

A MOBILE APP FOR COMMUNITY ASSOCIATION

GOH CHONG XIAN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Science

(Hons.) Software Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2020

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : Goh Chong Xian

ID No. : 1604378

Date : 23 April 2020

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “A MOBILE APP FOR COMMUNITY

ASSOCIATION” was prepared by GOH CHONG XIAN has met the required

standard for submission in partial fulfilment of the requirements for the award of

Bachelor of Science (Hons) Software Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor :

Date : 23 April 2020

Ms Chean Swee Ling

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2020, Goh Chong Xian. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I offer my sincere appreciation to my research supervisor, Ms Chean Swee

Ling for her invaluable advice, guidance and her enormous patience throughout the

development of the research.

In addition, I would also like to express my gratitude to my loving parents and

friends who had helped and given me encouragement throughout the process of

preparing and completing this report. The completion of this project could not have

been accomplished without the support of them.

Lastly, I would like to thanks all the authors of the documentations I referred

and the library I used. Their professional knowledges and selfless contributions had

helped me solve many obstacles I encountered throughout the whole project.

vi

ABSTRACT

Existing residential community association management is a hassle and manual

process as it involves many handiworks that require a large number of time and cost.

These behind time operations had caused decreasing in efficiency and effectiveness,

which results in bad influences on the residence’ image. Therefore, this project aims

to investigate and analyse the root causes of the predicament and provide a solution to

it. The main causes discovered including heavily rely on paperwork, outdated

operational workflow, poor privacy concerns on personal information of residents, etc.

A system that involving Ruby on Rails API backend server, Vue.js web admin panel,

Flutter mobile application for residents was proposed to tackle the aforementioned

problems. Furthermore, Kanban Agile methodology was practiced throughout the

implementation phase to manage work tasks and visualize the project progress. The

proposed system reduced the manual work of fee payment, increase the announcement

delivers effectiveness by instant notification of the mobile application. In addition, the

mobile application provides an official channel for residents to submit their feedback

and visitor application and track the progress.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF SYMBOLS / ABBREVIATIONS xx

LIST OF APPENDICES xxi

CHAPTER

1 INTRODUCTION 22

1.1 Introduction 22

1.2 Background of the Project 22

1.3 Problem Statement 23

1.4 Project Objectives 24

1.5 Project Solution 24

1.6 Project Approach 27

1.7 Scope of the Project 28

2 LITERATURE REVIEW 31

2.1 Introduction 31

2.2 Review on Similar Community Association System 31

2.2.1 Cloud-based System 31

2.2.2 MyTaman Community Application 33

2.2.3 Homeserva Smart Community System 34

2.3 Demands of System and Solutions 35

viii

2.4 Review on Project Methodology 38

2.4.1 Waterfall 38

2.4.2 Scrum in Agile 39

2.4.3 Kanban in Agile 40

2.4.4 Prototyping 41

2.4.5 Extreme Programming 42

2.4.6 Comparison of Methodology 43

2.5 Review on Backend Server Framework 45

2.5.1 Ruby on Rails 45

2.5.2 Laravel 46

2.5.3 Node.js 46

2.5.4 Comparison of Backend Framework 47

2.6 Review on Front-end Web Application Framework 48

2.6.1 React 48

2.6.2 Vue.js 49

2.6.3 Comparison of Front-end Framework 50

2.7 Review on Cross-platform Mobile Application Framework 51

2.7.1 Flutter 51

2.7.2 React Native 52

2.7.3 Comparison of Hybrid Mobile App Framework 52

2.8 Review on Cloud Computing Services 53

2.8.1 Amazon Web Services 54

2.8.2 Google Cloud Platform 54

2.8.3 Microsoft Azure 55

2.8.4 Comparison of Cloud Computing Services 56

3 METHODOLOGY AND WORK PLAN 58

3.1 Introduction 58

3.2 Development Methodology 58

3.3 Proposed Workplan 61

3.4 Technology and Development Tools Involved 67

3.4.1 Ruby on Rails 67

3.4.2 Vue.js 68

ix

3.4.3 Flutter 68

3.4.4 Amazon Web Services 69

3.4.5 Heroku 69

3.4.6 Firebase Cloud Messaging 69

3.4.7 RQRCode 70

3.4.8 Visual Studio Code 70

3.4.9 Git 70

3.4.10 Trello 71

3.4.11 Axure 71

4 PROJECT SPECIFICATION 72

4.1 Introduction 72

4.2 Fact-finding 72

4.2.1 Interview 72

4.2.2 Observation 73

4.2.3 Questionnaire 74

4.3 Requirement Specification 80

4.3.1 Mobile Application for Community Resident 80

4.3.2 Web-based Application for Management User 82

4.3.3 Mobile Application for Security Personnel 84

4.4 Use Case Modelling 85

4.4.1 Use Case Diagram 85

4.4.2 Use Case Description 91

5 SYSTEM DESIGN 104

5.1 Introduction 104

5.2 System Architecture 104

5.3 Software Design Pattern 106

5.4 Database Design 108

5.4.1 Physical Entity Relationship Diagram 108

5.4.2 Logical Entity Relationship Diagram 109

5.4.3 Data Dictionary 110

5.5 User Interface Design 125

x

5.5.1 Web Application for Community Management 125

5.5.2 Mobile Application for Community Resident 143

5.5.3 Mobile Application for Security Personnel 156

6 SYSTEM IMPLEMENTATION 159

6.1 Backend Server 159

6.1.1 Overview of Backend Server 159

6.1.2 Controller Layer 161

6.1.3 Model Layer 170

6.1.4 Special Integration 173

6.1.5 Available Endpoints 179

6.1.6 Deployment 184

6.2 Web Application for Community Management 185

6.2.1 Overview of Web Application 185

6.2.2 Pages Hierarchy 187

6.2.3 API Client 188

6.2.4 Deployment 189

6.3 Mobile Application for Community Residents and Security

Personnel 190

6.3.1 Overview of Mobile Application 190

6.3.2 Screen Hierarchy 192

6.3.3 State Management 193

6.3.4 Deployment 196

7 SYSTEM TESTING 197

7.1 Introduction 197

7.2 Unit Testing 197

7.2.1 Admin Module 197

7.2.2 Mobile Module 206

7.3 Integration Testing 210

7.4 Usability Testing 215

8 CONCLUSION AND RECOMMENDATION 219

xi

8.1 Conclusion 219

8.2 Future Implementation 220

REFERENCES 221

APPENDICES 225

xii

LIST OF TABLES

Table 2.1 User reviews of MyTaman application at Google Play
Store 34

Table 2.2: Table of comparison between multiple methodologies 43

Table 2.3 Comparison of Ruby on Rails, Laravel and Node.js 47

Table 2.4 Comparison of React and Vue.js 50

Table 2.5 Comparison between Flutter and React Native 52

Table 2.6 Comparison of Amazon Web Services, Google Cloud
Platform and Microsoft Azure 56

Table 3.1: Project Schedule Summary 61

Table 6.1 Admin Endpoints Listing 179

Table 6.2 Mobile Endpoints Listing 182

Table 7.1 Test Cases for Admin Module 197

Table 7.2 Test Cases for Admin Module 206

Table 7.3 Test Suites for Integration Testing 210

Table 7.4 Usability Testing Participant Checklist 215

Table 7.5 Post-study Usability Questionnaire 216

Table 7.6 Average Time Usage of Task 217

Table 7.7 Post-study usability questionnaire average score 218

xiii

LIST OF FIGURES

Figure 1.1: Proposed solution technologies involved modules
diagram 25

Figure 1.2: Personal Kanban digital board by Trello visualization 27

Figure 2.1: The Six Stages of Waterfall Methodology 38

Figure 2.2: Diagram of Prototyping Methodology 41

Figure 2.3: Diagram of Prototyping Methodology 42

Figure 2.4 Gartner "magic quadrant" 57

Figure 3.1: Iteration of Agile 59

Figure 3.2: Part 1 of project Gantt Chart 63

Figure 3.3: Part 2 of project Gantt Chart 64

Figure 3.4: Work breakdown structure of the project 65

Figure 4.1: Pie chart of the residence type 74

Figure 4.2: Pie chart of percentage of residence having a 75

Figure 4.3: Pie chart of percentage of resident encounter fee
payment 75

Figure 4.4: Pie chart of preferable payment method 76

Figure 4.5: Pie chart of preferable way to manage resident’s
information 76

Figure 4.6: Bar chart of problem encountered in
feedback/complaint process 77

Figure 4.7: Pie chart of anonymous feedback 77

Figure 4.8: Pie chart of miss announcement 78

Figure 4.9: Pie chart of online announcement versus normal
announcement 78

Figure 4.10: Pie chart of visitor system 79

Figure 4.11 Fee related use case diagram 85

xiv

Figure 4.12 Announcement related use case diagram 86

Figure 4.13 Feedback related use case diagram 87

Figure 4.14 Visitor related use case diagram 88

Figure 4.15 Resident information related use case diagram 89

Figure 4.16 Account related use case diagram 90

Figure 5.1 Overview of System Architecture 104

Figure 5.2 MVC Flow Visualization 106

Figure 5.3 Completed physical entity relationship diagram 108

Figure 5.4 Simplified Logical entity relationship diagram 109

Figure 5.5 Login Page of Web Application 125

Figure 5.6 Recover Password Page of Web Application 126

Figure 5.7 Home Analytics Page of Web Application 126

Figure 5.8 Fee list in table 127

Figure 5.9 Create new fee page 127

Figure 5.10 Edit fee page 128

Figure 5.11 Announcement list in table 128

Figure 5.12 Create new announcement page 129

Figure 5.13 Edit announcement page 129

Figure 5.14 Feedback list in table 130

Figure 5.15 Create feedback page 130

Figure 5.16 Update feedback page 131

Figure 5.17 Update feedback dialog 131

Figure 5.18 Complete feedback dialog 132

Figure 5.19 Completed feedback page 132

Figure 5.20 Visitor list in table form 133

xv

Figure 5.21 Create new visitor page 133

Figure 5.22 Update visitor page 134

Figure 5.23 QR code generated for visitor 134

Figure 5.24 Payment histories list in table 135

Figure 5.25 View payment history page 135

Figure 5.26 House list in table 136

Figure 5.27 Create house page 136

Figure 5.28 Select resident dialog 137

Figure 5.29 Delete house dialog 137

Figure 5.30 Resident list in table 138

Figure 5.31 Create resident page 138

Figure 5.32 Select house dialog 139

Figure 5.33 Edit resident page 139

Figure 5.34 Delete resident dialog 140

Figure 5.35 Settings page 140

Figure 5.36 General information of residence page 141

Figure 5.37 Staffs page 141

Figure 5.38 Profile page 142

Figure 5.39 Login screen for mobile application 143

Figure 5.40 Recover password screen 143

Figure 5.41 Fee main screen 144

Figure 5.42 Select fee screen 144

Figure 5.43 Payment screen 145

Figure 5.44 View fee screen 145

Figure 5.45 View all fees screen 146

xvi

Figure 5.46 View payment history screen 146

Figure 5.47 View all payment histories screen 147

Figure 5.48 Announcement main screen 147

Figure 5.49 View announcement screen 148

Figure 5.50 View all announcement screen 148

Figure 5.51 Feedback main screen 149

Figure 5.52 Create feedback screen 149

Figure 5.53 View feedback screen 150

Figure 5.54 Action available for feedback 150

Figure 5.55 Update feedback screen 151

Figure 5.56 Complete feedback dialog 151

Figure 5.57 Rate feedback dialog 152

Figure 5.58 View all feedback screen 152

Figure 5.59 Visitor main screen 153

Figure 5.60 Create visitor screen 153

Figure 5.61 View visitor screen 154

Figure 5.62 View all visitor screen 154

Figure 5.63 Profile screen 155

Figure 5.64 Edit profile screen 155

Figure 5.65 Guard home screen 156

Figure 5.66 Guard add visitor screen 156

Figure 5.67 Visitor details screen 157

Figure 5.68 Entered visitor screen 157

Figure 5.69 Exited visitor screen 158

Figure 6.1 Flow of API request from web application 159

xvii

Figure 6.2 Flow of API request from mobile 160

Figure 6.3 Hierarchy of Controller Inheritance 161

Figure 6.4 Root Controller Source Code 162

Figure 6.5 Admin and Mobile Base Controller Source Code 163

Figure 6.6 Auth Residence Concern Source Code 163

Figure 6.7 Admin Fees Controller Collapsed Source Code 164

Figure 6.8 List fees function from Admin Fees Controller 165

Figure 6.9 Get fee function from Admin Fees Controller 165

Figure 6.10 Create fee function from Admin Fees Controller 166

Figure 6.11 Update fee function from Admin Fees Controller 167

Figure 6.12 Delete fee function from Admin Fees Controller 168

Figure 6.13 Mobile Fees Controller Collapsed Source Code 169

Figure 6.14 Part of the pay fee function source code from 169

Figure 6.15 Hierarchy of Model Inheritance 170

Figure 6.16 Resident Active Record Class Source Code 171

Figure 6.17 Feedback Active Record Class Source Code 172

Figure 6.18 Feedback Item Active Record Class Source Code 172

Figure 6.19 Fee Payment using Stripe 173

Figure 6.20 FCM Send Notification Function 174

Figure 6.21 Send Notification when Announcement Creation 174

Figure 6.22 Neibor Mailer with Sendinblue 175

Figure 6.23 Send Invitation Email to Resident 175

Figure 6.24 Invitation email 176

Figure 6.25 Password recovery email 176

Figure 6.26 Code Segment of Feedback's Images Upload 177

xviii

Figure 6.27 QR Code Generation when Visitor Application
Approved 178

Figure 6.28 Deployment of Ruby on Rails API server 184

Figure 6.29 Web application main layout 185

Figure 6.30 Collapsed code of Main.vue 186

Figure 6.31 Views folder for content area 186

Figure 6.32 Web application pages hierarchy 187

Figure 6.33 Code segment of ApiClient.js 188

Figure 6.34 Code segment of ApiClient.js usage 188

Figure 6.35 Deployment of Vue.js Web Application 189

Figure 6.36 Mobile application main layout 190

Figure 6.37 Code segment of AuthWrapper.dart 191

Figure 6.38 Views folder of mobile application 191

Figure 6.39 Screen hierarchy of mobile application 192

Figure 6.40 Overview of Provider State Management 193

Figure 6.41 Code segment of Fee Provider 194

Figure 6.42 Code segment of implementation of
ChangeNotifierProvider 195

Figure 6.43 Code segment of FeeScreen 195

Figure 7.1 Code segment to generate mock staff account 205

Figure 7.2 Code segment to assert the response 205

Figure 7.3 Automated unit tests performed 206

Figure 7.4 Code segment to generate mock fee 209

Figure 7.5 Code segment to assert the response 209

Figure 7.6 Automated unit tests performed 210

Figure 7.7 Mock data of visitor 214

xix

Figure 7.8 Code segment of Visitor test suite 214

Figure 7.9 Integration testing performed 215

xx

LIST OF SYMBOLS / ABBREVIATIONS

SaaS Software as a Service

WIP Work in Progress

IoT Internet of Things

REAT 2.0 Revised Residential Environment Assessment Tool

XP Extreme Programming

SDLC Software Development Lifecycle

FDD Feature Driven Development

DSDM Dynamic System Development Method

ASD Adaptive Software Development

LSD Lean Software Development

IDE Integrated Development Environment

VS Code Visual Studio Code

MBaaS Mobile Backend as a Service

MVC Model-View-Controller

DOM Document Object Model

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

API Application programming interface

xxi

LIST OF APPENDICES

APPENDIX A: Interview Question 225

APPENDIX B: Visitor Registration Item at Cypress Condominium
 226

APPENDIX C: Questionnaire Form 227

APPENDIX D: Supervisor and moderator comments on project
plan 232

APPENDIX E: Kanban board (Trello) progress 235

22

CHAPTER 1

1 INTRODUCTION

1.1 Introduction

This chapter gives an overview of the project. Firstly, it states the problem discovered

in the current community association management system, which is involving many

manual paperwork in the problem statement part. Besides, project objective part

specifies the expected achievement of the project, which is improve the system by

enhance the current workflow with the mobile application. Project solution involves

multiple functionalities to achieve the expected project objective. Kanban approach is

chosen as the project methodology after evaluating it with other methodologies. Scope

of the project determined and documented the expected deliverables and functionality

of the project.

1.2 Background of the Project

People always seek for higher standard of comfort, productivity and quality of life.

Community association management today are expected to be more advance and

integrate with smart technologies in current decade. So, residential management are

generally intended to improve the residential management services as people living

environment and standard was continuously increasing (Jin, Wu and Huang, 2017).

According to Groenendijk, Guild and Barzilay (2000), residential management are

found to be fraught with inefficiencies and they are generally backwardness in term of

technology. In Malaysia, residential management are facing dilemma as the process

involved massive amount of hard-copy paperwork, time and cost is required in the

current community association system. Current existing system deserved a better

solution to let the residential life reach an optimal level.

23

1.3 Problem Statement

In this century, technology had been everywhere to make things better in many ways

such as enhance human living standard or in this case, produce seamless and

convenience community association operations. Residences community association

management in this decade are expected to be operated in a seamless, efficient method

and evolve with the reformation of technology (Nan, Zhou and Li, 2018).

However, there were still many residences, including either low-standard or

high-standard residences still had an inefficient and inconvenience operations

technique or way to manage community associations in term of time and resources.

For examples, community association is managed manually by the residences

management officer by a lot of paperwork, they need to input the personal details

manually to the system. It was an inefficient process when it came to a large number

of information or details registered needed to create or update. Consequently, it causes

waste of time and energy to manage the operations for the community activity.

Besides, another example of inefficient manual operations is the traditional

method of paying bills or annual fees to residences management, which is manually

do a bank transaction to management’s bank account. A proof of payment is needed

to send to management in order to verify the payment process for her case. This process

was tedious and prone to error, as management officer may easily to miss-process

about the payment.

When there was a visitor, authentication process of visitor that grant access to

the residential area is an inconvenience process also. Existing visitor registration

process in residence generally involved registration form which mandatory to fill in

and temporary deposit of visitor’s identity card may issue many problems such as

leakage of personal information.

By wasting human man hours and costing excessive amount of paperwork, the

current way to perform the operations within community associations make the

residences less competitive, and by contributing to a slow or hassle process to manage

community associations, it creates an unfavorable brand image.

24

1.4 Project Objectives

This project is aimed to achieve the following objective stated below:

1. To identity the current problem of the existing community association

management system.

2. To simplify the existing community association management operations by

automating repeated tasks.

3. To develop a system that can used to manage the community association that

build community loyalty and enhance the residential image.

The developed system will increase the productivity by allowing the operations to be

done quickly and concurrently.

Besides, community association general activity such as, update personal

information, receival of important announcement, paying the fees, etc. can be operate

without delay and human interaction on developed mobile application anytime and

anywhere.

1.5 Project Solution

The project is aims to solve the problem encounter by current community association

management system. An automated system will be developed to act as the solution to

the problem. The developed system involved back-end API server, web application

served as admin panel and mobile application that used by community resident. By

utilizing the developed mobile applications on wireless devices, workflow of the

system can be improved as it required less manual paperwork and human interaction

as unnecessarily that management spend their hours of the day on the paperwork

(Madsen, 2007).

25

In the mobile applications, the problem can be solved by the ways described below:

Figure 1.1: Proposed solution technologies involved modules diagram

The community resident related information is stored in the MySQL database

instance that provided by Amazon Relational Database Service (RDS), this reduce the

amount of manual paperwork to collect the resident’s information. Through the

developed application, residents can change their information, such as car plate

registered easily and without human interaction. Besides, residents’ feedback will also

store in the MySQL database instance, those data can be access and review by the

management officer in a well organize manner. It can increase the productivity as

management officer waste no time to collect and organize the hard-copy feedback

forms.

A centralized API server to serve and handle the request from two front-end

clients will be hosted on Amazon Elastic Compute Cloud (EC2). This centralized

server approach provides an extensive and scalable option for the future expansion of

AWS

RDS

AWS EC2

ML Kit for

Firebase

Stripe Online

Payments

Flutter

User Mobile Application

Vue.JS Web

Management Application

AWS S3

Storage

26

the system. One of the benefits is it leads to better code management and control.

Besides, EC2 is a web service providing stable, resizable cloud computing and hosting

capabilities. It's planned to make cloud computing on a web scalable simpler for

developers. The simple web service interface of Amazon EC2 helps you to get and

customize for minimum friction and maximize the capacity. It gives you complete

control of your computing resources and allows you to run on the validated computing

environment of Amazon.

The community association management system will involve several scenarios

that storage of image or custom file of resident. For example, when submitting a

feedback, user can upload a photo to make further description on the problem he/she

encountered. To fulfill this requirement, Amazon Simple Storage Service (S3) is used.

Amazon S3 provides industry-leading scalability, data availability, encryption and

performative efficiency to store objects. This helps developer of all sizes and sectors

to store and safeguard some volume of data in a variety of applications in different use

cases. Furthermore, Amazon S3 offers flexible access, rate, replication and data

security management capabilities. Amazon S3 Access Points allow user control to the

systems by leveraging a common data collection with different permissions.

By integrating the Stripe online payments, the developed mobile application

enables residents to pay their fee online securely and remotely. Stripe is an online

payment service provider, it provides credit card payments that can be integrate into

Flutter application as Software as a Service (SaaS). There are 3 type of product in

Stripe services, which is Payments, Billing and Connect. Payments is suitable in the

situation that user pay the payments one time only. Billing is suitable in the situation

that user will recurring pay the bill at the subscription basis. Connect is suitable in the

situation that user will accept or pay out money to third parties, it suits with the case

in e-commerce business, marketplace etc.

 Furthermore, hassle visitor registration process can be improved by using QR

Code authentication access. Unlike the existing visitor access granting procedure, the

process can be held without paperwork by using the application developed. Firstly,

resident living in the residential area can register to apply the access granting for their

visitor by input the details of visitor in the mobile application. After that, a QR code

will be generated which that can be send to the visitor. Visitor can use the QR code

received and the guard of the residential area then can scan the QR code to view the

details of the visitor and grant access to the visitor.

27

 For the web-based management side application, it will provide a user-friendly

system to allow the management team to manage the daily basis task. For examples,

make announcement and the system will send notification to the community residents

affected. Furthermore, management team can view each resident fee payment status

and manage the resident feedback or complaint in the system easily.

1.6 Project Approach

Figure 1.2: Personal Kanban digital board by Trello visualization

This project will apply personal Kanban framework approach in agile principles. There

some core element inside Kanban, such as visualize work tasks, limit work-in-progress

(WIP), focus on improvement of the project flow and continuous improvement of the

product (Wiegand, 2018).

Firstly, work task is visualized by using a Kanban board, which can be either a

digital board or reality board, we can list out the work need to be done, the work in

progress and the work had done. Through this kind of visualization of work component,

it makes the structure of the project more obvious and lead to high productivity. As

like Benson (2010) stated on Øredev Conference, personal Kanban reduce the chaos

in the project and promote the individual effectiveness to success.

Mobile

28

Besides, by limiting the amount of work-in-progress at one time, it can assist

the project to be more focus on the specific task and avoid time wasted on task

switching or reorganize the priority of the work components. It allows the project to

be deliver in a high quality and faster manner.

Moreover, using the WIP limits in the scope of Agile principles, we can

continuously improve the project flow and consummate the implementation from the

previous iteration. The software tools will be used in this project as Kanban digital

board is Trello as it provides a user-friendly and sufficient functionality for this project

approach.

1.7 Scope of the Project

The developed mobile application is limited to the use in specific residence’s

community and residences management officer only. The mobile applications can be

accessed by users though their mobile devices on both iOS and Android platform. This

project will deliver two mobile applications for community association management,

which is the community-side application and residence management-side application

and the details are described as follow:

1. Community-side application

In this application, it will cover the basic community association activity

functionality:

• Log in

Community resident is able to log in to the system using the ID and

Password that given by the management officer, which is pre-register

by the management officer.

• Update personal information

Community resident can initialize their profile at their first log in at the

initialization page after the log in page. At that page, fill in the form

with the details such as the title before name, resident name, gender, IC

number, email and phone number. After that, if resident wish to change

their personal details, resident able to update their personal information

at the updating page also.

29

• Pay fees

Community residents can pay their fees through the application online

securely and hassle-free by using bank transaction gateway. There is no

requirement of email proof of payment send to the management office.

In this functionality, residents able to view the fees need to pay, the

respective deadline, and also the paid transactions in the payment

history.

• Receive notification of announcement

Community residents will get notified whenever there is an

announcement made through the application without delay. Besides,

recent announcement or message will also be recorded in the

announcement board, residents can access to it anytime and anywhere

through their mobile application.

• Provide feedback

If there was any issues or feedback, community residents can make an

immediate feedback with attachments if any through the mobile

application. Moreover, the submitted feedback status can also be

tracked through the application and provide a channel to allow residents

to communicate with the management office until the problem resolved.

After that, residents can mark the specific feedback as solved.

• Visitor registration

Community residents register their visitor(s) in this module to apply the

approve for the access of visitor(s) into the residential area. Personal

information of visitor(s) is required for the verification of the access

granting process and serve as backup to track if any incident happen.

After submitting the information, a respective QR code will be auto

generated by the system and the specific QR code can be send to the

visitor and act as a pass to gain access.

30

2. Management-side web application

In this web application, it will cover the basic residence management activity

functionality:

• Make announcement

Residence management officer can send announcement to either, all

residents, specific block residents through the application. In the

announcement writing page, officer need to fill in subject and content

of the announcement, attached file if applicable and finally selected the

portions of residents will receive the announcement.

• Monitor fee-paying status

Through the application, residence management officer can view and

monitor the fee-paying status of each residents and send private

notification messages to the specific residents to remind the deadline

and fee-paying matters, such as how to pay the fee.

• Manage feedback

Residence management officer can view the feedback that submitted

by the residents and reply to it. The page will show each status of the

feedback is either, pending, in-progress, and solved. Through the

application, officer can reply to the resident’s enquiry and communicate

with them.

• Manage visitor

In this part, residence management can view the application of visitor

access from the resident community and approve or reject the

application based on the information submitted. Besides, history of the

visitor access will be record as a backup for reviewed.

31

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

In this chapter, multiple existing community association management system had been

discussed and evaluated to gain some inspirations and ideas. Besides, the demands and

need of the resident community is investigated and exploratory study is done to

identified possible requirement of the system. Furthermore, evaluation and comparison

between various software development methodology had been done and Kanban in

Agile will be apply in this project. The system architecture combination options would

be worth pondering topic in this project including the backend and front-end

framework, cloud services provider, etc.

2.2 Review on Similar Community Association System

Community association system is still not a standard equipment for the residential area

in Malaysia. However, the trend of it had begun as some residential area had slowly

integrated and implement some system to enabling better management.

2.2.1 Cloud-based System

From community association networks and multimedia to multiple community

management automation systems, smart resident technologies have evolved quickly.

In 2016, Lee et al. had proposed a cloud-based system for the integrating community

services that can be access through internet in smart devices is proposed in this study.

The objective of the proposed system is to:

• Manage the device operations involved

• Reduce manual work and labour required in the community management

process

• Provide electronic information services

• Support diversified services

• Support location-based services

32

 One of the limitations is that the proposed system involved Internet of Things

(IoT) which is hardly implemented to current resident’s area as it may not accept by

the existing resident. However, the study still gave an overview software application

architecture of similar existing system that can be tailor to the project and suggest

optimal approach of protocol implementation for specific purpose, such as control of

resident management device.

Besides, patent of “Security and Property Management System” describe a

well-defined property management system should consist of an interactive and user-

friendly system for reporting, tracking and rectifying security and maintenance items

and incidences occurred (Alonso, 2006).

The modules to be considered included:

• Database server, for storing data information

• User devices, for accessing, inputting and receiving information from the

database server

• Interface system, for allowing input and output from the system remotely

• Real-time access, for providing the immediate receive of information

• Property management customization, for setting up specialized solution for

specific type of property

The invention should have many built in and features to increase the overall

efficiency of property management. The patent application is based on and claims

priority on U.S. Provisional Patent Application No. 60/377,013 having a filling date

of 30 Apr. 2003, currently pending. The patent provided a details and rigorous

information about the property management system.

Furthermore, another similar community association system is the

management system proposed by Li et al. (2010). The proposed community

association management system utilized a technology known as WebGIS, to

implement functionalities such as real-time video monitoring, sensor monitoring

alarming, multimedia network transmission technologies etc. In the system study,

requirement analysis was done to analyze and verify the system requirement collected.

The integrated functionalities were featured by advancement, practicality,

visualization and automation. Overview design of the system:

33

• GIS module, for real time monitoring and alarming

• Residential module, for management information of community general

condition, building and tenement that provide query, browse and satiating

function

• Business manage module, for property expenditure, client complaining,

repairing report, staff dispatching and arrangement

By analogy approach, the system design and determined system requirement

can be adopted into the project. On the other hand, the proposed system had some

limitations that lacking of involvement of user perception and experience. In addition,

there are no clarification or proof on the impact of the system built.

2.2.2 MyTaman Community Application

MyTaman is an internet of things (IoT) smart community system, with the latest

technologies and framework to protect the community. It offers apps that serve

everyone, and that will support them in their everyday lives. The apps assist them when

they're in danger (SOS button), inform them about the arrival of their guests (Guests

warning, keep updated on the current neighborhood events (News events), even

provide a private platform for the trustworthy service providers with your own

residential area (Recommendations), and more. MyTaman consists of several main

functionality such as MyTaman Pay, MyTaman Visitor, Resident Association,

Recommendation, etc. It aims to reduce the criminal activities, simplify the complex

cable intercom, inefficient visitor management and build a safer environment for

resident community.

 According to MyTaman official website, they had been used by 200+

communities in Malaysia such as Suasana Sentral Loft Kuala Lumpur, Sunsuria

Residence, etc. However, there are some drawbacks of MyTaman community

application is that residential management association need to invest a number of

moneys to purchase the MyTaman related hardware device to use the system.

34

Table 2.1 User reviews of MyTaman application at Google Play Store

In addition, there are some reviews at Google Play Store for MyTaman

application that reflect the application may have some privacy issue and logical error

like the figure above shown.

 The following are some special features of MyTaman community application:

• Smart door access using smart phone

• Complete visitor management system

• Recommendation system

• Guard patrol monitoring

2.2.3 Homeserva Smart Community System

Same as MyTaman, Homeserva smart community system introduced by VYROX

involved internet of things (IoT) technology and aim to build smart community that

based on property management. As VYROX is originally focus in IoT smart home

integration and automation, Homeserva had its advantages when integrate with

VYROX other IoT hardware such as CCTV, burglar alarm sensors, Amazon Echo,

video intercom, etc. Apart from them, Homeserva also support facilities management

that help residential community book the facilities conveniently and auto arrangement

of the request. However, there are only a small number of communities implemented

Homeserva system, which means the market share of Homeserva is still low.

 The following are some special features of Homeserva smart community

system:

• Focus on IoT integration

• Lift controls

35

• Community marketplace

• Community on-demand services

• Parking lots management

2.3 Demands of System and Solutions

According to Madsen (2007), There are 4 related impact of technology on property

management area identified. Firstly, skillset demand for property management staff

had changed as evolution of technology had produced more advanced and user-

friendly management software. In the past, the property management staff are mostly

technician that have professional knowledge on that software used. But times changed,

todays property management required less professional knowledge to operate that

management software as the functionality are increasingly automated by technology.

Secondly, expectation of tenants/clients getting higher as they may be conscious of the

technology used and expect higher about property management firm to provide better

services. Thirdly, overall services deliverable is better as many organizations are

investing in their property management system to attract their clients. Fourthly,

property management staff no longer required to be restrained to desks as wireless

devices can facilitate the remote work.

In Madsen’s research, careful research and study on the property management

case study had been held. Besides, interview session with Glen Fernald, managing

senior vice president of management services, Mid-Atlantic region, Transwestern,

Bethesda, MD on the property management topic had done to get some insights from

high level management.

Residential needs are essential to be known in order to improve residential

service provided for association community. Jin, Wu and Huang (2017)had mentioned

several residential services demands determined in their research which are:

• Commination skills

• Maintenance efficiency

• Garbage removal

• Greening layout

• Traffic management

• Elderly activities

36

This provide an overview understanding to the potential residential service

demands that can be act as the problem of project need to solve.

Residential and community satisfaction is found to be associated with the

service quality level provided by community association management team (Poortinga

et al., 2017). This study by Poortinga and his team assesses the residential area by a

tool that known as Revised Residential Environment Assessment Tool (REAT 2.0).

The factor considered can be categorized into street level and property level. For street

level factor examples, it consists of litter in public space, condition of public space,

recreational space etc. On the other hand, for property level factor, it consists of

property maintenance, property service quality, garden maintenance etc.

The neighborhood quality data were collected from a program in

Carmarthenshire, Wales. The neighborhood perception study is conducted at Cardiff

in the form of questionnaire that involving 1160 participant. Major strength of this

study is the breadth of analysis conducted to identify and reliability of the REAT 2.0

tool and the coefficient between the neighborhood quality with the neighborhood

satisfaction. Limitations of this study is the relatively small sample size and narrow

neighborhood aspect may not reveal the actual insight on general residential area.

Besides, location of study is limited in United Kingdom. However, it still provided a

prove that the community association satisfaction is linked to the quality of property

management service provided and suggested an approach to evaluate community

association satisfaction.

Rahman et al. (2015) examined the relationship between housing expenses,

affordability, service quality by management side, hygiene factor and community

attachment and residents’ satisfactory. There is one factor that closely related to the

project, which is service quality. The findings of the study stated that the satisfaction

of a customer depends on the service quality level provided. The community

association management services quality can be measured by:

• Reliability, to perform promised service dependably and accurately by the

management team

• Responsiveness, to help residents on problem and provide prompt services

• Assurance, to convey trust and confidence to resident’s community

• Empathy, to provide caring and individualized attention to resident’s

community

37

In the study, questionnaire session was carried out to collect data. Besides, some

other data gathering method also involved in this study such as descriptive analysis,

exploratory factor analysis confirmatory factor analysis and structural equation

modelling approach to verify the hypothesis statement. The context of the finding is in

South East Asia which may highly applicable to this project. It contributes to this

project by suggesting some measurement indicator to measure residential community

satisfaction to the residential management services.

 Under the concept of “Internet Thinking”, Yan (2018) had conduct a research

on various operation status of residential property management and proposed solution

on those status. There are several main situations determined:

1. Uneven Development Level of Residential Property Management

There are three types of development level of residential property management,

which the first one is no property management system. In this case, the cleaning

fees is paid by household and guard salary is paid by the management company.

Besides, another type of property management is “four guarantees” service that

included cleaning, security, green protection and guarantee repair in residential

area. Furthermore, residential management system that automated to improve

the efficiency was implement in large-scale and well-known residential

community.

2. Management system mostly small and incomplete

The management technology level is backward, and the technology content

portion is not high. The existing system operate in an inefficient and non-

standard way.

3. Lack of professional property personnel and systematic training

Property management is a staff-intensive service type. The process mostly

involves low employee with uneven quality and lack of training. Large

mobility of personnel may interrupt the process of experience pass down.

38

2.4 Review on Project Methodology

A right project methodology is critical to the success of the project to achieve the

expected deliverable effectively and efficiently. There are a wide range of

development methodology that can be investigated and adapted to ensure the success.

As like Muslihat (2018) stated, there are no a perfect methodology suit for every

project, selecting the appropriate methodology is the key to contribute to the success

of project. In this section, four methodologies, which is Waterfall, Scrum in Agile,

Prototyping and Extreme Programming model will be discussed in term of their

characteristics.

2.4.1 Waterfall

Waterfall methodology known as the first Software Process Model, and first

introduced by Dr Winston W. Royce in 1970 (Powell-Morse, 2017). As its linear

characteristic, it is bringing Waterfall model very simple and intuitive phase of process.

The model focused that current phase must be completed before moving into the next

phase of development process. However, it also restricts the project to backward or

overlapping of phase if there was any problem encounter.

Figure 2.1: The Six Stages of Waterfall Methodology

System and

software

Analysis

Coding

Design

Testing

Operations

39

2.4.2 Scrum in Agile

Scrum is one of the methodology frameworks under Agile. Introduced by the empirical

inspection, Scrum's early proponents adapted feedback loops in order to deal with

complexity and danger. Scrum underlines real-world decision-making rather than

speculation. Time is organized into short task cadences, usually one or two weeks long

known as sprints. The item is always held in a (correctly incorporated and tested)

shippable condition. Stakeholders and teammates will meet at the end of each sprint to

see a proven potential increase in products and plan their next steps. Scrum is a

straightforward collection of positions, tasks and meetings which never alter. By

removing unnecessary unpredictability, we can better deal with the required

unpredictability of continuing learning and discovery.

 In a Scrum context, it normally consists of 3 roles:

• Product owner

A visionary, authoritative, and availability individual. The Product

Owner communicates the vision and priorities to the development team

continually.

• Scrum Master

The Scrum Master serves as the Product Owner and Team's facilitator.

The team is not managed by Scrum Master. The Scrum Master operates

to remove all obstacles to the sprint objectives of the team. This enables

the team stay creative and efficient and ensures that the Product Owner

sees its achievements. The Scrum Master also advises the producer how

to maximize the team's ROI.

• Teams

According to Schwaber and Beedle (2001) who is the founder of Scrum,

he stated that, "The team manages totally itself,", the team develops

itself for completing the work. A development team of Scrum

comprises around seven dedicated members (officially 3-9), perfectly

in one team room protected against distractions from outside. A typical

team of software developers, architects, programmers, analysts, QA

professionals, testers and UI developers involves a combination of

software projects. Every sprint, the team determines how the work to

be finished is done. The team has independence and accountability to

achieve the sprint objectives.

40

2.4.3 Kanban in Agile

Agile Kanban is Kanban approached for Agile Software Development. The workflow

is visualized in Agile Kanban by the Kanban board. The board of Kanban is usually

placed on a project room wall. On the Kanban Board with floating Kanban cards the

status and advancement of the growth of the story is monitored visually. The Kanban

board is used to represent task flow through the value stream. It offers everyone who

participates in the project simple access. In addition, it also facilitates communication

where needed and task advancement is exhibited visually. As quickly as they happen,

bottlenecks are noticeable.

 Kanban cards represent the duties and stories. Task available in different

columns of the board, the current status for every assignment is known. Every job

passes from to do and then to perform. As the development progress advances with

growth, the Kanban Board is updated daily.

 In Kanban, there are several important elements and concepts which are:

• WIP Limit

The Doing column label also contains a number representing the

maximum number of tasks that can be in that column at any point in

time, i.e. the number associated with the Doing column is the WIP

(Work-In-Progress) limit.

• Pull Approach

Pull approach is used as and when the Doing column completes a job.

Another card from the To Do column is taken.

• Self-Directing

The team is accountable for planning, monitoring, reporting and

communication in the project in Agile Development. The team is

entitled to make choices and is responsible for completing the creation

and the quality of the item. This aligns with the Kanban team's

empowerment feature.

• Continuous Workflow

There is no door strategy in agile development and the job flows

through the various tasks without waiting time. This helps to minimize

Kanban's cycle time feature.

41

2.4.4 Prototyping

In this methodology, a prototype will be developed, tested and altered continually until

a required final product is delivered, which constitutes an approximation of the

features of the final scheme. With minimal features, the first prototype is created and

from moment to moment adds extra features to the final scheme. First of all, it will

determine the system requirements and develop a preliminary prototype based on the

specifications. This methodology involves users in analysing and evaluating the first

prototype. The developers will collect and save all user comments and reviews for next

changes. After a change to the first prototype, a second prototype is developed and

sent again for assessment with further characteristics. The above steps are repeated

until the user satisfies the prototype. Next, the last prototype is the reference for the

final scheme (Rouse, 2005). After completion of the design stage, a series of tests such

as unit testing, integration testing and acceptance testing will be applying to the

deliverable. Usually this methodology is used in a project where some of the project

requirements are not well defined. This methodology works well in this type of project

because it is iterative and frequently interacts with customers.

Requirement

System Design

Coding

TestingEvaluating

Implementation Maintenance

Figure 2.2: Diagram of Prototyping Methodology

42

2.4.5 Extreme Programming

Extreme programming (XP) is a software development methodology that aims to

enhance software quality and client response. It promotes frequent releases in brief

development cycles as a form of agile software development to increase efficiency and

introduce controls that enable fresh demands of customers. XP is a simple, powerful,

low-risk, flexible, predictable, scientific and enjoyable way of software development.

Extreme programming was conceived and developed in the face of vague and changing

requirements to meet the specific needs of software development for small teams. In

larger teams with a team size of 12-16 developers, Extreme programming is considered

to be efficient. The interest of the clients engaged in the process can be hard to maintain.

Members of the team may not be adapted to the intensive participation of agile

methods. When various stakeholders exist, prioritizing modifications can be hard.

Figure 2.3: Diagram of Prototyping Methodology

43

2.4.6 Comparison of Methodology

The process of software development can be regarded at two separate stages: initial or

first-level activities linked to software acquiring data, growth and maintenance, next

or second-level activities linked to dentition, functioning, measuring, and upgrading

of the software system itself. The study by R.Raval and M. Rathod (2013)presents a

comparative analysis of different software development process models based on

different parameters; it also lists different factors in the selection of partial software

model in the software development globe. The table below showed the comparison of

various methodology considered in this project:

Table 2.2: Table of comparison between multiple methodologies

Parameter Waterfall Agile Prototyping Extreme

Programming

Clear

Requirement

Specification

Initial Level Change

incrementally

At medium

level

Initial level

User feedback No No Yes Yes

Adaptability to

change

Low High Medium High

Predictability Low High High High

Risk

Management

At initial

level

Yes No Yes

Practical

Implementation

No High Medium High

Usability Basic Most use now a

days

High Medium

Elasticity No Very high Yes Medium

From the table above, Agile methodology is identified to be more suitable for

this project. The reason is the requirement specification prepared may need to change

over time. Besides, Agile model have high level of predictability, good risk

44

management and required many practical implementations. Due to its high level of

elasticity, Agile model can be easily tailored into this project.

 There are two Agile frameworks to compare with is Scrum and Kanban.

According to Alqudah and Razali (2018), they determined various differences between

Scrum and Kanban methodology in term of the selection factors and identified the

suitable situation to adopt each methodology stated in their study. Based on their study:

Kanban is suitable for:

• Prefer not to follow prescribed method

• Prefer not to follow predefined roles and responsibilities

• Team size is more flexibility, such as less than 5 team members or more

than 11 team members

• Batching work and do requirement prioritization daily

• Focus more on cutting lead time

• Improving quality

• Cutting cost

Scrum is suitable for:

• Prefer to follow prescribed method

• Prefer to follow predefined roles and responsibilities

• Team size comprise of 5-11 team members

• Batching works in one-, two- or four-week basis

• Not emphasize cutting lead time

• Focus more on knowledge, experience and decision making based on

situation

• Quality is not emphasized at high level

• Not emphasize of cost saving

As the study provide a reference and concept about Scrum and Kanban methodology

and suggest a systematic selection method to choose between Scrum and Kanban.

After considering the parameters stated, Kanban in Agile is chosen to be the

methodology in this project.

45

2.5 Review on Backend Server Framework

Frameworks have become an important aspect of web development as web application

requirements continue to grow, as does the technical sophistication necessary. Without

this advanced methodology, it is completely impractical to rebuild the whole

framework infrastructure manually again. That’s why it is an essential approach to

implement a backend framework supported by thousands of developers worldwide to

create rich and immersive web applications. However, there are numerous of backend

framework outside the world, choosing a right framework that can fulfill the needs of

developer is a vital factor that contribute to the success of the project. There is no best

framework but the most suitable framework.

 Backend framework can be judged by several aspect such as programming

tools, language it used, interface or feature they offer. Moreover, pre-configured tools

and templates that help developer’s productivity could be one of the considerations

included also. Section below will evaluate characteristics of each backend framework.

2.5.1 Ruby on Rails

Rails is a free, open-source server-side web development framework that fully written

in Ruby. Ruby has always been considered as one of the most developer-friendly

languages and Rails incorporates Ruby’s capabilities and advantages feature. Rails

also provides developers innumerable predefined solutions for repetitive tasks in a

very high readability and clean manner. Furthermore, it facilitates agile development

and provide almost every component that a backend server needed (Tachibana, Kon

and Yamaguchi, 2018). There are several popular applications that are developed in

Ruby on Rails, such as Shopify, GitHub, Airbnb, etc.

The following are some unique feature of Ruby on Rails backend framework:

• Allow customized extension on almost every primitive type or class,

such as String class, True class, etc.

46

• Active Record, the built-in object-relational mapping (ORM) of Ruby

on Rails provide simple, clean and yet powerful operations to the

database.

• Focus on MVC framework

• Massive and supportive community

• Various of plugged-in library that ready to use

2.5.2 Laravel

Laravel is a modern architecture that simplifies the development process and

eliminates a great deal of pressure from the web app project. Strength of Laravel is its

simplification on the complex tasks such as authentication, containerization, queues

and routing (Laaziri et al., 2019). Laravel has its own code base for the migration

system. It is the easiest way to build a web application with complex backend

requirements. Besides, Laravel has a large community. For examples, Laracasts is a

platform for screencasts of over one thousand videos on the Laravel environment of

PHP, Laravel, and front-end technology that could be considered a blue sky for

beginners.

 The following are some unique feature of Laravel backend framework:

• Minimize bootstrapping and offers maximum versatility

• Easy switching of current framework to Laravel

• Library that support fast route to handle request with appropriate

response

• Built-in caching, error, log-handling and authentication

2.5.3 Node.js

Node.js is a runtime framework that written in JavaScript and built on Chrome’s V8

JavaScript Engine. It promotes event-driven programming, non-blocking I/O model

and this led to rapid speed and lightweight in computing (Rose and Survesh, 2017). It

eliminates the waiting time for code statement to execute but it run parallelly continue

47

with the next request, as it run single-threaded and asynchronously programming

nature.

 The following are some unique feature of Node.js backend framework:

• NPM, stands for Node package manager, which is a large ecosystem

that contains a variety of library that can installed by Node.js

framework

• Lightweight technology and memory efficient

• Can combine with React front-end framework to build full stack

JavaScript environment

• High performance as process several requests concurrently

2.5.4 Comparison of Backend Framework

Every backend framework has its own set of advantages and drawbacks, there are a

few considerations can be compared.

Table 2.3 Comparison of Ruby on Rails, Laravel and Node.js

Characteristics Ruby on Rails Laravel Node.js

ORM Active Record Eloquent Sequelize

Speed Average Average Fast

Learning Curve Average Shallow Shallow

Community

support

Large Average Average

Special features Focus on MVC

framework,

extensive

infrastructure

Built-in

authentication,

caching

Non-blocking,

concurrently

processing

48

As the table above shown, each framework had their own characteristics.

Active Record feature of Ruby on Rails is the preferable ORM in this project as clean

code, high readability and maintainability is emphasized in this project. Although

Ruby on Rails has several weaknesses such as slower speed compared Node.js.

However, Ruby on Rails had better advantages in computing intensive task compared

to Node.js as Node.js single-threaded nature while Ruby on Rails support multi-

threaded. Furthermore, Ruby on Rails facilitation on MVC design pattern suited with

the requirement of the project as MVC pattern will be implemented in this project.

After considering the parameters stated, Ruby on Rails is chosen to be the backend

framework in this project.

2.6 Review on Front-end Web Application Framework

Front-end user interface is used as the View in the overall context of Model View

Controller design pattern. For contemporary web application projects todays, majority

of the projects had front-end development involved. Front-end framework served as a

scaffold for the construction of the project’s front-end. It always brings some good

approach to structure the project file, make request, associate data with DOM elements,

etc. Additionally, front-end framework also brings some benefit to the project such as

separation of concerns, speed in development, well-structured prebuilt patterns and

better maintainability.

 Most of the front-end framework in the industry is designed for single page

application. The system architecture for a single page application revolves around

having one page from the server. The page should include an HTML elements frame,

as well as references to different frameworks and the application on the client side. All

other resources (like the data to display) will be fetched on demand by the request

using library. In the domain, several popular front-end frameworks are ruling the

preferable of developer such as React, Vue.js, Angular, Ember.js, etc. Comparison

between React and Vue.js will be discussed in the section below on the aspect of their

characteristics.

2.6.1 React

React is a front-end development framework developed by Facebook. Rather define

React as a front-end framework, its official definition is more like a UI library.

49

Philosophy of React is emphasized on the interaction, stateful and reusable UI

components creation. It enables complex web application to change its data for render

without refreshing the subsequent page. React reorganize the Document Object Model

(DOM) in a more abstract form to provide simpler and more robust web application

development experience.

 The following are some unique feature of React front-end framework:

• Better performance by more efficient and lightweight DOM

• Memory efficient by using virtual DOM

• Large community and maintain by Facebook

• Unidirectional data flow

2.6.2 Vue.js

Vue is a front-end framework developed by Evan You, an ex-engineer of Google. One

of the similarities between React and Vue.js is that both of them implement virtual

DOM that claim better performance. Vue is well-known by its low complexity, small

build size and perfect integration of JavaScript nature. It built in with high popularity

web technologies feature that most commonly used by development and build on top

of the layer to deliver the convenience to developer. Even though Vue.js having a

minimal size of core which make it very lightweight, developer is still able to integrate

additional library to scale up the project whenever needed (Comparison with Other

Frameworks — Vue.js, 2020). Famous use case of Vue.js are Gitlab, Alibaba, etc.

The following are some unique feature of Vue.js front-end framework:

• High flexibility as many official package or extension ready to

implement

• Shallow learning curve as well-written documentation which is very

intuitive and complete

• Simple implementation, suitable for wide-range of project

• Small framework size that optimize the performance

50

2.6.3 Comparison of Front-end Framework

The evaluation of the characteristics of React and Vue.js can be discussed in various

aspects such as performance, learning curve, documentation, etc.

Table 2.4 Comparison of React and Vue.js

Characteristics React Vue.js

Flexibility High Relatively High to React

Performance High High

Learning Curve Shallow Relatively Shallow to

React

Community support Large Average

Documentation Well written Well written

As the table shown, React and Vue.js are very similar in characteristic and

feature. According to the third-party benchmarking result, React and Vue.js had

similar average performance on web application. The selection within these two front-

end frameworks would subjective to developer. The weakness of Vue.js is it has

smaller community worldwide, which can minorly affect its reliability. However,

Vue.js still gained a large number of popularity and well-known by its ease to learn

and integrate and its great official documentation. In the nutshell, Vue.js will be chosen

as the front-end development framework for the web application development in this

project.

51

2.7 Review on Cross-platform Mobile Application Framework

Hybrid app framework gained its popularity todays as it removes the burden to develop

separate native mobile application. One a single general solution needs to develop,

maintained and controlled for various mobile platform such as iOS and Android by

using hybrid app framework.

 Flutter and React Native are the two main cross-platform mobile application

framework in the industry which gain popularity in the community. In 2015, Facebook

released the first version of React Native on the React JavaScript Configuration

Conference. On the other hands, Flutter is introduced by Google to enter the mobile

application world much latter compares to React Native. Both Flutter and React Native

share a number of similarities such as creating cross-platform apps using one codebase,

hot reloading feature, excellent native UI, native function etc.

2.7.1 Flutter

The objective of Flutter is to eliminate the performance issue of hybrid mobile

application. It aims to produce high-performance mobile application. Besides of the

aim for high-performance, Flutter also aim for high productivity for developer concern.

It supports stateful hot-reload in the development process, which is considered as a

vital factor to increase the speed of development cycle.

 Widgets is one of the special features in Flutter, it acts like the components in

React or React Native. Widgets control how the view render and behave, additionally

also handle and respond the event from application. In Flutter, the application is built

in with elegant Material Design Widgets and Cupertino Design Widgets (specialized

for iOS), which make developer can easily build a high standard and beautiful

application.

The following are some unique feature of Flutter hybrid mobile application

framework:

• High native performance

• Modern technology that gained popularity

• Expressive and high flexibility user interface

• Fast development cycle

52

2.7.2 React Native

One of the special characteristics to be observed in React Native is about the usage of

JavaScript XML (JSX). JSX is a special syntax extension to JavaScript languages,

which served as a foundation to describe what user interface to be show and how they

to be render. React Native will compile the JSX file into a normal JavaScript object

during the mobile application compilation process (Wu, 2018).

 Same as React, React Native also implemented virtual DOM technology to act

as the bridge between the native app and actual DOM object. By using virtual DOM,

it can transform the native app event and configuration to more efficient approach

before updating the actual DOM object.

The following are some unique feature of React Native hybrid mobile

application framework:

• Using JSX to describe user interface object

• Can corporate with React and Node.js to build full stack JavaScript

system

• Concept of FLUX that are unidirectional data flow

• Large community

2.7.3 Comparison of Hybrid Mobile App Framework

Both of this hybrid mobile application development framework had different

fundamental concepts and characteristic, comparison between them will discussed n

term of degree of developer friendly, performance, community support etc.

Table 2.5 Comparison between Flutter and React Native

Characteristics Flutter React Native

Developer friendly Relatively Higher to React

Native

Hight

Performance High Average

Learning Curve Shallow Average

53

Community support Average, started to gain

popularity

Large

Flexibility High Average

Based on the table above, Flutter is more developer friendly compared to React

Native. The reason is Flutter support hot reloading that boost the development process.

Developer doesn’t need to wait the whole application recompile and render again.

Apart from that, Flutter had relatively higher performance compared to React Native

(Sharma and Gupta, 2020). Flutter has its strength of using Dart languages of its own

high-performance rendering engine that doesn’t need a JavaScript bridge to build the

interaction with the device native components like React Native. As like previously

stated, Flutter had its own rendering engine which mean it move the renderer from

system level into the application level, which enabling high flexibility and more

customizable user interface can be build. Considering several characteristics of both

hybrid mobile application framework, Flutter is chosen to be used to develop hybrid

mobile app in this project.

2.8 Review on Cloud Computing Services

Cloud computing services had become trend and mainstream rather than private on-

premise hosting. There are several reasons for the scenarios, such as reliability,

scalability, stability or availability of services. Through the implementation of cloud

computing services, the service delegate many of works like configure complex server

cluster computing system from developer to manage the server, storage and security.

One of the benefits of cloud computing services compared to traditional hosting is the

charging type, cloud computing services are pay-as-you-go basis, which mean

customers only need to pay based on the resources they used.

There are several cloud services providers in the industry like Amazon Web

Services, Google Cloud Platform and Microsoft Azure. Section below will evaluate

the similarities and difference among the services provider stated above.

54

2.8.1 Amazon Web Services

Amazon Web Services (AWS) that launched in year 2006 is quite a dominant in the

cloud computing sector as it provides very complete and full-featured cloud platform

for IT infrastructure like server hosting, storage, database instance hosting, messaging,

load balancer etc. One of the services that AWS provide is Elastic Beanstalk which is

a web hosting tools that support multiple popular language and framework in the

industry such as Java, PHP, Node.js, Ruby on Rails, etc. Through Elastic Beanstalk,

developer only need to upload the source code to the console and Elastic Beanstalk

will automatically deploy and continuously monitor the availability (Amazon Inc.,

2018).

The strength of AWS is all the service you need can be found in AWS bundle,

like simple storage service (S3), relational database service (RDS), auto scaling, any

kind of integration. The following are some unique feature of Amazon Web Services:

• Complete and well-equipped infrastructure and services

• Charge based on rounded up hour

• Built-in auto scaling group and load balancer

• Built-in security group to handle inbound and outbound traffic

• Easy deployment and provisioning

• Global reach

2.8.2 Google Cloud Platform

Google Cloud Platform is introduced by Google in year 2008 and it provides various

type of services such as PaaS, IaaS and serverless (Google Inc., 2020). As a later comer

in the cloud services industry, Google Cloud Platform still aggressively grow and share

a number of market segment because its strength and experienced in artificial

intelligence computing. By its excellent performance in deep learning algorithm,

machine learning and data analytics, developer can utilize this significant advantage

to produce powerful artificial intelligence related system.

However, at the downside, Google Cloud Platforms doesn’t offer as many

various types of different services and features as AWS and Azure. On the other hands,

there might be some latency if developer country is far from the data centers as Google

55

doesn’t have as many global data centers as AWS and Azure, although it expands

quickly. The following are some unique feature of Google Cloud Platform:

• Outstanding performance in deep learning, machine learning and data

analytics

• Charge based on rounded up minutes used (minimum 10 minutes)

• Flexible discounts and contracts

• Offer hybrid cloud

2.8.3 Microsoft Azure

Microsoft Azure is a cloud services that introduced by Microsoft in year 2010 and it

come with five main components which is Compute, Storage, Content Delivery

Network, SQL Azure and Azure Fabric Controller. Microsoft Azure is favorable by

many enterprises as it well-integrate with other Microsoft application and services.

This build a good ecosystem and customer loyalty for existing Microsoft customers.

In addictions, a considerable discount on services charging will be offers to the existing

customers. However, one of the drawbacks of Microsoft Azure is it supported limited

languages such as .NET, Java, C#, JavaScript, etc.

The following are some unique feature of Microsoft Azure:

• Advantages to existing customer

• Good integration with other Microsoft services

• Offering virtual machines (VMS) oriented services

• Auto Scaling

• Global reach

56

2.8.4 Comparison of Cloud Computing Services

Cloud computing has fundamentally improved the way of developments and operate

software applications. Cloud computing reduces the expense and difficulty of

reviewing, buying, configuring and maintaining all the equipment and software needed

for enterprise applications at its heart. Each of those cloud computing services has its

pros and cons. Comparison between among them will be discussed below.

Table 2.6 Comparison of Amazon Web Services, Google Cloud Platform and

Microsoft Azure

Characteristics Amazon Web

Services

Google Cloud

Platform

Microsoft

Azure

Pricing Based on rounded up

hours

Based on rounded

up minutes

Based on

rounded up

commitments

and minutes

Strength More experience in

general solution and

complete services

Specialized in

artificial

intelligence

Good

ecosystem in

Microsoft

services

Flexibility More open source

tools integration

Average Average

Community support Large community Average

community

Average

community

Documentation Well-written Well-written Well-written

 Based on the table above, Amazon Web Services is more experienced in

general solution and had more complete services compared to Google Cloud Platform

and Microsoft Azure (Dutta and Dutta, 2019). Besides, there are also many open

source tools that can be integrate into Amazon Web Services which enabling it had

high flexibility and scalability.

57

Figure 2.4 Gartner "magic quadrant"

The figure above shows the relative position of AWS, Google Cloud Platform,

Microsoft Azure, Alibaba Cloud, Oracle Cloud and IBM Cloud in the evaluation of

ability to execute versus completeness of vision as of July 2019 (Huang, 2019). After

comprehensive consideration of the parameters stated above, we can draw a conclusion

that Amazon Web Services would be a good choice for a wide range of project.

 There is no universal best solution for every project when it comes to cloud

computing services. After comprehensive consideration of the parameters stated above,

Amazon Web Service will be chosen as the cloud computing services in this project.

58

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this chapter, the methodology of the project and work plan throughout the project

timeline will be discussed. Every software project can be described by the software

development lifecycle (SDLC), it breaks down those project different phases. In more

specific viewpoint, there are plenty of software development methodology framework

to implement different flow software development lifecycle. The software

development implements in this project will be Kanban Agile.

Furthermore, 13-weels Gantt chart and work breakdown structure chart are constructed

to outline and manage the project by break down the project into smaller components

that is more manageable. Development tools involved in this project mentioned and

briefly described in this chapter as well.

3.2 Development Methodology

The applications development methodology that is being chosen for this project is

Agile Software Development Model with Kanban approach.

Agile software development lifecycle achieved high effectiveness and

efficiency by focus on multiple iterative and incremental process models on process

development and requirement alignment by rapid delivery of product.

59

Figure 3.1: Iteration of Agile

Agile model focuses on the incremental process of developing software by

recycle the software development lifecycle iteratively. In each iteration, it consists of

planning, requirement analysis, designing, implementing and evaluating phases.

Under Agile model perspective, a final product that fulfil at most requirement will be

delivered after multiple iteration of development that successively build from the

before iteration. There multiple framework under Agile principles such as Scrum,

Kanban, Extreme Programming (XP), Feature Driven Development (FDD), Dynamic

System Development Method (DSDM), Adaptive Software Development (ASD),

Crystal and Lean Software Development (LSD) (Stackify, 2017).

By apply Agile model, project can gain strength and benefit as it allow for

change at any time. Throughout the whole process that involve multiple iteration, there

will always has opportunities to constantly refine, improve and reprioritize the work

item and those changes should contribute to better fit to the requirement.

Kanban is a term in Japanese that literally means “visual card” (Ahmad,

Markkula and Oivo, 2013). Kanban card idea is origin by Taiichi Ohno in Toyota

Planning

Designing

Evaluating

Implementing

Req Analysis

Planning

Designing

Evaluating

Implementing

Req Analysis

Planning

Designing

Evaluating

Implementing

Req Analysis

Iteration 1

Iteration 2

Iteration 3

60

manufacture industry to limit the amount of inventory stuck up in “work-in-progress”

on the manufacturing floor (Fries, 2019). When Toyota applied this Kanban system to

its manufacturing floor, the result was aligning better their massive inventory with the

actual consumption of materials.

 As Kanban had evolved and utilized by many Agile software development

teams popularly in this decade, it gives those teams more flexible planning space, more

productive output, clearer focus to achievement and enough transparency throughout

the software development lifecycle. Kanban approach is being built on the foundation

of three main foundation, which is visualization of work items, limit the work-in-

progress (WIP) task and focus on flow enhancement. Visualization of work items in

Kanban present all the work items in a context that can be very intuitive manner by

splitting the complicating structure of work into well-defined section or states. By

limiting work-in-progress (WIP) tasks at one time, time and energy can be more focus

or concentrate on certain high priority tasks and reduce time waste on switching from

one task to another. Flow enhancement explained that when some task had been

completed, the next high priority task from the backlog is pulled into develop. By

implementing the core concept of Kanban, it promotes continuous delivery and

encourage active, ongoing learning and improving the developed product by defining

the best possible development workflow cycle through multiple iteration. As in Agile

development model, there is no boundary approach and the workflows will across

multiply functions without wait-time.

 In the implementation of Kanban, a digital or physical board will be used to

visualize each segment of work items throughout the project. A Kanban board provide

the high transparency to the stakeholder of the project and emphasize communication

as and when it necessary. Progress of the project also visualize by the Kanban board

and it ease the process to track the process as it is very intuitive. By utilizing Kanban

board, work items completion is emphasized, and bottlenecks will be obvious

whenever it occurred.

61

3.3 Proposed Workplan

In this part, a proposed workplan for the project had been described by project schedule

table, Gantt chart and Work Breakdown Structure. It provides an overview to the task

item in the project and act as the guidance throughout the project.

Table 3.1: Project Schedule Summary

Work Task Duration Start Finish

Preliminary Planning Phase 21d 9 Jun 2019 29 Jun 2019

- Background research 3d 9 Jun 2019 11 Jun 2019

- Problem statement 4d 11 Jun 2019 14 Jun 2019

- Determine project objectives 3d 13 Jun 2019 15 Jun 2019

- Determine possible project solution 6d 15 Jun 2019 20 Jun 2019

- Determine project approach 4d 20 Jun 2019 23 Jun 2019

- Determine scope of project 6d 24 Jun 2019 29 Jun 2019

Requirement and Analysis Phase 25d 30 Jun 2019 25 Jul 2019

- Review on existing similar community
association system

2d 30 Jun 2019 01 Jul 2019

- Review on project methodology 2d 02 Jul 2019 03 Jul 2019

- Review on backend server framework 2d 04 Jul 2019 05 Jul 2019

- Review on front-end web application
framework

2d 05 Jul 2019 06 Jul 2019

- Review on cross-platform mobile
application framework

2d 06 Jul 2019 07 Jul 2019

- Review on cloud computing service 2d 07 Jul 2019 08 Jul 2019

- Interview for fact-findings 1d 09 Jul 2019 09 Jul 2019

- Observation for fact-findings 1d 10 Jul 2019 10 Jul 2019

- Questionnaire for fact-findings 3d 11 Jul 2019 13 Jul 2019

- Requirement analysis for resident
related functionalities

3d 13 Jul 2019 15 Jul 2019

- Requirement analysis for guard related
functionalities

2d 15 Jul 2019 16 Jul 2019

- Requirement analysis for admin
related functionalities

3d 16 Jul 2019 18 Jul 2019

62

- Requirement specification 4d 19 Jul 2019 22 Jul 2019

- Determine project methodology 1d 23 Jul 2019 23 Jul 2019

- Determine appropriate development
tools

3d 23 Jul 2019 25 Jul 2019

System Design Phase 30d 26 Jul 2019 24 Aug 2019

- System architecture design 5d 26 Jul 2019 30 Jul 2019

- Software design pattern 5d 31 Jul 2019 04 Aug 2019

- Database design 5d 05 Aug 2019 10 Aug 2019

- User interface design 5d 11 Aug 2019 16 Aug 2019

- Screen prototyping 10d 15 Aug 2019 24 Aug 2019

Implementation Phase 64d 13 Jan 2020 16 March 2020

- Develop resident side modules
1. Fee related function
2. Announcement related function
3. Feedback related function
4. Visitor related function
5. Others function

39d 13 Jan 2020 20 Feb 2020

- Develop security personnel side
modules

1. Visitor related function

23d 10 Feb 2020 03 Mar 2020

- Develop management side modules
1. Fee related function
2. Announcement related function
3. Feedback related function
4. Visitor related function
5. Others function

43d 03 Feb 2020 16 Mar 2020

Testing Phase 41d 18 Feb 2020 28 Mar 2020

- Unit testing 14d 18 Feb 2020 02 Mar 2020

- Integration testing 11d 02 Mar 2020 12 Mar 2020

- System testing 11d 13 Mar 2020 23 Mar 2020

- User acceptance testing 6d 24 Mar 2020 29 Mar 2020

Deployment Phase 3d 30 Mar 2020 31 Mar 2020

- Deploy Android version 1d 30 Mar 2020 30 Mar 2020

- Deploy iOS version 2d 30 Mar 2020 31 Mar 2020

63

Figure 3.2: Part 1 of project Gantt Chart

64

Figure 3.3: Part 2 of project Gantt Chart

65

A work breakdown structure is shown to visualize the work items that need to be carry out in each phase.

Project

Preliminary
Planning Requirement and Analysis System design Implementation Testing

Develop
resident side

modules

Background
research

Problem statement

Determine project
objective

Determine possible
project solution

Determine project
approach

Determine scope of
project

Review on existing
similar community
association system

Review on project
methodology

Review on backend
server framework

Review on front-
end web application

frameworkReview on cloud
computing service

Interview for fact-
findings

System
architecture

design

Software design
pattern

Database design

Unit testing

Integration testing

System testing

User acceptance
Testing

Observation for
fact-findings

User interface
design

Develop
security

personnel side
modules

Deployment

Deploy Android
version

Deploy iOS version

Questionnaire for
fact-findings

Requirement
analysis for resident

related
functionalities

Requirement
analysis for guard

related
functionalities

Requirement
analysis for admin

related
functionalities

Requirement
specification

Determine project
methodology

Determine
appropriate

development tools

Screen
prototyping

Develop
management
side modules

Figure 3.4: Work breakdown structure of the project

66

As Kanban Agile is the development methodology of this project, it consists of

generally 5 phases for each iteration, while there may have multiple iterations before

the final product. The work items in each phase will be explained below:

1. Planning

In this phase, a well-scheduled plan should be constructed by a series of

investigation that gain more understanding on the relevant information to the

project. That information will be used to plan the project approach and conduct

study in the economic, operational and technical aspect. Planning is the

foundation of the project; it is essential to ensure the successful of the project.

Gantt chart had been created to illustrate how each work tasks of this project

carried out along the timeline to ease the management and more trackable.

Besides, work breakdown structure constructed to separate each work tasks

into collection and this reduced the complexity of the project. Problem

formulation had been done in this phase to identify the problem exist in the

current system. The study of the background also been conducted through

literature review. After that, project objective proposed and finalize to give the

project a specific, measurable and achievable target.

2. Requirement Gathering and Analysis

In the second stage of the software development lifecycle, requirement of the

system should be gathered and analyse those requirements for the software.

There are few requirement gathering methods such as questionnaires,

interviews, inspection and literature reviews etc. After the requirement analysis

is done, requirement specification should be carried out to refine and document

the product functional and non-functional requirement. Requirement should be

verifying and analyse based on their validity and incorporation to the project.

One of the outcomes of this phase is a requirement specification document

which guide the next phase of the project.

3. Designing

In designing phase, the information of requirement gathered should be used to

construct the system architecture design. Multiple software design diagram

should be drawn based on the requirement specification document. By using

Enterprise Architecture, UML diagrams such as use case diagram, sequence

diagram, class diagram and entity diagrams is produced to illustrate the

67

architecture of the system and how the system works. On the other hand, screen

prototyping carried out to design the user-friendly interface by using the

development tool, which known as Axure. The implementing of the software

should base on the user interface prototype produced in this phase.

4. Implementing

Once the system design is done and finalized, the implementation of the

software begins. The whole implementation of software will break into several

modules or components to make the work tasks more manageable. All the work

tasks should clip on the digital Kanban board that powered by Trello to

visualize and track the progress of development. At the end of this phase,

consistency and quality of the product iteration produced will be evaluate in

the next phase.

5. Evaluating

After each iteration of product had been developed, the implementation should

always evaluate to align with the requirement specification to ensure the final

product will in the scope of the system requirement. Testing will be conducted

to find any potential or existing bugs or measure the product against the

requirement specified. Testing process that included functional testing, non-

functional testing, integration testing, system testing, and acceptance testing

should be completed in this phase.

3.4 Technology and Development Tools Involved

Software development is a complex process that involving multiple problem from

different aspect. A suitable software development tools and right technologies

implemented will definitely ease the process and increase the productivity of the

development.

3.4.1 Ruby on Rails

For the backend API server that serve the mobile application and web application

clients, Ruby on Rails, a web application development framework written in the Ruby

programming language is used. One of the strength of Rails is that it is a Model-View-

Controller (MVC) friendly framework which is suite with this project software design

pattern, it supports database, web server and web pages with default structures. It

68

promotes and enables the use of web standards for data storage such as JSON. In

additions, Active Record in Rails is a great advantage in implementing MVC software

pattern, as it serves as the Model in MVC. It provides multiple benefit such as easy

development of reading, writing data and defining relationship between each model.

The Rails backend server maintain high availability and reliability to handle and

respond the request from resident mobile application or admin web application.

3.4.2 Vue.js

Vue.js is used in this project as a front-end web application framework that written in

JavaScript. Philosophy of Vue.js is about progressive development to build user

interface, which let it easy to learn and develop. Additionally, it has well-constructed

high-level architecture for consolidating the state, Vue instance method, custom

methods, so developers can easily understand the code. Vue.js is very flexible and less

fragmented as it focusses on view layer only. It gains high popularity as it facilitates

flexibility which make it can be easily integrate to existing applications by adding

Vue.js CDN. Most of the third-party libraries and components are also available and

supported by Vue.js CDN, npm or node is no more a necessarily to install libraries or

package. By using Vue.js, web application that consists of beautiful and elegant user

interface can be produced efficiently in this project.

3.4.3 Flutter

In the world of mobile application development, development cycles, deployment time

and quality always been the concern of developer. As well-known, current mobile

application market had dominated by two main operating system which are Android

and iOS. To optimizing the process of development, saving time and cost, hybrid app

frameworks was introduced to solve the obstacle. Instead of developing two projects

for Android device and iOS device, hybrid app frameworks allow the same project

shared by both platforms that mentioned. Flutter is one of those hybrid app frameworks

that can natively build a cross-platform applications for Android and iOS in JavaScript

framework. Flutter is chosen to use in this project to develop the mobile application as

it covers both Android and iOS platforms, natively and efficiently support the

rendering of hybrid mobile application. Flutter enable quick development of mobile

69

application and single code base of this project can be deploy to iOS and Android

platform by minimum configuration efforts.

3.4.4 Amazon Web Services

Amazon Web Services (AWS) is used in this project for several purpose such as

backend server hosting, computing power and relational database instance hosting.

AWS Elastic Beanstalk enable the quick deployment and easy management of

application in cloud services without configuring complex servicer architecture. It

delegates the tasks such as load balancing, auto scaling and provisioning of the web

application from developer, which free the time of developer so developer can focus

of the software development itself. The backend server of this project is deployed to

Elastic Beanstalk environment on the platform on Puma with Ruby 2.6 that running

on 64bit Amazon Linux.

 Apart from that, MySQL database instance of this project that used to store

data is created using relational database service (RDS) of Amazon Web Services.

Amazon RDS provides reliable infrastructure and offering flexible, scalable and

secured database solution with low-cost, developer can avoid the complexities of

creating a new production database from scratch. As the Amazon Web Service official

website stated, there are several well-known featured companies that using Amazon

RDS such as, Expedia, Netflix, Airbnb, etc.

3.4.5 Heroku

Similar to Amazon Elastic Beanstalk, Heroku is a cloud services provider that offering

Platform as a Service (PaaS) in container-based basis to customers. It is used in this

project to deploy the web application for community association management usage.

Heroku support the auto deployment whenever there is new commit at the master

branch it observed, which enabling the continuous deployment of project.

3.4.6 Firebase Cloud Messaging

Firebase Cloud Messaging (FCM) is a cross-platform messaging service that provides

various type of message sending approach. By using FCM in this project, the mobile

application of resident will be notified instantly whenever there are new announcement

or update on feedback case. For the real-time notification, a message can transfer with

70

a payload of maximum 4KB of size to the client application. To programmatically send

notification message to resident, Ruby FCM SDK is used in the backend Ruby on Rails

server for communicating with the FCM protocol.

3.4.7 RQRCode

RQRCode is a Ruby library that provide QR codes creation and rendering function. It

is implemented to generate QR codes when the visitor request is accepted and render

it into the format extension defined such as SVG or PNG.

3.4.8 Visual Studio Code

An integrated development environment (IDE) is essential for software development.

In this project, Visual Studio Code (VS Code) will be comfortable choice. VS Code is

a very lightweight but powerful source code editor which can run on Windows, macOS

and Linux operating system. It is very extensive, customizable and included supports

for multiple programming language by extension as well as Flutter. Besides, VS code

also embedded Git control to enhance the develop experience. In order to create a

development environment for Flutter projects, an extension in the VS Code extension

library, which called “Flutter Tools” can be install. The extension customizes the VS

Code to better support to the Flutter project. Besides of extensive support of Flutter,

VS Code also well-support Ruby on Rails and Vue.js with interpreter installed.

3.4.9 Git

Version control system are one of the spirits of the software development. A well-

define version control system will always keep track of every modification, commit

and branch, provide fault-tolerance capability to the project. Version control tools

always been contributing to the project by reducing the cost to manage multiple version

of product and protect the source code in the repository. Git is a free and open-source

distributed version control system and will be used to handle every change in this

project natively. Apart from that, Git is also corporate use with Elastic Beanstalk

Command Line Interface which make the deployment process extremely easy. By

using the Elastic Beanstalk Command Line Interface, the Elastic Beanstalk

environment will automatically retrieve the latest commit and use it as latest

deployment source code.

71

3.4.10 Trello

Trello is used in this project to act as a digital Kanban board. It gives a visualization

of overview to the project work tasks. Trello consist of a numerous board, lists and

cards. In this project, several lists are created such as “General backlog”, “Mobile app

backlog”, “Work-In-Progress”, “Done”, etc. By utilizing Trello as Kanban boards, it

helps the project doesn’t lost direction and prevent extra switching time from one task

to another takes.

3.4.11 Axure

Screen prototyping of this project will be developed using Axure. Axure is a powerful

tool to design, wire-framing and rapid user interface prototyping that suit with the need

of this project. The user interface design will give a clear and straight forward visual

guidance to the project and keep the progress align with the requirement and user

interface design principles. Before proceeding to the development of user interface,

Axure will be used to produce the screen prototype that can be act as the blueprint of

mobile application UI and web application UI.

72

CHAPTER 4

4 PROJECT SPECIFICATION

4.1 Introduction

This chapter will discuss about the fact-finding process (interview, observation and

questionnaires) and information gathered and analysed. Besides, the information

gathered and analysed at the previous phase will be used to produce the software

requirement specification of the system. Furthermore, screen prototype included in this

chapter.

4.2 Fact-finding

There are several data gathering method involved in this project which is interview,

observation and questionnaires.

4.2.1 Interview

Firstly, an interview session was held with Mr. Loh Ka Keng on 10 July 2019. The

interview session mainly is a discussion about his opinion about residential community

association management and problem encountered in residential association. He stated

that one of his problem encountered in residential community association management

is need to personally go to the management office and take the hard copy receipt for

the fee payment. As the office only open from 10.00 a.m. to 5.00 p.m. on weekdays, it

become an inconvenience process. Mr. Loh, as a university student normally have

class from 9.00 a.m. to 4.00 p.m., the office working hours always overlap with the

Mr. Loh’s class hours. Mr. Loh hard to find an available timeslot to visit the

management office and get the hard-copy receipt.

 The interview questions had attached in appendix section as “Appendix A”.

73

4.2.2 Observation

Observation on the visitor registration process had been held at Cypress Condominium,

Bandar Sungai Long in 15 July 2019. The observation session found that the current

visitor registration process basic steps are:

1. Visitor walk in to guard house personally.

2. Fill in the registration form.

3. Pass identity card or license card to guard as deposit.

4. Granted access.

5. Identity card or license card give back to visitor when visitor exit the

residential area.

Some information required in the visitor registration:

• Name

• IC number

• Duration of the visitation

• Unit number that visit

• Car plate number (optional)

The visitor registration items of Cypress Condominium and related photo are attached

in appendix part as “Appendix B”.

74

4.2.3 Questionnaire

Questionnaire is a useful technique in data gathering. In this specific questionnaire to

get insight from real life, there are consist of 8 sections which is basic information,

security/maintenance fee payment, resident’s information update, feedback,

announcement, visitor system and others section. Throughout the 8 sections, there are

in total 18 questions. The questionnaire form had attached in appendix section as

“Appendix C”. Below shown the first question analysed chart:

Figure 4.1: Pie chart of the residence type

 The chart above visualized the percentage of residence type from the 32

responses. Majority of them are live in Condominiums or Terrace/Link house. There

are 43.8% of respondents live in condominiums and 40.6% of respondents live in

terrace/link house.

75

Figure 4.2: Pie chart of percentage of residence having a

community association application

The chart above gave an information that most of the residential area in

Malaysia doesn’t equip with any community association application. Only 2 out of 32

respondent (6.3%) residential area have their own community association application.

One of the community association application name submitted from respondent is

MyTaman. This data show that community association management in Malaysia is in

a very traditional and backward in term of technology.

Figure 4.3: Pie chart of percentage of resident encounter fee payment

related problem

 Based on the Pie chart, a portion of respondent, which is 21.9% encounter one

or more problem in fee payment related matters. From the problem the respondents

stated, one of the problems is the individual need to personally go to guard house and

take the hardcopy receipt of the fee payment that completed through online and it was

an inconvenience process.

76

Figure 4.4: Pie chart of preferable payment method

There are almost 80% of respondents prefer the E-payment method as their fee

payment method. One possible reason of this phenomena is E-payment is more

convenience and residents can pay the payment whenever they want without

considering the office hours and doesn’t required personally visit the office. Besides,

this 80% of respondents choose the electronic side as they prefer to receive electronic

receipt instead of hard copy receipt.

Figure 4.5: Pie chart of preferable way to manage resident’s information

Majority of the respondents (90.6%) prefer to use online form to

register/update their residential information. This can improve the level of

convenience as resident can manage their residential information more easily.

77

Figure 4.6: Bar chart of problem encountered in feedback/complaint process

The bar chart above shown that most of the respondents faced more than one

problem. The most frequent problem to faced is didn’t receive any update related to

the feedback/complaint process from management team after submit the

feedback/compliant. Large number of respondents are concerned about the problem

didn’t solved or ameliorate. Feedback/complaint that resident most probably to submit

can be categorized into facilities problem, maintenance problem, parking problem,

security problem, electricity problem, Wi-fi problem etc.

Figure 4.7: Pie chart of anonymous feedback

The pie chart shown that anonymous does promote the willingness to submit a

feedback/complaint.

78

Figure 4.8: Pie chart of miss announcement

The pie chart shown that most of the residents had ever missed announcement

that clipped in the residence noticeboard.

Figure 4.9: Pie chart of online announcement versus normal announcement

Majority of the respondent agree or strongly agree that online announcement

will perform better than normal announcement that clipped at noticeboard.

Notification can be sent to respondent to notify them about new announcement made.

79

Figure 4.10: Pie chart of visitor system

56.3% percent of respondents have the opinion that current visitor system is a

hassle process as need to fill in hard-copy registration form. In some case, the residents

need to personally go to guard house and prove to guard that the visitor is valid. On

the other hands, generally most of the respondent have 0-2 visitor in one week.

In the others session, an open-ended question had been asked to collect the

opinion of respondents about the weakness current existing system. Inefficient is the

main weakness of the current existing community association management system as

it involved large amount of labour work and hard-copy form. Besides, communication

skill and attitude of guard is also one of the considerations of this issues. Based on the

response, some respondent stated that slacking of guard and inefficient community

with guard are the weakness of current system.

80

4.3 Requirement Specification

The aim of this software requirement specification (SRS) document is to provide a

comprehensive summary, parameters and objectives of our software product. This

document defines the target audience of the project and its specifications for user

interface and software. It describes how the product and its functionality are viewed

by our customer, team and audience. Nonetheless, it allows any software distribution

lifecycle (SDLC) processes to proceed smoothing and guide designer and developer.

4.3.1 Mobile Application for Community Resident

This section will describe the requirements for each functionality of mobile application

for community association resident.

4.3.1.1 Fee/Bill Payment

1. Resident user shall be able to view the user’s outstanding bill balance required

to pay.

2. Resident user shall be able to pay the user’s bill through Stripe online payment

gateway integrated into the application using credit card or debit card.

3. Resident user shall be able to view the details of the fee listed including fee

title, fee description, fee creation time and fee due date.

4. Resident user shall be able to view the user’s bill payment history.

5. Resident user shall be able to receive notification when there was a new bill

payment required to pay.

4.3.1.2 Announcement

1. Resident user shall be able to view the announcements in list form.

2. Resident user shall be able to view the details for a specific announcement in

details including announcement title, announcement content and announce

time.

3. Resident user shall be able to bookmark or un-bookmark specific

announcement.

4. Resident user shall be able to receive notification whenever there was a new

announcement made.

81

4.3.1.3 Feedback/Complaint

1. Resident user shall be able to submit the user’s feedback/complaint.

2. Resident user shall be able to track the user’s feedback/complaint progress

and status.

3. Resident user shall be able to update the user’s feedback/complaint progress.

4. Resident user shall be able to marks the specific feedback/complaint as

completed.

5. Resident user shall be able to rate the specific feedback/complaint process

after he/she marks that specific feedback/complaint as completed.

4.3.1.4 Visitor

1. Resident user shall be able to submit visitor application for the visitor access

by input the visitor information including, visitor name, visitor car plate

number, visitor phone number and visit reason (optional).

2. Resident user shall be able to receive a QR code for visitor access after the

visitor application approved.

3. Resident user shall be able to view the rejected reason if the visitor

application was rejected.

4. Resident user shall be able to view the user’s unit visitor history.

4.3.1.5 Residential Information

1. Resident user shall be able to view the user’s residential information, such as

name, unit address, phone number etc.

2. Resident user shall be able to edit the user’s residential information, such as

name, phone number, car plate number etc.

82

4.3.1.6 Account

1. Resident user shall be able to log in to the application by using the given pre-

created account from the management.

2. Resident user shall be able to log out from the system.

3. Resident user shall be able to change their password.

4. Resident user shall be able to recover their password if they forgot it.

4.3.2 Web-based Application for Management User

This section will describe the requirements for each functionality of web-based

application for community management user.

4.3.2.1 Fee/Bill Payment

1. Management user shall be able to view all community payment status in the

system.

2. Notification shall be able to send to community residents’ device when a new

fee is created.

3. Management user shall be able to create new fees by specify the title, amount,

due date and affected community resident of the fee.

4.3.2.2 Announcement

1. Management user shall be able to view the announcements list.

2. Management user shall be able to create an announcement by inputting the

announcement title, content and publish status.

3. Management user shall be able to edit and update an existing announcement

by inputting the announcement title, content and publish status.

4. Management user shall be able to delete an existing announcement.

83

4.3.2.3 Feedback/Complaint

1. Management user shall be able to view the feedback/complaint list.

2. Management user shall be able to update the feedback/complaint process.

3. Management user shall be able to view rating of specific feedback/complaint

process that given by the community resident.

4.3.2.4 Visitor

1. Management user shall be able to view the visitor application list.

2. Management user shall be able to view a specific visitor application in details

form.

3. Management user shall be able to approve or reject the specific visitor access

registration.

4.3.2.5 Residential Information

1. Management user shall be able to view each community residential

information.

4.3.2.6 Account

1. Management user shall be able to create a new account for new resident user.

2. Management user shall be able to create a new account for new security

personnel user.

3. Management user shall be able to suspend specific account.

84

4.3.3 Mobile Application for Security Personnel

This section will describe the requirements for each functionality of mobile application

for community security personnel user.

4.3.3.1 Visitor

1. Security personnel user shall be able to scan the QR code present by visitor

approach and view the approved visitor application details, including name of

visitor, car plat number of visitors, phone number of visitors.

4.3.3.2 Account

1. Security personnel user shall be able to log in to the application by using the

given pre-created account from the management.

2. Security personnel user shall be able to log out from the system.

85

4.4 Use Case Modelling

This section will visualize and modelling the flow of the use cases involved in this

system.

4.4.1 Use Case Diagram

Use case diagram is used to visualize the users (community resident, community

management and security personnel) interactions with the community association

system. Several use case diagrams are created to describe relationship between users

and use case.

4.4.1.1 Fee/Bill Related

Figure 4.11 Fee related use case diagram

86

4.4.1.2 Announcement Related

Figure 4.12 Announcement related use case diagram

87

4.4.1.3 Feedback Related

Figure 4.13 Feedback related use case diagram

88

4.4.1.4 Visitor Related

Figure 4.14 Visitor related use case diagram

89

4.4.1.5 Resident Information Related

Figure 4.15 Resident information related use case diagram

90

4.4.1.6 Account Related

Figure 4.16 Account related use case diagram

91

4.4.2 Use Case Description

This section describes each use cases of how users will perform functionality of the

system.

4.4.2.1 Mobile Application for Community Resident

Use case name Pay fee

Actor Community resident

Description Community resident pay fee using the payment

gateway integrated into the mobile application.

Flow of Events

1. Community resident select a fee to pay.
2. Community resident filled in credit/debit card details and billing details.
3. System sends request to server and communicate with Stripe API to verify

the payment.
4. System display payment is succeeded.

Alternative Flow of Events:

3.1 Payment failed
3.1.1 Use case terminates

Use case name View fee

Actor Community resident

Description Community resident view specific fee details.

Flow of Events

1. Community resident select a fee to view.
2. System retrieve the fee details.
3. System display the fee details.

92

Use case name View payment history

Actor Community resident

Description Community resident view specific payment history

details.

Flow of Events

1. Community resident select a payment history to view.
2. System retrieve the payment history details.
3. System display the payment history details.

Use case name View announcement

Actor Community resident

Description Community resident view specific announcement

details.

Flow of Events

1. Community resident select an announcement to view.
2. System retrieve the announcement details.
3. System display the announcement details.

Use case name Bookmark announcement

Actor Community resident

Description Community resident bookmark specific

announcement details.

Flow of Events

1. Community resident select an announcement to view.
2. System retrieve the announcement details.
3. System display the announcement details.
4. Community resident bookmark an announcement.

93

Use case name Un-bookmark announcement

Actor Community resident

Description Community resident un-bookmark specific

announcement details.

Flow of Events

1. Community resident select an announcement to view.
2. System retrieve the announcement details.
3. System display the announcement details.
4. Community resident un-bookmark an announcement.

Use case name Submit feedback/complaint

Actor Community resident

Description Community resident submit feedback/complaint.

Flow of Events

1. Community resident press the submit feedback/complaint button.
2. Community resident fill in the information required such as type of

feedback/complaint, details information, subject etc.
3. System display feedback/complaint received message.

Use case name View feedback/complaint progress and status

Actor Community resident

Description Community resident view a specific

feedback/complaint progress and status.

Flow of Events

1. Community resident select a feedback/complaint process to view progress
and status of it.

2. System retrieve the feedback/complaint process progress and status.
3. System display the feedback/complaint process progress and status.

94

Use case name Update feedback/complaint progress

Actor Community resident

Description Community resident update a specific

feedback/complaint progress.

Flow of Events

1. Community resident select a feedback/complaint process to update
progress and status of it.

2. Community resident filled in the title and description of the update.
3. Community resident submit the update.
4. System update the feedback/complaint progress.

Use case name Mark feedback/complaint process as completed

Actor Community resident

Description Community resident marks feedback/complaint

process as completed.

Flow of Events

1. Community resident select a feedback/complaint process to update status
of it.

2. Community resident complete the feedback/complaint process.
3. System display the process as completed.

Use case name Rate feedback/complaint process

Actor Community resident

Description Community resident rate the feedback/complaint

process after completed.

Flow of Events

1. After community resident complete a feedback/complaint process, system
prompt user rating on that process.

2. Community resident input the rate for the feedback/complaint process.
3. System display rating received message.

95

Use case name Create visitor application

Actor Community resident

Description Community resident register visitor application for

visitor access.

Flow of Events

1. Community resident press the registration of visitor access button.
2. Community resident fill in the personal information for the visitor(s) such

as name, phone number etc.
3. System display visitor application received message.

Use case name View visitor application

Actor Community resident

Description Community resident view specific visitor application

details.

Flow of Events

1. Community resident select a visitor application to view.
2. System retrieve the visitor application details.
3. System display the visitor application details.

Use case name View resident information

Actor Community resident

Description Community resident view their personal information.

Flow of Events

1. Community resident press profile button.
2. System retrieved the personal information.
3. System display the personal information.

96

Use case name Update resident information

Actor Community resident

Description Community resident update their personal

information.

Flow of Events

1. Community resident press profile button.
2. System retrieved the personal information.
3. System display the personal information.
4. Community resident press edit button.
5. Community resident edit the personal information.
6. Community resident press save button.
7. System update the personal information

Use case name Log in

Actor Community resident

Description Community resident log in to the system.

Flow of Events

1. Community resident filled in email/username and password to log in to the
system.

2. System verify the resident authentication.
3. Community resident log in to the system successfully.

Alternative Flow of Events:

1.1 Wrong email/username or password.
1.1.1 Community resident authentication failed
1.1.2 Use case terminated.

Use case name Log out

Actor Community resident

Description Community resident log out from the system.

Flow of Events

1. Community resident press the log out button.
2. Community resident log out from the system successfully.

97

Use case name Change password

Actor Community resident

Description Community resident change password their account

password.

Flow of Events

1. Community resident press the profile button.
2. Community resident press the change password button.
3. Community resident enter the old password.
4. Community resident enter the new password.
5. Community resident re-enter the new password.
6. Community resident press change button.

Use case name Recover password

Actor Community resident

Description Community resident recover their account forgotten

password.

Flow of Events

1. Community resident press the forgot password button at login screen.
2. Community resident enter the email of their account.
3. System will send a recovery password email to the email account.
4. Community resident press the recovery link in the recovery password

email.
5. Community resident will redirect to a web page to reset their password.

98

4.4.2.2 Web-based application for Management Users

Use case name Manage fee

Actor Community management

Description Community management create new fee, edit fee

details and delete specific fee.

Flow of Events

• Create new fee
1. Community management press the new fee button.
2. Community management fill in the fee details such as, fee title, fee

amount, fee deadlines etc.
3. System create a new fee.
4. System send notification to residents’ devices.

• View fee details
1. Community management select the fee to view details.
2. System retrieved the specific fee record.
3. System display the specific fee record.

• Edit fee details
1. Community management select the fee to edit.
2. Community management fill in the fee details such as, fee title, fee

amount, fee deadlines etc.
3. System will update the specific fee.

• Delete specific fee
1. Community management select the fee to delete.
2. System double confirm the deletion with community management.
3. System will delete the specific fee.

Use case name Manage Announcement

Actor Community management

Description Community management create new announcement to

broadcast important message, edit the announcement

and delete the announcement.

Flow of Events

• Create new announcement
1. Community management press the new announcement button.
2. Community management fill in the announcement subject,

announcement content etc.

99

3. System will add the announcement into announcement list.
4. System send notification to residents’ devices.

• View announcement details
1. Community management select the announcement to view details.
2. System retrieved the specific announcement record.
3. System display the specific announcement record.

• Edit announcement details
1. Community management select the announcement to edit.
2. Community management fill in the announcement subject,

announcement content etc. to edit.
3. System will update the specific announcement.

• Delete announcement
1. Community management select the announcement to delete.
2. System will double confirm the deletion with community

management.
3. System will delete the specific fee.

Use case name View feedback/complaint progress and status

Actor Community management

Description Community management view a specific

feedback/complaint progress and status.

Flow of Events

1. Community management select a feedback/complaint process to view
progress and status of it.

2. System retrieve the feedback/complaint process progress and status.
3. System display the feedback/complaint process progress and status.

Use case name Update feedback/complaint status

Actor Community management

Description Community management update a specific

feedback/complaint progress and status.

Flow of Events

1. Community management select the feedback/complaint process status wish
to update.

100

2. Community management fill in the required information such as comment,
solution etc.

3. System will update the feedback/complaint progress and status.

Use case name View visitor application

Actor Community management

Description Community management view specific visitor

application details.

Flow of Events

1. Community management select a visitor application to view.
2. System retrieve the visitor application details.
3. System display the visitor application details.

Use case name Approve/Reject visitor application

Actor Community management

Description Community management approve/reject the visitor

application.

Flow of Events

1. Community management select the specific visitor registration and view its
information.

2. Community approve/reject the visitor registration.

Use case name Log in

Actor Community management

Description Community management log in to the system.

Flow of Events

1. Community management filled in email/username and password to log in
to the system.

2. System verify the user authentication.
3. Community management log in to the system successfully.

Alternative Flow of Events:

1.1 Wrong email/username or password.
1.1.1 Community management authentication failed
1.1.2 Use case terminated.

101

Use case name Log out

Actor Community management

Description Community management log out from the system.

Flow of Events

1. Community management press the log out button.
2. Community management log out from the system successfully.

Use case name Create community resident account

Actor Community management

Description Community management create new community

resident account

Flow of Events

1. Community management press create new community resident account
button.

2. An account based on the unit number and a random password will be
generated.

Use case name Create security personnel account

Actor Community management

Description Community management create new security

personnel account

Flow of Events

1. Community management press create new security personnel account
button.

2. A security personnel account will be generated.

Use case name Suspend account

Actor Community management

Description Community management suspend account

Flow of Events

1. Community management select specific account.
2. Community management press to suspend the account.
3. System will double confirm with the community management about the

suspension of account.

102

4. System will suspend the specific account.

Use case name Change password

Actor Community management

Description Community management change password their

account password.

Flow of Events

1. Community management press the profile button.
2. Community management press the change password button.
3. Community management enter the old password.
4. Community management enter the new password.
5. Community management re-enter the new password.
6. Community management press change button.

Use case name Recover password

Actor Community management

Description Community management recover their account

forgotten password.

Flow of Events

1. Community management press the forgot password button at login screen.
2. Community management enter the email of their account.
3. System will management a recovery password email to the email account.
4. Community management press the recovery link in the recovery password

email.
5. Community management will redirect to a web page to reset their

password.

103

4.4.2.3 Mobile Application for Security Personnel

Use case name Scan QR code

Actor Security Personnel

Description Security personnel scan QR code to grant access to

visitor.

Flow of Events

1. Security personnel shall be able to scan QR code that present by visitor.
2. System retrieve the specific visitor application that the QR code belongs.
3. System display the visitor application details.
4. Security personnel grant access to visitor.
5. System will update the specific visitor application that the QR code

belongs for the status and entered time of visitor.

Alternative Flow of Events:

 2.1 Visitor application not found.
 2.1.1 Use case terminates

Use case name Add anonymous visitor

Actor Security Personnel

Description Security personnel add anonymous visitor with no QR

code such as delivery personnel

Flow of Events

1. Security personnel press the add new visitor button.
2. Security personnel fill in the visitor information.
3. Security personnel press the add button and grant access to the visitor.

104

CHAPTER 5

5 SYSTEM DESIGN

5.1 Introduction

This chapter will discuss about the system architecture, software design pattern applied,

database design. Besides, user interface design of both clients which are web

application and mobile application will be visualized.

5.2 System Architecture

Elastic Beanstalk

Residential Management System

Flutter Mobile App for
Resident (User device)

Vue.js Web App for
Admin (Host on Heroku)

Load Balancer

API Server
(AWS EC2 Instance)

Database
(AWS RDS)

Security Group

API Server
(EC2 Instance)

API Server
(EC2 Instance)

Auto Scaling Group

Security Group

Storage
(AWS S3)

Security Group

Figure 5.1 Overview of System Architecture

105

Residential management system in this project involved multiple module and

layers of service. The figure above shows the overview of the system architecture that

including one back-end server and two front-end clients.

AWS Elastic Beanstalk is an Amazon Web Services orchestration framework

for deploying applications that orchestrates various AWS services including EC2, S3,

Simple Notification Framework (SNS), CloudWatch, Autoscaling and Elastic Load

Balancers. As AWS Elastic Beanstalk provide a centralized or full-stacked panel to

hosting an application, it is chosen to serve as a web hosting tools in this project.

Elastic Beanstalk provides an additional abstraction layer over the bare server and OS

by using the pre-built combination of OS platform. It helps developer to delegate the

effort to deploy and increase the productivity by enabling developer to focus of the

product development.

Auto Scaling group is included in the AWS Elastic Beanstalk environment to

handle the auto configuration of capacity based on the triggering of metric. The Auto

Scaling group will ensure that there is always one instance running to achieve high

availability. In corporate with load balancer, the Auto Scaling group will add or deletes

instance depends on the load of instances and the configuration of maximum number

of instances defined. In another words, the Auto Scaling group will ensure your server

is available anytime using the minimum resource effectively and dynamically.

Security is another important part of the project as it involved many sensitive

personal information such as resident address, name, phone number etc. Preventive

action is needed to assure the safety of the data from leakage. In AWS Elastic

Beanstalk environment, the Security Group is included to acts as a virtual firewall for

the API server to control all the inbound and outbound traffic and request. Rules and

regulation can apply to those security group and configure the security layer. The

security group will protect the MySQL database instance, AWS S3 bucket and API

server from the unauthorized access and service attacks.

The aim of this system architecture approach is ensuring high availability, high

security, better system management and consolidation of each modules.

106

5.3 Software Design Pattern

The Model-View-Controller (MVC) design pattern is applied in this project. MVC

design pattern conceptually divides an application into three main logical inter-

connected components, which is model, view and controller. Each of these

components is designed to deal with specific aspects of an application's development.

MVC is one of the industry-standard Web development system most commonly used

to build scalable and configurable projects. Besides the beneficial in software

architecture, MVC also contribute to better organizing and understanding of the

business logic of the software. It helps to transform the business logic into code

segments in the software.

Model

Controller

View

Figure 5.2 MVC Flow Visualization

The figure above briefly visualizes the flow of the MVC pattern. The Model

act as a central component to store the application data and data-oriented logic in which

the user operates. The View is used to present the formatted model’s data in user

interface view that user could understand. The Controller exists between the Model

and the View to serve as an agent to manage the communication between the two

parties. Controller will process the input event from the View and manipulate the

Model’s data based on the request.

107

Apart from that, MVC plays a great role in the development of object-oriented

software as it facilitates rapid and parallel development and allows creation and

maintenance simpler. Application of MVC in this project will bring additional

advantages along with the implementation of object-oriented approach. Additionally,

this helps in creating business logic for the development of specific object-oriented

applications. In addition, developers may rely on design patterns for MVC that are

commonly accepted as solutions to recurring problems and are used to build scalable,

reusable and modular applications (Thakur and Pandey, 2019). It provides multiple

views without any problems, due to its faster development process. Because MVC has

many advantages in the development of object-oriented applications, it is also used in

the development of interactive web and iOS.

For example, in this project, announcement related data will be store in

announcement model. An announcement controller will be created to handle the

request from the two clients’ view, mobile application and web application and

perform retrieve or update operation on the announcement model. This approach helps

to consolidate each function from each other and lead to better readability and control

in function development.

108

5.4 Database Design

This section will describe the organization of database model and the relationship

between each other’s. Several diagrams are used to visualize the relationship between

entities and how the data be classified such as physical entity relationship diagram and

logical entity relationship diagram. In additions, data dictionary is created to explain

each table and the attributes.

5.4.1 Physical Entity Relationship Diagram

Figure 5.3 Completed physical entity relationship diagram

109

5.4.2 Logical Entity Relationship Diagram

Figure 5.4 Simplified Logical entity relationship diagram

110

5.4.3 Data Dictionary

Data dictionary act as the centralized documents that describe the collections of database and attributes inside each table. There are 11 tables in the

database instance created.

5.4.3.1 Residences

Attribute Description Data type Example value

[PK] id Unique identifier for residence INT 1

name Display name of residence VARCHAR Cypress

description Brief description of residence VARCHAR Welcome to Cypress

structure_type Residential building type VARCHAR terrace

house_numbering_name_1 House numbering name level 1 VARCHAR Unit

house_numbering_name_2 House numbering name level 2 VARCHAR Floor

house_numbering_name_3 House numbering name level 3 VARCHAR Block

house_numbering_name_format House numbering name format VARCHAR

B{{numbering_1}}-

F{{numbering_2}}-

{{numbering_3}}

111

is_deleted Is the residence deleted? TINYINT 0

deleted_at
The date and time when the residence had been

deleted
DATETIME 2020-02-15 10:11:13

updated_at The date and time when the residence last updated DATETIME 2020-02-15 10:11:13

created_at The date and time when the residence is created DATETIME 2020-02-15 10:11:13

5.4.3.2 Houses

Attribute Description Data type Example value

[PK] id Unique identifier for residence INT 1

[FK] residence_id ID of residence that the houses belongs to INT 1

[FK] resident_id ID of resident that the houses belongs to INT 1

house_numbering_1 Number of house numbering level 1 VARCHAR 1

house_numbering_2 Number of house numbering level 2 VARCHAR 1

house_numbering_3 Number of house numbering level 3 VARCHAR 1

112

is_deleted Is the house deleted? TINYINT 0

deleted_at The date and time when the house had been deleted DATETIME 2020-02-15 10:11:13

updated_at The date and time when the house last updated DATETIME 2020-02-15 10:11:13

created_at The date and time when the house created DATETIME 2020-02-15 10:11:13

5.4.3.3 Users

Attribute Description Data type Example value

[PK] id Unique identifier for user INT 1

[FK] residence_id ID of residence that the user belongs to INT 1

role The role of user VARCHAR resident

first_name First name of user VARCHAR Ming

last_name Last name of user VARCHAR Tan

email Email address of user, can be used for login VARCHAR user@neibor.com

113

phone Contact number of users VARCHAR 0187363552

car_plate Car plate number of users VARCHAR NJH 0377

password_digest The encrypted password of user VARCHAR $2a$05$18vboB/F9ML…

token The Neibor Access Token of user VARCHAR eyJhbGciOiJIUzI1NiJ9….

registration_token
The registration token for the user devices, stored for

the purpose of notification
VARCHAR eMYgQobrRBKpiAlUxmo…

is_enabled Is the user enabled? TINYINT 1

is_deleted Is the user deleted? TINYINT 0

deleted_at The date and time when the user had been deleted DATETIME 2020-02-15 10:11:13

updated_at The date and time when the user last updated DATETIME 2020-02-15 10:11:13

created_at The date and time when the user created DATETIME 2020-02-15 10:11:13

114

5.4.3.4 Fees

Attribute Description Data type Example value

[PK] id Unique identifier for fee INT 1

[FK] residence_id ID of residence that the fee belongs to INT 1

title The title of fee, should be intuitive title VARCHAR Annual

description
The description of fee, can be used to describe the

purpose of fee
VARCHAR

Use to maintain the

community operation and

maintenance of facilities

amount The charging amount of fee DECIMAL 100.00

charge_to_numbering_1 The level 1 target area of houses to be charged INT 1

charge_to_numbering_2 The level 1 target area of houses to be charged INT 1

charge_to_numbering_3 The level 1 target area of houses to be charged INT 1

tag Tags that the fee can be classified VARCHAR water

due_at The date and time when the fee is expired DATETIME 2020-02-15 10:11:13

is_deleted Is the fee deleted? TINYINT 0

115

deleted_at The date and time when the fee had been deleted DATETIME 2020-02-15 10:11:13

updated_at The date and time when the fee last updated DATETIME 2020-02-15 10:11:13

created_at The date and time when the fee created DATETIME 2020-02-15 10:11:13

5.4.3.5 House Fee Pivot

Attribute Description Data type Example value

[PK] id Unique identifier for house fee INT 1

[FK] house_id ID of house that has the fee INT 1

[FK] fee_id ID of fee that has charge to the house INT 1

is_paid Is the fee paid? TINYINT 0

paid_at The date and time when the fee had been paid DATETIME 2020-02-15 10:11:13

116

5.4.3.6 Transaction

Attribute Description Data type Example value

[PK] id Unique identifier for transaction INT 1

[FK] residence_id ID of residence that the transaction belongs to INT 1

house_fee_ids The list of house fee ID VARCHAR 1,2

reference_id Unique reference ID for Neibor internal reference VARCHAR #111-00001

amount The total charging amount of all the fees DECIMAL 100.00

card_number Last four digits of the whole card number VARCHAR 0002

method_type Payment method of the transaction VARCHAR card

address_line1 Address line 1 of billing address VARCHAR C1-F1-1, Cypress

address_line2 Address line 2 of billing address VARCHAR Bandar Sungai Long

address_city City of billing address VARCHAR Kajang

address_postal_code Postal code of billing address VARCHAR 43000

address_state State of billing address VARCHAR Selangor

117

address_country Country of billing address VARCHAR MY

email Email of billing details VARCHAR user@neibor.com

phone Phone of billing details VARCHAR 0188262672

stripe_intent_id ID of Stripe intent created VARCHAR pi_1GMnrtJagR7ayQ…

status Indicated the transaction is successful or not TINYINT 1

failure_reason State the reason of transaction failure VARCHAR Invalid card number

created_at The date and time when the transaction created DATETIME 2020-02-15 10:11:13

5.4.3.7 Announcements

Attribute Description Data type Example value

[PK] id Unique identifier for announcement INT 1

[FK] residence_id ID of residence that the announcement belongs to INT 1

[FK] author_id ID of user that create the announcement INT 1

title Title of the announcement VARCHAR
TEMPORARY WATER

OUTAGE

118

content
HTML code that use to render the content of

announcement
LONGTEXT

<p>Good Afternoon

Westwood Suites …

send_to_numbering_1
The level 1 target area of houses will receive this

announcement
INT 1

send_to_numbering_2
The level 2 target area of houses will receive this

announcement
INT 1

send_to_numbering_3
The level 3 target area of houses will receive this

announcement
INT 1

is_published Is the announcement publish? TINYINT 1

is_deleted Is the announcement deleted? TINYINT 0

deleted_at
The date and time when the announcement had been

deleted
DATETIME 2020-02-15 10:11:13

updated_at
The date and time when the announcement last

updated
DATETIME 2020-02-15 10:11:13

created_at The date and time when the announcement created DATETIME 2020-02-15 10:11:13

119

5.4.3.8 House Announcement Pivot

Attribute Description Data type Example value

[PK] id Unique identifier for house announcement INT 1

[FK] house_id ID of house that will receive the announcement INT 1

[FK] announcement_id ID of announcement that send to the house INT 1

is_bookmarked Is the announcement bookmarked by the resident? TINYINT 0

is_read Is the announcement read by the resident? TINYINT 0

5.4.3.9 Feedbacks

Attribute Description Data type Example value

[PK] id Unique identifier for feedback INT 1

[FK] residence_id ID of residence that the feedback belongs to INT 1

[FK] resident_id ID of resident that create the feedback INT 1

title The title of the feedback VARCHAR Lift out of order

120

feedback_type The type of the feedback VARCHAR facilities

status
The status of the feedback, can be received, in

progress and completed
INT 1

rating
The rating of the feedback rate by resident when a

feedback is completed, 1 to 5
INT 5

review
The review of the feedback given by resident when a

feedback is completed
LONGTEXT Good job

is_deleted Is the feedback deleted? TINYINT 0

deleted_at The date and time when the feedback had been deleted DATETIME 2020-02-15 10:11:13

updated_at The date and time when the feedback last updated DATETIME 2020-02-15 10:11:13

created_at The date and time when the feedback created DATETIME 2020-02-15 10:11:13

5.4.3.10 Feedback Items

Attribute Description Data type Example value

[PK] id Unique identifier for feedback item INT 1

[FK] feedback_id ID of feedback that the feedback item belongs to INT 1

121

[FK] authorable_id ID of user that create the feedback item INT 1

authorable_type The user type of the author creates the feedback item VARCHAR resident

title The title of the feedback item VARCHAR Feedback received

description
The status of the feedback, can be received, in

progress and completed
VARCHAR Action taken

for_status Indicate the feedback item is for which status INT 1

is_deleted Is the feedback item deleted? TINYINT 0

deleted_at
The date and time when the feedback item had been

deleted
DATETIME 2020-02-15 10:11:13

updated_at
The date and time when the feedback item last

updated
DATETIME 2020-02-15 10:11:13

created_at The date and time when the feedback item created DATETIME 2020-02-15 10:11:13

122

5.4.3.11 Visitors

Attribute Description Data type Example value

[PK] id Unique identifier for visitor application INT 1

[FK] residence_id ID of residence that the visitor application belongs to INT 1

[FK] resident_id ID of resident that create the visitor application INT 1

names List of names of visitors VARCHAR Ming Tan, Ali Mhd.

representative_phone The phone number of the representative person VARCHAR 0187363552

representative_car_plate The car plate number of the representative person VARCHAR NJH 0377

visitation_purpose The visit purpose of the visitor application VARCHAR Assignment

123

status
Indicate the visitor application is pending, approved or

rejected
INT 1

notes
The notes to record the reject reason from community

management
VARCHAR Please provide phone number

qr_code_url
The url that link to the QR code image (QR code

generated when visitor application approved)
VARCHAR

https://bt-neibor.s3.ap-

southeast-

1.amazonaws.com/visitor-

qr/3

access_code The special access code to verify the visitor QR code VARCHAR 857b7ecb3a6ca7783724

is_entered
Indicate the visitors had entered into the residential

area
TINYINT 1

entered_at The date and time when the visitors entered into the

residential area

DATETIME 2020-02-15 10:11:13

is_exited Indicate the visitors had exited into the residential area TINYINT 0

exited_at The date and time when the visitors exited into the

residential area

DATETIME 2020-02-15 10:11:13

124

expired_at The date and time when the QR code generated

expired

DATETIME 2020-02-15 10:11:13

is_deleted Is the visitor application deleted? TINYINT 0

deleted_at
The date and time when the visitor application had

been deleted
DATETIME 2020-02-15 10:11:13

updated_at
The date and time when the visitor application last

updated
DATETIME 2020-02-15 10:11:13

created_at The date and time when the visitor application created DATETIME 2020-02-15 10:11:13

125

5.5 User Interface Design

User interface design is done by screen prototyping to produce a blueprint for the

development phase. The user interface is designed and aim to achieve the objectives

of this project such as complete a payment process by using shorter time compare to

manual payment. There are several user interface design principles followed in this

project:

1. Consistent user interface

2. Interfaces exists according to its purpose

3. User in control

4. No more than one primary action per section

5. Consider user expectation

6. Recognition rather than recall

7. Tolerance to user

8. Error prevention

The design activities of user interfaces are occurred in 3 modules which is the web

application for community management, mobile application for community resident,

and mobile application for security personnel.

5.5.1 Web Application for Community Management

The end user of this web application is community management, which consist of role

admin and staff. The figure below is the login page of the web application for

community management.

Figure 5.5 Login Page of Web Application

126

Figure 5.6 Recover Password Page of Web Application

 The figure above shows the recover password screen of web application. User

can enter the account’s email to receive password recovery email and proceed to reset

their forgotten password.

Figure 5.7 Home Analytics Page of Web Application

 The figure above shown several analytics for the residences such as total

payment amount received within a certain period, announcement effectiveness,

feedback completion rate, number of visitors accepted, etc. Besides, percentage of fee

payment completed by residents for a specific fee had been analysed and displayed. In

addition, there are one card showing the total amount of visitor still remained inside

the residential area.

127

Figure 5.8 Fee list in table

The figure above shows the fees in table form. Community management user

can create new fee, select existing fee to edit and delete specific fee in this page.

Figure 5.9 Create new fee page

Community management user can fill in the fee details including title,

description, amount, due date and target houses in this page to create new fee.

128

Figure 5.10 Edit fee page

Community management user can edit in the specific fee details including title,

description, amount, due date and target houses in this page to update the fee.

Figure 5.11 Announcement list in table

The figure above shows the announcements created in table form. Community

management user can create new announcement, select existing announcement to edit

and delete specific announcement in this page.

129

Figure 5.12 Create new announcement page

In this page, community management user can create new announcement by

entering the announcement title, its content using the text editor, flag its visibility, its

target residents and the tags of announcements.

Figure 5.13 Edit announcement page

 The figure above shown the edit announcement page, community management

user can edit specific announcement details in this page. For examples, unpublish a

specific announcement or add new tags to the announcement.

130

Figure 5.14 Feedback list in table

The figure above shows the feedback received in table form. Community

management user can create new feedback and select existing feedback to update in

this page.

Figure 5.15 Create feedback page

 Community management user can help resident to create feedback case and

assign the submit by field to the specific resident.

131

Figure 5.16 Update feedback page

 The screen above shown the update feedback page of the system. In this page,

residential management user can update the feedback progress to resident. In some

circumstances, residential management user can help resident to complete the specific

feedback case.

Figure 5.17 Update feedback dialog

 The update feedback dialog will pop up when the residential management user

clicks the update progress button. Details of the feedback update can be filled in here

to update the progress.

132

Figure 5.18 Complete feedback dialog

 The complete feedback dialog will prompt the residential management user

when he/she want to complete the specific feedback. The dialog will display some

information to indicate that the feedback case should be completed by resident when

the feedback case problem is solved and it needs double confirmation to continue to

complete the feedback with role of residential management user.

Figure 5.19 Completed feedback page

 The page above shown a completed feedback with resident rating. As the figure

shown, no other action such as update feedback progress or complete feedback can be

done in this page as the feedback case is completed.

133

Figure 5.20 Visitor list in table form

The figure above shows the visitor application received in table form.

Community management user can create new visitor and select existing visitor to

update in this page.

Figure 5.21 Create new visitor page

 In the create new visitor page above, a maximum limit of 10 visitors’

name can be filled in for the visitor application. Besides, representation phone, car

plate number and visitation purpose can be filled in also. As like feedback, community

management user can help resident to create visitor application and assign the submit

by field to the specific resident.

134

Figure 5.22 Update visitor page

 Community management user can review the visitor application details such

as names, visitation purpose etc. and decide to approve or reject the specific visitor

application here.

Figure 5.23 QR code generated for visitor

 The figure above shown the QR code generated when the visitor application

had been approved by the community management user.

135

Figure 5.24 Payment histories list in table

The figure above shows the payment histories of residents in table form.

Community management user can select existing payment history to view its details

in this page.

Figure 5.25 View payment history page

 In this page, community management user can view the details of a specific

payment history by resident. The details of payment history record may include

amount, fees involved, billing information etc.

136

Figure 5.26 House list in table

The figure above shows the houses of residence in table form. Community

management user can create new house and select a house to view its details in this

page.

Figure 5.27 Create house page

 In this create house page, community management user can fill in the house

numbering of the house to create new house. One of the house numbering examples is

B1-F1-1. Besides, a resident can directly assign here either using existing resident or

create new resident.

137

Figure 5.28 Select resident dialog

 The select resident dialog will display the available resident to be assigned into

the specific house.

Figure 5.29 Delete house dialog

 A confirmation dialog will pop up when community management user presses

the delete house button located at the bottom of the view house page. The dialog is

used to double confirm the delete operation of specific house.

138

Figure 5.30 Resident list in table

 The figure above shows the residents of residence in table form. Community

management user can add new resident account and select a resident to view its details

in this page.

Figure 5.31 Create resident page

 Community management user can fill in the resident’s first name, last name

and email to create a new resident account. A random generated password will be use

as the default password for the account. In additions, house can be assigned to the

specific resident by either select an existing house or create new house.

139

Figure 5.32 Select house dialog

 The select house dialog will display the house available to be assigned to the

resident.

Figure 5.33 Edit resident page

 In this page, community management user can view the personal information

of resident such as phone number, car plate number, house, etc. Besides, the fees list

involved will also displayed here. Community management user also can remove the

house assigned to this resident in this page.

140

Figure 5.34 Delete resident dialog

 A confirmation dialog will pop up when community management user presses

the delete resident button located at the bottom of the view resident page. The dialog

is used to double confirm the delete operation of specific resident account.

Figure 5.35 Settings page

 Settings page is displaying three card buttons, which is about general

information of resident, staff of residents and profile of specific user.

141

Figure 5.36 General information of residence page

 This page allows community management use to view or edit the general

information of residence such as name, description, etc.

Figure 5.37 Staffs page

 This page displayed the staffs of residence and community management user

can add new staff, edit staff, enable or disable staff account, and revoke staff account

in this page.

142

Figure 5.38 Profile page

This profile page will display the basic information of the specific user and

allow he/she to edit the information.

143

5.5.2 Mobile Application for Community Resident

Figure 5.39 Login screen for mobile

application

Figure 5.40 Recover password screen

The figure 5.39 is the login

screen for the mobile application.

Residents will need to enter their email

and password to login into the mobile

application. Besides, there are one

forgot password button to direct the

resident to the recover password screen.

The figure 5.40 is the recover

password screen for the mobile

application. Residents will need to

enter their email, and received a

recovery email to reset their forgotten

password.

144

Figure 5.41 Fee main screen

The figure 5.41 is the main

screen will be displayed to the residents

after they login. In this screen, they can

view their outstanding amount of the

fee, view the up to 5 fees available and

5 payment histories.

The figure 5.42 is the select fee

screen. Residents can select the fee

they wished to pay and proceed to the

payment process.

Figure 5.42 Select fee screen

145

Figure 5.43 Payment screen

Figure 5.44 View fee screen

The figure 5.43 is the fee

payment screen. Resident need to filled

in his/her debit or credit card details to

pay the outstanding fees.

The figure 5.44 is the view fee

details screen. This screen will appear

after user press a specific fee to view. It

will show the fee’s title, amount,

description, etc.

146

Figure 5.45 View all fees screen

Figure 5.46 View payment history

screen

The figure 5.45 is the view all

fees screen. This screen contains a list

view of all the fees available.

The figure 5.46 is the view

payment history screen. This screen

will appear after user press a specific

payment history to view. It will show

the payment history amount, fees

involved, payment method, billing

details, etc.

147

Figure 5.47 View all payment histories

screen

Figure 5.48 Announcement main

screen

The figure 5.47 is the view all

payment histories screen. This screen

shows all the payment histories in in

list view.

The figure 5.48 is the

announcement main screen. This

screen will show up to 5

announcements card. Residents can

press a specific announcement card to

view the details of the announcement.

148

Figure 5.49 View announcement

screen

Figure 5.50 View all announcement

screen

The figure 5.49 is the view

announcement screen. The content of

the announcement will be display using

HTML viewer, so special formatting

such as bold, list, etc. will be retained.

On the top right corner of the screen,

residents can press the button to

bookmark or un-bookmark the

announcement. Bookmarked

announcement will be shown at the top

of the announcement screen.

The figure 5.50 is the view all

announcements screen. This screen

shows all the announcements in in list

view.

149

Figure 5.51 Feedback main screen

Figure 5.52 Create feedback screen

The figure 5.51 is the feedback

main screen. Some preview

information of each feedback case is

displayed in this screen. The screen

will show up to 5 feedback cases. The

add floating button at right bottom

button will directly resident to create

new feedback case screen.

The figure 5.52 is the create

feedback screen. Title, description,

type, and images related to the

feedback is allowed to filled in and

submit as a feedback case.

150

Figure 5.53 View feedback screen

Figure 5.54 Action available for

feedback

The figure 5.53 is the view

feedback screen. The progress of the

feedback will be displayed here.

There are two action can be

operated in this screen which is

complete feedback and update progress

for feedback.

151

Figure 5.55 Update feedback screen

Figure 5.56 Complete feedback dialog

The figure 5.55 is the update

feedback screen. Title, description and

image of the update can be filled in here.

The figure 5.56 is the complete

feedback dialog. The mobile

application will prompt this

confirmation dialog before completing

feedback.

152

Figure 5.57 Rate feedback dialog

Figure 5.58 View all feedback screen

The figure 5.57 is the rate

feedback dialog. The dialog will pop up

to ask resident give rating and review

about this feedback experience after

user completed the feedback.

The figure 5.58 is the view all

feedbacks screen. This screen shows all

the feedbacks in in list view.

153

Figure 5.59 Visitor main screen

Figure 5.60 Create visitor screen

The figure 5.59 is the visitor

main screen. Up to 5 visitor application

will displayed in this screen including

the details such as names of the visitor

and status of the application. The

floating action button at the bottom

right corner will direct resident to the

create visitor screen.

The figure 5.60 is the create

visitor screen. Up to 10 visitors can be

added in this application. Besides,

phone number of the visitor’s group’s

representative and visitation purpose is

required to be filled in.

154

Figure 5.61 View visitor screen

Figure 5.62 View all visitor screen

The figure 5.61 is the view

visitor screen. The QR code generated

during the visitor application approved

will be displayed here.

The figure 5.62 is the view all

visitors screen. This screen shows all

the visitors in in list view.

155

Figure 5.63 Profile screen

Figure 5.64 Edit profile screen

The figure 5.63 is the profile

screen. It will display the personal

information of resident, such as name,

email, phone car plate, etc.

The figure 5.64 is the edit

profile screen. It allows residents to

update their personal information.

156

5.5.3 Mobile Application for Security Personnel

Figure 5.65 Guard home screen

Figure 5.66 Guard add visitor screen

The login flow of guard is same

as resident. However, after login,

different screen will be shown. The

figure 5.65 is the guard mobile

application home screen. The first

button in the middle is used to scan the

QR code presented by the visitor. The

second button in the middle is used to

add visitor with no QR code such as

delivery personnel.

The figure 5.66 is add visitor

screen. Security personnel can add new

visitor with no QR code. A list of quick

suggestions is displayed the name used

to automatically fill in the visitor name

and visitation purpose.

157

Figure 5.67 Visitor details screen

Figure 5.68 Entered visitor screen

The figure 5.67 is the screen

after QR code scanned. Visitor details

will be displayed to allow guard to

validate the visitors’ details. An enter

button is used to update the visitor

status.

The figure 5.68 is the entered

visitor screen. It will appear when the

entered visitor’s QR code is scanned.

An exit button is used to update the

visitor status.

158

Figure 5.69 Exited visitor screen

The figure 5.69 is the exited

visitor screen. It will appear when the

exited visitor’s QR code is scanned.

Guard should not allow visitor to enter

again.

159

CHAPTER 6

6 SYSTEM IMPLEMENTATION

6.1 Backend Server

The Ruby on Rails backend server implemented Model View Controller (MVC)

design pattern. In the whole system, the Controller layer and Model Layer is residing

in the backend server. This section will compromise with an overview description of

backend server and details explanation of each layers.

6.1.1 Overview of Backend Server

This section will describe the overview flow of RESTful API request in the Ruby on

Rails backend server created.

Admin Route

Central RouteRequest

Response

Announcements
Controller

Fees
Controller

Feedbacks
Controller

Auth
Controller

Visitors
Controller

Residences
Controller

Houses
Controller

Residents
Controller

Staffs
Controller

User Model

Residence Model

House Model

Resident Model

Staff Model

Fee Model

Announcement
Model

Feedback Model

Visitor Model

House Fee Model

House Announcement
Model

Feedback Item
Model

Transaction Model

to Mobile
Route...

Controller Layer Model Layer

View

Figure 6.1 Flow of API request from web application

being handle and respond

160

Mobile Route

Central RouteRequest

Response

to Admin
Route...

Controller Layer Model Layer

View

Announcements
Controller

Fees
Controller

Feedbacks
Controller

Auth
Controller

Visitors
Controller

User Model

Fee Model

Announcement
Model

Feedback Model

Visitor Model

House Fee Model

House Announcement
Model

Feedback Item
Model

Transaction Model

Figure 6.2 Flow of API request from mobile

application being handle and respond

As the two figure diagrams shown, API requests from either mobile application

or web application will be direct to admin route handler or mobile route handler

respectively. After the route layer, the request and its payload will enter controller

layer to its respective controller. For example, “Auth Controller” will handle request

related to authentication. In controller, application logic on the input from request and

interaction with the model will occurred. If every task or statement is completed

successfully, response that contain the result or data should be return from controller

to the source of input request for information rendering in view.

161

6.1.2 Controller Layer

In Controller layer, logical solutions that handle the request from client’s application

were defined. Controller will responsible to process or manipulate the data input and

inform the Model for data retrieve, update, delete, etc. Reusability are emphasized in

this layer to ensure the better organized architecture of this project. It is an essential

approach as it can lead to better maintainability and readability of code (UKEssays,

2018). Inheritance is used to achieve the aims. The figure below is an overview of how

the hierarchy of controller class inheritance in Ruby on Rails backend server.

Announcements
Controller

Fees
Controller

Feedbacks
Controller

Auth
Controller

Visitors
Controller

Residences
Controller

Houses
Controller

Residents
Controller

Staffs
Controller

Admin Base
Controller

Root
Controller

Mobile Base
Controller

API Action
Controller

Announcements
Controller

Fees
Controller

Feedbacks
Controller

Visitors
Controller

Auth
Controller

<<extends>>

<<extends>> <<extends>>

<<extends>> <<extends>>

Figure 6.3 Hierarchy of Controller Inheritance

162

 In the hierarchy of controller inheritance, multiple level of inheritance is

involved. The highest level of super class, “API Action Controller” is Ruby on Rails

built-in API controller. It provides only the essential feature, such as “render JSON”

and “redirects” that required to build API endpoints. “Root Controller” will inherit the

behaviour of “API Action Controller” in second level and act as the parent controller

of “Admin Base Controller” and “Mobile Base Controller” to provide the

interchangeable function needed for the child controller of both base controllers.

Figure 6.4 Root Controller Source Code

In “Root Controller”, the code statement to load general libraries, customized

extension, customized error handling and basic configuration will reside here.

Customized error handling can provide more details and full control of how the error

will be present and respond.

163

Figure 6.5 Admin and Mobile Base Controller Source Code

 As the figure above shown, “Admin Base Controller” and “Mobile Base

Controller” had “Root Controller” as parent class. In each base controller, several

authentication concerns had been included. Concerns is a core functionality in Ruby

on Rails that create mix-ins for the class to use. “Auth Residence” that included will

automatically check which residence the user’s access token belongs to and inject the

residence data into the request’s parameters for controller use. “Auth Staff” and “Auth

Resident” will verify the user’s access token and inject staff data or resident data into

request’s parameters.

Figure 6.6 Auth Residence Concern Source Code

164

 Using example of “Auth Residence”, figure 6.6 show how the residence being

verify and data inject into request’s parameters. “Auth Resident” and “Auth Staff” had

similar mechanism to perform authentication and data injection.

 Apart from that, controller in this Ruby on Rails backend server normally have

general function, which is revolve around the list, retrieve, create, update and delete

resource operations. For example, fees controller will have list fees, get fee, create fee,

update fee and delete fee function while announcements controller will have list

announcements, get announcement, create announcement, update announcement and

delete announcements function. Fees controller will be used as an example to describe

the structure of controller.

Figure 6.7 Admin Fees Controller Collapsed Source Code

The figure 6.7 above show the available function of “Admin Fees Controller”,

which is revolve around list fees, get fee, create fee, update fee and delete fee. Using

“Admin Fees Controller” as example, details of each function will be described.

165

Figure 6.8 List fees function from Admin Fees Controller

Remapping of the fee attributes will be performed to control what attributes

will be returned in list fees function.

Figure 6.9 Get fee function from Admin Fees Controller

In get fee function, the fee will be found by the primary key of fee which is

“fee_id” provided, early error return exists to handle the resource not found situation.

Same as list fees function, remapping of fee resource will be performed before return.

166

Figure 6.10 Create fee function from Admin Fees Controller

 In create fee function, the request’s parameters will be validate using the

custom function “require_and_permit” defined in “params” class extension. It will

filter the parameter’s body and verify the required content exists and remove

unpermitted content. After that, creation of fee and house fees pivot will be performed.

Lastly, a notification will be sent to residents to notify them about the new fee created

by using the residents’ device registration token.

167

Figure 6.11 Update fee function from Admin Fees Controller

 In update fee function, same as get fee function, the specific fee will the found

using its primary key. After the specific fee found, update operation will be performed

only to the attributes given at parameters. For example, if only description parameters

given in the request’s parameters, only the description attribute will be updated.

168

Figure 6.12 Delete fee function from Admin Fees Controller

 In delete fee function, fee ID will be passed in and use to find the specific fee

to perform delete operation. In addition, the delete fee function also support bulk delete.

If a list of fee ID, such as “1,3,4” is passed in, three fee record will be found and soft

delete. Soft delete is a custom defined function, which perform operation to update the

“is deleted” attributes of fee to true and “deletant” attributes to current timestamp.

169

Figure 6.13 Mobile Fees Controller Collapsed Source Code

 Mobile Fees Controller had two similar function to Admin Fees Controller

which is list fees and get fee. However, there are no create fee, update fee and delete

function in Mobile Fees Controller because the 3 operations stated is not the

behaviours of this community association mobile application’s end user, which is

resident. There is one additional function in Mobile Fees Controller, pay fee function.

Pay fee function will handle the fee payments related operation, such as validate the

total amount of fees, communicate with Stripe Payment Method API and Stripe Intent

API, etc.

Figure 6.14 Part of the pay fee function source code from

Mobile Fees Controller

 Stripe Ruby Library is used here to provide easy access to Stripe API. Before

performing any action, Stripe account secret key need to be configured into the Stripe

Ruby library. Firstly, a new payment method will be created using resident’s

credit/debit card information and billing address provided. After a payment method

successfully created, payment intent will be created to charge the total amount of fees

from resident credit/debit card. Lastly, a successful transaction record will be created

into database’s transaction table or vice versa with failure reason.

170

6.1.3 Model Layer

Model layer responsible for storing the resource data that will be involved in the

system. Active Record, a core functionality of Ruby on Rails will play the role of

Model in the MVC architecture. It will serve as the Object Relational Mapping (ORM)

technique to connect tables in a relational database with the object in system. Active

Record as ORM act as the link bridge between database and object in system to provide

a convenience approach to retrieve or update the database without writing SQL

statements. In addition, relationship like has-many, has-one or belongs-to between

multiple model will defined in the Active Record class. The figure below is an

overview of how the hierarchy of model class inheritance in Ruby on Rails backend

server.

Application Record

Active Record
Base

<<extends>>

Fee

Announcement

House Announcement

House FeeHouse

Feedback

Staff

Resident

Residence

Feedback Item

Visitor

Transaction

<<extends>> <<extends>>

Figure 6.15 Hierarchy of Model Inheritance

171

In the hierarchy of model inheritance, multiple level of inheritance is involved.

From top to bottom, the first and second level of super class, “Active Record Base”

and “Application Record” are Ruby on Rails built-in base class to using Active Record,

it provides basic function such as creation. All the custom defined Active Record

model class like “Residence”, “Fee”, Announcement” will inherit “Application Record”

class as parent class. Several custom defined class will be used to explain how the

relationship between Model be create and manage.

Figure 6.16 Resident Active Record Class Source Code

 The first example using will be Residence class. Residence class is the

centralized class in this system as it had relationships with all other models. As

previously described, Residence class will have “Application Record” class as parent

class to enable the usage of Active Record. There is one custom defined concern

included in Residence class which is “Deletable” concern that will inject several delete

related function such as “soft_delete” and “restore” into Residence class. Apart from

that, there are several has-many relationship defined in Residence class. In Active

Record class, has-many relationship indicates a one-to-many connection to another

model. For example, residence has many residents, and residence has many

announcements.

172

Figure 6.17 Feedback Active Record Class Source Code

For second example, Feedback class is used to store the data of the residents’

feedback case submitted. So, as the figure shown, feedback instance will be belonging

to residence and resident. In additions, it will have many items which is used to store

each update from either management staffs or resident.

Figure 6.18 Feedback Item Active Record Class Source Code

 Polymorphism relationship is implemented in Feedback Item class, as it can

belongs to either Staff class or Resident class. Both of the class mentioned will act as

the authorable class to the Feedback Item class. Polymorphism is a method in which

multiple classes may be used to implement the same function. By doing so, when

calling the authorable methods in Feedback Item instance, it may return either Staff

instance or Resident instance which determined who created the Feedback Item

instance.

173

6.1.4 Special Integration

There are several integrations to be highlighted had integrated in to the Ruby on Rails

backend server to achieve more advanced functionalities in this project. For examples,

Stripe, Firebase Cloud Messaging, Sendinblue, RQRCode etc.

6.1.4.1 Stripe Payment

Stripe is payment processing platform that integrated to enable the ability to receive

the residents’ payment for the fee’s charges that through online. In another word,

through the integration of Stripe, resident can pay their fee charge using their debit or

credit card in their mobile application installed.

Figure 6.19 Fee Payment using Stripe

 First and foremost, a unique Stripe API key is required to set before any actions

of Stripe API client. After the key is set, a payment method needs to be created before

the payment charge. The payment method is created using the card information

including card number, expiry month, expiry year, CVV/CVC, card holder name

passed in and the billing details including billing address, phone and email. After a

payment method is created, the ID of the method will then pass in in to the Stripe’s

Payment Intent create function. A Stripe Payment Intent is an encapsulated detail that

contain the details of the payment methods, amount to collect and the currency to

charge. Besides of the payment method’s ID, amount to collect, description of payment,

and currency using will also pass in for the creation of payment intent. After all, if a

payment intent is successfully created, the fee payment amount will be deducted from

the residents’ debit or credit card. The whole payment process will be complete.

174

6.1.4.2 Firebase Cloud Messaging

Firebase Cloud Messaging (FCM) is integrated to enable the ability to send real time

mobile notification to the residents’ devices. Notification will be sent to the resident,

whenever there was a new fee, new announcement, feedback case update or visitor

application status update, etc.

Figure 6.20 FCM Send Notification Function

 As the figure shown, a send notification function is defined at Resident class.

The function will be received an envelope that contained the notification title, body

test and the user devices’ registration tokens as parameter. After that, each respective

value will be mapped into the format required. At last, the notification is sent through

the FCM API client instance created.

Figure 6.21 Send Notification when Announcement Creation

 For example, the figure above shown the code segment to send notification to

residents when a new announcement was made.

175

6.1.4.3 Sendinblue SMTP Email

Sendinblue is an email marketing service provider. It is integrated in this project to

provide the ability to send email to the resident during the process of recovering

forgotten password and send invitation email to resident when his/her account is ready

to be use.

Figure 6.22 Neibor Mailer with Sendinblue

 The figure above is the Neibor Mailer class defined. It consists of one function

that responsible to send email to resident by using the Sendinblue API client.

Figure 6.23 Send Invitation Email to Resident

 The figure above shown the code segment to send the invitation email to

resident by using the Neibor Mailer defined.

176

Figure 6.24 Invitation email

 The figure above is the invitation email. It will be sent to residents when their

account is ready to be used.

Figure 6.25 Password recovery email

 The figure above is the password recovery email. It will be sent to user when

they wished to recover their forgotten password.

177

6.1.4.4 Amazon Simple Storage Service

Amazon Simple Storage Service or known as AWS S3 is integrated into this project

to provide the ability to store the image or user data on cloud. For examples, the images

uploaded in the feedback process and QR code images generated in the visitor

application approve process will be store at the AWS S3 bucket.

Figure 6.26 Code Segment of Feedback's Images Upload

The code segment above is located at the image upload part of the feedback

process. Initially, a S3 resource object is created using the AWS API key and region

the bucket located at. After that, the specific bucket object which is the destination of

the image upload will be created also. Temporary image files will be created for the

upload purpose. Those image files will then upload to the specific bucket directory

path defined. After the upload process completed, the URL where the image located

will be return and store into database for the later retrieve.

178

6.1.4.5 RQRCode QR Code Generator

RQRCode is a Ruby library that use to convert data into QR code. It is integrated into

this project to generate QR code for the visitor entry access into residential area. The

QR code will be generated when a visitor application is approved.

Figure 6.27 QR Code Generation when Visitor Application Approved

 The figure above shown the code segment of the QR code generation in visitor

admin controller. Firstly, the visitor access code generated in used to convert into the

QR code image. The QR code image will then uploaded into AWS S3 bucket, so

residents can retrieve the QR code image in their mobile devices. In their mobile

devices, residents can screenshot the QR code image and send it to their friend, which

is the visitor. Visitor can present the QR code image to the security personnel of the

residential area to grant entry access. Security personnel can use their mobile devices

to scan the QR code and retrieve the visitor information. When the visitor wished to

exit the residential area, he/she will need to show the QR code to the security personnel

again.

179

6.1.5 Available Endpoints

The are total 70 endpoints available in this Ruby on Rails API server, which can split

into 2 major parts which is “Admin” and “Mobile”.

6.1.5.1 Admin Endpoints

Admin endpoints will responsible to serve the request from admin panel that used by

residential community management. For admin endpoints, it consists of 51 endpoints.

All the admin endpoints will have a prefix which is “{{api_url}}/admin/residences/1”

expect the residence related routes.

Table 6.1 Admin Endpoints Listing

Authentication

No. Method Route Description

1 POST auth To verify the access token and

persist the login state of admin.

2 POST auth/login To verify the email and

password in login process.

3 POST auth/recover_password To initiate the recover

forgotten password process,

send email to admin.

4 POST auth/verify_token To verify the recovery token for

the password recovery link.

5 POST auth/reset_password To reset the password of user.

Residence

No. Method Route Description

6 GET residence/:residence_id Retrieve the residence details

7 PUT residence/:residence_id Update the residence details

Staff

No. Method Route Description

8 GET staffs List all the staffs

9 POST staffs Create new staff

10 GET staffs/:staff_id Retrieve specific staff

11 PUT staffs/:staff_id Update specific staff

180

12 DELETE staffs/:staff_id Delete specific staff

Resident

No. Method Route Description

13 GET residents List all the residents

14 POST residents Create new resident

15 GET residents/:resident_id Retrieve specific resident

16 PUT residents/:resident_id Update specific resident

17 PUT residents/:resident_id/remove

_house

Remove house from specific

resident

18 DELETE residents/:resident_id Delete specific resident

House

No. Method Route Description

19 GET houses List all the houses

20 POST houses Create new house

21 GET houses/:house_id Retrieve specific house

22 PUT houses/:house_id Update specific house

23 PUT houses/:house_id/remove_resi

dent

Remove resident from specific

house

24 DELETE houses/:house_id Delete specific house

25 POST houses/bulk-create Bulk create houses

Fee

No. Method Route Description

26 GET fees List all the fees

27 POST fees Create new fee

28 GET fees/:fee_id Retrieve specific fee

29 PUT fees/:fee_id Update specific fee

30 DELETE fees/:fee_ids Delete specific fee(s)

Payment history

No. Method Route Description

31 GET payment_histories List all the payment histories

32 GET payment_histories/:payment_

history_id

Retrieve specific payment

histories

Announcement

181

No. Method Route Description

33 GET announcements List all the announcements

34 POST announcements Create new announcement

35 GET announcements/:announceme

nt_id

Retrieve specific

announcement

36 PUT announcements/:announceme

nt_id

Update specific announcement

37 DELETE announcements/:announceme

nt_ids

Delete specific

announcement(s)

Feedback

No. Method Route Description

38 GET feedbacks List all the feedbacks

39 POST feedbacks Create new feedback

40 GET feedbacks/:feedback_id Retrieve specific feedback

41 PUT feedbacks/:feedback_id Update specific feedback

progress

42 PUT feedbacks/:feedback_id/comp

lete

Complete specific feedback

Visitor

No. Method Route Description

43 GET visitors List all the visitors

44 POST visitors Create new visitor

45 GET visitors/:visitor_id Retrieve specific visitor

46 PUT visitors/:visitor_id Approve or reject specific

visitor

Analytic

No. Method Route Description

47 GET analytics/fee Retrieve specific fee payment

analytics

48 GET analytics/transaction Retrieve overall transaction

payment analytics

49 GET analytics/announcement Retrieve overall announcement

analytics

182

50 GET analytics/feedback Retrieve overall feedback

analytics

51 GET analytics/visitor Retrieve overall visitor

analytics

6.1.5.2 Mobile Endpoints

Mobile endpoints will responsible to serve the request from mobile application that

used by resident and security personnel. For mobile endpoints, it consists of 19

endpoints. All the admin endpoints will have a prefix which is

“{{api_url}}/mobile/residences/1”

Table 6.2 Mobile Endpoints Listing

Auth

No. Method Route Description

1 POST auth To verify the access token and

persist the login state of mobile

user.

2 POST auth/login To verify the email and

password in login process.

To record the device

registration token for

notification.

3 POST auth/logout To delete the device

registration token from

database.

4 POST auth/recover_password To initiate the recover forgotten

password process, send email to

mobile user.

183

Profile

No. Method Route Description

5 PUT profile Update the mobile user profile

6 PUT password Change password

Fee

No. Method Route Description

7 GET fees List all the fees available,

transaction history of the

specific resident

8 POST fees Make payment for the fee by

resident

Announcement

No. Method Route Description

9 GET announcements List all the announcements

available for the specific

residents

10 PUT announcements Update the read status of the

announcement, bookmarked or

unbookmarked the

announcement

Feedback

No. Method Route Description

11 GET feedbacks List all the feedbacks

12 POST feedbacks Create new feedback

13 PUT feedbacks Update feedback

14 PUT feedbacks Complete feedback, give rating

or review

Visitor

No. Method Route Description

15 GET visitors List all the visitors

16 POST visitors Create new visitor

184

Guard

No. Method Route Description

17 GET guard/visitors/access Retrieve the details information

of specific visitor

18 PUT guard/visitors/:visitor_id/enter Record specific visitor enter

time

19 PUT guard/visitors/:visitor_id/exit Record specific visitor exit

time

6.1.6 Deployment

The Ruby on Rails API server is deployed to AWS Elastic Beanstalk environment, at

AWS EC2 server instance. The platform of the EC2 instance using is Puma with Ruby

2.6 on 64bit Amazon Linux 2.11.4. The API server URL is “http://neibor-api-dev.ap-

southeast-1.elasticbeanstalk.com”

Figure 6.28 Deployment of Ruby on Rails API server

185

6.2 Web Application for Community Management

The web application built with Vue.js, will be acted as the admin panel for the

community management to perform the daily operation to manage residents. This

Vue.js web application is one of the front-end clients of the overall system. As single

page application nature of Vue.js, the web application is rendering in a main layout

and the content of the main layout will be replaced by new data directly without

refreshing the whole web page.

6.2.1 Overview of Web Application

In this project, a “Main.vue” is created to utilize the single page feature and the content

of the web application will be resided in “Main.vue”. For examples, as the figure below

shown. The “Main.vue” consists of navigation bar area and content area. The content

wrapper will be used to display each page’s content while the navigation bar area will

be static and always displayed.

The navigation area allows community management user to navigate within

the navigation bar’s items defined. The content area will be use to display content like

fees page, announcement page, create feedback page, etc. Majority of the users’

activities will be taking place within the content area.

Figure 6.29 Web application main layout

Content NavBar

186

Figure 6.30 Collapsed code of Main.vue

 As the figure above shown, Main.vue consists of two main components which

is “v-nav-menu” and a division with ID of “content-area”. The “v-nav-menu” will used

the “navMenuItems” array of menu items’ information passed in to render out the

buttons in the left navigation bar.

Figure 6.31 Views folder for content area

 The views folder consists of 10 mains folder which contains the .vue file to be

rendered inside the content area. For example, announcement folders contained

“Announcement.vue” used to render the announcements in table view,

“CreateAnnouncement.vue” will be used to render the create announcement page.

187

6.2.2 Pages Hierarchy

This section will describe the web application’s pages hierarchy.

Home

Fee
Main

Announcement
Main

Feedback
Main

Visitor
Main

Payment History
Main

House
Main

Resident
Main

Settings
Main

View Payment
History

Create
Resident

View/Edit
Resident

Create
Visitor

View/Update
Visitor

View/Update
Feedback

Create
Feedback

Create
Announcement

View/Edit
Announcement

Create
Fee

View/Edit
Fee

General

Staff Main

Profile

Create
Staff

View/Edit
Staff

Create
House

Bulk Create
House

View/Edit
House

Login

Forgot
password

Figure 6.32 Web application pages hierarchy

 The entry page of the web application is the Login Page. After login, it will

enter the Home Page, which will display the analytics of the residence information. In

Home Page, user can navigate to 8 screens, including the Fee Main Page,

Announcement Main Page, Feedback Main Page, Visitor Main Page, Payment History

Main page, House Main Page, Resident Main Page and Settings Main Page. Majority

of the main page can be navigated to respective resource operations page, such as

create and view. For example, Fee Main Page can navigate to Create Fee Page and

View/Edit Fee Page.

188

6.2.3 API Client

An API client is created to be communicate with the Ruby on Rails API server. The

API client is built based on Axios, a promise-based HTTP client for the browser and

server. It supports multiple HTTP method such as GET, POST, PUT, DELETE.

Figure 6.33 Code segment of ApiClient.js

 The figure above shown a part of the code of the ApiClient.js. There are 4

methods defined to handle the 4 types of HTTP request. The uiHandler method will

be called to map the API client format to the real Axios method. The API client will

auto get the API server access token and add it into headers of HTTP request. Besides,

it also handles and map parts of the URL path passed in into the full API server URL

path.

Figure 6.34 Code segment of ApiClient.js usage

 The figure above shown a part of code in the Home.vue, the “apiGet” function

defined in ApiClient.js is called. In the function, the first parameter passed in is the

API URL path, the second parameter is the params of the HTTP request, and the last

parameters is the handlers object.

189

6.2.4 Deployment

The Vue.js web application is deployed to Heroku web hosting platform. It enabled

with the continuous deployment process. Whenever the Git upstream had new commit,

it will automatically use the latest push of the master branch to deploy a new version

of web application. The deployed web application can be accessed at: http://neibor-

admin.herokuapp.com/.

Figure 6.35 Deployment of Vue.js Web Application

190

6.3 Mobile Application for Community Residents and Security Personnel

The mobile application built with Flutter, is one of the front-end clients of the overall

system. The target end user of this mobile application of will be community residents

and security personnel.

6.3.1 Overview of Mobile Application

In this mobile application, major screen can be divided into two portion which is

content area and bottom navigation bar area. The bottom navigation bar is applied to

ease the navigation from screen to screen. The bottom navigation bar will have four

items which can navigate to Fee Main Screen, Announcement (Notice) Main Screen,

Feedback Main Screen and Visitor Main Screen.

Figure 6.36 Mobile application main layout

 The figure above shown the screen will be displayed after resident logged in.

If no account is logged in, the user will be direct to the login screen. This process will

be handled by a component defined names as “AuthWrapper.dart”. Inside

AuthWrapper.dart, it consists a switch statement on the AuthStatus of mobile

application, based on the value of AuthStatus, different screen will be return.

Content

Bottom NavBar

191

Figure 6.37 Code segment of AuthWrapper.dart

 As the figure shown, if AuthStatus is not signed in, login screen will be return

and displayed to users. If residents were signed in, the navigations screen which the

resident main screen will be returned. Besides, if guards were signed in, the guard

home screen will be returned. Lastly, if none of the stated condition met, a default

splash screen consist of the mobile application logo will be return.

Figure 6.38 Views folder of mobile application

 The views folder of mobile application consists of 6 mains folder which

contains the .dart file to be rendered inside the content area.

192

6.3.2 Screen Hierarchy

Navigation

Fee
Main

Announcement
Main

Feedback
Main

Visitor
Main

View
Announcement

View All
Announcement

Login

Forgot
password

Select
Fee

View Fee

Pay Fee

View All
Fee

View Visitor

View All
Visitor

Create
Visitor

View Payment
History

View All Payment
History

Profile Edit Profile

Guard Home Scan QR code

Accept
Visitor

Accept
Visitor

View All
Feedback

View Feedback

Create
Feedback

Update
Feedback

Figure 6.39 Screen hierarchy of mobile application

The entry screen of the mobile application is the Login Screen. After resident’s

login, it will be route to the Main Navigation Screen which consists of 4 tabs, fee,

announcement (notice), feedback and visitors. In Fee Main Screen tab, fee details and

payment history details will be displayed. Besides, residents can navigate to select fee

screen to pay their fees. At Announcement Main Screen tab, residents can select a

specific announcement to view its content. At Feedback Main Screen tab, residents

can create new feedback case, view specific feedback, or view all feedbacks. At Visitor

Main Screen tab, residents can create new visitor application, view specific visitor, or

view all visitors. Apart from that, if there was a security personnel account signed in,

the Guard Home Screen will be displayed instead of Main Navigation Screen.

193

6.3.3 State Management

Flutter is a declarative framework, each of the widgets will have their own state which

containing the data used to render. If the application is simple, multiple states of

several widgets might be still handleable to developer. However, when the application

grows along with the functionalities implemented, the large amount of states of

widgets might be a hard nut to crack. The application will become more complex and

unable to maintain. With the built-in state management of Flutter like combination of

Stateful widget and “setState” function, numerous redundant codes will be produced.

 Provider State Management, which is one of the recommend state management

approaches in the official documentation of Flutter is implemented in this project to

solve the state management issues stated previously. Provider State Management

consists of three main components which is:

• ChangeNotifier

• ChangeNotifierProvider

• Consumer

Fee
Screen

Fee
Provider

Announcement
Screen

Announcement
Provider

Feedback
Screen

Feedback
Provider

Visitor
Screen

Visitor
Provider

Profile
Screen

User
Provider

QR Code
Screen

QR Code
Provider

Fee Model Announcement
Model

Feedback
Model

Visitor
Model

User
Model

Payment
History Model

Model

Screen

Provider

Figure 6.40 Overview of Provider State Management

 The figure above shown the overview design of Provider State Management of

this mobile application. Six providers are created to handle the states of multiple

194

screens. The providers here will act like the controller in the Model View Controller

software pattern which implemented in the Ruby on Rails API server of this project.

Provider will handle the request from screens, communicate with the API server and

manipulate the model data with state.

Fee related state management will be used to described the implementation of

Provider State Management in this project. ChangeNotifier is a simple class included

in the Flutter SDK which notifies its listeners about changes. In provider, the

application state can encapsulate by ChangeNotifier. The ChangeNotifier’s child

provider will act as the centralized state for the screens. For example, the figure below

shows the FeeProvider. The state of fee-related screens will be access and modify by

using the FeeProvider defined.

Figure 6.41 Code segment of Fee Provider

ChangeNotifierProvider is the intermediate widget that provides an instance of

a ChangeNotifier to its descendants, which normally is screens. As the FeeProvider is

defined, the connection between the FeeProvider and screens can be constructed by

ChangeNotifierProvider widget. All the screens wrap in the child of

ChangeNotifierProvider widget will have access to the Provider instance. For example,

figure below, ChangeNotifierProvider of FeeProvider type is defined. In additions,

MultiProvider is used to wrap multiple ChangeNotifierProvider widgets into the

application.

195

Figure 6.42 Code segment of implementation of ChangeNotifierProvider

 As the states of FeeProvider is provided to the widgets in screens, FeeScreen

will be the consumer in this case. FeeScreen will make use of the FeeProvider’s states

and render the user interface.

Figure 6.43 Code segment of FeeScreen

 By using “Provider.of”, provider will be instantiated to the screen local state

and accessible by the widgets.

196

6.3.4 Deployment

The Flutter mobile application is deployed by using the flutter command. The “flutter

build apk” command will generate a release “.apk” file for installation.

197

CHAPTER 7

7 SYSTEM TESTING

7.1 Introduction

This chapter will discuss about the various type of testing involved in the project, such

as unit testing and integration testing. Automated testing is applied in this project to

validate the requirement specification are achieved. Several Ruby libraries was

integrated to perform the testing of this project. Firstly, a testing library, RSpec was

used to develop the unit testing and integration testing. Besides, a data mock-up library,

Faker was used to generate sample data in the testing. Unmoderated remote usability

testing was also conducted with 10 participants through online to gain user insight on

the mobile application developed.

7.2 Unit Testing

Unit testing will be focused on the Ruby on Rails API server as it contains most of the

application logic and request handling from clients. In this Model View Controller

software pattern, the unit testing will be performed as controller-basis. The whole unit

testing will be separate into two major modules, which is “Admin” and “Mobile”. The

“Admin” parts will be responsible to test the controller of “Admin” module while

“Mobile” parts will be responsible to test the controller of “Mobile” module.

7.2.1 Admin Module

In “Admin” module, there are total 51 test cases of unit testing involved.

Table 7.1 Test Cases for Admin Module

Auth Controller
TC ID Test case description Parameters Expected output Result
1 Authentication for

persisting the login
state

• Access token It should respond with 200
success status code and the
user data.

Pass

2 Login process • Email
• Password

It should respond with 200
success status code and the
user data.

Pass

198

3 Initial recover
password process

• Email

It should respond with 200
success status code and send
recovery email.

Pass

4 Verify recovery token • Recovery token

It should respond with 200
success status code and the
user email.

Pass

5 Reset the forgotten
password

• Email
• Password
• Recovery token

It should respond with 200
success status code.

Pass

Residence Controller
TC ID Test case description Parameters Expected output Result
6 Retrieve the residence

details
• Residence ID It should respond with 200

success status code and the
residence data.

Pass

7 Update the residence
details

• Name
• Description
• Structure
• Numbering

name 1
• Numbering

name 2
• Numbering

name 3
• Numbering

name format
• Address postfix

It should respond with 200
success status code and the
residence data.

Pass

Staff Controller
TC ID Test case description Parameters Expected output Result
8 List all the staffs It should respond with 200

success status code and array
of staffs’ data.

Pass

9 Create new staff • Email
• Password
• Role
• First name
• Last name

It should respond with 200
success status code and the
staff data.

Pass

10 Retrieve specific staff • Staff ID

It should respond with 200
success status code and the
staff data.

Pass

199

11 Update specific staff • Staff ID
• Password
• Role
• First name
• Last name
• Phone
• Is enabled

It should respond with 200
success status code and the
staff data.

Pass

12 Delete specific staff • Staff ID It should respond with 200
success status code.

Pass

Resident Controller
TC ID Test case description Parameters Expected output Result
13 List all the residents It should respond with 200

success status code and array
of residents’ data and their
house data.

Pass

14 Create new resident • Email
• Password
• First name
• Last name
• House ID

It should respond with 200
success status code, the
resident data and his/her
house data if applicable.

Pass

15 Retrieve specific
resident

• Resident ID

It should respond with 200
success status code, the
resident data and his/her
house data if applicable.

Pass

16 Update specific
resident

• Resident ID
• House ID

It should respond with 200
success status code, the
resident data and his/her
house data if applicable.

Pass

17 Remove house from
specific resident

• Resident ID
• House ID

It should respond with 200
success status code and
resident data.

Pass

18 Delete specific
resident

• Resident ID It should respond with 200
success status code.

Pass

House Controller
TC ID Test case description Parameters Expected output Result

200

19 List all the houses It should respond with 200
success status code and array
of houses’ data and their
resident data.

Pass

20 Create new house • House
numbering 1

• House
numbering 2

• House
numbering 3

• Resident ID

It should respond with 200
success status code, the
house data and its resident
data if applicable.

Pass

21 Retrieve specific
house

• House ID

It should respond with 200
success status code, the
house data and its resident
data if applicable.

Pass

22 Update specific house • House ID
• Resident ID

It should respond with 200
success status code, the
house data and its resident
data if applicable.

Pass

23 Remove resident from
specific house

• House ID
• Resident ID

It should respond with 200
success status code and
house data.

Pass

24 Delete specific house • House ID It should respond with 200
success status code.

Pass

25 Bulk create houses • Number of
house
numbering 1

• Number of
house
numbering 2

• Number of
house
numbering 3

It should respond with 200
success status code.

Pass

Fee Controller
TC ID Test case description Parameters Expected output Result
26 List all the fees It should respond with 200

success status code and array
of fees data.

Pass

201

27 Create new fee • Title
• Amount
• Due at
• Description
• Charge to

numbering 1
• Charge to

numbering 2
• Charge to

numbering 3

It should respond with 200
success status code and the
fee data.

Pass

28 Retrieve specific fee • Fee ID

It should respond with 200
success status code and the
fee data.

Pass

29 Update specific fee • Fee ID
• Title
• Amount
• Due at
• Description
• Charge to

numbering 1
• Charge to

numbering 2
• Charge to

numbering 3

It should respond with 200
success status code and the
fee data.

Pass

30 Delete specific fee(s) • Fee IDs

It should respond with 200
success status code.

Pass

Payment History Controller
TC ID Test case description Parameters Expected output Result
31 List all the payment

histories
 It should respond with 200

success status code and array
of payment histories data.

Pass

32 Retrieve specific
payment histories

• Payment history
ID

It should respond with 200
success status code and the
payment history data.

Pass

Announcement Controller
TC ID Test case description Parameters Expected output Result
33 List all the

announcements
 It should respond with 200

success status code and array
of announcements data.

Pass

202

34 Create new
announcement

• Title
• Content
• Send to

numbering 1
• Send to

numbering 2
• Send to

numbering 3
• Tags
• Is published

It should respond with 200
success status code and the
announcement data.

Pass

35 Retrieve specific
announcement

• Announcement
ID

It should respond with 200
success status code and the
announcement data.

Pass

36 Update specific
announcement

• Announcement
ID

• Title
• Content
• Tags
• Is published

It should respond with 200
success status code and the
announcement data.

Pass

37 Delete specific
announcement(s)

• Announcement
IDs

It should respond with 200
success status code.

Pass

Feedbacks Controller
TC ID Test case description Parameters Expected output Result
38 List all the feedbacks It should respond with 200

success status code and array
of feedbacks data.

Pass

39 Create new feedback • Title
• Type
• Description

It should respond with 200
success status code and the
feedback data.

Pass

40 Retrieve specific
feedback

• Feedback ID

It should respond with 200
success status code and the
feedback data.

Pass

41 Update specific
feedback progress

• Feedback ID
• Title
• Description

It should respond with 200
success status code and the
feedback data.

Pass

42 Complete specific
feedback

• Feedback ID

It should respond with 200
success status code and the
completed feedback data.

Pass

203

Visitor Controller
TC ID Test case description Parameters Expected output Result
43 List all the visitors It should respond with 200

success status code and array
of visitors’ data.

Pass

44 Create new visitor • Names list
• Representative

phone
• Representative

car plate
• Visitation

purpose
• Resident ID

It should respond with 200
success status code and the
visitor data.

Pass

45 Retrieve specific
visitor

• Visitor ID

It should respond with 200
success status code and the
visitor data.

Pass

46 Approve or reject
specific visitor

• Visitor ID
• Status
• Rejected reason

It should respond with 200
success status code and the
visitor data.

Pass

Analytic Controller
TC ID Test case description Parameters Expected output Result
47 Retrieve specific fee

payment analytics
• Fee ID

It should respond with 200
success status code and
analytics result of fee
payment, including the
percentage of paid resident,
percentage of unpaid
resident and the resident
involved.

Pass

48 Retrieve overall
transaction payment
analytics

• Duration

It should respond with 200
success status code and
overall analytics result of
transaction payment
including total amount of
transactions payment
received in certain period
and the daily received
amount in certain period.

Pass

49 Retrieve overall
announcement
analytics

• Duration

It should respond with 200
success status code and
overall analytics result of

Pass

204

announcement, including
number of residents read
announcements, number of
residents haven’t read
announcement and the
number of residents read
announcement each day in
certain period.

50 Retrieve overall
feedback analytics

• Duration

It should respond with 200
success status code and
overall analytics result of
feedback, including the
number of incomplete
feedback case, number of
completed feedback case and
number of completed
feedback case each day in
certain period.

Pass

51 Retrieve overall visitor
analytics

• Duration

It should respond with 200
success status code and
overall analytics result of
visitor, including the number
of accepted visitors, number
of reject visitor, number of
accepted visitors each day in
certain period and total
number of visitors inside the
residential area currently.

Pass

205

 All the admin module’s test cases will be performed using RSpec library. One

example, which is “Auth process” test case will be described in below about the

implementation of the automated unit test.

Figure 7.1 Code segment to generate mock staff account

 The mock data will be generated using Faker library. For examples, the figure

7.1 shown the staff’s email and password was generated using the Faker’s Internet

module.

Figure 7.2 Code segment to assert the response

 After the mock data generated, the Auth Controller’s function will be called

using the input data and the response will be assert and validate the result returned. If

the status code and data of test result returned was match with the expected output, the

“Auth process” unit test will be pass.

206

Figure 7.3 Automated unit tests performed

 Total of 51 unit tests in the admin module will be performed using the

command in the figure above. As the figure shown, the 51 unit tests used about 30

second to finish.

7.2.2 Mobile Module

In “Mobile” module, there are total 19 test cases of unit testing involved.

Table 7.2 Test Cases for Admin Module

Auth Controller
TC ID Test case description Parameters Expected output Result
1 Authentication for

persisting the login
state

• Access token It should respond with 200
success status code and the
user data.

Pass

2 Login process • Email
• Password

It should respond with 200
success status code and the
user data.

Pass

3 Logout process It should respond with 200
success status code and
delete the registration token.

Pass

4 Initial recover
password process

• Email

It should respond with 200
success status code and send
recovery email.

Pass

Resident Controller
TC ID Test case description Parameters Expected output Result
5 Update the mobile

user profile
• First name
• Last name
• Phone
• Car plate

It should respond with 200
success status code and the
user data.

Pass

207

6 Change password • Password It should respond with 200
success status code and the
user data.

Pass

Fee Controller
TC ID Test case description Parameters Expected output Result
7 List all the fees

available, transaction
history of the specific
resident

 It should respond with 200
success status code, array of
fees available and array of
transaction histories.

Pass

8 Make payment for the
fees

• Fee IDs
• Amount
• Card details
• Billing details

It should respond with 200
success status code.

Pass

Announcement Controller
TC ID Test case description Parameters Expected output Result
9 List all the

announcements
available for the
specific residents

 It should respond with 200
success status code and array
of announcements data.

Pass

10 Update the read status
of the announcement,
bookmarked or
unbookmarked the
announcement

• Announcement
ID

• Is read
• Is bookmarked

It should respond with 200
success status code and the
announcement data.

Pass

Feedback Controller
TC ID Test case description Parameters Expected output Result
11 List all the feedbacks It should respond with 200

success status code and array
of feedbacks data.

Pass

12 Create new feedback • Title
• Description
• Type
• Images

It should respond with 200
success status code and the
feedback data.

Pass

13 Update feedback • Feedback ID
• Title
• Description
• Images

It should respond with 200
success status code and the
feedback data.

Pass

208

14 Complete feedback,
give rating or review

• Feedback ID
• Rating
• Review

It should respond with 200
success status code and the
feedback data.

Pass

Visitor Controller
TC ID Test case description Parameters Expected output Result
15 List all the visitors It should respond with 200

success status code and array
of visitors’ data.

Pass

16 Create new visitor • Names list
• Representative

phone
• Representative

car plate
• Visitation

purpose

It should respond with 200
success status code and the
visitor data.

Pass

17 Retrieve the details
information of specific
visitor

• Visitor access
code

It should respond with 200
success status code and array
of visitor data.

Pass

18 Record specific visitor
enter time

• Visitor ID

It should respond with 200
success status code and the
visitor data.

Pass

19 Record specific visitor
exit time

• Visitor ID

It should respond with 200
success status code and array
of visitors’ data.

Pass

209

All the mobile module’s test cases will be performed using RSpec library. One

example, which is “List all fees available” will be described in below about the

implementation of the automated unit test.

Figure 7.4 Code segment to generate mock fee

 The mock data will be generated using Faker library. For examples, the figure

7.4 shown the fee’s title, description, amount and due date was generated using the

Faker’s Commerce module, Faker’s Number module and Faker’s Date module.

Figure 7.5 Code segment to assert the response

After the mock data generated, the Fee Controller’s function will be called

using the input data and the response will be assert and validate the result returned. If

210

the status code and data of test result returned was match with the expected output, the

“List all fees available” unit test will be pass.

Figure 7.6 Automated unit tests performed

 Total of 19 unit tests in the mobile module will be performed using the

command in the figure above. As the figure shown, the 19 unit tests used about 20

second to finish.

7.3 Integration Testing

As like unit testing, the integration testing in this project was implemented using the

RSpec library and Faker library also. There are total 7 integration test suites developed.

Each integration test suite will contain multiple unit test case stated previously and

serve as the purpose to ensure that the integration points between components unit are

exercised and validated.

Table 7.3 Test Suites for Integration Testing

Staff test suite

Test suite ID: 1

Step
no.

Step description Parameters Expected output Result

1 Admin create new
staff

• Email
• Password
• Role

It should respond with 200
success status code and staff
account data.

Pass

2 Staff use account
created to login

• Email
• Password

It should respond with 200
success status code and the
staff account data.

Pass

211

3 Staff use token to
persist login state

• Token It should respond with 200
success status code and the
staff account data.

Pass

House test suite

Test suite ID: 2

Step
no.

Step description Parameters Expected output Result

1 Admin create new
house

• House
numbering 1

• House
numbering 2

• House
numbering 3

It should respond with 200
success status code and
house data.

Pass

2 Admin create new
resident account

• First name
• Last name
• Email
• Password

It should respond with 200
success status code and the
resident account data.

Pass

3 Admin attach the
house to the resident

• Resident ID
• House ID

It should respond with 200
success status code, the
resident account data and
house data.

Pass

Fee test suite

Test suite ID: 3

Step
no.

Step description Parameters Expected output Result

1 Admin create new fee • Title
• Amount
• Due date

It should respond with 200
success status code and fee
data.

Pass

2 Resident pay fee • Fee IDs
• Amount
• Card details
• Billing details

It should respond with 200
success status code.

Pass

Announcement test suite

Test suite ID: 4

Step
no.

Step description Parameters Expected output Result

212

1 Admin create new
announcement

• Title
• Content

It should respond with 200
success status code and
announcement data.

Pass

2 Resident read
announcement

• Announcement
ID

It should respond with 200
success status code and
announcement data.

Pass

3 Resident bookmark
announcement

• Announcement
ID

It should respond with 200
success status code and
announcement data.

Pass

Feedback test suite

Test suite ID: 5

Step
no.

Step description Parameters Expected output Result

1 Resident create new
feedback

• Title
• Description
• Type

It should respond with 200
success status code and
feedback data.

Pass

2 Admin update
feedback progress

• Feedback ID
• Title
• Description

It should respond with 200
success status code and
feedback data.

Pass

3 Resident update
feedback progress

• Feedback ID
• Title
• Description

It should respond with 200
success status code and
feedback data.

Pass

4 Resident complete
feedback

• Feedback ID
• Rating
• Review

It should respond with 200
success status code and
feedback data.

Pass

Visitor test suite

Test suite ID: 6

Step
no.

Step description Parameters Expected output Result

1 Resident create new
visitor

• Names list
• Representative

phone
• Representative

car plate
• Visitation

purpose

It should respond with 200
success status code and
visitor data.

Pass

213

2 Admin accept visitor • Visitor ID

It should respond with 200
success status code, visitor
data and access code
generated.

Pass

3 Guard verify the
access code generated

• Access code

It should respond with 200
success status code and
visitor data.

Pass

4 Visitor enter • Visitor ID

It should respond with 200
success status code and
visitor data.

Pass

5 Visitor exit • Visitor ID

It should respond with 200
success status code and
visitor data.

Pass

Profile test suite

Test suite ID: 7

Step
no.

Step description Parameters Expected output Result

1 Admin create new
resident account

• First name
• Last name
• Email
• Password
• House ID

It should respond with 200
success status code, resident
data and house data.

Pass

2 Resident login • Email
• Password

It should respond with 200
success status code and
resident data.

Pass

3 Resident update
profile

• First name
• Last name
• Phone
• Car plate

It should respond with 200
success status code and
resident data.

Pass

214

 Total of 7 integrations test suites will be performed. One integration test suite

will be used to described the implementation of this integration testing using RSpec

library and Faker library. The visitor test suites will be described in the section below.

Figure 7.7 Mock data of visitor

 The figure above shown the code segment to generate the visitor data used to

pass in to the controller function as parameters. As different from unit testing, in this

integration testing, multiple function will be called and test their integrity.

Figure 7.8 Code segment of Visitor test suite

215

Figure 7.9 Integration testing performed

Total of 7 integration tests will be performed using the command in the figure

above. As the figure shown, the 7 integration tests used about 1 minutes 28 seconds to

finish.

7.4 Usability Testing

In this project, unmoderated remote usability testing was conducted to gain better

insight on the interaction between user and the system. Unmoderated remote usability

testing, is a type of usability testing that participated tester complete a set of given

tasks without the supervision of a moderator. It is suitable with the need of this project

as it requires low cost, fast and accurate result. The unmoderated remote usability

testing was conducted through online using web meeting tools like, Microsoft Teams

and Skype based on participants’ preference. The participant is instructed to perform

a list of activities like the table below.

Table 7.4 Usability Testing Participant Checklist

Usability test
No Task Description Time used

(second)
Comments

1 Login Use the account details from
email and login into mobile
application

2 View fee Select any fee and view its
details

3 Pay fee Select any fee(s) to pay through
the card information given

216

4 Bookmark
announcement

Select any announcements and
bookmark it

5 Submit a feedback Submit a new feedback with
any title, any description and 1
image

6 Update the
feedback

Update the newly created
feedback progress with any
title, any description and 0
image

7 Complete and
review the
feedback

Complete and rate the specific
feedback

8 Create new visitor Create a new visitor application
with 2 friends’ names

9 Update profile Update your profile by editing
your personal information like
name or phone number

10 Logout Logout from the mobile
application

 After the participants complete the task stated in the checklist, a post-study

usability questionnaire adopted from “Usability Test Plan Prepared for : Better World

Books” by Dubois and Purcell was conducted to gain more insight about the testing.

Table 7.5 Post-study Usability Questionnaire

No Questions

Strongly

disagree

Strongly

agree

1 2 3 4 5

1 The system is intuitive and simple to use.

2 I was able to complete the tasks in the checklist

quickly using the system.

3 I felt comfortable using the system.

217

4 The system gave error message that clearly told

me how to fix problems.

5 I was able to find the information I needed

easily.

6 The user interface of this system is pleasant.

7 I felt very confident using the system.

8 I think that the system’s functions were well

integrated and organized.

9 The system is consistent in term of logic and

user interface.

10 Overall, I am satisfied with the system.

 In this project, there were 10 participants involved in this usability testing. The

overall result was gathered and analysed. The 2 tables below showed the average time

usage for participant to complete each task and the average score of the post-study

usability questionnaire.

Table 7.6 Average Time Usage of Task

Usability test result
No Task Description Average

time usage
1 Login Use the account details from email and login

into mobile application
15.70s

2 View fee Select any fee and view its details

2.92s

3 Pay fee Select any fee(s) to pay through the card
information given

34.89s

4 Bookmark
announcement

Select any announcements and bookmark it

5.43s

5 Submit a feedback Submit a new feedback with any title, any
description and 1 image

16.70s

6 Update the
feedback

Update the newly created feedback progress
with any title, any description and 0 image

9.95s

218

7 Complete and
review the
feedback

Complete and rate the specific feedback 7.63s

8 Create new visitor Create a new visitor application with 2
friends’ names

17.77s

9 Update profile Update your profile by editing your personal
information like name or phone number

10.36s

10 Logout Logout from the mobile application

3.90s

Table 7.7 Post-study usability questionnaire average score

No Questions Average score

1 The system is intuitive and simple to use. 4.1

2 I was able to complete the tasks in the checklist quickly using

the system.

4.0

3 I felt comfortable using the system. 4.3

4 The system gave error message that clearly told me how to fix

problems.

3.8

5 I was able to find the information I needed easily. 3.9

6 The user interface of this system is pleasant. 4.5

7 I felt very confident using the system. 4.4

8 I think that the system’s functions were well integrated and

organized.

4.0

9 The system is consistent in term of logic and user interface. 4.2

10 Overall, I am satisfied with the system. 4.5

 Total average score 4.17

 Based on the result of the usability testing, some objective achievement can be

proved here such as the time required of fee payment is definitely shorter than the

traditional method as the average time of pay fee activities is 34.89 second. The post-

study usability questionnaire had total average score of 4.17. This reflect that the users

were generally satisfied with the system as it is easy to use, well organized user

interface and integrated functionalities.

219

CHAPTER 8

8 CONCLUSION AND RECOMMENDATION

8.1 Conclusion

This project, “A Mobile App for Community Association” had been designed and

developed according to the project plan to tackle the problem stated in this project.

Throughout the project execution, Kanban methodology was practiced and used to

schedule the work task. As a result, a system including a Ruby on Rails API server, a

Vue.js web application and a Flutter mobile application is developed and deployed. In

additions, validation and testing are performed to ensure the developed system are met

with requirement specification and achieved the objectives stated:

1. To identity the current problem of the existing community association

management system.

2. To simplify the existing community association management operations by

automating repeated tasks.

3. To develop a system that can used to manage the community association that

build community loyalty and enhance the residential image.

The developed system will contribute to the community association in several

aspects. Firstly, community management can save time and cost compared to the

traditional approach which involving more handiwork. Besides, residents have more

flexible payment method to pay their residential fees securely through online. Through

the developed system, the announcement effectiveness had been increasing and didn’t

require any hard-copy paper printing. Furthermore, using the mobile application,

resident can have an official channel to submit their feedback and track the status.

Leakage of personal information can be prevented as the personal information of

visitors and residents was collected through the system and without exposure to public.

 However, the developed system still has some limitations. The system might

have a learning curve for aged community management staff. They may need more

time to learn and utilize the system. Others than that, residential management need

220

internet connection to use the system as the admin panel is a cloud-based web

application. Security personnel need to equip with mobile device with camera to scan

the QR code present by the visitor.

8.2 Future Implementation

There are some future enhancements can be implemented to this project. Firstly, the

system produced can be fine-tuned and further developed into a Software as a Service

product. The system architecture and database design of this project are fully support

with this enhancement. Despite the current system is only using by 1 residential area,

after the system is turned into a Software as a Service product, it can be used by

multiple residential area parallelly.

Secondly, the current resident registration flow in this system can be improved

in the future. A registration screen can be developed in the mobile application, and the

resident account registration can be reviewed by the community management.

Lastly, the API server and web application deployed are currently using HTTP

protocol. The both applications can integrate with an SSL certificate in the future and

upgrade to HTTPS protocol to provide more secure data transmission.

REFERENCES

Ahmad, M.O., Markkula, J. and Oivo, M., 2013. Kanban in software development: A
systematic literature review. In: Proceedings - 39th Euromicro Conference Series on
Software Engineering and Advanced Applications, SEAA 2013. IEEE Computer
Society.pp.9–16.

Alonso, J., 2006. Security and Property Management System. [online] Available at:
<https://patents.google.com/patent/US20060064305A1/en>.

Alqudah, M. and Razali, R., 2018. A comparison of scrum and Kanban for identifying
their selection factors. In: Proceedings of the 2017 6th International Conference on
Electrical Engineering and Informatics: Sustainable Society Through Digital
Innovation, ICEEI 2017. [online] Malaysia.pp.1–6. Available at:
<https://ieeexplore.ieee.org/document/8312434> [Accessed 28 Jul. 2019].

Amazon Inc., 2018. AWS Elastic Beanstalk – Deploy Web Applications. [online]
Available at: <https://aws.amazon.com/elasticbeanstalk/> [Accessed 19 Mar. 2020].

Anon 2020. Comparison with Other Frameworks — Vue.js. [online] Available at:
<https://vuejs.org/v2/guide/comparison.html> [Accessed 19 Mar. 2020].

Benson, J., 2010. Personal Kanban : Optimizing the Individual Coder. In: Øredev
Conference. [online] Malmo, Sweden. Available at: <https://vimeo.com/16917928>.

Dubois, A. and Purcell, K., n.d. Usability Test Plan Prepared for : Better World Books.
[online] Available at: <www.betterworldbooks.com> [Accessed 22 Mar. 2020].

Dutta, P. and Dutta, P., 2019. Comparative Study of Cloud Services Offered by
Amazon, Microsoft and Google. International Journal of Trend in Scientific Research
and Development, Volume-3(Issue-3), pp.981–985.

Fries, D., 2019. A brief history of agile project management with Kanban. [online]
pp.1–4. Available at: <https://www.mindjet.com/blog/2019/03/brief-history-agile-
project-management-kanban/>.

Google Inc., 2020. Products & Services | Google Cloud. [online] Available at:
<https://cloud.google.com/products> [Accessed 19 Mar. 2020].

Groenendijk, K., Guild, E. and Barzilay, R., 2000. The Legal Status of Third Country
Nationals who are Long-Term Residents in a Member State of the European Union.
Community Relations series, [online] (April), pp.1–116. Available at:
<http://cmr.jur.ru.nl/cmr/docs/status.pdf>.

Huang, O., 2019. Amazon AWS, Google Cloud, Alibaba Cloud and now Microsoft

Azure - Why does Salesforce want to run its software on all of them? - Olive Huang.
[online] Gartner Inc. Available at: <https://blogs.gartner.com/olive-huang/amazon-
aws-google-cloud-alibaba-cloud-now-microsoft-azure-salesforce-want-run-software/>
[Accessed 19 Mar. 2020].

Jin, S.-S., Wu, W.-J. and Huang, X.-M., 2017. Improving Property Service for the City
Residential Community. ITM Web of Conferences, [online] 12, p.03049. Available at:
<https://www.itm-
conferences.org/articles/itmconf/pdf/2017/04/itmconf_ita2017_03049.pdf>.

Laaziri, M., Benmoussa, K., Khoulji, S. and Kerkeb, M.L., 2019. A Comparative study
of PHP frameworks performance. In: Procedia Manufacturing. Elsevier B.V.pp.864–
871.

Lee, Y.T., Hsiao, W.H., Huang, C.M. and Chou, S.C.T., 2016. An integrated cloud-
based smart home management system with community hierarchy. IEEE Transactions
on Consumer Electronics. [online] Available at:
<https://ieeexplore.ieee.org/abstract/document/7448556> [Accessed 28 Jul. 2019].

Li, Y., Cao, L., Qian, Y., Shi, W. and Liu, A., 2010. A property management system
using WebGIS. In: ICCET 2010 - 2010 International Conference on Computer
Engineering and Technology, Proceedings. [online] Available at:
<https://ieeexplore.ieee.org/document/5485699> [Accessed 29 Jul. 2019].

Madsen, J.J., 2007. Technology ’ s Impact on the Property Management Profession
(al). Buildings Magazine. [online] Available at: <https://www.buildings.com/article-
details/articleid/4836/title/technology-s-impact-on-the-property-management-
profession-al->.

Muslihat, D., 2018. 7 Popular Project Management Methodologies And What They’re
Best Suited For. Zenkit, [online] pp.1–25. Available at: <https://zenkit.com/en/blog/7-
popular-project-management-methodologies-and-what-theyre-best-suited-for/>.

Nan, S., Zhou, M. and Li, G., 2018. Optimal residential community demand response
scheduling in smart grid. Applied Energy, [online] 210, pp.1280–1289. Available at:
<https://www.sciencedirect.com/science/article/pii/S030626191730819X> [Accessed
15 Aug. 2019].

Poortinga, W., Calve, T., Jones, N., Lannon, S., Rees, T., Rodgers, S.E., Lyons, R.A.
and Johnson, R., 2017. Neighborhood Quality and Attachment: Validation of the
Revised Residential Environment Assessment Tool. Environment and Behavior,
[online] 49(3), pp.255–282. Available at:
<https://journals.sagepub.com/doi/full/10.1177/0013916516634403> [Accessed 28
Jul. 2019].

Powell-Morse, A., 2017. Iterative Model: What Is It And When Should You Use It?
Airbrake, [online] pp.3–5. Available at: <https://airbrake.io/blog/sdlc/iterative-

model>.

R.Raval, R. and M. Rathod, H., 2013. Comparative Study of Various Process Model
in Software Development. International Journal of Computer Applications, [online]
82(18), pp.16–19. Available at:
<https://www.researchgate.net/publication/260632268_Comparative_Study_of_Vari
ous_Process_Model_in_Software_Development> [Accessed 15 Jul. 2019].

Rahman, M.S., Hussain, B., Uddin, A.N.M.M. and Islam, N., 2015. Exploring
residents’ satisfaction of facilities provided by private apartment companies. Asia
Pacific Management Review.

Rose, J.D. and Survesh, V.R.L., 2017. A case analysis of Node.js I/O performance
under Linux environment in various storage media. In: 2017 International Conference
on Advances in Computing, Communications and Informatics, ICACCI 2017. Institute
of Electrical and Electronics Engineers Inc.pp.1967–1973.

Rouse, M., 2005. Prototyping Model. [online] Available at:
<https://searchcio.techtarget.com/definition/Prototyping-Model> [Accessed 15 Jul.
2019].

Schwaber, K. and Beedle, M., 2001. Agile Software Development with Scrum. Upper
Saddle River, NJ, United States: Pearson Education.

Sharma, Y. and Gupta, S., 2020. A Study of Flutter and React Native for Mobile App
Development. In: Our Heritage. 5th International Conference On ‘Innovations in IT
and Management’. [online] pp.691–698. Available at:
<https://archives.ourheritagejournal.com/index.php/oh/article/view/2568> [Accessed
19 Mar. 2020].

Stackify, 2017. What is Agile Methodology? How It Works, Best Practices, Tools.
[online] pp.1–14. Available at: <https://stackify.com/agile-methodology/>.

Tachibana, Y., Kon, J. and Yamaguchi, S., 2018. A study on the performance of web
applications based on RoR in a highly consolidated server with container-based
virtualization. In: Proceedings - 2017 5th International Symposium on Computing and
Networking, CANDAR 2017. Institute of Electrical and Electronics Engineers
Inc.pp.580–583.

Thakur, R.N. and Pandey, U.S., 2019. The Role of Model-View Controller in Object
Oriented Software Development. Nepal Journal of Multidisciplinary Research, 2(2),
pp.1–6.

UKEssays, 2018. Reusability of Object Oriented Interfaces in UML Diagrams. [online]
Available at: <https://www.ukessays.com/essays/it-research/measure-the-reusability-
of-object-oriented-interfaces-in-uml-diagrams.php> [Accessed 22 Feb. 2020].

Wiegand, S., 2018. Personal Kanban Part 1 — Why Todo-Lists don‘t work. [online]
Hackernoon. Available at: <https://hackernoon.com/personal-kanban-part-1-why-
todo-lists-don-t-work-3b5c6dc78708> [Accessed 15 Jun. 2019].

Wu, W., 2018. React Native vs Flutter, cross-platform mobile application frameworks.
[online] (March), pp.1–7. Available at:
<https://www.theseus.fi/bitstream/handle/10024/146232/thesis.pdf?sequence=1>.

Yan, Y., 2018. Research on the Innovation of Residential Property Management Under
Internet Thinking. In: 2018 International Conference on Economy, Management and
Entrepreneurship (ICOEME 2018). [online] Available at: <https://www.atlantis-
press.com/proceedings/icoeme-18/25905637> [Accessed 29 Jul. 2019].

APPENDICES

APPENDIX A: Interview Question

1. What do you live?

Kajang

2. What type of residence you live?

Apartment

3. Do you encounter any problem in your residential area, such as fee payment,

facilities issue etc.?

Ya, I always need to personally go to guard house to take the receipt.

4. Can you explain more details about it?

Sure, after I transfer the money through e-banking to the management account, I

have to find a time to go to guard house for the receipt. But the problem is the

office only open from 10.00 a.m. to 5.00 p.m., it’s difficult to find a timeslot as I

always have class at weekdays and overlapped with the office opening hours.

APPENDIX B: Visitor Registration Item at Cypress Condominium

APPENDIX C: Questionnaire Form

APPENDIX D: Supervisor and moderator comments on project plan

Project title: A Mobile App for Community Association

Student Name GOH CHONG XIAN

Supervisor Ms Chean Swee Ling

Moderator Ts Dr Madhavan Nair

Key Assessment for

Project Proposal

Supervisor

Comments/Remarks
Moderator Comments/Remarks

Project Description

- Is the problem or need
to be addressed
clearly presented?

- Is the proposed
approach or solution
clearly presented and
justified?

None.

The term community association

management is too vague. The term

residential management or Joint

Management Committee (JMC) are the

commonly used terms. Reference

should be included for presented facts.

Project Scope and

Objectives

- Is the scope of the
project clearly
defined?

- Are the objectives of
the project clearly
specified?

- Are the project scope
and objectives
appropriate for a final
year project?

None.

The objectives should be clearly

written and measurable at the end of

the project. Some rephrasing is

required. Suggest to number each

objective.

Literature Review /

Fact Finding for

Benchmarking /

Verification of Project

- Are sources for
literature review / fact
finding appropriate?

- Is information from
literature review / fact
finding relevant and
adequate?

Suggest study cost for

hosting service.

More review is needed for similar

applications available in the market.

The features available should also be

presented to make comparisons.

- Is information from
literature review / fact
finding clearly
presented and
discussed?

Research/Developmen

t Methodology and

Development Tools

- Is the methodology
for the project clearly
described and
discussed?

- Are the required
development tools
clearly described and
discussed?

- Are the stated
methodology and
development tools
appropriate?

None.

Good

Project Plan

- Are the phases and
tasks of the project
properly defined and
planned?

- Are the phases and
tasks consistent with
the methodology of
the project?

None.

Good

Initial Deliverables

- Are deliverables (e.g.
use case diagrams and
descriptions) of initial
phases of the project
plan included in the
report?

Need to add role of

security guard in use

case diagram.

Need to capture all/more

possible cases, such as

the visitor reaches guard

house without barcode.

Should consider the security personal

as one of the actors in the USE CASE

diagram.

Report Structure and

References

- Is the report organised
in a logical structure?

- Are references listed

None.

in accordance to
Harvard format?

Language and Clarity

of Writing

- Are the sentences
concise and
understandable?

- Are there spelling and
grammar issues?

None.

APPENDIX E: Kanban board (Trello) progress

	DECLARATION
	APPROVAL FOR SUBMISSION
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS / ABBREVIATIONS
	LIST OF APPENDICES
	CHAPTER 1
	1 INTRODUCTION
	1.1 Introduction
	1.2 Background of the Project
	1.3 Problem Statement
	1.4 Project Objectives
	1.5 Project Solution
	1.6 Project Approach
	1.7 Scope of the Project

	CHAPTER 2
	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Review on Similar Community Association System
	2.2.1 Cloud-based System
	2.2.2 MyTaman Community Application
	2.2.3 Homeserva Smart Community System

	2.3 Demands of System and Solutions
	2.4 Review on Project Methodology
	2.4.1 Waterfall
	2.4.2 Scrum in Agile
	2.4.3 Kanban in Agile
	2.4.4 Prototyping
	2.4.5 Extreme Programming
	2.4.6 Comparison of Methodology

	2.5 Review on Backend Server Framework
	2.5.1 Ruby on Rails
	2.5.2 Laravel
	2.5.3 Node.js
	2.5.4 Comparison of Backend Framework

	2.6 Review on Front-end Web Application Framework
	2.6.1 React
	2.6.2 Vue.js
	2.6.3 Comparison of Front-end Framework

	2.7 Review on Cross-platform Mobile Application Framework
	2.7.1 Flutter
	2.7.2 React Native
	2.7.3 Comparison of Hybrid Mobile App Framework

	2.8 Review on Cloud Computing Services
	2.8.1 Amazon Web Services
	2.8.2 Google Cloud Platform
	2.8.3 Microsoft Azure
	2.8.4 Comparison of Cloud Computing Services

	CHAPTER 3
	3 METHODOLOGY AND WORK PLAN
	3.1 Introduction
	3.2 Development Methodology
	3.3 Proposed Workplan
	3.4 Technology and Development Tools Involved
	3.4.1 Ruby on Rails
	3.4.2 Vue.js
	3.4.3 Flutter
	3.4.4 Amazon Web Services
	3.4.5 Heroku
	3.4.6 Firebase Cloud Messaging
	3.4.7 RQRCode
	3.4.8 Visual Studio Code
	3.4.9 Git
	3.4.10 Trello
	3.4.11 Axure

	CHAPTER 4
	4 PROJECT SPECIFICATION
	4.1 Introduction
	4.2 Fact-finding
	4.2.1 Interview
	4.2.2 Observation
	4.2.3 Questionnaire

	4.3 Requirement Specification
	4.3.1 Mobile Application for Community Resident
	4.3.1.1 Fee/Bill Payment
	4.3.1.2 Announcement
	4.3.1.3 Feedback/Complaint
	4.3.1.4 Visitor
	4.3.1.5 Residential Information
	4.3.1.6 Account

	4.3.2 Web-based Application for Management User
	4.3.2.1 Fee/Bill Payment
	4.3.2.2 Announcement
	4.3.2.3 Feedback/Complaint
	4.3.2.4 Visitor
	4.3.2.5 Residential Information
	4.3.2.6 Account

	4.3.3 Mobile Application for Security Personnel
	4.3.3.1 Visitor
	4.3.3.2 Account

	4.4 Use Case Modelling
	4.4.1 Use Case Diagram
	4.4.1.1 Fee/Bill Related
	4.4.1.2 Announcement Related
	4.4.1.3 Feedback Related
	4.4.1.4 Visitor Related
	4.4.1.5 Resident Information Related
	4.4.1.6 Account Related

	4.4.2 Use Case Description
	4.4.2.1 Mobile Application for Community Resident
	4.4.2.2 Web-based application for Management Users
	4.4.2.3 Mobile Application for Security Personnel

	CHAPTER 5
	5 SYSTEM DESIGN
	5.1 Introduction
	5.2 System Architecture
	5.3 Software Design Pattern
	5.4 Database Design
	5.4.1 Physical Entity Relationship Diagram
	5.4.2 Logical Entity Relationship Diagram
	5.4.3 Data Dictionary
	5.4.3.1 Residences
	5.4.3.2 Houses
	5.4.3.3 Users
	5.4.3.4 Fees
	5.4.3.5 House Fee Pivot
	5.4.3.6 Transaction
	5.4.3.7 Announcements
	5.4.3.8 House Announcement Pivot
	5.4.3.9 Feedbacks
	5.4.3.10 Feedback Items
	5.4.3.11 Visitors

	5.5 User Interface Design
	5.5.1 Web Application for Community Management
	5.5.2 Mobile Application for Community Resident
	5.5.3 Mobile Application for Security Personnel

	CHAPTER 6
	6 SYSTEM IMPLEMENTATION
	6.1 Backend Server
	6.1.1 Overview of Backend Server
	6.1.2 Controller Layer
	6.1.3 Model Layer
	6.1.4 Special Integration
	6.1.4.1 Stripe Payment
	6.1.4.2 Firebase Cloud Messaging
	6.1.4.3 Sendinblue SMTP Email
	6.1.4.4 Amazon Simple Storage Service
	6.1.4.5 RQRCode QR Code Generator

	6.1.5 Available Endpoints
	6.1.5.1 Admin Endpoints
	6.1.5.2 Mobile Endpoints

	6.1.6 Deployment

	6.2 Web Application for Community Management
	6.2.1 Overview of Web Application
	6.2.2 Pages Hierarchy
	6.2.3 API Client
	6.2.4 Deployment

	6.3 Mobile Application for Community Residents and Security Personnel
	6.3.1 Overview of Mobile Application
	6.3.2 Screen Hierarchy
	6.3.3 State Management
	6.3.4 Deployment

	CHAPTER 7
	7 SYSTEM TESTING
	7.1 Introduction
	7.2 Unit Testing
	7.2.1 Admin Module
	7.2.2 Mobile Module

	7.3 Integration Testing
	7.4 Usability Testing

	CHAPTER 8
	8 CONCLUSION AND RECOMMENDATION
	8.1 Conclusion
	8.2 Future Implementation

	REFERENCES
	APPENDICES

