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ABSTRACT 

 

Object localization in point clouds can help search for the target objects in the 

extensive 3D search space. It allows the post-operation of object recognition to 

operate on the objects more efficiently. There are many published works for 

object localization in 3D point clouds. Each approach has a unique architecture 

in its work. Thus, the frameworks used are not standardized like with 2D 

object localization frameworks. This work focuses on developing a method to 

locate objects in a point cloud and measure the objects’ three primary 

dimensions accurately. The intra and inter-comparison and evaluation of the 

selected work are conducted to discuss its significance in 3D object 

localization. Comparison and evaluation of method(s) are standardized by 

average precision outputted using the same evaluation metrics, the KITTI 

offline evaluation dataset. Point-GNN is selected as the approach for 3D object 

localization. It works best when iterated twice in the edges and vertices’ 

feature aggregation. Besides, Point-GNN scored second among the twelve 3D 

object localization approaches discussed. It achieves the AP predicted on the 

KITTI test 3D detection benchmark of 88.33 % for ‘easy’ car, 79.47 % for 

‘moderate’ cars, and 72.29 % for ‘hard’ cars. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction to Object Localization in Point Cloud 

The point cloud is a type of representation of objects and scenes in three-

dimensional (3D) space. There are many other representations to describe 

objects and scenes, including multi-view red, green, and blue with depth 

(RGB-D) images, volumetric, polygonal mesh, and primitive-based computer-

aided design models. Along with point clouds, these representations are 

categorized into two classes: rasterized form and geometric form, which are 

regular and irregular in terms of the data’s nature, respectively. Point cloud 

belongs to the geometric form of 3D data (Engelcke, et al., 2017). A point 

cloud is formed by a compilation of points in 3D space, where each point 

allocated in the space represents the X, Y, and Z geometric coordinates of the 

point (FME Community, 2020). Therefore, a point cloud can represent an 

object or a scene, where it can be built up from a collection of points. Many 

single spatial measurements are collated into a dataset to represent the object 

or the scene as a whole (Gray, n.d.). The dimensional complexity of the point 

cloud can be increased by adding new features to the points, such as colour 

information. Point clouds are the raw 3D data obtained from the 3D laser 

scanners and light detection and ranging (LiDAR) technology and techniques. 

LiDAR is usually implemented to obtain the data from a scene because it 

measures the distance between the sensor and the target object using 

ultraviolet (UV) rays (Thomson, 2019). It computes the distance by measuring 

the time lapse between emitting and receiving back the same UV pulse (Singh, 

2018). For this reason, LiDAR is widely implemented in various emerging 

technologies to utilize its distance measurement mechanism, including 

autonomous vehicles and inspection at the building’s surface.  

 Object localization is one of the two components in object detection, 

where it usually complements object recognition to localize and recognize the 

objects in space simultaneously (Brownlee, 2019). Object localization is used 

to locate the objects in the space accurately, wherein the object’s coordinates 

are being determined. Object recognition, in contrast, is used to recognize the 
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located objects, where the label of the object is indicated. Object localization is 

the first step in the object detection process. It involves searching for an 

extensive search space to address the objects’ profiles. 

Object localization is achieved by determining bounding boxes that lie 

around the target objects to inform the locations and coordinates of the objects 

in space through visualization or integers (Brownlee, 2019). Bounding boxes 

regression is a method to describe the target object’s dimensions. The lines of 

a two-dimensional (2D) bounding box illustrate an object’s width and height 

in 2D space. This is where the measurement of the located object’s primary 

dimensions is conducted. Object localization is usually performed with deep 

learning, where the features within the space are deeply abstracted (Zhao, et al., 

2019). Feature abstraction is a proportion in the dimensionality reduction 

process that extracts only the essential features and neglect the less important 

ones without introducing much information loss (Alkabawi, Hilal and Basir, 

2017). 

 The difference between object localization in 2D and 3D space is that 

the information density is higher in a 2D image while having low data volume. 

All information in the image is encoded into a frame, and each neighbouring 

pixel is meaningful for feature abstraction. Whereas in 3D space, the points are 

sparsely located. There exist regions with no points presence due to the 

absence of objects in that region. The empty regions are constituted as a part 

of the 3D data. It will be accounted as computational waste because there will 

be no output generated from these regions (Engelcke, et al., 2017). Since the 

objects in point clouds have 3D coordinates, the 2D bounding boxes required 

to concatenate an additional dimension of length to become 3D bounding 

boxes to cover and locate the objects in 3D space. 

 

1.2 Importance of the Study 

The study of object localization in 3D space, like point clouds, over 2D images 

is significant for several reasons. Point clouds have richer information context 

than 2D images to represent scenes and objects. Besides, occlusion is the 

primary drawback in a 2D image. It is computationally inefficient to 

synthesize the occluded objects when they can be found originally in a 3D 

point cloud. Furthermore, point clouds contain depth information that could 
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retain the object’s original appearance in the actual situation of a 3D space. 

Object localization in point clouds can help search for the target objects in the 

extensive 3D search space. It allows the post-operation of object recognition to 

operate on the objects more efficiently. 

There are many published works for object localization in 3D point 

clouds. Each approach has a unique architecture in its work. Thus, the 

frameworks used are not standardized like with 2D object localization 

frameworks. PointNet is the first significant point cloud processing work 

proposed by Qi, et al. (2017). Its architecture was widely implemented by 

many later works to develop new methods for object localization. Compared to 

the current state-of-the-art, PointNet’s result in terms of the accuracy of 

localizing objects has been overtaken by newly emerged approaches.  This 

work focuses on developing a method to locate objects in a point cloud and 

measure the objects’ three primary dimensions accurately. In addition, intra 

and inter-comparison and evaluations of the selected work will be conducted 

to discuss its significance in 3D object localization. 

 

1.3 Problem Statement 

Even though point clouds are rich in information to represent objects and 

scenes, the points’ overall density is generally low due to the smaller number 

of objects in certain regions in the 3D space. This phenomenon is significant in 

the data produced from the LiDAR sensor. LiDAR sensor produces sparse 

point clouds and can be occluded by objects as the 3D information behind a 

light-reflecting or non-reflective object cannot be detected, where the LiDAR 

UV lights cannot reach the target objects. This will cause computational 

inefficiency to perform object localization in the sparse point cloud. Besides, a 

point cloud is costly to an extent to be produced, and it is essential to acquire a 

3D point cloud dataset for use in this project. Figure 1.1 shows a scene 

obtained from the KITTI dataset that is captured with a LiDAR sensor. 

 

 

Figure 1.1: LiDAR Point Cloud with Cars (Geiger, et al., 2013). 
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Object localization is already implemented in the analysis of 2D 

images. It has reached maturity, where the architecture of the convolutional 

neural network (CNN) is leading the field of 2D object localization. CNN has 

a robust operation of detecting edges and sharp corners of objects in a 2D 

image. The first few convolutional layers detect the low-level features, and 

high-level features are detected by the last few layers. However, things 

changed when the dimension of the input data increases. The additional 

dimension increases the complexity in processing those high dimension data. 

The increased dimension should be treated as additional information to the 

subject instead of being ignored. 

Object localization in 3D space is not as mature as in 2D images. This 

is because processing and using 3D space, such as point cloud, is 

computationally expensive. The increased dimensional complexity renders a 

different architecture design needed to handle the 3D point cloud data. Older 

techniques of CNN cannot be applied directly to point clouds. This is because 

the feature abstraction techniques have their dimensional preference to work 

on the data. Some feature engineerings should be performed earlier to change 

the structure and the characteristics of the point cloud before feature 

abstraction. 

Apart from object localization, the measurement of the target object’s 

primary dimensions is also essential for post-processing. These dimensions 

will help create a volumetric object where the object’s size and volume can be 

estimated, rather than referring to the target object as a single point in 3D 

space. The measurement of the object’s dimensions can be done by calculating 

the bounding box’s dimensions. The bounding box is surrounding the target 

object securely and represents the object’s size closely.  

Deep learning on point sets network (PointNet) and PointNet++, both 

proposed by Qi, et al. (2017) are the basic deep learning techniques to process 

point clouds. It contains multiple functional architectures that can be 

implemented in future architecture design for feature abstraction from the 

point cloud. These two approaches can be applied in various point cloud 

applications, such as object localization, object classification, and point 

segmentation. The continuous grouping of points in the hierarchical 

convolutional layers from PointNet++ influences many object localization 
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frameworks proposed later to abstract the local features to detect fine-grained 

patterns and produce generalization to complex scenes. However, PointNet’s 

architecture is rarely implemented by the current state-of-the-art, where its 

accuracy of localizing objects has been overtaken by newly emerged 

approaches.  This causes the new approaches to have a unique architecture in 

their work. Therefore, the frameworks used are not standardized like with 2D 

object localization frameworks.  

 

1.4 Aim and Objectives 

This project aims to explore the methods and approaches for localizing objects 

and measuring their dimensions within 3D point clouds. The achievement of 

the aim will determine the best 3D object localization approach that localizes 

objects accurately. The method explored should be able to perform object 

localization in point clouds accurately and reliably. Hence, the following 

objectives need to be achieved to assist in achieving this aim: 

 

1) Identify existing rich scenes of a 3D point cloud dataset for use in this 

project. 

2) Develop a method for matching an object, either 2D or 3D, to objects 

within the point cloud. 

3) Measure the primary dimensions of the located object. 

4) Perform intra and inter-comparison and evaluations of the approach. 

 

The first objective is to obtain a rich point cloud dataset with sufficient 

difficulty representing a scene but not an object. This objective allows object 

localization to operate on a scene rather than a fully segmented object. Next, 

the second and the third objective is to develop an object localization method 

with dimensions measuring capability. Many pieces of works of literature on 

related technology will be reviewed to study the existing frameworks. This 

will help develop the method in this project, where the feature engineering in 

the literature helps abstract most of the essential features in the scene to 

perform object localization. After that, the approach is compared internally 

and externally using a general standard. 
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1.5 Scope and Limitation of the Study 

This project’s scope focuses on the software component, whereas the hardware 

part is omitted and not part of the project’s consideration, including the 

computation speed. Besides, no user interface is required to be designed in this 

project. In this study, object recognition is also ignored to focus on the object 

localization with the target object’s coordinates and the bounding box 

predicted. By following the existing frameworks, the KITTI test dataset is 

used as the input data for this project and the evaluation metrics for the 

frameworks. This project was carried out for a year and concluded by this final 

report. 

 

1.6 Contribution of the Study 

This project outlines the existing 3D object localization frameworks and 

provides insights into each of them. Each framework is evaluated and 

discussed based on its accuracy in localizing the object and measuring the 

dimension, as well as its simplicity in delivering the outputs. The best 

framework is selected, and it was modified to improve the results further.  

 

1.7 Outline of the Report 

This project is further separated into several parts: literature review, research 

methodology, results and discussion, and recommendation. There are five 

chapters included in this final report. The first chapter: the introduction, 

discusses the relationship between object localization and point clouds and 

their significance. Problems faced by the current technologies are identified, 

and aim and objectives are stated to solve the problem. The introduction ends 

with an overview of the project. The second chapter then reviews multiple 

works of literature of different approaches to object localization in point 

clouds, including region proposal-based and single-shot approaches. This is to 

provide insights into current object localization technologies in developing a 

powerful object localization method. The third chapter then describes the 

project’s methodology, where the procedures for achieving the objectives are 

stated, as well as the planning and time allocation of this project over a year. 

Problems encountered and their solutions during the project’s execution are 

also included. The fourth chapter is the results and discussion of this project. 
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The results are presented and explained in-depth with supporting statements. 

Lastly, the fifth chapter will conclude this report and the project with the 

recommendations suggested for future work. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

There have been many 3D object detection approaches introduced, where each 

of them included object localization as part of the goal. Most of the approaches 

are proposed for implementation in autonomous vehicle applications, the 

current most popular technological advancement. Most of the approaches 

implement deep learning, specifically deep neural networks, to extract the 

features through complex feature abstraction architecture. Object localization 

is separated into two types of approaches, where the behaviour of the point 

cloud processing to regress 3D bounding boxes are different.  

Region proposal-based approaches propose several regions in the point 

cloud with the potential of having interesting objects to be detected. 

Calculations of a significant number of 3D bounding boxes as proposals are 

being done in the first stage. After that, features are extracted from the region 

to refine the proposals’ locations before proceeding to the final 3D bounding 

box refinement. This approach branches more into three specific main classes 

depending on the working principle: frustum-based approaches, multi-view-

based approaches, and segmentation-based approaches (Guo, et al., 2020). 

These approaches generally have fully integrated computation. It increases the 

obsessive computation from conducting both proposal generation and 

bounding box regression, where the computational cost increases further with 

the number of proposals generated (Hyams and Malowany, 2020).  

 Another class of approaches for object localization is the single-shot 

approach. Instead of generating multiple proposals in the first stage, single-

shot approaches directly jump to the later stage of object localization. 3D 

bounding boxes regression is carried out by constructing a network that 

regresses 3D bounding boxes without further refinement process. Since the 

post-processing is eliminated, the computational load and cost are reduced. 

Single-shot approaches are further separated into three main classes depending 

on the form of input data: bird’s eye view (BEV) based approaches, 

discretization-based approaches, point-based approaches, and graph-based 

approaches (Guo, et al., 2020). Single-shot approaches are rapid processing 
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since the computational load relies on the number of anchors but not the 

number of objects in 3D space. However, it loses part of the accuracy. Single-

shot approaches generally lack the refinement process for the object candidates. 

It removes most of the background instances, and thus more inaccurate, false-

positive objects can be detected. 

 The accuracy of the localized target object is evaluated by average 

precision (AP). It integrates recall and precision, ranging between 0 and 1, as a 

measure for ranked restoration results (Zhang and Zhang, 2009). The recall is 

a measurement of the positive results obtained, while precision is the 

measurement of the actual results obtained based on recall (Hui, 2018). A high 

AP indicates most of the localized object is accurate compared to the ground 

truth data. AP is obtained by the mean of precision scores, where the area 

under the precision-recall curve is calculated. AP is a suitable measurement 

parameter to evaluate a method for object localization, where it relates the 

predicted bounding boxes with the ground truth labels. 

 The dataset applied by the approaches consists of the KITTI test BEV 

detection benchmark, and the AP result to be discussed is based on the easy 

class for the cars’ category. The KITTI dataset consists of LiDAR point clouds 

embedded with the feature of reflection intensity. The BEV detection 

benchmark is preferred over the 3D object detection benchmark in the 

literature works’ discussion because some approaches only utilize the BEV 

form of input rather than a raw point cloud. BEV is a compact type of point 

cloud representation. It is accomplished by transforming the raw point clouds 

into the BEV form to render it the 2D characteristics and increases the point 

cloud’s density. The AP predicted using the BEV detection benchmark does 

scale on the AP predicted using the 3D object detection benchmark for every 

difficulty for the same approach; hence, the BEV input’s results are relatable 

with the results using raw 3D point cloud input. The threshold for intersection-

over-union (IoU) is set at 0.7 during the regression of 3D bounding boxes for 

all approaches. IoU is the measure of area overlapped between ground truth 

and prediction to classify the positive results as true or false. The IoU value 

greater than the threshold will be classified as true positive (Hui, 2018). 
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2.1 Region Proposal-based Approaches 

Two-stage object localization frameworks create multiple proposals to define 

the regions which potentially contain the interesting object. The proposals 

could be in the form of 3D bounding boxes that act as preliminary results of 

object localization. The 3D bounding boxes are then refined to improve the 

result of accuracy and precision. 

 

2.1.1 Frustum-based Approaches 

PointNet is one of the pioneering works of point cloud for 3D classification 

and segmentation, proposed by Qi, et al. (2017) to resolve the irregularity of 

point cloud in the processing technique. They proposed a unified architecture 

that acquires raw point cloud as data for broad applications of classification, 

part segmentation, and semantic segmentation. It transforms features through a 

series of multilayer perceptron (MLP) layers and rectified linear unit (ReLU) 

non-linearity, and finally aggregate point-level features by a max-pooling 

operation. Later, Qi, et al. (2017) proposed an advanced version of PointNet, 

PointNet++, to improve the previous version. PointNet++ aggregates both 

global and local features, whereby it is accomplished by continuous sampling 

and grouping of points between two PointNet’s feature aggregation layers. A 

sampling and grouping operation plus a PointNet operation forms a set 

abstraction layer. The abstraction layers are then applied by many object 

localization frameworks afterwards. However, PointNet and PointNet++ are 

unable to detect target objects and localize them. 

To resolve the challenges of PointNet on how to efficiently propose 

potential locations of interesting 3D objects in 3D space like point cloud, Qi, 

et al. (2018) proposed frustum-based PointNets (F-PointNets), which PointNet 

inspires. It leverages existing and matured 2D object detectors, CNN, to 

generate 2D region proposals as candidates in the red, green, and blue (RGB) 

images by classifying the content. Each of the 2D region proposals in the RGB 

image is extruded from the centre of view to a 3D frustum. This is 

accomplished by integrating the 2D region proposals with depth information 

with the point cloud and form 3D frustum proposals. The 3D frustum 

proposals that potentially contain the 3D target objects are extracted and 

trimmed. After that, the points within the 3D frustum proposal are fed into two 
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variants of PointNet, namely 3D instance segmentation and amodal 3D box 

estimation. 3D instance segmentation is used to acquire the object’s locations 

in the point cloud with the given 2D image space and the relevant 3D frustum 

structure. This predicts the probability for each point in the frustum belonged 

to the object by binary classification. The segmented object point cloud is then 

aligned by translation and light-weight regression of PointNet to predict the 

object’s actual centre to match with the amodal box centre. Lastly, amodal 3D 

box estimation will predict and locates bounding boxes for objects with the 

segmented and aligned point cloud. 

This approach is not a type of end-to-end learning to regress bounding 

boxes, where it heavily relies on other functional refinement modules to 

perform the tasks. Besides, the number of available foreground points in the 

3D frustum is minimal, and false-positive points on 2D images could generate 

false 3D frustum proposals, thus producing inaccurate results with low 

precision. Since there are two refinements of the 3D frustum proposal network 

in this approach, the computational cost increases. The extra load of 3D 

instance segmentation is performed and requires several works to segment the 

object. The result of this approach is favourable, where it achieves 91.17 % AP 

for ‘easy’ cars when using the KITTI test BEV detection benchmark. Figure 

2.1 shows the F-PointNet’s architecture. 

 

 

Figure 2.1: F-PointNet’s Architecture (Qi, et al., 2018). 

 

Frustum-based convolutional neural network (F-ConvNet) is another 

approach of frustum-based object localization proposed by Wang and Jia 

(2019) using frustum proposal generation architecture. Like F-PointNet, 2D 

region proposals are generated from RGB image and map into the given depth 

to produce proposals in 3D space. The 2D region proposals then extrude to 
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produce the 3D frustum proposals. Instead of one 3D frustum proposal 

generated from a 2D region proposal, F-ConvNet generates an array of 

frustum throughout the length of the frustum axis for each of the 2D region 

proposals, where the frustum axis is perpendicular to the RGB image plane. 

The 3D frustum proposals are produced by segmenting the parallel frustum 

planes offset from the image plane throughout the frustum axis’s length with 

similar spacing and strides. Then, one 3D frustum is produced from a couple 

of parallel planes. Each of the 3D frustum proposals generated is then applied 

with PointNet to group the local points within the frustum to extract the point-

level features to generate a frustum-level feature vector. PointNet groups the 

points by feeding the points into an MLP series and performing max pooling 

to aggregates the point features. The frustum-level features are transformed to 

become a 2D feature space, and this will become suitable for a fully 

convolutional network (FCN) to work on the frustum-level features. In the 

FCN, the features are consecutively abstracted to reduce the feature map’s size 

and eventually deconvoluted later to perform 3D bounding box regression. 

Since more 3D frustum proposals are processed from one 2D region proposal, 

the computational load is heavier than F-PointNet. However, the result shows 

a minor improvement compared to F-PointNet, with 91.51 % for ‘easy’ cars’ 

AP when tested with the KITTI test BEV detection benchmark. Figure 2.2 

shows the F-ConvNet’s architecture. 

 

 

Figure 2.2: F-ConvNet’s Architecture (Wang and Jia, 2019). 
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 Both F-PointNet and F-ConvNet exploit the mature 2D detector in the 

early stage to construct the backbone of the architecture. This brings up the 

problem of heavily relying on the 2D detection’s performance, and it does not 

take advantage of the rich 3D information in point clouds. 2D images have 

lesser information describing the objects than 3D point clouds. A false 2D 

region proposal generated at the beginning stage of the detection will carry 

forward the error to the framework’s subsequent modules and produce 

inaccurate results. These approaches generally score well among the 2D 

image-based approaches detection but are not classified as 3D point cloud-

based. 

 

2.1.2 Multi-view-based Approaches 

Multi-view-based approaches exploit the highest number of input modalities 

for processing among the 3D object localization techniques. Instead of taking 

the RGB image or point cloud as the primary detector’s input, these 

approaches fuse the features extracted from both RGB images and point 

clouds to regress 3D bounding boxes. A multi-view 3D object localization 

framework (MV3D) proposed by Chen, et al. (2017) functions as a sensory-

fusion network that takes multiple data modalities as input and leverages the 

multimodal information to execute region-based feature fusion. The first 

subnetwork, the 3D proposal network, takes advantage of the point cloud’s 

regular-grid BEV representation as to the primary detector. It undergoes 2D 

FCN, and the point cloud is being discretized into a 2D grid before performing 

3D bounding boxes regression that generates 3D proposals. BEV is chosen 

among other point cloud representations due to its conservation of physical 

sizes of objects that do not vary much with the camera’s distance and are less 

likely to be occupied by obstacles when viewed on top. The 3D proposals 

generated are projected to each of the three views of BEV point cloud, front-

view point cloud, and RGB image after each of them being fed into FCN and 

feature-abstracted from their respective unique representations. The projection 

will concatenate the extra information of depth to other modalities for better 

delivery of contextual information. After that, in the second subnetwork, the 

region-based fusion network, a fusion of the combined proposals and extracted 

features for each input modality is then conducted. The multiple views’ 



14 

features are effectively fused and fed into a deep fusion network. It extracts the 

features from each late fusion’s intermediate layer to perform feature 

concatenation with an element-wise mean operation for its high flexibility 

when integrated with drop-path training. The output feature of the region-

based fusion network is used to regress 3D bounding boxes.  

Since the fusion of features of multiple views through a region of 

interest (RoI) pooling occurs at a course level, it produces a significant loss of 

resolution and geometric information during the quantization, and all of the 

information directed into the region-based fusion network is depending on the 

fused’s output. The resulting AP for ‘easy’ cars is only 86.62 % when using 

the KITTI test BEV detection benchmark, which is considered low compared 

with other approaches. Besides, the computational load is high, where each of 

the input modalities has to be discretized into a 2D grid and feed into FCN 

individually. A deep region-based fusion network also increases the 

computational load, where the tasks are sequential and cannot be 

accomplished in parallel computing. Thus, it requires improvement in 

effectively fuse the different modalities and extract reliable input data 

representations. Figure 2.3 shows the MV3D’s architecture. 

 

 

Figure 2.3: MV3D’s Architecture (Chen, et al., 2017). 

 

Therefore, Liang, et al. (2018) proposed a deep continuous fusion 

framework (ContFuse) for multiple modality 3D object localization. Like 

MV3D, ContFuse exploits both BEV point cloud and RGB image to predict 

3D bounding boxes. Nevertheless, the way of ContFuse generates 3D 

proposals is different. Instead of projecting proposals generated from the BEV 
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point cloud to other modalities, ContFuse projects proposals generated from 

the RGB images into the BEV point cloud. This is because it is challenging to 

acquire 3D detections from the projected 2D outputs.  A convolutional 

network extracts the features from the RGB image before projecting them to 

the BEV point cloud. It is then fused with the convolutional layers of 3D based 

detector. To increase the effectiveness, continuous convolution is applied to 

extract features from the nearest relevant image for every point in the BEV 

point cloud for every resolution, and bilinear interpolation is implemented to 

create BEV feature vectors. The BEV feature vector has a higher density than 

an ordinarily BEV point cloud, which resolves the drawbacks of the 

discretized image’s feature loss. Continuous convolution allows connections 

of multiple intermediate layers of resolutions on both image and BEV point 

cloud streams and performs multi-scale fusion for multiple sensors. The output 

detection produced is in BEV space, which is more reliable for 3D bounding 

boxes regression. This is because the detection header is created from the 

output BEV feature map instead of discrete image space and sparse point 

cloud feature maps. 

ContFuse has region-based fusion integrated into the proposal 

projection network. It saves many computational loads from performing 3D 

bounding box regression with the elimination of deep fusion layers. The 

prediction accuracy is also increased and achieved 94.07 % AP for ‘easy’ cars 

when using the KITTI test BEV detection benchmark. The geometric 

relationship between multiple modalities is densely encoded during the 

continuous convolution layers at different resolutions. However, the fusion of 

data is still limited by LiDAR BEV’s sparsity, which is the native of the 

representation, and producing smaller object recall when the object’s size 

decreases. The number of positive results for small objects will be lesser. 

Figure 2.4 shows the ContFuse’s architecture. 
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Figure 2.4: ContFuse’s Architecture (Liang, et al., 2018). 

 

 The smaller object recall usually limits multi-view-based approaches. 

The quality of the 3D proposals depends on the consistency of features 

abstracted from the 2D FCN for each modal. It can be affected by the scene’s 

complexity and highly occluded and crowded objects, where the information 

might not be sufficient and consistent to generate proposals on them 

confidently. This is because the noise presence could dominate the features in 

the 2D RGB image. 

 

2.1.3 Segmentation-based Approaches 

These approaches exploit semantic segmentation mechanisms like 3D instance 

segmentation on point cloud or 2D segmentation on image to remove most 

background points, leaving essential foreground points in the data. These 

essential points are the interest of object localization and are used to generate 

superior proposals, which is better than ordinary proposals in terms of quality 

and accuracy. The proposals are generated on the lower density points, where 

the computational load can be reduced. Shi, Wang and Li (2019) proposed a 

region-based convolutional neural network for 3D object localization 

(PointRCNN), which segments 3D point clouds during the framework’s first 

stage. This is to acquire essential foreground points in 3D space using a point 

segmentation network with PointNet++’s backbone, while point cloud is the 

only input modality the approach used. The points in 3D space are relatively 

sparsed from each other, where overlapping or occlusion rarely occurs, 

rendering effective segmentation to extract valuable foreground points and 

features. The semantic masks are provided from the training data itself, 

namely 3D bounding box annotations, where it specifies which object of 
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points in 3D space is required to be segmented. In the first stage of the 

framework, 3D bounding box proposals are generated in a bottom-up manner. 

It utilizes the segmented foreground points and generates 3D proposals for 

each foreground point in parallel computation. This will reduce the 

computational load, where lesser proposals are generated due to the removal of 

background points as noise and thus increasing the proposals’ quality. 

Whereas in the second stage of the framework, the proposals are being refined 

in canonical coordinates. The proposals generated in the previous stage are 

feature-abstracted and transformed into canonical coordinates. The 

transformed local spatial features will fuse with semantic features from the 

point-level feature vector of the segmented point cloud and the segmentation 

mask by using the grouping approach in PointNet++. This will effectively 

refine the 3D bounding boxes for further increase in quality with a higher 

confidence level. 

 Canonical transformation offers the advantage of a higher recall from 

3D proposals. It also allows better learning of local spatial features for each 

proposal in the box refinement stage. It is combined with each point’s global 

semantic feature in the previous stage, and the merged features are used for 3D 

bounding box refinement and confidence prediction. Thus, segmentation-

based approaches generally have a higher recall over most region proposal-

based approaches, where they can accurately localize smaller objects. 

However, the geometric information could be lost due to the imperfect point 

cloud region RoI pooling scheme for different resolutions. The AP of 

PointRCNN is affirmative of 92.13 % for ‘easy’ cars when using the KITTI 

test BEV detection benchmark while having the computational load that is 

almost evenly distributed into the two stages of the framework. Figure 2.5 

shows the PointRCNN’s architecture. 
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Figure 2.5: PointRCNN’s Architecture (Shi, Wang and Li, 2019). 

 

Zarzar, Giancola and Ghanem (2019) proposed a region-based graph 

convolutional network for 3D object localization (PointRGCN) that possesses 

certain similarities with PointRCNN but differ in the box refinement stage. 

PointRGCN also works exclusively on point cloud input modal only. The 

initial stage of high recall 3D proposal generation is identical to PointRCNN. 

It leverages the segmentation approach in PointNet to extract essential 

foreground points by removing most of the background points and generates 

proposals based on them. When performing 3D box refinement, PointRGCN 

utilizes a graph convolutional network (GCN) to perform proposal feature and 

context aggregation instead. It consists of two modules, namely residual GCN 

(R-GCN) and contextual GCN (C-GCN). The first module, R-GCN, utilizes 

the point clouds’ geometric information by constructing a graph representation 

for points within each proposal to extract features for classification and 3D 

bounding box regression. The point cloud is first transformed into canonical 

coordinates. The canonical coordinate of each point is then projected into a 

larger space, and it concatenates with the corresponding 3D proposal features 

to obtain a per-point feature vector. R-GCN processes the vectors to obtain 

global point features by projecting the vector layers into a higher dimensional 

space and then max-pooled. The second module, C-GCN, then aggregates the 

contextual information among multiple proposals in the frame. Both global 

and local information within each proposal are being encoded as nodes in a 

global frame graph representation. Global features are computed by 

concatenating the local feature vector from one proposal to another. The global 
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features are then used to regress 3D bounding boxes and perform confidence 

prediction. 

 PointRGCN exploits a two-stage 3D object localization approach with 

two graphs neural network. The performance surprisingly dropped when 

compared to PointRCNN, where it achieves 91.63 % AP when tested for ‘easy’ 

cars using the KITTI test BEV detection benchmark. Apart from that, it 

contains two GCNs in the second stage of 3D box refinement that severely 

increases the system’s computational load, where both R-GCN and C-GCN 

leverage a graph neural network (GNN) individually that extensively 

aggregates the information across nodes via edges. The size of graph 

representations of the proposal point cloud in R-GCN and the number of nodes 

in C-GCN is highly dependent on the number of 3D proposals generated in the 

initial stage of the region proposal network (RPN). Many proposals could be 

generated as it is built on every segmented foreground point, yet high quality 

with high recall. However, the number of epoch of GCN can be limited to 

prevent a heavier computational load. Figure 2.6 shows the PointRGCN’s 

architecture. 

 

 

Figure 2.6: PointRGCN’s Architecture (Zarzar, Giancola and Ghanem, 2019). 

 

2.1.4 Summary 

Region proposal-based approaches generally have a more significant 

computational load since they involve two stages in the object localization 

pipeline. A significant number of 3D bounding boxes are generated in the first 

stage that acts as proposals to the object localization, suggesting the regions 

with a higher possibility of containing the interesting objects.  

The proposal generation can be separated into two approaches. The 

grid-based approach encodes the irregular point clouds to a regular 

representation, such as 2D BEV maps. This includes the multi-view-based and 

frustum-based approaches, where it allows matured 2D object detectors of 
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CNN or FCN to work on it effectively. The second proposal generation 

approach would be a point-based method that directly works on the irregular 

point cloud without transformation or feature engineering, with the example of 

segmentation-based approaches. Working on a raw point cloud will enhance 

the computational load, where the computer deals with irregular data 

inefficiently and has to be supported by certain architecture backbones. 

However, point-based approaches can utilize point set abstraction to achieve a 

larger receptive field. The object recall is higher and retains more significant 

geometric information that increases the proposals’ accuracy with a trade-off 

of increased computational load. Conversely, the grid-based approaches are 

computationally efficient. However, they could end with inevitable 

information loss due to the inappropriate use of 2D detection techniques and 

loss of information from different resolutions in the convolution layers. 

 The proposals generated by region proposal-based approaches are 

refined to reduce the number of bounding boxes and improve the accuracy by 

reducing false-positive results. The box refinement methods leveraged vary 

greatly, where it has no fixed pattern or approach of architecture to be applied. 

PointNet and PointNet++ proposed feature abstraction approaches that 

preserve accurate geometric information with flexible receptive fields. It 

allows implementation in most of the box refinement approach to effectively 

extract feature-level vectors from 3D proposals to regress 3D bounding boxes 

and perform confidence prediction. 

 Among all the region proposal-based approaches discussed, the 

segmentation-based method, PointRCNN, outperforms all other approaches 

and is most suitable for object localization. This is because the computational 

load is less concerned in this project, while the accuracy is the primary focus. 

PointRCNN has a higher recall, and the ability to retain geometric information 

preserves the features well and generates a higher quality of proposals in the 

first stage of the framework. Besides, the canonical 3D box refinement 

submodule takes multiple point cloud coordinates, semantic features, 

foreground mask, and 3D RoIs to merge the local spatial points and semantic 

features effectively. 
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2.2 Single-shot Approaches 

The single-stage object localization frameworks omit the process of generating 

a massive number of preliminary proposals in the RPN while still accurately 

detecting target objects. This reduces the computational load created from the 

proposal refinement stage. Single-shot approaches directly regress the 3D 

bounding boxes as final detection. Hence, the approach of preprocessing the 

input modal and the feature abstraction method will be crucial to the pipeline’s 

performance. 

 

2.2.1 BEV-based Approaches 

As expressed with the class’s name, these approaches utilize the unique 

characteristics of the BEV representation of the point cloud to regress 3D 

bounding boxes. Yang, Lup, and Urtasun (2018) have proposed oriented 3D 

object localization from pixel-level neural network predictions (PIXOR). It 

projects the raw point cloud into a 2D feature map by discretization and 

compute the pixel values of the projected point cloud and treating it as a 2D 

vector. The resulting projected point cloud is known as the BEV representation 

of the point cloud. The 2D feature map is suitable to leverage FCN to extract 

the feature-level vectors from the BEV point cloud to perform object 

localization by regressing 3D bounding boxes. Geometric information could 

be lost during discretization, where it can no longer exploit the natural 

characteristic of the raw point cloud. Instead, it is being transformed into a 

compact representation, where the point cloud becomes denser with the depth 

information being embedded into the 2D feature maps. This approach is too 

simple to be implemented in 3D object localization, where it has the minimum 

feature engineering to abstract features for 3D bounding boxes regression. 

Besides, the 2D framework working on an originally 3D point cloud without 

optimum processing does induce inaccuracy because the complexity increases 

when changing from 2D to 3D. Thus, PIXOR’s result is 83.97 % AP for ‘easy’ 

cars when tested with the KITTI test BEV detection benchmark. However, this 

approach has a smaller computational load than complex architecture in region 

proposal-based approaches. Figure 2.7 shows the PIXOR’s architecture. 
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Figure 2.7: PIXOR’s Architecture (Yang, Lup and Urtasun, 2018). 

 

 3D object localization framework from BEV LiDAR (BirdNet) 

proposed by Beltrán, et al. (2018) is another class of BEV-based object 

localization approach. It tries to reduce the information loss during point cloud 

projection or BEV formation by presenting the BEV map’s normalization. 

Limiting the height at each cell and computing the average intensity of all 

points within the cell will produce homogeneous pixel values among all cells. 

This produces the capability to encode the maximum number of points within 

a cell, where the normalized BEV map has a denser and more compact 

representation. Therefore, the computation effectiveness is increased. Each 

cell contains the highest available number of points to allow the feature 

extractor to acquire more output from cellular level operation. The 

normalization map has a similar resolution as the 2D BEV map. Besides, the 

implementation of normalization is reliable when importing data from 

different LiDAR sensors, where the number of points collected varies with the 

parameters built-in. The normalized map is fed into 2D CNN to extract 

features, and regression of 3D bounding boxes is carried out using RPN. 

Homogeneity in pixel values will eliminate the objects’ unique characteristics. 

Thus, the BEV point cloud representation’s density increases as well as the 

dissimilarity between the objects in the point cloud versus the objects in the 

BEV map. The resulting AP is 76.88 % for ‘easy’ cars when tested with the 

KITTI test BEV detection benchmark. Figure 2.8 shows the BirdNet’s 

architecture. 
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Figure 2.8: BirdNet’s Architecture (Beltran, et al., 2018). 

 

 The BEV-based single-stage detector is exploiting the BEV 

representation of the point cloud to regress 3D bounding boxes. This type of 

approach is limited to an extent. It does not support other input modality types, 

not even utilizing the raw point cloud effectively. Although BEV is a typical 

representation of point cloud for 3D object localization, there is not much 

computation that can be worked on to improve the results’ overall accuracy. 

This is because the BEV point cloud is overloaded with information, while 

some are lost during the BEV transformation. The high density of the BEV 

point cloud makes it less flexible to be further feature-engineered. 

 

2.2.2 Discretization-based Approaches 

Discretization-based object localization is similar to BEV-based approaches, 

where it also encodes the point cloud into a regular grid. Instead of encoding 

the point cloud into a 2D grid to become BEV representation, discretization-

based approaches encode the points into a 3D voxel grid to become discrete 

representation. These approaches also allow CNN to be applied to the 

voxelized point cloud’s regular representation to abstract features. However, 

some empty cells may exist, where it contains no points as a result of the point 

cloud’s sparsity. The computation worked on the empty cells will be 

accounted for nothing but just increasing the computational load. Engelcke, et 

al. (2017) proposed 3D object localization with a feature-centric voting 

scheme (Vote3Deep) to effectively localize objects in 3D point clouds. It 

utilizes the feature-centric voting mechanism to take advantage of the point 

cloud’s sparsity. Each input feature vector with several points in the cell will 

cast votes to its neighbouring cells, and the accumulation of votes in each cell 
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will become the output of the voting mechanism. The process is known as 

sparse convolution, where only specific cells are being computed to vote and 

feature-abstracted. This process is repeated multiple times, and it appears like 

a convolutional layer, which is the basic building block for CNN. The process 

is stacked convolutionally to extract features from layers to layers. Then, the 

point cloud’s sparsity is preserved by exploiting the ReLU non-linearity after 

each convolutional layer. This is to prevent non-empty cells from being dilated 

during the convolution. This approach is highly dependent on the number of 

cells containing points, where it will be less efficient if the overall point 

density in the cells is low. The computation cost will increase as the scene 

become greater without modifying the size of the cells. There is no available 

accuracy result for this approach using the KITTI test BEV detection 

benchmark. Figure 2.9 shows the Vote3Deep’s architecture. 

 

 

Figure 2.9: Vote3Deep’s Architecture (Engelcke, et al., 2017). 

 

 Zhou and Tuzel (2017) presented a voxel-based object localization 

framework (VoxelNet). It utilizes RPN to generate 3D bounding boxes; 

however, it is limited by the sparse point cloud’s low density. Hence, they 

intended to produce a denser representation of the point cloud known as the 

sparse four-dimensional (4D) tensor. The point cloud is encoded in a 3D voxel 

grid initially. The voxel feature encoding (VFE) layer is then designed to 

allow interaction of points within the voxel to aggregates point-level features. 

The VFE layers appear in a stacked circumstance, where it enables 

aggregation of complex local features before interacting with other voxels. 
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This will produce a descriptive volumetric representation for the point cloud. It 

creates a new dimensional feature into the 3D voxel to increase the complexity 

of the voxelized point cloud representation. Initially, each voxel is fed into the 

stacked VFE layers to obtain a point-level feature. After that, FCN is applied 

to the point-level features to aggregate the voxel-level features. The voxel-

level features are being concatenated into the respective voxel in the grid, 

producing sparse 4D tensors. Middle convolutional layers further refine the 

sparse 4D tensors to extract spatial contexts among the voxels for information 

transfer before regressing 3D bounding boxes via RPN. This approach results 

in an AP of 89.35 % for ‘easy’ cars when using the KITTI test BEV detection 

benchmark. Due to the sparse voxel’s convolution in the beginning and 3D 

convolution on the sparse 4D tensor at the end, the computational load is 

enormous. Figure 2.10 shows the VoxelNet’s architecture. 

 

 

Figure 2.10: VoxelNet’s Architecture (Zhou and Tuzel, 2017). 

 

 Discretization-based approaches are generally inclusive in terms of 

architecture design. It opens the area for the point cloud’s post-processing after 

it is being discretized into a 3D voxel grid. The computational load mainly 

depends on the design of the feature abstraction from the voxelized point cloud. 

It can be as efficient as Vote3Deep to perform computation on point-present 

voxel only or be as complex as VoxelNet to work on every voxel and further 

increase the computation by constructing sparse 4D tensors and abstract 

features from it. 



26 

2.2.3 Point-based Approaches 

This approach explicitly takes raw point cloud into 3D bounding boxes 

regression for 3D object localization without performing any feature 

engineering to convert the point cloud into other denser representations like 

BEV or voxelized point cloud. Yang, et al. (2020) proposed a point-level 3D 

single-stage object localizer (3DSSD). It fuses the feature distance-based 

furthest point sampling (F-FPS) with 3D Euclidean distance-based furthest 

point sampling (D-FPS) in the set abstraction layers. These set abstraction 

layers will serve as the network’s backbone to prevent point loss after 

sampling. It eliminates pure feature propagation layers for the upsampling of 

points and refinement modules in ordinary point-based object localization 

architecture high in computational load. A candidate generation layer is then 

concatenated after the set abstraction layers to regress 3D bounding boxes. The 

sampled points from F-FPS are used to generate candidate points with 

geometrical coordinates, and shifting operation is performed with features 

abstracted from F-FPS. This is to provide supervision to the geometrical 

location between the points. As the F-FPS points are treated as the centres, F-

FPS and D-FPS’s neighbouring points are detected as a whole set of 

representations. MLP networks then abstract the features from the points to 

regress 3D bounding boxes using an anchor-free head regression approach. 

The feature propagation layers are adapted with fusion sampling, where the 

computational load is optimized while having a similar accuracy of the 

detection result. Since the foreground points’ information is retained by 

implementing fusion sampling, the result’s AP is generally as high as 92.66 % 

for ‘easy’ cars when using the KITTI test BEV detection benchmark. Figure 

2.11 shows the 3DSSD’s architecture. 

 

 

Figure 2.11: 3DSSD’s Architecture (Yang, et al., 2020). 
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2.2.4 Graph-based Approaches 

The graph-based approach leverages the graph representation of the point 

cloud for the object localization framework. Shi and Rajkumar (2020) 

proposed a GNN for 3D object localization in point clouds (Point-GNN). A 

GNN transforms a point cloud into graphs before abstracting its features. It 

transforms a group of the points in the point cloud into a graph vertex, where 

each vertex contains the information of both 3D coordinates and the feature 

state encoded. The point cloud is voxel downsampled during vertices’ graph 

construction to reduce the computational burden. The density of the point 

cloud is reduced to a fair amount for efficient vertex formation and 

computation. The vertices within a fixed neighbouring radius are joined 

together by graph edges. The fixed neighbouring radius is a parameter to 

adjust the trade-off between computational load and accuracy. The larger the 

radius, the more edges will be connected to vertices in the graph. This will 

allow more information transfer to a vertex that is far from the origin vertex 

and increase the receptive field. Therefore, more computation has to be 

accomplished to refine the features during the iteration process.  

The edges are used as the bridge connection between two vertices to 

transfer information in a bidirectional way, where it contains the features of 

both vertices. The vertex’s feature is refined during each iteration by 

aggregating the edges’ features, while the edges are computing the features 

from the two vertices it linked. The features of vertices and edges are 

aggregated continuously throughout the iterations. The information of one 

vertex obtained from its neighbouring vertex is being transferred to another 

neighbouring vertex with a longer relative distance with the first vertex via 

edges. The series connection of vertices allows transferring information from a 

smaller fixed starting radius to the entire graph after several iterations. The 

receptive field of vertices is therefore increased. Features used for 3D object 

localization are aggregated as vertices’ features. The vertex’s state feature is 

refined by its neighbouring vertex’s state through the edge. Spatial information 

between vertices is exchanged to increase the sense of belonging in the point 

cloud’s graph representation. The final iterated vertices’ features are used to 

regress 3D bounding boxes. 
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Continuous grouping of points in convolutional layers is eliminated in 

Point-GNN to reduce the computational cost. Instead, it is only grouped and 

sampled once at the beginning of graph construction. The overall performance 

of the Point-GNN is good, where it adapts the characteristic of a point cloud of 

sparsity just like the point-based approach does. It is not altering it by 

projecting the point cloud into a regular representation that may cause data 

loss. The computational load can be adjusted via parameters of fixed 

neighbouring radius and number of iterations, with the trade-off of the 

accuracy of average precision. Point-GNN achieved an AP of 93.11 % for 

‘easy’ cars when using the KITTI test BEV detection benchmark under normal 

circumstances. Figure 2.12 show the Point-GNN’s architecture. 

 

 

Figure 2.12: Point-GNN’s Architecture (Shi and Rajkumar, 2020). 

 

2.2.5 Summary 

Single-shot approaches are generally having a smaller computational load than 

region proposal-based approaches. It has a more straightforward architecture 

design, where there is no massive number of proposal generations and 

complex proposal refinement modules that saturate the object localization’s 

computation. While having a more straightforward architecture design, the 

framework’s accuracy does not compromise, where some of the single-shot 

approaches are having AP higher than the region proposal-based approach. 

 The BEV-based approach transforms the raw point cloud into BEV 

representation to match the existing and matured 2D detector’s requirement to 
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abstract feature from it. Although it leverages the 3D information of the point 

cloud to an extent, utilizing the 2D representation is limited since the BEV 

feature map is compact and highly dense, limiting further complex processing 

to aggregate features. Next, the discretization-based approach transforms the 

irregular point cloud into a 3D regular representation of the voxelized point 

cloud. The point cloud partitioning will allow precise computation to work on 

it if the empty voxels are neglected. Many types of computation can be 

designed to handle voxels, whether contained with points. 

Furthermore, the point-based approach takes the raw point cloud as the 

input for feature abstraction to preserve the raw data’s complete information. 

The AP obtained from this approach is generally high, and the optimization 

applied to the point-based approach is mainly to reduce the computational load. 

Lastly, the graph-based approach takes graph representation of point cloud as 

input to perform feature abstraction. Since this approach is somehow similar to 

the point-based approach, it has relatively high AP as results, but 

computational load remains a concern to apply real-time monitoring. 

 Overall, Point-GNN from the graph-based approach has the best 

architecture design among the single-shot approaches. This is because Point-

GNN preserves the point cloud’s sparsity to prevent information loss from 

feature engineering. The constructed graphs have a structural similarity with 

the raw point cloud to utilize its sparse characteristic. The vertex 

representation of a small group of points forms bondings with each other via 

edges to transfer information and local features. Graph representation 

preserves most of the information points without complex pre and post-

processing features. Along with high AP, simplicity is achieved as well, where 

it has no complex mechanism. 

 

2.3 Overall Summary 

In conclusion, single-shot approaches are more preferred than region proposal-

based approaches, where it has a higher simplicity of architecture design for 

3D object localization. Although it is only one-stage detection, single-shot 

approaches do not compromise its accuracy, and it achieves a better result than 

some of the region proposal-based approaches. Accuracy is mainly depending 

on the computational load, not the type of approach. 
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 Therefore, Point-GNN is chosen among all object localization 

frameworks. It best suits the sparse characteristic of a point cloud, where it is 

inherited to the structure of the graphs constructed in the first place. The graph 

representation of the point cloud appears like the raw point cloud, where the 

points are being connected with their neighbouring points via linkages. The 

connection of vertices via edges in Point-GNN allows information transfer 

between vertices to aggregate local features in the beginning and global 

features at the end of the iterations. Finally, the comparison of accuracy among 

all approaches discussed above is listed in Table 2.1 with their respective input 

modalities. 

 

Table 2.1: Comparative 3D Object Localization Results of Various 

Approaches on the KITTI Test BEV Detection Benchmark, with an IoU 

Threshold of 0.7 for 3D Bounding Box (Guo, et al., 2020). 

Approaches Modality 
Average Precision for Cars 

Easy (%) Moderate (%) Hard (%) 

F-PointNet LiDAR, Image 91.17 84.67 74.77 

F-ConvNet LiDAR, Image 91.51 85.84 76.11 

MV3D LiDAR, Image 86.62 78.93 69.80 

ContFuse LiDAR, Image 94.07 85.35 75.88 

PointRCNN LiDAR 92.13 87.39 82.72 

PointRGCN LiDAR 91.63 87.49 80.73 

PIXOR LiDAR 83.97 80.01 74.31 

BirdNet LiDAR 76.88 51.51 50.27 

Vote3Deep LiDAR - - - 

VoxelNet LiDAR 89.35 79.26 77.39 

3DSSD LiDAR 92.66 89.02 85.86 

Point-GNN LiDAR 93.11 89.17 83.90 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

In this chapter, the methodology of the project is discussed. All the necessary 

details to accomplish the project, repeat it, reproduce the results following the 

objectives are stated. Besides, the planning and managing of the project 

activities, which constitute for a year since the beginning of the project, will be 

illustrated with two Gantt charts with explanations. Furthermore, the problems 

encountered during the project’s execution will be discussed with the solutions 

carried out. 

 

3.2 Environment Setup 

This section describes the development environment used for this project. 

 

3.2.1 Python Programming 

This project was completed using Python, an open-source programming 

language that contains a lot of backup support and higher-quality 

documentation. This is because the project consists of deep learning. Python 

has an extensive selection of open-source libraries and frameworks for deep 

learning projects, such as Keras, PyTorch, and TensorFlow (Protasiewicz, 

2018). This promotes coding capability, especially in this deep learning project 

that consists of heavy programming activity. Besides, the Python 

programming language’s simplicity allows the code writer and reader to 

understand the code concisely. Thus, a programmer can invest more time in 

complex problem-solving instead of cognitive overhead on syntax errors. The 

testing of the algorithm can be performed without implementation into 

hardware components. Anaconda Spyder is chosen as the programming 

platform due to its functionality in coding and ease in installing packages. 

 

3.2.2 TensorFlow Library 

Since object localization (part of object detection) is the primary concern in 

this project, the TensorFlow library is chosen over Keras and PyTorch. This is 
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due to its high-quality object detection application programming interface 

(API), facilitating the construction, training, and deployment of object 

localization models (Keshari, 2020). Furthermore, it works well with a large 

dataset like the KITTI dataset, which consists of about 7 500 point cloud 

scenes for both training and testing of the model. TensorFlow’s performance is 

generally high, where it has both high and low-level APIs for deep learning 

solutions. However, TensorFlow is harder to debug, and its readability is lower 

when compared to Keras due to the higher complexity of the architecture in 

TensorFlow (Sayantini, 2020). 

 

3.2.3 The KITTI Dataset 

The KITTI dataset is used for researching point cloud processing techniques 

for autonomous vehicles (Geiger, et al., 2013). It consists LiDAR point cloud 

that represents the scenes on the road in Karlsruhe, Germany. The main 

objects present in the scene are cars, pedestrians, and cyclists. This project’s 

focus is cars where it has the most significant dimensions, thus having better 

accuracy results in 3D object localization. The other objects in the scene are 

less meaningful and significant than the main objects due to the lesser ground 

truth data. Each point cloud scene is accompanied by its respective RGB 

image and the object’s labels for training various object localization 

approaches. It is optimal for use in this project due to the comprehensive 

implementation in the literature works above. It has moderate and sufficient 

difficulty to be applied in practical object localization solutions. 

The KITTI dataset’s files arrangement is suggested to follow the file 

structure shown in Figure 3.1. This produces ease in executing Point-GNN, the 

selected 3D object localization approach, to extract data from the same 

structure. ‘Image’, ‘velodyne’, and ‘calib’ in Figure 3.1 represent the dataset 

of RGB image of the scene in the left direction, a point cloud of the scene, and 

the calibration data for internal data conversion during processing. Each of the 

image, velodyne, and calib dataset consists of both training and testing data, 

where it will be applied when executing model training and inferencing, 

respectively. Label dataset only consists of ground truth labels for the training 

dataset, which also can be used for AP prediction of the model during 

evaluation. 3DOP_splits is the validation split for the dataset. It lists the file 
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indexes that contain particular interesting objects, such as cars and pedestrians, 

and cyclists, as mentioned in the text file’s name. 

 

 

Figure 3.1: Recommended Dataset File Structure (Shi and Rajkumar, 2020). 

 

3.2.4 Executing Terminal and Version of Libraries 

This project was executed on two platforms: Anaconda terminal (Windows) 

and UTAR University research server (Linux). The primary Point-GNN 

execution is accomplished using the UTAR research server as well as the data 

collection and evaluation, while the Anaconda terminal is used to generate 

graphical results of Point-GNN. This is because both platforms have their 

limitation where some of the actions cannot perform well, and the limitation is 

resolved when using another platform. The detailed discussion is included in 

the problem-solving section of this chapter.  

This project uses the TensorFlow version of 1.15. Besides, it requires 

five python packages to be installed, which are OpenCV-python, open3d-

python version of 0.7.0.0, scikit-learn, tqdm, and shapely. There are two 

principal codes for Point-GNN’s execution, namely run.py and train.py.

Run.py is used for inferencing the data, in order words, produce the output 

from the input dataset using the pre-trained Point-GNN model. The output of 
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Point-GNN consists of 3D coordinates and the three primary dimensions of the 

objects, which origin at the camera point. By obtaining the result of Point-

GNN, the second and third objective of this project will be accomplished. 

Train.py is the Point-GNN’s training algorithm, where it allows retrain of the 

Point-GNN model to produce different results during inferencing. The AP 

prediction can be performed using kitti_native_evaluation, which KITTI 

sources to evaluate the models using the KITTI training dataset and the ground 

truth labels. AP is the main parameter for evaluating this project’s approaches, 

where all approaches discussed in the previous chapter are using the KITTI 

dataset for consistency. 

 

3.3 Point-GNN Development 

This section describes the flow of Point-GNN in inferencing the output. 

 

3.3.1 Graph Construction 

Point-GNN is chosen as the main approach for object localization after 

reviewing multiple literary works. It has multiple steps to perform object 

localization and only utilizes the LiDAR point cloud as the input modality. 

After the point cloud data is read, the graph representation of point cloud is 

constructed by converting the point cloud of 𝑁 points into a set 𝑃, where each 

subset of 𝑃 is a point with both 3D coordinates 𝑥𝑖 and the state value 𝑠𝑖, hence 

𝑝𝑖 = (𝑥𝑖, 𝑠𝑖)  and 𝑃  is representing a set of vertices. The state value is 

represented by the reflection intensity of the LiDAR point cloud. Then, a 

graph, 𝐺 = (𝑃,𝐸)  is constructed with vertices and the fixed neighbouring 

radius 𝑟, where 𝐸 is the edges of the graph: 

 

𝐸 = {(𝑝𝑖,𝑝𝑗) | ‖𝑥𝑖 − 𝑥𝑗‖2
< 𝑟} — — (1) 

 

The vertices’ state features are initialized with embedding LiDAR 

reflection intensity and relative coordinates using MLPs, which are then 

aggregated by the max-pooling function. After that, the vertices’ state features 

are refined by aggregating features along the graph edges. In the (𝑡 + 1)𝑡ℎ 
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iteration, the vertex feature 𝑣𝑡  and edge feature 𝑒𝑡  in a general graph are 

updated in the form of: 

 

𝑣𝑖
𝑡+1 = 𝑔𝑡( 𝑝({𝑒𝑖𝑗

𝑡  | (𝑖, 𝑗) ∈ 𝐸}) , 𝑣𝑖
𝑡 )

𝑒𝑖𝑗
𝑡 = 𝑓𝑡(𝑣𝑖

𝑡 , 𝑣𝑗
𝑡)

— — (2) 

 

where 𝑔𝑡 is a function to aggregate edges’ features to refine a vertex’s feature 

while 𝑓𝑡 is a function to compute the edge’s feature with two vertices the edge 

is connected. 𝑝𝑡 is a set function that aggregates the edges’ feature for each 

vertex. 

 

3.3.2 Auto Registration for Offset Coordinates 

To specialize for object localization approach, equation 2 is rewritten to 

involve the neighbour’s state during the refinement of vertex’s state to include 

belonging information of the vertex: 

 

𝑠𝑖
𝑡+1 = 𝑔𝑡( 𝑝({𝑓𝑡(𝑥𝑗 − 𝑥𝑖  , 𝑠𝑗

𝑡)| (𝑖, 𝑗) ∈ 𝐸}) , 𝑠𝑖
𝑡 )— — (3) 

 

where 𝑥𝑗 − 𝑥𝑖  represents the relative coordinates of the neighbours. The 

relative coordinates approach will induce translational invariance against the 

point cloud’s global shift, where the global shift is a type of data augmentation 

to prevent overfitting the model. However, it remains sensitive in the local 

neighbourhood area. The relative coordinates of its neighbours will be altered 

when introducing a small translation and causes an increase in translational 

variance, which is a disadvantage to the training function 𝑓𝑡 . An auto-

registration mechanism is proposed to reduce the translational variance. An 

alignment offset can be predicted by utilizing centre vertex coordinates and 

aligning the neighbours’ coordinates by their structural features. Therefore, the 

equations are rewritten as: 

 

∆𝑥𝑖
𝑡 = ℎ𝑡(𝑠𝑖

𝑡)

𝑠𝑖
𝑡+1 = 𝑔𝑡(𝑝({𝑓𝑡(𝑥𝑗 − 𝑥𝑖 + ∆𝑥𝑖

𝑡, 𝑠𝑗
𝑡)| (𝑖, 𝑗) ∈ 𝐸}), 𝑠𝑖

𝑡)
— — (4) 
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where ∆𝑥𝑖
𝑡 is the coordination offset for the coordinate registration of vertices 

and ℎ𝑡 is used to compute the offset using the centre vertex’s features from the 

previous iteration. In overall, 𝑓𝑡 , 𝑔𝑡 , and ℎ𝑡  are modelled using MLPs, and 

max-pooling is used for vertices’ state aggregation: 

 

∆𝑥𝑖
𝑡 = 𝑀𝐿𝑃ℎ

𝑡(𝑠𝑖
𝑡)

𝑒𝑖𝑗
𝑡 = 𝑀𝐿𝑃𝑓

𝑡(𝑥𝑗 − 𝑥𝑖 + ∆𝑥𝑖
𝑡 , 𝑠𝑗

𝑡)

𝑠𝑖
𝑡+1 = 𝑀𝐿𝑃𝑔

𝑡(𝑀𝑎𝑥({𝑒𝑖𝑗
𝑡| (𝑖, 𝑗) ∈ 𝐸}), 𝑠𝑖

𝑡)

— — (5) 

 

3.3.3 Bounding Boxes Prediction 

After 𝑡  iterations, the final vertices’ state values are used to predict 3D 

bounding boxes using the localization branch of 𝑀𝐿𝑃𝑙𝑜𝑐. The bounding box is 

predicted for each vertex and is determined by seven parameters, thus 

possessing seven degree-of-freedom: 𝑏 = (ℎ,𝑤, 𝑙, 𝑥,𝑦, 𝑧,𝜃) . (𝑥, 𝑦, 𝑧) 

represents the 3D coordinates of the 3D bounding box, while (ℎ,𝑤, 𝑙) 

represents the height, width, and length of the bounding box predicted, 

respectively, and 𝜃 is the yaw angle rotates around the Y-axis, which is the 

axis of the height in point clouds. By utilizing (𝑥,𝑦, 𝑧), the target objects will 

be localized in a 3D point cloud by referring to the location of the bounding 

box that surrounds the object. Besides, the primary dimensions of the target 

object can be measured by taking (ℎ,𝑤, 𝑙), where the assumption is made on 

the target object fully enclosed by the bounding box. This is accomplished by 

increasing the bounding box’s size 10 % larger to prevent cutting the object’s 

edges. To measure the object’s dimension accurately in terms of alignment, 

yaw angle 𝜃 will align the bounding box with the object’s centre axis to 

perform enhanced 3D object localization and primary dimensions 

measurement. 

 

3.3.4 Bounding Boxes Regression 

Some large objects might have multiple vertices present, and a bounding box 

is predicted for each vertex that belonged to the same object. Box merging 

operation is conducted to regress the bounding boxes into one. The traditional 

non-maximum suppression (NMS) approach that determines the box with the 

highest classification score and expels the others does not improve the 
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localization accuracy. Instead, it merely reduces the number of boxes. In order 

to improve the localization quality, the median position and size of the whole 

bounding box cluster are computed, along with the confidence score as the 

summation of classification score weighted by the IoU and occlusion factors: 

 

𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐷)

𝐿𝑖 = ∑ 𝐼𝑜𝑈(𝑏𝑖, 𝑏𝑗) > 𝑇ℎ

𝐵

𝑏𝑗=0

— — (6) 

 

where 𝐷 is a set of detection scores, 𝐵 is a set of bounding boxes, and 𝑇ℎ is the 

overlapping threshold. IoU threshold of 0.7 is set rather than 0.5 to increase 

the result’s confidence level by reducing the precision value. For each 

successive mapping of IoU by the given threshold value, 𝐷 and 𝐵 is removed 

with the corresponding index, and this process will repeat until the bounding 

boxes are emptied, 𝑙𝑒𝑛𝑔𝑡ℎ(𝐵) = 0. Equation 6 outputs a set of the bounding 

boxes, which fulfiled the threshold requirement. Regression of the bounding 

box is carried out by the following equation: 

 

𝑚𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐿𝑖)

𝑜𝑖 = 𝑜𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛(𝑚𝑖) =
1

ℎ𝑖𝑤𝑖𝑙𝑖
∏ max

𝑝𝑗𝜖𝑏𝑖
(𝑣𝑇𝑥𝑗) − min

𝑝𝑗𝜖𝑏𝑖
(𝑣𝑇𝑥𝑗)

𝑣∈{𝑣𝑖
ℎ,𝑣𝑖

𝑤,𝑣𝑖
𝑙}

𝑧𝑖 = (𝑜𝑖 + 1)∑ 𝐼𝑜𝑈
𝑏𝑘𝜖𝐿𝑖

(𝑚𝑖 , 𝑏𝑘)𝑑𝑘

— — (7) 

 

where 𝑚𝑖  is the selected bounding box, 𝑜𝑖 is the occlusion factor computed, 

and 𝑧𝑖  is the corresponding bounding box’s confidence score. After the 

bounding boxes are regressed, output data is generated for the localized 

objects in the point cloud. Figure 3.2 shows the overall flow of the processes 

in the Point-GNN inferencing algorithm. 
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Figure 3.2: Flowchart of Point-GNN Inferencing Algorithm. 

 

3.4 Adjustment Made to Point-GNN 

During the Point-GNN’s execution, it was found the algorithm only focuses on 

the objects within the range of the RGB image taken, which is the region in 

front of the camera. Point-GNN did this way because the ‘label’ dataset only 

consists of the objects in front of the camera, and AP prediction only evaluates 

the localized object in the front point cloud. This is not a good practice in 

implementing 3D object localization in an autonomous car. The car’s control 

system should consider all aspects around it, not limited to the front of the 

camera but also behind it. For instance, an autonomous car shall notice the 

vehicles behind it before switching lanes on the pavement. Therefore, the code 

is rewritten by disabling the front_cam_points tuple, consisting of points and 

attributes for the points that have the Z3D of greater than 0.1. The points with 

Z3D greater than 0.1 indicating the points lie in front of the image. The 

subsequent functions with the input of front_cam_points tuple are also 

substituted with the pre-processed cam_points tuple, which consists of all points 

in the point cloud. However, this creates syntax error in the later algorithm that 

converts the camera points to the image plane via calibration, where the 

algorithm divides the Z3D after determining the interesting points:
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kitti_dataset.py:1050: RuntimeWarnig: invalid value encountered in 

true_divide: img_points_xy1 = img_points_xyz/img_points_xyz[:,[2]] 

 

where img_points_xyz[:,[2]]  represent the Z3D of the img_points tuple. 

cam_points tuple does consist of points that have a Z3D value of zero. This will 

cause the algorithm’s imperfect execution. Infinity value is obtained, and data 

loss occurred due to data invalidation. Therefore, the code is further modified 

to include the points of having Z3D greater than 0.1 or lesser than −0.1 to 

prevent invalid data: 

 

𝑝 = 𝑝𝑖 𝜖 (𝑍3𝐷 > 0.1 ||  𝑍3𝐷 <  −0.1) −−(8) 

 

 This change in coding will allow all points in the point cloud to be 

processed without introducing significant data loss from excluding points 

between −0.1 to 0.1 in the Z-axis. With the introduction of points behind the 

camera, the computational cost increased. The time required to generate the 

output becomes longer due to the increased number of vertices and edges. 

 

3.5 Performing Intra and Inter Approach Comparisons 

The Point-GNN approach is compared with the different number of layers in 

the Point-GNN model to verify the difference in AP predicted and the 

computation cost tradeoff. The number of layers in the Point-GNN model 

represents the number of iteration for graph vertices in aggregating features. 

An inference to the intra-comparison is that the higher the number of iteration, 

the more information is gained for each vertex from its neighbourhood, and 

result in higher AP. Thus, all Point-GNN results used for intra-comparison 

will be executed on the same platform, the UTAR research server. The number 

of iterations tested is 0, 1, 2, and 3, and the evaluation for each output data is 

accomplished by the KITTI native offline evaluation metrics, with the recall 

position of 11. Evaluation is conducted by generating the output data using the 

training dataset to compute the recall and precision based on the ground truth 

data. 

 Apart from that, the inter-approach comparison will be conducted to 

compare Point-GNN with other approaches discussed in the literary works in 
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chapter 2. The main and the only parameter used for discussion is also the 

evaluated AP of the approach. The AP for the approaches discussed is 

obtained from the KITTI Vision Benchmark Suite. All of the approaches were 

submitted to KITTI by their authors, and KITTI outputs the APs for three 

difficulties for each object class the approach is working. Therefore, the KITTI 

reported APs are based on the same evaluation metrics and use the recall 

position of 40. 

 

3.6 Planning and Managing of Project Activities 

This section describes the planning of the project activities with time 

management, where time is the only resource in this project. 

 

3.6.1 Project Part I 

Project part I consisted of four major activities to be accomplished by the end 

of the project part. In the first two weeks, a discussion with the supervisor was 

conducted to plan for this project regarding the project’s output, project 

duration, possible problems encountered, and the design for the Gantt chart 

shown in Table 3.1. After that, comprehensive literature reviews were 

conducted to cover many object localization works relevant to the 3D point 

cloud as input modal. The sources were analyzed and criticized professionally 

by reviewing them in-depth and discussing all necessary aspects to highlight 

the current gaps in the 3D object localization research. The literature review 

was started right after registration of this project title in the first week, and 

eight weeks were spent to accomplish it. There were twelve 3D object 

localization approaches collected and reviewed, where region proposal-based 

approaches and single-shot approaches both consisted of six works of 

literature. 

 Then, a research methodology was conducted to set up the preferred 

programming environment. Python was chosen over C++ due to its simplicity 

and readability of codes that promote ease in programming. Point-GNN was to 

be executed; however, it failed due to the different operating systems in the 

computer used in accomplishing this project versus the Point-GNN’s written 

code. The KITTI test dataset was obtained, consisting of 7 500 point cloud 

scenes with the respective RGB image and label for both the training and 
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testing dataset. This was to increase the flexibility of input modalities to be 

used in this project. This activity was started in the third week, overlapped 

87.5 % with the literature review activity, and was ended in the twelfth week. 

The second last part of this project was the writing of the progress report. The 

literature review section, which is the heaviest part of the progress report, was 

first to be completed for the supervisor’s inspection in terms of the report’s 

quality. It was arranged in a coherent structure to expand the reader’s more 

profound understanding of 3D object localization in point clouds. After that, 

the introduction was written to identify the current problem and the aim and 

objectives. The methodology section then described the experimental details, 

where the facilities to be used were elaborated and justified and is ended with 

the project planning. Progress report writing was started in the ninth week, and 

six weeks were spent completing it. The project part I was concluded with the 

presentation to the supervisor and the moderator, which held in the fourteenth 

week. In conclusion, all activities were accomplished as planned. Table 3.1 

shows the Gantt chart for project part I. 
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Table 3.1: Gantt Chart for Project Part I. 

 

 

No. 
Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

M1 Project planning  ✔  ✔             

M2 Literature review   ✔  ✔  ✔  ✔  ✔  ✔  ✔  ✔      

M3 Research methodology    ✔  ✔  ✔  ✔  ✔  ✔  ✔   ✔   ✔   ✔   

M4 Report writing & oral presentation          ✔   ✔   ✔   ✔   ✔   ✔ 

Activities 
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3.6.2 Project Part II 

Project part II consisted of six activities to be accomplished by the end of this 

project part. In the first five weeks, the Point-GNN’s code was executed using 

the UTAR research server. The research server consisted of remote access that 

allows the user to execute the algorithm using the research server’s 

specifications, which are more robust in performance than an ordinary 

computer. Numerical results of Point-GNN were generated using the research 

server, while the graphical results of Point-GNN were generated using a 

student’s computer. Next, research methodology was carried out from the 

second week onwards, and have spent nine weeks researching the possible 

improvements to fill up the technological gaps in Point-GNN. It was found out 

that Point-GNN is limiting itself to localize the objects within the range of the 

RGB image taken, which is in front of the camera while leaving others objects 

in the point cloud scene behind and unlocalized. Changes were made to the 

code to improve the output result in terms of point’s coverage. This project’s 

model development was carried out along with the research methodology to 

resolve the error on programming, where coding was performed in a Python 

environment. Another set of inference results was generated with the new code. 

The KITTI dataset with 7 481 training samples and 7 518 testing samples of 

point cloud was used as the project’s input modal. Model development was 

started in the third week and ended in the twelfth week. 

 Result and discussion were performed in the middle of the model 

development, which was the eighth week of project part II. The results 

obtained from the improvement of the method and the original Point-GNN 

were analyzed and discussed. Besides, a poster regarding this project was 

prepared, which began in the ninth week. Both result and discussion and poster 

preparation were ended in the twelfth week due to the poster’s submission. 

The result and discussion were essential for the poster to promote the model 

developed for 3D object localization in point clouds. Lastly, the final report 

writing was started in the seventh week, two weeks earlier than the progress 

report writing in project part I, to improve writing skills and early problem 

spots. This was to improve the report’s quality by including essential 

information in the report to effectively expand the reader’s knowledge. This 

activity was continued until the submission of the final report in the fourteenth 
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week. The final presentation was prepared and conducted to present this 

project’s results to both the supervisor and the moderator. Table 3.2 shows the 

Gantt chart for project part II. 
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Table 3.2: Gantt Chart for Project Part II. 

No. Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

M1 Execution of Point-GNN’s code  ✔  ✔  ✔  ✔   ✔          

M2 Research methodology   ✔  ✔  ✔  ✔  ✔  ✔  ✔  ✔   ✔     

M3 Model development    ✔  ✔  ✔  ✔  ✔  ✔  ✔   ✔   ✔   ✔   

M4 Result and discussion        ✔   ✔   ✔   ✔   ✔   

M5 Poster preparation          ✔   ✔   ✔   ✔   

M6 Report writing & oral presentation        ✔  ✔  ✔   ✔   ✔   ✔   ✔   ✔ 

Activities 
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3.7 Problems Encountered and Solutions 

During the project’s execution, three problems have been encountered, and 

most of them have been resolved and achieved a better improvement in the 

project execution. 

 

3.7.1 The Computational Expense of Executing Point-GNN 

The execution of Point-GNN was decided to run on the student’s computer, 

which is the model of Acer Nitro 5 with the specifications of 12 gigabytes (GB) 

of random access memory (RAM). When the code was executed in the 

Anaconda terminal, which is the initial primary code execution terminal, it 

outputs nothing but mentions the insufficient available device memory and 

causes zero output of Point-GNN result. The condition was not solved even 

after optimizing and defragmenting the disk. The number of iterations of 

Point-GNN executed was three: the maximum iteration number and the default 

value suggested by Shi and Rajkumar (2020). This is because the higher the 

number of iterations, the farther the vertex’s information could reach in the 

neighbourhood. One possible inference to the inability of execution is the 

inappropriate hardware execution. Point-GNN is generally running on CPU, 

and Python programming itself is also increasing the computation cost, where 

it is a high-level programming language with higher complexity. It is 

estimated that the minimum requirement to execute Point-GNN is 20 GB of 

RAM in the computer. This problem was resolved by changing the 

computation hardware by shifting the task of executing Point-GNN from a 

student’s computer to the UTAR research server, which has a bigger RAM of 

64 GB that runs on Linux. Numerical results of Point-GNN were outputted in 

the research server and stored in text files, including the 3D coordinates and 

the three primary dimensions of the localized objects. In addition, the research 

server allows remote access from the student’s computer where the student’s 

computer can be used to perform other helpful project activities other than 

code execution. The comparison between the specifications of the student’s 

computer and the UTAR research server is listed in Table 3.3. 
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Table 3.3: Comparison Between Specifications of the Student’s Computer and 

the Research Server. 

 Student’s computer UTAR research server 

Operating system Windows Linux 

RAM (GB) 12 64 

GPU NVIDIA GeForce GTX 1050 NVIDIA GP104GL 

On-screen (FPS) 60.0 13.0 

 

3.7.2 Shifting Primary Programming Environment to Linux 

During the shifting of the primary programming environment from the 

student’s computer to the UTAR research server, problems were encountered 

during the environment setup. Since the execution of Point-GNN has been 

shifted onto the UTAR research server, the KITTI dataset has to be placed 

inside the server for Point-GNN’s data acquisition. The KITTI dataset was 

obtained during project part I, which is stored in the student’s computer. A 

Linux command called ‘rsync’ allows synchronizing files across the local 

server to the remote server. However, this approach is slow due to the 

requirement of prolonged connection between the servers to transfer the files. 

Hence, the ‘wget’ command was used to download the files directly online, 

which speed up the dataset set up in the research server. However, some files 

are not available online directly, such as the folder of 3DOP_splits; thus, the 

‘rsync’ command was applied to gather them into the research server before 

executing Point-GNN’s code. 

The disk quota kept saturated during the dataset set up in the research 

server due to limited volume. This is because the KITTI dataset is enormous, 

where it has 7 481 training samples and 7 518 testing samples. The entire 

dataset consumes a size on disk of 38.6 GB, and it contains 52 486 files in 

total. Therefore, the research server’s user-allocated disk space was updated to 

input the whole dataset into the research server. Most of the dataset folder such 

as ‘image’, ‘velodyne’, ‘calib’, and ‘labels’ are setup using the ‘wget’ 

command; The ‘wget’ command outputs a ‘.zip’ folder for each dataset into 

the research server and requires further unzip operation. The unzipping 

operation of Linux is outputting an extracted folder that consumes the same 

amount of disk space to the research server before the zipped folder can be 
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removed. However, the disk space was saturated again upon the completion of 

the dataset download. Due to the disk space’s saturation in the research server, 

the unzipping operation could not be done. A solution to this was removing 

some zipped dataset folders before unzipping other zipped folders that 

remained. This solution allocates space for the extracted files to occupy and, 

thus, allows the unzipping process. The zipped-extracted folders were then 

removed to allocate disk space for further unzipping processes. At the end of 

the dataset setup, the files in the initially removed zipped folder were input to 

the research server via the ‘rsync’ command, where no zip file or ‘wget’ 

command is involved. ‘Image’ zipped folder was removed in this aspect due to 

its medium-sized occupied disk space; therefore, the ‘rsync’ command is not 

consuming a very high computation cost in importing files from the ‘image’ 

dataset at the end. 

 

3.7.3 The Inability of Research Server to Visualize Point-GNN Results 

Point-GNN’s code has an argument that allows the visualization of the results. 

However, the UTAR research server faced difficulty displaying graphical 

results, which contain both image and point cloud with bounding boxes 

enclosing the objects. The system core has dumped frequently and causes the 

operation aborted. Introducing graphical application while executing Point-

GNN has caused the several numerical results produced before the abortion 

worse than the results produced without displaying the graphics. One possible 

reason may be that the GPU of the research server of NVIDIA GP104GL has 

difficulty displaying such graphical results. It has low on-screen frames per 

second (FPS) displayed and causes interruption on the code execution. Thus, 

the graphical result was then produced using the Anaconda terminal on the 

student’s computer. The GPU of the student’s computer of NVIDIA GeForce 

GTX 1050 has a higher on-screen FPS displayed as shown in Table 3.3, and it 

successfully displayed the graphical results. 

 However, due to the student’s computer’s limitation, Point-GNN can 

only be executed in zero iteration in the Anaconda terminal. This produces the 

results that the vertex’s state information is not shared among its 

neighbourhood. Therefore, the validated result’s AP is the lowest compared to 

other results with the number of iterations greater than zero. The low AP is 
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due to the introduction of false-positive results. Point-GNN can barely localize 

the true-positive objects only when the objects are fully visible in the point 

cloud and the scene’s complexity is low for a non-iterated model. In other 

words, the objects are not occluded by any other less meaningful objects, such 

as trees or walls, during the point cloud acquisition. Although Point-GNN’s 

visualization is limited to a zero iterated model, the numerical results’ usability 

is far more superb than the graphical results. This is because the numerical 

data can be used as input to an autonomous car’s control system to carry out 

decisive actions. Simultaneously, the graphical result is limited to human use 

for visually evaluating the Point-GNN. 

 

3.7.4 Missing System Package 

The KITTI offline evaluation metrics is encoded in a ‘.cpp’ file and other 

directories. It requires compilation to make it executable for intra and inter-

approach evaluation. However, the UTAR research server lacks the ‘cmake’ 

system package with the minimum requirement of version 2.6 to compile the 

files. Therefore, a request is sent to the supervisor to install the system 

package into the research server environment for Point-GNN evaluation. The 

KITTI offline evaluation metrics are compiled, and it is executed with the 

inputs of validation result from Point-GNN using the training dataset and the 

ground truth label dataset. The KITTI offline evaluation metrics outputs a 

series of evaluation data with the car object: 2D detection AP, 2D orientation 

AOS, BEV detection AP, BEV orientation AHS, 3D detection AP, and 3D 

orientation AHS. Each evaluation data is accompanied by a graph displaying 

the data. The focuses of evaluation data in this project are 3D detection AP 

and BEV detection AP. 

 

3.8 Summary 

The environment setup of the project is explained. A Python programming 

platform is required to modify and execute segments of Point-GNN’s code. 

Besides, the TensorFlow library is required for the deep learning programming 

sessions in the code. The KITTI dataset is obtained and is successfully loaded 

into Point-GNN to generate output. Point-GNN’s development is explained in 

details with numerical equations included and the overall flowchart. Then, the 
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adjustment made to Point-GNN is described and analyzed in this chapter, too. 

Also, the method of performing intra and inter-approach comparison is 

discussed. The planning and management of the project’s activities are 

explained, where it is separated into part I and part II for two long semesters 

that constitute a year in total. Problems encountered and the solutions selected 

are also included in this chapter, followed by the results of the solutions 

executed. 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

This chapter describes the result obtained from Point-GNN execution and the 

code’s adjustment made. Intra and inter-approaches comparison will be 

discussed and evaluated further in this section. 

 

4.2 Point-GNN 

The KITTI files input to the code consist of the velodyne point cloud, image, 

label, and calibration. The collection of the KITTI dataset has marked the 

accomplishment of the first objective in this project. These four datasets are 

sufficient to reproduce the Point-GNN both numerical and graphical results. 

The image and calibration files are used to produce graphical results, where 

the points will map to the image plane and camera plane through and forth 

during the processing. The ‘label’ dataset consists of the ground-truth label of 

the objects, and it is used to predict AP from the output results generated from 

the training samples. The primary dataset used by Point-GNN processing is the 

velodyne point cloud, which consists of X, Y, and Z coordinates as well as the 

LiDAR reflection intensity. The LiDAR reflection intensity represents the 

vertex’s state value during the vertex initialization. Next, the calibration data is 

also used to convert the points from velodyne coordinate to camera coordinate, 

where there is a change in the X, Y, and Z coordinates of the points to produce 

the generalized points regardless of the camera’s setting. The configuration 

file is also input to Point-GNN, which consists of the parameters to execute the 

code. The parameters include the keyword arguments for graph generation and 

model construction. The graph generation keyword argument consists of the 

configurations to generate graphs, such as the graph type and the radius of 

neighbour searching for generating edges’ graph. Then, the model keyword 

argument consists of the Point-GNN layer type for each layer in the Point-

GNN’s iteration. The MLP depth parameters are also included in the layer 

configuration, as well as the normalization and activation type for the MLPs. 
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 After executing the Point-GNN, it outputs both the numerical and 

graphical results. The graphical result output is controlled by an argument, ‘--

level’ during the code’s execution to allow visualization of the result. Figure 

4.1 shows the graphical result of the Point-GNN for the testing sample 000001. 

The graphical result consists of an RGB image of the scene with two green 2D 

bounding boxes covered on the two cars localized. The graphical result also 

consists of a 3D point cloud of the scene with three red 3D bounding boxes 

covered on three cars localized. The coloured lines intersecting at the 

bounding box represent the graph’s edges, where each edge is connected to 

two vertices in the graph. The visible lines in the point cloud are the edges 

with one of the vertex lying within the 3D bounding box. Therefore, the vertex 

at the other end of the edges is delivering its state’s value to the bounding 

box’s vertex for aggregating local features. The green lines represent the 

object localized is classified as ‘car’, where cars are the target object for this 

project. Meanwhile, the grey lines represent the object localized is classified as 

‘do not care’. The ‘do not care’ class is implemented to prevent false-positive 

results in the evaluation, where it is not included in the localization result. 

Therefore, there are only two target objects, cars, localized in the testing 

sample 000001. 

 

 

Figure 4.1: Graphical Result for the Testing Sample 000001. 
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 Apart from the graphical result, Point-GNN also outputs the numerical 

result simultaneously. The first three data: truncation, occlusion, and alpha, are 

not the interesting parameters in this project, where it refers to 2D image 

processing. The clip for 𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥, and 𝑌𝑚𝑎𝑥 represent the maximum 

limits for the particular object in the 2D RGB image. Similarly, these four 

parameters are not interested in the project’s discussion due to the involvement 

of the 2D region. The ‘label’ KITTI dataset included all these parameters 

because there are approaches utilizing the 2D detector in localizing objects. 

The significant numerical result parameters are the X3D, Y3D, Z3D, height, 

width, and length. The X3D, Y3D, and Z3D lie at the bounding box’s origin, 

computed in the MLP of the localization branch. The bounding box’s origin 

lies on the top XZ bounding box plane’s centre point. This indicates the 

bounding box’s origin lies in the top centre of an object to reference the object 

from the global origin, the LiDAR camera’s coordinate at (0,0,0). Hence, this 

project’s second objective is achieved by determining the X, Y, and Z 

coordinates of the located object in a 3D point cloud. 

The height, width, and length represent the three primary dimensions 

of the object in meters, which are also computed in MLP of the localization 

branch. The height, width, and length are displaying in the form of bounding 

box lines. Each bounding box line is drawn across two of the eight corners 

surrounding the object to form a cube. The bounding box corners are 

positioned by the height, width, and length parameters computed, originating 

(X3D, Y3D, Z3D). The upper four corners are positioned at (±𝑤
2⁄ ,0, ± 𝑙

2⁄ ), 

while the bottom four corners are positioned at (±𝑤
2⁄ ,−ℎ, ± 𝑙

2⁄ ), in respect 

to (X3D, Y3D, Z3D). The bounding box’s orientation is determined by the 

second last parameter in the numerical result, yaw angle, representing the 

rotation angle of the object around the Y-axis, which is the axis of the height. 

Thus, this project’s third objective is accomplished by displaying the height, 

width, and length of the located object in both numerical and graphical form. 

The last parameter in the numerical result is the confidence score computed for

the bounding box regressed to indicate performance for the particular 

bounding box predicted. Table 4.1 shows the numerical result for the testing 

sample 000001. 
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Table 4.1: Numerical Result for the Testing Sample 000001. 

Object class Car (1) Car (2) 

Truncation -1 -1 

Occlusion -1 -1 

Alpha 0 0 

Clip_Xmin 141.20734621538205  36.41744711056066  

Clip_Ymin 176.2229789093736 174.03262110345074 

Clip_Xmax 351.68137221248566 232.33337647692284 

Clip_Ymax 243.90982579877945 289.8086621292917 

Height (m) 1.5215358 1.5745287 

Width (m) 1.6863366 1.6601882 

Length (m) 4.283223 4.113779 

X3D -8.645287 -7.8946705 

Y3D 1.6074694 1.5971005 

Z3D 17.363804 11.835676 

Yaw 0.09412821 0.72221255 

Score 82.2164862876902 151.07463956706272 

 

4.2.1 Adjustment Made to Point-GNN 

Based on the changes made in section 3.4, the point cloud input into the Point-

GNN model is different, where it also consists of the points behind the camera. 

Figure 4.2 shows the point cloud scene of the testing sample 000001 viewed 

from the top that consists of the front and the rear point cloud.  

 

 

Figure 4.2: Point Cloud of the Testing Sample 000001 Viewed from the Top. 
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Figure 4.2 shows that the point cloud is separated into two regions. The 

point cloud at the left consists of the points that lie behind the camera, while 

the point cloud at the right consists of the points that lie in front of the camera, 

which is identical to the point cloud shown in Figure 4.1 but viewed from the 

top. It is worth noticing that there are objects in the left point cloud; therefore, 

3D object localization should be worked on those objects to obtain their 3D 

coordinates and three primary dimensions. With the inclusion of rear points 

into the vertices and edges’ graph construction by equation 8, the combined 

numerical result for the testing sample 000001 is generated and is shown in 

Table 4.2. 

 

Table 4.2: Combined Numerical Result for the Testing Sample 000001. 

Object class Car (1) Car (2) Car (3) 

Truncation -1 -1 -1 

Occlusion -1 -1 -1 

Alpha 0 0 0 

Clip_Xmin 141.2073462 640.9306218 36.4174471 

Clip_Ymin 176.2229789 118.7164306 174.0326211 

Clip_Xmax 351.6813722 711.8680651 232.3333765 

Clip_Ymax 243.9098258 166.1110190 289.8086621 

Height 1.5215358 1.5051302 1.5745287 

Width 1.6863366 1.6225216 1.6601882 

Length 4.283223 3.9107132 4.113779 

X3D -8.645287 -2.2776604 -7.8946705 

Y3D 1.6074694 1.7630962 1.5971005 

Z3D 17.363804 -25.551062 11.835676 

Yaw 0.09412821 1.4244215 0.72221255 

Score 82.2164863 53.6548599 151.0746396 

 

 Table 4.2 shows that one more object is localized, the second car in the 

table, from the point cloud behind the camera compared to the results in Table 

4.1. The second car detected has the Z3D of -25.551062, indicating the object 

lies behind the camera. Thus, the 3D coordinates and three primary 
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dimensions of the second car is successfully computed by the MLP of the 

localization branch. Point-GNN can now localize the objects in point clouds in 

a more comprehensive manner. Nevertheless, another car in the rear point 

cloud is observed in Figure 4.2 but is not localized by Point-GNN. One 

possible inference to this is the Point-GNN is only trained with the front point 

cloud but not both the front and the rear due to the absence of labelling of 

objects in the rear point cloud. Besides, the front point cloud is observed to 

have a higher point density than the rear point cloud, where the points in the 

rear point cloud are sparsely located in 3D space. This may be accounted for 

by the specification of the LiDAR camera, where it focuses on the front 

direction it is facing. The car that Point-GNN does not localize is locating 

further away from the LiDAR camera compared to the car localized in the rear 

point cloud. Although it is located within the Point-GNN’s localization range, 

low point density causes insufficient information to categorize it as an 

interesting object in the point cloud. Hence, it possesses a lesser chance to be 

classified as a ‘car’, the target object for localization, by Point-GNN due to 

lesser spatial information of vertices and edges generated in the graph. Figure 

4.3 (a) shows the front point cloud of the testing sample 000001, which has a 

higher point density, while Figure 4.3 (b) shows the rear point cloud of the 

testing sample 000001, which has a lower point density and the undetected car 

is indicated by a box. 

 

 

Figure 4.3: (a) Front Point Cloud of the Testing Sample 000001. 
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Figure 4.3: (b) Rear Point Cloud of the Testing Sample 000001 with the 

Labelled Unlocalized Object. 

 

4.3 Comparison and Evaluation 

The Point-GNN generated several results using the different number of 

iterations, known as the different number of layers in the Point-GNN model. 

The first layer in the Point-GNN model is always the graph layer of 

aggregating the LiDAR reflection intensity by MLP to initialize the vertices’ 

state, where max_point_set_pooling layer type is introduced to the layer. The 

last layer in Point-GNN is always the output layer, where the vertices’ state 

features are abstracted using the class  aware  predictor approach. The 

intermediate layers that lay between the first and the last layer of the Point-

GNN model are the iteration layers. All layers are configured in the 

configuration file input to the code, as discussed previously. 

The results in Table 4.1 and 4.2 are produced from the three-time-

iterated Point-GNN model, representing three iteration layers in the model. 

Every iteration layer is identical to each other in terms of configuration. The 

iteration layer’s configuration includes the activation type, normalization type, 

and depth parameter for each operating MLP. The layer type that every 

iteration layer used is scatter_max_graph_auto_center_net, where the auto offset 

feature is activated in every iteration of vertices’ state aggregation to reduce 

translational variance. The depth parameter for MLP of edge and vertices 

update are identical, which is the list of [300, 300], indicating the number of 

nodes in the perceptron. All layers in the Point-GNN’s model have the same 

activation function: ReLU non-linearity. It is because ReLU can preserve the 

sparsity of vertices in the graph while increasing the computation speed. 



58 

 The maximum iteration number, three, is the iteration number that 

Point-GNN used to generate the validation result and submitted it to KITTI for 

evaluation. It has the greatest computation load, where the information of a 

vertex has reached a neighbourhood vertex with the relative distance of three 

edges or two vertices. The information cross does provide a larger receptive 

field around the vertices. Therefore, it has a higher tendency to localize objects 

accurately in 3D space. The results used for evaluation is only the objects 

localized in the front point cloud, where the labelled ground truth objects in 

the KITTI dataset only consist of the objects in the front. 

The AP predicted for Point-GNN’s result is separated into ‘easy’, 

‘moderate’, and ‘hard’ classes, representing the difficulty of the objects being 

localized. This includes the factor of occlusion in LiDAR point cloud, which is 

shadows that result from geometric triangulation. The interesting objects may 

be occluded by the non-reflective object. This is because the hidden objects 

that are not visible to the LiDAR camera will not be measured. At the same 

time, multiple scanning from different angles is not implemented during 

KITTI dataset construction. The three difficulties represent the occlusion level 

of objects in the scene, from fully visible to significantly occluded. As the 

object’s difficulty increases, the number of points and vertices representing the 

object is reduced. Therefore, the occluded car’s vertices require more 

information from its neighbourhood vertices, where it needs to aggregate more 

local features to classify itself as an interesting object and localize it. 

 

4.3.1 Intra-Approach Comparison 

The AP predicted for the three-time-iterated Point-GNN’s result is   

87.890259 % for ‘easy’ cars, 78.342728 % for ‘moderate’ cars, and 

77.377190 % for ‘hard’ cars using the 3D detection benchmark. It is worth 

noticing the KITTI evaluation used for intra-approach comparison has the 

recall position of 11. The result shows that the AP reduces from ‘easy’ to 

‘moderate’ followed by ‘hard’ object’s difficulty. As the number of vertices 

representing the interesting object decreases, the predicted bounding box does 

not accurately reflect the object’s 3D coordinates. Translation of bounding box 

occurs, where the bounding box is minimally shifted to other nearby positions 

within the object’s neighbourhood as a result of the localization MLP. This 
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reduces the IoU between the ground truth labelled and the predicted bounding 

box and results in lower AP.  

Apart from the AP predicted using the 3D detection benchmark, the 

BEV detection benchmark is also used and predicted an AP value for each 

difficulty class. The AP predicted using BEV detection benchmark for the 

three-time-iterated Point-GNN’s result is 89.823723 % for ‘easy’ cars, 

88.308357 % for ‘moderate’ cars, and 87.155525 % for ‘hard’ cars. It shows 

that the AP predicted using the BEV detection benchmark is higher than 3D 

detection for every difficulty classes. The BEV detection benchmark included 

transforming the raw point cloud into BEV representation, which produces the 

BEV point cloud with higher point density in a 2D regular map and uses it as 

the input to Point-GNN. The BEV transformation preserves the object’s size 

consistent with respect to distance, which provided a strong antecedent for 

inferencing because it does not suffer from occlusion. The AP predicted using 

the 3D detection and BEV detection benchmark is illustrated in Figure 4.4 (a) 

and (b), in terms of the area under the graph. 

 

Figure 4.4: (a) AP Predicted using the 3D Detection Benchmark for the Three-

time-iterated Point-GNN and (b) AP Predicted using the BEV Detection 

Benchmark for the Three-time-iterated Point-GNN. 

 

 As the Point-GNN’s iteration number reduces, a vertex’s information 

cannot be transferred far away from the origin. Therefore, a vertex’s receptive 

field will be smaller and is anticipated a drop in AP predicted for all classes of 

difficulty. The AP predicted for Point-GNN’s result with iteration number of 0, 

1, 2, and 3 are listed in Table 4.3 and 4.4 using the 3D detection and the BEV 

detection benchmark, respectively. Besides, the AP predicted for Point-GNN’s 
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result is also illustrated in Figure 4.5 (a), (b), and (c) that show the graph of 

AP using the 3D detection benchmark with the iteration number of 2, 1, and 0, 

respectively. 

 

Table 4.3: AP Predicted for Point-GNN using the 3D Detection Benchmark 

with Different Iteration Numbers. 

Number of 

Iteration 

Average Precision (3D Detection Benchmark) 

Easy (%) Moderate (%) Hard (%) 

0 73.896561 64.421539 59.909767 

1 88.003227 77.887131 76.144211 

2 88.336563 78.510040 77.671188 

3 87.890259 78.342728 77.377190 

 

Table 4.4: AP Predicted for Point-GNN using the BEV Detection Benchmark 

with Different Iteration Numbers. 

Number of 

Iteration 

Average Precision (BEV Detection Benchmark) 

Easy (%) Moderate (%) Hard (%) 

0 87.241478 77.389450 75.839111 

1 89.833923 87.672905 86.303192 

2 89.995453 88.374153 87.218575 

3 89.823723 88.308357 87.155525 

 

Figure 4.5: (a) AP Predicted for Two-time-iterated Point-GNN, (b) AP 

Predicted for One-time-iterated Point-GNN, and (c) AP Predicted for Non-

iterated Point-GNN. 

 

 The result shows that the AP predicted for non-iterated and one-time-

iterated Point-GNN have an increment of AP as the iteration number increases 
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when using both the 3D detection and the BEV detection benchmark. It has the 

AP difference of 14.106666 % for ‘easy’ cars, 13.465592 % for ‘moderate’ 

cars, and 16.234444 % for ‘hard’ cars when using the 3D detection benchmark. 

A vertex’s receptive field increased significantly when the iteration number 

increased from zero to one. This is because information exchange in Point-

GNN is essential for feature abstraction, where it refines the vertices’ state 

feature before predicting the bounding boxes. A non-iterated Point-GNN will 

produce a result similar to the region proposal-based approach, where a 

massive number of 3D proposals will be generated prior to any feature 

engineering. The massive number of 3D proposals lower the model’s accuracy, 

where many false-positive results are introduced. 

When Point-GNN is iterated at least one time, the AP increased 

significantly. This is due to the presence of a receptive field around vertices, 

where the edges deliver the information from neighbourhood vertices to a 

vertex. The edges are formed with the radius for searching neighbourhood 

vertices at 4.0 m originating from a vertex, with the maximum number of 

edges of 256 that indicate the neighbour numbers for each vertex. The wide 

range of searching and great neighbour numbers causes a vertex’s receptive 

field to change dramatically when the iteration number is changed by one. 

Therefore, the AP predicted for non-iterated Point-GNN is the lowest, 

followed by one-time-iterated and two-time-iterated Point-GNN. 

 The AP does not change significantly when the iteration number 

changes from one to two. This is because most of the essential and meaningful 

features are aggregated during the first iteration. The iterations afterwards 

refine the minor features of the vertices to bring the result closer to the ground 

truth. Therefore, the AP increased from one-time-iterated Point-GNN to two-

time-iterated Point-GNN, which is 0.333336 % for ‘easy’ cars, and    

0.622909 % for ‘moderate’ cars, and 1.526977 % for ‘hard’ cars when using 

the 3D detection benchmark. 

Surprisingly, the two-time-iterated Point-GNN achieves the predicted 

AP higher than the three-time-iterated Point-GNN for all difficulty classes, 

with the difference of 0.446304 % for ‘easy’ cars, 0.167312 % for ‘moderate’ 

cars, and 0.293998 % for ‘hard’ cars when using the 3D detection benchmark. 

This is because the three-time-iterated Point-GNN model has trained with the 
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highest iteration number, which results in a deeper neural network. Training 

difficulty occurs, where the accuracy is saturated, followed by degradation as 

the number of layers in the neural network increases. The Point-GNN has 

successfully determined a compelling set of state’s values that optimize the 

object localization at the second iteration. Therefore, the third iteration of 

Point-GNN produces noise to the vertices’ state by creating an identity 

function from the ReLU non-linearity activation function (He, et al., 2015). 

This problem requires further improvement, such as adding a residual learning 

layer to the third Point-GNN iteration to skip over the activation and improve 

the deeper neural network’s quality (He, et al., 2015). 

 

4.3.2 Inter-Approach Comparison 

The Point-GNN’s result was submitted to KITTI for general evaluation, and 

they use a recall position of 40. The AP predicted for three-time-iterated Point-

GNN’s result using the 3D detection benchmark is 88.33 % for ‘easy’ cars, 

79.47 % for ‘moderate’ cars, and 72.29 % for ‘hard’ cars. Compared to the 

result in Table 4.3, which is also tested with the 3D detection benchmark, the 

AP predicted by KITTI is higher. This is because the increase in the number of 

recall positions will increase the AP predicted. KITTI has claimed that the use 

of 40 recall positions during the evaluation will produce a more fair 

comparison among the approaches. Therefore, many approaches have 

submitted their results to KITTI for general evaluation, including all 

approaches discussed in chapter two. Table 4.5 shows the 3D object 

localization results of various approaches on the KITTI test 3D detection 

benchmark. 

 

Table 4.5: Comparative 3D Object Localization Results of Various 

Approaches on the KITTI Test 3D Detection Benchmark, with an IoU 

Threshold of 0.7 for 3D Bounding Box (Guo, et al., 2020). 

Approaches Modality 
Average Precision for Cars 

Easy (%) Moderate (%) Hard (%) 

F-PointNet LiDAR, Image 82.19 69.79 60.59 

F-ConvNet LiDAR, Image 87.36 76.39 66.69 
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MV3D LiDAR, Image 74.97 63.63 54.00 

ContFuse LiDAR, Image 83.68 68.78 61.67 

PointRCNN LiDAR 86.96 75.64 70.70 

PointRGCN LiDAR 85.97 75.73 70.60 

PIXOR LiDAR - - - 

BirdNet LiDAR 13.53 9.47 8.49 

Vote3Deep LiDAR - - - 

VoxelNet LiDAR 77.47 65.11 57.73 

3DSSD LiDAR 88.36 79.57 74.55 

Point-GNN LiDAR 88.33 79.47 72.29 

 

 The results show that the AP predicted using the 3D detection 

benchmark is lower than when using the BEV detection benchmark, as 

discussed above. When comparing Table 4.5 with Table 2.1, where Table 2.1 

consists of the 3D object localization results of various approaches on the BEV 

detection benchmark, the AP’s ranking has changed. PointRCNN achieves the 

highest AP for ‘easy’ cars among all approaches when using the BEV 

detection benchmark, but it ranked four among the twelve approaches when 

using the 3D detection benchmark. This could be due to the preference of the 

input modal’s form. For instance, the AP predicted by BirdNet’s result drops 

significantly when changing from the BEV detection benchmark to 3D 

detection, where the BirdNet’s model is explicitly designed for BEV point 

cloud input. PointRCNN segments the BEV point cloud more efficiently 

compared to the raw point cloud, where the absence of occlusion factor allows 

segmenting of near-perfect points for high-quality proposals generation and 

bounding box refinement. As discussed in chapter two, the performance of 

PointRCNN depends on the points segmented in the first stage. 

Nevertheless, the 3D detection benchmark is more general than the 

BEV detection benchmark to be evaluated and discussed, where it reflects the 

actual situation in the scene. Point-GNN does prefer using the 3D detection 

benchmark, although the AP predicted using the BEV detection benchmark is 

higher. Point-GNN ranked second among the twelve approaches, and the AP 

predicted is slightly lesser than the 3DSSD approach. The AP difference for
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Point-GNN and 3DSSD is 0.03 % for ‘easy’ cars, 0.10 % for ‘moderate’ cars, 

and 2.26 % for ‘hard’ cars when using the 3D detection benchmark. Both 

3DSSD and Point-GNN utilize the preservation of the point cloud’s sparsity to 

maintain its geometrical features during processing. This reduces the data loss 

that occurs in many feature engineering, whereby the data is being transformed 

into other originality-altered representations. Although 3DSSD surpasses 

Point-GNN for the AP prediction, Point-GNN has the highest AP predicted 

when iterated twice, while the result submitted to KITTI is the three-time-

iterated Point-GNN’s result. Therefore, Point-GNN’s actual performance is 

more excellent than 3DSSD when localizing ‘easy’ and ‘moderate’ cars due to 

slight AP difference. However, Point-GNN might not be as reliable as 3DSSD 

when localizing ‘hard’ cars, given that the significant AP difference between 

the two approaches of 2.29 %. This may be due to 3DSSD performs better in 

feature abstraction than Point-GNN for the lower number of available points. 

3DSSD utilizes two furthest point sampling layers to sample the points and is 

capable of sampling points without introducing data loss. 

 

4.4 Summary 

The KITTI dataset that consists of the velodyne point cloud, image, label, and 

calibration files are obtained. The KITTI dataset is used as the input to the 

Point-GNN algorithm. Point-GNN has outputted numerical and graphical 

results, displaying the X, Y, and Z coordinates of the localized object as well 

as its three primary dimensions. The Point-GNN algorithm has been modified 

to include the points and objects behind the camera, which causes the result 

produced more comprehensive for the scene. Comparison and evaluation for 

intra and inter-approach have been conducted. Point-GNN performs the best 

when the model is iterated twice. Besides, Point-GNN surpasses most of the 

3D object localization approaches when using the 3D detection benchmark, 

but its AP predicted for ‘hard’ cars is lower than the 3DSSD approach. 

 



65 

 

CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The extensive and comprehensive KITTI dataset consists of 7481 training 

samples and 7518 testing samples, which are costly if the dataset is 

constructed individually. It is identified and used to generate the results and 

used for intra and inter-approach comparison. Besides, twelve 3D object 

localization approaches are deeply reviewed and compared to select the best 

among them. Point-GNN is a distinctive 3D object localization approach and 

is selected due to its high AP result and its simplicity in the architecture design. 

It preserves the point cloud’s sparsity and takes advantage of the natural 

geometrical information of the points. Therefore, Point-GNN can accurately 

localize the objects in the point cloud and obtain the objects’ three primary 

dimensions. Point-GNN is further modified to include the computation for the 

rear point cloud to perform a comprehensive 3D object localization. Point-

GNN performs the best when the model is iterated twice, which the AP 

predicted for the model is the highest among all iteration numbers, with the 

value of  88.336563 % for ‘easy’ cars, 78.510040 % for ‘moderate’ cars, and 

77.671188 % for ‘hard’ cars when using the 3D detection benchmark. Apart 

from that, Point-GNN outperforms most of the other literary works, where it 

achieves state-of-the-art among the approaches along with 3DSSD. Therefore, 

all objectives are achieved. 

 

5.2 Recommendations for Future Work 

This project can be improved in many ways due to the project’s limitation. 

Due to the insufficiently powerful computer available, Point-GNN cannot 

output the graphical result using the three-time-iterated Point-GNN’s model. 

Currently, Point-GNN can only display the graphical result for ‘easy’ cars 

detection, and the numerical result itself cannot illustrate the robustness of 

Point-GNN in localizing highly occluded objects. Therefore, enhancing the 

specification of the computer used to execute Point-GNN is necessary, where 
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at least the enhanced specifications can meet the minimum requirement to 

execute Point-GNN at three iterations that are anticipated at 20 GB of RAM 

and 60 FPS on-screen graphic display. By doing so, Point-GNN can display 

the ‘hard’ class occluded objects being localized by 3D bounding boxes in the 

point cloud. 

Next, Point-GNN is only trained with the front point cloud due to the 

absence of label for objects in the rear point cloud. This reduces the 

effectiveness of Point-GNN in localizing the objects behind the camera. 

Another extensive and comprehensive dataset should be obtained, which 

consists of the label for all objects in the point cloud. Therefore, Point-GNN 

can be trained with the new dataset to include objects in the rear point cloud 

during the training process to effectively localize all objects in the point cloud 

regardless of the object’s position during inferencing. This is used to develop a 

robust 3D object localization approach that localizes objects in all directions.  

Besides, Point-GNN’s third iteration does not improve the AP 

compared to the two-time-iterated Point-GNN’s model. This is because of the 

noise introduced into the vertices’ state during the third iteration as a result of 

a very deep neural network. Hence, a residual learning layer should be added 

to the third Point-GNN iteration to skip over the ReLU activation during 

training, as discussed in chapter 4. There will be a branch from the two-time-

iterated model to the third iteration output and forms an identity mapping. This 

will tell the training error at the third iteration should not be greater than the 

two-time-iterated model. Adding this layer will improve the deeper neural 

network’s quality, and the model can be trained with the same iterative method, 

stochastic gradient descent (He, et al., 2015). Figure 5.1 shows the residual 

learning’s building block. 

 

 

Figure 5.1: Residual Learning’s Building Block (He, et al., 2015). 
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APPENDICES 

 

APPENDIX A: Graphs 

 

 

 

 

 

 

 

 

 

 

 

GraphA-1: AP Predicted using the 3D Detection Benchmark for the Three-

time-iterated Point-GNN. 

 

 

 

 

 

 

 

 

 

 

 

GraphA-2: AP Predicted using the BEV Detection Benchmark for the Three-

time-iterated Point-GNN. 
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GraphA-3: AP Predicted for Two-time-iterated Point-GNN using the 3D 

Detection Benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 

 

GraphA-4: AP Predicted for One-time-iterated Point-GNN using the 3D 

Detection Benchmark. 
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GraphA-5: AP Predicted for Non-iterated Point-GNN using the 3D Detection 

Benchmark. 
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APPENDIX B: Tables 

 

TableB-1: Comparative 3D Object Localization Results of Various 

Approaches on the KITTI Test BEV Detection Benchmark, with an IoU 

Threshold of 0.7 for 3D Bounding Box (Guo, et al., 2020). 

Approaches Modality 
Average Precision for Cars 

Easy (%) Moderate (%) Hard (%) 

F-PointNet LiDAR, Image 91.17 84.67 74.77 

F-ConvNet LiDAR, Image 91.51 85.84 76.11 

MV3D LiDAR, Image 86.62 78.93 69.80 

ContFuse LiDAR, Image 94.07 85.35 75.88 

PointRCNN LiDAR 92.13 87.39 82.72 

PointRGCN LiDAR 91.63 87.49 80.73 

PIXOR LiDAR 83.97 80.01 74.31 

BirdNet LiDAR 76.88 51.51 50.27 

Vote3Deep LiDAR - - - 

VoxelNet LiDAR 89.35 79.26 77.39 

3DSSD LiDAR 92.66 89.02 85.86 

Point-GNN LiDAR 93.11 89.17 83.90 
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TableB-2: Gantt Chart for Project Part I. 

 

 

 

 

 

 

 

No. 
Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

M1 Project planning  ✔  ✔             

M2 Literature review   ✔  ✔  ✔  ✔  ✔  ✔  ✔  ✔      

M3 Research methodology    ✔  ✔  ✔  ✔  ✔  ✔  ✔   ✔   ✔   ✔   

M4 Report writing & oral presentation          ✔   ✔   ✔   ✔   ✔   ✔ 

Activities 
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TableB-3: Gantt Chart for Project Part II. 

 

No. Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

M1 Execution of Point-GNN’s code  ✔  ✔  ✔  ✔   ✔          

M2 Research methodology   ✔  ✔  ✔  ✔  ✔  ✔  ✔  ✔   ✔     

M3 Model development    ✔  ✔  ✔  ✔  ✔  ✔  ✔   ✔   ✔   ✔   

M4 Result and discussion        ✔   ✔   ✔   ✔   ✔   

M5 Poster preparation          ✔   ✔   ✔   ✔   

M6 Report writing & oral presentation        ✔  ✔  ✔   ✔   ✔   ✔   ✔   ✔ 

Activities 
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TableB-4: Comparison Between Specifications of the Student’s Computer and 

the Research Server. 

 Student’s computer UTAR research server 

Operating system Windows Linux 

RAM (GB) 12 64 

GPU NVIDIA GeForce GTX 1050 NVIDIA GP104GL 

On-screen (FPS) 60.0 13.0 

 

TableB-5: Numerical Result for the Testing Sample 000001. 

Object class Car (1) Car (2) 

Truncation -1 -1 

Occlusion -1 -1 

Alpha 0 0 

Clip_Xmin 141.20734621538205  36.41744711056066  

Clip_Ymin 176.2229789093736 174.03262110345074 

Clip_Xmax 351.68137221248566 232.33337647692284 

Clip_Ymax 243.90982579877945 289.8086621292917 

Height (m) 1.5215358 1.5745287 

Width (m) 1.6863366 1.6601882 

Length (m) 4.283223 4.113779 

X3D -8.645287 -7.8946705 

Y3D 1.6074694 1.5971005 

Z3D 17.363804 11.835676 

Yaw 0.09412821 0.72221255 

Score 82.2164862876902 151.07463956706272 
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TableB-6: Combined Numerical Result for the Testing Sample 000001. 

Object class Car (1) Car (2) Car (3) 

Truncation -1 -1 -1 

Occlusion -1 -1 -1 

Alpha 0 0 0 

Clip_Xmin 141.2073462 640.9306218 36.4174471 

Clip_Ymin 176.2229789 118.7164306 174.0326211 

Clip_Xmax 351.6813722 711.8680651 232.3333765 

Clip_Ymax 243.9098258 166.1110190 289.8086621 

Height 1.5215358 1.5051302 1.5745287 

Width 1.6863366 1.6225216 1.6601882 

Length 4.283223 3.9107132 4.113779 

X3D -8.645287 -2.2776604 -7.8946705 

Y3D 1.6074694 1.7630962 1.5971005 

Z3D 17.363804 -25.551062 11.835676 

Yaw 0.09412821 1.4244215 0.72221255 

Score 82.2164863 53.6548599 151.0746396 

 

TableB-7: AP Predicted for Point-GNN using the 3D Detection Benchmark 

with Different Iteration Numbers. 

Number of 

Iteration 

Average Precision (3D Detection Benchmark) 

Easy (%) Moderate (%) Hard (%) 

0 73.896561 64.421539 59.909767 

1 88.003227 77.887131 76.144211 

2 88.336563 78.510040 77.671188 

3 87.890259 78.342728 77.377190 
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TableB-8: AP Predicted for Point-GNN using the BEV Detection Benchmark 

with Different Iteration Numbers. 

Number of 

Iteration 

Average Precision (BEV Detection Benchmark) 

Easy (%) Moderate (%) Hard (%) 

0 87.241478 77.389450 75.839111 

1 89.833923 87.672905 86.303192 

2 89.995453 88.374153 87.218575 

3 89.823723 88.308357 87.155525 

 

TableB-9: Comparative 3D Object Localization Results of Various 

Approaches on the KITTI Test 3D Detection Benchmark, with an IoU 

Threshold of 0.7 for 3D Bounding Box (Guo, et al., 2020). 

Approaches Modality 
Average Precision for Cars 

Easy (%) Moderate (%) Hard (%) 

F-PointNet LiDAR, Image 82.19 69.79 60.59 

F-ConvNet LiDAR, Image 87.36 76.39 66.69 

MV3D LiDAR, Image 74.97 63.63 54.00 

ContFuse LiDAR, Image 83.68 68.78 61.67 

PointRCNN LiDAR 86.96 75.64 70.70 

PointRGCN LiDAR 85.97 75.73 70.60 

PIXOR LiDAR - - - 

BirdNet LiDAR 13.53 9.47 8.49 

Vote3Deep LiDAR - - - 

VoxelNet LiDAR 77.47 65.11 57.73 

3DSSD LiDAR 88.36 79.57 74.55 

Point-GNN LiDAR 88.33 79.47 72.29 

 

 


