

A MODIFIED SPECTRAL GRADIENT METHOD FOR SOLVING

NON LINEAR SYSTEM

KOAY YEONG LIN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Honours) Applied Mathematics with Computing

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2020

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : Koay Yeong Lin

ID No. : 1701678

Date :

22/8/2020

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “A MODIFIED SPECTRAL

GRADIENT METHOD FOR SOLVING NON LINEAR SYSTEM” was

prepared by KOAY YEONG LIN has met the required standard for

submission in partial fulfilment of the requirements for the award of Bachelor

of Science (Honours) Applied Mathematics with Computing at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr. Sim Hong Seng

Date :

Signature :

Co-Supervisor :

Date :

24 August 2020

simhs
Stamp

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made

of the use of any material contained in, or derived from, this report.

© 2020, Koay Yeong Lin. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful

completion of this project. Firstly, I would like to express my deepest

appreciation of gratitude to my research supervisor, Dr. Sim Hong Seng, for

his invaluable advice, guidance, recommendations and his immense patience

throughout the development of the research. His tremendous knowledge and

experience managed to help me to complete this project. He advised me the

methodology to carry out the study and present the preliminary results

obtained more clearly and professionally. I am grateful to him for his valuable

time spent in guiding me, answering my questions, checking and correcting

the mistake in my project report. Additionally, I wish to express my gratitude

to my parents and friends. Their unconditional support, patience, advice and

encouragement gives a lot of help to me throughout my study.

v

ABSTRACT

The objective of this project is to modify the spectral gradient method in

solving the nonlinear systems. The multiple damping spectral gradient method

with line search has been proposed for making improvements to the slow

convergence issues. It operates separately on the gradient vector norm and the

objective function at the same time and can be considered as an alternative for

solving large-scale optimization problems. The results show that the spectral

gradient method provides the best performance in solving the optimization

problems, compared to the steepest descent method and conjugate gradient

method, under the backtracking line search with Armijo condition (BTA). The

main difference between these methods is the calculation of direction vector,

dk. Besides, there is a relationship between solving a series of nonlinear

equations and finding the optimal solutions to the problems. Most of the

methods used for solving nonlinear systems are optimization-based methods.

Therefore, the spectral gradient method with the BTA line search technique

has been modified in order to solve solving the nonlinear systems. The

efficiency of the modified spectral gradient method is tested by comparing the

number of iterations, the number of function call and the computational time,

with the BFGS method, steepest descent method and conjugate gradient

method. The step length of these methods is selected by using the modified

BTA line search technique. Finally, the modified spectral gradient method

shows a better performance compared to the steepest descent method and the

conjugate gradient method. The modified method gives more stable results

compared to the BFGS method because numerous papers from different

researchers have suggested that the BFGS method is not an appropriate

method in solving the large-scale problems. Furthermore, the SG method is

popular due to the fact that less storage is needed for the calculation. The

modified SG method can be used in solving some nonlinear application

problems. Thus, the modified spectral gradient method can be considered as an

alternative method for solving nonlinear systems. The improvements in the

amount of tested problem, line search strategy and search direction are

recommended, in order to increase the efficiency of the modified method.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS x

LIST OF APPENDICES xi

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 3

1.3 Problem Statement 4

1.4 Aim and Objectives 4

1.5 Scope and Limitation of the Study 5

1.6 Contribution of the Study 5

1.7 Outline of the Report 6

2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Literature Review 8

2.3 Summary 15

3 METHODOLOGY AND WORK PLAN 16

3.1 Introduction 16

3.2 SG method 17

3.3 List of Algorithm 19

3.3.1 BTA Algorithm 19

3.3.2 SG Algorithm 19

vii

3.3.3 SD Algorithm 20

3.3.4 CG Algorithm 20

3.4 Summary 21

4 RESULTS AND DISCUSSION IN OPTIMIZATION 22

4.1 Introduction 22

4.2 Preliminary Results 23

4.3 Summary 26

5 RESULTS AND DISCUSSION IN NONLINEAR SYSTEM

 27

5.1 Introduction 27

5.2 General Algorithm for Modified SG, BFGS, SD and

CG Method. 28

5.3 Results and Discussions 29

5.4 Non-Linear System in Real Life Application 32

5.4.1 Application 1: Kinematic Application 32

5.4.2 Application 2: Interval Arithmetic Benchmark

Application 33

5.4.3 Application 3: Chemical Equilibrium 34

5.4.4 Application 4: Neurophysiology application34

5.4.5 Application 5: Combustion application 35

5.4.6 Application 6: Experimental Test 35

5.4.7 Numerical Results for Application Problems

 36

5.5 Summary 37

6 CONCLUSIONS AND RECOMMENDATIONS 38

6.1 Conclusions 38

6.2 Recommendations for future work 39

REFERENCES 41

APPENDICES A-1

viii

LIST OF TABLES

Table 5.1: Computation of dk. 28

Table 5.2: Computation of µk. 29

Table 5.3: Computation of Bk+1. 29

Table 5.4 Coefficients aki for the Kinematic Application 33

Table 5.5: Numerical Results for Application Problems 36

ix

LIST OF FIGURES

Figure 4.1: Number of Iteration for SD, CG and SG
method. 24

Figure 4.2: Number of Function Call for SD, CG and SG
method. 24

Figure 4.3: Computational Time for SD, CG and SG
method. 25

Figure 5.1: Number of Iteration for Modified SG, BFGS,
SD and CG method. 30

Figure 5.2: Number of Function Call for Modified SG,
BFGS, SD and CG method. 31

Figure 5.3: Computational Time for Modified SG, BFGS,
SD and CG method. 31

x

LIST OF SYMBOLS / ABBREVIATIONS

SG Spectral Gradient method

SD Steepest Descent method

CG Conjugate Gradient method

BFGS Broyden-Fletcher-Goldfarb-Shanno method

BTA Backtracking Line Search with Armijo condition

xi

LIST OF APPENDICES

APPENDIX A: Tables of Optimization Test Problems A-1

APPENDIX B: List of Optimization Test Problems B-1

APPENDIX C: Tables of Nonlinear Test Problems C-1

APPENDIX D: List of Nonlinear Test Problems D-1

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Mathematical optimization is a mathematical method to search out the

solutions of a problem, towards achieving higher performance. It seeks to find

the optimal solutions under constraints to the objective function. An optimal

solution is a feasible solution that minimizes or maximizes the objective

function. In the area of applied math, it focuses on choosing the best element

in a given set, by using known mathematical techniques, principles, and

methods. Concerning certain criteria, optimization aims to determine the best

feasible solution. Furthermore, mathematical optimization involves the

analysis of the mathematical structure of optimization problems, the study of

the mathematical principles, the development of methods to solve optimization

problems, and the application of these approaches on software.

Mathematical optimization is a type of applied mathematics that is

applicable in numerous areas, from computing to industrial applications. In a

real-world application, optimization is the mathematical process of finding the

best decision within a specified set of constraints, such as the highest profit or

lowest cost for a given task. However, most real-world and practical issues are

dealing more on minimization problems.

To solve an optimization problem, the goal is to find the maxima or

minima of a function. It works by consistently selecting input values in an

allowed set and evaluating the function value. A comparison of various

selections is allowed, for deciding which could be the “best”.

2

In mathematical optimization, constrained optimization is to

examine situations involving constraints. To prevent from moving in certain

directions forever, a constraint is a restriction on a variable's value. Usually,

constrained optimization problems required mathematical programming.

Finding points that meet all the constraints is always a challenging problem for

constrained optimization. One of the solutions is to use an unconstrained

optimization approach.

In contrast, the meaning of unconstrained optimization is the objective

functions either have no boundaries, or the boundaries are soft. There is no

limitations on the values of the parameters. Efficient unconstrained

optimization algorithms use derivatives and partial derivatives to seek out the

local optima. Techniques for unconstrained minimization are now becoming

popular in recent years. The methods are useful for solving linear and

nonlinear functions.

Solving nonlinear equation systems has always been a complex issue

whereby a variety of different methods were carried out. While solving linear

equations, or a particular nonlinear equation, the solutions have a well-

developed concept of mathematics and computation. Nonlinear systems are

resulting in a graph that is not a straight line. Alternatively, the graphs might

be cubic functions, parabolas or radical functions. If the system of nonlinear

equations does not show good linear or polynomial characteristics, the

scenario becomes more challenging. Nonlinear equation systems exist in

different practice areas, such as chemistry, engineering, and medicines. The

systems also occur in other geometric computations including minimum

distance, intersections, and in ordinary or partial differential equations, when

solving preliminary or boundary function problems.

3

1.2 Importance of the Study

Many real-life applications involved the solving of the nonlinear systems.

Abu-Arqub, Abo-Hammour and Momani (2014) have published a paper on the

application of continuous genetic algorithms (CGA) for nonlinear systems of

second-order boundary problems. Based on the genetic algorithm approach, a

computational algorithm is launched to deal with problems of second-order

boundary value (BVP) in a class of nonlinear systems. They used the CGA to

solve the second-order BVP nonlinear system. The model is developed as an

optimization problem in this approach. Besides, CGA has been defined as an

effective way of solving optimization problems as it has been successfully

applied in different areas. For example, to solve the fuzzy differential

equations and optimal control problems. Furthermore, it is also applied in the

motion planning of robot manipulators, which is extremely nonlinear.

Most of the actual physical systems are essentially nonlinear, therefore,

for mathematicians, engineers, and physicists, nonlinear systems are very

common (Krstic, 1995). Nonlinear equations are hard to solve by analytical

technique and this causes curious phenomena like chaos. It can show an

unpredictable behaviour, even if it is a simple dynamic nonlinear system.

Chaos seeks its uses in a variety of fields, such as in biological systems, power

converters and chemical reactors (Strogatz, 2014).

Nonlinear systems are typically found in natural phenomena with

dynamic and sometimes unpredictable behaviours. Throughout various areas

of daily life, nonlinear systems present, for instance, medicine, health science,

engineering and manufacturing processes. Owing to the variety of nonlinear

systems, it is challenging to provide general modelling methods. Nonlinear

systems seem to be subjected to uncertainty (Ornelas-Tellez, Rico-Melgoza,

Villafuerte, Zavala-Mendoza, 2019).

4

1.3 Problem Statement

In this project, we propose to develop a modified spectral gradient method for

solving nonlinear system. The efficiency of the proposed method will be tested

using some tested problems provided in the paper by Fang (2017). The general

form of nonlinear equations is given as follows:

 𝐹(𝑥) = 0, 𝑥 ∈ 𝑅௡ (1.1)

For solving the nonlinear equation (1.1), there exist many iterative

methods, such as Newton’s method and quasi-Newton method. For Newton’s

method, the procedure is quite simple and straightforward. Besides that, its

convergence is rapid for solving many problems. Therefore, Newton’s method

is commonly used for solving nonlinear equations. However, there are some

disadvantages in Newton’s method. The efforts needed to determine the

solution might be excessive, due to the difficulty of direct evaluating the

Jacobian matrix.

1.4 Aim and Objectives

The objective of this project is to modify the spectral gradient method in

solving the nonlinear system of equations. Currently, the spectral gradient

method is used in solving the optimization problems. Therefore, modification

of this method is required, so that we can use the modified method to solve the

nonlinear system of equations.

The second objective of this project is to develop Python code for the

method to compare the efficiency of the method with the existing method. The

graph will be plotted to make a comparison between those methods.

5

1.5 Scope and Limitation of the Study

The scope of this study is to determine the approximate solution of the

nonlinear system. Instead of computing the exact solutions directly, we will

approximate the solution of the nonlinear system. The study tends to generate

better approximations in each iteration that may tend toward an exact solution.

The limitation of the study is the solution of the nonlinear system is an

approximation and not the exact solution. Owing to the difficulty to determine

the exact solution, we are determining the approximate solutions nonlinear

systems such that the solutions are close to the exact solutions. The

approximation is obtained through a series of iteration by setting the initial

guess. The problems may fail to converge if the initial guess is not a good

guess and may cause lots of iterations. The BTA algorithm is to ensure the

function value decrease for next iteration, but not contributed to the

convergence.

1.6 Contribution of the Study

In recent years, the role of numerical methods in solving engineering problems

has significantly increased. Solving a nonlinear system of equations is

essential to engineering problems. Most application problems found in

engineering can be simplified to solving nonlinear systems of equations, which

is also one of the common problems in mathematics. Numerous approaches

have been developed to handle nonlinear systems. The modified spectral

gradient method thus provides a good alternative for solving the nonlinear

problems.

6

1.7 Outline of the Report

In the first chapter, a general introduction to mathematical optimization and

nonlinear systems will be discussed. Nonlinear systems can be solved in many

real-life applications and some examples are provided. This project consists of

two objectives, which includes modifying the spectral gradient method in

solving the nonlinear equations and develop the python code of the method for

the comparison of the efficiency of the proposed method. The scope, limitation

and the contribution of the study are also stated in this chapter.

Chapter 2 is a review of the literature. The literature review has

involved different types of optimization methods in solving optimization

problems and nonlinear problems. This chapter also briefly discussed that

there is a close relationship in solving nonlinear problems and optimization

problems.

Chapter 3 is the methodology section. This chapter involves the

derivation of the SG method and the brief explanation of the methods used in

this project for solving the optimization problems. The algorithms for the BTA

line search strategy, SG method, SD method, and CG method are also listed in

this chapter.

In chapter 4, the SG method has been applied to solve the optimization

tested problems. The SG method is compared with the SD method and the CG

method, under the same termination conditions and the same line search

strategy (BTA). There are 19 tested problems used to compare the

performance among these three methods. The preliminary results are presented

using the comparison table and the line graph.

In chapter 5, the SG method and BTA line search strategy are

incorporated and modified to solve the nonlinear systems. The general

algorithms for the modified SG method, BFGS method, SD method, and CG

method are listed. There are 31 tested problems used to evaluate the

performance of these methods. By using the performance profile of Dolan and

7

Moré, the behaviours of the modified SG, BFGS, SD, and CG method have

been illustrated. Some real-life application problems are solved using the

proposed method to illustrate the performance of the modified SG method.

Lastly, chapter 6 is the conclusions and recommendation chapter that conclude

the entire report and the possible future recommendations.

8

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In solving systems of nonlinear equations, there exist some iterative methods.

Most of the methods used are optimization-based methods. There is a close

relationship between solving a series of nonlinear equations and finding a local

minimum. Seeking a solution is equivalent to minimizing the objective

function based on a set of equations with several unknown variables. Such

equations satisfied at the current point are considered as constraints at each

stage, whereas others are considered as objective functions.

To evaluate the next feasible point to proceed, a quadratic function is

minimized in a strategy, based on optimization approaches at each iteration. It

stands to reason that many features of the algorithms are identical. For

example, Newton's method for local minimization would be the same as

Newton's method for nonlinear equations for a smooth function. Yet, there still

exist significant differences.

2.2 Literature Review

There exist several optimization methods that can be used to solve nonlinear

equations. One of these methods is Newton’s method, also known as the

Newton-Raphson method. The Newton-Raphson method was first published

by Wallis (1685). Simpson (1740) defined Newton's method as an iterative

approach used to solve general nonlinear equations using calculus. Simpson

(1740) also introduced the generalization of two equations systems in the same

article. He claimed that Newton's method can also be used to overcome

optimization problems by setting the slope to zero.

9

Broyden (1965) mentioned that Newton’s method needs several linear

equations to be solved at each stage, but the procedure is quite straightforward.

Its convergence is rapid for many problems. However, there exist some

weaknesses in this method. One of the weakness of Newton's approach is that

it often fails to converge even without any changes. Even the convergence

requirements of this approach are well understood, but still this approach

depends on the initial assumption that the solution is reasonably good and a

criterion that is not able to be implemented in practice. Thus, this method is

not considered a successful practical procedure.

Furthermore, Broyden (1965) also noted that there exists another

disadvantage, which is the difficulty to measure the Jacobian matrix. The

efforts needed to determine the matrix might be excessive. Even though the

functions are extremely straightforward to obtain their partial derivatives. In a

certain situation, the function seems to be too complex, and a numerical

approximation to the Jacobian matrix must be gained. In order to evaluate the

Jacobian matrix, it is necessary to determine the vector function of the

predictor variable. The predictor variable should be at least one set more than

the original set of nonlinear equations. This might cause the procedures to

become complicated.

In addition, there is a recommendation for the Jacobian matrix. It is

either the Jacobian matrix measured once and for all or once every several

iterations. This method is easier and faster, rather than the computation of the

entire Jacobian as necessarily needed throughout every iteration.

Moreover, the partial derivatives have to be determined and the linear

model has to be resolved for each iteration. This will cause the execution of

Newton’s method expensive. This experience has encouraged the development

of quasi-Newton approaches. Mario Martıńez (2000) has mentioned that the

quasi-Newton method is a stationary Newton method, and also a discrete

Newton method. For the discrete Newton method, if the Jacobian matrix is

large, it is not comparable with the inexpensive linear algebra models. Yet

discrete Newton algorithms are successful in many large sparse issues. In such

10

situations, the limited difference method allows us to use a small number of

functional calculations to measure the estimated Jacobian. The matrix form is

not expensive to be factorized.

Quasi-Newton approaches are used for solving unconstrained

optimization problems. Some quasi-Newton approaches are popular because

many linear algebra iterations are avoided. For solving nonlinear systems,

quasi-Newton techniques are not so common research into numerical analysis

in the last several years. Mario Martıńez (2000) stated that before 1990, there

have been many published articles on numerical analysis research of quasi-

Newton method for solving nonlinear systems. Occasionally, after the method

inclusion into the usual practice of problem solvers in other fields, such as

engineering, and manufacturing, the study might be out of practice. While the

users are knowledgeable of these benefits and weaknesses, quasi-Newton

methods can be used for solving nonlinear large-scale problems.

Additionally, the quasi-Newton method is modified by Fang (2017).

The purpose of the modification is to make improvements based on the new

quasi-Newton method. The modified quasi-Newton method can be used for

solving nonlinear equations. This method is proven that the local superlinear

convergence properties exist. According to the article published by Fang

(2017), this method is improved by assuming the information from the last

three iterates is related. A comparison is made for the modified quasi-Newton

method with the other three similar Quasi-Newton methods. The initial point

and stopping criteria are set to be tested on some problems. Finally, Fang

(2017) proved that the modified method is the best method within these four

similar methods.

BFGS method is an iterative approach and it is a part of the quasi-

Newton methods. BFGS method can be used for solving unconstrained

nonlinear optimization problems. With global and superlinear convergence,

some modified BFGS approaches have been presented.

11

Yuan and Lu (2008) introduced a new backtracking inexact BFGS

method for solving symmetric nonlinear equations. The modified BFGS

method has a descent property norm, where under appropriate circumstances,

the global and superlinear convergence will be guaranteed. Under the BFGS

method, Yuan and Lu (2008) have compared two search techniques. The

difference between these two search techniques is the presence of Jacobian

matrix computation during the selection of the step length. At each iteration,

one of the techniques will have to evaluate the Jacobian matrix. The evaluation

might increase the difficulty of computation, especially for large-scale

problems. Hence, the modified BFGS approach has been proposed by Yuan

and Lu (2008) with the backtracking line search techniques that avoid the

computing of the Jacobian matrix. Yuan and Lu (2008) have shown that the

modified BFGS method with the new backtracking line search is more

efficient than the technique that required the computation of the Jacobian

matrix. The proposed method also showed global and superlinear convergence.

The trust-region method is one of the optimization methods that can be

used to solve the nonlinear equation. From the article that published by Conn,

Gloud and Toint (2000), trust-region approaches are iterative because it

generates the solution of problem increasingly with better estimates. In this

method, we need to develop a model in each iteration. It is used to

approximate the objective function in a region and a centre point will then be

defined. This region is known as the trust region. Generally, it represents a

series of points. Thereafter, the testing point, as well as the value of the

objective function at the point, should be determined. The comparison is made

between the achieved and predicted reduction. A decision will be made,

depending on the sign of the reduction ratio. It is either setting the test point as

the next guess point or reducing the trust region.

The trust-region method has evolved over 50 years. It has been

embedded well into the area of predicting nonlinear parameters. Levenberg

(1944) has published the first paper in this field. In the scope of solving

nonlinear least square problems, he suggested by inserting a multiple of

identity to the Hessian matrix as a stabilization technique. Throughout this

12

way, Morrison (1960) has evolved further. He proved that the solutions of a

linear system that includes the model’s Hessian, are supplemented by a

multiple of the identity matrix. This provides the answer to the corresponding

sub-problem for suitable options of the damping parameter. The forecasted

reduction of the model among this parameter is tedious. Both publications

pointed out the fact that the Hessian can be estimated. It will further give the

objective function of a quadratic model.

Thereafter, Powell (1970) proposed the trust-region methods for

ensuring the convergence of an unconstrained optimization process. Besides,

Powell also considered using Broyden quasi-Newton update, to solve

nonlinear equations. However, Dennis (1978) is the one who initially

mentioned the words “trust-region”. Apart from this, such a method is also

applicable in many areas, such as applied mathematics, physics, chemistry,

computer science, engineering, and medicine, to solve various kinds of

problems.

On the other hand, the earliest method that is used for minimizing non-

linear functions is the steepest descent method, which was first raised by

Cauchy (1847). Apart from very well-conditioned problems, the traditional

steepest descent (SD) approach performs poorly. Raydan and Svaiter (2001)

noted that the bad behaviour of the steepest descent approach is not related to

the choice of search direction. The reason for poor behaviour is related to the

optimal selection of step length by Cauchy. The SD approach has been known

as extremely poor and inefficient due to the slow convergence speed and

oscillatory behaviour, despite the small storage capacity and very low

computational expense per execution.

The convergence of the Cauchy traditional steepest descent method has

been deeply studied. It has been found that it is related to the Hessian matrix's

spectral properties. Asmundis, Serafino, Riccio and Toraldo (2012)

recommended a good way to improve the SD method. The purpose of the

modification is to force the gradients as the iterations progress into a one-

13

dimensional subspace. This may avoid the key reason for the SD method's

slow convergence, which is the classical zigzag pattern.

The modification of the SD method done by Asmundis, Serafino,

Riccio and Toraldo (2012) is called Steepest Descent with Alignment (SDA).

It managed to fit the search direction with the eigendirection concerning the

smallest eigenvalue. Asmundis, Serafino, Riccio and Toraldo (2012) proved

that several useful information regarding the current spectrum of the Hessian

matrix is generated monotonically by the sequence of step lengths in the SD

approach. The computational findings indicated that by reducing the value of

epsilon, the SDA algorithm may be performed efficiently on the problems with

the highest ill condition.

Other than that, spectral gradient methods for minimization originated

in the Barzilai–Borwein paper. Barzilai and Borwein (1988) have proposed a

method, called a two-point step size gradient method. This method is a non-

monotone step length, which is associated with the gradient approach, to

overcome the Cauchy method's weaknesses. This method is obtained by

approximation of the secant equation for the steepest descent method. This

method delivers better efficiency and cheaper calculations than the traditional

steepest descent method. By making a comparison on the traditional steepest

descent method with the new approach, the new approach provides a

significant improvement.

Besides, if the objective function of the gradient methods does not have

a good condition, it will lead to the inefficiency of the method. To reduce the

function value, the gradient methods have a fixed condition in the selection of

step length. This will tend to the slow convergence of a stable complex

system. Dealing with the problem of inefficiency, Sim, Leong and Chen (2018)

have modified the spectral gradient method. This method is proposed for

making improvements to slow convergence issues. It operates separately on

the gradient vector norm and the objective function at the same time.

Furthermore, this method is combined with some line search strategy. The line

search is used for reducing the function value, whereas the gradient vector is

14

damp by an individual adaptive parameter. Under the backtracking and

nonmonotone line search, the proposed method is developed. The comparison

is made between the proposed method and some well-known CG-based

methods since the CG methods have extremely good convergence properties.

According to the numerical results and discussion, Sim, Leong and Chen

(2018) proved that the proposed spectral gradient method is an alternative for

solving large-scale problems.

Hestenes and Stiefel (1952) published the first paper on the conjugate

gradient (CG) method for solving a linear system of equations. The CG

method is one of the commonly used methods to solve nonlinear problems of

large-scale systems. The methodology has a small space requirement as well

as good properties for global convergence. The CG approach is an iterative

method. When the number of operations needed for the solution is infinite it

will have speedy convergence. Each step of this approach provides

information on the solution and it gives a better approximation than the

preceding. It begins with a very simple technique at any stage, by taking the

last approximation achieved as the initial approximation.

Hestenes and Stiefel (1952) have modified this method. The weakness

would be the vector for error which is larger in each step than those in the

original method. The process of the modified method is also complicated.

However, in the modified approach, the approximations are better than those

in the original method.

Besides, the conjugate gradient approach has been extended by

Fletcher and Reeves (1964) to solve problems of general unconstrained

optimization. Currently, conjugate gradient methods are often used as an

iterative approach for solving unconstrained large-scale optimization issues, as

the matrix memory is not needed. Furthermore, the general form of the three-

term conjugate gradient method has been introduced by Narushima, Yabe and

Ford (2008). The method usually produces an appropriate direction of descent.

Also, depending on the Quasi-Newton multi-step approach, they implemented

a new three-term conjugate gradient approach. Narushima, Yabe and Ford

15

(2008) have showed the good performance and high effectiveness of their

method.

2.3 Summary

In recent years, there is a significant increase in the strength and application of

optimization techniques. The problems containing millions of unknowns and

constraints can be solved by recent methods for specialized issues such as

linear programming and unconstrained optimization.

Due to the advantages and disadvantages of different classical

optimization methods, many modifications have been made based on different

methods. For instance, some of the researchers added useful techniques to

continuously improve and thus propose a better method. The purpose is to

maintain the strength of certain methods and overcome the weakness of the

methods. Modification on those methods aims to improve the overall

performance, such as efficiency and computational time, the complexity of

computation and the rate of convergence. Additionally, more accurate

approximation can be obtained by using the modified methods. In a nutshell,

various kinds of optimization methods are proposed to solve the nonlinear

system. In this project, the modified spectral gradient method will be proposed

in for solving the nonlinear problems.

16

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this project, we first make a comparison between the SD method, the

CG method, and the SG method. The comparison is made based on their

computational time, the number of function calls required, the number of

iteration and the norm of the gradient function. The main difference between

these three methods is the different in the calculation of direction vector, 𝑑௞.

In the development of optimization theory, the SD method has

performed a significant role. SD method was first raised by Cauchy (1847). It

is a classical method used for solving optimization problems. SD method is a

well-known method and the simplest method. It has a slow performance in

most real-world problems. Due to its slow convergence rate, the method is not

often used in practice. The slow convergence rate may lead to long

computational time and high costs. Therefore, some other gradient

methods have been proposed.

On the other hand, the CG method is a simple and effective

modification of the SD method. Both the SD method and the CG method are

the classical method used for solving optimization problems. It has a simple

update rule as well, and the directions are based on the gradients. The

procedures hence make a good step towards a consistent solution at each step.

Commonly, it produces a lower cost in each iteration than the SD method,

while both begin at the same point.

The spectral gradient method (SG method) was proposed by Sim,

Leong and Chen (2018). SG method is proposed for making improvements to

slow convergence issues. It operates separately on the gradient vector norm

and the objective function at the same time. It is an alternative method for

solving large-scale problems. SG method performs well compared to the SD

17

method and the CG method. SG method is incorporated with the line search

strategy, called BTA. The line search is used for reducing the function value,

whereas the gradient vector is damp by an individual adaptive parameter.

BTA is a line search strategy that used to select the best step length. To

evaluate the maximum amount to move along a given search direction, a line

search method BTA can be used. For the movement along the search direction,

it begins with a large approximation of the step length. Depending on the local

gradient of the objective function, it will sequentially reduce the step size,

known as “backtracking”, until a reduction is detected in the objective function.

3.2 SG method

Based on the function

 ∅(𝐵) = 𝑡𝑟(𝐵) − ln (det(𝐵)) (3.1)

We aim to minimize the following problems:

 min 𝑡𝑟(𝐵௞ାଵ) − ln (det(𝐵௞ାଵ)) (3.2)

 𝑠. 𝑡. 𝑠௞
்𝐵௞ାଵ𝑠௞ = 𝑠௞

்𝑦௞ (3.3)

Let 𝐵௞ାଵ = 𝑑𝑖𝑎𝑔(𝐵௞ାଵ
(ଵ)

, … , 𝐵௞ାଵ
(௡)

) and 𝑠௞ = (𝑠௞
(ଵ)

, … , 𝑠௞
(௡)

), the minimization

problem (3.2) and (3.3) become

min ൭෍ 𝐵௞ାଵ

(௜)

௡

௜ୀଵ

൱ − ln (ෑ 𝐵௞ାଵ
(௜)

௡

௜ୀଵ

)

(3.4)

𝑠. 𝑡. (෍(𝑠௞

(௜)
)ଶ𝐵௞ାଵ

(௜)
) − 𝑠௞

்𝑦௞

௡

௜ୀଵ

= 0

(3.5)

18

Next, we apply the Lagrange multiplier to the minimization problem (3.4) and

(3.5), then we obtain

𝐿(𝛼, 𝜌) = ൭෍ 𝐵௞ାଵ

(௜)

௡

௜ୀଵ

൱ − ln ൭ෑ 𝐵௞ାଵ
(௜)

௡

௜ୀଵ

൱

+ 𝜌[(෍(𝑠௞
(௜)

)ଶ𝐵௞ାଵ
(௜)

) − 𝑠௞
்𝑦௞

௡

௜ୀଵ

]

(3.6)

where

𝜌 ≈

s௞
்s௞ − s௞

்y௞

∑ (𝑠௞
(௜)

)ସ௡
௜ୀଵ

(3.7)

(3.7) is approximated by using Newton-Raphson method and

 𝐵௞ାଵ
(௜) =

ଵ

ଵାఘ(௦ೖ
(೔))మ , i = 1, 2, …, n (3.8)

 𝑠௞ = 𝑥௞ାଵ − 𝑥௞ (3.9)

 𝑦௞ = 𝑔௞ାଵ − 𝑔௞ (3.10)

Lastly, the updating formula for 𝐵௞ାଵ is

𝐵௞ାଵ = ቐ

diag (B௞ାଵ (ଵ), … , B௞ାଵ
(௡)), if s௞

்s௞ > s௞
்y௞

 𝑠௞
்𝑦௞

𝑠௞
்𝑠௞

 𝐼, otherwise

(3.11)

19

3.3 List of Algorithm

3.3.1 BTA Algorithm

Step 0: Given constants 𝛿 ∈ (0,1) and 𝛾ଵ , 𝛾ଶ with 0 < 𝛾ଵ < 𝛾ଶ < 1.

Step 1: Set 𝜇 = 1

Step 2: Test the relation

 𝑓(𝑥௞ + μd௞) ≤ 𝑓(𝑥௞) + 𝛿𝜇𝑔௞
்𝑑௞ (3.12)

Step 3: If relation (3.12) does not satisfy, choose a new μ ∈ [γଵμ, γଶμ] and go

to Step 2. Else set μ௞ = μ and 𝑥௞ାଵ = 𝑥௞ + μ௞d௞ .

3.3.2 SG Algorithm

Step 0: Set 𝑘 = 0. Given initial guessing point x0, eps ∈ (0,1) and B0.

Step 1: Given 𝑔௞ = ∇𝑓(𝑥௞). If ∥ 𝑔௞ ∥≤ 𝑒𝑝𝑠, then stop.

Step 2: Compute

 𝑥௞ାଵ = 𝑥௞ + 𝜇௞𝑑௞, 𝑓𝑜𝑟 𝑘 ≥ 0 (3.13)

where

 𝑑௞ = −𝐵௞
ିଵ𝑔௞ (3.14)

and µk is obtained through BTA algorithm.

Next, compute 𝐵௞ାଵ that defined by (3.11), where 𝐵௞ାଵ
(௜) is given by (3.8), 𝜌 is

given by (3.7), 𝑠௞ is given by (3.9) and 𝑦௞ is given by (3.10).

Step 3: Set 𝑘 = 𝑘 + 1 and go to Step 1.

20

3.3.3 SD Algorithm

Step 0: Set k = 0. Given initial guessing point x0 and eps ∈ (0,1).

Step 1: Given 𝑔௞ = ∇𝑓(𝑥௞). If ∥ 𝑔௞ ∥≤ 𝑒𝑝𝑠, then stop.

Step 2: Compute

 𝑥௞ାଵ = 𝑥௞ + 𝜇௞𝑑௞, 𝑓𝑜𝑟 𝑘 ≥ 0 (3.13)

where

 𝑑௞ = −𝑔௞ (3.15)

and µk is obtained through BTA algorithm.

Step 3: Set 𝑘 = 𝑘 + 1 and go to Step 1.

3.3.4 CG Algorithm

Step 0: Set k = 0. Given initial guessing point x0 and eps ∈ (0,1).

Step 1: Given 𝑔௞ = ∇𝑓(𝑥௞). If ∥ 𝑔௞ ∥≤ 𝑒𝑝𝑠, then stop. Else, compute 𝑑଴ =

−𝑔଴ and 𝑥ଵ = 𝑥଴ + 𝜇଴𝑑଴, where µ0 is obtained through BTA algorithm.

Step 2: Compute

 𝑥௞ାଵ = 𝑥௞ + 𝜇௞𝑑௞, 𝑓𝑜𝑟 𝑘 ≥ 1 (3.16)

where

 𝑑௞ = −𝑔௞ + 𝛽௞ିଵ𝑑௞ିଵ (3.17)

𝛽௞ିଵ =

 𝑔௞
்𝑔௞

𝑔௞ିଵ
்𝑔௞ିଵ

(3.18)

and µk is obtained through BTA algorithm.

Step 3: Set 𝑘 = 𝑘 + 1 and go to Step 1.

21

3.4 Summary

The comparison will be made between the SD method, the CG method, and

the SG method. The results show that the SG method is an effective method

for solving optimization problems. It provides good overall performance, with

a shorter computational time, less function call and a smaller number of

iterations. This method thus can be used for solving large scale problems.

Therefore, the SG method will be modified for solving nonlinear systems.

22

CHAPTER 4

4 RESULTS AND DISCUSSION IN OPTIMIZATION

4.1 Introduction

In this project, the comparison is made between the SG method, SD method

and CG method under the monotone line search strategy (BTA). The step

lengths 𝜇௞ are generated by the BTA algorithm with the parameters 𝛾ଵ =

𝛾ଶ = 0.5 and 𝛿 = 0.1. The step length 𝜇 = 1 will be used as the initial step

length and reduce if the certain relation does not satisfy. The minimum value

for step length will be set as 2-7.

Besides, the initial value of Bk is set to be 𝐵଴ = 𝐼 for the SG method.

In addition, the termination criterion for SG method, SD method and CG

method will be ∥ 𝑔௞ ∥ ≤ 10ିସ. Another termination criterion is based on the

number of iterations. The maximum number of iterations is set to be 104. If the

number of iterations reached 104, the tested problem considered fail to

converge. There are 19 tested problems given by Andrei (2008) that used to

test the efficiency of the SG method, SD method and CG method. Furthermore,

n = 10, 100, 1000, 2000 and 5000 are used as the dimensions for the tested

problems. The codes are written in Python, by using the software Spyder 3.3.2.

23

4.2 Preliminary Results

The comparison tables of 19 tested problems based on the 3 different methods

are constructed. Appendix A shows the details of the data in 19 tables. The

symbol ‘-’ represented the function fails to converge. According to the tables

in Appendix A, the SG method can be successfully solving the different

dimensions in most of the tested problems, while some of the large-scale

problems are not able to be solved by using the SD method and CG method.

Therefore, the SG method is a good alternative and appropriate method for

solving large-scale problems.

The graph will be plotted by using the summation of the number of

iterations, the number of function call and the computational time for 19 tested

problems respectively. The “-” are replaced by some value in order to plot the

graph. The value that used to replace the “-” is the multiplication of the

maximum number in each factor and a constant value 60.

To clearly show the difference in numerical effects between the SD

method, CG method and SG method, the performance is presented concerning

the number of iterations (Figure 4.1), the number of function calls (Figure 4.2)

and the computational time (Figure 4.3) respectively. Due to the large

difference between the y-value, the natural logarithm scale is used as the scale

of the y-axis. The tested problems are sorted in ascending order of y-value,

instead of the order of tested problems. If the graph is plotted according to the

order of tested problems, the performance of these 3 methods is not able

shown clearly, since the line in the graph might be overlapping. Therefore, the

tested problems are sorted according to the ascending order of y-value, to

make the graph clearer and comparison can be made between these three

methods.

24

Figure 4.1: Number of Iteration for SD, CG and SG method.

Figure 4.2: Number of Function Call for SD, CG and SG method.

0
2
4
6
8

10
12
14
16

3 10 7 5 6 14 15 18 19 17 1 12 4 16 2 11 8 13 9

ln
(k

)

Test Problem

Number of Iteration (k)

SD CG SG

0
2
4
6
8

10
12
14
16
18

3 10 7 5 6 14 15 18 17 19 12 16 1 13 4 2 8 11 9

ln
(fc

)

Test Problem

Number of Function Call (fc)

SD CG SG

25

Figure 4.3: Computational Time for SD, CG and SG method.

Figure 4.1 illustrates the total number of iterations for 19 tested

problems in these 3 methods. It is clearly to see that the SG method performs

better than the other two methods for most tested problems with the smallest

number of iterations. Comparing with the SG method, both of the CG and SD

methods required a much greater number of iterations for solving the tested

problems. Based on Figure 4.1, we can conclude that the SG method gives the

best performance in the least number of iterations required to solve the tested

problems. However, CG and SD method show weaker performance and both

of them required almost the same number of iterations.

Figure 4.2 shows that the SG method required lesser number of

functions calls for solving the tested problems, compare to the other two

methods. Clearly, the SG method exhibits the best performance in terms of the

number of function calls since it can solve most of the tested problems with

the smallest number of function calls.

Figure 4.3 demonstrates that the SG method can solve about 50% of

the tested problems with the shortest computational time. For the SD method

and the CG method, both of them solve approximately 25% of the test

problems with the shortest computational time.

-2

0

2

4

6

8

10

12

14

16

10 3 7 5 6 14 15 2 18 9 17 13 19 11 1 4 12 16 8

ln
(s

)

Test Problem

Computational Time (s)

SD

CG

SG

26

Even though Figure 4.3 shows that the computational time of the SG

method is not so significant, but the average performance of the SG method is

still computable. Based on the number of iterations and the number of function

call required for the SG method, it uses much lesser number of iterations and

function calls than the CG method and SD method. It implies that the SG

method possesses the best overall performance among these three methods.

4.3 Summary

In the real industry application, it is important in reducing the cost, since it

helps to increase the profit or return of an industry. If more function calls are

required, a higher cost budget and longer computational time will be required.

Instead of using an approach requires longer computational time and more

function calls, the procedures should be improved applying an alternative with

shorter time and lower cost to solve the problems. Therefore, we can conclude

that the SG method performs the highest efficiency and due to this reason, we

propose to modify this method for solving nonlinear systems.

27

CHAPTER 5

5 RESULTS AND DISCUSSION IN NONLINEAR SYSTEM

5.1 Introduction

In chapter 4, we have shown that SG method is an efficient method for solving

optimization problems. The comparison is made between SG, SD, and CG

method, in terms of the number of iterations, the number of function call, and

the computational time. The step length of these methods is selected by using

the BTA line search strategy. For solving optimization problems, the testing

condition used in the BTA line search has stated in (3.12).

Yuan and Lu (2008) have proposed the BFGS combined with a new

backtracking line search approach. This method can be used for solving

symmetric nonlinear systems. Yuan and Lu (2008) proved that the BFGS

method holds global and superlinear convergence. The BFGS method has the

property of descending the search direction for the norm function. The BFGS

method shows an efficient performance and the new backtracking line search

approach used in the BFGS method has stated in (5.1). Without evaluating the

Jacobian matrix, the difficulty and complexity of the computations have

reduced.

 ∥ 𝐹(𝑥௞ + 𝜇௞𝑑௞) ∥ଶ ≤ ∥ 𝐹(𝑥௞) ∥ ଶ + 𝛿𝛼௞
ଶ𝐹௞

்𝑑௞ (5.1)

The SG method has been modified for solving the nonlinear system.

The BTA line search technique is modified to have the inequality in (5.1). The

performance of the modified SG method has been computed by comparing the

number of iterations, the number of function call, and the computational time,

with the BFGS method, SD method, and CG method.

28

5.2 General Algorithm for Modified SG, BFGS, SD and CG Method.

Step 0: Set 𝑘 = 0. Given initial guessing point x0, eps ∈ (0,1) and B0.

Step 1: If ∥ 𝐹௞ ∥ = 0, then stop.

Step 2: Compute

 𝑥௞ାଵ = 𝑥௞ + 𝜇௞𝑑௞, 𝑓𝑜𝑟 𝑘 ≥ 0 (3.13)

where 𝑑௞ is obtained from Table 5.1 and µk is obtained from Table 5.2.

Step 3: (Modified SG and BFGS) Compute 𝐵௞ାଵ that defined in Table 5.3,

where 𝑠௞ is given by (3.9) and

 𝑦௞ = 𝐹௞ାଵ − 𝐹௞ (5.2)

Step 4: Set 𝑘 = 𝑘 + 1 and go to Step 1.

Table 5.1: Computation of dk.

Modified SG

 𝑑௞ = −𝐵௞
ିଵ𝐹௞ (5.3)

BFGS

SD 𝑑௞ = −𝐹௞ (5.4)

CG 𝑑௞ = −𝐹௞ + 𝛽௞ିଵ𝑑௞ିଵ (5.5)

where

𝛽௞ିଵ =

 𝐹௞
்𝐹௞

𝐹௞ିଵ
்𝐹௞ିଵ

(5.6)

and 𝛽ିଵ𝑑ିଵ = 0.

29

Table 5.2: Computation of µk.

Modified SG

µk is obtained through BTA algorithm. SD

CG

BFGS If ∥ 𝐹(𝑥௞ + 𝑑௞) ∥ ≤ 𝑒𝑝𝑠 ∥ 𝐹(𝑥௞) ∥ , set µk = 1. Otherwise,

µk is obtained through BTA algorithm.

Table 5.3: Computation of Bk+1.

Modified

SG

𝐵௞ାଵ is defined by (3.11), where 𝐵௞ାଵ
(௜) is given by (3.8), 𝜌 is

given by (3.7)

BFGS

𝐵௞ାଵ = ቐ
𝐵௞ −

𝐵௞𝑠௞𝑠௞
்𝐵௞

𝑠௞
்𝐵௞𝑠௞

+
𝑦௞𝑦௞

்

𝑦௞
்𝑠௞

, if s௞
்y௞ > 0

𝐵௞, otherwise

(5.7)

5.3 Results and Discussions

The comparison is made between the modified SG method, BFGS method, SD

method, and the CG method under the modified BTA line search strategy. In

the BTA step length selection, the value of parameters used, the initial step

length, and the lower bound of the step length are the same as the values set

for solving the optimization problems.

In addition, since the modified SG method and BFGS method required

the computation of matrix Bk, the matrix 𝐵଴ is initialized to an identity matrix

with dimension n. There exist two termination criteria for these methods,

which include the norm of the nonlinear functions and the number of iterations.

The first termination criterion will be ∥ 𝐹௞ ∥ ≤ 10ିସ and the maximum

number of iterations is set to be 104. If the number of iterations exceeds 104,

the tested problem will be considered as fail to converge.

30

There is a total of 31 tested problems have been used to test the

performance of the modified SG method, the BFGS method, the SD method,

and the CG method. Appendix D shows the 12 tested problems given by Fang

(2017). The gradient functions of the optimization tested problems provided

by Andrei (2008), as shown in Appendix B are used as the remaining 19 tested

problems, since there is a similarity between the gradient function of the

optimization problems and the nonlinear problems. The dimensions of the

tested problems will be set as n = 10, 100, 200 and 500, if the dimensions are

not provided in the tested problems.

The results of the tested problems are listed in Appendix C. The tables

in Appendix C include the results of the number of iterations, the number of

function call and the computational time (in seconds) for the four methods.

The symbol ‘-’ represents that the method failed to converge.

By using the performance profile of Dolan and Moré, the behaviour of

the modified SG, BFGS, SD and CG method can be illustrated. Clearly, Figure

5.1, 5.2 and 5.3 are the performance profiling graphs for the four methods,

based on the number of iterations, number of function call and the

computational time.

Figure 5.1: Number of Iteration for Modified SG, BFGS, SD and CG method.

31

Figure 5.2: Number of Function Call for Modified SG, BFGS, SD and CG

method.

Figure 5.3: Computational Time for Modified SG, BFGS, SD and CG method.

32

Figures above show that the BFGS method performs the best among

these methods in terms of the number of iterations, number of function call

and computational time. The modified SG method indicates a better

performance compared to SD and CG methods. On the other hand, the SD and

CG methods exhibit a similar pattern, which show a poorer performance than

the modified SG and BFGS method.

For the BFGS method, some of the tested problems require an

extremely high number of iterations, number of function calls and

computational time, compared to the modified SG method. Therefore, we

conclude that the modified SG method gives a more stable result than the

BFGS method. Although the modified SG method is not showing the best

performance among these methods, it is still considered as an alternative to

solve the nonlinear tested problems.

5.4 Non-Linear System in Real Life Application

Systems of nonlinear equations take place in many areas of practical

importance such as engineering. In order to evaluate the performance of the

modified SG method, 6 systems of non-linear equations are considered. The

application problems are provided by Chen, Liu, Zhou and Peng (2017),

Grosan and Abraham (2008), Buzzi-Ferraris and Manenti (2014) and Turgut

and Coban (2014). These problems are applied in both the engineering and

science fields.

5.4.1 Application 1: Kinematic Application

⎩
⎪
⎨

⎪
⎧

𝑥௜
ଶ + 𝑥௜ାଵ

ଶ − 1 = 0
𝑎ଵ௜𝑥ଵ𝑥ଷ + 𝑎ଶ௜𝑥ଵ𝑥ସ + 𝑎ଷ௜𝑥ଶ𝑥ଷ + 𝑎ସ௜𝑥ଶ𝑥ସ +
𝑎ହ௜𝑥ଶ𝑥଻ + 𝑎଺௜𝑥ହ𝑥଼ + 𝑎଻௜𝑥଺𝑥଻ + 𝑎଼௜𝑥଺𝑥଼ +

𝑎ଽ௜𝑥ଵ + 𝑎ଵ଴௜𝑥ଶ + 𝑎ଵଵ௜𝑥ଷ + 𝑎ଵଶ௜𝑥ସ + 𝑎ଵଷ௜𝑥ହ +
𝑎ଵସ௜𝑥଺ + 𝑎ଵହ௜𝑥଻ + 𝑎ଵ଺௜𝑥଼ + 𝑎ଵ଻௜ = 0

1 ≤ 𝑖 ≤ 4

(5.8)

33

The initial guessing point used is

𝑥଴ = [−0.06, 0.78, −0.05, 0.38, −0.56, −0.70, 0.40, 0.09]்

and the coefficients 𝑎௞௜ , 1 ≤ 𝑘 ≤ 17,1 ≤ 𝑖 ≤ 4, are given in Table 5.4.

Table 5.4 Coefficients aki for the Kinematic Application

- 0.249150680 + 0.125016350 - 0.635550070, + 1.48947730

+ 1.609135400 - 0.686607360 - 0.115719920 + 0.23062341

+ 0.279423430 - 0.119228120 - 0.666404480 + 1.32810730

+ 1.434801600 - 0.719940470 + 0.110362110 - 0.25864503

+ 0.000000000 - 0.432419270 + 0.290702030 + 1.16517200

+ 0.400263840 + 0.000000000 + 1.258776700 - 0.26908494

- 0.800527680 + 0.000000000 - 0.629388360 + 0.53816987

+ 0.000000000 - 0.864838550 + 0.581404060 + 0.58258598

+ 0.074052388 - 0.037157270 + 0.195946620 - 0.20816985

- 0.083050031 + 0.035436896 - 1.228034200 + 2.68683200

- 0.386159610 + 0.085383482 + 0.000000000 - 0.69910317

- 0.755266030 + 0.000000000 - 0.079034221 + 0.35744413

+ 0.504201680 - 0.039251967 + 0.026387877 + 1.24991170

- 1.091628700 + 0.000000000 - 0.057131430 + 1.46773600

+ 0.000000000 - 0.432419270 - 1.162808100 + 1.16517200

+ 0.049207290 + 0.000000000 + 1.258776700 + 1.07633970

+ 0.049207290 + 0.013873010 + 2.162575000 - 0.69686809

5.4.2 Application 2: Interval Arithmetic Benchmark Application

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑥ଵ − 0.25428722 − 0.18324757𝑥ସ𝑥ଷ𝑥ଽ = 0
𝑥ଶ − 0.37842197 − 0.16275449𝑥ଵ𝑥ଵ଴𝑥଺ = 0
𝑥ଷ − 0.27162577 − 0.16955071𝑥ଵ𝑥ଶ𝑥ଵ଴ = 0
𝑥ସ − 0.19807914 − 0.15585316𝑥଻𝑥ଵ𝑥଺ = 0
𝑥ହ − 0.44166728 − 0.19950920𝑥଻𝑥଺𝑥ଷ = 0
𝑥଺ − 0.14654113 − 0.18922793𝑥଼𝑥ହ𝑥ଵ଴ = 0
𝑥଻ − 0.42937161 − 0.21180486𝑥ଶ𝑥ହ𝑥଼ = 0
𝑥଼ − 0.07056438 − 0.17081208𝑥ଵ𝑥଻𝑥଺ = 0

𝑥ଽ − 0.34504906 − 0.19612740𝑥ଵ଴𝑥଺𝑥଼ = 0
𝑥ଵ଴ − 0.42651102 − 0.21466544𝑥ସ𝑥଼𝑥ଵ = 0

(5.9)

34

The initial guessing point used is 𝑥଴ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]்

5.4.3 Application 3: Chemical Equilibrium

 𝑥ଵ + 𝑥ସ − 3 = 0

2𝑥ଵ + 𝑥ଶ + 𝑥ସ + 𝑥଻ + 𝑥଼ + 𝑥ଽ + 2𝑥ଵ଴ − 𝑅 = 0

2𝑥ଶ + 2𝑥ହ + 𝑥଺ + 𝑥଻ − 8 = 0

2𝑥ଷ + 𝑥ଽ − 4𝑅 = 0

𝑥ଵ𝑥ହ − 0.193𝑥ଶ𝑥ସ = 0

𝑥଺ඥ𝑥ଵ − 0.002597ඥ𝑥ଶ𝑥ସ ∙ 𝑇𝑂𝑇 = 0

𝑥଻ඥ𝑥ସ − 0.003448ඥ𝑥ଵ𝑥ଶ ∙ 𝑇𝑂𝑇 = 0

𝑥ସ𝑥଼ − 1.799 × 10ିହ𝑥ଵ ∙ 𝑇𝑂𝑇 = 0

𝑥ସ𝑥ଽ − 2.155 × 10ିସ𝑥ଵඥ𝑥ଷ ∙ 𝑇𝑂𝑇 = 0

𝑥ଵ଴𝑥ସ
ଶ − 3.846 × 10ିହ𝑥ସ

ଶ ∙ 𝑇𝑂𝑇 = 0

(5.10)

where R is 4.056734 and TOT is defined as 𝑇𝑂𝑇 = ∑ 𝑥௜
ଵ଴
௜ୀଵ .

The initial guessing point used is

𝑥଴ =
[0.15884, 0.89358, 8.11340, 2.84116, 3.08473,

0.04039, 0.00300, 0.00002, 0.00013, 0.00058]

்

5.4.4 Application 4: Neurophysiology application

 𝑓ଵ = 𝑥ଵ
ଶ + 𝑥ଷ

ଶ − 1 = 0

𝑓ଶ = 𝑥ଶ
ଶ + 𝑥ସ

ଶ − 1 = 0

𝑓ଷ = 𝑥ହ𝑥ଷ
ଷ + 𝑥଺𝑥ସ

ଷ = 0

𝑓ସ = 𝑥ହ𝑥ଵ
ଷ + 𝑥଺𝑥ଶ

ଷ = 0

𝑓ହ = 𝑥ହ𝑥ଵ𝑥ଷ
ଶ + 𝑥଺𝑥ସ

ଶ𝑥ଶ = 0

𝑓଺ = 𝑥ହ𝑥ଵ
ଶ𝑥ଷ + 𝑥଺𝑥ଶ

ଶ𝑥ସ = 0

(5.11)

The initial guessing point used is

𝑥଴ = [0.446, −0.446, 0.895, −0.895, 0.367, 0.367]்

35

5.4.5 Application 5: Combustion application

 𝑓ଵ = 𝑥ଶ + 2𝑥଺ + 𝑥ଽ + 2𝑥ଵ଴ − 10ିହ = 0

𝑓ଶ = 𝑥ଷ + 𝑥଼ − 3 ∙ 10ିହ = 0

𝑓ଷ = 𝑥ଵ + 𝑥ଷ + 2𝑥ହ + 2𝑥଼ + 𝑥ଽ + 𝑥ଵ଴ − 5 ∙ 10ିହ = 0

𝑓ସ = 𝑥ସ + 2𝑥଻ − 10ିହ = 0

𝑓ହ = 0.5140437 ∙ 10ି଻𝑥ହ − 𝑥ଵ
ଶ = 0

𝑓଺ = 0.100632 ∙ 10ି଺𝑥଺ − 2𝑥ଶ
ଶ = 0

𝑓଻ = 0.7816278 ∙ 10ିଵ 𝑥଻ − 𝑥ସ
ଶ = 0

𝑓 = 0.1496236 ∙ 10ି଺𝑥଼ − 𝑥ଵ𝑥ଷ = 0

𝑓ଽ = 0.6194411 ∙ 10ି଻𝑥ଽ − 𝑥ଵ𝑥ଶ = 0

𝑓ଵ଴ = 0.2089296 ∙ 10ିଵସ𝑥ଵ଴ − 𝑥ଵ𝑥ଶ
ଶ = 0

(5.12)

The initial guessing point used is

𝑥଴ =
[−5.9286 ∙ 10ି଼, −6.9428 ∙ 10ିହ, −0.2980, −8.8526 ∙ 10ିହ, −0.4127,

−0.0547, 4.9253 ∙ 10ିହ, 0.2981, 0.9453, −0.4179]்

5.4.6 Application 6: Experimental Test

 𝑓ଵ(𝑥ଵ, 𝑥ଶ) = cos(2𝑥ଵ) − cos(2𝑥ଶ) − 0.4 = 0

𝑓ଶ(𝑥ଵ, 𝑥ଶ) = 2(𝑥ଶ − 𝑥ଵ) + sin(2𝑥ଶ) − sin(2𝑥ଵ) − 1.2 = 0

(5.13)

The initial guessing point used is 𝑥଴ = [0.15, 0.49]்

36

5.4.7 Numerical Results for Application Problems

Table 5.5: Numerical Results for Application Problems

Number of Iteration

Problem Dim Modified SG BFGS SD CG

1 8 169 - 152 -

2 10 4 4 4 3

3 10 2 2 2 2

4 6 2 2 2 2

5 10 2 2 2 2

6 2 8171 - 881 -

Number of Function Call

Problem Dim Modified SG BFGS SD CG

1 8 3450 - 2644 -

2 10 18 26 18 14

3 10 19 41 25 37

4 6 52 56 52 52

5 10 10 14 10 13

6 2 193489 - 21241 -

Computational Time

Problem Dim Modified SG BFGS SD CG

1 8 1.8066 - 1.2886 -

2 10 0.0100 0.0139 0.0096 0.0070

3 10 0.0091 0.0107 0.0087 0.0069

4 6 0.0070 0.0091 0.0082 0.0072

5 10 0.0060 0.0110 0.0060 0.0060

6 2 16.3163 - 1.5309 -

37

According to Table 5.5, it can be concluded that the modified SG method

serves as an another option to solve different systems of nonlinear equations in

real-life applications. Generally, the modified SG method indicates better

results than the other three existing methods. In the real industry application,

computational time is an essential component to be considered. Less number

of iterations and function calls might lead to a shorter computational time. A

short computational time is allowed in reducing the cost and increasing the

profit of an industry.

5.5 Summary

The numerical experiments show that the modified SG method can be an

alternative in solving nonlinear system of equations not only in research tested

problems but also in real-life applications. Therefore, it is worthwhile to

modify the SG method. In the next chapter, some possible recommendations

will be suggested to further improve the performance of the method.

38

CHAPTER 6

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The SG method with BTA line search strategy has been proposed for solving

the optimization problems. The performance of the SG method is tested

against the SD method and CG method, through 19 optimization tested

problems. SG method has shown the best overall performance among these

three methods. It required the least number of iterations, number of function

call and computational time. The SG method can be tested as an alternative for

solving large scale problems.

The SG method and BTA line search have modified in order to solve

the nonlinear systems. The efficiency of the modified SG method has been

tested using 31 nonlinear tested problems and then compared with the BFGS

method, SD method and CG method. From the graph constructed regarding

the number of iterations, the number of function call and the computational

time, BFGS method appears to have the best overall performance, followed by

the modified SG method.

One of the reasons that the BFGS method gives better performance is

it uses the full rank matrix for Bk, while the modified SG method uses the

diagonal matrix in the updating formula of Bk. Numerous papers from

different researchers have suggested that the BFGS method is not an

appropriate method in solving the large-scale problems due to the fact that

high storage is required. Thus, we can conclude that the modified SG method

seems to be a better alternative when dealing with large-scale problems and in

real-life applications.

39

The problem encountered in this project is some of the tested problems

fail to converge to the approximate solution. Besides, the initial guessing

points for the real-life application problems have not been provided in the

papers published. Therefore, the values that close to the solution for the

problems have been chosen as the initial guessing points. The selection of

initial guessing points might lead to the failure of convergence for the method.

6.2 Recommendations for future work

It is recommended that the amount of the tested problems can be increased

since there are only 31 nonlinear tested problems used to test the efficiency of

the modified method. A higher amount of tested problems should be collected

from other different papers, to generate more reliable, accurate and precise

results.

Apart from this, in the selection of the step length, the line search

strategy used in this project is the backtracking line search with Armijo

condition. Instead of using the Armijo condition, there exist many different

types of conditions that might produce a better step length selection result. For

recommendation, the other techniques in selecting an appropriate step length

are the Goldstein condition and the Wolfe condition, which is the combination

of Armijo condition and the curvature condition. Armijo condition requires a

reduction in the step length at the next iteration, while the Wolfe condition

ensures an adequate reduction on both the step length and the slope. Goldstein

condition is identical to the Wolfe condition, which guarantees that the

sufficient reduction of the step length and prohibits the extremely small value

of step length.

Other than applying the monotone line search strategy, the

nonmonotone line search strategy has also suggested. Nonmonotone line

search with some combined conditions provides the possibility to achieve

better performance. Besides, the search direction is important the convergence

of the method. Therefore, different search directions can be carried out to

40

obtain a better approximation. Some modified search directions proposed that

give an improvement on the numerical performance are suggested, such as the

combination of some classical search directions.

41

REFERENCES

Abu-Arqub, O., Abo-Hammour, Z. and Momani, S., 2014. Application of
Continuous Genetic Algorithm for Nonlinear System of Second-Order
Boundary Value Problems. Applied Mathematics & Information Sciences, [e-
journal] 8(1), pp.235-248. http://dx.doi.org/10.12785/amis/080129.

Andrei, N., 2008. An Unconstrained Optimization Test Functions Collection.
Advanced Modeling and Optimization, 10(1), pp.147-161.

Asmundis, R.D., Serafino, D.D., Riccio, F. and Toraldo, G., 2012. On spectral
properties of steepest descent methods. IMA Journal of Numerical Analysis,
[e-journal] 33, pp.1416-1435. doi:10.1093/imanum/drs056.

Barzilai, J. and Borwein, J. M., 1988. Two-Point Step Size Gradient Methods.
Journal of Numerical Analysis, [e-journal] 8(1), pp.141-148.
https://doi.org/10.1093/imanum/8.1.141.

Broyden, C. G., 1965. A Class of Methods for Solving Nonlinear
Simultaneous Equations. Mathematics of Computation, [e-journal] 19(92),
pp.557-593. https://doi.org/10.2307/2003941.

Buzzi-Ferraris, G. and Manenti, F., 2014. Nonlinear System and Optimization
for the Chemical Engineer. [e-book] Nonlinear Systems. Germany: Wiley-
VCH Verlag GmbH & Co. KGaA. Available through: Universiti Tunku Abdul
Rahman Library website http://library.utar.edu.my/ [Accessed 24 July 2020],
pp. 235-311.

Chen, X., Liu, Y. M., Zhou, W. and Peng, X. Y., 2017. Simplex-Fruit Fly
Optimization Algorithm for Solving Systems of Non-linear Equations. In:
Fuzzy Systems and Knowledge Discovery, 2017 13th International Conference
on Natural Computation. China, 2017. New York: Institute of Electrical and
Electronic Engineers.

Conn, A. R., Gloud, N. I. M. and Toint, P. L., 2000. TRUST-REGION
METHODS. [e-book] Philadelphia: Society for Industrial and Applied
Mathematics and Mathematical Programming Society. Available at: Google
Books <https://books.google.com.my/books?hl=en&lr=&id=aJ-
Hq71nVHMC&oi=fnd&pg=PR2&dq=info:Wq0gKULdvE8J:scholar.google.c
om/&ots=LylldAllP2&sig=I8pr6UvxEdYQGHWzu84eR4moyZk&redir_esc=
y#v=onepage&q&f=false> [Accessed 10 February 2020]. pp.6-10.

Fang, X. W., 2017. A modified quasi-Newton method for nonlinear equations.
Journal of Computational and Applied Mathematics, 328(2018), pp.44-58.

42

Grosan, C. and Abraham, A., 2008. A New Approach for Solving Nonlinear
Equations Systems. IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans, [e-journal] 38(3), pp. 698-714.
https://doi.org/10.1109/TSMCA.2008.918599.

Hestenes, M. R. and Stiefel, E., 1952. Methods of Conjugate Gradients for
Solving Linear Systems. Journal of Research of the National Bureau of
Standards, [e-journal] 49(6), pp. 409-411. doi:10.6028/jres.049.044.

MarioMartıńez, J., 2000. Practical quasi-Newton methods for solving
nonlinear system. Journal of Computational and Applied Mathematics, [e-
journal] 124(1-2), pp.97-121. http://doi.org/10.1016/S0377-0427(00)00434-9.

Narushima, Y., Yabe, H. and Ford, J. A., 2011. A three-term conjugate
gradient method with sufficient descent property for unconstrained
optimization. SIAM Journal on Optimization, [e-journal] 21(1), pp.212-230.
https://doi.org/10.1137/080743573.

Ornelas-Tellez, F., Rico-Melgoza, J. J., Villafuerte, A. E. and Zavala-
Mendoza, F. J.,2019. Artificial Neural Networks for Engineering Applications.
[e-book] A Methodology for Modeling and Control Design of Dynamical
Systems. United States: Mara Conner. Available at: Google Books <
https://books.google.com.my/books?hl=en&lr=&id=OtuGDwAAQBAJ&oi=f
nd&pg=PP1&dq=artificial+neural+networks+for+engineering+applications&
ots=WqSRFbPgQj&sig=KdcAjqzYH47HAgrH4fjofjKF91s#v=onepage&q=ar
tificial%20neural%20networks%20for%20engineering%20applications&f=fal
se> [Accessed 13 March 2020]. pp.21-38.

Raydan, M. and Svaiter, B. F., 2001. Relaxed Steepest Descent and Cauchy-
Barzilai-Borwein Method. Computational Optimization and Applications, [e-
journal], 21, pp.155-167. https://doi.org/10.1023/A:1013708715892.

Shukla, M. K., Sharma, B. B. and Azar, A. T.,2018. Mathematical Techniques
of Fractional Order Systems. [e-book] Control and Synchronization of a
Fractional Order Hyperchaotic System via Backstepping and Active
Backstepping Approach. United States: Mara Conner. Available at: Google
Books
<https://books.google.com.my/books?hl=en&lr=&id=1aRBDwAAQBAJ&oi=
fnd&pg=PP1&dq=Mathematical+Techniques+of+Fractional+Order+Systems
&ots=khkGaM_uOe&sig=9njEMtOff9_6KvkgGSNsgLKUemg&redir_esc=y#
v=onepage&q=Mathematical%20Techniques%20of%20Fractional%20Order
%20Systems&f=false> [Accessed 13 March 2020]. pp.559-595.

Sim, H. S., Leong, W. J. and Chen, C. Y., 2018. Gradient method with
multiple damping for large-scale unconstrained optimization. Optimization
Letters, 13(3), pp.617-632.

Turgut, O. E., Turgut, M. S. and Coban, M. T., 2014. Chaotic quantum
behaved particle swarm optimization algorithm for solving nonlinear system

43

of equations. Computers & Mathematics with Applications, [e-journal] 68(4),
pp. 508-530. https://doi.org/10.1016/j.camwa.2014.06.013.

Yuan, G. L. and Lu, X. W., 2008. A new backtracking inexact BFGS method
for symmetric nonlinear equations. Computers & Mathematics with
Applications, [e-journal] 55(1), pp. 116-129.
https://doi.org/10.1016/j.camwa.2006.12.081.

A-1

APPENDICES

APPENDIX A: Tables of Optimization Test Problems

Table A-1: Test Problem 1 - Quadratic QF1.

TP 1 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 35 234 7.558E-
05

0.060837 27 190 8.339E-
05

0.048257 20 58 5.8549E-
05

0.031242

100 427 5630 9.212E-
05

3.956597 - - - - 106 408 9.8687E-
05

0.577956

1000 - - - - - - - - 325 1392 9.1098E-
05

34.881029

2000 - - - - - - - - 348 1546 7.8044E-
05

115.203001

5000 - - - - - - - - 724 3134 9.6348E-
05

2222.221291

A-2

Table A-2: Test Problem 2 - POWER (CUTE).

TP 2 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 456 6924 9.386E-

05

1.405910 185 2860 8.822E-

05

0.553721 105 406 8.2678E-

05

0.237365

100 - - - - - - - - 1118 4856 8.1892E-

05

6.772840

1000 - - - - - - - - - - - -
2000 - - - - - - - - - - - -
5000 - - - - - - - - - - - -

Table A-3: Test Problem 3 - QUARTC (CUTE).

TP 3 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 1 6 0 0 1 6 0 0.003990 1 6 0 0.005983

100 1 6 0 0.015619 1 6 0 0.019811 1 6 0 0.184210

1000 1 6 0 0.109351 1 6 0 0.107208 1 6 0 0.518560

2000 1 6 0 0.109351 1 6 0 0.113483 1 6 0 1.672853

5000 1 6 0 0.343667 1 6 0 0.332819 1 6 0 3.266842

A-3

Table A-4: Test Problem 4 - Almost Perturbed Quadratic.

TP 4 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 35 304 7.873E-

05

0.078071 33 304 8.99E-

05

0.070204 21 60 4.9286E-

05

0.047519

100 425 6454 8.761E-

05

4.170171 174 2776 8.77E-

05

1.973649 82 326 8.1317E-

05

0.437367

1000 - - - - - - - - 228 992 9.4705E-

05

26.641538

2000 - - - - - - - - 379 1698 7.3804E-

05

135.949297

5000 - - - - - - - - 826 3592 9.9989E-

05

2682.422505

A-4

Table A-5: Test Problem 5 - Diagonal 7.

TP 5 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 23 98 7.405E-

05

0.030916 7 34 1.082E-

05

0.011943 4 12 3.6254E-

06

0.015589

100 26 104 7.309E-

05

0.144861 7 34 3.42E-

05

0.040890 4 12 1.1464E-

05

0.062484

1000 29 116 7.215E-

05

1.583430 8 40 9.506E-

06

0.354394 4 12 3.6254E-

05

1.031004

2000 30 120 6.921E-

05

1.579953 8 40 1.344E-

05

0.383751 4 12 5.127E-

05

2.151960

5000 31 124 7.423E-

05

5.282017 11 46 4.95E-

05

1.191037 4 12 8.1065E-

05

20.781065

A-5

Table A-6: Test Problem 6 - Diagonal 8.

TP 6 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 25 102 7.605E-

05

0.031239 8 30 9.169E-

06

0.012968 5 14 1.4994E-

07

0.015612

100 28 114 8.009E-

05

0.174508 8 30 2.899E-

05

0.054827 5 14 4.7415E-

07

0.046865

1000 31 126 8.435E-

05

1.858927 8 30 9.169E-

05

0.369179 5 14 1.4994E-

06

1.396047

2000 32 130 8.268E-

05

2.363073 9 34 9.137E-

05

0.423841 5 14 2.1205E-

06

2.988238

5000 33 134 9.061E-

05

7.057156 10 36 2.317E-

06

1.246357 5 14 3.3528E-

06

26.409306

A-6

Table A-7: Test Problem 7 - Generalized Quartic.

TP 7 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 8 46 2.09E-

06

0.015619 21 128 9.748E-

05

0.030932 10 28 2.1262E-

06

0.046862

100 10 58 5.469E-

09

0.093727 74 556 8.293E-

05

0.493348 11 30 4.7947E-

07

0.267987

1000 11 58 1.722E-

08

0.765442 105 828 9.143E-

05

6.674479 12 32 3.023E-

05

3.155496

2000 11 58 1.722E-

08

0.843554 33 180 8.44E-

05

2.083458 12 32 4.8997E-

05

6.869982

5000 11 58 1.722E-

08

2.828467 28 158 7.682E-

05

4.857070 12 32 6.2949E-

05

60.728033

A-7

Table A-8: Test Problem 8 – Diagonal 9.

TP 8 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 - - - - - - - - 107 566 7.5758E-

05

0.281159

100 - - - - - - - - 405 2056 8.5691E-

05

2.600285

1000 - - - - - - - - 1357 6036 9.2222E-

05

153.557265

2000 - - - - - - - - 1354 5766 4.7957E-

05

480.984253

5000 - - - - - - - - 1692 7008 8.3679E-

05

7112.805255

A-8

Table A-9: Test Problem 9 – BIGGSB1 (CUTE).

TP 9 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 196 1134 8.91E-

05

0.328046 164 1552 9.473E-

05

0.290665 106 290 9.9803E-

05

0.312426

100 - - - - 1063 10596 8.517E-

05

6.238520 5823 17982 9.9546E-

05

63.462501

1000 - - - - 5484 61036 9.73E-

05

315.030891 - - - -

2000 - - - - - - - - - - - -

5000 - - - - - - - - - - - -

A-9

Table A-10: Test Problem 10 – Raydan 2.

TP 10 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 5 10 6.006E-

08

0.015610 9 18 2.518E-

05

0.055851 6 12 4.7819E-

06

0.031214

100 5 10 1.899E-

07

0.031240 9 18 7.964E-

05

0.046882 6 12 1.5122E-

05

0.070452

1000 5 10 6.006E-

07

0.201459 10 20 5.145E-

05

0.289199 6 12 4.7819E-

05

1.484025

2000 5 10 8.494E-

07

0.078108 10 20 7.276E-

05

0.128236 6 12 6.7626E-

05

2.944845

5000 5 10 1.343E-

06

0.219627 11 22 1.87E-

05

0.288230 7 14 1.6589E-

08

35.217048

A-10

Table A-11: Test Problem 11 – Raydan 1.

TP 11 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 61 122 9.665E-

05

0.062486 22 44 9.142E-

05

0.065114 33 66 8.4207E-

05

0.093727

100 191 1164 9.891E-

05

1.286014 100 782 9.875E-

05

0.485901 131 416 9.5415E-

05

0.687335

1000 2977 39122 9.984E-

05

223.320333 - - - - 361 1528 8.7275E-

05

41.135214

2000 5952 90100 9.88E-

05

 638.218482 - - - - 466 2074 9.5739E-

05

274.855284

5000 - - - - - - - - 836 3820 9.7701E-

05

4516.750336

A-11

Table A-12: Test Problem 12 – Diagonal 1.

TP 12 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 27 180 9.651E-

05

0.050436 42 338 9.184E-

05

0.046902 19 52 9.6945E-

05

0.048870

100 238 3146 8.787E-

05

3.476604 - - - - 81 288 9.6226E-

05

0.798925

1000 - - - - - - - - 259 1082 9.2007E-

05

49.777635

2000 - - - - - - - - 335 1386 9.6718E-

05

184.014975

5000 - - - - - - - - 788 3072 7.8264E-

05

3975.992915

A-12

Table A-13: Test Problem 13 – Diagonal 2.

TP 13 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 65 130 9.233E-

05

0.093729 23 46 9.188E-

05

0.015595 33 66 8.5851E-

05

0.093728

100 566 1132 9.924E-

05

4.329444 76 152 9.485E-

05

0.238334 312 628 9.9712E-

05

3.532682

1000 4643 9286 9.999E-

05

134.802648 219 438 9.932E-

05

5.352855 4663 9524 9.9602E-

05

814.979268

2000 8672 17344 9.995E-

05

120.167802 298 596 9.836E-

05

3.831710 6418 12844 9.9961E-

05

2738.229675

5000 - - - - 443 886 9.925E-

05

14.858461 - - - -

A-13

Table A-14: Test Problem 14 – Hager.

TP 14 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 16 64 6.878E-

05

0.015619 8 32 9.762E-

05

0.015597 10 24 1.1567E-

05

0.102723

100 32 214 9.5E-05 0.140615 37 284 7.844E-

05

0.178350 20 58 8.3481E-

05

0.285236

1000 102 1010 1.598E-

05

5.415768 97 1158 9.743E-

05

4.581524 56 190 2.4363E-

05

14.186338

2000 163 1758 9.06E-

05

9.273931 154 2088 9.42E-

05

10.547082 62 226 8.2183E-

05

37.687442

5000 129 1466 8.36E-

05

20.112497 9780 125280 - 26838.83472 80 304 9.7398E-

05

447.313912

A-14

Table A-15: Test Problem 15 – Diagonal 4.

TP 15 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 463 6104 9.329E-

05

0.827929 31 352 5.743E-

05

0.061628 7 38 2.061E-

12

0.017271

100 516 6802 8.794E-

05

3.046180 36 412 5.576E-

05

0.175193 7 38 6.5176E-

12

0.111699

1000 564 7434 9.62E-

05

26.234876 41 480 9.214E-

05

1.987349 7 38 2.061E-

11

1.874465

2000 581 7658 9.006E-

05

33.035085 43 494 4.388E-

05

2.861251 7 38 2.9147E-

11

4.612329

5000 600 7908 9.707E-

05

91.343327 46 546 7.001E-

05

6.024417 7 38 4.6086E-

11

43.448089

A-15

Table A-16: Test Problem 16 – Quadratic QF 2.

TP 16 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 45 484 8.49E-

05

0.062477 94 1308 8.11E-

05

0.141028 32 102 2.6673E-

05

0.109346

100 - - - - - - - - 117 456 9.0096E-

06

1.582681

1000 - - - - - - - - 347 1414 9.5194E-

05

69.219293

2000 - - - - - - - - 485 2078 6.9896E-

05

286.251893

5000 - - - - - - - - 730 3128 9.8032E-

05

3707.624165

A-16

Table A-17: Test Problem 17 – DQDRTIC (CUTE).

TP 17 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 - - - - - - - - 158 670 7.9618E-

05

0.593603

100 - - - - - - - - 82 328 3.0504E-

07

1.117453

1000 - - - - - - - - 92 410 9.8106E-

05

19.517328

2000 - - - - - - - - 74 302 7.1429E-

05

44.279710

5000 - - - - - - - - 65 284 4.4114E-

06

334.735215

A-17

Table A-18: Test Problem 18 – ARWHEAD (CUTE).

TP 18 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 13 146 6.717E-

05

0.031243 23 238 2.214E-

05

0.039565 13 42 1.4344E-

05

0.046861

100 - - - - - - - - 43 146 2.6329E-

10

0.532612

1000 - - - - - - - - 19 80 8.2288E-

06

4.257379

2000 - - - - - - - - 25 106 5.0406E-

05

16.335002

5000 - - - - - - - - 49 248 9.9657E-

05

260.881529

A-18

Table A-19: Test Problem 19 – Extended Rosenbrock.

TP 19 Steepest Descent Method Conjugate Gradient Method Spectral Gradient Method

Dimension
(n)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm
of g

Computational
Time (s)

No. of
Iteration

(k)

No. of
Function

Call

Norm of
g

Computational
Time (s)

10 - - - - - - - - 95 540 6.4118E-

05

0.349580

100 - - - - - - - - 96 540 7.3136E-

05

1.453197

1000 - - - - - - - - 92 508 9.222E-

05

22.384946

2000 - - - - - - - - 151 860 5.7023E-

05

98.066637

5000 - - - - - - - - 106 590 8.7849E-

05

553.935570

B-1

APPENDIX B: List of Optimization Test Problems

TP1: Quadratic QF1 function

𝑓(𝑥) =
1

2
෍ 𝑖𝑥௜

ଶ − 𝑥௡

௡

௜ୀଵ

, 𝑥଴ = [1,1, … ,1].

TP2: POWER function (CUTE)

𝑓(𝑥) = ෍(𝑖𝑥௜)ଶ

௡

௜ୀଵ

, 𝑥଴ = [1,1, … ,1].

TP3: QUARTC function (CUTE)

𝑓(𝑥) = ෍(𝑥௜ − 1)ସ

௡

௜ୀଵ

, 𝑥଴ = [2,2, … ,2].

TP4: Almost Perturbed Quadratic function

𝑓(𝑥) = ෍ 𝑖𝑥௜
ଶ

௡

௜ୀଵ

+
1

100
(𝑥ଵ + 𝑥௡)ଶ, 𝑥଴ = [0.5,0.5, … ,0.5].

TP5: Diagonal 7 function

𝑓(𝑥) = ෍ 𝑒௫೔

௡

௜ୀଵ

− 2𝑥௜ − 𝑥௜
ଶ, 𝑥଴ = [1,1, … ,1].

TP6: Diagonal 8 function

𝑓(𝑥) = ෍ 𝑥௜𝑒௫೔

௡

௜ୀଵ

− 2𝑥௜ − 𝑥௜
ଶ, 𝑥଴ = [1,1, … ,1].

TP7: Generalized Quartic function

𝑓(𝑥) = ෍ 𝑥௜
ଶ

௡ିଵ

௜ୀଵ

+ (𝑥௜ାଵ + 𝑥௜
ଶ)ଶ, 𝑥଴ = [1,1, … ,1].

TP8: Diagonal 9 function

𝑓(𝑥) = ෍(𝑒௫೔ − 𝑖𝑥௜) + 10000𝑥௡
ଶ

௡ିଵ

௜ୀଵ

, 𝑥଴ = [1,1, … ,1].

TP9: BIGGSB1 function (CUTE)

𝑓(𝑥) = (𝑥ଵ − 1)ଶ + ෍(𝑥௜ାଵ − 𝑥௜)ଶ

௡ିଵ

௜ୀଵ

+ (1 − 𝑥௡)ଶ, 𝑥଴ = [0,0, … ,0].

TP10: Raydan 2 function

B-2

𝑓(𝑥) = ෍ 𝑒௫೔ − 𝑥௜, 𝑥଴ = [1,1, … 1].

௡

௜ୀଵ

TP11: Raydan 1 function

𝑓(𝑥) = ෍
𝑖

10
(𝑒௫೔ − 𝑥௜), 𝑥଴ = [1,1, … 1].

௡

௜ୀଵ

TP12: Diagonal 1 function

𝑓(𝑥) = ෍ 𝑒௫೔ − 𝑖𝑥௜, 𝑥଴ = ൤
1

𝑛
,
1

𝑛
, … ,

1

𝑛
൨ .

௡

௜ୀଵ

TP13: Diagonal 2 function

𝑓(𝑥) = ෍ 𝑒௫೔ −
𝑥௜

𝑖
, 𝑥଴ = ൤

1

1
,
1

2
, … ,

1

𝑛
൨ .

௡

௜ୀଵ

TP14: Hager function

𝑓(𝑥) = ෍ 𝑒௫೔ − √𝑖𝑥௜, 𝑥଴ = [1,1, … 1].

௡

௜ୀଵ

TP15: Diagonal 4 function

𝑓(𝑥) = ෍
1

2
(𝑥ଶ௜ିଵ

ଶ + 𝑐𝑥ଶ௜
ଶ)

௡/ଶ

௜ୀଵ

, 𝑥଴ = [1,1, … ,1], 𝑐 = 100.

TP16: Quadratic QF2 function

𝑓(𝑥) =
1

2
෍ 𝑖(𝑥௜

ଶ − 1)ଶ − 𝑥௡

௡

௜ୀଵ

, 𝑥଴ = [0.5, 0.5, … ,0.5].

TP17: DQDRTIC function (CUTE)

𝑓(𝑥) = ෍(𝑥௜
ଶ + 𝑐𝑥௜ାଵ

ଶ + 𝑑𝑥௜ାଶ
ଶ)

௡ିଶ

௜ୀଵ

, 𝑐 = 100, 𝑑 = 100, 𝑥଴ = [3,3, … ,3].

TP18: ARWHEAD function (CUTE)

𝑓(𝑥) = ෍(−4𝑥௜ + 3)

௡ିଵ

௜ୀଵ

+ ෍(𝑥௜
ଶ + 𝑥௡

ଶ)ଶ

௡ିଵ

௜ୀଵ

, 𝑥଴ = [1,1, … ,1].

TP19: Extended Rosenbrock function

𝑓(𝑥) = ෍ 𝑐(𝑥ଶ௜ − 𝑥ଶ௜ିଵ
ଶ)ଶ

೙

మ

௜ୀଵ

+ (1 − 𝑥ଶ௜ିଵ)ଶ, 𝑥଴ = [−1.2,1, … , −1.2,1].

𝑐 = 100.

C-1

APPENDIX C: Tables of Nonlinear Test Problems

Table C-1: Number of Iteration.

Problem Dim Modified SG BFGS SD CG

TP1 2 37 9 113 28

TP2 2 185 - - -

TP3 4 5281 335 - -

TP4 10 23 506 - -

100 - - - -

200 - - - -

500 - - - -

TP5 10 120 11 245 -

100 - 28 - -

200 - - - -

500 - - - -

TP6 10 111 17 3144 38

100 - 197 - -

200 - 456 - -

500 - 1824 - -

TP7 10 5 5 6 5

100 8 14 7 18

200 9 19 7 15

500 9 16 7 10

TP8 10 17 20 15 -

100 16 43 16 -

200 18 46 17 -

500 17 51 17 -

TP9 10 6 7 7 6

100 6 7 6 8

200 6 7 5 9

500 6 7 5 9

TP10 10 7 7 6 9

C-2

100 7 7 6 9

200 7 7 6 9

500 7 7 6 10

TP11 10 46 9 124 28

100 57 12 140 31

200 57 11 144 31

500 61 11 149 36

TP12 10 10 20 13 30

100 11 42 14 33

200 11 37 14 34

500 11 38 14 27

TP13 10 36 14 39 27

100 395 92 417 94

200 777 122 828 135

500 - 206 - -

TP14 10 419 18 448 76

100 - 146 - -

200 - 317 - -

500 - - - -

TP15 10 1 1 1 1

100 1 1 1 1

200 1 1 1 1

500 1 1 1 1

TP16 10 43 16 38 32

100 389 109 413 93

200 752 177 - -

500 - 559 - -

TP17 10 6 6 24 21

100 6 6 27 25

200 6 6 28 25

500 6 6 29 27

TP18 10 7 43 34 6

C-3

100 7 43 37 7

200 7 43 38 7

500 7 43 39 7

TP19 10 11 21 12 23

100 12 23 11 27

200 12 26 11 38

500 12 25 12 52

TP20 10 1000 - - -

100 - - - -

200 - - - -

500 - - - -

TP21 10 108 11 188 35

100 - 142 - 847

200 - 256 - -

500 - - - -

TP22 10 7 7 6 9

100 7 8 6 9

200 7 8 6 10

500 7 8 6 10

TP23 10 34 17 62 22

100 156 94 243 88

200 304 - 484 546

500 886 - - -

TP24 10 30 18 30 42

100 215 111 229 -

200 405 174 447 -

500 - - - -

TP25 10 34 20 66 23

100 - 87 - 181

200 - 152 - 343

500 - 306 - 773

TP26 10 12 16 19 24

C-4

100 40 38 36 26

200 56 41 63 47

500 89 69 86 96

TP27 10 185 4 453 55

100 231 4 504 60

200 234 4 520 62

500 246 4 540 65

TP28 10 56 18 54 100

100 466 118 - -

200 905 - - -

500 - - - -

TP29 10 903 13 - -

100 880 13 - -

200 909 14 - -

500 872 14 - -

TP30 10 14 8 15 18

100 153 56 - -

200 210 187 - -

500 263 216 - -

TP31 10 - 354 - -

100 - - - -

200 - - - -

500 - - - -

C-5

Table C-2: Number of Function Call.

Problem Dim Modified SG BFGS SD CG

TP1 2 357 95 1996 477

TP2 2 4087 - - -

TP3 4 100047 6437 - -

TP4 10 115 12263 - -

100 - - - -

200 - - - -

500 - - - -

TP5 10 1307 80 2713 -

100 - 491 - -

200 - - - -

500 - - - -

TP6 10 746 143 2200 250

100 - 2816 - -

200 - 7403 - -

500 - 39326 - -

TP7 10 22 32 26 22

100 37 89 39 86

200 44 128 45 83

500 50 113 45 57

TP8 10 79 176 161 -

100 78 437 174 -

200 83 458 181 -

500 82 497 181 -

TP9 10 26 41 30 26

100 26 41 26 34

200 26 41 22 38

500 26 41 22 38

TP10 10 30 44 26 38

100 30 44 26 38

200 30 44 26 38

C-6

500 30 44 26 42

TP11 10 468 98 2184 477

100 593 137 2467 537

200 593 131 2537 537

500 648 131 2629 638

TP12 10 51 182 171 350

100 55 416 184 386

200 55 368 184 408

500 55 386 184 305

TP13 10 230 146 434 272

100 5608 1853 8669 2061

200 13130 2924 19664 3368

500 - 5507 - -

TP14 10 5998 260 10656 1821

100 - 3098 - -

200 - 6476 - -

500 - - - -

TP15 10 12 14 12 12

100 12 14 12 12

200 12 14 12 12

500 12 14 12 12

TP16 10 267 179 538 457

100 5443 2522 9826 2318

200 12745 4619 - -

500 - 14717 - -

TP17 10 29 38 170 119

100 29 38 191 141

200 29 38 198 141

500 29 38 205 152

TP18 10 60 1007 324 53

100 60 1007 345 57

200 60 1007 352 57

C-7

500 60 1007 359 57

TP19 10 58 173 110 229

100 62 194 103 215

200 62 221 103 355

500 62 212 110 543

TP20 10 15105 - - -

100 - - - -

200 - - - -

500 - - - -

TP21 10 923 95 1825 331

100 - 2558 - 16212

200 - 4751 - -

500 - - - -

TP22 10 30 44 26 38

100 30 47 26 38

200 30 47 26 42

500 30 47 26 42

TP23 10 138 104 250 90

100 1571 1382 2540 876

200 4035 - 6804 11774

500 15396 - - -

TP24 10 176 155 335 548

100 2437 2099 4767 -

200 5513 4100 10622 -

500 - - - -

TP25 10 138 122 266 94

100 - 821 - 2067

200 - 1784 - 4869

500 - 4385 - 13648

TP26 10 53 101 132 167

100 255 380 401 322

200 418 476 809 745

C-8

500 733 896 1243 1253

TP27 10 2764 41 9416 1095

100 3389 50 10475 1193

200 3392 56 10809 1228

500 3629 59 11222 1294

TP28 10 346 224 935 2193

100 6699 2834 - -

200 15724 - - -

500 - - - -

TP29 10 15935 179 - -

100 15468 176 - -

200 16067 212 - -

500 15307 230 - -

TP30 10 82 89 260 281

100 1574 638 - -

200 2657 2579 - -

500 4288 2888 - -

TP31 10 - 7958 - -

100 - - - -

200 - - - -

500 - - - -

C-9

Table C-3: Computational Time.

Problem Dim Modified SG BFGS SD CG

TP1 2 0.0377 0.0156 0.1588 0.0327

TP2 2 0.3477 - - -

TP3 4 12.8596 0.7998 - -

TP4 10 0.0659 1.9320 - -

100 - - - -

200 - - - -

500 - - - -

TP5 10 0.2786 0.0156 0.3791 -

100 - 0.2031 - -

200 - - - -

500 - - - -

TP6 10 0.2364 0.0409 0.4999 0.0468

100 - 1.7897 - -

200 - 12.8433 - -

500 - 141.8134 - -

TP7 10 0.0183 0.0252 0.0156 0.0156

100 1.3747 3.3273 1.2978 2.7794

200 6.3383 17.6500 5.9025 11.1102

500 39.5548 90.4540 35.7008 46.3121

TP8 10 0.0345 0.0469 0.0199 -

100 0.0937 0.3302 0.0781 -

200 0.2656 0.7811 0.1480 -

500 0.6092 2.6087 0.3593 -

TP9 10 0.0159 0.0160 0.0156 0.0157

100 0.0469 0.0468 0.0270 0.0299

200 0.1187 0.1249 0.0312 0.0625

500 0.2343 0.3280 0.0781 0.1406

TP10 10 0.0169 0.0190 0.0156 0.0100

100 0.0468 0.0625 0.0312 0.0469

200 0.1249 0.1406 0.0459 0.0468

C-10

500 0.2499 0.3436 0.0938 0.1406

TP11 10 0.1037 0.0280 0.2500 0.0548

100 0.588 0.1406 1.6251 0.3280

200 1.6090 0.3437 2.9293 0.6249

500 4.0928 0.9060 8.0522 1.9062

TP12 10 0.0355 0.0941 0.0469 0.1250

100 0.0986 0.5075 0.1657 0.2968

200 0.2031 0.6717 0.2022 0.4975

500 0.4374 2.2963 0.5097 0.9060

TP13 10 0.3348 0.0496 0.0419 0.0312

100 2.9450 0.7132 2.5780 0.5201

200 16.5315 2.6681 9.0869 1.4572

500 - 13.7111 - -

TP14 10 1.5635 0.0457 0.8904 0.1406

100 - 1.3542 - -

200 - 8.5907 - -

500 - - - -

TP15 10 0.0063 0.0065 0 0

100 0.0187 0.0194 0.0156 0.0130

200 0.0451 0.0503 0.0249 0.0312

500 0.1036 0.1114 0.0558 0.0625

TP16 10 0.1210 0.0400 0.0469 0.0298

100 2.9416 0.9077 2.7168 0.5624

200 16.1627 5.7721 - -

500 - 39.3981 - -

TP17 10 0.0161 0.0153 0.0312 0.0312

100 0.0395 0.0436 0.1106 0.109

200 0.0800 0.0979 0.2031 0.1666

500 0.2332 0.3102 0.5035 0.4062

TP18 10 0.0200 0.1439 0.0469 0.0156

100 0.0710 0.7358 0.2595 0.0469

200 0.1608 1.9194 0.4766 0.0937

C-11

500 0.4561 4.9442 1.2028 0.2045

TP19 10 0.0270 0.0810 0.0210 0.0469

100 0.1235 0.2830 0.1249 0.2343

200 0.2702 0.8715 0.1963 0.7141

500 0.7603 2.2219 0.5230 2.6054

TP20 10 4.6466 - - -

100 - - - -

200 - - - -

500 - - - -

TP21 10 0.3965 0.0402 0.3112 0.0469

100 - 1.8850 - 9.3494

200 - 9.3099 - -

500 - - - -

TP22 10 0.0146 0.0196 0 0.0156

100 0.0394 0.0471 0.0156 0.0469

200 0.0762 0.0877 0.0389 0.0625

500 0.2243 0.3465 0.0625 0.1147

TP23 10 0.0781 0.0312 0.0540 0.0312

100 1.3068 0.8830 1.3822 0.4718

200 6.7494 - 5.5519 8.3839

500 59.4872 - - -

TP24 10 0.0468 0.0534 0.0389 0.0469

100 1.6106 0.9886 1.8360 -

200 7.5562 4.3202 5.8892 -

500 - - - -

TP25 10 0.0625 0.0469 0.0469 0.0230

100 - 0.4414 - 0.6561

200 - 2.0771 - 2.2784

500 - 14.3440 - 12.2185

TP26 10 0.0378 0.0378 0.0312 0.0312

100 0.2025 0.2090 0.1250 0.1093

200 0.6721 0.5710 0.3905 0.3173

C-12

500 3.1619 3.3452 1.3098 1.4216

TP27 10 0.4545 0.0156 0.7967 0.0625

100 1.5540 0.0378 2.7672 0.2968

200 3.8791 0.0846 4.7032 0.5186

500 12.5077 0.2124 11.4012 1.2728

TP28 10 0.1381 0.0534 0.0958 0.2274

100 5.9972 2.1725 - -

200 33.7302 - - -

500 - - - -

TP29 10 2.5528 0.0469 - -

100 6.6330 0.1023 - -

200 16.3265 0.2795 - -

500 43.3721 0.8184 - -

TP30 10 0.0313 0.0313 0.0469 0.0519

100 2.6854 1.0350 - -

200 10.5229 10.7394 - -

500 42.5368 31.2650 - -

TP31 10 - 1.4573 - -

100 - - - -

200 - - - -

500 - - - -

D-1

APPENDIX D: List of Nonlinear Test Problems

TP1: Freudenstein and Roth function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥))்

𝑓ଵ(𝑥) = 10(𝑥ଶ − 𝑥ଵ
ଶ)

𝑓ଶ(𝑥) = 1 − 𝑥ଵ

𝑥଴ = [6, 3]்

TP2: Beale function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥))்

𝑓ଵ(𝑥) = 1.5 − 𝑥ଵ(1 − 𝑥ଶ)

𝑓ଶ(𝑥) = 2.25 − 𝑥ଵ(1 − 𝑥ଶ
ଶ)

𝑥଴ = [1, 1]்

TP3: Wood function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), 𝑓ଷ(𝑥), 𝑓ସ(𝑥))்

𝑓ଵ(𝑥) = 200𝑥ଵ(𝑥ଵ
ଶ − 𝑥ଶ) + 𝑥ଵ − 1

𝑓ଶ(𝑥) = 100(𝑥ଶ − 𝑥ଵ
ଶ) + 10(𝑥ଶ + 𝑥ସ − 2) +

1

10
(𝑥ଶ − 𝑥ସ)

𝑓ଷ(𝑥) = 180𝑥ଷ(𝑥ଷ
ଶ − 𝑥ସ) + 𝑥ଷ − 1

𝑓ସ(𝑥) = 90(𝑥ସ − 𝑥ଷ
ଶ) + 10(𝑥ଶ + 𝑥ସ − 2) −

1

10
(𝑥ଶ − 𝑥ସ)

𝑥଴ = [−3, −1, −3, −1]்

TP4: Variably dimensioned function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))்

𝑓௜(𝑥) = 𝑥௜ − 1 + 𝑖 ෍ 𝑗൫𝑥௝ − 1൯

௡

௝ୀଵ

+ 2𝑖(෍ 𝑗(𝑥௝ − 1))

௡

௝ୀଵ

ଷ

𝑥଴ = [
𝑛 − 1

𝑛
,
𝑛 − 2

𝑛
, … ,

1

𝑛
, 0]்

TP5: Brown almost-linear function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))்

𝑓௜(𝑥) = 𝑥௜ + ෍ 𝑥௝

௡

௝ୀଵ

− (𝑛 + 1), 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 − 1,

𝑓௡(𝑥) = ቌෑ 𝑥௝

௡

௝ୀଵ

ቍ − 1

𝑥଴ = [
1

2
,
1

2
, … ,

1

2
]்

D-2

TP6: Discrete boundary function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))்

𝑓௜(𝑥) = 2𝑥௜ − 𝑥௜ିଵ − 𝑥௜ାଵ + 0.5ℎଶ(𝑥௜ + 𝑡௜ + 1)ଷ, 𝑖 = 1,2, … 𝑛,

ℎ =
1

𝑛 + 1
, 𝑡௜ = 𝑖ℎ 𝑎𝑛𝑑 𝑥଴ = 𝑥௡ାଵ = 0

𝑥଴ = [𝑡ଵ(𝑡ଵ − 1), 𝑡ଶ(𝑡ଶ − 1), … , 𝑡௡(𝑡௡ − 𝑛)]்

TP7: Discrete integral equation function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))்

𝑓௜(𝑥) = 𝑥௜ + 0.5ℎ[(1 − 𝑡௜) ෍ 𝑡௝(𝑥௜ + 𝑡௜ + 1)ଷ

௜

௝ୀଵ

+ 𝑡௜ ෍ (1 − 𝑡௝)(𝑥௜ + 𝑡௜ + 1)ଷ]

௡

௝ୀ௜ାଵ

, 𝑖 = 1,2, … 𝑛,

ℎ =
1

𝑛 + 1
, 𝑡௜ = 𝑖ℎ 𝑎𝑛𝑑 𝑥଴ = 𝑥௡ାଵ = 0

𝑥଴ = [𝑡ଵ(𝑡ଵ − 1), 𝑡ଶ(𝑡ଶ − 1), … , 𝑡௡(𝑡௡ − 𝑛)]்

TP8: Broyden tridiagonal function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))்

𝑓௜(𝑥) = (3 − 2𝑥௜)𝑥௜ − 𝑥௜ିଵ − 2𝑥௜ାଵ + 1, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛,

𝑥଴ = 𝑥௡ାଵ = 0

𝑥଴ = [−1, −1, … , −1]்

TP9: Logarithmic function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))்

𝑓௜(𝑥) = ln(𝑥௜ + 1) −
𝑥௜

𝑛
, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛,

𝑥଴ = [1,1, … ,1]்

TP10: Strictly convex function: 𝐹(𝑥) = (𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥))்

𝑓௜(𝑥) = 𝑒௫೔ − 1, 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛,

𝑥଴ = [
1

𝑛
,
2

𝑛
, … ,1]்

TP11: Extended Freudenstein and Roth function: 𝐹(𝑥) =

൫𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥)൯
்

𝑓ଶ௜ିଵ(𝑥) = 𝑥ଶ௜ିଵ + ൫(5 − 𝑥ଶ௜)𝑥ଶ௜ − 2൯𝑥ଶ௜ − 13, 𝑓𝑜𝑟 𝑖 = 1,2, … ,
𝑛

2
,

𝑓ଶ௜(𝑥) = 𝑥ଶ௜ିଵ + ൫(1 + 𝑥ଶ௜)𝑥ଶ௜ − 14൯𝑥ଶ௜ − 29, 𝑓𝑜𝑟 𝑖 = 1,2, … ,
𝑛

2

𝑥଴ = [6,3,6,3, … ,6,3]்

D-3

TP12: The discretized two-point boundary value function

𝐹(𝑥) = 𝐴𝑥 +
1

(𝑛 + 1)ଶ
𝐺(𝑥),

𝑤ℎ𝑒𝑟𝑒 𝐴 𝑖𝑠 𝑡ℎ𝑒 𝑛 × 𝑛 𝑡𝑟𝑖𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦

8 −1
−1 8 −1

⋱ ⋱ ⋱
⋱ ⋱ −1

−1 8

𝑎𝑛𝑑 𝐺(𝑥) = (𝑠𝑖𝑛𝑥ଵ − 1, 𝑠𝑖𝑛𝑥ଶ − 1, … , 𝑠𝑖𝑛𝑥௡ − 1)்

𝑥଴ = [50,0,50,0, … ,50,0]்

