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ABSTRACT 

 

The objective of this project is to modify the spectral gradient method in 

solving the nonlinear systems. The multiple damping spectral gradient method 

with line search has been proposed for making improvements to the slow 

convergence issues. It operates separately on the gradient vector norm and the 

objective function at the same time and can be considered as an alternative for 

solving large-scale optimization problems. The results show that the spectral 

gradient method provides the best performance in solving the optimization 

problems, compared to the steepest descent method and conjugate gradient 

method, under the backtracking line search with Armijo condition (BTA). The 

main difference between these methods is the calculation of direction vector, 

dk. Besides, there is a relationship between solving a series of nonlinear 

equations and finding the optimal solutions to the problems. Most of the 

methods used for solving nonlinear systems are optimization-based methods. 

Therefore, the spectral gradient method with the BTA line search technique 

has been modified in order to solve solving the nonlinear systems. The 

efficiency of the modified spectral gradient method is tested by comparing the 

number of iterations, the number of function call and the computational time, 

with the BFGS method, steepest descent method and conjugate gradient 

method. The step length of these methods is selected by using the modified 

BTA line search technique. Finally, the modified spectral gradient method 

shows a better performance compared to the steepest descent method and the 

conjugate gradient method. The modified method gives more stable results 

compared to the BFGS method because numerous papers from different 

researchers have suggested that the BFGS method is not an appropriate 

method in solving the large-scale problems. Furthermore, the SG method is 

popular due to the fact that less storage is needed for the calculation. The 

modified SG method can be used in solving some nonlinear application 

problems. Thus, the modified spectral gradient method can be considered as an 

alternative method for solving nonlinear systems. The improvements in the 

amount of tested problem, line search strategy and search direction are 

recommended, in order to increase the efficiency of the modified method.   
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

 

Mathematical optimization is a mathematical method to search out the 

solutions of a problem, towards achieving higher performance. It seeks to find 

the optimal solutions under constraints to the objective function. An optimal 

solution is a feasible solution that minimizes or maximizes the objective 

function. In the area of applied math, it focuses on choosing the best element 

in a given set, by using known mathematical techniques, principles, and 

methods. Concerning certain criteria, optimization aims to determine the best 

feasible solution. Furthermore, mathematical optimization involves the 

analysis of the mathematical structure of optimization problems, the study of 

the mathematical principles, the development of methods to solve optimization 

problems, and the application of these approaches on software. 

 

Mathematical optimization is a type of applied mathematics that is 

applicable in numerous areas, from computing to industrial applications. In a 

real-world application, optimization is the mathematical process of finding the 

best decision within a specified set of constraints, such as the highest profit or 

lowest cost for a given task. However, most real-world and practical issues are 

dealing more on minimization problems. 

 

To solve an optimization problem, the goal is to find the maxima or 

minima of a function. It works by consistently selecting input values in an 

allowed set and evaluating the function value. A comparison of various 

selections is allowed, for deciding which could be the “best”. 
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In mathematical optimization, constrained optimization is to 

examine situations involving constraints. To prevent from moving in certain 

directions forever, a constraint is a restriction on a variable's value. Usually, 

constrained optimization problems required mathematical programming. 

Finding points that meet all the constraints is always a challenging problem for 

constrained optimization. One of the solutions is to use an unconstrained 

optimization approach. 

 

In contrast, the meaning of unconstrained optimization is the objective 

functions either have no boundaries, or the boundaries are soft. There is no 

limitations on the values of the parameters. Efficient unconstrained 

optimization algorithms use derivatives and partial derivatives to seek out the 

local optima. Techniques for unconstrained minimization are now becoming 

popular in recent years. The methods are useful for solving linear and 

nonlinear functions. 

 

Solving nonlinear equation systems has always been a complex issue 

whereby a variety of different methods were carried out. While solving linear 

equations, or a particular nonlinear equation, the solutions have a well-

developed concept of mathematics and computation. Nonlinear systems are 

resulting in a graph that is not a straight line. Alternatively, the graphs might 

be cubic functions, parabolas or radical functions. If the system of nonlinear 

equations does not show good linear or polynomial characteristics, the 

scenario becomes more challenging. Nonlinear equation systems exist in 

different practice areas, such as chemistry, engineering, and medicines. The 

systems also occur in other geometric computations including minimum 

distance, intersections, and in ordinary or partial differential equations, when 

solving preliminary or boundary function problems.  
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1.2 Importance of the Study 

 

Many real-life applications involved the solving of the nonlinear systems. 

Abu-Arqub, Abo-Hammour and Momani (2014) have published a paper on the 

application of continuous genetic algorithms (CGA) for nonlinear systems of 

second-order boundary problems. Based on the genetic algorithm approach, a 

computational algorithm is launched to deal with problems of second-order 

boundary value (BVP) in a class of nonlinear systems. They used the CGA to 

solve the second-order BVP nonlinear system. The model is developed as an 

optimization problem in this approach. Besides, CGA has been defined as an 

effective way of solving optimization problems as it has been successfully 

applied in different areas. For example, to solve the fuzzy differential 

equations and optimal control problems. Furthermore, it is also applied in the 

motion planning of robot manipulators, which is extremely nonlinear. 

 

Most of the actual physical systems are essentially nonlinear, therefore, 

for mathematicians, engineers, and physicists, nonlinear systems are very 

common (Krstic, 1995). Nonlinear equations are hard to solve by analytical 

technique and this causes curious phenomena like chaos. It can show an 

unpredictable behaviour, even if it is a simple dynamic nonlinear system. 

Chaos seeks its uses in a variety of fields, such as in biological systems, power 

converters and chemical reactors (Strogatz, 2014). 

 

Nonlinear systems are typically found in natural phenomena with 

dynamic and sometimes unpredictable behaviours. Throughout various areas 

of daily life, nonlinear systems present, for instance, medicine, health science, 

engineering and manufacturing processes. Owing to the variety of nonlinear 

systems, it is challenging to provide general modelling methods. Nonlinear 

systems seem to be subjected to uncertainty (Ornelas-Tellez, Rico-Melgoza, 

Villafuerte, Zavala-Mendoza, 2019). 
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1.3 Problem Statement 

 

In this project, we propose to develop a modified spectral gradient method for 

solving nonlinear system. The efficiency of the proposed method will be tested 

using some tested problems provided in the paper by Fang (2017). The general 

form of nonlinear equations is given as follows:  

 

 𝐹(𝑥) = 0, 𝑥 ∈ 𝑅௡ (1.1) 

 

For solving the nonlinear equation (1.1), there exist many iterative 

methods, such as Newton’s method and quasi-Newton method. For Newton’s 

method, the procedure is quite simple and straightforward. Besides that, its 

convergence is rapid for solving many problems. Therefore, Newton’s method 

is commonly used for solving nonlinear equations. However, there are some 

disadvantages in Newton’s method. The efforts needed to determine the 

solution might be excessive, due to the difficulty of direct evaluating the 

Jacobian matrix.  

 

1.4 Aim and Objectives 

 

The objective of this project is to modify the spectral gradient method in 

solving the nonlinear system of equations. Currently, the spectral gradient 

method is used in solving the optimization problems. Therefore, modification 

of this method is required, so that we can use the modified method to solve the 

nonlinear system of equations. 

 

The second objective of this project is to develop Python code for the 

method to compare the efficiency of the method with the existing method. The 

graph will be plotted to make a comparison between those methods. 
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1.5 Scope and Limitation of the Study 

 

The scope of this study is to determine the approximate solution of the 

nonlinear system. Instead of computing the exact solutions directly, we will 

approximate the solution of the nonlinear system. The study tends to generate 

better approximations in each iteration that may tend toward an exact solution. 

 

The limitation of the study is the solution of the nonlinear system is an 

approximation and not the exact solution. Owing to the difficulty to determine 

the exact solution, we are determining the approximate solutions nonlinear 

systems such that the solutions are close to the exact solutions. The 

approximation is obtained through a series of iteration by setting the initial 

guess. The problems may fail to converge if the initial guess is not a good 

guess and may cause lots of iterations. The BTA algorithm is to ensure the 

function value decrease for next iteration, but not contributed to the 

convergence. 

 

1.6 Contribution of the Study 

 

In recent years, the role of numerical methods in solving engineering problems 

has significantly increased. Solving a nonlinear system of equations is 

essential to engineering problems. Most application problems found in 

engineering can be simplified to solving nonlinear systems of equations, which 

is also one of the common problems in mathematics. Numerous approaches 

have been developed to handle nonlinear systems. The modified spectral 

gradient method thus provides a good alternative for solving the nonlinear 

problems. 
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1.7 Outline of the Report 

 

In the first chapter, a general introduction to mathematical optimization and 

nonlinear systems will be discussed. Nonlinear systems can be solved in many 

real-life applications and some examples are provided. This project consists of 

two objectives, which includes modifying the spectral gradient method in 

solving the nonlinear equations and develop the python code of the method for 

the comparison of the efficiency of the proposed method. The scope, limitation 

and the contribution of the study are also stated in this chapter. 

 

Chapter 2 is a review of the literature. The literature review has 

involved different types of optimization methods in solving optimization 

problems and nonlinear problems. This chapter also briefly discussed that 

there is a close relationship in solving nonlinear problems and optimization 

problems.    

 

Chapter 3 is the methodology section. This chapter involves the 

derivation of the SG method and the brief explanation of the methods used in 

this project for solving the optimization problems. The algorithms for the BTA 

line search strategy, SG method, SD method, and CG method are also listed in 

this chapter. 

 

In chapter 4, the SG method has been applied to solve the optimization 

tested problems. The SG method is compared with the SD method and the CG 

method, under the same termination conditions and the same line search 

strategy (BTA). There are 19 tested problems used to compare the 

performance among these three methods. The preliminary results are presented 

using the comparison table and the line graph.  

 

In chapter 5, the SG method and BTA line search strategy are 

incorporated and modified to solve the nonlinear systems. The general 

algorithms for the modified SG method, BFGS method, SD method, and CG 

method are listed. There are 31 tested problems used to evaluate the 

performance of these methods. By using the performance profile of Dolan and 
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Moré, the behaviours of the modified SG, BFGS, SD, and CG method have 

been illustrated. Some real-life application problems are solved using the 

proposed method to illustrate the performance of the modified SG method. 

Lastly, chapter 6 is the conclusions and recommendation chapter that conclude 

the entire report and the possible future recommendations.   
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

 

In solving systems of nonlinear equations, there exist some iterative methods. 

Most of the methods used are optimization-based methods. There is a close 

relationship between solving a series of nonlinear equations and finding a local 

minimum. Seeking a solution is equivalent to minimizing the objective 

function based on a set of equations with several unknown variables. Such 

equations satisfied at the current point are considered as constraints at each 

stage, whereas others are considered as objective functions.  

 

To evaluate the next feasible point to proceed, a quadratic function is 

minimized in a strategy, based on optimization approaches at each iteration. It 

stands to reason that many features of the algorithms are identical. For 

example, Newton's method for local minimization would be the same as 

Newton's method for nonlinear equations for a smooth function. Yet, there still 

exist significant differences. 

 

2.2 Literature Review 

 

There exist several optimization methods that can be used to solve nonlinear 

equations. One of these methods is Newton’s method, also known as the 

Newton-Raphson method. The Newton-Raphson method was first published 

by Wallis (1685). Simpson (1740) defined Newton's method as an iterative 

approach used to solve general nonlinear equations using calculus. Simpson 

(1740) also introduced the generalization of two equations systems in the same 

article. He claimed that Newton's method can also be used to overcome 

optimization problems by setting the slope to zero. 
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Broyden (1965) mentioned that Newton’s method needs several linear 

equations to be solved at each stage, but the procedure is quite straightforward. 

Its convergence is rapid for many problems. However, there exist some 

weaknesses in this method. One of the weakness of Newton's approach is that 

it often fails to converge even without any changes. Even the convergence 

requirements of this approach are well understood, but still this approach 

depends on the initial assumption that the solution is reasonably good and a 

criterion that is not able to be implemented in practice. Thus, this method is 

not considered a successful practical procedure. 

 

Furthermore, Broyden (1965) also noted that there exists another 

disadvantage, which is the difficulty to measure the Jacobian matrix. The 

efforts needed to determine the matrix might be excessive. Even though the 

functions are extremely straightforward to obtain their partial derivatives. In a 

certain situation, the function seems to be too complex, and a numerical 

approximation to the Jacobian matrix must be gained. In order to evaluate the 

Jacobian matrix, it is necessary to determine the vector function of the 

predictor variable. The predictor variable should be at least one set more than 

the original set of nonlinear equations. This might cause the procedures to 

become complicated. 

 

In addition, there is a recommendation for the Jacobian matrix. It is 

either the Jacobian matrix measured once and for all or once every several 

iterations. This method is easier and faster, rather than the computation of the 

entire Jacobian as necessarily needed throughout every iteration. 

 

Moreover, the partial derivatives have to be determined and the linear 

model has to be resolved for each iteration. This will cause the execution of 

Newton’s method expensive. This experience has encouraged the development 

of quasi-Newton approaches. Mario Martıńez (2000) has mentioned that the 

quasi-Newton method is a stationary Newton method, and also a discrete 

Newton method.  For the discrete Newton method, if the Jacobian matrix is 

large, it is not comparable with the inexpensive linear algebra models. Yet 

discrete Newton algorithms are successful in many large sparse issues. In such 
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situations, the limited difference method allows us to use a small number of 

functional calculations to measure the estimated Jacobian. The matrix form is 

not expensive to be factorized. 

 

Quasi-Newton approaches are used for solving unconstrained 

optimization problems. Some quasi-Newton approaches are popular because 

many linear algebra iterations are avoided. For solving nonlinear systems, 

quasi-Newton techniques are not so common research into numerical analysis 

in the last several years. Mario Martıńez (2000) stated that before 1990, there 

have been many published articles on numerical analysis research of quasi-

Newton method for solving nonlinear systems. Occasionally, after the method 

inclusion into the usual practice of problem solvers in other fields, such as 

engineering, and manufacturing, the study might be out of practice. While the 

users are knowledgeable of these benefits and weaknesses, quasi-Newton 

methods can be used for solving nonlinear large-scale problems. 

 

Additionally, the quasi-Newton method is modified by Fang (2017). 

The purpose of the modification is to make improvements based on the new 

quasi-Newton method. The modified quasi-Newton method can be used for 

solving nonlinear equations. This method is proven that the local superlinear 

convergence properties exist. According to the article published by Fang 

(2017), this method is improved by assuming the information from the last 

three iterates is related. A comparison is made for the modified quasi-Newton 

method with the other three similar Quasi-Newton methods. The initial point 

and stopping criteria are set to be tested on some problems. Finally, Fang 

(2017) proved that the modified method is the best method within these four 

similar methods. 

 

BFGS method is an iterative approach and it is a part of the quasi-

Newton methods. BFGS method can be used for solving unconstrained 

nonlinear optimization problems. With global and superlinear convergence, 

some modified BFGS approaches have been presented. 
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Yuan and Lu (2008) introduced a new backtracking inexact BFGS 

method for solving symmetric nonlinear equations. The modified BFGS 

method has a descent property norm, where under appropriate circumstances, 

the global and superlinear convergence will be guaranteed. Under the BFGS 

method, Yuan and Lu (2008) have compared two search techniques. The 

difference between these two search techniques is the presence of Jacobian 

matrix computation during the selection of the step length. At each iteration, 

one of the techniques will have to evaluate the Jacobian matrix. The evaluation 

might increase the difficulty of computation, especially for large-scale 

problems. Hence, the modified BFGS approach has been proposed by Yuan 

and Lu (2008) with the backtracking line search techniques that avoid the 

computing of the Jacobian matrix. Yuan and Lu (2008) have shown that the 

modified BFGS method with the new backtracking line search is more 

efficient than the technique that required the computation of the Jacobian 

matrix. The proposed method also showed global and superlinear convergence. 

 

The trust-region method is one of the optimization methods that can be 

used to solve the nonlinear equation. From the article that published by Conn, 

Gloud and Toint (2000), trust-region approaches are iterative because it 

generates the solution of problem increasingly with better estimates. In this 

method, we need to develop a model in each iteration. It is used to 

approximate the objective function in a region and a centre point will then be 

defined. This region is known as the trust region. Generally, it represents a 

series of points. Thereafter, the testing point, as well as the value of the 

objective function at the point, should be determined. The comparison is made 

between the achieved and predicted reduction. A decision will be made, 

depending on the sign of the reduction ratio. It is either setting the test point as 

the next guess point or reducing the trust region. 

 

The trust-region method has evolved over 50 years. It has been 

embedded well into the area of predicting nonlinear parameters. Levenberg 

(1944) has published the first paper in this field.  In the scope of solving 

nonlinear least square problems, he suggested by inserting a multiple of 

identity to the Hessian matrix as a stabilization technique. Throughout this 
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way, Morrison (1960) has evolved further. He proved that the solutions of a 

linear system that includes the model’s Hessian, are supplemented by a 

multiple of the identity matrix. This provides the answer to the corresponding 

sub-problem for suitable options of the damping parameter. The forecasted 

reduction of the model among this parameter is tedious. Both publications 

pointed out the fact that the Hessian can be estimated. It will further give the 

objective function of a quadratic model. 

 

Thereafter, Powell (1970) proposed the trust-region methods for 

ensuring the convergence of an unconstrained optimization process. Besides, 

Powell also considered using Broyden quasi-Newton update, to solve 

nonlinear equations. However, Dennis (1978) is the one who initially 

mentioned the words “trust-region”. Apart from this, such a method is also 

applicable in many areas, such as applied mathematics, physics, chemistry, 

computer science, engineering, and medicine, to solve various kinds of 

problems. 

 

On the other hand, the earliest method that is used for minimizing non-

linear functions is the steepest descent method, which was first raised by 

Cauchy (1847). Apart from very well-conditioned problems, the traditional 

steepest descent (SD) approach performs poorly. Raydan and Svaiter (2001) 

noted that the bad behaviour of the steepest descent approach is not related to 

the choice of search direction. The reason for poor behaviour is related to the 

optimal selection of step length by Cauchy. The SD approach has been known 

as extremely poor and inefficient due to the slow convergence speed and 

oscillatory behaviour, despite the small storage capacity and very low 

computational expense per execution. 

 

The convergence of the Cauchy traditional steepest descent method has 

been deeply studied. It has been found that it is related to the Hessian matrix's 

spectral properties. Asmundis, Serafino, Riccio and Toraldo (2012) 

recommended a good way to improve the SD method. The purpose of the 

modification is to force the gradients as the iterations progress into a one-
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dimensional subspace. This may avoid the key reason for the SD method's 

slow convergence, which is the classical zigzag pattern. 

 

The modification of the SD method done by Asmundis, Serafino, 

Riccio and Toraldo (2012) is called Steepest Descent with Alignment (SDA). 

It managed to fit the search direction with the eigendirection concerning the 

smallest eigenvalue. Asmundis, Serafino, Riccio and Toraldo (2012) proved 

that several useful information regarding the current spectrum of the Hessian 

matrix is generated monotonically by the sequence of step lengths in the SD 

approach. The computational findings indicated that by reducing the value of 

epsilon, the SDA algorithm may be performed efficiently on the problems with 

the highest ill condition. 

 

Other than that, spectral gradient methods for minimization originated 

in the Barzilai–Borwein paper. Barzilai and Borwein (1988) have proposed a 

method, called a two-point step size gradient method. This method is a non-

monotone step length, which is associated with the gradient approach, to 

overcome the Cauchy method's weaknesses. This method is obtained by 

approximation of the secant equation for the steepest descent method. This 

method delivers better efficiency and cheaper calculations than the traditional 

steepest descent method. By making a comparison on the traditional steepest 

descent method with the new approach, the new approach provides a 

significant improvement. 

 

Besides, if the objective function of the gradient methods does not have 

a good condition, it will lead to the inefficiency of the method. To reduce the 

function value, the gradient methods have a fixed condition in the selection of 

step length.  This will tend to the slow convergence of a stable complex 

system. Dealing with the problem of inefficiency, Sim, Leong and Chen (2018) 

have modified the spectral gradient method. This method is proposed for 

making improvements to slow convergence issues. It operates separately on 

the gradient vector norm and the objective function at the same time. 

Furthermore, this method is combined with some line search strategy. The line 

search is used for reducing the function value, whereas the gradient vector is 
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damp by an individual adaptive parameter. Under the backtracking and 

nonmonotone line search, the proposed method is developed. The comparison 

is made between the proposed method and some well-known CG-based 

methods since the CG methods have extremely good convergence properties. 

According to the numerical results and discussion, Sim, Leong and Chen 

(2018) proved that the proposed spectral gradient method is an alternative for 

solving large-scale problems.  

 

Hestenes and Stiefel (1952) published the first paper on the conjugate 

gradient (CG) method for solving a linear system of equations. The CG 

method is one of the commonly used methods to solve nonlinear problems of 

large-scale systems. The methodology has a small space requirement as well 

as good properties for global convergence. The CG approach is an iterative 

method. When the number of operations needed for the solution is infinite it 

will have speedy convergence. Each step of this approach provides 

information on the solution and it gives a better approximation than the 

preceding. It begins with a very simple technique at any stage, by taking the 

last approximation achieved as the initial approximation. 

 

Hestenes and Stiefel (1952) have modified this method. The weakness 

would be the vector for error which is larger in each step than those in the 

original method. The process of the modified method is also complicated. 

However, in the modified approach, the approximations are better than those 

in the original method. 

 

Besides, the conjugate gradient approach has been extended by 

Fletcher and Reeves (1964) to solve problems of general unconstrained 

optimization. Currently, conjugate gradient methods are often used as an 

iterative approach for solving unconstrained large-scale optimization issues, as 

the matrix memory is not needed. Furthermore, the general form of the three-

term conjugate gradient method has been introduced by Narushima, Yabe and 

Ford (2008). The method usually produces an appropriate direction of descent. 

Also, depending on the Quasi-Newton multi-step approach, they implemented 

a new three-term conjugate gradient approach. Narushima, Yabe and Ford 
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(2008) have showed the good performance and high effectiveness of their 

method. 

 

2.3 Summary 

 

In recent years, there is a significant increase in the strength and application of 

optimization techniques. The problems containing millions of unknowns and 

constraints can be solved by recent methods for specialized issues such as 

linear programming and unconstrained optimization. 

 

Due to the advantages and disadvantages of different classical 

optimization methods, many modifications have been made based on different 

methods. For instance, some of the researchers added useful techniques to 

continuously improve and thus propose a better method. The purpose is to 

maintain the strength of certain methods and overcome the weakness of the 

methods. Modification on those methods aims to improve the overall 

performance, such as efficiency and computational time, the complexity of 

computation and the rate of convergence. Additionally, more accurate 

approximation can be obtained by using the modified methods. In a nutshell, 

various kinds of optimization methods are proposed to solve the nonlinear 

system. In this project, the modified spectral gradient method will be proposed 

in for solving the nonlinear problems. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

 

In this project, we first make a comparison between the SD method, the 

CG method, and the SG method. The comparison is made based on their 

computational time, the number of function calls required, the number of 

iteration and the norm of the gradient function. The main difference between 

these three methods is the different in the calculation of direction vector, 𝑑௞. 

 

In the development of optimization theory, the SD method has 

performed a significant role. SD method was first raised by Cauchy (1847). It 

is a classical method used for solving optimization problems. SD method is a 

well-known method and the simplest method. It has a slow performance in 

most real-world problems. Due to its slow convergence rate, the method is not 

often used in practice. The slow convergence rate may lead to long 

computational time and high costs. Therefore, some other gradient 

methods have been proposed. 

 

On the other hand, the CG method is a simple and effective 

modification of the SD method. Both the SD method and the CG method are 

the classical method used for solving optimization problems. It has a simple 

update rule as well, and the directions are based on the gradients. The 

procedures hence make a good step towards a consistent solution at each step. 

Commonly, it produces a lower cost in each iteration than the SD method, 

while both begin at the same point.  

 

The spectral gradient method (SG method) was proposed by Sim, 

Leong and Chen (2018). SG method is proposed for making improvements to 

slow convergence issues. It operates separately on the gradient vector norm 

and the objective function at the same time. It is an alternative method for 

solving large-scale problems. SG method performs well compared to the SD 
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method and the CG method. SG method is incorporated with the line search 

strategy, called BTA. The line search is used for reducing the function value, 

whereas the gradient vector is damp by an individual adaptive parameter. 

 

BTA is a line search strategy that used to select the best step length. To 

evaluate the maximum amount to move along a given search direction, a line 

search method BTA can be used. For the movement along the search direction, 

it begins with a large approximation of the step length. Depending on the local 

gradient of the objective function, it will sequentially reduce the step size, 

known as “backtracking”, until a reduction is detected in the objective function. 

 

3.2 SG method 

 

Based on the function 

 

 ∅(𝐵) = 𝑡𝑟(𝐵) − ln (det(𝐵)) (3.1) 

 

We aim to minimize the following problems: 

 

 min 𝑡𝑟(𝐵௞ାଵ) − ln (det(𝐵௞ାଵ)) (3.2) 

 

 𝑠. 𝑡. 𝑠௞
்𝐵௞ାଵ𝑠௞ = 𝑠௞

்𝑦௞ (3.3) 

 

Let 𝐵௞ାଵ = 𝑑𝑖𝑎𝑔(𝐵௞ାଵ
(ଵ)

, … , 𝐵௞ାଵ
(௡)

)  and 𝑠௞ = (𝑠௞
(ଵ)

, … , 𝑠௞
(௡)

), the minimization 

problem (3.2) and (3.3) become 

 

 
min ൭෍ 𝐵௞ାଵ

(௜)

௡

௜ୀଵ

൱ − ln (ෑ 𝐵௞ାଵ
(௜)

௡

௜ୀଵ

) 
 

(3.4) 

 

 
𝑠. 𝑡. (෍(𝑠௞

(௜)
)ଶ𝐵௞ାଵ

(௜)
) − 𝑠௞

்𝑦௞

௡

௜ୀଵ

= 0 
 

(3.5) 
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Next, we apply the Lagrange multiplier to the minimization problem (3.4) and 

(3.5), then we obtain 

 

 
𝐿(𝛼, 𝜌) = ൭෍ 𝐵௞ାଵ

(௜)

௡

௜ୀଵ

൱ − ln ൭ෑ 𝐵௞ାଵ
(௜)

௡

௜ୀଵ

൱

+ 𝜌[(෍(𝑠௞
(௜)

)ଶ𝐵௞ାଵ
(௜)

) − 𝑠௞
்𝑦௞

௡

௜ୀଵ

] 

 

 

 

(3.6) 

 

where 

 

 
𝜌 ≈

s௞
்s௞ − s௞

்y௞

∑ (𝑠௞
(௜)

)ସ௡
௜ୀଵ

 
 

(3.7) 

 

(3.7) is approximated by using Newton-Raphson method and 

 

 𝐵௞ାଵ
(௜) =

ଵ

ଵାఘ(௦ೖ
(೔)  )మ , i = 1, 2, …, n (3.8) 

 

 𝑠௞ = 𝑥௞ାଵ − 𝑥௞ (3.9) 

 

 𝑦௞ = 𝑔௞ାଵ − 𝑔௞ (3.10) 

 

Lastly, the updating formula for 𝐵௞ାଵ is 

 

 

𝐵௞ାଵ = ቐ

diag (B௞ାଵ (ଵ), … , B௞ାଵ
(௡)),  if s௞

்s௞  >  s௞
்y௞

 𝑠௞
்𝑦௞

𝑠௞
்𝑠௞ 

 𝐼, otherwise
 

 

(3.11) 
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3.3 List of Algorithm 

3.3.1 BTA Algorithm 

 

Step 0: Given constants 𝛿 ∈ (0,1) and 𝛾ଵ , 𝛾ଶ with  0 < 𝛾ଵ < 𝛾ଶ < 1. 

Step 1: Set 𝜇 = 1 

Step 2: Test the relation 

 

 𝑓(𝑥௞ + μd௞) ≤ 𝑓(𝑥௞) + 𝛿𝜇𝑔௞
்𝑑௞ (3.12) 

 

Step 3: If relation (3.12) does not satisfy, choose a new μ ∈ [γଵμ, γଶμ] and go 

to Step 2. Else set  μ௞ = μ and 𝑥௞ାଵ = 𝑥௞ + μ௞d௞ .  

 

3.3.2 SG Algorithm 

 

Step 0: Set 𝑘 = 0. Given initial guessing point x0, eps ∈ (0,1) and B0. 

Step 1: Given 𝑔௞ = ∇𝑓(𝑥௞). If ∥ 𝑔௞ ∥≤ 𝑒𝑝𝑠, then stop.  

Step 2: Compute 

 

 𝑥௞ାଵ = 𝑥௞ + 𝜇௞𝑑௞, 𝑓𝑜𝑟 𝑘 ≥ 0 (3.13) 

 

where 

  

 𝑑௞ = −𝐵௞
ିଵ𝑔௞ (3.14) 

  

and µk is obtained through BTA algorithm. 

 

Next, compute 𝐵௞ାଵ that defined by (3.11), where 𝐵௞ାଵ
(௜)  is given by (3.8), 𝜌 is 

given by (3.7), 𝑠௞ is given by (3.9) and 𝑦௞ is given by (3.10). 

 

Step 3:  Set 𝑘 = 𝑘 + 1 and go to Step 1. 
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3.3.3 SD Algorithm 

 

Step 0:  Set k = 0. Given initial guessing point x0 and eps ∈ (0,1). 

Step 1: Given 𝑔௞ = ∇𝑓(𝑥௞). If ∥ 𝑔௞ ∥≤ 𝑒𝑝𝑠, then stop.  

Step 2: Compute 

  

 𝑥௞ାଵ = 𝑥௞ + 𝜇௞𝑑௞, 𝑓𝑜𝑟 𝑘 ≥ 0 (3.13) 

 

where  

 

 𝑑௞ = −𝑔௞ (3.15) 

 

and µk is obtained through BTA algorithm. 

Step 3:  Set 𝑘 = 𝑘 + 1 and go to Step 1. 

 

3.3.4 CG Algorithm 

 

Step 0:  Set k = 0. Given initial guessing point x0 and eps ∈ (0,1). 

Step 1: Given 𝑔௞ = ∇𝑓(𝑥௞). If ∥ 𝑔௞ ∥≤ 𝑒𝑝𝑠, then stop. Else, compute 𝑑଴ =

−𝑔଴ and 𝑥ଵ = 𝑥଴ + 𝜇଴𝑑଴, where µ0 is obtained through BTA algorithm. 

Step 2: Compute  

 

 𝑥௞ାଵ = 𝑥௞ + 𝜇௞𝑑௞, 𝑓𝑜𝑟 𝑘 ≥ 1 (3.16) 

 

where 

 

 𝑑௞ = −𝑔௞ + 𝛽௞ିଵ𝑑௞ିଵ (3.17) 

 

 
𝛽௞ିଵ =

 𝑔௞
்𝑔௞

𝑔௞ିଵ 
்𝑔௞ିଵ 

 
(3.18) 

 

and µk is obtained through BTA algorithm. 

Step 3:  Set 𝑘 = 𝑘 + 1 and go to Step 1. 
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3.4 Summary 

 

The comparison will be made between the SD method, the CG method, and 

the SG method. The results show that the SG method is an effective method 

for solving optimization problems. It provides good overall performance, with 

a shorter computational time, less function call and a smaller number of 

iterations. This method thus can be used for solving large scale problems. 

Therefore, the SG method will be modified for solving nonlinear systems.  
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION IN OPTIMIZATION  

 

4.1 Introduction 

 

In this project, the comparison is made between the SG method, SD method 

and CG method under the monotone line search strategy (BTA). The step 

lengths 𝜇௞  are generated by the BTA algorithm with the parameters  𝛾ଵ =

𝛾ଶ = 0.5 and 𝛿 = 0.1. The step length 𝜇 = 1 will be used as the initial step 

length and reduce if the certain relation does not satisfy. The minimum value 

for step length will be set as 2-7.  

 

Besides, the initial value of Bk is set to be 𝐵଴ = 𝐼 for the SG method. 

In addition, the termination criterion for SG method, SD method and CG 

method will be ∥ 𝑔௞ ∥ ≤ 10ିସ. Another termination criterion is based on the 

number of iterations. The maximum number of iterations is set to be 104. If the 

number of iterations reached 104, the tested problem considered fail to 

converge. There are 19 tested problems given by Andrei (2008) that used to 

test the efficiency of the SG method, SD method and CG method. Furthermore, 

n = 10, 100, 1000, 2000 and 5000 are used as the dimensions for the tested 

problems. The codes are written in Python, by using the software Spyder 3.3.2.  
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4.2 Preliminary Results 

  

The comparison tables of 19 tested problems based on the 3 different methods 

are constructed. Appendix A shows the details of the data in 19 tables. The 

symbol ‘-’ represented the function fails to converge. According to the tables 

in Appendix A, the SG method can be successfully solving the different 

dimensions in most of the tested problems, while some of the large-scale 

problems are not able to be solved by using the SD method and CG method. 

Therefore, the SG method is a good alternative and appropriate method for 

solving large-scale problems. 

 

The graph will be plotted by using the summation of the number of 

iterations, the number of function call and the computational time for 19 tested 

problems respectively. The “-” are replaced by some value in order to plot the 

graph. The value that used to replace the “-” is the multiplication of the 

maximum number in each factor and a constant value 60. 

 

To clearly show the difference in numerical effects between the SD 

method, CG method and SG method, the performance is presented concerning 

the number of iterations (Figure 4.1), the number of function calls (Figure 4.2) 

and the computational time (Figure 4.3) respectively. Due to the large 

difference between the y-value, the natural logarithm scale is used as the scale 

of the y-axis. The tested problems are sorted in ascending order of y-value, 

instead of the order of tested problems. If the graph is plotted according to the 

order of tested problems, the performance of these 3 methods is not able 

shown clearly, since the line in the graph might be overlapping. Therefore, the 

tested problems are sorted according to the ascending order of y-value, to 

make the graph clearer and comparison can be made between these three 

methods.  
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Figure 4.1: Number of Iteration for SD, CG and SG method. 

 

 

Figure 4.2: Number of Function Call for SD, CG and SG method. 
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Figure 4.3: Computational Time for SD, CG and SG method. 

 

Figure 4.1 illustrates the total number of iterations for 19 tested 

problems in these 3 methods. It is clearly to see that the SG method performs 

better than the other two methods for most tested problems with the smallest 

number of iterations. Comparing with the SG method, both of the CG and SD 

methods required a much greater number of iterations for solving the tested 

problems. Based on Figure 4.1, we can conclude that the SG method gives the 

best performance in the least number of iterations required to solve the tested 

problems. However, CG and SD method show weaker performance and both 

of them required almost the same number of iterations. 

 

Figure 4.2 shows that the SG method required lesser number of 

functions calls for solving the tested problems, compare to the other two 

methods. Clearly, the SG method exhibits the best performance in terms of the 

number of function calls since it can solve most of the tested problems with 

the smallest number of function calls. 

 

Figure 4.3 demonstrates that the SG method can solve about 50% of 

the tested problems with the shortest computational time. For the SD method 

and the CG method, both of them solve approximately 25% of the test 

problems with the shortest computational time. 
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Even though Figure 4.3 shows that the computational time of the SG 

method is not so significant, but the average performance of the SG method is 

still computable. Based on the number of iterations and the number of function 

call required for the SG method, it uses much lesser number of iterations and 

function calls than the CG method and SD method. It implies that the SG 

method possesses the best overall performance among these three methods. 

 

4.3 Summary 

 

In the real industry application, it is important in reducing the cost, since it 

helps to increase the profit or return of an industry. If more function calls are 

required, a higher cost budget and longer computational time will be required. 

Instead of using an approach requires longer computational time and more 

function calls, the procedures should be improved applying an alternative with 

shorter time and lower cost to solve the problems. Therefore, we can conclude 

that the SG method performs the highest efficiency and due to this reason, we 

propose to modify this method for solving nonlinear systems. 
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CHAPTER 5 

 

5 RESULTS AND DISCUSSION IN NONLINEAR SYSTEM 

 

5.1 Introduction 

 

In chapter 4, we have shown that SG method is an efficient method for solving 

optimization problems. The comparison is made between SG, SD, and CG 

method, in terms of the number of iterations, the number of function call, and 

the computational time. The step length of these methods is selected by using 

the BTA line search strategy. For solving optimization problems, the testing 

condition used in the BTA line search has stated in (3.12). 

 

Yuan and Lu (2008) have proposed the BFGS combined with a new 

backtracking line search approach. This method can be used for solving 

symmetric nonlinear systems. Yuan and Lu (2008) proved that the BFGS 

method holds global and superlinear convergence. The BFGS method has the 

property of descending the search direction for the norm function. The BFGS 

method shows an efficient performance and the new backtracking line search 

approach used in the BFGS method has stated in (5.1). Without evaluating the 

Jacobian matrix, the difficulty and complexity of the computations have 

reduced. 

 

 ∥ 𝐹(𝑥௞ + 𝜇௞𝑑௞) ∥ଶ ≤ ∥ 𝐹(𝑥௞) ∥ ଶ + 𝛿𝛼௞
ଶ𝐹௞

்𝑑௞ (5.1) 

 

The SG method has been modified for solving the nonlinear system. 

The BTA line search technique is modified to have the inequality in (5.1). The 

performance of the modified SG method has been computed by comparing the 

number of iterations, the number of function call, and the computational time, 

with the BFGS method, SD method, and CG method.  
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5.2 General Algorithm for Modified SG, BFGS, SD and CG Method. 

 

Step 0: Set 𝑘 = 0. Given initial guessing point x0, eps ∈ (0,1) and B0. 

Step 1: If ∥ 𝐹௞ ∥ = 0, then stop.   

Step 2: Compute 

 

 𝑥௞ାଵ = 𝑥௞ + 𝜇௞𝑑௞, 𝑓𝑜𝑟 𝑘 ≥ 0 (3.13) 

 

where 𝑑௞ is obtained from Table 5.1 and µk is obtained from Table 5.2. 

 

Step 3: (Modified SG and BFGS) Compute 𝐵௞ାଵ that defined in Table 5.3, 

where 𝑠௞ is given by (3.9) and  

 

 𝑦௞ = 𝐹௞ାଵ − 𝐹௞ (5.2) 

 

Step 4:  Set 𝑘 = 𝑘 + 1 and go to Step 1. 

 

Table 5.1: Computation of dk. 

Modified SG   

 𝑑௞ = −𝐵௞
ିଵ𝐹௞ (5.3) 

 

BFGS 

SD  𝑑௞ = −𝐹௞ (5.4) 
 

CG  𝑑௞ = −𝐹௞ + 𝛽௞ିଵ𝑑௞ିଵ (5.5) 

 

where 

 
𝛽௞ିଵ =

 𝐹௞
்𝐹௞

𝐹௞ିଵ 
்𝐹௞ିଵ 

 

(5.6) 

 

and  𝛽ିଵ𝑑ିଵ = 0. 
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Table 5.2: Computation of µk. 

Modified SG  

µk is obtained through BTA algorithm. SD 

CG 

BFGS If ∥ 𝐹(𝑥௞ + 𝑑௞) ∥ ≤ 𝑒𝑝𝑠 ∥ 𝐹(𝑥௞) ∥ , set µk = 1. Otherwise, 

µk is obtained through BTA algorithm. 

 

Table 5.3: Computation of Bk+1. 

Modified 

SG 

𝐵௞ାଵ  is defined by (3.11), where 𝐵௞ାଵ
(௜)  is given by (3.8), 𝜌  is 

given by (3.7) 

BFGS 

𝐵௞ାଵ = ቐ
𝐵௞ −

𝐵௞𝑠௞𝑠௞
்𝐵௞

𝑠௞
்𝐵௞𝑠௞

+
𝑦௞𝑦௞

்

𝑦௞
்𝑠௞

,  if  s௞
்y௞ > 0

𝐵௞, otherwise

 

 

(5.7) 

 

 

 

 

 

5.3 Results and Discussions 

 

The comparison is made between the modified SG method, BFGS method, SD 

method, and the CG method under the modified BTA line search strategy. In 

the BTA step length selection, the value of parameters used, the initial step 

length, and the lower bound of the step length are the same as the values set 

for solving the optimization problems. 

 

In addition, since the modified SG method and BFGS method required 

the computation of matrix Bk, the matrix 𝐵଴  is initialized to an identity matrix 

with dimension n. There exist two termination criteria for these methods, 

which include the norm of the nonlinear functions and the number of iterations. 

The first termination criterion will be ∥ 𝐹௞ ∥ ≤ 10ିସ  and the maximum 

number of iterations is set to be 104. If the number of iterations exceeds 104, 

the tested problem will be considered as fail to converge.  
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There is a total of 31 tested problems have been used to test the 

performance of the modified SG method, the BFGS method, the SD method, 

and the CG method. Appendix D shows the 12 tested problems given by Fang 

(2017). The gradient functions of the optimization tested problems provided 

by Andrei (2008), as shown in Appendix B are used as the remaining 19 tested 

problems, since there is a similarity between the gradient function of the 

optimization problems and the nonlinear problems. The dimensions of the 

tested problems will be set as n = 10, 100, 200 and 500, if the dimensions are 

not provided in the tested problems.  

 

The results of the tested problems are listed in Appendix C. The tables 

in Appendix C include the results of the number of iterations, the number of 

function call and the computational time (in seconds) for the four methods. 

The symbol ‘-’ represents that the method failed to converge. 

 

By using the performance profile of Dolan and Moré, the behaviour of 

the modified SG, BFGS, SD and CG method can be illustrated. Clearly, Figure 

5.1, 5.2 and 5.3 are the performance profiling graphs for the four methods, 

based on the number of iterations, number of function call and the 

computational time.  

 

 

Figure 5.1: Number of Iteration for Modified SG, BFGS, SD and CG method. 
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Figure 5.2: Number of Function Call for Modified SG, BFGS, SD and CG 

method. 

 

 

Figure 5.3: Computational Time for Modified SG, BFGS, SD and CG method. 
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Figures above show that the BFGS method performs the best among 

these methods in terms of the number of iterations, number of function call 

and computational time. The modified SG method indicates a better 

performance compared to SD and CG methods. On the other hand, the SD and 

CG methods exhibit a similar pattern, which show a poorer performance than 

the modified SG and BFGS method. 

 

For the BFGS method, some of the tested problems require an 

extremely high number of iterations, number of function calls and 

computational time, compared to the modified SG method. Therefore, we 

conclude that the modified SG method gives a more stable result than the 

BFGS method. Although the modified SG method is not showing the best 

performance among these methods, it is still considered as an alternative to 

solve the nonlinear tested problems. 

 

5.4 Non-Linear System in Real Life Application  

 

Systems of nonlinear equations take place in many areas of practical 

importance such as engineering. In order to evaluate the performance of the 

modified SG method, 6 systems of non-linear equations are considered. The 

application problems are provided by Chen, Liu, Zhou and Peng (2017), 

Grosan and Abraham (2008), Buzzi-Ferraris and Manenti (2014) and Turgut 

and Coban (2014). These problems are applied in both the engineering and 

science fields. 

 

5.4.1 Application 1: Kinematic Application 

 

 

⎩
⎪
⎨

⎪
⎧

𝑥௜
ଶ + 𝑥௜ାଵ

ଶ − 1 = 0
𝑎ଵ௜𝑥ଵ𝑥ଷ + 𝑎ଶ௜𝑥ଵ𝑥ସ + 𝑎ଷ௜𝑥ଶ𝑥ଷ + 𝑎ସ௜𝑥ଶ𝑥ସ +
𝑎ହ௜𝑥ଶ𝑥଻ + 𝑎଺௜𝑥ହ𝑥଼ + 𝑎଻௜𝑥଺𝑥଻ + 𝑎଼௜𝑥଺𝑥଼ +

𝑎ଽ௜𝑥ଵ + 𝑎ଵ଴௜𝑥ଶ + 𝑎ଵଵ௜𝑥ଷ + 𝑎ଵଶ௜𝑥ସ + 𝑎ଵଷ௜𝑥ହ +
𝑎ଵସ௜𝑥଺ + 𝑎ଵହ௜𝑥଻ + 𝑎ଵ଺௜𝑥଼ + 𝑎ଵ଻௜ = 0

1 ≤ 𝑖 ≤ 4

 

 

 

(5.8) 
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The initial guessing point used is 

𝑥଴ = [−0.06, 0.78, −0.05, 0.38, −0.56, −0.70, 0.40, 0.09]் 

and the coefficients 𝑎௞௜ , 1 ≤ 𝑘 ≤ 17,1 ≤ 𝑖 ≤ 4, are given in Table 5.4.  

 

Table 5.4 Coefficients aki for the Kinematic Application 

- 0.249150680 + 0.125016350  - 0.635550070,  + 1.48947730 

+ 1.609135400 - 0.686607360 - 0.115719920 + 0.23062341 

+ 0.279423430 - 0.119228120 - 0.666404480 + 1.32810730 

+ 1.434801600 - 0.719940470 + 0.110362110 - 0.25864503 

+ 0.000000000 - 0.432419270 + 0.290702030 + 1.16517200 

+ 0.400263840 + 0.000000000 + 1.258776700 - 0.26908494 

- 0.800527680 + 0.000000000 - 0.629388360 + 0.53816987 

+ 0.000000000 - 0.864838550 + 0.581404060 + 0.58258598 

+ 0.074052388 - 0.037157270 + 0.195946620 - 0.20816985 

- 0.083050031 + 0.035436896 - 1.228034200 + 2.68683200 

- 0.386159610 + 0.085383482 + 0.000000000 - 0.69910317 

- 0.755266030 + 0.000000000 - 0.079034221 + 0.35744413 

+ 0.504201680 - 0.039251967 + 0.026387877 + 1.24991170 

- 1.091628700 + 0.000000000 - 0.057131430 + 1.46773600 

+ 0.000000000 - 0.432419270 - 1.162808100 + 1.16517200 

+ 0.049207290 + 0.000000000 + 1.258776700 + 1.07633970 

+ 0.049207290 + 0.013873010 + 2.162575000 - 0.69686809 

 

5.4.2 Application 2: Interval Arithmetic Benchmark Application 

 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑥ଵ −  0.25428722 − 0.18324757𝑥ସ𝑥ଷ𝑥ଽ = 0
𝑥ଶ − 0.37842197 − 0.16275449𝑥ଵ𝑥ଵ଴𝑥଺ = 0
𝑥ଷ − 0.27162577 − 0.16955071𝑥ଵ𝑥ଶ𝑥ଵ଴ = 0
𝑥ସ − 0.19807914 − 0.15585316𝑥଻𝑥ଵ𝑥଺ = 0
𝑥ହ − 0.44166728 − 0.19950920𝑥଻𝑥଺𝑥ଷ = 0
𝑥଺ − 0.14654113 − 0.18922793𝑥଼𝑥ହ𝑥ଵ଴ = 0
𝑥଻ − 0.42937161 − 0.21180486𝑥ଶ𝑥ହ𝑥଼ = 0
𝑥଼ − 0.07056438 − 0.17081208𝑥ଵ𝑥଻𝑥଺ = 0

𝑥ଽ − 0.34504906 −  0.19612740𝑥ଵ଴𝑥଺𝑥଼ = 0
𝑥ଵ଴ − 0.42651102 − 0.21466544𝑥ସ𝑥଼𝑥ଵ = 0

 

 

 

 

(5.9) 
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The initial guessing point used is 𝑥଴ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]் 

 

5.4.3 Application 3: Chemical Equilibrium 

 

 𝑥ଵ + 𝑥ସ − 3 = 0 

2𝑥ଵ + 𝑥ଶ + 𝑥ସ + 𝑥଻ + 𝑥଼ + 𝑥ଽ + 2𝑥ଵ଴ − 𝑅 = 0 

2𝑥ଶ + 2𝑥ହ + 𝑥଺ + 𝑥଻ − 8 = 0 

2𝑥ଷ + 𝑥ଽ − 4𝑅 = 0 

𝑥ଵ𝑥ହ − 0.193𝑥ଶ𝑥ସ = 0 

𝑥଺ඥ𝑥ଵ − 0.002597ඥ𝑥ଶ𝑥ସ ∙ 𝑇𝑂𝑇 = 0 

𝑥଻ඥ𝑥ସ − 0.003448ඥ𝑥ଵ𝑥ଶ ∙ 𝑇𝑂𝑇 = 0 

𝑥ସ𝑥଼ − 1.799 × 10ିହ𝑥ଵ ∙ 𝑇𝑂𝑇 = 0 

𝑥ସ𝑥ଽ − 2.155 × 10ିସ𝑥ଵඥ𝑥ଷ ∙ 𝑇𝑂𝑇 = 0 

𝑥ଵ଴𝑥ସ
ଶ − 3.846 × 10ିହ𝑥ସ

ଶ ∙ 𝑇𝑂𝑇 = 0 

 

 

 

 

 

(5.10) 

 

where R is 4.056734 and TOT is defined as 𝑇𝑂𝑇 =  ∑ 𝑥௜
ଵ଴
௜ୀଵ .  

The initial guessing point used is 

𝑥଴ =
[0.15884, 0.89358, 8.11340, 2.84116, 3.08473,

0.04039, 0.00300, 0.00002, 0.00013, 0.00058]

்

 

 

5.4.4 Application 4: Neurophysiology application 

 

 𝑓ଵ = 𝑥ଵ
ଶ + 𝑥ଷ

ଶ − 1 = 0 

𝑓ଶ = 𝑥ଶ
ଶ + 𝑥ସ

ଶ − 1 = 0 

𝑓ଷ = 𝑥ହ𝑥ଷ
ଷ +  𝑥଺𝑥ସ

ଷ = 0 

𝑓ସ = 𝑥ହ𝑥ଵ
ଷ +  𝑥଺𝑥ଶ

ଷ = 0 

𝑓ହ = 𝑥ହ𝑥ଵ𝑥ଷ
ଶ + 𝑥଺𝑥ସ

ଶ𝑥ଶ = 0 

𝑓଺ = 𝑥ହ𝑥ଵ
ଶ𝑥ଷ + 𝑥଺𝑥ଶ

ଶ𝑥ସ = 0 

 

 

 

(5.11) 

 

The initial guessing point used is 

𝑥଴ = [0.446, −0.446, 0.895, −0.895, 0.367, 0.367]் 
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5.4.5 Application 5: Combustion application 

 

 𝑓ଵ = 𝑥ଶ + 2𝑥଺ + 𝑥ଽ + 2𝑥ଵ଴ − 10ିହ = 0 

𝑓ଶ = 𝑥ଷ + 𝑥଼ − 3 ∙ 10ିହ = 0 

𝑓ଷ = 𝑥ଵ + 𝑥ଷ + 2𝑥ହ + 2𝑥଼ + 𝑥ଽ + 𝑥ଵ଴ − 5 ∙ 10ିହ = 0 

𝑓ସ = 𝑥ସ + 2𝑥଻ − 10ିହ = 0 

𝑓ହ = 0.5140437 ∙ 10ି଻𝑥ହ − 𝑥ଵ
ଶ = 0 

𝑓଺ = 0.100632 ∙ 10ି଺𝑥଺ − 2𝑥ଶ
ଶ = 0 

𝑓଻ = 0.7816278 ∙ 10ିଵ 𝑥଻ − 𝑥ସ
ଶ = 0 

𝑓 = 0.1496236 ∙ 10ି଺𝑥଼ − 𝑥ଵ𝑥ଷ = 0 

𝑓ଽ = 0.6194411 ∙ 10ି଻𝑥ଽ − 𝑥ଵ𝑥ଶ = 0 

𝑓ଵ଴ = 0.2089296 ∙ 10ିଵସ𝑥ଵ଴ − 𝑥ଵ𝑥ଶ
ଶ = 0 

 

 

 

 

 

(5.12) 

 

The initial guessing point used is 

𝑥଴ =
[−5.9286 ∙ 10ି଼, −6.9428 ∙ 10ିହ, −0.2980, −8.8526 ∙ 10ିହ, −0.4127,

−0.0547, 4.9253 ∙ 10ିହ, 0.2981, 0.9453, −0.4179]்  

 

5.4.6 Application 6: Experimental Test 

 

 𝑓ଵ(𝑥ଵ, 𝑥ଶ) = cos(2𝑥ଵ) − cos(2𝑥ଶ) − 0.4 = 0 

𝑓ଶ(𝑥ଵ, 𝑥ଶ) = 2(𝑥ଶ − 𝑥ଵ) + sin(2𝑥ଶ) − sin(2𝑥ଵ) − 1.2 = 0 

 

(5.13) 

 

The initial guessing point used is 𝑥଴ = [0.15, 0.49]் 

 

 

 

 

 

 

 

 

 



36 

 

5.4.7 Numerical Results for Application Problems 

 

Table 5.5: Numerical Results for Application Problems 

Number of Iteration 

Problem Dim Modified SG BFGS SD CG 

1 8 169 - 152 - 

2 10 4 4 4 3 

3 10 2 2 2 2 

4 6 2 2 2 2 

5 10 2 2 2 2 

6 2 8171 - 881 - 

Number of Function Call 

Problem Dim Modified SG BFGS SD CG 

1 8 3450 - 2644 - 

2 10 18 26 18 14 

3 10 19 41 25 37 

4 6 52 56 52 52 

5 10 10 14 10 13 

6 2 193489 - 21241 - 

Computational Time 

Problem Dim Modified SG BFGS SD CG 

1 8 1.8066 - 1.2886 - 

2 10 0.0100 0.0139 0.0096 0.0070 

3 10 0.0091 0.0107 0.0087 0.0069 

4 6 0.0070 0.0091 0.0082 0.0072 

5 10 0.0060 0.0110 0.0060 0.0060 

6 2 16.3163 - 1.5309 - 

 

 

 

 

 



37 

 

According to Table 5.5, it can be concluded that the modified SG method 

serves as an another option to solve different systems of nonlinear equations in 

real-life applications. Generally, the modified SG method indicates better 

results than the other three existing methods. In the real industry application, 

computational time is an essential component to be considered. Less number 

of iterations and function calls might lead to a shorter computational time. A 

short computational time is allowed in reducing the cost and increasing the 

profit of an industry.   

 

5.5 Summary 

 

The numerical experiments show that the modified SG method can be an 

alternative in solving nonlinear system of equations not only in research tested 

problems but also in real-life applications. Therefore, it is worthwhile to 

modify the SG method. In the next chapter, some possible recommendations 

will be suggested to further improve the performance of the method. 
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CHAPTER 6 

 

6 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 

The SG method with BTA line search strategy has been proposed for solving 

the optimization problems. The performance of the SG method is tested 

against the SD method and CG method, through 19 optimization tested 

problems. SG method has shown the best overall performance among these 

three methods. It required the least number of iterations, number of function 

call and computational time. The SG method can be tested as an alternative for 

solving large scale problems.  

 

The SG method and BTA line search have modified in order to solve 

the nonlinear systems. The efficiency of the modified SG method has been 

tested using 31 nonlinear tested problems and then compared with the BFGS 

method, SD method and CG method. From the graph constructed regarding 

the number of iterations, the number of function call and the computational 

time, BFGS method appears to have the best overall performance, followed by 

the modified SG method.  

 

One of the reasons that the BFGS method gives better performance is  

it uses the full rank matrix for Bk, while the modified SG method uses the 

diagonal matrix in the updating formula of Bk. Numerous papers from 

different researchers have suggested that the BFGS method is not an 

appropriate method in solving the large-scale problems due to the fact that 

high storage is required. Thus, we can conclude that the modified SG method 

seems to be a better alternative when dealing with large-scale problems and in 

real-life applications.  
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The problem encountered in this project is some of the tested problems 

fail to converge to the approximate solution. Besides, the initial guessing 

points for the real-life application problems have not been provided in the 

papers published. Therefore, the values that close to the solution for the 

problems have been chosen as the initial guessing points. The selection of 

initial guessing points might lead to the failure of convergence for the method.  

 

6.2 Recommendations for future work 

 

It is recommended that the amount of the tested problems can be increased 

since there are only 31 nonlinear tested problems used to test the efficiency of 

the modified method. A higher amount of tested problems should be collected 

from other different papers, to generate more reliable, accurate and precise 

results.  

 

Apart from this, in the selection of the step length, the line search 

strategy used in this project is the backtracking line search with Armijo 

condition. Instead of using the Armijo condition, there exist many different 

types of conditions that might produce a better step length selection result. For 

recommendation, the other techniques in selecting an appropriate step length 

are the Goldstein condition and the Wolfe condition, which is the combination 

of Armijo condition and the curvature condition. Armijo condition requires a 

reduction in the step length at the next iteration, while the Wolfe condition 

ensures an adequate reduction on both the step length and the slope. Goldstein 

condition is identical to the Wolfe condition, which guarantees that the 

sufficient reduction of the step length and prohibits the extremely small value 

of step length.  

 

Other than applying the monotone line search strategy, the 

nonmonotone line search strategy has also suggested. Nonmonotone line 

search with some combined conditions provides the possibility to achieve 

better performance. Besides, the search direction is important the convergence 

of the method. Therefore, different search directions can be carried out to 



40 

 

obtain a better approximation. Some modified search directions proposed that 

give an improvement on the numerical performance are suggested, such as the 

combination of some classical search directions.  
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APPENDICES 

 

APPENDIX A: Tables of Optimization Test Problems 

 

Table A-1: Test Problem 1 - Quadratic QF1. 

TP 1 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 35 234 7.558E-
05 

0.060837 27 190 8.339E-
05 

0.048257 20 58 5.8549E-
05 

0.031242 

100 427 5630 9.212E-
05 

3.956597 - - - - 106 408 9.8687E-
05 

0.577956 

1000 - - - - - - - - 325 1392 9.1098E-
05 

34.881029 

2000 - - - - - - - - 348 1546 7.8044E-
05 

115.203001 

5000 - - - - - - - - 724 3134 9.6348E-
05 

2222.221291 
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Table A-2: Test Problem 2 - POWER (CUTE). 

TP 2 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 456 6924 9.386E-

05 

1.405910 185 2860 8.822E-

05 

0.553721 105 406 8.2678E-

05 

0.237365 

100 - - - - - - - - 1118 4856 8.1892E-

05 

6.772840 

1000 - - - - - - - - - - - - 
2000 - - - - - - - - - - - - 
5000 - - - - - - - - - - - - 

 

Table A-3: Test Problem 3 - QUARTC (CUTE). 

TP 3 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 1 6 0 0 1 6 0 0.003990 1 6 0 0.005983 

100 1 6 0 0.015619 1 6 0 0.019811 1 6 0 0.184210 

1000 1 6 0 0.109351 1 6 0 0.107208 1 6 0 0.518560 

2000 1 6 0 0.109351 1 6 0 0.113483 1 6 0 1.672853 

5000 1 6 0 0.343667 1 6 0 0.332819 1 6 0 3.266842 
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Table A-4: Test Problem 4 - Almost Perturbed Quadratic. 

TP 4 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 35 304 7.873E-

05 

0.078071 33 304 8.99E-

05 

0.070204 21 60 4.9286E-

05 

0.047519 

100 425 6454 8.761E-

05 

4.170171 174 2776 8.77E-

05 

1.973649 82 326 8.1317E-

05 

0.437367 

1000 - - - - - - - - 228 992 9.4705E-

05 

26.641538 

2000 - - - - - - - - 379 1698 7.3804E-

05 

135.949297 

5000 - - - - - - - - 826 3592 9.9989E-

05 

2682.422505 
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Table A-5: Test Problem 5 - Diagonal 7. 

TP 5 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 23 98 7.405E-

05 

0.030916 7 34 1.082E-

05 

0.011943 4 12 3.6254E-

06 

0.015589 

100 26 104 7.309E-

05 

0.144861 7 34 3.42E-

05 

0.040890 4 12 1.1464E-

05 

0.062484 

1000 29 116 7.215E-

05 

1.583430 8 40 9.506E-

06 

0.354394 4 12 3.6254E-

05 

1.031004 

2000 30 120 6.921E-

05 

1.579953 8 40 1.344E-

05 

0.383751 4 12 5.127E-

05 

2.151960 

5000 31 124 7.423E-

05 

5.282017 11 46 4.95E-

05 

1.191037 4 12 8.1065E-

05 

20.781065 
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Table A-6: Test Problem 6 - Diagonal 8. 

TP 6 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 25 102 7.605E-

05 

0.031239 8 30 9.169E-

06 

0.012968 5 14 1.4994E-

07 

0.015612 

100 28 114 8.009E-

05 

0.174508 8 30 2.899E-

05 

0.054827 5 14 4.7415E-

07 

0.046865 

1000 31 126 8.435E-

05 

1.858927 8 30 9.169E-

05 

0.369179 5 14 1.4994E-

06 

1.396047 

2000 32 130 8.268E-

05 

2.363073 9 34 9.137E-

05 

0.423841 5 14 2.1205E-

06 

2.988238 

5000 33 134 9.061E-

05 

7.057156 10 36 2.317E-

06 

1.246357 5 14 3.3528E-

06 

26.409306 
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Table A-7: Test Problem 7 - Generalized Quartic. 

TP 7 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 8 46 2.09E-

06 

0.015619 21 128 9.748E-

05 

0.030932 10 28 2.1262E-

06 

0.046862 

100 10 58 5.469E-

09 

0.093727 74 556 8.293E-

05 

0.493348 11 30 4.7947E-

07 

0.267987 

1000 11 58 1.722E-

08 

0.765442 105 828 9.143E-

05 

6.674479 12 32 3.023E-

05 

3.155496 

2000 11 58 1.722E-

08 

0.843554 33 180 8.44E-

05 

2.083458 12 32 4.8997E-

05 

6.869982 

5000 11 58 1.722E-

08 

2.828467 28 158 7.682E-

05 

4.857070 12 32 6.2949E-

05 

60.728033 
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Table A-8: Test Problem 8 – Diagonal 9. 

TP 8 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 - - - - - - - - 107 566 7.5758E-

05 

0.281159 

100 - - - - - - - - 405 2056 8.5691E-

05 

2.600285 

1000 - - - - - - - - 1357 6036 9.2222E-

05 

153.557265 

2000 - - - - - - - - 1354 5766 4.7957E-

05 

480.984253 

5000 - - - - - - - - 1692 7008 8.3679E-

05 

7112.805255 
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Table A-9: Test Problem 9 – BIGGSB1 (CUTE). 

TP 9 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 196 1134 8.91E-

05 

0.328046 164 1552 9.473E-

05 

0.290665 106 290 9.9803E-

05 

0.312426 

100 - - - - 1063 10596 8.517E-

05 

6.238520 5823 17982 9.9546E-

05 

63.462501 

1000 - - - - 5484 61036 9.73E-

05 

315.030891 - - - - 

2000 - - - - - - - - - - - - 

5000 - - - - - - - - - - - - 
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Table A-10: Test Problem 10 – Raydan 2. 

TP 10 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 5 10 6.006E-

08 

0.015610 9 18 2.518E-

05 

0.055851 6 12 4.7819E-

06 

0.031214 

100 5 10 1.899E-

07 

0.031240 9 18 7.964E-

05 

0.046882 6 12 1.5122E-

05 

0.070452 

1000 5 10 6.006E-

07 

0.201459 10 20 5.145E-

05 

0.289199 6 12 4.7819E-

05 

1.484025 

2000 5 10 8.494E-

07 

0.078108 10 20 7.276E-

05 

0.128236 6 12 6.7626E-

05 

2.944845 

5000 5 10 1.343E-

06 

0.219627 11 22 1.87E-

05 

0.288230 7 14 1.6589E-

08 

35.217048 
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Table A-11: Test Problem 11 – Raydan 1. 

TP 11 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 61 122 9.665E-

05 

0.062486 22 44 9.142E-

05 

0.065114 33 66 8.4207E-

05 

0.093727 

100 191 1164 9.891E-

05 

1.286014 100 782 9.875E-

05 

0.485901 131 416 9.5415E-

05 

0.687335 

1000 2977 39122 9.984E-

05 

223.320333 - - - - 361 1528 8.7275E-

05 

41.135214 

2000 5952 90100 9.88E-

05 

 638.218482 - - - - 466 2074 9.5739E-

05 

274.855284 

5000 - - - - - - - - 836 3820 9.7701E-

05 

4516.750336 
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Table A-12: Test Problem 12 – Diagonal 1. 

TP 12 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 27 180 9.651E-

05 

0.050436 42 338 9.184E-

05 

0.046902 19 52 9.6945E-

05 

0.048870 

100 238 3146 8.787E-

05 

3.476604 - - - - 81 288 9.6226E-

05 

0.798925 

1000 - - - - - - - - 259 1082 9.2007E-

05 

49.777635 

2000 - - - - - - - - 335 1386 9.6718E-

05 

184.014975 

5000 - - - - - - - - 788 3072 7.8264E-

05 

3975.992915 
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Table A-13: Test Problem 13 – Diagonal 2. 

TP 13 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 65 130 9.233E-

05 

0.093729 23 46 9.188E-

05 

0.015595 33 66 8.5851E-

05 

0.093728 

100 566 1132 9.924E-

05 

4.329444 76 152 9.485E-

05 

0.238334 312 628 9.9712E-

05 

3.532682 

1000 4643 9286 9.999E-

05 

134.802648 219 438 9.932E-

05 

5.352855 4663 9524 9.9602E-

05 

814.979268 

2000 8672 17344 9.995E-

05 

120.167802 298 596 9.836E-

05 

3.831710 6418 12844 9.9961E-

05 

2738.229675 

5000 - - - - 443 886 9.925E-

05 

14.858461 - - - - 
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Table A-14: Test Problem 14 – Hager. 

TP 14 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 16 64 6.878E-

05 

0.015619 8 32 9.762E-

05 

0.015597 10 24 1.1567E-

05 

0.102723 

100 32 214 9.5E-05 0.140615 37 284 7.844E-

05 

0.178350 20 58 8.3481E-

05 

0.285236 

1000 102 1010 1.598E-

05 

5.415768 97 1158 9.743E-

05 

4.581524 56 190 2.4363E-

05 

14.186338 

2000 163 1758 9.06E-

05 

9.273931 154 2088 9.42E-

05 

10.547082 62 226 8.2183E-

05 

37.687442 

5000 129 1466 8.36E-

05 

20.112497 9780 125280 - 26838.83472 80 304 9.7398E-

05 

447.313912 
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Table A-15: Test Problem 15 – Diagonal 4. 

TP 15 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 463 6104 9.329E-

05 

0.827929 31 352 5.743E-

05 

0.061628 7 38 2.061E-

12 

0.017271 

100 516 6802 8.794E-

05 

3.046180 36 412 5.576E-

05 

0.175193 7 38 6.5176E-

12 

0.111699 

1000 564 7434 9.62E-

05 

26.234876 41 480 9.214E-

05 

1.987349 7 38 2.061E-

11 

1.874465 

2000 581 7658 9.006E-

05 

33.035085 43 494 4.388E-

05 

2.861251 7 38 2.9147E-

11 

4.612329 

5000 600 7908 9.707E-

05 

91.343327 46 546 7.001E-

05 

6.024417 7 38 4.6086E-

11 

43.448089 
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Table A-16: Test Problem 16 – Quadratic QF 2. 

TP 16 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 45 484 8.49E-

05 

0.062477 94 1308 8.11E-

05 

0.141028 32 102 2.6673E-

05 

0.109346 

100 - - - - - - - - 117 456 9.0096E-

06 

1.582681 

1000 - - - - - - - - 347 1414 9.5194E-

05 

69.219293 

2000 - - - - - - - - 485 2078 6.9896E-

05 

286.251893 

5000 - - - - - - - - 730 3128 9.8032E-

05 

3707.624165 

 

 

 

 

 

 



A-16 

 

Table A-17: Test Problem 17 – DQDRTIC (CUTE). 

TP 17 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 - - - - - - - - 158 670 7.9618E-

05 

0.593603 

100 - - - - - - - - 82 328 3.0504E-

07 

1.117453 

1000 - - - - - - - - 92 410 9.8106E-

05 

19.517328 

2000 - - - - - - - - 74 302 7.1429E-

05 

44.279710 

5000 - - - - - - - - 65 284 4.4114E-

06 

334.735215 
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Table A-18: Test Problem 18 – ARWHEAD (CUTE). 

TP 18 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 13 146 6.717E-

05 

0.031243 23 238 2.214E-

05 

0.039565 13 42 1.4344E-

05 

0.046861 

100 - - - - - - - - 43 146 2.6329E-

10 

0.532612 

1000 - - - - - - - - 19 80 8.2288E-

06 

4.257379 

2000 - - - - - - - - 25 106 5.0406E-

05 

16.335002 

5000 - - - - - - - - 49 248 9.9657E-

05 

260.881529 
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Table A-19: Test Problem 19 – Extended Rosenbrock. 

TP 19 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method 

Dimension 
(n) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm 
of g 

Computational 
Time (s) 

No. of 
Iteration 

(k) 

No. of 
Function 

Call 

Norm of 
g 

Computational 
Time (s) 

10 - - - - - - - - 95 540 6.4118E-

05 

0.349580 

100 - - - - - - - - 96 540 7.3136E-

05 

1.453197 

1000 - - - - - - - - 92 508 9.222E-

05 

22.384946 

2000 - - - - - - - - 151 860 5.7023E-

05 

98.066637 

5000 - - - - - - - - 106 590 8.7849E-

05 

553.935570 
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APPENDIX B: List of Optimization Test Problems 

 

TP1: Quadratic QF1 function 

𝑓(𝑥) =
1

2
෍ 𝑖𝑥௜

ଶ − 𝑥௡

௡

௜ୀଵ

, 𝑥଴ = [1,1, … ,1]. 

TP2: POWER function (CUTE) 

𝑓(𝑥) = ෍(𝑖𝑥௜)ଶ

௡

௜ୀଵ

, 𝑥଴ = [1,1, … ,1]. 

TP3: QUARTC function (CUTE) 

𝑓(𝑥) = ෍(𝑥௜ − 1)ସ

௡

௜ୀଵ

, 𝑥଴ = [2,2, … ,2]. 

TP4: Almost Perturbed Quadratic function 

𝑓(𝑥) = ෍ 𝑖𝑥௜
ଶ

௡

௜ୀଵ

+
1

100
(𝑥ଵ + 𝑥௡)ଶ, 𝑥଴ = [0.5,0.5, … ,0.5]. 

TP5: Diagonal 7 function 

𝑓(𝑥) = ෍ 𝑒௫೔

௡

௜ୀଵ

− 2𝑥௜ − 𝑥௜
ଶ, 𝑥଴ = [1,1, … ,1]. 

TP6: Diagonal 8 function 

𝑓(𝑥) = ෍ 𝑥௜𝑒௫೔

௡

௜ୀଵ

− 2𝑥௜ − 𝑥௜
ଶ, 𝑥଴ = [1,1, … ,1]. 

TP7: Generalized Quartic function 

𝑓(𝑥) = ෍ 𝑥௜
ଶ

௡ିଵ

௜ୀଵ

+ (𝑥௜ାଵ + 𝑥௜
ଶ)ଶ, 𝑥଴ = [1,1, … ,1]. 

TP8: Diagonal 9 function 

𝑓(𝑥) = ෍(𝑒௫೔ − 𝑖𝑥௜) + 10000𝑥௡
ଶ

௡ିଵ

௜ୀଵ

, 𝑥଴ = [1,1, … ,1]. 

TP9: BIGGSB1 function (CUTE) 

𝑓(𝑥) = (𝑥ଵ − 1)ଶ + ෍(𝑥௜ାଵ − 𝑥௜)ଶ

௡ିଵ

௜ୀଵ

+ (1 − 𝑥௡)ଶ, 𝑥଴ = [0,0, … ,0]. 

TP10: Raydan 2 function 
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𝑓(𝑥) = ෍ 𝑒௫೔ − 𝑥௜, 𝑥଴ = [1,1, … 1].

௡

௜ୀଵ

 

TP11: Raydan 1 function 

𝑓(𝑥) = ෍
𝑖

10
(𝑒௫೔ − 𝑥௜), 𝑥଴ = [1,1, … 1].

௡

௜ୀଵ

 

TP12: Diagonal 1 function 

𝑓(𝑥) = ෍ 𝑒௫೔ − 𝑖𝑥௜, 𝑥଴ = ൤
1

𝑛
,
1

𝑛
, … ,

1

𝑛
൨ .

௡

௜ୀଵ

 

TP13: Diagonal 2 function 

𝑓(𝑥) = ෍ 𝑒௫೔ −
𝑥௜

𝑖
, 𝑥଴ = ൤

1

1
,
1

2
, … ,

1

𝑛
൨ .

௡

௜ୀଵ

 

TP14: Hager function 

𝑓(𝑥) = ෍ 𝑒௫೔ − √𝑖𝑥௜, 𝑥଴ = [1,1, … 1].

௡

௜ୀଵ

 

TP15: Diagonal 4 function 

𝑓(𝑥) = ෍
1

2
(𝑥ଶ௜ିଵ

ଶ + 𝑐𝑥ଶ௜
ଶ )

௡/ଶ

௜ୀଵ

, 𝑥଴ = [1,1, … ,1], 𝑐 = 100. 

TP16: Quadratic QF2 function 

𝑓(𝑥) =
1

2
෍ 𝑖(𝑥௜

ଶ − 1)ଶ − 𝑥௡

௡

௜ୀଵ

, 𝑥଴ = [0.5, 0.5, … ,0.5]. 

TP17: DQDRTIC function (CUTE) 

𝑓(𝑥) = ෍(𝑥௜
ଶ + 𝑐𝑥௜ାଵ

ଶ + 𝑑𝑥௜ାଶ
ଶ )

௡ିଶ

௜ୀଵ

, 𝑐 = 100, 𝑑 = 100, 𝑥଴ = [3,3, … ,3]. 

TP18: ARWHEAD function (CUTE) 

𝑓(𝑥) = ෍(−4𝑥௜ + 3)

௡ିଵ

௜ୀଵ

+ ෍(𝑥௜
ଶ + 𝑥௡

ଶ)ଶ

௡ିଵ

௜ୀଵ

, 𝑥଴ = [1,1, … ,1]. 

TP19: Extended Rosenbrock function 

𝑓(𝑥) = ෍ 𝑐(𝑥ଶ௜ − 𝑥ଶ௜ିଵ
ଶ )ଶ

೙

మ

௜ୀଵ

+ (1 − 𝑥ଶ௜ିଵ)ଶ, 𝑥଴ = [−1.2,1, … , −1.2,1]. 

𝑐 = 100.
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APPENDIX C: Tables of Nonlinear Test Problems 

 

Table C-1: Number of Iteration. 

Problem Dim Modified SG BFGS SD CG 

TP1 2 37 9 113 28 

TP2 2 185 - - - 

TP3 4 5281 335 - - 

TP4 10 23 506 - - 

100 - - - - 

200 - - - - 

500 - - - - 

TP5 10 120 11 245 - 

100 - 28 - - 

200 - - - - 

500 - - - - 

TP6 10 111 17 3144 38 

100 - 197 - - 

200 - 456 - - 

500 - 1824 - - 

TP7 10 5 5 6 5 

100 8 14 7 18 

200 9 19 7 15 

500 9 16 7 10 

TP8 10 17 20 15 - 

100 16 43 16 - 

200 18 46 17 - 

500 17 51 17 - 

TP9 10 6 7 7 6 

100 6 7 6 8 

200 6 7 5 9 

500 6 7 5 9 

TP10 10 7 7 6 9 
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100 7 7 6 9 

200 7 7 6 9 

500 7 7 6 10 

TP11 10 46 9 124 28 

100 57 12 140 31 

200 57 11 144 31 

500 61 11 149 36 

TP12 10 10 20 13 30 

100 11 42 14 33 

200 11 37 14 34 

500 11 38 14 27 

TP13 10 36 14 39 27 

100 395 92 417 94 

200 777 122 828 135 

500 - 206 - - 

TP14 10 419 18 448 76 

100 - 146 - - 

200 - 317 - - 

500 - - - - 

TP15 10 1 1 1 1 

100 1 1 1 1 

200 1 1 1 1 

500 1 1 1 1 

TP16 10 43 16 38 32 

100 389 109 413 93 

200 752 177 - - 

500 - 559 - - 

TP17 10 6 6 24 21 

100 6 6 27 25 

200 6 6 28 25 

500 6 6 29 27 

TP18 10 7 43 34 6 
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100 7 43 37 7 

200 7 43 38 7 

500 7 43 39 7 

TP19 10 11 21 12 23 

100 12 23 11 27 

200 12 26 11 38 

500 12 25 12 52 

TP20 10 1000 - - - 

100 - - - - 

200 - - - - 

500 - - - - 

TP21 10 108 11 188 35 

100 - 142 - 847 

200 - 256 - - 

500 - - - - 

TP22 10 7 7 6 9 

100 7 8 6 9 

200 7 8 6 10 

500 7 8 6 10 

TP23 10 34 17 62 22 

100 156 94 243 88 

200 304 - 484 546 

500 886 - - - 

TP24 10 30 18 30 42 

100 215 111 229 - 

200 405 174 447 - 

500 - - - - 

TP25 10 34 20 66 23 

100 - 87 - 181 

200 - 152 - 343 

500 - 306 - 773 

TP26 10 12 16 19 24 
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100 40 38 36 26 

200 56 41 63 47 

500 89 69 86 96 

TP27 10 185 4 453 55 

100 231 4 504 60 

200 234 4 520 62 

500 246 4 540 65 

TP28 10 56 18 54 100 

100 466 118 - - 

200 905 - - - 

500 - - - - 

TP29 10 903 13 - - 

100 880 13 - - 

200 909 14 - - 

500 872 14 - - 

TP30 10 14 8 15 18 

100 153 56 - - 

200 210 187 - - 

500 263 216 - - 

TP31 10 - 354 - - 

100 - - - - 

200 - - - - 

500 - - - - 
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Table C-2: Number of Function Call. 

Problem Dim Modified SG BFGS SD CG 

TP1 2 357 95 1996 477 

TP2 2 4087 - - - 

TP3 4 100047 6437 - - 

TP4 10 115 12263 - - 

100 - - - - 

200 - - - - 

500 - - - - 

TP5 10 1307 80 2713 - 

100 - 491 - - 

200 - - - - 

500 - - - - 

TP6 10 746 143 2200 250 

100 - 2816 - - 

200 - 7403 - - 

500 - 39326 - - 

TP7 10 22 32 26 22 

100 37 89 39 86 

200 44 128 45 83 

500 50 113 45 57 

TP8 10 79 176 161 - 

100 78 437 174 - 

200 83 458 181 - 

500 82 497 181 - 

TP9 10 26 41 30 26 

100 26 41 26 34 

200 26 41 22 38 

500 26 41 22 38 

TP10 10 30 44 26 38 

100 30 44 26 38 

200 30 44 26 38 
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500 30 44 26 42 

TP11 10 468 98 2184 477 

100 593 137 2467 537 

200 593 131 2537 537 

500 648 131 2629 638 

TP12 10 51 182 171 350 

100 55 416 184 386 

200 55 368 184 408 

500 55 386 184 305 

TP13 10 230 146 434 272 

100 5608 1853 8669 2061 

200 13130 2924 19664 3368 

500 - 5507 - - 

TP14 10 5998 260 10656 1821 

100 - 3098 - - 

200 - 6476 - - 

500 - - - - 

TP15 10 12 14 12 12 

100 12 14 12 12 

200 12 14 12 12 

500 12 14 12 12 

TP16 10 267 179 538 457 

100 5443 2522 9826 2318 

200 12745 4619 - - 

500 - 14717 - - 

TP17 10 29 38 170 119 

100 29 38 191 141 

200 29 38 198 141 

500 29 38 205 152 

TP18 10 60 1007 324 53 

100 60 1007 345 57 

200 60 1007 352 57 
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500 60 1007 359 57 

TP19 10 58 173 110 229 

100 62 194 103 215 

200 62 221 103 355 

500 62 212 110 543 

TP20 10 15105 - - - 

100 - - - - 

200 - - - - 

500 - - - - 

TP21 10 923 95 1825 331 

100 - 2558 - 16212 

200 - 4751 - - 

500 - - - - 

TP22 10 30 44 26 38 

100 30 47 26 38 

200 30 47 26 42 

500 30 47 26 42 

TP23 10 138 104 250 90 

100 1571 1382 2540 876 

200 4035 - 6804 11774 

500 15396 - - - 

TP24 10 176 155 335 548 

100 2437 2099 4767 - 

200 5513 4100 10622 - 

500 - - - - 

TP25 10 138 122 266 94 

100 - 821 - 2067 

200 - 1784 - 4869 

500 - 4385 - 13648 

TP26 10 53 101 132 167 

100 255 380 401 322 

200 418 476 809 745 
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500 733 896 1243 1253 

TP27 10 2764 41 9416 1095 

100 3389 50 10475 1193 

200 3392 56 10809 1228 

500 3629 59 11222 1294 

TP28 10 346 224 935 2193 

100 6699 2834 - - 

200 15724 - - - 

500 - - - - 

TP29 10 15935 179 - - 

100 15468 176 - - 

200 16067 212 - - 

500 15307 230 - - 

TP30 10 82 89 260 281 

100 1574 638 - - 

200 2657 2579 - - 

500 4288 2888 - - 

TP31 10 - 7958 - - 

100 - - - - 

200 - - - - 

500 - - - - 
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Table C-3: Computational Time. 

Problem Dim Modified SG BFGS SD CG 

TP1 2 0.0377 0.0156 0.1588 0.0327 

TP2 2 0.3477 - - - 

TP3 4 12.8596 0.7998 - - 

TP4 10 0.0659 1.9320 - - 

100 - - - - 

200 - - - - 

500 - - - - 

TP5 10 0.2786 0.0156 0.3791 - 

100 - 0.2031 - - 

200 - - - - 

500 - - - - 

TP6 10 0.2364 0.0409 0.4999 0.0468 

100 - 1.7897 - - 

200 - 12.8433 - - 

500 - 141.8134 - - 

TP7 10 0.0183 0.0252 0.0156 0.0156 

100 1.3747 3.3273 1.2978 2.7794 

200 6.3383 17.6500 5.9025 11.1102 

500 39.5548 90.4540 35.7008 46.3121 

TP8 10 0.0345 0.0469 0.0199 - 

100 0.0937 0.3302 0.0781 - 

200 0.2656 0.7811 0.1480 - 

500 0.6092 2.6087 0.3593 - 

TP9 10 0.0159 0.0160 0.0156 0.0157 

100 0.0469 0.0468 0.0270 0.0299 

200 0.1187 0.1249 0.0312 0.0625 

500 0.2343 0.3280 0.0781 0.1406 

TP10 10 0.0169 0.0190 0.0156 0.0100 

100 0.0468 0.0625 0.0312 0.0469 

200 0.1249 0.1406 0.0459 0.0468 
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500 0.2499 0.3436 0.0938 0.1406 

TP11 10 0.1037 0.0280 0.2500 0.0548 

100 0.588 0.1406 1.6251 0.3280 

200 1.6090 0.3437 2.9293 0.6249 

500 4.0928 0.9060 8.0522 1.9062 

TP12 10 0.0355 0.0941 0.0469 0.1250 

100 0.0986 0.5075 0.1657 0.2968 

200 0.2031 0.6717 0.2022 0.4975 

500 0.4374 2.2963 0.5097 0.9060 

TP13 10 0.3348 0.0496 0.0419 0.0312 

100 2.9450 0.7132 2.5780 0.5201 

200 16.5315 2.6681 9.0869 1.4572 

500 - 13.7111 - - 

TP14 10 1.5635 0.0457 0.8904 0.1406 

100 - 1.3542 - - 

200 - 8.5907 - - 

500 - - - - 

TP15 10 0.0063 0.0065 0 0 

100 0.0187 0.0194 0.0156 0.0130 

200 0.0451 0.0503 0.0249 0.0312 

500 0.1036 0.1114 0.0558 0.0625 

TP16 10 0.1210 0.0400 0.0469 0.0298 

100 2.9416 0.9077 2.7168 0.5624 

200 16.1627 5.7721 - - 

500 - 39.3981 - - 

TP17 10 0.0161 0.0153 0.0312 0.0312 

100 0.0395 0.0436 0.1106 0.109 

200 0.0800 0.0979 0.2031 0.1666 

500 0.2332 0.3102 0.5035 0.4062 

TP18 10 0.0200 0.1439 0.0469 0.0156 

100 0.0710 0.7358 0.2595 0.0469 

200 0.1608 1.9194 0.4766 0.0937 
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500 0.4561 4.9442 1.2028 0.2045 

TP19 10 0.0270 0.0810 0.0210 0.0469 

100 0.1235 0.2830 0.1249 0.2343 

200 0.2702 0.8715 0.1963 0.7141 

500 0.7603 2.2219 0.5230 2.6054 

TP20 10 4.6466 - - - 

100 - - - - 

200 - - - - 

500 - - - - 

TP21 10 0.3965 0.0402 0.3112 0.0469 

100 - 1.8850 - 9.3494 

200 - 9.3099 - - 

500 - - - - 

TP22 10 0.0146 0.0196 0 0.0156 

100 0.0394 0.0471 0.0156 0.0469 

200 0.0762 0.0877 0.0389 0.0625 

500 0.2243 0.3465 0.0625 0.1147 

TP23 10 0.0781 0.0312 0.0540 0.0312 

100 1.3068 0.8830 1.3822 0.4718 

200 6.7494 - 5.5519 8.3839 

500 59.4872 - - - 

TP24 10 0.0468 0.0534 0.0389 0.0469 

100 1.6106 0.9886 1.8360 - 

200 7.5562 4.3202 5.8892 - 

500 - - - - 

TP25 10 0.0625 0.0469 0.0469 0.0230 

100 - 0.4414 - 0.6561 

200 - 2.0771 - 2.2784 

500 - 14.3440 - 12.2185 

TP26 10 0.0378 0.0378 0.0312 0.0312 

100 0.2025 0.2090 0.1250 0.1093 

200 0.6721 0.5710 0.3905 0.3173 
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500 3.1619 3.3452 1.3098 1.4216 

TP27 10 0.4545 0.0156 0.7967 0.0625 

100 1.5540 0.0378 2.7672 0.2968 

200 3.8791 0.0846 4.7032 0.5186 

500 12.5077 0.2124 11.4012 1.2728 

TP28 10 0.1381 0.0534 0.0958 0.2274 

100 5.9972 2.1725 - - 

200 33.7302 - - - 

500 - - - - 

TP29 10 2.5528 0.0469 - - 

100 6.6330 0.1023 - - 

200 16.3265 0.2795 - - 

500 43.3721 0.8184 - - 

TP30 10 0.0313 0.0313 0.0469 0.0519 

100 2.6854 1.0350 - - 

200 10.5229 10.7394 - - 

500 42.5368 31.2650 - - 

TP31 10 - 1.4573 - - 

100 - - - - 

200 - - - - 

500 - - - - 
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APPENDIX D: List of Nonlinear Test Problems 

 

TP1: Freudenstein and Roth function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥))் 

𝑓ଵ(𝑥) = 10(𝑥ଶ − 𝑥ଵ
ଶ) 

𝑓ଶ(𝑥) = 1 − 𝑥ଵ 

𝑥଴ = [6, 3]் 

TP2: Beale function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥))் 

𝑓ଵ(𝑥) = 1.5 − 𝑥ଵ(1 − 𝑥ଶ) 

𝑓ଶ(𝑥) = 2.25 − 𝑥ଵ(1 − 𝑥ଶ
ଶ) 

𝑥଴ = [1, 1]் 

TP3: Wood function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), 𝑓ଷ(𝑥), 𝑓ସ(𝑥))் 

𝑓ଵ(𝑥) = 200𝑥ଵ(𝑥ଵ
ଶ − 𝑥ଶ) + 𝑥ଵ − 1 

𝑓ଶ(𝑥) = 100(𝑥ଶ − 𝑥ଵ
ଶ) + 10(𝑥ଶ + 𝑥ସ − 2) +

1

10
(𝑥ଶ − 𝑥ସ) 

𝑓ଷ(𝑥) = 180𝑥ଷ(𝑥ଷ
ଶ − 𝑥ସ) + 𝑥ଷ − 1 

𝑓ସ(𝑥) = 90(𝑥ସ − 𝑥ଷ
ଶ) + 10(𝑥ଶ + 𝑥ସ − 2) −

1

10
(𝑥ଶ − 𝑥ସ) 

𝑥଴ = [−3, −1, −3, −1]் 

TP4: Variably dimensioned function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))் 

𝑓௜(𝑥) = 𝑥௜ − 1 + 𝑖 ෍ 𝑗൫𝑥௝ − 1൯

௡

௝ୀଵ

+ 2𝑖(෍ 𝑗(𝑥௝ − 1))

௡

௝ୀଵ

ଷ

 

𝑥଴ = [
𝑛 − 1

𝑛
,
𝑛 − 2

𝑛
, … ,

1

𝑛
, 0]் 

TP5: Brown almost-linear function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))் 

𝑓௜(𝑥) = 𝑥௜ + ෍ 𝑥௝

௡

௝ୀଵ

− (𝑛 + 1), 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 − 1, 

𝑓௡(𝑥) = ቌෑ 𝑥௝

௡

௝ୀଵ

ቍ − 1 

𝑥଴ = [
1

2
,
1

2
, … ,

1

2
]் 
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TP6: Discrete boundary function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))் 

𝑓௜(𝑥) = 2𝑥௜ − 𝑥௜ିଵ − 𝑥௜ାଵ + 0.5ℎଶ(𝑥௜ + 𝑡௜ + 1)ଷ, 𝑖 = 1,2, … 𝑛, 

ℎ =
1

𝑛 + 1
, 𝑡௜ = 𝑖ℎ 𝑎𝑛𝑑 𝑥଴ = 𝑥௡ାଵ = 0 

𝑥଴ = [𝑡ଵ(𝑡ଵ − 1), 𝑡ଶ(𝑡ଶ − 1), … , 𝑡௡(𝑡௡ − 𝑛)]் 

TP7: Discrete integral equation function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))் 

𝑓௜(𝑥) = 𝑥௜ + 0.5ℎ[(1 − 𝑡௜) ෍ 𝑡௝(𝑥௜ + 𝑡௜ + 1)ଷ

௜

௝ୀଵ

+ 𝑡௜ ෍ (1 − 𝑡௝)(𝑥௜ + 𝑡௜ + 1)ଷ]

௡

௝ୀ௜ାଵ

, 𝑖 = 1,2, … 𝑛, 

ℎ =
1

𝑛 + 1
, 𝑡௜ = 𝑖ℎ 𝑎𝑛𝑑 𝑥଴ = 𝑥௡ାଵ = 0 

𝑥଴ = [𝑡ଵ(𝑡ଵ − 1), 𝑡ଶ(𝑡ଶ − 1), … , 𝑡௡(𝑡௡ − 𝑛)]் 

TP8: Broyden tridiagonal function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))் 

𝑓௜(𝑥) = (3 − 2𝑥௜)𝑥௜ − 𝑥௜ିଵ − 2𝑥௜ାଵ + 1, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛, 

𝑥଴ = 𝑥௡ାଵ = 0 

𝑥଴ = [−1, −1, … , −1]் 

TP9: Logarithmic function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))் 

𝑓௜(𝑥) = ln(𝑥௜ + 1) −
𝑥௜

𝑛
, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛, 

𝑥଴ = [1,1, … ,1]் 

TP10: Strictly convex function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))் 

𝑓௜(𝑥) = 𝑒௫೔ − 1, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛, 

𝑥଴ = [
1

𝑛
,
2

𝑛
, … ,1]் 

TP11: Extended Freudenstein and Roth function:  𝐹(𝑥) =

൫𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥)൯
்
 

𝑓ଶ௜ିଵ(𝑥) = 𝑥ଶ௜ିଵ + ൫(5 − 𝑥ଶ௜ )𝑥ଶ௜ − 2൯𝑥ଶ௜ − 13, 𝑓𝑜𝑟 𝑖 = 1,2, … ,
𝑛

2
, 

𝑓ଶ௜(𝑥) = 𝑥ଶ௜ିଵ + ൫(1 + 𝑥ଶ௜ )𝑥ଶ௜ − 14൯𝑥ଶ௜ − 29, 𝑓𝑜𝑟 𝑖 = 1,2, … ,
𝑛

2
 

𝑥଴ = [6,3,6,3, … ,6,3]் 
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TP12: The discretized two-point boundary value function 

𝐹(𝑥) = 𝐴𝑥 +
1

(𝑛 + 1)ଶ
𝐺(𝑥), 

𝑤ℎ𝑒𝑟𝑒 𝐴 𝑖𝑠 𝑡ℎ𝑒 𝑛 × 𝑛 𝑡𝑟𝑖𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 

8 −1
−1 8 −1

⋱ ⋱ ⋱
⋱ ⋱ −1

−1 8

 

𝑎𝑛𝑑 𝐺(𝑥) = (𝑠𝑖𝑛𝑥ଵ − 1, 𝑠𝑖𝑛𝑥ଶ − 1, … , 𝑠𝑖𝑛𝑥௡ − 1)் 

𝑥଴ = [50,0,50,0, … ,50,0]் 

 


