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ABSTRACT 

 

In the past decades, service robot industry had rise rapidly. There are many types 

of service robot used in different field such as medical. Office assistant robot is 

one type of the service robot used to assist officers. The robot used in this 

research is a differential drive robot. In order for the robot to navigate 

autonomously in the office, navigation algorithm and motion planner were 

implemented on these robot. Robot Operating System (ROS) is one of the 

common platforms to developed these robots. Besides, map was generated by 

using SLAM algorithm, the costmap was setup and the parameters such as 

inflation_dist and cost_scaling_factor was studied and tuned based on this 

application. Next, the localization of robot was based on the LiDAR sensor and 

rotary encoder with AMCL algorithm. In this research the global planners, A* 

and Dijkstra algorithm and local planners, DWA and TEB algorithms were 

implemented and tested on the robot in in simulation and a real environment. 

Results from the experiments were used to evaluate and compare the 

performance of the robot with different planner and parameters. From the results 

obtained, the global planners, A* and Dijkstra algorithm both can achieve the 

required performance for this application whereas TEB outperforms DWA as 

the local planner due to its feasibility in avoiding dynamic obstacles in the 

experiments conducted. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Service robots are one of the types of robots that can move and perform various 

tasks based on the human order either fully autonomous or semi-autonomous. 

Based on The International Organization of Standardization, a service robot is 

defined as a robot that carry out useful work for humans. (ISO 8373::2012) 

Service robots are meant to be used in the task which is menial, repetitive, and 

time-consuming. This frees up more time for humans to perform more 

intellectual tasks. In the past decades, service robots had grown rapidly with 

technological advancement. In 2017, according to the International Federation 

of Robotics (IFR), the sales of service robots had increased 39% compared to 

2016 which is around $6.6 billion. Besides, based on Len Calderon, it stated that 

service robots are predicted to grow rapidly and reach a sales value of around 

$37 billion. (Calderon,2019) 

         There are multiple types of service robot which include Pepper, a 

humanoid robot used to sell coffee maker in the store, Cobalt, a security robot 

that works in the office to detect unauthorized people or behaviours based on 

face recognition, employee scanner, and heat sensor and Medical robot which 

use for healthcare in the hospital. It can deliver medicine and detect patient 

messages based on built-in Artificial Intelligence. (Calderone,2019) 

         Office assistant robots are one type of service robot. The office assistant 

robot's main objective is to assist officers during working. For example, the 

robot is used for delivery application between the central cafe to offices done 

by Koubaa et al.  (2016) and state prediction of the officers done by Kouno et 

al.  (2012). The office assistant robot used in this research is a differential drive 

robot. This research is to develop a motion planner and autonomous navigation 

into the office assistant robot. This allows the robot to go somewhere based on 

the given goals without human intervention. The robot can localize itself and 

build a map based on the environment and sensor data. Besides, the robot can 

plan a path from the starting point and move to the goals with obstacles 

avoidance ability. The motion planner is separated into 2 parts which are global 
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planner and local planner. Global planner is used for optimal path planning with 

a known environment (global costmap) while local planner is based on the real-

time sensor data such as LiDAR sensor to plan optimal trajectories which can 

modify the global path and also perform dynamic obstacles avoidance. 

 

1.2 Importance of the Study 

This study will mainly focus on developing the motion planner and navigation 

on the differential drive office assistant robot by using ROS. It allows the robot 

to navigate autonomously with given goals and perform obstacles avoidance. 

Besides, this study will discuss the results obtained of the motion planner in the 

office environment and give insight and compare different kind of path planner 

based on different journals, simulation and practical results. 

 

1.3 Problem Statement 

Currently, the office assistant robot used in this research is only able to perform 

manual control by a human. There are many limitations with manual control. 

Manual control robot is time-consuming. This is because the user required to 

focus on the robot to control the robot manually all the time. Besides, manual 

control is inaccurate and inconsistent. This is due to the controlled robot might 

be affected by the user’s skill to control and physical condition. Moreover, 

although there are many studies regarding implementing different ROS planner 

to different kinds of wheel robot but only a few studies are comparing the 

different kind of planner based on its performance and parameters. Hence, this 

study is to implement the autonomous motion planner and navigation on the 

office assistant robot by using ROS and investigate how the parameters 

affecting the planner. 

 

1.4 Aim and Objectives 

This research aims to develop a motion planner and navigation system for an 

office assistant robot by using ROS. This allows the robot to autonomous 

navigate in the office environment based on the user requirement with the help 

of different sensor and algorithm. The detailed objectives are: 

• Study and compare the feasibility of different type of global and local 

planner in ROS. 
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• Study and build a map with SLAM algorithm by using office assistant 

robot. 

 

1.5 Scope and Limitation of the Study 

The scope of this research is to develop and implement the motion planner and 

navigation system on an office assistant robot. The first part of the research is 

building a map by using SLAM algorithm and simulation in Gazebo. The second 

part will be comparing and discussing the result obtained to select the most 

suitable motion planner in this application. 

There are other planners such as double Q-network (DDQN) deep 

reinforcement learning which are not included in the ROS packages. Due to the 

limitation of knowledge and time, this research will only discuss the global and 

local planner packages in ROS. Moreover, the office assistant robot used in this 

research is a differential drive robot. Therefore, due to this limitation, this study 

is only focusing on implementing motion planner on the differential drive robot 

instead of other types of mobile robot such as Omni and Ackerman drive robot. 

 

1.6 Contribution of the Study 

The contribution of the study is to have a details comparison between the local 

planner, implement motion planner on the office assistant robot and 

demonstration using ROS to autonomously navigate the robot in the office 

environment. 

 

1.7 Outline of the report 

Chapter 1 will have a brief introduction about service robot, the problem 

statement and the objectives needed to be achieved in this research. 

           Chapter 2 will undergo literature reviews about ROS, different global 

planner and local planer and its comparison. While Chapter 3 will explain the 

methodology about the step to implementing the motion planner and the 

experiment to compare different planner. 

Chapter 4 will be tabulated and discuss the result obtained. Lastly, 

Chapter 5 will be concluding the results obtained, selecting the suitable planner 

and suggestion for future research. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 ROS 

ROS is an open-source meta-operating system. It was first developed by Willow 

Garage and Stanford University as a project named STAIR project. It is a useful 

tool for building a complex robotic system. This is because it provides many 

types of services such as hardware abstraction, message-passing between 

processes package management and low-level device control. (Dattalo,2018). 

Nowadays, it is widely used in the robotics community because it is easy to use, 

open-source and has many library/packages that are ready prepared. ROS can 

perform several types of communication including Services, Topics and 

Parameter Server.  

Node is an individual module that performs computation. A robot 

control system usually consists of multiple nodes, each node is responsible for 

different tasks. For example, one node controlling the sensors, one node 

controlling the motor of the robot and one node perform path planning. The 

nodes can be communicated through Topic. Topic is a type of asynchronous 

communication which allow the nodes passing a message to each other with the 

help of publisher and subscriber. A node can publish the messages to a given 

topic while the other node is allowed to subscribe to the given topic to obtain 

the data. The topic is allowed to be subscribed/published by more than 1 of the 

publisher and subscriber and each node is allowed to be published and 

subscribed to many topics which are known as many-to-many or 1-way 

transport communication method. (Aitken, Veres and Judge,2014). Unlike 

Topics, Services is a synchronous communication method used for reply and 

request. For instances, nodes provide a service with a given name and a client 

send the request and wait for the reply by calling the services. Figure 2.1 shown 

the communication between nodes. Moreover, there is a Parameter Server which 

allows data to be stored in the server and can be obtained once needed. All this 

is controlled by the Master which offer a name registration. Figure 2.2 shows 

the basic structure of ROS. 
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Figure 2.1: Communication between nodes (ROS Wiki, 2014). 

 

 

Figure 2.2: Basic structure of ROS (Clearpath Robotics,2014). 

 

2.2 History of Motion Planning 

In the year 1979, Path planning was first introduced in the autonomous mobile 

robot by Lozano-Pérez and Wesley with the concept of configuration space(C-

space). (Lozano-Pérez and Wesley,1979). 

           In the past few decades, motion planning is playing a more and more 

important role in different field of robotics such as industry. This is because the 

robotics industry had growth and autonomous navigation had become one of the 

key elements in building a mobile robot especially service robot. Therefore, 

nowadays, there are many different kinds of researches on the path planning and 

motion control of the robots. Path planning is an algorithm used to generate the 

path for the robot to move to the given goal. There are many types of path 

planning used depends on the task needed to be performed by the robots. For 

instances, automated guided vehicles (AGV) robot used in the factory is usually 
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moving in a standard path while for more advance applications, more robust 

path planning algorithm is introduced which allow the robot to navigate in a 

dynamic environment. (Gasparetto, et al.,2015). While motion control is to 

smoothly control the robot by sending velocity commands to the robot to track 

the path planned. 

           The motion planning is the key for the mobile robot to perform 

navigation. There are many motion planning algorithms that had been 

developed.  

 

2.3 Global Planner 

The global planner is the algorithm used to generate an optimum path based on 

the map built. There are several methods on forming paths such as dividing the 

map into different cell/regions and compute called cell decomposition. The 

method review in this research is assigning value to each region of the map and 

compute to find a minimum cost path such as Dijkstra and A* algorithm. 

 

2.3.1 Dijkstra Algorithm 

The map is divided into cells and form a grid cell map as shown in Figure 2.3. 

The values are assigned to the cells or nodes that the robot can move freely 

based on the map. Start with the starting point, each node consists of a value 

based on the distance between the robot and the nodes. Each generation, it will 

compute the neighbour’s empty nodes and assign the values to the empty nodes 

until it reaches the goal as shown in Figure 2.3. The minimum values path is 

selected as the path generated. (Marin, et al.,2018). 
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Figure 2.3: Dijkstra algorithm (Marin, et al.,2018) 

 

2.3.2 A* Algorithm 

A*algorithm is similar to Dijkstra while A* assigning one more value to the 

nodes with a heuristic function to estimate the distance between the goal point 

and the nodes. This heuristic function can be a Euclidian distance method or 

Manhattan distance method. With the combination of heuristic function and the 

original cost function, in the Dijkstra algorithm, the new cost function is 

generated. (Pittner, et al.,2018). 

 

 𝑓(𝑋) = 𝑔(𝑋) + ℎ(𝑋) ( 2.1 ) 

   

where  

g(X) = original cost function of Dijkstra algorithm 

h(X) = heuristic function  

 

2.3.3 Comparison of the global planner 

Dijkstra and A* algorithm are compared in term of their computation time and 

path length. In a simple environment, based on Table 2.1, with the same path 

length, A* algorithm has shorter computation time especially with Manhattan 
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distance equation as heuristic function. This is because Dijkstra algorithm 

explores unused cell/nodes in an undirected fashion. In a more complex 

environment, based on Table 2.2, A* algorithm is faster than Dijkstra algorithm. 

Based on Figure 2.4, One of the advantages of using Dijkstra is it can shorter 

the path length when using Gradient descent method to reduce the path length. 

A* algorithm is unable to reduce the path length effectively because Gradient 

descent method required more nodes explored to use for computation. However, 

with the combination of a local planner, A* algorithm can also shorter the path 

length with less computation power needed. (Pittner, et al.,2018). 

Table 2.1: Comparison between Dijkstra and A* algorithm in a simple 

environment (Pittner, et al.,2018) 

Algorithm Path length Computing time 

Dijkstra 14, 35m 14, 45 μs 

A*(Manhattan) 14, 35m 0, 15 μs 

A*(Euclidean) 14, 35m 0, 29 μs 

 

Table 2.2: Comparison between Dijkstra and A* algorithm in a complex 

environment (Pittner, et al.,2018) 

Algorithm Computing time 

Dijkstra 70, 63 μs 

A*(Manhattan) 4, 69 μs 

A*(Euclidean) 37, 65 μs 

 

 

Figure 2.4: Blue line indicates path planned without gradient descent method, 

red line indicate path with gradient descent method. (Pittner, et al.,2018) 
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2.4 Local Planner 

Local planner is to generate a trajectory based on the path planned by global 

planner. It generates a suitable waypoint from the path planned which based on 

the dynamic constraints of the robots and real-time sensor data around the 

robot(local map). There are multiple local planners already built as packages in 

the ROS. (Marin, et al.,2018). 

 

2.4.1 Dynamic Window Approach  

Dynamic Window Approach is a trajectory planning algorithm developed by 

the Dieter Fox, Wolfram Burgard and Sebastian Thrun in 1997. This algorithm 

is using the dynamics of the robot to do the planning. It will sample the 

velocities of the robot, and compute multiple approximations of trajectories in 

an interval of time. The approximation of trajectories will result in a 2-

Dimensional search space (Ferrer Sánchez,2018).the trajectories in the search 

space are based on 3 criteria:- 

i. Circular trajectories.  

ii. Dynamic window. 

iii. Admissible velocities.  

For the robot to reach the goal with the trajectories planned, the velocity 

vector is computed at a certain time interval and input to the robot. This velocity 

vector which is determined by translational and rotational velocity of the robot 

is known as circular trajectories. Moreover, admissible velocities are the 

velocities that the robot able to move safely which mean is the velocity that the 

robot can stop before colliding the obstacles.   

           Besides, every robot had its acceleration limit. The trajectories in the 

search space will be reduced to the dynamic window based on the acceleration 

limit of the robot. The dynamic window,Vd only contain velocities that are 

reachable by the robot within the time interval. Hence the resultant search space, 

Vr is the combination of these three criteria shown in Figure 2.5. 
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Figure 2.5: Search space (Ferrer Sánchez,2018). 

 

The resultant search space will be optimized to obtain the maximum cost/ best 

trajectories. The remain trajectories in the search space will be computed with 

this cost function. 

 

𝐺(v, ω ) = σ(α ∗  angle(v, ω ) + β ∗ dist(v, ω) + ϒ ∗ vel(v, ω )) ( 2.2 ) 

 

where 

v = tranaslational velocity 

ω = rotational velocity 

α = weight of target heading 

β = weight of clearance 

ϒ = weight of velocity  

 

This cost function is respect to the current position and orientation of the 

robot. Trajectories with the highest cost will be selected. There are 3 parameters 

affecting the cost function. 

i. Target heading, angle(v, ω ) 

ii. Clearance, dist(v, ω) 

iii. Velocity, vel(v, ω ) 

Each of the parameters is normalized to [1,0]. α, β, ϒ is the weight of 

each parameter. Target heading is defined as the relative angle between the 

current orientation of the robot and the goal direction. Since the robot orientation 

is based on the circular trajectories, the target heading angle, θ will be calculated 

for the predicted position of the robot which is shown in Figure 2.6. Figure 2.7 
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shows the relationship between target heading with a set of rotational and 

translational velocity of the robot. It shows that when the rotational velocity 

increase, the function cost declined due to the robot is turning away from the 

target. 

 

 

Figure 2.6: Target heading, θ and predicted position of the robot. (Fox, Burgard 

and Thrun,1997). 

 

Figure 2.7: Target heading against rotational and translation velocity. (Fox, 

Burgard and Thrun, 1997). 

 

 Moreover, Clearance is based on the distance between the obstacles and 

robot position which intersect the trajectories in the resultant search space. 

While velocity is the robot velocity on the current trajectory. Hence, the cost is 

calculated according to these 3 criteria. The highest cost of trajectory will be the 

robot trajectory. (Fox, Burgard and Thrun, 1997). 

 

2.4.2 EBAND local planner 

Elastic bands (EBAND) local planner is one of the types of local planner which 

used to the autonomous navigation system. This algorithm is used to modify the 

path generated by the path planner. It uses two components to generate the free-
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collision path which is ‘repulsive force’ and ‘contraction force’. Contraction 

force is used to form the tension of the band while the repulsion force is exerted 

on the elastic bands by the obstacles. Based on Figure 2.8-a, it is the path 

generated by the path planner, after applying the elastic bands with both forces 

the robot will move in the Figure 2.8-d path. (Quinlan and Khatib, 1993) 

 

 

Figure 2.8: Elastic band planner (Quinlan and Khatib,1993) 

 

2.4.3 TEB planner 

Time Elastic Band (TEB) planner is an extension of the EBAND planner. It 

creates a local plan which consists of a sequence, n of robot poses, based on the 

path planned by the global planner. (Cybulski, Wegierska and Granosik, 2019). 

The robot poses, 𝑋 consists of 3 elements which are position and orientation 

based on the related frame, {map} which shown in Figure 2.9. This sequence of 

the pose is defined as:   

 

 𝑄 = {𝑋𝑖}𝑖=0…𝑛 ( 2.3 )  

   

where 

X = robot pose 

Q = sequence of robot pose 
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Figure 2.9: Sequence of the configuration of robot respect to map frame. 

(Rösmann, et al.,2012). 

 

Unlike Elastic band planner, TEB is computed between 2 consecutive 

configurations between a time interval and forming a sequence of time 

difference which denoted as τ. 

 

 𝜏 = {Δ𝑇𝑖 }𝑖=0…𝑛−1 ( 2.4 ) 

 

where 

ΔT = Time interval 

τ = Sequence of Time interval 

 

The TEB is represented as: 

 

 𝐵 = (𝑄, 𝜏) ( 2.5 ) 

 

Then the TEB, B is optimized by the objective function. The TEB, B 

with minimum cost will be selected. The objective function is based on several 

parameters such as the dynamic constraints of the robots and the distance 

between obstacles. Moreover, the translational and rotational velocity is 

computed based on the 2 consecutive configurations, and with the time intervals 

between these two consecutive poses. Then, the acceleration of the robot is just 

the velocity changes in the time intervals. (Rösmann, et al.,2012). Besides, TEB 

also can perform parallel trajectories planning. This means if one of the 

trajectories suddenly blocked such as closing the door, the robot can follow an 
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alternative trajectory. However, this will increase the computation power but 

result in robot able to move faster. (Rösmann, et al.,2012). Besides, based on 

(Marin, et al.,2018), one of the disadvantages of TEB is, when obstacles are 

moving across the robot as shown in Figure 2.10, the trajectory produced path 

length will increase. 

 

 

Figure 2.10: Dynamic obstacles moving from across the robot. (Marin, et 

al.,2018). 

 

2.5 Comparison of local planner 

When the start poses of the robot in the opposite direction to the goal. EBAND 

algorithm is generating the shortest path. This is due to there are no obstacles 

which exerted the repulsive force to the path planned. Therefore, the robot 

simply just rotates 180° and then drive straight to the goal. While the TEB 

algorithm computes the transition, the time required and the dynamic constraints 

of the robot between configurations. Hence, it generates a trajectory with a 

shorter transition time than EBAND. While DWA algorithm, has higher 

weighting on positive translational, hence the robot tends to move forward. The 

path generated by the different local planner is shown in Figure 2.11. 

 Moreover, in the case of static obstacles, EBAND algorithm failed to 

find an optimal path for the robot. While TEB and DWA successfully find an 

admissible path. This is because the obstacles exerted the ‘repulsive force’ on 

the EBAND trajectory which form a tangential rather than a circumnavigation. 

The result is shown in Figure 2.12. (Pittner, et al.,2018). Besides, in the case of 

dynamic obstacles, DWA algorithm collides with the obstacles which are shown 

in Figure 2.13. This is because, when moving forward DWA algorithm detect 

no obstacles in front. Hence it will move in high velocity. When the obstacles 
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suddenly moving toward the robot, DWA unable to stop immediately cause 

having a high cost of forward velocity. 

 

 

Figure 2.11: Path planned when the start position is the opposite direction to 

goal. (Pittner, et al.,2018). 

 

 

Figure 2.12: Path planned with static obstacles. (Pittner, et al.,2018). 

 

 

Figure 2.13: Path planned with dynamic obstacles. (Pittner, et al.,2018). 

 

 On top of another testing was undergo in different research which shown 

in Figure 2.14. EBAND algorithm had difficulties when going navigating. This 

may due to when turning to a corner, EBAND is sensitive to affect the 
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acceleration of the robot. Besides, Unlike DWA need extra time to replan the 

path when passing the obstacles, TEB able to move to pass the obstacles 

smoother and faster. Moreover, it conclude that each planner has its advantages. 

EBAND has higher accuracy, DWA has better consistency while TEB is the 

fastest time. (Cybulski, Wegierska and Granosiki, 2019) 

 

 

Figure 2.14: The path generated by the robot from P1 to P3. (Cybulski, 

Wegierska and Granosik,2019). 

 

2.6 Summary 

According to the literature review, A* algorithm is having the shorter path 

length and faster computation time than Dijkstra algorithm. Besides, Since 

DWA and TEB algorithm both has its advantages, it is worth to investigate more 

about its performance to determine which more suitable in this application. 

Therefore, A* algorithm as a global planner, DWA and TEB algorithm as the 

local planner will be compared and selected to implement in the office assistant 

robot in this research. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

The motion planner of ROS on the office assistant robot was studied by 

simulated in Gazebo. Then, map was generated by using the SLAM algorithm 

with gmapping method. The office assistant robot is then implementing the 

navigation stack which included the map server and localization on it by using 

ROS. The global planners were compared by giving 2 goals for the robot to 

navigate. The computation time and search space created were recorded. 

Besides, the performance of the local planners was tested by moving around the 

simulation, moving toward and across the obstacles. The most suitable planner 

will be selected based on the results obtained. After that, the navigation stack 

was implemented on the office assistant robot in a real-world scenario. The 

parameters were studied and tuned based on the results obtained to ensure the 

robot having optimum results.  

 

3.2 Simulation with gazebo 

Gazebo is a free simulator used to simulate a population of robot efficiently in 

a complex indoor or outdoor environment. To simulate the office assistant robot 

in Gazebo, a UTAR KB 5th floor environment and an office assistant robot 

model was built which shown in Figure 3.1 and Figure 3.2 respectively. 

The environment and model were built and inserted into the gazebo. The 

robot model is linked with different type of parts such as wheels and body. The 

main body link is called as base frame. Based on Figure 3.1, The model consists 

of two wheels, a body of the robot, LiDAR sensor and a depth camera. There is 

also robot_controller to control the robot in Gazebo such as differential_drive 

controller and join_state controller. 

 

Figure 3.1: Robot model in Gazebo simulation 
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Figure 3.2: UTAR KB 5th floor 

 

The robot can be controlled by using keyboard packages to publish the 

velocity topic to the robot model. The velocity topic named as 

diff_drive_controller/cmd_vel. The rqt graph was shown below in Figure 3.3. 

 

 

Figure 3.3: Rqt_graph of Gazebo simulation 

 

3.3 Implement navigation stack 

Navigation stack is used for the mobile robot to navigate autonomously by 

taking odometry and sensors information and output velocity commands to the 

robot. (Jasprit, 2018). To implement the navigation stack, multiple 

configurations needed to be setup. Based on Figure 3.4, the move_base package 

will take the sensor transform, odometry, map and sensors as the input, and 

generate the path and trajectory and output the velocity commands to the 

base_controller to move the robot with the desired velocity. To implement 
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navigation stack on the robot, a workspace was created. Then, a packages will 

be created to store all the configuration packages for the navigation stack.  

 

 

Figure 3.4: Navigation stack (Jasprit, 2018) 

 

3.3.1 SLAM 

Mapping is generated by using the sensor data and odometry of the robot. One 

of the method used for mapping is SLAM algorithm. It generates high quality 

and accurate map for the robot to navigate (Norzam, Hawari and Kamarudin, 

2019). There are multiple ways of SLAM in ROS. The method used in this 

research is gmapping. The robot is then controlled manually by the user to 

generate a map for UTAR KB 5th floor. The map generated is known as global 

costmap while the local costmap will be generated by the real-time sensor data. 

The global costmap generated will be stored in the map server. The map 

generated can be tuned by manipulating the parameters in the parameter server. 

There is 3 configuration needs to be set by the costmap which are common 

configuration for global and local costmap, configuration for local costmap and 

global costmap. For example, the update and publish frequency, the resolution 

and the inflation radius of the map are the parameters that can be manipulated. 

 

3.3.2 Localization 

To localize the robot position in the map. Sensor data and map generated are 

used to localize the robot by using the Abstract Adaptive Monte Carlo 

localization(AMCL) algorithm. Then output the robot’s estimate position as /tf 

topic. Figure 3.5 below shown the block diagram of the AMCL algorithm. 
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Figure 3.5: Block diagram of AMCL algorithm 

 

3.3.3 Local planner configuration 

A local planner parameter file was created. This file was used to store the 

parameters of a different type in the parameter servers. Then, the parameter will 

be taken by the move_base node and compute. The output will be a velocity 

commands to control the robot. After that, a launch file was created to launch 

multiples nodes such as configuration packages, map server, the AMCL 

packages and the move_base packages. Besides, the parameters for the costmap 

and the local planner was published to the parameter server through the launch 

file also.The overall rqt_graph is shown in Figure 3.6. 

 

Figure 3.6: Overall rqt_graph of simulation with gazebo 

 

3.4 Experiment in gazebo. 

A node which called as simple_goal were created to publish different waypoint 

to the robot. The goal will specify the target position of x and y coordinate and 

also the targeted orientation of the robot. The computation time of the global 

planner will be recorded. Besides, the behaviour of the robot will also be 

recorded. Moreover, the local planners will be tested with multiple goals, 
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sudden obstacle in front 1m of the robot which shown in Figure 3.7 and dynamic 

obstacles which moving toward and moving across the robot to verify the 

feasibility of the local planner when facing dynamic obstacles which shown in 

Figure 3.8 and Figure 3.9. 

 

 

Figure 3.7: Robot facing sudden obstacle when moving to the goal. 

 

 

Figure 3.8: Simulation environment for dynamic obstacles moving across the 

robot. Red arrow indicate robot moving direction , yellow arrow indicate 

obstacles moving direction. 
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Figure 3.9: Simulation environment for dynamic obstacle moving toward the 

robot. Red arrow indicate robot moving direction , yellow arrow indicate 

obstacle moving direction. 

 

3.5 Compare the results and Implement on office assistant robot 

The results were compared based on their computation time and feasibility. The 

most suitable planner will be selected based on the simulation result and 

implemented on the real robot. There are some differences between the actual 

model of the robot and real robot such as the centre of gravity of the robot and 

the motor reaction time. These differences will affect the stability and inertia of 

the robot when navigating. Hence, the program needed to test with the real robot 

to do the final tuning. 

 

3.6 Tuned the parameters 

In a real-life scenario, there are many unpredictable issues and problem which 

are not able to be seen during simulation with Gazebo. Therefore, after 

implementing the program to the office assistant robot, the parameters of the 

planner need to be tuned to obtain the optimum results for the robot to smoothly 

navigate autonomously in the real environment. The office assistant robot will 

be given a sequence of a waypoint to determine its feasibility. Besides, it also 

will experiment with dynamic obstacles which moving across and toward the 

robot which shown in Figure 3.10, Figure 3.11 and Figure 3.12. The results will 

be recorded and discussed.  
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Figure 3.10: Dynamic obstacle moving across the robot in real environment. 

Yellow arrow indicate the movinf direction of obstacle. 

 

 

Figure 3.11: Dynamic obstacle moving toward the robot in real 

environment.Yellow arrow indicate the moving direction of obstacle. 

 

 

Figure 3.12: Dynamic obstacles moving toward and across the robot in real 

environment.Yellow arrow indicate the moving direction of obstacles. 
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3.7 Summary 

The robot will first be tested with the simulation by using Gazebo. The 

advantages of using simulation is can reduce random error and time-saving. 

Then, the navigation stack will be implemented on the robot including the 

mapping and localization of the robot. Besides, there are multiple experiments 

to compare different local planner to select the most suitable planner used in this 

application. Finally, the planner will be implemented on the office assistant 

robot with fined tuned parameters. 
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CHAPTER 4 

 

4  RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

In this research, multiple simulation environments had setup to test the 

feasibility of different path planning algorithm which is shown in Figure 4.1, 

Figure 4.2 and Figure 4.3. Figure 4.2 had inserted multiple dynamic obstacles 

with specific velocity and goals. Besides, a simplified environment was 

generated to test the performance of the path planning algorithm with dynamic 

obstacles which is shown in Figure 4.3.  

 

 

Figure 4.1: KB 5th floor simulation environment 

 

 

Figure 4.2: KB 5th floor simulation environment with multiple dynamic 

obstacles. 
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Figure 4.3: Simple simulation environment for experiment with dynamic 

obstacles. 

 

Moreover, 2d map is generated by using the SLAM algorithm which is 

gmapping based on the data obtained from LiDAR sensors. On top of that, the 

path planning algorithms are compared based on the simulation results and the 

suitable local planner algorithm is selected and used in this office assistant robot. 

Next, the real robot is setup and the navigation pack is implement on the real 

robot and in a room environment to undergo further testing to tuned the 

parameters and verified the results obtained from the simulation. 

 

4.2 Office assistant robot 

The office assistant robot is a differential drive robot with four wheels. It has 2 

omnidirectional freewheels mounted on the back of the robot and 2 front wheels 

independently powered by 2 DC brushed motor with built-in encoder. The built-

in encoder provided the odometry data of the robot. Besides, it consists of a 

motor control board, dual channel motor driver to drive the motor, a LiDAR 

sensor which provided 240° laser scanning data mounted in the front of robot, a 

12V Lipo Battery as power supply and a Laptop running Ubuntu 18.04 LTS 

with ROS Melodic to process the data obtained from the sensors and output the 

command velocity with PID controller to the control board to control the motors. 



27 

The robot system is shown in Figure 4.4 while the overview of the robot base is 

shown in Figure 4.5. 

 

 

Figure 4.4: System of the office assistant robot 

 

 

Figure 4.5: Office Assitant robot 

 

4.3 SLAM 

The map was generated by moving the robot around the environment to record 

the sensor data. Based on the LiDAR sensor data and the odometry data from 

the encoder feedback maps were generated by using the gmapping method 

which shown in Figure 4.6, Figure 4.7 and Figure 4.8. In simulation and real 

environment, the map generated will have some minor offset compare to the 

actual map. The generated map will input into the navigation pack for the robot 

used in the navigation and localization.  
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Figure 4.6: Map generated based on KB 5th floor simulation environment 

 

 

Figure 4.7: Map generated based on simple environment for dynamic 

obstacles. 

 

Figure 4.8: Map generated based on real environment(room) 
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4.4 Costmap setup 

There are 2 costmap was implemented on the robot which is global and local 

costmap. Global costmap consists of 3 layers which are static map layer, 

inflation layer and obstacle map layer. Static map layer is used to define the map 

generated by SLAM which shown in Figure 4.9. While inflation layer was used 

to increase the cost around the static obstacles which is shown in Figure 4.10. 

There are two parameters to tune the inflation layer which are inflation_dist and 

cost_scaling_factor. Based on the result shown in Figure 4.10, the buffered zone 

around the obstacles increases when the inflation_dist increase. Besides, the 

cost_scaling_factor is used to adjust the inflation dist cost. The result was shown 

in Figure 4.11. Obstacle map layer used to track the dynamic obstacles or the 

obstacles not shown in the static map based on the sensor data. Unlike global 

costmap, local costmap only consists of inflation layer and obstacle map layer. 

The obstacle layer will be clear if the robot is running recovery behaviour due 

to oscillation, stuck in the position or unable to generate a valid path.   

 

 

Figure 4.9: Map with Static map layer 

 

(a) 

 

(b) 

 

 

Figure 4.10: (a) indicate the inflation_dist = 1.0 and (b) indicate inflation_dist 

= 3.0 while both having cost_scaling_factor 3.0 
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Figure 4.11: Cost_scaling_factor = 1.0  

 

 

Figure 4.12: Obstacle layer 

 

4.5 Localization of robot 

The robot is localized based on the AMCL algorithm. The map generated, the 

odometry data and the real-time LiDAR sensor data is input to the algorithm to 

localize the position of the robot in the environment which shown in Figure 4.13. 

The red arrow around the robot indicates the predicted orientation and position 

of the robot in the map. Once the robot starts moving, it will auto-recalibrate the 

position of the robot based on the sensor data and the arrow will start to 

concentrate and point to the same direction which indicates the orientation of 

the robot which is shown in Figure 4.14. 
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Figure 4.13: Robot implemented with AMCL algorithm in initial state.  

 

 

Figure 4.14: Robot implemented with AMCL algorithm after moving. 

 

4.6 Comparison of global planner based on simulation 

The package used in the robot is global_planner package. Figure 4.15 shown the 

path planned by the Dijkstra algorithm while Figure 4.16 shown the path 

planned by the A* algorithm. Based on the results obtained, Dijkstra will search 

the path and form a circle of search space which the robot act as a centre point 

until it reaches the goal, while A* will form a narrow search space toward the 

goals. When the robot moving toward the goals, the search space will be reduced 

based on the distance between the goal and the robot current position. Besides, 

the computation time of the global planner algorithms which shown in Table 4.1 

and Table 4.2. Based on the results obtained, A* algorithm is 462.5% faster than 

Dijkstra algorithms when generating the path which 10m in front of the robot 

and 240.2% faster than Dijkstra algorithms when generating the path to the 

coordinate of (10,-25) of KB 5th floor which shown in Figure 4.18 and Figure 
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4.19.  However, the computation time is not a main criteria in this application, 

because the global path planned is only in the initial state when the goal is set. 

Therefore, both global planners are able to achieve the required performance in 

this application.  

 

Table 4.1: Computation time of global path planner algorithm with 10m goal. 

No  Dijkstra, time (ms)  A*, time (ms)  

1  7  1  

2  7  1  

3  9  1  

4  6  3  

5  7  2  

6  8  1  

7  7  2  

8  6  1  

9  6  1  

10  11  3  

Average  7.4  1.6  

  

Table 4.2: Computation time of global path planner algorithm with 

coordinate(10,-25) goal. 

 

No  Dijkstra, time (ms)  A*, time (ms)  

1  41  23  

2  41  22  

3  44  16  

4  40  19  

5  38  15  

6  46  17  

7  50  19  

8  49  16  

9  50  17  

10  43  20  

Average  44.2  18.4  

 

Moreover, the lethal cost is 253 in default parameters. In order for the 

robot to have a path planned further away from the obstacles and avoid stuck 

and unable to re-plan in a narrow corridor which shown in Figure 4.17. This is 

because, the local planner was avoiding travelling in the narrow corridor to 

maintain the minimum obstacle distance but the path generated by the global 

planner was conflicting. In order to solve this issue, the lethal cost is decreased 
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from 253 ( default ) every 10 steps until the robot was able to replan a new path 

which shown in Figure 4.17. The final lethal cost set is 150. 

 

 

Figure 4.15: Path planned with Dijkstra algorithm 

 

 

Figure 4.16: Path planned with A* algorithm 
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(a) 

 

(b) 

 

 

Figure 4.17:  (a) Indicate the robot is stucked by the path planned with global 

planner with lethal cost = 253. (b) indicate the robot with lethal cost=150. 

 

 

Figure 4.18: Search space of Dijkstra algorithm with target goal (10,-25)  

 

 

Figure 4.19: Search space of A* algorithm with target goal (10,-25) 
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4.7 Comparison of local planner 

In this research, 2 local planner algorithm was implemented on the simulated 

robot which is DWA and TEB algorithm. In this research , the footprint model 

of the robot with TEB was changed to line instead of a point. This is because, 

the robot is a rectangle shape instead of a circular robot. Therefore, Line 

footprint model have better represantive than a point foot print model. Besides, 

due to the limitation of computation power, the 

enable_homotopy_class_planning was changed from true to false to reduce the 

computation power. The first experiment was tested by sending a specific goal 

to the robot with different local planner algorithms. The results were recorded 

and shown in Figure 4.20 and Figure 4.21. Based on the results obtained, in 

default parameters of DWA, the robot is unable to move in backward motion 

and stuck in the position. However, by tuning the min_vel_x parameter to 

negative value , we can change the maximum velocity for the robot to move 

backwards. But, this cause the robot will tend to move backwards than forward 

motion if the goals is behind the robots which shown in Figure 4.22. This is not 

suitable in this application. This is because, the LiDAR sensor is mounted in 

front of the robot, hence it unable to detect the dynamic obstacles that are 

moving behind the robot. Based on Figure 4.21, the robot is able to travel in 

backward motion unlike DWA. However, to reduce the robot to travel in 

backward motion, the algorithm can tune the parameter which are 

weight_kinematics_forward_drive from 1.0 to  800, so the robot will tend to 

move forward but it also able to move backwards when it is needed. The 

weight_kinematics_forward_drive indicate the cost of robot to moving in 

forward direction. The higher the value, the higher the tendency of the robot to 

moving in forward direction.  
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Figure 4.20: Robot stuck due to unable to move in backward motion in DWA. 

 

 

Figure 4.21: Robot able to travel in backward motion with TEB. 

 

 

Figure 4.22:  Robot tend to move in backward motion with DWA. 
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On top of that, to verify the performance of the algorithm in avoiding 

dynamic obstacles a new simulation environment is built-in Gazebo which 

shown in Figure 4.3. According to the results shown in Figure 4.23 and Figure 

4.24, both algorithm able to stop without colliding with the obstacle when it 

suddenly appears 1m in front of the robot when the robot moving. Besides, 

based on the results obtained when the robot moving across dynamic obstacle, 

with default parameters, both algorithms have bad performance when facing 

dynamic obstacle especially DWA algorithm. The path generated by DWA 

when moving across the dynamic obstacle was shown in Figure 4.25. Based on 

Figure 4.26, the robot will only reduce its velocity when the obstacle are right 

in front of the robot and the angular velocity remain approximately constant. 

Hence, the robot is unable to stop before hitting the dynamic obstacle. To 

improve the performance of avoiding obstacle, a few parameters of DWA 

algorithms was increased which are:- 

i. Sim_time –The amount of time to simulate forward trajectories.  

ii. Vx and vth_samples – Number of forward and angular sampling 

velocity. 

iii. Occdist_scale – Weight of the cost to avoid obstacle.  

However, the performance of the DWA algorithm is not improved which 

shown in Table 4.3.  With TEB algorithm, the robot has slightly better 

performance than DWA algorithm when moving across the dynamic obstacle. 

Based on the results shown in Figure 4.27, the robot will increase its angular 

velocity to approximate 0.75 rad/s when the obstacle moving across the robot 

unlike robot with DWA which remain approximately zero. To improve the 

results of TEB algorithm, there are also few parameters was tuned, which 

included the following:- 

i. include_dynamic_obstacles.  

ii. costmap_converter_plugin.  

Costmap_converter_plugin is used to convert the costmap cells 

geometric primitives such as line, point and polygons as obstacles. By applying 

the costmap_converter_plugin, the obstacles are converted into polygon and a 

dynamic obstacle layer was applied. It able to track the dynamic obstacles 

according to the update of costmap. According to Albers et al.  (2019), the 
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working of algorithms starts with a background subtractor and blob detector to 

track and locate the obstacles. New track will be generated if there are obstacles 

are not tracking and some track will be removed due to inactivate a period time. 

The tracks are generated based on the current and past position of the obstacles. 

In order to solve the data acquisition problem, Hungarian algorithm was 

implemented. Lastly, Kalman filter with first constant velocity model was 

applied to estimate the velocity of the dynamic obstacles. With these two 

parameters modified, the robot with TEB algorithm is able to avoid the dynamic 

obstacles most of the time which shown in Figure 4.28. Based on the results 

shown in Figure 4.28, the angular velocity increase significantly from 0.25 rad/s 

to maximum, 1.0 rad/s and at the same time the forward velocity dropped 

gradually from 1.0 m/s to around 0 m/s. This is because, with the converter 

plugin, the robot is able to predict the moving obstacle motion and able to stop 

and turn before hitting the dynamic obstacle, which shown in Figure 4.29. 

Besides, based on the results shown in Figure 4.30, the robot with 

TEB+DOL will increase its angular velocity to rotate and avoid the obstacle 

moving toward the robot which shown in Figure 4.31. 

 In conclusion, based on the simulation results, TEB algorithm was 

chosen to apply on the office assistant robot due to its feasibility in avoiding 

dynamic obstacles and able to tune the weight of moving backward motion 

which is more suitable in this application.  

 

 

Figure 4.23:  Robot having sudden obstacle infront the robot when moving 

forward (DWA) 
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Figure 4.24: Command velocity graph with default parameters sudden obstacle 

in front of the robot (TEB) 

 

 

 

Figure 4.25: Robot moving across dynamic obstacle (black arrow indicate 

direction of obsctales while red arrow indicate robot moving direction) (DWA) 
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Figure 4.26: Command velocity graph of robot moving across obstacle (DWA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obstacle in front the robot 
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Table 4.3: Results of changing 3 different parameters of DWA 

Parameters Results 

Sim_time 

( 1.7 to 3.5) 

 

 

Occ_dist_s

cale (0.01 

to 1.0)  

 

 



42 

Vx  

(3 to 20) 

Vth  

(20 to 40) 

 

 

 

 

Figure 4.27: Command velocity when obstacle moving across (TEB) 

 

Obstacle detected 
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Figure 4.28: Command velocity when obstacle moving across  

( angular velocity increase ) in simulation (TEB+DOL). 

 

 

Figure 4.29: Robot slow down and path re-planned to avoid the dynamic 

obstacle which moving across in simulation. 

 

Obstacle 
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Figure 4.30: Obstacle moving toward (angular velocity increase) in simulation 

(TEB+DOL) 

 

 

Figure 4.31: Robot turn to avoid the dynamic obstacle which moving toward 

in simulation (TEB+DOL). 

 

Obstacle detected 
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4.8 TEB algorithm on real office assistant robot 

The real environment had changed to a room instead of UTAR KB 5th floor. 

The TEB algorithm were implemented on the office assistant robot. The 

costmap parameters was tuned based on the environment. Moreover, the 

maximum forward velocity was reduced to 0.5 m/s because the room is not wide 

enough for the robot to travel with 1.0 m/s. Besides, the maximum angular 

velocity was reduced to 0.5 rad/s to reduce the odometry error. The first 

experiment was tested by sending a specific goal for the robot to travel in the 

room. According to the results shown in Figure 4.32, the robot are stucked in 

front of the door. This problem can be solved by tuning the min_obstacles_dist 

parameters. Min_obstalces_dist indicate the minimum distance between the 

robot and the obstacles. In this research, it was reduced to 0.3 m to allow the 

robot pass through narrow environment.  

Moreover, the robot was tested with the dynamic obstacle move across 

itself which shown in Figure 3.10 and the results were shown in Figure 4.33 and 

Figure 4.34. Based on the results obtained, the robot is approximately same as 

the simulation results. The robot is able to plan a path in order to avoid the 

dynamic obstacle which shown in Figure 4.35. When there is no converter 

plugin, the robot is unable to predict the obstacle motion and it did not increase 

the angular velocity to avoid hitting the obstacle only until the obstacles is right 

in infront the robot which shown in Figure 4.36. However, with the converter 

plugin, the robot are able to predict the dynamic obstacles and it increased the 

angular velocity to avoid the obstacle more efficient which shown in Figure 4.35. 

Hence, the robot with TEB + DOL has better performance. Besides , It is 

observed that the robot forward velocity will dropped to zero and remain 

constant until the obstacle moved away which shown in Figure 4.37 when the 

obstacle is moving across the path planned and is near to the robot which shown 

in Figure 4.38.  
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Figure 4.32: Robot was stucked in narrow environment  

 

 

Figure 4.33: Velocity graph when obstacle moving across robot with TEB. 

 

Obstacle detected 
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Figure 4.34: Velocity graph when obstacle moving across robot with 

(TEB+DOL) 

 

 

Figure 4.35: Obstacle moving across the robot path planned (TEB+DOL) 

 

Obstacle detected 
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Figure 4.36: Obstacle moving across the robot path planned (TEB) 

 

 

Figure 4.37: Command velocity graph of real robot when obstacle moving 

across path planned (TEB+DOL) 

 

 

Linear velocity dropped to zero 
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Figure 4.38: Obstacle moving across the path planned (TEB+DOL) 

 

 On top of that, another experiment was undergone which are the obstacle 

mowing toward the robot which is shown in Figure 3.11. Based on the result 

shown in Figure 4.39, the robot will slow down or stop and increase its angular 

velocity to avoid the obstacle moving toward and generate a path which shown 

in Figure 4.40. Besides, if the obstacle continue moving toward the robot, the 

robot will collide with the obstacles while the robot will tend to move backwards 

afterwards. If the obstacle stop right before hitting the robot, the robot will rotate 

and follow the path planned in Figure 4.40.  
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Figure 4.39: Velocity graph when obstacle moving toward the robot. 

(TEB+DOL) 

 

Figure 4.40: Obstacle moving toward robot  

 

 Moreover, the robot can avoid the dynamic obstacles when there is 

dynamic obstacles moving toward and across the robot which is shown in Figure 

3.12. It will slow down its linear velocity and generate a path to avoid the 

obstacle which shown in Figure 4.41 and after the dynamic obstacles move away 

from the robot, the path will back to normal which shown in Figure 4.42. 

 

Obstacle detected 
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Figure 4.41: Path generated when obstacles move toward and across the robot. 

 

 

Figure 4.42: Path planned after the obstacles move away. 

 

 According to the simulation and real life results, it can conlude that 

office assistant robot with TEB and DOL are able to avoid obstacles more 

efficient than TEB only. Therefore, TEB with DOL are applied to the office 

assistant robot.  
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4.9 Parameters affect dynamic obstacles avoidance.  

Besides, some of the parameters were tuned to investigate the performance of 

the robot when facing dynamics obstacles which are:- 

i. weight_dynamic_obstacle – the weight of distance between dynamic 

obstacles and robot. 

ii. weight_dynamic_obstacle_inflation – Optimization cost of inflation 

penalty of dynamic obstacles.  

iii. dynamic_obstacle_inflation_dist – Buffered zone around the 

predicted position of dynamic obstacles. 

The weight_dynamic_obstacle, weight_dynamic_obstacle_inflation and 

dynamic_obstacle_inflation_dist was increased to study the effect of modifying 

the parameters.  The weight_dynamic_obstacle was increased from the default 

value, 50 to 500. Based on the simulation results shown in Figure 4.43, the path 

planned is further away from the moving obstacle when it moving toward the 

robot which same as the results obtained from the room which is shown in 

Figure 4.45.  

 

 

Figure 4.43: Simulation results when weight_dynamic_obstacle = 500 

 

 

Figure 4.44: Weight_dynamic_obstacle = 50  
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Figure 4.45: Weight_dynamic_obstacle =500 

 

 Besides, based on the results shown in Figure 4.46,  when the obstacle 

moving across the dynamic obstacle, the local path planned will be distorted and 

these results obtained same as the simulation results shown in Figure 4.47. This 

is because, the higher the dynamic_obstacle_inflation_dist, the greater the local 

path planned will be distorted further. Moreover, based on the results obtained, 

the weight_dynamic_obstacle_inflation is not having any significant effect to 

the path planned by the TEB algorithms in simulation and room environment.  

 

 

Figure 4.46: Dynamic_obstacle_inflation_dist = 4.0 
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Figure 4.47: Simulation result when dynamic_obstacle_inflation_dist = 4.0 

 

4.10 Summary 

The navigation pack had successfully implemented on the office assistant robot. 

Besides, the map had generated by using the SLAM algorithm. Moreover,  the 

costmap parameters are modified based on this application. On top of that, the 

2 global planners which are A* and Dijkstra had compared. Other than the 

global planner, the  2 local planners which are DWA and TEB had compared 

with simulation and real environment. The most suitable local planner was 

selected which are TEB due to its navigation behaviour and the feasibility on 

avoiding dynamic obstacles. Besides, the parameters of TEB had studied and 

implemented on the office assistant robot which are shown in Table 4.6,  

Table 4.5 and Table 4.4. The overall rqt_graph was shown in Figure 4.48. 
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Figure 4.48: Overall rqt_graph  

 

Table 4.4: Costmap Setup 

Inflation_dist 1.0 

Cost_scaling_factor 3.0 

 

Table 4.5: Parameters modified for Global planner 

Parameters Values 

Lethal_cost 150 
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Table 4.6: Parameters modified for TEB local planner 

Parameters Values 

max_vel_x 0.5 m/s 

max_vel_tetha 0.5 rad/s 

footprint_model/type “line”  

min_obstacle_dist 0.3 m 

include_dynamic_obstacle True  

costmap_converter_plugin costmap_converter::CostmapToDynamicObs

tacles 

static_converter_plugin costmap_converter::CostmapToPolygonsDB

SMCCH 

weight_kinematics_forward

_drive 

800  

enable_homotopy_class_pla

nning 

False  

 

  



57 

 

CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS  

 

5.1 Conclusions 

The simulation environment and the differential drive robot model was built 

with gazebo and several experiments with the robot was tested. Moreover, the 

navigation pack had successfully implemented on the office assistant robot. The 

behaviour and the feasibility of the robot on navigation were studied. 

 In conclusion, for the differential drive robot to navigate, map are needed 

to generate with gmapping method of SLAM algorithm. Besides, LiDAR sensor 

data are used to detect obstacles and also used with odometry data for 

localization with AMCL algorithm. Moreover, costmap are needed to 

implement on the robot. The parameters inflation_dist and cost_scaling_factor 

are able to adjust the cost of the buffer zone of the obstacles. The higher the 

inflation_dist, the bigger the cost of the buffer zone around the obstacle. On top 

of that, A* has faster computation time than Dijkstra algorithm but both global 

planners are able to achieve the requirements in this application.  Besides, the 

parameter, lethal_cost is affecting the path planned by the global planner. The 

higher the lethal_cost, the path planned will tend to travel in a narrow corridor 

and conflicting the local planner. Besides, the TEB local planner are selected 

for this application. This is because, it can modify the parameter of 

weight_forward_drive to adjust the robot weight in travel in forward motion and 

reduce the weight in backwards motion.  

Besides, TEB can avoid dynamic obstacles by using the dynamic 

obstacle layer. It can track and predict dynamic obstacles and avoid it. 

Besides ,the parameters min_obstacle_dist and footprint model are affecting the 

distance between the obstacle and the robot. The higher the min_obstacle_dist, 

the higher the distance between the robot and obstacles. 

dynamic_obstacles_inflation_dist and weight_dynamic_obstacle also affect the 

behaviour of robot when facing dynamic obstacles. The higher the 

dynamic_obstacles_inflation_dist and the weight_dynamic_obstacle, the robot 

will tend to avoid the obstacle. Lastly, The optimum value of parameters which 
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are shown in Table 4.4, Table 4.5 and Table 4.6 were implemented on the 

differential drive office assistant robot to navigate in the room and simulation 

environment with obstacle avoidance.   

 

5.2 Recommendation for future direction 

In this research, only 2 or less dynamic obstacles was tested in the real 

environment. One of the future recommendations is to increase the number of 

dynamic obstacles and evaluate the performance of the local planner, TEB and 

the parameters affected in the crowded environment. Besides,  in this research, 

the robot is unable to avoid the dynamic obstacles when it moving toward the 

robot non-stop. In future study, the TEB algorithm needed to be improved in 

order to avoid the obstacle.
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