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ABSTRACT 

 

Graph Theory is the study of graphs and its properties. In graph theory, a graph 

is a drawing represented by vertices (points) and edges (lines). A planar graph 

is a graph which can be redrawn on plane so that its edges do not cross each 

other. In this project, we look into the skewness of graph, which is the minimum 

number of edges whose deletion results in a planar graph. In particular, we look 

into the skewness of a family of cubic graphs, denoted 𝐻(𝑛, 𝑘). 

 The problem of determining the skewness of a graph is known to be NP-

complete. In past research papers, the skewness of some families of graphs have 

been determined which includes the complete graph, complete bipartite graph, 

complete multipartite graph, n-cube and the generalized Petersen graph. The 

method used for determining the skewness mostly involve using graph theory 

related concepts and properties on a case-by-case basis. A well-known and 

recurring theorem used in this research is the Euler’s formula. Other useful 

theorem for finding the skewness includes the Handshaking lemma for planar 

graphs and Kuratowski’s theorem. 

 Some of the important preliminaries and definitions regarding graphs are 

given. The mathematical definitions of various families of graphs are also 

clearly defined together with a survey on their respective skewness. The main 

results of this research is presented in Chapter 4. For the graph 𝐻(𝑛, 𝑘), we first 

start with the simplest form of the graph which is 𝐻(7,5), also known as the 

Heawood graph. This project presents a bound for the skewness of the graphs 

𝐻(𝑛, 5) in which the relevant logic and methods used are explained in detail and 

also a conjecture for the skewness of 𝐻(𝑛, 5). 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Introduction 

Graph theory is one of  many areas of study in mathematics. It focuses on the 

field of graphs in which the techniques of drawing graphs, finding attributes of 

graphs and its application are studied. These graphs are different from the 

statistical graphs in which there are x-axis and y-axis. 

In graph theory, a graph G consists of vertices and edges joining these 

vertices. The vertices are points on the plane and the edges connect vertices by 

lines.  

In this project, we will be focusing on one of the branches of graph 

theory which is the skewness of graphs. Before we go into the skewness of 

graphs, we need to know a fundamental concept in graph theory which is 

planarity. A graph is called planar if it can be redrawn in the plane such that 

there is no crossings of edges.  

 

                                        

Figure 1.1: Planar (left) and Non-planar (Right) Drawings of K4 

 

From there, the skewness of a graph G is the minimum number of edges 

to be deleted in order to obtain a planar graph, and is denoted by sk(G) (Chia 

and Lee, 2005). It is also a way of graph planarization. Another closely related 

concept is the crossing number of graphs. The crossing number of a graph is the 

minimum number of crossings (intersections) of its edges among all the 

drawings of a graph (Chia and Lee, 2005). 
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1.2 Importance of the Study 

A graph can be a representation of some real world situations and information 

can be obtained depending on how we interpret it. 

For instance, a graph can be used to model a road map by treating its 

vertices as locations and edges as roads. The crossing of edges indicates that 

there will be a junction between the roads and hence there will be a disruption 

of traffic flow (assuming multi-level roads are not an option). In this case, 

finding the crossing number would mean finding the road design in which there 

are minimum number of junctions and finding the skewness would mean finding 

to the number of roads to be removed so that there can be no junctions. 

The skewness of graphs also has applications in computer science field 

such as printed circuit board layout and VLSI (Very Large Scale Integration) 

circuit routing (Cimikowski, 1992). Generally, in many applications of graphs, 

it is often important to find a drawing that is easily readable (Czap and Hudak, 

2013). Obviously, a graph with no crossings would be a better view than those 

with crossings. 

 

1.3 Problem Statement 

The problem of planarizing graphs and finding skewness had begun decades ago, 

but until now the problem is known to be NP-complete (Liu and Geldmacher, 

1979).  

The problem of determining the skewness of graphs can involve the use 

of various techniques and graph operations. Even so, the complexity of the 

problem still depends on the complexity of the graphs in which the skewness 

we want to determine. In this project, we consider the family of cubic graphs 

which contain the Heawood graph as a special case which is denoted as H(n, k). 
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1.4 Objectives 

The objectives of this project is: 

1. To study on and understand some known results regarding the skewness 

of graphs 

2. To survey on the techniques used by others in finding the skewness of 

graphs 

3. To attempt to obtain some new results regarding the skewness of the 

graph H(n, k) 

 

1.5 Scope 

This project revolves around the planarization and determining the skewness of 

families of graphs. The final goal is to determine the skewness for the 

generalized case. The skewness of the graph that we want to find is the family 

of cubic graphs 𝐻(𝑛, 𝑘). We will first start with the graphs of 𝐻(𝑛, 5) which is 

the smallest possible form of this family. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This section provides some of about the results obtained from past papers 

regarding the skewness of some families of graphs.  

 

2.2 Literature Review 

In the process of finding the skewness of graphs, Chia and Lee (2009) proved 

several theorems which are used for the determination of skewness of some of 

graphs. One of it is the formula defined as 

 

𝜋(𝐺) ≔ ⌈𝑞 −  
𝑔

𝑔 − 2
(𝑝 − 2)⌉ 

 

where p and q denote the numbers of vertices and edges in G respectively and g 

is the girth of G. 

 

Another theorem related to this is for any connected graph G, sk(G) ≥ π(G). 

Also, Chia and Lee (2009) stated that if a planar subgraph can be obtained from 

G by deleting s edges, then sk(G) ≤ s. These two theorems are frequently used 

in this problem. 

 

2.2.1 Complete Graph and Complete Bipartite Graph 

A complete graph is a graph where every vertex is connected all other vertices 

in the graph, and it is denoted by Kn with if it has n vertices.  
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Figure 2.1: Complete Graph, 𝐾𝑛  

 

A bipartite graph is a graph whose vertex set can be partitioned into two 

independents sets and that vertices from the same set are never connected to 

each other. A complete bipartite graph is a bipartite graph such that a vertex is 

connected to every other vertices which are not from the same set, and is denoted 

by Km,n with the two vertex sets having m and n vertices respectively (Sim, 2014).  

 

 

Figure 2.2: Complete Bipartite Graph, 𝐾3,4 

 

Chia and Lee (2009) stated that for both of these graphs, the skewness 

is sk(G) = π(G). Note that by substituting q in the formula π(G) with the 

respective formula for number of edges, 𝜋(𝐺) =  (𝑛−3
2

) for the complete graph 

and 𝜋(𝐺) =  (𝑚 –  2)(𝑛 –  2) for the complete bipartite graph. 
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2.2.2 The n-cube 

According to Chia and Lee (2009), the definition of n-cube, denoted Qn is the 

complete graph K2 if n = 1, while for n ≥ 2 it is Qn – 1 × K2. The operation Qn – 1 

× K2 is defined as the Cartesian product between Qn – 1 and K2. The skewness of 

the n-cube, sk(Qn) = π(Qn) for n ≥ 2, with 𝜋(𝑄𝑛)  =  2𝑛−1(𝑛 –  4)  +

 4 𝑓𝑜𝑟 𝑛 ≥  2. 

 

  

Figure 2.3: The n-cube, 𝑄𝑛  

 

 

Figure 2.4: 3-cube (left) and 4-cube (right) 
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2.2.3 Complete Multipartite Graph (k-partite graph) 

The multipartite graph or k-partite graph is a graph whose vertices can be 

partition in k different independent sets. Previous section has shown the 

skewness for the complete bipartite graphs, where k = 2. Here, we will consider 

a higher number k. 

 

 

Figure 2.5: The complete tripartite graph, 𝐾2,2,2 

 

 

Figure 2.6: The complete 4-partite graph, 𝐾3,3,3,4 

 

The skewness of the complete tripartite graphs, 𝐾𝑚,𝑛,𝑟  and complete 4-

partite graphs, 𝐾𝑚,𝑛,𝑟,𝑠  has been completely obtained by Chia and Sim (2013). 

The steps for obtaining these results are long and tedious and involved the usage 

of multiple previously defined theorems. For k ≥ 5, the skewness has yet to be 

determined as it involved more cases and large amount of computation, and 

different techniques may need to be considered for such process (Chia and Sim, 

2013).  
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2.2.4 Generalized Petersen Graph 

The generalized Petersen graph P(n, k) is defined as a graph having the vertex 

set 

{𝑢𝑖, 𝑣𝑖 ∶  𝑖 =  0, 1, … , 𝑛 –  1} 

and edge set 

{𝑢𝑖𝑢𝑖+1, 𝑢𝑖𝑣𝑖 , 𝑣𝑖𝑣𝑖+𝑘 ∶  𝑖

=  0, 1, … , 𝑛 –  1 𝑤𝑖𝑡ℎ 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑠 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑢𝑙𝑜 𝑛} 

where n and k are integers and 1 ≤  𝑘 ≤  𝑛 –  1 (Chia and Lee, 2005). There 

are quite a few papers that delved into the crossing numbers and skewness of 

the generalized Petersen graphs. 

 

 

Figure 2.7: Petersen Graph, P(5, 2) 

 

 

Figure 2.8: Generalized Petersen graph P(6, 2) 

 

The skewness of some cases of the generalized Petersen graphs such as 

𝑃(3𝑘, 𝑘) and 𝑃(4𝑘, 𝑘) have been determined by Chia and Lee (2005, 2009, 

2012), and Chia, Lee and Ling (2019). Similarly, the proofs for the generalized 
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Petersen graphs involved long and tedious steps as the graph become very 

complex as the order of the graph increases. The skewness for the generalized 

case 𝑃(𝑠𝑘, 𝑘) has not been determined and it likely involve more complicated 

steps. 

 

2.3 Summary 

The skewness of some families of graphs have been explored. However, there 

are still a lot of families of graphs in which their skewness are yet to be 

determined. Even the skewness for the generalized Petersen graph has not yet 

been completely found.  

As of now, there are still no exact method that can be used to find the 

skewness of an arbitrary non-planar graph (NP-completeness). Naturally, we 

instead explore the families of graphs so that a formula can be derived. However, 

depending on the complexity of the graph, some conventional methods may not 

be reliable and different approach need to be considered. 
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CHAPTER 3 

 

3 METHODOLOGY  

 

3.1 Introduction 

This section introduces the methods used in finding the skewness of graphs. 

 

3.2 Requirement  

As mentioned previously, the skewness of graphs is a subtopic of graph theory. 

Various concepts derived in graph theory are needed in order to explored this 

topic. Hence, the fundamental knowledge of graph theory is compulsory. 

 

3.3 Methodology 

The following section shows the proof for some of the theorems in section 2.  

 

3.3.1 π(G) 

First, from Euler’s polyhedron formula we have  

 

 𝑝 − 𝑞 + 𝑓 ≥ 2 (3.1) 

 

where p, q and f denote the numbers of vertices, edges and faces in G 

respectively and g is the girth of G. 

 

Let G be a plane graph with girth g. Note that the girth g ≥ 3 (because G 

is a simple graph). Let fk denote the number of k-faces in G. Then 𝑓 =  ∑ 𝑓𝑘𝑘 ≥𝑔   

and 2𝑞 =  ∑  𝑘𝑓𝑘𝑘 ≥𝑔  and we have 

 

 2𝑞 ≥ 𝑔𝑓 (3.2) 

 

By eliminating f in (1) and (2), we have the inequality 

 

𝑞 ≤  
𝑔

𝑔 − 2
(𝑝 − 2). (3.3) 
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Hence we defined the formula π(G) to be 

 

𝜋(𝐺) ≔ ⌈𝑞 −  
𝑔

𝑔 − 2
(𝑝 − 2)⌉ .  

 

Next, let H be a planar graph obtained by removing sk(G) edges from G. 

Then H has q – sk(G) edges with girth g’. Obviously, g’ ≥ g and by the previous 

theorem, 𝑞 –  𝑠𝑘(𝐺)  ≤  
𝑔′(𝑝−2)

𝑔′−2
 ≤  

𝑔(𝑝−2)

𝑔 −2
. Since sk(G) is an integer, we have 

𝑠𝑘(𝐺) ≥  ⌈ 𝑞 −  
𝑔(𝑝−2)

𝑔−2
 ⌉ and this leads to the result 

 

𝑠𝑘(𝐺) ≥  𝜋(𝐺)  

 

(Chia and Lee, 2009). 

 

3.3.2 Complete Graph and Complete Bipartite Graph 

Recall that for complete graph,  𝜋(𝐺)  =  (𝑛−3
2

) and π(𝐺) =  (𝑚 –  2)(𝑛 –  2) if 

G is the complete bipartite graph. It is known from previous theorem that 

𝑠𝑘(𝐺)  ≥  𝜋(𝐺). In order for 𝑠𝑘(𝐺)  =  𝜋(𝐺), an upper bound 𝑠𝑘(𝐺)  ≤  𝜋(𝐺) 

is needed, which means we need to obtain a planar subgraph H by removing 

π(G) edges from G. 

Since these two families of graph are not very complicated, H can be 

obtained simply by inspection. For the complete graph Kn, H can be obtained 

by taking two non-adjacent vertices and connecting them with every vertex of 

an (n – 2)-cycle. This can be done by placing one vertex inside the cycle and 

another outside the cycle.  

For the complete bipartite graph Km,n, if we label the two partite sets of 

vertices as 𝑢0, 𝑢1, … , 𝑢𝑚−1 and 𝑣0, 𝑣1, … , 𝑣𝑛−1 and remove (m – 2)(n – 2) edges 

𝑢𝑖𝑣𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … , 𝑚 − 2 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛 − 2, a planar subgraph can be 

obtained (Chia and Lee, 2009).   
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3.3.3 The n-cube 

In order to prove sk(Qn) = π(Qn) for n ≥ 2, we first need the following theorem 

(due to Chia and Lee (2009)) concerning the skewness of Cartesian product of 

graphs. This states that, for a graph G with p ≥ 4 vertices and having girth 4 and 

suppose sk(G) = π(G), then sk(G × K2) = 2sk(G) + p – 4 and hence sk(G ×K2) = 

π(G × K2) (Chia and Lee, 2009).  

Clearly, sk(Q2) = 0 = π(Q2) and sk(Q3) = 0 = π(Q3). By induction, 

assume sk(Qn – 1) = π(Qn – 1). Then sk(Qn) = sk(Qn – 1 × K2) = π(Qn – 1 × K2) = 

π(Qn) (Chia and Lee, 2009). 

 

3.4 Summary 

The proof for the generalized Petersen graph and multipartite graph is different 

and tedious, but the general idea for the method in finding the skewness is shown. 

Since the lower bound for the skewness, sk(G) ≥ π(G) has been proven, we then 

attempt to find the upper bound. Finally, we will attempt to find an equation for 

the skewness using the bound.  

This is usually done by starting with inspection on the graph. After the 

calculation of π(G), we will do trial and error on the graph. For simple graphs 

(such as the complete graphs or complete bipartite graphs), perhaps the 

skewness can be obtained from there. For more difficult graphs, we usually do 

some inspection first before moving on to a more systematic way, which may 

involve tedious steps as shown in the proofs for the multipartite graphs and the 

generalized Petersen graph. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This section introduces the graph of interest, which is a family of cubic graphs 

which contain the Heawood graph as a special case, and is denoted H(n, k). 

 

4.2 H(n, k) 

The graph H(n, k) is defined as a graph consisting of  a 2n-cycle 𝑥0𝑥1 … 𝑥2𝑛−1𝑥0, 

together with n edges of the form 𝑥2𝑖𝑥2𝑖+𝑘  , 𝑖 = 0,1, … , 𝑛 − 1 with subscript 

reduced to modulo 2n and k is odd. It is also a bipartite graph as its vertices can 

be partitioned into two sets. 

 

4.3 H(n, 5) 

The Heawood graph is the graph 𝐻(7, 5) and is also the simplest form of the 

family of graph H(n, k). 

 

 

Figure 4.1: Heawood graph 

 

It is easy to see that the number of edges of a 𝐻(𝑛, 𝑘) graph is 3n. Note 

that for any graph 𝐻(𝑛, 5), the girth is 6. By substituting in the formula, we get 

𝜋(𝐻(𝑛, 5)) = 3 and hence 𝑠𝑘(𝐻(𝑛, 5))  ≥ 3. We are left with determining the 

upper bound for the skewness of Heawood graph.  
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4.3.1 H(7, 5) 

The following figure shows a subgraph of the Heawood graph by deleting 3 

edges, namely  𝑥1𝑥10, 𝑥3𝑥12 𝑎𝑛𝑑 𝑥4𝑥9. The deleted edges are illustrated with 

red line on the original graph and dotted line on the resulting graph. 

 

 

Figure 4.2: H(7, 5) 

 

 

Figure 4.3: Planar subgraph of H(7, 5) 

 

Since a planar subgraph can be obtained by deleting 3 edges, thus 

𝑠𝑘(𝐻(7, 5))  ≤ 3. Since we obtained the same number from the lower and 

upper bound, we can directly conclude that 𝑠𝑘(𝐻(7, 5)) = 3. 
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 From the Euler’s formula, we know that if we delete 𝑟 edges from 𝐻(𝑛, 5), 

then the number of faces of the resulting subgraph is 

 

𝑓 = 𝑛 + 2 − 𝑟. (4.1) 

 

Since the girth of 𝐻(𝑛, 5) is 6, then we also have 

 

𝑓 = 𝑓6 + 𝑓8 + 𝑓10 + 𝑓12 + ⋯ . (4.2) 

 

where 𝑓𝑖  is the number of 𝑖 faces. Eliminating 𝑓 in (4.1) and (4.2), we will get 

 

𝑛 + 2 − 𝑟 = 𝑓6 + 𝑓8 + 𝑓10 + 𝑓12 + ⋯ . (4.3) 

 

Also, from the Handshaking lemma for planar graph, we know that the sum of 

face degrees for a connected planar graph with 𝑓 faces and 𝑞 edges is 

 

2𝑞 =  ∑ 2𝑖𝑓2𝑖

𝑖≥3

(4.4) 

 

Expanding (4.3) and substituting 𝑞 = 3𝑛 − 𝑟 will give us 

 

6𝑛 − 2𝑟 =  6(𝑓6 + 𝑓8 + 𝑓10 + 𝑓12 + ⋯ ) + 2𝑓8 + 4𝑓10 + 6𝑓12 + ⋯ . (4.5) 

 

Finally, combining (4.3) and (4.5) will result in 

 

𝑟 = 3 +
𝑓8

2
+ 𝑓10 +

3𝑓12

2
+ ⋯  . (4.6) 

 

Equation (4.6) tells us the number of non 6-faces of the resulting subgraph must 

have if we delete 𝑟 edges from 𝐻(𝑛, 5). If 𝑟 = 3, then the subgraph must have 

all faces with degree 6. This can be used to verify the validity of the subgraph 

when the skewness is equal to 3. 
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4.3.2 H(8, 5) 

Next for the graph 𝐻(8, 5), a planar subgraph is obtained by deleting 3 edges. 

Hence, we can conclude that 𝑠𝑘(𝐻(8, 5)) = 3. The edges deleted are different 

from 𝐻(7, 5) where we only delete the inner edge while for 𝐻(8, 5) we delete 

2 inner edges and 1 edge from the 2n-cycle. The edges deleted in the illustration 

below are 𝑥4𝑥9, 𝑥10𝑥15 𝑎𝑛𝑑 𝑥13𝑥14. 

 

 

Figure 4.4: H(8, 5) 

 

 

Figure 4.5: Planar subgraph of H(8, 5) 
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4.3.3 H(9, 5) 

Similarly for the graph 𝐻(9, 5), a planar subgraph can obtained by deleting 3 

edges, namely 𝑥4𝑥9, 𝑥3𝑥16 𝑎𝑛𝑑 𝑥10𝑥15 and 𝑠𝑘(𝐻(9, 5)) = 3. 

 

 

Figure 4.6: H(9, 5) 

 

 

Figure 4.7: Planar subgraph of H(9, 5) 
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4.3.4 Upper bound for sk(H(n, 5)) 

Using similar method that is done for the graphs𝐻(7, 5), 𝐻(8, 5) and 𝐻(9, 5), 

the number of edges to be removed is 4 for the graphs 𝐻(10, 5),

𝐻(11, 5) and 𝐻(12, 5). 

By close inspection, it is found that for this particular subgraph method, 

there is a recurring pattern after every increment of n by 3. With this, we can 

separate the graphs of 𝐻(𝑛, 5) into three groups. Let n be in one of the following 

form: 

 

i) 𝑛 =  3𝑚 –  2  

ii) 𝑛 =  3𝑚 –  1  

iii) 𝑛 =  3𝑚 

 

where 𝑚 ≥ 3. Then, we can obtain a planar subgraph by deleting a set of m 

edges depending on which form n belongs to: 

 

i) 𝑛 =  3𝑚 –  2  

Delete the set of edges { (𝑥4+6𝑖  , 𝑥9+6𝑖) | 𝑖 = 0,1,2, … , 𝑚 −

2} and (𝑥6𝑚−6 , 𝑥6𝑚−1) with subscripts reduced modulo 2𝑛  

 

ii) 𝑛 =  3𝑚 –  1  

Delete the set of edges { (𝑥4+6𝑖  , 𝑥9+6𝑖) | 𝑖 = 0,1,2, … , 𝑚 −

2} and (𝑥6𝑚−1 , 𝑥6𝑚) with subscripts reduced modulo 2𝑛  

 

iii) 𝑛 =  3𝑚 –  2  

Delete the set of edges { (𝑥4+6𝑖  , 𝑥9+6𝑖) | 𝑖 = 0,1,2, … , 𝑚 −

1} with subscripts reduced modulo 2𝑛  

 

Theorem 1 Suppose G is a graph of the family 𝐻(𝑛, 5) where 𝑛 ≥ 7 , then 

3 ≤ 𝑠𝑘(𝐺) ≤ ⌈ 
𝑛

3
 ⌉.  
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4.3.5 H(10, 5) to H(20, 5) 

Consider the graph 𝐻(10, 5), from Theorem 1 the skewness of 𝐻(10, 5) is 

either 3 or 4. However, it is found that 𝑠𝑘(𝐻(10, 5)) = 3. The way of deleting 

edges differs from the previous 3 graphs.  

By trial and error, it is found that a planar subgraph can also be obtain for 

𝐻(11, 5) 𝑡𝑜 𝐻(20, 5)  by deleting the 3 edges which are 𝑥0𝑥2𝑛−1,

𝑥1𝑥2𝑛−4 and 𝑥3𝑥2𝑛−2. Hence, we can also conclude that their skewness is also 

3. However, the way that the subgraph is drawn does not mirror the original 

graph anymore. 

 

 

Figure 4.8: Planar subgraph of H(10, 5) 

 

 

Figure 4.9: Planar subgraph of H(11, 5) 
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Figure 4.10: Planar subgraph of H(12, 5) 

 

 

Figure 4.11: Planar subgraph of H(13, 5) 

 

 

Figure 4.12: Planar subgraph of H(14, 5) 
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Figure 4.13: Planar subgraph of H(15, 5) 

 

 

Figure 4.14: Planar subgraph of H(16, 5) 

 

 

Figure 4.15: Planar subgraph of H(17, 5) 
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Figure 4.16; Planar subgraph of H(18, 5) 

 

 

Figure 4.17: Planar subgraph of H(19, 5) 

 

 

Figure 4.18: Planar subgraph of H(20, 5) 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusion 

The skewness of 𝐻(𝑛, 5) for 𝑛 = 7, 8, 9, … , 20 has been found. Even when 𝑛 

increases to up to 20, the skewness remains to be 3. It may be true that 

𝑠𝑘(𝐻(𝑛, 5)) = 3 for 𝑛 ≥ 7. In that case, we may need to derive a general way 

to draw the planar subgraph as the ones shown in this project are simply done 

by exhaustion.   

 

5.2 Recommendations for future work 

One may need to look into the faces of graphs to find the general case of 𝐻(𝑛, 5). 

Since we know that the degree of all the faces must be equal to 6 if the skewness 

is 3, we may be able to find the general way of drawing from there. Also, the 

skewness of 𝐻(𝑛, 𝑘) 𝑓𝑜𝑟 𝑘 ≥ 7  may also be found using the same method 

shown for 𝐻(10, 5) to 𝐻(20, 5).  

  



24 

 

REFERENCES 

 

[1] Chia G.L. and Lee, C.L., 2005. Crossing numbers and skewness of some 

Generalized Petersen graphs. Lecture Notes in Comput. Sci. Vol. 3330 

Springer-Verlag, pp. 80 – 86   

 

[2] Chia G.L. and Lee, C.L., 2009. Skewness and crossing numbers of graphs. 

Bull. Inst. Combin. Appl. Vol. 55, pp. 17 – 32 

 

[3] Chia G.L. and Lee, C.L., 2012. Skewness of Generalized Petersen graphs 

and related graphs. Front. Math. China Vol. 7(3), pp. 427 – 436 

 

[4] Chia G.L., Lee, C.L. and Ling, Y.H., 2019. A proof technique for skewness 

of graphs. Ars Combinat. Vol. 144, pp. 381 – 389 

 

[5] Chia G.L. and Sim, K.A., 2013. On the skewness of the join of graphs. 

Discrete Appl. Math. Vol. 161, pp 2405 – 2409   

 

[6] Cimikowski, R.J., 1992. Graph Planarization and Skewness. Congr.  Numer. 

88, pp. 21 - 32 

 

[7] Czap, J. and Hud ́ak, D. 2013. On drawings and decomposition of 1-planar 

graphs. Electron. J. Combin., 20(2), #P45 

 

[8] Kainen, P.C., 1975. Chromatic number and skewness. J. Combinat. Theory 

Ser. B, Vol. 18,pp. 32 – 34  

 

[9] Liu, P.C. and Geldmacher, R.C., 1979. On the deletion of nonplanar edges 

of a graph, Congr. Numer.  24, pp. 727 – 738. 

 

[10] Salazar, G., 2005. On the crossing numbers of loop networks and 

Generalized Petersen Graph. Discrete Math. Vol. 302, pp. 243 – 253  

 

[11] Sim, K.A., 2014. On the skewness of graphs (Master’s Thesis). Retrieved 

from http://studentsrepo.um.edu.my/4826/1/mscthesis.pdf 

 

 

 


