CONVENIENT USER INTERFACE FOR LABELLING 3D POINT
CLOUD

TAN SHI HAO

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Engineering

(Honours) Mechatronics Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

APRIL 2021

DECLARATION

I hereby declare that this project report is based on my original work except
for citations and quotations which have been duly acknowledged. I also
declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature
Name . TAN SHI HAO
ID No. . 16UEB04655

Date : 6 MAY 2021

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “CONVENIENT USER
INTERFACE FOR LABELLING 3D POINT CLOUD” was prepared by
TAN SHI HAO has met the required standard for submission in partial
fulfilment of the requirements for the award of Bachelor of Engineering

(Honours) Mechatronics Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature ; y

—
Supervisor : Dr Ng Oon-Ee
Date : 6 May 2021

Signature

Co-Supervisor

Date

iii

The copyright of this report belongs to the author under the terms of
the copyright Act 1987 as qualified by Intellectual Property Policy of
Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made

of the use of any material contained in, or derived from, this report.

© 2021, TAN SHI HAO. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful
completion of this project. I would like to express my gratitude to my research
supervisor, Dr. Ng Oon-Ee for his invaluable advice, guidance and his

enormous patience throughout the development of the research.

ABSTRACT

Nowadays, most labelling tools are able to label 2D images well. However, the
same cannot be said for 3D point clouds. Thus, the 3D point cloud labelling
tools are pretty expensive in the marketplace. This report reviews different
types of 3D point cloud labelling tools, including automatic and manual 3D
point cloud labelling tools. This project mainly focuses on manual open-source
user interfaces for 3D point cloud labelling. A comparison between the open-
source user interfaces was conducted. Objective evaluation of usability and
labelling speed between the user interfaces was carried out. The user interfaces
used for comparison are POINTS, 3D BAT, LATTE. Three of the user
interfaces are screen-based and web-based tools, and the comparison is made
using the same point cloud scene, taken from KITTI datasets. The usability of
the user interfaces was evaluated in terms of instruction and shortcuts,
projective views, editable in projective views, fast annotation feature, timer,
and main view focus mode. The labelling speed of the user interfaces is
evaluated in terms of time and errors. After the comparison, POINTS is the
user interface with many useful features, which aids the users to label easily
and faster. The labelling time of POINTS is the shortest among three user
interfaces. POINTS can perform well as or better than the 3D point cloud

labelling tool in the marketplace.

TABLE OF CONTENTS

DECLARATION
APPROVAL FOR SUBMISSION
ACKNOWLEDGEMENTS
ABSTRACT
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF SYMBOLS / ABBREVIATIONS
LIST OF APPENDICES
CHAPTER
1 INTRODUCTION
1.1 General Introduction
1.2 Importance of the Study
1.3 Problem Statement
1.4 Aim and Objectives
1.5 Scope and Limitation of the Study
1.6 Contribution of the Study
1.7 Outline of the Report
2 LITERATURE REVIEW
2.1 Introduction
2.2 Usefulness of Point Cloud Labelling
2.3 Automatic 3D Point Cloud Labelling
2.3.1 Voxel-based 3D CNN
2.3.2 Patch Context Analysis and
Processing
2.3.3 SnapNet
24 Manual 3D Point Cloud Labelling

2.4.1 PointAtMe
242 3D BAT

vi

ii

iv

vi
viii
ix
xi

xiii

O 0 9 9 N e i AW = e

9
Multiscale

11

13

17

17

20

vii

243 LATTE 21

244 POINTS 24
2.5 Summary 27
3 METHODOLOGY AND WORK PLAN 29
3.1 Introduction 29
3.2 Tools for Implementation of Algorithms 29
3.3 Software Development 30
34 Schedule of Project Activities 34
3.5 Problem Faced and Solutions 37
3.5.1 Setup POINTS 37
3.5.2 Setup LATTE 38
3.5.3 Setup 3D BAT 38
3.5.4 Conversion of KITTI Dataset File Format 39
3.6 Summary 40
4 RESULTS AND DISCUSSION 41
4.1 Introduction 41
4.2 Comparison of User Interface 41
4.2.1 Instruction and Shortcuts 42
4.2.2 Projective Views of User Interface 46
4.2.3 Fast Annotation Feature 48
424 Timer 50
4.2.5 Main View Focus Mode 51
4.3 Evaluation of Fast Annotation Feature in terms of
Time and Error 52
4.4 Evaluation of Annotation Efficiency of Three User
Interfaces in terms of Time 54
4.5 Summary 56
5 CONCLUSIONS AND RECOMMENDATIONS 59
5.1 Conclusions 59
5.2 Recommendations for Future Work 59
REFERENCES 62

APPENDICES 65

viii

LIST OF TABLES

Table 3.1: The Gantt chart of the activities in part I project for 14 weeks. 34
Table 3.2: The Gantt chart for the activities in part II project for 14 weeks. 36

Table 4.1: Instruction and shortcuts of user interface. 42
Table 4.2: Projective views of user interface. 47
Table 4.3: Fast annotation feature of user interfaces. 48
Table 4.4: Timer of user interfaces. 50
Table 4.5: Main view focus mode of user interfaces. 51
Table 4.6: The time used and errors to label all the 12 objects of KITTI
datasets for POINTS and LATTE using fast annotation feature. 52

Table 4.7: Total time to finish all labels and average time for each object of
three user interfaces. 54

Table 4.8: The availability of useful features for three user interfaces. 57

X

LIST OF FIGURES

Figure 2.1: 3D LiDAR point cloud (Daniel, n.d.). 7
Figure 2.2: The LiDAR point cloud with cuboid labels (Koh, 2018). 8
Figure 2.3: The pipeline of the labelling system with two different types of
modules (Huang and You, 2016). 10
Figure 2.4: The pipeline for the labelling system (Hu, Cai and Lai, 2020). 12
Figure 2.5: The labelling performances on the ETH dataset with 25 classes
(Hu, Cai and Lai, 2020). 12
Figure 2.6: The pipeline of SnapNet by using 2D deep segmentation network
(Boulch, et al., 2017). 14
Figure 2.7: Semantic labelling of photogrammetric data. The left one is RGB,
the middle one is depth composite and the right one is prediction map
(Boulch, et al., 2017). 16
Figure 2.8: View generation strategy for RGB-D data (Boulch, et al.,2017). 16
Figure 2.9: The left and right Oculus Touch Controller (Wirth, et al., 2019). 18
Figure 2.10: Comparison of the labelling tools (Zimmer, Rangesh and Trivedi,
2019). 20
Figure 2.11: The pipeline of sensor fusion (Bernie et al.,2019). 22
Figure 2.12: The results of basline, sensor fusion, one-click annotation,

tracking and full features in term of IoU, time and operation counts

(Bernie et al., 2019). 23
Figure 2.13: The pipeline of POINTS (Li et al., 2020). 24
Figure 2.14: Comparison of results between POINTS and PointAtME (Li et al.,

2020). 24
Figure 3.1: The flows to conduct the project. 30
Figure 4.1: Tabs for user interface. 42
Figure 4.2: Tab contents of main Ul tab. 42
Figure 4.3: Tab contents of instruction tab. 43
Figure 4.4: The tab contents of shortcut keys tab. 44

Figure 4.5: Keyboard shortcuts and mouse function for perspective view in
shortcuts tab. 45
Figure 4.6: Keyboard shortcuts and mouse function for projective views in

shortcuts tab. 45

Figure 4.7: Projective view of POINTS. 46
Figure 4.8: Projective views of 3D BATS. 46
Figure 4.9: Pipeline of one-click annotation feature (Wang et al., 2019). 49
Figure 4.10: Main view focus mode in POINTS. 51
Figure 4.11: Labelling using 3D interactive box fitting algorithm without
adjustment of boxes. 52

Figure 4.12: Labelling using one-click annotation without adjustment of boxes.

53
Figure 4.13: Final labelling results of POINTS. 54
Figure 4.14: Final labelling results of LATTE. 55
Figure 4.15: Final labelling results of 3D BAT. 55
Figure 5.1: Example list for vehicle 0 in 3D BAT. 60

Figure 5.2: Example list for vehicle O to vehicle 4 in LATTE. 60

%

3D

2D

3D BAT
Al
API
AR
BIN
CNN
CSS
CpPU
DBSCAN
DoF
DNN
FP

FN
GPU
HTML
HTTP
IDE
IoU
min

LATTE

LiDAR

PCD

POINTS

PointNet

RGB
RGB-D

LIST OF SYMBOLS / ABBREVIATIONS

percentage

three dimensional

two dimensional

3D Bounding Box Annotation Toolbox
artificial intelligent

application programming interface
augmented reality

binary format

convolutional neural network
Cascading Style Sheets

central processing unit

Density-based spatial clustering of applications with noise

degree of freedom

deep neural network

false positive

false negative

graphics processing unit

Hypertext Markup Language
Hypertext Transfer Protocol
integrated development environment
intersection over union

minutes

X1

open-sourced annotation tool for LiDAR point clouds via

sensor fusion, one-click annotation and tracking

light detection and ranging

Point Cloud Data

Portable Point-cloud Interactive Annotation Platform

System

deep learning on point sets for 3D classification and

segmentation
red, green, blue

red, green, blue and depth information

S3DIS

TP

Ul
VGG16
VR
WebGL

Stanford Large-Scale 3D Indoor Spaces
seconds

true positive

user interface

Visual Geometry Group from Oxford
virtual reality

Web Graphics Library

xii

xiii

LIST OF APPENDICES

APPENDIX A: Coding 65

CHAPTER 1

INTRODUCTION

1.1 General Introduction

In this new era of technology, the development of the automation sector is
growing rapidly due to the revolution of Industry 4.0. Some automation and
robotic systems require 3D data to complete the jobs effectively because 2D
images lack detailed information such as depth and positioning information
(Bello et al., 2020). 3D data provides more information for the machines to
adapt themselves to the surrounding environment. Various applications use 3D
data, such as virtual reality, robotics, remote sensing, autonomous driving, and
so on (Guo et al., 2019). By comparing the regular camera and 3D scanner,
the regular camera can capture the 3D world in 2D images, whereas 3D
scanners, LIDAR, and RGB-D camera are handy in extracting the 3D pieces of
information or 3D model (Rehman et al., 2019). The 3D point cloud is one
type of format to represent 3D data. A 3D point cloud comprises a set of points
in the cartesian coordinates of the X, Y, and Z-axis. The 3D point cloud
representation can store the original geometric information in 3D space. There
are two types of sensors, which are a LiDAR sensor and a 3D laser sensor
(National Ocean Service, 2020). LiDAR sensor or 3D laser sensor is a remote
sensing device used to collect data and information about the shape and feature
of the earth with aircraft or satellites' aid. The acquisition of the 3D point
clouds would be more convenient with the aid of sensing devices. LiDAR
sensors or 3D laser sensors can also generate 3D point clouds.

Deep learning is an Al function that the machine can learn without
human's supervision. The deep learning technique is widely used in various
applications, including autonomous driving, computer vision, and robotics
(Guo et al., 2019). Nowadays, the development of deep learning on 3D point
clouds is rising as well. However, point clouds are generally unstructured,
which induces problems and makes it challenging to apply deep learning on
3D point clouds. 3D point cloud classification, detection, and segmentation
had addressed the problems faced by deep learning of 3D point clouds. 3D

point cloud segmentation techniques are pretty helpful for 3D labelling tools.

Some 3D labelling tools need to undergo a segmentation process before
performing 3D point cloud labelling.

3D point cloud labelling is a method to redefine the points with labels,
which helps with performing computer vision and object recognition. With the
labelled object in a 3D point cloud, it can be used in applications, including
robotics, self-driving car, virtual reality, augmented reality, urban planning,
and emergency disaster control plan. This is because the objects in the 3D
point cloud can be recognized. In this study, the main concern is comparing
the open-source user interfaces that can perform 3D point cloud labelling. By
trying out the open-source 3D point cloud user interface, the user interface
enables users to view the 3D point cloud and label the points when detecting
the object. Most of the labelling user interfaces are using a cuboid label to
label the object within a specific region. Minority of labelling tools are using
point-wise labelling. The user interfaces are designed in various forms, such as
point-and-click, AR-based, VR-based, etc. The most important thing about the
user interface is that the operative difficulty must be moderate, which is easy
for the user to operate. With the simple operation, the accuracy of the label
should be higher. The accuracy of labels is normally evaluated in terms of IoU,

false-positive ratio and false-negative ratio of points in the bounding box.

1.2 Importance of the Study

This study may contribute to a better understanding of labelling point clouds in
3D space. 3D point cloud labelling is assigning labels to points in 3D space to
ease object recognition. Labelling in 3D space is better than labelling in 2D
images because 3D point clouds consist of more detailed information than 2D
representations. The scenes or objects represented by 2D images lack depth
and positioning information, whereas 3D point clouds can provide the depth
information and preserve the specific objects' original position with minimized
discretization. 3D point cloud labelling can be effectively used in applications
involving computer vision or object recognition, such as autonomous driving,
robotics, urban planning, virtual reality, and so on. With the aid of a 3D point
cloud labelling system, the specific applications' operation will be efficient and

smooth.

Implementation of 3D point cloud labelling in the automation and
robotics sectors can improve efficiency and effectiveness. For example,
applying a 3D labelling system on a robot enables the robot to recognize the
obstacles and avoid the obstacles, which blocks a robot's movement. Besides,
3D point cloud labelling can contribute to urban planning and emergency
disaster control plan. The 3D point cloud of a city can be generated using a 3D
scanner such as a LIDAR sensor or 3D laser sensor (Babahajiani et al., 2017).
All objects, regardless of small or large objects, including buildings, vehicles,
fire hydrants, and other objects in the city, are recognized and labelled. For
urban planning, the authority may observe and analyze the labelled 3D point
cloud to decide the suitable areas for the city's development. For the
emergency disaster control plan, all the emergency items in the city are
labelled. The labels will ease checking whether the amount of emergency
items in the particular area is sufficient or not and analyzing the level of safety.
By implementing a 3D point cloud labelling system, the work will be done
more efficiently because the planning can be done without going to the
particular site to observe the conditions. This system will save a lot of time

and workforce.

1.3 Problem Statement
Machine learning nowadays is able to handle 2D data well. However, the same
cannot be said for 3D data. This is because the point clouds in 3D space
contain complex and detailed information as well as require a large number of
points, up to millions or even billions of points. By comparing with 2D images,
the number of pixels needed for machine learning is significantly less than the
points needed for 3D data. Most labelling tools are able to label 2D images
instead of 3D point clouds. Besides, most of the labelling tools use the 2D
representation technique to label the 3D point clouds. However, 2D data lacks
depth information, which will greatly affect the quality of labelling and cause
the problem of mislabelling.

Some researchers had worked on completing the 3D point cloud
labelling directly on 3D representation without transferring the 3D data into
2D representation. As an example, Huang and You (2016) had proposed a

method to overcome the problem faced by using 2D representation.

Voxelization enables the 3D labelling process to be done in 3D representation.
The 3D labelling tools can be classified into automatic and manual labelling.
The 3D point cloud labelling tools must be convenient and easy to use for the
users. There are some famous 3D point cloud labelling tools, including
Supervise.ly, Scale.ai, Playment.io, Pointly.ai, Amazon Sagemaker Ground
Truth, which are convenient to use and consisted of many useful features.
However, the user interfaces are not open source and quite expensive to
purchase since the payment must be paid monthly or yearly. Thus, the
literature reviews on open-source 3D labelling tools will be conducted to
evaluate the performance of the open-source 3D labelling tools, which can be

easy to use and free of charge.

14 Aim and Objectives
The user interface should be able to label directly on 3D point clouds instead
of 2D images to overcome the stated problem in section 1.3. Besides, user
interfaces for labelling 3D point clouds with good features at the marketplace
are pretty expensive. Thus, the literature reviews on open-source user
interfaces for labelling 3D point clouds should be conducted. More
specifically, the aim of this study is to research convenient and free user
interfaces for labelling 3D point clouds, which can handle 3D data well and
allow users to traverse in a 3D environment and label the object in point
clouds. The specific objectives of this project, including:

1. Comparison of user interfaces for 3D point cloud labelling.

2. Evaluation of usability between the user interfaces.

3. [Evaluation of labelling speed between the user interfaces.

The comparison between 3D point cloud labelling user interfaces will
be done by setting up several user interfaces. The results will be done using
the same point cloud scene. The performance of the user interface will be
evaluated in terms of usability, where the user interface should be convenient
and easy to use. The evaluation of labelling speed in terms of time will be
conducted between the user interfaces. The user interfaces that are convenient
and easy to use, and the labelling speed is fast will be considered as the most

efficient user interface.

1.5 Scope and Limitation of the Study

The scope of this study is mainly focused on 3D point cloud labelling. All the
research papers that had been studied are about the labelling on the 3D point
cloud. The general purpose of this study is to research convenient and free user
interfaces for labelling 3D point clouds and make comparison between the
user interfaces. The user interface allows users to label the objects in a 3D
point cloud in order to ease object recognition and computer vision. The 3D
object detection can be done on 3D point clouds effectively with the labelled
point clouds. However, 3D object detection will not be covered in this study.
3D object detection is the process after the labelling is finished. The duration
of this study is about one year period, and the final report for this project was

finished in January semester 2021.

1.6 Contribution of the Study

This project reviews the existing open-source user interfaces for labelling 3D
point cloud and provides insights into the user interfaces. Some open-source
user interfaces for 3D point clouds are set up. A convenient user interface is
adopted and modified by adding some useful features. The comparison is
conducted between open-source user interfaces. Evaluation of the user

interfaces’ performance is carried out in terms of usability and labelling speed.

1.7 Outline of the Report

In this project, the study is focused on 3D point cloud labelling. The main aim
and objective are to compare the user interfaces for labelling 3D point clouds
and evaluate user interfaces' performance. Before starting the software
development, paper research should be done to master this field's knowledge
as much as possible. Besides, the advantages and limitations of the various
labelling tools will be known, and comparison is able to carry out among the
labelling tools.

In this project, five chapters have been discussed in this report, namely
introduction, literature review, methodology and work plans, results and
discussion, and conclusions and recommendations. Firstly, in chapter 1, there
is a general introduction about the 3D point cloud and labelling system in 3D

space. Besides, the importance of the 3D point cloud labelling and the problem

encountered had been stated. The subchapters are aim and objectives, scope
and limitation, and an outline of the report. Chapter 2 contains the literature
review, which mainly focuses on 3D point cloud labelling and discusses the
methods in designing 3D point cloud labelling tools approached by other
researchers. The literature review will form the basis for decision-making for
determining the convenient user interfaces for labelling 3D point clouds with
high-quality label. Chapter 3 describes the method for comparison of open-
source user interfaces in this project and the schedules of part I and part II
projects. Besides, the problems encountered during methodology will be
discussed. Chapter 4 describes the results and discussion about the comparison
between user interfaces for 3D point cloud labelling. Lastly, Chapter 5
summarizes the overall project and makes recommendations to further

improve the user interfaces.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction
3D point clouds are datasets where the combination of points in the cartesian
coordinates of the X, Y, and Z-axis is used to represent space or object.

Basically, the 3D point cloud consists of many points, even up to billions of

points. Nowadays, point clouds play an important role in representing 3D data

(Bello et al., 2020).

e

Figure 2.1: 3D LiDAR pnt cud(amel, n.d.).

Photogrammetry and remote sensing methods work on similar
principles for creating a 3D point cloud. The way of photogrammetry used to
build the point clouds is by merging multiple photographs with multiple angles,
where the photographs are used to investigate and measure the particular area
and object. The data of the Earth can be obtained by using an airboat or
satellites. By installing LiDAR sensors or 3D laser sensors on aerial vehicles,

the data about the shapes and features of the Earth can be detected and

recorded. This kind of method to collect data on the Earth is known as remote
sensing (FME Community, 2020). 3D laser scanners and LiDAR sensors can
be used to generate the 3D point clouds. Laser light is used to measure the
distances of an object to the surface of the Earth. The information about the
shape and feature of the Earth obtained is more accurate and exact by the
combination of light pulses and data collected from the airborne system
(National Ocean Service, 2020). There are some processes that can be used to
transfer raw point clouds to become structured point clouds. In this report, the
main concern is data annotation, where the labels are given to the points of

objects in a point cloud.

2.2 Usefulness of Point Cloud Labelling

Point cloud labelling is a method to label the points, which the redefined
points can be used to represent the scene or object. Object recognition and
computer vision can be done by point cloud labelling. However, the
unavailability of 3D point cloud labels is the main problem encountered,
which will affect the effectiveness of the classifiers (Wang, Ji, and Chang,
2013). Besides, the ability of the 3D point clouds labelling algorithm in
recognizing smaller objects is still limited. The result of labelling smaller

objects is not accurate and precise.

Figure 2.2: The LiDAR point cloud with cuboid labels (Koh, 2018).

Point cloud labelling can be used in many applications. If the 3D point
cloud model of a city is labelled, this will benefit some applications such as
reinforced reality maps, urban planning, disaster management as well as
virtual tourism (Babahajiani et al., 2017). With the labelled city map, the
safety of using a self-driving car will improve because the labels can help in
providing a guide for the navigation of self-driving cars. In order to enhance
the safety system in the city, small objects, such as fire escapes, fire hydrants,
and other emergency items are labelled can effectively help in disaster
management and emergency plans. Small objects like a fire hydrant, cars,
pedestrians, and so on are important in improving urban planning. Apart from
that, in order to move in a smooth motion, most of the robots are depending on
the sensors mounted on the robot (Kim and Sukhatme, 2014). However,
sometimes there are too many obstacles blocking the way of the robot and
cause the robot stuck in a particular area. Therefore, by applying a semantic
labelling system to the robot, the robot can recognize the objects. Then, the
robot can decide to move the objects within the capability of the robot to clear
the path. Therefore, the 3D point cloud labelling system is quite useful for
robotics.

There are two types of tools, including automatic 3D point cloud
labelling algorithm and manual 3D point cloud labelling tool, to complete the
3D point cloud labelling process. For automatic 3D point cloud labelling
algorithms, voxel-based 3D CNN, Patch Context Analysis and Multiscale
Processing, as well as SnapNet, will be discussed, whereas for manual

labelling tools, PointAtMe, 3D BAT, LATTE, and POINTS will be reviewed.

23 Automatic 3D Point Cloud Labelling

Automatic 3D point cloud labelling is able to finish the labelling process
without a user manual label. By applying the labelling algorithm to the
original point cloud without labels, the algorithm will run and produce the

final point cloud with labels as a result.

2.3.1 Voxel-based 3D CNN
According to the research, Huang and You (2016) had used the 3D CNN

combine with voxelization to overcome the problems encountered by point

10

cloud labelling. In general, most of the tasks involving the detection and
classification process should undergo the segmentation process. However,
segmentation is not required for the voxel-based 3D CNN method because it
depends on data that undergo voxelization. Voxelization is a method used to
represent 3D point clouds directly. There are some challenges faced by
voxelization. Voxelization requires large memory in a computer to operate,
and it takes a long time to finish. This is because the algorithm lacks proper

optimization.

Category-Balanced

Annotated Training Data '
Voxelization Testing

Output:

Input: 3D Scene
Labeled Point Cloud

Point cloud

Figure 2.3: The pipeline of the labelling system with two different types of
modules (Huang and You, 2016).

The labelling system consisted of two training modules. Firstly, for the
online testing module, raw point clouds had been taken as the input. Then, the
raw point clouds will go through the dense voxelization process. This process
had generated an occupancy voxel grid with the centered voxels. The resulting
voxels of the dense voxelization process are served as the input for trained 3D
CNN. Each of the voxels will be given a label. Then, the labels were mapped
to the original point cloud. Eventually, the labelled point cloud will be
obtained, which was shown in Figure 2.3. Besides, for the offline training
module, the annotated training data was being taken as the input. Then, the
annotated training data went through the voxelization, and an occupancy voxel
grids was produced. The resulting voxels are parsed through 3D CNN, and the

final output is produced.

11

Huang and You (2016) had selected the LiDAR point cloud in Ottawa,
which is the point clouds of urban area as the dataset for this labelling system.
The data were collected by using four car-mounted scanners as well as an
airborne scanner. The library used to launch the 3D CNN is Theano library,
and the method used to train the network is Stochastic Gradient Descent.
Many features and labels are generated, even up to 500000, when the trunks
from the data are manually labelled. A total of 50000 and 20000 features and
labels are distributed randomly as training data and validation data,
respectively. The obtained results were used to compare with the ground truth
labels. The accuracy for labelling cars and planes was about 95 %, whereas
labelling buildings, wires, and poles are in a range between 80 % to 90 %.
Besides, the accuracy for trees is 78 %, which is slightly lower compared to
other objects. This is because the presence of scattered clusters like humans
and bushes will affect the labelling's performance. In the end, the overall
accuracy for point labelling of all categories is 93 %.

This labelling system depends on the 3D CNN and voxelization
processed to finish the labelling process without going through segmentation.
This method is more suitable for small-scale 3D model analysis. This is
because extra dimensions will cause the restriction of voxel resolution and
shape precision. Besides, the performance speed is slightly slower because the
voxelization requires some time to process. Therefore, more effort can be put
into improving the system to get a more accurate and precise result when
handling large-scale 3D model analysis and improving the labelling system's

speed.

2.3.2 Patch Context Analysis and Multiscale Processing

In this research, Hu, Cai, and Lai (2020) had designed an algorithm for
semantic segmentation and labelling of 3D point clouds. The combination of
Patch Context Analysis and Multiscale Processing can achieve semantic
segmentation and labelling. In this system, 3D point clouds are used as the
input. The labelling and segmentation system's objectives are assigning each
of the points a label for semantic labelling and segmenting the point clouds

into a meaningful segmented object for semantic segmentation.

12

Patches
~(SegLeveI=1) |
¢ Seglevel+=1 I
<o

Object | ; .. 4
Relation r!J 3
;_/—

Patches
(Labeled)

g
K

PatchContext

Semantic
Segmentation

Figure 2.4: The pipeline for the labelling system (Hu, Cai and Lai, 2020).

According to Figure 2.4, the point clouds are segmented into patches
with the object labels for the first step. Then, the patches that have similar
characteristics are gathered into a particular cluster. This is because the
contextual rules can be described more vigorously with the aid of cluster.
Patch context information can be learned from the training datasets. The next
step is classification, which can be performed as the contextual rules and patch
context information had been learned at different segmentation levels.
According to the semantic labels and the context, multiscale processing can be
carried out to select and control suitable segmentation levels for local regions.

The descriptions above are the overall flow of this labelling and segmentation

system.

F-measure floor wall door board -chair desk key-board monitor mouse cup CPU window desk cabinet
Level 98.76 88.05 00.00 0000 77.23 86.13 00.00 8255 0000 83.13 00.00 7259 60.04
Level y + PC 98.75 89.19 99.68 00.69 92.62 86.70 00.38 89.70 0000 78.08 78.66 8211 7227
Leveln 97.16 85.16 4131 6887 72.08 73.08 00.00 23.80 00.00 00.00 00.00 38.81 71.76
Levelg + PC 98.05 92.76 9691 9420 8633 76.61 35.09 84.72 0000 5129 37.02 62.18 71.98
K(lppu].l [38] 7890 80.61 00.00 0028 6827 79.64 6198 86.89 5003 8938 36.48 00.00 00.00
MultiScale 9948 96.08 00.00 9848 7127 93.76 00.00 8297 0000 7741 00.00 77.40 7131
MultiScale + PC' 9959 9756 99.87 9855 9251 96.52 91.63 87.83 6393 70.04 5343 8251 75.18
F-measure basket trash phone vase eraser radiator bookcabinet pipe plant paper clothesrack clothes Overall
Level 4 7037 79.76 00.00 00.00 00.00 60.02 4447 48.50 5352 00.00 2288 00.00 79.69
Levely + PC 84.88 8348 3643 39.02 00.00 80.63 71.09 51.83 5606 26.13 40.90 4134 85.12
Levely 5320 4597 00.00 00.00 00.00 09.81 28.53 00.00 00.00 00.00 00.00 00.00 78.19
Levely + PC 7276 7144 0137 3243 11.09 57.65 54.63 04.67 03.04 1068 09.84 47.29 86.73
Koppula [38] 00.04 00.00 00.00 0000 0000 00.00 00.00 00.00 0340 00.00 00.00 00.00 66.25
Multiscale 7230 80.88 00.00 0000 4877 59.95 52.29 45.50 5358 07.32 16.89 00.00 86.98
Multiscale + PC 87.09 8455 8283 1514 7034 78.16 79.55 49.11 66.12 51.20 62.81 40.09 93.81

Figure 2.5: The labelling performances on the ETH dataset with 25 classes
(Hu, Cai and Lai, 2020).

This approach is compared to the labelling system developed by
Koppula and other researchers based on the datasets above. The patch-based

segmentation and labelling are treated as two different problems. The patch-

13

based segmentation is completed by using a standard region growing
technique. Hu, Cai, and Lai (2020) had chosen the ETH database as the
datasets to evaluate the labelling system's performance. ETH database is a
dataset consist of 18 office point cloud scenes. Twelve of the scenes are used
as training data, and the remaining scenes are used for testing. The
combination of Patch Context Analysis and Multiscale Processing showed the
highest accuracy rate with 93.81 %, according to Figure 2.5. The Cornell
RGB-D dataset is the second dataset, which consists of 59 scenes, including 25
office scenes and 34 home scenes. There are nine classes and ten classes for
the office scenes and home scenes, respectively. Macro precision and recall
are referred to the average precision of every class, whereas micro-precision
and recall are referred to the percentage of correct labelled patches. By
comparing the result to Koppula, this approach's performance is better than
Koppula with a 3.87 % of overall improvement and an increase of 5.54 % in
terms of micro-precision or recall. Next, SceneNN is a labelled point cloud
dataset consists of 95 scenes by fusing the RGB-D images. There are 62
scenes used as training data, and 33 scenes are used for testing. There are a
total of 15 classes to be labelled.

The combination of Patch Context Analysis and Multiscale Processing
has the better performance compare to Multiscale Processing and Koppula.
Koppula faces failure in the training stage. The overall accuracy of the
combination of Patch Context Analysis and Multiscale Processing had been
improved by 5 %. Last but not least, S3DIS dataset consists of 6 area scenes,
and Matterport cameras had taken 271 room scenes with 13 classes of objects.
This approach is used to compare with deep learning-based methods, PointNet
and Engelmann. The mean IoU is 64.6 %, and the overall accuracy and
average class accuracy are 88 % and 75.6 %, respectively. All of the three

results of this approach are the highest compare to PointNet and Englemann.

2.3.3 SnapNet

In this research, Boulch et al. (2017) used 2D deep segmentation network to
label the unstructured point cloud. SnapNet is using deep CNN to analyse and
interpret multiple 2D image views. This method is slightly similar to the multi-

view strategy, but the strategy in choosing views is different. The purpose of

14

this approach is to labelling the images instead of classifying the images. The
way to select the views is taking a lot of partial views instead of taking a

whole view of a scene or an object.

RGB mesh

Semantized
images \ﬂ\ b(e ‘K
. 522" .l semantized
8l point cloud
= l"‘ “a.! ‘

Composite Mesh view Semantic Back projection
mesh generation labeling and accumulation

Preprocessing

Figure 2.6: The pipeline of SnapNet by using 2D deep segmentation network
(Boulch, et al., 2017).

There are four steps to complete the 3D point cloud labelling. Figure
2.6 shows the flow of this approach. The final result can be obtained by going
through the four steps:

e Preparing the point cloud

e Generating the images

e Semantic labelling of the image

e Projecting the labelled images back to an initial 3D point cloud
Point-cloud preparation is a pre-processing step to remove the noise in the
point clouds and produce mesh. Then, for the snapshot generation, two meshes,
such as RGB mesh and composite mesh, are two different views generated
from the various camera positions. The two input images were matched into
pairs and underwent a semantic labelling process. Semantic labelling is a
process to give a label to each pixel. Deep segmentation networks according to
SegNet and fusion with residual correction were used. Finally, the back
projection was carried out to project the labelled images back to the original
3D point cloud. Therefore, a labelled 3D point cloud was generated.

The SnapNet approach proposed by Boulch et al. (2017) was tested
with various point clouds, including the point clouds obtained using Lidar
sensors, multiple 2D views, and photogrammetry and RGB-D cameras. Figure
2.7 below shows semantic labelling of photogrammetric data for RGB, depth
composite, and prediction map. Firstly, the Semantic 3D dataset has been used

for the experiment of LiDAR point clouds. The dataset consists of 30 laser

15

acquisitions on ten different scenes from numerous places. The training data
consists of 15 laser acquisitions, and the remaining 15 acquisitions are used to
test in full semantic eight networks. The validation is set by using six
acquisitions from the training data. The remaining nine training acquisitions
will generate 3600 image pairs for the deep networks. The Stochastic Gradient
Descent with momentum is used to train the network. The learning rate is
beginning at 0.01 and varying based on a step-down policy. The VGG16
weights are used to help the initialization of the encoder of SegNet. The time
to semantic the whole point cloud is about 41 minutes. The different natures of
input images can define fusion strategy. Two mono-input SegNets were
trained using RGB or depth composite images as the input to evaluate the
performance of different fusion methods. Firstly, the addition of RGB and
depth composite is not improved compared to depth composite only. This is
because the high distribution difference in the prediction maps caused RGB's
prediction to be overcome by composite.

On the other hand, if the fusion occurs before SegNet, the problem
encountered in the addition of RGB and depth composite will be overcome.
This will show an improved result. However, another problem like information
loss has occurred. Last but not least, the residual correction network is
introduced. The fusion was done after the SegNet, and the convolution is
successful in refining the fusion. Therefore, the residual correction network is
the best fusion strategy among these fusion strategies. The reduced-8 or full
semantic-8 dataset was used as the dataset for the comparison of the result.
This approach is used to compare with other approaches, including Random
forest and Haris Net. Random forest is a method in which the 3D features in
multiscale are trained using random forest classifiers, whereas Harris Net uses
3D Harris point extraction and a deep framework for classification. The
approaches used in this research are SegNet and U-Net. The overall
performance of U-Net is the best among these methods. The average IoU is the
highest by using U-Net because the zoom strategy of U-Net is better in

labelling cars and artifacts.

16

The left one is RGB,

tric data.
the middle one is depth composite and the right one is prediction map (Boulch,

etal., 2017).

Besides, this approach was tested on photogrammetric point clouds for
two experiments. The first one is transferring the semantic-8 network directly
to photogrammetry. The full semantic-8 training set is labelling’s network.
The majority of labelling errors were concentrated on high vegetation and
ground classes. The error of mislabelling on ground classes was due to the
rubbles covered on the ground and the small inclination of a rooftop. The
mislabel of high vegetation on destroy parts is because noise estimation
conflicts with the class of building. The second one was using new classes to
fine-tune for labelling. The point cloud was labelled by using rubble and non-
rubble classes. The RGB and composite networks were fine-tuned by

replacing the two new classes in the last classes.

Virtual rotation
center

i -

elevation

15°

I 20°

/ azimuth
20°

Figure 2.8: View generation strategy for RGB-D data (Boulch, et al.,2017).

17

Last but not least, this approach is tested with the point clouds
generated by RGB-D cameras. SUN RGB-D dataset was used, and the dataset
consisted of more than 10000 images from numerous RGB-D sensors. Firstly,
an image inpainting technique was used to enhance the image space by filling
the missing parts of the acquisition, resulting in smoother and more persistent
point clouds. The meshing process was carried out, and the elongated face at
different depths was removed. Figure 2.8 shows the view generation strategy
for RGB-D data. For the view generation, many RGB-D sensors were required
to snapshot the whole scene because of the small field of view of the sensors.
The virtual rotation point was set at 6m from the origin, and generate the view
at 8m from the virtual rotation point. The cameras were placed in front with an
angle of 20° in both left and right. The process was repeated for angles 0°, 15°,
and 30° to produce the 18 views per scene. Each class should be weighted to
overcome the class imbalance problem of the SUN RGB-D dataset. The post-
processing step was to fill the holes of the prediction map by nearest
neighbour propagation. The mean accuracy of SnapNet is 67.4 % which is the

highest among the methods, including SceneNet and SUNRGBD.

24 Manual 3D Point Cloud Labelling

Manual 3D point cloud labelling enables users to complete the labelling with
the aid of a user interface. The user interface can load the point clouds and
enable users to add labels on the 3D point clouds. There are two types of
labelling user interfaces, including screen-based and VR-based (Li et al.,
2020). A screen-based system can visualize the point cloud on a computer,
whereas a VR-based system is dependent on a VR device. Then, for the
screen-based labelling system, it can be further classified into web-based and
PC-based. For the web-based system, the labelling process can be performed
using a web browser, whereas, for the PC-based system, the software is

needed to be installed to perform the labelling process.

24.1 PointAtMe
Wirth et al. (2019) stated that the 3D point cloud could be directly labelled
without converting into a 2D image using a virtual reality device. A VR-based

labelling tool, PointAtMe was created by Wirth et al. (2019) to complete the

18

data labelling. The label is a cuboid label type that is suitable to label cuboid-
like objects, such as vehicles, pedestrians, etc. The machine learning
community was allowed to access the tool and build a new community-
labelled dataset for autonomous driving. Besides, an annotation benchmark
was planned to be set up by the commercial annotation companies.

PointAtMe consists of a VR device and Oculus Rift Touch Controllers,
used to annotate the data. The advantage of using PointAtMe is the speed of
the data annotation process is relatively fast. The DoF of 3D bounding boxes
created by this tool is nine, which had extra two DoF compare to the standard
tool. During the annotation process, a transparent dummy bounding box with
nine DoF appears between the controller. The nine DoF's position and scale
have been defined by using red anchors, which are installed directly to the
virtual controller. The color axes are installed on the right controller to grab
the attention of the annotator. The created bounding box can suit the actual
size of the object in the real world using this annotation tool. Thus, the image
and point cloud can be visualized in Unity, either measured from a moving

platform or a stationary platform.

Figure 2.9: The left and right Oculus Touch Controller (Wirth, et al., 2019).

Figure 2.9 shows the left and right Oculus Touch Controller. The left
controller functions to control, understand and manage the scenes, whereas the
right controller functions for data annotation. The left controller consists of 5

components with different functions. The components are hand trigger, index

19

trigger, thumbstick, button X, and Button Y. Hand trigger was used to move
the point cloud with 6 DoF. Index trigger was used to release two rotational
DoF, such as the box and point cloud. Switching the scene can be done by
using a thumbstick. Button Y functions to show four images with different
directions at the current scene, whereas button X functions to switch the
scene's scale to label the objects with different scales. There are four
components for the right oculus touch controller, such as index trigger,
thumbstick, button A and button B. The functions of the index trigger and
thumbstick of the left and right controller are different. The index trigger for
the right controller was used to accept the dialogs. The dialogs contained the
metadata will pop up while meeting a new box. The thumbstick for a right
controller was used to switch the tracks to either left or right. By pressing
button A and button B, a new track with dialogue and a new box with dialogue
can be created, respectively. Besides, users can add information about label
quality to the new box with dialogue (Wirth et al., 2019).

Wirth et al. (2019) used the KITTI 3D Object Detection scenes as the
datasets. This tool's annotation speed can be determined by measuring the
average speed used by inexperienced annotators to complete labelling process.
The annotators are given 40 minutes to learn the technique to use the labelling
tool. Then, the annotators start labelling four KITTI scenes, and the annotation
time was recorded. Besides, the annotation accuracy is determined by
comparing to Ground Truth offered by KITTI. The developers generated the
Ground Truth as well because the labels of KITTI are slightly different. The
average time for labelling one object in four scenes is 37.5 seconds.

This annotation tool is useful in the automated robot application, which
performs in the mobile platform. Thus, the labelling process can be done
directly to the 3D objects rather than 2D images using this kind of method to
label the 3D point clouds. The result will be more accurate because the created
bounding box is direct to the objects in 3D form, which results in a more
accurate label, and the likelihood to mislabel objects will decrease. Wirth et al.
(2019) could make further improvements to improve the label's quality. The

further step is to visualize the points directly on the created bounding box.

20

24.2 3D BAT

3D BAT is a 3D point cloud labelling tool proposed by Zimmer, Rangesh, and
Trivedi (2019). The proposed labelling system is efficiently used for 3D
localization and detection. The tool was allowed the user or annotator to label
the objects in 3D point clouds with a toolbox's aid. Besides, this is a web-
based tool that can be opened by using the browsers in the computer. This
project works on both 2D images and a 3D point cloud of the street scenes.
This is because the user will label the objects directly in 3D point clouds, and
the labels will be transferred back to the images. Therefore, the user is able to
see the labels in the images. The data labelling will be done on the Laser data
with rough bounding primitives, and the labels will be transferred to the
images by using a geometric model. Figure 2.10 compares the functions of 3D
BAT to the other open-source and commercial labelling tools. 3D BAT
showed the highest score among all the labelling tools, which had all the

functions from F1 to F14 shown in Figure 2.10.

O Integrates feature O Feature only available for 2D images O Feature not available

Feature
Tool

Fl F2 F3 F4 F5 Fo FI F& F9 Fl0 FIl FI12 FI3 Fl4 ‘ Score

AD BAT (OUR) - . . . - . . - ” . - . - . 14714
TUBS [5] . v v v - v . 714
VAST [6] - - - v - o 6.0/14
CVAT [7] - (+) 55/14
open source LabelMe [8] - {«) 55/14
CLEAN [9] - (+) - . . - 55/14
BRAT [10] (+) . v 35/14
WebAnno [11] {«) v v 35/14
Image Tagger [12] () - - 3.5/14
- - - - . v . v - 14714
v v - v v v v v v v 114
v " " ” - - - v v 9/14
: - - 9/14
com [16] - () 5.5/14
commercial isely [17] o 15n4
labelbox.com [18] () 45/14
neurala.com [19] {«) 4.5/14
prodigy [20] (+) 4.5/14
Fl Full-surround annotations F& 1D ransform controls
F2 Semi-automatic labeling F9 2D and 3D annotations
F3 D 1o 2D label transfer (projeciions) F10 Web-based (online accessible & platform ind.)
F4 Auwtomatic tracking Fll Redo/undo functionality
F5 Masterview (side, front, wop and 3D view) Fl12 Keyboard only annotation mode
F6 Navigation in 3D FI3 Auto save function
F7 Auto ground detection Fl4 Review annotations

Figure 2.10: Comparison of the labelling tools (Zimmer, Rangesh and Trivedi,

2019).

The system architecture of 3D BAT was described below. Web
Graphics Library (WebGL) is JavaScript API, which allows collaborative

labelling in this research. Multiple labels on the objects at the same time are

21

prevented. Firstly, the user interface will display all the camera images from
different views. Thus, the user was able to view the objects in the images from
multiple cameras. Then, the frames between the first and last frame will be
labelled using the semi-automatic labelling method.

The labelling time decreases by implementing the semi-automatic
interpolation technique. Then, the labels were transferred from 3D point cloud
to 2D images by using a 3D and projective geometry model. This model is
very useful because the labels done on the 3D point clouds will be projected
automatically to the 2D images. Therefore, the annotator can label the point
clouds by referring to the camera images, which will reduce the labelling time
and increase the label's accuracy as the projection of 3D to 2D in real-time.
There are a front view, side view, and bird-eye view of 3D point clouds
provided for the user. The user was allowed to translate, rotate and scale the
targeted object.

The datasets used for the labelling tool are nuScenes, and LISA-T and
the dataset obtained using a full-surround sensor configuration. Five classes
can be labelled, which are car, truck, motorcycle, bicycle, and pedestrian. The
colours of labels for car, truck, motorcycle, bicycle, and pedestrian are green,
yellow, red, pink, and blue, respectively. For the LISA-T datasets, the result
obtained was evaluated by comparing to ground truth in terms of 3D IoU,
precision, recall, and F1-score. Precision and recall are used to evaluate the
accuracy of the labels. The harmonic mean of recall and precision is F1-score.
The results of user annotations were obtained by taking the average results
from 3 users. The average IoU for the growth truth is 0.138, and for the user,
annotations are 0.066. The average precision, recall, and F1-score are 0.0117,
0.0113, and 0.0377, respectively. For nuScenes dataset, the average IoU for
ground truth is 0.0748, and for a user, annotations are 0.0393. The average

precision, recall, and F1-score are 0.007, 0.0067, and 0.007, respectively.

243 LATTE

Bernie et al. (2019) had designed an open-source web-based labelling tool,
called LATTE and the labelling process can be done by using a mouse. This
tool is designed to address the challenges faced in 3D LiDAR point cloud

labelling. There are three challenges listed, including low resolution of LIDAR

22

point cloud, complex annotating operations, and sequential correlation. The
LiDAR point cloud resolution is relatively low compared to the resolution of
images captured by the camera, which will make it difficult for the annotator
to recognize the objects in point clouds. Besides, 3D bounding box labelling
makes a cuboid label on an object in 3D point clouds and collects the points
that belong to a target object. 3D bounding box labelling is more complex than
2D bounding box labelling. This is because drawing a 2D bounding box is
considered two dimensions. The user can create labelling by drawing two
corners, whereas drawing a 3D bounding box is needed to consider the three
dimensions, centre position, and 3D rotation. Besides, sequential correlation is
the annotations that might be repeated due to the point cloud data are collected

in sequences and consecutive frames, which results in high correlation.

=
—7 o,
Unlabeled LiDAR point cloud Auto pre-labeled LIDAR point cloud
‘ Projection Label Transfer t
Query

Projecting point cloud to the image Mask-RCNN pre-labeled image

Figure 2.11: The pipeline of sensor fusion (Bernie et al.,2019).

To improve this labelling tool's performance, sensor fusion, one-click
annotation, and tracking function are added. In this research, the point cloud
labelling can be done with the aid of image-based detection algorithms. This is
because image-based detection algorithms are more sophisticated than
LiDAR-based detection algorithm. The LiDAR point clouds are collected by
using the combination of cameras and the LiDAR sensor. Each point in the
collected point clouds can be projected to the corresponding pixel image.

According to Figure 2.11, semantic segmentation was conducted on the image.

23

Mask R-CNN was used to obtain the labels for each pixel in the image and
eventually transfer them to the 3D point clouds. Thus, the pre-labels for the
point clouds are generated automatically. Mask R-CNN helps annotators
recognize the object in a 3D point cloud and adjust the labels. Besides, one-
click annotation is applied to reduce the complexity of the annotation process.
The label is a 3D bounding box, which is more simple to use comparing to
point-wise labelling. In the perspective view, the 2D bounding boxes are
shown on the objects’ top, eventually to one-click annotation. One-click
annotation enables a user to label the objects in point clouds by clicking one
point in the object. One-click annotation uses clustering algorithms to find all
target object’s points and display a 2D bounding box on the object. By using
one-click annotation, effectively reduces the labelling time. Lastly, a tracking
algorithm is used to transfer the labels from one frame to another. Kalman
filtering is used to track the centre of the bounding box of the target object.
When the annotators annotate the first frame in a sequence, the tracking

algorithm will estimate bounding boxes' centres for the next frame.

ar.

Method loU (%) “{?lé{;_’;.i.l Time (s) | #ops

Ground Truth 100.0 86.0 - -
Baseline 85.5 82.3 0.51 3.76
Sensor fusion 86.3 82.5 3.88 2.88
One-click annotation 86.2 82.9 2.55 1.29
Tracking 86.4 83.5 241 1.53
Full features 87.5 84.7 1.53 1.02

Figure 2.12: The results of basline, sensor fusion, one-click annotation,
tracking and full features in term of IoU, time and operation counts (Bernie et

al., 2019).

The labelling speed of this labelling tool is measured by taking the
average labelling time of users to label the LiDAR point cloud scene, taken
from the KITTI dataset. The volunteers are given sufficient time to practice,
and the results are recorded when the volunteers are confident to start labelling.
The volunteers use the three features, such as sensor fusion, one-click

annotation, and tracking algorithm, to label a sequence of 5 frames, and the

24

labels were compared to the ground truth labels provided by an expert. The
results are evaluated in terms of IoU between the ground truth and the
bounding boxes created by volunteers. According to Figure 2.12, the IoU of
the methods is between 85.5 % to 87.5 % when comparing to the expert’s
ground truth. The IoU is between 82.3 % to 84.7 % when comparing ground
truth provided by KITTI. The baseline method is for the user to label the point
clouds without using the three features. Therefore, the time used to label one
object is much longer than other methods. Full features are users used all three
features to complete the labelling. It is much more accurate and efficient as the
IoU, time, and operation counts are 87.5 %, 1.53 s, and 1.02 counts,

respectively.

244 POINTS

Li et al. (2020) had developed a 3D point cloud labelling tool for autonomous
driving datasets. POINTS is a screen-based labelling system and web-based.
The major challenges faced to develop a 3D point cloud labelling system are
convenient user interface, scalable annotation tools, and geometric data units.
In this paper, visualization modules, interactive tools for 3D labelling, and

transfer methods were developed to address the challenges.

Raw Data : Manual Annotating & Error Checking <
3D Point Cloud/ : Annotated
2D g?pages, Data Visualization Interactive Operation Dataset
Map ... Temporal/Spatial Stream Object/Box Auto Box Multi-view {
; Navigati Playin: Colorin, Initialization Editin: :
1T ; avigation ying g - 9 i | Post-Processing
Pre-Processing ':> Multi-Camera Multi-View Focus Interactive Annotation i || Personat Info
; Switching Display Mode Box Fitting Transfer : Removing
Calibration H
e —— ﬁ .. 0. DevTodls
Data ")
Cleaning <:> Data Management System & User-Data Interactive Interface(CherryPy, Three js) <:>
Annotators
Automatic Published
Pre-Annotating <= Al Algorithms (Object Detection & Tracking, Segmentation, 3D&2D fusion...) (“_ Dataset

Figure 2.13: The pipeline of POINTS (Li et al., 2020).

Firstly, the raw data should be prepared and undergo pre-processing. In
the data pre-processing step, the sensor parameters are estimated, and the
parameters are calibrated. Then, Al algorithms will generate the initial results
of labelling. The data management system and user-data interactive interface

programmed with CherryPy and Three.js are responsible for managing the

25

data after the pre-processing stage. CherryPy is an object-oriented web
framework. Python is used as the programming language, and Three.js is a
JavaScript library and API used to perform 3D computer graphics in a web
browser by using WebGL. The data visualization module integrated with an
interactive operation to perform manual annotating and error checking with the
functions listed in Figure 2.13.

Data visualization modules can review the labelling results in terms of
3D bounding boxes. The primary user interface consists of one main view,
three projective views, two photo contexts, a context menu, and a fast-floating
toolbox. The main view is displaying whole point clouds, and three projective
views show the selected objects’ top, front and side views. One of the photo
contexts is resizable and switched automatically among multiple cameras, and
another one focused photo context is automatically selected for the chosen
object. A context menu provides tools for context operation, and a fast-floating
toolbox provides tools for adjusting 3D bounding boxes. Besides, there are
many functions available to add benefits to the user interface, including focus
mode, camera auto-switching, object colouring, navigation, stream play, and
object locking. When turning on the focus mode, the selected object will be
zoomed and centered in the main view. Camera auto-switching is switching
the camera automatically, which is more relevant to the objects. According to
the classes, object colouring will highlight the boxes and enclosed points in the
box in different colours. Apart from that, navigation enables the users to check
the labelling results by changing the selected objects, point of view, and
several frames. Stream play displays the sequential data, and the object
locking is locking and highlighting the object while turning on the stream play.

On the other hand, 3D box initialization, 3D box editing in perspective
view and projective sub-views, interactive box fitting, and transfer method are
interactive operations, enabling the user to use the tool and finish the
annotations effectively. For the 3D box initialization, when the user creates a
new 3D bounding box, the box's initial orientation is upward along z axis of
the main view. The bounding box will automatically shrink and fit the
enclosed points object. The automatic shrink and fitting is an interactive box
fitting function, which will be reviewed later. Besides, the object type will be

recognized and automatically selected according to the dimension of the

26

objects. Next, POINTS enables users to edit the 3D bounding boxes in both
perspective view and projective sub-views. It is more convenient to adjust the
bounding boxes in projective sub-views compare to in perspective view. This
is because editing in perspective view needs to change the viewpoint
frequently while editing in projective sub views adjusts the boxes in the top,
front and side views without changing the viewpoint.

Furthermore, interactive box fitting will find the minimal box, which is
enclosing all the objects' points to resize the bounding box to fit the bounding
box to the object automatically. With this algorithm, the labelling process is
much easier to be done by drawing a rectangular box that encloses all the
objects' points and sometimes needs to rotate 3D bounding boxes. However,
this algorithm objects' point sets of ground are present. Lastly, the transfer
method can transfer the annotations among the frames. This algorithm is
efficient for autonomous datasets as the datasets always consist of independent
data frames. It needs a combination of a 3D data registration algorithm and a
3D object tracking algorithm to perform automatic annotation transfer. 3D
registration algorithm is used to adjust the boxes using the objects' sizes and
orientation from the previous frame. A 3D object tracking algorithm can build
the correspondence between the target objects in a current frame and reference
objects from the previous frame. The 3D data registration algorithm will
eventually figure out the analogous geometric transform between reference
objects and target objects. The adjustment will be conducted on the boxes in

the target frame.

| Method | Ours (POINTS) | PointAtME [1] |
Time/Object (sec.) 24 £ 6 55.2 + 12.1
Errors (Points/Object) <1 28.7 £ 5.1
FP ratio / Object 0 7.16%
FN ratio / Object <1% 3.27%

Figure 2.14: Comparison of results between POINTS and PointAtME (Li et al.,
2020).

The performances of POINTS are evaluated in terms of annotation
speed and annotation errors. The annotation accuracy is determined by

comparing the labour-intensive annotation results and ground truth. The results

27

were obtained by three inexperienced users. According to Figure 2.14, the
labelling time used in POINTS is much shorter compared to PointAtMe.
Besides, the errors, false-positive ratio, and false-negative ratio are less than
1 %. It can be concluded that POINTS can produce more accurate labels in a
shorter time. This is because POINTS is convenient to use and easy to

understand the operation.

2.5 Summary

In conclusion, 3D point cloud labelling is very useful in object recognition and
computer vision. Nowadays, more and more technologies adapt 3D point
cloud labelling techniques in many applications, such as robotics, self-driving
car, urban planning, disaster management, and so on. Some of the applications
require object recognition skills to perform efficiently, and 3D point cloud
labelling contributes much to these sectors. Therefore, there are many labelling
tools perform labelling operation by using different methods. There are two
types of labelling, including automatic and manual 3D point cloud labelling.

For automatic labelling, by using the voxel-based CNN technique, the
overall accuracy is 93 %, which is relatively high. However, it may take a
longer time to finish the process and poor in detecting an extra-large object.
The accuracy in recognizing large objects is relatively low. The advantage of
using the voxel-based CNN technique is the technique neglects the
segmentation. Apart from that, the semantic labelling process of SnapNet is
done in 2D images. When all the 2D images are labelled, the images will be
projected back to the original 3D point cloud. This process may cause the loss
of detailed information, and the results obtained will not accurate. Next, patch
context analysis combined with multiscale processing will produce a result,
which is more accurate compare to 2D deep segmentation network methods.
The overall accuracy and average class accuracy are 88 % and 75.6 %,
respectively.

For manual labelling tools, it can be classified into two categories,
including screen-based and VR-based. PointAtMe is a VR-based system,
whereas 3D BAT, LATTE, and POINTS are screen-based systems. The VR-
based system can provide a better experience feeling, but motion sickness and

inaccurate operation will affect labels' quality and accuracy. It is quite difficult

28

to control Oculus touch controllers to label the objects in VR world. Therefore,
a screen-based system is preferable. In the screen-based system, it can be
classified into PC-based and web-based systems. The PC-based system needs
software installation, whereas web-based systems enable users to open the user
interface through web browsers. 3D BAT, LATTE, and POINTS are web-
based systems. The accuracy of these three user interfaces is quite high.
Among three user interfaces, 3D BAT takes longer time than LATTE and
POINTS to load all the point clouds and images. Besides, LATTE and
POINTS have the fast annotation features. One-click annotation of LATTE
and interactive box fitting of POINTS effectively reduces the annotation time
and reduces labelling objects' complexity in a 3D point cloud. Apart from that,
both LATTE and POINTS can transfer the annotations in a sequence of frames.
However, the 3D box initialization algorithm of POINTS can recognize the
classes of the labelled objects by determining the objects' dimensions. In
addition, POINTS contains more functions in visualization modules compare
to LATTE. The features in visualization module will ease the operation of user
interface. The accuracy of labels depends on the annotators.

In this project, manual 3D point cloud labelling tools will be selected
to achieve the aim and objectives of this project, which is providing a
convenient user interface for users to traverse in a 3D environment and label
the points or regions of point clouds. Among four manual labelling tools,
POINTS will be adopted to continue this project as it is convenient and easy to
use, and the accuracy of labels is quite high. The other user interfaces will be
set up to make the comparison between the user interfaces’ performances.
Further improvements can be made to obtain maximized labels' accuracy

within minimum time and make it easier for inexperienced users to use.

29

CHAPTER 3

METHODOLOGY AND WORK PLAN

3.1 Introduction

This chapter will discuss the methods used to complete and achieve the
objectives of this project. This project's methodology will be described
properly by providing all the necessary details to conduct the project. Besides,
a work plan is concerned about planning the project with the activities
identified and explained well. Gantt charts can describe the work plans for the
part I and part II projects. The duration of the whole project is one year.
Therefore, the part I project had been conducted in May semester 2020, and
the part II project had been carried out in January semester 2021.

This project aims to compare the user interface for labelling 3D point
clouds. Before starting the software development, accessing other user
interfaces on point cloud labelling is important to get the ideas. The first two
tools that had been tried out are CloudCompare and Meshlab. Some raw point
clouds had been downloaded from the webpage and opened by using
CloudCompare and Meshlab. According to the literature review, manual open-
source 3D point cloud labelling tools will be selected to achieve this project's
aim and objectives. This project was decided to be done by using a screen-
based system instead of a VR-based system. This is because VR device is
relatively expensive, and therefore less accessible. Screen-based system allows
the users to label the objects in 3D point clouds on a PC by using a mouse and

keyboard.

3.2 Tools for Implementation of Algorithms

In this project, POINTS was adopted to be modified. An IDE will be used to
run the algorithm. Visual Studio Code was selected as the IDE for this project.
Visual Studio Code is a free and open-source code editor, which can run in
Windows, Linux, and macOS (Visual Studio Code, n.d.). This IDE supports
IntelliSense, run and debug, built-in Git, and a lot of extensions. It also
supports the programming languages used in POINTS, including Python,
JavaScript, CSS, and HTML. Visual Studio Code aims to provide simple tools

30

that are needed for the code-build-debug cycle, which is much easier to use
than complex workflows of full-featured IDE, such as Microsoft Visual Studio.
Besides, POINTS is a web-based labelling tool. Web browsers, including
Mozilla Firefox, Google Chrome, etc., are necessary to open the user interface.

Most of the web browsers support this user interface.

33 Software Development

Setup the 3D labelling user interface (POINTS)

.

Modification of POINTS

.

Setup another two user interfaces (3D BATLATTE)

v

Compare the usabilitv of uzer mterfaces, such as mstuction and
shortents, projective views, fast annotation feature, timer, main
view focus mode.

Evaluate the accuracy of fast annotation feature of POINTS
and LATTE in term of time and error.

.

[Evaluate annotation efficiency of three user interface in
term of time.

Figure 3.1: The flows to conduct the project.

Figure 3.1 shows the flow to conduct the overall project. First of all, POINTS
will be set up. POINTS needs a pre-trained model. The
‘deep_innotation_inference.h5’ file, which consists of the DNN-based
interactive point cloud annotation algorithm, is downloaded. This algorithm is
created by modifying the code of PointNet, which the library used to build up
the algorithm is TensorFlow 2.1. PointNet uses a single symmetric function
and max-pooling to handle an unordered input set (Qi et al., 2017). The
network will select and encode the point cloud points by learning a set of
optimization functions. The final full network layers will combine the optimal
values learned from the network and stored them in the global descriptor for
shape segmentation or shape classification. Before starting the operation of
PointNet, a data-dependent spatial transformer network will be built, which

can canonicalize the data. If each point is transformed independently, the input

31

format is relatively simple to apply affine transformations, which will improve
the performance of PointNet. After install the pre-trained model, the required
packages were installed with the command ‘pip install -r requirement.txt’.
Ensure that the Python, CherryPy, and TensorFlow versions are larger than 2.1.

The web applications of POINTS are built using CherryPy. CherryPy is
an object-oriented HTTP framework, which allows developers to build the
web application easily. CherryPy is written in Python. The developer will
spend lesser time developing smaller source code. In this project, JavaScript,
HTML, and CSS are used to add the user interface's functions or tools and
design the user interface. CherryPy provides support to serve the static content,
including JavaScipt, HTML, CSS, and images, to end-users. When running the
main python code, the server will start to set up the web application. As the
application is ready to be used, users can access the application on the address
http://127.0.0.1:8080 by using web browsers.

This user interface consists of two main components: visualization
modules and 3D bounding boxes interactive tools. Visualization modules can
review the labelling results in terms of 3D bounding boxes, distinguish data of
different objects, and display projective views of an object in top, front, and
side view. All the user interface tools were written in JavaScript, and the
design of the user interface was written in HTML with CSS. The index.html is
used to set up the user interface structures, and the main CSS is used to
describe the presentations of structures, such as fonts, colours, layout, size, and
so on, from index.html. The scene_reader.py is functioned to load the point
clouds and images. The file format of point clouds and images that can be
loaded is PCD and jpg format, respectively. As the annotator finishes the
annotations, it will read the annotations and save the annotations in a JSON
file. The main.py will import the scene_reader.py. After running the main.py,
the user interface displays visualization modules as the CherryPy will load the
index.html and scene_reader.py. The visualization modules consist of the main
view, projective views, images, point clouds, context menu, and fast-floating
toolbox.

On the other hand, the 3D interactive tools mainly consist of 3D box
initialization, interactive box fitting algorithm, and 3D box editing in

perspective view and projective view. 3D interactive tools are used to ease the

32

labelling process for the user. 3D box editing in perspective view and
projective view enables the user to edit the bounding boxes in two ways. As
the bounding box is selected, the projective views will show the bounding
box's top, front and side views. The adjustment made to the bounding box in a
projective view will affect the perspective view and vice versa, which means
both projective views and perspective view are correlated. 3D box
initialization is working with interactive box fitting. As a bounding box is
created to enclose an object in point clouds, the box's orientation is upward.
Then, all of the object's points will be predicted by using the Euclidean
distance-based growing algorithm. After that, an interactive box fitting
algorithm will be used to reduce the box size to enclose only the objects'
points.

A good user interface enables users to understand and use it intuitively.
The user interface must be simple but contain sufficient tips and tricks to help
the operation of users. Some improvements will be carried out to ease the
annotations for inexperienced users. The initial design of POINTS only
consists of one main view. Inexperienced users might not know how to control
the user interface to make labels on the objects. Therefore, one tab was added.
There are three tab contents, including main Ul, instruction, and shortcut keys.
The tab is created using combination of HTML, JavaScript and CSS, which
can refer to APPENDIX A. HTML is used to design the structures of tab,
while CSS is used to style the colour, font, position, etc. JavaScript is written
to provide function to the tab. The main UI tab consists of the original content
of the POINTS. For the instruction tab, a teaching video provides a guide to
the novices to master this user interface in a short time without going to the
GitHub webpage to search the teaching video. This instruction video was
recorded by using a screen recording of a laptop. Then, after editing the video
and inserting captions to the video, the video was uploaded to Youtube. The
<iframe> tag was used to import the video from Youtube to this tab. Besides,
the shortcut keys of keyboard and operation of mouse for perspective view and
the projective view were listed in two tables. The tables’ structures were done
using HTML, while the design of the structures, such as font, colour, size, and
so on, was done using CSS. The time needed to learn and understand the user

interface, and the annotation time will be significantly decreased by adding

33

both instruction and shortcut keys tabs. Apart from that, for the projective
views, the original user interface shows only the point clouds in three views
without mention the type of views. Therefore, the words 'top view', 'front view',
and 'side view' were added to the specific views to make inexperienced users
recognize the projective views. Furthermore, a timer function was added to the
'Main UI' tab. The HTML, CSS and JavaScript codes of timer function can
refer to APPENDIX A. This built-in timer will start as the users open the user
interface. This will make it convenient for users who want to record the
labelling time because an external time keeper is unnecessary. These extra
features may make the user interface more convenient to use and can be
evaluated in terms of usability, which can achieve the objective of this project.

After the modification of POINTS, 3D BAT and LATTE were set up,
respectively. The first step to set up 3D BAT is cloning the repository using
HTTPS from GitHub to a local computer. This is because clone a repository
will make it easy to push or pull the changes to GitHub. Then, NPM with
Node.js was installed in order to ease the JavaScript developers to share, reuse
and update the code. An IDE with the integrated web server, PHP Storm, was
downloaded and installed to run the code of 3D BAT. Some point clouds from
the NuScene datasets were downloaded and extracted to the 'input' folder.
Lastly, the required packages for the code of 3D BAT were installed by using
the 'npm install' command. When all the things had been successfully installed,
the 3D BAT user interface can run on localhost by using PHP storm.

Once 3D BAT was successfully set up, the LATTE was set up. The
first step is the same as 3D BAT, which is cloning the repository from GitHub.
The pre-trained model, 'mask_rcnn_coco.hS' file, was downloaded and
extracted to the 'Mask_RCNN' folder. After that, the command' pip3 install -r
requirements.txt' was inputted, the dependencies will be installed. All the
libraries needed are in the packages. After successfully installing the required
packages, the user interface can work by running the 'app.py' Python code.
Once the system was ready, the user can open the user interface on a web
browser through http://127.0.0.1:5000/ address.

Once the three user interfaces were successfully set up, a comparison
between POINTS, 3D BAT, and LATTE, which are web-based 3D point cloud

labelling tools, is carried out to evaluate user interfaces performance. The

34

same point cloud scene from KITTI datasets in BIN file format was used as
reference point clouds. POINTS and 3D BAT can load the point clouds in
PCD format files instead of BIN format files. Therefore, conversion of the
BIN to PCD format is necessary. A BIN to PCD algorithm was applied to
convert the BIN file to a PCD format file. The Python code for the conversion
can refer to APPENDIX A. After the conversion was done, the comparison
between POINTS, 3D BAT, and LATTE was conducted. The performances of
these user interfaces are evaluated in terms of usability and labelling speed.
The usability includes instruction and shortcuts, projective views, fast
annotation feature, timer, and main view focus mode. For the labelling speed,
evaluation of results is in terms of time. Thus, the objectives of this project
will be achieved. Screen recording on a laptop can record the labelling process
in user interfaces. The accuracy of a user interface can be determined by

comparing the labelling result to ground truth.

34 Schedule of Project Activities

Project planning is an important criterion to ensure that the project can be done
on time. Schedule planning is a critical component of time management. Gantt
chart is a great way to show the schedule in a simple form. Allocation of time
wisely helps the completion of a project become more efficient. In this project,
the whole project duration is one year and separated into parts I project and
part II project. The part I project had been conducted in May semester 2020,

and the part II project had been carried out in January semester 2021.

Table 3.1: The Gantt chart of the activities in part I project for 14 weeks.

No. | Project Activities

M1 Project Planning

M2 Literature review

Setup the
M3)
environment

M4 Report writing

MS5 | Oral presentation

35

Table 3.1 shows the schedule planning for 14 weeks of May semester
2020. It is mainly consisted of five activities to complete part 1 of the final
year project. For the first two weeks, project planning was carried out with the
aid of the supervisor, Dr. Ng Oon-Ee. Dr. Ng had clearly defined the aim and
objectives of this project and the desired outcome to help in effective project
planning. Besides, Dr. Ng had given some suggestions for allocating time to
finish the project on time. With the aid of Dr. Ng, the project planning was
done within two weeks.

In weeks 2, literature reviews were carried out. The literature reviews
are conducted to master the knowledge about the 3D point cloud. Some
articles or journals about 3D point cloud labelling were being found from
google scholar and the UTAR library. The article or journal discussed in-depth
the problem encountered in 3D point cloud labelling and proposed methods to
accomplish the 3D point cloud labelling and overcome the problems. The
literature reviews were conducted within nine weeks. Among all the articles or
journals, three automatic 3D point cloud labelling tools and four manual 3D
point cloud labelling tools had been reviewed. Three automatic 3D point cloud
labelling tools are voxel-based 3D CNN, Patch Context Analysis and
Multiscale Processing, and SnapNet. In contrast, four manual 3D point cloud
labelling tools are PointAtMe, 3D BAT, LATTE, and POINTS. The literature
reviews had been done in week 10.

Besides, to set up the environment, research was carried out. The
environment was planned to be set up from week 3 to week 7. However, the
plan had been delayed until week nine and done on 10 August 2020. This is
because it is necessary to do revision for midterm tests and do the assignment,
which causes a lack of time. The next activity, report writing, was started from
week 7. The report consists of four parts, including introduction, literature
review, methodology and work plan, as well as problems and recommended
solution. The introduction describes the general knowledge about 3D point
cloud and object labelling in the 3D point cloud and defines the aim and
objectives of this project as well as states the current problem in 3D point
cloud labelling. The literature review part was done with the discussion on the
articles or journals in-depth about the methods used to label the point clouds in

3D space. The methodology and work plan part describe the methods used to

36

achieve this project's aim and objectives and the detail of the project planning
and managing. The report had been done in week 13, on 9 September 2020,
and submitted on time. Lastly, preparation of oral presentation was carried out
in week 13, and the presentation was conducted on 15 September 2020. All of
the activities were done on time, except setting up the environment had been
delayed for two weeks. Then, the part II project was conducted in January
semester 2021, and the duration was 14 weeks. This project will be fully done

in part II project.

Table 3.2: The Gantt chart for the activities in part II project for 14 weeks.

No. Project Activities

M1 [Software development

M2 | Preliminary testing

M3 | Result and discussion

M4 Evaluation of the
performance
M5 Poster design

M6 Report writing

Table 3.2 shows the Gantt chart for the part II project for 14 weeks of
January semester 2021. It i1s mainly consisted of six activities to be
accomplished in the part II project. Firstly, the software development was
carried out starting from week 1. The duration for software development will
be longer. Therefore, nine weeks are given to complete software development
due to the modification and improvement of code that will be carried out. The
works described in section 3.3 are software development, in which the code of
POINTS was adopted and improved by some modifications. Software
development had been done on 18 March 2021, which follow the planned
schedule. Then, the preliminary test was carried out from week 4 to week 6.
By carrying out the preliminary test, the software's performance can be
evaluated, and the problems can be recognized earlier. Therefore, the software
can be improved to overcome the problems encountered and boost the user

interface's performance. The testing was done on week 6. The results and

37

discussion were conducted in week 6. The discussion on the obtained results
was carried out to analyse the user interface's performance.

Besides, evaluation of the designed user interface's performance was
carried out along with results and discussion. The duration of this activity is
seven weeks, which was starting from week 6. The performance of POINTS
was compared to 3D BAT and LATTE, which are open-source web-based
labelling tools. The evaluation of the labelling tools' performance was done on
the same open-source point cloud scene from KITTI datasets. This activity
was conducted until week 12 as the designed user interface may be modified
or improved, which may affect the performance. All the results had been
obtained before 10 April 2021. The deadline for the submission of the poster
was on week 12. The final design of the poster had been done on 8 April 2021,
before the deadline on week 12. Finally, the report writing started from week 8
to ensure the time is sufficient to complete the report properly. The report was
successfully done on 17 April 2021. All the activities had been completed
follow the Gantt chart in Table 3.2. Upon the final report had been submitted,

the presentation had been prepared.

3.5 Problem Faced and Solutions
In this project, three user interfaces were set up for comparison. During setting
up POINTS, 3D BAT, and LATTE, there are some problems encountered,

which cause the user interface cannot to work well.

3.5.1 Setup POINTS

First of all, in order to set up POINTS, Python, CherryPy, and TensorFlow
libraries was necessary. The versions of these libraries must be larger than 2.1.
Initially, the Python version on a local computer was 3.7.4. Then, the latest
version of CherryPy 18.6.1 and TensorFlow 2.4.1 was successfully installed
by input the commands "pip install cherrypy" and "pip install tensorflow" in
the terminal. Then, the command "pip install -r requirement.txt" was inputted
to install all the required libraries to set up POINTS. However, there was an
error encountered during the installation of the packages. The showing error is
"Fix the pip error: Couldn't find a version that satisfies the requirement".

Therefore, all the versions of libraries in the package were checked in order to

38

determine the required version of Python for the libraries in packages.
However, it is quite difficult to check all the libraries in the package, as it
consists of more than 80 libraries in the package. Therefore, the Python
version was upgraded to Python 3.8.8, and it can successfully install all the
libraries in the package. This is because some of the libraries in the package
need Python version 3.8 to support. After running the main.py function, the
server will be ready to use, and the web application can be opened through

http://127.0.0.1:8080 by using web browsers.

3.5.2 Setup LATTE

During the installation of required libraries in the package of LATTE, one
library called Matplotlib with 3.0.3 version was unable to be built and installed.
The version of Matplolib is specific as the developer uses this version to build
up the algorithm. The errors show FreeType and Libpng are not found. Thus,
wheels for the Matplotlib 3.0.3 version were downloaded and installed. After
the installation was done, the error was still there. This is because Matplotlib
needs some dependencies, including Python, Numpy, setup tools, cycler,
Dateutil, Kiwisolver, Pillow, and Pyparsing, with specific versions or larger
than the specific versions. After researching Matplotlib 3.0.3, pip is trying to
build from sources as it allows to provide wheels for Python 3.5 to 3.7 version
instead of 3.8 version. Therefore, the Python version was downgraded to
Python 3.7.9. After downgrade the Python version, LATTE was successfully

to be setup.

3.5.3 Setup 3D BAT
There was no error detected during setting up 3D BAT. However, if the
index.html of 3D BAT is directly open in the browser, it cannot load the PCD
files. The user interface is displaying the images and some tools. This is
because the user interface will occupy large CPU usage and relatively slow to
load all the PCD files. This user interface works well on GPU instead of CPU.
It is necessary to use localhost to open the user interface.

In the beginning, the tool used to open 3D BAT is Visual Studio Code.
Visual Studio Code does not consist of a built-in web server. Thus, Visual

Studio Code unable to open the index.html file using localhost. After installing

39

the NPM and Node.js, the PCD files are unable to be loaded as well. Thus,
another solution was implemented to run 3D BAT. PHP Storm was used
instead of Visual Studio Code. This is because PHP Storm has a built-in web
server. After that, 3D BAT is able to load all the point clouds, images and
tools. However, there is a limitation for PHP Storm. This IDE is not free of
charge. It provides a duration time for trial only. If the duration time is past,
the PHP Storm can work for 30 minutes. Since 3D BAT is used for

comparison, hence it will not affect much.

3.54 Conversion of KITTI Dataset File Format

Besides, during the comparison of three user interfaces, all user
interfaces are working with different file format types of point clouds. In this
project, point cloud scene from KITTI datasets in BIN file format were used as
reference point clouds. Due to POINTS and 3D BAT are only able to work
with point clouds in PCD format. Thus, the point clouds from KITTI datasets
are necessary to be converted into PCD format. The first try is using
CloudCompare to do the conversion of BIN file to PCD file. However, the
PCD file format after conversion is not suitable for 3D BAT and POINTS.
Then, another algorithm was built in Python. There are two libraries needed,
including struct and open3d. Struct library was used to convert Python values
into a string of bytes and vice versa, whereas open3d is a library used to
perform 3D data processing. Firstly, the struct.unpack() function was used to
convert the string of binary representations into the original representations
with the specified format in terms of x, y, z, and intensity. After the conversion,
the results of x, y, and z were appended into the NumPy array. The NumPy
array will be passed to open3d.o3d.geometry.PointCloud() function to obtain
the geometry of point clouds. After that, open3d.utility.Vector3dVector()
function was used to convert the NumPy matrix to 3D vectors. Lastly,
o3d.10.write_point_cloud() function is used to write the point cloud into a PCD
file. The original point clouds in BIN file format were successfully converted
into PCD file format using this algorithm, and both POINTS and 3D BAT can
load the converted PCD files.

40

3.6 Summary

POINTS is the selected user interface to be adopted in this project. After
modification of POINTS, the other two open-source user interfaces, 3D BAT
and LATTE, are set up as well. A comparison between three user interfaces
will be conducted to achieve the objectives. The results will be evaluated in
terms of usability and labelling speed of user interfaces. All of the project
activities are considered done on time and followed the planning in the Gantt
chart. Lastly, the problems faced during set up POINTS, 3D BAT and LATTE,

and the conversion of the point clouds file format are successfully overcome.

41

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This research aims to compare the user interfaces for 3D point cloud labelling,
which enables users to traverse the 3D environment and label volumes of
points in a 3D point cloud. By adopting an open-source user interface from the
web and modifying it, the results obtained will be analysed by comparing the
result with other open-source user interfaces. The results were collected using
three different user interfaces to label the same point cloud scene from the

KITTI dataset.

4.2 Comparison of User Interface

Due to the 3D point cloud labelling tools in the marketplace are pretty
expensive, the comparison of open-source user interfaces will be made to
select a free and convenient user interface, which can perform well.
Comparison of the user interfaces' useful features can achieve the objective in
this project, which is evaluating usability between the user interfaces. An
open-source user interface with useful features to ease the labelling process
can be determined. If the open-source 3D point cloud labelling tool consists of
some useful features as the 3D point cloud labelling tool in the marketplace,
the problem can be overcome.

This project's aim and objectives were achieved by setting up three
different open-source user interfaces, including POINTS, 3D BAT, and
LATTE, because the comparison can be made between these three user
interfaces. POINTS, 3D BAT, and LATTE are screen-based and web-based
user interfaces, which can run using a web browser on the computer. All three
user interfaces allow users to traverse in a 3D environment. The labels can be
made in perspective views. The labels for POINTS and 3D BAT are 3D
bounding boxes, whereas the labels for LATTE are 2D bounding boxes. The
bounding boxes for different classes will be assigned with different colours in
POINTS and 3D BATS, whereas the colour of bounding boxes in LATTE for

different classes are the same. The points of objects enclosed by bounding

42

boxes will be highlighted in the same colour as bounding boxes in POINTS.
The bounding boxes and object colouring will make the user easy to recognize
the classes for the objects. The evaluation of usability was conducted by
comparing user interfaces' valuable features, including instruction and
shortcuts, projective views, editable in projective views, fast annotation feature,

timer, and main view focus mode.

4.2.1 Instruction and Shortcuts

Table 4.1: Instruction and shortcuts of user interface.

User interface | Instruction and Shortcuts

POINTS v
3D BAT X
LATTE X

MAIN UI INSTRUCTION SHORTCUT KEYS

Figure 4.1: Tabs for user interface.

Figure 4.2: Tab contents of main UI tab.

According to the 3D point cloud labelling tool, Amazon Sagemaker Ground
Truth in the marketplace (AWS, n.d.), it consists of instructions and shortcuts
tabs. In the beginning, there is no instruction and shortcuts embedded in
POINTS. There is a problem faced if asking an inexperienced user to make a

label to point clouds intuitively in the user interface. As an example, if the user

43

interface is set up by person A and person B was the user who asked to label
the point clouds. Person B may have no idea how to operate without guidance.
Therefore, instructions and shortcuts features were added in POINTS. Three
tabs in horizontal were added in POINTS.

Figure 4.1 shows three tabs, including main UI, instruction, and
shortcut keys. The main UI tab was set to default open. Figure 4.2 shows the
contents of the main UI, which consists of point clouds and images with
various features for the user to label the point clouds. The tab contents of
instruction and shortcut keys are new features added. Figure 4.3 shows the tab
contents of the instruction tab. In the instruction tab, there is a video showing
the steps to labels an object in point clouds. The instruction video is teaching
the labelling steps in both perspective view and projective views. Therefore,
users can refer to the instruction video as a guidance without online searching

for teaching instruction from the developer.

MAIN UI INSTRUCTION SHORTCUT KEYS

Watch later

MORE VIDEOS 00:00:10

P o) 0147107 & Youlube [2

Figure 4.3: Tab contents of instruction tab.

44

SHORTCUTS

MAIN UT INSTRUCTION

Projective Views

Perspective View

Zoom in/out Move box left

Mouse scroll up/down

Mouse left key hold & move Rotate (change main view) E Move box down

Mouse right key hold & move |Pan Move box right

Left click on box Select V Move box up

Left click on a selected box Show transform control Rotate box counterclockwise

Left click on non-box area Hide transform control if present/ unselect box: Rotate box clockwise

Ctri+mouse drag |Add a mew box

= |Adjust point size Rotate box clockwise with box auto-fitting

&
E
R Rotate box counterclockwise with box auto-fitting
F
G
T

v Switch modes among resi Reverse heading direction (rotate by PI)
ZIX/C Turn on/off X/¥/Z axis Reset box
Ciris Save current frame Double click on center | Auto-shrink box by adjusting all borders to nearest inner point
CirkD/del Remove selected box Double click on border |Auto-shrink by adjusting the borders to nearest inner point
12 Select previous/next box Auto-shrink box by adjusting the corresponding borders to nearest
Double click on corner |-
34 Show previous/next frame in current scene e et
Drag border/corner
5.6,7 Show camera helper box of sideviews L] v eries cen ek

/center

Pause/Continue stream play

Ctri+Drag
Move border/corner/box with box auto-fitting
border/corner

Figure 4.4: The tab contents of shortcut keys tab.

In addition, the last tab is shortcuts. According to Figure 4.4, this tab
consists of two tables showing the keyboard and mouse functions for both
main view and projective view. Figure 4.5 and Figure 4.6 below shows the
clear version of tables of keyboard shortcuts and mouse functions for the
perspective view and projective views in shortcuts tab.

With the aid of both instruction video and shortcut lists, the user will
be more understanding the user interface's operation. The user can refer to the
video and tables in this user interface when forget some of the user interface
functions to operate. Among all three user interfaces, POINTS is the only one
that provides an instructional video and the list of shortcuts. The instructional
video and the list of shortcuts will provide enough information for the user to
make labels on the point clouds and further reduce the time to master the user

interface's operation.

45

Mouse scroll up/down Zoom in/out

Mouse left key hold & move Rotate (change main view)

Mouse right key hold & move Pan

Left click on box Select

Left click on a selected box Show transform control

Left click on non-box area Hide transform control if present/ unselect box
Ctrl+mouse drag Add a new box

-I= Adjust point size

A% Switch transform modes among resize/translate/rotate
Z’XIC Turn on/off X/Y/Z axis

Ctrl+8 Save current frame

Ctri+D/del Remove selected box

1,2 Select previous/next box

34 Show previous/next frame in current scene
5,6,7 Show camera helper box of sideviews

Space Pause/Continue stream play

Figure 4.5: Keyboard shortcuts and mouse function for perspective view in

shortcuts tab.

Move box left

Move box down

Move box right

Move box up

Rotate box counterclockwise

Rotate box clockwise

Rotate box counterclockwise with box auto-fitting

Rotate box clockwise with box auto-fitting

Reverse heading direction (rotate by PI)

Hlo || |e|g|e|w e

Reset box

Double click on center | Auto-shrink box by adjusting all borders to nearest inner point

Double click on border |Auto-shrink by adjusting the borders to nearest inner point

Auto-shrink box by adjusting the corresponding borders to nearest
Double click on corner
inner point

Drag border/corner
Move border/corner/box
/center

Ctr+Drag
Move border/corner/box with box auto-fitting
border/corner

Figure 4.6: Keyboard shortcuts and mouse function for projective views in

shortcuts tab.

46

4.2.2 Projective Views of User Interface

Figure 4.7: Projective view of POINTS.

Figure 4.8: Projective views of 3D BATS.

47

Table 4.2: Projective views of user interface.

User interface Projective view Editable in projective view
POINTS v v
3D BAT v X
LATTE X X

According to the 3D point cloud labelling tools in the marketplace, Amazon
Sagemaker Ground Truth, Playment.io (Playment, n.d.), and Supervise.ly
(SUPERVISELY, n.d.), the user interfaces consist of projective views. When
the bounding box is created, the projective views, including the top, front and
side views, are displayed. Besides, the 3D point cloud labelling tools in the
marketplace enables the user to edit in projective views as well.

Figure 4.7 and Figure 4.8 show the projective views of POINTS and
3D BAT, respectively. According to Table 4.2, among the three user interfaces,
POINTS and 3D BATS consist of projective views to show the bounding box's
top, side, and front views, whereas LATTE does not have the projective views.
The projective views of POINTS are much clearer than the projective views of
3D BAT. This is because the projective views of POINTS are focused on the
selected object. The projective views of 3D BAT are quite difficult to see as
there are several bounding boxes displayed in the projective views. With
projective views, the bounding box with point clouds is clearly displayed in
three views, and it will ease the inspection of the labelling result. The changes
in perspective view and projective views are simultaneously. In contrast,
without projective views, the user needs to rotate the perspective view to
inspect and make sure a bounding box had enclosed all the object' points. This
will increase the labelling time and become inefficient.

Among the three open-source user interfaces, POINTS is the only one
enables the user to edit and adjust the bounding box in projective views. It is
convenient to adjust the box in projective views as the user no need to change
the viewpoint in perspective view from time to time. Editing in projective
views is much easier than editing in perspective view, as the projective views’
adjustment is based on two dimensions view. The height, width, and length of

the bounding box can be adjusted in the projective views accordingly. Thus,

48
this feature will help the user complete the labels effectively as the bounding

box's adjustment in projective views is relatively simple.

4.2.3 Fast Annotation Feature

Table 4.3: Fast annotation feature of user interfaces.

User interface Fast annotation feature
POINTS 3D interactive box fitting algorithm
3D BAT X

LATTE One click annotation

According to Table 4.3, 3D interactive box fitting algorithm and one-click
annotation are applied in POINTS and LATTE, respectively, whereas 3D BAT
does not have any fast annotation feature. The function of the fast annotation
feature of POINTS and LATTE is different.

The interactive box fitting algorithm was described below. The inputs

of interactive box fitting algorithm:

P € <3
b=(p,sr)
o= (r,s")
p,s,7 €ER3
where
P = point cloud
b

original box
0 = operation
p,S,r = position, scale, and rotation, respectively

r',s' = rotation angles changed and scale change, respectively

Firstly, all of the points, R, which inside b will be found. Then, a coordinate
system, B', is built out with original P and r + ', and a coordinate range, c,
which is represented x, y, and z coordinate ranges is composed by applying
s'on s, as the operation had been carried out. A new point cloud, P’, was

computed to represent the point cloud, P, in the coordinate system B'. In order

49

to find R’, two conditions will be tested. If the points in P’ consist of the
original points, R, the points are added to R'. Besides, the points will be added
to R' as well, as the points in P’ are within the coordinate range c. Then, the
coordinate range, d, of R’ can be computed to find the maximum and
minimum values of x, y, and z coordinate axis. After that, the position, §p and
scale, s'' can be computed in coordinate system, B', according to coordinate
range, d. 6p’ will be figured out to represent the dp of original coordinate

system. Thus, the new box, b’ obtained is:

b'=p+ép,s",r+7’

For the 3D interactive box fitting algorithm, the user needs to drag a
rectangular to create a bounding box on an object in point clouds. The created
bounding box should be slightly larger than the object. Then, it will
automatically recognize the object in the bounding box and shrink the
bounding box to fit the object. Besides, it will automatically assign the desired
classes for the labelled objects by changing the colour of the bounding box.

This depends on the dimensions of the objects.

p—

Original Ground Bounding box

Clustering 2 ;
point cloud removal estimation

Figure 4.9: Pipeline of one-click annotation feature (Wang et al., 2019).

Figure 4.9 shows the pipeline of one-click annotation. For one-click
annotation, three steps are required, including removing ground, clustering the
points of an object, and estimating bounding box. Ground removal removes
the noise in point clouds. After the ground removal process, a clustering
algorithm is used to find the cluster. The clustering algorithm is based on
DBSCAN. When a human clicks a point, the algorithm will find the nearby

cluster to the point. The cluster is considered as an object. As the clustering

50

algorithm finds a cluster of the point, a 2D bounding box is estimated and
displayed on the object's top. The bounding box estimation is based on the
search-based rectangular fitting algorithm. The user only needs to right-click
on the object's point in point clouds without dragging a box. After right-click
the points, a two-dimension rectangular will be automatically displayed on the
top of the object. The bounding box in LATTE is two dimensions without the
thickness of the box.

Theoretically, one-click annotation is faster 3D interactive box fitting
algorithm, as it just needs one click only on a point of an object. However, it is
very dependent on the CPU and GPU of the computer. When the labelling
process is carried out in POINTS, CPU and GPU usage is not more than 10 %,
and the bounding box will come out immediately. When one click annotation
is used in LATTE, CPU and GPU usage is around 45 % and 60 %,
respectively. There is a delay of about 10 seconds to display the bounding box.
Therefore, the one-click annotation may cause the user interface to crash if the
specification of CPU and GPU of the computer is too low. Both features will
add benefit for users to complete the labelling in a shorter time. However, the
required specifications of computer for POINTS are low, and the performance

of 3D interactive fitting box is fast and smooth.

424 Timer
Table 4.4: Timer of user interfaces.
User interfaces Timer
POINTS v
3D BAT v
LATTE X

According to Table 4.4, an embedded timer is present in POINTS and 3D
BAT. For 3D BAT and POINTS, a timer will start to count when the user
interface is opened. Both timers will count the time in terms of hours, minutes,
and seconds. It is pretty convenient for the user to record labelling time as the
external timer is unnecessary. For example, the point clouds contain many

objects, and users spend much time completing the labels. However, the user

51

forgot to record the time for the whole labelling process. It is pretty time-
consuming and wasting of time to label all the objects again and record the
time. With the internal timer in the user interface, this kind of human error can
be neglected as time had been recorded. The timer is much more convenient
for researchers or developers who wish to figure out the user interface's

labelling speed.

4.2.5 Main View Focus Mode

Table 4.5: Main view focus mode of user interfaces.

User interfaces Main view focus mode
POINTS v
3D BAT X
LATTE X

| Main view focus mode

Figure 4.10: Main view focus mode in POINTS.

According to Table 4.5, POINTS has a main view focus mode, whereas 3D
BAT and LATTE do not have a main view focus mode. Main view focus
mode functions to focus on the selected bounding box. Figure 4.10 shows a car
with a bounding box in focus mode. The main view focus mode can be
activated in the fast-floating toolbox as a bounding box is selected. When the
focus mode is turned on, only the points enclosed by the bounding box will be
automatically displayed at the centre of the main perspective view. The user
interface will zoom in on the selected object with most of the background

hidden. The object colouring feature of POINTS will colour the points in a

52

bounding box. With the combination of main view focus mode, it allows the
user to clearly inspect the label. The user can check the details of the selected
object. This feature will ease the inspection of errors, which the user can check
the labels of objects one by one. Thus, the accuracy of the labels in POINTS
will increase. Without this feature, the user needs to change the viewpoints in
perspective view from time to time to inspect the labels’ quality. It is pretty
time-consuming, and the user may be lost in the 3D environment as it needs to

rotate the perspective views to inspect.

4.3 Evaluation of Fast Annotation Feature in terms of Time and
Error

Table 4.6: The time used and errors to label all the 12 objects of KITTI

datasets for POINTS and LATTE using fast annotation feature.

User Interface Time for all labels | Average time for one | Error
object (s)

POINTS Imin 17s 6.42 2

LATTE Imin 23s 6.92 5

Figure 4.11: Labelling using 3D interactive box fitting algorithm without

adjustment of boxes.

53

LiDAR Annotator

Figure 4.12: Labelling using one-click annotation without adjustment of boxes.

The comparison was made between POINTS and LATTE only, as 3D BAT
does not have the fast annotation feature. The point cloud scene used is taken
from KITTI datasets. The objective, evaluation of labelling speed of user
interfaces, can be achieved by comparing the labelling time to finish all the
labels in the point cloud scene. According to Table 4.6, the total time used to
label all the objects in the point cloud for POINTS and LATTE is 1 min 17 s
and 1 min 23 s, respectively. The average time for each label on an object of
POINTS and LATTE is 6.42 s and 6.92 s, respectively. Thus, the annotation
speed of POINTS is slightly faster than LATTE, which the average time for
each label is 0.5 s faster. All of the labels are finished by one operation count
without adjustment. Theoretically, the annotation speed of one-click
annotation should be faster than the 3D interactive box fitting algorithm. The
labelling time for each object of LATTE is 2.55 s (Wang, 2019). However, the
laptop's CPU and GPU used to run the user interface are not strong enough, so

there are some delays for the one-click annotation.

54

On the other hand, according to Figure 4.11 and Figure 4.12, there are
two major errors in POINTS and five major errors in LATTE. The errors of
POINTS are occurred on car 7 and car 9 in Figure 4.11, whereas the errors of
LATTE have occurred on car 1, car 7, car 8, truck 9, and car 11 in Figure 4.12.
The errors in POINTS are occurred due to the Lidar point cloud is too sparse,
so the algorithm cannot recognize all the points enclosed in the objects, which
results in a short length of bounding boxes for both car 7 and car 9. The errors
of POINTS are short of length only, whereas most LATTE errors are the labels
slightly crooked. In short, the 3D interactive box fitting of POINTS is faster

and more accurate compared to the one-click annotation of LATTE.

4.4 Evaluation of Annotation Efficiency of Three User Interfaces in
terms of Time
Table 4.7: Total time to finish all labels and average time for each object of

three user interfaces.

User Interface | Time to finish all labels | Average time for one object
(s)

POINTS 2mins 8s 10.66

3D BAT 4mins 18s 21.5

LATTE 2mins 42s 13.5

Figue 4.13: Final labelling results of POINTS.

55

Pl
T |
{

{4
L Lok

},{za{mf% TN \\\m
\3 m‘\ — L 7 l‘rjtjrt;(:‘[a:ion Mode

/ Resetall

,\\

\\J \ TELN

The results obtained are the total time used to label all the objects in the point
cloud scene. The objective of this project, evaluation of labelling speed
between user interfaces, can be achieved by comparing the labelling time for
each user interface to finish all the labels. The point cloud scene used for the
comparison comes from KITTI datasets. This point cloud is a LiDAR point
cloud and consisted of 12 objects. The labelling process of POINTS and 3D
BAT were recorded by using screen recording of a computer. Screen recording
is not suitable for LATTE as it consumes many CPU and GPU spaces, where
LATTE cannot work simultaneously with screen recording. The point cloud
labelling of POINTS and LATTE was done with the aid of fast annotation

feature. The errors were adjusted until the labels are just right, which were

56

compared to ground truth. The evaluation metric for 3D point cloud labelling
tools is difficult to evaluate, since it does not have a standard benchmark
metrics (Li et al., 2020). Basically, the evaluation of accuracy is based on IoU,
FP ratio and FN ratio. IoU is the intersection over union of the labels from
users and the ground truth. FP ratio is the ratio of points not belong to the
objects being labelled and total points of the objects. In contrast, FN ratio is
the ratio of points belong to the objects not being labels and total points of the
objects. Figure 4.13, Figure 4.14 and Figure 4.15 show the final labelling
results for POINTS, LATTE and 3D BAT, respectively. In this project, all of
the labels for three user interfaces are considered true compared to the ground
truth.

According to Table 4.7, the total time used for POINTS, 3D BAT, and
LATTE to label all the objects is 2 mins 8 s, 4 mins 18 s, and 2 mins 42 s,
respectively. The average time used to label one object in the point cloud is
10.66 s, 21.5 s, and 13.5 s, respectively. Thus, the labelling speed of POINTS,
LATTE, and 3D BAT is fastest to slow according to the sequences. The main
reason why the labelling speed of 3D BAT is slow is that 3D BAT does not
have a fast annotation feature. Besides, editing a 3D bounding box in
perspective view is pretty difficult. The rotation and translation of the
bounding box should be done by the combination of keyboard and mouse. For
LATTE, labelling speed is shorter than 3D BAT. The main reason for LATTE
leads 3D BAT is because of the one-click annotation feature. The bounding
box is two dimensions, which is much easier to adjust compared to 3D BAT.
However, the labelling speed for LATTE is slower than POINTS. 3D
interactive box fitting algorithm reduces much time to adjust the bounding box.
As both POINTS and LATTE have fast annotation features, the labelling
speed is shorter than 3D BAT. POINTS is the fastest because the bounding
box can be adjusted in projective views, whereas the adjustment of the

bounding box in LATTE should be made in the perspective view.

4.5 Summary
3D point cloud labelling is valuable and important. However, the convenient
user interfaces for 3D point cloud labelling in the marketplace are pretty

expensive. A comparison was conducted between open-source labelling tools

57

to select the most convenient user interface, which is free of charge and easy
to use to overcome the problem. All objectives had been fulfilled as the
comparison between open-source user interfaces, and evaluation of usability

and labelling speed had been done.

Table 4.8: The availability of useful features for three user interfaces.

POINTS 3D BAT LATTE
Instruction and v X X
shortcut
Projective views v 4 X
(Top, Side, Front)
Editable in v X X
projective views
Fast annotation 3D Interactive X One-click
feature box fitting annotation
Timer v v X
Main view focus v X X
mode

Among the three user interfaces, the performance of POINTS is the best. Table
4.8 shows that POINTS consists of all the listed useful features. The functions
of instruction and shortcuts, projective views, editable in projective views, fast
annotation feature, timer, and main view focus mode are beneficial for users to
master the user interface’s operation quickly, and convenient to use as the
operation is pretty simple. The features aid the inspection of labels’ as well.
Besides, the labelling speed was evaluated in terms of labelling time.
The average labelling time of one object without adjustment using fast
annotation features of POINTS and LATTE is 6.42 s and 6.92 s, respectively.
The average labelling time of one object for POINTS, 3D BAT, and LATTE is
10.66 s, 21.5 s, and 13.5 s, respectively. Among the three user interfaces, the
labelling time for POINTS is the shortest. Thus, POINTS is the best open-

source and accessible user interface among all three user interfaces. POINTS

58

is a powerful and useful user interface for labelling 3D point clouds, which can

perform well as or better than the 3D labelling tools in the marketplace.

59

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

A convenient user interface for 3D point cloud labelling means the user
interface is easy to operate and the design of user interface is simple. The user
interface allows user to traverse in 3D environment and make label in point
cloud. Thus, the user interfaces, POINTS, 3D BAT, and LATTE, were
successfully set up. PointAtMe unable to be set up is because the user interface
is VR-based system, which needs to work with a VR device.

By setting up three open sources user interfaces, the comparison
between POINTS, 3D BAT and LATTE was conducted. The three user
interfaces’ performances were evaluated in terms of usability and labelling
speed. The usability is evaluated by comparing the useful features of user
interfaces, which ease the operation of labelling and increase the labelling
speed. With the aid of extra features, such as POINTS’s 3D interactive box
fitting algorithm and LATTE’s one-click annotation, the labelling speed will
improve a lot. According to the results, the extra features, including instruction
and shortcuts, projective views, editable in projective views, fast annotation
feature, timer, and main view focus mode, in POINTS allows user to
understand the operation of user interface in short time and finish labelling all
the labels in a shorter time compared to 3D BAT and POINTS. POINTS is a
powerful and convenient user interface for labelling 3D point clouds. POINTS
is able to perform well as or better than the 3D labelling tools in the

marketplace.

5.2 Recommendations for Future Work

The scene of point cloud is 3D view. During the labelling process, users may
need to zoom in and rotate the point clouds to label the objects. 3D
environment contains more data compared to 2D images. For the
inexperienced users, it is easy to get lost in 3D environment. They may not

return back to original position. The only method can back to original position

60

is refreshing the web page. Thus, an algorithm is needed to restore the point
cloud to the original position. The algorithm should obtain the original X, Y,
and Z position of point clouds, which is the default position of the point clouds
as the point clouds are selected. Then, a feature, such as button or symbol, can
be added with the algorithm in POINTS. As the users click on the button or

symbol, the scene of point clouds will return back to the original position.

~ vehicle.car 0

* Position

~ Rotation

rotationYaw

A rotationPitch
/

rotationRoll
~ Size

/| width
length

(| height

| Track ID

Copy label to next frame

Figure 5.1: Example list for vehicle O in 3D BAT.

Object IDs

0 B
r e
.

W

Car

Figure 5.2: Example list for vehicle O to vehicle 4 in LATTE.

61

Figure 5.1 and Figure 5.2 show the example list of 3D BAT and
LATTE. Besides, one feature from 3D BAT and LATTE can be added into
POINTS. When the labels are made, there is a list shows the labels with name
and detailed information. For 3D BAT, the lists show the objects’ name and
enable user to adjust the position and size of bounding box in the list. In
contrast, for LATTE, the list shows the classes of objects and assigned with
specific number. The modification can be made to combine both advantages.
For example, when the user creates a bounding box on a car in point clouds
and label the bounding box with car 1, the list will show the name, car 1 with
the dimensions of bounding box, including length, width, and height of the car.
The list shows the information only and the users are not allowed to change
the information in the list. This is because POINTS provides a feature for users
to assign the bounding box’s number and the adjustment of bounding box can
be made in perspective view and projective views. The function of list is to
show the information of labelled objects. Besides, by clicking the name of car
in the list, POINTS will automatically move to the position of the car. The
users can observe and inspect the labelled object conveniently.

Lastly, more Al-based algorithms can be added to ease the operation of
POINTS. 3D object tracking algorithm can be added to work with annotation
transfer algorithm of POINTS to obtain high quality labels. Firstly, 3D object
detector detects the oriented 3D bounding boxes from point clouds (Wang et
al., 2020). Then, state estimation and similar feature matching will be done
using 3D Kalman filter and reidentification, respectively. Lastly, Hungarian
algorithms work to do data association. This 3D object tracking algorithm is
based on deep learning. Thus, by taking the benefit of this algorithm and
combining with annotation transfer algorithm of POINTS, high quality of

labels will be obtained.

62

REFERENCES

Aws, n.d. Amazon SageMaker Ground Truth Features. [online] Available at:
<https://aws.amazon.com/sagemaker/groundtruth/features/> [Accessed 14
April 2021].

Babahajiani, P., Fan, L., Kidmirdinen, J.K. and Gabbouj, M., 2017. Urban 3D
segmentation and modelling from street view images and LiDAR point clouds.
Machine Vision and Applications, 28(7), pp.679-694.

Bello, S.A., Yu, S., Wang, C., Adam, J.M. and Li, J., 2020. Review: Deep
learning on 3D point clouds. Remote Sensing, 12(11), pp.1-35.

Boulch, A., Guerry, J., Le Saux, B. and Audebert, N., 2018. SnapNet: 3D
point cloud semantic labeling with 2D deep segmentation networks.

Computers and Graphics (Pergamon), [online] 71, pp.189—-198. Available at:
<https://doi.org/10.1016/j.cag.2017.11.010>. [Accessed 8 July 2020].

Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan,
A., Pan, Y., Baldan, G. and Beijbom, O., 2020. nuScenes: A Multimodal
Dataset for Autonomous Driving. (March), pp.11618—-11628.

Daniel,S., n.d. Intelligent 3D world building from mobile terrestrial LiDAR
point clouds. [online] Available at:
<https://syldan.wordpress.com/research/intelligent-3d-world-building-from-
mobile-terrestrial-lidar-point-clouds/> [Accessed 2 August 2020].

FME Community, 2020. What is a point cloud? What is LiDAR? [online]
Available at: <https://community.safe.com/s/article/what-is-a-point-cloud-
what-is-lidar> [Accessed 2 August 2020].

GitHub, 2019. nuScenes devkit. [online] Available at:
<https://github.com/nutonomy/nuscenes-devkit> [Accessed 22 August 2020].

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L. and Bennamoun, M., 2019. Deep
Learning for 3D Point Clouds: A Survey. [online] pp.1-27. Available at:
<http://arxiv.org/abs/1912.12033>. [Accessed 12 July 2020].

Hu, S.M., Cai, J.X. and Lai, Y.K., 2020. Semantic labeling and instance
segmentation of 3d point clouds using patch context analysis and multiscale

processing. [EEE Transactions on Visualization and Computer Graphics,
26(7), pp.2485-2498.

Jing, H. and You, S., 2016. Point cloud labeling using 3D Convolutional
Neural Network. Proceedings - International Conference on Pattern
Recognition, 0, pp.2670-2675.

63

Kim, D.I. and Sukhatme, G.S., 2014. Semantic labeling of 3D point clouds
with object affordance for robot manipulation. Proceedings - IEEE
International Conference on Robotics and Automation, pp.5578-5584.

Koh, J.H., 2018. Object detection with LiDAR point cloud algorithm. [online]
Available at: <https://medium.com/@jhkoh/object-detection-with-lidar-point-
cloud-algorithm-94a241{fd3f49> [Accessed 2 August 2020]

Koppula, H.S., Anand, A., Joachims, T. and Saxena, A., 2011. Semantic
labeling of 3D point clouds for indoor scenes, in Proc. Neural Inf. Process.
Syst., pp. 244-252.

Li, E., Wang, S., Li, C., Li, D., Wu, X. and Hao, Q., 2020. SUSTech POINTS:
A Portable 3D Point Cloud Interactive Annotation Platform System. IEEE
Intelligent Vehicles Symposium, Proceedings, (Iv), pp.1108—1115.

National Ocean Service, 2020. What is lidar? [online] Available at:
<https://oceanservice.noaa.gov/facts/lidar.html#:~:text=Lidar%2C%?20which

9%20stands%20for%20Light,variable%20distances)%20to%?20the%20Earth.>

[Accessed 2 August 2020].

Qi, C.R., Su, H.,, Mo, K. and Guibas, L.J., 2017. PointNet: Deep learning on
point sets for 3D classification and segmentation. Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-
January, pp.77-85.

Rehman, Y., Uddin, HM.A., Siddique, T.H.M., Haris, Jafri, S.R.U.N. and
Ahmed, A., 2019. Comparison of Camera and Laser Scanner based 3D Point
Cloud. 2019 4th International Conference on Emerging Trends in Engineering,
Sciences and Technology, ICEEST 2019.

SUPERVISELY, n.d. 3D point cloud Ilabelling. [online] Available at:
<https://supervise.ly/lidar-3d-cloud> [Accessed 14 April 2021].

Visual Studio Code, n.d. Code editing. Redefined. [online] Available at: <
https://code.visualstudio.com/#powerful-debugging> [Accessed 20 March
2021].

Wang, B., Wu, V., Wu, B. and Keutzer, K., 2019. LATTE : Accelerating
LiDAR Point Cloud Annotation via Sensor Fusion , One-Click Annotation ,
and Tracking. 2.

Wang, D., Huang, C., Wang, Y., Deng, Y. and Li, H., 2020. A 3D Multiobject
Tracking Algorithm of Point Cloud Based on Deep Learning. Mathematical
Problems in Engineering, 2020.

Wang, Y., Ji, R. and Chang, S.F., 2013. Label propagation from imagenet to
3D point clouds. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp.3135-3142.

64

Wirth, F., Quchl, J., Ota, J. and Stiller, C., 2019. PointAtMe: Efficient 3D
point cloud labeling in virtual reality. IEEE Intelligent Vehicles Symposium,
Proceedings, 2019-June(Iv), pp.1693—-1698.

Zimmer, W., Rangesh, A. and Trivedi, M., 2019. 3D BAT: A Semi-Automatic,
Web-based 3D annotation toolbox for full-surround, multi-modal data streams.
IEEE Intelligent Vehicles Symposium, Proceedings, 2019-June, pp.1816—1821

17
18
19
20

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

341
342
343
344
345
346

<div c
<bi
<b
<bi

</div>

65

APPENDICES

APPENDIX A: Coding

lass="tab">

utton class="tablinks" onclick="openTab(event, 'UserInterface')" id="defaultOpen"»>Main UI</button>
utton class="tablinks" onclick="ocpenTab(event, 'Instruction')">Instruction</button>

utton class="tablinks" onclick="openTab(event, 'Shortcut')">Shortcuts</button>

Figure A-1.1: HTML code for tab.

function openTab(evt, cityName) {

var i, tabcontent, tablinks;

tabcontent = document.getElementsByClassName("tabcontent”);

for (i = 8; i < tabcontent.length; i++) {
tabcontent[i].style.display = "none”;

}

tablinks = document.getElementsByClasshame(“tablinks");

for (1 = @3 1 < tablinks.length; i++) {
tablinks[i].className = tablinks[i].className.replace(" active", "");

}

document.getElementById(cityName).style.display = "block";

evt.currentTarget.classiame += " active”;

}
document.getElementById("defaultopen™).click();

var timerVar = setInterval(countTimer, 1608);
var totalSeconds = @;

Figure A-1.2: JavaScript code for tab.

<div id="Instruction” class="tabcontent">
<iframe width="1000" height="650" src="https://www.youtube.com/embed/xQp5C7-dhek™
title="YouTube video player” frameborder="@"
allow="accelercmeter; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture”
allowfullscreeny</iframe>

</div>

Figure A-1.3: HTML code for instruction tab contents.

control if present/ unselect box

345 <div id="Shortcut" class="tabcontent” >

346 <div id="wrapper">

347 <div class="content-area">

348 <div class="container-fluid">

349 <div class="main">

350 <div class="row">

351 <div class="column">

352 <div class="col-md-7">

353 <table class="blueTable">

354 <thead>

355 <tr><b style="color: Orgb(255, 255, 255);">Perspective view</tr>
356 </thead>

357 <thead>

358 <tr>

359 <thyKeys</th>

360 <th>Description</th>

361 </tr>

362 </thead>

363 <tbody>

364 <tr>

365 <td>

366 <b style="color: Mrgbh(43, 116, 21);">Mouse scroll up/down
367 </td>

368 <td>

369 <b style="color: Mrgb(e, @, 8);">Zoom in/out

370 </td>

371 </tr>

372 <tr>

373 <td>

374 <b style="color: Mrgbh(43, 116, 21);">Mouse left key hold & move
375 </td>

376 <td>

377 <b style="color: Mrgb(e, @, 8);">Rotate (change main view)
378 </td>

379 </tr>

380 <tr>

381 <td>

382 <b style="color: Mrgb(43, 116, 21);">Mouse right key hold & move
383 </td>

384 <td»

385 <b style="color: Mrgb(e, 8, @);">Pan

386 </td>

387 </tr>

388 <tr>

389 <td>

390 <b style="color: Mrgb(43, 116, 21);">Left click on box
391 </td>

392 <td>

393 <b style="color: Mrgb(e, 8, @);">Select

201 </td>

395 </tr>

396 <tr>

397 <td>

398 <b style="color: Mrgh(43, 116, 21);">Left click on a selected box
299 </td>

400 <td>

401 <b style="color: Mrgb(e, @, @);">Show transform control
402 </td>

403 </tr>

404 <tr>

485 <td»

406 <b style="color: Mrgh(43, 116, 21);">Left click on non-box area
407 </td>

4108 <td>

409 <b style="color: Mrgb(e, o, @);">Hide transform

410 </td>

111 </tr>

412 <tr>

413 <td>

414 <b style="color: Mrgh(43, 116, 21);">Ctrl+mouse drag
415 </td>

416 <td>

Figure A-1.4: HTML code for shortcuts tab contents (1).

452
453

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
499
491
492
493
494
495

67

<b style="color: Mrgb(e, @, ©);">Add a new box
</td>
</tr>
<tr>
<td>
<b style="color: Mrgh(43, 116, 21);">-/=
</td>
<td>
<b style="color: Mrgb(e, @, ©);">Adjust point size
</td>
</tr>
<tr>
<td>
<b style="color: Mrgh(43, 116, 21);">V
</td>
<td»
<b style="color: Mrgb(e, @, @);">Switch transform modes among resize/translate/rotate
</td>
</tr>
<tr>
<td>
<b style="color: Brgb(43, 116, 21);">Z/X/C
</td>
<td>
<b style="color: Mrgb(e, 8, ©);">Turn on/off X/Y/Z axis
</td>
</tr>
<tr>
<td>
<b style="color: Mrgb(43, 116, 21);">Ctrl+s
</td>
<td>
<b style="color: Mrgb(e, @, 8);"»Save current frame
</td>
</tr>
<tr>
<td>

<b style="color: Mrgb(43, 116, 21);">Ctrl+D/del
</td>
<td>
<b style="color: Mrgb(e, 8, @);">Remove selected box
</td>
</tr>
<tr>
<td>
<b style="color: Mrgb(43, 116, 21);">1,2
</td>
<td>
<b style="color: Mrgb(e, @, 8);">Select previous/next box
</td>
</tr>
<tr>
<td>
<b style="color: Brgb(43, 116, 21);"»3,4
</td>
<td>
<b style="color: Mrgb(e, 8, @);">Show previcus/next frame in current scene
</td>
</tr>
<tr>
<td>
<b style="color: Mrgb(42, 116, 21);"»5,6,7
</td>
<td>
<b style="color: Mrgb(e, 8, @);">Show camera helper box of sideviews
</td>
</tr>
<tr>
<td>
<b style="color: Mrgb(43, 116, 21);">Space
</td>
<td>
<b style="color: Mrgb(e, @, 0);">Pause/Continue stream play
</td>
</tr>
</tbody>
</table>
</div>
</div>

Figure A-1.5: HTML code for shortcuts tab contents (2).

24

25

26
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

<div id="timer-count™>
<p id = "timer"><¢/p>

<fdivy

var timervar = setInterval(countTimer, 1e@8);
var totalSeconds = @;

function countTimer() {

++totalSeconds;
var hour = Math.floor(totalSeconds /360@);
var minute = Math.floor((totalSeconds - hour*3600)/60);
var seconds = totalSeconds - (hour*3600 + minute*se);
if(hour < 10)
hour = "8"+hour;
if(minute < 10)
minute = "@"+minute;
if(seconds < 18)
seconds = "B"+seconds;

document.getElementById("timer"”).innerHTML = hour + ":" + minute + ":"

}

Figure A-1.6: HTML and JavaScript code for timer.

451
452
453
454
455
456
457
458
459
460
461
462
463
464

/* style the tab */

.tab {
overflow: hidden;
border: 1px solid Mrgb(e, @, 0);
background-color: M#000000;

}

/* Style the buttons inside the tab */
.tab button {
background-color: inherit;
float: left;
border: none;
outline: none;
cursor: pointer;
padding: @px 16px;
transition: @.3s;
font-size: 12px;
color:@rgh(78, 253, 9);

/* Change background color of buttons on hover */
.tab button:hover {
background-color: M#345;

}

/# Create an active/current tablink class */
.tab button.active {
background-color: M#345;

}

/* Style the tab content */
.tabcontent {
display: none;
position: absolute;
border: epx solid O#ccc;
border-top: none;

Figure A-1.7: CSS code for tab.

68

+ seconds;

466
467
468
469
479
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

497
498

499
500
501
502
583
504
505
506
57
508
509
510
511
512

table.blueTable {
font-family: "Times Mew Roman™, Times, serif;
border: Spx solid E#0a03891;
background-color: [O#D2D2D2;

}

width: 1e0%;
text-align: left;
border-collapse: collapse;

table.blueTable td,
table.blueTable th {
border: 1px solid E#160091;

}

padding: 3px 2px;

table.blueTable tbody td {

}

font-size: 15px;
font-weight: bold;

table.blueTable tr:nth-child(even) {

}

background: [CI#E7E7E7;

table.blueTable thead {

}

background: B#1dafc9;

background: -moz-linear-gradient(top, E#55bcde e%, E#33afce 66%, E#1db5ce 100%);

69

background: -webkit-linear-gradient(top, E#55bcde 8%, E#33afce 66%, E#1db5co 160%);

background: linear-gradient(to bottom, E#55bcde o%, E#33afce 66%, E#1db5co 100%);

border-bottom: 2px solid B#444444;

table.blueTable thead th {

}

font-size:20px;
font-weight: bold;
color: E#242BA6;
text-align: center;

border-left: 1px solid E#603780;

table.blueTable thead th:first-child {

}

border-left: none;

table.blueTable tfoot td {

}

font-size: 14px;

Figure A-1.8: CSS code for the tables in shortcuts tab.

488
489
410
411
412
413
414
415
416
417
418
419

Figure A-1.9: CSS code for timer.

/* style the timer*/
#timer-count {

¥

position: absolute;
resizeiboth;
overflow:hidden;
top: 90%;

left: 48%;

width: 4e%;

height: 30%;
padding: @px;
margin: @px;

70

1 import numpy as np

2 import open3d as o3d

3 import struct

A

5 size float = 4

6 list pcd = []

7 with open ("@eeooeees4.bin”, "rb") as f:
8 byte = f.read(size float*4)

9 while byte:

18 X,¥,Z,1intensity = struct.unpack("ffff", byte)
11 list pcd.append([x, vy, z])

12 byte = f.read(size float®4)

13 np_pcd = np.asarray(list pcd)

14 pcd = o3d.geometry.PointCloud()

15 v3d = o3d.utility.Vector3dvector

16 pcd.points = v3d(np_pcd)

17 o3d.lo.write point cloud("eeeeee.pcd"”, pcd)

Figure A-1.10: Python code for conversion of BIN file format to PCD file

format.

