If there is missing packet, RX
will send the integer n that represent nth missing packet to TX to request for
resending. The sending and requesting processes are repeated until all the
packets are received successfully by receiver. After receiving all the packets,
RX will start to build the image and upload the image into Dropbox. RX will
send a “DONE” ACK to TX after constructing the image. New receiving
process will start after this. Figure 4.13 shows the flowchart for writing C

program of RX when using LoRa Multi-Packet Transmission Protocol.

Bhanestior Build the image and
g upload the image to

resending nth packet

dropbox

Figure 4.13: LoRa Multi-Packet Transmission Protocol’s receiver flowchart.

47

4.5 Image Processing
451 Image Compression

In many aspects, images can be significantly compressed without
affecting their functionality. In this study, a pi camera that attached to RPI is
used to capture a 3280 x 2464 full-resolution image which has size of 5.303 MB
as shown in Figure 4.14. Python Imaging Library (PIL), Pillow is used to resize
and compress the image. The 240 x 160 pixels downsized image in Figure 4.15
is compressed by an anti-aliasing filter which is a down sampling filter. To
obtain even smaller size image, a parameter that represent the image quality
which is range from 1 (most compression) to 95 (least compression) can be used
to compress the image. This parameter can be adjusted according to the
requirements of application. The codes shown below are used to compress and

tune the quality of image.

from PIL import Image

ImageTx.jpg is a 3280x2464 jpeg that is 5.383MB large
foo = Image.open("ImageTx.jpg")

Resize the image with an ANTIALIAS filter (gives the highest quality)
foo = foo.resize((248,168),Image.ANTIALIAS)

The saved downsized image size is 24KB
foo.save("ImageTx_compress 95.jpg",optimize=True,quality=95)

Figure 4.14: 3280 x 2464 full-resolution image (ImageTx.jpg).

48

"

Figure 4.15: 240 x 160 pixel resized image.

To show different levels of image quality compression, Figures 4.16 to
4.19 illustrate the results of compressed 240x160 pixel image after applying the
algorithm of compression with quality of 10, 25, 50 and 95 respectively. The
quality estimations with peak signal-to-noise ratio (PSNR) values also are
conducted by using PSNR evaluation tool to compare the original image (Figure
4.15) and compressed images. The PSNR values are 25.58 dB, 28.12 dB, 29.75
dB and 32.12 dB for image quality of 10, 25, 50 and 95 respectively. The higher
the PSNR, the better the quality of the compressed image. The smaller size of 7
KB and 4KB are obtained for the image quality of 50 and 25 respectively, some
visible losses can be observed from the images. Besides that, there is notable
image corruption can be observed from the image with quality of 10, but this
quality may be tolerable in some applications that do not require clear image.
Therefore, by using this compression algorithm, a 5.303 MB image can be
compressed into an image of only 2KB, 4KB, 7KB and 24KB with different
image quality settings. The image has more losses and smaller size with lower
image quality. However, a small size image can ease the transmission with

shorter transmission time and lower power consumption.

49

Figure 4.16: Quality: 10, Size = 2KB,
PSNR = 25.58 dB.

Figure 4.18: Quality: 50, Size = 7KB,
PSNR =28.12 dB.

an

Figure 4.19: Quality: 95, Size = 24KB,
PSNR =32.12 dB.

45.2 Image Conversion

When using the open() file function in python, the binary representation of

image is obtained. However, the binary data is too large to be transferred using

LoRa. In realization for transmission of image by using LoRa, the binary data

of image is converted to hexadecimal format. binascii.hexlify() function is used

to convert the binary data to hexadecimal representation. As a result, the 2-digit

hexadecimal representation is obtained from every byte of data. Therefore, the

returned bytes object is 2 times longer than the length of data. Table 4.3 shows

the lengths of data after converting Figures 4.16 to 4.19 into hexadecimal

representation. The hexadecimal representation of image will be stored in a text

file (ImageTx.txt) for further usage.

50

import binascii
filename = 'ImageTx compress 95.jpg’

#read the image file
with open(filename, 'rb') as f:
content = f.read()

#convert binary data into hexadecimaﬂ
str_content = str(binascii.hex1lify(content), "utf-8")

#store the hexadecimal representation in text file
txtfile = 'Imagelx.txt’
with open(txtfile, 'w+') as file:
file.write(str content)
file.close()

The ID of the packets are appended to the existing hexadecimal representation
stored in ImageTx.txt file using + function in python and then saved in the text
file (ImageTx_h.txt) as shown in code below. Table 4.3 shows the lengths of

data after appending IDs to the hexadecimal representations.

import binascii
import math

PAYLOADSIZE=251
HEADERSIZE=4

#non-appended file name
filename = "ImageTx.txt’

with open(filename, ‘rb’) as f:
my_str = f.read()

#calculate the number of packets

length = len{(my_str)

packet_no = math.ceil(length/float(PAYLOADSIZE))
packet_no= int(packet_no)

#append the id to all the payload
for i in range (1,packet_no):
i str=str(i+1).zfill(HEADERSIZE)
j=i-1
my_str=my_str[:(PAYLOADSLZE+{j*(PAYLOADSIZE+HEADERSIZE)))] + i _str + my_str[(PAYLOADSIZE+(j*(PAYLOADSIZE+HEADERSIZE))):]

#the first packet in payload that represent the number of packets te be transmitted
my_str=my_str[:8] + str(1).zfil1(HEADERSIZE) + my_str[8:]

packet_no_char = str(packet_no).zfill(PAYLOADSIZE)

packet_no_char = packet_no_char[:08] + str(8).zfill(HEADERSIZE) + packet_no_char[8:]

#append the first packet to another packet
my_str = packet_no_char+ my_str

#store the appended string in to text file

txtfile = 'ImageTx_h.txt’

with open(txtfile, 'w+') as file:
file.write(my_str)

file.close()

Table 4.3: Results of image conversion.

Quality | Size of image | Size of image in hexadecimal | Size of image in

of (bytes) representation (bytes) hexadecimal
image representation
after adding

header (bytes)

51

10 1,970 3,940 4,196
25 4,056 8,112 8,504
50 6,516 13,032 13,584
95 23,613 47,226 48,878

45.3 Image Building

For image building in RX, RX will start to listen continuously until the arrival

of the packet. In this study, each packet size is set to 128 bytes including 4 bytes

of identity number (ID) and 124 bytes of useful information. All the useful

information received will be stored in a text file (ImageRx.txt). If all the packets

are received by RX, the image reconstruction process will start immediately.

Image reconstruction is done by converting the hexadecimal representation data

(useful information) to original image (ImageRx.jpg). This image (ImageRx.jpg)
will be saved in the SD card and readable with image viewer. The image will be

uploaded to Dropbox with the access of internet.

4.6 Design of Transmission Protocol
4.7 Performance evaluation of LoRaP2P
In this study, Dragino LoRa module that attached to Raspberry Pi Zero W and
pi camera is used as TX as shown in Figure 4.20 while Dragino LoRa module
that attached to Raspberry Pi Zero W is used as RX as shown in Figure 4.21.
The performance evaluation consists of:
1. The transmission time when using stop and wait transmission protocol
and LoRa Multi-Packet Transmission Protocol.
2. The impacts on transmission time and number of packet loss when using
different image qualities.
3. The impacts on transmission time, number of packet loss, RSSI and SNR

under different transmission distances.

52

7
2
2N

o

—— RASPBERRY PI

-

SPBERRY Pl
iy

Figure 4.20: LoRa P2P transmitter. | Figure 4.21: LoRa P2P receiver.

4.7.1 Stop and wait transmission protocol vs. LoRa Multi-Packet
Transmission Protocol
4.7.1.1 Experimental setup
1. TXand RX are powered on.
2. TXand RX are monitored and controlled by using VNC viewer through
SSH connection in a PC as shown in Figure 4.22.
The fixed parameters are configurated as stated in Table 4.4.
The stop and wait transmission protocol is used.
The sending and receiving processes are initiated.
The total transmission time is recorded.
Steps 1 to 6 are repeated by introducing 1 packet loss artificially.

© N o g B~ w

Steps 1 to 7 are repeated by using the LoRa Multi-Packet Transmission
Protocol instead of stop and wait transmission protocol.

9. For each protocol, the experiments are repeated 3 times, all the
transmission time are averaged and presented in Table 4.5.

- o x

dragino_lor.. [EMlpi@raspbe

Figure 4.22: VNC viewer monitoring and controlling.

Table 4.4: Configuration parameters.

53

Image that needs to be transmitted

Total Payload 1510 bytes
Payload length per packet 128 bytes
Number of packets 11

Coding Rate 4/5
Distance between TX and RX om

SF 7
Bandwidth 125 kHz

4.7.1.2 Result and discussion

In order to confirm whether the proposed LoRa Multi-Packet Transmission

Protocol is more beneficial than the stop and wait transmission protocol in term

of time spent. The LoRa P2P image transmission experiments are conducted in

an indoor environment to investigate the transmission performance of both

protocols. All the total transmission time are based on the average values of 3

runs as shown in Table 4.5.

54

Table 4.5: Average transmission time when using stop and wait protocol and
LoRa Multi-Packet Transmission Protocol.

Protocol Stop and wait protocol | LoRa Multi-Packet

Transmission Protocol

Average transmission | 3 minutes 36 seconds 1 minutes 6 seconds

time without packet loss

Average transmission | 4 minutes 21 seconds 2 minutes 34seconds

time with 1 packet loss

When using stop and wait protocol without any packet loss experienced, the
transmission time is 3 minutes and 36 seconds. However, when using LoRa
Multi-Packet Transmission Protocol with same scenario, the transmission time
is 1 minute and 6 seconds only which are 2 minutes 30 seconds shorter than the
time stop and wait protocol spent. When introducing 1 packet loss, LoRa Multi-
Packet Transmission Protocol, the tramission time is almost 2x shorter than that
of stop and wait protocol. A significant increment in transmission time is
noticeable when using stop and wait protocol because the transmitter needs to
wait for an ACK per packet to make sure the success arrival of data which causes
the transmit rate of packet greatly reduced. The load of network and the
receiver’s required transmission rate have been increased by the ACK traffic.
LoRa Multi-Packet Transmission Protocol significantly decreases the number
of ACKs and reduces the time for waiting ACKSs. Therefore, the data transfer
efficiency is extremely increased with LoRa Multi-Packet Transmission

Protocol.

4.7.2 The impacts on number of packet loss, transmission time, RSSI
and SNR under different transmission distances

The experiments are carried out in the high raised building of Evergreen

Scotpine Condominium as same as the location in Chapter 3.8.2.

4.7.2.1 Experimental Setup
1. TXand RX are powered on.
2. TXand RX are monitored and controlled by using mobile SSH and VNC

viewer through SSH connection respectively.

10.

55

The fixed parameters are configurated as stated in Table 4.6.

RX is placed at G floor of the building as shown in Figure 4.24 and
indicated by the blue point in Figure 4.23.

TX is placed at 1% floor of the building as shown in Figure 4.26 and
represented by red point in Figure 4.25.

The sending and receiving processes are initiated.

The number of packet loss, transmission time, RSSI and SNR of the
nodes are measured and recorded from VNC viewer and mobile SSH as
shown in Figure 3.27 and Figure 3.28.

The experiment is repeated by placing RX at G, 29, 3™, 4t 5t gth 7t
and 8" floors.

For each variation of distance, the experiments are repeated 3 times. The

results are averaged as shown in Table 4.7.

Table 4.6: Configuration parameters.

Image that needs to be transmitted

Total Payload 1510 bytes
Payload length per packet 128 bytes
Number of packet 11

Coding Rate 4/5

SF 7
Bandwidth 125kHz

Apartment

Store

Lift

Apartment

Staircase

IDDuclr

’,_ Receiver

Lobby

Staircase

Door

Apartment

Apartment

Figure 4.23: Floor map of Evergreen

Scotpine Condominium (Receiver).

Figure 4.24: Placement of

receiver at G floor.

Apartment

Store

Lift

Apartment

Staircase

., Transmitter

Lobby

Staircase

Door

Apartment

Apartment

Figure 4.25: Floor map of Evergreen

Scotpine Condominium (Transmitter).

Figure 4.26: Placement of
transmitter at 1% floor.

&~ Mobile SSH

00101000001000100

Figure 4.27: Transmitter monitoring using mobile SSH through SSH

connection.

57

Figure 4.28: Receiver monitoring using VNC viewer in laptop through SSH

connection.

4.7.2.2 Result and discussion

The experiments are carried out to investigate the number of packet loss,

transmission time, RSSI and SNR by placing the RX at different floors

(distances) within Evergreen Scotpine Condominium. Table 4.7 shows the

results of the experiments.

Table 4.7: Results of the impacts on number of packet loss, transmission time,

RSSI and SNR under different transmission distances.

Floor | Distance Number of | Transmission | Average Average
(m) packet loss | time RSSI (dBm) | SNR (dB)
G 0 0 1 minute 6 |-44.3 9.0
seconds
1 5 0 1 minute 6|-90.4 8.9
seconds
2 10 1 1 minute 34 |-102.7 8.3
seconds
3 15 1 1 minute 39 | -103.3 9.0
seconds
4 20 2 2 minutes 17 | -103.1 8.1
seconds
5 25 2 2 minutes 18 | -108.2 8.2
seconds

58

6 30 6 5 minutes 21 | -112.0 4.1
seconds

7 35 16 Expired at 11 | -112.0 -2.0
minutes 8
seconds

8 40 All - - -

The average RSSI when the transmitter is placed at G floor is -44.3 dBm
but the drastic drop of average RSSI to -90.4 dBm occurs when the TX is placed
at 1% floor. The average RSSIs are almost same for the 2",3" and 4™ floors. The
average RSSIs keep decreasing to -108.2 dBm at 5" floor and -112 dBm at 6™
floor and 7" floor. This shows that this environment has great influences on
RSSI. Besides that, the average SNR values are approximately 8 dB or 9 dB
when the TX is placed at G, 1%,2"4,3 4" and 5" floor as shown in Table 4.7.
However, the average SNR values drop when the transmitter is located at the 6™
floor and 7" floor which are 4.1 dB and -2.0 dB respectively. The distance
between TX and RX increases, both RSSI and SNR decreases. There are many
factors that can affect the propagation of transmitted signal. One of the factors
is the blocking of obstacles which may absorb the signal transmitted and
interfere the signal constructively or destructively. Moreover, the signal could
arrive the RX by multiple paths, causing an effect called multipath propagation.

Apart from RSSI and SNR, the number of packet loss increases as the
distance increases which leads to the increment in transmission time as the time-
consuming retransmission is required to be done. The shortest transmission time
which is 1 minute and 6 seconds and no packet is lost when the TX is placed at
G and 1% floors. When the TX is placed at 6™ floor, the transmission time
dramatically increases to 5 minutes 21 seconds which is about 5x longer than
the shortest transmission time. This is because 6 packets are lost during the
transmission, thus longer time is needed to complete the transmission and
retransmission of lost packet. Experimental results show that the
communications can be done within 35m only. When TX is placed at 7" floor,

although some packets are received by RX successfully but unfortunately the

59

transmission is not complete as RX are unable to receive all the packets

successfully before all the sessions are expired. When the receiver is placed at

8" floor which is 40m apart from the transmitter, all the packets totally unable

to be received.

4.7.3

The impacts on number of packet loss and transmission time when

using different image qualities

4.7.3.1 Experimental Setup

1.
2.

TX and RX are powered on.

TX and RX are monitored and controlled by using VNC viewer through
SSH connection in a PC.

The fixed parameters are configurated as stated in Table 4.8.

The image with quality of 10 (Figure 4.16) is used as the image that
needs to be transmitted.

The sending and receiving processes are initiated.

The number of packet, number of packet loss and transmission time are

recorded.

. The experiments are repeated by using the image with quality of 25, 50

and 95 (Figures 4.16 to 4.19).

Table 4.8: Configuration parameters.

Protocol used LoRa Multi-Packet Transmission
Protocol

Payload length per packet 128 bytes

Coding Rate 4/5

Distance between transmitter and | O m

receiver

SF 7

Bandwidth 125kHz

4.7.3.2 Result and discussion

60

To evaluate the performance to transmit different quality images using LoRa
P2P, the experiments are conducted. Table 4.9 gives the results of effect of

quality of image on number of packet loss and transmission time.

Table 4.9: Results of effect of quality of image on number of packet loss and

transmission time.

Quality of | Payload | Number of | Number of | Transmission
image size packet packet loss time
(bytes)

10 4196 33 0 3 minutes 1
second

25 8504 67 2 12 minutes 32
seconds

50 13584 | 107 1 24 minutes 40
seconds

95 48878 | 382 9 42 minutes 54
seconds

For image quality of 10, 25, 50 and 95, the payload length are 4196 bytes, 8504
bytes, 13584 bytes and 48878 bytes respectively. With image quality of 10, no
packet is lost when transmitting all the 33 packets and the transmission time is
3 minutes 1 second. The number of packets with image quality of 25 is almost
double as compared to quality of 10 and its transmission time is almost 4x longer
than that of image quality of 10. With image quality of 50, only 1 packet is lost
and transmission time is 24 minutes and 40 seconds. When using the highest
quality of image which is 95, the payload length is 48878 bytes which is very
large as compared to other quality. Not surprisingly, the number of packet loss
is highest among all qualities tested which is 9 and it took 42 minutes and 54
seconds to do all the transmission.

The higher the quality of image, the higher the number of packet. This
causes higher possibility of packet loss. In addition, each packet loss leads to
retransmission and this will increase the transmission time. Therefore, trade-off

must be made. Although there is detectable image corruption when the quality

61

of image is 10 but the transmission time is preferable and this may be tolerable

in some applications.

62

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

51 Conclusions

There are many LPWAN technologies exist in the world, however, LoORaWAN
IS getting popularity in applications of I0T because of its unique characteristic
and operates on unlicensed spectrum that are free to be used. In this project, the
indoor performance of LoRaWAN is studied by variety of experiments. The
results show that the higher the spreading factor, the better the reconstitution of
the signal but the longer the airtime. Besides that, the longer the length the
payload sent, the longer the airtime required as larger payload needed to be
encoded by the end-device and decoded by the gateway. The results obtained
also show that the LoRaWAN is suitable to be used for indoor applications. This
is because the whole building can be covered even though there is only one
gateway used. However, there are some researchers pointed out that LoRaWAN
networks should be optimized for different use cases.

For LoRa P2P image transmission, the image processing is first
conducted in order to compress the image to smaller size. The compressed
image is converted into hexadecimal format to allow it to be transmitted using
LoRa. The protocols stop and wait transmission protocol and LoRa Multi-
Packet Transmission Protocol are designed and implemented for LoRa P2P
image transmission. Both protocols are implemented and their performance
evaluations in term of transmission time are carried out. The results show that
time spent of LoRa Multi-Packet Transmission Protocol for 11 packets image
transmission is shorter than stop and wait transmission protocol by 69.44 %.
When 1 packet is lost, LoRa Multi-Packet Transmission Protocol also saves
about 50 % of time for transmission. Besides that, for higher quality of image
transmitted, more time is needed, thus the quality of image needs to be chosen
wisely depends on the requirement of the applications. When the LoRa P2P
image transmission being tested in an indoor environment, the image can be

received as long as the distance is within 35 m.

63

5.2 Recommendations for future work

The power consumption of devices cannot be recorded in the experiment due to
limitations of equipment. Therefore, the power consumption of the devices
cannot be identified. It is important to know about power consumption because
it is one of the main factors that regulate wireless sensor networks’ performance
and maintain the network lifetime. The low power consumption of LoRa needs
to be further investigated.

Besides that, the experiments are carried out at an indoor environment.
More real-world experiments need to be conducted to explore the scalability and
reliability of LoRa to work for real deployment environments.

In addition, to reduce the number of bits that need to be sent, there are
several image compression algorithms available. JPEG 2000 is one of the image
compression standards that has can produce better quality of image with better
performance of compression to reduce the packet size significantly.

Last but not least, the security is not the main focus in this project but it
is very important in real-work implementation. Without security measures,
network security threats will be faced by the WSN. Thus, security issue needs
to be taken into account and proper security mechanism such as authentication
and authorization need to be implemented into protocol to protect the WSN from
the threats.

64

REFERENCES

Adhikary, A., Lin, X. and Eric Wang, Y.P., 2017. Performance evaluation of
NB-IoT coverage. IEEE Vehicular Technology Conference, pp.1-5.

Ayoub, W. et al., 2018. Internet of Mobile Things : Overview of LoORaWAN ,
DASH?7 , and NB-IoT in LPWANSs standards and Supported Mobility To cite
this version : HAL Id : hal-01901612 Internet of Mobile Things : Overview of
LoRaWAN , DASH7 , and NB-10T in LPWANSs standards and Suppo.

Buyukakkaslar, M.T., Erturk, M.A., Aydin, M.A. and Vollero, L., 2017.
LoRaWAN as an e-Health Communication Technology. Proceedings -
International Computer Software and Applications Conference, 2, pp.310-313.

De Carvalho Silva, J. et al., 2017. LoRaWAN - A low power WAN protocol for
Internet of Things: A review and opportunities. 2017 2nd International
Multidisciplinary Conference on Computer and Energy Science, SpliTech 2017,
(August).

Chen, T., Eager, D. and Makaroff, D., 2019. Efficient image transmission using
lora technology in agricultural monitoring iot systems. Proceedings - 2019
IEEE International Congress on Cybermatics: 12th IEEE International
Conference on Internet of Things, 15th IEEE International Conference on
Green Computing and Communications, 12th IEEE International Conference
on Cyber, Physical and So, pp.937-944.

Chou, Y. et al., 2017. i-Car System A LoRa-based Low Power Wide Area
Networks Vehicle Diagnostic. , pp.789-791.

Dogan, G., Yildirim, G. and Tatar, Y., 2019. Empirical Observations on LoRa
Performance for Different Environments. Proceedings - 2019 3rd International
Conference on Applied Automation and Industrial Diagnostics, ICAAID 2019,
1(September), pp.1-6.

Erturk, M.A., 2017. Lorawan indoor performance analysis. International
Research Journal of Computer Science (IRJCS), 4(10), pp.23-29.

Galinina, O., Andreev, S., Balandin, S. and Koucheryavy, Y., 2018. Correction
to: Internet of Things, Smart Spaces, and Next Generation Networks and
Systems, Springer International Publishing.

Help Net Security, 2019, Number of connected devices reached 22 billion,
where is the revenue? - Help Net Security [Online]. Available at:
https://www.helpnetsecurity.com/2019/05/23/connected-devices-growth/.

Hoeller, A. et al., 2018. Analysis and Performance Optimization of LoRa
Networks with Time and Antenna Diversity. IEEE Access, 6, pp.32820-32829.

65

Jebril, A.H., Sali, A., Ismail, A. and Rasid, M.F.A., 2018. Overcoming
limitations of LoRa physical layer in image transmission. Sensors (Switzerland),
18(10).

Ji, M. et al., 2019. LoRa-based Visual Monitoring Scheme for Agriculture IoT.
SAS 2019 - 2019 IEEE Sensors Applications Symposium, Conference
Proceedings. 2019

Lavric, A. and Popa, V., 2017. Internet of things and LoRaTM low-power wide-
area networks challenges. Proceedings of the 9th International Conference on
Electronics, Computers and Artificial Intelligence, ECAI 2017, 2017-Janua,

pp.1-4.

Masadan, N.A.B., Habaebi, M.H. and Yusoff, S.H., 2018. LoRa LPWAN
Propagation Channel Modelling in ITUM Campus. Proceedings of the 2018 7th
International Conference on Computer and Communication Engineering,
ICCCE 2018, pp.14-109.

MCMC, 2019. Class-Assignment-No-2-0f-2019.pdf. , p.18,19.

Mekki, K., Bajic, E., Chaxel, F. and Meyer, F., 2019. A comparative study of
LPWAN technologies for large-scale IoT deployment. ICT Express, 5(1), pp.1-
7. Available at: https://doi.org/10.1016/j.icte.2017.12.005.

Muaz Abdul Rahman, A., Hafizhelmi Kamaru Zaman, F. and Afzal Che
Abdullah, S., 2018. Performance Analysis of LPWAN Using LoRa Technology
for 10T Application. International Journal of Engineering & Technology,
7(4.11), p.252.

Pham, C., 2018. Enabling and deploying long-range 10T image sensors with
LoRa technology. 2018 IEEE Middle East and North Africa Communications
Conference, MENACOMM 2018, pp.1-6.

Pham, C., 2016. Low-cost, low-power and long-range image sensor for visual
surveillance. Proceedings of the Annual International Conference on Mobile
Computing and Networking, MOBICOM, 03-07-Octo, pp.35-40.

Python, binascii — Convert between binary and ASCII — Python 3.8.2
documentation [Online]. Available at:
https://docs.python.org/3/library/binascii.html [Accessed: 3 April 2020].

Reynders, B., Meert, W. and Pollin, S., 2016. Range and coexistence analysis
of long range unlicensed communication. 2016 23rd International Conference
on Telecommunications, ICT 2016, (c), pp.1-6.

Rosmiati, M., Rizal, M.F., Susanti, F. and Alfisyahrin, G.F., 2019. Air pollution
monitoring system using LoRa modul as transceiver system. TELKOMNIKA
(Telecommunication Computing Electronics and Control), 17(2), p.586.

66

Rubio-Aparicio, J., Cerdan-Cartagena, F., Suardiaz-Muro, J. and Ybarra-
Moreno, J., 2019. Design and implementation of a mixed 10T LPWAN network
architecture. Sensors (Switzerland), 19(3).

Sanchez-lborra, R. et al., 2018. Performance evaluation of lora considering
scenario conditions. Sensors (Switzerland), 18(3).

Security, S., 2020, Incorporating The 10T To Improve Connectivity To Your
Customers [Online]. Available at: https://www.gosolis.com/blog/incorporating-
the-iot-to-improve-connectivity-to-your-customers/.

TheThingsNetwork, 2020, Limitations: data rate, packet size, 30 seconds uplink
and 10 messages downlink per day Fair Access Policy [guidelines] - End
Devices (Nodes) - The Things Network [Online]. Awvailable at:
https://www.thethingsnetwork.org/forum/t/limitations-data-rate-packet-size-
30-seconds-uplink-and-10-messages-downlink-per-day-fair-access-policy-
guidelines/1300.

TheThingsNetwork, LoRaWAN Frequencies Overview [Online]. Available at:
https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html.

TheThingsNetwork, LoRaWAN Frequency Plans and Regulations by Country
[Online]. Available at:
https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country.html.
Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara, 2017. Low Power,
Wide Area Networks networks (LPWANS). , 19(2), pp.855-873.

Vatcharatiansakul, N., Tuwanut, P. and Pornavalai, C., 2017. Experimental
performance evaluation of LoORaWAN: A case study in Bangkok. Proceedings
of the 2017 14th International Joint Conference on Computer Science and
Software Engineering, JCSSE 2017.

Wan, X.F., Yang, Y., Cui, J. and Sardar, M.S., 2018. Lora propagation testing
in soil for wireless underground sensor networks. 2017 IEEE 6th Asia-Pacific
Conference on Antennas and Propagation, APCAP 2017 - Proceeding, pp.1-3.

Wang, Y.P.E. et al., 2017. A Primer on 3GPP Narrowband Internet of Things.
IEEE Communications Magazine, 55(3), pp.117-123.

Widianto, E.D., Pakpahan, M.S.M., Faizal, A.A. and Septiana, R., 2019. LoRa
QoS Performance Analysis on Various Spreading Factor in Indonesia. ISESD
2018 - International Symposium on Electronics and Smart Devices: Smart
Devices for Big Data Analytic and Machine Learning.

Xue-Fen, W. et al., 2018. Smartphone based LoRa in-soil propagation
measurement for wireless underground sensor networks. 2017 IEEE Conference
on Antenna Measurements and Applications, CAMA 2017, 2018-Janua, pp.114—
117.

67

APPENDICES

APPENDIX A: Raspberry Pi Zero W Datasheet

[Position S
Raspberry Pi Zero v1.3 Wiring! BCM " Serial PWM Misc .
P i Different places use different pin numbers Raspberry Pi Zero W v1.1

GPIO, Wiring, and BCM have been included.

2 sV
SDA 4 sV 5
scL 6 lGp | 5
GPCLKo & 8 14 IS5 TxD T
10 15 180 RXD =
cel 17 12 18 s PWMO ced -
27 14 [
22 16 23 [k
18 24 EINza
B Mos! 20
E MISO 22 25 N Es
n SCLK 24 8 IO s cso ceD -
i 26 7 117 spics1 cel 0
0 ID.SD 300 o 28 DNC 1 31 ID_sc =z
GRCLKL § 30 [EYeEE g
GPCLKZ 6 32 12 26 12 PWMO =
PWML 13 34 e
PWM1 miso 19 36 16 27 16 cez &
26 38 20 28 20 rmosi 3
40 21 2921 sclk 7
E
PPL T™V+ TV Run Run
PPS V- TV Run Run
PP8
PP14 8D CLK GPIO 0 and 1 are reserved - Do Not Connect
PP1S = cMD PAL or NTSC via composite video on TV pads
PP16 lsn DATO Run - temporarily connect pins to reset chip (or
PP17 = ATl start chip after a shutdown)
PP18 sD paT2 Camera Connector (net on Zero 1.1 or1.2) - 22pin, 0.5mm
PP19 =0cD Board Dimensions - 65mm x 30mm x 0.2mm,
PP22 USBD+ mounting holes M2.5
PP23 USBD-
Processor - BCM2835 Video Wireless
ARM v7 mini HDMI 2.4GHz
Single Core PAL or NTSC via pads 802.11n
1GHz HDMI capable of 1080p Bluetooth 4.1/BLE

(same as B+ and A+)

usB

microB for power
Memory microAB for 0TG
512MB RAM Audio
usD slot to run 05 from HDMI port cnly

APPENDIX B: RAK 831 datasheet

’ RAK muswsssssaman RAK831 Datashest

The simplest, the best Shenzhen Rakwireless Technology Co., Ltd

2.Module Package

In the following the RAK831 module package is described. This description includes the
RAK831 pinout as well as the modules dimensions.

GPS PPS Input Status LEDs

SX1301
PIN 24 Antenna
Connector
Power
Supply

S$X1257, radio_0, radio_1

2.1 Pinout Description

The RAK831 provides headers at the bottom side, which have a pitch of 2.54 mm. The
description of the pins is given by belowTable .

[+sv [1 v 2]
EDENE EETIEN

GND 5] [6 |
[e]
| RADIOENB [9 | K
| Rapio RsT [13] [14]
fcsh [15]
[Reser [0
[opior 1]
| GPioa [23]

Pin Name Type Description
1
+5V POWER +5V Supply Voltage
2
3 GND GND GND
4 LNA_EN_A Input SX1301 Radio C Sample Valid
5 GND GND GPS Module LDO:Enable Pin
5 COPYR o
SHENZIEN RAKWIRELESS TECHNOLOGY CO., LTD

www.rakwireless.com

‘ RAK musmsssssamas

Shenzhen Rakwireless Technology Co., Ltd RAK831 Datasheet
6 GND GND GND
7 RADIO_EN_A Input $X1257_A_EN
8 PA_G8 Input PA GAIN 0
9 RADIO_EN_B Input SX1257_B_EN
10 PA_G16 Input PA GAIN 1
11 PA_EN_A Input PA EN
12 GND GND GND
13 RADIO_RST RST SX1257_A_B RESET
14 GND GND GND
15 CSN SPI SX1301 SPI_NSS
16 MOSI SPI SX1301 SPI_MOSI
17 MISO SPI SX1301 SPI_MISO
18 SCK SPI SX1301 SPI_CLK
19 RESET RST SX1301 RESET
20 GPIOO GPIO SX1301 GPIO
21 GPIO1 GPIO §X1301 GPIO
22 GPIO2 GPIO S$X1301 GPIO
23 GPIO3 GPIO S§X1301 GPIO
24 GPIO4 GPIO §X1301 GPIO

2.2 Module Dimensions

The outer dimensions of the RAK831 are given by 80.0 x 50.0 mm = 0.2 mm. The RAK831

provide four drills for screwing the PCB to another unit each with a drill diameter of 3 mm.

80.0001 Cmm>

SHENZHEN RAKWIR SS TECHNOLOG

www.rakwireless.com

UAS
’ ,Ih,,bm,,m\,.ﬁ e dvont kbt RAK831 Datasheet

Shenzhen Rakwireless Technology Co., Ltd

3.Module Overview

The Concentrator Module is currently available in one versions with SPI interface.

External GPS Interface TXRX Status Indicator

DB24 Interface Transmit Diversity
Status Indicator Description to Replace The Device

Transmit Diversity|
Interface

00000

Default Send and
Receive Interface

°
[
e
e
]
°

DB24 Interface

eoo0Q

Receijve Diversity
Interface

Receive Diversity
to Replace The Device

3.1 SX1301

The RAK831 includes Semtech’s SX1301 which is a digital baseband chip including a massive
digital signal processing engine specifically designed to offer breakthrough gateway capabilities in
the ISM bands worldwide. It integrates the LoRa concentrator IP.

1=

The SX1301 is a smart baseband processor for long range ISM communication. In the receiver

timestamp
B estemp

part, it receives | and Q digitized bit stream for one or two receivers (§X1257), demodulates these
signals using several demodulators, adapting the demodulators settings to the received signal and
stores the received demodulated packets in a FIFO to be retrieved from a host system (PC, MCU).
In the transmitter part, the packets are modulated using a programmable (G)FSK/LoRa modulator

and sent to one transmitter (SX1257). Received packets can be time-stamped using a GPS PPS

7
SHENZHEN RAKWIRELESS TECHNOLOGY C(

www.rakwireless.com

COPYRIGHT €

70

RA IR R R ARAE
’ The simplest, mgKm Shenzhen Rakwireless Technology Co., Ltd RAK831 Datasheet

input.

The SX1301 has an internal control block that receives microcode from the host system (PC,
MCU). The microcode is provided by Semtech as a binary file to load into the SX1301 at power-on
(see Semtech application support for more information).

The control of the SX1301 by the host system (PC, MCU) is made using a Hardware
Abstraction Layer (HAL). The Hardware Abstraction Layer source code is provided by Semtech and
can be adapted by the host system developers.

It is highly recommended to fully re-use the latest HAL as provided by Semtech on

https://github.com/Lora-net.

3.1.1 Block Diagram

LoRA Nano RX: Semtech radio interface

Dual SPI radio interface

I
500/250/126
ksps

— l .

1Q125ksps

The SX1301 digital baseband chip contains 10 programmable reception paths. Those paths
have differentiated levels of programmability and allow different use cases. It is important to
understand the differences between those demodulation paths to make the best possible use from

the system.

3.1.2 IF8 LORA channel

This channel is connected to one SX1257 using any arbitrary intermediate frequency within the
allowed range. This channel is LoRa only. The demodulation bandwidth can be configured to be 125,
250 or 500 kHz. The data rate can be configured to any of the LoRa available data rates (SF7 to
SF12) but, as opposed to IF0 to IF7, only the configured data rate will be demodulated. This
channel is intended to serve as a high speed backhaul link to other gateways or infrastructure
equipment. This demodulation path is compatible with the signal transmitted by the SX1272 and
SX1276 chip family.

8 COPYRIGHT €

SHENZHEN RAKWIRELESS TECHNOLOGY CO., LTD

www.rakwireless.com

71

‘ RAK mumsnssnsamas

Shenzhen Rakwireless Technology Co., Ltd RAK831 Datasheet

3.1.3 IF9 (G) FSK channel

The IF9 channel is connected to a GFSK demodulator. The channel bandwidth and bit rate can
be adjusted. This demodulator offers a very high level of configurability, going well beyond the
scope of this document. The demodulator characteristics are essentially the same than the GFSK
demodulator implemented on the SX1232 and SX1272 Semtech chips. This demodulation path can
demodulate any legacy FSK or GFSK formatted signal.

3.1.4 IF0 to IF7 LORA channels

Those channels are connected to one SX1257. The channel bandwidth is 125 kHz and cannot
be modified or configured. Each channel IF frequency can be individually configured. On each of

those channels any data rate can be received without prior configuration.

Several packets using different data rates (different spreading factors) may be demodulated
simultaneously even on the same channel. Those channels are intended to be used for a massive
asynchronous star network of 10000’s of sensor nodes. Each sensor may use a random channel
(amongst IF0 to IF7) and a different data rate for any transmission.

Sensors located near the gateway will typically use the highest possible data rate in the fixed
125 kHz channel bandwidth (e.g. 6 kbit/s) while sensors located far away will use a lower data rate
down to 300 bit/s (minimum LoRa data rate in a 125 kHz channel).

The SX1301 digital baseband chip scans the 8 channels (IF0 to IF7) for preambles of all data
rates at all times.

The chip is able to demodulate simultaneously up to 8 packets. Any combination of spreading
factor and intermediate frequency for up to 8 packets is possible (e.g. one SF7 packet on IF0, one
SF12 packet on IF7 and one SF9 packet on IF1 simultaneously).

The SX1301 can detect simultaneously preambles corresponding to all data rates on all IFO to
IF7 channels. However, it cannot demodulate more than 8 packets simultaneously. This is because
the SX1301 architecture separates the preamble detection and signal acquisition task from the
demodulation process. The number of simultaneously demodulated packets (in this case 8) is an
arbitrary system parameter and may be set to other values for a customer specific circuit.

The unique multi data-rate multi-channel demodulation capacity SF7 to SF12 and of channels

IFO to IF7 allows innovative network architectures to be implemented.

IFL 250kHz fixed

IF2 64kbit/Sec
data rate LORA
GFSK channel
back-haul channel
1F3-6 LORA IF7-10 LORA
channels channels
Multi-data rates Multi-data rates
866.6 = 867.4MHz 868.0 e 868.8MHz
Radio A Radio B

9 HT €
SHENZHEN RAKWIR SS TECHN 0.,

www.rakwireless.com

72

@ RAK mirmnuensaman RAKB31 Datashest

The simplest, thebest ~ Shenzhen Rakwireless Technology Co., Ltd

3.3 External Module Connector

3.3.1 SPI

The connector on the bottom side provides an SPI connection, which allows direct access to
the Sx1301 SPI interface. This gives the target system the possibility to use existing SPI interfaces
to communicate.

After powering up RAK831 it is required to reset SX1301 via PIN 13. If the Hal driver from
Github is used this functionality is already implemented.

3.3.2 GPS PPS

In case of available PPS signals in the target system, it is possible to connect this available

signal to the appropriate pin at the connector.

3.3.3 Digital 10s

There are five GPIOs of the Sx1301 available, which gives the user some possibilities to get
information about the system status. Theses pins are the same, as they are used for the LEDs on
the RAK831 .

As default setting the LEDs :
1) Backhaul packet

2) TX packet

3) RX Sensor packet

4) RX FSK packet

5) RX buffer not empty

6) Power

SHENZHEN RAKWIRELESS TECHN
www.rakwireless.com

73

@ RAK mirmnuensaman RAKB31 Datashest

The simplest, thebest ~ Shenzhen Rakwireless Technology Co., Ltd

4.LoRa Systems, Network Approach

The use of LoRa technology can be distinguished in “Public” and “Private” networks. In both
cases the usage of a concentrator module can be reasonable. Public networks are operator (e.g.
telecom) managed networks whereas private networks are individually managed networks.

LoRa networks are typically star or multiple star networks where a gateway relays the packets
between the end-nodes and a central network server. For private network approaches the server
can also be implemented on the gateway host.

Due to the possible high range the connection between end-nodes and the concentrator
RAK831 is always a direct link. There are no repeaters or routers within a LoRa network.

Depending on the used spreading factor and signal bandwidth different data rates1 (0.3 kbps to
~22 kbps) and sensitivities down to -142.5 dBm are possible. Spreading factor and signal bandwidth
are a trade-off between data rate and communication range.

4.1 Overview

The RAK831 is able to receive on different frequency channels at the same time and is able to

demodulate the LoRa signal without knowledge of the used spreading factor of the sending node.

Server

RAKS31

® @ @ @ Nodes - Internet/
ost [=—
higher data rate = Intranet
higher range gateway

Due to the fact that the combination of spreading factors and signal bandwidths results in
different data rates the use of “Dynamic Data-Rate Adaption” becomes possible. That means that
LoRa nodes with high distances from the RAK831 must use higher spreading factors and therefore
have a lower data rate. LoRa nodes which are closer to the concentrator can use lower spreading
factors and therefore can increase their data rate.

Due to the fact that spreading factors are orthogonal and RAK831 supports up to 10
demodulations paths the channel capacity of a LoRa cell can be increased using RAK831

compared to conventional modulation techniques.

4.2 Firmware

The LoRa MAC specification is currently driven by the companies Semtech, IBM and Actility.
Currently all available software, firmware and documentation can be found and downloaded from
the open source project LoRa-net hosted on https://github.com/Lora-net

This project considers all parts that are needed to run a network based on LoRa technology. It
includes the node firmware (several hardware platforms are supported), the gateway host software
(HAL driver for SX1301, packet forwarder) and a server implementation.

It is highly recommended to fully re-use the latest HAL as provided by Semtech.

11

SHENZHEN RAKWIR SS TECHNOLOGY

www.rakwireless.com

74

RA IR R R ARAE
‘ The simplest, n.,K..,. Shenzhen Rakwireless Technology Co., Ltd RAK831 Datasheet

5.Electrical Characteristics&Timing
specifications

In the following different electrical characteristics of the RAK831 are listed. Furthermore details
and other parameter ranges are available on request.

Note: Stress exceeding of one or more of the limiting values listed under “Absolute Maximum

Ratings” may cause permanent damage to the radio module.

5.1 Absolute Maximum Ratings

Supply Voltage(VDD) -0.3 5.0 5.5 V
Operating Temperature -40 +85 e
RF luput Power -15 dBm
Note:

Note: With RF output power level above +15 dBm a minimum distance to a transmitter should be 1 m
for avoiding too large input level.

5.2 Global Electrical Characteristics

Supply Voltage(VDD) 4.8 5.0 5:2 \
RX Current 100
Current Consumption mA
TX Current 80
Note:

T=25C,VDD=5V(Typ.) if nothing else stated

Logic low input threshold(VIL) “0”logic input 0.4 \
Logic high input threshold(VIH) “1”logic input 29 33 \
Logic low output level(VOL) “0"logic output,2mA sink 0.4 \
Logic high output level(VOH) “1"logic output,2mA source 29 3.3 \
Note:
12 COPYRIGHT €

SHENZHEN RAKWIRELESS TECHNOLOGY CO., LTD
www.rakwireless.com

75

RA IR R R ARAE
’ The simplest, mgKm Shenzhen Rakwireless Technology Co., Ltd RAK831 Datasheet

5.3 SPI Interface Characteristics

T=25°C,VDD=5V(Typ.) if nothing else stated

SCK frequency 10 MHz
SCK high time 50 ns
SCK low time 50 ns
SCK rise time 5 ns
SCK fall time 5 ns
MOSI setup time From MOSI change to SCK rising edge 10 ns
MOSI hold time From SCK rising edge to MOSI change 20 ns
NSS setup time From NSS falling edge to SCK rising edge 40 ns
NSS hold time From SCK falling edge to NSS rising edge 40 ns
NSS high time between 40 i

SPI accesses
Note:

5.4 RF Characteristics

5.4.1 Transmitter RF Characteristics

The RAK831 has an excellent transmitter performance . It is highly recommended, to use an
optimized configuration for the power level configuration, which is part of the HAL. This results in a
mean RF output power level and current consumption .

0 3 8 0 -5
0 3 9 0 -3
0 3 11 0 0
0 3 15 0 3
1 3 9 0 6
1 3 11 0 10
1 3 12 0 1"
2 3 8 0 12
2 3 9 0 13
1 3 15 0 14
2 3 10 0 15
2 3 11 0 16
2 3 11 0 17
2 3 12 0 18
2 3 13 0 19
2 3 14 0 20
13 COPYRIGHT €

SHENZHEN RAKWIRELESS TECHNOLOGY CO., LTD

www.rakwireless.com

76

RA IR R R ARAE
’ The simplest, nﬁ Shenzhen Rakwireless Technology Co., Ltd RAK831 Datasheet

T=25C,VDD=5V(Typ.) if nothing else stated

Frequency Range 863 870 MHz
Modulation Techniques FSK/LoRa™
X Frec_]rl;en:lczr\;ﬁlr::tion Vs, 3 +3 KHz
emperatur Power Level Setting:20
TX Power Variation vs.
-5 +5 dB
Temperature
TX Power Variation -1.5 +1.5 dB

Note: Also support 433,470,915 Frequency Range.

5.4.2 Receiver RF Characteristics

It is highly recommended, to use optimized RSSI calibration values, which is part of the HAL
v3.1. For both, Radio 1 and 2, the RSSI-Offset should be set -169.0.
The following table gives typically sensitivity level of the RAK831 :

125 12 -137
125 7 -126
250 12 -136
250 7 -123
500 12 -134
500 7 -120

5.5. RF Key Components
This section introduces the key components in RAK831 and help the developer to utilize the system

to realize own system level design.
1) LDO

The system power supply is provided by the external 5V DC power supply. SX1301 and related
clock crystal is powered by Dual output LDO transformer outputs 1.8V and 3.3V in order to meet the
normal working condition of SX1301. Other key components are powered by LDO transformer output
3.3V. To be aware of the system design of LDO's power supply enable is provided by the output GPIO
of SX1301 as default. The connection method of pin enable should be kept same as Semtech official
code. At the same time, System design also need to keep flexibility and all LDO enable should be
connect to pin DB24. For this case, user can run the official reference code in this board, and also can
change all external enable clock as they need for achieve the flexibility debugging.
2) Power amplifier

The Power amplifier chooses RFMD LF Power Amplifier and built in two steps gain. It realize the
Max. 0.5w output power.The frequency range can cover from 380MHZ~960MHz. The two steps gain
control table as:

COPYRIGHT €
SHENZHEN RAKWIRELESS TECHNOLOGY CO

www.rakwireless.com

77

RA R R BRI ARAR
’ The simplest, '5 Shenzhen Rakwireless Technology Co., Ltd RAK831 Datasheet

Overall T=25 °C, Ve =3.6V. Vpp=Vaus=3.0V,
E Piy=0dBm, Freq=915MHz.

CW Output Power 275 dBm Vee=3.6V

CW Output Power 30 dBm Vec=5V

Small Signal Gain 32 dB Pin=-10dBm

Second Harmonic 23 dBc Without external second harmonic trap

Third Harmonic 45 dBc

CW Efficiency 55 63 % G16="high", GB="high", Py=0dBm

Power Down “ON” 3.0 v Voltage supplied to the input

Power Down “OFF") 05 08 v Voltage supplied to the input

VPD Input Current 6 mA Only in “ON" state

G16, G8 “ON™ 17 3.0 v Voltage supplied to the input

G16, G8 “OFF" o 0.7 v Voltage supplied to the input

G16, G8 Input Current 10 mA Only in “ON” state

Output Power 26.5 2715 29 dBm G16="high", G8="high", Pjy=0dBm
21 23 25 dBm G16="high", GB="low", Py =0dBm
14 16 18 dBm G16="low", GB="high", Pjy=0dBm
3 5 8 dBm G16="low", G8="low", Ppy=0dBm

Turn On/Off Time 200 ns

3) RF switch

The RF switch choose RFSW1012 which has advantage of high Isolation and low insertion loss.
This chip handling the switch between Tx and Rx. The Control logic as below image.Specially need
highlight that the pin of CTRL was controlled by SX1301's GPIO through output signal of LNA_EN_A,
the Pin of EN was controlled by SX1301's GPIO through output signal of RADIO_EN_A.

Simultaneously,it also can be controlled by external input signal through DB24.

State Voo CTRL EN RF Path
1 2.7V10 4.6V Vs Viici ANT-RF2
2 2.7V 10 4.6V Viow Viiaa ANT-RF1
Shutdown 27Vto 4.6V Don’t Care VLOW Shutdown
GNIEND
== GND | GND
U204
10nF TOnF,
sz 2
LNA EN h & = &
L7 ctre GND
RADIQEN® [oo o A3 oo
2 9 —
VCCA A 5
%,— VDD oo GNP
=)
C236 z B % =
10nF 8 & 8 0O|on
of o] ofreswion
onh GND | GND

5.6. RF antenna interface
RAK831 provide three types of RF interface like SMA and other two IPEX connector.See the

image as below for TDD_TXRX ~ TX_DEV - RX_DEV. Consider the developer may require supporting
Tx/Rx simultaneously,therefore to make the compatible design. The Tx_DEV is the Tx channel, need

change the C224 to NC and C216 with CAP(56pf/0402) or Oohm resistance when using as standalone
channel.RX_DEV is the Rx channel, need change C240 to NC and C244 with CAP(56pF/0402) or

15 COPYRIC
SHENZHEN RAKWIRELESS TECHNOLOGY C(

www.rakwireless.com

APPENDIX C: RAK 811 datasheet

RA RIB R MBERERERAR
’ The simplest, meKm‘ Shenzhen Rakwireless Technology Co., Ltd RAK811 DATASHEET

6. General Specification

6.1 General specification

Model Name RAKSI1

Dimension LxWxH:22x 14 x 1.7 mm
Interface UARTI, GPIOs

Operating temperature -40°C to 85°C

Storage lemperature -40°C to 85°C

6.2 Recommended Operating Rating

Min. Typ. Max. Unit
Operating Temperature -40 25 85 deg.C
vCC 3.15 38 345 v

6.3 Specification

Feature Description
General Specification
E . Band RAKS811-LF: EU433, CN470
TS RAKS11-HF: EUS68, US915, AU915, KR920, AS923, IN865
Host Interface UART
Characteristics Condition Min TYP | MAX | UNIT
Transmit TX Power 14 20 dBm
% RSST -130 - dBm
RX Sensitivity
SNR -15 dB
30
TX mode mA
(14dBm)
Current Consumption RX modc 545 mA
Sleep mode 72 uA
COPYRIGHT
SHENZHEN RAKWIRELESS TECIINOLOGY CO., LTD

10 ETDX1708181302

’ RAK musmnssnzamas

The simplest, the best Shenzhen Rakwireless Technology Co., Ltd

8. Recommended Reflow Profile

Referred to [PC/JEDEC standard.
Pcak Temperature : <250° C
Number of Times : <2 times

RAK811 DATASHEET

Slope: 1~2°C/gec nax. - C
(217C to peak) peak2o0)
Ramp down rate
217°C Max. 2.5°C/lsec .
Preheat: 150~200°C
60 ~ 120 sec. 40~70 sec
\ Ratmp up rate :
T
Max. 2.5°C/sec IR
COPYRIGHT €
SHENZHEN RAKWIRELESS TECIINOLOGY CO., LTD

12

ETDX1708181302

80

APPENDIX D: Manual to write LoRa gateway image to Micro SD

RA RAKwireless
Technology Co., Ltd.

Who will need to write the Image

Case 1 : If you get a Micro SD card and get the following info,

that mean you must write the Image by yourself . The Micro SD have nothing in .

Case 2 : If must update the Image , you can try by yourself . The Micro SD must be
formated firstly and then following the steps .

Note : This image must work with Raspberry Pi 3B(+).

81

82

& RAK ariees:

How to write the Image

1. Prepare the Cards.
1) Card Reader for Micro SD
2) Micro SD for Raspberry.
Note : Please make sure the Micro SD can work with raspberry.

|\

2. Download The Tools for Windows.
Software: Etcher-Portable-1.4.9-x64

3. Write the Image.

3.1 Open the Etcher.

Etcher

]

Select image

@ balena

3.2 Select Image .

www.RAKwireless.com

& RAK arireless

=253 e
8 Etcher-Portable-1.4.9-x64.zip 2019-03-05 16
8 LoRa-Gateway-OS-full-RaspberryPI3-20190131065502.rootfs.rpi-sdimg.gz 2019-02-1517

Etcher

LoRa-Gate_-sdimg gz Select drive

@ balenaticher

&9 balena

3.3 Plug in the USB Card Reader With Micro SD .

If you only have 1 storage device in your PC ,

Etcher will detect automatically . if

you want to chagne ,please change and select the new one .

Etcher

© — A

LoRa-Gate..-sdimg.gz Generic 5_.SB Device

3.4 Flash Image.

www.RAKwireless.com

L

p balena

83

& RAK e

Etcher - Starting -

LoRa-Ga..dimg.gz

Generic... Device

7

) balena

Etcher - 74% Validating

LoRa-Ga..dimg.gz

Generic... Device

7

74% Validating

3.5 Wait for the Flash Complete.

Etcher

« Flash Complete! Flash Another
1

.“ balenaEicher™

The Etcher you love,
with the perfect hardware

3.6 Plug in the Micro SD to your Raspberry Pi and Enjoy it.

www.RAKwireless.com

L

84

85

APPENDIX E: Registration of gateway in TTN

RA RAKwireless
Technology Co., Ltd

v2.8R

Building a global open LoRaWAN™ network.

Can you see this page?

&l s consou ‘ O o

Q Hi, fomit

APPLICATIONS GATEWAYS

Click “GATEWAYS":

T —

)
&) s consoLe . O o

Gatemmns

GATEWAYS

Click “register gateway”

23

RA RAKwireless
Technology Co., Ltd

V2.8R
€ 3 © (WA v
Danemes consoue ik
REGISTER GATEWAY
Gateway ID
' using e fegacy packet forwarder
Descrpron
Frequency pian
Fill in them one by one:
AR i ousou, O

Gateways pegster

REGISTER GATEWAY

Gatewsy EUI

B3 27 €8 FF FEAS X 22

 Im using the legacy packet forwarder

i couser e

Note: Please notice that the “Frequency Plan” is the frequency you want to use, and it
must be same with LoRa gateway and LoRa node. The “Gateway EUI" is the one you
have ever met in the following page, it must be same with the LoRa gateway’s true
“Gateway ID", otherwise, you will fail to register your LoRa gateway on TTN:

86

@\ R AK I;‘?‘AK\.‘wre!@ss

v2.8R

Configuration options

Setup RAK Gateway LoRa concentrator
Edit packet-forwarder config
Restart packet-forwarder

5 Configure WIFI

5 Configure LAN

OK, click “Register Gateway" to register.

Antenna Placement

Do you see the page like as the following picture?

O tomi

87

88

APPENDIX F: Dragino LoRa GPS HAT Single Channel LoRa & GPS modules

Datasheet

& ormGINO wwnwdragino.com

1. Introduction

1.1 What is LoRa GPS HAT

LoRa GPS HAT is an expansion module for LoRaWAN and GPS for use with the Raspberry Pi. This
product is intended for those interested in developing LoRaWAN solutions.

LoRa GPS HAT is based on the $X1276/SX1278 transceiver. The add on L80 GPS (Base on MTK
MT3339) is designed for applications that use a GPS connected via the serial ports to the
Raspberry Pi such as timing applications or general applications that require GPS information.

The transceivers of the HAT feature the LoRa™ long range modem that provides ultra-long range
spread spectrum communication and high interference immunity whilst minimizing current
consumption. The LoRa/GPS HAT can achieve a sensitivity of over -148dBm using a low cost
crystal and bill of materials. The high sensitivity combined with the integrated +20 dBm power
amplifier yields industry leading link budget making it optimal for any application requiring range
or robustness. LoRa™ also provides significant advantages in both blocking and selectivity over
conventional modulation techniques, solving the traditional design compromise between range,
interference immunity and energy consumption.

The L80 GPS module can calculate and predict orbits automatically using the ephemeris data (up
to 3 days) stored in internal flash memory, so the HAT can fix position quickly even at indoor
signal levels with low power consumption. With AlwaysLocate™ technology, the Lora/GPS HAT
can adaptively adjust the on/off time to achieve balance between positioning accuracy and
power consumption according to the environmental and motion conditions. The GPS also
supports automatic antenna switching function. It can achieve the switching between internal
patch antenna and external active antenna. Moreover, it keeps positioning during the switching

process.

LoRa GPS HAT Single Channel LoRa & GPS module User Manual 3/19

89

@ DRAGINO www.dragino.com
1.2 Specifications
LoRa Spec

» 168 dB maximum link budget.

» +20dBm - 100 mW constant RF output vs.

» +14 dBm high efficiency PA.

» Programmable bit rate up to 300 kbps.

» High sensitivity: down to -148 dBm.

» Bullet-proof front end: IIP3 =-12.5 dBm.

» Excellent blocking immunity.

» Low RX current of 10.3 mA, 200 nA register retention.

» Fully integrated synthesizer with a resolution of 61 Hz.

» FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.

» Built-in bit synchronizer for clock recovery.

» Preamble detection.

» 127 dB Dynamic Range RSSI.

» Automatic RF Sense and CAD with ultra-fast AFC.

» Packet engine up to 256 bytes with CRC.

» Built-in temperature sensor and low battery indicator.

GPS Spec

» Based on MT3339.

» Power Acquisition:25mA,Power Tracking:20mA.

» Compliant with GPS, SBAS.

» Programmable bit rate up to 300 kbps.

» Serial Interfaces UART: Adjustable 4800~115200 bps,Default: 9600bps.

» Update rate:1Hz (Default), up to10Hz.

» 1/OVoltage:2.7V ~ 2.9V.

» Protocols:NMEA 0183,PMTK.

» Horizontal Position Accuracy:Autonomous <2.5 m CEP.

» TTFF@-130dBm with EASY™:Cold Start <15s,Warm Start <5s,Hot start
<1s;TTFF@-130dBm.without EASY™:Cold Start <35s,Warm Start <30s,Hot Start
<1s.

» Timing Accuracy:1PPS out 10ns, Reacquisition Time <1s.

» Velocity Accuracy Without aid <0.1m/s,Acceleration Accuracy Without aid 0.1m/s2.

» Sensitivity Acquisition -148dBm, Tracking -165dBm, Reacquisition -160dBm.

» Environmental:Operating Temperature -40°C to 85°C,Storage Temperature -45°C to
125°C.

» Dynamic Performance Altitude Max.18000m, Maximum Velocity Max.515m/s, Maximum
Acceleration 4G.

» L1 Band Receiver(1575.42MHz) Channel 22 (Tracking) /66 (Acquisition).

LoRa GPS HAT Single Channel LoRa & GPS module User Manual 4/19

90

@ DRAGINO www.dragino.com

13

14

Features

FHIT LR AHEEEU NS &SNNSR

Frequency Band: 868 MHZ/433 MHZ/915 MHZ(Pre-configure in factory)
Low power consumption

Compatible with Raspberry Pi 2 Model B/Raspberry Pi 3 model B/B+
LoRa™ Modem

FSK, GFSK, MSK, GMSK, LoRa™and OOK modulation

Preamble detection

Baud rate configurable

Built-in temperature sensor and low battery indicator

Excellent blocking immunity

Automatic RF Sense and CAD with ultra-fast AFC

Support DGPS, SBAS(WAAS/EGNOS/MSAS/GAGAN)

GPS automatic switching between internal patch antenna and external active antenna
PPS VS. NMEA can be used in time service

Support SDK command

Built-in LNA for better sensitivity

EASY™, advanced AGPS technology without external memory
AlwaysLocate™, an intelligent controller of periodic mode

GPS FLP mode, about 50% power consumption of normal mode

GPS support short circuit protection and antenna detection

Applications

SNX &N

Smart Buildings & Home Automation
Logistics and Supply Chain Management
Smart Metering

Smart Agriculture

Smart Cities

Smart Factory

LoRa GPS HAT Single Channel LoRa & GPS module User Manual 5/19

& orRGINO

www.dragino.com

1.5 Pin Definition
Pin Illustrator:

GND RPi TXD

oRa Reset

LORf aT%’TanT

[y nl

Pin Mapping

LoRa GPS HAT
33v
Sv
GND
DIOO
GPS_RX
GPS_TX
RESET
LoRa_NSS
LoRa_MISO

LoRa_MOSI

PPS LoRa DIO1

£ orAGiND

LoRa/oPS
3)

Alalo

PERA

for RPi vi.4
0a b

RaspberryPi Wiring PI 10
3.3v
Sv
GND
GPIO7
GPIO15/TX
GPIO16/RX
GPIOO
GPIO6
GPI013/MISO

GPI012/MOSI

LoRa GPS HAT Single Channel LoRa & GPS module User Manual

6/19

91

@ DRAGINO www.dragino.com
SCK GPIO14/SCLK ‘
DIo1 GPIO4 \
1
DI02 GPIOS |
1PPS GPIO1 |
8CM, r -—
e wRED
} +---F==B Plus-—§---+
BCM wPi Name Mode | V Physical v
S ++ + ¥
3.3v | 101 2 I | Sv i
2 8 SDA.1 | ALTO | 1 3114 | | sv I
3 9 scL.1 [[ALTO | 1 | 51| 6 | | ov |
4 7 || epr0. 7 iNj1) 7118 (o] aLro| T 15 | 14 |
ov | 9 11 10 | 1 | ALTO || RxD 16 [j 15 |
17 o || er0. 0 mjoj11g112 (o) N Jeero. 1|1 18 |
27 2 || ep10. 2 IN | O) 13| 14 | | ov |
22 3 GPIO. 3 IN| O 15 || 16 0] IN | GP1O. 4 4 23
3.3v | 171118 (1) our || Ge10. 5 || 5 24 |
10l 12 MOSI | ALTO | O | 19 || 20 | | ov |
9l 13 M1so [ALTO | 1 | 21 || 22 |1 | our |l GPrO. 6 || 6 25 |
1 14 scLk | ALTO | 1 | 23 || 24 | 1 | ALTO || CEO 10 8 |
ov | 25 || 26 | 1 | ALTO || cE1 11 {2 |
ol 30 SpA.0 [ALTO | 1 | 27 || 28 | 1 | ALTO || SCL.O 1 1
s || 21|{ 6p10.21 IN | 1) 29 1| 30 I | Ov |
6 || 22 || 6p10.22 IN|1)31113 (0] 1IN | Grro.26|f 26 [f 12 |
13 | 23 || cp10.23 o) 33 34 | | Ov |
19 | 24 || cp10.24 mw o) 3536 fo|n | eero.27f 27 |§ 16 |
26 || 25 || 6p10.25 IN o) 371138 [0 1IN |cero.2e |l 28 |f 20 |
ov | 3911 40 [0 | IN |l Ge1O.29 || 29 |§ 21 |
- e R e e e e e D ST +
BCM wPi Name Mode | V Physical V | Mode || Name wPi BCM |[
d it 1

1.6 Hardware Change log
» LoRa/GPS_HAT v1.0: The first hardware release for the LoRa/GPS_HAT.

» LoRa/GPS_HAT v1.3:
v Add a trace from LoRa DIO1 to RPi GPIO4(wiringPi definition).
v Add a trace from Lora DIO2 to RPi GPIOS(wiringPi definition). They are required by LMIC
library in RPi.

» LoRa/GPS HAT v1.4:
v’ Change SMA connector to support active antenna
v Add AADET_N LED to show if external antenna is active.
¥ Connect GPS PPS pin to RPi BCM pin 18
v Modify Silkscreen for GPS TXD/RXD

LoRa GPS HAT Single Channel LoRa & GPS module User Manual

7/19

92

@ DRAGINO www.dragino.com
1.7 LEDs

v" PWR: Power Indicate LED. Turns on once there is power.

v LoRa-RX: Indicate there is a wireless packet received in the LoRa module.

v' 3D_FIX: The led blink ervey 100ms after the GPS fixing position.

v' EXT_ANT: Indicate there is an external GPS antenna connected.

1.8 Dimension & Weight
Size: 60mm*53mm*25mm
Net weight: 30g.

L

v' Package Size: 98mm x 81mm x 32mm

LoRa GPS HAT Single Channel LoRa & GPS module User Manual

8/19

93

APPENDIX G: SX1276 datasheet

z SEMTECH SX1276/77/78/79

WIRELESS, SENSING &

NG DATASHEET

4. SX1276/77/78/79 Digital Electronics

4.1. The LoRa™ Modem

The LoRa™ modem uses spread spectrum modulation and forward error correction techniques to increase the range and
robustness of radio communication links compared to traditional FSK or OOK based modulation. Examples of the
performance improvement possible, for several possible settings, are summarised in the table below. Here the spreading
factor and error correction rate are design variables that allow the designer to optimise the trade-off between occupied
bandwidth, data rate, link budget improvement and immunity to interference.

Table 12 Example LoRa™ Modem Performances, 868MHz Band

Sensitivity

Ba?:'-\:;l)dlh Spreading Factor Coding rate Nor(nblzzl) i indication :r:‘::::é::

10.4 6 4/5 782 -131
12 a5 2 147

208 6 a5 1562 28 TCXO
12 a5 29 144

625 3 3 2688 21
12 45 146 139

125 6 5 9380 18 XTAL
12 5 293 136

Notes - for all bandwidths lower than 62.5 kHz, it is advised to use a TCXO as a frequency reference. This is required to
meet the frequency error tolerance specifications given in the Electrical Specification

- Higher spreading factors and longer transmission times impose more stringent constraints on the short term
frequency stability of the reference. Please get in touch with a Semtech representative to implement extremely low
sensitivity products.

For European operation the range of crystal tolerances acceptable for each sub-band (of the ERC 70-03) is given in the

specifications table. For US based operation a frequency hopping mode is available that automates both the LoRa™
spread spectrum and frequency hopping spread spectrum processes.

Another important facet of the LoRa"™ modem is its increased immunity to interference. The LoRa™ modem is capable of
co-channel GMSK rejection of up to 20 dB. This immunity to interference permits the simple coexistence of LoRa™

modulated systems either in bands of heavy spectral usage or in hybrid communication networks that use LoRa™ to
extend range when legacy modulation schemes fail.

Rev. 5 - August 2016 Page 25 www.semtech.com
©2016 Semtech Corporation

94

ESEMTECH SX1276/77/78/79

4.1.1. Link Design Using the LoRa™ Modem

4.1.1.1. Overview

The LoRa™ modem is setup as shown in the following figure. This configuration permits the simple replacement of the
FSK modem with the LoRa™ modem via the configuration register setting RegOpMode. This change can be performed on
the fly (in Sleep operating mode) thus permitting the use of both standard FSK or OOK in conjunction with the long range
capability. The LoRa"™ modulation and demodulation process is proprietary, it uses a form of spread spectrum modulation
combined with cyclic error correction coding. The combined influence of these two factors is an increase in link budget and
enhanced immunity to interference.

i

Lora FIFO

FSK/OOK Lora
N FKI0OKsnd Lora
FSK/OOK Transcelver Q:’> FSK/OOK FIFO
Lora Only
ns

D —
Config Registers

Figure 5. LoRa™ Modem Connectivity

A simplified outline of the transmit and receive processes is also shown above. Here we see that the LoRa™ modem has
an independent dual port data buffer FIFO that is accessed through an SPI interface common to all modes. Upon selection
of LoRa™ mode, the configuration register mapping of the SX1276/77/78/79 changes. For full details of this change
please consult the register description of Section 6.

So that it is possible to optimise the LoRa™ modulation for a given application, access is given to the designer to three
critical design parameters. Each one permitting a trade off between link budget, immunity to interference, spectral
occupancy and nominal data rate. These parameters are spreading factor, modulation bandwidth and error coding rate.

Rev. 5 - August 2016 Page 26 www.semtech.com
©2016 Semtech Corporation

95

z SEMTECH SX1276/77/78/79

WIRELESS, SENSING &

4.1.1.2. Spreading Factor

The spread spectrum LoRa™ modulation is performed by representing each bit of payload information by multiple chips of
information. The rate at which the spread information is sent is referred to as the symbol rate (Rs), the ratio between the
nominal symbol rate and chip rate is the spreading factor and represents the number of symbols sent per bit of information.

The range of values accessible with the LoRa™ modem are shown in the following table.

Table 13 Range of Spreading Factors

SpreadingFactor Spreading Factor LoRa Demodulator
(RegModulationCfg) (Chips / symbol) SNR
6 64 -5dB
7 128 -7.5dB
8 256 -10dB
9 512 -12.5dB
10 1024 -15dB
1" 2048 -17.5dB
12 4096 -20 dB

Note that the spreading factor, SpreadingFactor, must be known in advance on both transmit and receive sides of the link
as different spreading factors are orthogonal to each other. Note also the resulting signal to noise ratio (SNR) required at
the receiver input. It is the capability to receive signals with negative SNR that increases the sensitivity, so link budget and
range, of the LoRa receiver.

Spreading Factor 6

SF = 6 Is a special use case for the highest data rate transmission possible with the LoRa modem. To this end several
settings must be activated in the SX1276/77/78/79 registers when it is in use. These settings are only valid for SF6 and
should be set back to their default values for other spreading factors:

* Set SpreadingFactor = 6 in RegModemConfig2

* The header must be set to Implicit mode.

¢ Set the bit field DetectionOptimize of register ReglLoRaDetectOptimize to value "0b101".
¢ Write 0x0C in the register RegDetectionThreshold.

4.1.1.3. Coding Rate

To further improve the robustness of the link the LoRa™ modem employs cyclic error coding to perform forward error
detection and correction. Such error coding incurs a transmission overhead - the resultant additional data overhead per
transmission is shown in the table below.

Table 14 Cyclic Coding Overhead

lingR. li in &
(ngchfagtf) ByE ;:::d 9 Overhead Ratio
1 4/5 1.25
2 4/6 15
3 47 1.75
4 4/8 2
Rev. § - August 2016 Page 27 www.semtech.com

©2016 Semtech Corporation

96

;1 SEMTECH SX1276/77/78/79

WIRELESS, SENSING & NG DATASHEET

Forward error correction is particularly efficient in improving the reliability of the link in the presence of interference. So that
the coding rate (and so robustness to interference) can be changed in response to channel conditions - the coding rate can
optionally be included in the packet header for use by the receiver. Please consult Section 4.1.1.6 for more information on

the LoRa™ packet and header.

4.1.1.4. Signal Bandwidth

An increase in signal bandwidth permits the use of a higher effective data rate, thus reducing transmission time at the
expense of reduced sensitivity improvement. There are of course regulatory constraints in most countries on the
permissible occupied bandwidth. Contrary to the FSK modem which is described in terms of the single sideband
bandwidth, the LoRa™ modem bandwidth refers to the double sideband bandwidth (or total channel bandwidth). The
range of bandwidths relevant to most regulatory situations is given in the LoRa™ modem specifications table (see Section
2.5.5).

Table 15 LoRa Bandwidth Options

Bandwid i Nominal Rb
(kHz) Spreading Fact Coding rate (bps)

12 4/5 1172

Note In the lower band (169 MHz), the 250 kHz and 500 kHz bandwidths are not supported.

4.1.1.5. LoRa™ Transmission Parameter Relationship

With a knowledge of the key parameters that can be controlled by the user we define the LoRa™ symbol rate as:
_ BW

Rs = 2—\[-

where BW is the programmed bandwidth and SF is the spreading factor. The transmitted signal is a constant envelope
signal. Equivalently, one chip is sent per second per Hz of bandwidth.

Rev. 5 - August 2016 Page 28 www.semtech.com
©2016 Semtech Corporation

97

ESEMTECH SX1276/77/78/79

4.1.1.6. LoRa™ Packet Structure

The LoRa™ modem employs two types of packet format, explicit and implicit. The explicit packet includes a short header
that contains information about the number of bytes, coding rate and whether a CRC is used in the packet. The packet
format is shown in the following figure.

The LoRa™ packet comprises three elements:
¢ A preamble.

* An optional header.

¢ The data payload.

nPreamble Symbols nHeader Symbols
Prasinbia Header | CRC | Payload Payload
(explicit mode only) CRC
- CR=4/8 £ CR = CodingRate &

SF = SpreadingFactor
Figure 6. LoRa™ Packet Structure

Preamble

The preamble is used to synchronize receiver with the incoming data flow. By default the packet is configured with a 12
symbol long sequence. This is a programmable variable so the preamble length may be extended, for example in the
interest of reducing to receiver duty cycle in receive intensive applications. However, the minimum length suffices for all
communication. The transmitted preamble length may be changed by setting the register PreambleLength from 6 to 65535,
yielding total preamble lengths of 6+4 to 65535+4 symbols, once the fixed overhead of the preamble data is considered.
This permits the transmission of a near arbitrarily long preamble sequence.

The receiver undertakes a preamble detection process that periodically restarts. For this reason the preamble length
should be configured identical to the transmitter preamble length. Where the preamble length is not known, or can vary, the
maximum preamble length should be programmed on the receiver side.

Header

Depending upon the chosen mode of operation two types of header are available. The header type is selected by the
ImplicitHeaderModeOn bit found within the RegModemContfig1 register.

Explicit Header Mode

This is the default mode of operation. Here the header provides information on the payload, namely:
* The payload length in bytes.

¢ The forward error correction code rate

* The presence of an optional 16-bits CRC for the payload.

Rev. § - August 2016 Page 29 www.semtech.com
©2016 Semtech Corporation

98

z SEMTECH SX1276/77/78/79

WIRELESS, SENSING &

The header is transmitted with maximum error correction code (4/8). It also has its own CRC to allow the receiver to
discard invalid headers.

Implicit Header Mode

In certain scenarios, where the payload, coding rate and CRC presence are fixed or known in advance, it may be
advantageous to reduce transmission time by invoking implicit header mode. In this mode the header is removed from the
packet. In this case the payload length, error coding rate and presence of the payload CRC must be manually configured
on both sides of the radio link.

Note With SF = 6 selected, implicit header mode is the only mode of operation possible.

Explicit Header Mode:

In Explicit Header Mode, the presence of the CRC at the end of the payload in selected only on the transmitter side through
the bit RxPayloadCrcOn in the register RegModemConfig1.

On the receiver side, the bit RxPayloadCrcOn in the register RegModemConfig1 is not used and once the payload has
been received, the user should check the bit CrcOnPayload in the register RegHopChannel. If the bit CrcOnPayload is at
‘1", the user should then check the Irq Flag PayloadCrcError to make sure the CRC is valid.

If the bit CrcOnPayload is at ‘0, it means there was no CRC on the payload and thus the IRQ Flag PayloadCrcError will not
be trigged even if the payload has errors.

Explicit Header Transmitter Receiver CRC Status
0 0 CRC is not checked
Value of the bit 0 1 CRC is not checked
RxPayloadCrcOn 1 0 CRC is checked
1 1 CRC is checked

Implicit Header Mode;

In Implicit Header Mode, it is necessary to set the bit RxPayloadCrcOn in the register RegModemConfig1 on both sides
(TX and RX)

Implicit Header Transmitter Receiver CRC Status
0 0 CRC is not checked
0 1 CRC is always

Value of the bit wrong

RxPayloadCrcOn
1 0 CRC is not checked
1 1 CRC is checked

Rev. 5 - August 2016 Page 30 www.semtech.com

©2016 Semtech Corporation

99

ESEMTECH SX1276/77/78/79

Low Data Rate Optimization

Given the potentially long duration of the packet at high spreading factors the option is given to improve the robustness of
the transmission to variations in frequency over the duration of the packet transmission and reception. The bit
LowDataRateOptimize increases the robustness of the LoRa link at these low effective data rates. Its use is mandated
when the symbol duration exceeds 16ms. Note that both the transmitter and the receiver must have the same setting for
LowDataRateOptimize.

Payload

The packet payload is a variable-length field that contains the actual data coded at the error rate either as specified in the
header in explicit mode or in the register settings in implicit mode. An optional CRC may be appended. For more
information on the payload and how it is loaded from the data buffer FIFO please see Section 4.1.2.3.

4.1.1.7. Time on air

For a given combination of spreading factor (SF), coding rate (CR) and signal bandwidth (BW) the total on-the-air
transmission time of a LoRa"™ packet can be calculated as follows. From the definition of the symbol rate it is convenient
to define the symbol rate:

2~

The LoRa packet duration is the sum of the duration of the preamble and the transmitted packet. The preamble length is calculated as
follows:

T,

preamble = (Mpreamble

+4.25)T,

sym

where 1, is the programmed preamble length, taken from the registers RegPreambleMsb and RegPreambleLsb.The
payload duration depends upon the header mode that is enabled. The following formula gives the number of payload
symbols.

(8PL—4SF +28 + 16CRC — 20/H)
4(SF-2DE)

=8+ max(c(‘il{: J(CR +4), 0)

Mpayload

With the following dependencies:

* PL is the number of Payload bytes (1 to 255)

* SF is the spreading factor (6 to 12)

¢ |H=0 when the header is enabled, IH=1 when no header is present

¢ DE=1 when LowDataRateOptimize=1, DE=0 otherwise

¢ CRis the coding rate (1 corresponding to 4/5, 4 to 4/8)

The Payload duration is then the symbol period multiplied by the number of Payload symbols

Tpayioad = Ppaytoad™ Ts

The time on air, or packet duration, in simply then the sum of the preamble and payload duration.

Toacket = Tpreamvte * Tpaytoad
Rev. § - August 2016 Page 31 www.semtech.com

©2016 Semtech Corporation

100

ESEMTECH SX1276/77/78/79

6.4. LoRa™ Mode Register Map
This details the SX1276/77/78/79 register mapping and the precise contents of each register in LoRa™ mode.

It is essential to understand that the LoRa™ modem is controlled independently of the FSK modem. Therefore, care

should be taken when accessing the registers, especially as some register may have the same name in LoRa™ or FSK
mode.

The LoRa registers are only accessible when the device is set in Lora mode (and, in the same way, the FSK register are
only accessible in FSK mode). However, in some cases, it may be necessary to access some of the FSK register while in
LoRa mode. To this aim, the AccesSharedReg bit was created in the RegOpMode register. This bit, when set to ‘1", will
grant access to the FSK register 0x0D up to the register 0x3F. Once the setup has been done, it is strongly recommended
to clear this bit so that LoRa register can be accessed normally.

Convention: r: read, w: write, ¢ : set to clear and t: trigger.

Name

Bits Variable Name Mode Reset LoRa™ Description

(Address)

LoRa™ base-band FIFO data input/output. FIFO is cleared an not
accessible when device is in SLEEP mode

0 - FSK/OOK Mode

™
7 | LongRangeMode w |oxo |1~ LoRa™™Mode) , ,
This bit can be modified only in Sleep mode. A write operation on

other device modes is ignored.

This bit operates when device is in Lora mode; if set it allows
access to FSK registers page located in address space

6 AccessSharedReg w 0x0 | (0xOD:0x3F) while in LoRa mode

0 - Access LoRa registers page 0x0D: 0x3F

1 - Access FSK registers page (in mode LoRa) 0x0D: 0x3F

5-4 | reserved r 0x00 | reserved

Access Low Frequency Mode registers
3 LowFrequencyModeOn w 0x01 | 0 = High Frequency Mode (access to HF test registers)
1 - Low Frequency Mode (access to LF test registers)

Device modes

000 > SLEEP

001 > STDBY

010 = Frequency synthesis TX (FSTX)

2-0 | Mode rwt 0x01 | 011 > Transmit (TX)

100 - Frequency synthesis RX (FSRX)

101 - Receive continuous (RXCONTINUOUS)
110 - receive single (RXSINGLE)

111 = Channel activity detection (CAD)

7-0 |reserved r 0x00 |-

7-0 |reserved r 0x00 |-

7-0 |reserved w 0x00 |-

7-0 |reserved r 0x00 |-

7-0 | Frf(23:16) ™w 0x6¢c | MSB of RF carrier frequency

Rev. § - August 2016 Page 108 www.semtech.com
©2016 Semtech Corporation

101

ra
') SEMTECH
WIRELESS, SENSING & TIMING DATASHEET

Name

(Address) Bits Variable Name

Fri(15:8)

SX1276/77/78/79

Mode Reset LoRa™ pescription

MSB of RF carrier frequency

7-0 | Frf(7:0)

7 PaSelect

LSB of RF carrier frequency
_ F(XOSC) - Frf
Trr = 19
wt | 0x00 2

Resolution is 61.035 Hz if F(XOSC) = 32 MHz. Default value is
0x6c8000 = 434 MHz. Register values must be modified only when
device is in SLEEP or STAND-BY mode.

Selects PA output pin
w 0x00 | 0 - RFO pin. Output power is limited to +14 dBm.
1 -> PA_BOOST pin. Output power is limited to +20 dBm

6-4 | MaxPower

w 0x04 | Select max output power: Pmax=10.8+0.6*MaxPower [dBm]

3-0 | OutputPower

Pout=Pmax-(15-OutputPower) if PaSelect = 0 (RFO pin)

0X0F | pout=17-(15-OutputPower) if PaSelect = 1 (PA_BOOST pin)

7-5 | unused

r - unused

4 reserved

w 0x00 | reserved

3-0 | PaRamp(3:0)

Rise/Fall time of ramp up/down in FSK
0000 - 3.4 ms
0001 > 2ms
0010 > 1ms
0011 > 500 us
0100 - 250 us
0101 > 125 us
0110 > 100 us
w 0x09 | 0111 > 62 us
1000 - 50 us
1001 > 40 us
1010 > 31us
1011 > 25 us
1100 > 20 us
1101 > 15us
1110 > 12us
1111 > 10us

r 0x00 | unused

Enables overload current protection (OCP) for PA:
w 0x01 | 0 > OCP disabled
1> OCP enabled

Trimming of OCP current:
Imax = 45+5*OcpTrim [mA] if OcpTrim <= 15 (120 mA) /
Imax = -30+10*OcpTrim [mA] if 15 < OcpTrim <= 27 (130 to

4-0 | OcpTrim w 0x0b 240 mA)
Imax = 240mA for higher settings
Default Imax = 100mA
Rev. § - August 2016 Page 109 www.semtech.com

©2016 Semtech Corporation

102

ra
') SEMTECH
WIRELESS, SENSING & TIMING DATASHEET

Name

(Address) Bits

7-5

Variable Name

LnaGain

Mode Reset

0x01

SX1276/77/78/79

LoRa™ pescription

LNA gain setting:
000 -> not used

001 - G1 = maximum gain
010 > G2

011> G3

100 > G4

101 > G5

110 - G6 = minimum gain
111 - not used

LnaBoostLf

0x00

Low Frequency (RFI_LF) LNA current adjustment
00 - Default LNA current
Other > Reserved

reserved

0x00

reserved

LnaBoostHf

0x00

High Frequency (RFI_HF) LNA current adjustment
00 - Default LNA current
11 > Boost on, 150% LNA current

SPI interface address pointer in FIFO data buffer.

FifoTxBaseAddr w 0x80 | write base address in FIFO data buffer for TX modulator
70 FifoRxBaseAddr w 0x00 | read base address in FIFO data buffer for RX demodulator
7-0 | FifoRxCurrentAddr r n/a Start address (in data buffer) of last packet received
M. Timeout interrupt mask: setting this bit masks the corresponding

Z R G L 0x00 IRQ in ReglrqFlags
Packet reception complete interrupt mask: setting this bit masks the

S RADCUSHEEK L 9x00 corresponding IRQ in ReglrgFlags
Payload CRC error interrupt mask: setting this bit masks the

5 IR RS w 0x00 corresponding IRQ in ReglrqgFlags
Valid header received in Rx mask: setting this bit masks the

- Nabdiieaceritsk . 0300 corresponding IRQ in ReglrgFlags

3 TxDoneMask - 0x00 FIFO Payload transmi§sion oor_nplete interrupt mask: setting this bit
masks the corresponding IRQ in ReglrqFlags
CAD complete interrupt mask: setting this bit masks the

2 GadBoreiis K . 000 corresponding IRQ in ReglrgFlags
FHSS change channel interrupt mask: setting this bit masks the

1 FhssChangeChannelMask | rw 0x00 corresponding IRQ in ReglrqFlags
Cad Detected Interrupt Mask: setting this bit masks the

Y el w 0500 corresponding IRQ in ReglrqFlags

Rev. § - August 2016 Page 110 www.semtech.com

©2016 Semtech Corporation

103

r|
') SEMTECH
WIRELESS, SENSING & TIMING DATASHEET

Name
(Address)

Bits

Variable Name

Reset

SX1276/77/78/79

LoRa™ pescription

Timeout interrupt: writing a 1 clears the IRQ

7 RxTimeout rc 0x00

6 RxDone - 0x00 Packet reception complete interrupt: writing a 1 clears the IRQ

5 PayloadCrcError e 0x00 Payload CRC error interrupt: writing a 1 clears the IRQ

4 ValidHeader e 0x00 Valid header received in Rx: writing a 1 clears the IRQ

3 TxDone re 0x00 FIFO Payload transmission complete interrupt: writing a 1 clears
the IRQ

2 CadDone re 0x00 CAD complete: write to clear: writing a 1 clears the IRQ

1 FhssChangeChannel - 0x00 FHSS change channel interrupt: writing a 1 clears the IRQ

0 CadDetected - 0x00 Valid Lora signal detected during CAD operation: writing a 1 clears
the IRQ

7-0 | FifoRxBytesNb r n/a Number of payload bytes of latest packet received
Number of valid headers received since last transition into Rx

7-0 | ValidHeaderCntMsb(15:8) | r n/a mode, MSB(15:8). Header and packet counters are reseted in
Sleep mode.
Number of valid headers received since last transition into Rx

7-0 | ValidHeaderCntLsb(7:0) r n/a mode, LSB(7:0). Header and packet counters are reseted in Sleep
mode.
Number of valid packets received since last transition into Rx

7-0 | ValidPacketCntMsb(15:8) |rc n/a mode, MSB(15:8). Header and packet counters are reseted in
Sleep mode.
Number of valid packets received since last transition into Rx

7-0 | ValidPacketCntLsb(7:0) r n/a mode, LSB(7:0). Header and packet counters are reseted in Sleep
mode.

7-5 | RxCodingRate r n/a Coding rate of last header received

4 r 5 Modem clear

3 r ‘0" Header info valid

2 ModemStatus r ‘0" RX on-going

1 r ‘0 Signal synchronized

0 r ‘0" Signal detected

Rev. 5 - August 2016 Page 111 www.semtech.com

©2016 Semtech Corporation

104

Fa|
') SEMTECH

WIRELESS, SENSING & TIMING DATASHEET

Name

(Address) Variable Name

PacketSnr

Reset

n/a

SX1276/77/78/79

LoRa™ pescription

Estimation of SNR on last packet received.In two's compliment
format mutiplied by 4.

SNR[dB) = PacketSnr ths complement

7-0 | PacketRssi

RSSI of the latest packet received (dBm):
RSSI[dBm] = -157 + Rssi (using HF output port, SNR >= 0)
or

RSSI[dBm] = -164 + Rssi (using LF output port, SNR >= 0)

(see section 5.5.5 for details)

7-0 | Rssi

n/a

Current RSSI value (dBm)
RSSI[dBm] = -157 + Rssi (using HF output port)
or

RSSI[dBm] = -164 + Rssi (using LF output port)

(see section 5.5.5 for details)

7. PlTimeout

n/a

PLL failed to lock while attempting a TX/RX/CAD operation
1 - PLL did not lock
0 - PLL did lock

6 CrcOnPayload

n/a

CRC Information extracted from the received packet header
(Explicit header mode only)

0 - Header indicates CRC off

1 -> Header indicates CRC on

5-0 | FhssPresentChannel

n/a

Current value of frequency hopping channel in use.

Rev. § - August 2016
©2016 Semtech Corporation

Page 112

www.semtech.com

105

106

;q‘ N— SX1276/77/78/79

Name
(Address)

Bits Variable Name Mode Reset LoRa™ Description

Signal bandwidth:
0000 - 7.8 kHz
0001 > 10.4 kHz
0010 > 15.6 kHz
0011 - 20.8kHz
0100 - 31.25 kHz
0101 > 41.7 kHz
Bw w007 {5410 5 62,5 kHz
0111 > 125 kHz
1000 > 250 kHz
1001 > 500 kHz
other values > reserved
In the lower band (169MHz), signal bandwidths 8&9 are not
supported)

Error coding rate

001> 4/5

010 > 4/6

011 > 4/7

100 - 4/8

All other values -> reserved

In implicit header mode should be set on receiver to determine
expected coding rate. See 4.1.1.3

0 - Explicit Header mode
1 > Implicit Header mode

3-1 | CodingRate w ‘001"

0 ImplicitHeaderModeOn w 0x0

SF rate (expressed as a base-2 logarithm)
6 > 64 chips / symbol

7 - 128 chips / symbol

8 > 256 chips / symbol

7-4 | SpreadingFactor ™w 0x07 | 9 = 512 chips / symbol

10 > 1024 chips / symbol

11 > 2048 chips / symbol

12 -> 4096 chips / symbol

other values reserved.

0 > normal mode, a single packet is sent
3 TxContinuousMode w 0 1 > continuous mode, send multiple packets across the FIFO
(used for spectral analysis)

Enable CRC generation and check on payload:

0-> CRC disable

1-> CRC enable

2 RxPayloadCrcOn w 0x00 | If CRC is needed, RxPayloadCrcOn should be set:

- in Implicit header mode: on Tx and Rx side

- in Explicit header mode: on the Tx side alone (recovered from the
header in Rx side)

1-0 | SymbTimeout(9:8) w 0x00 | RX Time-Out MSB
RX Time-Out LSB
70 |s Timeout(7:0) w Ox64 RX operation time-out value expressed as number of symbols:
TimeOut = SymbTimeout - Ts
Rev. § - August 2016 Page 113 www.semtech.com

©2016 Semtech Corporation

raa|
') SEMTECH

SX1276/77/78/79

WIRELESS, SENSING & TIMING DATASHEET

Name

(Address) B'tS Variable Name

Mode Reset

LoRa™ pescription

i Preamble length MSB, = PreambleLength + 4.25 Symbols
7-0 | PreambleLength(15:8) w 0x0 Sbe 44, 1:for mora detills:
7-0 | PreambleLength(7:0) w 0x8 | Preamble Length LSB
S Payload length in bytes. The register needs to be set in implicit
7-0 FERE) w 0x1 | header mode for the expected packet length. A 0 value is not
permitted
2 Maximum payload length; if header payload length exceeds value a
7-0 EavieasiantenotuiZ-0) w Oxff | header CRC error is generated. Allows filtering of packet with a bad
size.
FreqHoppingPeriod(7:0) Symbol periods between frequency hops. (0 = disabled). 1st hop
7-0 w 0x0
always happen after the 1st header symbol
7.0 | FiforxB drPtr r i Current valug of RX databuffer pointer (address of last byte written
g by Lora receiver)
7-4 | Unused r 0x00
3 LowDataRateOptimize w 0x00 |0 - Disabled
1 - Enabled; mandated for when the symbol length exceeds 16ms
2 AgcAutoOn w 0x00 | 0 - LNA gain set by register LnaGain
1 -> LNA gain set by the internal AGC loop
1-0 | Reserved w 0x00 | Reserved
7-0 | PpmCorrection w 0x00 | Data rate offset value, used in conjunction with AFC
7-4 | Reserved r n/a Reserved
Estimated frequency error from modem
MSB of RF Frequency Error
3-0 | FreqEmor(19:16) r 0x0 F._ FreqErrorx2™ BWikHz)
Error Eoigi 300
7-0 | FreqError(15:8) r 0x0 | Middle byte of RF Frequency Error
7-0 | FreqErmor(7:0) ; 0x0 LSB of RF Frequency Error
- Reserved r n/a Reserved
7-0 | RssiWideband(7:0) = na Wideband RSSI measurement used to locally generate a random
number
- Reserved r n/a Reserved
Rev. § - August 2016 Page 114 www.semtech.com

©2016 Semtech Corporation

107

ESEMTECH SX1276/77/78/79

Variable Name Mode Reset LoRa™ Description

Reserved Reserved

LoRa Detection Optimize

2-0 | DetectionOptimize w 0x03 | 0x03 - SF7 to SF12
0x05 > SF6
- Reserved E n/a Reserved
7 |Reserved w |oxo |Reserved
Invert the LoRa | and Q signals
6 InvertlQ w 0x0 | 0 & normal mode
1 - | and Q signals are inverted
5-0 | Reserved w 0x27 | Reserved
7-0 | Reserved r n/a Reserved
LoRa detection threshold
7-0 | DetectionThreshold w OxOA | OXOA - SF7 to SF12
0x0C > SF6
- Reserved r n/a Reserved

LoRa Sync Word

O SmeWord it Ox12 Value 0x34 is reserved for LoRaWAN networks
- Reserved r n/a Reserved
Rev. § - August 2016 Page 115 www.semtech.com

©2016 Semtech Corporation

108

ESEMTECH SX1276/77/78/79

7.5. Example CRC Calculation
The following routine(s) may be implemented to mimic the CRC calculation of the SX1276/77/78/79:

Ulé

else
{
crc <<= 1 hift left
)
data <<=

)
return crc;

UL6 RadioPacketComputeCrc(US *buffer, US bufferlength, U8 crcType)

us i:
u16
U16 polynomial;

ype == CRC_TYPE_IEM) ? POLYNOMIAL_IEM : POLYNOMIAL CCITT:
CRC_TYPE_IBM) ? CRC_IBM S :+ CRC_CCITT_SEED:

Length; is+)

cre, buffer(i], polynomial);:

1£(cretyp CRC_TYPE_IEM)
t

return crc:

return (UL6) (~crc)

Figure 54. Example CRC Code

Rev. 5 - August 2016 Page 125 www.semtech.com
©2016 Semtech Corporation

109

APPENDIX H: Stop and Wait Protocol Transmitter codes

110

/**

*khkhhkkhkkkkhkhkhkiiikikkx

*

* Copyright (c) 2018 Dragino

* http://www.dragino.com

*

*hhkkhkkhkhkhkkhkhkhkkhkhkhkkhhhkkhhhkkhhhkhhhkhhhkhkhhkhkhhkhkkhhhkkhhhkkhhhkkihhkkihhkkhkhhkkhihkkhihkiiikk

****************/

#include <string.h>
#include <string>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.n>
#include <string.h>
#include <sys/time.h>
#include <signal.h>
#include <stdlib.h>

#include <sys/ioctl.h>

#include <wiringPi.h>
#include <wiringPiSP1.h>

#include <math.h>

1| BB R
|| sEEgaRwEt e R R R R R R R

#define REG_FIFO 0x00
#define REG_OPMODE 0x01
#define REG_FIFO_ADDR_PTR 0x0D

#define REG_FIFO_TX_BASE_AD OxOE
#define REG_FIFO_ RX_BASE_AD OxOF

#define REG_RX_NB_BYTES 0x13

#define REG_FIFO_RX_CURRENT_ADDR 0x10
#define REG_IRQ_FLAGS 0x12

#define REG_DIO_MAPPING_1 0x40
#define REG_DIO_MAPPING_2 0x41
#define REG_MODEM_CONFIG 0x1D
#define REG_MODEM_CONFIG2 Ox1E
#define REG_MODEM_CONFIG3 0x26

#define REG_SYMB_TIMEOUT_LSB Ox1F
#define REG_PKT_SNR_VALUEO0x19
#define REG_PAYLOAD_LENGTH 0x22

#define REG_IRQ_FLAGS_MASK

111

0x11

#define REG_MAX_PAYLOAD_LENGTH 0x23

#define REG_HOP_PERIOD

#define REG_SYNC_WORDO0x39

#define REG_VERSION 0x42
#define PAYLOAD_LENGTH

// LOW NOISE AMPLIFIER
#define REG_LNA

#define LNA_MAX_GAIN
#define LNA_OFF_GAIN

#define LNA_LOW_GAIN 0x20

#define RegDioMappingl
#define RegDioMapping?2

#define RegPaConfig
#define RegPaRamp
#define RegPaDac

#define SX72_MC2_FSK
#define SX72_MC2_SF7
#define SX72_MC2_SF8
#define SX72_MC2_SF9
#define SX72_MC2_SF10
#define SX72_MC2_SF11
#define SX72_MC2_SF12

0x24

0x40

0x0C

0x23
0x00

0x40 // common
0x41 // common

0x09 // common
0x0A // common
0x5A // common

0x00
0x70
0x80
0x90
0xA0
0xBO
0xCO

#define SX72_MC1_LOW_DATA_RATE_OPTIMIZE 0x01 // mandated for

SF11 and SF12

I/ sx1276 RegModemConfigl
#define SX1276_MC1_BW_125
#define SX1276_MC1_BW_250
#define SX1276_MC1 BW_500
#define SX1276_MC1_CR
#define SX1276_MC1 _CR
#define SX1276_MC1_CR
R

4
4
4
#define SX1276_MC1 CR 4

5
6
7
8

0x70

0x80

0x90
0x02
0x04
0x06
0x08

#define SX1276_MC1_IMPLICIT_ HEADER_MODE_ON 0x01

I/ sx1276 RegModemConfig2

#define SX1276_MC2_RX_PAYLOAD_CRCON

Il sx1276 RegModemConfig3

0x04

#define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08

#define SX1276_MC3_AGCAUTO

0x04

112

/I preamble for lora networks (nibbles swapped)
#define LORA_MAC_PREAMBLE 0x34

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A
#ifdef LMIC_SX1276

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70
#elif LMIC_SX1272

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74
#endif

Il FRF

#define REG_FRF_MSB 0x06

#define REG_FRF_MID 0x07

#define REG_FRF_LSB 0x08

#define FRF_MSB 0xD9 // 868.1 Mhz
#define FRF_MID 0x06

#define FRF_LSB 0x66

/I Constants for radio registers

#define OPMODE_LORA 0x80
#define OPMODE_MASK 0x07
#define OPMODE_SLEEP 0x00
#define OPMODE_STANDBY 0x01
#define OPMODE_FSTX 0x02
#define OPMODE_TX 0x03
#define OPMODE_FSRX 0x04
#define OPMODE_RX 0x05
#define OPMODE_RX_ SINGLE 0x06
#define OPMODE_CAD 0x07

// Bits masking the corresponding IRQs from the radio
#define IRQ_LORA_RXTOUT_MASK 0x80

#define IRQ_LORA_RXDONE_MASK 0x40
#define IRQ_LORA_CRCERR_MASK 0x20

#define IRQ_LORA_HEADER_MASK 0x10

#define IRQ_LORA_TXDONE_MASK 0x08

#define IRQ_LORA_CDDONE_MASK 0x04
#define IRQ_LORA_FHSSCH_MASK 0x02

#define IRQ_LORA_CDDETD_MASK 0x01

// DIO function mappings DOD1D2D3

#define MAP_DIOO0_LORA_RXDONE 0x00 //00------
#define MAP_DIOO_LORA_TXDONE 0x40 // 01------
#define MAP_DIO1_LORA_RXTOUT 0x00 // --00----
#define MAP_DIO1_LORA_NOP 0x30 //--11----
#define MAP_DIO2_LORA_NOP 0xCO // ----11--

113

/I size of radio tx buffer
#define PAYLOADSIZE 124
#define SEQUENCESIZE 4
#define TXBUFFERSIZE 128
#define ackTime 1

I B R R
| R R T T R T R
1

typedef bool boolean;

typedef unsigned char byte;

static const int CHANNEL = 0;

char message[TXBUFFERSIZE+1];
bool sx1272 = true;
byte receivedbytes;

enum sf_t { SF7=7, SF8, SF9, SF10, SF11, SF12 };

/**
*khkhhhkkhkhkhkkhkkhkkhkkikikikkhkkx

*

* Configure these values!

*

Fhhhhkhkhkkkhkhkhkhrhhhkhkhkhkhkhhrrrhhkhkhkhhhrirrhhhhkhhhhrrrhhhrhkhhhiirriiiixd

****************/

I/ SX1272 - Raspberry connections

int ssPin = 6;
intdio0 =7;
int RST =0;

/I Set spreading factor (SF7 - SF12)
sf_t sf = SF7;

I Set center frequency
uint32_t freq=923200000; // in Mhz! (868.1)

unsigned char hello[32]="HELLO",
char packet[100000];

char txBuffer[TXBUFFERSIZE+1];
float numBytes;

int count=0;

int packet_no;

114

int resendindex= 999999999:

bool transmitmode = false;
bool receivemode = false;

bool receiveimage = false;
bool startprocess = true;
bool resend = false;

int timecount;

int timecountl;

struct content

{
int index;
char payload[TXBUFFERSIZE+1];

¥
struct content packetinc[10000];

void die(const char *s)

{
perror(s);
exit(1);

}

void selectreceiver()

{
digitalWrite(ssPin, LOW);

}

void unselectreceiver()

{
digitalWrite(ssPin, HIGH);

¥

byte readReg(byte addr)

{
unsigned char spibuf[2];

selectreceiver();

spibuf[0] = addr & Ox7F;

spibuf[1] = 0x00;
wiringPiSPIDataRW(CHANNEL, spibuf, 2);
unselectreceiver();

return spibuf[1];

115

void writeReg(byte addr, byte value)

{
unsigned char spibuf[2];

spibuf[0] = addr | 0x80;

spibuf[1] = value;

selectreceiver();
wiringPiSPIDataRW(CHANNEL, spibuf, 2);

unselectreceiver();

}

static void opmode (uint8_t mode) {
writeReg(REG_OPMODE, (readReg(REG_OPMODE) &
~OPMODE_MASK) | mode);

ky

static void opmodeLora() {
uint8_t u = OPMODE_LORA,;
if (sx1272 == false)
u|=0x8; // TBD: sx1276 high freq
writeReg(REG_OPMODE, u);

}

void SetupLoRa()

digitalWrite(RST, HIGH);
delay(100);
digitalWrite(RST, LOW);
delay(100);

byte version = readReg(REG_VERSION);

if (version == 0x22) {
Il sx1272
printf("SX1272 detected, starting.\n");
sx1272 = true;
}else {
I/ sx1276?
digitalWrite(RST, LOW);
delay(100);
digitalWrite(RST, HIGH);
delay(100);
version = readReg(REG_VERSION);
if (version == 0x12) {
I/ sx1276
printf("SX1276 detected, starting.\n");
sx1272 = false;

¥

116

}else {

printf("Unrecognized transceiver.\n");
[lprintf("Version: 0x%x\n",version);
exit(1);
}
}

opmode(OPMODE_SLEEP);

/I set frequency

uinté4_t frf = ((uint64_t)freq << 19) / 32000000;
writeReg(REG_FRF_MSB, (uint8_t)(frf>>16));
writeReg(REG_FRF_MID, (uint8_t)(frf>> 8));
writeReg(REG_FRF_LSB, (uint8_t)(frf>>0));

writeReg(REG_SYNC_WORD, 0x34); // LoRaWAN public sync word

if (sx1272) {
if (sf == SF11 || sf == SF12) {
writeReg(REG_MODEM_CONFIG,0x0B);

}else {
writeReg(REG_MODEM_CONFIG,0x0A);

¥
writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

}else {
if (sf == SF11 || sf == SF12) {
writeReg(REG_MODEM_CONFIG3,0x0C);

}else {
writeReg(REG_MODEM_CONFIG3,0x04);

k
writeReg(REG_MODEM_CONFIG,0x72);
writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

}

if (sf == SF10 || sf == SF11 || sf == SF12) {
writeReg(REG_SYMB_TIMEOUT _LSB,0x05);

} else {
writeReg(REG_SYMB_TIMEOUT _LSB,0x08);

}

writeReg(REG_MAX_PAYLOAD LENGTH,0x80);
writeReg(REG_PAYLOAD_LENGTH,PAYLOAD LENGTH);
writeReg(REG_HOP_PERIOD,0xFF);

writeReg(REG_FIFO_ADDR_PTR, readReg(REG_FIFO_RX_BASE_AD));

writeReg(REG_LNA, LNA_MAX_GAIN);

boolean receive(char *payload) {

/I clear rxDone

117

writeReg(REG_IRQ_FLAGS, 0x40);
int irgflags = readReg(REG_IRQ_FLAGS);

/I payload crc: 0x20

if((irgflags & 0x20) == 0x20)

{
printf("CRC error\n™);
writeReg(REG_IRQ_FLAGS, 0x20);
return false;

}else {

byte currentAddr = readReg(REG_FIFO_RX CURRENT_ADDR);
byte receivedCount = readReg(REG_RX_NB_BYTES);
receivedbytes = receivedCount;

writeReg(REG_FIFO_ADDR_PTR, currentAddr);
for(int i = 0; i < receivedCount; i++)

payload[i] = (char)readReg(REG_FIFO);
}
}

return true;

}

boolean receiveack() {

long int SNR;
int rssicorr;

if(digitalRead(dio0) == 1)
{

/Iclear message before next message received
memset(message, 0, TXBUFFERSIZE+1);

if(receive(message)) {
byte value = readReg(REG_PKT_SNR_VALUE);
if(value & 0x80) // The SNR sign bitis 1
{
/I Invert and divide by 4
value = ((~value + 1) & OxFF) >> 2;

SNR = -value;
}
else
{

// Divide by 4

SNR = (value & OxFF) >> 2;
}

118

if (sx1272) {
rssicorr = 139;

}else {

rssicorr = 157;

ks

printf("Packet RSSI: %d, ", readReg(0x1A)-rssicorr);
printf("RSSI: %d, ", readReg(0x1B)-rssicorr);
printf("SNR: %li, ", SNR);

printf("Length: %i", (int)receivedbytes);

printf("\n");

printf("Payload: %s\n", message);

if(!strcmp(message,"DONE")){
receiveimage = true;
system("python3 timeprint.py");
printf("Received DONE ACK\n\n");

¥

else if('strcmp(message,”0"))

{

system("python3 timeprint.py");
printf("received ACK 0, send again\n\n");
resend=true;

}else if (!strcmp(message,"1")){

system("python3 timeprint.py");
printf(“received ACK 1, sent success\n\n");
count++;

¥

timecountl = 0;
return true;

} // received a message
} /1 dio0=1

return false;

¥

static void configPower (int8_t pw) {
if (sx1272 == false) {
/I no boost used for now
if(pw >=17) {

119

pw = 15;
}else if(pw < 2) {

pw = 2;
}
/I check board type for BOOST pin
writeReg(RegPaConfig, (uint8_t)(0x80|(pw&0xf)));
writeReg(RegPaDac, readReg(RegPaDac)|0x4);

}else {
I set PA config (2-17 dBm using PA_BOOST)

if(pw > 17) {
pw =17,
} else if(pw < 2) {
pw = 2;
}
writeReg(RegPaConfig, (uint8_t)(0x80|(pw-2)));
}
}

static void writeBuf(byte addr, byte *value, byte len) {
unsigned char spibuf[256];
spibuf[0] = addr | 0x80;
for (inti=0;1<len;i++) {
spibuf[i + 1] = value[i];

selectreceiver();
wiringPiSPIDataRW(CHANNEL, spibuf, len + 1);
unselectreceiver();

ky

void txlora(byte *frame, byte datalen) {

/I set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP

writeReg(RegDioMappingl,
MAP_DIO0_LORA_TXDONE|MAP_DIO1 LORA_ NOP|MAP_DIO2_LOR
A_NOP);

/I clear all radio IRQ flags

writeReg(REG_IRQ_FLAGS, OxFF);

// mask all IRQs but TxDone

writeReg(REG_IRQ_FLAGS_MASK, ~IRQ_LORA_TXDONE_MASK);

/I initialize the payload size and address pointers
writeReg(REG_FIFO_TX_BASE_AD, 0x00);
writeReg(REG_FIFO_ADDR_PTR, 0x00);
writeReg(REG_PAYLOAD_LENGTH, datalen);

/I download buffer to the radio FIFO
writeBuf(REG_FIFO, frame, datalen);
/I now we actually start the transmission

120

opmode(OPMODE_TX);

printf(“send: %s\n", frame);

}
char *readfile(){

static char c[1000];
FILE *fptr;
if ((fptr = fopen("test.txt", "r")) == NULL) {
printf("Error! opening file");
I/ Program exits if file pointer returns NULL.
exit(1);
}

/[reads text until newline is encountered
fscanf(fptr, "%[™n]", c);

/lprintf("Data from the file:\n%s", c);
fclose(fptr);

return c;

int main (int argc, char *argv([]) {
if (argc < 2) {
printf ("Usage: argv[0] sender|rec [message]\n™);
exit(1);
}

wiringPiSetup () ;
pinMode(ssPin, OUTPUT);
pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);
wiringPiSPISetup(CHANNEL, 500000);
SetupLoRa();
if (!strcmp(“sender”, argv[1])) {
while(startprocess){
startprocess =false;

count = 0;
receiveimage = false;

printf("Start to take the picture\n™);

121

/Isystem time for taking picture
system(*python3 timeprint.py");

I/ Take a picture with the raspicam
system("'raspistill -0 ImageTXx.jpg -hf -vf -w 100 -h 100");

/lcompress imagetx.jpg to image_compressed
system("python3 compress.py");

printf("Picture taken and compress\n");

/Iread file store to ImageTx.txt
system("python3 storebytes.py");

/Ipython to generate appended file
system("python addheader.py");

//scan appended header file for transmit
FILE *fptr;
if ((fptr = fopen("ImageTx_h.txt", "r")) == NULL)

{
printf("Error! opening file");
I/ Program exits if file pointer returns NULL.
exit(1);
}

/ reads text until newline is encountered
fscanf(fptr, "%[™Mn]", packet);
fclose(fptr);

/lprint out appended header text file
printf("Data from the file:\n%s", packet);

/Ino of packet in floating point
numBytes = strlen(packet);
printf("\nTotal payload length is %.2f\n",numBytes);

/lround to higher integer of no of packet
packet_no = ceil(numBytes/TXBUFFERSIZE);
printf(*"Total packet to be sent is %d\n\n",packet_no);

/[count=0
/1if str=12345,txbuffer size = 2,raw packet_no = 3,appended packet no=4 true
while count<4, go while loop 4 times

while(count<packet_no) {

122

receiveimage = false;

//sender mode

opmodeLora();
/I enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);

writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xFO0) | 0x08); // set PA ramp-
up time 50 uSec

configPower(23);

delay(5000);

/Isplit the string into different packet
strncpy(txBuffer,packet+(count*TXBUFFERSIZE), TXBUFFERSIZE);

printf("Payload length is %d\n" strlen(txBuffer));

//system time for sending
system("python3 timeprint.py");
printf(""Sending packet no. %d\n", count);

txlora((byte*)txBuffer, strlen((char *)txBuffer));

printf("'Sent packet no. %d\n", count);
printf(*\n™);

delay(1000);

/lreceive Setup-------=-==========mmmmmemeeeo- S
wiringPiSetup () ;
pinMode(ssPin, OUTPUT);
pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);

SetupLoRa();

/Ireceivemode
opmodeLora();
opmode(OPMODE_STANDBY);
opmode(OPMODE_RX);
system("python3 timeprint.py");

printf("Listening ACK at SF%i on %.6lf Mhz.

sf,(double)freq/1000000);
printf(" --------------- \n"),

delay(1000);

if(count<(packet_no-1)){
/Ikeep listening
while(!receiveack()) {

Hiwnhile(Ireceivepacket())

timecount1=0;

/[final look
while(count==(packet_no-1)&&timecountl < ackTime){

timecount=0;
//keep listening
printf("Listening final ACK for 100s.....\n");

resend=false;

while(!receiveack()&&timecount<500000000) {
timecount++;
Hiwnhile(Ireceivepacket() &&timecount<100000000)

if(receiveimage){

startprocess = true;

packet_no =0;

timecountl = ackTime;

system("python3 timeprint.py");

printf("Sent all successfully\n™);

printf("Starting new process in 120s......\n\n\n");
delay(120000);

¥

timecountl++;

Hiwnhile(count==(packet_no-1)&&timecountl < ackTime)

/[countdown to exit while loop and take new pic

for

123

20s\n",

if(timecountl == ackTime&&!resend){
startprocess = true;
count=packet_no;
system(*'python3 timeprint.py");
printf("All session timeout\n");
printf("'Starting new process in 120s......\n\n\n");
delay(120000);

}

delay(1);

115eNd SEtUP=-===n==mmmmmmmm e e e
wiringPiSetup () ;
pinMode(ssPin, OUTPUT);
pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);

SetupLoRa();

}/Iwhile(count<packet_no)

}H/while (startprocess)
} //if sender
else {

[/ radio init

opmodeLora();
opmode(OPMODE_STANDBY);
opmode(OPMODE_RX));

printf("Listening at SF%i on %.61f Mhz.\n", sf,(double)freq/1000000);

printf("'------------------ \n");

while(1) {
Ilreceivepacket();
delay(2);

¥

return (0);}

124

125

APPENDIX I: Stop and Wait Protocol Receiver code

/**
*kkkkkhkkkhkkikkkhkkhkkkiikkkikk

*

* Copyright (c) 2018 Dragino

* http://www.dragino.com

*

R R R R R R R R R R R S R R R R R R R R R AR R R R R R AR R R R R R R R R R R R R R A R R R R R R R AR R R R R R R R R R R R

****************/

#include <string>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <string.h>
#include <sys/time.h>
#include <signal.h>
#include <stdlib.h>

#include <sys/ioctl.h>
#include <wiringPi.h>

#include <wiringPiSP1.h>

1| B
|| sEEgaRwE e R R R R R R R

#define REG_FIFO 0x00
#define REG_OPMODE 0x01
#define REG_FIFO_ADDR_PTR 0x0D

#define REG_FIFO_TX_BASE_AD OxOE
#define REG_FIFO_ RX_BASE_AD OxOF

#define REG_RX_NB_BYTES 0x13

#define REG_FIFO_RX_CURRENT_ADDR 0x10
#define REG_IRQ_FLAGS 0x12

#define REG_DIO_MAPPING_1 0x40
#define REG_DIO_MAPPING_2 Ox41
#define REG_MODEM_CONFIG 0x1D
#define REG_MODEM_CONFIG2 OX1E
#define REG_MODEM_CONFIG3 0x26

#define REG_SYMB_TIMEOUT_LSB Ox1F
#define REG_PKT_SNR_VALUEOx19

#define REG_PAYLOAD_LENGTH 0x22
#define REG_IRQ_FLAGS_MASK ox11
#define REG_MAX_PAYLOAD_LENGTH 0x23

126

#define REG_HOP_PERIOD 0x24
#define REG_SYNC_WORDO0x39

#define REG_VERSION 0x42

#define PAYLOAD_LENGTH 0x40
// LOW NOISE AMPLIFIER

#define REG_LNA 0x0C
#define LNA_MAX_GAIN 0x23
#define LNA_OFF_GAIN 0x00

#define LNA_LOW_GAIN 0x20

#define RegDioMappingl
#define RegDioMapping?2

#define RegPaConfig
#define RegPaRamp
#define RegPaDac

#define SX72_MC2_FSK
#define SX72_MC2_SF7
#define SX72_MC2_SF8
#define SX72_MC2_SF9
#define SX72_MC2_SF10
#define SX72_MC2_SF11
#define SX72_MC2_SF12

0x40 // common
0x41 // common

0x09 // common
0x0A // common
0x5A // common

0x00
0x70
0x80
0x90
0xA0
0xB0
0xCO

#define SX72_MC1_LOW _DATA_RATE OPTIMIZE 0x01 // mandated

for SF11 and SF12

I/ sx1276 RegModemConfigl

#define SX1276_MC1_BW_125
#define SX1276_MC1_BW_250
#define SX1276_MC1 BW_500
#define SX1276_MC1_C
#define SX1276_MC1 C
#define SX1276_MC1_C

R45
R 46
R 47
#define SX1276_MC1_CR 4 8

0x70

0x80

0x90
0x02
0x04
0x06
0x08

#define SX1276_MC1_IMPLICIT_ HEADER_MODE_ON 0x01

I/ sx1276 RegModemConfig2

#define SX1276_MC2_RX_PAYLOAD_CRCON

Il sx1276 RegModemConfig3

0x04

#define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08

#define SX1276_MC3_AGCAUTO

0x04

I/ preamble for lora networks (nibbles swapped)

#define LORA_MAC_PREAMBLE

0x34

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A
#ifdef LMIC_SX1276

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70
#elif LMIC_SX1272

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74
#endif

Il FRF

#define REG_FRF_MSB 0x06

#define REG_FRF_MID 0x07

#define REG_FRF_LSB 0x08

#define FRF_MSB 0xD9 // 868.1 Mhz
#define FRF_MID 0x06

#define FRF_LSB 0x66

/I Constants for radio registers

#define OPMODE_LORA 0x80
#define OPMODE_MASK 0x07
#define OPMODE_SLEEP 0x00
#define OPMODE_STANDBY 0x01
#define OPMODE_FSTX 0x02
#define OPMODE_TX 0x03
#define OPMODE_FSRX 0x04
#define OPMODE_RX 0x05
#define OPMODE_RX_ SINGLE 0x06
#define OPMODE_CAD 0x07

// Bits masking the corresponding IRQs from the radio
#define IRQ_LORA_RXTOUT_MASK 0x80

#define IRQ_LORA_RXDONE_MASK 0x40
#define IRQ_LORA_CRCERR_MASK 0x20

#define IRQ_LORA_HEADER_MASK 0x10

#define IRQ_LORA_TXDONE_MASK 0x08

#define IRQ_LORA_CDDONE_MASK 0x04
#define IRQ_LORA_FHSSCH_MASK 0x02

#define IRQ_LORA_CDDETD_MASK 0x01

// DIO function mappings DOD1D2D3

#define MAP_DIOO_LORA_RXDONE 0x00 // 00------
#define MAP_DIO0_LORA_TXDONE 0x40 // 01------
#define MAP_DIO1_LORA_RXTOUT 0x00 // --00----
#define MAP_DIO1_LORA_NOP 0x30 //--11----
#define MAP_DIO2_LORA_NOP 0xCO // ----11--

// size of radio rxbuffer
#define PAYLOADSIZE 124

127

128

#define SEQUENCESIZE 4
#define TXBUFFERSIZE 128

struct content

{
char rxindexstr[SEQUENCESIZE+1];

int rxindex;
char rxpayload[PAYLOADSIZE+1];

}

[R R R R
I HEHH R
1

typedef bool boolean;

typedef unsigned char byte;

static const int CHANNEL = 0;
char message[TXBUFFERSIZE+1];
bool sx1272 = true;

byte receivedbytes;

enum sf_t { SF7=7, SF8, SF9, SF10, SF11, SF12 };

/**
*kkkkkikkkhkkikkkhkkhkkkikkkkikk

*

* Configure these values!

*

*hkhkkkhkhkkkhkhkhkkhhhkkhhhkhhhkhhhkhhhkhhhkhhhkhhhkhkhhkhkhhhkihhhkihhkhhhkhhhkhihkhiikiiikk

****************/

I SX1272 - Raspberry connections

int ssPin = 6;
intdio0 =7;
int RST =0;

/I Set spreading factor (SF7 - SF12)
sf_t sf=SF7;

Il Set center frequency
uint32_t freq = 923200000; // in Mhz! (868.1)

char rxbufferf[SEQUENCESIZE+1];
char ack1[2]="1";
char ack0[2]="0";

inti=1;
int no_of_packet=10000;
int count=0;

struct content packet[10000];
int timecount=0;

int timecount1=0;

int timecount2=0;

bool receiveimage;

bool receivemessage;

void die(const char *s)

{
perror(s);
exit(1);

}

void selectreceiver()

digitalWrite(ssPin, LOW);
¥

void unselectreceiver()

digitalWrite(ssPin, HIGH);
k

byte readReg(byte addr)

{
unsigned char spibuf[2];

selectreceiver();
spibuf[0] = addr & Ox7F;
spibuf[1] = 0x00;

wiringPiSPIDataRW(CHANNEL, spibuf, 2);

unselectreceiver();

return spibuf[1];
}

void writeReg(byte addr, byte value)

{
unsigned char spibuf[2];

spibuf[0] = addr | 0x80;
spibuf[1] = value;
selectreceiver();

wiringPiSPIDataRW(CHANNEL, spibuf, 2);

unselectreceiver();

129

130

}

static void opmode (uint8_t mode) {
writeReg(REG_OPMODE, (readReg(REG_OPMODE) &
~OPMODE_MASK) | mode);

ks

static void opmodeLora() {
uint8_t u = OPMODE_LORA,;
if (sx1272 == false)
u|=0x8; // TBD: sx1276 high freq
writeReg(REG_OPMODE, u);
}

void SetupLoRa()
{

digitalWrite(RST, HIGH);
delay(100);
digitalWrite(RST, LOW);
delay(100);

byte version = readReg(REG_VERSION);

if (version == 0x22) {
I/ sx1272
printf("SX1272 detected, starting.\n");
sx1272 = true;
}else {
I/ sx12767?
digitalWrite(RST, LOW);
delay(100);
digitalWrite(RST, HIGH);
delay(100);
version = readReg(REG_VERSION);
if (version == 0x12) {
I/ sx1276
printf("SX1276 detected, starting.\n");
sx1272 = false;
} else {
printf("Unrecognized transceiver.\n");
[lprintf("Version: 0x%x\n",version);
exit(1);
}
}

opmode(OPMODE_SLEEP);

/] set frequency

131

uinté4_t frf = ((uint64_t)freq << 19) / 32000000;
writeReg(REG_FRF_MSB, (uint8_t)(frf>>16));
writeReg(REG_FRF_MID, (uint8_t)(frf>> 8));
writeReg(REG_FRF_LSB, (uint8_t)(frf>>0));

writeReg(REG_SYNC_WORD, 0x34); // LoRaWAN public sync word

if (sx1272) {
if (sf == SF11 || sf == SF12) {
writeReg(REG_MODEM_CONFIG,0x0B);

}else {
writeReg(REG_MODEM_CONFIG,0x0A);

¥
writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

}else {
if (sf == SF11 || sf == SF12) {
writeReg(REG_MODEM_CONFIG3,0x0C);

}else {
writeReg(REG_MODEM_CONFIG3,0x04);

¥
writeReg(REG_MODEM_CONFIG,0x72);
writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

}

if (sf == SF10 || sf == SF11 || sf == SF12) {
writeReg(REG_SYMB_TIMEOUT _LSB,0x05);

}else {
writeReg(REG_SYMB_TIMEOUT_LSB,0x08);

}

writeReg(REG_ MAX_PAYLOAD LENGTH,0x80);

writeReg(REG_PAYLOAD_LENGTH,PAYLOAD_LENGTH);

writeReg(REG_HOP_PERIOD,0xFF);

writeReg(REG_FIFO_ADDR_PTR,
readReg(REG_FIFO_RX_BASE_AD));

writeReg(REG_LNA, LNA_MAX_GAIN);

boolean receive(char *payload) {
/I clear rxDone
writeReg(REG_IRQ_FLAGS, 0x40);

int irgflags = readReg(REG_IRQ_FLAGS);

/I payload crc: 0x20
if((irgflags & 0x20) == 0x20)

132

{
printf("CRC error\n™);

writeReg(REG_IRQ_FLAGS, 0x20);
return false;

}else {

byte currentAddr = readReg(REG_FIFO_RX CURRENT_ADDR);
byte receivedCount = readReg(REG_RX_NB_BYTEYS);
receivedbytes = receivedCount;

writeReg(REG_FIFO_ADDR_PTR, currentAddr);
for(int i = 0; i < receivedCount; i++)

payload[i] = (char)readReg(REG_FIFO);
}
}

return true;

}

bool receivepacket() {

long int SNR;
int rssicorr;

if(digitalRead(dio0) == 1)
{

/lclear message before next message received
memset(message, 0, TXBUFFERSIZE+1);

if(receive(message)) {

byte value = readReg(REG_PKT_SNR_VALUE);
if(value & 0x80) // The SNR sign bitis 1

{

// Invert and divide by 4

value = ((~value + 1) & OxFF) >> 2;

SNR = -value;

}

else

{

// Divide by 4

SNR = (value & OxFF) >> 2;
}

if (sx1272) {

rssicorr = 139;

}else {

rssicorr = 157;

¥

133

printf("Packet RSSI: %d, ", readReg(0x1A)-rssicorr);
printf("RSSI: %d, ", readReg(0x1B)-rssicorr);
printf("SNR: %li, ", SNR);

printf("Length: %i", (int)receivedbytes);

printf(*\n™);

printf("Payload: %s\n", message);

/Istore in variable for used later
strncpy(packet[i].rxindexstr,message+(0),SEQUENCESIZE);

if((atoi(packet[i].rxindexstr)) == 0){
packet[atoi(packet[i].rxindexstr)].rxindex = atoi(packet[i].rxindexstr);

strncpy((packet[atoi(packet[i].rxindexstr)].rxpayload),message+(SEQUENCE
SIZE),PAYLOADSIZE);

system("python3 timeprint.py");
printf("Received packet no. %d\n\n",packet[i].rxindex);

no_of_packet = atoi((packet[atoi(packet[i].rxindexstr)].rxpayload));
printf("'no of packet to be received is %d\n\n",no_of packet);

}else if(atoi(packet[i].rxindexstr) 1=
packet[atoi(packet[i].rxindexstr)].rxindex){

packet[atoi(packet[i].rxindexstr)].rxindex =
atoi(packet[i].rxindexstr);
/lprintf("index is %d\n" packet[i].rxindex);

strncpy((packet[atoi(packet[i].rxindexstr)].rxpayload), message+(SEQUENCE
SIZE),PAYLOADSIZE);

system("python3 timeprint.py");
printf("Received packet no. %d\n\n",packet[i].rxindex);

count++;
i=atoi(packet[i].rxindexstr)+1;
[lprintf(“count is %d\n",count);

ks

timecountl = 0;
receivemessage=true;
return true;

Y/ received a message

Y/ dio0=1

134

return false;

ks

static void configPower (int8_t pw) {
if (sx1272 == false) {
/I no boost used for now
if(pw >=17) {
pw = 15;
}else if(pw < 2) {
pw = 2;

}

/I check board type for BOOST pin
writeReg(RegPaConfig, (uint8_t)(0x80|(pw&0xf)));
writeReg(RegPaDac, readReg(RegPaDac)|0x4);

}else {
/I set PA config (2-17 dBm using PA_BOOST)

if(pw > 17) {
pw =17,
}else if(pw < 2) {
pw = 2;
}
writeReg(RegPaConfig, (uint8_t)(0x80|(pw-2)));
}
}

static void writeBuf(byte addr, byte *value, byte len) {
unsigned char spibuf[256];
spibuf[0] = addr | 0x80;
for (inti=0;i<len;i++) {
spibuf[i + 1] = value[i];
}
selectreceiver();
wiringPiSPIDataRW(CHANNEL, spibuf, len + 1);
unselectreceiver();

¥

void txlora(byte *frame, byte datalen) {

/I set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP

writeReg(RegDioMapping1,
MAP_DIO0_LORA_TXDONE|MAP_DIO1 LORA_NOP|MAP_DIO2_LOR
A_NOP);

/I clear all radio IRQ flags

writeReg(REG_IRQ_FLAGS, OxFF);

/l mask all IRQs but TxDone

writeReg(REG_IRQ_FLAGS_MASK, ~IRQ_LORA_TXDONE_MASK);

135

/I initialize the payload size and address pointers
writeReg(REG_FIFO_TX_BASE_AD, 0x00);
writeReg(REG_FIFO_ADDR_PTR, 0x00);
writeReg(REG_PAYLOAD_LENGTH, datalen);

/I download buffer to the radio FIFO
writeBuf(REG_FIFO, frame, datalen);
/I now we actually start the transmission
opmode(OPMODE_TX);

printf("send: %s\n", frame);

}
int main (int argc, char *argv[]) {

if (argc < 2) {
printf ("Usage: argv[0] sender|rec [message]\n");
exit(1);

}

if (Istrcmp(*sender”, argv[1])) {
opmodeLora();
/I enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);

writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xFQ) | 0x08); // set
PA ramp-up time 50 uSec

configPower(23);

printf("Send packets at SF%i on %.6If Mhz\n",
sf,(double)freq/1000000);

printf("'------------------ \n");

if (argc > 2)
IIstrncpy((char *)hello, argv[2], sizeof(hello));

while(1) {
Iltxlora(hello, strlen((char *)hello));
delay(5000);

¥

} else

receiveimage = true;

while(receiveimage){

136

/reset all variable
receivemessage=false;
receiveimage = false;
count = 0;

i=1;
no_of packet=10000;
count=0;

timecount=0;
timecount1=0;

/lclear rx inc

for (int j=1;j<(no_of_packet+1);j++){
packet[j].rxindex = 0;

memset(packet[j].rxpayload, 0, PAYLOADSIZE+1);

printf("******Start receive new image******\n");

Ilreceive setup--------------=-------- e e

wiringPiSetup () ;
pinMode(ssPin, OUTPUT);
pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);
SetupLoRa();

Ilreceivemode
opmodeLora();
opmode(OPMODE_STANDBY);
opmode(OPMODE_RX);
printf("Listening at SF%i on %.61f Mhz.\n", sf,(double)freq/1000000);
printf(*'------------------ \n");

Ilkeep listening first packet as receiver
while(!receivepacket()) {

¥

while(count<(no_of packet)&&timecount1<5){

delay(2000);

137

11S8NA SEEUP === === e e
wiringPiSetup () ;
pinMode(ssPin, OUTPUT);
pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);
SetupLoRa();

//sendermode

opmodeLora();
/I enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);

writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08);
I set PA ramp-up time 50 uSec

configPower(23);
delay(5000);

if(receivemessage){
system("python3 timeprint.py");
printf("Sending ACK1\n");
txlora((byte*)ackl, strlen((char *)ack1));
printf(*\n™);
}
else{
system("python3 timeprint.py");
printf("Sending ACKO0\n");
txlora((byte*)ackO, strlen((char *)ackQ));
printf("\n");
}

receivemessage=false;

delay(1);
[lreceive setup-------------------------- e

wiringPiSetup () ;

pinMode(ssPin, OUTPUT);
pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);

SetupLoRa();

138

/lreceivemode
opmodeLora();
opmode(OPMODE_STANDBY);
opmode(OPMODE_RX);
system("python3 timeprint.py");
printf("Listening at SF%i on %.6If Mhz. for 20s\n",
sf,(double)freq/1000000);

timecount = 0;

Ilkeep listening
while(Ireceivepacket()&&timecount<100000000) {
timecount++;

}
delay(1);

if(timecount==99999999){
printf("Timeout\n");
system("python3 timeprint.py");
printf(*\n\n");

timecountl++;
}H/(count<(no_of packet)&&timecount1<?2)

if(no_of_packet==count){

system("python3 timeprint.py");
printf("Start building image\n");

/* File pointer to hold reference of input file */
FILE *fPtr;

if ((fPtr = fopen(*'ImageRx.txt", "w")) == NULL) {
printf("Error! opening file");
[/ Program exits if file pointer returns NULL.
exit(1);
}

139

/lprint all variable to file

for (int j=1;j<(no_of packet+1);j++){
fputs(packet[j].rxpayload,fPtr);
}

/* Done with file, hence close file. */
fclose(fPtr);

printf("finally done\n");
system("python hextoimage.py");

system("python3 timeprint.py");
printf(*Image is print to file\n");

/Isend done to sender
/Iclear rxbuffer before store
memset(rxbuffer, 0, SEQUENCESIZE+1);

/Istore rx buffer
strncpy(rxbuffer,"DONE",SEQUENCESIZE+1);

/lsend setup------------=----mnmnmmmomo- e

wiringPiSetup () ;
pinMode(ssPin, OUTPUT);
pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);
SetupLoRa();
//sendermode
opmodeLora();
/I enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);

writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xFO0) | 0x08);
/I set PA ramp-up time 50 uSec

configPower(23);
delay(6000);
system("python3 timeprint.py");

printf("Sending DONE ACK at SF%i on %.6lf Mhz.\n",
sf,(double)freq/1000000);

140

txlora((byte*)rxbuffer, strlen((char *)rxbuffer));
printf(*\n\n");

delay();

receiveimage = true;

H/if(no_of packet==count) all file received

H/wnhile(receiveimage)
}/else receiver

return (0);
}

141

APPENDIX J: LoRa Multi-Packet Transmission Protocol Transmitter code

/**
*kkkkkhkkkhkkikkkhkkhkkkiikkkikk

*

* Copyright (c) 2018 Dragino

* http://www.dragino.com

*

R R R R R R R R R R R S R R R R R R R R R AR R R R R R AR R R R R R R R R R R R R R A R R R R R R R AR R R R R R R R R R R R

****************/

#include <string.h>
#include <string>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <string.h>
#include <sys/time.h>
#include <signal.h>
#include <stdlib.h>

#include <sys/ioctl.h>

#include <wiringPi.h>
#include <wiringPiSP1.h>

#include <math.h>

|| sEEgaRwE e R R R R R R R
1| BB

#define REG_FIFO 0x00
#define REG_OPMODE 0x01
#define REG_FIFO_ADDR_PTR 0x0D

#define REG_FIFO_TX_BASE_AD OxOE
#define REG_FIFO_ RX_BASE_AD OxOF

#define REG_RX_NB_BYTES 0x13

#define REG_FIFO_RX_CURRENT ADDR 0x10
#define REG_IRQ_FLAGS 0x12

#define REG_DIO_MAPPING_1 0x40
#define REG_DIO_MAPPING_2 0x41
#define REG_MODEM_CONFIG 0x1D
#define REG_MODEM_CONFIG2 OX1E
#define REG_MODEM_CONFIG3 0x26

#define REG_SYMB_TIMEOUT LSB Ox1F
#define REG_PKT_SNR_VALUEOx19

#define REG_PAYLOAD LENGTH 0x22
#define REG_IRQ_FLAGS_MASK ox11

142

#define REG_MAX_PAYLOAD_LENGTH 0x23
#define REG_HOP_PERIOD 0x24
#define REG_SYNC_WORDOX39

#define REG_VERSION 0x42

#define PAYLOAD_LENGTH 0x40

/[LOW NOISE AMPLIFIER

#define REG_LNA 0x0C

#define LNA_MAX_GAIN 0x23

#define LNA_OFF_GAIN 0x00

#define LNA_LOW_GAIN 0x20

#define RegDioMappingl 0x40 // common
#define RegDioMapping2 0x41 /l common
#define RegPaConfig 0x09 // common
#define RegPaRamp O0x0A // common
#define RegPaDac Ox5A // common
#define SX72_MC2_FSK 0x00

#define SX72_MC2_SF7 0x70

#define SX72_MC2_SF8 0x80

#define SX72_MC2_SF9 0x90

#define SX72_MC2_SF10 0xA0

#define SX72_MC2_SF11 0xBO

#define SX72_MC2_SF12 0xCO0

#define SX72_MC1 LOW_DATA RATE_OPTIMIZE 0x01 // mandated
for SF11 and SF12

I/ sx1276 RegModemConfigl

#define SX1276_MC1 BW_125 0x70
#define SX1276_MC1 BW_250 0x80
#define SX1276_MC1 BW_500 0x90
#define SX1276_MC1 CR 4 5 0x02
#define SX1276 MC1 CR 4 6 0x04
#define SX1276 MC1 CR 4 7 0x06
#define SX1276_MC1 CR 4 8 0x08

#define SX1276_MC1_IMPLICIT_HEADER_MODE_ON 0x01

I/ sx1276 RegModemConfig2
#define SX1276_MC2_RX _PAYLOAD_CRCON 0x04

I/ sx1276 RegModemConfig3
#define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08
#define SX1276_MC3_AGCAUTO 0x04

/I preamble for lora networks (nibbles swapped)

143

#define LORA_MAC_PREAMBLE 0x34

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A
#ifdef LMIC_SX1276

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70
#elif LMIC_SX1272

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74
#endif

Il FRF

#define REG_FRF_MSB 0x06

#define REG_FRF_MID 0x07

#define REG_FRF_LSB 0x08

#define FRF_MSB 0xD9 // 868.1 Mhz
#define FRF_MID 0x06

#define FRF_LSB 0x66

/I Constants for radio registers

#define OPMODE_LORA 0x80
#define OPMODE_MASK 0x07
#define OPMODE_SLEEP 0x00
#define OPMODE_STANDBY 0x01
#define OPMODE_FSTX 0x02
#define OPMODE_TX 0x03
#define OPMODE_FSRX 0x04
#define OPMODE_RX 0x05
#define OPMODE_RX_SINGLE 0x06
#define OPMODE_CAD 0x07

// Bits masking the corresponding IRQs from the radio
#define IRQ_LORA_RXTOUT_MASK 0x80

#define IRQ_LORA_RXDONE_MASK 0x40
#define IRQ_LORA_CRCERR_MASK 0x20

#define IRQ_LORA_HEADER_MASK 0x10

#define IRQ_LORA_TXDONE_MASK 0x08

#define IRQ_LORA_CDDONE_MASK 0x04
#define IRQ_LORA_FHSSCH_MASK 0x02

#define IRQ_LORA_CDDETD_MASK 0x01

/I DIO function mappings D0OD1D2D3

#define MAP_DIO0_LORA_RXDONE 0x00 // 00------
#define MAP_DIOO0_LORA_TXDONE 0x40 // 01------
#define MAP_DIO1_LORA_RXTOUT 0x00 //--00----
#define MAP_DIO1_LORA_NOP 0x30 //--11----
#define MAP_DIO2_LORA_NOP 0xCO // ----11--

/I size of radio tx buffer

144

#define PAYLOADSIZE 124
#define SEQUENCESIZE 4
#define TXBUFFERSIZE 128
#define ackTime 10

| R R T T R T R
I B R R
1

typedef bool boolean;

typedef unsigned char byte;

static const int CHANNEL = 0;

char message[TXBUFFERSIZE+1];
bool sx1272 = true;
byte receivedbytes;

enum sf_t { SF7=7, SF8, SF9, SF10, SF11, SF12 };

/**
*kkkkkikkkkikkkhkkhkkkikkkkikk

*

* Configure these values!

*

*hhkkkhkhkkkhkhkhkkhkhkhkkhhhkkhhhkkhhhkkhhhkhhhkhkkhhkhkkhhkhkkhhhkkihhkkhhhkkhhhkkhhhkkhkhhkkhkihkkhihkkiiikk

****************/

/I SX1272 - Raspberry connections

int ssPin = 6;
intdio0 =7;
int RST =0;

/I Set spreading factor (SF7 - SF12)
sf_t sf=SF7;

/I Set center frequency
uint32_t freq=923200000; // in Mhz! (868.1)

unsigned char hello[32]="HELLO";
char packet[100000];

char txBuffer[TXBUFFERSIZE+1];
float numBytes;

int count=0;

int packet_no;

int resendindex= 999999999;

bool transmitmode = false;
bool receivemode = false;

bool receiveimage = false;
bool startprocess = true;
bool resend = false;

int timecount;

int timecountl,

struct content

{
int index;
char payload[TXBUFFERSIZE+1];

¥
struct content packetinc[10000];

void die(const char *s)

{
perror(s);
exit(1);

}

void selectreceiver()

{
digitalWrite(ssPin, LOW);

}

void unselectreceiver()

digitalWrite(ssPin, HIGH);
k

byte readReg(byte addr)
{
unsigned char spibuf[2];

selectreceiver();

spibuf[0] = addr & Ox7F;

spibuf[1] = 0x00;
wiringPiSPIDataRW(CHANNEL, spibuf, 2);
unselectreceiver();

return spibuf[1];
}

void writeReg(byte addr, byte value)
{

145

146

unsigned char spibuf[2];

spibuf[0] = addr | 0x80;

spibuf[1] = value;

selectreceiver();
wiringPiSPIDataRW(CHANNEL, spibuf, 2);

unselectreceiver();

}

static void opmode (uint8_t mode) {
writeReg(REG_OPMODE, (readReg(REG_OPMODE) &
~OPMODE_MASK) | mode);

ky

static void opmodeLora() {
uint8_t u = OPMODE_LORA,;
if (sx1272 == false)
u|=0x8; // TBD: sx1276 high freq
writeReg(REG_OPMODE, u);

}

void SetupLoRa()

digitalWrite(RST, HIGH);
delay(100);
digitalWrite(RST, LOW);
delay(100);

byte version = readReg(REG_VERSION);

if (version == 0x22) {
Il sx1272
printf("SX1272 detected, starting.\n");
sx1272 = true;
}else {
I/ sx1276?
digitalWrite(RST, LOW);
delay(100);
digitalWrite(RST, HIGH);
delay(100);
version = readReg(REG_VERSION);
if (version == 0x12) {
I/ sx1276
printf("SX1276 detected, starting.\n");
sx1272 = false;
} else {

printf("Unrecognized transceiver.\n");

147

[lprintf("Version: 0x%x\n",version);
exit(1);
}
}

opmode(OPMODE_SLEEP);

/I set frequency

uinté4_t frf = ((uint64_t)freq << 19) / 32000000;
writeReg(REG_FRF_MSB, (uint8_t)(frf>>16));
writeReg(REG_FRF_MID, (uint8_t)(frf>> 8));
writeReg(REG_FRF_LSB, (uint8_t)(frf>>0));

writeReg(REG_SYNC_WORD, 0x34); // LoRaWAN public sync word

if (sx1272) {
if (sf == SF11 || sf == SF12) {
writeReg(REG_MODEM_CONFIG,0x0B);

}else {
writeReg(REG_MODEM_CONFIG,0x0A);

¥
writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

}else {
if (sf == SF11 || sf == SF12) {
writeReg(REG_MODEM_CONFIG3,0x0C);

}else {
writeReg(REG_MODEM_CONFIG3,0x04);

k
writeReg(REG_MODEM_CONFIG,0x72);
writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

}

if (sf == SF10 || sf == SF11 || sf == SF12) {
writeReg(REG_SYMB_TIMEOUT _LSB,0x05);

} else {
writeReg(REG_SYMB_TIMEOUT _LSB,0x08);

}

writeReg(REG_ MAX_PAYLOAD LENGTH,0x80);

writeReg(REG_PAYLOAD_LENGTH,PAYLOAD LENGTH);

writeReg(REG_HOP_PERIOD,0xFF);

writeReg(REG_FIFO_ADDR_PTR,
readReg(REG_FIFO_RX_BASE_AD));

writeReg(REG_LNA, LNA_MAX_GAIN);

¥

boolean receive(char *payload) {
/I clear rxDone
writeReg(REG_IRQ_FLAGS, 0x40);

148

int irgflags = readReg(REG_IRQ_FLAGS);

/I payload crc: 0x20
if((irgflags & 0x20) == 0x20)

{
printf("CRC error\n™);

writeReg(REG_IRQ_FLAGS, 0x20);
return false;

}else {

byte currentAddr = readReg(REG_FIFO_RX_CURRENT_ADDR);
byte receivedCount = readReg(REG_RX_NB_BYTES);
receivedbytes = receivedCount;

writeReg(REG_FIFO_ADDR_PTR, currentAddr);
for(int i = 0; i < receivedCount; i++)
payload[i] = (char)readReg(REG_FIFO);

ky

return true;

ky

boolean receiveack() {

long int SNR;
int rssicorr;

if(digitalRead(dio0) == 1)
{

/lclear message before next message received
memset(message, 0, TXBUFFERSIZE+1);

if(receive(message)) {
byte value = readReg(REG_PKT_SNR_VALUE);
if(value & 0x80) // The SNR sign bitis 1
{
/I Invert and divide by 4
value = ((~value + 1) & OXFF) >> 2;

SNR = -value;
}
else
{

/[Divide by 4

SNR = (value & OxFF) >> 2;
}

if (sx1272) {
rssicorr = 139;

}else {

rssicorr = 157;

}

printf("Packet RSSI: %d, ", readReg(0x1A)-rssicorr);
printf("RSSI: %d, ", readReg(0x1B)-rssicorr);
printf("SNR: %li, ", SNR);

printf("Length: %i", (int)receivedbytes);

printf(*\n™);

printf("Payload: %s\n", message);

if('strcmp(message,"DONE™)){
receiveimage = true;
system("python3 timeprint.py");
printf("Received DONE\n");

else if(strlen(message)!=0)

{

resendindex = atoi(message);

resend = true;

system("python3 timeprint.py");
printf(""Received resend request ACK\n");

ky

timecount1=0;
return true;
} // received a message
}// dio0=1

return false;

¥

static void configPower (int8_t pw) {
if (sx1272 == false) {
/I no boost used for now
if(pw >=17) {
pw = 15;
} else if(pw < 2) {
pw = 2;
}
/I check board type for BOOST pin
writeReg(RegPaConfig, (uint8_t)(0x80|(pw&0xf)));
writeReg(RegPaDac, readReg(RegPaDac)|0x4);

149

150

}else {
I set PA config (2-17 dBm using PA_BOOST)

if(pw > 17) {
pw =17,
}else if(pw < 2) {
pw = 2;
}
writeReg(RegPaConfig, (uint8_t)(0x80|(pw-2)));
}
}

static void writeBuf(byte addr, byte *value, byte len) {
unsigned char spibuf[256];
spibuf[0] = addr | 0x80;
for (inti=0;1<len;i++) {
spibuf[i + 1] = value[i];

selectreceiver();
wiringPiSP1DataRW(CHANNEL, spibuf, len + 1);
unselectreceiver();

ky

void txlora(byte *frame, byte datalen) {

/I set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP

writeReg(RegDioMappingl,
MAP_DIO0_LORA_TXDONE|MAP_DIO1_LORA_NOP|MAP_DIO2_LOR
A_NOP);

/I clear all radio IRQ flags

writeReg(REG_IRQ_FLAGS, 0xFF);

// mask all IRQs but TxDone

writeReg(REG_IRQ_FLAGS_MASK, ~IRQ_LORA_TXDONE_MASK);

/I initialize the payload size and address pointers
writeReg(REG_FIFO_TX_BASE_AD, 0x00);
writeReg(REG_FIFO_ADDR_PTR, 0x00);
writeReg(REG_PAYLOAD_LENGTH, datalen);

/I download buffer to the radio FIFO
writeBuf(REG_FIFO, frame, datalen);
/I now we actually start the transmission
opmode(OPMODE_TX);

printf(send: %s\n", frame);

}
char *readfile(){

static char ¢[1000];

151

FILE *fptr;

if ((fptr = fopen("test.txt", "r")) == NULL) {
printf("Error! opening file");
I/ Program exits if file pointer returns NULL.
exit(1);

}

/I reads text until newline is encountered
fscanf(fptr, "%[™n]", c);

[lprintf("Data from the file:\n%s", c);
fclose(fptr);

return c;

int main (int argc, char *argv[]) {

if (argc < 2) {
printf ("Usage: argv[0] sender|rec [message]\n");
exit(1);

}

wiringPiSetup () ;
pinMode(ssPin, OUTPUT);
pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);
SetupLoRa();
if (!stremp(“"sender”, argv[1])) {
while(startprocess){
startprocess =false;
count = 0;
receiveimage = false;
system("python3 timeprint.py");
printf("Start to take the picture\n™);

[Isystem time for taking picture

Il Take a picture with the raspicam
system("'raspistill -0 ImageTXx.jpg -hf -vf -w 100 -h 100");

/lcompress imagetx.jpg to image_compressed
system("python3 compress.py™);

152

printf("Picture taken and compress\n");

/Iread file store to ImageTx.txt
system("python3 storebytes.py");

/Ipython to generate appended file
system("python addheader.py");

//scan appended header file for transmit
FILE *fptr;
if ((fptr = fopen("ImageTx_h.txt", "r"")) == NULL)

printf("Error! opening file");
// Program exits if file pointer returns NULL.
exit(1);

¥

/I reads text until newline is encountered
fscanf(fptr, "%[™n]", packet);
fclose(fptr);

/lprint out appended header text file
printf(""Data from the file:\n%s", packet);

/Ino of packet in floating point
numBytes = strlen(packet);
printf("\nTotal payload length is %.2f\n" ,numBytes);

//round to higher integer of no of packet
packet_no = ceil(numBytes/TXBUFFERSIZE);
printf("packet size is %d\n",packet_no);

//sender mode
opmodeLora();
I enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);

writeReg(RegPaRamp, (readReg(RegPaRamp) & O0xF0) | 0x08); // set PA
ramp-up time 50 uSec

configPower(23);

printf("Send packets at SF%i on %.6If Mhz.\n", sf,(double)freq/1000000);
prlntf(" --------------- \n")’

/lcount=0

/lif str=12345,txbuffer size = 2,raw packet no = 3,appended packet _no=4
true while count<4, go while loop 4 times

153

while(count<packet_no) {
delay(5000);

/Isplit the string into different packet
strncpy(txBuffer,packet+(count* TXBUFFERSIZE), TXBUFFERSIZE);

printf("Payload length is %d\n" strlen(txBuffer));

//system time for sending
system("python3 timeprint.py");
printf("Sending packet no. %d\n", count);

txlora((byte*)txBuffer, strlen((char *)txBuffer));
//delay(5000);

printf("'Sent packet no. %d\n", count);
printf("\n\n");

count++;
}H/while(count<packet_no) send all the packet

timecountl = 0;

/Ibefore entering while loop
system("python3 timeprint.py");
printf(""Waiting to receive ack\n");

delay(1000);

Ilreceive Setup-------=-==========mmmmmmme - S
wiringPiSetup () ;

pinMode(ssPin, OUTPUT);

pinMode(dio0, INPUT);

pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);
SetupLoRa();

[Ireceivemode

opmodeLora();

opmode(OPMODE_STANDBY);

opmode(OPMODE_RX));

printf("Listening at SF%i on %.6lf Mhz.\n", sf,(double)freq/1000000);

154

while(count==packet_no && timecountl < ackTime){
resendindex =9999999;

resend = false;

receiveimage = false;

timecount=0;

/Ibefore entering while loop
system("python3 timeprint.py");
printf("Listening ack for 60s\n");

Ilkeep listening
while(!receiveack()&&timecount<301450000) {
timecount++;

ky

delay(1);
/[after exiting while loop
if(timecount==301449999){

system("python3 timeprint.py");
printf("Timeout\n");

}

if(receiveimage){
startprocess = true;
packet no =0;

}
lldelay (5000);

if(resend){

delay(2000);
wiringPiSetup () ;
pinMode(ssPin, OUTPUT);
pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);
SetupLoRa();
//sender mode
opmodeLora();

/I enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);

155

writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08); // set PA
ramp-up time 50 uSec

configPower(23);

/Iresend Mode-------------------
//send missing packet

strncpy(txBuffer,packet+(resendindex*TXBUFFERSIZE), TXBUFFERSIZE);

printf("Payload length is %d\n" strlen(txBuffer));

delay(5000);

/Isystem time for sending
system("python3 timeprint.py");
printf("Resending packet no. %d\n", resendindex);

txlora((byte*)txBuffer, strlen((char *)txBuffer));

printf("Resent packet no. %d\n\n ", resendindex);

delay(1000);

[IrECRIVES LU === == m o oo oo e e
wiringPiSetup () ;

pinMode(ssPin, OUTPUT);

pinMode(dio0, INPUT);

pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);
SetupLoRa();

/lreceivemode
opmodeLora();
opmode(OPMODE_STANDBY);
opmode(OPMODE_RX);
printf("Listening at SF%i on %.61f Mhz.\n", sf,(double)freq/1000000);
printf(*'------------------ \n");
delay(1000);

MHlif(resend)

timecountl++;

156

printf("Leaving about %d seconds to receive ack\n\n",(10-timecount1)*60);

/[countdown to exit while loop and take new pic
if(timecountl == ackTime){
startprocess = true;
system("python3 timeprint.py");
printf("All session timeout\n™);
printf("'Starting new process......\n");

}

/lcount=0;
}/while(count==packet_no)

}H/while (startprocess)
} //if sender
else {

/l radio init

opmodeLora();
opmode(OPMODE_STANDBY);
opmode(OPMODE_RX));

printf("Listening at SF%i on %.6lf Mhz.\n", sf,(double)freq/1000000);

printf("'------------------ \n");

while(1) {
Ilreceivepacket();
delay(1);

k
k

return (0);
}

157

APPENDIX K: LoRa Multi-Packet Transmission Protocol Receiver code

/**
*hhhhkkkhkkhkkhkkhkiihhkhkhkkk

*

* Copyright (c) 2018 Dragino

* http://www.dragino.com

*

*hhkkkhhkhkkhkhkhkkhkhkhkkhhhkkhhhkkhhhkhhhkhhhkhkhhkhkhhkhkkhhkhkkrhhkkihhkkihhkkhhhkkikihkkihihkkiihkiiikk

****************/

#include <string>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.n>
#include <string.h>
#include <sys/time.h>
#include <signal.h>
#include <stdlib.h>

#include <sys/ioctl.h>
#include <wiringPi.h>

#include <wiringPiSP1.h>

|| sEEgaRwE e R R R R R R R
1| BB

#define REG_FIFO 0x00
#define REG_OPMODE 0x01
#define REG_FIFO_ADDR_PTR 0x0D

#define REG_FIFO_TX_BASE_AD OXOE
#define REG_FIFO_ RX_BASE_AD OxOF

#define REG_RX_NB_BYTES 0x13
#define REG_FIFO_RX_CURRENT _ADDR 0x10
#define REG_IRQ_FLAGS 0x12

#define REG_DIO_MAPPING_1 0x40
#define REG_DIO_MAPPING_2 0x41
#define REG_MODEM_CONFIG 0x1D
#define REG_MODEM_CONFIG2 OX1E
#define REG_MODEM_CONFIG3 0x26

#define REG_SYMB_TIMEOUT LSB Ox1F
#define REG_PKT_SNR_VALUEOx19

#define REG_PAYLOAD LENGTH 0x22
#define REG_IRQ_FLAGS_MASK ox11

158

#define REG_MAX_PAYLOAD_LENGTH 0x23
#define REG_HOP_PERIOD 0x24
#define REG_SYNC_WORDOX39

#define REG_VERSION 0x42

#define PAYLOAD_LENGTH 0x40

/[LOW NOISE AMPLIFIER

#define REG_LNA 0x0C

#define LNA_MAX_GAIN 0x23

#define LNA_OFF_GAIN 0x00

#define LNA_LOW_GAIN 0x20

#define RegDioMappingl 0x40 // common
#define RegDioMapping2 0x41 /l common
#define RegPaConfig 0x09 // common
#define RegPaRamp O0x0A // common
#define RegPaDac Ox5A // common
#define SX72_MC2_FSK 0x00

#define SX72_MC2_SF7 0x70

#define SX72_MC2_SF8 0x80

#define SX72_MC2_SF9 0x90

#define SX72_MC2_SF10 0xA0

#define SX72_MC2_SF11 0xBO

#define SX72_MC2_SF12 0xCO0

#define SX72_MC1 LOW_DATA RATE_OPTIMIZE 0x01 // mandated
for SF11 and SF12

I/ sx1276 RegModemConfigl

#define SX1276_MC1 BW_125 0x70
#define SX1276_MC1 BW_250 0x80
#define SX1276_MC1 BW_500 0x90
#define SX1276_MC1 CR 4 5 0x02
#define SX1276 MC1 CR 4 6 0x04
#define SX1276 MC1 CR 4 7 0x06
#define SX1276_MC1 CR 4 8 0x08

#define SX1276_MC1_IMPLICIT_HEADER_MODE_ON 0x01

I/ sx1276 RegModemConfig2
#define SX1276_MC2_RX _PAYLOAD_CRCON 0x04

I/ sx1276 RegModemConfig3
#define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08
#define SX1276_MC3_AGCAUTO 0x04

/I preamble for lora networks (nibbles swapped)

159

#define LORA_MAC_PREAMBLE 0x34

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A
#ifdef LMIC_SX1276

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70
#elif LMIC_SX1272

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74
#endif

Il FRF

#define REG_FRF_MSB 0x06

#define REG_FRF_MID 0x07

#define REG_FRF_LSB 0x08

#define FRF_MSB 0xD9 // 868.1 Mhz
#define FRF_MID 0x06

#define FRF_LSB 0x66

/I Constants for radio registers

#define OPMODE_LORA 0x80
#define OPMODE_MASK 0x07
#define OPMODE_SLEEP 0x00
#define OPMODE_STANDBY 0x01
#define OPMODE_FSTX 0x02
#define OPMODE_TX 0x03
#define OPMODE_FSRX 0x04
#define OPMODE_RX 0x05
#define OPMODE_RX_SINGLE 0x06
#define OPMODE_CAD 0x07

// Bits masking the corresponding IRQs from the radio
#define IRQ_LORA_RXTOUT_MASK 0x80

#define IRQ_LORA_RXDONE_MASK 0x40
#define IRQ_LORA_CRCERR_MASK 0x20

#define IRQ_LORA_HEADER_MASK 0x10

#define IRQ_LORA_TXDONE_MASK 0x08

#define IRQ_LORA_CDDONE_MASK 0x04
#define IRQ_LORA_FHSSCH_MASK 0x02

#define IRQ_LORA_CDDETD_MASK 0x01

/I DIO function mappings D0OD1D2D3

#define MAP_DIO0_LORA_RXDONE 0x00 // 00------
#define MAP_DIOO0_LORA_TXDONE 0x40 // 01------
#define MAP_DIO1_LORA_RXTOUT 0x00 //--00----
#define MAP_DIO1_LORA_NOP 0x30 //--11----
#define MAP_DIO2_LORA_NOP 0xCO // ----11--

/I size of radio rxbuffer

160

#define PAYLOADSIZE 124
#define SEQUENCESIZE 4
#define TXBUFFERSIZE 128

struct content

char rxindexstr[SEQUENCESIZE+1];

int rxindex;

char rxpayload[PAYLOADSIZE+1];
Y

I HEHH R
[R R R R
1

typedef bool boolean;

typedef unsigned char byte;

static const int CHANNEL = 0;
char message[TXBUFFERSIZE+1];
bool sx1272 = true;

byte receivedbytes;

enum sf_t { SF7=7, SF8, SF9, SF10, SF11, SF12 };

/**
*khhhkhhkhkhkhkkhkkhkkiikhkhkhikkk

*

* Configure these values!
*

Fhhhhhkhkhkhkkhkhkhrhhhkhkhkhkhkhhirrhhkhkhkhkhhiirrhhhkhkhhhihirhhhhkhkhhiiirhiixixixk

****************/

I/ SX1272 - Raspberry connections

int ssPin = 6;
intdio0 =7;
int RST =0;

/I Set spreading factor (SF7 - SF12)
sf_t sf = SF7;

I Set center frequency
uint32_t freq = 923200000; // in Mhz! (868.1)

char rxbuffer[SEQUENCESIZE+1];

inti=1;
int no_of_packet=10000;
int count=0;

struct content packet[10000];
int timecount=0;

int timecount1=0;

int timecount2=0;

bool receiveimage;

void die(const char *s)

{
perror(s);
exit(1);

}

void selectreceiver()

digitalWrite(ssPin, LOW);
k

void unselectreceiver()

{
digitalWrite(ssPin, HIGH);

}

byte readReg(byte addr)

{
unsigned char spibuf[2];

selectreceiver();

spibuf[0] = addr & OX7F;

spibuf[1] = 0x00;
wiringPiSPIDataRW(CHANNEL, spibuf, 2);
unselectreceiver();

return spibuf[1];
}

void writeReg(byte addr, byte value)

{
unsigned char spibuf[2];

spibuf[0] = addr | 0x80;

spibuf[1] = value;

selectreceiver();
wiringPiSPIDataRW(CHANNEL, spibuf, 2);

unselectreceiver();

161

162

static void opmode (uint8_t mode) {
writeReg(REG_OPMODE, (readReg(REG_OPMODE) &
~OPMODE_MASK) | mode);

}

static void opmodeLora() {
uint8_tu = OPMODE_LORA,;
if (sx1272 == false)
u|=0x8; // TBD: sx1276 high freq
writeReg(REG_OPMODE, u);

ky

void SetupLoRa()
{

digitalWrite(RST, HIGH);
delay(100);
digitalWrite(RST, LOW);
delay(100);

byte version = readReg(REG_VERSION);

if (version == 0x22) {
Il sx1272
printf("SX1272 detected, starting.\n");
sx1272 = true;
}else {
I/ sx1276?
digitalWrite(RST, LOW);
delay(100);
digitalWrite(RST, HIGH);
delay(100);
version = readReg(REG_VERSION);
if (version == 0x12) {
I/ sx1276
printf("SX1276 detected, starting.\n");
sx1272 = false;
}else {
printf("Unrecognized transceiver.\n");
[lprintf(**Version: 0x%x\n",version);
exit(1);
}
}

opmode(OPMODE_SLEEP);

/I set frequency
uinté4_t frf = ((uint64_t)freq << 19) / 32000000;

163

writeReg(REG_FRF_MSB, (uint8_t)(frf>>16));
writeReg(REG_FRF_MID, (uint8_t)(frf>> 8));
writeReg(REG_FRF_LSB, (uint8_t)(frf>> 0));

writeReg(REG_SYNC_WORD, 0x34); // LoRaWAN public sync word

if (sx1272) {
if (sf == SF11 || sf == SF12) {
writeReg(REG_MODEM_CONFIG,0x0B);

}else {
writeReg(REG_MODEM_CONFIG,0x0A);

}
writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

}else {
if (sf == SF11 || sf == SF12) {
writeReg(REG_MODEM_CONFIG3,0x0C);

}else {
writeReg(REG_MODEM_CONFIG3,0x04);

}
writeReg(REG_MODEM_CONFIG,0x72);
writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

ky

if (sf == SF10 || sf == SF11 || sf == SF12) {
writeReg(REG_SYMB_TIMEOUT _LSB,0x05);

}else {
writeReg(REG_SYMB_TIMEOUT _LSB,0x08);

}

writeReg(REG_MAX_PAYLOAD_LENGTH,0x80);

writeReg(REG_PAYLOAD_LENGTH,PAYLOAD LENGTH);

writeReg(REG_HOP_PERIOD,0xFF);

writeReg(REG_FIFO_ADDR_PTR,
readReg(REG_FIFO_RX_BASE_AD));

writeReg(REG_LNA, LNA_MAX_GAIN):

boolean receive(char *payload) {
/I clear rxDone
writeReg(REG_IRQ_FLAGS, 0x40);

int irgflags = readReg(REG_IRQ_FLAGS);

/I payload crc: 0x20
if((irgflags & 0x20) == 0x20)
{

164

printf("CRC error\n™);
writeReg(REG_IRQ_FLAGS, 0x20);
return false;

}else {

byte currentAddr = readReg(REG_FIFO_RX_CURRENT_ADDR);
byte receivedCount = readReg(REG_RX_NB_BYTES);
receivedbytes = receivedCount;

writeReg(REG_FIFO_ADDR_PTR, currentAddr);
for(int i = 0; i < receivedCount; i++)
payload[i] = (char)readReg(REG_FIFO);

ky

return true;

ky

bool receivepacket() {

long int SNR;
int rssicorr;

if(digitalRead(dio0) == 1)

/lclear message before next message received
memset(message, 0, TXBUFFERSIZE+1);

if(receive(message)) {

byte value = readReg(REG_PKT_SNR_VALUE);
if(value & 0x80) // The SNR sign bit is 1

{

/I Invert and divide by 4

value = ((~value + 1) & OxFF) >> 2;

SNR = -value;

}

else

{

/I Divide by 4

SNR = (value & OxFF) >> 2;
}

if (sx1272) {

rssicorr = 139;

} else {

rssicorr = 157;

¥

165

printf("Packet RSSI: %d, ", readReg(0x1A)-rssicorr);
printf("RSSI: %d, ", readReg(0x1B)-rssicorr);
printf("SNR: %li, ", SNR);

printf("Length: %i", (int)receivedbytes);

printf(*\n™);

printf("Payload: %s\n", message);

/[store in variable for used later
strncpy(packet[i].rxindexstr,message+(0),SEQUENCESIZE);

if((atoi(packet[i].rxindexstr)) == 0){
packet[atoi(packet[i].rxindexstr)].rxindex = atoi(packet[i].rxindexstr);

strncpy((packet[atoi(packet[i].rxindexstr)].rxpayload), message+(SEQUENCE
SIZE),PAYLOADSIZE);

system("python3 timeprint.py");
printf("Received packet no. %d\n",packet[i].rxindex);

no_of packet = atoi((packet[atoi(packet[i].rxindexstr)].rxpayload));
printf("'no of packet to be received is %d\n\n",no_of_packet);

}else if(atoi(packet[i].rxindexstr) I=
packet[atoi(packet[i].rxindexstr)].rxindex){

packet[atoi(packet[i].rxindexstr)].rxindex =
atoi(packet[i].rxindexstr);
Iprintf("index is %d\n",packet[i].rxindex);

strncpy((packet[atoi(packet[i].rxindexstr)].rxpayload),message+(SEQUENCE
SIZE),PAYLOADSIZE);

system("python3 timeprint.py");
printf("Received packet no. %d\n",packet[i].rxindex);

printf("\n\n");

count++;
i=atoi(packet[i].rxindexstr)+1;

timecountl = 0;
timecount2 = 0;

return true;
}

Y/ received a message

Y/ dio0=1

166

return false;

ks

static void configPower (int8_t pw) {
if (sx1272 == false) {
/I no boost used for now
if(pw >=17) {
pw = 15;
}else if(pw < 2) {
pw = 2;

}

/I check board type for BOOST pin
writeReg(RegPaConfig, (uint8_t)(0x80|(pw&0xf)));
writeReg(RegPaDac, readReg(RegPaDac)|0x4);

}else {
/I set PA config (2-17 dBm using PA_BOOST)

if(pw > 17) {
pw =17,
}else if(pw < 2) {
pw = 2;
}
writeReg(RegPaConfig, (uint8_t)(0x80|(pw-2)));
}
}

static void writeBuf(byte addr, byte *value, byte len) {
unsigned char spibuf[256];
spibuf[0] = addr | 0x80;
for (inti=0;i<len;i++) {
spibuf[i + 1] = value[i];
}
selectreceiver();
wiringPiSPIDataRW(CHANNEL, spibuf, len + 1);
unselectreceiver();

¥

void txlora(byte *frame, byte datalen) {

/I set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP

writeReg(RegDioMapping1,
MAP_DIO0_LORA_TXDONE|MAP_DIO1 LORA_NOP|MAP_DIO2_LOR
A_NOP);

/I clear all radio IRQ flags

writeReg(REG_IRQ_FLAGS, OxFF);

/l mask all IRQs but TxDone

writeReg(REG_IRQ_FLAGS_MASK, ~IRQ_LORA_TXDONE_MASK);

167

/I initialize the payload size and address pointers
writeReg(REG_FIFO_TX_BASE_AD, 0x00);
writeReg(REG_FIFO_ADDR_PTR, 0x00);
writeReg(REG_PAYLOAD_LENGTH, datalen);

/I download buffer to the radio FIFO
writeBuf(REG_FIFO, frame, datalen);
/I now we actually start the transmission
opmode(OPMODE_TX);

printf("send: %s\n", frame);

}
int main (int argc, char *argv[]) {

if (argc < 2) {
printf ("Usage: argv[0] sender|rec [message]\n");
exit(1);

}

if (Istrcmp(*sender”, argv[1])) {
opmodeLora();
/I enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);

writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xFQ) | 0x08); // set
PA ramp-up time 50 uSec

configPower(23);

printf("Send packets at SF%i on %.61f Mhz\n",
sf,(double)freq/1000000);

printf("'------------------ \n");

if (argc > 2)
[Istrncpy((char *)hello, argv[2], sizeof(hello));

while(1) {
Iltxlora(hello, strlen((char *)hello));
delay(5000);

}

} else

receiveimage = true;

while(receiveimage){

168

/Ireset all variable
receiveimage = false;
count =0;

i=1;
no_of_packet=10000;
count=0;

timecount=0;
timecount1=0;

/lclear rxinc

for (int j=1;j<(no_of packet+1);j++){
packet[j].rxindex = 0;

memset(packet[j].rxpayload, 0, PAYLOADSIZE+1);
}

printf(*'start receive new image\n");

Ilreceive setup----------------------- memmm e

wiringPiSetup () ;
pinMode(ssPin, OUTPUT);
pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);
SetupLoRa();

/Ireceivemode
opmodeLora();
opmode(OPMODE_STANDBY);
opmode(OPMODE_RX));
printf("Listening at SF%i on %.61f Mhz.\n", sf,(double)freq/1000000);
printf("'------------------ \n");

I/keep listening first packet as receiver
while(Ireceivepacket()) {

¥

bool noreceive = true;
timecount2 = 0;

while(noreceive&& timecount2 < 5){

[Ire-receive //dunno no_of_packet
while(count<(no_of packet)&&timecount1<2) {

timecount = 0;
system("python3 timeprint.py");
printf("Listening at SF%i on %.6If Mhz. for
sf,(double)freq/1000000);

Ilkeep listening
while(Ireceivepacket()&&timecount<100000000) {
timecount++;
Hiwnhile(Ireceivepacket() &&timecount<100000000)

if(timecount==99999999){
printf(""Timeout\n™);
system(*python3 timeprint.py");
printf(*\n\n");

}

timecountl++;
}iwhile(count<(no_of packet))

timecount1=0;

int j=0;
bool inloop = true;

/lcheck whether missing packet
while(j<(no_of packet+1)&&inloop){

if(strlen(packet[j].rxpayload)==0){

system("python3 timeprint.py");
printf("Packet no. %d is lost, request to resend\n" j);

printf("\n");
[/clear rxbuffer before store
memset(rxbuffer, 0, SEQUENCESIZE+1);

/Istore rx buffer
sprintf(rxbuffer, "%d", j);
delay(2000);

169

20s\n",

l/send Setup----=--=mmmmmmmmmmemmee e

wiringPiSetup () ;
pinMode(ssPin, OUTPUT);

170

pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);
SetupLoRa();

//sendermode

opmodeLora();

/I enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);

writeReg(RegPaRamp, (readReg(RegPaRamp) & OxFO0) |
0x08); // set PA ramp-up time 50 uSec

configPower(23);

printf("Send packets at SF%i on %.6lf Mhz\n",
sf,(double)freq/1000000);

delay(5000);
system("python3 timeprint.py");
printf("Sending resending request\n™);
txlora((byte*)rxbuffer, strlen((char *)rxbuffer));
printf("Sent resending request\n™);

printf("\n");
delay(1000);
inloop = false;

Ireceive setup---=-=-=-=-=n=nmnemmmmnmnmeeneneen memememememememememeeeeeee
wiringPiSetup () ;
pinMode(ssPin, OUTPUT);
pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);

SetupLoRa();

[Ireceivemode
opmodeLora();
opmode(OPMODE_STANDBY);
opmode(OPMODE_RX);
printf("Listening at SF%i on %.61f Mhz\n",
sf,(double)freq/1000000);

171

Hiif(strlen(packet[j].rxpayload)==0)
j++;

Hiwnhile(j<(no_of packet))

if(no_of_packet==count){

system("python3 timeprint.py");
printf("Start building image\n™);

* File pointer to hold reference of input file */
FILE *fPtr;

if ((fPtr = fopen("ImageRx.txt", "w")) == NULL) {
printf("Error! opening file");
I/ Program exits if file pointer returns NULL.
exit(1);
}

[lprint all variable to file
for (int j=1;j<(no_of packet+1);j++){
fputs(packet[j].rxpayload,fPtr);
}
/* Done with file, hence close file. */
fclose(fPtr);
printf("finally done\n™);

system("python hextoimage.py");
printf("Image is print to file\n™);

system(*'python3 timeprint.py");

printf("\n");

/Isend done to sender
[Iclear rxbuffer before store
memset(rxbuffer, 0, SEQUENCESIZE+1);

/Istore rx buffer
strncpy(rxbuffer,"DONE",SEQUENCESIZE+1);

delay(2000);

Ilsend setup-------=-=-=-===-=-=nmnmnmm-- m=memmmememmmeeeeee-

wiringPiSetup () ;
pinMode(ssPin, OUTPUT);

172

pinMode(dio0, INPUT);
pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);
SetupLoRa();

//sendermode

opmodeLora();
/I enter standby mode (required for FIFO loading))
opmode(OPMODE_STANDBY);

writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08);
/I set PA ramp-up time 50 uSec

configPower(23);

printf("Send packets at SF%i on %.6lIf Mhz.\n",
sf,(double)freq/1000000);

delay(5000);
txlora((byte*)rxbuffer, strlen((char *)rxbuffer));

delay(1000);

receiveimage = true;
noreceive = false;

H/if(no_of packet==count) all file received

timecount2++;
if(no_of packet!=count){
printf(""Try to request for resending for %d times\n™,timecount2);}

//countdown to exit while loop and take new pic
if(timecount2 == 3){

receiveimage = true;

printf(*'receiveimage is true");

¥

H/while(noreceive)

if(no_of_packet!=count){
printf("Countdown for waiting reached\n™);
system("python3 timeprint.py™);}

173

H/iwhile(receiveimage)
}/else receiver

return (0);
}

174

APPENDIX L: Header adding python code (addheader.py) in transmitter

import binascii
import math

PAYLOADSIZE=226
HEADERSIZE=4

#non-appended file name
filename = 'ImageTx.txt'

with open(filename, 'rb’) as f:
my_str = f.read()
#my_str ="1234567890123456789012345678901234567"

length = len(my_str)
packet_no = math.ceil(length/float(PAYLOADSIZE))
packet_no= int(packet_no)

#print(my _str)
#print(length)
#print(packet_no)

for i in range (1,packet_no):
#print(i)
i_str=str(i+1).zfil(HEADERSIZE)
j=i-1

my_str=my_str[:(PAYLOADSIZE+(j*(PAYLOADSIZE+HEADERSIZE)))] +
i_str+my_str[(PAYLOADSIZE+(j*(PAYLOADSIZE+HEADERSIZE))):]

my_str=my_str[:0] + str(1).zfil(HEADERSIZE) + my_str[0:]
#print(my_str)

packet_no_char = str(packet_no).zfill(PAYLOADSIZE)
#print(packet_no_char)

packet no_char = packet no _char[:0] + str(0).zfil(HEADERSIZE) +
packet_no_char[0:]
#print(packet_no_char)

my_str = packet_no_char+ my_str
#print(my_str)

#appended file name

175

txtfile = 'ImageTx_h.txt'
with open(txtfile, ‘'w+'") as file:
file.write(my_str)

file.close()

176

APPENDIX M: Image compress python code (compress.py) in transmitter

from PIL import Image

image

foo = Image.open("ImageTx.jpg")

| downsize the image with an ANTIALIAS filter (gives the highest quality)
foo = foo.resize((300,300),Image. ANTIALIAS)
foo.save("ImageTx_compress_95.jpg",optimize=True,quality=95)

177

APPENDIX N: Conversion of image to hexadecimal format python code
(storebytes.py) in transmitter
import binascii
filename = 'ImageTx_compress_95.jpg’
with open(filename, 'rb’) as f:
content = f.read()

#print(content)
#print(binascii.hexlify(content))

str_content = str(binascii.hexlify(content), 'utf-8")
#print(str_content)

txtfile = 'ImageTx.txt'

with open(txtfile, 'w+") as file:

#for i in range(10):
file.write(str_content)

file.close()

178

APPENDIX O: Conversion of hexadecimal data to image and dropbox
uploading python code (hextoimage.py) in receiver

import binascii
import time

#received file name

import dropbox

from dropbox.exceptions import ApiError, AuthError
import time

import datetime

import picamera

import sys, 0s

#convert received data to image
filename = 'ImageRx.txt'

with open(filename, 'rb’) as f:
data = f.read()

data=data.strip()
data=data.replace(* ',)
data=data.replace(\n’,)

data = binascii.a2b_hex(data)

timestr = time.strftime("%Y %m%d-%H%M%S")

with open('hextoimage-'+timestr+'.jpg’, ‘wb') as image_file:
image_file.write(data)

#upload image to dropbox

Authorisation token

TOKEN = 'q2Cu3yRj3-
AAAAAAAAAHXMYLIDeJOZN2V58j2SAvjDOIleu9q3pxpHwv48PvaklLZU'

Upload localfile to Dropbox
def uploadFile(localfile):

Check that access tocken added
if (len(TOKEN) == 0):
sys.exit("ERROR: Missing access token. ™
"try re-generating an access token from the app console at
dropbox.com.™)

Create instance of a Dropbox class, which can make requests to API
print("Creating a Dropbox object...")
dbx = dropbox.Dropbox(TOKEN)

Check that the access token is valid

179

try:
dbx.users_get_current_account()
except AuthError as err:
sys.exit("ERROR: Invalid access token; try re-generating an "
"access token from the app console at dropbox.com.™)

Specify upload path
uploadPath ="/' + localfile

Read in file and upload
with open(localfile, 'rb') as f:
print("Uploading " + localfile + " to Dropbox as " + uploadPath + "..."")

try:
dbx.files_upload(f.read(), uploadPath)
except ApiError as err:
Check user has enough Dropbox space quota
if (err.error.is_path() and
err.error.get_path().error.is_insufficient_space()):
sys.exit("ERROR: Cannot upload; insufficient space.")
elif err.user_message_text:
print(err.user_message_text)
sys.exit()
else:
print(err)
sys.exit()

Delete file

#def deleteLocal(file):

os.system("rm " + file)

print("File: " + file + " deleted ...")

def main():
image file name
file = 'hextoimage-'+timestr+'.jpg'

Upload file
uploadFile(file)

Delete local file
#deleteLocal(file)

print("Done")

if _name__ =='_main__"
main()

180

APPENDIX P: Time printing python code (timezone.py) in both transmitter
and receiver
from datetime import datetime

from datetime import timezone

current_GMT _timestamp = datetime.utcnow()

print (current_GMT _timestamp)

