

PERFORMANCE STUDY OF IOT CONNECTIVITY: LORA

NETWORK

SIOW JIA YIE

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Electronic and Communications Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2020

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : Siow Jia Yie

ID No. : 1505254

Date : 15/5/2020

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “PERFORMANCE STUDY OF IOT

CONNECTIVITY: LORA NETWORK” was prepared by SIOW JIA YIE

has met the required standard for submission in partial fulfilment of the

requirements for the award of Bachelor of Engineering (Honours) Electronic

and Communications Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Ir Dr. Tham Mau Luen

Date : 17/5/2020

iii

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2020, Siow Jia Yie. All right reserved.

iv

ACKNOWLEDGEMENTS

I am thankful to everyone who had contributed to the successful completion of

this project. First of all, I would like to express my special thanks of gratitude

to my Final Year Project (FYP) supervisor Ir Dr. Tham Mau Luen for advising

me with his selfless guidance and help in completing this project.

In addition, I want to thank my parents and friends who support and

encourage me throughout this project. They gave me significant amount of

encouragements that supported me to complete this project successfully.

v

ABSTRACT

The deployment of wireless sensor networks (WSNs) yields a convenient and

economical solution for collecting information automatically. However, there

are several limitations such as wide geographic area, bandwidth scarcity, lack

of network infrastructure and shortage of power supply. Long range (LoRa) is

one of the most promising low power wide area network (LPWAN)

technologies that allow long-range transmissions. LoRa can be classified into

two parts, namely LoRa at physical layer and Long Range Wide Area Network

(LoRaWAN) at data link layer. Such architecture motivates the study of two use

cases in this thesis. In the first scenario, LoRA gateway and node are

implemented in order to evaluate the system performance of LoRaWAN in an

indoor environment. The impacts on airtime, received signal strength indicator

(RSSI) and signal-to-noise ratio (SNR) are explored under different spreading

factors (SF) and transmission distances. In the second scenario, the LoRaWAN

environment is shifted to Long Range Peer to Peer (LoRa P2P) image

transmission that involves only the LoRa physical layer. Two nodes are set up

in this scenario. Constrained by LoRA maximum transmission unit (MTU),

images are segmented into multiple packets, which are transferred by either

stop-and-wait protocol or LoRa Multi-Packet Transmission Protocol. As in the

first scenario, similar performance metrics are assessed. Experimental results

from these two studies reveal that LoRA transmissions using LoRAWAN and

LoRA P2P are feasible, as long as the distance is within 35m in an indoor

environment.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xiv

LIST OF APPENDICES xvi

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 2

1.4 Aim and Objectives 3

1.5 Scope and Limitation of the Study 3

1.6 Contribution of the Study 4

1.7 Outline of the Report 4

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 LPWAN standards 5

2.2.1 NB-IoT 5

2.2.2 Sigfox 6

2.2.3 LoRa 6

2.3 Comparison of LPWAN standards 8

2.4 Related work 8

2.5 Summary 10

3 LORAWAN 10

vii

3.1 Introduction 11

3.2 Selection of frequency 11

3.3 Equipment used 11

3.4 LoRa Gateway setup 16

3.5 LoRa Node setup 18

3.6 LoRa Packet Structure 27

3.7 LoRaWAN network architecture 28

3.8 Performance evaluation of LoRaWAN 29

3.8.1 The impact on airtime under different SFs and

payload lengths 29

3.8.2 The impacts on RSSI and SNR under different

transmission distances 31

4 LORA P2P 36

4.1 Introduction 36

4.2 Equipment used 36

4.3 LoRa P2P Packet Structure 38

4.4 Design of Transmission Protocol 38

4.4.1 Stop and Wait Protocol 40

4.4.2 LoRa Multi-Packet Transmission Protocol 42

4.5 Image Processing 47

4.5.1 Image Compression 47

4.5.2 Image Conversion 49

4.5.3 Image Building 51

4.6 Design of Transmission Protocol 51

4.7 Performance evaluation of LoRaP2P 51

4.7.1 Stop and wait transmission protocol vs. LoRa

Multi-Packet Transmission Protocol 52

4.7.2 The impacts on number of packet loss,

transmission time, RSSI and SNR under different

transmission distances 54

4.7.3 The impacts on number of packet loss and

transmission time when using different image qualities

 59

5 CONCLUSIONS AND RECOMMENDATIONS 62

viii

5.1 Conclusions 62

5.2 Recommendations for future work 63

REFERENCES 64

APPENDICES 67

ix

LIST OF TABLES

Table 2.1: Three classes of LoRaWAN. 7

Table 3.1: Raspberry Pi Zero W specifications. 13

Table 3.2: RAK831 concentrator board specifications. 14

Table 3.3: RAK811 LoRa Module Specifications. 15

Table 3.4: AT command used for configuration. 25

Table 3.5: Number of DR of RAK811 LoRa module. 27

Table 3.6: LoRa configuration paramaters. 30

Table 3.7: Airtime (in milliseconds) for different SFs and

payload lengths. 30

Table 3.8: Configuration parameters. 33

Table 3.9: Results of the impacts on RSSI and SNR under

different transmission distances. 34

Table 4.1: Dragino LoRa module specifications. 37

Table 4.2: 5MP Camera Board for Raspberry Pi

specifications. 38

Table 4.3: Results of image conversion. 50

Table 4.4: Configuration parameters. 53

Table 4.5: Average transmission time when using stop and

wait protocol and LoRa Multi-Packet

Transmission Protocol. 54

Table 4.6: Configuration parameters. 55

Table 4.7: Results of the impacts on number of packet loss,

transmission time, RSSI and SNR under

different transmission distances. 57

Table 4.8: Configuration parameters. 59

Table 4.9: Results of effect of quality of image on number

of packet loss and transmission time. 60

x

LIST OF FIGURES

Figure 2.1: Summary of Sigfox, NB-IoT and LoRa (Mekki

et al., 2019). 8

Figure 3.1: LoRaWAN frequency plan of AS920-923

(TheThingsNetwork, n. d.). 11

Figure 3.2: Raspberry Pi Zero W. 12

Figure 3.3: RAK831 concentrator board. 14

Figure 3.4: RAK811 LoRa Module. 15

Figure 3.5: LoRa gateway setup. 16

Figure 3.6: Checking of LoRa gateway’s IP address. 17

Figure 3.7: LoRa gateway is accessed through SSH using

PuTTY. 17

Figure 3.8: Gateway ID. 17

Figure 3.9: TTN console page after registration of gateway.

 18

Figure 3.10: Boot mode for RAK811 Wisnode. 18

Figure 3.11: Laptop’s USB port and RAK811 Wisnode

connection. 19

Figure 3.12: RST button on RAK811 WisNode. 19

Figure 3.13: UART, port, baudrate, and parity configuration

in STM32CubeProgrammer. 20

Figure 3.14: Correct log in STM32CubeProgrammer. 20

Figure 3.15: Data on RAK811 WisNode is erased and new

file is opened. 20

Figure 3.16: Bootloader file (RAK811_BOOT_V3.0.2.bin)

is loaded and downloaded to RAK811. 21

Figure 3.17: Message of file download complete. 21

Figure 3.18: “BOOT” pin and the “GND” pin connection.

 22

xi

Figure 3.19: Showing of BOOT MODE of RAK811 in RAK

serial port tool. 22

Figure 3.20: Burning of firmware into RAK811 using RAK

LoRaButton Upgrade Tool V1.0. 23

Figure 3.21: Log data when the RST button of RAK811

Wisnode is pressed. 23

Figure 3.22: Registration of application in The Thing

Networks. 23

Figure 3.23: Registration of device in The Thing Networks.

 24

Figure 3.24: Configuration parameters in The Thing

Networks. 24

Figure 3.25: Configuration of RAK811 Wisnode by using

RAK Serial Port Tool. 25

Figure 3.26: Joining LoRa network by using AT command

“at+join”. 26

Figure 3.27: Sending data with AT command

“at+send=lora:2:12345678”. 26

Figure 3.28: Gateway traffic shown in The Thing Networks.

 27

Figure 3.29: LoRa application traffic in The Thing Networks.

 27

Figure 3.30: LoRa Packet Structure. 28

Figure 3.31: LoRa Packet Structure explanations. 28

Figure 3.32: Standard network architecture of LoRaWAN.

 29

Figure 3.33: Network architecture of LoRaWAN in this

study. 29

Figure 3.34: Airtime against payload length with different

SFs. 31

Figure 3.35: Building of Evergreen Scotpine Condominium.

 32

xii

Figure 3.36: Floor map of Evergreen Scotpine

Condominium. 32

Figure 3.37: Floor map (Gateway). 34

Figure 3.38: Gateway at G floor. 34

Figure 3.39: Floor map (LoRa Wisnode). 34

Figure 3.40: Laptop and RAK811 LoRa Module at 3rd floor.

 34

Figure 4.1: Dragino LoRa module. 37

Figure 4.2: 5MP Camera Board for Raspberry Pi. 38

Figure 4.3: A single packet. 39

Figure 4.4: C language and corresponding description. 39

Figure 4.5: Adding header. 40

Figure 4.6: Stop-and-wait protocol. 40

Figure 4.7: Stop and wait protocol’s transmitter coding

flowchart. 41

Figure 4.8: Stop and wait protocol’s receiver coding

flowchart. 42

Figure 4.9: LoRa Multi-Packet Transmission Protocol. 43

Figure 4.10: LoRa Multi-Packet Transmission Protocol with

timeout session. 44

Figure 4.11: LoRa Multi-Packet Protocol with resending

request. 44

Figure 4.12: LoRa Multi-Packet Transmission Protocol’s

transmitter coding flowchart. 45

Figure 4.13: LoRa Multi-Packet Transmission Protocol’s

receiver flowchart. 46

Figure 4.14: 3280 x 2464 full-resolution image

(ImageTx.jpg). 47

Figure 4.15: 240 x 160 pixel resized image. 48

Figure 4.16: Quality: 10, Size = 2KB, PSNR = 25.58 dB. 49

xiii

Figure 4.17: Quality: 25, Size = 4KB, PSNR = 29.75 dB. 49

Figure 4.18: Quality: 50, Size = 7KB, PSNR = 28.12 dB. 49

Figure 4.19: Quality: 95, Size = 24KB, PSNR = 32.12 dB.

 49

Figure 4.20: LoRa P2P transmitter. 52

Figure 4.21: LoRa P2P receiver. 52

Figure 4.22: VNC viewer monitoring and controlling. 53

Figure 4.23: Floor map of Evergreen Scotpine

Condominium (Receiver). 56

Figure 4.24: Placement of receiver at G floor. 56

Figure 4.25: Floor map of Evergreen Scotpine

Condominium (Transmitter). 56

Figure 4.26: Placement of transmitter at 1st floor. 56

Figure 4.27: Transmitter monitoring using mobile SSH

through SSH connection. 56

Figure 4.28: Receiver monitoring using VNC viewer in

laptop through SSH connection. 57

xiv

LIST OF SYMBOLS / ABBREVIATIONS

ABP Authentication By Personalisation

ACK Acknowledgement

BLE Bluetooth Low Energy

BPSK Binary Phase Shift Keying

CSI Camera Serial Interface

CRC Cyclic Redundancy Check

CSS Chirp Spread Spectrum

EDs End-devices

FFC Flat Flex Connectors

FSK Frequency shift keying

GFSK Gaussian frequency shift keying

GSM Global System for Mobile Communications

HDMI High-Definition Multimedia Interface

IoT Internet of Things

IP Internet Protocol

ISM Industrial, Scientific, and Medical

JPEG Joint Photographic Experts Group

LoRa Long range

LoRa P2P Long range Peer to Peer

LoRaWAN Long range wide-area network

LOS Line of sight

LPWAN Low Power Wide Area Network

LTE Long-term evolution

M2M Machine to Machine

MAC Medium Access Control

MTU Maximum Transmission Unit

NB-IoT Narrowband Internet of Things

OOK On-off keying

OS Operating System

OTAA Over-the-Air Activation

PC personal computer

PIL Python Imaging Library

xv

PSNR peak signal-to-noise ratio

P2P peer-to-peer

RFID radio-frequency identification

RPI Raspberry Pi

RSSI Received Signal Strength Indicator

RX Receiver

SD Secure Digital

SNR Signal-to-noise ratio

SPI Serial Peripheral Interface

SSH Secure Shell

TTN The Things Network

TX Transmitter

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

Wi-Fi Wireless Fidelity

WSNs Wireless Sensor Networks

WUSN Wireless Underground Sensor Networks

xvi

LIST OF APPENDICES

APPENDIX A: Raspberry Pi Zero W Datasheet 67

APPENDIX B: RAK 831 datasheet 68

APPENDIX C: RAK 811 datasheet 79

APPENDIX D: Manual to write LoRa gateway image to

Micro SD 81

APPENDIX E: Registration of gateway in TTN 85

APPENDIX F: Dragino LoRa GPS HAT Single Channel

LoRa & GPS modules Datasheet 88

APPENDIX G: SX1276 datasheet 94

APPENDIX H: Stop and Wait Protocol Transmitter codes

 110

APPENDIX I: Stop and Wait Protocol Receiver code 125

APPENDIX J: LoRa Multi-Packet Transmission Protocol

Transmitter code 141

APPENDIX K: LoRa Multi-Packet Transmission Protocol

Receiver code 157

APPENDIX L: Header adding python code (addheader.py)

in transmitter 174

APPENDIX M: Image compress python code (compress.py)

in transmitter 176

APPENDIX N: Conversion of image to hexadecimal format

python code (storebytes.py) in transmitter

 177

APPENDIX O: Conversion of hexadecimal data to image

and dropbox uploading python code

(hextoimage.py) in receiver 178

APPENDIX P: Time printing python code (timezone.py) in

both transmitter and receiver 180

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

The applications and interest for Internet of Things (IoT) have increased

significantly in this century. Business consultancy group McKinsey and Gartner

indicates that connected devices reached up to 26.7 billion nationwide in 2019

(Security, 2020). The connected devices are projected to increase by three times

in 2020. A report from Strategy Analytics predicts that connected devices will

increase to 38.6 billion in 2025 and grow up to 50 billion in 2030 (Help Net

Security, 2019).

There are different types of wireless communication technologies such

as Bluetooth, RFID, ZigBee, Wi-Fi, 2G/3G/4G, which can be used to support

IoT network. However, these technologies are inadequate when taking network

coverage, power consumption and implementation cost into consideration

(Rubio-Aparicio et al., 2019).

Low Power Wide Area Networks (LPWANs) start to attact the attention

of public with the trending of IoT as they offer functionalities to IoT devices to

send packets for wide communication ranges with optimal energy consumption

and appropriate for large scale deployments (Ayoub et al., 2018). LPWAN

technologies utilize a relatively low frequency such as 433 MHz, 868 MHz and

915 MHz. This allows a larger reliability against unwanted signal while using

lower power as compared to typical Wi-Fi which functions at 2.4 GHz

frequency bands (Muaz Abdul Rahman et al., 2018). In line of sight (LOS)

condition, LPWAN technologies can reach up to range of 15 km.

LPWAN technologies are classified into two groups, cellular and non-

cellular. Cellular are not the main choices of the designers because they use

licensed bands which have high initialisation fees and the users are restricted by

operators when using it. Non-cellular technologies such as Long Range (LoRa)

and Sigfox are more desirable because they use unlicensed bands which are free

and the users are independent to use it (Dogan et al., 2019). Long Range Wide

Area Network (LoRaWAN) caught the attention of researchers, communities

and organizations among all these LPWAN technologies because LoRaWAN is

2

widely recognized to have the best capability for providing the LPWAN

technology to various applications of IoT.

LoRa can be introduced two different parts which are the physical layer,

Semtech’s patented modulation technique based on the modified form of chirp

spread spectrum (CSS) and LoRaWAN data link layer protocol designed and

standardized by LoRa Alliance (Masadan et al., 2018). Using CSS technology,

LoRa has more robustness against degradation while supporting large numbers

of devices and having long communication range (Ahmad et al., 2018).

Meanwhile, LoRaWAN uses LoRa modulation in physical layer. A LoRaWAN

system typically made up of nodes connected to IoT system via a gateway. The

gateway is used to let the nodes to connect the network server and the internet.

The node acts as a transducer that will output appropriate electrical signal based

on triggered events.

1.2 Importance of the Study

The performance analysis for indoor environment of LoRaWAN will be

discussed in this study for possible applications and future research areas.

Besides that, this study discusses the limitation in image transmission by using

LoRa and how image transmission can be done in a peer-to-peer (P2P) network

model.

1.3 Problem Statement

For the implementation of IoT, the most famous technologies used are Wi-Fi

and cellular previously. Although the high data rate can be achieved with Wi-Fi

but Wi-Fi has high power usage and only allows short range communication.

On the other hand, cellular has the characteristics of high data rate and long-

range communication but cellular encounter problems from high power

consumption and high implementation cost (Vatcharatiansakul et al., 2017).

New explorations within the IoT requires additional communication

technologies that can provide better IoT implementation in terms of cost, power,

range and complexity. The power usage profile of the IoT end devices (EDs)

should be carefully planned to expand the battery’s lifetime as they are mostly

battery-operated sensor nodes. As EDs are spread over large operation area,

communication range need to be increased up to several km. Taking everything

3

into account, this can be only be realized by using LPWAN technologies.

Although some LPWAN technologies emerge, LoRaWAN is the promising

technology to overcome these issues.

1.4 Aim and Objectives

In this project, the objectives are to implement the LORA gateway, to connect

the gateway to LORA nodes, and to evaluate the system performance of

LoRaWAN in an indoor environment. This experiment consists of one gateway,

one ED, and one network server. The gateway is implemented by connecting

Raspberry Pi Zero W to LoRa gateway concentrator module RAK831 via Serial

Peripheral Interface (SPI) interface. At the same time, the ED is made up of

RAK811 LoRa module. The AT command is sent from the serial port tool in

the laptop to configure RAK811 LoRa module. The performance evaluation will

be studied in terms of airtime, signal-to-noise ratio (SNR) and received signal

strength indicator (RSSI) under different spreading factors (SFs) and

transmission distances.

Besides that, this project aims to build a Long Range Peer to Peer (LoRa

P2P) communication system to do image transmission and to study the system

performance of LoRa P2P in an indoor environment in term of transmission

time, number of packet loss, RSSI and SNR.

1.5 Scope and Limitation of the Study

This is a two-part study. For Part 1 of study, the proposed prototype consists of

a gateway and a node. The focus of this study is on the performance evaluation

of system in terms of airtime spent when using different SFs and RSSI and SNR

of signal when placing the end node RAK811 at different locations. For the

second part, the investigations about the image transmission using LoRa P2P

will be carried out. The prototype in Part 2 consists of a two LoRa nodes. The

transmission protocol that is suitable for image transmission will be studied. The

performance study in terms of number of packet loss, transmission time, RSSI

and SNR for LoRa P2P image transmission also will be focused.

Due to the hardware limitations of end node RAK811, for the

LoRaWAN performance evaluation, only spreading factors of SF7, SF8, SF9

and SF10 can be tested in this study. There are also some issues experienced

4

when testing the RAK811 with Arduino board due to immaturity of the

hardware and the developer still debugs and updates the firmware for better

compatibly. In addition, the performance study of LoRa at outdoor environment

and long-range LoRa transmission cannot be conducted due to covid-19

lockdown during the performance testing of this study. Due to time and cost

constraint, only one node and one gateway are set up for LoRaWAN, more

nodes should be deployed for more variations of evaluation.

1.6 Contribution of the Study

As far as we know, the actual performance of LoRaWAN has rarely been

studied in local. Most of them are carried out in simulation, which can’t emulate

the realistic behaviours of the actual network. The challenge is further magnified

when the scenario is image transmission. This work aims to bridge this gap by

investigate the real performance of both LoRaWAN and LoRA P2P image

transmission. A lightweight transmission protocol is designed for reliable image

transmission in order to shorten the transmission time. Overall, the findings are

deemed valuable as they may serve as guidelines for local deployment.

1.7 Outline of the Report

This report includes five chapters. The introduction about this study is covered

in Chapter 1. Chapter 2 presents the related work of LoRa’s performance

analysis and applications done by previous researchers. Chapter 3 and Chapter

4 includes the methodology, results and discussion for LoRaWAN and LoRa

P2P respectively. Last but not least, the conclusion about this study and

recommendation for improvement of system are included in Chapter 5.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In this chapter, famous standards of LPWAN such as Narrowband Internet of

Things (NB-IoT), LoRa and Sigfox are introduced. Besides that, the related

work of LoRa applications and performance evaluations are discussed.

2.2 LPWAN standards

NB-IoT, LoRa and Sigfox are three well-known technologies used in large scale

connectivity of IoT devices for long-range transmissions. The technical

differences of NB-IoT, LoRa and Sigfox are explained in this chapter.

2.2.1 NB-IoT

NB-IoT is a modern cellular technology introduced in June 2016 to provide

wide range coverage for IoT. It was designed to offer outstanding coexistence

performance with LTE (long-term evolution) and GSM (global system for

mobile communications) under licensed frequency bands (Wang et al., 2017). It

allows massive connectivity of IoT devices, high power efficiency, low bit rate

and latency smaller than 10 seconds. NB-IoT requires 180 kHz frequency

bandwidth, which is compatible to the size of one resource block in GSM and

LTE. NB-IoT can be worked in three operations modes: stand-alone, guard-

band, and in-band.

• Stand-alone: Utilizing the currently used GSM frequencies bands

• Guard-band: Utilizing the unused resources blocks reserved in the

guard-band of LTE carrier

• In-Band: Utilizing the resources blocks reserved in the LTE carrier

NB-IoT uses frequency division multiple access (FDMA) and the

orthogonal frequency division multiple access (OFDMA) in the downlink and

uplink respectively. In the uplink, it uses with single carrier, and utilizes the

quadrature phase shift keying modulation (QPSK) (Wang et al., 2017). For the

downlink, there is 200 kbps data rate. For the uplink, there is 20 kbps data rate.

6

The maximum length of each payload is 1600 bytes (Mekki et al., 2019).

Adhikary, Lin and Eric Wang (2017) discussed that ten years of battery lifetime

can be offered for NB-IoT when transmitting average 200 bytes per day.

2.2.2 Sigfox

Sigfox is a cellular system approach which allows EDs use the Binary Phase

Shift Keying (BPSK) modulation to connect to base stations (Usman Raza,

Parag Kulkarni, and Mahesh Sooriyabandara, 2017). Sigfox uses unlicensed

Industrial, Scientific, and Medical (ISM) bands which are 433 MHz, 868 MHz,

and 915 MHz. Sigfox concentrates the radiation in an ultra-narrow band and

undergoes low levels of signal interference. This leading to small power

consumption, low cost design of antenna, and high sensitivity of receiver (RX)

in order to achieve maximum throughput of 100 bps. The maximum uplink and

downlink payload lengths are 12 bytes and 8 bytes respectively. This may causes

it to face difficulty when sending and receiving large data sizes on various IoT

applications. Its coverage is about 3 to 10 km in city and about 30 to 50 km in

countryside. Sigfox only supported uplink communication in the beginning.

After that, Sigfox developed to significant link asymmetry two-way

communication technology. The downlink communication only can be done

before uplink communication after each the ED must wait to obtain a response

from the base station which suitable for data collection but inappropriate for

controlling and commanding. (Mekki et al., 2019).

2.2.3 LoRa

LoRa is a technology which covers physical layer and offers low power wireless

transmission with low data rate and long range. It operates within unlicensed

band and it is a technology that performs the modulation of signals in the sub-

GHz ISM band using CSS that the signal is spread with narrowband over a

broader channel bandwidth. Low levels of noise levels can be achieved by the

signal. It also consists of high interference resilience. Therefore, it is difficult

for detecting and jamming (Reynders et al., 2016). The symbol rate and the

number of bits per symbol depend on SF could change between 7 and 12 to

achieve the data rate and range trade-off. The synchronous transmission

utilizing different SFs is possible in a similar frequency channel because of the

7

orthogonal spreading codes for different SFs. Communication range of LoRa is

limited for different environments. For instance, the range from 2 to 5 km in city

and 45 km in countryside is possible. Depending on SF and bandwidth of

channel, the achievable rate of data is between 290 bps and 50 kbps (De

Carvalho Silva et al., 2017). The transmission’s payload can range from 2 to

255 octets. When aggregation of channel is used, the rate of data can achieve up

to 50 kbps (Widianto et al., 2019).

LoRaWAN is a data link layer protocol developed by LoRa Alliance in

2015. LoRaWAN uses LoRa modulation in the physical layer. EDs will transmit

data to gateways that are connected to network server over a single wireless hop.

Three classes are defined by LoRaWAN with different functionalities. Class A

devices are able to do bidirectional communication, have least power

consumption as they have longest sleeping time. Class A devices only can

receive data after they had sent message, thus having higher latency. Class B

devices are capable to do bidirectional communication, can receive data with

scheduled time slot, thus increasing the downlink possibilities. Class B devices’

receiving time slots also can be synchronized with beacon frames sent by

gateway. Class C devices have bidirectional communication capabilities, but

they have highest power consumption because they open the receiving windows

all the time, thus providing lowest latency. The only time Class C devices cannot

receive data is when they are transmitting information (Lavric and Popa, 2017).

Table 2.1: Three classes of LoRaWAN.

Class Energy Consumption Description

A Lowest Downlink after

transmission

B Efficient with

scheduled downlink

Scheduled downlink

with beacon frames or

random time slots

C Highest Devices listen non-stop.

Shortest downlink

latency.

8

2.3 Comparison of LPWAN standards

The features of Sigfox, NB-IoT and LoRa are outlined as shown in Figure 2.1.

Figure 2.1: Summary of Sigfox, NB-IoT and LoRa (Mekki et al., 2019).

2.4 Related work

Lavric and Popa (2017) evaluated the LoRa technology to overcome the barriers

that hamper the growth of the IoT such as connectivity, energy management,

security and complexity. The authors proposed that LoRa is a modulation

technique that provides the wide range information transmission and is an

appropriate solution in overcoming the IoT challenges. To enhance the

performance of uplink in LoRa networks, the use of spatial and time diversity

through numerous receive antennas and replication of message were analysed

by Hoeller et al. (2018), they concluded that low density networks replication

and numerous receive antennas are favourable. A evaluation of performance of

a LoRa network was done by Galinina et al. (2018). The authors proposed that

the good quality signal can be maintained consistently in the open space.

However, the quality is significantly bad in testing in the city and forest because

of the existence of dense obstacles and noise. This issue can be tackled by lifting

the gateway to a higher position that free LOS. To investigate RSSI and packet

loss of LoRa, the experiment was conducted by Muaz Abdul Rahman,

9

Hafizhelmi Kamaru Zaman and Afzal Che Abdullah (2018). The measurement

of SNR between the RX and transmitter (TX) was also carried out. As a result,

LoRa ED has ability to fight against multipath and signal fading with a higher

SF. In several realistic scenes, the performance evaluation of LoRaWAN has

been discussed by Sanchez-Iborra et al. (2018). The proposed work shows that

there is a data rate and link robustness trade-off. Therefore, the configuration

parameters of LoRaWAN need to be adjusted depending on the distance

between the base station and the node and conditions of propagation. When the

distance between two end points is increased, lower data rates offer more link

robustness with the decreasing of transmission rate dramatically. A nomadic test

was also carried out to investigate the consequence of mobility on system

performance. The results of this experiment confirmed that when using low

transmission data rates, LoRaWAN has less obvious vulnerability but this effect

is significant when using high data rates. The authors summarised that

LoRaWAN presents a high adaptability level to be used in several applications

of IoT. Thus, the transmission system is capable to set up low power

consumption long links with high robustness and even under conditions of

mobility by selecting the most suitable configuration.

LoRaWAN analysis for Health Care Systems was addressed by

Buyukakkaslar et al. (2017). In this study, transmission of medical data in health

care systems in a realistic hospital environment was done. The authors

summarised that LoRaWAN can be a technology in delivering sensor data for

long range. Besides that, Wan et al. (2018) carried out LoRa propagation testing

in soil and Xue-Fen et al. (2018) presented measurement of soil propagation for

wireless underground sensor networks (WUSN) by using the LoRa-based

smartphone. The results show that LoRa can be potential technology for WUSN

as it has the strengths of low cost, high flexibility and reliability. LPWAN

vehicle diagnostic system which is LoRa based for achieving safety of driving

was presented (Chou et al., 2017). LoRa-based environmental sensing system

for monitoring of status of a large farm in real time was discussed by Ji et al.

(2019). LoRa module is used as transceiver system for air pollution monitoring

system (Rosmiati et al., 2019). From these works, LoRa technology can be

applied in different areas such as smart hospitals, smart cities, smart buildings,

10

location tracking, industrial, agriculture, transport, and environmental

protection.

For reliable image transmission using LoRa, a transmission protocol

called Multi-Packet LoRa Protocol (MPLR) was proposed by Chen et al. (2019).

This protocol decreases the number of acknowledgements (ACKs) and waiting

time by batching data packets transmission. The practicability of real-time wide-

area agricultural environments visual monitoring systems was showed by Ji et

al. (2019). The reduction of bandwidth usage and performance enhancement can

be achieved by sending the modified image patches. Besides that, Jebril et al.

(2018) carried out the P2P image transmission using LoRa to monitor the

outdoor environment in Malaysia successfully. In this monitoring system, novel

image encryption technique was used. Pham (2016) proved that image

transmission with LoRa technology is possible while remaining the low power

consumption for image sensors. In addition, to allow the implementation of

advanced image sensor devices, an modified Carrier Sense Multiple Access

(CSMA) mechanism for packet collision avoidance and mechanism of activity

time for overcoming limitation of duty-cycle were proposed by Pham (2018).

2.5 Summary

The first mentioned research has presented the differences of NB-IoT, LoRa and

Sigfox. Sigfox and LoRa have long range coverage cost-effective devices with

long lifetime of battery. On the other hand, LoRa will provide the dependable

communication which supports mobility and assist the local network

deployment. Conversely, NB-IoT will provide the high expense IoT markets

that offers better quality of service and low latency. This chapter also discussed

the related work of LoRa’s performance analysis and applications.

CHAPTER 3

3 LORAWAN

11

3.1 Introduction

The methodology and results obtained from performance study of LoRaWAN

will be introduced in this chapter. The selection of frequency of this project also

will be explained.

3.2 Selection of frequency

There are different operating frequencies for LoRa in different countries. LoRa

utilizes unlicensed frequency bands like 433 MHz, 868 MHz and 915 MHz.

There is a list of frequency plan used in The Things Network (TTN). These

frequency plans are documented from LoRaWAN regional parameters

(TheThingsNetwork, n. d.). In Malaysia, LoRaWAN frequency plan of AS920-

923 (“AS1”) will be used as shown in Figure 3.1 (TheThingsNetwork, n. d.).

Figure 3.1: LoRaWAN frequency plan of AS920-923 (TheThingsNetwork, n.

d.).

3.3 Equipment used

The equipment and components used in this study will be introduced. The

hardware required are LoRa gateway concentrator module RAK831, Raspberry

Pi Zero W, converter board, RAK811 Lora Module and laptop. The software

required are The Things Network, Raspbian Operating System (OS), PuTTY,

RAK Serial Port Tool and Advanced IP Scanner.

The concentrator module RAK831 can be used in various types of

application such as IoT, Machine to Machine (M2M) and Smart Metering. By

12

using different SFs on multiple channels, it can receive up to 8 LoRa packets

simultaneously. The concentrator module RAK831 can be integrated into a

gateway as a complete RF front end of this gateway. Robust communication

between a LoRa gateway and a large amount of LoRa EDs distributed over a

long range is possible with the use of concentrator module RAK831. A host

system is required for the RAK831 to operate properly. A personal computer

(PC) or microcontroller (MCU) acts as the host processor connected to RAK831

via Universal Serial Bus (USB) or SPI.

Raspberry Pi Zero W is used as host system for RAK831 for proper

operation. It is a perfect single board computer for IoT. Raspberry Pi Zero W

can be controlled wirelessly. Micro secure digital (SD) card is worked together

with Raspberry Pi Zero W to store the data. All the components and

specifications of Raspberry Pi Zero W are shown in Figure 3.2 and Table 3.1

respectively.

Figure 3.2: Raspberry Pi Zero W.

13

Table 3.1: Raspberry Pi Zero W specifications.

The RAK831 concentrator board must communicate with the host

processor (Raspberry Pi Zero W board) via SPI. The connections can be made

with floating wires as both boards have header connectors. However, to ease the

connection, the adaptor board provided by RAK Wireless that snaps in to both

boards can be used. All the components and specifications of RAK831

concentrator board is shown in Figure 3.3 and Table 3.2 respectively.

14

Figure 3.3: RAK831 concentrator board.

Table 3.2: RAK831 concentrator board specifications.

RAK811 LoRa Module is low-power small size solution for long range

wireless communication. It supports LoRa P2P communications which can

allow users to create their own long range LoRa network privately. Integration

of Semtech’s SX1276 and STM32L provide user a serial AT commands with

Universal Asynchronous Receiver/Transmitter (UART) Interface. All the

components and specifications of RAK811 LoRa Module is shown in Figure

3.4 and Table 3.3 respectively.

15

Figure 3.4: RAK811 LoRa Module.

Table 3.3: RAK811 LoRa Module Specifications.

The Things Network is founded by Johan Stokking and Wienke

Giezeman in 2015. It is a worldwide, open, free of charge and decentralized

internet of things network. The things can be linked to the internet using low

16

power with the network. It usually operates with the use of the LoRaWAN

technology as LoRa is a low energy and wide range wireless technology that

uses an open data frequency.

Raspbian OS is the Debian-based operating system of Raspberry Pi

which consists of various versions including Raspbian Stretch and Raspbian

Buster.

PuTTY is a terminal emulator for platforms of Windows and Unix.

Several network protocols can be supported by PuTTY, consisting Secure Shell

(SSH) Protocol, rlogin and raw socket connection. Raspberry Pi Zero W can be

controlled wirelessly by other devices with the set up of Wi-Fi and SSH

connection.

RAK Serial Port Tool is a serial communication tool developed by

RAKwireless to make the setup more compatible and convenience. However,

this tool only supports Windows OS. For other OS, other serial communication

tool serial can be used on user’s own preference.

Advanced IP Scanner is a powerful scanner to obtain the Internet

Protocol (IP) address of the devices on the network.

3.4 LoRa Gateway setup

1. The gateway is set up by using the adaptor board provided by RAK

Wireless that snaps in to LoRa gateway concentrator module RAK831

and Raspberry Pi Zero W as shown in Figure 3.5.

Figure 3.5: LoRa gateway setup.

2. The latest firmware is burned into SD card as shown in APPENDIX D.

After burning, the SD card is installed into Raspberry Pi Zero W.

17

3. The IP address of LoRa gateway is checked by using Advanced IP

Scanner as shown in Figure 3.6.

Figure 3.6: Checking of LoRa gateway’s IP address.

4. The LoRa gateway is accessed through SSH using PuTTY as shown in

Figure 3.7. RPI’s username and password are “pi” and “raspberry”

respectively.

Figure 3.7: LoRa gateway is accessed through SSH using PuTTY.

5. A command “sudo gateway-config” is entered. The gateway ID is shown

in Figure 3.8.

Figure 3.8: Gateway ID.

18

6. “Setup RAK Gateway LoRa concentrator” is chosen to set the LoRa

server and frequency to TTN and AS923 respectively.

7. The gateway is registered in TTN as shown in APPENDIX E. Once the

gateway is registered, the gateway overview is displayed as shown in

Figure 3.9.

Figure 3.9: TTN console page after registration of gateway.

3.5 LoRa Node setup

1. Pre-configuration is needed to operate with RAK811. First, for boot

mode, the “BOOT” pin and “3V3” pin are connected as shown in Figure

3.10.

Figure 3.10: Boot mode for RAK811 Wisnode.

2. RAK811 WisNode is connected with laptop’s USB port as shown in

Figure 3.11.

19

Figure 3.11: Laptop’s USB port and RAK811 Wisnode connection.

3. The RST button on RAK811 WisNode as shown in Figure 3.12 is

pressed.

Figure 3.12: RST button on RAK811 WisNode.

4. The STM32CubeProgrammer tool is used to burn a bootloader into

RAK811 WisNode. The UART type is selected, then the port, baudrate,

and parity as shown in figure below:

20

Figure 3.13: UART, port, baudrate, and parity configuration in

STM32CubeProgrammer.

5. “Connect” button at the top right corner is pressed. Figure 3.14 shows

the correct log.

Figure 3.14: Correct log in STM32CubeProgrammer.

6. All data on RAK811 WisNode is erased and “Open file” button is

pressed as presented in Figure 3.15.

Figure 3.15: Data on RAK811 WisNode is erased and new file is opened.

21

7. The latest bootloader file (RAK811_BOOT_V3.0.2.bin) is loaded and

downloaded to RAK811 as shown in Figure 3.16.

Figure 3.16: Bootloader file (RAK811_BOOT_V3.0.2.bin) is loaded and

downloaded to RAK811.

8. A message is pop out from the window to inform the user bootloader is

burned into RAK811 WisNode successfully.

Figure 3.17: Message of file download complete.

9. “Disconnect” button is pressed, the STM32CubeProgrammer tool is

closed, RAK811 is powered down and the “BOOT” pin and the “GND”

pin are connected as shown in Figure 3.18.

22

Figure 3.18: “BOOT” pin and the “GND” pin connection.

10. Then, RAK811 WisNode is connected with the laptop’s USB interface

again. The RST button is pressed and BOOT MODE of RAK811 is

displayed by using RAK serial port tool as shown in Figure 3.19. This

means that the bootloader is burned into RAK811 WisNode successfully.

Figure 3.19: Showing of BOOT MODE of RAK811 in RAK serial port tool.

11. The latest firmware (RAK811_HF_V3.0.0.13.T3) is burned into

RAK811 by using RAK LoRaButton Upgrade Tool V1.0 as shown in

Figure below.

23

Figure 3.20: Burning of firmware into RAK811 using RAK LoRaButton

Upgrade Tool V1.0.

12. The correct COM port is chosen while baud rate is 115200. The log as

shown in Figure 3.21 is displayed when the RST button of RAK811

Wisnode is pressed.

Figure 3.21: Log data when the RST button of RAK811 Wisnode is pressed.

13. The application is created in the TTN.

Figure 3.22: Registration of application in The Thing Networks.

24

14. The device is registered under the application.

Figure 3.23: Registration of device in The Thing Networks.

15. The default activation method is OTAA. Device EUI, Application EUI

and App Key are used on RAK811 WisNode as shown in Figure 3.24.

Figure 3.24: Configuration parameters in The Thing Networks.

25

16. The configuration of RAK811 is done by using the AT command in

Table 3.4.

Figure 3.25: Configuration of RAK811 Wisnode by using RAK Serial Port

Tool.

Table 3.4: AT command used for configuration.

AT command Description

at+set_config=lora:join_mode:0 Set the OTAA join mode for

LoRaWAN.

at+set_config=lora:class:0 Set the class A for LoRa.

at+set_config=lora:region: AS923 Set the AS923 region for LoRa.

at+set_config=lora:dev_eui:00450

F4211B2B600

Set the device EUI for OTAA.

at+set_config=lora:app_eui:70B3

D57ED0023AE9

Set the application EUI for OTAA

at+set_config=lora:app_key:FC74

5B37A885A307B5ABC2E41D1D

A3BB

Set the application key for OTAA.

17. OTAA mode is joined by using AT command “at+join” as shown in

Figure 3.26.

26

Figure 3.26: Joining LoRa network by using AT command “at+join”.

18. The payload is sent by by using AT command

“at+send=lora:2:12345678” as shown in Figure 3.27.

Figure 3.27: Sending data with AT command “at+send=lora:2:12345678”.

19. The traffic of gateway and node are monitored from TTN as presented

in Figure 3.28 and Figure 3.29 respectively.

27

Figure 3.28: Gateway traffic shown in The Thing Networks.

Figure 3.29: LoRa application traffic in The Thing Networks.

20. The SF of RAK811 LoRa module can be configured to SF7, SF8, SF9

and SF10 with different AT commands according to Table 3.5.

Table 3.5: Number of DR of RAK811 LoRa module.

3.6 LoRa Packet Structure

LoRa packet is made up of 2 preambles, a header, the payload and a Cyclic

Redundancy Check (CRC) as shown in Figure 3.30 and their corresponding

explanations are shown in Figure 3.31. The spreading factors can be varied from

Number of

DR

AT command Configuration Indicative

physical bit

rate [bit/s]

2 at+set_config=lora:dr:2 LoRa: SF10/125kHz 980

3 at+set_config=lora:dr:3 LoRa: SF9/125kHz 1760

4 at+set_config=lora:dr:4 LoRa: SF8/125kHz 3125

5 at+set_config=lora:dr:5 LoRa: SF7/125kHz 5470

28

SF7 to SF12. Besides that, the coding rate of payload can be chosen from 4/8,

4/7, 4/6, and 4/5. Higher sensitivity can be obtained from higher coding rate.

Figure 3.30: LoRa Packet Structure.

Figure 3.31: LoRa Packet Structure explanations.

3.7 LoRaWAN network architecture

The standard network architecture of LoRaWAN is shown in Figure 3.32. The

EDs communicate with gateway using LoRa through a single hop with

29

LoRaWAN. The packets from EDs are forwarded by gateway to network server

through Wi-Fi, Ethernet or satelilite.

Figure 3.32: Standard network architecture of LoRaWAN.

In this study, the network architecture of LoRaWAN is shown in Figure 3.33.

Figure 3.33: Network architecture of LoRaWAN in this study.

3.8 Performance evaluation of LoRaWAN

The LoRaWAN performance evaluation in an indoor environment is studied.

The experiment is composed of one ED, one gateway and one server. The

gateway is composed of RAK831, the ED is composed of RAK811 connected

to laptop via the UART interface which sends data by using AT command and

the server used is TTN server. The performance evaluation consists of:

1. The impact on airtime under different SFs and payload lengths.

2. The impacts on RSSI and SNR under different transmission distances.

3.8.1 The impact on airtime under different SFs and payload lengths

3.8.1.1 Experimental Setup

30

1. LoRa gateway concentrator module RAK831 is powered on.

2. RAK811 Wisnode is connected through an USB port and programmed

using RAK Serial Port Tool.

3. The fixed parameters are configurated as stated in Table 3.6.

Table 3.6: LoRa configuration paramaters.

Bandwidth 125 kHz

Coding Rate 4/5

Frequency band used AS923

Distance between gateway and node 0 m

4. Steps 1 to 3 are repeated by varying SF7 to SF10.

5. Steps 1 to 4 are repeated by sending the payload with length of 14 bytes,

17 bytes, 29 bytes and 32 bytes.

6. The results are recorded in Table 3.7.

3.8.1.2 Result and discussion

In this study, different SFs are used for different payload lengths to investigate

the impact on airtime. The airtime for different SFs and payload lengths are

obtained from TTN and presented in Table 3.7 below. The corresponding chart

is plotted as shown in Figure 3.34.

Table 3.7: Airtime (in milliseconds) for different SFs and payload lengths.

Payload length (bytes) 14 17 29 32

SF

7 46.3 51.5 66.8 71.9

8 82.4 92.7 123.4 133.6

9 164.9 164.9 226.3 246.8

10 288.8 329.7 411.6 452.6

31

Figure 3.34: Airtime against payload length with different SFs.

The most robust transceiver setting in this study is the transceiver with

spreading factor of SF10, the airtime of 288.8 ms is obtained when sending 14

bytes payload. In contrast, the transceiver with spreading factor of SF7

consumed the shortest airtime of 46.3 ms in the same scenario. The higher the

spreading factor, the better the reconstitution of the signal. However, this leads

to significant increment in airtime.

The results also show that the transmission time increases as the payload

length increases. This is because the longer the length the payload sent, the

larger the payload needed to be encoded by the ED and decoded by the gateway.

3.8.2 The impacts on RSSI and SNR under different transmission

distances

3.8.2.1 Location

The impacts on RSSI and SNR under different transmission distances are

studied in Evergreen Scotpine Condominium. Figure 3.35 and Figure 3.36 show

the building and the floor map of Evergreen Scotpine Condominium

respectively. It is 13 story building and made from thick concrete structure. The

floor map is the same for each floor. The height is approximately 5m for each

floor.

0

50

100

150

200

250

300

350

400

450

500

14 17 29 32

Airtime(ms)

Payload length(bytes)

Airtime against payload length with different SFs

SF7 SF8 SF9 SF10

32

Figure 3.35: Building of Evergreen Scotpine Condominium.

Figure 3.36: Floor map of Evergreen Scotpine Condominium.

3.8.2.2 Experimental Setup

1. LoRa gateway concentrator module RAK831 is powered on.

2. RAK811 Wisnode is connected through an USB port and programmed

using RAK Serial Port Tool.

3. The fixed parameters are configurated as stated in Table 3.8

33

Table 3.8: Configuration parameters.

Payload size (Bytes) 17

Coding Rate 4/5

SF 7

Bandwidth 125kHz

Frequency band used AS923

4. The gateway RAK831 is located at G floor of condominium as shown

in Figure 3.38 and pointed out by the blue point in Figure 3.37.

5. The RAK811 LoRa Module is placed at 1st floor as shown in Figure 3.40

and the location of RAK811 LoRa Module is represented by red point

in Figure 3.39.

6. 17 bytes payload is sent from node.

7. The SNR and RSSI values of the gateway and the node are recorded.

8. The experiment is repeated by placing the RAK811 LoRa Module at G,

2nd, 3rd, 6th, 9th and 12nd floors.

9. For each variation of distance, the experiments are repeated 10 times.

The SNR and RSSI values are averaged as shown in Table 3.9.

34

Figure 3.37: Floor map (Gateway).

Figure 3.38: Gateway at G floor.

Figure 3.39: Floor map (LoRa

Wisnode).

Figure 3.40: Laptop and RAK811

LoRa Module at 3rd floor.

3.8.2.3 Result and discussion

In this study, different transmission distances are used to investigate the impacts

on SNR and RSSI. All the SNR and RSSI values are based on the average values

of 10 runs as shown in Table 3.9.

Table 3.9: Results of the impacts on RSSI and SNR under different

transmission distances.

Location of end-

device

Distance (m) Average SNR

(dB)

Average RSSI

(dBm)

G 0 9.5 -6.6

1st 5 8.68 -74.1

2nd 10 8.24 -88.73

3rd 15 5.87 -94.71

6th 30 2.67 -101.6

35

9th 60 -5.31 -106.22

12nd 90 -5.42 -106.73

From the Table 3.9, as the distance increases, the average RSSI

decreases. The average RSSI when the node RAK811 is placed at G floor is -

6.6 dBm but the drastic drop of average RSSI to -74.1 dBm occurred when the

transmitter is placed at 1st floor. This rapidly dropping of signal strength is

believed caused by the multiple signal path that presents within the building

where the gateway is placed. The average RSSI gradually decrease to -88.73

dBm, -94.71 dBm, -101.6 dBm, -106.22 dBm, -106.73 dBm for the distance of

10 m, 15 m, 30 m, 60 m and 90 m respectively. The average RSSI at G floor is

largest since the signals transmit without the blocking of ceilings and walls. The

RSSIs become smaller when the node set farther from the gateway because the

more signals are interrupted by the ceilings and walls.

SNR of the signal means the ratio of useful signal power to the noise

power. There is possibility to get either positive or negative SNR. Negative SNR

represents that power of signal is smaller than the power of noise. Generally,

positive SNR has to be obtained during transmission. LoRa SNR values are

between -20 dB and 10 dB typically. From Table 3.9, the average SNR when

the node RAK811 is placed at G floor is 9.5 dB which means the received signal

is less corrupted. Table 3.9 also shows that the distance increases, the average

SNR decreases. It is believed that power signal suffers more attenuation and

more noise power is added during transmission as the distance increases.

Although there are two average SNR values are obtained below 0 dBm, LoRa

modulation allows EDs to demodulate signals with the SNR value between -7.5

dB and -20 dB under the power level of noise floor due to its robustness.

CHAPTER 4

36

4 LORA P2P

4.1 Introduction

The phrase “a picture is worth a thousand words” refers to multiple information

can be expressed by a single still image. In agriculture, images can provide plant

breeding and yielding information. Besides that, images can help to monitor the

forest, the real time situations about environment issues such as forest fire can

be observed. They can also capture real time physical condition of the remote

IoT system. This benefits system operation. For example, a heavy rainfall may

disturb the data collection; an automated system or human being could alternate

the soil moisture reading.

The LoRaWAN is not suitable to be used for image transmission. This

is because there are limitations of the data each ED can send according to Fair

Access Policy of TTN (TheThingsNetwork, 2020). In order to achieve long-

range image transmission, LoRa P2P communication technique is used.

4.2 Equipment used

The equipment and components used in this project for LoRa P2P will be

introduced. The hardware required are Dragino LoRa module, Raspberry Pi

Zero W, 5MP Camera Board for Raspberry Pi and laptop. The software

required are Raspbian OS, PuTTY, Advanced IP Scanner and VNC viewer.

Dragino LoRa module is designed for RPI. This transceiver module has

high noise immunity and allows long-range transmission with minimum current

consumption. All the components and specifications of Dragino LoRa module

is shown in Figure 4.1 and Table 4.1 respectively.

37

Figure 4.1: Dragino LoRa module.

Table 4.1: Dragino LoRa module specifications.

5MP Camera Board is specially designed for Raspberry Pi and is

compatible with most of the RPI in the market. It attaches to RPI with the use

of Flat Flex Connectors (FFC) cable and communicates with RPI through

Camera Serial Interface (CSI).

38

Figure 4.2: 5MP Camera Board for Raspberry Pi.

Table 4.2: 5MP Camera Board for Raspberry Pi specifications.

The Raspbian Operating System (OS), Advanced IP Scanner and

PuTTY are the same in previous chapter. VNC viewer is a tool for controlling

another computer (Raspberry Pi Zero W) by graphical desktop-sharing system.

4.3 LoRa P2P Packet Structure

The LoRa P2P packet structure is the same as in Chapter 3.6. The explanations

on configuration for TX and RX are shown in APPENDIX G.

4.4 Design of Transmission Protocol

The sending and receiving of data need to be controlled. If the sending rate is

higher than the receiving rate, then the data will get lost. The flow control can

keep track the sending and receiving process in order to make sure the data can

be transmitted successfully.

39

Prior to this study, some considerations must be figured out. Constrained

by LoRA maximum transmission unit (MTU) of 255 bytes, the fragmentation

needs to be done to segment the long image payload into multiple packets. In

this study, the packet size of 128 bytes is used. It consists of 4 bytes identity

number (ID) to prevent the repetition of packet and 124 bytes useful information

as shown in Figure 4.3. The overhead of 4 bytes ID is only 3.125%.

Figure 4.3: A single packet.

By using Raspberry Pi to implement Dragino LoRa module, C

programming language is used as main language along with python. In order to

send the image from TX to RX, the conversion of image into text is necessary.

By using python, the Joint Photographic Experts Group (JPEG) image will be

converted into hexadecimal format and stored in a text file (ImageTx.txt). After

that, the bytes contained in the text file will be calculated using strlen function

in <string.h> library and the number of packets to be sent will be evaluated using

simple division and ceil function in <math.h>. For example, for a message with

payload length of 130, the number of packets to bent sent is 2 as shown in Figure

4.4 below.

Figure 4.4: C language and corresponding description.

Next, the headers will be added and stored in the text file (ImageTx_h.txt)

to differentiate and give the identity to the packet segmented. The first packet

with header 0000 contains the information about how many packets the RX will

receive to make sure all the packets can be received correctly. This situation can

be illustrated with the Figure 4.5 below.

40

Figure 4.5: Adding header.

4.4.1 Stop and Wait Protocol

To ensure of arrival of multiple packets, reliable transport protocols are needed.

In this study, two transport protocols are used. First protocol used is stop and

wait protocol as shown in Figure 4.6. The sender will wait for ACK after

sending out one packet and only proceed to send next packet after receiving

ACK from RX. The sending and receiving process will be repeated until

“DONE” ACK is received by transmitter.

Figure 4.6: Stop-and-wait protocol.

41

4.4.1.1 TX

TX will start to send the packets after the hexadecimal representation of image

is stored in text file (ImageTx_h.txt). After sending first packet, TX will wait to

receive ACK from RX. If the ACK is 1, this indicates that the packet is received

successfully by RX, then the TX will send out next packet. However, if the ACK

is 0, TX will resend the packet. The sending and receiving processes will

continue until the “DONE” ACK is received by TX, this ACK represents that

all the packets are received by RX and the image is built successfully. The new

image transmission process will start after this. Figure 4.7 shows the flowchart

for writing C program of TX when using stop and wait protocol.

Figure 4.7: Stop and wait protocol’s transmitter coding flowchart.

42

4.4.1.2 RX

RX will start to receive the packet sent from TX after receiving process is

initiated. After receiving the packet, RX will send ACK to TX to inform the

arrival of packet. The receiving and sending processes are repeated until all the

packets are received successfully by receiver. After receiving all the packets,

RX will start to build the image and upload the image into Dropbox. RX will

send a “DONE” ACK to TX after constructing the image. New receiving

process will start after this. Figure 4.8 shows the flowchart for writing C

program of RX when using stop and wait protocol.

Figure 4.8: Stop and wait protocol’s receiver coding flowchart.

4.4.2 LoRa Multi-Packet Transmission Protocol

Another reliable transport protocol is designed in order to lessen the

transmission time and obtain higher transmission rate. This self-defined

43

protocol given a name called LoRa Multi-Packet Transmission Protocol as

shown in Figure 4.9. For the ideal condition, the TX will send all the data

packets to the RX consecutively with interval of 5 seconds. The sending and

receiving process will repeat until “DONE” ACK is received by TX.

Figure 4.9: LoRa Multi-Packet Transmission Protocol.

However, the transmission loss may occur during the transmission. The

“DONE” ACK sent from RX to TX may be lost. In this situation, by providing

timeout which specified period of time is given to TX to wait for ACK. After

timeout, new packet will be transmitted as presented in Figure 4.10.

44

Figure 4.10: LoRa Multi-Packet Transmission Protocol with timeout session.

For the transmission loss in the sending process, RX will send ACK to

TX to request for resending. After receiving ACK, sender will resend the

requested packet to the RX again as shown in Figure 4.11.

Figure 4.11: LoRa Multi-Packet Protocol with resending request.

45

4.4.2.1 TX

TX will begin to send the packets consecutively with interval of 5 seconds after

the hexadecimal representation of image is stored in text file (ImageTx_h.txt).

After sending out all the packets, TX will wait to receive ACK from RX. If the

receiving ACK is integer n, this shows that the nth packet needs to be resent.

TX will resend the packet and wait to receive ACK again. The receiving and

resending processes will keep going until “DONE” ACK is received by RX. The

new image transmission process will start after this or after all sessions are

timeout. Figure 4.12 shows the flowchart for writing C program of TX when

using LoRa Multi-Packet Transmission protocol.

Figure 4.12: LoRa Multi-Packet Transmission Protocol’s transmitter coding

flowchart.

46

4.4.2.2 RX

RX will start to receive the packet sent from TX after receiving process is

initiated. After the receiving session is expired, the receiver will check whether

all the packets are received successfully or not. If there is missing packet, RX

will send the integer n that represent nth missing packet to TX to request for

resending. The sending and requesting processes are repeated until all the

packets are received successfully by receiver. After receiving all the packets,

RX will start to build the image and upload the image into Dropbox. RX will

send a “DONE” ACK to TX after constructing the image. New receiving

process will start after this. Figure 4.13 shows the flowchart for writing C

program of RX when using LoRa Multi-Packet Transmission Protocol.

Figure 4.13: LoRa Multi-Packet Transmission Protocol’s receiver flowchart.

47

4.5 Image Processing

4.5.1 Image Compression

In many aspects, images can be significantly compressed without

affecting their functionality. In this study, a pi camera that attached to RPI is

used to capture a 3280 x 2464 full-resolution image which has size of 5.303 MB

as shown in Figure 4.14. Python Imaging Library (PIL), Pillow is used to resize

and compress the image. The 240 x 160 pixels downsized image in Figure 4.15

is compressed by an anti-aliasing filter which is a down sampling filter. To

obtain even smaller size image, a parameter that represent the image quality

which is range from 1 (most compression) to 95 (least compression) can be used

to compress the image. This parameter can be adjusted according to the

requirements of application. The codes shown below are used to compress and

tune the quality of image.

Figure 4.14: 3280 x 2464 full-resolution image (ImageTx.jpg).

48

Figure 4.15: 240 x 160 pixel resized image.

To show different levels of image quality compression, Figures 4.16 to

4.19 illustrate the results of compressed 240x160 pixel image after applying the

algorithm of compression with quality of 10, 25, 50 and 95 respectively. The

quality estimations with peak signal-to-noise ratio (PSNR) values also are

conducted by using PSNR evaluation tool to compare the original image (Figure

4.15) and compressed images. The PSNR values are 25.58 dB, 28.12 dB, 29.75

dB and 32.12 dB for image quality of 10, 25, 50 and 95 respectively. The higher

the PSNR, the better the quality of the compressed image. The smaller size of 7

KB and 4KB are obtained for the image quality of 50 and 25 respectively, some

visible losses can be observed from the images. Besides that, there is notable

image corruption can be observed from the image with quality of 10, but this

quality may be tolerable in some applications that do not require clear image.

Therefore, by using this compression algorithm, a 5.303 MB image can be

compressed into an image of only 2KB, 4KB, 7KB and 24KB with different

image quality settings. The image has more losses and smaller size with lower

image quality. However, a small size image can ease the transmission with

shorter transmission time and lower power consumption.

49

Figure 4.16: Quality: 10, Size = 2KB,

PSNR = 25.58 dB.

Figure 4.17: Quality: 25, Size = 4KB,

PSNR = 29.75 dB.

Figure 4.18: Quality: 50, Size = 7KB,

PSNR = 28.12 dB.

Figure 4.19: Quality: 95, Size = 24KB,

PSNR = 32.12 dB.

4.5.2 Image Conversion

When using the open() file function in python, the binary representation of

image is obtained. However, the binary data is too large to be transferred using

LoRa. In realization for transmission of image by using LoRa, the binary data

of image is converted to hexadecimal format. binascii.hexlify() function is used

to convert the binary data to hexadecimal representation. As a result, the 2-digit

hexadecimal representation is obtained from every byte of data. Therefore, the

returned bytes object is 2 times longer than the length of data. Table 4.3 shows

the lengths of data after converting Figures 4.16 to 4.19 into hexadecimal

representation. The hexadecimal representation of image will be stored in a text

file (ImageTx.txt) for further usage.

50

The ID of the packets are appended to the existing hexadecimal representation

stored in ImageTx.txt file using + function in python and then saved in the text

file (ImageTx_h.txt) as shown in code below. Table 4.3 shows the lengths of

data after appending IDs to the hexadecimal representations.

Table 4.3: Results of image conversion.

Quality

of

image

Size of image

(bytes)

Size of image in hexadecimal

representation (bytes)

Size of image in

hexadecimal

representation

after adding

header (bytes)

51

10 1,970 3,940 4,196

25 4,056 8,112 8,504

50 6,516 13,032 13,584

95 23,613 47,226 48,878

4.5.3 Image Building

For image building in RX, RX will start to listen continuously until the arrival

of the packet. In this study, each packet size is set to 128 bytes including 4 bytes

of identity number (ID) and 124 bytes of useful information. All the useful

information received will be stored in a text file (ImageRx.txt). If all the packets

are received by RX, the image reconstruction process will start immediately.

Image reconstruction is done by converting the hexadecimal representation data

(useful information) to original image (ImageRx.jpg). This image (ImageRx.jpg)

will be saved in the SD card and readable with image viewer. The image will be

uploaded to Dropbox with the access of internet.

4.6 Design of Transmission Protocol

4.7 Performance evaluation of LoRaP2P

In this study, Dragino LoRa module that attached to Raspberry Pi Zero W and

pi camera is used as TX as shown in Figure 4.20 while Dragino LoRa module

that attached to Raspberry Pi Zero W is used as RX as shown in Figure 4.21.

The performance evaluation consists of:

1. The transmission time when using stop and wait transmission protocol

and LoRa Multi-Packet Transmission Protocol.

2. The impacts on transmission time and number of packet loss when using

different image qualities.

3. The impacts on transmission time, number of packet loss, RSSI and SNR

under different transmission distances.

52

Figure 4.20: LoRa P2P transmitter.

Figure 4.21: LoRa P2P receiver.

4.7.1 Stop and wait transmission protocol vs. LoRa Multi-Packet

Transmission Protocol

4.7.1.1 Experimental setup

1. TX and RX are powered on.

2. TX and RX are monitored and controlled by using VNC viewer through

SSH connection in a PC as shown in Figure 4.22.

3. The fixed parameters are configurated as stated in Table 4.4.

4. The stop and wait transmission protocol is used.

5. The sending and receiving processes are initiated.

6. The total transmission time is recorded.

7. Steps 1 to 6 are repeated by introducing 1 packet loss artificially.

8. Steps 1 to 7 are repeated by using the LoRa Multi-Packet Transmission

Protocol instead of stop and wait transmission protocol.

9. For each protocol, the experiments are repeated 3 times, all the

transmission time are averaged and presented in Table 4.5.

53

Figure 4.22: VNC viewer monitoring and controlling.

Table 4.4: Configuration parameters.

Image that needs to be transmitted

Total Payload 1510 bytes

Payload length per packet 128 bytes

Number of packets 11

Coding Rate 4/5

Distance between TX and RX 0 m

SF 7

Bandwidth 125 kHz

4.7.1.2 Result and discussion

In order to confirm whether the proposed LoRa Multi-Packet Transmission

Protocol is more beneficial than the stop and wait transmission protocol in term

of time spent. The LoRa P2P image transmission experiments are conducted in

an indoor environment to investigate the transmission performance of both

protocols. All the total transmission time are based on the average values of 3

runs as shown in Table 4.5.

54

Table 4.5: Average transmission time when using stop and wait protocol and

LoRa Multi-Packet Transmission Protocol.

Protocol Stop and wait protocol LoRa Multi-Packet

Transmission Protocol

Average transmission

time without packet loss

3 minutes 36 seconds 1 minutes 6 seconds

Average transmission

time with 1 packet loss

4 minutes 21 seconds 2 minutes 34seconds

When using stop and wait protocol without any packet loss experienced, the

transmission time is 3 minutes and 36 seconds. However, when using LoRa

Multi-Packet Transmission Protocol with same scenario, the transmission time

is 1 minute and 6 seconds only which are 2 minutes 30 seconds shorter than the

time stop and wait protocol spent. When introducing 1 packet loss, LoRa Multi-

Packet Transmission Protocol, the tramission time is almost 2x shorter than that

of stop and wait protocol. A significant increment in transmission time is

noticeable when using stop and wait protocol because the transmitter needs to

wait for an ACK per packet to make sure the success arrival of data which causes

the transmit rate of packet greatly reduced. The load of network and the

receiver’s required transmission rate have been increased by the ACK traffic.

LoRa Multi-Packet Transmission Protocol significantly decreases the number

of ACKs and reduces the time for waiting ACKs. Therefore, the data transfer

efficiency is extremely increased with LoRa Multi-Packet Transmission

Protocol.

4.7.2 The impacts on number of packet loss, transmission time, RSSI

and SNR under different transmission distances

The experiments are carried out in the high raised building of Evergreen

Scotpine Condominium as same as the location in Chapter 3.8.2.

4.7.2.1 Experimental Setup

1. TX and RX are powered on.

2. TX and RX are monitored and controlled by using mobile SSH and VNC

viewer through SSH connection respectively.

55

3. The fixed parameters are configurated as stated in Table 4.6.

4. RX is placed at G floor of the building as shown in Figure 4.24 and

indicated by the blue point in Figure 4.23.

5. TX is placed at 1st floor of the building as shown in Figure 4.26 and

represented by red point in Figure 4.25.

6. The sending and receiving processes are initiated.

7. The number of packet loss, transmission time, RSSI and SNR of the

nodes are measured and recorded from VNC viewer and mobile SSH as

shown in Figure 3.27 and Figure 3.28.

8. The experiment is repeated by placing RX at G, 2nd, 3rd, 4th, 5th, 6th, 7th

and 8th floors.

10. For each variation of distance, the experiments are repeated 3 times. The

results are averaged as shown in Table 4.7.

Table 4.6: Configuration parameters.

Image that needs to be transmitted

Total Payload 1510 bytes

Payload length per packet 128 bytes

Number of packet 11

Coding Rate 4/5

SF 7

Bandwidth 125kHz

56

Figure 4.23: Floor map of Evergreen

Scotpine Condominium (Receiver).

Figure 4.24: Placement of

receiver at G floor.

Figure 4.25: Floor map of Evergreen

Scotpine Condominium (Transmitter).

Figure 4.26: Placement of

transmitter at 1st floor.

Figure 4.27: Transmitter monitoring using mobile SSH through SSH

connection.

57

Figure 4.28: Receiver monitoring using VNC viewer in laptop through SSH

connection.

4.7.2.2 Result and discussion

The experiments are carried out to investigate the number of packet loss,

transmission time, RSSI and SNR by placing the RX at different floors

(distances) within Evergreen Scotpine Condominium. Table 4.7 shows the

results of the experiments.

Table 4.7: Results of the impacts on number of packet loss, transmission time,

RSSI and SNR under different transmission distances.

Floor Distance

(m)

Number of

packet loss

Transmission

time

Average

RSSI (dBm)

Average

SNR (dB)

G 0 0 1 minute 6

seconds

-44.3 9.0

1 5 0 1 minute 6

seconds

-90.4 8.9

2 10 1 1 minute 34

seconds

-102.7 8.3

3 15 1 1 minute 39

seconds

-103.3 9.0

4 20 2 2 minutes 17

seconds

-103.1 8.1

5 25 2 2 minutes 18

seconds

-108.2 8.2

58

6 30 6 5 minutes 21

seconds

-112.0 4.1

7 35 16 Expired at 11

minutes 8

seconds

-112.0 -2.0

8 40 All - - -

The average RSSI when the transmitter is placed at G floor is -44.3 dBm

but the drastic drop of average RSSI to -90.4 dBm occurs when the TX is placed

at 1st floor. The average RSSIs are almost same for the 2nd,3rd and 4th floors. The

average RSSIs keep decreasing to -108.2 dBm at 5th floor and -112 dBm at 6th

floor and 7th floor. This shows that this environment has great influences on

RSSI. Besides that, the average SNR values are approximately 8 dB or 9 dB

when the TX is placed at G, 1st,2nd,3rd,4th and 5th floor as shown in Table 4.7.

However, the average SNR values drop when the transmitter is located at the 6th

floor and 7th floor which are 4.1 dB and -2.0 dB respectively. The distance

between TX and RX increases, both RSSI and SNR decreases. There are many

factors that can affect the propagation of transmitted signal. One of the factors

is the blocking of obstacles which may absorb the signal transmitted and

interfere the signal constructively or destructively. Moreover, the signal could

arrive the RX by multiple paths, causing an effect called multipath propagation.

Apart from RSSI and SNR, the number of packet loss increases as the

distance increases which leads to the increment in transmission time as the time-

consuming retransmission is required to be done. The shortest transmission time

which is 1 minute and 6 seconds and no packet is lost when the TX is placed at

G and 1st floors. When the TX is placed at 6th floor, the transmission time

dramatically increases to 5 minutes 21 seconds which is about 5x longer than

the shortest transmission time. This is because 6 packets are lost during the

transmission, thus longer time is needed to complete the transmission and

retransmission of lost packet. Experimental results show that the

communications can be done within 35m only. When TX is placed at 7th floor,

although some packets are received by RX successfully but unfortunately the

59

transmission is not complete as RX are unable to receive all the packets

successfully before all the sessions are expired. When the receiver is placed at

8th floor which is 40m apart from the transmitter, all the packets totally unable

to be received.

4.7.3 The impacts on number of packet loss and transmission time when

using different image qualities

4.7.3.1 Experimental Setup

1. TX and RX are powered on.

2. TX and RX are monitored and controlled by using VNC viewer through

SSH connection in a PC.

3. The fixed parameters are configurated as stated in Table 4.8.

4. The image with quality of 10 (Figure 4.16) is used as the image that

needs to be transmitted.

5. The sending and receiving processes are initiated.

6. The number of packet, number of packet loss and transmission time are

recorded.

7. The experiments are repeated by using the image with quality of 25, 50

and 95 (Figures 4.16 to 4.19).

Table 4.8: Configuration parameters.

Protocol used LoRa Multi-Packet Transmission

Protocol

Payload length per packet 128 bytes

Coding Rate 4/5

Distance between transmitter and

receiver

0 m

SF 7

Bandwidth 125kHz

4.7.3.2 Result and discussion

60

To evaluate the performance to transmit different quality images using LoRa

P2P, the experiments are conducted. Table 4.9 gives the results of effect of

quality of image on number of packet loss and transmission time.

Table 4.9: Results of effect of quality of image on number of packet loss and

transmission time.

Quality of

image

Payload

size

(bytes)

Number of

packet

Number of

packet loss

Transmission

time

10 4196 33 0 3 minutes 1

second

25 8504 67 2 12 minutes 32

seconds

50 13584 107 1 24 minutes 40

seconds

95 48878 382 9 42 minutes 54

seconds

For image quality of 10, 25, 50 and 95, the payload length are 4196 bytes, 8504

bytes,13584 bytes and 48878 bytes respectively. With image quality of 10, no

packet is lost when transmitting all the 33 packets and the transmission time is

3 minutes 1 second. The number of packets with image quality of 25 is almost

double as compared to quality of 10 and its transmission time is almost 4x longer

than that of image quality of 10. With image quality of 50, only 1 packet is lost

and transmission time is 24 minutes and 40 seconds. When using the highest

quality of image which is 95, the payload length is 48878 bytes which is very

large as compared to other quality. Not surprisingly, the number of packet loss

is highest among all qualities tested which is 9 and it took 42 minutes and 54

seconds to do all the transmission.

The higher the quality of image, the higher the number of packet. This

causes higher possibility of packet loss. In addition, each packet loss leads to

retransmission and this will increase the transmission time. Therefore, trade-off

must be made. Although there is detectable image corruption when the quality

61

of image is 10 but the transmission time is preferable and this may be tolerable

in some applications.

62

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

There are many LPWAN technologies exist in the world, however, LoRaWAN

is getting popularity in applications of IoT because of its unique characteristic

and operates on unlicensed spectrum that are free to be used. In this project, the

indoor performance of LoRaWAN is studied by variety of experiments. The

results show that the higher the spreading factor, the better the reconstitution of

the signal but the longer the airtime. Besides that, the longer the length the

payload sent, the longer the airtime required as larger payload needed to be

encoded by the end-device and decoded by the gateway. The results obtained

also show that the LoRaWAN is suitable to be used for indoor applications. This

is because the whole building can be covered even though there is only one

gateway used. However, there are some researchers pointed out that LoRaWAN

networks should be optimized for different use cases.

For LoRa P2P image transmission, the image processing is first

conducted in order to compress the image to smaller size. The compressed

image is converted into hexadecimal format to allow it to be transmitted using

LoRa. The protocols stop and wait transmission protocol and LoRa Multi-

Packet Transmission Protocol are designed and implemented for LoRa P2P

image transmission. Both protocols are implemented and their performance

evaluations in term of transmission time are carried out. The results show that

time spent of LoRa Multi-Packet Transmission Protocol for 11 packets image

transmission is shorter than stop and wait transmission protocol by 69.44 %.

When 1 packet is lost, LoRa Multi-Packet Transmission Protocol also saves

about 50 % of time for transmission. Besides that, for higher quality of image

transmitted, more time is needed, thus the quality of image needs to be chosen

wisely depends on the requirement of the applications. When the LoRa P2P

image transmission being tested in an indoor environment, the image can be

received as long as the distance is within 35 m.

63

5.2 Recommendations for future work

The power consumption of devices cannot be recorded in the experiment due to

limitations of equipment. Therefore, the power consumption of the devices

cannot be identified. It is important to know about power consumption because

it is one of the main factors that regulate wireless sensor networks’ performance

and maintain the network lifetime. The low power consumption of LoRa needs

to be further investigated.

Besides that, the experiments are carried out at an indoor environment.

More real-world experiments need to be conducted to explore the scalability and

reliability of LoRa to work for real deployment environments.

In addition, to reduce the number of bits that need to be sent, there are

several image compression algorithms available. JPEG 2000 is one of the image

compression standards that has can produce better quality of image with better

performance of compression to reduce the packet size significantly.

Last but not least, the security is not the main focus in this project but it

is very important in real-work implementation. Without security measures,

network security threats will be faced by the WSN. Thus, security issue needs

to be taken into account and proper security mechanism such as authentication

and authorization need to be implemented into protocol to protect the WSN from

the threats.

64

REFERENCES

Adhikary, A., Lin, X. and Eric Wang, Y.P., 2017. Performance evaluation of

NB-IoT coverage. IEEE Vehicular Technology Conference, pp.1–5.

Ayoub, W. et al., 2018. Internet of Mobile Things : Overview of LoRaWAN ,

DASH7 , and NB-IoT in LPWANs standards and Supported Mobility To cite

this version : HAL Id : hal-01901612 Internet of Mobile Things : Overview of

LoRaWAN , DASH7 , and NB-IoT in LPWANs standards and Suppo.

Buyukakkaslar, M.T., Erturk, M.A., Aydin, M.A. and Vollero, L., 2017.

LoRaWAN as an e-Health Communication Technology. Proceedings -

International Computer Software and Applications Conference, 2, pp.310–313.

De Carvalho Silva, J. et al., 2017. LoRaWAN - A low power WAN protocol for

Internet of Things: A review and opportunities. 2017 2nd International

Multidisciplinary Conference on Computer and Energy Science, SpliTech 2017,

(August).

Chen, T., Eager, D. and Makaroff, D., 2019. Efficient image transmission using

lora technology in agricultural monitoring iot systems. Proceedings - 2019

IEEE International Congress on Cybermatics: 12th IEEE International

Conference on Internet of Things, 15th IEEE International Conference on

Green Computing and Communications, 12th IEEE International Conference

on Cyber, Physical and So, pp.937–944.

Chou, Y. et al., 2017. i-Car System A LoRa-based Low Power Wide Area

Networks Vehicle Diagnostic. , pp.789–791.

Dogan, G., Yildirim, G. and Tatar, Y., 2019. Empirical Observations on LoRa

Performance for Different Environments. Proceedings - 2019 3rd International

Conference on Applied Automation and Industrial Diagnostics, ICAAID 2019,

1(September), pp.1–6.

Ertürk, M.A., 2017. Lorawan indoor performance analysis. International

Research Journal of Computer Science (IRJCS), 4(10), pp.23–29.

Galinina, O., Andreev, S., Balandin, S. and Koucheryavy, Y., 2018. Correction

to: Internet of Things, Smart Spaces, and Next Generation Networks and

Systems, Springer International Publishing.

Help Net Security, 2019, Number of connected devices reached 22 billion,

where is the revenue? - Help Net Security [Online]. Available at:

https://www.helpnetsecurity.com/2019/05/23/connected-devices-growth/.

Hoeller, A. et al., 2018. Analysis and Performance Optimization of LoRa

Networks with Time and Antenna Diversity. IEEE Access, 6, pp.32820–32829.

65

Jebril, A.H., Sali, A., Ismail, A. and Rasid, M.F.A., 2018. Overcoming

limitations of LoRa physical layer in image transmission. Sensors (Switzerland),

18(10).

Ji, M. et al., 2019. LoRa-based Visual Monitoring Scheme for Agriculture IoT.

SAS 2019 - 2019 IEEE Sensors Applications Symposium, Conference

Proceedings. 2019

Lavric, A. and Popa, V., 2017. Internet of things and LoRaTM low-power wide-

area networks challenges. Proceedings of the 9th International Conference on

Electronics, Computers and Artificial Intelligence, ECAI 2017, 2017-Janua,

pp.1–4.

Masadan, N.A.B., Habaebi, M.H. and Yusoff, S.H., 2018. LoRa LPWAN

Propagation Channel Modelling in IIUM Campus. Proceedings of the 2018 7th

International Conference on Computer and Communication Engineering,

ICCCE 2018, pp.14–19.

MCMC, 2019. Class-Assignment-No-2-of-2019.pdf. , p.18,19.

Mekki, K., Bajic, E., Chaxel, F. and Meyer, F., 2019. A comparative study of

LPWAN technologies for large-scale IoT deployment. ICT Express, 5(1), pp.1–

7. Available at: https://doi.org/10.1016/j.icte.2017.12.005.

Muaz Abdul Rahman, A., Hafizhelmi Kamaru Zaman, F. and Afzal Che

Abdullah, S., 2018. Performance Analysis of LPWAN Using LoRa Technology

for IoT Application. International Journal of Engineering & Technology,

7(4.11), p.252.

Pham, C., 2018. Enabling and deploying long-range IoT image sensors with

LoRa technology. 2018 IEEE Middle East and North Africa Communications

Conference, MENACOMM 2018, pp.1–6.

Pham, C., 2016. Low-cost, low-power and long-range image sensor for visual

surveillance. Proceedings of the Annual International Conference on Mobile

Computing and Networking, MOBICOM, 03-07-Octo, pp.35–40.

Python, binascii — Convert between binary and ASCII — Python 3.8.2

documentation [Online]. Available at:

https://docs.python.org/3/library/binascii.html [Accessed: 3 April 2020].

Reynders, B., Meert, W. and Pollin, S., 2016. Range and coexistence analysis

of long range unlicensed communication. 2016 23rd International Conference

on Telecommunications, ICT 2016, (c), pp.1–6.

Rosmiati, M., Rizal, M.F., Susanti, F. and Alfisyahrin, G.F., 2019. Air pollution

monitoring system using LoRa modul as transceiver system. TELKOMNIKA

(Telecommunication Computing Electronics and Control), 17(2), p.586.

66

Rubio-Aparicio, J., Cerdan-Cartagena, F., Suardiaz-Muro, J. and Ybarra-

Moreno, J., 2019. Design and implementation of a mixed IoT LPWAN network

architecture. Sensors (Switzerland), 19(3).

Sanchez-Iborra, R. et al., 2018. Performance evaluation of lora considering

scenario conditions. Sensors (Switzerland), 18(3).

Security, S., 2020, Incorporating The IoT To Improve Connectivity To Your

Customers [Online]. Available at: https://www.gosolis.com/blog/incorporating-

the-iot-to-improve-connectivity-to-your-customers/.

TheThingsNetwork, 2020, Limitations: data rate, packet size, 30 seconds uplink

and 10 messages downlink per day Fair Access Policy [guidelines] - End

Devices (Nodes) - The Things Network [Online]. Available at:

https://www.thethingsnetwork.org/forum/t/limitations-data-rate-packet-size-

30-seconds-uplink-and-10-messages-downlink-per-day-fair-access-policy-

guidelines/1300.

TheThingsNetwork, LoRaWAN Frequencies Overview [Online]. Available at:

https://www.thethingsnetwork.org/docs/lorawan/frequency-plans.html.

TheThingsNetwork, LoRaWAN Frequency Plans and Regulations by Country

[Online]. Available at:

https://www.thethingsnetwork.org/docs/lorawan/frequencies-by-country.html.

Usman Raza, Parag Kulkarni, and Mahesh Sooriyabandara, 2017. Low Power,

Wide Area Networks networks (LPWANs). , 19(2), pp.855–873.

Vatcharatiansakul, N., Tuwanut, P. and Pornavalai, C., 2017. Experimental

performance evaluation of LoRaWAN: A case study in Bangkok. Proceedings

of the 2017 14th International Joint Conference on Computer Science and

Software Engineering, JCSSE 2017.

Wan, X.F., Yang, Y., Cui, J. and Sardar, M.S., 2018. Lora propagation testing

in soil for wireless underground sensor networks. 2017 IEEE 6th Asia-Pacific

Conference on Antennas and Propagation, APCAP 2017 - Proceeding, pp.1–3.

Wang, Y.P.E. et al., 2017. A Primer on 3GPP Narrowband Internet of Things.

IEEE Communications Magazine, 55(3), pp.117–123.

Widianto, E.D., Pakpahan, M.S.M., Faizal, A.A. and Septiana, R., 2019. LoRa

QoS Performance Analysis on Various Spreading Factor in Indonesia. ISESD

2018 - International Symposium on Electronics and Smart Devices: Smart

Devices for Big Data Analytic and Machine Learning.

Xue-Fen, W. et al., 2018. Smartphone based LoRa in-soil propagation

measurement for wireless underground sensor networks. 2017 IEEE Conference

on Antenna Measurements and Applications, CAMA 2017, 2018-Janua, pp.114–

117.

67

APPENDICES

APPENDIX A: Raspberry Pi Zero W Datasheet

68

APPENDIX B: RAK 831 datasheet

69

70

71

72

73

74

75

76

77

78

79

APPENDIX C: RAK 811 datasheet

80

81

APPENDIX D: Manual to write LoRa gateway image to Micro SD

82

83

84

85

APPENDIX E: Registration of gateway in TTN

86

87

88

APPENDIX F: Dragino LoRa GPS HAT Single Channel LoRa & GPS modules

Datasheet

89

90

91

92

93

94

APPENDIX G: SX1276 datasheet

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

APPENDIX H: Stop and Wait Protocol Transmitter codes

/**

 *

 * Copyright (c) 2018 Dragino

 *

 * http://www.dragino.com

 *

****************/

#include <string.h>

#include <string>

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <string.h>

#include <sys/time.h>

#include <signal.h>

#include <stdlib.h>

#include <sys/ioctl.h>

#include <wiringPi.h>

#include <wiringPiSPI.h>

#include <math.h>

// ###

// ###

#define REG_FIFO 0x00

#define REG_OPMODE 0x01

#define REG_FIFO_ADDR_PTR 0x0D

#define REG_FIFO_TX_BASE_AD 0x0E

#define REG_FIFO_RX_BASE_AD 0x0F

#define REG_RX_NB_BYTES 0x13

#define REG_FIFO_RX_CURRENT_ADDR 0x10

#define REG_IRQ_FLAGS 0x12

#define REG_DIO_MAPPING_1 0x40

#define REG_DIO_MAPPING_2 0x41

#define REG_MODEM_CONFIG 0x1D

#define REG_MODEM_CONFIG2 0x1E

#define REG_MODEM_CONFIG3 0x26

#define REG_SYMB_TIMEOUT_LSB 0x1F

#define REG_PKT_SNR_VALUE0x19

#define REG_PAYLOAD_LENGTH 0x22

111

#define REG_IRQ_FLAGS_MASK 0x11

#define REG_MAX_PAYLOAD_LENGTH 0x23

#define REG_HOP_PERIOD 0x24

#define REG_SYNC_WORD0x39

#define REG_VERSION 0x42

#define PAYLOAD_LENGTH 0x40

// LOW NOISE AMPLIFIER

#define REG_LNA 0x0C

#define LNA_MAX_GAIN 0x23

#define LNA_OFF_GAIN 0x00

#define LNA_LOW_GAIN 0x20

#define RegDioMapping1 0x40 // common

#define RegDioMapping2 0x41 // common

#define RegPaConfig 0x09 // common

#define RegPaRamp 0x0A // common

#define RegPaDac 0x5A // common

#define SX72_MC2_FSK 0x00

#define SX72_MC2_SF7 0x70

#define SX72_MC2_SF8 0x80

#define SX72_MC2_SF9 0x90

#define SX72_MC2_SF10 0xA0

#define SX72_MC2_SF11 0xB0

#define SX72_MC2_SF12 0xC0

#define SX72_MC1_LOW_DATA_RATE_OPTIMIZE 0x01 // mandated for

SF11 and SF12

// sx1276 RegModemConfig1

#define SX1276_MC1_BW_125 0x70

#define SX1276_MC1_BW_250 0x80

#define SX1276_MC1_BW_500 0x90

#define SX1276_MC1_CR_4_5 0x02

#define SX1276_MC1_CR_4_6 0x04

#define SX1276_MC1_CR_4_7 0x06

#define SX1276_MC1_CR_4_8 0x08

#define SX1276_MC1_IMPLICIT_HEADER_MODE_ON 0x01

// sx1276 RegModemConfig2

#define SX1276_MC2_RX_PAYLOAD_CRCON 0x04

// sx1276 RegModemConfig3

#define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08

#define SX1276_MC3_AGCAUTO 0x04

112

// preamble for lora networks (nibbles swapped)

#define LORA_MAC_PREAMBLE 0x34

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A

#ifdef LMIC_SX1276

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70

#elif LMIC_SX1272

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74

#endif

// FRF

#define REG_FRF_MSB 0x06

#define REG_FRF_MID 0x07

#define REG_FRF_LSB 0x08

#define FRF_MSB 0xD9 // 868.1 Mhz

#define FRF_MID 0x06

#define FRF_LSB 0x66

// --

// Constants for radio registers

#define OPMODE_LORA 0x80

#define OPMODE_MASK 0x07

#define OPMODE_SLEEP 0x00

#define OPMODE_STANDBY 0x01

#define OPMODE_FSTX 0x02

#define OPMODE_TX 0x03

#define OPMODE_FSRX 0x04

#define OPMODE_RX 0x05

#define OPMODE_RX_SINGLE 0x06

#define OPMODE_CAD 0x07

// --

// Bits masking the corresponding IRQs from the radio

#define IRQ_LORA_RXTOUT_MASK 0x80

#define IRQ_LORA_RXDONE_MASK 0x40

#define IRQ_LORA_CRCERR_MASK 0x20

#define IRQ_LORA_HEADER_MASK 0x10

#define IRQ_LORA_TXDONE_MASK 0x08

#define IRQ_LORA_CDDONE_MASK 0x04

#define IRQ_LORA_FHSSCH_MASK 0x02

#define IRQ_LORA_CDDETD_MASK 0x01

// DIO function mappings D0D1D2D3

#define MAP_DIO0_LORA_RXDONE 0x00 // 00------

#define MAP_DIO0_LORA_TXDONE 0x40 // 01------

#define MAP_DIO1_LORA_RXTOUT 0x00 // --00----

#define MAP_DIO1_LORA_NOP 0x30 // --11----

#define MAP_DIO2_LORA_NOP 0xC0 // ----11--

113

// size of radio tx buffer

#define PAYLOADSIZE 124

#define SEQUENCESIZE 4

#define TXBUFFERSIZE 128

#define ackTime 1

// ###

// ###

//

typedef bool boolean;

typedef unsigned char byte;

static const int CHANNEL = 0;

char message[TXBUFFERSIZE+1];

bool sx1272 = true;

byte receivedbytes;

enum sf_t { SF7=7, SF8, SF9, SF10, SF11, SF12 };

/**

 *

 * Configure these values!

 *

****************/

// SX1272 - Raspberry connections

int ssPin = 6;

int dio0 = 7;

int RST = 0;

// Set spreading factor (SF7 - SF12)

sf_t sf = SF7;

// Set center frequency

uint32_t freq=923200000; // in Mhz! (868.1)

unsigned char hello[32]="HELLO";

char packet[100000];

char txBuffer[TXBUFFERSIZE+1];

float numBytes;

int count=0;

int packet_no;

114

int resendindex= 999999999;

bool transmitmode = false;

bool receivemode = false;

bool receiveimage = false;

bool startprocess = true;

bool resend = false;

int timecount;

int timecount1;

struct content

{

 int index;

 char payload[TXBUFFERSIZE+1];

};

struct content packetinc[10000];

void die(const char *s)

{

 perror(s);

 exit(1);

}

void selectreceiver()

{

 digitalWrite(ssPin, LOW);

}

void unselectreceiver()

{

 digitalWrite(ssPin, HIGH);

}

byte readReg(byte addr)

{

 unsigned char spibuf[2];

 selectreceiver();

 spibuf[0] = addr & 0x7F;

 spibuf[1] = 0x00;

 wiringPiSPIDataRW(CHANNEL, spibuf, 2);

 unselectreceiver();

 return spibuf[1];

}

115

void writeReg(byte addr, byte value)

{

 unsigned char spibuf[2];

 spibuf[0] = addr | 0x80;

 spibuf[1] = value;

 selectreceiver();

 wiringPiSPIDataRW(CHANNEL, spibuf, 2);

 unselectreceiver();

}

static void opmode (uint8_t mode) {

 writeReg(REG_OPMODE, (readReg(REG_OPMODE) &

~OPMODE_MASK) | mode);

}

static void opmodeLora() {

 uint8_t u = OPMODE_LORA;

 if (sx1272 == false)

 u |= 0x8; // TBD: sx1276 high freq

 writeReg(REG_OPMODE, u);

}

void SetupLoRa()

{

 digitalWrite(RST, HIGH);

 delay(100);

 digitalWrite(RST, LOW);

 delay(100);

 byte version = readReg(REG_VERSION);

 if (version == 0x22) {

 // sx1272

 printf("SX1272 detected, starting.\n");

 sx1272 = true;

 } else {

 // sx1276?

 digitalWrite(RST, LOW);

 delay(100);

 digitalWrite(RST, HIGH);

 delay(100);

 version = readReg(REG_VERSION);

 if (version == 0x12) {

 // sx1276

 printf("SX1276 detected, starting.\n");

 sx1272 = false;

116

 } else {

 printf("Unrecognized transceiver.\n");

 //printf("Version: 0x%x\n",version);

 exit(1);

 }

 }

 opmode(OPMODE_SLEEP);

 // set frequency

 uint64_t frf = ((uint64_t)freq << 19) / 32000000;

 writeReg(REG_FRF_MSB, (uint8_t)(frf>>16));

 writeReg(REG_FRF_MID, (uint8_t)(frf>> 8));

 writeReg(REG_FRF_LSB, (uint8_t)(frf>> 0));

 writeReg(REG_SYNC_WORD, 0x34); // LoRaWAN public sync word

 if (sx1272) {

 if (sf == SF11 || sf == SF12) {

 writeReg(REG_MODEM_CONFIG,0x0B);

 } else {

 writeReg(REG_MODEM_CONFIG,0x0A);

 }

 writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

 } else {

 if (sf == SF11 || sf == SF12) {

 writeReg(REG_MODEM_CONFIG3,0x0C);

 } else {

 writeReg(REG_MODEM_CONFIG3,0x04);

 }

 writeReg(REG_MODEM_CONFIG,0x72);

 writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

 }

 if (sf == SF10 || sf == SF11 || sf == SF12) {

 writeReg(REG_SYMB_TIMEOUT_LSB,0x05);

 } else {

 writeReg(REG_SYMB_TIMEOUT_LSB,0x08);

 }

 writeReg(REG_MAX_PAYLOAD_LENGTH,0x80);

 writeReg(REG_PAYLOAD_LENGTH,PAYLOAD_LENGTH);

 writeReg(REG_HOP_PERIOD,0xFF);

 writeReg(REG_FIFO_ADDR_PTR, readReg(REG_FIFO_RX_BASE_AD));

 writeReg(REG_LNA, LNA_MAX_GAIN);

}

boolean receive(char *payload) {

 // clear rxDone

117

 writeReg(REG_IRQ_FLAGS, 0x40);

 int irqflags = readReg(REG_IRQ_FLAGS);

 // payload crc: 0x20

 if((irqflags & 0x20) == 0x20)

 {

 printf("CRC error\n");

 writeReg(REG_IRQ_FLAGS, 0x20);

 return false;

 } else {

 byte currentAddr = readReg(REG_FIFO_RX_CURRENT_ADDR);

 byte receivedCount = readReg(REG_RX_NB_BYTES);

 receivedbytes = receivedCount;

 writeReg(REG_FIFO_ADDR_PTR, currentAddr);

 for(int i = 0; i < receivedCount; i++)

 {

 payload[i] = (char)readReg(REG_FIFO);

 }

 }

 return true;

}

boolean receiveack() {

 long int SNR;

 int rssicorr;

 if(digitalRead(dio0) == 1)

 {

//clear message before next message received

memset(message, 0, TXBUFFERSIZE+1);

 if(receive(message)) {

 byte value = readReg(REG_PKT_SNR_VALUE);

 if(value & 0x80) // The SNR sign bit is 1

 {

 // Invert and divide by 4

 value = ((~value + 1) & 0xFF) >> 2;

 SNR = -value;

 }

 else

 {

 // Divide by 4

 SNR = (value & 0xFF) >> 2;

 }

118

 if (sx1272) {

 rssicorr = 139;

 } else {

 rssicorr = 157;

 }

 printf("Packet RSSI: %d, ", readReg(0x1A)-rssicorr);

 printf("RSSI: %d, ", readReg(0x1B)-rssicorr);

 printf("SNR: %li, ", SNR);

 printf("Length: %i", (int)receivedbytes);

 printf("\n");

 printf("Payload: %s\n", message);

if(!strcmp(message,"DONE")){

receiveimage = true;

system("python3 timeprint.py");

printf("Received DONE ACK\n\n");

}

else if(!strcmp(message,"0"))

{

system("python3 timeprint.py");

printf("received ACK 0, send again\n\n");

resend=true;

}else if (!strcmp(message,"1")){

 system("python3 timeprint.py");

 printf("received ACK 1, sent success\n\n");

 count++;

}

timecount1 = 0;

return true;

 } // received a message

 } // dio0=1

return false;

}

static void configPower (int8_t pw) {

 if (sx1272 == false) {

 // no boost used for now

 if(pw >= 17) {

119

 pw = 15;

 } else if(pw < 2) {

 pw = 2;

 }

 // check board type for BOOST pin

 writeReg(RegPaConfig, (uint8_t)(0x80|(pw&0xf)));

 writeReg(RegPaDac, readReg(RegPaDac)|0x4);

 } else {

 // set PA config (2-17 dBm using PA_BOOST)

 if(pw > 17) {

 pw = 17;

 } else if(pw < 2) {

 pw = 2;

 }

 writeReg(RegPaConfig, (uint8_t)(0x80|(pw-2)));

 }

}

static void writeBuf(byte addr, byte *value, byte len) {

 unsigned char spibuf[256];

 spibuf[0] = addr | 0x80;

 for (int i = 0; i < len; i++) {

 spibuf[i + 1] = value[i];

 }

 selectreceiver();

 wiringPiSPIDataRW(CHANNEL, spibuf, len + 1);

 unselectreceiver();

}

void txlora(byte *frame, byte datalen) {

 // set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP

 writeReg(RegDioMapping1,

MAP_DIO0_LORA_TXDONE|MAP_DIO1_LORA_NOP|MAP_DIO2_LOR

A_NOP);

 // clear all radio IRQ flags

 writeReg(REG_IRQ_FLAGS, 0xFF);

 // mask all IRQs but TxDone

 writeReg(REG_IRQ_FLAGS_MASK, ~IRQ_LORA_TXDONE_MASK);

 // initialize the payload size and address pointers

 writeReg(REG_FIFO_TX_BASE_AD, 0x00);

 writeReg(REG_FIFO_ADDR_PTR, 0x00);

 writeReg(REG_PAYLOAD_LENGTH, datalen);

 // download buffer to the radio FIFO

 writeBuf(REG_FIFO, frame, datalen);

 // now we actually start the transmission

120

 opmode(OPMODE_TX);

 printf("send: %s\n", frame);

}

char *readfile(){

static char c[1000];

 FILE *fptr;

 if ((fptr = fopen("test.txt", "r")) == NULL) {

 printf("Error! opening file");

 // Program exits if file pointer returns NULL.

 exit(1);

 }

 // reads text until newline is encountered

 fscanf(fptr, "%[^\n]", c);

 //printf("Data from the file:\n%s", c);

 fclose(fptr);

 return c;

}

int main (int argc, char *argv[]) {

 if (argc < 2) {

 printf ("Usage: argv[0] sender|rec [message]\n");

 exit(1);

 }

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

 if (!strcmp("sender", argv[1])) {

while(startprocess){

startprocess =false;

 count = 0;

receiveimage = false;

 printf("Start to take the picture\n");

121

//system time for taking picture

system("python3 timeprint.py");

 // Take a picture with the raspicam

 system("raspistill -o ImageTx.jpg -hf -vf -w 100 -h 100");

 //compress imagetx.jpg to image_compressed

system("python3 compress.py");

 printf("Picture taken and compress\n");

 //read file store to ImageTx.txt

 system("python3 storebytes.py");

//python to generate appended file

system("python addheader.py");

 //scan appended header file for transmit

FILE *fptr;

 if ((fptr = fopen("ImageTx_h.txt", "r")) == NULL)

{

 printf("Error! opening file");

 // Program exits if file pointer returns NULL.

 exit(1);

 }

 // reads text until newline is encountered

 fscanf(fptr, "%[^\n]", packet);

 fclose(fptr);

//print out appended header text file

 printf("Data from the file:\n%s", packet);

 //no of packet in floating point

 numBytes = strlen(packet);

 printf("\nTotal payload length is %.2f\n",numBytes);

 //round to higher integer of no of packet

 packet_no = ceil(numBytes/TXBUFFERSIZE);

 printf("Total packet to be sent is %d\n\n",packet_no);

//count=0

//if str=12345,txbuffer size = 2,raw packet_no = 3,appended packet_no=4 true

while count<4, go while loop 4 times

while(count<packet_no) {

122

receiveimage = false;

 //sender mode

 opmodeLora();

// enter standby mode (required for FIFO loading))

opmode(OPMODE_STANDBY);

writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08); // set PA ramp-

up time 50 uSec

configPower(23);

 delay(5000);

//split the string into different packet

strncpy(txBuffer,packet+(count*TXBUFFERSIZE),TXBUFFERSIZE);

 printf("Payload length is %d\n",strlen(txBuffer));

 //system time for sending

system("python3 timeprint.py");

printf("Sending packet no. %d\n", count);

txlora((byte*)txBuffer, strlen((char *)txBuffer));

printf("Sent packet no. %d\n", count);

printf("\n");

delay(1000);

 //receive setup---

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

 //receivemode

 opmodeLora();

 opmode(OPMODE_STANDBY);

 opmode(OPMODE_RX);

system("python3 timeprint.py");

123

 printf("Listening ACK at SF%i on %.6lf Mhz. for 20s\n",

sf,(double)freq/1000000);

 printf("------------------\n");

delay(1000);

 if(count<(packet_no-1)){

 //keep listening

 while(!receiveack()) {

 }//while(!receivepacket())

}

timecount1=0;

//final look

while(count==(packet_no-1)&&timecount1 < ackTime){

timecount=0;

 //keep listening

printf("Listening final ACK for 100s.....\n");

resend=false;

 while(!receiveack()&&timecount<500000000) {

 timecount++;

 }//while(!receivepacket()&&timecount<100000000)

if(receiveimage){

startprocess = true;

packet_no = 0;

timecount1 = ackTime;

system("python3 timeprint.py");

printf("Sent all successfully\n");

printf("Starting new process in 120s......\n\n\n");

delay(120000);

}

timecount1++;

}//while(count==(packet_no-1)&&timecount1 < ackTime)

//countdown to exit while loop and take new pic

124

if(timecount1 == ackTime&&!resend){

 startprocess = true;

count=packet_no;

 system("python3 timeprint.py");

 printf("All session timeout\n");

 printf("Starting new process in 120s......\n\n\n");

delay(120000);

}

delay(1);

//send setup---

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

}//while(count<packet_no)

}//while (startprocess)

 } //if sender

else {

 // radio init

 opmodeLora();

 opmode(OPMODE_STANDBY);

 opmode(OPMODE_RX);

 printf("Listening at SF%i on %.6lf Mhz.\n", sf,(double)freq/1000000);

 printf("------------------\n");

 while(1) {

 //receivepacket();

 delay(1);

 }

 }

return (0);}

125

APPENDIX I: Stop and Wait Protocol Receiver code

/**

 *

 * Copyright (c) 2018 Dragino

 *

 * http://www.dragino.com

 *

****************/

#include <string>

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <string.h>

#include <sys/time.h>

#include <signal.h>

#include <stdlib.h>

#include <sys/ioctl.h>

#include <wiringPi.h>

#include <wiringPiSPI.h>

// ###

// ###

#define REG_FIFO 0x00

#define REG_OPMODE 0x01

#define REG_FIFO_ADDR_PTR 0x0D

#define REG_FIFO_TX_BASE_AD 0x0E

#define REG_FIFO_RX_BASE_AD 0x0F

#define REG_RX_NB_BYTES 0x13

#define REG_FIFO_RX_CURRENT_ADDR 0x10

#define REG_IRQ_FLAGS 0x12

#define REG_DIO_MAPPING_1 0x40

#define REG_DIO_MAPPING_2 0x41

#define REG_MODEM_CONFIG 0x1D

#define REG_MODEM_CONFIG2 0x1E

#define REG_MODEM_CONFIG3 0x26

#define REG_SYMB_TIMEOUT_LSB 0x1F

#define REG_PKT_SNR_VALUE0x19

#define REG_PAYLOAD_LENGTH 0x22

#define REG_IRQ_FLAGS_MASK 0x11

#define REG_MAX_PAYLOAD_LENGTH 0x23

126

#define REG_HOP_PERIOD 0x24

#define REG_SYNC_WORD0x39

#define REG_VERSION 0x42

#define PAYLOAD_LENGTH 0x40

// LOW NOISE AMPLIFIER

#define REG_LNA 0x0C

#define LNA_MAX_GAIN 0x23

#define LNA_OFF_GAIN 0x00

#define LNA_LOW_GAIN 0x20

#define RegDioMapping1 0x40 // common

#define RegDioMapping2 0x41 // common

#define RegPaConfig 0x09 // common

#define RegPaRamp 0x0A // common

#define RegPaDac 0x5A // common

#define SX72_MC2_FSK 0x00

#define SX72_MC2_SF7 0x70

#define SX72_MC2_SF8 0x80

#define SX72_MC2_SF9 0x90

#define SX72_MC2_SF10 0xA0

#define SX72_MC2_SF11 0xB0

#define SX72_MC2_SF12 0xC0

#define SX72_MC1_LOW_DATA_RATE_OPTIMIZE 0x01 // mandated

for SF11 and SF12

// sx1276 RegModemConfig1

#define SX1276_MC1_BW_125 0x70

#define SX1276_MC1_BW_250 0x80

#define SX1276_MC1_BW_500 0x90

#define SX1276_MC1_CR_4_5 0x02

#define SX1276_MC1_CR_4_6 0x04

#define SX1276_MC1_CR_4_7 0x06

#define SX1276_MC1_CR_4_8 0x08

#define SX1276_MC1_IMPLICIT_HEADER_MODE_ON 0x01

// sx1276 RegModemConfig2

#define SX1276_MC2_RX_PAYLOAD_CRCON 0x04

// sx1276 RegModemConfig3

#define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08

#define SX1276_MC3_AGCAUTO 0x04

// preamble for lora networks (nibbles swapped)

#define LORA_MAC_PREAMBLE 0x34

127

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A

#ifdef LMIC_SX1276

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70

#elif LMIC_SX1272

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74

#endif

// FRF

#define REG_FRF_MSB 0x06

#define REG_FRF_MID 0x07

#define REG_FRF_LSB 0x08

#define FRF_MSB 0xD9 // 868.1 Mhz

#define FRF_MID 0x06

#define FRF_LSB 0x66

// --

// Constants for radio registers

#define OPMODE_LORA 0x80

#define OPMODE_MASK 0x07

#define OPMODE_SLEEP 0x00

#define OPMODE_STANDBY 0x01

#define OPMODE_FSTX 0x02

#define OPMODE_TX 0x03

#define OPMODE_FSRX 0x04

#define OPMODE_RX 0x05

#define OPMODE_RX_SINGLE 0x06

#define OPMODE_CAD 0x07

// --

// Bits masking the corresponding IRQs from the radio

#define IRQ_LORA_RXTOUT_MASK 0x80

#define IRQ_LORA_RXDONE_MASK 0x40

#define IRQ_LORA_CRCERR_MASK 0x20

#define IRQ_LORA_HEADER_MASK 0x10

#define IRQ_LORA_TXDONE_MASK 0x08

#define IRQ_LORA_CDDONE_MASK 0x04

#define IRQ_LORA_FHSSCH_MASK 0x02

#define IRQ_LORA_CDDETD_MASK 0x01

// DIO function mappings D0D1D2D3

#define MAP_DIO0_LORA_RXDONE 0x00 // 00------

#define MAP_DIO0_LORA_TXDONE 0x40 // 01------

#define MAP_DIO1_LORA_RXTOUT 0x00 // --00----

#define MAP_DIO1_LORA_NOP 0x30 // --11----

#define MAP_DIO2_LORA_NOP 0xC0 // ----11--

// size of radio rxbuffer

#define PAYLOADSIZE 124

128

#define SEQUENCESIZE 4

#define TXBUFFERSIZE 128

struct content

{

 char rxindexstr[SEQUENCESIZE+1];

 int rxindex;

 char rxpayload[PAYLOADSIZE+1];

};

// ###

// ###

//

typedef bool boolean;

typedef unsigned char byte;

static const int CHANNEL = 0;

char message[TXBUFFERSIZE+1];

bool sx1272 = true;

byte receivedbytes;

enum sf_t { SF7=7, SF8, SF9, SF10, SF11, SF12 };

/**

 *

 * Configure these values!

 *

****************/

// SX1272 - Raspberry connections

int ssPin = 6;

int dio0 = 7;

int RST = 0;

// Set spreading factor (SF7 - SF12)

sf_t sf = SF7;

// Set center frequency

uint32_t freq = 923200000; // in Mhz! (868.1)

char rxbuffer[SEQUENCESIZE+1];

char ack1[2]="1";

char ack0[2]="0";

129

int i=1;

int no_of_packet=10000;

int count=0;

struct content packet[10000];

int timecount=0;

int timecount1=0;

int timecount2=0;

bool receiveimage;

bool receivemessage;

void die(const char *s)

{

 perror(s);

 exit(1);

}

void selectreceiver()

{

 digitalWrite(ssPin, LOW);

}

void unselectreceiver()

{

 digitalWrite(ssPin, HIGH);

}

byte readReg(byte addr)

{

 unsigned char spibuf[2];

 selectreceiver();

 spibuf[0] = addr & 0x7F;

 spibuf[1] = 0x00;

 wiringPiSPIDataRW(CHANNEL, spibuf, 2);

 unselectreceiver();

 return spibuf[1];

}

void writeReg(byte addr, byte value)

{

 unsigned char spibuf[2];

 spibuf[0] = addr | 0x80;

 spibuf[1] = value;

 selectreceiver();

 wiringPiSPIDataRW(CHANNEL, spibuf, 2);

 unselectreceiver();

130

}

static void opmode (uint8_t mode) {

 writeReg(REG_OPMODE, (readReg(REG_OPMODE) &

~OPMODE_MASK) | mode);

}

static void opmodeLora() {

 uint8_t u = OPMODE_LORA;

 if (sx1272 == false)

 u |= 0x8; // TBD: sx1276 high freq

 writeReg(REG_OPMODE, u);

}

void SetupLoRa()

{

 digitalWrite(RST, HIGH);

 delay(100);

 digitalWrite(RST, LOW);

 delay(100);

 byte version = readReg(REG_VERSION);

 if (version == 0x22) {

 // sx1272

 printf("SX1272 detected, starting.\n");

 sx1272 = true;

 } else {

 // sx1276?

 digitalWrite(RST, LOW);

 delay(100);

 digitalWrite(RST, HIGH);

 delay(100);

 version = readReg(REG_VERSION);

 if (version == 0x12) {

 // sx1276

 printf("SX1276 detected, starting.\n");

 sx1272 = false;

 } else {

 printf("Unrecognized transceiver.\n");

 //printf("Version: 0x%x\n",version);

 exit(1);

 }

 }

 opmode(OPMODE_SLEEP);

 // set frequency

131

 uint64_t frf = ((uint64_t)freq << 19) / 32000000;

 writeReg(REG_FRF_MSB, (uint8_t)(frf>>16));

 writeReg(REG_FRF_MID, (uint8_t)(frf>> 8));

 writeReg(REG_FRF_LSB, (uint8_t)(frf>> 0));

 writeReg(REG_SYNC_WORD, 0x34); // LoRaWAN public sync word

 if (sx1272) {

 if (sf == SF11 || sf == SF12) {

 writeReg(REG_MODEM_CONFIG,0x0B);

 } else {

 writeReg(REG_MODEM_CONFIG,0x0A);

 }

 writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

 } else {

 if (sf == SF11 || sf == SF12) {

 writeReg(REG_MODEM_CONFIG3,0x0C);

 } else {

 writeReg(REG_MODEM_CONFIG3,0x04);

 }

 writeReg(REG_MODEM_CONFIG,0x72);

 writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

 }

 if (sf == SF10 || sf == SF11 || sf == SF12) {

 writeReg(REG_SYMB_TIMEOUT_LSB,0x05);

 } else {

 writeReg(REG_SYMB_TIMEOUT_LSB,0x08);

 }

 writeReg(REG_MAX_PAYLOAD_LENGTH,0x80);

 writeReg(REG_PAYLOAD_LENGTH,PAYLOAD_LENGTH);

 writeReg(REG_HOP_PERIOD,0xFF);

 writeReg(REG_FIFO_ADDR_PTR,

readReg(REG_FIFO_RX_BASE_AD));

 writeReg(REG_LNA, LNA_MAX_GAIN);

}

boolean receive(char *payload) {

 // clear rxDone

 writeReg(REG_IRQ_FLAGS, 0x40);

 int irqflags = readReg(REG_IRQ_FLAGS);

 // payload crc: 0x20

 if((irqflags & 0x20) == 0x20)

132

 {

 printf("CRC error\n");

 writeReg(REG_IRQ_FLAGS, 0x20);

 return false;

 } else {

 byte currentAddr = readReg(REG_FIFO_RX_CURRENT_ADDR);

 byte receivedCount = readReg(REG_RX_NB_BYTES);

 receivedbytes = receivedCount;

 writeReg(REG_FIFO_ADDR_PTR, currentAddr);

 for(int i = 0; i < receivedCount; i++)

 {

 payload[i] = (char)readReg(REG_FIFO);

 }

 }

 return true;

}

bool receivepacket() {

 long int SNR;

 int rssicorr;

 if(digitalRead(dio0) == 1)

 {

//clear message before next message received

memset(message, 0, TXBUFFERSIZE+1);

 if(receive(message)) {

byte value = readReg(REG_PKT_SNR_VALUE);

 if(value & 0x80) // The SNR sign bit is 1

{

// Invert and divide by 4

value = ((~value + 1) & 0xFF) >> 2;

SNR = -value;

}

else

{

// Divide by 4

 SNR = (value & 0xFF) >> 2;

}

if (sx1272) {

rssicorr = 139;

} else {

rssicorr = 157;

}

133

 printf("Packet RSSI: %d, ", readReg(0x1A)-rssicorr);

printf("RSSI: %d, ", readReg(0x1B)-rssicorr);

printf("SNR: %li, ", SNR);

printf("Length: %i", (int)receivedbytes);

printf("\n");

printf("Payload: %s\n", message);

//store in variable for used later

strncpy(packet[i].rxindexstr,message+(0),SEQUENCESIZE);

if((atoi(packet[i].rxindexstr)) == 0){

 packet[atoi(packet[i].rxindexstr)].rxindex = atoi(packet[i].rxindexstr);

strncpy((packet[atoi(packet[i].rxindexstr)].rxpayload),message+(SEQUENCE

SIZE),PAYLOADSIZE);

system("python3 timeprint.py");

printf("Received packet no. %d\n\n",packet[i].rxindex);

 no_of_packet = atoi((packet[atoi(packet[i].rxindexstr)].rxpayload));

printf("no of packet to be received is %d\n\n",no_of_packet);

 }else if(atoi(packet[i].rxindexstr) !=

packet[atoi(packet[i].rxindexstr)].rxindex){

 packet[atoi(packet[i].rxindexstr)].rxindex =

atoi(packet[i].rxindexstr);

 //printf("index is %d\n",packet[i].rxindex);

strncpy((packet[atoi(packet[i].rxindexstr)].rxpayload),message+(SEQUENCE

SIZE),PAYLOADSIZE);

system("python3 timeprint.py");

printf("Received packet no. %d\n\n",packet[i].rxindex);

 count++;

 i=atoi(packet[i].rxindexstr)+1;

 //printf("count is %d\n",count);

}

timecount1 = 0;

receivemessage=true;

return true;

}// received a message

 }// dio0=1

134

return false;

}

static void configPower (int8_t pw) {

 if (sx1272 == false) {

 // no boost used for now

 if(pw >= 17) {

 pw = 15;

 } else if(pw < 2) {

 pw = 2;

 }

 // check board type for BOOST pin

 writeReg(RegPaConfig, (uint8_t)(0x80|(pw&0xf)));

 writeReg(RegPaDac, readReg(RegPaDac)|0x4);

 } else {

 // set PA config (2-17 dBm using PA_BOOST)

 if(pw > 17) {

 pw = 17;

 } else if(pw < 2) {

 pw = 2;

 }

 writeReg(RegPaConfig, (uint8_t)(0x80|(pw-2)));

 }

}

static void writeBuf(byte addr, byte *value, byte len) {

 unsigned char spibuf[256];

 spibuf[0] = addr | 0x80;

 for (int i = 0; i < len; i++) {

 spibuf[i + 1] = value[i];

 }

 selectreceiver();

 wiringPiSPIDataRW(CHANNEL, spibuf, len + 1);

 unselectreceiver();

}

void txlora(byte *frame, byte datalen) {

 // set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP

 writeReg(RegDioMapping1,

MAP_DIO0_LORA_TXDONE|MAP_DIO1_LORA_NOP|MAP_DIO2_LOR

A_NOP);

 // clear all radio IRQ flags

 writeReg(REG_IRQ_FLAGS, 0xFF);

 // mask all IRQs but TxDone

 writeReg(REG_IRQ_FLAGS_MASK, ~IRQ_LORA_TXDONE_MASK);

135

 // initialize the payload size and address pointers

 writeReg(REG_FIFO_TX_BASE_AD, 0x00);

 writeReg(REG_FIFO_ADDR_PTR, 0x00);

 writeReg(REG_PAYLOAD_LENGTH, datalen);

 // download buffer to the radio FIFO

 writeBuf(REG_FIFO, frame, datalen);

 // now we actually start the transmission

 opmode(OPMODE_TX);

 printf("send: %s\n", frame);

}

int main (int argc, char *argv[]) {

 if (argc < 2) {

 printf ("Usage: argv[0] sender|rec [message]\n");

 exit(1);

 }

 if (!strcmp("sender", argv[1])) {

 opmodeLora();

 // enter standby mode (required for FIFO loading))

 opmode(OPMODE_STANDBY);

 writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08); // set

PA ramp-up time 50 uSec

 configPower(23);

 printf("Send packets at SF%i on %.6lf Mhz.\n",

sf,(double)freq/1000000);

 printf("------------------\n");

 if (argc > 2)

 //strncpy((char *)hello, argv[2], sizeof(hello));

 while(1) {

 //txlora(hello, strlen((char *)hello));

 delay(5000);

 }

 } else

 {

 receiveimage = true;

 while(receiveimage){

136

 //reset all variable

 receivemessage=false;

 receiveimage = false;

 count = 0;

 i=1;

 no_of_packet=10000;

 count=0;

 timecount=0;

 timecount1=0;

 //clear rx in c

 for (int j=1;j<(no_of_packet+1);j++){

 packet[j].rxindex = 0;

 memset(packet[j].rxpayload, 0, PAYLOADSIZE+1);

 }

 printf("******Start receive new image******\n");

 //receive setup---

-

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

 //receivemode

 opmodeLora();

 opmode(OPMODE_STANDBY);

 opmode(OPMODE_RX);

 printf("Listening at SF%i on %.6lf Mhz.\n", sf,(double)freq/1000000);

 printf("------------------\n");

 //keep listening first packet as receiver

 while(!receivepacket()) {

 }

 while(count<(no_of_packet)&&timecount1<5){

delay(2000);

137

//send setup---

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

 //sendermode

 opmodeLora();

 // enter standby mode (required for FIFO loading))

 opmode(OPMODE_STANDBY);

 writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08);

// set PA ramp-up time 50 uSec

 configPower(23);

 delay(5000);

 if(receivemessage){

system("python3 timeprint.py");

 printf("Sending ACK1\n");

 txlora((byte*)ack1, strlen((char *)ack1));

 printf("\n");

 }

 else{

system("python3 timeprint.py");

 printf("Sending ACK0\n");

 txlora((byte*)ack0, strlen((char *)ack0));

printf("\n");

 }

 receivemessage=false;

 delay(1);

 //receive setup---

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

138

 //receivemode

 opmodeLora();

 opmode(OPMODE_STANDBY);

 opmode(OPMODE_RX);

system("python3 timeprint.py");

 printf("Listening at SF%i on %.6lf Mhz. for 20s\n",

sf,(double)freq/1000000);

 printf("------------------\n");

 timecount = 0;

 //keep listening

 while(!receivepacket()&&timecount<100000000) {

 timecount++;

 }

delay(1);

if(timecount==99999999){

 printf("Timeout\n");

 system("python3 timeprint.py");

 printf("\n\n");

}

 timecount1++;

 }//(count<(no_of_packet)&&timecount1<2)

 if(no_of_packet==count){

system("python3 timeprint.py");

 printf("Start building image\n");

 /* File pointer to hold reference of input file */

 FILE *fPtr;

 if ((fPtr = fopen("ImageRx.txt", "w")) == NULL) {

 printf("Error! opening file");

 // Program exits if file pointer returns NULL.

 exit(1);

 }

139

 //print all variable to file

 for (int j=1;j<(no_of_packet+1);j++){

 fputs(packet[j].rxpayload,fPtr);

 }

 /* Done with file, hence close file. */

 fclose(fPtr);

 printf("finally done\n");

 system("python hextoimage.py");

 system("python3 timeprint.py");

 printf("Image is print to file\n");

 //send done to sender

 //clear rxbuffer before store

 memset(rxbuffer, 0, SEQUENCESIZE+1);

 //store rx buffer

 strncpy(rxbuffer,"DONE",SEQUENCESIZE+1);

 //send setup--

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

 //sendermode

 opmodeLora();

 // enter standby mode (required for FIFO loading))

 opmode(OPMODE_STANDBY);

 writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08);

// set PA ramp-up time 50 uSec

 configPower(23);

 delay(6000);

 system("python3 timeprint.py");

 printf("Sending DONE ACK at SF%i on %.6lf Mhz.\n",

sf,(double)freq/1000000);

140

 printf("------------------\n");

 txlora((byte*)rxbuffer, strlen((char *)rxbuffer));

printf("\n\n");

 delay(1);

 receiveimage = true;

 }//if(no_of_packet==count) all file received

 }//while(receiveimage)

 }//else receiver

 return (0);

}

141

APPENDIX J: LoRa Multi-Packet Transmission Protocol Transmitter code

/**

 *

 * Copyright (c) 2018 Dragino

 *

 * http://www.dragino.com

 *

****************/

#include <string.h>

#include <string>

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <string.h>

#include <sys/time.h>

#include <signal.h>

#include <stdlib.h>

#include <sys/ioctl.h>

#include <wiringPi.h>

#include <wiringPiSPI.h>

#include <math.h>

// ###

// ###

#define REG_FIFO 0x00

#define REG_OPMODE 0x01

#define REG_FIFO_ADDR_PTR 0x0D

#define REG_FIFO_TX_BASE_AD 0x0E

#define REG_FIFO_RX_BASE_AD 0x0F

#define REG_RX_NB_BYTES 0x13

#define REG_FIFO_RX_CURRENT_ADDR 0x10

#define REG_IRQ_FLAGS 0x12

#define REG_DIO_MAPPING_1 0x40

#define REG_DIO_MAPPING_2 0x41

#define REG_MODEM_CONFIG 0x1D

#define REG_MODEM_CONFIG2 0x1E

#define REG_MODEM_CONFIG3 0x26

#define REG_SYMB_TIMEOUT_LSB 0x1F

#define REG_PKT_SNR_VALUE0x19

#define REG_PAYLOAD_LENGTH 0x22

#define REG_IRQ_FLAGS_MASK 0x11

142

#define REG_MAX_PAYLOAD_LENGTH 0x23

#define REG_HOP_PERIOD 0x24

#define REG_SYNC_WORD0x39

#define REG_VERSION 0x42

#define PAYLOAD_LENGTH 0x40

// LOW NOISE AMPLIFIER

#define REG_LNA 0x0C

#define LNA_MAX_GAIN 0x23

#define LNA_OFF_GAIN 0x00

#define LNA_LOW_GAIN 0x20

#define RegDioMapping1 0x40 // common

#define RegDioMapping2 0x41 // common

#define RegPaConfig 0x09 // common

#define RegPaRamp 0x0A // common

#define RegPaDac 0x5A // common

#define SX72_MC2_FSK 0x00

#define SX72_MC2_SF7 0x70

#define SX72_MC2_SF8 0x80

#define SX72_MC2_SF9 0x90

#define SX72_MC2_SF10 0xA0

#define SX72_MC2_SF11 0xB0

#define SX72_MC2_SF12 0xC0

#define SX72_MC1_LOW_DATA_RATE_OPTIMIZE 0x01 // mandated

for SF11 and SF12

// sx1276 RegModemConfig1

#define SX1276_MC1_BW_125 0x70

#define SX1276_MC1_BW_250 0x80

#define SX1276_MC1_BW_500 0x90

#define SX1276_MC1_CR_4_5 0x02

#define SX1276_MC1_CR_4_6 0x04

#define SX1276_MC1_CR_4_7 0x06

#define SX1276_MC1_CR_4_8 0x08

#define SX1276_MC1_IMPLICIT_HEADER_MODE_ON 0x01

// sx1276 RegModemConfig2

#define SX1276_MC2_RX_PAYLOAD_CRCON 0x04

// sx1276 RegModemConfig3

#define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08

#define SX1276_MC3_AGCAUTO 0x04

// preamble for lora networks (nibbles swapped)

143

#define LORA_MAC_PREAMBLE 0x34

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A

#ifdef LMIC_SX1276

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70

#elif LMIC_SX1272

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74

#endif

// FRF

#define REG_FRF_MSB 0x06

#define REG_FRF_MID 0x07

#define REG_FRF_LSB 0x08

#define FRF_MSB 0xD9 // 868.1 Mhz

#define FRF_MID 0x06

#define FRF_LSB 0x66

// --

// Constants for radio registers

#define OPMODE_LORA 0x80

#define OPMODE_MASK 0x07

#define OPMODE_SLEEP 0x00

#define OPMODE_STANDBY 0x01

#define OPMODE_FSTX 0x02

#define OPMODE_TX 0x03

#define OPMODE_FSRX 0x04

#define OPMODE_RX 0x05

#define OPMODE_RX_SINGLE 0x06

#define OPMODE_CAD 0x07

// --

// Bits masking the corresponding IRQs from the radio

#define IRQ_LORA_RXTOUT_MASK 0x80

#define IRQ_LORA_RXDONE_MASK 0x40

#define IRQ_LORA_CRCERR_MASK 0x20

#define IRQ_LORA_HEADER_MASK 0x10

#define IRQ_LORA_TXDONE_MASK 0x08

#define IRQ_LORA_CDDONE_MASK 0x04

#define IRQ_LORA_FHSSCH_MASK 0x02

#define IRQ_LORA_CDDETD_MASK 0x01

// DIO function mappings D0D1D2D3

#define MAP_DIO0_LORA_RXDONE 0x00 // 00------

#define MAP_DIO0_LORA_TXDONE 0x40 // 01------

#define MAP_DIO1_LORA_RXTOUT 0x00 // --00----

#define MAP_DIO1_LORA_NOP 0x30 // --11----

#define MAP_DIO2_LORA_NOP 0xC0 // ----11--

// size of radio tx buffer

144

#define PAYLOADSIZE 124

#define SEQUENCESIZE 4

#define TXBUFFERSIZE 128

#define ackTime 10

// ###

// ###

//

typedef bool boolean;

typedef unsigned char byte;

static const int CHANNEL = 0;

char message[TXBUFFERSIZE+1];

bool sx1272 = true;

byte receivedbytes;

enum sf_t { SF7=7, SF8, SF9, SF10, SF11, SF12 };

/**

 *

 * Configure these values!

 *

****************/

// SX1272 - Raspberry connections

int ssPin = 6;

int dio0 = 7;

int RST = 0;

// Set spreading factor (SF7 - SF12)

sf_t sf = SF7;

// Set center frequency

uint32_t freq=923200000; // in Mhz! (868.1)

unsigned char hello[32]="HELLO";

char packet[100000];

char txBuffer[TXBUFFERSIZE+1];

float numBytes;

int count=0;

int packet_no;

int resendindex= 999999999;

145

bool transmitmode = false;

bool receivemode = false;

bool receiveimage = false;

bool startprocess = true;

bool resend = false;

int timecount;

int timecount1;

struct content

{

 int index;

 char payload[TXBUFFERSIZE+1];

};

struct content packetinc[10000];

void die(const char *s)

{

 perror(s);

 exit(1);

}

void selectreceiver()

{

 digitalWrite(ssPin, LOW);

}

void unselectreceiver()

{

 digitalWrite(ssPin, HIGH);

}

byte readReg(byte addr)

{

 unsigned char spibuf[2];

 selectreceiver();

 spibuf[0] = addr & 0x7F;

 spibuf[1] = 0x00;

 wiringPiSPIDataRW(CHANNEL, spibuf, 2);

 unselectreceiver();

 return spibuf[1];

}

void writeReg(byte addr, byte value)

{

146

 unsigned char spibuf[2];

 spibuf[0] = addr | 0x80;

 spibuf[1] = value;

 selectreceiver();

 wiringPiSPIDataRW(CHANNEL, spibuf, 2);

 unselectreceiver();

}

static void opmode (uint8_t mode) {

 writeReg(REG_OPMODE, (readReg(REG_OPMODE) &

~OPMODE_MASK) | mode);

}

static void opmodeLora() {

 uint8_t u = OPMODE_LORA;

 if (sx1272 == false)

 u |= 0x8; // TBD: sx1276 high freq

 writeReg(REG_OPMODE, u);

}

void SetupLoRa()

{

 digitalWrite(RST, HIGH);

 delay(100);

 digitalWrite(RST, LOW);

 delay(100);

 byte version = readReg(REG_VERSION);

 if (version == 0x22) {

 // sx1272

 printf("SX1272 detected, starting.\n");

 sx1272 = true;

 } else {

 // sx1276?

 digitalWrite(RST, LOW);

 delay(100);

 digitalWrite(RST, HIGH);

 delay(100);

 version = readReg(REG_VERSION);

 if (version == 0x12) {

 // sx1276

 printf("SX1276 detected, starting.\n");

 sx1272 = false;

 } else {

 printf("Unrecognized transceiver.\n");

147

 //printf("Version: 0x%x\n",version);

 exit(1);

 }

 }

 opmode(OPMODE_SLEEP);

 // set frequency

 uint64_t frf = ((uint64_t)freq << 19) / 32000000;

 writeReg(REG_FRF_MSB, (uint8_t)(frf>>16));

 writeReg(REG_FRF_MID, (uint8_t)(frf>> 8));

 writeReg(REG_FRF_LSB, (uint8_t)(frf>> 0));

 writeReg(REG_SYNC_WORD, 0x34); // LoRaWAN public sync word

 if (sx1272) {

 if (sf == SF11 || sf == SF12) {

 writeReg(REG_MODEM_CONFIG,0x0B);

 } else {

 writeReg(REG_MODEM_CONFIG,0x0A);

 }

 writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

 } else {

 if (sf == SF11 || sf == SF12) {

 writeReg(REG_MODEM_CONFIG3,0x0C);

 } else {

 writeReg(REG_MODEM_CONFIG3,0x04);

 }

 writeReg(REG_MODEM_CONFIG,0x72);

 writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

 }

 if (sf == SF10 || sf == SF11 || sf == SF12) {

 writeReg(REG_SYMB_TIMEOUT_LSB,0x05);

 } else {

 writeReg(REG_SYMB_TIMEOUT_LSB,0x08);

 }

 writeReg(REG_MAX_PAYLOAD_LENGTH,0x80);

 writeReg(REG_PAYLOAD_LENGTH,PAYLOAD_LENGTH);

 writeReg(REG_HOP_PERIOD,0xFF);

 writeReg(REG_FIFO_ADDR_PTR,

readReg(REG_FIFO_RX_BASE_AD));

 writeReg(REG_LNA, LNA_MAX_GAIN);

}

boolean receive(char *payload) {

 // clear rxDone

 writeReg(REG_IRQ_FLAGS, 0x40);

148

 int irqflags = readReg(REG_IRQ_FLAGS);

 // payload crc: 0x20

 if((irqflags & 0x20) == 0x20)

 {

 printf("CRC error\n");

 writeReg(REG_IRQ_FLAGS, 0x20);

 return false;

 } else {

 byte currentAddr = readReg(REG_FIFO_RX_CURRENT_ADDR);

 byte receivedCount = readReg(REG_RX_NB_BYTES);

 receivedbytes = receivedCount;

 writeReg(REG_FIFO_ADDR_PTR, currentAddr);

 for(int i = 0; i < receivedCount; i++)

 {

 payload[i] = (char)readReg(REG_FIFO);

 }

 }

 return true;

}

boolean receiveack() {

 long int SNR;

 int rssicorr;

 if(digitalRead(dio0) == 1)

 {

//clear message before next message received

memset(message, 0, TXBUFFERSIZE+1);

 if(receive(message)) {

 byte value = readReg(REG_PKT_SNR_VALUE);

 if(value & 0x80) // The SNR sign bit is 1

 {

 // Invert and divide by 4

 value = ((~value + 1) & 0xFF) >> 2;

 SNR = -value;

 }

 else

 {

 // Divide by 4

 SNR = (value & 0xFF) >> 2;

 }

149

 if (sx1272) {

 rssicorr = 139;

 } else {

 rssicorr = 157;

 }

 printf("Packet RSSI: %d, ", readReg(0x1A)-rssicorr);

 printf("RSSI: %d, ", readReg(0x1B)-rssicorr);

 printf("SNR: %li, ", SNR);

 printf("Length: %i", (int)receivedbytes);

 printf("\n");

 printf("Payload: %s\n", message);

if(!strcmp(message,"DONE")){

receiveimage = true;

system("python3 timeprint.py");

printf("Received DONE\n");

}

else if(strlen(message)!=0)

{

resendindex = atoi(message);

resend = true;

system("python3 timeprint.py");

printf("Received resend request ACK\n");

}

timecount1=0;

return true;

 } // received a message

 } // dio0=1

return false;

}

static void configPower (int8_t pw) {

 if (sx1272 == false) {

 // no boost used for now

 if(pw >= 17) {

 pw = 15;

 } else if(pw < 2) {

 pw = 2;

 }

 // check board type for BOOST pin

 writeReg(RegPaConfig, (uint8_t)(0x80|(pw&0xf)));

 writeReg(RegPaDac, readReg(RegPaDac)|0x4);

150

 } else {

 // set PA config (2-17 dBm using PA_BOOST)

 if(pw > 17) {

 pw = 17;

 } else if(pw < 2) {

 pw = 2;

 }

 writeReg(RegPaConfig, (uint8_t)(0x80|(pw-2)));

 }

}

static void writeBuf(byte addr, byte *value, byte len) {

 unsigned char spibuf[256];

 spibuf[0] = addr | 0x80;

 for (int i = 0; i < len; i++) {

 spibuf[i + 1] = value[i];

 }

 selectreceiver();

 wiringPiSPIDataRW(CHANNEL, spibuf, len + 1);

 unselectreceiver();

}

void txlora(byte *frame, byte datalen) {

 // set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP

 writeReg(RegDioMapping1,

MAP_DIO0_LORA_TXDONE|MAP_DIO1_LORA_NOP|MAP_DIO2_LOR

A_NOP);

 // clear all radio IRQ flags

 writeReg(REG_IRQ_FLAGS, 0xFF);

 // mask all IRQs but TxDone

 writeReg(REG_IRQ_FLAGS_MASK, ~IRQ_LORA_TXDONE_MASK);

 // initialize the payload size and address pointers

 writeReg(REG_FIFO_TX_BASE_AD, 0x00);

 writeReg(REG_FIFO_ADDR_PTR, 0x00);

 writeReg(REG_PAYLOAD_LENGTH, datalen);

 // download buffer to the radio FIFO

 writeBuf(REG_FIFO, frame, datalen);

 // now we actually start the transmission

 opmode(OPMODE_TX);

 printf("send: %s\n", frame);

}

char *readfile(){

static char c[1000];

151

 FILE *fptr;

 if ((fptr = fopen("test.txt", "r")) == NULL) {

 printf("Error! opening file");

 // Program exits if file pointer returns NULL.

 exit(1);

 }

 // reads text until newline is encountered

 fscanf(fptr, "%[^\n]", c);

 //printf("Data from the file:\n%s", c);

 fclose(fptr);

 return c;

}

int main (int argc, char *argv[]) {

 if (argc < 2) {

 printf ("Usage: argv[0] sender|rec [message]\n");

 exit(1);

 }

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

 if (!strcmp("sender", argv[1])) {

while(startprocess){

startprocess =false;

 count = 0;

receiveimage = false;

system("python3 timeprint.py");

 printf("Start to take the picture\n");

//system time for taking picture

 // Take a picture with the raspicam

 system("raspistill -o ImageTx.jpg -hf -vf -w 100 -h 100");

 //compress imagetx.jpg to image_compressed

system("python3 compress.py");

152

 printf("Picture taken and compress\n");

 //read file store to ImageTx.txt

 system("python3 storebytes.py");

//python to generate appended file

system("python addheader.py");

 //scan appended header file for transmit

FILE *fptr;

 if ((fptr = fopen("ImageTx_h.txt", "r")) == NULL)

{

 printf("Error! opening file");

 // Program exits if file pointer returns NULL.

 exit(1);

 }

 // reads text until newline is encountered

 fscanf(fptr, "%[^\n]", packet);

 fclose(fptr);

//print out appended header text file

 printf("Data from the file:\n%s", packet);

 //no of packet in floating point

 numBytes = strlen(packet);

 printf("\nTotal payload length is %.2f\n",numBytes);

 //round to higher integer of no of packet

 packet_no = ceil(numBytes/TXBUFFERSIZE);

 printf("packet size is %d\n",packet_no);

 //sender mode

 opmodeLora();

// enter standby mode (required for FIFO loading))

opmode(OPMODE_STANDBY);

writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08); // set PA

ramp-up time 50 uSec

configPower(23);

printf("Send packets at SF%i on %.6lf Mhz.\n", sf,(double)freq/1000000);

printf("------------------\n");

//count=0

//if str=12345,txbuffer size = 2,raw packet_no = 3,appended packet_no=4

true while count<4, go while loop 4 times

153

while(count<packet_no) {

 delay(5000);

//split the string into different packet

strncpy(txBuffer,packet+(count*TXBUFFERSIZE),TXBUFFERSIZE);

 printf("Payload length is %d\n",strlen(txBuffer));

 //system time for sending

system("python3 timeprint.py");

printf("Sending packet no. %d\n", count);

txlora((byte*)txBuffer, strlen((char *)txBuffer));

//delay(5000);

printf("Sent packet no. %d\n", count);

printf("\n\n");

count++;

}//while(count<packet_no) send all the packet

timecount1 = 0;

//before entering while loop

system("python3 timeprint.py");

printf("Waiting to receive ack\n");

delay(1000);

//receive setup---

wiringPiSetup () ;

pinMode(ssPin, OUTPUT);

pinMode(dio0, INPUT);

pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);

SetupLoRa();

//receivemode

opmodeLora();

opmode(OPMODE_STANDBY);

opmode(OPMODE_RX);

printf("Listening at SF%i on %.6lf Mhz.\n", sf,(double)freq/1000000);

printf("------------------\n");

154

while(count==packet_no && timecount1 < ackTime){

resendindex =9999999;

resend = false;

receiveimage = false;

timecount=0;

//before entering while loop

system("python3 timeprint.py");

printf("Listening ack for 60s\n");

//keep listening

 while(!receiveack()&&timecount<301450000) {

 timecount++;

 }

delay(1);

//after exiting while loop

if(timecount==301449999){

system("python3 timeprint.py");

printf("Timeout\n");

}

if(receiveimage){

startprocess = true;

packet_no = 0;

}

//delay(5000);

if(resend){

delay(2000);

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

 //sender mode

 opmodeLora();

// enter standby mode (required for FIFO loading))

opmode(OPMODE_STANDBY);

155

writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08); // set PA

ramp-up time 50 uSec

configPower(23);

//resend mode-------------------

//send missing packet

strncpy(txBuffer,packet+(resendindex*TXBUFFERSIZE),TXBUFFERSIZE);

printf("Payload length is %d\n",strlen(txBuffer));

delay(5000);

//system time for sending

system("python3 timeprint.py");

printf("Resending packet no. %d\n", resendindex);

txlora((byte*)txBuffer, strlen((char *)txBuffer));

printf("Resent packet no. %d\n\n ", resendindex);

delay(1000);

//receivesetup---

wiringPiSetup () ;

pinMode(ssPin, OUTPUT);

pinMode(dio0, INPUT);

pinMode(RST, OUTPUT);

wiringPiSPISetup(CHANNEL, 500000);

SetupLoRa();

//receivemode

opmodeLora();

opmode(OPMODE_STANDBY);

opmode(OPMODE_RX);

printf("Listening at SF%i on %.6lf Mhz.\n", sf,(double)freq/1000000);

printf("------------------\n");

 delay(1000);

}//if(resend)

timecount1++;

156

printf("Leaving about %d seconds to receive ack\n\n",(10-timecount1)*60);

//countdown to exit while loop and take new pic

if(timecount1 == ackTime){

 startprocess = true;

 system("python3 timeprint.py");

 printf("All session timeout\n");

 printf("Starting new process......\n");

}

//count=0;

}//while(count==packet_no)

}//while (startprocess)

 } //if sender

else {

 // radio init

 opmodeLora();

 opmode(OPMODE_STANDBY);

 opmode(OPMODE_RX);

 printf("Listening at SF%i on %.6lf Mhz.\n", sf,(double)freq/1000000);

 printf("------------------\n");

 while(1) {

 //receivepacket();

 delay(1);

 }

 }

 return (0);

}

157

APPENDIX K: LoRa Multi-Packet Transmission Protocol Receiver code

/**

 *

 * Copyright (c) 2018 Dragino

 *

 * http://www.dragino.com

 *

****************/

#include <string>

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <string.h>

#include <sys/time.h>

#include <signal.h>

#include <stdlib.h>

#include <sys/ioctl.h>

#include <wiringPi.h>

#include <wiringPiSPI.h>

// ###

// ###

#define REG_FIFO 0x00

#define REG_OPMODE 0x01

#define REG_FIFO_ADDR_PTR 0x0D

#define REG_FIFO_TX_BASE_AD 0x0E

#define REG_FIFO_RX_BASE_AD 0x0F

#define REG_RX_NB_BYTES 0x13

#define REG_FIFO_RX_CURRENT_ADDR 0x10

#define REG_IRQ_FLAGS 0x12

#define REG_DIO_MAPPING_1 0x40

#define REG_DIO_MAPPING_2 0x41

#define REG_MODEM_CONFIG 0x1D

#define REG_MODEM_CONFIG2 0x1E

#define REG_MODEM_CONFIG3 0x26

#define REG_SYMB_TIMEOUT_LSB 0x1F

#define REG_PKT_SNR_VALUE0x19

#define REG_PAYLOAD_LENGTH 0x22

#define REG_IRQ_FLAGS_MASK 0x11

158

#define REG_MAX_PAYLOAD_LENGTH 0x23

#define REG_HOP_PERIOD 0x24

#define REG_SYNC_WORD0x39

#define REG_VERSION 0x42

#define PAYLOAD_LENGTH 0x40

// LOW NOISE AMPLIFIER

#define REG_LNA 0x0C

#define LNA_MAX_GAIN 0x23

#define LNA_OFF_GAIN 0x00

#define LNA_LOW_GAIN 0x20

#define RegDioMapping1 0x40 // common

#define RegDioMapping2 0x41 // common

#define RegPaConfig 0x09 // common

#define RegPaRamp 0x0A // common

#define RegPaDac 0x5A // common

#define SX72_MC2_FSK 0x00

#define SX72_MC2_SF7 0x70

#define SX72_MC2_SF8 0x80

#define SX72_MC2_SF9 0x90

#define SX72_MC2_SF10 0xA0

#define SX72_MC2_SF11 0xB0

#define SX72_MC2_SF12 0xC0

#define SX72_MC1_LOW_DATA_RATE_OPTIMIZE 0x01 // mandated

for SF11 and SF12

// sx1276 RegModemConfig1

#define SX1276_MC1_BW_125 0x70

#define SX1276_MC1_BW_250 0x80

#define SX1276_MC1_BW_500 0x90

#define SX1276_MC1_CR_4_5 0x02

#define SX1276_MC1_CR_4_6 0x04

#define SX1276_MC1_CR_4_7 0x06

#define SX1276_MC1_CR_4_8 0x08

#define SX1276_MC1_IMPLICIT_HEADER_MODE_ON 0x01

// sx1276 RegModemConfig2

#define SX1276_MC2_RX_PAYLOAD_CRCON 0x04

// sx1276 RegModemConfig3

#define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08

#define SX1276_MC3_AGCAUTO 0x04

// preamble for lora networks (nibbles swapped)

159

#define LORA_MAC_PREAMBLE 0x34

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A

#ifdef LMIC_SX1276

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70

#elif LMIC_SX1272

#define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74

#endif

// FRF

#define REG_FRF_MSB 0x06

#define REG_FRF_MID 0x07

#define REG_FRF_LSB 0x08

#define FRF_MSB 0xD9 // 868.1 Mhz

#define FRF_MID 0x06

#define FRF_LSB 0x66

// --

// Constants for radio registers

#define OPMODE_LORA 0x80

#define OPMODE_MASK 0x07

#define OPMODE_SLEEP 0x00

#define OPMODE_STANDBY 0x01

#define OPMODE_FSTX 0x02

#define OPMODE_TX 0x03

#define OPMODE_FSRX 0x04

#define OPMODE_RX 0x05

#define OPMODE_RX_SINGLE 0x06

#define OPMODE_CAD 0x07

// --

// Bits masking the corresponding IRQs from the radio

#define IRQ_LORA_RXTOUT_MASK 0x80

#define IRQ_LORA_RXDONE_MASK 0x40

#define IRQ_LORA_CRCERR_MASK 0x20

#define IRQ_LORA_HEADER_MASK 0x10

#define IRQ_LORA_TXDONE_MASK 0x08

#define IRQ_LORA_CDDONE_MASK 0x04

#define IRQ_LORA_FHSSCH_MASK 0x02

#define IRQ_LORA_CDDETD_MASK 0x01

// DIO function mappings D0D1D2D3

#define MAP_DIO0_LORA_RXDONE 0x00 // 00------

#define MAP_DIO0_LORA_TXDONE 0x40 // 01------

#define MAP_DIO1_LORA_RXTOUT 0x00 // --00----

#define MAP_DIO1_LORA_NOP 0x30 // --11----

#define MAP_DIO2_LORA_NOP 0xC0 // ----11--

// size of radio rxbuffer

160

#define PAYLOADSIZE 124

#define SEQUENCESIZE 4

#define TXBUFFERSIZE 128

struct content

{

 char rxindexstr[SEQUENCESIZE+1];

 int rxindex;

 char rxpayload[PAYLOADSIZE+1];

};

// ###

// ###

//

typedef bool boolean;

typedef unsigned char byte;

static const int CHANNEL = 0;

char message[TXBUFFERSIZE+1];

bool sx1272 = true;

byte receivedbytes;

enum sf_t { SF7=7, SF8, SF9, SF10, SF11, SF12 };

/**

 *

 * Configure these values!

 *

****************/

// SX1272 - Raspberry connections

int ssPin = 6;

int dio0 = 7;

int RST = 0;

// Set spreading factor (SF7 - SF12)

sf_t sf = SF7;

// Set center frequency

uint32_t freq = 923200000; // in Mhz! (868.1)

char rxbuffer[SEQUENCESIZE+1];

161

int i=1;

int no_of_packet=10000;

int count=0;

struct content packet[10000];

int timecount=0;

int timecount1=0;

int timecount2=0;

bool receiveimage;

void die(const char *s)

{

 perror(s);

 exit(1);

}

void selectreceiver()

{

 digitalWrite(ssPin, LOW);

}

void unselectreceiver()

{

 digitalWrite(ssPin, HIGH);

}

byte readReg(byte addr)

{

 unsigned char spibuf[2];

 selectreceiver();

 spibuf[0] = addr & 0x7F;

 spibuf[1] = 0x00;

 wiringPiSPIDataRW(CHANNEL, spibuf, 2);

 unselectreceiver();

 return spibuf[1];

}

void writeReg(byte addr, byte value)

{

 unsigned char spibuf[2];

 spibuf[0] = addr | 0x80;

 spibuf[1] = value;

 selectreceiver();

 wiringPiSPIDataRW(CHANNEL, spibuf, 2);

 unselectreceiver();

}

162

static void opmode (uint8_t mode) {

 writeReg(REG_OPMODE, (readReg(REG_OPMODE) &

~OPMODE_MASK) | mode);

}

static void opmodeLora() {

 uint8_t u = OPMODE_LORA;

 if (sx1272 == false)

 u |= 0x8; // TBD: sx1276 high freq

 writeReg(REG_OPMODE, u);

}

void SetupLoRa()

{

 digitalWrite(RST, HIGH);

 delay(100);

 digitalWrite(RST, LOW);

 delay(100);

 byte version = readReg(REG_VERSION);

 if (version == 0x22) {

 // sx1272

 printf("SX1272 detected, starting.\n");

 sx1272 = true;

 } else {

 // sx1276?

 digitalWrite(RST, LOW);

 delay(100);

 digitalWrite(RST, HIGH);

 delay(100);

 version = readReg(REG_VERSION);

 if (version == 0x12) {

 // sx1276

 printf("SX1276 detected, starting.\n");

 sx1272 = false;

 } else {

 printf("Unrecognized transceiver.\n");

 //printf("Version: 0x%x\n",version);

 exit(1);

 }

 }

 opmode(OPMODE_SLEEP);

 // set frequency

 uint64_t frf = ((uint64_t)freq << 19) / 32000000;

163

 writeReg(REG_FRF_MSB, (uint8_t)(frf>>16));

 writeReg(REG_FRF_MID, (uint8_t)(frf>> 8));

 writeReg(REG_FRF_LSB, (uint8_t)(frf>> 0));

 writeReg(REG_SYNC_WORD, 0x34); // LoRaWAN public sync word

 if (sx1272) {

 if (sf == SF11 || sf == SF12) {

 writeReg(REG_MODEM_CONFIG,0x0B);

 } else {

 writeReg(REG_MODEM_CONFIG,0x0A);

 }

 writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

 } else {

 if (sf == SF11 || sf == SF12) {

 writeReg(REG_MODEM_CONFIG3,0x0C);

 } else {

 writeReg(REG_MODEM_CONFIG3,0x04);

 }

 writeReg(REG_MODEM_CONFIG,0x72);

 writeReg(REG_MODEM_CONFIG2,(sf<<4) | 0x04);

 }

 if (sf == SF10 || sf == SF11 || sf == SF12) {

 writeReg(REG_SYMB_TIMEOUT_LSB,0x05);

 } else {

 writeReg(REG_SYMB_TIMEOUT_LSB,0x08);

 }

 writeReg(REG_MAX_PAYLOAD_LENGTH,0x80);

 writeReg(REG_PAYLOAD_LENGTH,PAYLOAD_LENGTH);

 writeReg(REG_HOP_PERIOD,0xFF);

 writeReg(REG_FIFO_ADDR_PTR,

readReg(REG_FIFO_RX_BASE_AD));

 writeReg(REG_LNA, LNA_MAX_GAIN);

}

boolean receive(char *payload) {

 // clear rxDone

 writeReg(REG_IRQ_FLAGS, 0x40);

 int irqflags = readReg(REG_IRQ_FLAGS);

 // payload crc: 0x20

 if((irqflags & 0x20) == 0x20)

 {

164

 printf("CRC error\n");

 writeReg(REG_IRQ_FLAGS, 0x20);

 return false;

 } else {

 byte currentAddr = readReg(REG_FIFO_RX_CURRENT_ADDR);

 byte receivedCount = readReg(REG_RX_NB_BYTES);

 receivedbytes = receivedCount;

 writeReg(REG_FIFO_ADDR_PTR, currentAddr);

 for(int i = 0; i < receivedCount; i++)

 {

 payload[i] = (char)readReg(REG_FIFO);

 }

 }

 return true;

}

bool receivepacket() {

 long int SNR;

 int rssicorr;

 if(digitalRead(dio0) == 1)

 {

//clear message before next message received

memset(message, 0, TXBUFFERSIZE+1);

 if(receive(message)) {

byte value = readReg(REG_PKT_SNR_VALUE);

 if(value & 0x80) // The SNR sign bit is 1

{

// Invert and divide by 4

value = ((~value + 1) & 0xFF) >> 2;

SNR = -value;

}

else

{

// Divide by 4

 SNR = (value & 0xFF) >> 2;

}

if (sx1272) {

rssicorr = 139;

} else {

rssicorr = 157;

}

165

 printf("Packet RSSI: %d, ", readReg(0x1A)-rssicorr);

printf("RSSI: %d, ", readReg(0x1B)-rssicorr);

printf("SNR: %li, ", SNR);

printf("Length: %i", (int)receivedbytes);

printf("\n");

printf("Payload: %s\n", message);

//store in variable for used later

strncpy(packet[i].rxindexstr,message+(0),SEQUENCESIZE);

if((atoi(packet[i].rxindexstr)) == 0){

 packet[atoi(packet[i].rxindexstr)].rxindex = atoi(packet[i].rxindexstr);

strncpy((packet[atoi(packet[i].rxindexstr)].rxpayload),message+(SEQUENCE

SIZE),PAYLOADSIZE);

system("python3 timeprint.py");

printf("Received packet no. %d\n",packet[i].rxindex);

 no_of_packet = atoi((packet[atoi(packet[i].rxindexstr)].rxpayload));

printf("no of packet to be received is %d\n\n",no_of_packet);

 }else if(atoi(packet[i].rxindexstr) !=

packet[atoi(packet[i].rxindexstr)].rxindex){

 packet[atoi(packet[i].rxindexstr)].rxindex =

atoi(packet[i].rxindexstr);

 //printf("index is %d\n",packet[i].rxindex);

strncpy((packet[atoi(packet[i].rxindexstr)].rxpayload),message+(SEQUENCE

SIZE),PAYLOADSIZE);

system("python3 timeprint.py");

printf("Received packet no. %d\n",packet[i].rxindex);

printf("\n\n");

 count++;

 i=atoi(packet[i].rxindexstr)+1;

 timecount1 = 0;

timecount2 = 0;

return true;

}

}// received a message

 }// dio0=1

166

return false;

}

static void configPower (int8_t pw) {

 if (sx1272 == false) {

 // no boost used for now

 if(pw >= 17) {

 pw = 15;

 } else if(pw < 2) {

 pw = 2;

 }

 // check board type for BOOST pin

 writeReg(RegPaConfig, (uint8_t)(0x80|(pw&0xf)));

 writeReg(RegPaDac, readReg(RegPaDac)|0x4);

 } else {

 // set PA config (2-17 dBm using PA_BOOST)

 if(pw > 17) {

 pw = 17;

 } else if(pw < 2) {

 pw = 2;

 }

 writeReg(RegPaConfig, (uint8_t)(0x80|(pw-2)));

 }

}

static void writeBuf(byte addr, byte *value, byte len) {

 unsigned char spibuf[256];

 spibuf[0] = addr | 0x80;

 for (int i = 0; i < len; i++) {

 spibuf[i + 1] = value[i];

 }

 selectreceiver();

 wiringPiSPIDataRW(CHANNEL, spibuf, len + 1);

 unselectreceiver();

}

void txlora(byte *frame, byte datalen) {

 // set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP

 writeReg(RegDioMapping1,

MAP_DIO0_LORA_TXDONE|MAP_DIO1_LORA_NOP|MAP_DIO2_LOR

A_NOP);

 // clear all radio IRQ flags

 writeReg(REG_IRQ_FLAGS, 0xFF);

 // mask all IRQs but TxDone

 writeReg(REG_IRQ_FLAGS_MASK, ~IRQ_LORA_TXDONE_MASK);

167

 // initialize the payload size and address pointers

 writeReg(REG_FIFO_TX_BASE_AD, 0x00);

 writeReg(REG_FIFO_ADDR_PTR, 0x00);

 writeReg(REG_PAYLOAD_LENGTH, datalen);

 // download buffer to the radio FIFO

 writeBuf(REG_FIFO, frame, datalen);

 // now we actually start the transmission

 opmode(OPMODE_TX);

 printf("send: %s\n", frame);

}

int main (int argc, char *argv[]) {

 if (argc < 2) {

 printf ("Usage: argv[0] sender|rec [message]\n");

 exit(1);

 }

 if (!strcmp("sender", argv[1])) {

 opmodeLora();

 // enter standby mode (required for FIFO loading))

 opmode(OPMODE_STANDBY);

 writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08); // set

PA ramp-up time 50 uSec

 configPower(23);

 printf("Send packets at SF%i on %.6lf Mhz.\n",

sf,(double)freq/1000000);

 printf("------------------\n");

 if (argc > 2)

 //strncpy((char *)hello, argv[2], sizeof(hello));

 while(1) {

 //txlora(hello, strlen((char *)hello));

 delay(5000);

 }

 } else

 {

 receiveimage = true;

 while(receiveimage){

168

 //reset all variable

 receiveimage = false;

 count = 0;

 i=1;

 no_of_packet=10000;

 count=0;

 timecount=0;

 timecount1=0;

 //clear rx in c

 for (int j=1;j<(no_of_packet+1);j++){

 packet[j].rxindex = 0;

 memset(packet[j].rxpayload, 0, PAYLOADSIZE+1);

 }

 printf("start receive new image\n");

 //receive setup---

-

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

 //receivemode

 opmodeLora();

 opmode(OPMODE_STANDBY);

 opmode(OPMODE_RX);

 printf("Listening at SF%i on %.6lf Mhz.\n", sf,(double)freq/1000000);

 printf("------------------\n");

 //keep listening first packet as receiver

 while(!receivepacket()) {

 }

 bool noreceive = true;

 timecount2 = 0;

 while(noreceive&& timecount2 < 5){

 //re-receive //dunno no_of_packet

 while(count<(no_of_packet)&&timecount1<2) {

169

 timecount = 0;

system("python3 timeprint.py");

 printf("Listening at SF%i on %.6lf Mhz. for 20s\n",

sf,(double)freq/1000000);

 printf("------------------\n");

 //keep listening

 while(!receivepacket()&&timecount<100000000) {

 timecount++;

 }//while(!receivepacket()&&timecount<100000000)

if(timecount==99999999){

printf("Timeout\n");

system("python3 timeprint.py");

printf("\n\n");

}

 timecount1++;

 }//while(count<(no_of_packet))

 timecount1=0;

 int j=0;

 bool inloop = true;

 //check whether missing packet

 while(j<(no_of_packet+1)&&inloop){

 if(strlen(packet[j].rxpayload)==0){

 system("python3 timeprint.py");

 printf("Packet no. %d is lost, request to resend\n",j);

printf("\n");

 //clear rxbuffer before store

 memset(rxbuffer, 0, SEQUENCESIZE+1);

 //store rx buffer

 sprintf(rxbuffer, "%d", j);

 delay(2000);

 //send setup--

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

170

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

 //sendermode

 opmodeLora();

 // enter standby mode (required for FIFO loading))

 opmode(OPMODE_STANDBY);

 writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) |

0x08); // set PA ramp-up time 50 uSec

 configPower(23);

 printf("Send packets at SF%i on %.6lf Mhz.\n",

sf,(double)freq/1000000);

 printf("------------------\n");

 delay(5000);

 system("python3 timeprint.py");

printf("Sending resending request\n");

 txlora((byte*)rxbuffer, strlen((char *)rxbuffer));

 printf("Sent resending request\n");

 printf("\n");

 delay(1000);

 inloop = false;

 //receive setup---

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

 //receivemode

 opmodeLora();

 opmode(OPMODE_STANDBY);

 opmode(OPMODE_RX);

 printf("Listening at SF%i on %.6lf Mhz.\n",

sf,(double)freq/1000000);

 printf("------------------\n");

171

 }//if(strlen(packet[j].rxpayload)==0)

 j++;

 }//while(j<(no_of_packet))

 if(no_of_packet==count){

 system("python3 timeprint.py");

 printf("Start building image\n");

 /* File pointer to hold reference of input file */

 FILE *fPtr;

 if ((fPtr = fopen("ImageRx.txt", "w")) == NULL) {

 printf("Error! opening file");

 // Program exits if file pointer returns NULL.

 exit(1);

 }

 //print all variable to file

 for (int j=1;j<(no_of_packet+1);j++){

 fputs(packet[j].rxpayload,fPtr);

 }

 /* Done with file, hence close file. */

 fclose(fPtr);

 printf("finally done\n");

 system("python hextoimage.py");

 printf("Image is print to file\n");

 system("python3 timeprint.py");

 printf("\n");

 //send done to sender

 //clear rxbuffer before store

 memset(rxbuffer, 0, SEQUENCESIZE+1);

 //store rx buffer

 strncpy(rxbuffer,"DONE",SEQUENCESIZE+1);

 delay(2000);

 //send setup--

 wiringPiSetup () ;

 pinMode(ssPin, OUTPUT);

172

 pinMode(dio0, INPUT);

 pinMode(RST, OUTPUT);

 wiringPiSPISetup(CHANNEL, 500000);

 SetupLoRa();

 //sendermode

 opmodeLora();

 // enter standby mode (required for FIFO loading))

 opmode(OPMODE_STANDBY);

 writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08);

// set PA ramp-up time 50 uSec

 configPower(23);

 printf("Send packets at SF%i on %.6lf Mhz.\n",

sf,(double)freq/1000000);

 printf("------------------\n");

 delay(5000);

 txlora((byte*)rxbuffer, strlen((char *)rxbuffer));

 delay(1000);

 receiveimage = true;

 noreceive = false;

 }//if(no_of_packet==count) all file received

 timecount2++;

if(no_of_packet!=count){

printf("Try to request for resending for %d times\n",timecount2);}

 //countdown to exit while loop and take new pic

 if(timecount2 == 3){

 receiveimage = true;

 printf("receiveimage is true");

 }

 }//while(noreceive)

if(no_of_packet!=count){

 printf("Countdown for waiting reached\n");

 system("python3 timeprint.py");}

173

 }//while(receiveimage)

 }//else receiver

 return (0);

}

174

APPENDIX L: Header adding python code (addheader.py) in transmitter

import binascii

import math

PAYLOADSIZE=226

HEADERSIZE=4

#non-appended file name

filename = 'ImageTx.txt'

with open(filename, 'rb') as f:

 my_str = f.read()

#my_str = "1234567890123456789012345678901234567"

length = len(my_str)

packet_no = math.ceil(length/float(PAYLOADSIZE))

packet_no= int(packet_no)

#print(my_str)

#print(length)

#print(packet_no)

for i in range (1,packet_no):

 #print(i)

 i_str=str(i+1).zfill(HEADERSIZE)

 j=i-1

my_str=my_str[:(PAYLOADSIZE+(j*(PAYLOADSIZE+HEADERSIZE)))] +

i_str + my_str[(PAYLOADSIZE+(j*(PAYLOADSIZE+HEADERSIZE))):]

my_str=my_str[:0] + str(1).zfill(HEADERSIZE) + my_str[0:]

#print(my_str)

packet_no_char = str(packet_no).zfill(PAYLOADSIZE)

#print(packet_no_char)

packet_no_char = packet_no_char[:0] + str(0).zfill(HEADERSIZE) +

packet_no_char[0:]

#print(packet_no_char)

my_str = packet_no_char+ my_str

#print(my_str)

#appended file name

175

txtfile = 'ImageTx_h.txt'

with open(txtfile, 'w+') as file:

 file.write(my_str)

file.close()

176

APPENDIX M: Image compress python code (compress.py) in transmitter

from PIL import Image

image

foo = Image.open("ImageTx.jpg")

I downsize the image with an ANTIALIAS filter (gives the highest quality)

foo = foo.resize((300,300),Image.ANTIALIAS)

foo.save("ImageTx_compress_95.jpg",optimize=True,quality=95)

177

APPENDIX N: Conversion of image to hexadecimal format python code

(storebytes.py) in transmitter

import binascii

filename = 'ImageTx_compress_95.jpg'

with open(filename, 'rb') as f:

 content = f.read()

#print(content)

#print(binascii.hexlify(content))

str_content = str(binascii.hexlify(content), 'utf-8')

#print(str_content)

txtfile = 'ImageTx.txt'

with open(txtfile, 'w+') as file:

 #for i in range(10):

 file.write(str_content)

file.close()

178

APPENDIX O: Conversion of hexadecimal data to image and dropbox

uploading python code (hextoimage.py) in receiver

import binascii

import time

#received file name

import dropbox

from dropbox.exceptions import ApiError, AuthError

import time

import datetime

import picamera

import sys, os

#convert received data to image

filename = 'ImageRx.txt'

with open(filename, 'rb') as f:

 data = f.read()

data=data.strip()

data=data.replace(' ', '')

data=data.replace('\n', '')

data = binascii.a2b_hex(data)

timestr = time.strftime("%Y%m%d-%H%M%S")

with open('hextoimage-'+timestr+'.jpg', 'wb') as image_file:

 image_file.write(data)

#upload image to dropbox

Authorisation token

TOKEN = 'q2Cu3yRj3-

AAAAAAAAAHxmYLIDeJOZN2V58j2SAvjDOleu9q3pxpHwv48PvakLZU'

Upload localfile to Dropbox

def uploadFile(localfile):

 # Check that access tocken added

 if (len(TOKEN) == 0):

 sys.exit("ERROR: Missing access token. "

 "try re-generating an access token from the app console at

dropbox.com.")

 # Create instance of a Dropbox class, which can make requests to API

 print("Creating a Dropbox object...")

 dbx = dropbox.Dropbox(TOKEN)

 # Check that the access token is valid

179

 try:

 dbx.users_get_current_account()

 except AuthError as err:

 sys.exit("ERROR: Invalid access token; try re-generating an "

 "access token from the app console at dropbox.com.")

 # Specify upload path

 uploadPath = '/' + localfile

 # Read in file and upload

 with open(localfile, 'rb') as f:

 print("Uploading " + localfile + " to Dropbox as " + uploadPath + "...")

 try:

 dbx.files_upload(f.read(), uploadPath)

 except ApiError as err:

 # Check user has enough Dropbox space quota

 if (err.error.is_path() and

 err.error.get_path().error.is_insufficient_space()):

 sys.exit("ERROR: Cannot upload; insufficient space.")

 elif err.user_message_text:

 print(err.user_message_text)

 sys.exit()

 else:

 print(err)

 sys.exit()

Delete file

#def deleteLocal(file):

os.system("rm " + file)

print("File: " + file + " deleted ...")

def main():

 # image file name

 file = 'hextoimage-'+timestr+'.jpg'

 # Upload file

 uploadFile(file)

 # Delete local file

 #deleteLocal(file)

 print("Done")

if __name__ == '__main__':

 main()

180

APPENDIX P: Time printing python code (timezone.py) in both transmitter

and receiver

from datetime import datetime

from datetime import timezone

current_GMT_timestamp = datetime.utcnow()

print (current_GMT_timestamp)

