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GEOMETRIC DISSECTION

LEONG YEE HANG

ABSTRACT

At the beginning of this project, the dissection of some polygons were
studied and analysed. One of them is the solution of Haberdasher’s problem
which is a four-pieces dissection from an equilateral triangle to a square
given by Henry Dudeney. His original construction idea is applied to
construct the dissection from a square to an equilateral triangle.

After that, equidecomposability of polygons and polyhedra are discussed.
Wallace-Bolyai-Gerwien Theorem states that any polygons with same area
are equidecomposable. Two proofs for this theorem are given. A stronger
result tells that equidecomposable polygons have a common hinged dissection.
Hilbert’s Third Problem asks whether two polyhedra of equal volume are
equidecomposable. Max Dehn gave an negative answer to this problem.
A recent alternative solution based on Bricard’s condition is studied.

viii



TABLE OF CONTENTS

TITLE i

DECLARATION OF ORIGINALITY ii

ACKNOWLEDGEMENTS vii

ABSTRACT viii

LIST OF FIGURES xi

CHAPTER 1 Introduction 1

1-1 Background & History . . . . . . . . . . . . . . . . . . . 1

1-2 Problem Statement . . . . . . . . . . . . . . . . . . . . . 3

1-3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 3

1-4 Notation and Terminology . . . . . . . . . . . . . . . . . 4

1-4-1 Line, Ray and Line Segment . . . . . . . . . . . . 4

1-4-2 Tetrahedron . . . . . . . . . . . . . . . . . . . . . 5

1-5 Project Planning . . . . . . . . . . . . . . . . . . . . . . 6

1-5-1 Project I . . . . . . . . . . . . . . . . . . . . . . . 6

1-5-2 Project II . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2 Literature Review 7

2-1 Dissection Problems . . . . . . . . . . . . . . . . . . . . 7

2-2 Polygon and Polyhedron . . . . . . . . . . . . . . . . . . 9

2-3 Equidecomposability . . . . . . . . . . . . . . . . . . . . 10

2-4 Hinged Dissection . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 3 Dissection of Some Polygons 16

3-1 Combining Two Squares into One . . . . . . . . . . . . . 16

3-2 Rectangle to Square . . . . . . . . . . . . . . . . . . . . 17

3-3 Equilateral Triangle to Square . . . . . . . . . . . . . . . 19

CHAPTER 4 Equidecomposability 24

4-1 Wallace-Bolyai-Gerwien Theorem . . . . . . . . . . . . . 26

4-2 Hinged Dissection between Any Polygons . . . . . . . . 30

4-3 Hilbert’s Third Problem . . . . . . . . . . . . . . . . . . 32

ix



TABLE OF CONTENTS x

CHAPTER 5 Conclusion 40

5-1 Project Review & Future Study . . . . . . . . . . . . . . 41



LIST OF FIGURES

1.1 Tangram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 T-Puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Stomachion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Hinged Dissection from Triangle to Square . . . . . . . . . . . . . 3

1.5 Line
←→
AB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Ray
−→
AB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 Ray
−→
BA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.8 Line Segment AB . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.9 A Tetrahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Dissection from Greek Cross to Square . . . . . . . . . . . . . . . 8

2.2 Dihedral Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 A Wobbly Hinged Dissection . . . . . . . . . . . . . . . . . . . . . 14

3.1 Dissect Two Squares into a Larger Square . . . . . . . . . . . . . . 16

3.2 Superimposing Tessellation of Two Squares and a Large Square . . 17

3.3 Dissection From Rectangle to Square . . . . . . . . . . . . . . . . 18

3.4 Construction of Dissection from Equilateral Triangle to Square . . . 19

3.5 Dissection from Equilateral Triangle to Square . . . . . . . . . . . 20

3.6 Construction of Dissection from Square to Equilateral Triangle . . . 23

4.1 B is equidecomposable to A and C . . . . . . . . . . . . . . . . . 24

4.2 Superimposition Gives Common Dissection . . . . . . . . . . . . . 25

4.3 Gerling’s Dissection from a Triangle to its Reflection (Ciesielska and

Ciesielski, 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Dissection from a Triangle to Rectangle . . . . . . . . . . . . . . . 27

4.5 Halving and Stacking Rectangles . . . . . . . . . . . . . . . . . . 28

4.6 Moving a Hinge (Abbott et al., 2012) . . . . . . . . . . . . . . . . 31

4.7 Illustrating Segments . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.8 A Correct Assignment of Pearls . . . . . . . . . . . . . . . . . . . 33

xi



LIST OF FIGURES xii

4.9 Pearls may Coincide . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.10 Dihedral Angle of Regular Tetrahedron . . . . . . . . . . . . . . . 38



CHAPTER 1

INTRODUCTION

1-1 Background & History

Dissection puzzles such as Tangram and T-puzzle were one of the childhood toys for

most people. The toy usually consists of puzzle pieces and silhouettes printed on a

booklet. The rule is simple: one needs to arrange the puzzle pieces to match the

silhouettes.

Figure 1.1: Tangram Figure 1.2: T-Puzzle

The history of dissection puzzles can be traced back to the times of Ancient Greek.

Archimedes’ Stomachion is a dissection puzzle similar to Tangram. It has 14 puzzle

pieces which can be arranged into many different shapes like the other dissection

puzzles. However, the main problem associated with Stomachion is the numbers of

different ways of arranging the pieces to form a square. This problem had already

been solved. There are 268 unique arrangements in which no two arrangements are

congruent in terms of rotation and reflection.

Compared to solving the dissection puzzles, creating such interesting dissection

puzzles is generally more challenging. This is because one needs to know how to

dissect a given shape into pieces so that it can be reassembled into another shape. A

mathematical study of this problem is called geometric dissection.

Other than puzzles, geometric dissection could be related to real-life problems.

1
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Figure 1.3: Stomachion

Gardner (1977) showed an example: a primitive man had a piece of animal skin, but

it was not in desired shape. He had to find a way to cut it into pieces and sew the

pieces into desired shape. This may be the first dissection problem encountered by a

human. A modern version of this example would be seen when a product is designed

to be in a certain shape but the material is manufactured in some other shape. The

processing plant has to process the material in order to make the product. The problem

is to minimize the processing cost, for instance, by optimizing the number of cuts and

minimizing the waste of material.

A typical example of geometric dissection is Dudeney’s solution (1908) of the

Haberdasher’s puzzle. The puzzle demands to dissect an equilateral triangle into four

pieces such that the four pieces can form a square. The same example also illustrated

hinged dissection. Hinged dissection is a special kind of geometric dissection such that

a number of hinge points can be added to connect the pieces so that transformation into

another shape can be done by rotating the pieces around the hinges. Hinged dissection

was popularised by Dudeney; therefore, it was also known as Dudeney dissection.

An article by Abbott et al. (2012) suggested a good possible application of hinged

dissection, that is building transformable nanobots. Non-hinged dissection is not preferred

for this purpose as it might be difficult to control the transform when the parts are not

physically connected.

Other than dealing with shapes on two-dimensional plane, geometric dissection

can also be done for polyhedra in three-dimensional space. Dissection of polyhedra is

sometimes known as polyhedral dissection. The concept of hinged dissection can be

applied in polyhedral dissection. Instead of having points as hinges, hinged dissection
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Figure 1.4: Hinged Dissection from Triangle to Square

of polyhedra uses lines as hinges.

1-2 Problem Statement

The most common type of problems in geometric dissection is to find a way to dissect

a given shape into another shape. We want to find out what are the methods that could

be applied to find the dissection. In terms of geometry, we want to build a procedure

to construct the exact dissection from a starting polygon. For the real life purpose,

we may also be interested with the numerical values of side lengths and angles of the

dissected pieces.

Another interesting problem is to know how some important results are proved and

whether there are different ways of proving the same result.

1-3 Objectives

The first objective of this project is to obtain general understanding in geometric

dissection. A clear definition of geometric dissection for both two-dimensional and

three-dimensional space has to be understood. The definition should include conditions

and limitations for dissections and movement of the pieces.

Another objective is to study and research on significant or well-known results

and theorems in geometric dissection. This is mainly done by reading research papers,

journal articles and books. By studying the theorems and proofs, some popular methods

of solving geometric dissection problems can be discovered.

Besides, the project also includes studying of some special geometric dissections.

One of the famous dissections is the hinged dissection. These special dissections
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usually imposed some conditions upon the regular definition of geometric dissection.

The last objective is to discover new dissections or some new findings. As a

challenge, some open problems related to geometric dissection may be studied. Solving

the problem or part of it will be attempted.

1-4 Notation and Terminology

Since this is a project mainly based on geometry, a few geometry terms and notations

will be introduced or clarified in this section.

1-4-1 Line, Ray and Line Segment

A line that passes through points A and B is denoted by
←→
AB. Both ends of a line

extend infinitely.
←→
AB is same as

←→
BA.

Figure 1.5: Line
←→
AB

A ray starting from point A that passes through point B and extends infinitely is

denoted by
−→
AB. Note that

−→
AB is different from

−→
BA. The point that comes first is the

starting endpoint of the ray.

Figure 1.6: Ray
−→
AB

Figure 1.7: Ray
−→
BA
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A line segment AB is a straight line with endpoints A and B. AB is same as BA.

For convenience and tidiness, we would just write AB instead of AB to denote line

segment.

Figure 1.8: Line Segment AB

We cannot measure the length of a line or a ray since they extends infinitely but we

can measure the length of a line segment. For AB, we denote it length by |AB|.

1-4-2 Tetrahedron

A tetrahedron is a polyhedron bounded by 4 triangles as illustrated in Figure 1.9. If all

the 4 triangle are equivalent, we say that it is a regular tetrahedron.

Figure 1.9: A Tetrahedron

In this report, we will use the terminologies stated to prevent confusion since some

authors refer (irregular) tetrahedra as "triangular pyramids" and the regular tetrahedron

as "tetrahedron".
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1-5 Project Planning

This project is split into two phases: Project I and Project II. Each phase would take

one semester to complete. The planning for both phases are shown below.

1-5-1 Project I

Week Plan

6 - 10 Obtain general understanding of geometric dissection.

11 - 12 Prepare interim report and presentation of the report.

1-5-2 Project II

Week Plan

1 - 5 Research and analyse known results and their proofs.

6 - 10 Attempt to solve problems / discover new dissection.

11 - 12 Finish final report and prepare for presentation.



CHAPTER 2

LITERATURE REVIEW

It has been more than a century since geometric dissection is studied extensively by

various famous mathematician. A lot of results regarding geometric dissection have

been published in books, research papers and journal articles. In this chapter, the

resources are studied and some results that have been published are mentioned.

2-1 Dissection Problems

A question like "how to dissect a hexagon to form a square" is called a dissection

problem. The solution to it is called a dissection. Several dissections published in

some books and articles are studied.

A good book to start with is Dissections: Plane and Fancy written by Frederickson

(2003). This book is excellently written such that some important concepts are introduced

and they can be easily understood by beginners in geometric dissection. The book

consists of several chapters where each chapter discusses different topics such as dissections

of regular polygons, symmetrical dissections, dissections of shapes with curve lines

and more. A few chapters near the end of the book are mainly about dissections of

polyhedra in three-dimensional space.

One of the chapters discusses how tessellation can be used to create dissection

easily. It is done first by finding ways to tessellate the given shapes into a plane

or a strip. Then, by superimposing two different tessellations in certain manner, a

dissection pattern could be found. Superimposition of two tessellations means putting

the two tessellations on top of each other so that a combined figure can be observed.

Figure 2.1 shows an example of how dissection from a Greek cross to a square using

tessellation. Tessellation is indeed an elegant way to discover dissections.

The book has also included a lot of interesting dissections discovered by other

authors as well as by himself. The author has included some histories and well-known

results regarding geometric dissection including Wallace-Bolyai-Gerwien Theorem

and Hilbert’s Third Problem in some chapters. Besides, there were a number of puzzles

inserted throughout the book for readers to solve. The solutions of these puzzles are

7
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Figure 2.1: Dissection from Greek Cross to Square

printed in the last chapter.

Another book Mathematical Recreation authored by Kraitchik (1953) discusses

about interesting problems in various areas of mathematics. A chapter in the book

titled "Dissection of Plane Figures" is about dissections of polygons. This chapter

starts with discussion on how to construct dissection of a rectangle into three pieces

to form a square. Of course, this is impossible if the side lengths of the rectangle

differ a lot. When the ratio of length of the longer side to the length of the shorter side

increases, the number of pieces required increases. For the case of three pieces, two

constructions are provided as solution. The first construction is limited to rectangles

which have a longer side that does not exceed the double of the shorter side. Another

construction is better as it only requires the longer side of the rectangle to be not

exceeding four times of the shorter side. This construction will be discussed in details

in Section 3-2 of this report.

The other problems discussed include dissecting a square with area 3 into five

pieces to form two squares with area of 1 and 2 respectively, dissecting a square into

seven pieces to form three congruent squares, and dissecting a regular hexagon into

five pieces to form a square. The solutions and algorithms to construct the dissections

for the problems mentioned are all stated along in the chapter.

The last problem discussed in the topic is to dissect a square into a finite number

of smaller squares such that all the squares are mutually incongruent. Although this

problem is so difficult that it remained unsolved for a long period since the problem

was proposed, Brooks et al. (1940) successfully found a solution to it.
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2-2 Polygon and Polyhedron

In some literature, the terms polygon and polyhedron are used without stating a clear

definition. Krasilnikova (2015) says that there are a lot of different definitions of

polyhedron and some definitions are not compatible with each other. If we take a

look at some formal mathematical definitions of polygon and polyhedron, they could

involve some high-level mathematics which is difficult to understand.

Referring to the book Proofs From THE BOOK by Aigner and Ziegler (2018), we

try to informally define polygons and polyhedra in some simpler English terms. We

know that convex polygons are 2D "shapes" bounded by some straight lines. A convex

polygon can be represented by a system of linear inequalities in R2. Similarly, convex

polyhedra are 3D "shapes" bounded by some planes and we can write systems of linear

inequalities in R3 to represent them. Convex polytope is the term for such convex

"shapes" generalised across dimensions. A convex d-polytope is a convex polytope

in d dimension and we can represent the convex d-polytope using a system of linear

inequalities in Rd. Thus, convex polygons are actually convex 2-polytopes and convex

polyhedra are convex 3-polytopes. Facets of a convex d-polytope are the convex

(d − 1)-polytopes bounding it. Facets of a polygon are edges while faces are facets

for polyhedra. For a polyhedron, the dihedral angle of an edge is the angle between

the two faces intersecting at the edge. A general d-polytope is a union of some non-

intersecting convex d-polytopes which are attached facet-to-facet.

Figure 2.2: Dihedral Angle
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A simplex in d dimension is the "smallest" d-polytope in terms of the number

of facets. For example, the simplex of polygons is triangle whereas the simplex of

polyhedra is tetrahedron. Simplex are said to be the generalisation of triangle into

higher dimensions. According to Károlyi and Lovász (1991), a convex polytope can be

decomposed into a finite number of simplices. Based on this result and how polygons

and polyhedra are defined earlier, we have the following two propositions:

Proposition 1. Any polygon can be dissected into a finite number of triangles.

Proposition 2. Any polyhedron can be dissected into a finite number of tetrahedra.

These two prepositions play an important role in Wallace-Bolyai-Gerwien Theorem

and Hilbert’s Third Problem which are to be discussed later.

2-3 Equidecomposability

Equidecomposability is the term used to describe the possibility of cutting a polygon

into smaller polygons which can be reassembled to form a second polygon. A mathematical

definition of equidecomposability as in Proofs From THE BOOK by Aigner and Ziegler

(2018) is as follows.

Definition 1 (Equidecomposability). Two polygonsA andB are said to be equidecomposable

if A and B can be dissected into a finite number smaller polygons

A = A1 ∪ A2 ∪ · · · ∪ An

B = B1 ∪B2 ∪ · · · ∪Bn

and

Ai is congruent to Bi

for i = 1, 2, ..., n.

The definition also applies in the case of three-dimension by considering A, B,

Ai’s andBi’s in the definition as polyhedra. Based on Propositions 1 and 2, it is always

possible to further dissect the pieces Ai’s and Bi’s to their simplices. This gives the

tweaked definition:
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Definition 2 (Equidecomposability). For d = 2 or d = 3, two d-polytopes A and B

are said to be equidecomposable if A and B can be dissected into a finite number of

simplices (triangles if d = 2 and tetrahedra if d = 3)

A = A1 ∪ A2 ∪ · · · ∪ An

B = B1 ∪B2 ∪ · · · ∪Bn

and

Ai is congruent to Bi

for i = 1, 2, ..., n.

The term equidecomposability are used in a number of books and papers including

’A problem of sallee on equidecomposable convex bodies’ by Gardner (1985) and

’Hilbert’s third problem (a story of threes)’ by Krasilnikova (2015). Scissors congruence

is a term which is equivalent to equidecomposability. This term is used in some papers

as well such as Welsh’s expository paper titled ’Scissors congruence’.

Speaking of equidecomposability, the two major questions concerned are:

1. Are any two given polygons of equal area are equidecomposable?

2. Are any two given polyhedra of equal volume equidecomposable?

The answer to the first question is "yes" which is given by the Wallace-Bolyai-

Gerwien Theorem. In terms of equidecomposability, the theorem states

Theorem 2-3-1 (Wallace-Bolyai-Gerwien Theorem). If two polygons have the same

area, then they are equidecomposable.

Note that the converse of Wallace-Bolyai-Gerwien Theorem is trivially true. Areas

of the dissected pieces always sum up to be the same, and this sum must also equal to

the area of the two polygon. In this case, area is called an invariant for equidecomposability

of polygons.

The history of this theorem can be traced back to early 19th century. According to

Frederickson (2003) and also the article by Ciesielska and Ciesielski (2018), William

Wallace presented the problem in 1807. John Lowry was the first person who gave

a proof 1814. Later, the same result was proved by Farkas Bolyai and Paul Gerwien
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independently in 1832 and 1833 respectively. We will further discuss Wallace-Bolyai-

Gerwien Theorem in Section 4-1

As for the second question about equidecomposability of polyhedra, it is more

generally referred to the Hilbert’s Third Problem. Integrating the information obtained

from various literature, it is found that there are quite some stories about this problem.

According to Aigner and Ziegler (2018), the story began with the letters between Carl

Friedrich Gauss and Christian Ludwig Gerling in 1844. There was already a simple

proof based on geometric dissection that shows that two triangles with same base and

same height have the same area. The idea for this proof can be seen in Lemma 4.4 in

Section 4-1 of this report. However, the fact that two tetrahedra with the same base

area and a same height must have equal volume were proved using calculus. In the

letter to Gerling, Gauss questioned if there is a dissection between two tetrahedra of

same base and same height which can be used as the proof of their equal volume.

In 1900, David Hilbert presented 23 problems which he considered important in

that century that had just begun. The third problem came to our concern. The problem

asks to specify two tetrahedra with same base area and same height which do not have

a common dissection. From how he presented the problem, we can see that Hilbert

is conjecturing that equidecomposability does not hold for some polyhedra despite

having equal volume. It turned out that Hilbert’s conjecture was true. Soon in the same

year, Max Dehn, a student of Hilbert, solved the Hilbert’s Third Problem. Other than

volume, Dehn had discovered the second invariant, which is known as Dehn invariant

now, for the equidecomposability of polyhedra. He showed that if two polyhedra are

equidecomposable, then they have the same Dehn invariants. Then, he proved that

there exists polyhedra with equal volume and different Dehn invariant. Dehn’s solution

is based on abstract algebra as the tensor product of modules are required to define

Dehn invariant. According to Welsh (2016), Sylder successfully proved that equal

volume and equal Dehn invariant are sufficient to guarantee equidecomposability of

two polyhedra in 1965.

Theorem 2-3-2 (Sydler). Two polyhedra are equildecomposable if and only if they

have equal volume and equal Dehn invariant.

Some books commented that Dehn’s proof was difficult to understand. Some

authors had contributed to rewrite Dehn’s proof. A notable simplification of the proof
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was given by Kagan in 1903.

Before Hilbert proposed the problem, Bricard had been working on equidecomposability

of polyhedra and he published a theorem in 1896 which is currently known as "Bricard’s

condition". This theorem can easily show that some polyhedra of equall volume are not

equidecomposable. However, the proof for Bricard’s condition provided by himself

was incorrect. Since then, Bricard’s condition remained unproven for more than a

century. In 2007, Benko published a correct proof for Bricard’s condition. He used

some arguments from Kagan’s work which Aigner and Ziegler called "pearl lemma"

and "cone lemma" to prove Bricard’s condition, which becomes a second solution of

Hilbert’s Third Problem. We will look at the proof of this solution in Section 4-3.

In a recent paper, Ciesielska and Ciesielski (2018) claimed that Hilbert’s Third

Problem had already been solved in 1883, without being known by Hilbert and Dehn.

They found that in 1882, an academy in Kraków, a city of Poland, held a mathematics

contest where one of the questions asked was exactly the same as Hilbert’s Third

Problem. A mathematics teacher named Ludwik Antoni Birkenmajer submitted a

correct solution for the contest. Birkenmajer’s solution was independent from the ones

by Dehn and Bricard. Regrettably, this result was not published globally and it was in

Polish which was a language less known by the mathematics community at that time.

2-4 Hinged Dissection

According to the definition by Abbott et al. (2012), hinged dissection are dissections

where every pieces are connected directly or indirectly by hinges. A hinge connects

two pieces at some vertex from each of the two pieces. For a hinged dissection, when

we try to move the pieces from the original polygon to form another polygon, if this

is impossible to done without some pieces intersecting each other, then it is called a

wobbly hinged dissection. They proved that non-wobbly hinged dissection exists for

any two polygons, which appears to be a result stronger than Wallace-Bolyai-Gerwien

Theorem. A brief discussion of this result will be discussed in Section 4-2.

Akiyama and Nakamura (1998) preferred to call hinged dissection as Dudeney

dissection. In their research paper, the definition of hinged dissection is stricter than

the one defined by Abbott et al.. It requires the dissected pieces to be connected into
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Figure 2.3: A Wobbly Hinged Dissection

a chain, that every piece has exactly two hinges, except for two pieces located at both

ends of the chain which have only one hinge. Furthermore, for every pieces, the edges

which are part of edges of the first polygon should be at the interior of the second

polygon and vice versa. They proved that there exists hinged dissection from

• any quadrilateral to another quadrilateral,

• any quadrilateral to a parallelogram,

• any triangle to a parallelogram,

• any parallelhexagon to a trapezoid,

• any parallelhexagon to a triangle, and

• any trapezoidal pentagon to a trapezoid.

For each of the six results stated, an algorithm to construct the Dudeney dissection

was provided along with the proof. All the results obtained mainly relied on tessellation

of the first polygon. A downside of these algorithms was little or no control over the

output polygon. In some algorithms, there were some steps which a random point

needed to be chosen. This caused the output polygon to have different dimension

in terms of side lengths or angles between the edges even though the algorithm was
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started with the same polygon. Also, the algorithms only produce polygons with

similar diameter as the first polygon. In other words, “thin and long” polygon will

be dissected to form another “thin and long” polygon by the algorithm.



CHAPTER 3

DISSECTION OF SOME POLYGONS

In this section, we will show and discuss a few dissections of some common 2D shapes

such as rectangles and triangles. Some of the dissection will be analysed in details.

3-1 Combining Two Squares into One

Figure 3.1: Dissect Two Squares into a Larger Square

Square is a simple one to begin with. We will first see how to dissect two given

squares to make one larger square. This problem and solution are included in Chapter

2 of Dissections: Plane and Fancy. Let a and b be the side lengths of two squares

with a > b. The construction of this dissection is shown in Figure 3.1. Interestingly,

this dissection can be seen as proof of the Pythagoras theorem. This dissection is due

to Sir George Biddle Airy. Figure 3.2 shows how this dissection can be found using

tessellation.

16
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Figure 3.2: Superimposing Tessellation of Two Squares and a Large Square

3-2 Rectangle to Square

Now we will look into the construction which dissect a rectangle into a square provided

that the longer side of the rectangle is not exceeding four times of the shorter side.

Construction:

1. Construct a suitable rectangle ABCD as in Figure 3.3.

2. Let E be the point on
−−→
CB such that |BA| = |BE|

3. Mark midpoint of EC as F .

4. Draw semicircle with centre F and diameter EC.

5. Let G be the intersection point between
−→
BA and the semicircle EC.

6. Mark M ′ on
−−→
DC such that |BG| = |M ′D|.

7. Construct square JB′M ′D with J on AD.

8. Let AM ′ intersects JB′ and BC at A′ and M respectively.

Now we try to show that this construction is correct. For convenience, let |AB| =

|EB| = x and |BC| = y. Note that the square that we want to construct needs to have

equal area as the rectangle. Therefore, first few steps of the construction are actually
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Figure 3.3: Dissection From Rectangle to Square

aimed to construct a line segment with length
√
xy in order to construct the side length

of the square.

We have

|EC| = x+ y

|FG| = |FE| = |FC| = x+ y

2

|FB| = x+ y

2
− x =

y − x
2

By the Pythagoras theorem, we obtain

|BG| =

√(
x+ y

2

)2

−
(
y − x
2

)2

=
√
xy

which is used in Step 6 to construct the side of the square.

Observe that triangles ADM ′, AJA′, MCM ′, MBA and M ′B′A′ are similar to

each other. Triangles ADM ′ and AJA′ being similar implies that

|JA′|
|JA|

=
|DM ′|
|DA|

Substituting known lengths gives

|JA′|
y −√xy

=

√
xy

y
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which simplifies to

|JA′| = √xy − x = |DM ′| − |DC| = |CM ′|

This result is sufficient to guarantee that triangleAJA′ is congruent to triangleMCM ′.

This further implies that triangles MBA and M ′B′A′ have equal area as rectangle

ABCD and square JB′M ′D must have equal area. Thus, the congruence between

triangles MBA and M ′B′A′ is guaranteed by their equal area and similarity. This

completes the proof for the construction.

3-3 Equilateral Triangle to Square

Next, we will investigate the Haberdasher’s puzzle which asks for a dissection of an

equilateral triangle into four pieces to form a square. This puzzle was first solved by

Dudeney (1908). He published the construction of the dissection in his book "The

Canterbury Puzzles".

Figure 3.4: Construction of Dissection from Equilateral Triangle to Square

Construction:

1. Construct an equilateral triangle ABC as in Figure 3.4.
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2. Let points D and E be the midpoints of AC and BC respectively.

3. Mark F on
−→
AE such that |EF | = |EC|.

4. Mark the midpoint of AF as G.

5. Let H be the point on
−−→
BC such that |GH| = |GF |.

6. Mark I on AB such that |EI| = |EH|.

7. Mark J on IB such that |IJ | = |AD|.

8. Let K and L be on EI such that DL and JK are both perpendicular to IE.

9. The dissection is done by cutting along IE, DL and JK.

This dissection is in fact a non-wobbly hinged dissection. Referring to Figure 3.5,

we can first rotate triangle IEB by 180◦ around point E. Next, rotate quadrilateral

ADLI by 180◦ around point D. Finally, the image of triangle IKJ formed by the

rotation of triangle IEB is rotated by another 180◦ around point J ′ to become I ′MJ ′.

Figure 3.5: Dissection from Equilateral Triangle to Square



Chapter 3. Dissection of Some Polygons 21

Since |AD| = |DC|, when we rotate quadrilateral ADLI around point D to

become DL′I ′C, point A would coincide with point C after the rotation. With similar

reasoning, point B will coincide with point C after rotating quadrilateral JKEB by

180◦ around point E. Furthermore, points I ′, C, and J ′ are collinear as ∠I ′CD =

∠DCE = ∠ECJ ′. Also, |IJ | = |AD| = 0.5|AB| implies that |IJ | = |AI|+ |JB| =

|I ′C| + |CJ ′| = |I ′J ′|. Next, L′I ′M , MJ ′K ′, K ′EL and LDL′ are all straight lines

as the respective pairs of angles at point I ′, J ′, E and D are supplementary. With

∠DL′I ′ = ∠I ′MJ ′ = ∠J ′K ′E = ∠ELD = 90◦, so far L′MK ′L has been proved to

be a rectangle. It can be shown that L′MK ′L is a square.

Assuming that triangle ABC has edges of length 2, we have

|AE| =
√
22 − 12 =

√
3

|AF | =
√
3 + 1

|GH| = |GF | = 1

2

(√
3 + 1

)
|GE| = |GF | − |EF | = 1

2

(
1 +
√
3
)
− 1 =

1

2

(√
3− 1

)
By Pythagoras theorem,

|EI| = |EH| =
√
|GH|2 − |GE|2 =

√√√√(1 +
√
3

2

)2

−

(√
3− 1

2

)2

=

√√
3 = 3

1
4

The area of rectangleL′MK ′L is equal to the area of the triangle which is 0.5(2)(
√
3) =

√
3. Rectangle L′MK ′L can be proved to be a square by showing that one of its side

has length of
√√

3. In particular, this can be done by showing that |ML′| = |EI|.

Observe that |ML′| = |K ′L| and

2|ML′| = |ML′|+ |K ′L|

= |MI ′|+ |I ′L′|+ |K ′E|+ |EL|

= |KI|+ |IL|+ |KE|+ |EL|

= 2|EI|

which gives |ML′| = |EI| as wanted.

From the analysis, we can see that the most crucial and challenging part in this

construction is to construct a line segment of length 3
1
4 .
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Although we know how to construct this dissection starting from the triangle,

constructing the dissection from the other way round, which is to start with a square,

may not be simple. To find such a construction, we start by inspecting the dissection

of square L′MK ′L in Figure 3.5. Given such a square, the objective is to construct

the points I ′, J ′, E, D and C. The "cuts" that need to made are I ′J ′, CD and CE.

Points J ′ and D are midpoints of MK ′ and L′L respectively. Thus, these two points

are relatively simple to construct. When the square has side length 3
1
4 , it is found that

|I ′J ′| = |CD| = |CE| = 1.

Now, the main challenge is to construct the a line segment of length 1 using a line

segment of length 3
1
4 from the starting square. We can apply the technique used in the

construction of line segment of length 3
1
4 from an equilateral triangle of length 2. If

we do the same construction on an equilateral triangle of length 3
1
4 instead, we could

obtain a line segment of length 3
1
4/2 · 3 1

4 =
√
3/2 instead. We have already known

that
√
3 is the height of an equilateral triangle with side length 2, thus

√
3 is the height

of an equilateral triangle with side length 1. Using this idea, we are able to create the

construction.

Construction:

1. Construct a square ABCD.

2. Construct an equilateral triangle DEC as in Figure 3.6.

3. Let F be midpoint of EC.

4. Mark G on
−−→
DF such that |FG| = |FE|.

5. Let H be the midpoint of DG.

6. Mark I on
−−→
CE such that |HI| = |HG|.

7. Mark J on
−−→
AD such that |DJ | = |FI|.

8. Draw a line perpendicular to
←→
AJ at J and letK be the point where the line meets

DE.

9. Mark L and M as the midpoints of DC and AB respectively.

10. Mark N on AD such that |LN | = |DK|.
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Figure 3.6: Construction of Dissection from Square to Equilateral Triangle

11. Mark O on LN such that |MO| = |DK|.

12. Mark P on BC such that |OP | = |DK|. There are two such possible P , choose

the one which is nearer to B.

13. The dissection of the square is given by cutting along LN , MO and OP .

The construction steps 2 to 6 are actually the same as those in the construction from

equilateral triangle to square. We shall assume |CD| = 3
1
4 . Based of our arguments

earlier on, |DJ | = |FI| would be
√
3. It can be easily verified that ∠JDK = 30◦ and

∠DKJ = 60◦. Triangle DJK is a halved equilateral triangle with DJ as height and

DK as an edge. We have successfully constructed a line segment of length 1 which is

DK. By using DK, we can easily construct the "cuts" needed to made on the square.



CHAPTER 4

EQUIDECOMPOSABILITY

This chapter starts with discussion about some properties of equidecomposition. After

that, we will look into the proofs of Wallace-Bolyai-Gerwien Theorem. Finally, we

will study the solution of Hilbert’s Third Problem and its partial proof.

First, let us recall the definition of equidecomposability on page 11. Equidecomposability

is in fact an equivalence relation but this is considered trivial and thus not mentioned

in most books and articles. The reflexive and transitive properties are obviously true,

while the transitivity can be proved easily.

Suppose we have polygons A, B and C such that A is equidecomposable to B and

B is equidecomposable to C. Then, there exists two dissections of polygon B, one

gives the pieces that can be arranged to form polygon A and the other gives the pieces

can be arranged to form polygon C as illustrated in Figure 4.1. By superimposing the

two dissection figures of polygon B, that is, placing one dissection figure of polygon

B on top of another, we observe a new dissection of polygon B as in Figure 4.2. The

pieces produced from this new dissection are able to form polygons A or C when they

are arranged accordingly. Thus, polygons A and C are also equidecomposable.

Figure 4.1: B is equidecomposable to A and C

24
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Figure 4.2: Superimposition Gives Common Dissection

Nevertheless, an issue that could arises from Definition 1 is that a polygon is

congruent to its reflection. In some cases, we do not want to "flip" some of the

pieces dissected from the first polygon to form the second polygon. The same problem

happens for polyhedra and it is more likely to cause some trouble if any results that

follow this definition are to be applied in engineering. This is because we cannot

simply "flip" a polyhedron in the real world to get its reflection.

Aigner and Ziegler (2018) had mentioned that restricting reflection from congruences

of the dissected pieces in Definition 2 would not cause a difference in equidecomposability

of polygons or polyhedra. This result was given by Gerling in 1844 but there is no

further information in the book. A more detailed explanation of Gerling’s result can

be found in Chapter 20 of Frederickson’s Dissections: Plane and Fancy. We have

mentioned that Gauss questioned whether two tetrehedra of same base area and same

height are equidecomposable in his letter to Gerling. As a reply, Gerling was only

able to find the dissection for a special case, which required one tetrahedron to be the

reflection of the other. He found a way to dissect a tetrahedron into 6 pairs of smaller

tetrahedral pieces such that in each pair of tetrehedra, one is the reflection of the other

piece. These pieces then can be reassembled to form the reflection of the original

tetrahedron. By Definition 2, if some tetrahedral pieces Ak and Bk are congruent
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by reflection, they can be further dissected so that all pieces are congruent only by

translation and rotation.

Figure 4.3: Gerling’s Dissection from a Triangle to its Reflection (Ciesielska and

Ciesielski, 2018)

The idea of Gerling’s result can be brought into the second dimension. A triangle

can be dissected into 3 pairs of triangular pieces which can be reassembled to form the

reflection of the first triangle as illustrated in Figure 4.3. Such dissection can be easily

constructed by drawing lines where each line passes the incenter and one vertex and of

the triangle. The incenter of a triangle is the center of inscribed circle of the triangle.

The incenter can be constructed as the point where the three angle bisectors of three

vertices of the triangle intersect.

4-1 Wallace-Bolyai-Gerwien Theorem

Theorem 2-3-1 (Wallace-Bolyai-Gerwien Theorem). If two polygons have the same

area, then they are equidecomposable.

Since equidecomposability is an equivalence relation, each of the following statements

is equivalent to Wallace-Bolyai-Gerwien Theorem.

1. A polygon is equidecomposable to a square.

2. A polygon with area a is equidecomposable to a 1× a rectangle.
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With either statement, we can say that any two polygons of equal area are both

equidecomposable to a third polygon, thus the first two polygons are also equidecomposable.

We shall start by proving the first statement with the aid of the following two lemmas.

Lemma 4-1-1. Every triangle is equidecomposable to a rectangle.

Proof. Consider a triangle ABC with AB as its longest edge. The dissection of the

triangle to rectangle can be constructed as follows:

1. Construct a line segment that passes through C and perpendicularly intersects

AB at D.

2. Construct a perpendicular bisector of segment CD. Let the line intersects CD

at E, CA at F and CB at G.

3. The pieces ABGF , FEC and EGC can be arranged into a rectangle as shown

in Figure 4.4

Figure 4.4: Dissection from a Triangle to Rectangle
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Lemma 4-1-2. Every rectangle is equidecomposable to a square.

Proof. Consider a non-square rectangle with length l and height h. Without loss of

generality, assume that l is greater than h.

In Section 3-2, we had shown a way to dissect a rectangle to form a square provided

that l 6 4h.

For the case of l > 4h, we show that the rectangle is equidecomposable with a

l′ × h′ rectangle with l′ 6 4h′. We can cut the original rectangle into two rectangles

with length l/2 and height h. These two pieces can be stacked to form a new rectangle

with length l/2 and width 2h. This process can be performed repeatedly to reduce the

length and increase the height of the rectangle as illustrated in Figure 4.5.

Figure 4.5: Halving and Stacking Rectangles

Let lk denote the length and hk denote the width of the rectangle obtained after k

rounds of the process. It is easy to see that

lk =

(
1

2

)k

l

and

hk = 2kh

and also
lk
hk

=
1

4k

(
l

h

)
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We claim that hn < ln 6 4hn when n = dlog4(l/h)e − 1.

n =

⌈
log4

(
l

h

)⌉
− 1

implies

log4

(
l

h

)
6 n+ 1 < log4

(
l

h

)
+ 1 = log4

(
4l

h

)
which further implies

l

h
6 4n+1 <

4l

h

As such, we have

1 6 4n+1

(
h

l

)
< 4

Taking the reciprocal
1

4
<

1

4n+1

(
l

h

)
6 1

we have

1 <
1

4n

(
l

h

)
6 4

implying that

1 <
ln
hn

6 4

and we have

hn < ln 6 4hn

Now the rectangle with length l′ = ln and height h′ = hn satisfies what we want.

Theorem 4-1-3. A polygon is equidecomposable to a square of the same area.

Proof. First, dissect the polygon into triangles. By Lemma 4-1-1 the triangles can be

dissected to form rectangles. Next, each small rectangle is dissected to form a square

by Lemma 4-1-2. By using the method mentioned in Section 3-1, we can repeatedly

combine two squares into a larger square until we are left with a single square which

has the same area as the original polygon.

That is the first complete proof for the Wallace-Bolyai-Gerwien Theorem. The

second proof follow the similar arguments as in the paper titled ’Scissors congruence’

by Welsh (2016). The steps are the same as previous proof until the original polygon

is dissected which can form some small rectangles. In the next step, Welsh tried to

prove a lemma stating that any two rectangles of the same area are equidecomposable
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but there was an incorrect statement in his proof. This mistake was found to be caused

by a wrong construction step of the dissection that comes before that statement. The

construction of the 3-pieces dissection is actually very similar to the dissection from a

rectangle to a square shown in Section 3-2. In fact, we can use this result to prove the

lemma easily.

Lemma 4-1-4. Any two rectangles of the same area are equidecomposable.

Proof. By Lemma 4-1-2, both the rectangles are equidecomposable to a same square

which shares the same area as the two rectangles. Therefore, they are equidecomposable.

These results are enough to write the second proof.

Theorem 4-1-5. A polygon with area a is equidecomposable to a 1× a rectangle.

Proof. The polygon can be first dissected into triangles and the triangles are further

dissected to form rectangles by Lemma 4-1-1. Next, by Lemma 4-1-4, each of the

rectangle can be dissected to form a rectangle with height 1. Then, all these rectangles

can be stacked to form a long rectangle with height 1 and base equal to sum of the

bases of the rectangular pieces, which obviously has to be numerically equal to a.

This concludes the second proof of Wallace-Bolyai-Gerwien Theorem. However,

the construction of the dissection along the proofs usually creates a lot of pieces. It is

generally a difficult problem to find a minimal dissection for any two given polygons

into a minimum number of pieces.

Based on the nature of the proofs, we obtain the following result.

Theorem 4-1-6. For a finite set of polygons which all have the same area, there exists

a dissection which the pieces can be arranged to reassemble any polygon from the set.

Some literature refers this stronger result as the Wallace-Bolyai-Gerwien Theorem.

4-2 Hinged Dissection between Any Polygons

Compared to proving Wallace-Bolyai-Gerwien Theorem, finding out whether any two

polygons have a hinged dissection is a more difficult task. This is because the existence
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of hinged dissection does not have a trivial transitive property like equidecomposability.

Even so, (Abbott et al., 2012) had managed to prove the result:

Theorem 4-2-1. For a finite set of polygons which all have the same area, there exists

a hinged dissection in which the pieces connected by hinges can be moved without any

intersection between themselves to reassemble any polygon from the set.

Here we only include the proof outline with brief explanation. The constructive

proof extends from the result in previous section, which is Theorem 4-1-6. The first

step is to add some hinges to the pieces which are from the dissection in Theorem

4-1-6. After adding those hinges, it is not necessary that the pieces with hinges can

reassemble every polygon in the set.

The next step is the most crucial part of the proof. In brief, it is proven that by

further dissecting the current pieces into even smaller pieces which are still connected

by hinges, an original hinge can "change" its position. This idea is illustrated in Figure

4.6.

Figure 4.6: Moving a Hinge (Abbott et al., 2012)
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The method allows the hinges to be "moved" freely and thus a wobbly hinged

dissection that applies for all polygons in the set can be found. To obtain a non-wobbly

hinged dissection, those pieces where intersection occur are further dissected so that

they do not "block the way".

We can observe from Figure 4.6 that there could be a lot of tiny pieces generated.

If the construction is to be built in real world, it could be a challenge for engineers.

4-3 Hilbert’s Third Problem

Answering the Hilbert’s Third Problem, there exists polyhedra of equal volume which

are not equidecomposable. An approach to prove this answer is to use Bricard’s

condition which was correctly proven by Benko. This proof requires the "pearl lemma"

and "cone lemma". The following proofs are reproduced following the arguments in

Proofs from THE BOOK by (Aigner and Ziegler, 2018).

Before that, we need to understand the concept of segment (not to confuse with

line segment which is defined earlier). The concept is easier to be explained in 2D

dissection. A dissection of polygon produces some polygonal pieces. When the pieces

are assembled to form the polygon, every piece has some edges lying at the interior

of the polygon and touching other pieces. Some of these edges are observed to be

subdivided into smaller part by vertices of other pieces. These subdivided part are

called segments. If an edge is not subdivided, then whole edge is considered as a

single segment.

Figure 4.7: Illustrating Segments
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We use the dissection in Figure 4.7 to clearly illustrate the concept of segments.

Edge HJ of piece Y consists of two segments as the edge is subdivided by vertices of

other pieces. Meanwhile, edge GH of piece X has the full edge as a single segment.

The same concept can be extended to dissection of polyhedra. The edges of the

polyhedral pieces can be subdivided into segments by vertices or edges of other pieces.

Lemma 4-3-1 (Pearl Lemma). Let P and Q be two polygons or two polyhedra which

are equidecomposable. They are dissected into pieces; P = P1 ∪ ... ∪ Pk, Q =

Q1 ∪ ... ∪ Qk with Pi congruent to Qi. It is possible to put a positive real number

of pearls on the segments such that for each pair of congruent pieces Pi and Qi, the

number of pearls on their corresponding edges are the same.

Figure 4.8 shows a correct assignment of pearls for that dissection but in this lemma

it is not necessary for the number of pearls assigned to be integers.

Figure 4.8: A Correct Assignment of Pearls

Proof. Suppose e is an edge of an arbitrary piece Pi and e′ is the corresponding edge

of Qi. If e is subdivided into segments sk and e′ is subdivided into segments s′l, we can

write the linear equation ∑
k:sk⊆e

xk −
∑
l:s′l⊆e′

yl = 0
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where xk and yl are the numbers of pearls assigned to the segment sk and s′l respectively.

If we write the linear equation for all edges of every pieces, we have a system of linear

equation

Ax = 0, x > 0

whereA is an integer matrix with entries 1,−1 or 0 and 0 is the zero vector. Obviously,

a possible solution is the length of each segments and this completes the proof for pearl

lemma.

Lemma 4-3-2 (Cone Lemma). Let A be an integer matrix such that Ax = 0 has a

positive real solution. Then it must has a positive integer solution.

Proof. If the system has a positive real solution, then by multiplying the solution with

a suitable scalar, we can obtain a real solution of at least 1. Therefore, the system

Ax = 0, x > 1

where 1 is the vector with all 1’s has a real solution. If we can show that this system has

a rational solution, then we can multiply the solution with the common denominator to

obtain an integer solution which is wanted. Note that we can write the system

Ax = 0, x > 1

as

Ax > 0, −Ax > 0, x > 1

which is the same as  A

−A

 x > 0, x > 1

The matrix

 A

−A

 is nothing but a integer matrix just like A. We have reduced the

problem to proving that

Ax > 0, x > 1

has a rational solution. We shall prove a more general result, that is,

Ax > b, x > 1
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where b is an integer vector, has a rational solution. Suppose A is a m× n matrix. We

prove by induction on n. When n = 1, A becomes a vector and x becomes a scalar.

All the inequalities in the system can be written in the form

x >
bi
ai

where ai and bi are integers. We choose x to be its smallest possible value which

must be a rational number. This is guaranteed by existence of a real solution and the

right-hand side of every inequalities being rational.

For n > 1, we write

A =
(
A′ an

)
where A′ is the m× (n− 1) matrix which is the first n− 1 columns of A and an is the

nth column of A. Also, write

x =

x′

xn


where x′ is the vector extracted from the first n− 1 entries of x and xn be the last entry

of x. The system

Ax > b, x > 1

can now be written as(
A′ an

)x′

xn

 > b, x′ > 1, xn > 1

which is equivalent to

A′x′ > b, x′ > 1, anxn > b, xn > 1

We can see that there are two independent linear system. By inductive hypotheses,

the first subsystem has a rational solution and in the second subsystem, the smallest

possible xn is chosen similar to what was argued in the base case of n = 1. This

completes the proof.

In fact, the rational solution we obtain in this way is lexicographically smallest in

the solution space. Lexicographical ordering orders the vector based on the first entries

in the vectors. If there is a tie, then those tied vectors are ordered based on their second

entries and so on. This ordering is also called the dictionary ordering since the ordering

of words in a dictionary is similar.
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Theorem 4-3-3 (Bricard’s condition). Let P and Q be equidecomposable polyhedra.

Suppose P has m edges with dihedral angles α1, ..., αm and Q has n edges with

dihedral angles β1, ..., βn. There exists positive integers ai, bj and an integer c such

that

a1α1 + · · ·+ amαm = b1β1 + · · ·+ bnβn + cπ

Proof. According to the pearl lemma and the cone lemma, we know that it is possible

to assign a positive integer of pearls at the segments of the dissected pieces for both

P and Q such that the corresponding edge for each pair of congruent pieces have the

same number of pearls.

Consider a polyhedral piece P1 dissected from P , every pearl on P1 lies on one of

the edge of P1. We take the sum of dihedral angle of each pearl and write the sum as

S1. Suppose P is dissected into k pieces, them we can apply the calculation for the

remaining pieces to obtain S2, S3, ..., Sk and let S = S1 + S2 + · · ·+ Sk.

Figure 4.9: Pearls may Coincide

When the pieces are put together to reassemble P , some pearls from different

pieces may coincide if they share the same segment in P . This concept is illustrated in

Figure 4.9 in 2D. For polyhedra, this situation happens when the pearl lies on a face of

P or at the interior of P . The pearl of the formal case contributes exactly π to S while

a pearl of the latter case contributes exactly 2π to S. The remaining pearls that are not

covered by these two cases must be lying on one of the m edges. Therefore, we can

write

S = a1α1 + · · ·+ amαm + cpπ

where a1,...,am are positive integers (there is at least one pearl on each edge) and cp is a
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non-negative integer. Since the pieces can also reassemble Q, similar reasoning gives

S = b1β1 + · · ·+ bnβn + cqπ

where b1,...,bn are positive integers and cp is a non-negative integer. We finally arrive

at the Bricard’s condition

a1α1 + · · ·+ amαm = b1β1 + · · ·+ bnβn + cπ

by taking c = cq − cp.

With Bricard’s condition, now we are able prove that some polyhedra of equal

volume are not equidecomposable. Here we show an example using a square and a

regular tetrahedron. Even if we know that equal volume are necessary for equidecomposability,

we do not really need to care about volume since Bricard’s condition only takes the

dihedral angles into account.

Bricard’s condition tells us that if a square and a regular tetrahedron are equidecomposable,

then

12a
(π
2

)
= 6b(β) + cπ

where β is the dihedral angle that is the same for all edges of a regular tetrahedron, a, b

are positive integers and c is a non-negative integer. Observe that left-hand side is a

rational multiple of π. We are done if we can prove that β is not a rational multiple of

π.

We need to find the value of β. Referring to Figure 4.10, letABCD be a tetrahedron.

E is the center of triangle ABC and ED is to plane ABC. Observe that

|AE| = |BE| = 2|EF |

which implies

|DF | = |AF | = 3|EF |

Therefore,

cos(β) =
|EF |
|DF |

=
1

3

which gives

β = cos−1
(
1

3

)
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Figure 4.10: Dihedral Angle of Regular Tetrahedron

Aigner and Ziegler (2018) has proved in another chapter that for all odd integers n

more than or equal to 3,
1

π
cos−1

(
1√
n

)
is irrational. This result can give what we want by using n = 9. We use the argument

from the proof to show that
1

π
cos−1

(
1

3

)
is irrational.

We claim that

cos(kβ) =
Nk

3k

where Ak is an integer not divisible by 9 for all non-negative integer k. We prove this

claim by induction. For k = 0 and k = 1, we can easily obtain N0 = N1 = 1. For

k > 2, using the identity

cos(A) + cos(B) = 2cos

(
A+B

2

)
cos

(
A−B

2

)
with A = (k + 1)β and B = (k − 1)β, we have

cos[(k + 1)β] = 2cos(kβ)cos(β)− cos[(k − 1)β]

= 2 · Nk

3k
· 1
3
− Nk−1

3k−1

=
2Nk − 9Ak−1

3k+1
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We obtain Nk+1 = 2Nk − 9Nk−1 which is also not divisible by 9 since Ak is not

divisible by 9. The claim is proved.

Assume that

β =
a

b
π

for some positive integers a, b. Then

bβ = aπ

gives

cos(bβ) = cos(aπ) = ±1

which can be written as
Nb

3b
= ±1

or

Nb = ±3b

for some integer Nb not divisible by 9. This forces b = 1 which implies

cos(β) =
±3
3

= ±1

This is a contradiction. Thus β is not a rational multiple of π. This completes the proof

that a square and a tetrahedron are not equidecomposable.



CHAPTER 5

CONCLUSION

The study of geometric dissection starts from investigating how to dissect a polygon

into pieces to other polygons through geometry. In this project, the dissections between

some commonly seen polygons are studied and analysed in details. Some dissections

are trivial. Some examples are the dissection of two squares into one large square

and from a triangle to a rectangle. Meanwhile, some dissection are relatively harder

to discover. The Haberdasher’s problem which asks for a dissection of a equilateral

triangle that form a square is an example.

Hinged dissection or Dudeney dissection is a special kind of dissection which has

an additional requirement. In this dissection, all the pieces are connected by some

hinges and the movement of the pieces are restricted to rotation around the hinges.

If some pieces intersect during the transformation of the pieces from one polygon to

another polygon, this dissection is called a wobbly hinged dissection.

If it is possible to dissect a polygon into finite polygonal pieces and use the pieces to

reassemble another polygon, then these two polygons are said to be equidecomposable

or scissors congruent. This definition applies for polyhedra analogously.

Wallace-Bolyai-Gerwien Theorem states an important result that any two polygons

are equidecomposable if and only if the two polygons have the same area. In other

words, area is the only invariant for dissection of polygons and having equal area is

sufficient and necessary to guarantee equidecomposable of polygons. The constructive

proof of this theorem provided a way to dissect a polygon to reassemble another given

polygon. However, the dissection produces a lot more pieces than required in most

of the cases. In general, finding the minimal dissection between two given polygons

remains as a difficult problem. A recent paper proved a stronger result that hinged

dissection is possible between polygons of equal area. The proof of this finding extends

from the Wallace-Bolyai-Gerwien Theorem.

The generalisation of Wallace-Bolyai-Gerwien Theorem into third dimension, which

would state that equidecomposability of two polyhedra is decided by volume only, is

false. This is generally referred as Hilbert’s Third Problem. Dehn is considered the first

40
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person who solved this problem. He proved that there exists a second invariant called

the Dehn invariant for dissection of polyhedra. Sylder later proved that equal volume

and equal Dehn invariant are sufficient to guarantee equidecomposability between two

polygons. An alternative solution of Hilbert’s Third Problem is based on the Bricard’s

condition. Different from Dehn’s solution which is based on abstract algebra, the

solution by Bricard’s condition requires only elementary mathematics.

5-1 Project Review & Future Study

Geometric dissection is a large branch of mathematics and a lot of mathematicians

had been contributing and lots of findings were published. Due to time constrains, I

am not able to study everything within these months when this project was conducted.

Anyway, the objectives of this project such as understanding geometric dissection of

polygons and polyhedra, and studying important results from literature are achieved.

It is also fun to see and learn the interaction between different fields of mathematics

such as geometry and algebra.

Some future study which can be done includes studying the Dehn’s proof which is

regarded as the classical solution of Hilbert’s Third Problem. In this project, the main

focus is dissection of polygons and polyhedra only. The dissection of shapes with

curves such as circles and sphere are not studied and this topic could be researched.

Another interesting yet difficult topic is dissection in the fourth and higher dimension.

It will probably be challenging to define equidecomposability in higher dimension or to

find out whether the number of invariants for polytope dissection are growing linearly

or exponentially in the higher dimensions.
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