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ABSTRACT 

 

Inventory models are excellent examples to use mathematical models in order 

to solve real world problems. They are used frequently in any business to 

determine the optimal level of inventories, which are the stocks, so as to 

minimize the total inventory cost.  

 In this project, the most general inventory model with time-varying 

demand and recycling has been built, which is the inventory model with multiple 

production and remanufacturing set-ups per cycle. The production set-ups 

produce new products from scratch, while the remanufacturing set-ups utilize 

returned items from the returned cycle to remanufacture them to produce 

products which are considered as good as new. All products are produced, 

remanufactured and returned at constant rates, while the demand rate is an 

arbitrary function of time. The goal is to formulate a total cost per unit time 

function to find the minimum cost of the model. Since the total cost per unit 

time function is a function of the acceptable returned quantity, it is plotted 

against the variable in order to prove the optimality of the total cost per unit time 

function. Other than that, comparisons between several policies with different 

production and remanufacturing set-ups per cycle have been done to observe the 

optimal policy that gives the minimum cost. Finally, sensitivity analysis has 

been performed to show that the inventory model built is robust. 

 Python is used to compute all calculations and plot all visualizations in 

this report. Python is a high level programming language that is easily 

interpreted and understood by beginner programmers. It has various data 

science libraries that make the process of complex computations to be done 

effortlessly and effectively in a short time. The optimization function in the 

SciPy library is used to calculate the optimal value of the total cost per unit time 

and the Matplotlib library is used to plot the graphs. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 General Introduction 

Inventory models are excellent examples to use mathematical models in order 

to solve real world problems. They are used frequently in any business to 

determine the optimal level of inventories, which are the stocks, so as to 

minimize the total inventory cost. When an effective inventory management is 

implemented, it can improve the sales with excellence productions (Nemtajela 

and Mbohwa, 2016). There are various types of inventory models which have 

been established with different types of stocks and number of set-ups. These 

inventory models are mainly divided into two categories, one with time-varying 

demand and the other with constant demand. This report considers time-varying 

demand which is continuous throughout the cycle. Although discrete demand is 

more realistic, it is much more complicated to be analysed. 

On top of that, recycling factor is also included in this research. The 

reason being is that nearly half of the population on Earth are starting to be 

conscious about the environment in this day and age, making recycling items to 

be a norm as well as a trend. Products to be recycled can range from small items 

like paper cups, to large items like refrigerators. Many manufacturing 

companies have policies for collecting used products and reusable parts from 

the consumers who purchased their product. These items collected from the 

consumers are reused in the production of new products. They serve as an 

important source for production in the supply chain, other than the procurement 

i.e. purchasing manufacturing materials from other parties. Therefore, recycling 

can be considered as a factor in inventory models and they are known as reverse 

logistics. 

A reverse logistics model normally includes three stocks, which are the 

manufactured stock, remanufactured stock and returned stock. The 

manufactured stock contains newly produced items, remanufactured stock 

involves remanufactured items which uses returned items as materials and are 

considered as good as new and the returned stock contains reused items or parts 
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collected from the consumers (Bouras and Tadj, 2015). This is the type of 

inventory model that will be built throughout this project. 

 

1.2 Problem Statement 

The main problem statement of this project is “How to build a general inventory 

model with time-varying demand and recycling?”. After building the general 

model, the question interested is “What are the best numbers of production and 

remanufacturing set-ups that give the minimum cost?”. Since there are many 

parameters that need to be set, “What is the impact of different parameters to 

the optimal result?” 

 

1.3 Aim and Objectives 

The ultimate goal of this project is to build a general inventory model with time-

varying demand and recycling that has multiple production and remanufacturing 

set-ups per cycle. After successfully building one, the optimal numbers of 

production and remanufacturing set-ups per cycle that give the minimum cost 

need to be found. Other than that, with a different set of parameters, the optimal 

result will be observed. 

 

1.4 Scope and Limitations of Study 

When building inventory models, several assumptions are considered so as to 

simplify the formulation process. For example, environmental factors and back-

orders will not be considered throughout this research. Other than that, all the 

production, remanufacturing and return rates will be treated as constants, 

although they can be arbitrary functions of time. Only the basic cost components 

will be involved, which include item costs, production cost, remanufacturing 

cost, holding costs and set-up costs. 

After deciding on the assumptions, formulation of models may be started. 

The formulation process will be mentioned in the methodology chapter. When 

models are finalized, the function of total cost per unit time needs to be found, 

which is our goal to minimize it. 
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1.5 Work Plan 

Task Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Reading and collecting 

research materials 

              

Work on proposal and 

interim report 

              

Mock presentation for 

proposal 

              

Submission of proposal               

Building simple (1,1) 

inventory model 

              

Testing and coding the 

model built 

              

Mock presentation for 

interim report 

              

Submission of interim 

report 

              

Oral presentation of 

Project I 

              

 

Task Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Reading and collecting 

research materials 

              

Prepare final report               

Building (1,n) model               

Testing (1,n) model               

Building (m,1) model               

Table 3.2: Work Plan of Project II 

Table 3.1: Work Plan of Project I 
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Testing (m,1) model               

Building (m,n) model               

Testing (m,n) model               

Preparation of project 

poster 

              

Submission of project 

poster 

              

Submission of final 

report 

              

Oral presentation of 

Project II 

              

 

Above tables are the proposed work plans for the whole project. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

Recycling system in the supply chain or mostly known as reverse logistics, is 

not a new policy in the industries. It has been introduced long ago before 

recycling becomes a trend. Therefore, experts have also been developing 

different inventory models with recycling since then. 

El Saadany and Jaber (2010) have proposed inventory models with the 

purchasing price of collected items to be a decision variable subject to the return 

rate of used items which follows a demand-like function. They used these 

assumptions to extend the model of Dobos and Richter (2003, 2004, 2006). Two 

models have been proposed: single remanufacturing, single production set-ups 

per cycle (1,1) and m remanufacturing, n production set-ups per cycle (m,n). 

When same values are substituted into the model of Dobos and Richter (2003) 

and their own model, different results are obtained. The model of Dobos and 

Richter (2003) shows that a pure remanufacturing approach is the best. On the 

other hand, for their own proposed model, they found that a mixed approach 

produced the least cost. This happens because high quality returned items are 

bought at a low price. From this paper, we can see that different assumptions in 

parameters can produce different optimal result. If an inventory model is to be 

applied to the real world, the actual system description is essential to do case 

study in order to construct assumptions and parameters that fit the system 

perfectly, so that the accurate optimal policy can be found.  

Similar inventory model have been proposed by Alamri (2011), it has 

one remanufacturing and one production set-up per cycle which is a (1,1) model. 

The difference between the models proposed by El Saadany and Jaber (2010) 

and the model proposed by Alamri (2011) is that Alamri (2011) treated the 

purchasing price of collected items as a constant parameter but not as a decision 

variable subject to the return rate of used items. He considered deterioration of 

the inventories as a factor, which makes the model to be more realistic for 

inventories that may turn bad overtime. Deterioration rates of manufactured 

stocks, remanufactured stocks and returned stocks are taken as arbitrary 

functions of time. Returned items are only accepted if the item has passed a 
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certain quality level. Therefore, he assumed that remanufactured items are as 

good as new. Through several numerical verifications, he found out that when 

return rate of used items are dependent on the acceptance quality level and 

purchasing price, the combination of remanufacturing and production approach 

is better as compared to either pure remanufacturing or pure production. 

Therefore, he also noted the same result as El Saadany and Jaber (2010) that a 

mixture of production and remanufacturing strategy is more profitable.  (Alamri, 

2011) 

Furthermore, in the research paper by El Saadany, Jaber and Bonney 

(2013), they focused on the assumption that the number of times that an item 

can be repaired is unlimited. They were to find out how many times a given 

product should be restored in order to minimize the total cost. They developed 

a mathematical expression to estimate the number of times a product can be 

repaired. They modified two classic models, which are model of Richter (1997) 

and model of Teunter (2001) by changing the infinite recovery to a limited 

number of times. They noted that the results produced following the assumption 

that an item can be repaired infinitely are very distinct from the ones following 

a finite restoration assumption. For the model of Richter (1997), infinite 

restoration produces a lower total cost. However, when costs such as cost to 

increase the life of an item and waste disposal cost are taken into account, the 

finite restoration performs better. The same theory applies to the model of 

Teunter (2001) as well. Therefore, it can be concluded that when there is no 

investment cost involved, the total cost is lower for the case with infinite 

remanufacturing, whereas when the cost is included along with the disposal cost, 

infinite restoration is not a good decision.  

From another point of view, Bazan, Jaber and Zanoni (2016) has written 

a review on the inventory models for reverse logistics in an environmental 

perspective. They mentioned that most of the models proposed did not involve 

environmental aspects like greenhouse-gas (GHG) emissions, landfill disposal, 

energy usage and so on. These should be taken into account as well to get an 

idea on the potential benefits and enhancement on existing models. By taking 

environmental factors into account, inventory models can be more realistic as 

they represent the issues of the real world. The potentiality of current models to 

be extended from a single objective, i.e. to minimize the total cost, to multiple 
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objectives which include environmental objectives should be figured out. 

Environmental factors are one of the aspects that are ignored by many in this 

generation. Most of them are aware of this issue but do not wish to look into it, 

being worried that it will be less profitable. This should be changed as it is our 

responsibility as a citizen of the Earth to be involved in causing less harm to our 

homeland. (Bazan, Jaber and Zanoni, 2016) 

Other than the regular single-channel strategy where new items and 

remanufactured items are distributed from the retailer, Batarfi, Jaber and 

Aljazzar (2017) have considered a dual-channel strategy which is a norm 

recently, where products are distributed not only from the retailer but also 

through an online channel. They have adopted the online channel to offer the 

remanufactured products as well as customized products. The remanufactured 

products are produced by a third-party logistics provider. On the other hand, the 

retailer will only distribute the newly manufactured items. They assumed that 

returned items that cannot be repaired are disposed off. Hence, costs such as 

inventory cost, remanufacturing cost, outsourcing cost and disposal cost are 

considered. When comparing a single-channel strategy with a dual-channel 

strategy, it is obvious that the dual-channel strategy decreases the cost and 

increases the profit. This is because for the dual-channel strategy, there will be 

no need to stock the remanufactured items in the retailer’s side which is the 

same for the returned items from the consumers. Different return policies, i.e. 

full refund, partial refund, or no refund, are proposed as well to find out which 

policy maximizes the total profit of the system. They have found that the higher 

the refund, the higher the profits. This is due to the fact that with a higher refund, 

consumers are willing to recycle the items which can be remanufactured. 

Therefore, more remanufactured products can be produced and sold, hence 

higher profits. (Batarfi, Jaber and Aljazzar, 2017) 
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CHAPTER 3 

 

METHODOLOGY  

 

Before building an inventory model, several assumptions need to be set since 

not all factors of the real world problem can be considered. The variables, 

parameters, type of costs involved and their respective notations are required to 

be stated clearly to let the formulation process becomes smoother. These 

assumptions and parameters will be applied to all the models built in this 

research. 

In order to build a general (m,n) model, it would be easier to combine a 

(m,1) model with a (1,n) model, rather than formulating the (m,n) model from 

scratch. The process of formulating an inventory model involves a standard 

procedure, i.e. the 3 inventory models go through the same procedure to be built.  

Before getting into the formulation of any inventory model, the idea about 

the type of inventory model that is to be built needs to be clear. This is to make 

sure that a simple sketch on the inventory variations of the model can be done 

to get an overview about the model. From there, the inventory levels for 

manufactured, remanufactured and returned items, which are functions of time, 

can be obtained easily by solving the differential equations on the changes of 

inventory levels. 

Since the goal is to minimize the total cost per unit time, a function for the 

total cost per unit time which includes all the cost components needs to be 

formulated. In order to do that, the inventory holdings for each stocks during 

the time period needs to be known, since holding costs are included as 

parameters. This is represented by the area under the curves for each stock 

cycles. It is obvious that integration needs to be done on the functions of all the 

inventory levels to find out the inventory holdings.  

Furthermore, in order to ease the process of minimizing the total cost per 

unit time, the function obtained needs to be converted into a function of one 

variable. With that, the minimum total cost per unit time can be obtained by 

finding the optimal value of the one variable. 

After the function for the total cost per unit time is formulated, the built 

model needs to be verified numerically to test the practicality of the model. 
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Since it involves many variables and equations, calculation by hand is extremely 

tedious. Python can be used to handle the complex computations with its 

existing data science libraries such as NumPy and SciPy.  

Once the values of all the parameters and the demand function are set, 

they can be substituted into the function for total cost per unit time. The 

Matplotlib library in Python can be used to obtain a plot of total cost per unit 

time against the variable of the total cost per unit time function, so that we are 

able to make sure that there exists a minimum point. Optimization can then be 

carried out using the minimization function in Python.  

After obtaining the general (m,n) model, comparisons between inventory 

models with different m and n can be done to observe which policy performs 

the best when using the same set of parameters. The comparison will be repeated 

by using different parameters. 

Last but not least, sensitivity analysis will be performed to understand the 

relationship between parameters and the optimal number of production set-ups 

and remanufacturing set-ups per cycle.  
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CHAPTER 4 

 

INVENTORY MODEL WITH SINGLE REMANUFACTURING, 

MULTIPLE PRODUCTION SET-UPS PER CYCLE, (1,N) MODEL 

 

4.1 Introduction 

We will start by building an inventory model with single remanufacturing and 

multiple production set-ups per cycle, which is the (1,n) model. It involves 

obtaining recycled items from the returned stock only once to be 

remanufactured and n procurements throughout the whole time period. 

 In order to get a clearer picture about the inventory variations of the (1,n) 

model, the overview of the inventory variations is plotted through Python, by 

taking n to be 2. This is shown in Figure 4.1 below.  

  Figure 4.1: Overview of Inventory Variations of a (1,2) 

Policy 
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From above, there is only one downward curve in the remanufacturing 

cycle but two downward curves in the production cycle, which represents the 

two production set-ups per cycle. To further explain the plot, the rising blue 

curve from T0 to α1 represents the increased remanufactured stock 

corresponding to the yellow decreasing line in the returned cycle as the items 

are used to produce remanufactured products. While the remanufactured stock 

increases, demand is satisfied as well during T0 to α1, hence it is not a straight 

line but a slight curve. The orange plunging curve from α1 to T1 represents that 

the demand is being satisfied and the pink inclining line in the returned cycle 

from α1 to T3 represents that recycled items are being collected. The same 

concept is applied for the production cycle as well, where both the green (T1 to 

α2) and purple (T2 to α3) increasing curves represent procurements and demand 

at the same time, while the red (α2 to T2) and brown (α3 to T3) declining curves 

show that the produced items are used to satisfy demands. 

After understanding the inventory variations of the (1,2) policy, we can 

use it as a reference to make a generalization to obtain the (1,n) model and start 

the formulation process. 

 

4.2 Formulation of (1,n) Model 

Assumptions and notations: 

1. Production, remanufacturing and return rates are denoted as Pm, Pc and 

R respectively. 

2. The demand rate D(t) is satisfied by production of new items and 

remanufactured items which are considered as good as new. 

3. The last point of time in the whole cycle is denoted as T, which is 

equivalent to Tn+1. 

4. The demand rate is an arbitrary function of time, while production, 

return and remanufacturing rates are constant parameters. 

5. Only recycled items which have passed a certain acceptable quality 

will be accepted into the returned stock. 

6. The inventory levels for manufactured, remanufactured and 

returned items at time, t are depicted as Im(t), Ic(t) and IR(t), 

respectively. 
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7. The time-weighted inventory holdings for the time period 𝑎 ≤ 𝑡 ≤

𝑏 for manufactured, remanufactured and returned items are denoted 

as Im(a,b), Ic(a,b) and IR(a,b), respectively. 

8. Constraints to formulate the model are as follows: 

Pc > D(t),  Pm > D(t),   D(t) > R,   Pc > R,     D(t) ≠ 0,  R ≠ 0,   ∀t ≥ 0. 

9. Shortages are not allowed. 

10. Each repeated set-ups in the cycle has the same time length. 

11. The cost parameters for the manufactured stock are as follows: 

cm = Unit cost, which includes materials cost. 

sm = Unit production cost, which includes labour, machinery, etc. 

hm = Unit holding cost per unit time. 

km = Set-up cost per cycle. 

12. The cost parameters for the remanufactured stock are as follows: 

sc = Unit remanufacturing cost, which includes labour, machinery, etc. 

hc = Unit holding cost per unit time. 

kc = Set-up cost per cycle. 

13. The cost parameters for the returned stock are as follows: 

cR = Unit cost, which includes purchase cost. 

hR = Unit holding cost per unit time. 

kR = Order cost per cycle. 

 

The changes in the inventory levels are governed by the following differential 

equations: 

T0 ≤ t < α1 :  

  
𝑑𝐼𝑐(𝑡)

𝑑𝑡
= 𝑃𝑐 − 𝐷(𝑡), with the initial condition Ic(T0) = 0,  (1) 

α1 ≤ t ≤ T1 :  

  
𝑑𝐼𝑐(𝑡)

𝑑𝑡
= −𝐷(𝑡), with the ending condition Ic(T1) = 0,   (2) 

Tk ≤ t < αk+1 : 

  (
𝑑𝐼𝑚(𝑡)

𝑑𝑡
)

𝑘
= 𝑃𝑚 − 𝐷(𝑡), with the initial condition Im(Tk) = 0,  (3) 

αk+1 ≤ t ≤ Tk+1 :  

 (
𝑑𝐼𝑚(𝑡)

𝑑𝑡
)

𝑘
= −𝐷(𝑡), with the ending condition Im(Tk+1) = 0,  (4) 

where k = 1, 2, …, n 
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T0 ≤ t < α1 : 

  
𝑑𝐼𝑅(𝑡)

𝑑𝑡
= −𝑃𝑐 + 𝑅, with the ending condition IR(α1) = 0, and (5) 

α1 ≤ t ≤ T : 

  
𝑑𝐼𝑅(𝑡)

𝑑𝑡
= 𝑅, with the initial condition IR(α1) = 0.    (6) 

 

The solutions of the above differential equations are: 

T0 ≤ t < α1 :  

 𝐼𝑐(𝑡) = 𝑃𝑐(𝑡 − 𝑇0) − ∫ 𝐷(𝑢) 𝑑𝑢
𝑡

𝑇0
    (7) 

α1 ≤ t ≤ T1 :   

𝐼𝑐(𝑡) = ∫ 𝐷(𝑢) 𝑑𝑢
𝑇1

𝑡
                (8) 

Tk ≤ t < αk+1 :   

𝐼𝑚(𝑡)[𝑘] = 𝑃𝑚(𝑡 − 𝑇𝑘) − ∫ 𝐷(𝑢) 𝑑𝑢
𝑡

𝑇𝑘
   (9) 

αk+1 ≤ t ≤ Tk+1 : 

   𝐼𝑚(𝑡)[𝑘] = ∫ 𝐷(𝑢) 𝑑𝑢
𝑇𝑘+1

𝑡
      (10) 

where k = 1, 2, …, n 

T0 ≤ t < α1 :  

  𝐼𝑅(𝑡) = (𝑃𝑐 − 𝑅)(α1 − 𝑡)       (11) 

α1 ≤ t ≤ T :  

  𝐼𝑅(𝑡) = 𝑅(𝑡 − α1)         (12) 

respectively. 

 

In order to find the inventory holdings for each stocks, let  

𝐼(𝑡1, 𝑡2) = ∫ 𝐼(𝑢) 𝑑𝑢
𝑡2

𝑡1
, 

then from (7) – (12) we have: 

T0 ≤ t < α1 : 

𝐼𝑐(𝑇0, α1) = 𝑃𝑐(α1 − 𝑇0)2 − ∫ (α1 − 𝑢)𝐷(𝑢) 𝑑𝑢
α1

𝑇0
   (13) 

α1 ≤ t ≤ T1 : 

𝐼𝑐(α1, 𝑇1) = ∫ (𝑢 − α1)𝐷(𝑢) 𝑑𝑢
𝑇1

α1
              (14) 
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Tk ≤ t < αk+1 :   

𝐼𝑚(𝑇𝑘, αk+1) = 𝑃𝑚(αk+1  − 𝑇𝑘)2 − ∫ (αk+1 − 𝑢)𝐷(𝑢) 𝑑𝑢
α𝑘+1

𝑇𝑘
  (15) 

αk+1 ≤ t ≤ Tk+1 : 

𝐼𝑚(αk+1, 𝑇𝑘+1) = ∫ (𝑢 − αk+1)𝐷(𝑢) 𝑑𝑢
𝑇𝑘+1

αk+1
    (16) 

where k = 1, 2, …, n 

T0 ≤ t < α1 : 

𝐼𝑅(𝑇0, α1) =
𝑃𝑐−𝑅

2
(α1 − 𝑇0)2                  (17) 

α1 ≤ t ≤ T : 

 𝐼𝑅(α1, 𝑇) =
𝑅

2
(𝑇 − α1)2                   (18) 

respectively. 

 

Without loss of generality, set T0 = 0. The cost components per cycle for the 

inventory model are as follow: 

Items cost   = 𝑐𝑚 ∑ ∫ 𝑃𝑚 𝑑𝑡
α𝑘+1

T𝑘

𝑛
𝑘=1 + 𝑐𝑅 ∫ 𝑅 𝑑𝑡

𝑇

0
  

= 𝑐𝑚𝑃𝑚 ∑ (𝛼𝑘+1 − 𝑇𝑘)𝑛
𝑘=1 + 𝐶𝑅𝑅𝑇           (19) 

Production cost  =  𝑠𝑚 ∑ ∫ 𝑃𝑚 𝑑𝑡
α𝑘+1

T𝑘

𝑛
𝑘=1   

= 𝑠𝑚𝑃𝑚 ∑ (𝛼𝑘+1 − 𝑇𝑘)𝑛
𝑘=1      (20) 

Remanufacturing cost = 𝑠𝑐 ∫ 𝑃𝑐
𝛼1

0
 𝑑𝑡  

= 𝑠𝑐𝑃𝑐𝛼1       (21) 

Holding cost 

=  ℎ𝑐[𝐼𝑐(0, 𝛼1) + 𝐼𝑐(𝛼1, 𝑇1)] + ℎ𝑚[∑ 𝐼𝑚(𝑇𝑘, 𝛼𝑘+1) + 𝐼𝑚(𝛼𝑘+1, 𝑇𝑘+1)𝑛
𝑘=1 ] +

 ℎ𝑅[𝐼𝑅(0, 𝛼1) + 𝐼𝑅(𝛼1, 𝑇)] 

=    ℎ𝑐 [𝑃𝑐(𝛼1)2 − ∫ (𝛼1 − 𝑢)𝐷(𝑢) 𝑑𝑢
𝛼1

0
+ ∫ (𝑢 − 𝛼1)𝐷(𝑢) 𝑑𝑢

𝑇1

𝛼1
] + 

ℎ𝑚 [∑ 𝑃𝑚(𝛼𝑘+1 − 𝑇𝑘)2 − ∫ (𝛼𝑘+1 − 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝛼𝑘+1

𝑇𝑘
∫ (𝑢 −

𝑇𝑘+1

𝛼𝑘+1

𝑛
𝑘=1

𝛼𝑘+1)𝐷(𝑢) 𝑑𝑢] + ℎ𝑅[
𝑃𝑐−𝑅

2
(𝛼1)2  +

𝑅

2
(𝑇 − 𝛼1)2]     (22) 

                        

Thus, the total cost per unit time (TCUT) of the inventory model during the 

cycle [0,T], as a function of Tk and n, say Z(Tk, n) where k represents integers 

from 1 to n+1, is given by the sum of (19) – (22) divided by T: 

Z(Tk, n) =
1

𝑇
{𝑠𝑐𝑃𝑐𝛼1 + (𝑐𝑚 + 𝑠𝑚)𝑃𝑚 ∑ (𝛼𝑘+1 − 𝑇𝑘)𝑛

𝑘=1 + 𝑐𝑅𝑅𝑇 
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+ℎ𝑐 [𝑃𝑐(𝛼1)2 − ∫ (𝛼1 − 𝑢)𝐷(𝑢) 𝑑𝑢
𝛼1

0
+ ∫ (𝑢 − 𝛼1)𝐷(𝑢) 𝑑𝑢

𝑇1

𝛼1
]  

+ℎ𝑚 [∑ 𝑃𝑚(𝛼𝑘+1 − 𝑇𝑘)2 − ∫ (𝛼𝑘+1 − 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝛼𝑘+1

𝑇𝑘
∫ (𝑢 −

𝑇𝑘+1

𝛼𝑘+1

𝑛
𝑘=1

𝛼𝑘+1)𝐷(𝑢) 𝑑𝑢] +ℎ𝑅 [
𝑃𝑐−𝑅

2
(𝛼1)2  +

𝑅

2
(𝑇 − 𝛼1)2] 

+𝑘𝑐 + 𝑛𝑘𝑚 + 𝑘𝑅}         (23) 

 

Our goal is to find Tk that minimizes Z(Tk, n) given by (23) with the constant n. 

In order to simplify it, we can convert it to a function of only one variable, since 

all the time variables Tk are related to each other through the relations: 

Tk-1 < Tk,  k = 1, 2, …, n+1       (24) 

𝑃𝑐(𝛼1 − 0) − ∫ 𝐷(𝑢) 𝑑𝑢
𝛼1

0
= ∫ 𝐷(𝑢) 𝑑𝑢

𝑇1

𝛼1
       (25) 

𝑃𝑚(𝛼𝑘+1 − 𝑇𝑘) − ∫ 𝐷(𝑢) 𝑑𝑢
𝛼𝑘+1

𝑇𝑘
= ∫ 𝐷(𝑢) 𝑑𝑢

𝑇𝑘+1

𝛼𝑘+1
,  k = 1, 2, …, n   (26) 

(𝑃𝑐 − 𝑅)(𝛼1 − 0) = 𝑅(𝑇 − 𝛼1)       (27) 

𝑇−𝑇1

𝑛
= 𝑇𝑘+1 − 𝑇𝑘,  k = 2, 3, …, n       (28) 

 

Let Q be the acceptable returned quantity for used items in the interval [0,T], 

then 

𝑄 = ∫ 𝑅 𝑑𝑡
𝑇

0
= 𝑅𝑇         (29) 

From (29), we note that T is a function of Q, which is given by: 

𝑇 =
𝑄

𝑅
= 𝑔𝑛+1(𝑄)         (30) 

From (27), we can see that α1 can be determined as a function of T. Hence, from 

(30), a function of Q: 

𝛼1 =
𝑄

𝑃𝑐
= 𝑓1(𝑄)          (31) 

From (25), we find that T1 is a function of α1, hence a function of Q, from (31), 

say: 

𝑇1 = 𝑔1(𝑄)          (32) 

From (28), we see that for all k from 2 to n, Tk is a function of T and T1, hence: 

𝑇𝑘 = 𝑔𝑘(𝑄, 𝑛), k = 2, 3, …, n       (33) 

From (26), αk+1 can be determined as a function of Tk and Tk+1, for all k from 1 

to n, which from (30), (32) and (33), a function of Q, say: 

𝛼𝑘+1 = 𝑓𝑘+1(𝑄, 𝑛), k = 1, 2, …, n                (34) 
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Therefore, by substituting (30) – (34) into (23), we get the TCUT in terms of 

the variable Q and n which is a constant:  

TCUT(Q, n) = 
1

𝑔𝑛+1
{𝑠𝑐𝑃𝑐𝑓1 + (𝑐𝑚 + 𝑠𝑚)𝑃𝑚 ∑ (𝑓𝑘+1 − 𝑔𝑘)𝑛

𝑘=1 + 𝑐𝑅𝑅𝑇 

+ℎ𝑐 [𝑃𝑐(𝑓1)2 − ∫ (𝑓1 − 𝑢)𝐷(𝑢) 𝑑𝑢
𝑓1

0
+ ∫ (𝑢 − 𝑓1)𝐷(𝑢) 𝑑𝑢

𝑔1

𝑓1
]  

+ℎ𝑚 [∑ 𝑃𝑚(𝑓𝑘+1 − 𝑔𝑘)2 − ∫ (𝑓𝑘+1 − 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝑓𝑘+1

𝑔𝑘
∫ (𝑢 −

𝑔𝑘+1

𝑓𝑘+1

𝑛
𝑘=1

𝑓𝑘+1)𝐷(𝑢) 𝑑𝑢] +ℎ𝑅 [
𝑃𝑐−𝑅

2
(𝑓1)2  +

𝑅

2
(𝑔𝑛+1 − 𝑓1)2] 

+𝑘𝑐 + 𝑛𝑘𝑚 + 𝑘𝑅}                         (35) 

where 𝑔𝑛+1(𝑄) =
𝑄

𝑅
 and 𝑓1(𝑄) =

𝑄

𝑃𝑐
 .       

 

4.3 Numerical Example  

We start the computation by defining the demand function and setting all the 

parameters with respect to the constraints as stated in the last section. 

However, this is not realistic in practical since the production set-up cost is 

chose to be much smaller than the remanufacturing set-up cost and order cost to 

show that multiple production set-ups do decrease the total cost. It is hard to 

achieve in the real world since it is a very extreme situation to have such price 

difference. On a bright side, as technologies improve, the production set-up cost 

may go down since machines are more reliable, causing the resources used to 

set-up the production cycle to be less.  

 

4.3.1  Optimality of TCUT Function 

In order to show that there is a minimum point in the TCUT function shown in 

(35), an example of (1,2) policy is chosen. The TCUT function is plotted against 

the acceptable returned quantity (Q) within the range from 1 to 80. The range is 

chosen as such in order to display clearly the “U-shape curve” in the plot, where 

the minimum point represents the optimal value for Q to minimize the TCUT. 

D(t) = e0.05t, Pm = 15, R = 0.99, Pc = 13, 

cm = 10, sm = 15, hm = 10, km = 50, 

sc = 10, hc = 10, kc = 1600, 

cR = 5,  hR = 5,  kR = 1200. 
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The figure above shows that the TCUT plummets quickly when Q 

increases until the optimal point and rise gradually after that. The decrease in 

the TCUT is much more rapid than the increase after the optimal Q.   

It is challenging to determine the optimal value from the graph above 

since the minimum point is not obvious. However, it shows a good sign about 

the inventory model where the approximated optimal Q obtained from the 

model is not far from the true optimal Q in the real world situation. Since when 

building an inventory model, the parameter values that are fitted into the model 

are not accurate representations of the real world situation, i.e. they are 

approximated values, hence it is vital to obtain the TCUT which is not sensitive 

to the changes in Q near the approximated optimal Q. 

By displaying all TCUT values throughout Q from 1 to 80 through Python, 

the minimum TCUT of the (1,2) policy is found to be 310.72  when Q is 18.5556. 

The table of TCUT values can be found in Table A-1. 

 

4.3.2  Optimal Number of Production Set-ups 

With the parameters above, we wish to find the optimal number of production 

set-ups per cycle (n). In order to do that, optimal Q for all n needs to be found 

to compute the minimum TCUT of each n. From there, we can observe n with 

the smallest optimal TCUT. n ranging from 1 to 10 is tested and plotted against 

their respective minimum TCUT. The plot is shown below: 

Figure 4.2: Graph of TCUT Versus Q for (1,2) Policy 
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 It is obvious that the optimal number of production set-ups per cycle is 

3 with the TCUT of around 310. The TCUT increases steadily with the 

increment of the number of production set-ups, therefore we can say that the 

range from 1 to 10 is enough to show that 3 is the optimal number of production 

set-ups per cycle. 

 

4.4 Sensitivity Analysis 

We want to observe the relationship between the unit holding cost of the 

manufactured stock with the optimal number of production set-ups per cycle as 

well as the effect of production set-up cost on the optimal number of production 

set-ups per cycle.  

  

  

 

 

 

 

 

 

Figure 4.3: Graph of TCUT Versus Number of 

Production Set-ups 

Figure 4.4: Optimal n Versus Unit Holding Cost 

of Manufactured Stock  
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From the plot in Figure 4.4, we observed a linear relationship between unit 

holding cost of manufactured stock and optimal n. When the unit holding cost 

increases, the optimal n increases as well. This is because when the unit holding 

cost is high, less stocks are wished to be held in each set-up, hence causing more 

production set-ups to minimize the total cost (Greeff and Ghoshal, 2004).  

 Conversely, when the set-up cost of production cycle is high, numerous 

production set-ups is not desired, and hence the optimal n will be lower. 

Therefore, the set-up cost of production cycle and the optimal n are inversely 

related as shown in the figure above. 

 

  

Figure 4.5: Optimal n Versus Production Set-up Cost  
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CHAPTER 5 

 

INVENTORY MODEL WITH MULTIPLE REMANUFACTURING, 

SINGLE PRODUCTION SET-UP PER CYCLE, (M,1) MODEL 

 

5.1 Introduction 

After looking at the (1,n) model, we will build the (m,1) model which is the 

inventory model with multiple remanufacturing, single production set-up per 

cycle. Since remanufactured items utilize returned items as materials, the 

remanufacturing cycle and returned cycle are well-related. m remanufacturing 

set-ups represent that returned items are passed to the remanufacturing cycle 

from the returned cycle m times to produce remanufactured items. 

 The overview of the inventory variations of a (2,1) policy inventory 

model is plotted through Python to understand the relationship mentioned above.  

  

Figure 5.1: Overview of Inventory Variations of a (2,1) 

Policy 
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From Figure 5.1, the blue upward curve in the remanufacturing cycle 

corresponds to the decreasing line in the returned cycle from T0 to α1. This 

represents that returned items are collected but at the same time are used to 

satisfy demands by producing remanufactured items. The orange downward 

curve represents that demands are being satisfied by the remanufactured items 

produced. This corresponds to the increasing yellow line from α1 to T2, where 

returned items are being collected. While for the second remanufacturing set-

up, all returned items will be used up as it is the last remanufacturing set-up in 

the cycle. After the remanufacturing cycle, there is only one production cycle 

with procurement that happens only once. 

This (2,1) policy is used to generalise to the (m,1) model to start the 

formulation process. 

 

5.2 Formulation of (m,1) Model 

All assumptions and notations are the same as the formulation of (1,n) model in 

section 4.2, except that the last point of time in the whole cycle which is denoted 

as T is equivalent to Tm+1. 

 

The changes in the inventory levels are governed by the following differential 

equations: 

Tk-1 ≤ t < αk :  

  (
𝑑𝐼𝑐(𝑡)

𝑑𝑡
)

𝑘
= 𝑃𝑐 − 𝐷(𝑡), with the initial condition Ic(Tk-1) = 0, (1) 

αk ≤ t ≤ Tk :  

  (
𝑑𝐼𝑐(𝑡)

𝑑𝑡
)

𝑘
= −𝐷(𝑡), with the ending condition Ic(Tk) = 0,   (2) 

where k = 1, 2, …, m 

Tm ≤ t < αm+1 : 

  
𝑑𝐼𝑚(𝑡)

𝑑𝑡
= 𝑃𝑚 − 𝐷(𝑡), with the initial condition Im(Tm) = 0,   (3) 

αm+1 ≤ t ≤ T:  

  
𝑑𝐼𝑚(𝑡)

𝑑𝑡
= −𝐷(𝑡), with the ending condition Im(T) = 0,   (4) 

αm ≤ t ≤ T : 

  
𝑑𝐼𝑅(𝑡)

𝑑𝑡
= 𝑅, with the initial condition IR(αm) = 0.    (5) 
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However, the inventory levels of returned cycle from T0 to αm are not able to be 

represented by a differential equation since they are all related, where all 

returned items are accumulating throughout the cycle. Hence, we use another 

way to represent the inventory levels by observing the plot of inventory 

variations: 

For all k from 1 to m-1, 

𝐼𝑅(𝑇0) = 𝐼𝑅(𝑇)         (6) 

𝐼𝑅(𝛼𝑘) = 𝐼𝑅(𝑇𝑘−1) − (𝑃𝑐 − 𝑅)(𝛼𝑘 − 𝑇𝑘−1)     (7) 

𝐼𝑅(𝑇𝑘) = 𝐼𝑅(𝛼𝑘) + 𝑅(𝑇𝑘 − 𝛼𝑘)      (8) 

𝐼𝑅(𝛼𝑚) = 0          (9) 

The solutions of all the differential equations are: 

Tk-1 ≤ t < αk :  

 𝐼𝑐(𝑡)[𝑘] = 𝑃𝑐(𝑡 − 𝑇𝑘−1) − ∫ 𝐷(𝑢) 𝑑𝑢
𝑡

𝑇𝑘−1
    (10) 

αk ≤ t ≤ Tk :   

𝐼𝑐(𝑡)[𝑘] = ∫ 𝐷(𝑢) 𝑑𝑢
𝑇𝑘

𝑡
                (11) 

where k = 1, 2, …, m 

Tm ≤ t < αm+1 :   

𝐼𝑚(𝑡) = 𝑃𝑚(𝑡 − 𝑇𝑚) − ∫ 𝐷(𝑢) 𝑑𝑢
𝑡

𝑇𝑚
     (12) 

αm+1 ≤ t ≤ T: 

   𝐼𝑚(𝑡) = ∫ 𝐷(𝑢) 𝑑𝑢
𝑇

𝑡
       (13) 

αm ≤ t ≤ T :  

  𝐼𝑅(𝑡) = 𝑅(𝑡 − α𝑚)         (14) 

respectively. 

 

In order to find the inventory holdings for each stocks, let  

𝐼(𝑡1, 𝑡2) = ∫ 𝐼(𝑢) 𝑑𝑢
𝑡2

𝑡1
, 

then from (6) – (14) we have: 

Tk-1 ≤ t < αk : 

𝐼𝑐(𝑇𝑘−1, α𝑘) = 𝑃𝑐(α𝑘 − 𝑇𝑘−1)2 − ∫ (α𝑘 − 𝑢)𝐷(𝑢) 𝑑𝑢
αk

𝑇𝑘−1
  (15) 

αk ≤ t ≤ Tk : 



23 

𝐼𝑐(α𝑘, 𝑇𝑘) = ∫ (𝑢 − α𝑘)𝐷(𝑢) 𝑑𝑢
𝑇𝑘

α𝑘
              (16) 

where k = 1, 2, …, m 

Tm ≤ t < αm+1 :   

𝐼𝑚(𝑇𝑚 , αm+1) = 𝑃𝑚(αm+1  − 𝑇𝑚)2 − ∫ (αm+1 − 𝑢)𝐷(𝑢) 𝑑𝑢
α𝑚+1

𝑇𝑚
  (17) 

αm+1 ≤ t ≤ T : 

𝐼𝑚(αm+1, 𝑇) = ∫ (𝑢 − αm+1)𝐷(𝑢) 𝑑𝑢
𝑇

αm+1
    (18) 

T0 ≤ t < αm : 

𝐼𝑅(𝑇𝑘−1, α𝑘) =
1

2
[𝐼𝑅(𝑇𝑘−1) + 𝐼𝑅(α𝑘)](α𝑘 − 𝑇𝑘−1)         (19) 

where k = 1, 2, …, m 

𝐼𝑅(α𝑘, 𝑇𝑘) =
1

2
[𝐼𝑅(α𝑘) + 𝐼𝑅(𝑇𝑘)](𝑇𝑘 − α𝑘)     (20) 

where k = 1, 2, …, m-1 

αm ≤ t ≤ T : 

 𝐼𝑅(α𝑚 , 𝑇) =
𝑅

2
(𝑇 − α𝑚)2                   (21) 

respectively. 

 

Without loss of generality, set T0 = 0. The cost components per cycle for the 

inventory model are as follow: 

Items cost   = 𝑐𝑚 ∫ 𝑃𝑚  𝑑𝑡
𝛼𝑚+1

𝑇𝑚
+ 𝑐𝑅 ∫ 𝑅 𝑑𝑡

𝑇

0
  

= 𝑐𝑚𝑃𝑚(𝛼𝑚+1 − 𝑇𝑚) + 𝐶𝑅𝑅𝑇           (22) 

Production cost  =  𝑠𝑚 ∫ 𝑃𝑚  𝑑𝑡
𝛼𝑚+1

𝑇𝑚
  

= 𝑠𝑚𝑃𝑚(𝛼𝑚+1 − 𝑇𝑚)       (23) 

Remanufacturing cost = 𝑠𝑐 ∑ ∫ 𝑃𝑐
𝛼𝑘

𝑇𝑘−1
 𝑑𝑡𝑚

𝑘=1   

= 𝑠𝑐𝑃𝑐 ∑ (𝛼𝑘 − 𝑇𝑘−1)𝑚
𝑘=1      (24) 

Holding cost 

=  ℎ𝑐[∑ 𝐼𝑐(𝑇𝑘−1, 𝛼𝑘) + 𝐼𝑐(𝛼𝑘, 𝑇𝑘)𝑚
𝑘=1 ] + ℎ𝑚[𝐼𝑚(𝑇𝑚, 𝛼𝑚+1) + 𝐼𝑚(𝛼𝑚+1, 𝑇)] +

 ℎ𝑅[∑ 𝐼𝑅(𝑇𝑘−1, 𝛼𝑘) + ∑ 𝐼𝑅(𝛼𝑘, 𝑇𝑘)𝑚−1
𝑘=1

𝑚
𝑘=1 + 𝐼𝑅(𝛼𝑚 , 𝑇)] 

= ℎ𝑐 [∑ 𝑃𝑐(𝛼𝑘 − 𝑇𝑘−1)2 − ∫ (𝛼𝑘 − 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝛼𝑘

𝑇𝑘−1
∫ (𝑢 − 𝛼𝑘)𝐷(𝑢) 𝑑𝑢

𝑇𝑘

𝛼𝑘

𝑚
𝑘=1 ] +  

ℎ𝑚 [𝑃𝑚(𝛼𝑚+1 − 𝑇𝑚)2 − ∫ (𝛼𝑚+1 − 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝛼𝑚+1

𝑇𝑚
∫ (𝑢 − 𝛼𝑚+1)𝐷(𝑢) 𝑑𝑢

𝑇

𝛼𝑚+1
] +

ℎ𝑅[∑
1

2
[𝐼𝑅(𝑇𝑘−1) + 𝐼𝑅 (α𝑘)](α𝑘 − 𝑇𝑘−1)𝑚

𝑘=1 + ∑
1

2
[𝐼𝑅(α𝑘) + 𝐼𝑅(𝑇𝑘)](𝑇𝑘 −𝑚−1

𝑘=1

α𝑘) +
𝑅

2
(𝑇 − 𝛼𝑚)2]          (25) 
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Thus, the total cost per unit time (TCUT) of the inventory model during the 

cycle [0,T], as a function of Tk and m, say Z(Tk, m) where k represents integers 

from 1 to m+1, is given by the sum of (22) – (25) divided by T: 

Z(Tk, m) = 

1

𝑇
{𝑠𝑐𝑃𝑐 ∑ (𝛼𝑘 − 𝑇𝑘−1)𝑚

𝑘=1 + (𝑐𝑚 + 𝑠𝑚)𝑃𝑚(𝛼𝑚+1 − 𝑇𝑚) + 𝑐𝑅𝑅𝑇 +

ℎ𝑐 [∑ 𝑃𝑐(𝛼𝑘 − 𝑇𝑘−1)2 − ∫ (𝛼𝑘 − 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝛼𝑘

𝑇𝑘−1
∫ (𝑢 − 𝛼𝑘)𝐷(𝑢) 𝑑𝑢

𝑇𝑘

𝛼𝑘

𝑚
𝑘=1 ] +

ℎ𝑚 [𝑃𝑚(𝛼𝑚+1 − 𝑇𝑚)2 − ∫ (𝛼𝑚+1 − 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝛼𝑚+1

𝑇𝑚
∫ (𝑢 −

𝑇

𝛼𝑚+1

𝛼𝑚+1)𝐷(𝑢) 𝑑𝑢] + ℎ𝑅[∑
1

2
[𝐼𝑅(𝑇𝑘−1) + 𝐼𝑅(α𝑘)](α𝑘 − 𝑇𝑘−1)𝑚

𝑘=1 + ∑
1

2
[𝐼𝑅(α𝑘) +𝑚−1

𝑘=1

𝐼𝑅(𝑇𝑘)](𝑇𝑘 − α𝑘) +
𝑅

2
(𝑇 − 𝛼𝑚)2] + 𝑚𝑘𝑐 + 𝑘𝑚 + 𝑚𝑘𝑅}     (26) 

 

Our goal is to find Tk that minimizes Z(Tk, m) given by (26) with the constant m. 

We simplify it by converting it into a function of only one variable, since all the 

time variables Tk are related to each other through the relations: 

Tk-1 < Tk,  k = 1, 2, …, m+1       (27) 

𝑃𝑐(𝛼𝑘 − 𝑇𝑘−1) − ∫ 𝐷(𝑢) 𝑑𝑢
𝛼𝑘

𝑇𝑘−1
= ∫ 𝐷(𝑢) 𝑑𝑢

𝑇𝑘

𝛼𝑘
, k = 1, 2, ,…, m  (28) 

𝑃𝑚(𝛼𝑚+1 − 𝑇𝑚) − ∫ 𝐷(𝑢) 𝑑𝑢
𝛼𝑚+1

𝑇𝑚
= ∫ 𝐷(𝑢) 𝑑𝑢

𝑇

𝛼𝑚+1
    (29) 

∫ 𝐷(𝑡) 𝑑𝑡 = 𝐼𝑅(𝑇) + ∫ 𝑅 𝑑𝑡
𝛼𝑚

0

𝑇𝑚

0
 = 𝑅𝑇       (30) 

𝑇𝑘 =
𝑘𝑇𝑚

𝑚
,  k = 0, 1, …, m-1       (31) 

 

Let Q be the acceptable returned quantity for used items in the interval [0,T], 

then 

𝑄 = ∫ 𝑅 𝑑𝑡
𝑇

0
= 𝑅𝑇         (32) 

From (32), we note that T is a function of Q, which is given by: 

𝑇 =
𝑄

𝑅
= 𝑓𝑚+1(𝑄)         (33) 

From (30), we see that Tm is a function of T, therefore from (33), a function of 

Q: 

𝑇𝑚 = 𝑓𝑚(𝑄)           (34) 

From (31), we can see that for all k from 0 to m-1, Tk is a function of Tm. Hence, 

from (34), a function of Q: 
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𝑇𝑘 = 𝑓𝑘(𝑄, 𝑚), k = 0, 1, …, m-1       (35) 

From (28), we find that αk is a function of Tk, hence a function of Q, from (35), 

say: 

𝛼𝑘 = 𝑔𝑘(𝑄, 𝑚), k = 1, 2, …, m       (36) 

From (29), we see that αm+1 is a function of Tm and T, hence: 

𝛼𝑚+1 = 𝑔𝑚+1(𝑄, 𝑚)         (37) 

 

Therefore, by substituting (33) – (37) into (26), we get the TCUT in terms of 

the variable Q and the constant m :  

TCUT(Q, m) = 

 
1

𝑓𝑚+1
{𝑠𝑐𝑃𝑐 ∑ (𝑔𝑘 − 𝑓𝑘−1)𝑚

𝑘=1 + (𝑐𝑚 + 𝑠𝑚)𝑃𝑚(𝑔𝑚+1 − 𝑓𝑚) + 𝑐𝑅𝑅𝑇 +

ℎ𝑐 [∑ 𝑃𝑐(𝑔
𝑘

− 𝑓
𝑘−1

)
2

− ∫ (𝑔
𝑘

− 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝑔𝑘

𝑓𝑘−1
∫ (𝑢 − 𝑔

𝑘
)𝐷(𝑢) 𝑑𝑢

𝑓𝑘

𝑔𝑘

𝑚
𝑘=1 ] +

ℎ𝑚 [𝑃𝑚(𝑔
𝑚+1

− 𝑓
𝑚

)
2

− ∫ (𝑔
𝑚+1

− 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝑔𝑚+1

𝑓𝑚
∫ (𝑢 −

𝑓𝑚+1

𝑔𝑚+1

𝑔
𝑚+1

)𝐷(𝑢) 𝑑𝑢] + ℎ𝑅[∑
1

2
[𝐼𝑅(𝑓

𝑘−1
) + 𝐼𝑅(𝑔

𝑘
)](𝑔

𝑘
− 𝑓

𝑘−1
)𝑚

𝑘=1 +

∑
1

2
[𝐼𝑅(𝑔

𝑘
) + 𝐼𝑅(𝑓

𝑘
)](𝑓

𝑘
− 𝑔

𝑘
)𝑚−1

𝑘=1 +
𝑅

2
(𝑓

𝑚+1
− 𝑔

𝑚
)

2
] 

+𝑚𝑘𝑐 + 𝑘𝑚 + 𝑚𝑘𝑅}                            (38) 

where 𝑓𝑚+1(𝑄) =
𝑄

𝑅
.    

 

5.3 Numerical Example  

The demand function and all other parameters with respect to the constraints as 

stated in the assumptions are set as below: 

We assume that remanufacturing and ordering of returned items are 

much easier than production with a much lower remanufacturing set-up cost and 

order cost.  

 

D(t) = e0.05t, Pm = 15, R = 0.99, Pc = 13, 

cm = 10, sm = 15, hm = 10, km = 2400, 

sc = 10, hc = 10, kc = 100, 

cR = 5,  hR = 5,  kR = 80. 
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5.3.1  Optimality of TCUT Function 

Similarly as the (1,n) model, the optimality of the TCUT function in (38) needs 

to be tested. Choosing m = 2 to be an example for the test, the TCUT function 

is plotted against Q from the range of 1 to 70. 

 

 

 

 

 

 

 

 

 

From above, we see that the plot is a “U-curve” with a smooth turn at the 

minimum point, making it difficult to observe the exact value of the optimal Q 

and TCUT. However, the plot still shows that there is a minimum value for 

TCUT. Therefore, we display all TCUT values throughout Q from 1 to 70 to 

find the exact values of optimal Q and TCUT.  We found that the minimum 

TCUT of this (2,1) policy is 263.163 corresponding to Q of 18.4242 The table 

of TCUT values can be found in Table A-2. 

 

5.3.2  Optimal Number of Remanufacturing Set-ups 

With the parameters above, we are interested in finding the optimal number of 

remanufacturing set-ups per cycle (m). Optimal Q of each m is found, followed 

by the minimum TCUT through the optimization function in SciPy of Python. 

The optimal TCUT of each m is plotted against a range of m from 1 to 10. The 

plot is shown below: 

 

Figure 5.2: Graph of TCUT Versus Q for (2,1) Policy 
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 We can see that the lowest point in the figure above is when m = 3 and 

TCUT is about 255. Therefore, we say that the optimal number of 

remanufacturing set-ups is 3 corresponding to TCUT about 255. However, this 

is just one of the case with the above parameters. Surely, the optimal number of 

remanufacturing set-ups will change accordingly with different sets of 

parameters. To show that the change in some parameters will display a uniform 

relationship with the optimal m, i.e. either decreases or increases the optimal m, 

sensitivity analysis is done is the next section. 

 

5.4 Sensitivity Analysis 

We first look at the unit holding cost of both remanufactured and returned stock. 

We can roughly make an inference by using the result in section 4.4, where 

when the holding cost of manufactured stock increases, the optimal n increases 

as well. The same reasoning applies to the remanufactured and returned stock, 

where high unit holding costs will cause more remanufacturing cycles since this 

will decrease the holding of the stocks. This inference can be proven by the plots 

in Figure 5.4. 

Figure 5.3: Graph of TCUT Versus Number of 

Remanufacturing Set-ups 
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 When the unit holding cost of remanufactured stock increases from 0 to 

60, the optimal number of remanufacturing cycle increases drastically from 2 to 

7. However, looking at the plot of unit holding cost of returned stock against 

optimal m, we can observe that the increment of optimal m is much slower 

compared to the unit holding cost of remanufactured stock. The optimal m only 

rises from 3 to 5 when the unit holding cost of returned stock increases from 0 

to 60. From here, we can say that the effect of unit holding cost of 

remanufactured stock is much more significant on the optimal m than the unit 

holding cost of returned stock. 

  Next, we observe the relationships of remanufacturing set-up cost and 

order cost with the optimal number of remanufacturing cycle.   

  Analogous to the decrease in the optimal number of production set-ups 

with the increment of production set-up cost, the remanufacturing set-up cost 

and order cost shows the same relationship with the optimal number of 

Figure 5.4: Optimal m Versus Unit Holding Costs of Remanufactured and 

Returned Stock  

Figure 5.5: Optimal m Versus Remanufacturing Set-up Cost and Order Cost  
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remanufacturing cycle as well. Furthermore, we see that the influence of 

remanufacturing set-up cost on optimal m is more notable than the order cost 

since the optimal m declines from 5 to 3 for the remanufacturing set-up cost, 

while for the order cost, it only decreases from 4 to 3. 

 

  



30 

CHAPTER 6 

 

INVENTORY MODEL WITH MULTIPLE REMANUFACTURING, 

MULTIPLE PRODUCTION SET-UPS PER CYCLE, (M,N) MODEL 

 

6.1 Introduction 

Coming to the general model, which is the multiple remanufacturing, multiple 

production set-ups per cycle, (m,n) model. This is the combination of the last 

two models whereby returned items are ordered m times from the returned cycle 

to be remanufactured, followed by n procurements in the production cycle. 

 The overview of the inventory variations of a (m,n) model with m and n 

both set to be 2, is plotted out below: 

 

  

Figure 6.1: Overview of Inventory Variations of a (2,2) 

Policy 
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 Figure 6.1 shows 2 remanufacturing set-ups followed by 2 production 

set-ups. The two yellow decreasing line from T0 to α1 and T1 to α2 correspond to 

the 2 remanufacturing set-ups since returned items are remanufactured to satisfy 

demands within that 2 periods. After all returned items are remanufactured, they 

will be collected again when manufacturing is going on. This is represented by 

the inclining pink line in the returned cycle. 

 The formulation of (m,n) model can be easily done by combining the 

formulation of (1,n) and (m,1) model which we have completed in the previous 

chapters. 

 

6.2 Formulation of (m,n) Model 

All assumptions and notations are the same, except that the last point of time in 

the whole cycle which is denoted as T is equivalent to Tm+n. 

 

The changes in the inventory levels are governed by the following differential 

equations: 

Tk-1 ≤ t < αk :  

  (
𝑑𝐼𝑐(𝑡)

𝑑𝑡
)

𝑘
= 𝑃𝑐 − 𝐷(𝑡), with the initial condition Ic(Tk-1) = 0, (1) 

αk ≤ t ≤ Tk :  

  (
𝑑𝐼𝑐(𝑡)

𝑑𝑡
)

𝑘
= −𝐷(𝑡), with the ending condition Ic(Tk) = 0,   (2) 

where k = 1, 2, …, m 

Ti ≤ t < αi+1 : 

  (
𝑑𝐼𝑚(𝑡)

𝑑𝑡
)

𝑖
= 𝑃𝑚 − 𝐷(𝑡), with the initial condition Im(Ti) = 0,  (3) 

αi+1 ≤ t ≤ Ti+1:  

  (
𝑑𝐼𝑚(𝑡)

𝑑𝑡
)

𝑖
= −𝐷(𝑡), with the ending condition Im(Ti+1) = 0,  (4) 

where i = m, m+1, …, m+n-1 

αm ≤ t ≤ T : 

  
𝑑𝐼𝑅(𝑡)

𝑑𝑡
= 𝑅, with the initial condition IR(αm) = 0.    (5) 

 

Similarly as the formulation of (m,1) model, we will represent the inventory 

levels of the returned cycle from T0 to αm to be as follow: 
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For all k from 1 to m-1, 

𝐼𝑅(𝑇0) = 𝐼𝑅(𝑇)         (6) 

𝐼𝑅(𝛼𝑘) = 𝐼𝑅(𝑇𝑘−1) − (𝑃𝑐 − 𝑅)(𝛼𝑘 − 𝑇𝑘−1)     (7) 

𝐼𝑅(𝑇𝑘) = 𝐼𝑅(𝛼𝑘) + 𝑅(𝑇𝑘 − 𝛼𝑘)      (8) 

𝐼𝑅(𝛼𝑚) = 0          (9) 

The solutions of all the differential equations are: 

Tk-1 ≤ t < αk :  

 𝐼𝑐(𝑡)[𝑘] = 𝑃𝑐(𝑡 − 𝑇𝑘−1) − ∫ 𝐷(𝑢) 𝑑𝑢
𝑡

𝑇𝑘−1
    (10) 

αk ≤ t ≤ Tk :   

𝐼𝑐(𝑡)[𝑘] = ∫ 𝐷(𝑢) 𝑑𝑢
𝑇𝑘

𝑡
                (11) 

where k = 1, 2, …, m 

Ti ≤ t < αi+1 : 

𝐼𝑚(𝑡)[𝑖] = 𝑃𝑚(𝑡 − 𝑇𝑖) − ∫ 𝐷(𝑢) 𝑑𝑢
𝑡

𝑇𝑖
      (12) 

αi+1 ≤ t ≤ Ti+1:  

   𝐼𝑚(𝑡)[𝑖] = ∫ 𝐷(𝑢) 𝑑𝑢
𝑇𝑖+1

𝑡
      (13) 

where i = m, m+1, …, m+n-1 

αm ≤ t ≤ T :  

  𝐼𝑅(𝑡) = 𝑅(𝑡 − α𝑚)         (14) 

respectively. 

 

In order to find the inventory holdings for each stocks, let  

𝐼(𝑡1, 𝑡2) = ∫ 𝐼(𝑢) 𝑑𝑢
𝑡2

𝑡1
, 

then from (6) – (14) we have: 

Tk-1 ≤ t < αk : 

𝐼𝑐(𝑇𝑘−1, α𝑘) = 𝑃𝑐(α𝑘 − 𝑇𝑘−1)2 − ∫ (α𝑘 − 𝑢)𝐷(𝑢) 𝑑𝑢
αk

𝑇𝑘−1
  (15) 

αk ≤ t ≤ Tk : 

𝐼𝑐(α𝑘, 𝑇𝑘) = ∫ (𝑢 − α𝑘)𝐷(𝑢) 𝑑𝑢
𝑇𝑘

α𝑘
              (16) 

where k = 1, 2, …, m 

Ti ≤ t < αi+1 : 

𝐼𝑚(𝑇𝑖, αi+1) = 𝑃𝑚(αi+1  − 𝑇𝑖)
2 − ∫ (αi+1 − 𝑢)𝐷(𝑢) 𝑑𝑢

α𝑖+1

𝑇𝑖
    (17) 
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αi+1 ≤ t ≤ Ti+1:  

𝐼𝑚(αi+1, 𝑇𝑖+1) = ∫ (𝑢 − αi+1)𝐷(𝑢) 𝑑𝑢
𝑇𝑖+1

αi+1
    (18) 

where i = m, m+1, …, m+n-1 

T0 ≤ t < αm : 

𝐼𝑅(𝑇𝑘−1, α𝑘) =
1

2
[𝐼𝑅(𝑇𝑘−1) + 𝐼𝑅(α𝑘)](α𝑘 − 𝑇𝑘−1)         (19) 

where k = 1, 2, …, m 

𝐼𝑅(α𝑘, 𝑇𝑘) =
1

2
[𝐼𝑅(α𝑘) + 𝐼𝑅(𝑇𝑘)](𝑇𝑘 − α𝑘)     (20) 

where k = 1, 2, …, m-1 

αm ≤ t ≤ T : 

 𝐼𝑅(α𝑚 , 𝑇) =
𝑅

2
(𝑇 − α𝑚)2                   (21) 

respectively. 

 

Without loss of generality, set T0 = 0. The cost components per cycle for the 

inventory model are as follow: 

Items cost   = 𝑐𝑚 ∑ ∫ 𝑃𝑚 𝑑𝑡
α𝑖+1

𝑇𝑖

𝑚+𝑛−1
𝑖=𝑚 + 𝑐𝑅 ∫ 𝑅 𝑑𝑡

𝑇

0
  

= 𝑐𝑚𝑃𝑚 ∑ (𝛼𝑖+1 − 𝑇𝑖)
𝑚+𝑛−1
𝑖=𝑚 + 𝐶𝑅𝑅𝑇           (22) 

Production cost  =  𝑠𝑚 ∑ ∫ 𝑃𝑚 𝑑𝑡
α𝑖+1

𝑇𝑖

𝑚+𝑛−1
𝑖=𝑚  

= 𝑠𝑚𝑃𝑚 ∑ (𝛼𝑖+1 − 𝑇𝑖)
𝑚+𝑛−1
𝑖=𝑚      (23) 

Remanufacturing cost = 𝑠𝑐 ∑ ∫ 𝑃𝑐
𝛼𝑘

𝑇𝑘−1
 𝑑𝑡𝑚

𝑘=1   

= 𝑠𝑐𝑃𝑐 ∑ (𝛼𝑘 − 𝑇𝑘−1)𝑚
𝑘=1      (24) 

Holding cost 

=  ℎ𝑐[∑ 𝐼𝑐(𝑇𝑘−1, 𝛼𝑘) + 𝐼𝑐(𝛼𝑘, 𝑇𝑘)𝑚
𝑘=1 ] + ℎ𝑚[∑ 𝐼𝑚(𝑇𝑖, 𝛼𝑖+1) +𝑚+𝑛−1

𝑖=𝑚

𝐼𝑚(𝛼𝑖+1, 𝑇𝑖+1)] +  ℎ𝑅[∑ 𝐼𝑅(𝑇𝑘−1, 𝛼𝑘) + ∑ 𝐼𝑅(𝛼𝑘, 𝑇𝑘)𝑚−1
𝑘=1

𝑚
𝑘=1 + 𝐼𝑅(𝛼𝑚, 𝑇)]  

= ℎ𝑐 [∑ 𝑃𝑐(𝛼𝑘 − 𝑇𝑘−1)2 − ∫ (𝛼𝑘 − 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝛼𝑘

𝑇𝑘−1
∫ (𝑢 − 𝛼𝑘)𝐷(𝑢) 𝑑𝑢

𝑇𝑘

𝛼𝑘

𝑚
𝑘=1 ] +  

ℎ𝑚 [∑ 𝑃𝑚(𝛼𝑖+1 − 𝑇𝑖)
2 − ∫ (𝛼𝑖+1 − 𝑢)𝐷(𝑢) 𝑑𝑢 + 

𝛼𝑖+1

𝑇𝑖
∫ (𝑢 −

𝑇𝑖+1

𝛼𝑖+1

𝑚+𝑛−1
𝑖=𝑚

𝛼𝑖+1)𝐷(𝑢) 𝑑𝑢] + ℎ𝑅[∑
1

2
[𝐼𝑅(𝑇𝑘−1) + 𝐼𝑅(α𝑘)](α𝑘 − 𝑇𝑘−1)𝑚

𝑘=1 + ∑
1

2
[𝐼𝑅(α𝑘) +𝑚−1

𝑘=1

𝐼𝑅(𝑇𝑘)](𝑇𝑘 − α𝑘) +
𝑅

2
(𝑇 − 𝛼𝑚)2]        (25) 
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Thus, the total cost per unit time (TCUT) of the inventory model during the 

cycle [0,T], as a function of Tk, m and n, say Z(Tk, m, n) where k represents 

integers from 1 to m+n, is given by the sum of (22) – (25) divided by T: 

Z(Tk, m, n) = 

1

𝑇
{𝑠𝑐𝑃𝑐 ∑ (𝛼𝑘 − 𝑇𝑘−1)𝑚

𝑘=1 + (𝑐𝑚 + 𝑠𝑚)𝑃𝑚 ∑ (𝛼𝑖+1 − 𝑇𝑖)𝑚+𝑛−1
𝑖=𝑚 + 𝑐𝑅𝑅𝑇 +

ℎ𝑐 [∑ 𝑃𝑐(𝛼𝑘 − 𝑇𝑘−1)2 − ∫ (𝛼𝑘 − 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝛼𝑘

𝑇𝑘−1
∫ (𝑢 − 𝛼𝑘)𝐷(𝑢) 𝑑𝑢

𝑇𝑘

𝛼𝑘

𝑚
𝑘=1 ] +

ℎ𝑚 [∑ 𝑃𝑚(𝛼𝑖+1 − 𝑇𝑖)2 − ∫ (𝛼𝑖+1 − 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝛼𝑖+1

𝑇𝑖
∫ (𝑢 −

𝑇𝑖+1

𝛼𝑖+1

𝑚+𝑛−1
𝑖=𝑚

𝛼𝑖+1)𝐷(𝑢) 𝑑𝑢] + ℎ𝑅[∑
1

2
[𝐼𝑅(𝑇𝑘−1) + 𝐼𝑅(α𝑘)](α𝑘 − 𝑇𝑘−1)𝑚

𝑘=1 + ∑
1

2
[𝐼𝑅(α𝑘) +𝑚−1

𝑘=1

𝐼𝑅(𝑇𝑘)](𝑇𝑘 − α𝑘) +
𝑅

2
(𝑇 − 𝛼𝑚)2] + 𝑚𝑘𝑐 + 𝑛𝑘𝑚 + 𝑚𝑘𝑅}     (26) 

 

Our goal is to find Tk that minimizes Z(Tk, m, n) given by (26) with m and n as 

constants. We simplify it by converting it into a function of only one variable, 

since all the time variables Tk are related to each other through the relations: 

Tk-1 < Tk,  k = 1, 2, …, m+n       (27) 

𝑃𝑐(𝛼𝑘 − 𝑇𝑘−1) − ∫ 𝐷(𝑢) 𝑑𝑢
𝛼𝑘

𝑇𝑘−1
= ∫ 𝐷(𝑢) 𝑑𝑢

𝑇𝑘

𝛼𝑘
, k = 1, 2, ,…, m  (28) 

𝑃𝑚(𝛼𝑖+1 − 𝑇𝑖 ) − ∫ 𝐷(𝑢) 𝑑𝑢
𝛼𝑖+1

𝑇𝑖
= ∫ 𝐷(𝑢) 𝑑𝑢

𝑇𝑖+1

𝛼𝑖+1
,    i = m, m+1, …, m+n-1  (29) 

∫ 𝐷(𝑡) 𝑑𝑡 = 𝐼𝑅(𝑇) + ∫ 𝑅 𝑑𝑡
𝛼𝑚

0

𝑇𝑚

0
 = 𝑅𝑇       (30) 

𝑇𝑘 =
𝑘𝑇𝑚

𝑚
,  k = 0, 1, …, m-1       (31) 

𝑇−𝑇𝑚

𝑛
= 𝑇𝑖+1 − 𝑇𝑖,  i = m+1, m+2, …, m+n-1     (32) 

 

Let Q be the acceptable returned quantity for used items in the interval [0,T], 

then 

𝑄 = ∫ 𝑅 𝑑𝑡
𝑇

0
= 𝑅𝑇         (33) 

From (33), we note that T is a function of Q, which is given by: 

𝑇 =
𝑄

𝑅
= 𝑓𝑚+𝑛(𝑄)         (34) 

From (30), we see that Tm is a function of T, therefore from (34), a function of 

Q: 

𝑇𝑚 = 𝑓𝑚(𝑄)           (35) 

From (31), we can see that for all k from 0 to m-1, Tk is a function of Tm. Hence, 

from (35), a function of Q: 
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𝑇𝑘 = 𝑓𝑘(𝑄, 𝑚), k = 0, 1, …, m-1       (36) 

From (28), we find that αk is a function of Tk, hence a function of Q, from (36), 

say: 

𝛼𝑘 = 𝑔𝑘(𝑄, 𝑚), k = 1, 2, …, m       (37) 

From (32), Ti is a function of T and Tm, which is a function of Q from (34) and 

(35): 

𝑇𝑖 = 𝑓𝑖 (𝑄, 𝑚, 𝑛), i = m+1, m+2, …, m+n-1     (38) 

From (29), we see that αi+1 is a function of Ti, hence: 

𝛼𝑖+1 = 𝑔𝑖+1(𝑄, 𝑚, 𝑛),  i = m, m+1, …, m+n-1     (39) 

 

Therefore, by substituting (34) – (39) into (26), we get the TCUT in terms of 

the variable Q and constants m and n :  

TCUT(Q, m, n) = 

 
1

𝑓𝑚+𝑛
{𝑠𝑐𝑃𝑐 ∑ (𝑔𝑘 − 𝑓𝑘−1)𝑚

𝑘=1 + (𝑐𝑚 + 𝑠𝑚)𝑃𝑚 ∑ (𝑔𝑖+1 − 𝑓𝑖 )𝑚+𝑛−1
𝑖=𝑚 + 𝑐𝑅𝑅𝑇 +

ℎ𝑐 [∑ 𝑃𝑐(𝑔
𝑘

− 𝑓
𝑘−1

)
2

− ∫ (𝑔
𝑘

− 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝑔𝑘

𝑓𝑘−1
∫ (𝑢 − 𝑔

𝑘
)𝐷(𝑢) 𝑑𝑢

𝑓𝑘

𝑔𝑘

𝑚
𝑘=1 ] +

ℎ𝑚 [∑ 𝑃𝑚(𝑔𝑖+1 − 𝑓𝑖 )2 − ∫ (𝑔𝑖+1 − 𝑢)𝐷(𝑢) 𝑑𝑢 + 
𝑔𝑖+1

𝑓𝑖
∫ (𝑢 −

𝑓𝑖+1

𝑔𝑖+1

𝑚+𝑛−1
𝑖=𝑚

𝑔𝑖+1)𝐷(𝑢) 𝑑𝑢] + ℎ𝑅[∑
1

2
[𝐼𝑅(𝑓

𝑘−1
) + 𝐼𝑅(𝑔

𝑘
)](𝑔

𝑘
− 𝑓

𝑘−1
)𝑚

𝑘=1 +

∑
1

2
[𝐼𝑅(𝑔

𝑘
) + 𝐼𝑅(𝑓

𝑘
)](𝑓

𝑘
− 𝑔

𝑘
)𝑚−1

𝑘=1 +
𝑅

2
(𝑓

𝑚+𝑛
− 𝑔

𝑚
)

2
] 

+𝑚𝑘𝑐 + 𝑛𝑘𝑚 + 𝑚𝑘𝑅}                         (40) 

where 𝑓𝑚+𝑛(𝑄) =
𝑄

𝑅
.    

 

6.3 Numerical Example  

The demand function and all other parameters with respect to the constraints as 

stated in the assumptions are set as below: 

  

D(t) = e0.05t, Pm = 15, R = 0.99, Pc = 13, 

cm = 10, sm = 15, hm = 10, km = 300, 

sc = 10, hc = 10, kc = 100, 

cR = 5,  hR = 5,  kR = 75. 
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6.3.1  Optimality of TCUT Function 

We test the optimality of the TCUT function constructed to show that the 

function can be optimized through the variable Q. Since m and n are constants, 

we set both of them to be 2 in order to proceed with the testing of optimality. 

The TCUT function in (40) with m and n equal to 2 is plotted against Q ranging 

from 0 to 60. 

 

 

 

 

 

 

 

 

 

 From the figure above, we conclude that TCUT function constructed in 

(40) can be optimized with respect to the variable Q, by looking at the existence 

of a minimum point. Through listing out all TCUT values in Table A-3, we find 

the optimal TCUT of the (2,2)  policy to be 146.998 with Q = 13.5152. 

 

6.3.2  Optimal Number of Remanufacturing and Production Set-ups 

In order to find the optimal number of remanufacturing set-ups (m) and 

production set-ups (n) with the parameters mentioned above, we set m and n 

ranging from 1 to 5 and calculated the optimal TCUT for all 25 sets of duple. 

The result is shown in the table below: 

 

 

 

 

 

 

Figure 6.2: Graph of TCUT Versus Q for (2,2) Policy 
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m 

TCUT 1 2 3 4 5 

 

 

n 

1 134.968 125.232 128.674 135.549 143.647 

2 166.828 146.993 145.869 149.702 155.424 

3 192.786 166.047 161.983 163.932 168.227 

4 215.205 183.124 176.868 177.44 180.701 

5 235.212 198.741 190.735 190.221 192.675 

The minimum TCUT in the table above which is highlighted in yellow is 

125.232 which is the optimal TCUT of the (2,1) policy. This result is with 

respect to the parameters mentioned earlier. In order to see the effect of some 

parameters on the optimal result, sensitivity analysis is carried out for the unit 

holding costs of all 3 stocks as well as the set-up costs of each stock.  

 

6.4 Sensitivity Analysis 

We first look at the effect of unit holding costs of all 3 stocks on the optimal 

number of remanufacturing and production cycles. 

 The sensitivity analysis above is carried out using parameters in the last 

section. From the plot of unit holding cost of manufactured stock against 

Table 6.1: TCUT of (m,n) Model with Different m and n 

Figure 6.3: Optimal m and n Versus Unit Holding Costs of All 3 Stocks  



38 

optimal m and n, we see that the optimal n remains at 1 throughout the plot and 

the optimal m decreases from 2 to 1 with the increase of unit holding cost of 

manufactured stock from 0 to 100. The reason being that when the unit holding 

cost of manufactured stock increases, the unit holding cost of remanufactured 

and returned stock which are constants at 10 and 5 respectively, are relatively 

small compared to the increasing unit holding cost of manufactured stock, hence 

we can hold more stocks in a set-up, causing less number of remanufacturing 

set-up.  

 However, the optimal m has a linear relationship with the unit holding 

cost of remanufactured stock with the optimal n being stagnant at 1. When the 

unit holding cost of remanufactured stock increases, we do not wish to stock 

many remanufactured items, causing more remanufacturing set-ups to happen, 

hence higher optimal m. 

 On the other hand, the optimal m decreases with the increase of unit 

holding cost of returned stock. It has a different behaviour as in the (m,1) model, 

since the difference between the production and remanufacturing set-up cost is 

small with the parameters set in this chapter, their impact on the result is 

cancelled off by each other. This leaves only the constant unit holding cost of 

remanufactured stock and the increasing unit holding cost of returned stock to 

affect the optimal result. Observing the decrease of optimal m, we can say that 

the low unit holding cost of remanufactured stock is much more significant than 

the unit holding cost of returned stock. 

 In fact, from the plot of unit holding cost of remanufactured stock 

against optimal m and n, we can see a rapid increase in the optimal m, showing 

that the unit holding cost of remanufactured stock has a more significant effect 

on the optimal result. 

 Next, we look at production and remanufacturing set-up costs and order 

cost.   
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 This sensitivity analysis is carried out with the set-up costs of the other 

2 stocks set to be equal at 250 when examining one of the set-up cost. This is to 

prevent any stock to be more outstanding than the others, so that we can see the 

impact of that set-up cost on the optimal result without the influence of the other 

2 set-up costs. 

 For the production set-up cost plot, we see that the optimal n drops 

promptly from n = 5 to 1 when the optimal m stays at 1. The optimal model 

remains to be the (1,1) policy until when the production set-up cost increases to 

about 500, the optimal m rises to 2. This is because when the production set-up 

cost is about double the set-up costs of the other 2 stocks, it becomes cheaper to 

have more remanufacturing set-ups with a lower set-up cost. 

 The optimal m and n display the same relationship for remanufacturing 

set-up cost and order cost. They start off with the optimal policy of (2,1) when 

the set-up cost is much lower, followed by the stagnant (1,1) policy until the set-

up costs passed 3000, where the optimal n escalates to 2. The remanufacturing 

set-up cost and order cost need to be about 12 times higher than the production 

set-up cost to have such escalation. 

 When looking at all the plots in Figure 6.3 and 6.4, we see that the (m,1) 

and (1,n) policies seem to dominate the (m,n) policy. It is sufficient to conclude 

that the (m,n) policy with m and n > 1 will not be optimal in most settings. 

 

Figure 6.4: Optimal m and n Versus Set-up Costs of All 3 Stocks  
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CHAPTER 7 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

We have built 3 inventory models in this research, which are the (1,n) model, 

(m,1) model and (m,n) model. The (m,n) inventory model is the general case of 

the other 2 models. In the (1,n) model, we see that the optimal inventory policy 

using the parameters in section 4.3 is the (1,3) policy. The optimal n increases 

with the unit holding cost of manufactured stock but decreases with the increase 

of production set-up cost. On the other hand, the (3,1) policy is the optimal 

inventory policy for the (m,1) model with the parameters in section 5.3. 

Similarly, the optimal m has a linear relationship with the unit holding cost of 

remanufactured and returned stock, but an inverse relationship with the 

remanufacturing set-up cost and order cost.  

 Generally, we find that the (m,n) model will not be the optimal inventory 

model. The possible optimal inventory models are either the (1,1), (1,n) or (m,1) 

policies, according to the sensitivity analysis of the (m,n) model. This might be 

due to the characteristic of the model that we have built. 

 

7.2 Recommendations for Future Work 

Through this research, we found that we are unable to obtain (m,n) policy as the 

optimal inventory model. Research in the future may look into this and search 

for ways that will obtain a (m,n) policy as the optimal model. More parameters 

can also be added to make the model more realistic since there are countless 

factors that can be accounted for when building an inventory model. All 

parameters can be changed including the type of demand, from a continuous 

demand into a discrete demand which is more practical in the real world, since 

the continuous demand that we applied through this research is quite impossible 

in reality, but is easier to be examined. 
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APPENDICES 

 

APPENDIX A: Tables on Values of TCUT with Respect to Q 

Q TCUT Q TCUT Q TCUT Q TCUT 

1 2893.92 21.7475 315.059 42.4949 515.498 63.2424 1179.45 

1.79798 1625.87 22.5455 317.47 43.2929 529.684 64.0404 1222.72 

2.59596 1141.12 23.3434 320.349 44.0909 544.499 64.8384 1267.89 

3.39394 887.126 24.1414 323.672 44.8889 559.971 65.6364 1315.04 

4.19192 732.083 24.9394 327.425 45.6869 576.125 66.4343 1364.26 

4.9899 628.505 25.7374 331.591 46.4848 592.99 67.2323 1415.65 

5.78788 555.098 26.5354 336.163 47.2828 610.596 68.0303 1469.29 

6.58586 500.893 27.3333 341.132 48.0808 628.974 68.8283 1525.3 

7.38384 459.664 28.1313 346.493 48.8788 648.156 69.6263 1583.77 

8.18182 427.619 28.9293 352.245 49.6768 668.178 70.4242 1644.81 

8.9798 402.316 29.7273 358.387 50.4747 689.074 71.2222 1708.54 

9.77778 382.111 30.5253 364.92 51.2727 710.884 72.0202 1775.07 

10.5758 365.861 31.3232 371.847 52.0707 733.646 72.8182 1844.53 

11.3737 352.743 32.1212 379.174 52.8687 757.403 73.6162 1917.05 

12.1717 342.154 32.9192 386.907 53.6667 782.197 74.4141 1992.77 

12.9697 333.64 33.7172 395.054 54.4646 808.073 75.2121 2071.82 

13.7677 326.855 34.5152 403.623 55.2626 835.08 76.0101 2154.36 

14.5657 321.529 35.3131 412.626 56.0606 863.267 76.8081 2240.53 

15.3636 317.452 36.1111 422.074 56.8586 892.686 77.6061 2330.5 

16.1616 314.455 36.9091 431.98 57.6566 923.392 78.404 2424.44 

16.9596 312.403 37.7071 442.359 58.4545 955.44 79.202 2522.52 

17.7576 311.188 38.5051 453.225 59.2525 988.891 80 2624.92 

18.5556 310.72 39.303 464.596 60.0505 1023.81   

19.3535 310.928 40.101 476.489 60.8485 1060.25   

20.1515 311.752 40.899 488.923 61.6465 1098.29   

20.9495 313.142 41.697 501.919 62.4444 1138   

Table A-1: Values of TCUT for Q from 1 to 80 for (1,2) Policy 
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Q TCUT Q TCUT Q TCUT Q TCUT 

1 2751.78 19.1212 263.231 37.2424 447.907 55.3636 1177.53 

1.69697 1632.55 19.8182 263.882 37.9394 462.883 56.0606 1225.38 

2.39394 1166.79 20.5152 265.09 38.6364 478.612 56.7576 1275.28 

3.09091 912.465 21.2121 266.833 39.3333 495.12 57.4545 1327.32 

3.78788 752.887 21.9091 269.091 40.0303 512.437 58.1515 1381.58 

4.48485 643.903 22.6061 271.851 40.7273 530.594 58.8485 1438.15 

5.18182 565.119 23.303 275.104 41.4242 549.623 59.5455 1497.12 

5.87879 505.815 24 278.841 42.1212 569.556 60.2424 1558.59 

6.57576 459.819 24.697 283.06 42.8182 590.431 60.9394 1622.65 

7.27273 423.328 25.3939 287.757 43.5152 612.282 61.6364 1689.42 

7.9697 393.869 26.0909 292.934 44.2121 635.149 62.3333 1759 

8.66667 369.769 26.7879 298.593 44.9091 659.071 63.0303 1831.49 

9.36364 349.855 27.4848 304.737 45.6061 684.09 63.7273 1907.03 

10.0606 333.28 28.1818 311.374 46.303 710.25 64.4242 1985.72 

10.7576 319.418 28.8788 318.511 47 737.595 65.1212 2067.69 

11.4545 307.799 29.5758 326.157 47.697 766.174 65.8182 2153.08 

12.1515 298.061 30.2727 334.323 48.3939 796.035 66.5152 2242.01 

12.8485 289.922 30.9697 343.021 49.0909 827.229 67.2121 2334.63 

13.5455 283.162 31.6667 352.265 49.7879 859.81 67.9091 2431.08 

14.2424 277.604 32.3636 362.069 50.4848 893.833 68.6061 2531.52 

14.9394 273.107 33.0606 372.45 51.1818 929.356 69.303 2636.11 

15.6364 269.554 33.7576 383.424 51.8788 966.439 70 2744.99 

16.3333 266.853 34.4545 395.012 52.5758 1005.14   

17.0303 264.928 35.1515 407.232 53.2727 1045.54   

17.7273 263.715 35.8485 420.106 53.9697 1087.69   

18.4242 263.163 36.5455 433.656 54.6667 1131.66   

Table A-2: Values of TCUT for Q from 1 to 70 for (2,1) Policy 
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Q TCUT Q TCUT Q TCUT Q TCUT 

1 959.88 16.4949 150.712 31.9899 242.904 47.4848 477.585 

1.59596 611.239 17.0909 152.159 32.5859 248.738 48.0808 491.126 

2.19192 453.581 17.6869 153.805 33.1818 254.77 48.6768 505.109 

2.78788 364.435 18.2828 155.641 33.7778 261.007 49.2727 519.549 

3.38384 307.609 18.8788 157.659 34.3737 267.452 49.8687 534.461 

3.9798 268.591 19.4747 159.851 34.9697 274.114 50.4646 549.861 

4.57576 240.431 20.0707 162.211 35.5657 280.997 51.0606 565.764 

5.17172 219.382 20.6667 164.735 36.1616 288.109 51.6566 582.188 

5.76768 203.247 21.2626 167.42 36.7576 295.456 52.2525 599.149 

6.36364 190.653 21.8586 170.263 37.3535 303.045 52.8485 616.666 

6.9596 180.698 22.4545 173.261 37.9495 310.884 53.4444 634.757 

7.55556 172.765 23.0505 176.414 38.5455 318.981 54.0404 653.44 

8.15152 166.418 23.6465 179.721 39.1414 327.343 54.6364 672.736 

8.74747 161.34 24.2424 183.182 39.7374 335.979 55.2323 692.665 

9.34343 157.297 24.8384 186.797 40.3333 344.898 55.8283 713.248 

9.93939 154.11 25.4343 190.567 40.9293 354.108 56.4242 734.506 

10.5354 151.642 26.0303 194.493 41.5253 363.619 57.0202 756.462 

11.1313 149.785 26.6263 198.578 42.1212 373.441 57.6162 779.139 

11.7273 148.454 27.2222 202.822 42.7172 383.583 58.2121 802.56 

12.3232 147.581 27.8182 207.229 43.3131 394.056 58.8081 826.752 

12.9192 147.11 28.4141 211.802 43.9091 404.871 59.404 851.738 

13.5152 146.998 29.0101 216.543 44.5051 416.038 60 877.546 

14.1111 147.206 29.6061 221.456 45.101 427.57   

14.7071 147.705 30.202 226.544 45.697 439.478   

15.303 148.469 30.798 231.812 46.2929 451.775   

15.899 149.477 31.3939 237.264 46.8889 464.473   

Table A-3: Values of TCUT for Q from 1 to 60 for (2,2) Policy 
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APPENDIX B: Detailed Calculations on Formulation of Models 

 

Taking formulation of (1,n) model as an example. 

Solve 
𝑑𝐼𝑐(𝑡)

𝑑𝑡
= 𝑃𝑐 − 𝐷(𝑡),  with the initial condition Ic(T0) = 0, for T0 ≤ t < α1 :  

𝐼𝑐(𝑡) =  ∫ 𝑃𝑐 − 𝐷(𝑡)𝑑𝑡 + 𝐶  

𝐿𝑒𝑡 𝑡 = 𝑇0:           𝐼𝑐(𝑇0) = [∫ 𝑃𝑐 − 𝐷(𝑡)𝑑𝑡]𝑡=𝑇0
+ 𝐶  

0 = [∫ 𝑃𝑐 − 𝐷(𝑡)𝑑𝑡]𝑡=𝑇0
+ 𝐶  

𝐶 = −[∫ 𝑃𝑐 − 𝐷(𝑡)𝑑𝑡]𝑡=𝑇0
  

Substitute C into 𝐼𝑐(𝑡): 

𝐼𝑐(𝑡)    =  ∫ 𝑃𝑐 − 𝐷(𝑡)𝑑𝑡 −[∫ 𝑃𝑐 − 𝐷(𝑡)𝑑𝑡]𝑡=𝑇0
    

 = ∫ 𝑃𝑐 − 𝐷(𝑡)𝑑𝑡
𝑡

𝑇0
    

 = ∫ 𝑃𝑐  𝑑𝑡
𝑡

𝑇0
− ∫ 𝐷(𝑡) 𝑑𝑡

𝑡

𝑇0
   

 = 𝑃𝑐(𝑡 − 𝑇0) − ∫ 𝐷(𝑡) 𝑑𝑡
𝑡

𝑇0
   

All differential equations in this research are solved in the same way as above. 

 

To find the inventory holdings, 

𝐼𝑐(𝑇0, 𝛼1) = ∫ [𝑃𝑐(𝑡 − 𝑇0) − ∫ 𝐷(𝑢) 𝑑𝑢] 𝑑𝑡
𝑡

𝑇0
 

𝛼1

𝑇0
  

   = ∫ 𝑃𝑐(𝑡 − 𝑇0) 𝑑𝑡 − ∫ (∫ 𝐷(𝑢) 𝑑𝑢) 𝑑𝑡
𝑡

𝑇0

𝛼1

𝑇0
 

𝛼1

𝑇0
  

Solve them separately, 

∫ 𝑃𝑐(𝑡 − 𝑇0) 𝑑𝑡 = 𝑃𝑐
𝛼1

𝑇0
∫ (𝑡 − 𝑇0) 𝑑𝑡

𝛼1

𝑇0
  

     = 𝑃𝑐 [
𝑡2

2
− 𝑇0𝑡]

𝑇0

𝛼1

  

     = 𝑃𝑐(
𝛼1

2

2
− 𝑇0𝛼1 −

𝑇0
2

2
+ 𝑇0

2) 

     = 𝑃𝑐(
𝛼1

2+𝑇0
2

2
− 𝑇0𝛼1) 

     =
𝑃𝑐

2
(𝛼1

2 + 𝑇0
2 − 2𝑇0𝛼1) 

     = 𝑃𝑐(𝛼1 − 𝑇0)2 

Solve ∫ (∫ 𝐷(𝑢) 𝑑𝑢) 𝑑𝑡
𝑡

𝑇0

𝛼1

𝑇0
 through integration by parts, 

𝐿𝑒𝑡 𝑤 = ∫ 𝐷(𝑢) 𝑑𝑢 
𝑡

𝑇0
    𝑑𝑣 = 𝑑𝑡 

    𝑑𝑤 = 𝐷(𝑡) 𝑑𝑡       𝑣 = 𝑡 
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∫ (∫ 𝐷(𝑢) 𝑑𝑢) 𝑑𝑡
𝑡

𝑇0

𝛼1

𝑇0
= 𝑡 ∫ 𝐷(𝑢) 𝑑𝑢

𝑡

𝑇0
|𝑡=𝑇0

𝑡=𝛼1 − ∫ 𝑡 𝐷(𝑡) 𝑑𝑡
𝛼1

𝑇0
  

            = 𝛼1 ∫ 𝐷(𝑢) 𝑑𝑢
𝛼1

𝑇0
− ∫ 𝑢 𝐷(𝑢) 𝑑𝑢

𝛼1

𝑇0
  

            = ∫ (𝛼1 − 𝑢) 𝐷(𝑢) 𝑑𝑢
𝛼1

𝑇0
  

Therefore, substituting the results of the two integrations into 𝐼𝑐(𝑇0, 𝛼1), we 

obtain: 

𝐼𝑐(𝑇0, 𝛼1) = 𝑃𝑐(𝛼1 − 𝑇0)2 − ∫ (𝛼1 − 𝑢) 𝐷(𝑢) 𝑑𝑢
𝛼1

𝑇0
   

 

Similarly, 𝐼𝑚(𝑇𝑘, 𝛼𝑘+1) can be obtained using the above procedure, for k = 1, 

2, …, n. 

For 𝐼𝑐(𝛼1, 𝑇1) and 𝐼𝑚(𝛼𝑘+1, 𝑇𝑘+1), where k = 1, 2, …, n, they are similar to 

solving ∫ (∫ 𝐷(𝑢) 𝑑𝑢) 𝑑𝑡
𝑡

𝑇0

𝛼1

𝑇0
 using integration by parts. 

𝐼𝑅(𝑇0, 𝛼1) and 𝐼𝑅(𝛼1, 𝑇) can be solved the same way as ∫ 𝑃𝑐(𝑡 − 𝑇0) 𝑑𝑡
𝛼1

𝑇0
.  
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