

DEVELOPMENT OF MOTION PLANER AND NAVIGATION

SYSTEM FOR AN OFFICE ASSISTANT ROBOT

LOOI CHEN ZHENG

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Mechatronics Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

APRIL 2021

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that

it has not been previously and concurrently submitted for any other degree or

award at UTAR or other institutions.

Signature :

Name : LOOI CHEN ZHENG

ID No. : 16UEB03663

Date : 17/4/2021

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “DEVELOPMENT OF MOTION

PLANER AND NAVIGATION SYSTEM FOR AN OFFICE ASSISTANT

ROBOT” was prepared by LOOI CHEN ZHENG has met the required

standard for submission in partial fulfilment of the requirements for the award

of Bachelor of Engineering (Honours) Mechatronics Engineering at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Ir. Danny Ng Wee Kiat

Date : 18/4/2021

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2021, Looi Chen Zheng. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion

of this project. I would like to express my gratitude to my research supervisor,

Ir. Danny Ng Wee Kiat for his invaluable advice, guidance and his enormous

patience throughout the development of the research.

In addition, I would also like to express my gratitude to my loving

parents and friends who had helped and given me encouragement.

vi

ABSTRACT

In the past decades, service robot industry had rise rapidly. There are many types

of service robot used in different field such as medical. Office assistant robot is

one type of the service robot used to assist officers. The robot used in this

research is a differential drive robot. In order for the robot to navigate

autonomously in the office, navigation algorithm and motion planner were

implemented on these robot. Robot Operating System (ROS) is one of the

common platforms to developed these robots. Besides, map was generated by

using SLAM algorithm, the costmap was setup and the parameters such as

inflation_dist and cost_scaling_factor was studied and tuned based on this

application. Next, the localization of robot was based on the LiDAR sensor and

rotary encoder with AMCL algorithm. In this research the global planners, A*

and Dijkstra algorithm and local planners, DWA and TEB algorithms were

implemented and tested on the robot in in simulation and a real environment.

Results from the experiments were used to evaluate and compare the

performance of the robot with different planner and parameters. From the results

obtained, the global planners, A* and Dijkstra algorithm both can achieve the

required performance for this application whereas TEB outperforms DWA as

the local planner due to its feasibility in avoiding dynamic obstacles in the

experiments conducted.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xiv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 2

1.3 Problem Statement 2

1.4 Aim and Objectives 2

1.5 Scope and Limitation of the Study 3

1.6 Contribution of the Study 3

1.7 Outline of the report 3

2 LITERATURE REVIEW 4

2.1 ROS 4

2.2 History of Motion Planning 5

2.3 Global Planner 6

2.3.1 Dijkstra Algorithm 6

2.3.2 A* Algorithm 7

2.3.3 Comparison of the global planner 7

2.4 Local Planner 9

2.4.1 Dynamic Window Approach 9

2.4.2 EBAND local planner 11

viii

2.4.3 TEB planner 12

2.5 Comparison of local planner 14

2.6 Summary 16

3 METHODOLOGY AND WORK PLAN 17

3.1 Introduction 17

3.2 Simulation with gazebo 17

3.3 Implement navigation stack 18

3.3.1 SLAM 19

3.3.2 Localization 19

3.3.3 Local planner configuration 20

3.4 Experiment in gazebo. 20

3.5 Compare the results and Implement on office assistant

robot 22

3.6 Tuned the parameters 22

3.7 Summary 24

4 RESULTS AND DISCUSSIONS 25

4.1 Introduction 25

4.2 Office assistant robot 26

4.3 SLAM 27

4.4 Costmap setup 29

4.5 Localization of robot 30

4.6 Comparison of global planner based on simulation 31

4.7 Comparison of local planner 35

4.8 TEB algorithm on real office assistant robot 45

4.9 Parameters affect dynamic obstacles avoidance. 52

4.10 Summary 54

5 CONCLUSIONS AND RECOMMENDATIONS 57

5.1 Conclusions 57

5.2 Recommendation for future direction 58

REFERENCES 59

ix

LIST OF TABLES

Table 2.1: Comparison between Dijkstra and A* algorithm in a simple

environment (Pittner, et al.,2018) 8

Table 2.2: Comparison between Dijkstra and A* algorithm in a complex

environment (Pittner, et al.,2018) 8

Table 4.1: Computation time of global path planner algorithm with 10m

goal. 32

Table 4.2: Computation time of global path planner algorithm with

coordinate(10,-25) goal. 32

Table 4.3: Results of changing 3 different parameters of DWA 41

Table 4.4: Costmap Setup 55

Table 4.5: Parameters modified for Global planner 55

Table 4.6: Parameters modified for TEB local planner 56

x

LIST OF FIGURES

Figure 2.1: Communication between nodes (ROS Wiki, 2014). 5

Figure 2.2: Basic structure of ROS (Clearpath Robotics,2014). 5

Figure 2.3: Dijkstra algorithm (Marin, et al.,2018) 7

Figure 2.4: Blue line indicates path planned without gradient descent

method, red line indicate path with gradient descent method.

(Pittner, et al.,2018) 8

Figure 2.5: Search space (Ferrer Sánchez,2018). 10

Figure 2.6: Target heading, θ and predicted position of the robot. (Fox,

Burgard and Thrun,1997). 11

Figure 2.7: Target heading against rotational and translation velocity. (Fox,

Burgard and Thrun, 1997). 11

Figure 2.8: Elastic band planner (Quinlan and Khatib,1993) 12

Figure 2.9: Sequence of the configuration of robot respect to map frame.

(Rösmann, et al.,2012). 13

Figure 2.10: Dynamic obstacles moving from across the robot. (Marin, et

al.,2018). 14

Figure 2.11: Path planned when the start position is the opposite direction

to goal. (Pittner, et al.,2018). 15

Figure 2.12: Path planned with static obstacles. (Pittner, et al.,2018). 15

Figure 2.13: Path planned with dynamic obstacles. (Pittner, et al.,2018). 15

Figure 2.14: The path generated by the robot from P1 to P3. (Cybulski,

Wegierska and Granosik,2019). 16

Figure 3.1: Robot model in Gazebo simulation 17

Figure 3.2: UTAR KB 5th floor 18

Figure 3.3: Rqt_graph of Gazebo simulation 18

Figure 3.4: Navigation stack (Jasprit, 2018) 19

Figure 3.5: Block diagram of AMCL algorithm 20

xi

Figure 3.6: Overall rqt_graph of simulation with gazebo 20

Figure 3.7: Robot facing sudden obstacle when moving to the goal. 21

Figure 3.8: Simulation environment for dynamic obstacles moving across

the robot. Red arrow indicate robot moving direction ,

yellow arrow indicate obstacles moving direction. 21

Figure 3.9: Simulation environment for dynamic obstacle moving toward

the robot. Red arrow indicate robot moving direction ,

yellow arrow indicate obstacle moving direction. 22

Figure 3.10: Dynamic obstacle moving across the robot in real environment.

Yellow arrow indicate the movinf direction of obstacle. 23

Figure 3.11: Dynamic obstacle moving toward the robot in real

environment.Yellow arrow indicate the moving direction of

obstacle. 23

Figure 3.12: Dynamic obstacles moving toward and across the robot in real

environment.Yellow arrow indicate the moving direction of

obstacles. 23

Figure 4.1: KB 5th floor simulation environment 25

Figure 4.2: KB 5th floor simulation environment with multiple dynamic

obstacles. 25

Figure 4.3: Simple simulation environment for experiment with dynamic

obstacles. 26

Figure 4.4: System of the office assistant robot 27

Figure 4.5: Office Assitant robot 27

Figure 4.6: Map generated based on KB 5th floor simulation environment

 28

Figure 4.7: Map generated based on simple environment for dynamic

obstacles. 28

Figure 4.8: Map generated based on real environment(room) 28

Figure 4.9: Map with Static map layer 29

Figure 4.10: (a) indicate the inflation_dist = 1.0 and (b) indicate

inflation_dist = 3.0 while both having cost_scaling_factor

3.0 29

xii

Figure 4.11: Cost_scaling_factor = 1.0 30

Figure 4.12: Obstacle layer 30

Figure 4.13: Robot implemented with AMCL algorithm in initial state. 31

Figure 4.14: Robot implemented with AMCL algorithm after moving. 31

Figure 4.15: Path planned with Dijkstra algorithm 33

Figure 4.16: Path planned with A* algorithm 33

Figure 4.17: (a) Indicate the robot is stucked by the path planned with

global planner with lethal cost = 253. (b) indicate the robot

with lethal cost=150. 34

Figure 4.18: Search space of Dijkstra algorithm with target goal (10,-25)

 34

Figure 4.19: Search space of A* algorithm with target goal (10,-25) 34

Figure 4.20: Robot stuck due to unable to move in backward motion in

DWA. 36

Figure 4.21: Robot able to travel in backward motion with TEB. 36

Figure 4.22: Robot tend to move in backward motion with DWA. 36

Figure 4.23: Robot having sudden obstacle infront the robot when moving

forward (DWA) 38

Figure 4.24: Command velocity graph with default parameters sudden

obstacle in front of the robot (TEB) 39

Figure 4.25: Robot moving across dynamic obstacle (black arrow indicate

direction of obsctales while red arrow indicate robot moving

direction) (DWA) 39

Figure 4.26: Command velocity graph of robot moving across obstacle

(DWA) 40

Figure 4.27: Command velocity when obstacle moving across (TEB) 42

Figure 4.28: Command velocity when obstacle moving across 43

Figure 4.29: Robot slow down and path re-planned to avoid the dynamic

obstacle which moving across in simulation. 43

xiii

Figure 4.30: Obstacle moving toward (angular velocity increase) in

simulation (TEB+DOL) 44

Figure 4.31: Robot turn to avoid the dynamic obstacle which moving

toward in simulation (TEB+DOL). 44

Figure 4.32: Robot was stucked in narrow environment 46

Figure 4.33: Velocity graph when obstacle moving across robot with TEB.

 46

Figure 4.34: Velocity graph when obstacle moving across robot with

(TEB+DOL) 47

Figure 4.35: Obstacle moving across the robot path planned (TEB+DOL)

 47

Figure 4.36: Obstacle moving across the robot path planned (TEB) 48

Figure 4.37: Command velocity graph of real robot when obstacle moving

across path planned (TEB+DOL) 48

Figure 4.38: Obstacle moving across the path planned (TEB+DOL) 49

Figure 4.39: Velocity graph when obstacle moving toward the robot.

(TEB+DOL) 50

Figure 4.40: Obstacle moving toward robot 50

Figure 4.41: Path generated when obstacles move toward and across the

robot. 51

Figure 4.42: Path planned after the obstacles move away. 51

Figure 4.43: Simulation results when weight_dynamic_obstacle = 500 52

Figure 4.44: Weight_dynamic_obstacle = 50 52

Figure 4.45: Weight_dynamic_obstacle =500 53

Figure 4.46: Dynamic_obstacle_inflation_dist = 4.0 53

Figure 4.47: Simulation result when dynamic_obstacle_inflation_dist = 4.0

 54

Figure 4.48: Overall rqt_graph 55

xiv

LIST OF SYMBOLS / ABBREVIATIONS

Q sequence of pose

ΔT Time interval

v translational velocity

Vd dynamic window

Vr resultant search space

X robot pose

α weight of target heading

β weight of clearance

ϒ weight of velocity

θ target heading angle, °

τ sequence of time intervals

ω rotational velocity

AGV automated guided vehicles

AMCL Abstract Adaptive Monte Carlo localization

DDQN Double Q-network

DOL Dynamic obstacle layer

DWA Dynamic Window Approach

EBAND Elastic Bands

IFR International Federation of Robotics

LiDAR light detection and ranging

ROS Robot Operating System

SLAM simultaneous localisation and mapping

TEB Time Elastic Band

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Service robots are one of the types of robots that can move and perform various

tasks based on the human order either fully autonomous or semi-autonomous.

Based on The International Organization of Standardization, a service robot is

defined as a robot that carry out useful work for humans. (ISO 8373::2012)

Service robots are meant to be used in the task which is menial, repetitive, and

time-consuming. This frees up more time for humans to perform more

intellectual tasks. In the past decades, service robots had grown rapidly with

technological advancement. In 2017, according to the International Federation

of Robotics (IFR), the sales of service robots had increased 39% compared to

2016 which is around $6.6 billion. Besides, based on Len Calderon, it stated that

service robots are predicted to grow rapidly and reach a sales value of around

$37 billion. (Calderon,2019)

 There are multiple types of service robot which include Pepper, a

humanoid robot used to sell coffee maker in the store, Cobalt, a security robot

that works in the office to detect unauthorized people or behaviours based on

face recognition, employee scanner, and heat sensor and Medical robot which

use for healthcare in the hospital. It can deliver medicine and detect patient

messages based on built-in Artificial Intelligence. (Calderone,2019)

 Office assistant robots are one type of service robot. The office assistant

robot's main objective is to assist officers during working. For example, the

robot is used for delivery application between the central cafe to offices done

by Koubaa et al. (2016) and state prediction of the officers done by Kouno et

al. (2012). The office assistant robot used in this research is a differential drive

robot. This research is to develop a motion planner and autonomous navigation

into the office assistant robot. This allows the robot to go somewhere based on

the given goals without human intervention. The robot can localize itself and

build a map based on the environment and sensor data. Besides, the robot can

plan a path from the starting point and move to the goals with obstacles

avoidance ability. The motion planner is separated into 2 parts which are global

2

planner and local planner. Global planner is used for optimal path planning with

a known environment (global costmap) while local planner is based on the real-

time sensor data such as LiDAR sensor to plan optimal trajectories which can

modify the global path and also perform dynamic obstacles avoidance.

1.2 Importance of the Study

This study will mainly focus on developing the motion planner and navigation

on the differential drive office assistant robot by using ROS. It allows the robot

to navigate autonomously with given goals and perform obstacles avoidance.

Besides, this study will discuss the results obtained of the motion planner in the

office environment and give insight and compare different kind of path planner

based on different journals, simulation and practical results.

1.3 Problem Statement

Currently, the office assistant robot used in this research is only able to perform

manual control by a human. There are many limitations with manual control.

Manual control robot is time-consuming. This is because the user required to

focus on the robot to control the robot manually all the time. Besides, manual

control is inaccurate and inconsistent. This is due to the controlled robot might

be affected by the user’s skill to control and physical condition. Moreover,

although there are many studies regarding implementing different ROS planner

to different kinds of wheel robot but only a few studies are comparing the

different kind of planner based on its performance and parameters. Hence, this

study is to implement the autonomous motion planner and navigation on the

office assistant robot by using ROS and investigate how the parameters

affecting the planner.

1.4 Aim and Objectives

This research aims to develop a motion planner and navigation system for an

office assistant robot by using ROS. This allows the robot to autonomous

navigate in the office environment based on the user requirement with the help

of different sensor and algorithm. The detailed objectives are:

• Study and compare the feasibility of different type of global and local

planner in ROS.

3

• Study and build a map with SLAM algorithm by using office assistant

robot.

1.5 Scope and Limitation of the Study

The scope of this research is to develop and implement the motion planner and

navigation system on an office assistant robot. The first part of the research is

building a map by using SLAM algorithm and simulation in Gazebo. The second

part will be comparing and discussing the result obtained to select the most

suitable motion planner in this application.

There are other planners such as double Q-network (DDQN) deep

reinforcement learning which are not included in the ROS packages. Due to the

limitation of knowledge and time, this research will only discuss the global and

local planner packages in ROS. Moreover, the office assistant robot used in this

research is a differential drive robot. Therefore, due to this limitation, this study

is only focusing on implementing motion planner on the differential drive robot

instead of other types of mobile robot such as Omni and Ackerman drive robot.

1.6 Contribution of the Study

The contribution of the study is to have a details comparison between the local

planner, implement motion planner on the office assistant robot and

demonstration using ROS to autonomously navigate the robot in the office

environment.

1.7 Outline of the report

Chapter 1 will have a brief introduction about service robot, the problem

statement and the objectives needed to be achieved in this research.

 Chapter 2 will undergo literature reviews about ROS, different global

planner and local planer and its comparison. While Chapter 3 will explain the

methodology about the step to implementing the motion planner and the

experiment to compare different planner.

Chapter 4 will be tabulated and discuss the result obtained. Lastly,

Chapter 5 will be concluding the results obtained, selecting the suitable planner

and suggestion for future research.

4

CHAPTER 2

2 LITERATURE REVIEW

2.1 ROS

ROS is an open-source meta-operating system. It was first developed by Willow

Garage and Stanford University as a project named STAIR project. It is a useful

tool for building a complex robotic system. This is because it provides many

types of services such as hardware abstraction, message-passing between

processes package management and low-level device control. (Dattalo,2018).

Nowadays, it is widely used in the robotics community because it is easy to use,

open-source and has many library/packages that are ready prepared. ROS can

perform several types of communication including Services, Topics and

Parameter Server.

Node is an individual module that performs computation. A robot

control system usually consists of multiple nodes, each node is responsible for

different tasks. For example, one node controlling the sensors, one node

controlling the motor of the robot and one node perform path planning. The

nodes can be communicated through Topic. Topic is a type of asynchronous

communication which allow the nodes passing a message to each other with the

help of publisher and subscriber. A node can publish the messages to a given

topic while the other node is allowed to subscribe to the given topic to obtain

the data. The topic is allowed to be subscribed/published by more than 1 of the

publisher and subscriber and each node is allowed to be published and

subscribed to many topics which are known as many-to-many or 1-way

transport communication method. (Aitken, Veres and Judge,2014). Unlike

Topics, Services is a synchronous communication method used for reply and

request. For instances, nodes provide a service with a given name and a client

send the request and wait for the reply by calling the services. Figure 2.1 shown

the communication between nodes. Moreover, there is a Parameter Server which

allows data to be stored in the server and can be obtained once needed. All this

is controlled by the Master which offer a name registration. Figure 2.2 shows

the basic structure of ROS.

5

Figure 2.1: Communication between nodes (ROS Wiki, 2014).

Figure 2.2: Basic structure of ROS (Clearpath Robotics,2014).

2.2 History of Motion Planning

In the year 1979, Path planning was first introduced in the autonomous mobile

robot by Lozano-Pérez and Wesley with the concept of configuration space(C-

space). (Lozano-Pérez and Wesley,1979).

 In the past few decades, motion planning is playing a more and more

important role in different field of robotics such as industry. This is because the

robotics industry had growth and autonomous navigation had become one of the

key elements in building a mobile robot especially service robot. Therefore,

nowadays, there are many different kinds of researches on the path planning and

motion control of the robots. Path planning is an algorithm used to generate the

path for the robot to move to the given goal. There are many types of path

planning used depends on the task needed to be performed by the robots. For

instances, automated guided vehicles (AGV) robot used in the factory is usually

6

moving in a standard path while for more advance applications, more robust

path planning algorithm is introduced which allow the robot to navigate in a

dynamic environment. (Gasparetto, et al.,2015). While motion control is to

smoothly control the robot by sending velocity commands to the robot to track

the path planned.

 The motion planning is the key for the mobile robot to perform

navigation. There are many motion planning algorithms that had been

developed.

2.3 Global Planner

The global planner is the algorithm used to generate an optimum path based on

the map built. There are several methods on forming paths such as dividing the

map into different cell/regions and compute called cell decomposition. The

method review in this research is assigning value to each region of the map and

compute to find a minimum cost path such as Dijkstra and A* algorithm.

2.3.1 Dijkstra Algorithm

The map is divided into cells and form a grid cell map as shown in Figure 2.3.

The values are assigned to the cells or nodes that the robot can move freely

based on the map. Start with the starting point, each node consists of a value

based on the distance between the robot and the nodes. Each generation, it will

compute the neighbour’s empty nodes and assign the values to the empty nodes

until it reaches the goal as shown in Figure 2.3. The minimum values path is

selected as the path generated. (Marin, et al.,2018).

7

Figure 2.3: Dijkstra algorithm (Marin, et al.,2018)

2.3.2 A* Algorithm

A*algorithm is similar to Dijkstra while A* assigning one more value to the

nodes with a heuristic function to estimate the distance between the goal point

and the nodes. This heuristic function can be a Euclidian distance method or

Manhattan distance method. With the combination of heuristic function and the

original cost function, in the Dijkstra algorithm, the new cost function is

generated. (Pittner, et al.,2018).

 𝑓(𝑋) = 𝑔(𝑋) + ℎ(𝑋) (2.1)

where

g(X) = original cost function of Dijkstra algorithm

h(X) = heuristic function

2.3.3 Comparison of the global planner

Dijkstra and A* algorithm are compared in term of their computation time and

path length. In a simple environment, based on Table 2.1, with the same path

length, A* algorithm has shorter computation time especially with Manhattan

8

distance equation as heuristic function. This is because Dijkstra algorithm

explores unused cell/nodes in an undirected fashion. In a more complex

environment, based on Table 2.2, A* algorithm is faster than Dijkstra algorithm.

Based on Figure 2.4, One of the advantages of using Dijkstra is it can shorter

the path length when using Gradient descent method to reduce the path length.

A* algorithm is unable to reduce the path length effectively because Gradient

descent method required more nodes explored to use for computation. However,

with the combination of a local planner, A* algorithm can also shorter the path

length with less computation power needed. (Pittner, et al.,2018).

Table 2.1: Comparison between Dijkstra and A* algorithm in a simple

environment (Pittner, et al.,2018)

Algorithm Path length Computing time

Dijkstra 14, 35m 14, 45 μs

A*(Manhattan) 14, 35m 0, 15 μs

A*(Euclidean) 14, 35m 0, 29 μs

Table 2.2: Comparison between Dijkstra and A* algorithm in a complex

environment (Pittner, et al.,2018)

Algorithm Computing time

Dijkstra 70, 63 μs

A*(Manhattan) 4, 69 μs

A*(Euclidean) 37, 65 μs

Figure 2.4: Blue line indicates path planned without gradient descent method,

red line indicate path with gradient descent method. (Pittner, et al.,2018)

9

2.4 Local Planner

Local planner is to generate a trajectory based on the path planned by global

planner. It generates a suitable waypoint from the path planned which based on

the dynamic constraints of the robots and real-time sensor data around the

robot(local map). There are multiple local planners already built as packages in

the ROS. (Marin, et al.,2018).

2.4.1 Dynamic Window Approach

Dynamic Window Approach is a trajectory planning algorithm developed by

the Dieter Fox, Wolfram Burgard and Sebastian Thrun in 1997. This algorithm

is using the dynamics of the robot to do the planning. It will sample the

velocities of the robot, and compute multiple approximations of trajectories in

an interval of time. The approximation of trajectories will result in a 2-

Dimensional search space (Ferrer Sánchez,2018).the trajectories in the search

space are based on 3 criteria:-

i. Circular trajectories.

ii. Dynamic window.

iii. Admissible velocities.

For the robot to reach the goal with the trajectories planned, the velocity

vector is computed at a certain time interval and input to the robot. This velocity

vector which is determined by translational and rotational velocity of the robot

is known as circular trajectories. Moreover, admissible velocities are the

velocities that the robot able to move safely which mean is the velocity that the

robot can stop before colliding the obstacles.

 Besides, every robot had its acceleration limit. The trajectories in the

search space will be reduced to the dynamic window based on the acceleration

limit of the robot. The dynamic window,Vd only contain velocities that are

reachable by the robot within the time interval. Hence the resultant search space,

Vr is the combination of these three criteria shown in Figure 2.5.

10

Figure 2.5: Search space (Ferrer Sánchez,2018).

The resultant search space will be optimized to obtain the maximum cost/ best

trajectories. The remain trajectories in the search space will be computed with

this cost function.

𝐺(v, ω) = σ(α ∗ angle(v, ω) + β ∗ dist(v, ω) + ϒ ∗ vel(v, ω)) (2.2)

where

v = tranaslational velocity

ω = rotational velocity

α = weight of target heading

β = weight of clearance

ϒ = weight of velocity

This cost function is respect to the current position and orientation of the

robot. Trajectories with the highest cost will be selected. There are 3 parameters

affecting the cost function.

i. Target heading, angle(v, ω)

ii. Clearance, dist(v, ω)

iii. Velocity, vel(v, ω)

Each of the parameters is normalized to [1,0]. α, β, ϒ is the weight of

each parameter. Target heading is defined as the relative angle between the

current orientation of the robot and the goal direction. Since the robot orientation

is based on the circular trajectories, the target heading angle, θ will be calculated

for the predicted position of the robot which is shown in Figure 2.6. Figure 2.7

11

shows the relationship between target heading with a set of rotational and

translational velocity of the robot. It shows that when the rotational velocity

increase, the function cost declined due to the robot is turning away from the

target.

Figure 2.6: Target heading, θ and predicted position of the robot. (Fox, Burgard

and Thrun,1997).

Figure 2.7: Target heading against rotational and translation velocity. (Fox,

Burgard and Thrun, 1997).

 Moreover, Clearance is based on the distance between the obstacles and

robot position which intersect the trajectories in the resultant search space.

While velocity is the robot velocity on the current trajectory. Hence, the cost is

calculated according to these 3 criteria. The highest cost of trajectory will be the

robot trajectory. (Fox, Burgard and Thrun, 1997).

2.4.2 EBAND local planner

Elastic bands (EBAND) local planner is one of the types of local planner which

used to the autonomous navigation system. This algorithm is used to modify the

path generated by the path planner. It uses two components to generate the free-

12

collision path which is ‘repulsive force’ and ‘contraction force’. Contraction

force is used to form the tension of the band while the repulsion force is exerted

on the elastic bands by the obstacles. Based on Figure 2.8-a, it is the path

generated by the path planner, after applying the elastic bands with both forces

the robot will move in the Figure 2.8-d path. (Quinlan and Khatib, 1993)

Figure 2.8: Elastic band planner (Quinlan and Khatib,1993)

2.4.3 TEB planner

Time Elastic Band (TEB) planner is an extension of the EBAND planner. It

creates a local plan which consists of a sequence, n of robot poses, based on the

path planned by the global planner. (Cybulski, Wegierska and Granosik, 2019).

The robot poses, 𝑋 consists of 3 elements which are position and orientation

based on the related frame, {map} which shown in Figure 2.9. This sequence of

the pose is defined as:

 𝑄 = {𝑋𝑖}𝑖=0…𝑛 (2.3)

where

X = robot pose

Q = sequence of robot pose

13

Figure 2.9: Sequence of the configuration of robot respect to map frame.

(Rösmann, et al.,2012).

Unlike Elastic band planner, TEB is computed between 2 consecutive

configurations between a time interval and forming a sequence of time

difference which denoted as τ.

 𝜏 = {Δ𝑇𝑖 }𝑖=0…𝑛−1 (2.4)

where

ΔT = Time interval

τ = Sequence of Time interval

The TEB is represented as:

 𝐵 = (𝑄, 𝜏) (2.5)

Then the TEB, B is optimized by the objective function. The TEB, B

with minimum cost will be selected. The objective function is based on several

parameters such as the dynamic constraints of the robots and the distance

between obstacles. Moreover, the translational and rotational velocity is

computed based on the 2 consecutive configurations, and with the time intervals

between these two consecutive poses. Then, the acceleration of the robot is just

the velocity changes in the time intervals. (Rösmann, et al.,2012). Besides, TEB

also can perform parallel trajectories planning. This means if one of the

trajectories suddenly blocked such as closing the door, the robot can follow an

14

alternative trajectory. However, this will increase the computation power but

result in robot able to move faster. (Rösmann, et al.,2012). Besides, based on

(Marin, et al.,2018), one of the disadvantages of TEB is, when obstacles are

moving across the robot as shown in Figure 2.10, the trajectory produced path

length will increase.

Figure 2.10: Dynamic obstacles moving from across the robot. (Marin, et

al.,2018).

2.5 Comparison of local planner

When the start poses of the robot in the opposite direction to the goal. EBAND

algorithm is generating the shortest path. This is due to there are no obstacles

which exerted the repulsive force to the path planned. Therefore, the robot

simply just rotates 180° and then drive straight to the goal. While the TEB

algorithm computes the transition, the time required and the dynamic constraints

of the robot between configurations. Hence, it generates a trajectory with a

shorter transition time than EBAND. While DWA algorithm, has higher

weighting on positive translational, hence the robot tends to move forward. The

path generated by the different local planner is shown in Figure 2.11.

 Moreover, in the case of static obstacles, EBAND algorithm failed to

find an optimal path for the robot. While TEB and DWA successfully find an

admissible path. This is because the obstacles exerted the ‘repulsive force’ on

the EBAND trajectory which form a tangential rather than a circumnavigation.

The result is shown in Figure 2.12. (Pittner, et al.,2018). Besides, in the case of

dynamic obstacles, DWA algorithm collides with the obstacles which are shown

in Figure 2.13. This is because, when moving forward DWA algorithm detect

no obstacles in front. Hence it will move in high velocity. When the obstacles

15

suddenly moving toward the robot, DWA unable to stop immediately cause

having a high cost of forward velocity.

Figure 2.11: Path planned when the start position is the opposite direction to

goal. (Pittner, et al.,2018).

Figure 2.12: Path planned with static obstacles. (Pittner, et al.,2018).

Figure 2.13: Path planned with dynamic obstacles. (Pittner, et al.,2018).

 On top of another testing was undergo in different research which shown

in Figure 2.14. EBAND algorithm had difficulties when going navigating. This

may due to when turning to a corner, EBAND is sensitive to affect the

16

acceleration of the robot. Besides, Unlike DWA need extra time to replan the

path when passing the obstacles, TEB able to move to pass the obstacles

smoother and faster. Moreover, it conclude that each planner has its advantages.

EBAND has higher accuracy, DWA has better consistency while TEB is the

fastest time. (Cybulski, Wegierska and Granosiki, 2019)

Figure 2.14: The path generated by the robot from P1 to P3. (Cybulski,

Wegierska and Granosik,2019).

2.6 Summary

According to the literature review, A* algorithm is having the shorter path

length and faster computation time than Dijkstra algorithm. Besides, Since

DWA and TEB algorithm both has its advantages, it is worth to investigate more

about its performance to determine which more suitable in this application.

Therefore, A* algorithm as a global planner, DWA and TEB algorithm as the

local planner will be compared and selected to implement in the office assistant

robot in this research.

17

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

The motion planner of ROS on the office assistant robot was studied by

simulated in Gazebo. Then, map was generated by using the SLAM algorithm

with gmapping method. The office assistant robot is then implementing the

navigation stack which included the map server and localization on it by using

ROS. The global planners were compared by giving 2 goals for the robot to

navigate. The computation time and search space created were recorded.

Besides, the performance of the local planners was tested by moving around the

simulation, moving toward and across the obstacles. The most suitable planner

will be selected based on the results obtained. After that, the navigation stack

was implemented on the office assistant robot in a real-world scenario. The

parameters were studied and tuned based on the results obtained to ensure the

robot having optimum results.

3.2 Simulation with gazebo

Gazebo is a free simulator used to simulate a population of robot efficiently in

a complex indoor or outdoor environment. To simulate the office assistant robot

in Gazebo, a UTAR KB 5th floor environment and an office assistant robot

model was built which shown in Figure 3.1 and Figure 3.2 respectively.

The environment and model were built and inserted into the gazebo. The

robot model is linked with different type of parts such as wheels and body. The

main body link is called as base frame. Based on Figure 3.1, The model consists

of two wheels, a body of the robot, LiDAR sensor and a depth camera. There is

also robot_controller to control the robot in Gazebo such as differential_drive

controller and join_state controller.

Figure 3.1: Robot model in Gazebo simulation

18

Figure 3.2: UTAR KB 5th floor

The robot can be controlled by using keyboard packages to publish the

velocity topic to the robot model. The velocity topic named as

diff_drive_controller/cmd_vel. The rqt graph was shown below in Figure 3.3.

Figure 3.3: Rqt_graph of Gazebo simulation

3.3 Implement navigation stack

Navigation stack is used for the mobile robot to navigate autonomously by

taking odometry and sensors information and output velocity commands to the

robot. (Jasprit, 2018). To implement the navigation stack, multiple

configurations needed to be setup. Based on Figure 3.4, the move_base package

will take the sensor transform, odometry, map and sensors as the input, and

generate the path and trajectory and output the velocity commands to the

base_controller to move the robot with the desired velocity. To implement

19

navigation stack on the robot, a workspace was created. Then, a packages will

be created to store all the configuration packages for the navigation stack.

Figure 3.4: Navigation stack (Jasprit, 2018)

3.3.1 SLAM

Mapping is generated by using the sensor data and odometry of the robot. One

of the method used for mapping is SLAM algorithm. It generates high quality

and accurate map for the robot to navigate (Norzam, Hawari and Kamarudin,

2019). There are multiple ways of SLAM in ROS. The method used in this

research is gmapping. The robot is then controlled manually by the user to

generate a map for UTAR KB 5th floor. The map generated is known as global

costmap while the local costmap will be generated by the real-time sensor data.

The global costmap generated will be stored in the map server. The map

generated can be tuned by manipulating the parameters in the parameter server.

There is 3 configuration needs to be set by the costmap which are common

configuration for global and local costmap, configuration for local costmap and

global costmap. For example, the update and publish frequency, the resolution

and the inflation radius of the map are the parameters that can be manipulated.

3.3.2 Localization

To localize the robot position in the map. Sensor data and map generated are

used to localize the robot by using the Abstract Adaptive Monte Carlo

localization(AMCL) algorithm. Then output the robot’s estimate position as /tf

topic. Figure 3.5 below shown the block diagram of the AMCL algorithm.

20

Figure 3.5: Block diagram of AMCL algorithm

3.3.3 Local planner configuration

A local planner parameter file was created. This file was used to store the

parameters of a different type in the parameter servers. Then, the parameter will

be taken by the move_base node and compute. The output will be a velocity

commands to control the robot. After that, a launch file was created to launch

multiples nodes such as configuration packages, map server, the AMCL

packages and the move_base packages. Besides, the parameters for the costmap

and the local planner was published to the parameter server through the launch

file also.The overall rqt_graph is shown in Figure 3.6.

Figure 3.6: Overall rqt_graph of simulation with gazebo

3.4 Experiment in gazebo.

A node which called as simple_goal were created to publish different waypoint

to the robot. The goal will specify the target position of x and y coordinate and

also the targeted orientation of the robot. The computation time of the global

planner will be recorded. Besides, the behaviour of the robot will also be

recorded. Moreover, the local planners will be tested with multiple goals,

21

sudden obstacle in front 1m of the robot which shown in Figure 3.7 and dynamic

obstacles which moving toward and moving across the robot to verify the

feasibility of the local planner when facing dynamic obstacles which shown in

Figure 3.8 and Figure 3.9.

Figure 3.7: Robot facing sudden obstacle when moving to the goal.

Figure 3.8: Simulation environment for dynamic obstacles moving across the

robot. Red arrow indicate robot moving direction , yellow arrow indicate

obstacles moving direction.

22

Figure 3.9: Simulation environment for dynamic obstacle moving toward the

robot. Red arrow indicate robot moving direction , yellow arrow indicate

obstacle moving direction.

3.5 Compare the results and Implement on office assistant robot

The results were compared based on their computation time and feasibility. The

most suitable planner will be selected based on the simulation result and

implemented on the real robot. There are some differences between the actual

model of the robot and real robot such as the centre of gravity of the robot and

the motor reaction time. These differences will affect the stability and inertia of

the robot when navigating. Hence, the program needed to test with the real robot

to do the final tuning.

3.6 Tuned the parameters

In a real-life scenario, there are many unpredictable issues and problem which

are not able to be seen during simulation with Gazebo. Therefore, after

implementing the program to the office assistant robot, the parameters of the

planner need to be tuned to obtain the optimum results for the robot to smoothly

navigate autonomously in the real environment. The office assistant robot will

be given a sequence of a waypoint to determine its feasibility. Besides, it also

will experiment with dynamic obstacles which moving across and toward the

robot which shown in Figure 3.10, Figure 3.11 and Figure 3.12. The results will

be recorded and discussed.

23

Figure 3.10: Dynamic obstacle moving across the robot in real environment.

Yellow arrow indicate the movinf direction of obstacle.

Figure 3.11: Dynamic obstacle moving toward the robot in real

environment.Yellow arrow indicate the moving direction of obstacle.

Figure 3.12: Dynamic obstacles moving toward and across the robot in real

environment.Yellow arrow indicate the moving direction of obstacles.

24

3.7 Summary

The robot will first be tested with the simulation by using Gazebo. The

advantages of using simulation is can reduce random error and time-saving.

Then, the navigation stack will be implemented on the robot including the

mapping and localization of the robot. Besides, there are multiple experiments

to compare different local planner to select the most suitable planner used in this

application. Finally, the planner will be implemented on the office assistant

robot with fined tuned parameters.

25

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Introduction

In this research, multiple simulation environments had setup to test the

feasibility of different path planning algorithm which is shown in Figure 4.1,

Figure 4.2 and Figure 4.3. Figure 4.2 had inserted multiple dynamic obstacles

with specific velocity and goals. Besides, a simplified environment was

generated to test the performance of the path planning algorithm with dynamic

obstacles which is shown in Figure 4.3.

Figure 4.1: KB 5th floor simulation environment

Figure 4.2: KB 5th floor simulation environment with multiple dynamic

obstacles.

26

Figure 4.3: Simple simulation environment for experiment with dynamic

obstacles.

Moreover, 2d map is generated by using the SLAM algorithm which is

gmapping based on the data obtained from LiDAR sensors. On top of that, the

path planning algorithms are compared based on the simulation results and the

suitable local planner algorithm is selected and used in this office assistant robot.

Next, the real robot is setup and the navigation pack is implement on the real

robot and in a room environment to undergo further testing to tuned the

parameters and verified the results obtained from the simulation.

4.2 Office assistant robot

The office assistant robot is a differential drive robot with four wheels. It has 2

omnidirectional freewheels mounted on the back of the robot and 2 front wheels

independently powered by 2 DC brushed motor with built-in encoder. The built-

in encoder provided the odometry data of the robot. Besides, it consists of a

motor control board, dual channel motor driver to drive the motor, a LiDAR

sensor which provided 240° laser scanning data mounted in the front of robot, a

12V Lipo Battery as power supply and a Laptop running Ubuntu 18.04 LTS

with ROS Melodic to process the data obtained from the sensors and output the

command velocity with PID controller to the control board to control the motors.

27

The robot system is shown in Figure 4.4 while the overview of the robot base is

shown in Figure 4.5.

Figure 4.4: System of the office assistant robot

Figure 4.5: Office Assitant robot

4.3 SLAM

The map was generated by moving the robot around the environment to record

the sensor data. Based on the LiDAR sensor data and the odometry data from

the encoder feedback maps were generated by using the gmapping method

which shown in Figure 4.6, Figure 4.7 and Figure 4.8. In simulation and real

environment, the map generated will have some minor offset compare to the

actual map. The generated map will input into the navigation pack for the robot

used in the navigation and localization.

28

Figure 4.6: Map generated based on KB 5th floor simulation environment

Figure 4.7: Map generated based on simple environment for dynamic

obstacles.

Figure 4.8: Map generated based on real environment(room)

29

4.4 Costmap setup

There are 2 costmap was implemented on the robot which is global and local

costmap. Global costmap consists of 3 layers which are static map layer,

inflation layer and obstacle map layer. Static map layer is used to define the map

generated by SLAM which shown in Figure 4.9. While inflation layer was used

to increase the cost around the static obstacles which is shown in Figure 4.10.

There are two parameters to tune the inflation layer which are inflation_dist and

cost_scaling_factor. Based on the result shown in Figure 4.10, the buffered zone

around the obstacles increases when the inflation_dist increase. Besides, the

cost_scaling_factor is used to adjust the inflation dist cost. The result was shown

in Figure 4.11. Obstacle map layer used to track the dynamic obstacles or the

obstacles not shown in the static map based on the sensor data. Unlike global

costmap, local costmap only consists of inflation layer and obstacle map layer.

The obstacle layer will be clear if the robot is running recovery behaviour due

to oscillation, stuck in the position or unable to generate a valid path.

Figure 4.9: Map with Static map layer

(a)

(b)

Figure 4.10: (a) indicate the inflation_dist = 1.0 and (b) indicate inflation_dist

= 3.0 while both having cost_scaling_factor 3.0

30

Figure 4.11: Cost_scaling_factor = 1.0

Figure 4.12: Obstacle layer

4.5 Localization of robot

The robot is localized based on the AMCL algorithm. The map generated, the

odometry data and the real-time LiDAR sensor data is input to the algorithm to

localize the position of the robot in the environment which shown in Figure 4.13.

The red arrow around the robot indicates the predicted orientation and position

of the robot in the map. Once the robot starts moving, it will auto-recalibrate the

position of the robot based on the sensor data and the arrow will start to

concentrate and point to the same direction which indicates the orientation of

the robot which is shown in Figure 4.14.

31

Figure 4.13: Robot implemented with AMCL algorithm in initial state.

Figure 4.14: Robot implemented with AMCL algorithm after moving.

4.6 Comparison of global planner based on simulation

The package used in the robot is global_planner package. Figure 4.15 shown the

path planned by the Dijkstra algorithm while Figure 4.16 shown the path

planned by the A* algorithm. Based on the results obtained, Dijkstra will search

the path and form a circle of search space which the robot act as a centre point

until it reaches the goal, while A* will form a narrow search space toward the

goals. When the robot moving toward the goals, the search space will be reduced

based on the distance between the goal and the robot current position. Besides,

the computation time of the global planner algorithms which shown in Table 4.1

and Table 4.2. Based on the results obtained, A* algorithm is 462.5% faster than

Dijkstra algorithms when generating the path which 10m in front of the robot

and 240.2% faster than Dijkstra algorithms when generating the path to the

coordinate of (10,-25) of KB 5th floor which shown in Figure 4.18 and Figure

32

4.19. However, the computation time is not a main criteria in this application,

because the global path planned is only in the initial state when the goal is set.

Therefore, both global planners are able to achieve the required performance in

this application.

Table 4.1: Computation time of global path planner algorithm with 10m goal.

No Dijkstra, time (ms) A*, time (ms)

1 7 1

2 7 1

3 9 1

4 6 3

5 7 2

6 8 1

7 7 2

8 6 1

9 6 1

10 11 3

Average 7.4 1.6

Table 4.2: Computation time of global path planner algorithm with

coordinate(10,-25) goal.

No Dijkstra, time (ms) A*, time (ms)

1 41 23

2 41 22

3 44 16

4 40 19

5 38 15

6 46 17

7 50 19

8 49 16

9 50 17

10 43 20

Average 44.2 18.4

Moreover, the lethal cost is 253 in default parameters. In order for the

robot to have a path planned further away from the obstacles and avoid stuck

and unable to re-plan in a narrow corridor which shown in Figure 4.17. This is

because, the local planner was avoiding travelling in the narrow corridor to

maintain the minimum obstacle distance but the path generated by the global

planner was conflicting. In order to solve this issue, the lethal cost is decreased

33

from 253 (default) every 10 steps until the robot was able to replan a new path

which shown in Figure 4.17. The final lethal cost set is 150.

Figure 4.15: Path planned with Dijkstra algorithm

Figure 4.16: Path planned with A* algorithm

34

(a)

(b)

Figure 4.17: (a) Indicate the robot is stucked by the path planned with global

planner with lethal cost = 253. (b) indicate the robot with lethal cost=150.

Figure 4.18: Search space of Dijkstra algorithm with target goal (10,-25)

Figure 4.19: Search space of A* algorithm with target goal (10,-25)

35

4.7 Comparison of local planner

In this research, 2 local planner algorithm was implemented on the simulated

robot which is DWA and TEB algorithm. In this research , the footprint model

of the robot with TEB was changed to line instead of a point. This is because,

the robot is a rectangle shape instead of a circular robot. Therefore, Line

footprint model have better represantive than a point foot print model. Besides,

due to the limitation of computation power, the

enable_homotopy_class_planning was changed from true to false to reduce the

computation power. The first experiment was tested by sending a specific goal

to the robot with different local planner algorithms. The results were recorded

and shown in Figure 4.20 and Figure 4.21. Based on the results obtained, in

default parameters of DWA, the robot is unable to move in backward motion

and stuck in the position. However, by tuning the min_vel_x parameter to

negative value , we can change the maximum velocity for the robot to move

backwards. But, this cause the robot will tend to move backwards than forward

motion if the goals is behind the robots which shown in Figure 4.22. This is not

suitable in this application. This is because, the LiDAR sensor is mounted in

front of the robot, hence it unable to detect the dynamic obstacles that are

moving behind the robot. Based on Figure 4.21, the robot is able to travel in

backward motion unlike DWA. However, to reduce the robot to travel in

backward motion, the algorithm can tune the parameter which are

weight_kinematics_forward_drive from 1.0 to 800, so the robot will tend to

move forward but it also able to move backwards when it is needed. The

weight_kinematics_forward_drive indicate the cost of robot to moving in

forward direction. The higher the value, the higher the tendency of the robot to

moving in forward direction.

36

Figure 4.20: Robot stuck due to unable to move in backward motion in DWA.

Figure 4.21: Robot able to travel in backward motion with TEB.

Figure 4.22: Robot tend to move in backward motion with DWA.

37

On top of that, to verify the performance of the algorithm in avoiding

dynamic obstacles a new simulation environment is built-in Gazebo which

shown in Figure 4.3. According to the results shown in Figure 4.23 and Figure

4.24, both algorithm able to stop without colliding with the obstacle when it

suddenly appears 1m in front of the robot when the robot moving. Besides,

based on the results obtained when the robot moving across dynamic obstacle,

with default parameters, both algorithms have bad performance when facing

dynamic obstacle especially DWA algorithm. The path generated by DWA

when moving across the dynamic obstacle was shown in Figure 4.25. Based on

Figure 4.26, the robot will only reduce its velocity when the obstacle are right

in front of the robot and the angular velocity remain approximately constant.

Hence, the robot is unable to stop before hitting the dynamic obstacle. To

improve the performance of avoiding obstacle, a few parameters of DWA

algorithms was increased which are:-

i. Sim_time –The amount of time to simulate forward trajectories.

ii. Vx and vth_samples – Number of forward and angular sampling

velocity.

iii. Occdist_scale – Weight of the cost to avoid obstacle.

However, the performance of the DWA algorithm is not improved which

shown in Table 4.3. With TEB algorithm, the robot has slightly better

performance than DWA algorithm when moving across the dynamic obstacle.

Based on the results shown in Figure 4.27, the robot will increase its angular

velocity to approximate 0.75 rad/s when the obstacle moving across the robot

unlike robot with DWA which remain approximately zero. To improve the

results of TEB algorithm, there are also few parameters was tuned, which

included the following:-

i. include_dynamic_obstacles.

ii. costmap_converter_plugin.

Costmap_converter_plugin is used to convert the costmap cells

geometric primitives such as line, point and polygons as obstacles. By applying

the costmap_converter_plugin, the obstacles are converted into polygon and a

dynamic obstacle layer was applied. It able to track the dynamic obstacles

according to the update of costmap. According to Albers et al. (2019), the

38

working of algorithms starts with a background subtractor and blob detector to

track and locate the obstacles. New track will be generated if there are obstacles

are not tracking and some track will be removed due to inactivate a period time.

The tracks are generated based on the current and past position of the obstacles.

In order to solve the data acquisition problem, Hungarian algorithm was

implemented. Lastly, Kalman filter with first constant velocity model was

applied to estimate the velocity of the dynamic obstacles. With these two

parameters modified, the robot with TEB algorithm is able to avoid the dynamic

obstacles most of the time which shown in Figure 4.28. Based on the results

shown in Figure 4.28, the angular velocity increase significantly from 0.25 rad/s

to maximum, 1.0 rad/s and at the same time the forward velocity dropped

gradually from 1.0 m/s to around 0 m/s. This is because, with the converter

plugin, the robot is able to predict the moving obstacle motion and able to stop

and turn before hitting the dynamic obstacle, which shown in Figure 4.29.

Besides, based on the results shown in Figure 4.30, the robot with

TEB+DOL will increase its angular velocity to rotate and avoid the obstacle

moving toward the robot which shown in Figure 4.31.

 In conclusion, based on the simulation results, TEB algorithm was

chosen to apply on the office assistant robot due to its feasibility in avoiding

dynamic obstacles and able to tune the weight of moving backward motion

which is more suitable in this application.

Figure 4.23: Robot having sudden obstacle infront the robot when moving

forward (DWA)

39

Figure 4.24: Command velocity graph with default parameters sudden obstacle

in front of the robot (TEB)

Figure 4.25: Robot moving across dynamic obstacle (black arrow indicate

direction of obsctales while red arrow indicate robot moving direction) (DWA)

40

Figure 4.26: Command velocity graph of robot moving across obstacle (DWA)

Obstacle in front the robot

41

Table 4.3: Results of changing 3 different parameters of DWA

Parameters Results

Sim_time

(1.7 to 3.5)

Occ_dist_s

cale (0.01

to 1.0)

42

Vx

(3 to 20)

Vth

(20 to 40)

Figure 4.27: Command velocity when obstacle moving across (TEB)

Obstacle detected

43

Figure 4.28: Command velocity when obstacle moving across

(angular velocity increase) in simulation (TEB+DOL).

Figure 4.29: Robot slow down and path re-planned to avoid the dynamic

obstacle which moving across in simulation.

Obstacle

44

Figure 4.30: Obstacle moving toward (angular velocity increase) in simulation

(TEB+DOL)

Figure 4.31: Robot turn to avoid the dynamic obstacle which moving toward

in simulation (TEB+DOL).

Obstacle detected

45

4.8 TEB algorithm on real office assistant robot

The real environment had changed to a room instead of UTAR KB 5th floor.

The TEB algorithm were implemented on the office assistant robot. The

costmap parameters was tuned based on the environment. Moreover, the

maximum forward velocity was reduced to 0.5 m/s because the room is not wide

enough for the robot to travel with 1.0 m/s. Besides, the maximum angular

velocity was reduced to 0.5 rad/s to reduce the odometry error. The first

experiment was tested by sending a specific goal for the robot to travel in the

room. According to the results shown in Figure 4.32, the robot are stucked in

front of the door. This problem can be solved by tuning the min_obstacles_dist

parameters. Min_obstalces_dist indicate the minimum distance between the

robot and the obstacles. In this research, it was reduced to 0.3 m to allow the

robot pass through narrow environment.

Moreover, the robot was tested with the dynamic obstacle move across

itself which shown in Figure 3.10 and the results were shown in Figure 4.33 and

Figure 4.34. Based on the results obtained, the robot is approximately same as

the simulation results. The robot is able to plan a path in order to avoid the

dynamic obstacle which shown in Figure 4.35. When there is no converter

plugin, the robot is unable to predict the obstacle motion and it did not increase

the angular velocity to avoid hitting the obstacle only until the obstacles is right

in infront the robot which shown in Figure 4.36. However, with the converter

plugin, the robot are able to predict the dynamic obstacles and it increased the

angular velocity to avoid the obstacle more efficient which shown in Figure 4.35.

Hence, the robot with TEB + DOL has better performance. Besides , It is

observed that the robot forward velocity will dropped to zero and remain

constant until the obstacle moved away which shown in Figure 4.37 when the

obstacle is moving across the path planned and is near to the robot which shown

in Figure 4.38.

46

Figure 4.32: Robot was stucked in narrow environment

Figure 4.33: Velocity graph when obstacle moving across robot with TEB.

Obstacle detected

47

Figure 4.34: Velocity graph when obstacle moving across robot with

(TEB+DOL)

Figure 4.35: Obstacle moving across the robot path planned (TEB+DOL)

Obstacle detected

48

Figure 4.36: Obstacle moving across the robot path planned (TEB)

Figure 4.37: Command velocity graph of real robot when obstacle moving

across path planned (TEB+DOL)

Linear velocity dropped to zero

49

Figure 4.38: Obstacle moving across the path planned (TEB+DOL)

 On top of that, another experiment was undergone which are the obstacle

mowing toward the robot which is shown in Figure 3.11. Based on the result

shown in Figure 4.39, the robot will slow down or stop and increase its angular

velocity to avoid the obstacle moving toward and generate a path which shown

in Figure 4.40. Besides, if the obstacle continue moving toward the robot, the

robot will collide with the obstacles while the robot will tend to move backwards

afterwards. If the obstacle stop right before hitting the robot, the robot will rotate

and follow the path planned in Figure 4.40.

50

Figure 4.39: Velocity graph when obstacle moving toward the robot.

(TEB+DOL)

Figure 4.40: Obstacle moving toward robot

 Moreover, the robot can avoid the dynamic obstacles when there is

dynamic obstacles moving toward and across the robot which is shown in Figure

3.12. It will slow down its linear velocity and generate a path to avoid the

obstacle which shown in Figure 4.41 and after the dynamic obstacles move away

from the robot, the path will back to normal which shown in Figure 4.42.

Obstacle detected

51

Figure 4.41: Path generated when obstacles move toward and across the robot.

Figure 4.42: Path planned after the obstacles move away.

 According to the simulation and real life results, it can conlude that

office assistant robot with TEB and DOL are able to avoid obstacles more

efficient than TEB only. Therefore, TEB with DOL are applied to the office

assistant robot.

52

4.9 Parameters affect dynamic obstacles avoidance.

Besides, some of the parameters were tuned to investigate the performance of

the robot when facing dynamics obstacles which are:-

i. weight_dynamic_obstacle – the weight of distance between dynamic

obstacles and robot.

ii. weight_dynamic_obstacle_inflation – Optimization cost of inflation

penalty of dynamic obstacles.

iii. dynamic_obstacle_inflation_dist – Buffered zone around the

predicted position of dynamic obstacles.

The weight_dynamic_obstacle, weight_dynamic_obstacle_inflation and

dynamic_obstacle_inflation_dist was increased to study the effect of modifying

the parameters. The weight_dynamic_obstacle was increased from the default

value, 50 to 500. Based on the simulation results shown in Figure 4.43, the path

planned is further away from the moving obstacle when it moving toward the

robot which same as the results obtained from the room which is shown in

Figure 4.45.

Figure 4.43: Simulation results when weight_dynamic_obstacle = 500

Figure 4.44: Weight_dynamic_obstacle = 50

53

Figure 4.45: Weight_dynamic_obstacle =500

 Besides, based on the results shown in Figure 4.46, when the obstacle

moving across the dynamic obstacle, the local path planned will be distorted and

these results obtained same as the simulation results shown in Figure 4.47. This

is because, the higher the dynamic_obstacle_inflation_dist, the greater the local

path planned will be distorted further. Moreover, based on the results obtained,

the weight_dynamic_obstacle_inflation is not having any significant effect to

the path planned by the TEB algorithms in simulation and room environment.

Figure 4.46: Dynamic_obstacle_inflation_dist = 4.0

54

Figure 4.47: Simulation result when dynamic_obstacle_inflation_dist = 4.0

4.10 Summary

The navigation pack had successfully implemented on the office assistant robot.

Besides, the map had generated by using the SLAM algorithm. Moreover, the

costmap parameters are modified based on this application. On top of that, the

2 global planners which are A* and Dijkstra had compared. Other than the

global planner, the 2 local planners which are DWA and TEB had compared

with simulation and real environment. The most suitable local planner was

selected which are TEB due to its navigation behaviour and the feasibility on

avoiding dynamic obstacles. Besides, the parameters of TEB had studied and

implemented on the office assistant robot which are shown in Table 4.6,

Table 4.5 and Table 4.4. The overall rqt_graph was shown in Figure 4.48.

55

Figure 4.48: Overall rqt_graph

Table 4.4: Costmap Setup

Inflation_dist 1.0

Cost_scaling_factor 3.0

Table 4.5: Parameters modified for Global planner

Parameters Values

Lethal_cost 150

56

Table 4.6: Parameters modified for TEB local planner

Parameters Values

max_vel_x 0.5 m/s

max_vel_tetha 0.5 rad/s

footprint_model/type “line”

min_obstacle_dist 0.3 m

include_dynamic_obstacle True

costmap_converter_plugin costmap_converter::CostmapToDynamicObs

tacles

static_converter_plugin costmap_converter::CostmapToPolygonsDB

SMCCH

weight_kinematics_forward

_drive

800

enable_homotopy_class_pla

nning

False

57

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The simulation environment and the differential drive robot model was built

with gazebo and several experiments with the robot was tested. Moreover, the

navigation pack had successfully implemented on the office assistant robot. The

behaviour and the feasibility of the robot on navigation were studied.

 In conclusion, for the differential drive robot to navigate, map are needed

to generate with gmapping method of SLAM algorithm. Besides, LiDAR sensor

data are used to detect obstacles and also used with odometry data for

localization with AMCL algorithm. Moreover, costmap are needed to

implement on the robot. The parameters inflation_dist and cost_scaling_factor

are able to adjust the cost of the buffer zone of the obstacles. The higher the

inflation_dist, the bigger the cost of the buffer zone around the obstacle. On top

of that, A* has faster computation time than Dijkstra algorithm but both global

planners are able to achieve the requirements in this application. Besides, the

parameter, lethal_cost is affecting the path planned by the global planner. The

higher the lethal_cost, the path planned will tend to travel in a narrow corridor

and conflicting the local planner. Besides, the TEB local planner are selected

for this application. This is because, it can modify the parameter of

weight_forward_drive to adjust the robot weight in travel in forward motion and

reduce the weight in backwards motion.

Besides, TEB can avoid dynamic obstacles by using the dynamic

obstacle layer. It can track and predict dynamic obstacles and avoid it.

Besides ,the parameters min_obstacle_dist and footprint model are affecting the

distance between the obstacle and the robot. The higher the min_obstacle_dist,

the higher the distance between the robot and obstacles.

dynamic_obstacles_inflation_dist and weight_dynamic_obstacle also affect the

behaviour of robot when facing dynamic obstacles. The higher the

dynamic_obstacles_inflation_dist and the weight_dynamic_obstacle, the robot

will tend to avoid the obstacle. Lastly, The optimum value of parameters which

58

are shown in Table 4.4, Table 4.5 and Table 4.6 were implemented on the

differential drive office assistant robot to navigate in the room and simulation

environment with obstacle avoidance.

5.2 Recommendation for future direction

In this research, only 2 or less dynamic obstacles was tested in the real

environment. One of the future recommendations is to increase the number of

dynamic obstacles and evaluate the performance of the local planner, TEB and

the parameters affected in the crowded environment. Besides, in this research,

the robot is unable to avoid the dynamic obstacles when it moving toward the

robot non-stop. In future study, the TEB algorithm needed to be improved in

order to avoid the obstacle.

59

REFERENCES

Lozano-Pérez, T. and Wesley, M.A., 1979. An algorithm for planning collision-

free paths among polyhedral obstacles. Communications of the ACM, 22(10),

pp.560-570.

Gasparetto, A., Boscariol, P., Lanzutti, A. and Vidoni, R., 2015. Path planning

and trajectory planning algorithms: A general overview. In Motion and

operation planning of robotic systems (pp. 3-27). Springer, Cham.

Ferrer Sánchez, J., 2018. Implementation and comparison in local planners for

Ackermann vehicles.

Fox, D., Burgard, W. and Thrun, S., 1997. The dynamic window approach to

collision avoidance. IEEE Robotics & Automation Magazine, 4(1), pp.23-33.

Quinlan, S. and Khatib, O., 1993, May. Elastic bands: Connecting path planning

and control. In [1993] Proceedings IEEE International Conference on Robotics

and Automation (pp. 802-807). IEEE.

Cybulski, B., Wegierska, A. and Granosik, G., 2019, July. Accuracy comparison

of navigation local planners on ROS-based mobile robot. In 2019 12th

International Workshop on Robot Motion and Control (RoMoCo) (pp. 104-111).

IEEE.

Rösmann, C., Feiten, W., Wösch, T., Hoffmann, F. and Bertram, T., 2012, May.

Trajectory modification considering dynamic constraints of autonomous robots.

In ROBOTIK 2012; 7th German Conference on Robotics (pp. 1-6). VDE.

Marin-Plaza, P., Hussein, A., Martin, D. and Escalera, A.D.L., 2018. Global and

local path planning study in a ROS-based research platform for autonomous

vehicles. Journal of Advanced Transportation, 2018.

Pittner, M., Hiller, M., Particke, F., Patino-Studencki, L. and Thielecke, J., 2018,

June. Systematic analysis of global and local planners for optimal trajectory

planning. In ISR 2018; 50th International Symposium on Robotics (pp. 1-4).

VDE.

Norzam, W.A.S., Hawari, H.F. and Kamarudin, K., 2019, November. Analysis

of Mobile Robot Indoor Mapping using GMapping Based SLAM with Different

Parameter. In IOP Conference Series: Materials Science and Engineering (Vol.

705, No. 1, p. 012037). IOP Publishing.

Jasprit, S., 2018. Navigation/Tutorials/Robotsetup - ROS Wiki. [online]

Wiki.ros.org. Available at:

<http://wiki.ros.org/navigation/Tutorials/RobotSetup> [Accessed 2 September

2020].

60

Clearpath Robotics, 2020. ROS 101: Intro To The Robot Operating System |

Robohub. [online] Robohub.org. Available at: <https://robohub.org/ros-101-

intro-to-the-robot-operating-system/> [Accessed 10 September 2020].

Dattalo, A., 2018. ROS/Introduction - ROS Wiki. [online] Wiki.ros.org.

Available at: <http://wiki.ros.org/ROS/Introduction> [Accessed 10 September

2020].

Calderone, L., 2019. What Are Service Robots? | Roboticstomorrow. [online]

Roboticstomorrow.com. Available at:

<https://www.roboticstomorrow.com/article/2019/02/what-are-service-

robots/13161> [Accessed 10 September 2020].

Aitken, J.M., Veres, S.M. and Judge, M., 2014. Adaptation of system

configuration under the robot operating system. IFAC Proceedings

Volumes, 47(3), pp.4484-4492.

Albers, F., Rösmann, C., Hoffmann, F. & Bertram, T. (2019) Online Trajectory

Optimization and Navigation in Dynamic Environments in ROS.

In: Koubaa, A. (Ed.) Robot Operating System (ROS). Springer International

Publishing: Cham, pp. 241–274.

ISO 8373::2012 Robots and robotic devices — Vocabulary.

Koubaa, A., Sriti, M.-F., Javed, Y., Alajlan, M., Qureshi, B. & Ellouze, F. et al.

(2016 - 2016) Turtlebot at Office: A Service-Oriented Software Architecture for

Personal Assistant Robots Using ROS. In: 2016 International Conference on

Autonomous Robot Systems and Competitions (ICARSC), 2016 International

Conference on Autonomous Robot Systems and Competitions (ICARSC),

5/4/2016 - 5/6/2016, Bragança, Portugal. IEEE, pp. 270–276.

