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ABSTRACT 

 

Nowadays, most labelling tools are able to label 2D images well. However, the 

same cannot be said for 3D point clouds. Thus, the 3D point cloud labelling 

tools are pretty expensive in the marketplace. This report reviews different 

types of 3D point cloud labelling tools, including automatic and manual 3D 

point cloud labelling tools. This project mainly focuses on manual open-source 

user interfaces for 3D point cloud labelling. A comparison between the open-

source user interfaces was conducted. Objective evaluation of usability and 

labelling speed between the user interfaces was carried out. The user interfaces 

used for comparison are POINTS, 3D BAT, LATTE. Three of the user 

interfaces are screen-based and web-based tools, and the comparison is made 

using the same point cloud scene, taken from KITTI datasets. The usability of 

the user interfaces was evaluated in terms of instruction and shortcuts, 

projective views, editable in projective views, fast annotation feature, timer, 

and main view focus mode. The labelling speed of the user interfaces is 

evaluated in terms of time and errors. After the comparison, POINTS is the 

user interface with many useful features, which aids the users to label easily 

and faster. The labelling time of POINTS is the shortest among three user 

interfaces. POINTS can perform well as or better than the 3D point cloud 

labelling tool in the marketplace.   
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

In this new era of technology, the development of the automation sector is 

growing rapidly due to the revolution of Industry 4.0. Some automation and 

robotic systems require 3D data to complete the jobs effectively because 2D 

images lack detailed information such as depth and positioning information 

(Bello et al., 2020). 3D data provides more information for the machines to 

adapt themselves to the surrounding environment. Various applications use 3D 

data, such as virtual reality, robotics, remote sensing, autonomous driving, and 

so on (Guo et al., 2019).  By comparing the regular camera and 3D scanner, 

the regular camera can capture the 3D world in 2D images, whereas 3D 

scanners, LiDAR, and RGB-D camera are handy in extracting the 3D pieces of 

information or 3D model (Rehman et al., 2019). The 3D point cloud is one 

type of format to represent 3D data. A 3D point cloud comprises a set of points 

in the cartesian coordinates of the X, Y, and Z-axis. The 3D point cloud 

representation can store the original geometric information in 3D space. There 

are two types of sensors, which are a LiDAR sensor and a 3D laser sensor 

(National Ocean Service, 2020). LiDAR sensor or 3D laser sensor is a remote 

sensing device used to collect data and information about the shape and feature 

of the earth with aircraft or satellites' aid. The acquisition of the 3D point 

clouds would be more convenient with the aid of sensing devices. LiDAR 

sensors or 3D laser sensors can also generate 3D point clouds.  

           Deep learning is an AI function that the machine can learn without 

human's supervision. The deep learning technique is widely used in various 

applications, including autonomous driving, computer vision, and robotics 

(Guo et al., 2019). Nowadays, the development of deep learning on 3D point 

clouds is rising as well. However, point clouds are generally unstructured, 

which induces problems and makes it challenging to apply deep learning on 

3D point clouds. 3D point cloud classification, detection, and segmentation 

had addressed the problems faced by deep learning of 3D point clouds. 3D 

point cloud segmentation techniques are pretty helpful for 3D labelling tools. 
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Some 3D labelling tools need to undergo a segmentation process before 

performing 3D point cloud labelling. 

3D point cloud labelling is a method to redefine the points with labels, 

which helps with performing computer vision and object recognition. With the 

labelled object in a 3D point cloud, it can be used in applications, including 

robotics, self-driving car, virtual reality, augmented reality, urban planning, 

and emergency disaster control plan. This is because the objects in the 3D 

point cloud can be recognized. In this study, the main concern is comparing 

the open-source user interfaces that can perform 3D point cloud labelling. By 

trying out the open-source 3D point cloud user interface, the user interface 

enables users to view the 3D point cloud and label the points when detecting 

the object. Most of the labelling user interfaces are using a cuboid label to 

label the object within a specific region. Minority of labelling tools are using 

point-wise labelling. The user interfaces are designed in various forms, such as 

point-and-click, AR-based, VR-based, etc. The most important thing about the 

user interface is that the operative difficulty must be moderate, which is easy 

for the user to operate. With the simple operation, the accuracy of the label 

should be higher. The accuracy of labels is normally evaluated in terms of IoU, 

false-positive ratio and false-negative ratio of points in the bounding box.  

 

1.2 Importance of the Study 

This study may contribute to a better understanding of labelling point clouds in 

3D space. 3D point cloud labelling is assigning labels to points in 3D space to 

ease object recognition. Labelling in 3D space is better than labelling in 2D 

images because 3D point clouds consist of more detailed information than 2D 

representations. The scenes or objects represented by 2D images lack depth 

and positioning information, whereas 3D point clouds can provide the depth 

information and preserve the specific objects' original position with minimized 

discretization. 3D point cloud labelling can be effectively used in applications 

involving computer vision or object recognition, such as autonomous driving, 

robotics, urban planning, virtual reality, and so on. With the aid of a 3D point 

cloud labelling system, the specific applications' operation will be efficient and 

smooth.  
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           Implementation of 3D point cloud labelling in the automation and 

robotics sectors can improve efficiency and effectiveness. For example, 

applying a 3D labelling system on a robot enables the robot to recognize the 

obstacles and avoid the obstacles, which blocks a robot's movement. Besides, 

3D point cloud labelling can contribute to urban planning and emergency 

disaster control plan. The 3D point cloud of a city can be generated using a 3D 

scanner such as a LiDAR sensor or 3D laser sensor (Babahajiani et al., 2017). 

All objects, regardless of small or large objects, including buildings, vehicles, 

fire hydrants, and other objects in the city, are recognized and labelled. For 

urban planning, the authority may observe and analyze the labelled 3D point 

cloud to decide the suitable areas for the city's development. For the 

emergency disaster control plan, all the emergency items in the city are 

labelled. The labels will ease checking whether the amount of emergency 

items in the particular area is sufficient or not and analyzing the level of safety. 

By implementing a 3D point cloud labelling system, the work will be done 

more efficiently because the planning can be done without going to the 

particular site to observe the conditions. This system will save a lot of time 

and workforce.   

 

1.3 Problem Statement 

Machine learning nowadays is able to handle 2D data well. However, the same 

cannot be said for 3D data. This is because the point clouds in 3D space 

contain complex and detailed information as well as require a large number of 

points, up to millions or even billions of points. By comparing with 2D images, 

the number of pixels needed for machine learning is significantly less than the 

points needed for 3D data. Most labelling tools are able to label 2D images 

instead of 3D point clouds. Besides, most of the labelling tools use the 2D 

representation technique to label the 3D point clouds. However, 2D data lacks 

depth information, which will greatly affect the quality of labelling and cause 

the problem of mislabelling.  

Some researchers had worked on completing the 3D point cloud 

labelling directly on 3D representation without transferring the 3D data into 

2D representation. As an example, Huang and You (2016) had proposed a 

method to overcome the problem faced by using 2D representation. 
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Voxelization enables the 3D labelling process to be done in 3D representation. 

The 3D labelling tools can be classified into automatic and manual labelling. 

The 3D point cloud labelling tools must be convenient and easy to use for the 

users. There are some famous 3D point cloud labelling tools, including 

Supervise.ly, Scale.ai, Playment.io, Pointly.ai, Amazon Sagemaker Ground 

Truth, which are convenient to use and consisted of many useful features. 

However, the user interfaces are not open source and quite expensive to 

purchase since the payment must be paid monthly or yearly. Thus, the 

literature reviews on open-source 3D labelling tools will be conducted to 

evaluate the performance of the open-source 3D labelling tools, which can be 

easy to use and free of charge.   

 

1.4 Aim and Objectives 

The user interface should be able to label directly on 3D point clouds instead 

of 2D images to overcome the stated problem in section 1.3. Besides, user 

interfaces for labelling 3D point clouds with good features at the marketplace 

are pretty expensive. Thus, the literature reviews on open-source user 

interfaces for labelling 3D point clouds should be conducted. More 

specifically, the aim of this study is to research convenient and free user 

interfaces for labelling 3D point clouds, which can handle 3D data well and 

allow users to traverse in a 3D environment and label the object in point 

clouds. The specific objectives of this project, including:  

1. Comparison of user interfaces for 3D point cloud labelling. 

2. Evaluation of usability between the user interfaces. 

3. Evaluation of labelling speed between the user interfaces.   

The comparison between 3D point cloud labelling user interfaces will 

be done by setting up several user interfaces. The results will be done using 

the same point cloud scene. The performance of the user interface will be 

evaluated in terms of usability, where the user interface should be convenient 

and easy to use. The evaluation of labelling speed in terms of time will be 

conducted between the user interfaces. The user interfaces that are convenient 

and easy to use, and the labelling speed is fast will be considered as the most 

efficient user interface.   
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1.5 Scope and Limitation of the Study 

The scope of this study is mainly focused on 3D point cloud labelling. All the 

research papers that had been studied are about the labelling on the 3D point 

cloud. The general purpose of this study is to research convenient and free user 

interfaces for labelling 3D point clouds and make comparison between the 

user interfaces. The user interface allows users to label the objects in a 3D 

point cloud in order to ease object recognition and computer vision. The 3D 

object detection can be done on 3D point clouds effectively with the labelled 

point clouds. However, 3D object detection will not be covered in this study. 

3D object detection is the process after the labelling is finished. The duration 

of this study is about one year period, and the final report for this project was 

finished in January semester 2021.    

 

1.6 Contribution of the Study 

This project reviews the existing open-source user interfaces for labelling 3D 

point cloud and provides insights into the user interfaces. Some open-source 

user interfaces for 3D point clouds are set up. A convenient user interface is 

adopted and modified by adding some useful features. The comparison is 

conducted between open-source user interfaces. Evaluation of the user 

interfaces’ performance is carried out in terms of usability and labelling speed.   

 

1.7 Outline of the Report 

In this project, the study is focused on 3D point cloud labelling. The main aim 

and objective are to compare the user interfaces for labelling 3D point clouds 

and evaluate user interfaces' performance. Before starting the software 

development, paper research should be done to master this field's knowledge 

as much as possible. Besides, the advantages and limitations of the various 

labelling tools will be known, and comparison is able to carry out among the 

labelling tools.    

           In this project, five chapters have been discussed in this report, namely 

introduction, literature review, methodology and work plans, results and 

discussion, and conclusions and recommendations. Firstly, in chapter 1, there 

is a general introduction about the 3D point cloud and labelling system in 3D 

space. Besides, the importance of the 3D point cloud labelling and the problem 
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encountered had been stated. The subchapters are aim and objectives, scope 

and limitation, and an outline of the report. Chapter 2 contains the literature 

review, which mainly focuses on 3D point cloud labelling and discusses the 

methods in designing 3D point cloud labelling tools approached by other 

researchers. The literature review will form the basis for decision-making for 

determining the convenient user interfaces for labelling 3D point clouds with 

high-quality label. Chapter 3 describes the method for comparison of open-

source user interfaces in this project and the schedules of part I and part II 

projects. Besides, the problems encountered during methodology will be 

discussed. Chapter 4 describes the results and discussion about the comparison 

between user interfaces for 3D point cloud labelling. Lastly, Chapter 5 

summarizes the overall project and makes recommendations to further 

improve the user interfaces. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

3D point clouds are datasets where the combination of points in the cartesian 

coordinates of the X, Y, and Z-axis is used to represent space or object. 

Basically, the 3D point cloud consists of many points, even up to billions of 

points. Nowadays, point clouds play an important role in representing 3D data 

(Bello et al., 2020). 

 

Figure 2.1: 3D LiDAR point cloud (Daniel, n.d.). 

 

Photogrammetry and remote sensing methods work on similar 

principles for creating a 3D point cloud. The way of photogrammetry used to 

build the point clouds is by merging multiple photographs with multiple angles, 

where the photographs are used to investigate and measure the particular area 

and object. The data of the Earth can be obtained by using an airboat or 

satellites. By installing LiDAR sensors or 3D laser sensors on aerial vehicles, 

the data about the shapes and features of the Earth can be detected and 
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recorded. This kind of method to collect data on the Earth is known as remote 

sensing (FME Community, 2020). 3D laser scanners and LiDAR sensors can 

be used to generate the 3D point clouds. Laser light is used to measure the 

distances of an object to the surface of the Earth. The information about the 

shape and feature of the Earth obtained is more accurate and exact by the 

combination of light pulses and data collected from the airborne system 

(National Ocean Service, 2020). There are some processes that can be used to 

transfer raw point clouds to become structured point clouds. In this report, the 

main concern is data annotation, where the labels are given to the points of 

objects in a point cloud.  

 

2.2 Usefulness of Point Cloud Labelling 

Point cloud labelling is a method to label the points, which the redefined 

points can be used to represent the scene or object. Object recognition and 

computer vision can be done by point cloud labelling. However, the 

unavailability of 3D point cloud labels is the main problem encountered, 

which will affect the effectiveness of the classifiers (Wang, Ji, and Chang, 

2013). Besides, the ability of the 3D point clouds labelling algorithm in 

recognizing smaller objects is still limited. The result of labelling smaller 

objects is not accurate and precise. 

 

Figure 2.2: The LiDAR point cloud with cuboid labels (Koh, 2018). 
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Point cloud labelling can be used in many applications. If the 3D point 

cloud model of a city is labelled, this will benefit some applications such as 

reinforced reality maps, urban planning, disaster management as well as 

virtual tourism (Babahajiani et al., 2017). With the labelled city map, the 

safety of using a self-driving car will improve because the labels can help in 

providing a guide for the navigation of self-driving cars. In order to enhance 

the safety system in the city, small objects, such as fire escapes, fire hydrants, 

and other emergency items are labelled can effectively help in disaster 

management and emergency plans. Small objects like a fire hydrant, cars, 

pedestrians, and so on are important in improving urban planning. Apart from 

that, in order to move in a smooth motion, most of the robots are depending on 

the sensors mounted on the robot (Kim and Sukhatme, 2014). However, 

sometimes there are too many obstacles blocking the way of the robot and 

cause the robot stuck in a particular area. Therefore, by applying a semantic 

labelling system to the robot, the robot can recognize the objects. Then, the 

robot can decide to move the objects within the capability of the robot to clear 

the path. Therefore, the 3D point cloud labelling system is quite useful for 

robotics. 

There are two types of tools, including automatic 3D point cloud 

labelling algorithm and manual 3D point cloud labelling tool, to complete the 

3D point cloud labelling process. For automatic 3D point cloud labelling 

algorithms, voxel-based 3D CNN, Patch Context Analysis and Multiscale 

Processing, as well as SnapNet, will be discussed, whereas for manual 

labelling tools, PointAtMe, 3D BAT, LATTE, and POINTS will be reviewed. 

 

2.3 Automatic 3D Point Cloud Labelling 

Automatic 3D point cloud labelling is able to finish the labelling process 

without a user manual label. By applying the labelling algorithm to the 

original point cloud without labels, the algorithm will run and produce the 

final point cloud with labels as a result. 

 

2.3.1 Voxel-based 3D CNN 

According to the research, Huang and You (2016) had used the 3D CNN 

combine with voxelization to overcome the problems encountered by point 



10 

cloud labelling. In general, most of the tasks involving the detection and 

classification process should undergo the segmentation process. However, 

segmentation is not required for the voxel-based 3D CNN method because it 

depends on data that undergo voxelization. Voxelization is a method used to 

represent 3D point clouds directly. There are some challenges faced by 

voxelization. Voxelization requires large memory in a computer to operate, 

and it takes a long time to finish. This is because the algorithm lacks proper 

optimization.  

 

Figure 2.3: The pipeline of the labelling system with two different types of 

modules (Huang and You, 2016). 

 

 The labelling system consisted of two training modules. Firstly, for the 

online testing module, raw point clouds had been taken as the input. Then, the 

raw point clouds will go through the dense voxelization process. This process 

had generated an occupancy voxel grid with the centered voxels. The resulting 

voxels of the dense voxelization process are served as the input for trained 3D 

CNN. Each of the voxels will be given a label. Then, the labels were mapped 

to the original point cloud. Eventually, the labelled point cloud will be 

obtained, which was shown in Figure 2.3. Besides, for the offline training 

module, the annotated training data was being taken as the input. Then, the 

annotated training data went through the voxelization, and an occupancy voxel 

grids was produced. The resulting voxels are parsed through 3D CNN, and the 

final output is produced. 
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Huang and You (2016) had selected the LiDAR point cloud in Ottawa, 

which is the point clouds of urban area as the dataset for this labelling system. 

The data were collected by using four car-mounted scanners as well as an 

airborne scanner. The library used to launch the 3D CNN is Theano library, 

and the method used to train the network is Stochastic Gradient Descent. 

Many features and labels are generated, even up to 500000, when the trunks 

from the data are manually labelled. A total of 50000 and 20000 features and 

labels are distributed randomly as training data and validation data, 

respectively. The obtained results were used to compare with the ground truth 

labels. The accuracy for labelling cars and planes was about 95 %, whereas 

labelling buildings, wires, and poles are in a range between 80 % to 90 %. 

Besides, the accuracy for trees is 78 %, which is slightly lower compared to 

other objects. This is because the presence of scattered clusters like humans 

and bushes will affect the labelling's performance. In the end, the overall 

accuracy for point labelling of all categories is 93 %. 

This labelling system depends on the 3D CNN and voxelization 

processed to finish the labelling process without going through segmentation. 

This method is more suitable for small-scale 3D model analysis. This is 

because extra dimensions will cause the restriction of voxel resolution and 

shape precision. Besides, the performance speed is slightly slower because the 

voxelization requires some time to process. Therefore, more effort can be put 

into improving the system to get a more accurate and precise result when 

handling large-scale 3D model analysis and improving the labelling system's 

speed. 

 

2.3.2 Patch Context Analysis and Multiscale Processing  

In this research, Hu, Cai, and Lai (2020) had designed an algorithm for 

semantic segmentation and labelling of 3D point clouds. The combination of 

Patch Context Analysis and Multiscale Processing can achieve semantic 

segmentation and labelling. In this system, 3D point clouds are used as the 

input. The labelling and segmentation system's objectives are assigning each 

of the points a label for semantic labelling and segmenting the point clouds 

into a meaningful segmented object for semantic segmentation. 
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Figure 2.4: The pipeline for the labelling system (Hu, Cai and Lai, 2020). 

 

 According to Figure 2.4, the point clouds are segmented into patches 

with the object labels for the first step. Then, the patches that have similar 

characteristics are gathered into a particular cluster. This is because the 

contextual rules can be described more vigorously with the aid of cluster. 

Patch context information can be learned from the training datasets. The next 

step is classification, which can be performed as the contextual rules and patch 

context information had been learned at different segmentation levels. 

According to the semantic labels and the context, multiscale processing can be 

carried out to select and control suitable segmentation levels for local regions. 

The descriptions above are the overall flow of this labelling and segmentation 

system. 

 

Figure 2.5: The labelling performances on the ETH dataset with 25 classes 

(Hu, Cai and Lai, 2020). 

 

This approach is compared to the labelling system developed by 

Koppula and other researchers based on the datasets above. The patch-based 

segmentation and labelling are treated as two different problems. The patch-
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based segmentation is completed by using a standard region growing 

technique. Hu, Cai, and Lai (2020) had chosen the ETH database as the 

datasets to evaluate the labelling system's performance. ETH database is a 

dataset consist of 18 office point cloud scenes. Twelve of the scenes are used 

as training data, and the remaining scenes are used for testing. The 

combination of Patch Context Analysis and Multiscale Processing showed the 

highest accuracy rate with 93.81 %, according to Figure 2.5. The Cornell 

RGB-D dataset is the second dataset, which consists of 59 scenes, including 25 

office scenes and 34 home scenes. There are nine classes and ten classes for 

the office scenes and home scenes, respectively. Macro precision and recall 

are referred to the average precision of every class, whereas micro-precision 

and recall are referred to the percentage of correct labelled patches. By 

comparing the result to Koppula, this approach's performance is better than 

Koppula with a 3.87 % of overall improvement and an increase of 5.54 % in 

terms of micro-precision or recall. Next, SceneNN is a labelled point cloud 

dataset consists of 95 scenes by fusing the RGB-D images. There are 62 

scenes used as training data, and 33 scenes are used for testing. There are a 

total of 15 classes to be labelled. 

The combination of Patch Context Analysis and Multiscale Processing 

has the better performance compare to Multiscale Processing and Koppula. 

Koppula faces failure in the training stage. The overall accuracy of the 

combination of Patch Context Analysis and Multiscale Processing had been 

improved by 5 %. Last but not least, S3DIS dataset consists of 6 area scenes, 

and Matterport cameras had taken 271 room scenes with 13 classes of objects. 

This approach is used to compare with deep learning-based methods, PointNet 

and Engelmann. The mean IoU is 64.6 %, and the overall accuracy and 

average class accuracy are 88 % and 75.6 %, respectively. All of the three 

results of this approach are the highest compare to PointNet and Englemann. 

 

2.3.3 SnapNet 

In this research, Boulch et al. (2017) used 2D deep segmentation network to 

label the unstructured point cloud. SnapNet is using deep CNN to analyse and 

interpret multiple 2D image views. This method is slightly similar to the multi-

view strategy, but the strategy in choosing views is different. The purpose of 
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this approach is to labelling the images instead of classifying the images. The 

way to select the views is taking a lot of partial views instead of taking a 

whole view of a scene or an object.  

 

Figure 2.6: The pipeline of SnapNet by using 2D deep segmentation network 

(Boulch, et al., 2017). 

 

 There are four steps to complete the 3D point cloud labelling. Figure 

2.6 shows the flow of this approach. The final result can be obtained by going 

through the four steps: 

• Preparing the point cloud 

• Generating the images 

• Semantic labelling of the image 

• Projecting the labelled images back to an initial 3D point cloud 

Point-cloud preparation is a pre-processing step to remove the noise in the 

point clouds and produce mesh. Then, for the snapshot generation, two meshes, 

such as RGB mesh and composite mesh, are two different views generated 

from the various camera positions. The two input images were matched into 

pairs and underwent a semantic labelling process. Semantic labelling is a 

process to give a label to each pixel. Deep segmentation networks according to 

SegNet and fusion with residual correction were used. Finally, the back 

projection was carried out to project the labelled images back to the original 

3D point cloud. Therefore, a labelled 3D point cloud was generated.  

The SnapNet approach proposed by Boulch et al. (2017) was tested 

with various point clouds, including the point clouds obtained using Lidar 

sensors, multiple 2D views, and photogrammetry and RGB-D cameras. Figure 

2.7 below shows semantic labelling of photogrammetric data for RGB, depth 

composite, and prediction map. Firstly, the Semantic 3D dataset has been used 

for the experiment of LiDAR point clouds. The dataset consists of 30 laser 
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acquisitions on ten different scenes from numerous places. The training data 

consists of 15 laser acquisitions, and the remaining 15 acquisitions are used to 

test in full semantic eight networks. The validation is set by using six 

acquisitions from the training data. The remaining nine training acquisitions 

will generate 3600 image pairs for the deep networks. The Stochastic Gradient 

Descent with momentum is used to train the network. The learning rate is 

beginning at 0.01 and varying based on a step-down policy. The VGG16 

weights are used to help the initialization of the encoder of SegNet. The time 

to semantic the whole point cloud is about 41 minutes. The different natures of 

input images can define fusion strategy. Two mono-input SegNets were 

trained using RGB or depth composite images as the input to evaluate the 

performance of different fusion methods. Firstly, the addition of RGB and 

depth composite is not improved compared to depth composite only. This is 

because the high distribution difference in the prediction maps caused RGB's 

prediction to be overcome by composite. 

On the other hand, if the fusion occurs before SegNet, the problem 

encountered in the addition of RGB and depth composite will be overcome. 

This will show an improved result. However, another problem like information 

loss has occurred. Last but not least, the residual correction network is 

introduced. The fusion was done after the SegNet, and the convolution is 

successful in refining the fusion. Therefore, the residual correction network is 

the best fusion strategy among these fusion strategies. The reduced-8 or full 

semantic-8 dataset was used as the dataset for the comparison of the result. 

This approach is used to compare with other approaches, including Random 

forest and Haris Net. Random forest is a method in which the 3D features in 

multiscale are trained using random forest classifiers, whereas Harris Net uses 

3D Harris point extraction and a deep framework for classification. The 

approaches used in this research are SegNet and U-Net. The overall 

performance of U-Net is the best among these methods. The average IoU is the 

highest by using U-Net because the zoom strategy of U-Net is better in 

labelling cars and artifacts.  
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Figure 2.7: Semantic labelling of photogrammetric data. The left one is RGB, 

the middle one is depth composite and the right one is prediction map (Boulch, 

et al., 2017). 

 

Besides, this approach was tested on photogrammetric point clouds for 

two experiments. The first one is transferring the semantic-8 network directly 

to photogrammetry. The full semantic-8 training set is labelling’s network. 

The majority of labelling errors were concentrated on high vegetation and 

ground classes. The error of mislabelling on ground classes was due to the 

rubbles covered on the ground and the small inclination of a rooftop. The 

mislabel of high vegetation on destroy parts is because noise estimation 

conflicts with the class of building. The second one was using new classes to 

fine-tune for labelling. The point cloud was labelled by using rubble and non-

rubble classes. The RGB and composite networks were fine-tuned by 

replacing the two new classes in the last classes.  

 

 

Figure 2.8: View generation strategy for RGB-D data (Boulch, et al.,2017). 
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Last but not least, this approach is tested with the point clouds 

generated by RGB-D cameras. SUN RGB-D dataset was used, and the dataset 

consisted of more than 10000 images from numerous RGB-D sensors. Firstly, 

an image inpainting technique was used to enhance the image space by filling 

the missing parts of the acquisition, resulting in smoother and more persistent 

point clouds. The meshing process was carried out, and the elongated face at 

different depths was removed. Figure 2.8 shows the view generation strategy 

for RGB-D data. For the view generation, many RGB-D sensors were required 

to snapshot the whole scene because of the small field of view of the sensors. 

The virtual rotation point was set at 6m from the origin, and generate the view 

at 8m from the virtual rotation point. The cameras were placed in front with an 

angle of 20° in both left and right. The process was repeated for angles 0°, 15°, 

and 30° to produce the 18 views per scene. Each class should be weighted to 

overcome the class imbalance problem of the SUN RGB-D dataset. The post-

processing step was to fill the holes of the prediction map by nearest 

neighbour propagation. The mean accuracy of SnapNet is 67.4 % which is the 

highest among the methods, including SceneNet and SUNRGBD. 

 

2.4 Manual 3D Point Cloud Labelling 

Manual 3D point cloud labelling enables users to complete the labelling with 

the aid of a user interface. The user interface can load the point clouds and 

enable users to add labels on the 3D point clouds. There are two types of 

labelling user interfaces, including screen-based and VR-based (Li et al., 

2020). A screen-based system can visualize the point cloud on a computer, 

whereas a VR-based system is dependent on a VR device. Then, for the 

screen-based labelling system, it can be further classified into web-based and 

PC-based. For the web-based system, the labelling process can be performed 

using a web browser, whereas, for the PC-based system, the software is 

needed to be installed to perform the labelling process. 

    

2.4.1 PointAtMe 

Wirth et al. (2019) stated that the 3D point cloud could be directly labelled 

without converting into a 2D image using a virtual reality device. A VR-based 

labelling tool, PointAtMe was created by Wirth et al. (2019) to complete the 
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data labelling. The label is a cuboid label type that is suitable to label cuboid-

like objects, such as vehicles, pedestrians, etc. The machine learning 

community was allowed to access the tool and build a new community-

labelled dataset for autonomous driving. Besides, an annotation benchmark 

was planned to be set up by the commercial annotation companies.  

PointAtMe consists of a VR device and Oculus Rift Touch Controllers, 

used to annotate the data. The advantage of using PointAtMe is the speed of 

the data annotation process is relatively fast. The DoF of 3D bounding boxes 

created by this tool is nine, which had extra two DoF compare to the standard 

tool. During the annotation process, a transparent dummy bounding box with 

nine DoF appears between the controller. The nine DoF's position and scale 

have been defined by using red anchors, which are installed directly to the 

virtual controller. The color axes are installed on the right controller to grab 

the attention of the annotator. The created bounding box can suit the actual 

size of the object in the real world using this annotation tool. Thus, the image 

and point cloud can be visualized in Unity, either measured from a moving 

platform or a stationary platform.   

 

Figure 2.9: The left and right Oculus Touch Controller (Wirth, et al., 2019). 

 

Figure 2.9 shows the left and right Oculus Touch Controller. The left 

controller functions to control, understand and manage the scenes, whereas the 

right controller functions for data annotation. The left controller consists of 5 

components with different functions. The components are hand trigger, index 
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trigger, thumbstick, button X, and Button Y. Hand trigger was used to move 

the point cloud with 6 DoF. Index trigger was used to release two rotational 

DoF, such as the box and point cloud. Switching the scene can be done by 

using a thumbstick. Button Y functions to show four images with different 

directions at the current scene, whereas button X functions to switch the 

scene's scale to label the objects with different scales. There are four 

components for the right oculus touch controller, such as index trigger, 

thumbstick, button A and button B. The functions of the index trigger and 

thumbstick of the left and right controller are different. The index trigger for 

the right controller was used to accept the dialogs. The dialogs contained the 

metadata will pop up while meeting a new box. The thumbstick for a right 

controller was used to switch the tracks to either left or right. By pressing 

button A and button B, a new track with dialogue and a new box with dialogue 

can be created, respectively. Besides, users can add information about label 

quality to the new box with dialogue (Wirth et al., 2019). 

Wirth et al. (2019) used the KITTI 3D Object Detection scenes as the 

datasets. This tool's annotation speed can be determined by measuring the 

average speed used by inexperienced annotators to complete labelling process. 

The annotators are given 40 minutes to learn the technique to use the labelling 

tool. Then, the annotators start labelling four KITTI scenes, and the annotation 

time was recorded. Besides, the annotation accuracy is determined by 

comparing to Ground Truth offered by KITTI. The developers generated the 

Ground Truth as well because the labels of KITTI are slightly different. The 

average time for labelling one object in four scenes is 37.5 seconds.  

This annotation tool is useful in the automated robot application, which 

performs in the mobile platform. Thus, the labelling process can be done 

directly to the 3D objects rather than 2D images using this kind of method to 

label the 3D point clouds. The result will be more accurate because the created 

bounding box is direct to the objects in 3D form, which results in a more 

accurate label, and the likelihood to mislabel objects will decrease. Wirth et al. 

(2019) could make further improvements to improve the label's quality. The 

further step is to visualize the points directly on the created bounding box. 
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2.4.2 3D BAT 

3D BAT is a 3D point cloud labelling tool proposed by Zimmer, Rangesh, and 

Trivedi (2019). The proposed labelling system is efficiently used for 3D 

localization and detection. The tool was allowed the user or annotator to label 

the objects in 3D point clouds with a toolbox's aid. Besides, this is a web-

based tool that can be opened by using the browsers in the computer. This 

project works on both 2D images and a 3D point cloud of the street scenes. 

This is because the user will label the objects directly in 3D point clouds, and 

the labels will be transferred back to the images. Therefore, the user is able to 

see the labels in the images. The data labelling will be done on the Laser data 

with rough bounding primitives, and the labels will be transferred to the 

images by using a geometric model. Figure 2.10 compares the functions of 3D 

BAT to the other open-source and commercial labelling tools. 3D BAT 

showed the highest score among all the labelling tools, which had all the 

functions from F1 to F14 shown in Figure 2.10. 

 

Figure 2.10: Comparison of the labelling tools (Zimmer, Rangesh and Trivedi, 

2019). 

 

The system architecture of 3D BAT was described below. Web 

Graphics Library (WebGL) is JavaScript API, which allows collaborative 

labelling in this research. Multiple labels on the objects at the same time are 
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prevented. Firstly, the user interface will display all the camera images from 

different views. Thus, the user was able to view the objects in the images from 

multiple cameras. Then, the frames between the first and last frame will be 

labelled using the semi-automatic labelling method.  

The labelling time decreases by implementing the semi-automatic 

interpolation technique. Then, the labels were transferred from 3D point cloud 

to 2D images by using a 3D and projective geometry model. This model is 

very useful because the labels done on the 3D point clouds will be projected 

automatically to the 2D images. Therefore, the annotator can label the point 

clouds by referring to the camera images, which will reduce the labelling time 

and increase the label's accuracy as the projection of 3D to 2D in real-time. 

There are a front view, side view, and bird-eye view of 3D point clouds 

provided for the user. The user was allowed to translate, rotate and scale the 

targeted object.  

The datasets used for the labelling tool are nuScenes, and LISA-T and 

the dataset obtained using a full-surround sensor configuration. Five classes 

can be labelled, which are car, truck, motorcycle, bicycle, and pedestrian. The 

colours of labels for car, truck, motorcycle, bicycle, and pedestrian are green, 

yellow, red, pink, and blue, respectively. For the LISA-T datasets, the result 

obtained was evaluated by comparing to ground truth in terms of 3D IoU, 

precision, recall, and F1-score. Precision and recall are used to evaluate the 

accuracy of the labels. The harmonic mean of recall and precision is F1-score. 

The results of user annotations were obtained by taking the average results 

from 3 users. The average IoU for the growth truth is 0.138, and for the user, 

annotations are 0.066. The average precision, recall, and F1-score are 0.0117, 

0.0113, and 0.0377, respectively. For nuScenes dataset, the average IoU for 

ground truth is 0.0748, and for a user, annotations are 0.0393. The average 

precision, recall, and F1-score are 0.007, 0.0067, and 0.007, respectively. 

 

2.4.3 LATTE 

Bernie et al. (2019) had designed an open-source web-based labelling tool, 

called LATTE and the labelling process can be done by using a mouse. This 

tool is designed to address the challenges faced in 3D LiDAR point cloud 

labelling. There are three challenges listed, including low resolution of LiDAR 
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point cloud, complex annotating operations, and sequential correlation. The 

LiDAR point cloud resolution is relatively low compared to the resolution of 

images captured by the camera, which will make it difficult for the annotator 

to recognize the objects in point clouds. Besides, 3D bounding box labelling 

makes a cuboid label on an object in 3D point clouds and collects the points 

that belong to a target object. 3D bounding box labelling is more complex than 

2D bounding box labelling. This is because drawing a 2D bounding box is 

considered two dimensions. The user can create labelling by drawing two 

corners, whereas drawing a 3D bounding box is needed to consider the three 

dimensions, centre position, and 3D rotation. Besides, sequential correlation is 

the annotations that might be repeated due to the point cloud data are collected 

in sequences and consecutive frames, which results in high correlation. 

 

Figure 2.11: The pipeline of sensor fusion (Bernie et al.,2019). 

 

 To improve this labelling tool's performance, sensor fusion, one-click 

annotation, and tracking function are added. In this research, the point cloud 

labelling can be done with the aid of image-based detection algorithms. This is 

because image-based detection algorithms are more sophisticated than 

LiDAR-based detection algorithm. The LiDAR point clouds are collected by 

using the combination of cameras and the LiDAR sensor. Each point in the 

collected point clouds can be projected to the corresponding pixel image. 

According to Figure 2.11, semantic segmentation was conducted on the image. 
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Mask R-CNN was used to obtain the labels for each pixel in the image and 

eventually transfer them to the 3D point clouds. Thus, the pre-labels for the 

point clouds are generated automatically. Mask R-CNN helps annotators 

recognize the object in a 3D point cloud and adjust the labels. Besides, one-

click annotation is applied to reduce the complexity of the annotation process. 

The label is a 3D bounding box, which is more simple to use comparing to 

point-wise labelling. In the perspective view, the 2D bounding boxes are 

shown on the objects’ top, eventually to one-click annotation. One-click 

annotation enables a user to label the objects in point clouds by clicking one 

point in the object. One-click annotation uses clustering algorithms to find all 

target object’s points and display a 2D bounding box on the object. By using 

one-click annotation, effectively reduces the labelling time. Lastly, a tracking 

algorithm is used to transfer the labels from one frame to another. Kalman 

filtering is used to track the centre of the bounding box of the target object. 

When the annotators annotate the first frame in a sequence, the tracking 

algorithm will estimate bounding boxes' centres for the next frame. 

 

   

Figure 2.12: The results of basline, sensor fusion, one-click annotation, 

tracking and full features in term of IoU, time and operation counts (Bernie et 

al., 2019). 

 

 The labelling speed of this labelling tool is measured by taking the 

average labelling time of users to label the LiDAR point cloud scene, taken 

from the KITTI dataset. The volunteers are given sufficient time to practice, 

and the results are recorded when the volunteers are confident to start labelling. 

The volunteers use the three features, such as sensor fusion, one-click 

annotation, and tracking algorithm, to label a sequence of 5 frames, and the 
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labels were compared to the ground truth labels provided by an expert. The 

results are evaluated in terms of IoU between the ground truth and the 

bounding boxes created by volunteers. According to Figure 2.12, the IoU of 

the methods is between 85.5 % to 87.5 % when comparing to the expert’s 

ground truth. The IoU is between 82.3 % to 84.7 % when comparing ground 

truth provided by KITTI. The baseline method is for the user to label the point 

clouds without using the three features. Therefore, the time used to label one 

object is much longer than other methods. Full features are users used all three 

features to complete the labelling. It is much more accurate and efficient as the 

IoU, time, and operation counts are 87.5 %, 1.53 s, and 1.02 counts, 

respectively. 

 

2.4.4 POINTS 

Li et al. (2020) had developed a 3D point cloud labelling tool for autonomous 

driving datasets. POINTS is a screen-based labelling system and web-based. 

The major challenges faced to develop a 3D point cloud labelling system are 

convenient user interface, scalable annotation tools, and geometric data units. 

In this paper, visualization modules, interactive tools for 3D labelling, and 

transfer methods were developed to address the challenges.  

 

Figure 2.13: The pipeline of POINTS (Li et al., 2020). 

 

Firstly, the raw data should be prepared and undergo pre-processing. In 

the data pre-processing step, the sensor parameters are estimated, and the 

parameters are calibrated. Then, AI algorithms will generate the initial results 

of labelling. The data management system and user-data interactive interface 

programmed with CherryPy and Three.js are responsible for managing the 
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data after the pre-processing stage. CherryPy is an object-oriented web 

framework. Python is used as the programming language, and Three.js is a 

JavaScript library and API used to perform 3D computer graphics in a web 

browser by using WebGL. The data visualization module integrated with an 

interactive operation to perform manual annotating and error checking with the 

functions listed in Figure 2.13.  

Data visualization modules can review the labelling results in terms of 

3D bounding boxes. The primary user interface consists of one main view, 

three projective views, two photo contexts, a context menu, and a fast-floating 

toolbox. The main view is displaying whole point clouds, and three projective 

views show the selected objects’ top, front and side views. One of the photo 

contexts is resizable and switched automatically among multiple cameras, and 

another one focused photo context is automatically selected for the chosen 

object. A context menu provides tools for context operation, and a fast-floating 

toolbox provides tools for adjusting 3D bounding boxes. Besides, there are 

many functions available to add benefits to the user interface, including focus 

mode, camera auto-switching, object colouring, navigation, stream play, and 

object locking. When turning on the focus mode, the selected object will be 

zoomed and centered in the main view. Camera auto-switching is switching 

the camera automatically, which is more relevant to the objects. According to 

the classes, object colouring will highlight the boxes and enclosed points in the 

box in different colours. Apart from that, navigation enables the users to check 

the labelling results by changing the selected objects, point of view, and 

several frames. Stream play displays the sequential data, and the object 

locking is locking and highlighting the object while turning on the stream play.      

On the other hand, 3D box initialization, 3D box editing in perspective 

view and projective sub-views, interactive box fitting, and transfer method are 

interactive operations, enabling the user to use the tool and finish the 

annotations effectively. For the 3D box initialization, when the user creates a 

new 3D bounding box, the box's initial orientation is upward along z axis of 

the main view. The bounding box will automatically shrink and fit the 

enclosed points object. The automatic shrink and fitting is an interactive box 

fitting function, which will be reviewed later. Besides, the object type will be 

recognized and automatically selected according to the dimension of the 
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objects. Next, POINTS enables users to edit the 3D bounding boxes in both 

perspective view and projective sub-views. It is more convenient to adjust the 

bounding boxes in projective sub-views compare to in perspective view. This 

is because editing in perspective view needs to change the viewpoint 

frequently while editing in projective sub views adjusts the boxes in the top, 

front and side views without changing the viewpoint. 

Furthermore, interactive box fitting will find the minimal box, which is 

enclosing all the objects' points to resize the bounding box to fit the bounding 

box to the object automatically. With this algorithm, the labelling process is 

much easier to be done by drawing a rectangular box that encloses all the 

objects' points and sometimes needs to rotate 3D bounding boxes. However, 

this algorithm objects' point sets of ground are present. Lastly, the transfer 

method can transfer the annotations among the frames. This algorithm is 

efficient for autonomous datasets as the datasets always consist of independent 

data frames. It needs a combination of a 3D data registration algorithm and a 

3D object tracking algorithm to perform automatic annotation transfer. 3D 

registration algorithm is used to adjust the boxes using the objects' sizes and 

orientation from the previous frame. A 3D object tracking algorithm can build 

the correspondence between the target objects in a current frame and reference 

objects from the previous frame. The 3D data registration algorithm will 

eventually figure out the analogous geometric transform between reference 

objects and target objects. The adjustment will be conducted on the boxes in 

the target frame. 

 

Figure 2.14: Comparison of results between POINTS and PointAtME (Li et al., 

2020). 

 

The performances of POINTS are evaluated in terms of annotation 

speed and annotation errors. The annotation accuracy is determined by 

comparing the labour-intensive annotation results and ground truth. The results 
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were obtained by three inexperienced users. According to Figure 2.14, the 

labelling time used in POINTS is much shorter compared to PointAtMe. 

Besides, the errors, false-positive ratio, and false-negative ratio are less than 

1 %. It can be concluded that POINTS can produce more accurate labels in a 

shorter time. This is because POINTS is convenient to use and easy to 

understand the operation.   

 

2.5 Summary 

In conclusion, 3D point cloud labelling is very useful in object recognition and 

computer vision. Nowadays, more and more technologies adapt 3D point 

cloud labelling techniques in many applications, such as robotics, self-driving 

car, urban planning, disaster management, and so on. Some of the applications 

require object recognition skills to perform efficiently, and 3D point cloud 

labelling contributes much to these sectors. Therefore, there are many labelling 

tools perform labelling operation by using different methods. There are two 

types of labelling, including automatic and manual 3D point cloud labelling. 

           For automatic labelling, by using the voxel-based CNN technique, the 

overall accuracy is 93 %, which is relatively high. However, it may take a 

longer time to finish the process and poor in detecting an extra-large object. 

The accuracy in recognizing large objects is relatively low. The advantage of 

using the voxel-based CNN technique is the technique neglects the 

segmentation. Apart from that, the semantic labelling process of SnapNet is 

done in 2D images. When all the 2D images are labelled, the images will be 

projected back to the original 3D point cloud. This process may cause the loss 

of detailed information, and the results obtained will not accurate. Next, patch 

context analysis combined with multiscale processing will produce a result, 

which is more accurate compare to 2D deep segmentation network methods. 

The overall accuracy and average class accuracy are 88 % and 75.6 %, 

respectively. 

           For manual labelling tools, it can be classified into two categories, 

including screen-based and VR-based. PointAtMe is a VR-based system, 

whereas 3D BAT, LATTE, and POINTS are screen-based systems. The VR-

based system can provide a better experience feeling, but motion sickness and 

inaccurate operation will affect labels' quality and accuracy. It is quite difficult 
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to control Oculus touch controllers to label the objects in VR world. Therefore, 

a screen-based system is preferable. In the screen-based system, it can be 

classified into PC-based and web-based systems. The PC-based system needs 

software installation, whereas web-based systems enable users to open the user 

interface through web browsers. 3D BAT, LATTE, and POINTS are web-

based systems. The accuracy of these three user interfaces is quite high. 

Among three user interfaces, 3D BAT takes longer time than LATTE and 

POINTS to load all the point clouds and images. Besides, LATTE and 

POINTS have the fast annotation features. One-click annotation of LATTE 

and interactive box fitting of POINTS effectively reduces the annotation time 

and reduces labelling objects' complexity in a 3D point cloud. Apart from that, 

both LATTE and POINTS can transfer the annotations in a sequence of frames. 

However, the 3D box initialization algorithm of POINTS can recognize the 

classes of the labelled objects by determining the objects' dimensions. In 

addition, POINTS contains more functions in visualization modules compare 

to LATTE. The features in visualization module will ease the operation of user 

interface. The accuracy of labels depends on the annotators.  

In this project, manual 3D point cloud labelling tools will be selected 

to achieve the aim and objectives of this project, which is providing a 

convenient user interface for users to traverse in a 3D environment and label 

the points or regions of point clouds. Among four manual labelling tools, 

POINTS will be adopted to continue this project as it is convenient and easy to 

use, and the accuracy of labels is quite high. The other user interfaces will be 

set up to make the comparison between the user interfaces’ performances. 

Further improvements can be made to obtain maximized labels' accuracy 

within minimum time and make it easier for inexperienced users to use. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter will discuss the methods used to complete and achieve the 

objectives of this project. This project's methodology will be described 

properly by providing all the necessary details to conduct the project. Besides, 

a work plan is concerned about planning the project with the activities 

identified and explained well. Gantt charts can describe the work plans for the 

part I and part II projects. The duration of the whole project is one year. 

Therefore, the part I project had been conducted in May semester 2020, and 

the part II project had been carried out in January semester 2021.   

This project aims to compare the user interface for labelling 3D point 

clouds. Before starting the software development, accessing other user 

interfaces on point cloud labelling is important to get the ideas. The first two 

tools that had been tried out are CloudCompare and Meshlab. Some raw point 

clouds had been downloaded from the webpage and opened by using 

CloudCompare and Meshlab. According to the literature review, manual open-

source 3D point cloud labelling tools will be selected to achieve this project's 

aim and objectives. This project was decided to be done by using a screen-

based system instead of a VR-based system. This is because VR device is 

relatively expensive, and therefore less accessible. Screen-based system allows 

the users to label the objects in 3D point clouds on a PC by using a mouse and 

keyboard. 

 

3.2 Tools for Implementation of Algorithms 

In this project, POINTS was adopted to be modified. An IDE will be used to 

run the algorithm. Visual Studio Code was selected as the IDE for this project. 

Visual Studio Code is a free and open-source code editor, which can run in 

Windows, Linux, and macOS (Visual Studio Code, n.d.). This IDE supports 

IntelliSense, run and debug, built-in Git, and a lot of extensions. It also 

supports the programming languages used in POINTS, including Python, 

JavaScript, CSS, and HTML. Visual Studio Code aims to provide simple tools 
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that are needed for the code-build-debug cycle, which is much easier to use 

than complex workflows of full-featured IDE, such as Microsoft Visual Studio. 

Besides, POINTS is a web-based labelling tool. Web browsers, including 

Mozilla Firefox, Google Chrome, etc., are necessary to open the user interface. 

Most of the web browsers support this user interface. 

 

3.3 Software Development 

 

Figure 3.1: The flows to conduct the project. 

 

Figure 3.1 shows the flow to conduct the overall project. First of all, POINTS 

will be set up. POINTS needs a pre-trained model. The 

‘deep_innotation_inference.h5’ file, which consists of the DNN-based 

interactive point cloud annotation algorithm, is downloaded. This algorithm is 

created by modifying the code of PointNet, which the library used to build up 

the algorithm is TensorFlow 2.1. PointNet uses a single symmetric function 

and max-pooling to handle an unordered input set (Qi et al., 2017). The 

network will select and encode the point cloud points by learning a set of 

optimization functions. The final full network layers will combine the optimal 

values learned from the network and stored them in the global descriptor for 

shape segmentation or shape classification. Before starting the operation of 

PointNet, a data-dependent spatial transformer network will be built, which 

can canonicalize the data. If each point is transformed independently, the input 
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format is relatively simple to apply affine transformations, which will improve 

the performance of PointNet. After install the pre-trained model, the required 

packages were installed with the command ‘pip install -r requirement.txt’. 

Ensure that the Python, CherryPy, and TensorFlow versions are larger than 2.1. 

           The web applications of POINTS are built using CherryPy. CherryPy is 

an object-oriented HTTP framework, which allows developers to build the 

web application easily. CherryPy is written in Python. The developer will 

spend lesser time developing smaller source code. In this project, JavaScript, 

HTML, and CSS are used to add the user interface's functions or tools and 

design the user interface. CherryPy provides support to serve the static content, 

including JavaScipt, HTML, CSS, and images, to end-users. When running the 

main python code, the server will start to set up the web application. As the 

application is ready to be used, users can access the application on the address 

http://127.0.0.1:8080 by using web browsers.   

           This user interface consists of two main components: visualization 

modules and 3D bounding boxes interactive tools. Visualization modules can 

review the labelling results in terms of 3D bounding boxes, distinguish data of 

different objects, and display projective views of an object in top, front, and 

side view. All the user interface tools were written in JavaScript, and the 

design of the user interface was written in HTML with CSS. The index.html is 

used to set up the user interface structures, and the main CSS is used to 

describe the presentations of structures, such as fonts, colours, layout, size, and 

so on, from index.html. The scene_reader.py is functioned to load the point 

clouds and images. The file format of point clouds and images that can be 

loaded is PCD and jpg format, respectively. As the annotator finishes the 

annotations, it will read the annotations and save the annotations in a JSON 

file. The main.py will import the scene_reader.py. After running the main.py, 

the user interface displays visualization modules as the CherryPy will load the 

index.html and scene_reader.py. The visualization modules consist of the main 

view, projective views, images, point clouds, context menu, and fast-floating 

toolbox.  

On the other hand, the 3D interactive tools mainly consist of 3D box 

initialization, interactive box fitting algorithm, and 3D box editing in 

perspective view and projective view. 3D interactive tools are used to ease the 
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labelling process for the user. 3D box editing in perspective view and 

projective view enables the user to edit the bounding boxes in two ways. As 

the bounding box is selected, the projective views will show the bounding 

box's top, front and side views. The adjustment made to the bounding box in a 

projective view will affect the perspective view and vice versa, which means 

both projective views and perspective view are correlated. 3D box 

initialization is working with interactive box fitting. As a bounding box is 

created to enclose an object in point clouds, the box's orientation is upward. 

Then, all of the object's points will be predicted by using the Euclidean 

distance-based growing algorithm. After that, an interactive box fitting 

algorithm will be used to reduce the box size to enclose only the objects' 

points.  

A good user interface enables users to understand and use it intuitively. 

The user interface must be simple but contain sufficient tips and tricks to help 

the operation of users. Some improvements will be carried out to ease the 

annotations for inexperienced users. The initial design of POINTS only 

consists of one main view. Inexperienced users might not know how to control 

the user interface to make labels on the objects. Therefore, one tab was added. 

There are three tab contents, including main UI, instruction, and shortcut keys. 

The tab is created using combination of HTML, JavaScript and CSS, which 

can refer to APPENDIX A. HTML is used to design the structures of tab, 

while CSS is used to style the colour, font, position, etc. JavaScript is written 

to provide function to the tab. The main UI tab consists of the original content 

of the POINTS. For the instruction tab, a teaching video provides a guide to 

the novices to master this user interface in a short time without going to the 

GitHub webpage to search the teaching video. This instruction video was 

recorded by using a screen recording of a laptop. Then, after editing the video 

and inserting captions to the video, the video was uploaded to Youtube. The 

<iframe> tag was used to import the video from Youtube to this tab. Besides, 

the shortcut keys of keyboard and operation of mouse for perspective view and 

the projective view were listed in two tables. The tables’ structures were done 

using HTML, while the design of the structures, such as font, colour, size, and 

so on, was done using CSS. The time needed to learn and understand the user 

interface, and the annotation time will be significantly decreased by adding 
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both instruction and shortcut keys tabs. Apart from that, for the projective 

views, the original user interface shows only the point clouds in three views 

without mention the type of views. Therefore, the words 'top view', 'front view', 

and 'side view' were added to the specific views to make inexperienced users 

recognize the projective views. Furthermore, a timer function was added to the 

'Main UI' tab. The HTML, CSS and JavaScript codes of timer function can 

refer to APPENDIX A. This built-in timer will start as the users open the user 

interface. This will make it convenient for users who want to record the 

labelling time because an external time keeper is unnecessary. These extra 

features may make the user interface more convenient to use and can be 

evaluated in terms of usability, which can achieve the objective of this project.    

After the modification of POINTS, 3D BAT and LATTE were set up, 

respectively. The first step to set up 3D BAT is cloning the repository using 

HTTPS from GitHub to a local computer. This is because clone a repository 

will make it easy to push or pull the changes to GitHub. Then, NPM with 

Node.js was installed in order to ease the JavaScript developers to share, reuse 

and update the code. An IDE with the integrated web server, PHP Storm, was 

downloaded and installed to run the code of 3D BAT. Some point clouds from 

the NuScene datasets were downloaded and extracted to the 'input' folder. 

Lastly, the required packages for the code of 3D BAT were installed by using 

the 'npm install' command. When all the things had been successfully installed, 

the 3D BAT user interface can run on localhost by using PHP storm.  

Once 3D BAT was successfully set up, the LATTE was set up. The 

first step is the same as 3D BAT, which is cloning the repository from GitHub. 

The pre-trained model, 'mask_rcnn_coco.h5' file, was downloaded and 

extracted to the 'Mask_RCNN' folder. After that, the command' pip3 install -r 

requirements.txt' was inputted, the dependencies will be installed. All the 

libraries needed are in the packages. After successfully installing the required 

packages, the user interface can work by running the 'app.py' Python code. 

Once the system was ready, the user can open the user interface on a web 

browser through http://127.0.0.1:5000/ address. 

           Once the three user interfaces were successfully set up, a comparison 

between POINTS, 3D BAT, and LATTE, which are web-based 3D point cloud 

labelling tools, is carried out to evaluate user interfaces performance. The 
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same point cloud scene from KITTI datasets in BIN file format was used as 

reference point clouds. POINTS and 3D BAT can load the point clouds in 

PCD format files instead of BIN format files. Therefore, conversion of the 

BIN to PCD format is necessary. A BIN to PCD algorithm was applied to 

convert the BIN file to a PCD format file. The Python code for the conversion 

can refer to APPENDIX A. After the conversion was done, the comparison 

between POINTS, 3D BAT, and LATTE was conducted. The performances of 

these user interfaces are evaluated in terms of usability and labelling speed. 

The usability includes instruction and shortcuts, projective views, fast 

annotation feature, timer, and main view focus mode. For the labelling speed, 

evaluation of results is in terms of time. Thus, the objectives of this project 

will be achieved. Screen recording on a laptop can record the labelling process 

in user interfaces. The accuracy of a user interface can be determined by 

comparing the labelling result to ground truth. 

 

3.4 Schedule of Project Activities 

Project planning is an important criterion to ensure that the project can be done 

on time. Schedule planning is a critical component of time management. Gantt 

chart is a great way to show the schedule in a simple form. Allocation of time 

wisely helps the completion of a project become more efficient. In this project, 

the whole project duration is one year and separated into parts I project and 

part II project. The part I project had been conducted in May semester 2020, 

and the part II project had been carried out in January semester 2021.   

 

Table 3.1: The Gantt chart of the activities in part I project for 14 weeks. 

No. Project Activities 
W

1 

W

2 

W

3 

W

4 

W

5 

W

6 

W

7 

W

8 

W

9 

W

10 

W

11 

W

12 

W

13 

W

14 

M1 Project Planning               

M2 Literature review               

M3 
Setup the 

environment 
              

M4 Report writing               

M5 Oral presentation               
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Table 3.1 shows the schedule planning for 14 weeks of May semester 

2020. It is mainly consisted of five activities to complete part 1 of the final 

year project. For the first two weeks, project planning was carried out with the 

aid of the supervisor, Dr. Ng Oon-Ee. Dr. Ng had clearly defined the aim and 

objectives of this project and the desired outcome to help in effective project 

planning. Besides, Dr. Ng had given some suggestions for allocating time to 

finish the project on time. With the aid of Dr. Ng, the project planning was 

done within two weeks.  

In weeks 2, literature reviews were carried out. The literature reviews 

are conducted to master the knowledge about the 3D point cloud. Some 

articles or journals about 3D point cloud labelling were being found from 

google scholar and the UTAR library. The article or journal discussed in-depth 

the problem encountered in 3D point cloud labelling and proposed methods to 

accomplish the 3D point cloud labelling and overcome the problems. The 

literature reviews were conducted within nine weeks. Among all the articles or 

journals, three automatic 3D point cloud labelling tools and four manual 3D 

point cloud labelling tools had been reviewed. Three automatic 3D point cloud 

labelling tools are voxel-based 3D CNN, Patch Context Analysis and 

Multiscale Processing, and SnapNet. In contrast, four manual 3D point cloud 

labelling tools are PointAtMe, 3D BAT, LATTE, and POINTS. The literature 

reviews had been done in week 10.  

Besides, to set up the environment, research was carried out. The 

environment was planned to be set up from week 3 to week 7. However, the 

plan had been delayed until week nine and done on 10 August 2020. This is 

because it is necessary to do revision for midterm tests and do the assignment, 

which causes a lack of time. The next activity, report writing, was started from 

week 7. The report consists of four parts, including introduction, literature 

review, methodology and work plan, as well as problems and recommended 

solution. The introduction describes the general knowledge about 3D point 

cloud and object labelling in the 3D point cloud and defines the aim and 

objectives of this project as well as states the current problem in 3D point 

cloud labelling. The literature review part was done with the discussion on the 

articles or journals in-depth about the methods used to label the point clouds in 

3D space. The methodology and work plan part describe the methods used to 
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achieve this project's aim and objectives and the detail of the project planning 

and managing. The report had been done in week 13, on 9 September 2020, 

and submitted on time. Lastly, preparation of oral presentation was carried out 

in week 13, and the presentation was conducted on 15 September 2020. All of 

the activities were done on time, except setting up the environment had been 

delayed for two weeks. Then, the part II project was conducted in January 

semester 2021, and the duration was 14 weeks. This project will be fully done 

in part II project.    

 

Table 3.2: The Gantt chart for the activities in part II project for 14 weeks. 

 

Table 3.2 shows the Gantt chart for the part II project for 14 weeks of 

January semester 2021. It is mainly consisted of six activities to be 

accomplished in the part II project. Firstly, the software development was 

carried out starting from week 1. The duration for software development will 

be longer. Therefore, nine weeks are given to complete software development 

due to the modification and improvement of code that will be carried out. The 

works described in section 3.3 are software development, in which the code of 

POINTS was adopted and improved by some modifications. Software 

development had been done on 18 March 2021, which follow the planned 

schedule.  Then, the preliminary test was carried out from week 4 to week 6. 

By carrying out the preliminary test, the software's performance can be 

evaluated, and the problems can be recognized earlier. Therefore, the software 

can be improved to overcome the problems encountered and boost the user 

interface's performance. The testing was done on week 6. The results and 

No. Project Activities 
W

1 

W

2 

W

3 

W

4 

W

5 

W

6 

W

7 

W

8 

W

9 

W

10 

W

11 

W

12 

W

13 

W

14 

M1 Software development               

M2 Preliminary testing               

M3 Result and discussion               

M4 Evaluation of the        
performance 

              

M5 Poster design               

M6 Report writing               
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discussion were conducted in week 6. The discussion on the obtained results 

was carried out to analyse the user interface's performance.  

Besides, evaluation of the designed user interface's performance was 

carried out along with results and discussion. The duration of this activity is 

seven weeks, which was starting from week 6. The performance of POINTS 

was compared to 3D BAT and LATTE, which are open-source web-based 

labelling tools. The evaluation of the labelling tools' performance was done on 

the same open-source point cloud scene from KITTI datasets. This activity 

was conducted until week 12 as the designed user interface may be modified 

or improved, which may affect the performance. All the results had been 

obtained before 10 April 2021. The deadline for the submission of the poster 

was on week 12. The final design of the poster had been done on 8 April 2021, 

before the deadline on week 12. Finally, the report writing started from week 8 

to ensure the time is sufficient to complete the report properly. The report was 

successfully done on 17 April 2021. All the activities had been completed 

follow the Gantt chart in Table 3.2. Upon the final report had been submitted, 

the presentation had been prepared. 

 

3.5 Problem Faced and Solutions 

In this project, three user interfaces were set up for comparison. During setting 

up POINTS, 3D BAT, and LATTE, there are some problems encountered, 

which cause the user interface cannot to work well.      

 

3.5.1 Setup POINTS 

First of all, in order to set up POINTS, Python, CherryPy, and TensorFlow 

libraries was necessary. The versions of these libraries must be larger than 2.1. 

Initially, the Python version on a local computer was 3.7.4. Then, the latest 

version of CherryPy 18.6.1 and TensorFlow 2.4.1 was successfully installed 

by input the commands "pip install cherrypy" and "pip install tensorflow" in 

the terminal. Then, the command "pip install -r requirement.txt" was inputted 

to install all the required libraries to set up POINTS. However, there was an 

error encountered during the installation of the packages. The showing error is 

"Fix the pip error: Couldn't find a version that satisfies the requirement". 

Therefore, all the versions of libraries in the package were checked in order to 
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determine the required version of Python for the libraries in packages. 

However, it is quite difficult to check all the libraries in the package, as it 

consists of more than 80 libraries in the package. Therefore, the Python 

version was upgraded to Python 3.8.8, and it can successfully install all the 

libraries in the package. This is because some of the libraries in the package 

need Python version 3.8 to support. After running the main.py function, the 

server will be ready to use, and the web application can be opened through 

http://127.0.0.1:8080 by using web browsers. 

 

3.5.2 Setup LATTE 

During the installation of required libraries in the package of LATTE, one 

library called Matplotlib with 3.0.3 version was unable to be built and installed. 

The version of Matplolib is specific as the developer uses this version to build 

up the algorithm. The errors show FreeType and Libpng are not found. Thus, 

wheels for the Matplotlib 3.0.3 version were downloaded and installed. After 

the installation was done, the error was still there. This is because Matplotlib 

needs some dependencies, including Python, Numpy, setup tools, cycler, 

Dateutil, Kiwisolver, Pillow, and Pyparsing, with specific versions or larger 

than the specific versions. After researching Matplotlib 3.0.3, pip is trying to 

build from sources as it allows to provide wheels for Python 3.5 to 3.7 version 

instead of 3.8 version. Therefore, the Python version was downgraded to 

Python 3.7.9. After downgrade the Python version, LATTE was successfully 

to be setup.  

 

3.5.3 Setup 3D BAT 

There was no error detected during setting up 3D BAT. However, if the 

index.html of 3D BAT is directly open in the browser, it cannot load the PCD 

files. The user interface is displaying the images and some tools. This is 

because the user interface will occupy large CPU usage and relatively slow to 

load all the PCD files. This user interface works well on GPU instead of CPU. 

It is necessary to use localhost to open the user interface. 

In the beginning, the tool used to open 3D BAT is Visual Studio Code. 

Visual Studio Code does not consist of a built-in web server. Thus, Visual 

Studio Code unable to open the index.html file using localhost. After installing 
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the NPM and Node.js, the PCD files are unable to be loaded as well. Thus, 

another solution was implemented to run 3D BAT. PHP Storm was used 

instead of Visual Studio Code. This is because PHP Storm has a built-in web 

server. After that, 3D BAT is able to load all the point clouds, images and 

tools. However, there is a limitation for PHP Storm. This IDE is not free of 

charge. It provides a duration time for trial only. If the duration time is past, 

the PHP Storm can work for 30 minutes. Since 3D BAT is used for 

comparison, hence it will not affect much.   

 

3.5.4 Conversion of KITTI Dataset File Format 

 Besides, during the comparison of three user interfaces, all user 

interfaces are working with different file format types of point clouds. In this 

project, point cloud scene from KITTI datasets in BIN file format were used as 

reference point clouds. Due to POINTS and 3D BAT are only able to work 

with point clouds in PCD format. Thus, the point clouds from KITTI datasets 

are necessary to be converted into PCD format. The first try is using 

CloudCompare to do the conversion of BIN file to PCD file. However, the 

PCD file format after conversion is not suitable for 3D BAT and POINTS. 

Then, another algorithm was built in Python. There are two libraries needed, 

including struct and open3d. Struct library was used to convert Python values 

into a string of bytes and vice versa, whereas open3d is a library used to 

perform 3D data processing. Firstly, the struct.unpack() function was used to 

convert the string of binary representations into the original representations 

with the specified format in terms of x, y, z, and intensity. After the conversion, 

the results of x, y, and z were appended into the NumPy array. The NumPy 

array will be passed to open3d.o3d.geometry.PointCloud() function to obtain 

the geometry of point clouds. After that, open3d.utility.Vector3dVector() 

function was used to convert the NumPy matrix to 3D vectors. Lastly, 

o3d.io.write_point_cloud() function is used to write the point cloud into a PCD 

file. The original point clouds in BIN file format were successfully converted 

into PCD file format using this algorithm, and both POINTS and 3D BAT can 

load the converted PCD files. 
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3.6 Summary 

POINTS is the selected user interface to be adopted in this project. After 

modification of POINTS, the other two open-source user interfaces, 3D BAT 

and LATTE, are set up as well. A comparison between three user interfaces 

will be conducted to achieve the objectives. The results will be evaluated in 

terms of usability and labelling speed of user interfaces. All of the project 

activities are considered done on time and followed the planning in the Gantt 

chart. Lastly, the problems faced during set up POINTS, 3D BAT and LATTE, 

and the conversion of the point clouds file format are successfully overcome. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This research aims to compare the user interfaces for 3D point cloud labelling, 

which enables users to traverse the 3D environment and label volumes of 

points in a 3D point cloud. By adopting an open-source user interface from the 

web and modifying it, the results obtained will be analysed by comparing the 

result with other open-source user interfaces. The results were collected using 

three different user interfaces to label the same point cloud scene from the 

KITTI dataset.   

 

4.2 Comparison of User Interface  

Due to the 3D point cloud labelling tools in the marketplace are pretty 

expensive, the comparison of open-source user interfaces will be made to 

select a free and convenient user interface, which can perform well. 

Comparison of the user interfaces' useful features can achieve the objective in 

this project, which is evaluating usability between the user interfaces. An 

open-source user interface with useful features to ease the labelling process 

can be determined. If the open-source 3D point cloud labelling tool consists of 

some useful features as the 3D point cloud labelling tool in the marketplace, 

the problem can be overcome.  

This project's aim and objectives were achieved by setting up three 

different open-source user interfaces, including POINTS, 3D BAT, and 

LATTE, because the comparison can be made between these three user 

interfaces. POINTS, 3D BAT, and LATTE are screen-based and web-based 

user interfaces, which can run using a web browser on the computer. All three 

user interfaces allow users to traverse in a 3D environment. The labels can be 

made in perspective views. The labels for POINTS and 3D BAT are 3D 

bounding boxes, whereas the labels for LATTE are 2D bounding boxes. The 

bounding boxes for different classes will be assigned with different colours in 

POINTS and 3D BATS, whereas the colour of bounding boxes in LATTE for 

different classes are the same. The points of objects enclosed by bounding 
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boxes will be highlighted in the same colour as bounding boxes in POINTS. 

The bounding boxes and object colouring will make the user easy to recognize 

the classes for the objects. The evaluation of usability was conducted by 

comparing user interfaces' valuable features, including instruction and 

shortcuts, projective views, editable in projective views, fast annotation feature, 

timer, and main view focus mode. 

 

4.2.1 Instruction and Shortcuts 

Table 4.1: Instruction and shortcuts of user interface. 

User interface Instruction and Shortcuts 

POINTS ✔ 

3D BAT ❌ 

LATTE ❌ 

 

Figure 4.1: Tabs for user interface. 

 

Figure 4.2: Tab contents of main UI tab. 

 

According to the 3D point cloud labelling tool, Amazon Sagemaker Ground 

Truth in the marketplace (AWS, n.d.), it consists of instructions and shortcuts 

tabs. In the beginning, there is no instruction and shortcuts embedded in 

POINTS. There is a problem faced if asking an inexperienced user to make a 

label to point clouds intuitively in the user interface. As an example, if the user 
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interface is set up by person A and person B was the user who asked to label 

the point clouds. Person B may have no idea how to operate without guidance. 

Therefore, instructions and shortcuts features were added in POINTS. Three 

tabs in horizontal were added in POINTS.  

Figure 4.1 shows three tabs, including main UI, instruction, and 

shortcut keys. The main UI tab was set to default open. Figure 4.2 shows the 

contents of the main UI, which consists of point clouds and images with 

various features for the user to label the point clouds. The tab contents of 

instruction and shortcut keys are new features added. Figure 4.3 shows the tab 

contents of the instruction tab. In the instruction tab, there is a video showing 

the steps to labels an object in point clouds. The instruction video is teaching 

the labelling steps in both perspective view and projective views. Therefore, 

users can refer to the instruction video as a guidance without online searching 

for teaching instruction from the developer.  

 

 

Figure 4.3: Tab contents of instruction tab. 
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Figure 4.4: The tab contents of shortcut keys tab. 

 

 In addition, the last tab is shortcuts. According to Figure 4.4, this tab 

consists of two tables showing the keyboard and mouse functions for both 

main view and projective view. Figure 4.5 and Figure 4.6 below shows the 

clear version of tables of keyboard shortcuts and mouse functions for the 

perspective view and projective views in shortcuts tab.  

With the aid of both instruction video and shortcut lists, the user will 

be more understanding the user interface's operation. The user can refer to the 

video and tables in this user interface when forget some of the user interface 

functions to operate. Among all three user interfaces, POINTS is the only one 

that provides an instructional video and the list of shortcuts. The instructional 

video and the list of shortcuts will provide enough information for the user to 

make labels on the point clouds and further reduce the time to master the user 

interface's operation.    
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Figure 4.5: Keyboard shortcuts and mouse function for perspective view in 

shortcuts tab. 

 

 

Figure 4.6: Keyboard shortcuts and mouse function for projective views in 

shortcuts tab.
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4.2.2 Projective Views of User Interface 

 

Figure 4.7: Projective view of POINTS. 

 

 

Figure 4.8: Projective views of 3D BATS. 
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Table 4.2: Projective views of user interface. 

User interface Projective view Editable in projective view 

POINTS ✔ ✔ 

3D BAT ✔ ❌ 

LATTE ❌ ❌ 

 

According to the 3D point cloud labelling tools in the marketplace, Amazon 

Sagemaker Ground Truth, Playment.io (Playment, n.d.), and Supervise.ly 

(SUPERVISELY, n.d.), the user interfaces consist of projective views. When 

the bounding box is created, the projective views, including the top, front and 

side views, are displayed. Besides, the 3D point cloud labelling tools in the 

marketplace enables the user to edit in projective views as well.  

Figure 4.7 and Figure 4.8 show the projective views of POINTS and 

3D BAT, respectively. According to Table 4.2, among the three user interfaces, 

POINTS and 3D BATS consist of projective views to show the bounding box's 

top, side, and front views, whereas LATTE does not have the projective views. 

The projective views of POINTS are much clearer than the projective views of 

3D BAT. This is because the projective views of POINTS are focused on the 

selected object. The projective views of 3D BAT are quite difficult to see as 

there are several bounding boxes displayed in the projective views. With 

projective views, the bounding box with point clouds is clearly displayed in 

three views, and it will ease the inspection of the labelling result. The changes 

in perspective view and projective views are simultaneously. In contrast, 

without projective views, the user needs to rotate the perspective view to 

inspect and make sure a bounding box had enclosed all the object' points. This 

will increase the labelling time and become inefficient. 

Among the three open-source user interfaces, POINTS is the only one 

enables the user to edit and adjust the bounding box in projective views. It is 

convenient to adjust the box in projective views as the user no need to change 

the viewpoint in perspective view from time to time. Editing in projective 

views is much easier than editing in perspective view, as the projective views’ 

adjustment is based on two dimensions view. The height, width, and length of 

the bounding box can be adjusted in the projective views accordingly. Thus, 
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this feature will help the user complete the labels effectively as the bounding 

box's adjustment in projective views is relatively simple. 

 

4.2.3 Fast Annotation Feature 

Table 4.3: Fast annotation feature of user interfaces. 

User interface Fast annotation feature 

POINTS 3D interactive box fitting algorithm 

3D BAT ❌ 

LATTE One click annotation 

 

According to Table 4.3, 3D interactive box fitting algorithm and one-click 

annotation are applied in POINTS and LATTE, respectively, whereas 3D BAT 

does not have any fast annotation feature. The function of the fast annotation 

feature of POINTS and LATTE is different.  

The interactive box fitting algorithm was described below. The inputs 

of interactive box fitting algorithm: 

 

𝑃 ∈ 𝑅𝑛×3 

𝑏 = (𝑝, 𝑠, 𝑟) 

𝑜 = (𝑟′, 𝑠′) 

𝑝, 𝑠, 𝑟 ∈ 𝑅3 

where 

𝑃 =  𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑 

𝑏 =  𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑏𝑜𝑥 

𝑜 =  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑝, 𝑠, 𝑟 =  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑠𝑐𝑎𝑙𝑒, 𝑎𝑛𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

𝑟′, 𝑠′ =  𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒𝑠 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑎𝑛𝑑 𝑠𝑐𝑎𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

 

Firstly, all of the points, 𝑅, which inside 𝑏 will be found. Then, a coordinate 

system, 𝐵′, is built out with original 𝑃 and 𝑟 + 𝑟′, and a coordinate range, 𝑐, 

which is represented x, y, and z coordinate ranges is composed by applying 

𝑠′on 𝑠, as the operation had been carried out. A new point cloud, 𝑃′ , was 

computed to represent the point cloud, 𝑃, in the coordinate system 𝐵′. In order 
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to find 𝑅′ , two conditions will be tested. If the points in 𝑃′  consist of the 

original points, 𝑅, the points are added to 𝑅′. Besides, the points will be added 

to 𝑅′ as well, as the points in 𝑃′ are within the coordinate range 𝑐. Then, the 

coordinate range, 𝑑 , of 𝑅′  can be computed to find the maximum and 

minimum values of x, y, and z coordinate axis. After that, the position, 𝛿𝑝 and 

scale, 𝑠′′ can be computed in coordinate system, 𝐵′, according to coordinate 

range, 𝑑 . 𝛿𝑝′  will be figured out to represent the 𝛿𝑝 of original coordinate 

system. Thus, the new box, 𝑏′ obtained is: 

 

𝑏′ = 𝑝 + 𝛿𝑝′, 𝑠′′, 𝑟 + 𝑟′ 

  

For the 3D interactive box fitting algorithm, the user needs to drag a 

rectangular to create a bounding box on an object in point clouds. The created 

bounding box should be slightly larger than the object. Then, it will 

automatically recognize the object in the bounding box and shrink the 

bounding box to fit the object. Besides, it will automatically assign the desired 

classes for the labelled objects by changing the colour of the bounding box. 

This depends on the dimensions of the objects.  

 

 

Figure 4.9: Pipeline of one-click annotation feature (Wang et al., 2019). 

 

Figure 4.9 shows the pipeline of one-click annotation. For one-click 

annotation, three steps are required, including removing ground, clustering the 

points of an object, and estimating bounding box. Ground removal removes 

the noise in point clouds. After the ground removal process, a clustering 

algorithm is used to find the cluster. The clustering algorithm is based on 

DBSCAN. When a human clicks a point, the algorithm will find the nearby 

cluster to the point. The cluster is considered as an object. As the clustering 



50 

algorithm finds a cluster of the point, a 2D bounding box is estimated and 

displayed on the object's top. The bounding box estimation is based on the 

search-based rectangular fitting algorithm. The user only needs to right-click 

on the object's point in point clouds without dragging a box. After right-click 

the points, a two-dimension rectangular will be automatically displayed on the 

top of the object. The bounding box in LATTE is two dimensions without the 

thickness of the box.  

Theoretically, one-click annotation is faster 3D interactive box fitting 

algorithm, as it just needs one click only on a point of an object. However, it is 

very dependent on the CPU and GPU of the computer. When the labelling 

process is carried out in POINTS, CPU and GPU usage is not more than 10 %, 

and the bounding box will come out immediately. When one click annotation 

is used in LATTE, CPU and GPU usage is around 45 % and 60 %, 

respectively. There is a delay of about 10 seconds to display the bounding box. 

Therefore, the one-click annotation may cause the user interface to crash if the 

specification of CPU and GPU of the computer is too low. Both features will 

add benefit for users to complete the labelling in a shorter time. However, the 

required specifications of computer for POINTS are low, and the performance 

of 3D interactive fitting box is fast and smooth.  

 

4.2.4 Timer 

Table 4.4: Timer of user interfaces. 

User interfaces Timer 

POINTS ✔ 

3D BAT ✔ 

LATTE ❌ 

 

According to Table 4.4, an embedded timer is present in POINTS and 3D 

BAT. For 3D BAT and POINTS, a timer will start to count when the user 

interface is opened. Both timers will count the time in terms of hours, minutes, 

and seconds. It is pretty convenient for the user to record labelling time as the 

external timer is unnecessary. For example, the point clouds contain many 

objects, and users spend much time completing the labels. However, the user 
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forgot to record the time for the whole labelling process. It is pretty time-

consuming and wasting of time to label all the objects again and record the 

time. With the internal timer in the user interface, this kind of human error can 

be neglected as time had been recorded. The timer is much more convenient 

for researchers or developers who wish to figure out the user interface's 

labelling speed. 

 

4.2.5 Main View Focus Mode 

Table 4.5: Main view focus mode of user interfaces. 

User interfaces Main view focus mode 

POINTS ✔ 

3D BAT ❌ 

LATTE ❌ 

 

 

Figure 4.10: Main view focus mode in POINTS. 

 

According to Table 4.5, POINTS has a main view focus mode, whereas 3D 

BAT and LATTE do not have a main view focus mode. Main view focus 

mode functions to focus on the selected bounding box. Figure 4.10 shows a car 

with a bounding box in focus mode. The main view focus mode can be 

activated in the fast-floating toolbox as a bounding box is selected. When the 

focus mode is turned on, only the points enclosed by the bounding box will be 

automatically displayed at the centre of the main perspective view. The user 

interface will zoom in on the selected object with most of the background 

hidden. The object colouring feature of POINTS will colour the points in a 

Main view focus mode 
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bounding box. With the combination of main view focus mode, it allows the 

user to clearly inspect the label. The user can check the details of the selected 

object. This feature will ease the inspection of errors, which the user can check 

the labels of objects one by one. Thus, the accuracy of the labels in POINTS 

will increase. Without this feature, the user needs to change the viewpoints in 

perspective view from time to time to inspect the labels’ quality. It is pretty 

time-consuming, and the user may be lost in the 3D environment as it needs to 

rotate the perspective views to inspect. 

 

4.3 Evaluation of Fast Annotation Feature in terms of Time and 

Error 

Table 4.6: The time used and errors to label all the 12 objects of KITTI 

datasets for POINTS and LATTE using fast annotation feature. 

User Interface Time for all labels Average time for one 

object (s) 

Error 

POINTS 1min 17s 6.42 2 

LATTE 1min 23s 6.92 5 

 

 

Figure 4.11: Labelling using 3D interactive box fitting algorithm without 

adjustment of boxes. 
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Figure 4.12: Labelling using one-click annotation without adjustment of boxes. 

 

The comparison was made between POINTS and LATTE only, as 3D BAT 

does not have the fast annotation feature. The point cloud scene used is taken 

from KITTI datasets. The objective, evaluation of labelling speed of user 

interfaces, can be achieved by comparing the labelling time to finish all the 

labels in the point cloud scene. According to Table 4.6, the total time used to 

label all the objects in the point cloud for POINTS and LATTE is 1 min 17 s 

and 1 min 23 s, respectively. The average time for each label on an object of 

POINTS and LATTE is 6.42 s and 6.92 s, respectively. Thus, the annotation 

speed of POINTS is slightly faster than LATTE, which the average time for 

each label is 0.5 s faster. All of the labels are finished by one operation count 

without adjustment. Theoretically, the annotation speed of one-click 

annotation should be faster than the 3D interactive box fitting algorithm. The 

labelling time for each object of LATTE is 2.55 s (Wang, 2019). However, the 

laptop's CPU and GPU used to run the user interface are not strong enough, so 

there are some delays for the one-click annotation.  
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On the other hand, according to Figure 4.11 and Figure 4.12, there are 

two major errors in POINTS and five major errors in LATTE. The errors of 

POINTS are occurred on car 7 and car 9 in Figure 4.11, whereas the errors of 

LATTE have occurred on car 1, car 7, car 8, truck 9, and car 11 in Figure 4.12. 

The errors in POINTS are occurred due to the Lidar point cloud is too sparse, 

so the algorithm cannot recognize all the points enclosed in the objects, which 

results in a short length of bounding boxes for both car 7 and car 9. The errors 

of POINTS are short of length only, whereas most LATTE errors are the labels 

slightly crooked. In short, the 3D interactive box fitting of POINTS is faster 

and more accurate compared to the one-click annotation of LATTE.  

 

4.4  Evaluation of Annotation Efficiency of Three User Interfaces in 

terms of Time  

Table 4.7: Total time to finish all labels and average time for each object of 

three user interfaces. 

 

Figure 4.13: Final labelling results of POINTS. 

User Interface Time to finish all labels Average time for one object 

(s) 

POINTS 2mins 8s 10.66 

3D BAT 4mins 18s 21.5 

LATTE 2mins 42s 13.5 
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Figure 4.14: Final labelling results of LATTE. 

 

Figure 4.15: Final labelling results of 3D BAT. 

 

The results obtained are the total time used to label all the objects in the point 

cloud scene. The objective of this project, evaluation of labelling speed 

between user interfaces, can be achieved by comparing the labelling time for 

each user interface to finish all the labels. The point cloud scene used for the 

comparison comes from KITTI datasets. This point cloud is a LiDAR point 

cloud and consisted of 12 objects. The labelling process of POINTS and 3D 

BAT were recorded by using screen recording of a computer. Screen recording 

is not suitable for LATTE as it consumes many CPU and GPU spaces, where 

LATTE cannot work simultaneously with screen recording. The point cloud 

labelling of POINTS and LATTE was done with the aid of fast annotation 

feature. The errors were adjusted until the labels are just right, which were 
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compared to ground truth. The evaluation metric for 3D point cloud labelling 

tools is difficult to evaluate, since it does not have a standard benchmark 

metrics (Li et al., 2020). Basically, the evaluation of accuracy is based on IoU, 

FP ratio and FN ratio. IoU is the intersection over union of the labels from 

users and the ground truth. FP ratio is the ratio of points not belong to the 

objects being labelled and total points of the objects. In contrast, FN ratio is 

the ratio of points belong to the objects not being labels and total points of the 

objects. Figure 4.13, Figure 4.14 and Figure 4.15 show the final labelling 

results for POINTS, LATTE and 3D BAT, respectively. In this project, all of 

the labels for three user interfaces are considered true compared to the ground 

truth.      

According to Table 4.7, the total time used for POINTS, 3D BAT, and 

LATTE to label all the objects is 2 mins 8 s, 4 mins 18 s, and 2 mins 42 s, 

respectively. The average time used to label one object in the point cloud is 

10.66 s, 21.5 s, and 13.5 s, respectively. Thus, the labelling speed of POINTS, 

LATTE, and 3D BAT is fastest to slow according to the sequences. The main 

reason why the labelling speed of 3D BAT is slow is that 3D BAT does not 

have a fast annotation feature. Besides, editing a 3D bounding box in 

perspective view is pretty difficult. The rotation and translation of the 

bounding box should be done by the combination of keyboard and mouse. For 

LATTE, labelling speed is shorter than 3D BAT. The main reason for LATTE 

leads 3D BAT is because of the one-click annotation feature. The bounding 

box is two dimensions, which is much easier to adjust compared to 3D BAT. 

However, the labelling speed for LATTE is slower than POINTS. 3D 

interactive box fitting algorithm reduces much time to adjust the bounding box. 

As both POINTS and LATTE have fast annotation features, the labelling 

speed is shorter than 3D BAT. POINTS is the fastest because the bounding 

box can be adjusted in projective views, whereas the adjustment of the 

bounding box in LATTE should be made in the perspective view. 

 

4.5 Summary 

3D point cloud labelling is valuable and important. However, the convenient 

user interfaces for 3D point cloud labelling in the marketplace are pretty 

expensive. A comparison was conducted between open-source labelling tools 



57 

to select the most convenient user interface, which is free of charge and easy 

to use to overcome the problem. All objectives had been fulfilled as the 

comparison between open-source user interfaces, and evaluation of usability 

and labelling speed had been done.  

 

Table 4.8: The availability of useful features for three user interfaces. 

 POINTS 3D BAT LATTE 

Instruction and 

shortcut 

✔ ❌ ❌ 

Projective views 

(Top, Side, Front) 

✔ ✔ ❌ 

Editable in 

projective views 

✔ ❌ ❌ 

Fast annotation 

feature 

3D Interactive 

box fitting 

❌ One-click 

annotation  

Timer ✔ ✔ ❌ 

Main view focus 

mode 

✔ ❌ ❌ 

 

Among the three user interfaces, the performance of POINTS is the best. Table 

4.8 shows that POINTS consists of all the listed useful features. The functions 

of instruction and shortcuts, projective views, editable in projective views, fast 

annotation feature, timer, and main view focus mode are beneficial for users to 

master the user interface’s operation quickly, and convenient to use as the 

operation is pretty simple. The features aid the inspection of labels’ as well.   

Besides, the labelling speed was evaluated in terms of labelling time. 

The average labelling time of one object without adjustment using fast 

annotation features of POINTS and LATTE is 6.42 s and 6.92 s, respectively. 

The average labelling time of one object for POINTS, 3D BAT, and LATTE is 

10.66 s, 21.5 s, and 13.5 s, respectively. Among the three user interfaces, the 

labelling time for POINTS is the shortest. Thus, POINTS is the best open-

source and accessible user interface among all three user interfaces. POINTS 
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is a powerful and useful user interface for labelling 3D point clouds, which can 

perform well as or better than the 3D labelling tools in the marketplace.
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

A convenient user interface for 3D point cloud labelling means the user 

interface is easy to operate and the design of user interface is simple. The user 

interface allows user to traverse in 3D environment and make label in point 

cloud. Thus, the user interfaces, POINTS, 3D BAT, and LATTE, were 

successfully set up. PointAtMe unable to be set up is because the user interface 

is VR-based system, which needs to work with a VR device. 

By setting up three open sources user interfaces, the comparison 

between POINTS, 3D BAT and LATTE was conducted. The three user 

interfaces’ performances were evaluated in terms of usability and labelling 

speed. The usability is evaluated by comparing the useful features of user 

interfaces, which ease the operation of labelling and increase the labelling 

speed. With the aid of extra features, such as POINTS’s 3D interactive box 

fitting algorithm and LATTE’s one-click annotation, the labelling speed will 

improve a lot. According to the results, the extra features, including instruction 

and shortcuts, projective views, editable in projective views, fast annotation 

feature, timer, and main view focus mode, in POINTS allows user to 

understand the operation of user interface in short time and finish labelling all 

the labels in a shorter time compared to 3D BAT and POINTS. POINTS is a 

powerful and convenient user interface for labelling 3D point clouds. POINTS 

is able to perform well as or better than the 3D labelling tools in the 

marketplace. 

   

5.2 Recommendations for Future Work 

The scene of point cloud is 3D view. During the labelling process, users may 

need to zoom in and rotate the point clouds to label the objects. 3D 

environment contains more data compared to 2D images. For the 

inexperienced users, it is easy to get lost in 3D environment. They may not 

return back to original position. The only method can back to original position 
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is refreshing the web page. Thus, an algorithm is needed to restore the point 

cloud to the original position. The algorithm should obtain the original X, Y, 

and Z position of point clouds, which is the default position of the point clouds 

as the point clouds are selected. Then, a feature, such as button or symbol, can 

be added with the algorithm in POINTS. As the users click on the button or 

symbol, the scene of point clouds will return back to the original position. 

 

 

Figure 5.1: Example list for vehicle 0 in 3D BAT. 

 

 

Figure 5.2: Example list for vehicle 0 to vehicle 4 in LATTE. 
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Figure 5.1 and Figure 5.2 show the example list of 3D BAT and 

LATTE. Besides, one feature from 3D BAT and LATTE can be added into 

POINTS. When the labels are made, there is a list shows the labels with name 

and detailed information. For 3D BAT, the lists show the objects’ name and 

enable user to adjust the position and size of bounding box in the list. In 

contrast, for LATTE, the list shows the classes of objects and assigned with 

specific number. The modification can be made to combine both advantages. 

For example, when the user creates a bounding box on a car in point clouds 

and label the bounding box with car 1, the list will show the name, car 1 with 

the dimensions of bounding box, including length, width, and height of the car. 

The list shows the information only and the users are not allowed to change 

the information in the list. This is because POINTS provides a feature for users 

to assign the bounding box’s number and the adjustment of bounding box can 

be made in perspective view and projective views. The function of list is to 

show the information of labelled objects. Besides, by clicking the name of car 

in the list, POINTS will automatically move to the position of the car. The 

users can observe and inspect the labelled object conveniently.  

 Lastly, more AI-based algorithms can be added to ease the operation of 

POINTS. 3D object tracking algorithm can be added to work with annotation 

transfer algorithm of POINTS to obtain high quality labels. Firstly, 3D object 

detector detects the oriented 3D bounding boxes from point clouds (Wang et 

al., 2020). Then, state estimation and similar feature matching will be done 

using 3D Kalman filter and reidentification, respectively. Lastly, Hungarian 

algorithms work to do data association. This 3D object tracking algorithm is 

based on deep learning. Thus, by taking the benefit of this algorithm and 

combining with annotation transfer algorithm of POINTS, high quality of 

labels will be obtained.  
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APPENDICES 

 

APPENDIX A: Coding  

 

Figure A-1.1: HTML code for tab. 

 

 
Figure A-1.2: JavaScript code for tab. 

 

 

Figure A-1.3: HTML code for instruction tab contents. 
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Figure A-1.4: HTML code for shortcuts tab contents (1). 
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Figure A-1.5: HTML code for shortcuts tab contents (2). 
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Figure A-1.6: HTML and JavaScript code for timer. 

 

 

Figure A-1.7: CSS code for tab. 
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Figure A-1.8: CSS code for the tables in shortcuts tab. 

 

 

Figure A-1.9: CSS code for timer. 
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Figure A-1.10: Python code for conversion of BIN file format to PCD file 

format. 

 


