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ABSTRACT

A Phase Measurement Unit (PMU) is a device to monitor the electrical activity
and every electrical company uses it. Since PMU comes at a high cost and
the company wants to use the least amount of PMU while monitoring all the
electrical network stations to make sure they could respond to any emergency
situation. When we convert this problem into Graph Theory, we have the power
dominating problem which is to find the minimum cardinality of the smallest
power dominating set (PDS) of a graph (i.e. the power dominating number).

In this project, we will be investigating the power dominating number
of a specific graph called twisted torus, which is a variation of torus graph. To
find the power dominating number, we have to understand the observation rules
and apply it properly. Then, we have to study and analyze the power dominating
problem for various graphs. For example, the torus and the cylinder graph have
the closest resemblance of a twisted torus.

Once we have gone through that, we will begin the first phase of the
proof. That is, find the zero forcing number for the twisted torus such that we
could apply it to a known theorem in order to find the lower bound of the power
dominating number. To find the zero forcing number, we have broken down the
problem into different parts in order to get a good grasp on it.

If the zero forcing number is found, we may enter the second and the
last phase of the proof. That is, find the lower bound and the upper bound of
power dominating number of the twisted torus. In this phase, we will show
the construction of the PDS and the bounded region of the power dominating
number of the twisted torus.
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CHAPTER 1

INTRODUCTION

1.1 Background

Every electrical company has to monitor their electrical networks consistently to

prevent any deficiency in their networks. To do that, they installed some devices

called Phase Measurement Units (PMUs) at various locations in the network

system. What PMU does is it measures the currents and phase differences (or

phase angles) of all transmission lines connected to the PMU’s location. Since

PMU comes with a high cost, it will be a financial burden for the electrical

company to buy a bulk of PMUs. To prevent any financial issue, they have to

reduce the number of PMU that is needed for the electrical company as much as

possible and place the devices at proper locations such that they will be able to

monitor the entire network. Thus, this turn into PMU placement problem.

PMU placement problem is also known as the Power Dominating Set

Problem, which is a variation of dominating set problem that uses the idea

of Graph Theory together with the properties of Kirchhoff’s Current Law and

Ohm’s Law. Barrera (2009) states that this problem has been proven to be NP-

Complete. In other words, we can’t find a minimal power dominating set for a

graph efficiently.

1.2 Objectives

The main goal of this project is to find the upper bound of the twisted torus

graph, a variation of torus graph. We will begin the search by understanding

the observation rules and apply them on a solved problem to get a better under-

standing. Then, we will begin the first phase of the proof. That is, find the zero

forcing number of the twisted torus. Once that is found, we may apply it on a

theorem and proceed to the next and the last phase of the proof. That is, find the

lower and upper bound of twisted torus. It is possible to be done by a specific

way of constructing the power dominating set, but analytic reasoning is required

to explain the how and the why.
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1.3 Project Timeline

Figure 1.1: Project I Timeline (May 2020)
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Figure 1.2: Project II Timeline (Jan 2021)
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CHAPTER 2

DEFINITIONS AND NOTATIONS

2.1 Graph

Let graphG = (V,E) denote a graph where V and E are the vertex set and edge

set of G respectively. Given any vertex v ∈ V , the neighborhood of v, denoted

by N(v), is the set of all vertices adjacent to v, and its closed neighborhood

is N [v] = N(v) ∪ {v}. For any set S ⊆ V , its neighborhood of S is defined

to be N(S) =
⋃
v∈S N(V ) and its closed neighborhood of S is defined to be

N [S] = N(S) ∪ S.

A path graph Pn is a connected graph with n vertices where the start-

vertex and the end-vertex has degree of 1 and the rest of the vertices have degree

of 2.

Figure 2.1: Example of path graph

A cycle graph Cn is a connected graph with n vertices where all the

vertices only has degree of 2. If a vertex is removed from the cycle graph (so

are the edges incident to the vertex), it will become a path graph.

Figure 2.2: Example of cycle graph

The Cartesian product of two graphs G1, G2, denoted G = G1�G2 is

the graph with vertex set of V (G) = V (G1) × V (G2) = {(x1, x2) | xi ∈

V (Gi), i = 1, 2}. Given any two vertices such as (u1, u2) and (v1, v2) from

G, we say they are adjacent if and only if either u1 = v1 and u2v2 ∈ E(G2), or

u2 = v2 and u1v1 ∈ E(G1). There are some notable Cartesian product of graphs

such as grid Pn�Pm, cylinder Pn�Cm, and torus Cn�Cm.
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Figure 2.3: Example of torus graph C3�C4

Let Cm�Cn denote the torus graph which consists of m copies of the

n-cycle

xi,1xi,2 · · ·xi,nxi,1,

i = 1, 2, . . . ,m together with n copies of the m-cycle

x1,jx2,j · · ·xm,jx1,j,

j = 1, 2, . . . , n. Here m,n ≥ 3. Let Cm�Ct
n denote the twisted torus which is

the graph obtained from the torus Cm�Cn by first deleting the set of m edges

x1,nx1,1, x2,nx2,1, . . . , xm,nxm,1

and then join the resulting graph with a set of m new edges

x1,nx2,1, x2,nx3,1, . . . , xm−1,nxm,1, xm,nx1,1.

Figure 2.4: An example of twisted torus graph C6�Ct
3
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2.2 Dominating Set

Given that S is a subset of vertices of graph G, we say S is a dominating set if

any vertex from G that is not in S is adjacent to one or more vertex in S. The

domination number of a graph G (denoted by γ(G)) is the cardinality of the

smallest dominating set.

We may also apply some conditions or rules on the vertices of the dom-

inating set to create a different set of problem. For example, power dominating

set (denoted by SP ) is a problem that applies observation rules, and zero forcing

set (denoted by SZ) is a problem that applies color-change rule. The details of

these rules can be found in Chapter 4. We use γP and γZ to represent the power

dominating number and the zero forcing number.

Another notable problem is the Eight Queens Problem. In the original

statement, we want to find eight distinct positions to place the queens with the

condition that none of the queens could attack each other on a normal 8 by 8

chessboard. When the positions are identified, we noticed that all the squares

on the chessboard are in the line of attack by at least one queen. Then, we ask

the following question. Using the condition from above, what is the minimum

number of queens (i.e. the dominating number) needed such that all the squares

are attackable by at least one queen? The answer is γ(G) = 5 (Gibbons, 1985).

Figure 2.5: Solution for Eight Queens Problem
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Figure 2.6: Solution for the dominating number of the Eight Queens Problem

2.3 Matrix

A square matrix Mn is an n × n array of numbers arranged into rows and

columns. Each entry in the matrix is denoted by aij , and it should be read as:

the entry at at i-th row and j-th column.

A symmetric matrix Sn is a matrix where aij = aji for all i and j. A

permutation matrix Pn is a matrix where every row and column has exactly one

entry 1. A block matrix is a matrix that has been broken into sections called

blocks. For example, the matrix

M =


1 2 3 4

3 4 1 2

2 3 4 1

4 1 2 3


can be partitioned into four 2× 2 blocks

M11 =

1 2

3 4

 , M12 =

3 4

1 2

 , M21 =

2 3

4 1

 , M22 =

4 1

2 3

 .
Then, the matrixM can be rewritten as

M =

M11 M12

M21 M22


LetG be a simple undirected graph. The adjacency matrix ofG, denoted

by A(G), is a (0, 1)-matrix such that aij = 1 if and only if the vertices vi and vj

are adjacent in G.
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The Kronecker product, denoted by ⊗, is an operation on two matrices

that results in a block matrix. This operation is useful for the Cartesian product

when we want to construct an adjacency matrix for Cartesian product of graphs.

The eigenvalue of M, denoted by λ, is a number such that Mx = λx

for some nonzero vector x. The eigenvector ofM, denoted by x, is a nonzero

vector such thatMx = λx for some number λ.

2.4 Kirchhoff’s Current Law and Ohm’s Law

Kirchhoff’s current law states that given any point P in a circuit, the sum of the

currents entering P is same as the sum of currents exiting P . We can write the

statement as an equation such as
∑
Iin =

∑
Iout where I is the currents in the

circuit.

Figure 2.7: Examples of Kirchhoff’s Current Law (Sang et al., 2014)

Ohm’s law states that the potential difference V in a circuit is directly

proportional to the currents I . In mathematical terms, we have V ∝ I , and

V = kI when we convert it to an equation where k is a constant. Since the only

constant in a circuit is resistance R, this indicate k = R. Therefore, the formula

of Ohm’s law is V = IR.

Figure 2.8: Illustration of Ohm’s Law
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CHAPTER 3

LITERATURE REVIEW

In Graph Theory, there are many different types of graphs. Some graphs are

named according to their appearance such as cycle graph, tree graph, and so

on. Some graphs are named after the person who discovered them such as the

Petersen graph. It is obvious that different type of graph comes with different

properties. Because of this, the researchers are facing different challenges with

different scales of difficulties when they are working on a certain problem.

When it comes to power dominating set (PDS) problem, Haynes et al.

(2002) has proved that this problem is NP-Complete even when we are restricted

to bipartite graphs or chordal graphs. There is no general formula that can help

us identify the exact power domination number or an algorithm that can help us

to find the proper PMU placement for all kind of graphs.

The structure of grid graph Pn�Pm may look simple, that is, a rectangle

or a square filled with (n − 1)(m − 1) number of one by one squares. In fact,

finding the dominating number of grid graph is challenging for the researches.

Based on the statement from Dorfling and Henning (2006), the researchers have

yet to determine the exact dominating number for the n × m grid graph when

n ≥ 7 and m can be any positive integer. When it comes to power dominating

number, we can determine it by using the following formula.

γP (Pn�Pm) =


⌈
n+1

4

⌉
if n ≡ 4(mod 8)⌈

n
4

⌉
otherwise

Barrera and Ferrero (2011) has constructed two formulas to calculate the

upper bounds of power dominating number for cylinder and torus graph. A few

year later, Koh and Soh (2016, 2019) briefly survey the upper bounds through

the work of Barrera and Ferrero at first, and they managed to find the exact

power dominating number with a solid proof. For a cylinder graph Pn�Cm

where m ≥ 3,

γP (Pn�Cm) =


⌈
n+1

2

⌉
if n ≡ 2(mod 4) and m ≥ 2n⌈

m+1
4

⌉
if m ≡ 4(mod 8) and m ≤ 2n

min
{⌈

n
2

⌉
,
⌈
m
4

⌉}
otherwise
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and for torus graph Cn�Cm where m ≥ n ≥ 3,

γP (Cn�Cm) =


⌈
n+1

2

⌉
if n ≡ 2(mod 4)⌈

n
2

⌉
otherwise

Zhao et al. (2020) investigate the problem posed by Xu and Kang (2011)

which is to find the exact power dominating number for the generalized Petersen

graph P (4k, k) or P (ck, k) where c ≥ 4. They managed to prove γP (P (ck, k))

≤
⌈

2k+2
3

⌉
for integer k ≥ 2 and c ≥ 4, and it is considered as sharp upper

bound, meaning the equality holds for at least one value of k. Not only that,

they showed the exact values for P (4k, k) to be

γP (P (4k, k)) =


2 for k = 1,

3 for k = 3,⌈
2k
3

⌉
for k = 2 or k ≥ 4

At the end, the authors made a conjecture as follow. For k ≥ 2 and c ≥ 5,

γP (P (ck, k)) =
⌈

2k
3

⌉
if 2k ≡ 1(mod 3 and γP (P (ck, k)) ∈

{⌈
2k
3

⌉
,
⌈

2k
3

⌉
+ 1
}

if 2k ≡ 0 or 2k ≡ 1(mod 3. Maybe we can expect to see Kang to find the

power domination number for P (5k, k) in near future since he has found the

exact power domination number for P (3k, k) and gave a sharp upper bound for

P (n, k) with Xu back in 2011.

Figure 3.1: Generalized Petersen graph P (8, 2) with two black vertices (PMU

placement) (Zhao et al., 2020)
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Lastly, the results that we have shown so far are purely for the ideal

situation. Meaning the formulas will be more practical or useful if the electri-

cal company’s network structure happened to have the same structure with the

graphs that have been investigated by the researchers.
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CHAPTER 4

METHODOLOGY

Given a graph G, we can find the power dominating set SP (G) by using the

observation rules. There are three rules in total, and we have two approaches

for these rules. The first approach uses the idea of Physics whereas the second

approach uses the idea of Set Theory. As for the zero forcing set SZ(G), we will

be using the color-change rule.

4.1 The Observation Rules (Physics)

The power dominating problem of an electric network can be illustrated by using

a graph. The vertex represents the power stations, and the edge represents the

connectivity between the stations. Whenever a PMU is placed on a vertex, say

v, the PMU will be able to detect all the power stations that are connected to

v. In other words, the vertices adjacent to v and the edges incident to v are

observed by the PMU. The observability of any other vertices and edges will

be determined by the following observation rules based on Kirchhoff’s Current

Law and Ohm’s Law.

1. Ohm’s Law, V = IR: If a vertex is incident to an observed edge, then the

vertex is observed.

2. Ohm’s Law, I = V/R: If an edge is incident to two observed vertices,

then the edge is observed.

3. Kirchhoff’s Current Law: For k ≥ 2, if a vertex is incident with k edges

and k − 1 of these edges are observed, then all k of them are observed.

To illustrate the usage of these rules, we will use a grid graph P5�P7 as an

example.
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Figure 4.1: Grid Graph P5�P7

Taking a closer look on Figure 4.1, the grid graph has the resemblance

of a matrix. Using this idea, we can pinpoint a specific vertex by writing aij

where i and j represent the row number and the column number respectively.

Assuming that we know the number of PMU needed and its placement, we get

the following graph.

Figure 4.2: Placement of PMUs

In Figure 4.2, we use orange rounded square to represent the PMUs, the

observed edges and the observed vertices are colored in red and green, respec-

tively. Furthermore, we may apply the second observation rule since there are

three different edges incident to three different pairs of observed vertices such

as (a32, a42), (a32, a33) and (a23, a33).
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Figure 4.3: Result from applying the second observation rule

In Figure 4.3, we can see that a32 and a33 have three out of four edges

colored. By the third observation rule, the remaining uncolored edge will be

colored, which mean the edge will be observed.

Figure 4.4: Result from applying the third observation rule

In Figure 4.4, we can see that a31 and a34 are incident with an observed

edge. By the first observation rule, a31 and a34 are observed.
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Figure 4.5: Result from applying the first observation rule

From here on out, we will be applying the observation rules repeatedly

until: a) all of the edges and vertices are observed, b) the condition of stopping

criteria is met, or c) none of the observation rules are applicable for any unob-

served edge and vertex. In our example, we may stop using the observation rules

once we have the following observed graph.

Figure 4.6: Partially observed graph

For a grid graph, whenever we achieved a result like Figure 4.6, or at

least two rows or columns of vertices are observed, we can conclude that the rest

of the vertices and edges will be observed as well. Using Figure 4.6, every vertex

on the fourth column are eligible to apply the third observation rule, follow by

the first rule, then the second rule, and we apply the third rule once again on the

fifth column’s vertices. In other words, this is a repetitive process and we can

stop as soon as we achieve a result that is similar to the pattern similar to Figure

4.6.
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4.2 The Observation Rules (Set Theory)

Given a graph G, we have a P ⊆ V (G) where P contains the vertices of PMUs’

location. The observed set of vertices C and edges F can be determined by

using the following algorithm.

(i) LetC = P andF = {e ∈ E(G) | e is incident to a vertex in P}.

(ii) Add any vertex to C if it is incident to an edge in F and it is not

in C.

(iii) Add any edge to F if it is not in F and one of the following

conditions is satisfied:

(a) both of its end-vertices are in C, or

(b) it is incident to a vertex in C with a degree greater than

one and all the other edges are already in F .

(iv) If we can’t find any new vertices or edges to add into C and

F respectively, we will stop the search. Otherwise, we will

continue the search by repeating steps 2 and 3.

The power domination problem is considered solved if C = V (G), F =

E(G) and |P | is at its lowest possible. Applying this algorithm to the example

in Chapter 4.1 will give us the same result. The connections between Chapter

4.1 and Chapter 4.2 are as follow:

• Step 2 is equivalent to the first observation rule.

• Step 3(a) is equivalent to the second observation rule.

• Step 3(b) is equivalent to the third observation rule.

4.3 Simplified Observation Rule (SOR)

SOR is built on the foundation of the observation rules in Chapter 4.1. Given an

observed vertex v that is adjacent to k vertices. If k − 1 of them are observed,

then the remaining vertex will be observed as well.

The flow of figures from Figure 4.2 to Figure 4.5 show that the vertices of

a32 and a33 are trying to color the remaining unobserved vertices of a31 (adjacent

to a32) and a34 (adjacent to a33) while they are adjacent to three out of four

observed vertices.

SOR is fairly similar to the third observation rule in Chapter 4.1 except

that we replace the keyword ’edge’ to ’vertex’. Overall, the SOR mainly focuses
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on the observability of the vertices of graph, and the edges serve as a connection

between the vertices.

4.4 Color-Change Rule

Consider a colored black vertex u. If u has exactly one neighbor v (i.e. u is

adjacent to v) that is colored white, then the color of v will be changed to black.

This rule is similar with SOR, and their difference is illustrated in the following

example.

Figure 4.7: A simple graph G

Using Figure 4.7 as our graph G. By using the observation rules, the

power dominating set SP (G) is {C} since C is adjacent to all other vertices.

In other words, placing a PMU at C will observe all other vertices. Therefore,

γp(G) = 1.

Similar to power dominating number, a zero forcing number γZ(G) is

the minimum cardinality of the smallest zero forcing set SZ(G). Assuming only

one vertex is needed in SZ(G), it is easily to see that we need more than one

vertex by using the color-change rule. A proof by contradiction can be used to

show that SZ(G) contains at least two elements.

Suppose there exist one vertex that will allow us to color the entire graph

to black. If we color vertex A, B or C to black, they do not have exactly one

neighbor who is colored white. If we color vertexD orE to black, vertex C will

be colored black, but now it has three neighbors who are colored white. This

contradict with our assumption, and thus, γZ(G) ≥ 2.

There are several solutions for this example such as SZ(G) = {A,D}.

When vertex A and D are colored black, vertex C becomes black since it is
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vertex D’s only colored white neighbor. Then, vertex B becomes black as well

because it is vertex A’s only colored white neighbor. Finally, vertex E becomes

black because it is vertex C’s only colored white neighbor. All of vertices are

colored black, thus, γZ(G) = 2. The sets {B,E}, {A,E}, and {B,D} are zero

forcing set as well.
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CHAPTER 5

PRELIMINARY RESULT

In this chapter, we consider the twisted torus with m ≥ n. This is because

we want to simplify the process of applying both the color change rule and the

SOR. Also, we will reconstruct the twisted torus graph in the resemblance of a

cylinder graph.

Figure 5.1: Reconstructed twisted torus graph

Let C(i)
n denotes the sequence of cycle Cn where i = 1, . . . ,m, denote

the vertices of cycle C(i)
n by v(i)

j , j = 1, . . . , n.

Separate the graph into two regions, the left-hand side (LHS) and the

right-hand side (RHS). The LHS will contain C(m)
n , C

(m−1)
n , . . . , C

(dm/2e)
n , and

the RHS will contain C(1)
n , C

(2)
n , . . . , C

(bm/2c)
n . Note that the LHS has one extra

Cn more than RHS. When m is even, remove C(dm/2e)
n on the LHS and rewrite

C
(bm/2c)
n as C(m/2)

n . Then, C(m/2)
n is adjacent to C(dm/2e+1)

n .

5.1 Zero Forcing Number of Cm�Ct
n

Lemma 5.1. Any two successive cycles of Cn such as C(i)
n and C(i+1)

n in graph

Cm�Ct
n will form a zero forcing set. Then, γZ(Cm�Ct

n) ≤ 2n.

Proof. Since the zero forcing number of Cm�Cn has been thoroughly investi-

gated by Benson et al. (2018), we will solely investigate the twisted sector.

Based on the definition of twisted torus, the two successive cycles of Cn

of the twisted sector are C(m)
n and C(1)

n , and the zero forcing set is {v(m)
1 , . . . ,
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v
(m)
n , v

(1)
1 , . . . , v

(1)
n }. Each of the vertices from C

(m)
n are adjacent to 4 vertices

and 3 of them are colored black (2 vertices from C
(m)
n and 1 vertex from C

(1)
n ).

The remaining white vertex is from C
(m−1)
n . By the color change rule, we can

force the vertices of C(m−1)
n to black.

Similarly, we may repeat the same process on C
(1)
n and force all the

vertices in C(2)
n to black. Then, repeat this process on any applicable C(i)

n . Even-

tually, all vertices in Cm�Ct
n will be forced to black. Thus, γZ(Cm�Ct

n) ≤

2n.

For a torus graph, any two successive cycles of Cm or Cn would produce

a zero forcing set. As for the twisted torus graph, all of the Cm are gone when

the graph is twisted. Which is why we highlight Cn only in Lemma 5.1. But

there is Cm+1 if we involve the edges from either C(m)
n or C(1)

n .

Proposition 5.2. Let SV ⊆ V (Cm�Ct
n) and SV = {v(i)

j , v
(i)
j+1 : i = 1, . . . ,m}

for some j = 1, . . . , n. If all the elements in SV are colored black, then the

entire graph will be colored black.

Proof. Similar proof with Lemma 5.1 except that the forcing or coloring direc-

tion is vertical.

Note that SV is the set of vertices of two successive cycles of Cm (before

twist), and SV can never be a zero forcing set except when m = n.

Consider that there are I iterations of applying the color change rule, and

the iteration stops when there exists a C(i)
n that can no longer apply the rule for

each side.

Assume all the black vertices in C(i)
n are continuous and the black ver-

tices are filling from bottom to top. Denote the number of black vertices in C(i)
n

by b(i) where i = 1, . . . ,m.

Observation 5.3. Given that b(m) > b(1). After the first iteration, LHS would

lose at least 1 black vertex (depending on the amount of black vertices that

are adjacent to another one or two black vertices) whereas RHS loses 2 black

vertices. Afterward, both sides would lose 2 vertices for the rest of iteration.

If b(m) = b(1) and b(m) 6= n, then both sides would lose 2 vertices for every

iteration.
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Observation 5.4. As the number of black vertices decreases for each iteration,

they "move" slowly towards the middle of all black vertices in each C(i)
n .

Figure 5.2: Example of the "movement" of black vertices

Define β to be the iteration factor and β = min(b(m), b(1)). The iteration

factor is important in this section as it would give us the exact i for C(i)
n in both

LHS and RHS when the iteration stops and the exact position(s) of the vertex or

vertices in C(i)
n . Additionally, let IL and IR be the number of iteration of LHS

and RHS, respectively.

Proposition 5.5. Given that b(m) > b(1), then

IR =


⌊
β
2

⌋
if β is odd,

β
2
− 1 if β is even

and

IL = IR + 1

Proof. If b(m) > b(1), then by Observation 5.3, the RHS is losing 2 black vertices

consistently. If β is even, the iteration stops when there are only 2 black vertices.

If β is odd, the iteration stops when there is only 1 black vertex. Convert these

situations into equations and with a some algebraic manipulation, the RHS has⌊
β
2

⌋
iterations when β is odd and β

2
− 1 iterations when β is even.
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As for the LHS, notice that b(m−1) = b(1) after its first iteration, which

mean LHS has 1 iteration more than the RHS. Thus, LHS has
⌊
β
2

⌋
+ 1 =

⌈
β
2

⌉
iterations when β is odd and β

2
iterations when β is even.

Remark. If b(m) = b(1) and b(m) 6= n, then IL = IR.

Observation 5.6. Given that b(m) > b(1), then the placement of black vertices

in C(m−1)
n , C

(m−2)
n , . . . , C

(dm/2e)
n is mirrored to the placement of black vertices

in C(1)
n , C

(2)
n , . . . , C

(bm/2c)
n , respectively, and shift the placement upward by one

level. If b(m) = b(1) and b(m) 6= n, then the shifting can be omitted.

Figure 5.3: Examples of Observation 5.6

Lemma 5.7. Let S1 and S2 be the set of black vertices in both C
(m−IL)
n and

C
(1+IR)
n . Assign S1 with odd β and S2 with even β. Then,

S1 =
{
v

(m−IL)
(n−IL) , v

(1+IR)
(n−IR)

}
and

S2 =
{
v

(m−IL)
(n−IL−1), v

(m−IL)
(n−IL) , v

(1+IR)
(n−IR−1), v

(1+IR)
(n−IR)

}
.
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Proof. Begin with b(m) > b(1) and b(1) 6= n. When β is odd, the iteration stops

at C(m−dβ/2e)
n on the LHS and C(1+bβ/2c)

n on the RHS. Since 1 +
⌊
β
2

⌋
=
⌈
β
2

⌉
and

hence, C(1+bβ/2c)
n = C

(dβ/2e)
n . Similarly, when β is even, the iteration stops at

C
(m−β/2)
n on the LHS and C(β/2)

n on the RHS.

With the knowledge of Observation 5.6, it is possible to find all the po-

sitions of black vertices on the LHS by solely applying the color change rule on

the RHS. Based on Observation 5.3 and Observation 5.4, the RHS is losing 1

black vertex on the top and another one on the bottom consistently until there

is only 1 or 2 black vertices remain (depending on β’s value). This can also be

thought as the bottom black vertex has shifted upward once for each iteration

(similar to the top black vertex).

By using Proposition 5.5, if the β is odd, then there is only 1 black vertex

remained on the RHS after the last iteration, and the black vertex is v(dβ/2e)
(n−bβ/2c).

As stated in Observation 5.6, the position of black vertex in C(m−dβ/2e)
n is mir-

rored to C
(dβ/2e)
n and shifted upward by one level, which produce v(m−dβ/2e)

(n−dβ/2e) .

Thus, these two vertices are matched with the black vertices from S1.

Similarly, if the β is even, then there are 2 black vertices remained on the

RHS after the last iteration, and the black vertices are v(β/2)
(n−β/2) and v(β/2)

(n−β/2+1).

Refer to Observation 5.6, the black vertices on the LHS after its last iteration are

v
(m−β/2)
(n−β/2−1) and v(m−β/2)

(n−β/2) . Thus, these four vertices are matched with the black

vertices from S2.

If b(m) = b(1) and b(1) 6= n, then IL = IR. By using Proposition 5.5, if

the β is odd, then there is only 1 black vertex remained on the RHS after the

last iteration, and the black vertex is v(dβ/2e)
(n−bβ/2c). As stated in Observation 5.6,

the position of black vertex in C(m−dβ/2e)
n is mirrored to C(dβ/2e)

n and no shifting

is needed, which produce v(m−dβ/2e)
(n−bβ/2c) . Thus, these two vertices are matched with

the black vertices from S1.

Similarly, if the β is even, then there are 2 black vertices remained on the

RHS after the last iteration, and the black vertices are v(β/2)
(n−β/2) and v(β/2)

(n−β/2+1).

Refer to Observation 5.6, the black vertices on the LHS after its last iteration are

v
(m−β/2)
(n−β/2) and v(m−β/2)

(n−β/2+1). Thus, these four vertices are matched with the black

vertices from S2.
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Lemma 5.8. Let IL and IR be the number of iteration of LHS and RHS, respec-

tively. Given that b(m) > b(1) and β = b(1). If

(m− IL)−
⌈m

2

⌉
≥ 1,

and ⌊m
2

⌋
− (1 + IR) ≥ 1.

then there exists at least one C(i)
n contains 0 black vertices in between C(m−IL)

n

and C(1+IR)
n where 1 + IR < i < m− IL.

Proof. (by Contrapositive) Suppose that there are no C
(i)
n containing 0 black

vertices in between C(m−IL)
n and C(1+IR)

n , this indicate that C(m−IL)
n = C

(dm/2e)
n

and C(1+IR)
n = C

(bm/2c)
n . Thus,

(m− IL)−
⌈m

2

⌉
< 1

and ⌊m
2

⌋
− (1 + IR) < 1,

Note that the values of IL and IR is depending on β. We can think the

C
(i)
n that contains 0 black vertices as a barrier because it is forbidding the black

vertices from the last iteration on both LHS and RHS to be each other’s neighbor.

Algorithm 5.9. Determine γZ(Cm�Ct
n) with brute force method.

1. Let U be the upper bound of γZ(Cm�Ct
n).

2. Assume exactly U vertices are needed to form a zero forcing

set.

3. Suppose that there exist a zero forcing set with U − 1 vertices.

4. Determine the value of β.

5. Determine the value of IL, IR by using Proposition 5.5.

6. Determine the existence of barrier using Lemma 5.8.

(a) If there is no barrier, proceed to Step 6.

(b) Otherwise, γZ(Cm�Ct
n) = U .

7. Substitute the value ofm,n, IL, IR into either S1 or S2 (depend-

ing on β) in Lemma 5.7.
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8. Determine the adjacency of the vertices in S1 or S2.

(a) If there are at least 2 vertices are adjacent to each other,

determine the existence of SV from Proposition 5.2.

i. If true, then U − 1 becomes the new U . Repeat

from Step 2.

ii. Else, determine the applicability of color change

rule.

A. If true, repeat from Step 8(a).

B. Otherwise, γZ(Cm�Ct
n) = U .

(b) Otherwise, γZ(Cm�Ct
n) = U .

Note that if we can’t force the graph to black with 1 missing vertex, then

it is impossible with more than 1 missing vertices. Thus, γZ(Cm�Ct
n) = U .

Theorem 5.10. For n ≥ m ≥ 3

γZ(Cm�C
t
n) =

 2n− 1 if m = n,

2n otherwise

Proof. To prove this theorem, we will separate it into two cases.

Case 1: m 6= n.

By Lemma 5.1, we know that γZ(Cm�Ct
n) ≤ 2n. Apply Algorithm

5.9, assume that γZ(Cm�Ct
n) = 2n, and suppose that there exist a zero forcing

set that contain 2n − 1 vertices from the two successive cycles C(m)
n and C(1)

n .

Because 2n − 1 is an odd number, one of the two cycles will have n − 1 black

vertices. Assume that b(m) = n and b(1) = n − 1 = β. Then, we add the

following vertices into the zero forcing set SZ .

SZ =
{
v

(m)
1 , . . . , v(m)

n , v
(1)
2 , . . . , v(1)

n

}
It is obvious that when m is much larger than n, SZ becomes invalid

because of Lemma 5.8. In other words, there are many barriers in between

C
(m−IL)
n and C(1+IR)

n which lead to the failure of forcing the next Cn to black.
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Figure 5.4: Illustration of SZ

Assume that the difference between m and n is as small as possible.

By Proposition 5.5, the iteration of applying color change rule is depending on

whether β is even or odd. Thus, we have four sub-cases.

Sub-case 1: If m,n are even, then m = n + 2 and β = n − 1 is odd.

By Proposition 5.5, IL =
⌈
β
2

⌉
and IR =

⌊
β
2

⌋
. By using the equations in Lemma

5.8, there is 1 barrier in between C(m−dβ/2e)
n and C(dβ/2e)

n . Thus, it is impossible

to force the entire graph to black and γZ(Cm�Ct
n) = 2n.

Sub-case 2: If m,n are odd, then m = n+ 2 and β = n− 1 is even. By

Proposition 5.5, IL = β
2

and IR = β
2
− 1. By using the equations in Lemma 5.8,

there is 1 barrier in between C(m−β/2)
n and C(β/2)

n . Thus, it is impossible to force

the entire graph to black and γZ(Cm�Ct
n) = 2n.

Sub-case 3: If m is odd and n is even, then m = n + 1 and β = n − 1

is odd. By Proposition 5.5, IL =
⌈
β
2

⌉
and IR =

⌊
β
2

⌋
. By using the equations

in Lemma 5.8, there are 0 barriers in between C
(m−dβ/2e)
n and C

(dβ/2e)
n . This

indicate that C(m−dβ/2e)
n = C

(dm/2e)
n and C(dβ/2e)

n = C
(bm/2c)
n , and the vertices in

these cycles are adjacent to each other. Then, substitute the value of m,n, IL, IR

into the black vertices from S1 in Lemma 5.7, we have

S1 =
{
v

(dm/2e)
(n−dβ/2e), v

(bm/2c)
(n−bβ/2c)

}
.

The difference between the subscripts’ value of both black vertices is 1.

This imply that one of the black vertices is positioned 1 level higher than another

one and they are not on the same cycle since
⌈
m
2

⌉
6=
⌊
m
2

⌋
. Thus, these two black
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vertices aren’t adjacent to each other and the color change rule is not applicable.

Hence, it is impossible to force the entire graph to black and γZ(Cm�Ct
n) = 2n.

Sub-case 4: If m is even and n is odd, then m = n + 1 and β = n − 1

is even. By Proposition 5.5, IL = β
2

and IR = β
2
− 1. By using the equations

in Lemma 5.8, there is 1 barrier in between C(m−β/2)
n and C(β/2)

n . Thus, it is

impossible to force the entire graph to black and γZ(Cm�Ct
n) = 2n.

Therefore, by Algorithm 5.9, γZ(Cm�Ct
n) = 2n for m 6= n.

Case 2: m = n

Sub-case 1: n is even. By Algorithm 5.9, assume that γZ(Cm�Ct
n) =

2n, and suppose that there exist a zero forcing set that contain 2n − 1 vertices

from two successive cycles, C(m)
n and C(1)

n . Using the same setup as Case 1, that

is, b(m) > b(1) and b(1) = n− 1 = β.

Due to Lemma 5.8, there are no barriers in between C
(m−dβ/2e)
n and

C
(dβ/2e)
n . Thus, C(m−dβ/2e)

n = C
(dm/2e)
n and C(dβ/2e)

n = C
(bm/2c)
n (similar to Case

1: Sub-case 3). Since m is even,
⌈
m
2

⌉
=
⌊
m
2

⌋
= m

2
. Hence, the iteration of both

sides stop at C(m/2)
n .

By using Proposition 5.5, IL =
⌈
β
2

⌉
, IR =

⌊
β
2

⌋
. Substitute the value of

m,n, IL, IR into the black vertices from S1 in Lemma 5.7, we have

S1 =
{
v

(m/2)
(n−dβ/2e), v

(m/2)
(n−bβ/2c)

}
.

The difference between the subscripts’ value of both black vertices is 1. This

indicate that one of the black vertices is positioned 1 level higher than another

one and they are on the same cycle (refer Figure 5.6). Based on the "movement"

of the black vertices on both sides (refer to Observation 5.4), there exists a set

of black vertices same as SV from Proposition 5.2. Thus, a zero forcing set can

be formed with 2n− 1 vertices. By Algorithm 5.9, γZ(Cm�Ct
n) ≤ 2n− 1 and

follow by a new assumption.

Assume that γZ(Cm�Ct
n) = 2n − 1 and suppose that there exist a zero

forcing set with 2n− 2 vertices. Since 2n− 2 is even, the black vertices can be

distributed evenly such as b(m) = n− 1 = b(1) or let b(m) = n and b(1) = n− 2.

If the black vertices are distributed evenly, then β = n− 1. Let SZ to be

the zero forcing set such as
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SZ =
{
v

(m)
2 , . . . , v(m)

n , v
(1)
2 , . . . , v(1)

n

}
.

Figure 5.5: Illustration of SZ

By the Proposition 5.5, IL = IR =
⌊
β
2

⌋
. By using the equations in

Lemma 5.8, there is 1 barrier on the LHS and 0 barriers on the RHS. This is due

to m−
⌊
β
2

⌋
=
⌈
m
2

⌉
+ 1 instead of

⌈
m
2

⌉
. Furthermore, C(dm/2e)

n is removed from

the LHS since it is equivalent to C(bm/2c)
n on the RHS. Other than that, Lemma

5.8 is only valid when both equations produce a value more than or equal to 1 (or

less than 1). Thus, there is no barrier in between C(m−bβ/2c)
n and C(dβ/2e)

n . This

also indicate that the vertices in these cycles are adjacent to each other, and the

superscript’s expression of the cycles can be rewritten as C(dm/2e+1)
n and C(m/2)

n ,

respectively.

Substitute the value of m,n, IL, IR into the black vertices from S1 in

Lemma 5.7, we have

S1 =
{
v

(dm/2e+1)
(n−bβ/2c) , v

(m/2)
(n−bβ/2c)

}
.

The subscript’s value of both black vertices are indicating that they are on the

same level (supported by Observation 5.6). By comparing the superscript’s

value, we have
⌈
m
2

⌉
+ 1 6= m

2
. This indicate that these 2 black vertices are

adjacent to each other on the same level, but different cycle. Since these black

vertices are adjacent to another 2 black vertices, the color change rule is not

applicable. Hence, γZ(Cm�Ct
n) = 2n− 1 when n is even.
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Note that if the black vertices are distributed unevenly such as b(m) = n

and b(1) = n − 2 = β. Then, IL = β
2

and IR = β
2
− 1 by Proposition 5.5.

Substitute the value of m, IL, IR into the equations in Lemma 5.8, there is 1

barrier in between C(m−β/2)
n and C(β/2)

n . Therefore, our conclusion holds.

Sub-case 2: m is odd

By Algorithm 5.9, assume that γZ(Cm�Ct
n) = 2n, and suppose that

there exist a zero forcing set that contain 2n − 1 vertices from two successive

cycles, C(m)
n and C(1)

m . Using the same setup as Case 1, that is, b(m) > b(1) and

b(1) = n− 1 = β. Then, IL = β
2
, IR = β

2
− 1 by Proposition 5.5. Due to Lemma

5.8, there are no barriers in between C(m−β/2)
n and C(β/2)

n . This indicate that the

vertices in between these cycles are adjacent to each other, and the superscript’s

expression can be rewritten as C(dm/2e)
n and C(bm/2c)

n , respectively.

Substitute the valuem,n, IL, IR into the black vertices from S2 in Lemma

5.7, we have

S2 =
{
v

(dm/2e)
(n−β/2−1), v

(dm/2e)
(n−β/2), v

(bm/2c)
(n−β/2), v

(bm/2c)
(n−β/2+1)

}
.

Based on the value of the subscript of second and third black vertex in S2, these

two black vertices are on the same level and they are adjacent to each other.

More importantly, these two black vertices are adjacent to 3 black vertices (refer

to Figure 5.7). Thus, they can force v(dm/2e)
(n−β/2+1) and v(bm/2c)

(n−β/2+1) to black.

Based on the "movement" of the black vertices on both sides (refer to

Observation 5.4), there exists a set of black vertices same as SV from Proposition

5.2. Thus, a zero forcing set can be formed with 2n− 1 vertices. By Algorithm

5.9, γZ(Cm�Ct
n) ≤ 2n− 1 and follow by a new assumption.

Assume that γZ(Cm�Ct
n) = 2n − 1 and suppose that there exist a zero

forcing set with 2n − 2 vertices. If the black vertices are distributed evenly to

C
(m)
n and C(1)

n such as b(m) = b(1) = n− 1 = β, then we have IL = IR = β
2
− 1

by Proposition 5.5. By Lemma 5.8, there exist a barrier in between C(m−β/2+1)
n

and C(β/2)
n . Thus, it is impossible to force the entire graph to black.

If the black vertices are distributed unevenly such as b(m) = n and b(1) =

n − 2 = β. Then, IL =
⌈
β
2

⌉
, IR =

⌊
β
2

⌋
by Proposition 5.5. By Lemma 5.8,

there are no barriers in between C(m−dβ/2e)
n and C(dβ/2e)

n . This indicate that the

vertices in between these cycles are adjacent to each other, and the superscript’s
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expression can be rewritten as C(dm/2e)
n and C(bm/2c)

n , respectively. Substitute

m,n, IL, IR into the black vertices from S1 in Lemma 5.7, we have

S1 =
{
v

(dm/2e)
(n−dβ/2e), v

(bm/2c)
(n−bβ/2c)

}
.

The difference between the subscripts’ value of both black vertices is 1.

This indicate that one of the black vertices is 1 level above of another one, but

they are not on the same cycle since
⌈
m
2

⌉
6=
⌊
m
2

⌋
. Thus, the color change rule is

not applicable and it is impossible to force the entire graph to black.

Since both of the distribution methods couldn’t force the entire graph to

black. Thus, γZ(Cm�Ct
n) = 2n− 1 when n is odd.

In conclusion, γZ(Cm�Ct
n) = 2n− 1 when m = n.

Figure 5.6: The opposite of twisted sector after the last iteration on both sides

(Case 2: Sub-case 1, β = n− 1)
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Figure 5.7: The opposite of twisted sector after the last iteration on both sides

(Case 2: Sub-case 2, β = n− 1)

5.2 Power Dominating Number of Cm�Ct
n

The relationship between the zero forcing set SZ and power dominating set

(PDS) SP can be thought as if all the vertices from SP has observed all the

vertices in SZ , then the graph is observed. This is due to the similarity of the

color change rule and the simplified observation rule (SOR). Additionally, this

relationship is also implying that SP ⊆ SZ . Thus, we need to find a closed

neighborhood of SP such that N [SP ] ∩ SZ = SZ .

Based on the zero forcing number of twisted torus, we need to observed

at least 2n − 1 vertices when m = n and 2n vertices when m 6= n. Similar to

previous section, we put our focus on C(m)
n and C(1)

n since non-twisted sector (or

torus graph) is thoroughly investigated by Koh and Soh (2019). The following

two algorithms are the modified construction of PDS by Barrera and Ferrero

(2011).

Algorithm 5.11. Construction of PDS that observe 2n vertices for m ≥ n ≥ 3.

1. Let SP1 be the PDS.
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2. Add the second vertex of every four vertices from C
(m)
n into

SP1 .

3. Add the first vertex of every four vertices from C
(1)
n into SP1 .

Algorithm 5.12. Construction of PDS that observe at least 2n − 1 vertices for

m = n ≥ 3.

1. Let SP2 be the PDS.

2. Add the fourth vertex of every four vertices from C
(m)
n into SP2 .

3. Add the vertex v(m)
n from C

(m)
n into SP2

4. Add the third vertex of every four vertices from C
(1)
n into SP2 .

Note that we are considering the observed vertices from C
(m)
n and C(1)

n

only. Additionally, Step 2 and Step 3 in Algorithm 5.12 can be omitted if n = 3

and n ≡ 0(mod 4), respectively. Convert the Algorithm 5.11 and Algorithm

5.12 into a mathematical expression for analysis. For m ≥ n ≥ 3,

SP1 =
{
v

(m)
k : k ≡ 2(mod 4)

}
∪
{
v

(1)
l : l ≡ 1(mod 4)

}
,

and for m = n ≥ 3,

SP2 =
{
v

(m)
k : k ≡ 0(mod 4)

}
∪
{
v

(1)
l : l ≡ 3(mod 4)

}
∪ v(m)

n

where 1 ≤ k, l ≤ n. The following theorem will help us to obtain the lower

bound of γP (Cm�Ct
n).

Theorem 5.13. (Benson et al., 2018) If G is a nontrivial graph, then
⌈
γZ(G)
∆(G)

⌉
≤

γP (G), and this bound is tight.

∆(G) denotes the greatest vertex degree of graph G. Since all the ver-

tices in Cm�Ct
n has the same vertex degree, thus, ∆(Cm�Ct

n) = 4. Hence, we

have the following theorem.

Theorem 5.14. For m ≥ n ≥ 3, the lower bound of power dominating number

of twisted torus graph is γP (Cm�Ct
n) ≥

⌈
n
2

⌉
.

Proof. The lower bound can be shown by substituting the zero forcing number

from Theorem 5.10 and ∆(Cm�Ct
n) into Theorem 5.13. Begin with substituting

γZ(Cm�Ct
n) = 2n− 1 into Theorem 5.13 when m = n, then

γP (Cm�C
t
n) ≥

⌈
2n− 1

4

⌉
⇒ γP (Cm�C

t
n) ≥

⌈n
2

⌉
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regardless of whether the value of n is odd or even. Substitute γZ(Cm�Ct
n) =

2n into Theorem 5.13 when m 6= n, then

γP (Cm�C
t
n) ≥

⌈
2n

4

⌉
⇒ γP (Cm�C

t
n) ≥

⌈n
2

⌉
.

Thus, γP (Cm�Ct
n) ≥

⌈
n
2

⌉
.

Theorem 5.15. For m ≥ n ≥ 3, γP (Cm�Ct
3) = γP (Cm�Ct

4) = 2

Proof. When n = 3, γP (Cm�Ct
3) ≥ 2 by Theorem 5.14. Let SP be the power

dominating set of γP (Cm�Ct
3). If m 6= n, by Algorithm 5.11, we have

SP =
{
v

(m)
2 , v

(1)
1

}
and these vertices observed all the vertices in C(m)

n and C(1)
n . Thus, Cm�Ct

3 is

observed. If m = n, by Algorithm 5.12, we have

SP =
{
v

(m)
3 , v

(1)
3

}
.

and these vertices observed all the vertices in C(m)
n and C(1)

n . Thus, Cm�Ct
3 is

observed. Hence, γP (Cm�Ct
3) = 2 (similar proof for n = 4).

The upper bound of power dominating number of twisted torus can be

determined by analyzing the mathematical expression of Algorithm 5.11 and

Algorithm 5.12.

Theorem 5.16. For m ≥ n ≥ 3, the upper bound of power dominating number

of γP (Cm�Cn) is

γP (Cm�C
t
n) ≤


⌈
n+1

2

⌉
if n ≡ 2(mod 4) and m 6= n⌈

n
2

⌉
otherwise

Proof. Begin with SP1 . Convert the congruence into equation, |SP1| increases by

1 whenever n = 4k+1 and n = 4l+2 for all k, l = 1, 2, . . . , n. Since |SP1| = 2

when 3 ≤ n ≤ 4, if k, l = 1, then |SP1| = 3 when n = 5 and |SP1 | = 4

when n = 6. Similarly, if k, l = 2, then |SP1| = 5 when n = 9 and |SP1 | = 6

when n = 10. From the series of |SP1 |, we can deduce that when m 6= n,

γP (Cm�Ct
n) =

⌈
n+1

2

⌉
when n ≡ 2(mod 4). Otherwise, γP (Cm�Ct

n) =
⌈
n
2

⌉
.

Similar to SP1 , begin with converting the congruence in SP2 into equa-

tion. |SP2| increases by 1 consistently whenever n = 4k and n = 4l + 3 for all
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k, l = 1, 2, . . . , n. As for the vertex v(m)
n , notice that it never stays at the same

spot as n increases. Thus, if 4k < n < 4l + 3, then |SP2| for n is x+ 1 where x

is the |SP2| for 4k.

For example, |SP2| = 2 when n = 4 by Theorem 5.15. If k, l = 1, then

|SP2| = 3 when 4 < n < 7. Continuing this series, |SP2| = 4 when n = 7 and 8,

|SP2| = 5 when 8 < n < 11. From the series of |SP2|, we can deduce that when

m = n, γP (Cm�Ct
n) =

⌈
n
2

⌉
.

Since the value of γP (Cm�Cn) is produced from the construction of

PDS (Algorithm 5.11 and Algorithm 5.12) and it was never claim to be the most

optimal construction. Thus, the PDS guarantees the highest possible number of

vertices needed only. Hence, γP (Cm�Ct
n) ≤

⌈
n+1

2

⌉
when n ≡ 2(mod 4) and

m 6= n. Otherwise, γP (Cm�Ct
n) ≤

⌈
n
2

⌉
.

The following two figures shows the observed twisted torus with the

construction of PDS with Algorithm 5.11 and Algorithm 5.12. In the figure,

the black vertex represents the vertex from PDS, the green vertex represents the

vertex observed directly by the black vertex, and the orange vertex represents

the vertex observed by the black vertex via SOR.

Figure 5.8: C6�Ct
3 with Algorithm 5.11
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Figure 5.9: C6�Ct
6 with Algorithm 5.12
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CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

Throughout this project, it is highly suspected the result of zero forcing num-

ber and power dominating number of the twisted torus would be the same as

the torus. Surprisingly, a twisted torus requires one less condition in zero forc-

ing number, but one more condition in power dominating number compare to a

torus.

More importantly, the highlight of this project is determining the upper

bound of the twisted torus. When we realized that the zero forcing number

requires lesser condition, we have hope that perhaps it is possible to compute

the power dominating number without any conditions. But the construction of

PDS in Algorithm 5.11 and Algorithm 5.12 seems to be giving us the best PDS

possible.

6.2 Recommendations For Future Work (1) - Zero Forcing Number

The process of finding the zero forcing number of twisted torus in this project

is tedious and lengthy. But once we recognize a pattern among this problem, it

shouldn’t take long to identify whether the given number of vertices is enough

to form a zero forcing set.

Another way to approach the zero forcing number is by converting the

twisted torus graph into an adjacency matrix. For example, a torus graph can be

expressed as a Kronecker product K as follow.

K(Cm�Cn) =M(Cm)⊗ In + Im ⊗M(Cn)

whereM(Cm),M(Cn) is the adjacency matrix of Cm, Cn respectively.

There isn’t a way to express twisted torus as a Kronecker product, but

we can expand the Kronecker product of torus as a normal matrix and change a

few specific entry according to the appearance of the twisted torus. Expanding

Kronecker product as a normal matrix is only feasible when the values of m,n

are low. We can try to expand Kronecker product as mn×mn a block matrix B

as follow.
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B =



M(Cn) Im O · · · Im
Im M(Cn) Im · · · O

O Im M(Cn) · · · O
...

...
... . . . ...

Im O O · · · M(Cn)


whereO is a zero block matrix and Im is a identity block matrix. Note that each

row and column must have exactly two Im and oneM(Cn).

In this project, we often focus on the m-th and the 1st cycle of Cn. But

as long as that we are twisting two successive cycles of Cn, we can redefine the

twisted torus definition. For example, we twist the first and the second cycle.

This corresponds to B12 and B21. By changing the values inside the matrices,

we have the new block matrix B

B =



M(Cn) Pm O · · · Im
P>m M(Cn) Im · · · O

O Im M(Cn) · · · O
...

...
... . . . ...

Im O O · · · M(Cn)


where Pm is a permutation matrix.

If m,n are of larger values, then it is impossible to do it by hand. We

may rely on a computer to help us to compute the eigenvalues and eigenvectors.

Only then, we may have a chance find the zero forcing number through the

linear algebra approach. We have wrote a simple Python programme to create

such matrix which can be found in Appendix A.

6.3 Recommendations For Future Work (2) - Power Dominating Num-

ber

We have the upper bound of γP (Cm�Ct
n) and it is possible to prove its equality.

Koh and Soh (2019) has proven the equality of γP (Cm�Cn) made by Barrera

and Ferrero (2011) with the of closure, star closure and the bipartite graph of

a Cartesian product of graphs. We believe the same approach can be used in

twisted torus.
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Other than that, what if we could twist the torus even further? For exam-

ple, we redefine twisted torus as follow.

Let Cm�Cn denote the torus graph which consists of m copies of the

n-cycle

xi,1xi,2 · · ·xi,nxi,1,

i = 1, 2, . . . ,m together with n copies of the m-cycle

x1,jx2,j · · ·xm,jx1,j,

j = 1, 2, . . . , n. Here m,n ≥ 3. Let Cm�Ct=τ
n denote the twisted torus which

is the graph obtained from the torus Cm�Cn by first deleting the set of m edges

x1,nx1,1, x2,nx2,1, . . . , xm,nxm,1

and then join the resulting graph with a set of m new edges

x1,nx1+τ,1, x2,nx2+τ,1, . . . , xm−1,nxm−1+τ,1, xm,nx1+τ,1.

where τ is the twisting degree ranging from 1 to
⌊
n
2

⌋
. Thus, we have been

working on γP (Cm�Ct=1
n ) in this project. Will all the twisted torus with t ≥ 1

has the same zero forcing number and power dominating number?
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APPENDICES

APPENDIX A: A Simple Python Code

1 import numpy as np

2

3 def cycle_graph(n):

4 A = np.zeros((n,n))

5

6 for i in range(n):

7 a = (i+1)%n

8 b = (n+i-1)%n

9 A[i][a] = 1

10 A[i][b] = 1

11

12 return A

13

14 def cycle_digraph(m):

15 A = np.zeros((m,m))

16

17 for i in range(m):

18 a = (i+1)%m

19 A[i][a] = 1

20

21 return A

22

23 # assign t to be any other value if we want to investigate the

Chapter 6.3 problem

24 def twisted_torus(n, m, t=1):

25 # adjacency matrix of cycle digraph = permutation matrix

26 perm_matrix = np.linalg.matrix_power(cycle_digraph(m), t)

27 transpose_RM = perm_matrix.T

28

29 M = np.kron(cycle_graph(n), np.eye(m)) +

30 np.kron(np.eye(n), cycle_graph(m))

31

32 for i in range(m):

33 for j in range(m):

34 M[i][m+j] = perm_matrix[i][j]
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35 M[m+i][j] = transpose_RM[i][j]

36

37 return M




