

OBJECT LOCALIZATION IN

3D POINT CLOUD

CHIN WAI LOK

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Mechatronics Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

April 2021

i

DECLARATION

I hereby declare that this project report is based on my original work except

for citations and quotations which have been duly acknowledged. I also

declare that it has not been previously and concurrently submitted for any

other degree or award at UTAR or other institutions.

Signature :

Name : CHIN WAI LOK

ID No. : 1602556

Date : 3 May 2021

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled OBJECT LOCALIZATION IN 3D

POINT CLOUD was prepared by CHIN WAI LOK has met the required

standard for submission in partial fulfilment of the requirements for the award

of Bachelor of Engineering (Honours) Mechatronics Engineering at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr. Ng Oon-Ee

Date :

3 May 2021

iii

The copyright of this report belongs to the author under the terms of

the copyright Act 1987 as qualified by Intellectual Property Policy of

Universiti Tunku Abdul Rahman. Due acknowledgement shall always be made

of the use of any material contained in, or derived from, this report.

© 2021, Chin Wai Lok. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful

completion of this project. I would like to express my gratitude to my research

supervisor, Dr. Ng Oon-Ee for his invaluable advice, guidance and his

enormous patience throughout the development of the research. In addition, I

would also like to express my gratitude to my loving parents and friends who

had helped and given me encouragement.

v

ABSTRACT

Object localization in point clouds can help search for the target objects in the

extensive 3D search space. It allows the post-operation of object recognition to

operate on the objects more efficiently. There are many published works for

object localization in 3D point clouds. Each approach has a unique architecture

in its work. Thus, the frameworks used are not standardized like with 2D

object localization frameworks. This work focuses on developing a method to

locate objects in a point cloud and measure the objects’ three primary

dimensions accurately. The intra and inter-comparison and evaluation of the

selected work are conducted to discuss its significance in 3D object

localization. Comparison and evaluation of method(s) are standardized by

average precision outputted using the same evaluation metrics, the KITTI

offline evaluation dataset. Point-GNN is selected as the approach for 3D object

localization. It works best when iterated twice in the edges and vertices’

feature aggregation. Besides, Point-GNN scored second among the twelve 3D

object localization approaches discussed. It achieves the AP predicted on the

KITTI test 3D detection benchmark of 88.33 % for ‘easy’ car, 79.47 % for

‘moderate’ cars, and 72.29 % for ‘hard’ cars.

vi

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ACKNOWLEDGEMENTS iv

ABSTRACT v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction to Object Localization in Point

Cloud 1

1.2 Importance of the Study 2

1.3 Problem Statement 3

1.4 Aim and Objectives 5

1.5 Scope and Limitation of the Study 6

1.6 Contribution of the Study 6

1.7 Outline of the Report 6

2 LITERATURE REVIEW 8

2.1 Region Proposal-based Approaches 10

2.1.1 Frustum-based Approaches 10

2.1.2 Multi-view-based Approaches 13

2.1.3 Segmentation-based Approaches 16

2.1.4 Summary 19

2.2 Single-shot Approaches 21

2.2.1 BEV-based Approaches 21

2.2.2 Discretization-based Approaches 23

2.2.3 Point-based Approaches 26

vii

2.2.4 Graph-based Approaches 27

2.2.5 Summary 28

2.3 Overall Summary 29

3 METHODOLOGY AND WORK PLAN 31

3.1 Introduction 31

3.2 Environment Setup 31

3.2.1 Python Programming 31

3.2.2 TensorFlow Library 31

3.2.3 The KITTI Dataset 32

3.2.4 Executing Terminal and Version of Libraries

 33

3.3 Point-GNN Development 34

3.3.1 Graph Construction 34

3.3.2 Auto Registration for Offset Coordinates 35

3.3.3 Bounding Boxes Prediction 36

3.3.4 Bounding Boxes Regression 36

3.4 Adjustment Made to Point-GNN 38

3.5 Performing Intra and Inter Approach Comparisons 39

3.6 Planning and Managing of Project Activities 40

3.6.1 Project Part I 40

3.6.2 Project Part II 43

3.7 Problems Encountered and Solutions 46

3.7.1 The Computational Expense of Executing

Point-GNN 46

3.7.2 Shifting Primary Programming Environment

to Linux 47

3.7.3 The Inability of Research Server to Visualize

Point-GNN Results 48

3.7.4 Missing System Package 49

3.8 Summary 49

4 RESULTS AND DISCUSSION 51

4.1 Introduction 51

4.2 Point-GNN 51

4.2.1 Adjustment Made to Point-GNN 54

viii

4.3 Comparison and Evaluation 57

4.3.1 Intra-Approach Comparison 58

4.3.2 Inter-Approach Comparison 62

4.4 Summary 64

5 CONCLUSIONS AND RECOMMENDATIONS 65

5.1 Conclusions 65

5.2 Recommendations for Future Work 65

REFERENCES 67

APPENDICES 70

ix

LIST OF TABLES

Table Page

2.1 Comparative 3D Object Localization Results of Various

Approaches on the KITTI Test BEV Detection

Benchmark, with an IoU Threshold of 0.7 for 3D

Bounding Box (Guo, et al., 2020). 30

3.1 Gantt Chart for Project Part I. 42

3.2 Gantt Chart for Project Part II. 45

3.3 Comparison Between Specifications of the Student’s

Computer and the Research Server. 47

4.1 Numerical Result for the Testing Sample 000001. 54

4.2 Combined Numerical Result for the Testing Sample

000001. 55

4.3 AP Predicted for Point-GNN using the 3D Detection

Benchmark with Different Iteration Numbers. 60

4.4 AP Predicted for Point-GNN using the BEV Detection

Benchmark with Different Iteration Numbers. 60

4.5 Comparative 3D Object Localization Results of Various

Approaches on the KITTI Test 3D Detection Benchmark,

with an IoU Threshold of 0.7 for 3D Bounding Box (Guo,

et al., 2020). 62

x

LIST OF FIGURES

Figure Page

1.1 LiDAR Point Cloud with Cars (Geiger, et al., 2013). 3

2.1 F-PointNet’s Architecture (Qi, et al., 2018). 11

2.2 F-ConvNet’s Architecture (Wang and Jia, 2019). 12

2.3 MV3D’s Architecture (Chen, et al., 2017). 14

2.4 ContFuse’s Architecture (Liang, et al., 2018). 16

2.5 PointRCNN’s Architecture (Shi, Wang and Li, 2019). 18

2.6 PointRGCN’s Architecture (Zarzar, Giancola and

Ghanem, 2019). 19

2.7 PIXOR’s Architecture (Yang, Lup and Urtasun, 2018). 22

2.8 BirdNet’s Architecture (Beltran, et al., 2018). 23

2.9 Vote3Deep’s Architecture (Engelcke, et al., 2017). 24

2.10 VoxelNet’s Architecture (Zhou and Tuzel, 2017). 25

2.11 3DSSD’s Architecture (Yang, et al., 2020). 26

2.12 Point-GNN’s Architecture (Shi and Rajkumar, 2020). 28

3.1 Recommended Dataset File Structure (Shi and

Rajkumar, 2020). 33

3.2 Flowchart of Point-GNN Inferencing Algorithm. 38

4.1 Graphical Result for the Testing Sample 000001. 52

4.2 Point Cloud of the Testing Sample 000001 Viewed from

the Top. 54

4.3 (a) Front Point Cloud of the Testing Sample 000001 and

(b) Rear Point Cloud of the Testing Sample 000001 with

the Labelled Unlocalized Object. 56, 57

4.4 (a) AP Predicted using the 3D Detection Benchmark for

the Three-time-iterated Point-GNN and (b) AP

Predicted using the BEV Detection Benchmark for the

Three-time-iterated Point-GNN. 59

4.5 (a) AP Predicted for Two-time-iterated Point-GNN, (b)

AP Predicted for One-time-iterated Point-GNN, and (c)

AP Predicted for Non-iterated Point-GNN. 60

xi

5.1 Residual Learning’s Building Block (He, et al., 2015). 66

xii

LIST OF SYMBOLS / ABBREVIATIONS

2D two-dimensional

3D three-dimensional

3DSSD point-level 3D single-stage object localizer

4D four-dimensional

AP average precision

API application programming interface

BEV bird’s eye view

BirdNet 3D object localization framework from BEV LiDAR

C-GCN contextual graph convolutional network

CNN convolutional neural network

ContFuse deep continuous fusion framework

D-FPS 3D Euclidean distance-based furthest point sampling

F-ConvNet frustum-based convolutional neural network

F-FPS feature distance-based furthest point sampling

F-PointNets frustum-based PointNets

FCN fully convolutional network

FPS frames per second

GB gigabytes

GCN graph convolutional network

GNN graph neural network

IoU intersection-over-union

LiDAR light detection and ranging

MLP multilayer perceptron

MV3D multi-view 3D object localization network

NMS non-maximum suppression

PIXOR oriented 3D object localization from pixel-level neural

 network predictions

Point-GNN graph neural network for 3D object localization in point

 clouds

PointNet deep learning on point sets network

PointRCNN region-based convolutional neural network for 3D object

 localization

xiii

PointRGCN region-based graph convolutional network for 3D object

 localization

R-GCN residual graph convolutional network

RAM random access memory

ReLU rectified linear unit

RGB red, green, and blue

RGB-D red, green, and blue with depth

RoI region of interest

RPN region proposal network

UV ultraviolet

VFE voxel feature encoding

Vote3Deep 3D object localization with a feature-centric voting scheme

VoxelNet voxel-based object localization framework

xiv

LIST OF APPENDICES

APPENDIX A: Graphs 70

APPENDIX B: Tables 73

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction to Object Localization in Point Cloud

The point cloud is a type of representation of objects and scenes in three-

dimensional (3D) space. There are many other representations to describe

objects and scenes, including multi-view red, green, and blue with depth

(RGB-D) images, volumetric, polygonal mesh, and primitive-based computer-

aided design models. Along with point clouds, these representations are

categorized into two classes: rasterized form and geometric form, which are

regular and irregular in terms of the data’s nature, respectively. Point cloud

belongs to the geometric form of 3D data (Engelcke, et al., 2017). A point

cloud is formed by a compilation of points in 3D space, where each point

allocated in the space represents the X, Y, and Z geometric coordinates of the

point (FME Community, 2020). Therefore, a point cloud can represent an

object or a scene, where it can be built up from a collection of points. Many

single spatial measurements are collated into a dataset to represent the object

or the scene as a whole (Gray, n.d.). The dimensional complexity of the point

cloud can be increased by adding new features to the points, such as colour

information. Point clouds are the raw 3D data obtained from the 3D laser

scanners and light detection and ranging (LiDAR) technology and techniques.

LiDAR is usually implemented to obtain the data from a scene because it

measures the distance between the sensor and the target object using

ultraviolet (UV) rays (Thomson, 2019). It computes the distance by measuring

the time lapse between emitting and receiving back the same UV pulse (Singh,

2018). For this reason, LiDAR is widely implemented in various emerging

technologies to utilize its distance measurement mechanism, including

autonomous vehicles and inspection at the building’s surface.

 Object localization is one of the two components in object detection,

where it usually complements object recognition to localize and recognize the

objects in space simultaneously (Brownlee, 2019). Object localization is used

to locate the objects in the space accurately, wherein the object’s coordinates

are being determined. Object recognition, in contrast, is used to recognize the

2

located objects, where the label of the object is indicated. Object localization is

the first step in the object detection process. It involves searching for an

extensive search space to address the objects’ profiles.

Object localization is achieved by determining bounding boxes that lie

around the target objects to inform the locations and coordinates of the objects

in space through visualization or integers (Brownlee, 2019). Bounding boxes

regression is a method to describe the target object’s dimensions. The lines of

a two-dimensional (2D) bounding box illustrate an object’s width and height

in 2D space. This is where the measurement of the located object’s primary

dimensions is conducted. Object localization is usually performed with deep

learning, where the features within the space are deeply abstracted (Zhao, et al.,

2019). Feature abstraction is a proportion in the dimensionality reduction

process that extracts only the essential features and neglect the less important

ones without introducing much information loss (Alkabawi, Hilal and Basir,

2017).

 The difference between object localization in 2D and 3D space is that

the information density is higher in a 2D image while having low data volume.

All information in the image is encoded into a frame, and each neighbouring

pixel is meaningful for feature abstraction. Whereas in 3D space, the points are

sparsely located. There exist regions with no points presence due to the

absence of objects in that region. The empty regions are constituted as a part

of the 3D data. It will be accounted as computational waste because there will

be no output generated from these regions (Engelcke, et al., 2017). Since the

objects in point clouds have 3D coordinates, the 2D bounding boxes required

to concatenate an additional dimension of length to become 3D bounding

boxes to cover and locate the objects in 3D space.

1.2 Importance of the Study

The study of object localization in 3D space, like point clouds, over 2D images

is significant for several reasons. Point clouds have richer information context

than 2D images to represent scenes and objects. Besides, occlusion is the

primary drawback in a 2D image. It is computationally inefficient to

synthesize the occluded objects when they can be found originally in a 3D

point cloud. Furthermore, point clouds contain depth information that could

3

retain the object’s original appearance in the actual situation of a 3D space.

Object localization in point clouds can help search for the target objects in the

extensive 3D search space. It allows the post-operation of object recognition to

operate on the objects more efficiently.

There are many published works for object localization in 3D point

clouds. Each approach has a unique architecture in its work. Thus, the

frameworks used are not standardized like with 2D object localization

frameworks. PointNet is the first significant point cloud processing work

proposed by Qi, et al. (2017). Its architecture was widely implemented by

many later works to develop new methods for object localization. Compared to

the current state-of-the-art, PointNet’s result in terms of the accuracy of

localizing objects has been overtaken by newly emerged approaches. This

work focuses on developing a method to locate objects in a point cloud and

measure the objects’ three primary dimensions accurately. In addition, intra

and inter-comparison and evaluations of the selected work will be conducted

to discuss its significance in 3D object localization.

1.3 Problem Statement

Even though point clouds are rich in information to represent objects and

scenes, the points’ overall density is generally low due to the smaller number

of objects in certain regions in the 3D space. This phenomenon is significant in

the data produced from the LiDAR sensor. LiDAR sensor produces sparse

point clouds and can be occluded by objects as the 3D information behind a

light-reflecting or non-reflective object cannot be detected, where the LiDAR

UV lights cannot reach the target objects. This will cause computational

inefficiency to perform object localization in the sparse point cloud. Besides, a

point cloud is costly to an extent to be produced, and it is essential to acquire a

3D point cloud dataset for use in this project. Figure 1.1 shows a scene

obtained from the KITTI dataset that is captured with a LiDAR sensor.

Figure 1.1: LiDAR Point Cloud with Cars (Geiger, et al., 2013).

4

Object localization is already implemented in the analysis of 2D

images. It has reached maturity, where the architecture of the convolutional

neural network (CNN) is leading the field of 2D object localization. CNN has

a robust operation of detecting edges and sharp corners of objects in a 2D

image. The first few convolutional layers detect the low-level features, and

high-level features are detected by the last few layers. However, things

changed when the dimension of the input data increases. The additional

dimension increases the complexity in processing those high dimension data.

The increased dimension should be treated as additional information to the

subject instead of being ignored.

Object localization in 3D space is not as mature as in 2D images. This

is because processing and using 3D space, such as point cloud, is

computationally expensive. The increased dimensional complexity renders a

different architecture design needed to handle the 3D point cloud data. Older

techniques of CNN cannot be applied directly to point clouds. This is because

the feature abstraction techniques have their dimensional preference to work

on the data. Some feature engineerings should be performed earlier to change

the structure and the characteristics of the point cloud before feature

abstraction.

Apart from object localization, the measurement of the target object’s

primary dimensions is also essential for post-processing. These dimensions

will help create a volumetric object where the object’s size and volume can be

estimated, rather than referring to the target object as a single point in 3D

space. The measurement of the object’s dimensions can be done by calculating

the bounding box’s dimensions. The bounding box is surrounding the target

object securely and represents the object’s size closely.

Deep learning on point sets network (PointNet) and PointNet++, both

proposed by Qi, et al. (2017) are the basic deep learning techniques to process

point clouds. It contains multiple functional architectures that can be

implemented in future architecture design for feature abstraction from the

point cloud. These two approaches can be applied in various point cloud

applications, such as object localization, object classification, and point

segmentation. The continuous grouping of points in the hierarchical

convolutional layers from PointNet++ influences many object localization

5

frameworks proposed later to abstract the local features to detect fine-grained

patterns and produce generalization to complex scenes. However, PointNet’s

architecture is rarely implemented by the current state-of-the-art, where its

accuracy of localizing objects has been overtaken by newly emerged

approaches. This causes the new approaches to have a unique architecture in

their work. Therefore, the frameworks used are not standardized like with 2D

object localization frameworks.

1.4 Aim and Objectives

This project aims to explore the methods and approaches for localizing objects

and measuring their dimensions within 3D point clouds. The achievement of

the aim will determine the best 3D object localization approach that localizes

objects accurately. The method explored should be able to perform object

localization in point clouds accurately and reliably. Hence, the following

objectives need to be achieved to assist in achieving this aim:

1) Identify existing rich scenes of a 3D point cloud dataset for use in this

project.

2) Develop a method for matching an object, either 2D or 3D, to objects

within the point cloud.

3) Measure the primary dimensions of the located object.

4) Perform intra and inter-comparison and evaluations of the approach.

The first objective is to obtain a rich point cloud dataset with sufficient

difficulty representing a scene but not an object. This objective allows object

localization to operate on a scene rather than a fully segmented object. Next,

the second and the third objective is to develop an object localization method

with dimensions measuring capability. Many pieces of works of literature on

related technology will be reviewed to study the existing frameworks. This

will help develop the method in this project, where the feature engineering in

the literature helps abstract most of the essential features in the scene to

perform object localization. After that, the approach is compared internally

and externally using a general standard.

6

1.5 Scope and Limitation of the Study

This project’s scope focuses on the software component, whereas the hardware

part is omitted and not part of the project’s consideration, including the

computation speed. Besides, no user interface is required to be designed in this

project. In this study, object recognition is also ignored to focus on the object

localization with the target object’s coordinates and the bounding box

predicted. By following the existing frameworks, the KITTI test dataset is

used as the input data for this project and the evaluation metrics for the

frameworks. This project was carried out for a year and concluded by this final

report.

1.6 Contribution of the Study

This project outlines the existing 3D object localization frameworks and

provides insights into each of them. Each framework is evaluated and

discussed based on its accuracy in localizing the object and measuring the

dimension, as well as its simplicity in delivering the outputs. The best

framework is selected, and it was modified to improve the results further.

1.7 Outline of the Report

This project is further separated into several parts: literature review, research

methodology, results and discussion, and recommendation. There are five

chapters included in this final report. The first chapter: the introduction,

discusses the relationship between object localization and point clouds and

their significance. Problems faced by the current technologies are identified,

and aim and objectives are stated to solve the problem. The introduction ends

with an overview of the project. The second chapter then reviews multiple

works of literature of different approaches to object localization in point

clouds, including region proposal-based and single-shot approaches. This is to

provide insights into current object localization technologies in developing a

powerful object localization method. The third chapter then describes the

project’s methodology, where the procedures for achieving the objectives are

stated, as well as the planning and time allocation of this project over a year.

Problems encountered and their solutions during the project’s execution are

also included. The fourth chapter is the results and discussion of this project.

7

The results are presented and explained in-depth with supporting statements.

Lastly, the fifth chapter will conclude this report and the project with the

recommendations suggested for future work.

8

CHAPTER 2

2 LITERATURE REVIEW

There have been many 3D object detection approaches introduced, where each

of them included object localization as part of the goal. Most of the approaches

are proposed for implementation in autonomous vehicle applications, the

current most popular technological advancement. Most of the approaches

implement deep learning, specifically deep neural networks, to extract the

features through complex feature abstraction architecture. Object localization

is separated into two types of approaches, where the behaviour of the point

cloud processing to regress 3D bounding boxes are different.

Region proposal-based approaches propose several regions in the point

cloud with the potential of having interesting objects to be detected.

Calculations of a significant number of 3D bounding boxes as proposals are

being done in the first stage. After that, features are extracted from the region

to refine the proposals’ locations before proceeding to the final 3D bounding

box refinement. This approach branches more into three specific main classes

depending on the working principle: frustum-based approaches, multi-view-

based approaches, and segmentation-based approaches (Guo, et al., 2020).

These approaches generally have fully integrated computation. It increases the

obsessive computation from conducting both proposal generation and

bounding box regression, where the computational cost increases further with

the number of proposals generated (Hyams and Malowany, 2020).

 Another class of approaches for object localization is the single-shot

approach. Instead of generating multiple proposals in the first stage, single-

shot approaches directly jump to the later stage of object localization. 3D

bounding boxes regression is carried out by constructing a network that

regresses 3D bounding boxes without further refinement process. Since the

post-processing is eliminated, the computational load and cost are reduced.

Single-shot approaches are further separated into three main classes depending

on the form of input data: bird’s eye view (BEV) based approaches,

discretization-based approaches, point-based approaches, and graph-based

approaches (Guo, et al., 2020). Single-shot approaches are rapid processing

9

since the computational load relies on the number of anchors but not the

number of objects in 3D space. However, it loses part of the accuracy. Single-

shot approaches generally lack the refinement process for the object candidates.

It removes most of the background instances, and thus more inaccurate, false-

positive objects can be detected.

 The accuracy of the localized target object is evaluated by average

precision (AP). It integrates recall and precision, ranging between 0 and 1, as a

measure for ranked restoration results (Zhang and Zhang, 2009). The recall is

a measurement of the positive results obtained, while precision is the

measurement of the actual results obtained based on recall (Hui, 2018). A high

AP indicates most of the localized object is accurate compared to the ground

truth data. AP is obtained by the mean of precision scores, where the area

under the precision-recall curve is calculated. AP is a suitable measurement

parameter to evaluate a method for object localization, where it relates the

predicted bounding boxes with the ground truth labels.

 The dataset applied by the approaches consists of the KITTI test BEV

detection benchmark, and the AP result to be discussed is based on the easy

class for the cars’ category. The KITTI dataset consists of LiDAR point clouds

embedded with the feature of reflection intensity. The BEV detection

benchmark is preferred over the 3D object detection benchmark in the

literature works’ discussion because some approaches only utilize the BEV

form of input rather than a raw point cloud. BEV is a compact type of point

cloud representation. It is accomplished by transforming the raw point clouds

into the BEV form to render it the 2D characteristics and increases the point

cloud’s density. The AP predicted using the BEV detection benchmark does

scale on the AP predicted using the 3D object detection benchmark for every

difficulty for the same approach; hence, the BEV input’s results are relatable

with the results using raw 3D point cloud input. The threshold for intersection-

over-union (IoU) is set at 0.7 during the regression of 3D bounding boxes for

all approaches. IoU is the measure of area overlapped between ground truth

and prediction to classify the positive results as true or false. The IoU value

greater than the threshold will be classified as true positive (Hui, 2018).

10

2.1 Region Proposal-based Approaches

Two-stage object localization frameworks create multiple proposals to define

the regions which potentially contain the interesting object. The proposals

could be in the form of 3D bounding boxes that act as preliminary results of

object localization. The 3D bounding boxes are then refined to improve the

result of accuracy and precision.

2.1.1 Frustum-based Approaches

PointNet is one of the pioneering works of point cloud for 3D classification

and segmentation, proposed by Qi, et al. (2017) to resolve the irregularity of

point cloud in the processing technique. They proposed a unified architecture

that acquires raw point cloud as data for broad applications of classification,

part segmentation, and semantic segmentation. It transforms features through a

series of multilayer perceptron (MLP) layers and rectified linear unit (ReLU)

non-linearity, and finally aggregate point-level features by a max-pooling

operation. Later, Qi, et al. (2017) proposed an advanced version of PointNet,

PointNet++, to improve the previous version. PointNet++ aggregates both

global and local features, whereby it is accomplished by continuous sampling

and grouping of points between two PointNet’s feature aggregation layers. A

sampling and grouping operation plus a PointNet operation forms a set

abstraction layer. The abstraction layers are then applied by many object

localization frameworks afterwards. However, PointNet and PointNet++ are

unable to detect target objects and localize them.

To resolve the challenges of PointNet on how to efficiently propose

potential locations of interesting 3D objects in 3D space like point cloud, Qi,

et al. (2018) proposed frustum-based PointNets (F-PointNets), which PointNet

inspires. It leverages existing and matured 2D object detectors, CNN, to

generate 2D region proposals as candidates in the red, green, and blue (RGB)

images by classifying the content. Each of the 2D region proposals in the RGB

image is extruded from the centre of view to a 3D frustum. This is

accomplished by integrating the 2D region proposals with depth information

with the point cloud and form 3D frustum proposals. The 3D frustum

proposals that potentially contain the 3D target objects are extracted and

trimmed. After that, the points within the 3D frustum proposal are fed into two

11

variants of PointNet, namely 3D instance segmentation and amodal 3D box

estimation. 3D instance segmentation is used to acquire the object’s locations

in the point cloud with the given 2D image space and the relevant 3D frustum

structure. This predicts the probability for each point in the frustum belonged

to the object by binary classification. The segmented object point cloud is then

aligned by translation and light-weight regression of PointNet to predict the

object’s actual centre to match with the amodal box centre. Lastly, amodal 3D

box estimation will predict and locates bounding boxes for objects with the

segmented and aligned point cloud.

This approach is not a type of end-to-end learning to regress bounding

boxes, where it heavily relies on other functional refinement modules to

perform the tasks. Besides, the number of available foreground points in the

3D frustum is minimal, and false-positive points on 2D images could generate

false 3D frustum proposals, thus producing inaccurate results with low

precision. Since there are two refinements of the 3D frustum proposal network

in this approach, the computational cost increases. The extra load of 3D

instance segmentation is performed and requires several works to segment the

object. The result of this approach is favourable, where it achieves 91.17 % AP

for ‘easy’ cars when using the KITTI test BEV detection benchmark. Figure

2.1 shows the F-PointNet’s architecture.

Figure 2.1: F-PointNet’s Architecture (Qi, et al., 2018).

Frustum-based convolutional neural network (F-ConvNet) is another

approach of frustum-based object localization proposed by Wang and Jia

(2019) using frustum proposal generation architecture. Like F-PointNet, 2D

region proposals are generated from RGB image and map into the given depth

to produce proposals in 3D space. The 2D region proposals then extrude to

12

produce the 3D frustum proposals. Instead of one 3D frustum proposal

generated from a 2D region proposal, F-ConvNet generates an array of

frustum throughout the length of the frustum axis for each of the 2D region

proposals, where the frustum axis is perpendicular to the RGB image plane.

The 3D frustum proposals are produced by segmenting the parallel frustum

planes offset from the image plane throughout the frustum axis’s length with

similar spacing and strides. Then, one 3D frustum is produced from a couple

of parallel planes. Each of the 3D frustum proposals generated is then applied

with PointNet to group the local points within the frustum to extract the point-

level features to generate a frustum-level feature vector. PointNet groups the

points by feeding the points into an MLP series and performing max pooling

to aggregates the point features. The frustum-level features are transformed to

become a 2D feature space, and this will become suitable for a fully

convolutional network (FCN) to work on the frustum-level features. In the

FCN, the features are consecutively abstracted to reduce the feature map’s size

and eventually deconvoluted later to perform 3D bounding box regression.

Since more 3D frustum proposals are processed from one 2D region proposal,

the computational load is heavier than F-PointNet. However, the result shows

a minor improvement compared to F-PointNet, with 91.51 % for ‘easy’ cars’

AP when tested with the KITTI test BEV detection benchmark. Figure 2.2

shows the F-ConvNet’s architecture.

Figure 2.2: F-ConvNet’s Architecture (Wang and Jia, 2019).

13

 Both F-PointNet and F-ConvNet exploit the mature 2D detector in the

early stage to construct the backbone of the architecture. This brings up the

problem of heavily relying on the 2D detection’s performance, and it does not

take advantage of the rich 3D information in point clouds. 2D images have

lesser information describing the objects than 3D point clouds. A false 2D

region proposal generated at the beginning stage of the detection will carry

forward the error to the framework’s subsequent modules and produce

inaccurate results. These approaches generally score well among the 2D

image-based approaches detection but are not classified as 3D point cloud-

based.

2.1.2 Multi-view-based Approaches

Multi-view-based approaches exploit the highest number of input modalities

for processing among the 3D object localization techniques. Instead of taking

the RGB image or point cloud as the primary detector’s input, these

approaches fuse the features extracted from both RGB images and point

clouds to regress 3D bounding boxes. A multi-view 3D object localization

framework (MV3D) proposed by Chen, et al. (2017) functions as a sensory-

fusion network that takes multiple data modalities as input and leverages the

multimodal information to execute region-based feature fusion. The first

subnetwork, the 3D proposal network, takes advantage of the point cloud’s

regular-grid BEV representation as to the primary detector. It undergoes 2D

FCN, and the point cloud is being discretized into a 2D grid before performing

3D bounding boxes regression that generates 3D proposals. BEV is chosen

among other point cloud representations due to its conservation of physical

sizes of objects that do not vary much with the camera’s distance and are less

likely to be occupied by obstacles when viewed on top. The 3D proposals

generated are projected to each of the three views of BEV point cloud, front-

view point cloud, and RGB image after each of them being fed into FCN and

feature-abstracted from their respective unique representations. The projection

will concatenate the extra information of depth to other modalities for better

delivery of contextual information. After that, in the second subnetwork, the

region-based fusion network, a fusion of the combined proposals and extracted

features for each input modality is then conducted. The multiple views’

14

features are effectively fused and fed into a deep fusion network. It extracts the

features from each late fusion’s intermediate layer to perform feature

concatenation with an element-wise mean operation for its high flexibility

when integrated with drop-path training. The output feature of the region-

based fusion network is used to regress 3D bounding boxes.

Since the fusion of features of multiple views through a region of

interest (RoI) pooling occurs at a course level, it produces a significant loss of

resolution and geometric information during the quantization, and all of the

information directed into the region-based fusion network is depending on the

fused’s output. The resulting AP for ‘easy’ cars is only 86.62 % when using

the KITTI test BEV detection benchmark, which is considered low compared

with other approaches. Besides, the computational load is high, where each of

the input modalities has to be discretized into a 2D grid and feed into FCN

individually. A deep region-based fusion network also increases the

computational load, where the tasks are sequential and cannot be

accomplished in parallel computing. Thus, it requires improvement in

effectively fuse the different modalities and extract reliable input data

representations. Figure 2.3 shows the MV3D’s architecture.

Figure 2.3: MV3D’s Architecture (Chen, et al., 2017).

Therefore, Liang, et al. (2018) proposed a deep continuous fusion

framework (ContFuse) for multiple modality 3D object localization. Like

MV3D, ContFuse exploits both BEV point cloud and RGB image to predict

3D bounding boxes. Nevertheless, the way of ContFuse generates 3D

proposals is different. Instead of projecting proposals generated from the BEV

15

point cloud to other modalities, ContFuse projects proposals generated from

the RGB images into the BEV point cloud. This is because it is challenging to

acquire 3D detections from the projected 2D outputs. A convolutional

network extracts the features from the RGB image before projecting them to

the BEV point cloud. It is then fused with the convolutional layers of 3D based

detector. To increase the effectiveness, continuous convolution is applied to

extract features from the nearest relevant image for every point in the BEV

point cloud for every resolution, and bilinear interpolation is implemented to

create BEV feature vectors. The BEV feature vector has a higher density than

an ordinarily BEV point cloud, which resolves the drawbacks of the

discretized image’s feature loss. Continuous convolution allows connections

of multiple intermediate layers of resolutions on both image and BEV point

cloud streams and performs multi-scale fusion for multiple sensors. The output

detection produced is in BEV space, which is more reliable for 3D bounding

boxes regression. This is because the detection header is created from the

output BEV feature map instead of discrete image space and sparse point

cloud feature maps.

ContFuse has region-based fusion integrated into the proposal

projection network. It saves many computational loads from performing 3D

bounding box regression with the elimination of deep fusion layers. The

prediction accuracy is also increased and achieved 94.07 % AP for ‘easy’ cars

when using the KITTI test BEV detection benchmark. The geometric

relationship between multiple modalities is densely encoded during the

continuous convolution layers at different resolutions. However, the fusion of

data is still limited by LiDAR BEV’s sparsity, which is the native of the

representation, and producing smaller object recall when the object’s size

decreases. The number of positive results for small objects will be lesser.

Figure 2.4 shows the ContFuse’s architecture.

16

Figure 2.4: ContFuse’s Architecture (Liang, et al., 2018).

 The smaller object recall usually limits multi-view-based approaches.

The quality of the 3D proposals depends on the consistency of features

abstracted from the 2D FCN for each modal. It can be affected by the scene’s

complexity and highly occluded and crowded objects, where the information

might not be sufficient and consistent to generate proposals on them

confidently. This is because the noise presence could dominate the features in

the 2D RGB image.

2.1.3 Segmentation-based Approaches

These approaches exploit semantic segmentation mechanisms like 3D instance

segmentation on point cloud or 2D segmentation on image to remove most

background points, leaving essential foreground points in the data. These

essential points are the interest of object localization and are used to generate

superior proposals, which is better than ordinary proposals in terms of quality

and accuracy. The proposals are generated on the lower density points, where

the computational load can be reduced. Shi, Wang and Li (2019) proposed a

region-based convolutional neural network for 3D object localization

(PointRCNN), which segments 3D point clouds during the framework’s first

stage. This is to acquire essential foreground points in 3D space using a point

segmentation network with PointNet++’s backbone, while point cloud is the

only input modality the approach used. The points in 3D space are relatively

sparsed from each other, where overlapping or occlusion rarely occurs,

rendering effective segmentation to extract valuable foreground points and

features. The semantic masks are provided from the training data itself,

namely 3D bounding box annotations, where it specifies which object of

17

points in 3D space is required to be segmented. In the first stage of the

framework, 3D bounding box proposals are generated in a bottom-up manner.

It utilizes the segmented foreground points and generates 3D proposals for

each foreground point in parallel computation. This will reduce the

computational load, where lesser proposals are generated due to the removal of

background points as noise and thus increasing the proposals’ quality.

Whereas in the second stage of the framework, the proposals are being refined

in canonical coordinates. The proposals generated in the previous stage are

feature-abstracted and transformed into canonical coordinates. The

transformed local spatial features will fuse with semantic features from the

point-level feature vector of the segmented point cloud and the segmentation

mask by using the grouping approach in PointNet++. This will effectively

refine the 3D bounding boxes for further increase in quality with a higher

confidence level.

 Canonical transformation offers the advantage of a higher recall from

3D proposals. It also allows better learning of local spatial features for each

proposal in the box refinement stage. It is combined with each point’s global

semantic feature in the previous stage, and the merged features are used for 3D

bounding box refinement and confidence prediction. Thus, segmentation-

based approaches generally have a higher recall over most region proposal-

based approaches, where they can accurately localize smaller objects.

However, the geometric information could be lost due to the imperfect point

cloud region RoI pooling scheme for different resolutions. The AP of

PointRCNN is affirmative of 92.13 % for ‘easy’ cars when using the KITTI

test BEV detection benchmark while having the computational load that is

almost evenly distributed into the two stages of the framework. Figure 2.5

shows the PointRCNN’s architecture.

18

Figure 2.5: PointRCNN’s Architecture (Shi, Wang and Li, 2019).

Zarzar, Giancola and Ghanem (2019) proposed a region-based graph

convolutional network for 3D object localization (PointRGCN) that possesses

certain similarities with PointRCNN but differ in the box refinement stage.

PointRGCN also works exclusively on point cloud input modal only. The

initial stage of high recall 3D proposal generation is identical to PointRCNN.

It leverages the segmentation approach in PointNet to extract essential

foreground points by removing most of the background points and generates

proposals based on them. When performing 3D box refinement, PointRGCN

utilizes a graph convolutional network (GCN) to perform proposal feature and

context aggregation instead. It consists of two modules, namely residual GCN

(R-GCN) and contextual GCN (C-GCN). The first module, R-GCN, utilizes

the point clouds’ geometric information by constructing a graph representation

for points within each proposal to extract features for classification and 3D

bounding box regression. The point cloud is first transformed into canonical

coordinates. The canonical coordinate of each point is then projected into a

larger space, and it concatenates with the corresponding 3D proposal features

to obtain a per-point feature vector. R-GCN processes the vectors to obtain

global point features by projecting the vector layers into a higher dimensional

space and then max-pooled. The second module, C-GCN, then aggregates the

contextual information among multiple proposals in the frame. Both global

and local information within each proposal are being encoded as nodes in a

global frame graph representation. Global features are computed by

concatenating the local feature vector from one proposal to another. The global

19

features are then used to regress 3D bounding boxes and perform confidence

prediction.

 PointRGCN exploits a two-stage 3D object localization approach with

two graphs neural network. The performance surprisingly dropped when

compared to PointRCNN, where it achieves 91.63 % AP when tested for ‘easy’

cars using the KITTI test BEV detection benchmark. Apart from that, it

contains two GCNs in the second stage of 3D box refinement that severely

increases the system’s computational load, where both R-GCN and C-GCN

leverage a graph neural network (GNN) individually that extensively

aggregates the information across nodes via edges. The size of graph

representations of the proposal point cloud in R-GCN and the number of nodes

in C-GCN is highly dependent on the number of 3D proposals generated in the

initial stage of the region proposal network (RPN). Many proposals could be

generated as it is built on every segmented foreground point, yet high quality

with high recall. However, the number of epoch of GCN can be limited to

prevent a heavier computational load. Figure 2.6 shows the PointRGCN’s

architecture.

Figure 2.6: PointRGCN’s Architecture (Zarzar, Giancola and Ghanem, 2019).

2.1.4 Summary

Region proposal-based approaches generally have a more significant

computational load since they involve two stages in the object localization

pipeline. A significant number of 3D bounding boxes are generated in the first

stage that acts as proposals to the object localization, suggesting the regions

with a higher possibility of containing the interesting objects.

The proposal generation can be separated into two approaches. The

grid-based approach encodes the irregular point clouds to a regular

representation, such as 2D BEV maps. This includes the multi-view-based and

frustum-based approaches, where it allows matured 2D object detectors of

20

CNN or FCN to work on it effectively. The second proposal generation

approach would be a point-based method that directly works on the irregular

point cloud without transformation or feature engineering, with the example of

segmentation-based approaches. Working on a raw point cloud will enhance

the computational load, where the computer deals with irregular data

inefficiently and has to be supported by certain architecture backbones.

However, point-based approaches can utilize point set abstraction to achieve a

larger receptive field. The object recall is higher and retains more significant

geometric information that increases the proposals’ accuracy with a trade-off

of increased computational load. Conversely, the grid-based approaches are

computationally efficient. However, they could end with inevitable

information loss due to the inappropriate use of 2D detection techniques and

loss of information from different resolutions in the convolution layers.

 The proposals generated by region proposal-based approaches are

refined to reduce the number of bounding boxes and improve the accuracy by

reducing false-positive results. The box refinement methods leveraged vary

greatly, where it has no fixed pattern or approach of architecture to be applied.

PointNet and PointNet++ proposed feature abstraction approaches that

preserve accurate geometric information with flexible receptive fields. It

allows implementation in most of the box refinement approach to effectively

extract feature-level vectors from 3D proposals to regress 3D bounding boxes

and perform confidence prediction.

 Among all the region proposal-based approaches discussed, the

segmentation-based method, PointRCNN, outperforms all other approaches

and is most suitable for object localization. This is because the computational

load is less concerned in this project, while the accuracy is the primary focus.

PointRCNN has a higher recall, and the ability to retain geometric information

preserves the features well and generates a higher quality of proposals in the

first stage of the framework. Besides, the canonical 3D box refinement

submodule takes multiple point cloud coordinates, semantic features,

foreground mask, and 3D RoIs to merge the local spatial points and semantic

features effectively.

21

2.2 Single-shot Approaches

The single-stage object localization frameworks omit the process of generating

a massive number of preliminary proposals in the RPN while still accurately

detecting target objects. This reduces the computational load created from the

proposal refinement stage. Single-shot approaches directly regress the 3D

bounding boxes as final detection. Hence, the approach of preprocessing the

input modal and the feature abstraction method will be crucial to the pipeline’s

performance.

2.2.1 BEV-based Approaches

As expressed with the class’s name, these approaches utilize the unique

characteristics of the BEV representation of the point cloud to regress 3D

bounding boxes. Yang, Lup, and Urtasun (2018) have proposed oriented 3D

object localization from pixel-level neural network predictions (PIXOR). It

projects the raw point cloud into a 2D feature map by discretization and

compute the pixel values of the projected point cloud and treating it as a 2D

vector. The resulting projected point cloud is known as the BEV representation

of the point cloud. The 2D feature map is suitable to leverage FCN to extract

the feature-level vectors from the BEV point cloud to perform object

localization by regressing 3D bounding boxes. Geometric information could

be lost during discretization, where it can no longer exploit the natural

characteristic of the raw point cloud. Instead, it is being transformed into a

compact representation, where the point cloud becomes denser with the depth

information being embedded into the 2D feature maps. This approach is too

simple to be implemented in 3D object localization, where it has the minimum

feature engineering to abstract features for 3D bounding boxes regression.

Besides, the 2D framework working on an originally 3D point cloud without

optimum processing does induce inaccuracy because the complexity increases

when changing from 2D to 3D. Thus, PIXOR’s result is 83.97 % AP for ‘easy’

cars when tested with the KITTI test BEV detection benchmark. However, this

approach has a smaller computational load than complex architecture in region

proposal-based approaches. Figure 2.7 shows the PIXOR’s architecture.

22

Figure 2.7: PIXOR’s Architecture (Yang, Lup and Urtasun, 2018).

 3D object localization framework from BEV LiDAR (BirdNet)

proposed by Beltrán, et al. (2018) is another class of BEV-based object

localization approach. It tries to reduce the information loss during point cloud

projection or BEV formation by presenting the BEV map’s normalization.

Limiting the height at each cell and computing the average intensity of all

points within the cell will produce homogeneous pixel values among all cells.

This produces the capability to encode the maximum number of points within

a cell, where the normalized BEV map has a denser and more compact

representation. Therefore, the computation effectiveness is increased. Each

cell contains the highest available number of points to allow the feature

extractor to acquire more output from cellular level operation. The

normalization map has a similar resolution as the 2D BEV map. Besides, the

implementation of normalization is reliable when importing data from

different LiDAR sensors, where the number of points collected varies with the

parameters built-in. The normalized map is fed into 2D CNN to extract

features, and regression of 3D bounding boxes is carried out using RPN.

Homogeneity in pixel values will eliminate the objects’ unique characteristics.

Thus, the BEV point cloud representation’s density increases as well as the

dissimilarity between the objects in the point cloud versus the objects in the

BEV map. The resulting AP is 76.88 % for ‘easy’ cars when tested with the

KITTI test BEV detection benchmark. Figure 2.8 shows the BirdNet’s

architecture.

23

Figure 2.8: BirdNet’s Architecture (Beltran, et al., 2018).

 The BEV-based single-stage detector is exploiting the BEV

representation of the point cloud to regress 3D bounding boxes. This type of

approach is limited to an extent. It does not support other input modality types,

not even utilizing the raw point cloud effectively. Although BEV is a typical

representation of point cloud for 3D object localization, there is not much

computation that can be worked on to improve the results’ overall accuracy.

This is because the BEV point cloud is overloaded with information, while

some are lost during the BEV transformation. The high density of the BEV

point cloud makes it less flexible to be further feature-engineered.

2.2.2 Discretization-based Approaches

Discretization-based object localization is similar to BEV-based approaches,

where it also encodes the point cloud into a regular grid. Instead of encoding

the point cloud into a 2D grid to become BEV representation, discretization-

based approaches encode the points into a 3D voxel grid to become discrete

representation. These approaches also allow CNN to be applied to the

voxelized point cloud’s regular representation to abstract features. However,

some empty cells may exist, where it contains no points as a result of the point

cloud’s sparsity. The computation worked on the empty cells will be

accounted for nothing but just increasing the computational load. Engelcke, et

al. (2017) proposed 3D object localization with a feature-centric voting

scheme (Vote3Deep) to effectively localize objects in 3D point clouds. It

utilizes the feature-centric voting mechanism to take advantage of the point

cloud’s sparsity. Each input feature vector with several points in the cell will

cast votes to its neighbouring cells, and the accumulation of votes in each cell

24

will become the output of the voting mechanism. The process is known as

sparse convolution, where only specific cells are being computed to vote and

feature-abstracted. This process is repeated multiple times, and it appears like

a convolutional layer, which is the basic building block for CNN. The process

is stacked convolutionally to extract features from layers to layers. Then, the

point cloud’s sparsity is preserved by exploiting the ReLU non-linearity after

each convolutional layer. This is to prevent non-empty cells from being dilated

during the convolution. This approach is highly dependent on the number of

cells containing points, where it will be less efficient if the overall point

density in the cells is low. The computation cost will increase as the scene

become greater without modifying the size of the cells. There is no available

accuracy result for this approach using the KITTI test BEV detection

benchmark. Figure 2.9 shows the Vote3Deep’s architecture.

Figure 2.9: Vote3Deep’s Architecture (Engelcke, et al., 2017).

 Zhou and Tuzel (2017) presented a voxel-based object localization

framework (VoxelNet). It utilizes RPN to generate 3D bounding boxes;

however, it is limited by the sparse point cloud’s low density. Hence, they

intended to produce a denser representation of the point cloud known as the

sparse four-dimensional (4D) tensor. The point cloud is encoded in a 3D voxel

grid initially. The voxel feature encoding (VFE) layer is then designed to

allow interaction of points within the voxel to aggregates point-level features.

The VFE layers appear in a stacked circumstance, where it enables

aggregation of complex local features before interacting with other voxels.

25

This will produce a descriptive volumetric representation for the point cloud. It

creates a new dimensional feature into the 3D voxel to increase the complexity

of the voxelized point cloud representation. Initially, each voxel is fed into the

stacked VFE layers to obtain a point-level feature. After that, FCN is applied

to the point-level features to aggregate the voxel-level features. The voxel-

level features are being concatenated into the respective voxel in the grid,

producing sparse 4D tensors. Middle convolutional layers further refine the

sparse 4D tensors to extract spatial contexts among the voxels for information

transfer before regressing 3D bounding boxes via RPN. This approach results

in an AP of 89.35 % for ‘easy’ cars when using the KITTI test BEV detection

benchmark. Due to the sparse voxel’s convolution in the beginning and 3D

convolution on the sparse 4D tensor at the end, the computational load is

enormous. Figure 2.10 shows the VoxelNet’s architecture.

Figure 2.10: VoxelNet’s Architecture (Zhou and Tuzel, 2017).

 Discretization-based approaches are generally inclusive in terms of

architecture design. It opens the area for the point cloud’s post-processing after

it is being discretized into a 3D voxel grid. The computational load mainly

depends on the design of the feature abstraction from the voxelized point cloud.

It can be as efficient as Vote3Deep to perform computation on point-present

voxel only or be as complex as VoxelNet to work on every voxel and further

increase the computation by constructing sparse 4D tensors and abstract

features from it.

26

2.2.3 Point-based Approaches

This approach explicitly takes raw point cloud into 3D bounding boxes

regression for 3D object localization without performing any feature

engineering to convert the point cloud into other denser representations like

BEV or voxelized point cloud. Yang, et al. (2020) proposed a point-level 3D

single-stage object localizer (3DSSD). It fuses the feature distance-based

furthest point sampling (F-FPS) with 3D Euclidean distance-based furthest

point sampling (D-FPS) in the set abstraction layers. These set abstraction

layers will serve as the network’s backbone to prevent point loss after

sampling. It eliminates pure feature propagation layers for the upsampling of

points and refinement modules in ordinary point-based object localization

architecture high in computational load. A candidate generation layer is then

concatenated after the set abstraction layers to regress 3D bounding boxes. The

sampled points from F-FPS are used to generate candidate points with

geometrical coordinates, and shifting operation is performed with features

abstracted from F-FPS. This is to provide supervision to the geometrical

location between the points. As the F-FPS points are treated as the centres, F-

FPS and D-FPS’s neighbouring points are detected as a whole set of

representations. MLP networks then abstract the features from the points to

regress 3D bounding boxes using an anchor-free head regression approach.

The feature propagation layers are adapted with fusion sampling, where the

computational load is optimized while having a similar accuracy of the

detection result. Since the foreground points’ information is retained by

implementing fusion sampling, the result’s AP is generally as high as 92.66 %

for ‘easy’ cars when using the KITTI test BEV detection benchmark. Figure

2.11 shows the 3DSSD’s architecture.

Figure 2.11: 3DSSD’s Architecture (Yang, et al., 2020).

27

2.2.4 Graph-based Approaches

The graph-based approach leverages the graph representation of the point

cloud for the object localization framework. Shi and Rajkumar (2020)

proposed a GNN for 3D object localization in point clouds (Point-GNN). A

GNN transforms a point cloud into graphs before abstracting its features. It

transforms a group of the points in the point cloud into a graph vertex, where

each vertex contains the information of both 3D coordinates and the feature

state encoded. The point cloud is voxel downsampled during vertices’ graph

construction to reduce the computational burden. The density of the point

cloud is reduced to a fair amount for efficient vertex formation and

computation. The vertices within a fixed neighbouring radius are joined

together by graph edges. The fixed neighbouring radius is a parameter to

adjust the trade-off between computational load and accuracy. The larger the

radius, the more edges will be connected to vertices in the graph. This will

allow more information transfer to a vertex that is far from the origin vertex

and increase the receptive field. Therefore, more computation has to be

accomplished to refine the features during the iteration process.

The edges are used as the bridge connection between two vertices to

transfer information in a bidirectional way, where it contains the features of

both vertices. The vertex’s feature is refined during each iteration by

aggregating the edges’ features, while the edges are computing the features

from the two vertices it linked. The features of vertices and edges are

aggregated continuously throughout the iterations. The information of one

vertex obtained from its neighbouring vertex is being transferred to another

neighbouring vertex with a longer relative distance with the first vertex via

edges. The series connection of vertices allows transferring information from a

smaller fixed starting radius to the entire graph after several iterations. The

receptive field of vertices is therefore increased. Features used for 3D object

localization are aggregated as vertices’ features. The vertex’s state feature is

refined by its neighbouring vertex’s state through the edge. Spatial information

between vertices is exchanged to increase the sense of belonging in the point

cloud’s graph representation. The final iterated vertices’ features are used to

regress 3D bounding boxes.

28

Continuous grouping of points in convolutional layers is eliminated in

Point-GNN to reduce the computational cost. Instead, it is only grouped and

sampled once at the beginning of graph construction. The overall performance

of the Point-GNN is good, where it adapts the characteristic of a point cloud of

sparsity just like the point-based approach does. It is not altering it by

projecting the point cloud into a regular representation that may cause data

loss. The computational load can be adjusted via parameters of fixed

neighbouring radius and number of iterations, with the trade-off of the

accuracy of average precision. Point-GNN achieved an AP of 93.11 % for

‘easy’ cars when using the KITTI test BEV detection benchmark under normal

circumstances. Figure 2.12 show the Point-GNN’s architecture.

Figure 2.12: Point-GNN’s Architecture (Shi and Rajkumar, 2020).

2.2.5 Summary

Single-shot approaches are generally having a smaller computational load than

region proposal-based approaches. It has a more straightforward architecture

design, where there is no massive number of proposal generations and

complex proposal refinement modules that saturate the object localization’s

computation. While having a more straightforward architecture design, the

framework’s accuracy does not compromise, where some of the single-shot

approaches are having AP higher than the region proposal-based approach.

 The BEV-based approach transforms the raw point cloud into BEV

representation to match the existing and matured 2D detector’s requirement to

29

abstract feature from it. Although it leverages the 3D information of the point

cloud to an extent, utilizing the 2D representation is limited since the BEV

feature map is compact and highly dense, limiting further complex processing

to aggregate features. Next, the discretization-based approach transforms the

irregular point cloud into a 3D regular representation of the voxelized point

cloud. The point cloud partitioning will allow precise computation to work on

it if the empty voxels are neglected. Many types of computation can be

designed to handle voxels, whether contained with points.

Furthermore, the point-based approach takes the raw point cloud as the

input for feature abstraction to preserve the raw data’s complete information.

The AP obtained from this approach is generally high, and the optimization

applied to the point-based approach is mainly to reduce the computational load.

Lastly, the graph-based approach takes graph representation of point cloud as

input to perform feature abstraction. Since this approach is somehow similar to

the point-based approach, it has relatively high AP as results, but

computational load remains a concern to apply real-time monitoring.

 Overall, Point-GNN from the graph-based approach has the best

architecture design among the single-shot approaches. This is because Point-

GNN preserves the point cloud’s sparsity to prevent information loss from

feature engineering. The constructed graphs have a structural similarity with

the raw point cloud to utilize its sparse characteristic. The vertex

representation of a small group of points forms bondings with each other via

edges to transfer information and local features. Graph representation

preserves most of the information points without complex pre and post-

processing features. Along with high AP, simplicity is achieved as well, where

it has no complex mechanism.

2.3 Overall Summary

In conclusion, single-shot approaches are more preferred than region proposal-

based approaches, where it has a higher simplicity of architecture design for

3D object localization. Although it is only one-stage detection, single-shot

approaches do not compromise its accuracy, and it achieves a better result than

some of the region proposal-based approaches. Accuracy is mainly depending

on the computational load, not the type of approach.

30

 Therefore, Point-GNN is chosen among all object localization

frameworks. It best suits the sparse characteristic of a point cloud, where it is

inherited to the structure of the graphs constructed in the first place. The graph

representation of the point cloud appears like the raw point cloud, where the

points are being connected with their neighbouring points via linkages. The

connection of vertices via edges in Point-GNN allows information transfer

between vertices to aggregate local features in the beginning and global

features at the end of the iterations. Finally, the comparison of accuracy among

all approaches discussed above is listed in Table 2.1 with their respective input

modalities.

Table 2.1: Comparative 3D Object Localization Results of Various

Approaches on the KITTI Test BEV Detection Benchmark, with an IoU

Threshold of 0.7 for 3D Bounding Box (Guo, et al., 2020).

Approaches Modality
Average Precision for Cars

Easy (%) Moderate (%) Hard (%)

F-PointNet LiDAR, Image 91.17 84.67 74.77

F-ConvNet LiDAR, Image 91.51 85.84 76.11

MV3D LiDAR, Image 86.62 78.93 69.80

ContFuse LiDAR, Image 94.07 85.35 75.88

PointRCNN LiDAR 92.13 87.39 82.72

PointRGCN LiDAR 91.63 87.49 80.73

PIXOR LiDAR 83.97 80.01 74.31

BirdNet LiDAR 76.88 51.51 50.27

Vote3Deep LiDAR - - -

VoxelNet LiDAR 89.35 79.26 77.39

3DSSD LiDAR 92.66 89.02 85.86

Point-GNN LiDAR 93.11 89.17 83.90

31

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this chapter, the methodology of the project is discussed. All the necessary

details to accomplish the project, repeat it, reproduce the results following the

objectives are stated. Besides, the planning and managing of the project

activities, which constitute for a year since the beginning of the project, will be

illustrated with two Gantt charts with explanations. Furthermore, the problems

encountered during the project’s execution will be discussed with the solutions

carried out.

3.2 Environment Setup

This section describes the development environment used for this project.

3.2.1 Python Programming

This project was completed using Python, an open-source programming

language that contains a lot of backup support and higher-quality

documentation. This is because the project consists of deep learning. Python

has an extensive selection of open-source libraries and frameworks for deep

learning projects, such as Keras, PyTorch, and TensorFlow (Protasiewicz,

2018). This promotes coding capability, especially in this deep learning project

that consists of heavy programming activity. Besides, the Python

programming language’s simplicity allows the code writer and reader to

understand the code concisely. Thus, a programmer can invest more time in

complex problem-solving instead of cognitive overhead on syntax errors. The

testing of the algorithm can be performed without implementation into

hardware components. Anaconda Spyder is chosen as the programming

platform due to its functionality in coding and ease in installing packages.

3.2.2 TensorFlow Library

Since object localization (part of object detection) is the primary concern in

this project, the TensorFlow library is chosen over Keras and PyTorch. This is

32

due to its high-quality object detection application programming interface

(API), facilitating the construction, training, and deployment of object

localization models (Keshari, 2020). Furthermore, it works well with a large

dataset like the KITTI dataset, which consists of about 7 500 point cloud

scenes for both training and testing of the model. TensorFlow’s performance is

generally high, where it has both high and low-level APIs for deep learning

solutions. However, TensorFlow is harder to debug, and its readability is lower

when compared to Keras due to the higher complexity of the architecture in

TensorFlow (Sayantini, 2020).

3.2.3 The KITTI Dataset

The KITTI dataset is used for researching point cloud processing techniques

for autonomous vehicles (Geiger, et al., 2013). It consists LiDAR point cloud

that represents the scenes on the road in Karlsruhe, Germany. The main

objects present in the scene are cars, pedestrians, and cyclists. This project’s

focus is cars where it has the most significant dimensions, thus having better

accuracy results in 3D object localization. The other objects in the scene are

less meaningful and significant than the main objects due to the lesser ground

truth data. Each point cloud scene is accompanied by its respective RGB

image and the object’s labels for training various object localization

approaches. It is optimal for use in this project due to the comprehensive

implementation in the literature works above. It has moderate and sufficient

difficulty to be applied in practical object localization solutions.

The KITTI dataset’s files arrangement is suggested to follow the file

structure shown in Figure 3.1. This produces ease in executing Point-GNN, the

selected 3D object localization approach, to extract data from the same

structure. ‘Image’, ‘velodyne’, and ‘calib’ in Figure 3.1 represent the dataset

of RGB image of the scene in the left direction, a point cloud of the scene, and

the calibration data for internal data conversion during processing. Each of the

image, velodyne, and calib dataset consists of both training and testing data,

where it will be applied when executing model training and inferencing,

respectively. Label dataset only consists of ground truth labels for the training

dataset, which also can be used for AP prediction of the model during

evaluation. 3DOP_splits is the validation split for the dataset. It lists the file

33

indexes that contain particular interesting objects, such as cars and pedestrians,

and cyclists, as mentioned in the text file’s name.

Figure 3.1: Recommended Dataset File Structure (Shi and Rajkumar, 2020).

3.2.4 Executing Terminal and Version of Libraries

This project was executed on two platforms: Anaconda terminal (Windows)

and UTAR University research server (Linux). The primary Point-GNN

execution is accomplished using the UTAR research server as well as the data

collection and evaluation, while the Anaconda terminal is used to generate

graphical results of Point-GNN. This is because both platforms have their

limitation where some of the actions cannot perform well, and the limitation is

resolved when using another platform. The detailed discussion is included in

the problem-solving section of this chapter.

This project uses the TensorFlow version of 1.15. Besides, it requires

five python packages to be installed, which are OpenCV-python, open3d-

python version of 0.7.0.0, scikit-learn, tqdm, and shapely. There are two

principal codes for Point-GNN’s execution, namely run.py and train.py.

Run.py is used for inferencing the data, in order words, produce the output

from the input dataset using the pre-trained Point-GNN model. The output of

34

Point-GNN consists of 3D coordinates and the three primary dimensions of the

objects, which origin at the camera point. By obtaining the result of Point-

GNN, the second and third objective of this project will be accomplished.

Train.py is the Point-GNN’s training algorithm, where it allows retrain of the

Point-GNN model to produce different results during inferencing. The AP

prediction can be performed using kitti_native_evaluation, which KITTI

sources to evaluate the models using the KITTI training dataset and the ground

truth labels. AP is the main parameter for evaluating this project’s approaches,

where all approaches discussed in the previous chapter are using the KITTI

dataset for consistency.

3.3 Point-GNN Development

This section describes the flow of Point-GNN in inferencing the output.

3.3.1 Graph Construction

Point-GNN is chosen as the main approach for object localization after

reviewing multiple literary works. It has multiple steps to perform object

localization and only utilizes the LiDAR point cloud as the input modality.

After the point cloud data is read, the graph representation of point cloud is

constructed by converting the point cloud of 𝑁 points into a set 𝑃, where each

subset of 𝑃 is a point with both 3D coordinates 𝑥𝑖 and the state value 𝑠𝑖, hence

𝑝𝑖 = (𝑥𝑖, 𝑠𝑖) and 𝑃 is representing a set of vertices. The state value is

represented by the reflection intensity of the LiDAR point cloud. Then, a

graph, 𝐺 = (𝑃,𝐸) is constructed with vertices and the fixed neighbouring

radius 𝑟, where 𝐸 is the edges of the graph:

𝐸 = {(𝑝𝑖,𝑝𝑗) | ‖𝑥𝑖 − 𝑥𝑗‖2
< 𝑟} — — (1)

The vertices’ state features are initialized with embedding LiDAR

reflection intensity and relative coordinates using MLPs, which are then

aggregated by the max-pooling function. After that, the vertices’ state features

are refined by aggregating features along the graph edges. In the (𝑡 + 1)𝑡ℎ

35

iteration, the vertex feature 𝑣𝑡 and edge feature 𝑒𝑡 in a general graph are

updated in the form of:

𝑣𝑖
𝑡+1 = 𝑔𝑡(𝑝({𝑒𝑖𝑗

𝑡 | (𝑖, 𝑗) ∈ 𝐸}) , 𝑣𝑖
𝑡)

𝑒𝑖𝑗
𝑡 = 𝑓𝑡(𝑣𝑖

𝑡 , 𝑣𝑗
𝑡)

— — (2)

where 𝑔𝑡 is a function to aggregate edges’ features to refine a vertex’s feature

while 𝑓𝑡 is a function to compute the edge’s feature with two vertices the edge

is connected. 𝑝𝑡 is a set function that aggregates the edges’ feature for each

vertex.

3.3.2 Auto Registration for Offset Coordinates

To specialize for object localization approach, equation 2 is rewritten to

involve the neighbour’s state during the refinement of vertex’s state to include

belonging information of the vertex:

𝑠𝑖
𝑡+1 = 𝑔𝑡(𝑝({𝑓𝑡(𝑥𝑗 − 𝑥𝑖 , 𝑠𝑗

𝑡)| (𝑖, 𝑗) ∈ 𝐸}) , 𝑠𝑖
𝑡)— — (3)

where 𝑥𝑗 − 𝑥𝑖 represents the relative coordinates of the neighbours. The

relative coordinates approach will induce translational invariance against the

point cloud’s global shift, where the global shift is a type of data augmentation

to prevent overfitting the model. However, it remains sensitive in the local

neighbourhood area. The relative coordinates of its neighbours will be altered

when introducing a small translation and causes an increase in translational

variance, which is a disadvantage to the training function 𝑓𝑡 . An auto-

registration mechanism is proposed to reduce the translational variance. An

alignment offset can be predicted by utilizing centre vertex coordinates and

aligning the neighbours’ coordinates by their structural features. Therefore, the

equations are rewritten as:

∆𝑥𝑖
𝑡 = ℎ𝑡(𝑠𝑖

𝑡)

𝑠𝑖
𝑡+1 = 𝑔𝑡(𝑝({𝑓𝑡(𝑥𝑗 − 𝑥𝑖 + ∆𝑥𝑖

𝑡, 𝑠𝑗
𝑡)| (𝑖, 𝑗) ∈ 𝐸}), 𝑠𝑖

𝑡)
— — (4)

36

where ∆𝑥𝑖
𝑡 is the coordination offset for the coordinate registration of vertices

and ℎ𝑡 is used to compute the offset using the centre vertex’s features from the

previous iteration. In overall, 𝑓𝑡 , 𝑔𝑡 , and ℎ𝑡 are modelled using MLPs, and

max-pooling is used for vertices’ state aggregation:

∆𝑥𝑖
𝑡 = 𝑀𝐿𝑃ℎ

𝑡(𝑠𝑖
𝑡)

𝑒𝑖𝑗
𝑡 = 𝑀𝐿𝑃𝑓

𝑡(𝑥𝑗 − 𝑥𝑖 + ∆𝑥𝑖
𝑡 , 𝑠𝑗

𝑡)

𝑠𝑖
𝑡+1 = 𝑀𝐿𝑃𝑔

𝑡(𝑀𝑎𝑥({𝑒𝑖𝑗
𝑡| (𝑖, 𝑗) ∈ 𝐸}), 𝑠𝑖

𝑡)

— — (5)

3.3.3 Bounding Boxes Prediction

After 𝑡 iterations, the final vertices’ state values are used to predict 3D

bounding boxes using the localization branch of 𝑀𝐿𝑃𝑙𝑜𝑐. The bounding box is

predicted for each vertex and is determined by seven parameters, thus

possessing seven degree-of-freedom: 𝑏 = (ℎ,𝑤, 𝑙, 𝑥,𝑦, 𝑧,𝜃) . (𝑥, 𝑦, 𝑧)

represents the 3D coordinates of the 3D bounding box, while (ℎ,𝑤, 𝑙)

represents the height, width, and length of the bounding box predicted,

respectively, and 𝜃 is the yaw angle rotates around the Y-axis, which is the

axis of the height in point clouds. By utilizing (𝑥,𝑦, 𝑧), the target objects will

be localized in a 3D point cloud by referring to the location of the bounding

box that surrounds the object. Besides, the primary dimensions of the target

object can be measured by taking (ℎ,𝑤, 𝑙), where the assumption is made on

the target object fully enclosed by the bounding box. This is accomplished by

increasing the bounding box’s size 10 % larger to prevent cutting the object’s

edges. To measure the object’s dimension accurately in terms of alignment,

yaw angle 𝜃 will align the bounding box with the object’s centre axis to

perform enhanced 3D object localization and primary dimensions

measurement.

3.3.4 Bounding Boxes Regression

Some large objects might have multiple vertices present, and a bounding box

is predicted for each vertex that belonged to the same object. Box merging

operation is conducted to regress the bounding boxes into one. The traditional

non-maximum suppression (NMS) approach that determines the box with the

highest classification score and expels the others does not improve the

37

localization accuracy. Instead, it merely reduces the number of boxes. In order

to improve the localization quality, the median position and size of the whole

bounding box cluster are computed, along with the confidence score as the

summation of classification score weighted by the IoU and occlusion factors:

𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐷)

𝐿𝑖 = ∑ 𝐼𝑜𝑈(𝑏𝑖, 𝑏𝑗) > 𝑇ℎ

𝐵

𝑏𝑗=0

— — (6)

where 𝐷 is a set of detection scores, 𝐵 is a set of bounding boxes, and 𝑇ℎ is the

overlapping threshold. IoU threshold of 0.7 is set rather than 0.5 to increase

the result’s confidence level by reducing the precision value. For each

successive mapping of IoU by the given threshold value, 𝐷 and 𝐵 is removed

with the corresponding index, and this process will repeat until the bounding

boxes are emptied, 𝑙𝑒𝑛𝑔𝑡ℎ(𝐵) = 0. Equation 6 outputs a set of the bounding

boxes, which fulfiled the threshold requirement. Regression of the bounding

box is carried out by the following equation:

𝑚𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐿𝑖)

𝑜𝑖 = 𝑜𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛(𝑚𝑖) =
1

ℎ𝑖𝑤𝑖𝑙𝑖
∏ max

𝑝𝑗𝜖𝑏𝑖
(𝑣𝑇𝑥𝑗) − min

𝑝𝑗𝜖𝑏𝑖
(𝑣𝑇𝑥𝑗)

𝑣∈{𝑣𝑖
ℎ,𝑣𝑖

𝑤,𝑣𝑖
𝑙}

𝑧𝑖 = (𝑜𝑖 + 1)∑ 𝐼𝑜𝑈
𝑏𝑘𝜖𝐿𝑖

(𝑚𝑖 , 𝑏𝑘)𝑑𝑘

— — (7)

where 𝑚𝑖 is the selected bounding box, 𝑜𝑖 is the occlusion factor computed,

and 𝑧𝑖 is the corresponding bounding box’s confidence score. After the

bounding boxes are regressed, output data is generated for the localized

objects in the point cloud. Figure 3.2 shows the overall flow of the processes

in the Point-GNN inferencing algorithm.

38

Figure 3.2: Flowchart of Point-GNN Inferencing Algorithm.

3.4 Adjustment Made to Point-GNN

During the Point-GNN’s execution, it was found the algorithm only focuses on

the objects within the range of the RGB image taken, which is the region in

front of the camera. Point-GNN did this way because the ‘label’ dataset only

consists of the objects in front of the camera, and AP prediction only evaluates

the localized object in the front point cloud. This is not a good practice in

implementing 3D object localization in an autonomous car. The car’s control

system should consider all aspects around it, not limited to the front of the

camera but also behind it. For instance, an autonomous car shall notice the

vehicles behind it before switching lanes on the pavement. Therefore, the code

is rewritten by disabling the front_cam_points tuple, consisting of points and

attributes for the points that have the Z3D of greater than 0.1. The points with

Z3D greater than 0.1 indicating the points lie in front of the image. The

subsequent functions with the input of front_cam_points tuple are also

substituted with the pre-processed cam_points tuple, which consists of all points

in the point cloud. However, this creates syntax error in the later algorithm that

converts the camera points to the image plane via calibration, where the

algorithm divides the Z3D after determining the interesting points:

39

kitti_dataset.py:1050: RuntimeWarnig: invalid value encountered in

true_divide: img_points_xy1 = img_points_xyz/img_points_xyz[:,[2]]

where img_points_xyz[:,[2]] represent the Z3D of the img_points tuple.

cam_points tuple does consist of points that have a Z3D value of zero. This will

cause the algorithm’s imperfect execution. Infinity value is obtained, and data

loss occurred due to data invalidation. Therefore, the code is further modified

to include the points of having Z3D greater than 0.1 or lesser than −0.1 to

prevent invalid data:

𝑝 = 𝑝𝑖 𝜖 (𝑍3𝐷 > 0.1 || 𝑍3𝐷 < −0.1) −−(8)

 This change in coding will allow all points in the point cloud to be

processed without introducing significant data loss from excluding points

between −0.1 to 0.1 in the Z-axis. With the introduction of points behind the

camera, the computational cost increased. The time required to generate the

output becomes longer due to the increased number of vertices and edges.

3.5 Performing Intra and Inter Approach Comparisons

The Point-GNN approach is compared with the different number of layers in

the Point-GNN model to verify the difference in AP predicted and the

computation cost tradeoff. The number of layers in the Point-GNN model

represents the number of iteration for graph vertices in aggregating features.

An inference to the intra-comparison is that the higher the number of iteration,

the more information is gained for each vertex from its neighbourhood, and

result in higher AP. Thus, all Point-GNN results used for intra-comparison

will be executed on the same platform, the UTAR research server. The number

of iterations tested is 0, 1, 2, and 3, and the evaluation for each output data is

accomplished by the KITTI native offline evaluation metrics, with the recall

position of 11. Evaluation is conducted by generating the output data using the

training dataset to compute the recall and precision based on the ground truth

data.

 Apart from that, the inter-approach comparison will be conducted to

compare Point-GNN with other approaches discussed in the literary works in

40

chapter 2. The main and the only parameter used for discussion is also the

evaluated AP of the approach. The AP for the approaches discussed is

obtained from the KITTI Vision Benchmark Suite. All of the approaches were

submitted to KITTI by their authors, and KITTI outputs the APs for three

difficulties for each object class the approach is working. Therefore, the KITTI

reported APs are based on the same evaluation metrics and use the recall

position of 40.

3.6 Planning and Managing of Project Activities

This section describes the planning of the project activities with time

management, where time is the only resource in this project.

3.6.1 Project Part I

Project part I consisted of four major activities to be accomplished by the end

of the project part. In the first two weeks, a discussion with the supervisor was

conducted to plan for this project regarding the project’s output, project

duration, possible problems encountered, and the design for the Gantt chart

shown in Table 3.1. After that, comprehensive literature reviews were

conducted to cover many object localization works relevant to the 3D point

cloud as input modal. The sources were analyzed and criticized professionally

by reviewing them in-depth and discussing all necessary aspects to highlight

the current gaps in the 3D object localization research. The literature review

was started right after registration of this project title in the first week, and

eight weeks were spent to accomplish it. There were twelve 3D object

localization approaches collected and reviewed, where region proposal-based

approaches and single-shot approaches both consisted of six works of

literature.

 Then, a research methodology was conducted to set up the preferred

programming environment. Python was chosen over C++ due to its simplicity

and readability of codes that promote ease in programming. Point-GNN was to

be executed; however, it failed due to the different operating systems in the

computer used in accomplishing this project versus the Point-GNN’s written

code. The KITTI test dataset was obtained, consisting of 7 500 point cloud

scenes with the respective RGB image and label for both the training and

41

testing dataset. This was to increase the flexibility of input modalities to be

used in this project. This activity was started in the third week, overlapped

87.5 % with the literature review activity, and was ended in the twelfth week.

The second last part of this project was the writing of the progress report. The

literature review section, which is the heaviest part of the progress report, was

first to be completed for the supervisor’s inspection in terms of the report’s

quality. It was arranged in a coherent structure to expand the reader’s more

profound understanding of 3D object localization in point clouds. After that,

the introduction was written to identify the current problem and the aim and

objectives. The methodology section then described the experimental details,

where the facilities to be used were elaborated and justified and is ended with

the project planning. Progress report writing was started in the ninth week, and

six weeks were spent completing it. The project part I was concluded with the

presentation to the supervisor and the moderator, which held in the fourteenth

week. In conclusion, all activities were accomplished as planned. Table 3.1

shows the Gantt chart for project part I.

42

Table 3.1: Gantt Chart for Project Part I.

No.
Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M1 Project planning ✔ ✔

M2 Literature review ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

M3 Research methodology ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

M4 Report writing & oral presentation ✔ ✔ ✔ ✔ ✔ ✔

Activities

43

3.6.2 Project Part II

Project part II consisted of six activities to be accomplished by the end of this

project part. In the first five weeks, the Point-GNN’s code was executed using

the UTAR research server. The research server consisted of remote access that

allows the user to execute the algorithm using the research server’s

specifications, which are more robust in performance than an ordinary

computer. Numerical results of Point-GNN were generated using the research

server, while the graphical results of Point-GNN were generated using a

student’s computer. Next, research methodology was carried out from the

second week onwards, and have spent nine weeks researching the possible

improvements to fill up the technological gaps in Point-GNN. It was found out

that Point-GNN is limiting itself to localize the objects within the range of the

RGB image taken, which is in front of the camera while leaving others objects

in the point cloud scene behind and unlocalized. Changes were made to the

code to improve the output result in terms of point’s coverage. This project’s

model development was carried out along with the research methodology to

resolve the error on programming, where coding was performed in a Python

environment. Another set of inference results was generated with the new code.

The KITTI dataset with 7 481 training samples and 7 518 testing samples of

point cloud was used as the project’s input modal. Model development was

started in the third week and ended in the twelfth week.

 Result and discussion were performed in the middle of the model

development, which was the eighth week of project part II. The results

obtained from the improvement of the method and the original Point-GNN

were analyzed and discussed. Besides, a poster regarding this project was

prepared, which began in the ninth week. Both result and discussion and poster

preparation were ended in the twelfth week due to the poster’s submission.

The result and discussion were essential for the poster to promote the model

developed for 3D object localization in point clouds. Lastly, the final report

writing was started in the seventh week, two weeks earlier than the progress

report writing in project part I, to improve writing skills and early problem

spots. This was to improve the report’s quality by including essential

information in the report to effectively expand the reader’s knowledge. This

activity was continued until the submission of the final report in the fourteenth

44

week. The final presentation was prepared and conducted to present this

project’s results to both the supervisor and the moderator. Table 3.2 shows the

Gantt chart for project part II.

45

Table 3.2: Gantt Chart for Project Part II.

No. Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M1 Execution of Point-GNN’s code ✔ ✔ ✔ ✔ ✔

M2 Research methodology ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

M3 Model development ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

M4 Result and discussion ✔ ✔ ✔ ✔ ✔

M5 Poster preparation ✔ ✔ ✔ ✔

M6 Report writing & oral presentation ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Activities

46

3.7 Problems Encountered and Solutions

During the project’s execution, three problems have been encountered, and

most of them have been resolved and achieved a better improvement in the

project execution.

3.7.1 The Computational Expense of Executing Point-GNN

The execution of Point-GNN was decided to run on the student’s computer,

which is the model of Acer Nitro 5 with the specifications of 12 gigabytes (GB)

of random access memory (RAM). When the code was executed in the

Anaconda terminal, which is the initial primary code execution terminal, it

outputs nothing but mentions the insufficient available device memory and

causes zero output of Point-GNN result. The condition was not solved even

after optimizing and defragmenting the disk. The number of iterations of

Point-GNN executed was three: the maximum iteration number and the default

value suggested by Shi and Rajkumar (2020). This is because the higher the

number of iterations, the farther the vertex’s information could reach in the

neighbourhood. One possible inference to the inability of execution is the

inappropriate hardware execution. Point-GNN is generally running on CPU,

and Python programming itself is also increasing the computation cost, where

it is a high-level programming language with higher complexity. It is

estimated that the minimum requirement to execute Point-GNN is 20 GB of

RAM in the computer. This problem was resolved by changing the

computation hardware by shifting the task of executing Point-GNN from a

student’s computer to the UTAR research server, which has a bigger RAM of

64 GB that runs on Linux. Numerical results of Point-GNN were outputted in

the research server and stored in text files, including the 3D coordinates and

the three primary dimensions of the localized objects. In addition, the research

server allows remote access from the student’s computer where the student’s

computer can be used to perform other helpful project activities other than

code execution. The comparison between the specifications of the student’s

computer and the UTAR research server is listed in Table 3.3.

47

Table 3.3: Comparison Between Specifications of the Student’s Computer and

the Research Server.

 Student’s computer UTAR research server

Operating system Windows Linux

RAM (GB) 12 64

GPU NVIDIA GeForce GTX 1050 NVIDIA GP104GL

On-screen (FPS) 60.0 13.0

3.7.2 Shifting Primary Programming Environment to Linux

During the shifting of the primary programming environment from the

student’s computer to the UTAR research server, problems were encountered

during the environment setup. Since the execution of Point-GNN has been

shifted onto the UTAR research server, the KITTI dataset has to be placed

inside the server for Point-GNN’s data acquisition. The KITTI dataset was

obtained during project part I, which is stored in the student’s computer. A

Linux command called ‘rsync’ allows synchronizing files across the local

server to the remote server. However, this approach is slow due to the

requirement of prolonged connection between the servers to transfer the files.

Hence, the ‘wget’ command was used to download the files directly online,

which speed up the dataset set up in the research server. However, some files

are not available online directly, such as the folder of 3DOP_splits; thus, the

‘rsync’ command was applied to gather them into the research server before

executing Point-GNN’s code.

The disk quota kept saturated during the dataset set up in the research

server due to limited volume. This is because the KITTI dataset is enormous,

where it has 7 481 training samples and 7 518 testing samples. The entire

dataset consumes a size on disk of 38.6 GB, and it contains 52 486 files in

total. Therefore, the research server’s user-allocated disk space was updated to

input the whole dataset into the research server. Most of the dataset folder such

as ‘image’, ‘velodyne’, ‘calib’, and ‘labels’ are setup using the ‘wget’

command; The ‘wget’ command outputs a ‘.zip’ folder for each dataset into

the research server and requires further unzip operation. The unzipping

operation of Linux is outputting an extracted folder that consumes the same

amount of disk space to the research server before the zipped folder can be

48

removed. However, the disk space was saturated again upon the completion of

the dataset download. Due to the disk space’s saturation in the research server,

the unzipping operation could not be done. A solution to this was removing

some zipped dataset folders before unzipping other zipped folders that

remained. This solution allocates space for the extracted files to occupy and,

thus, allows the unzipping process. The zipped-extracted folders were then

removed to allocate disk space for further unzipping processes. At the end of

the dataset setup, the files in the initially removed zipped folder were input to

the research server via the ‘rsync’ command, where no zip file or ‘wget’

command is involved. ‘Image’ zipped folder was removed in this aspect due to

its medium-sized occupied disk space; therefore, the ‘rsync’ command is not

consuming a very high computation cost in importing files from the ‘image’

dataset at the end.

3.7.3 The Inability of Research Server to Visualize Point-GNN Results

Point-GNN’s code has an argument that allows the visualization of the results.

However, the UTAR research server faced difficulty displaying graphical

results, which contain both image and point cloud with bounding boxes

enclosing the objects. The system core has dumped frequently and causes the

operation aborted. Introducing graphical application while executing Point-

GNN has caused the several numerical results produced before the abortion

worse than the results produced without displaying the graphics. One possible

reason may be that the GPU of the research server of NVIDIA GP104GL has

difficulty displaying such graphical results. It has low on-screen frames per

second (FPS) displayed and causes interruption on the code execution. Thus,

the graphical result was then produced using the Anaconda terminal on the

student’s computer. The GPU of the student’s computer of NVIDIA GeForce

GTX 1050 has a higher on-screen FPS displayed as shown in Table 3.3, and it

successfully displayed the graphical results.

 However, due to the student’s computer’s limitation, Point-GNN can

only be executed in zero iteration in the Anaconda terminal. This produces the

results that the vertex’s state information is not shared among its

neighbourhood. Therefore, the validated result’s AP is the lowest compared to

other results with the number of iterations greater than zero. The low AP is

49

due to the introduction of false-positive results. Point-GNN can barely localize

the true-positive objects only when the objects are fully visible in the point

cloud and the scene’s complexity is low for a non-iterated model. In other

words, the objects are not occluded by any other less meaningful objects, such

as trees or walls, during the point cloud acquisition. Although Point-GNN’s

visualization is limited to a zero iterated model, the numerical results’ usability

is far more superb than the graphical results. This is because the numerical

data can be used as input to an autonomous car’s control system to carry out

decisive actions. Simultaneously, the graphical result is limited to human use

for visually evaluating the Point-GNN.

3.7.4 Missing System Package

The KITTI offline evaluation metrics is encoded in a ‘.cpp’ file and other

directories. It requires compilation to make it executable for intra and inter-

approach evaluation. However, the UTAR research server lacks the ‘cmake’

system package with the minimum requirement of version 2.6 to compile the

files. Therefore, a request is sent to the supervisor to install the system

package into the research server environment for Point-GNN evaluation. The

KITTI offline evaluation metrics are compiled, and it is executed with the

inputs of validation result from Point-GNN using the training dataset and the

ground truth label dataset. The KITTI offline evaluation metrics outputs a

series of evaluation data with the car object: 2D detection AP, 2D orientation

AOS, BEV detection AP, BEV orientation AHS, 3D detection AP, and 3D

orientation AHS. Each evaluation data is accompanied by a graph displaying

the data. The focuses of evaluation data in this project are 3D detection AP

and BEV detection AP.

3.8 Summary

The environment setup of the project is explained. A Python programming

platform is required to modify and execute segments of Point-GNN’s code.

Besides, the TensorFlow library is required for the deep learning programming

sessions in the code. The KITTI dataset is obtained and is successfully loaded

into Point-GNN to generate output. Point-GNN’s development is explained in

details with numerical equations included and the overall flowchart. Then, the

50

adjustment made to Point-GNN is described and analyzed in this chapter, too.

Also, the method of performing intra and inter-approach comparison is

discussed. The planning and management of the project’s activities are

explained, where it is separated into part I and part II for two long semesters

that constitute a year in total. Problems encountered and the solutions selected

are also included in this chapter, followed by the results of the solutions

executed.

51

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction

This chapter describes the result obtained from Point-GNN execution and the

code’s adjustment made. Intra and inter-approaches comparison will be

discussed and evaluated further in this section.

4.2 Point-GNN

The KITTI files input to the code consist of the velodyne point cloud, image,

label, and calibration. The collection of the KITTI dataset has marked the

accomplishment of the first objective in this project. These four datasets are

sufficient to reproduce the Point-GNN both numerical and graphical results.

The image and calibration files are used to produce graphical results, where

the points will map to the image plane and camera plane through and forth

during the processing. The ‘label’ dataset consists of the ground-truth label of

the objects, and it is used to predict AP from the output results generated from

the training samples. The primary dataset used by Point-GNN processing is the

velodyne point cloud, which consists of X, Y, and Z coordinates as well as the

LiDAR reflection intensity. The LiDAR reflection intensity represents the

vertex’s state value during the vertex initialization. Next, the calibration data is

also used to convert the points from velodyne coordinate to camera coordinate,

where there is a change in the X, Y, and Z coordinates of the points to produce

the generalized points regardless of the camera’s setting. The configuration

file is also input to Point-GNN, which consists of the parameters to execute the

code. The parameters include the keyword arguments for graph generation and

model construction. The graph generation keyword argument consists of the

configurations to generate graphs, such as the graph type and the radius of

neighbour searching for generating edges’ graph. Then, the model keyword

argument consists of the Point-GNN layer type for each layer in the Point-

GNN’s iteration. The MLP depth parameters are also included in the layer

configuration, as well as the normalization and activation type for the MLPs.

52

 After executing the Point-GNN, it outputs both the numerical and

graphical results. The graphical result output is controlled by an argument, ‘--

level’ during the code’s execution to allow visualization of the result. Figure

4.1 shows the graphical result of the Point-GNN for the testing sample 000001.

The graphical result consists of an RGB image of the scene with two green 2D

bounding boxes covered on the two cars localized. The graphical result also

consists of a 3D point cloud of the scene with three red 3D bounding boxes

covered on three cars localized. The coloured lines intersecting at the

bounding box represent the graph’s edges, where each edge is connected to

two vertices in the graph. The visible lines in the point cloud are the edges

with one of the vertex lying within the 3D bounding box. Therefore, the vertex

at the other end of the edges is delivering its state’s value to the bounding

box’s vertex for aggregating local features. The green lines represent the

object localized is classified as ‘car’, where cars are the target object for this

project. Meanwhile, the grey lines represent the object localized is classified as

‘do not care’. The ‘do not care’ class is implemented to prevent false-positive

results in the evaluation, where it is not included in the localization result.

Therefore, there are only two target objects, cars, localized in the testing

sample 000001.

Figure 4.1: Graphical Result for the Testing Sample 000001.

53

 Apart from the graphical result, Point-GNN also outputs the numerical

result simultaneously. The first three data: truncation, occlusion, and alpha, are

not the interesting parameters in this project, where it refers to 2D image

processing. The clip for 𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥, and 𝑌𝑚𝑎𝑥 represent the maximum

limits for the particular object in the 2D RGB image. Similarly, these four

parameters are not interested in the project’s discussion due to the involvement

of the 2D region. The ‘label’ KITTI dataset included all these parameters

because there are approaches utilizing the 2D detector in localizing objects.

The significant numerical result parameters are the X3D, Y3D, Z3D, height,

width, and length. The X3D, Y3D, and Z3D lie at the bounding box’s origin,

computed in the MLP of the localization branch. The bounding box’s origin

lies on the top XZ bounding box plane’s centre point. This indicates the

bounding box’s origin lies in the top centre of an object to reference the object

from the global origin, the LiDAR camera’s coordinate at (0,0,0). Hence, this

project’s second objective is achieved by determining the X, Y, and Z

coordinates of the located object in a 3D point cloud.

The height, width, and length represent the three primary dimensions

of the object in meters, which are also computed in MLP of the localization

branch. The height, width, and length are displaying in the form of bounding

box lines. Each bounding box line is drawn across two of the eight corners

surrounding the object to form a cube. The bounding box corners are

positioned by the height, width, and length parameters computed, originating

(X3D, Y3D, Z3D). The upper four corners are positioned at (±𝑤
2⁄ ,0, ± 𝑙

2⁄),

while the bottom four corners are positioned at (±𝑤
2⁄ ,−ℎ, ± 𝑙

2⁄), in respect

to (X3D, Y3D, Z3D). The bounding box’s orientation is determined by the

second last parameter in the numerical result, yaw angle, representing the

rotation angle of the object around the Y-axis, which is the axis of the height.

Thus, this project’s third objective is accomplished by displaying the height,

width, and length of the located object in both numerical and graphical form.

The last parameter in the numerical result is the confidence score computed for

the bounding box regressed to indicate performance for the particular

bounding box predicted. Table 4.1 shows the numerical result for the testing

sample 000001.

54

Table 4.1: Numerical Result for the Testing Sample 000001.

Object class Car (1) Car (2)

Truncation -1 -1

Occlusion -1 -1

Alpha 0 0

Clip_Xmin 141.20734621538205 36.41744711056066

Clip_Ymin 176.2229789093736 174.03262110345074

Clip_Xmax 351.68137221248566 232.33337647692284

Clip_Ymax 243.90982579877945 289.8086621292917

Height (m) 1.5215358 1.5745287

Width (m) 1.6863366 1.6601882

Length (m) 4.283223 4.113779

X3D -8.645287 -7.8946705

Y3D 1.6074694 1.5971005

Z3D 17.363804 11.835676

Yaw 0.09412821 0.72221255

Score 82.2164862876902 151.07463956706272

4.2.1 Adjustment Made to Point-GNN

Based on the changes made in section 3.4, the point cloud input into the Point-

GNN model is different, where it also consists of the points behind the camera.

Figure 4.2 shows the point cloud scene of the testing sample 000001 viewed

from the top that consists of the front and the rear point cloud.

Figure 4.2: Point Cloud of the Testing Sample 000001 Viewed from the Top.

55

Figure 4.2 shows that the point cloud is separated into two regions. The

point cloud at the left consists of the points that lie behind the camera, while

the point cloud at the right consists of the points that lie in front of the camera,

which is identical to the point cloud shown in Figure 4.1 but viewed from the

top. It is worth noticing that there are objects in the left point cloud; therefore,

3D object localization should be worked on those objects to obtain their 3D

coordinates and three primary dimensions. With the inclusion of rear points

into the vertices and edges’ graph construction by equation 8, the combined

numerical result for the testing sample 000001 is generated and is shown in

Table 4.2.

Table 4.2: Combined Numerical Result for the Testing Sample 000001.

Object class Car (1) Car (2) Car (3)

Truncation -1 -1 -1

Occlusion -1 -1 -1

Alpha 0 0 0

Clip_Xmin 141.2073462 640.9306218 36.4174471

Clip_Ymin 176.2229789 118.7164306 174.0326211

Clip_Xmax 351.6813722 711.8680651 232.3333765

Clip_Ymax 243.9098258 166.1110190 289.8086621

Height 1.5215358 1.5051302 1.5745287

Width 1.6863366 1.6225216 1.6601882

Length 4.283223 3.9107132 4.113779

X3D -8.645287 -2.2776604 -7.8946705

Y3D 1.6074694 1.7630962 1.5971005

Z3D 17.363804 -25.551062 11.835676

Yaw 0.09412821 1.4244215 0.72221255

Score 82.2164863 53.6548599 151.0746396

 Table 4.2 shows that one more object is localized, the second car in the

table, from the point cloud behind the camera compared to the results in Table

4.1. The second car detected has the Z3D of -25.551062, indicating the object

lies behind the camera. Thus, the 3D coordinates and three primary

56

dimensions of the second car is successfully computed by the MLP of the

localization branch. Point-GNN can now localize the objects in point clouds in

a more comprehensive manner. Nevertheless, another car in the rear point

cloud is observed in Figure 4.2 but is not localized by Point-GNN. One

possible inference to this is the Point-GNN is only trained with the front point

cloud but not both the front and the rear due to the absence of labelling of

objects in the rear point cloud. Besides, the front point cloud is observed to

have a higher point density than the rear point cloud, where the points in the

rear point cloud are sparsely located in 3D space. This may be accounted for

by the specification of the LiDAR camera, where it focuses on the front

direction it is facing. The car that Point-GNN does not localize is locating

further away from the LiDAR camera compared to the car localized in the rear

point cloud. Although it is located within the Point-GNN’s localization range,

low point density causes insufficient information to categorize it as an

interesting object in the point cloud. Hence, it possesses a lesser chance to be

classified as a ‘car’, the target object for localization, by Point-GNN due to

lesser spatial information of vertices and edges generated in the graph. Figure

4.3 (a) shows the front point cloud of the testing sample 000001, which has a

higher point density, while Figure 4.3 (b) shows the rear point cloud of the

testing sample 000001, which has a lower point density and the undetected car

is indicated by a box.

Figure 4.3: (a) Front Point Cloud of the Testing Sample 000001.

57

Figure 4.3: (b) Rear Point Cloud of the Testing Sample 000001 with the

Labelled Unlocalized Object.

4.3 Comparison and Evaluation

The Point-GNN generated several results using the different number of

iterations, known as the different number of layers in the Point-GNN model.

The first layer in the Point-GNN model is always the graph layer of

aggregating the LiDAR reflection intensity by MLP to initialize the vertices’

state, where max_point_set_pooling layer type is introduced to the layer. The

last layer in Point-GNN is always the output layer, where the vertices’ state

features are abstracted using the class aware predictor approach. The

intermediate layers that lay between the first and the last layer of the Point-

GNN model are the iteration layers. All layers are configured in the

configuration file input to the code, as discussed previously.

The results in Table 4.1 and 4.2 are produced from the three-time-

iterated Point-GNN model, representing three iteration layers in the model.

Every iteration layer is identical to each other in terms of configuration. The

iteration layer’s configuration includes the activation type, normalization type,

and depth parameter for each operating MLP. The layer type that every

iteration layer used is scatter_max_graph_auto_center_net, where the auto offset

feature is activated in every iteration of vertices’ state aggregation to reduce

translational variance. The depth parameter for MLP of edge and vertices

update are identical, which is the list of [300, 300], indicating the number of

nodes in the perceptron. All layers in the Point-GNN’s model have the same

activation function: ReLU non-linearity. It is because ReLU can preserve the

sparsity of vertices in the graph while increasing the computation speed.

58

 The maximum iteration number, three, is the iteration number that

Point-GNN used to generate the validation result and submitted it to KITTI for

evaluation. It has the greatest computation load, where the information of a

vertex has reached a neighbourhood vertex with the relative distance of three

edges or two vertices. The information cross does provide a larger receptive

field around the vertices. Therefore, it has a higher tendency to localize objects

accurately in 3D space. The results used for evaluation is only the objects

localized in the front point cloud, where the labelled ground truth objects in

the KITTI dataset only consist of the objects in the front.

The AP predicted for Point-GNN’s result is separated into ‘easy’,

‘moderate’, and ‘hard’ classes, representing the difficulty of the objects being

localized. This includes the factor of occlusion in LiDAR point cloud, which is

shadows that result from geometric triangulation. The interesting objects may

be occluded by the non-reflective object. This is because the hidden objects

that are not visible to the LiDAR camera will not be measured. At the same

time, multiple scanning from different angles is not implemented during

KITTI dataset construction. The three difficulties represent the occlusion level

of objects in the scene, from fully visible to significantly occluded. As the

object’s difficulty increases, the number of points and vertices representing the

object is reduced. Therefore, the occluded car’s vertices require more

information from its neighbourhood vertices, where it needs to aggregate more

local features to classify itself as an interesting object and localize it.

4.3.1 Intra-Approach Comparison

The AP predicted for the three-time-iterated Point-GNN’s result is

87.890259 % for ‘easy’ cars, 78.342728 % for ‘moderate’ cars, and

77.377190 % for ‘hard’ cars using the 3D detection benchmark. It is worth

noticing the KITTI evaluation used for intra-approach comparison has the

recall position of 11. The result shows that the AP reduces from ‘easy’ to

‘moderate’ followed by ‘hard’ object’s difficulty. As the number of vertices

representing the interesting object decreases, the predicted bounding box does

not accurately reflect the object’s 3D coordinates. Translation of bounding box

occurs, where the bounding box is minimally shifted to other nearby positions

within the object’s neighbourhood as a result of the localization MLP. This

59

reduces the IoU between the ground truth labelled and the predicted bounding

box and results in lower AP.

Apart from the AP predicted using the 3D detection benchmark, the

BEV detection benchmark is also used and predicted an AP value for each

difficulty class. The AP predicted using BEV detection benchmark for the

three-time-iterated Point-GNN’s result is 89.823723 % for ‘easy’ cars,

88.308357 % for ‘moderate’ cars, and 87.155525 % for ‘hard’ cars. It shows

that the AP predicted using the BEV detection benchmark is higher than 3D

detection for every difficulty classes. The BEV detection benchmark included

transforming the raw point cloud into BEV representation, which produces the

BEV point cloud with higher point density in a 2D regular map and uses it as

the input to Point-GNN. The BEV transformation preserves the object’s size

consistent with respect to distance, which provided a strong antecedent for

inferencing because it does not suffer from occlusion. The AP predicted using

the 3D detection and BEV detection benchmark is illustrated in Figure 4.4 (a)

and (b), in terms of the area under the graph.

Figure 4.4: (a) AP Predicted using the 3D Detection Benchmark for the Three-

time-iterated Point-GNN and (b) AP Predicted using the BEV Detection

Benchmark for the Three-time-iterated Point-GNN.

 As the Point-GNN’s iteration number reduces, a vertex’s information

cannot be transferred far away from the origin. Therefore, a vertex’s receptive

field will be smaller and is anticipated a drop in AP predicted for all classes of

difficulty. The AP predicted for Point-GNN’s result with iteration number of 0,

1, 2, and 3 are listed in Table 4.3 and 4.4 using the 3D detection and the BEV

detection benchmark, respectively. Besides, the AP predicted for Point-GNN’s

60

result is also illustrated in Figure 4.5 (a), (b), and (c) that show the graph of

AP using the 3D detection benchmark with the iteration number of 2, 1, and 0,

respectively.

Table 4.3: AP Predicted for Point-GNN using the 3D Detection Benchmark

with Different Iteration Numbers.

Number of

Iteration

Average Precision (3D Detection Benchmark)

Easy (%) Moderate (%) Hard (%)

0 73.896561 64.421539 59.909767

1 88.003227 77.887131 76.144211

2 88.336563 78.510040 77.671188

3 87.890259 78.342728 77.377190

Table 4.4: AP Predicted for Point-GNN using the BEV Detection Benchmark

with Different Iteration Numbers.

Number of

Iteration

Average Precision (BEV Detection Benchmark)

Easy (%) Moderate (%) Hard (%)

0 87.241478 77.389450 75.839111

1 89.833923 87.672905 86.303192

2 89.995453 88.374153 87.218575

3 89.823723 88.308357 87.155525

Figure 4.5: (a) AP Predicted for Two-time-iterated Point-GNN, (b) AP

Predicted for One-time-iterated Point-GNN, and (c) AP Predicted for Non-

iterated Point-GNN.

 The result shows that the AP predicted for non-iterated and one-time-

iterated Point-GNN have an increment of AP as the iteration number increases

61

when using both the 3D detection and the BEV detection benchmark. It has the

AP difference of 14.106666 % for ‘easy’ cars, 13.465592 % for ‘moderate’

cars, and 16.234444 % for ‘hard’ cars when using the 3D detection benchmark.

A vertex’s receptive field increased significantly when the iteration number

increased from zero to one. This is because information exchange in Point-

GNN is essential for feature abstraction, where it refines the vertices’ state

feature before predicting the bounding boxes. A non-iterated Point-GNN will

produce a result similar to the region proposal-based approach, where a

massive number of 3D proposals will be generated prior to any feature

engineering. The massive number of 3D proposals lower the model’s accuracy,

where many false-positive results are introduced.

When Point-GNN is iterated at least one time, the AP increased

significantly. This is due to the presence of a receptive field around vertices,

where the edges deliver the information from neighbourhood vertices to a

vertex. The edges are formed with the radius for searching neighbourhood

vertices at 4.0 m originating from a vertex, with the maximum number of

edges of 256 that indicate the neighbour numbers for each vertex. The wide

range of searching and great neighbour numbers causes a vertex’s receptive

field to change dramatically when the iteration number is changed by one.

Therefore, the AP predicted for non-iterated Point-GNN is the lowest,

followed by one-time-iterated and two-time-iterated Point-GNN.

 The AP does not change significantly when the iteration number

changes from one to two. This is because most of the essential and meaningful

features are aggregated during the first iteration. The iterations afterwards

refine the minor features of the vertices to bring the result closer to the ground

truth. Therefore, the AP increased from one-time-iterated Point-GNN to two-

time-iterated Point-GNN, which is 0.333336 % for ‘easy’ cars, and

0.622909 % for ‘moderate’ cars, and 1.526977 % for ‘hard’ cars when using

the 3D detection benchmark.

Surprisingly, the two-time-iterated Point-GNN achieves the predicted

AP higher than the three-time-iterated Point-GNN for all difficulty classes,

with the difference of 0.446304 % for ‘easy’ cars, 0.167312 % for ‘moderate’

cars, and 0.293998 % for ‘hard’ cars when using the 3D detection benchmark.

This is because the three-time-iterated Point-GNN model has trained with the

62

highest iteration number, which results in a deeper neural network. Training

difficulty occurs, where the accuracy is saturated, followed by degradation as

the number of layers in the neural network increases. The Point-GNN has

successfully determined a compelling set of state’s values that optimize the

object localization at the second iteration. Therefore, the third iteration of

Point-GNN produces noise to the vertices’ state by creating an identity

function from the ReLU non-linearity activation function (He, et al., 2015).

This problem requires further improvement, such as adding a residual learning

layer to the third Point-GNN iteration to skip over the activation and improve

the deeper neural network’s quality (He, et al., 2015).

4.3.2 Inter-Approach Comparison

The Point-GNN’s result was submitted to KITTI for general evaluation, and

they use a recall position of 40. The AP predicted for three-time-iterated Point-

GNN’s result using the 3D detection benchmark is 88.33 % for ‘easy’ cars,

79.47 % for ‘moderate’ cars, and 72.29 % for ‘hard’ cars. Compared to the

result in Table 4.3, which is also tested with the 3D detection benchmark, the

AP predicted by KITTI is higher. This is because the increase in the number of

recall positions will increase the AP predicted. KITTI has claimed that the use

of 40 recall positions during the evaluation will produce a more fair

comparison among the approaches. Therefore, many approaches have

submitted their results to KITTI for general evaluation, including all

approaches discussed in chapter two. Table 4.5 shows the 3D object

localization results of various approaches on the KITTI test 3D detection

benchmark.

Table 4.5: Comparative 3D Object Localization Results of Various

Approaches on the KITTI Test 3D Detection Benchmark, with an IoU

Threshold of 0.7 for 3D Bounding Box (Guo, et al., 2020).

Approaches Modality
Average Precision for Cars

Easy (%) Moderate (%) Hard (%)

F-PointNet LiDAR, Image 82.19 69.79 60.59

F-ConvNet LiDAR, Image 87.36 76.39 66.69

63

MV3D LiDAR, Image 74.97 63.63 54.00

ContFuse LiDAR, Image 83.68 68.78 61.67

PointRCNN LiDAR 86.96 75.64 70.70

PointRGCN LiDAR 85.97 75.73 70.60

PIXOR LiDAR - - -

BirdNet LiDAR 13.53 9.47 8.49

Vote3Deep LiDAR - - -

VoxelNet LiDAR 77.47 65.11 57.73

3DSSD LiDAR 88.36 79.57 74.55

Point-GNN LiDAR 88.33 79.47 72.29

 The results show that the AP predicted using the 3D detection

benchmark is lower than when using the BEV detection benchmark, as

discussed above. When comparing Table 4.5 with Table 2.1, where Table 2.1

consists of the 3D object localization results of various approaches on the BEV

detection benchmark, the AP’s ranking has changed. PointRCNN achieves the

highest AP for ‘easy’ cars among all approaches when using the BEV

detection benchmark, but it ranked four among the twelve approaches when

using the 3D detection benchmark. This could be due to the preference of the

input modal’s form. For instance, the AP predicted by BirdNet’s result drops

significantly when changing from the BEV detection benchmark to 3D

detection, where the BirdNet’s model is explicitly designed for BEV point

cloud input. PointRCNN segments the BEV point cloud more efficiently

compared to the raw point cloud, where the absence of occlusion factor allows

segmenting of near-perfect points for high-quality proposals generation and

bounding box refinement. As discussed in chapter two, the performance of

PointRCNN depends on the points segmented in the first stage.

Nevertheless, the 3D detection benchmark is more general than the

BEV detection benchmark to be evaluated and discussed, where it reflects the

actual situation in the scene. Point-GNN does prefer using the 3D detection

benchmark, although the AP predicted using the BEV detection benchmark is

higher. Point-GNN ranked second among the twelve approaches, and the AP

predicted is slightly lesser than the 3DSSD approach. The AP difference for

64

Point-GNN and 3DSSD is 0.03 % for ‘easy’ cars, 0.10 % for ‘moderate’ cars,

and 2.26 % for ‘hard’ cars when using the 3D detection benchmark. Both

3DSSD and Point-GNN utilize the preservation of the point cloud’s sparsity to

maintain its geometrical features during processing. This reduces the data loss

that occurs in many feature engineering, whereby the data is being transformed

into other originality-altered representations. Although 3DSSD surpasses

Point-GNN for the AP prediction, Point-GNN has the highest AP predicted

when iterated twice, while the result submitted to KITTI is the three-time-

iterated Point-GNN’s result. Therefore, Point-GNN’s actual performance is

more excellent than 3DSSD when localizing ‘easy’ and ‘moderate’ cars due to

slight AP difference. However, Point-GNN might not be as reliable as 3DSSD

when localizing ‘hard’ cars, given that the significant AP difference between

the two approaches of 2.29 %. This may be due to 3DSSD performs better in

feature abstraction than Point-GNN for the lower number of available points.

3DSSD utilizes two furthest point sampling layers to sample the points and is

capable of sampling points without introducing data loss.

4.4 Summary

The KITTI dataset that consists of the velodyne point cloud, image, label, and

calibration files are obtained. The KITTI dataset is used as the input to the

Point-GNN algorithm. Point-GNN has outputted numerical and graphical

results, displaying the X, Y, and Z coordinates of the localized object as well

as its three primary dimensions. The Point-GNN algorithm has been modified

to include the points and objects behind the camera, which causes the result

produced more comprehensive for the scene. Comparison and evaluation for

intra and inter-approach have been conducted. Point-GNN performs the best

when the model is iterated twice. Besides, Point-GNN surpasses most of the

3D object localization approaches when using the 3D detection benchmark,

but its AP predicted for ‘hard’ cars is lower than the 3DSSD approach.

65

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The extensive and comprehensive KITTI dataset consists of 7481 training

samples and 7518 testing samples, which are costly if the dataset is

constructed individually. It is identified and used to generate the results and

used for intra and inter-approach comparison. Besides, twelve 3D object

localization approaches are deeply reviewed and compared to select the best

among them. Point-GNN is a distinctive 3D object localization approach and

is selected due to its high AP result and its simplicity in the architecture design.

It preserves the point cloud’s sparsity and takes advantage of the natural

geometrical information of the points. Therefore, Point-GNN can accurately

localize the objects in the point cloud and obtain the objects’ three primary

dimensions. Point-GNN is further modified to include the computation for the

rear point cloud to perform a comprehensive 3D object localization. Point-

GNN performs the best when the model is iterated twice, which the AP

predicted for the model is the highest among all iteration numbers, with the

value of 88.336563 % for ‘easy’ cars, 78.510040 % for ‘moderate’ cars, and

77.671188 % for ‘hard’ cars when using the 3D detection benchmark. Apart

from that, Point-GNN outperforms most of the other literary works, where it

achieves state-of-the-art among the approaches along with 3DSSD. Therefore,

all objectives are achieved.

5.2 Recommendations for Future Work

This project can be improved in many ways due to the project’s limitation.

Due to the insufficiently powerful computer available, Point-GNN cannot

output the graphical result using the three-time-iterated Point-GNN’s model.

Currently, Point-GNN can only display the graphical result for ‘easy’ cars

detection, and the numerical result itself cannot illustrate the robustness of

Point-GNN in localizing highly occluded objects. Therefore, enhancing the

specification of the computer used to execute Point-GNN is necessary, where

66

at least the enhanced specifications can meet the minimum requirement to

execute Point-GNN at three iterations that are anticipated at 20 GB of RAM

and 60 FPS on-screen graphic display. By doing so, Point-GNN can display

the ‘hard’ class occluded objects being localized by 3D bounding boxes in the

point cloud.

Next, Point-GNN is only trained with the front point cloud due to the

absence of label for objects in the rear point cloud. This reduces the

effectiveness of Point-GNN in localizing the objects behind the camera.

Another extensive and comprehensive dataset should be obtained, which

consists of the label for all objects in the point cloud. Therefore, Point-GNN

can be trained with the new dataset to include objects in the rear point cloud

during the training process to effectively localize all objects in the point cloud

regardless of the object’s position during inferencing. This is used to develop a

robust 3D object localization approach that localizes objects in all directions.

Besides, Point-GNN’s third iteration does not improve the AP

compared to the two-time-iterated Point-GNN’s model. This is because of the

noise introduced into the vertices’ state during the third iteration as a result of

a very deep neural network. Hence, a residual learning layer should be added

to the third Point-GNN iteration to skip over the ReLU activation during

training, as discussed in chapter 4. There will be a branch from the two-time-

iterated model to the third iteration output and forms an identity mapping. This

will tell the training error at the third iteration should not be greater than the

two-time-iterated model. Adding this layer will improve the deeper neural

network’s quality, and the model can be trained with the same iterative method,

stochastic gradient descent (He, et al., 2015). Figure 5.1 shows the residual

learning’s building block.

Figure 5.1: Residual Learning’s Building Block (He, et al., 2015).

67

REFERENCES

Alkabawi, E.M., Hilal, A.R. and Basir, O.A., 2017. Feature abstraction for
early detection of multi-type of dementia with sparse auto-encoder. 2017 IEEE
International Conference on Systems, Man, and Cybernetics, SMC 2017,
2017-January, pp.3471–3476.

Beltrán, J., Guindel, C., Moreno, F.M., Cruzado, D., García, F. and Escalera,
A. de la, 2018. BirdNet: A 3D Object Detection Framework from LiDAR
Information. IEEE Conference on Intelligent Transportation Systems,
Proceedings, ITSC. [online] Available at: <http://arxiv.org/abs/1911.12236>
[Accessed 22 August 2020].

Brownlee, J., 2019. A gentle introduction to object recognition with deep
learning. Machine Learning Mastery, [blog] 22 May. Available at:
<https://machinelearningmastery.com/object-recognition-with-deep-learning/>
[Accessed 15 July 2020].

Chen, X., Ma, H., Wan, J., Li, B. and Xia, T., 2017. Multi-view 3D object
detection network for autonomous driving. Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017.

Engelcke, M., Rao, D., Wang, D.Z., Tong, C.H. and Posner, I., 2017.
Vote3Deep: Fast object detection in 3D point clouds using efficient
convolutional neural networks. Proceedings - IEEE International Conference
on Robotics and Automation.

FME Community, 2020. What is a point cloud? What is LiDAR? [online]
Available at: <https://community.safe.com/s/article/what-is-a-point-cloud-
what-is-lidar> [Accessed 16 July 2020].

Geiger, A., Lenz, P., Stiller, C. and Urtasun, R., 2013. Vision meets robotics:
The KITTI dataset. The International Journal of Robotics Research. The
International Journal of Robotics Research, (October), pp.1–6.

Gray, D., n.d. What are point clouds? 5 easy facts that explain point clouds.
[online] Available at: <https://info.vercator.com/blog/what-are-point-clouds-5-
easy-facts-that-explain-point-clouds> [Accessed 1 September 2020].

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L. and Bennamoun, M., 2020. Deep
Learning for 3D Point Clouds: A Survey. [online] Available at:
<http://arxiv.org/abs/1912.12033> [Accessed 11 August 2020].

He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep residual learning for image
recognition. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2016-December, pp.770–778.

68

Hui, J., 2018. mAP (mean Average Precision) for object detection. Medium,
[online] 7 Mar. Available at: <https://medium.com/@jonathan_hui/map-mean-
average-precision-for-object-detection-45c121a31173> [Accessed 12
September 2020].

Hyams, G. and Malowany, D., 2020. The battle of speed vs. accuracy Single-
shot vs two-shot detection meta-architecture. Clear | ML, [blog] 8 March.
Available at: <https://allegro.ai/blog/the-battle-of-speed-accuracy-single-shot-
vs-two-shot-detection/> [Accessed 31 August 2020].

Keshari, K., 2020. Object detection tutorial in TensorFlow: Real-time object
detection. Edureka, [blog] 14 May. Available at:
<https://www.edureka.co/blog/tensorflow-object-detection-tutorial/>
[Accessed 2 September 2020].

Liang, M., Yang, B., Wang, S. and Urtasun, R., 2018. Deep Continuous
Fusion for Multi-sensor 3D Object Detection. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics).

Protasiewicz, J., 2018. Why is python so good for AI, machine learning and
deep learning?. Netguru, [blog] 31 August. Available at:
<https://www.netguru.com/blog/python-ai> [Accessed 2 September 2020].

Qi, C.R., Liu, W., Wu, C., Su, H. and Guibas, L.J., 2018. Frustum PointNets
for 3D Object Detection from RGB-D Data. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition.

Qi, C.R., Su, H., Mo, K. and Guibas, L.J., 2017. PointNet: Deep learning on
point sets for 3D classification and segmentation. Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-
Janua, pp.77–85.

Qi, C.R., Yi, L., Su, H. and Guibas, L.J., 2017. PointNet++: Deep hierarchical
feature learning on point sets in a metric space. Advances in Neural
Information Processing Systems, 2017-Decem, pp.5100–5109.

Sayantini, 2020. Keras vs TensorFlow vs PyTorch: Comparison of the deep
learning frameworks. Edureka, [blog] 24 June. Available at:
<https://www.edureka.co/blog/keras-vs-tensorflow-vs-pytorch/> [Accessed 2
September 2020].

Shi, S., Wang, X. and Li, H., 2019. PointRCNN: 3D object proposal
generation and detection from point cloud. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.

Shi, W. and Rajkumar, R., 2020. Point-GNN: Graph Neural Network for 3D
Object Detection in a Point Cloud. [online] Available at:
<http://arxiv.org/abs/2003.01251> [Accessed 24 August 2020].

69

Singh, A.R., 2018. What is LiDAR and how does it work?. Geospatial world,
[blog] 2 June. Available at: <https://www.geospatialworld.net/blogs/what-is-
lidar-and-how-does-it-work/> [Accessed 1 September 2020].

Thomson, C., 2019. LiDAR vs point clouds: Learn the basics of laser scanning,
3D surveys and reality capture. Vercator, [blog] 27 May. Available at:
<https://info.vercator.com/blog/lidar-vs-point-clouds> [Accessed 14 July
2020].

Wang, Z. and Jia, K., 2019. Frustum ConvNet: Sliding Frustums to Aggregate
Local Point-Wise Features for Amodal. IEEE International Conference on
Intelligent Robots and Systems.

Yang, B., Luo, W. and Urtasun, R., 2018. PIXOR: Real-time 3D Object
Detection from Point Clouds. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.

Yang, Z., Sun, Y., Liu, S. and Jia, J., 2020. 3DSSD: Point-based 3D Single
Stage Object Detector. [online] Available at: <http://arxiv.org/abs/2002.10187>
[Accessed 25 August 2020].

Zarzar, J., Giancola, S. and Ghanem, B., 2019. PointRGCN: Graph
Convolution Networks for 3D Vehicles Detection Refinement. [online]
Available at: <http://arxiv.org/abs/1911.12236> [Accessed 20 August 2020].

Zhang, E. and Zhang, Y., 2009. Average Precision. In: L. LIU and M.T.
ÖZSU, eds. Encyclopedia of Database Systems. [online] Boston, MA:
Springer US.pp.192–193. Available at: <https://doi.org/10.1007/978-0-387-
39940-9_482> [Accessed 26 August 2020].

Zhao, Z.Q., Zheng, P., Xu, S.T. and Wu, X., 2019. Object Detection with
Deep Learning: A Review. IEEE Transactions on Neural Networks and
Learning Systems, 30(11), pp.3212–3232.

Zhou, Y. and Tuzel, O., 2017. VoxelNet: End-to-End Learning for Point
Cloud Based 3D Object Detection. Computers in Education Journal.

70

APPENDICES

APPENDIX A: Graphs

GraphA-1: AP Predicted using the 3D Detection Benchmark for the Three-

time-iterated Point-GNN.

GraphA-2: AP Predicted using the BEV Detection Benchmark for the Three-

time-iterated Point-GNN.

71

GraphA-3: AP Predicted for Two-time-iterated Point-GNN using the 3D

Detection Benchmark.

GraphA-4: AP Predicted for One-time-iterated Point-GNN using the 3D

Detection Benchmark.

72

GraphA-5: AP Predicted for Non-iterated Point-GNN using the 3D Detection

Benchmark.

73

APPENDIX B: Tables

TableB-1: Comparative 3D Object Localization Results of Various

Approaches on the KITTI Test BEV Detection Benchmark, with an IoU

Threshold of 0.7 for 3D Bounding Box (Guo, et al., 2020).

Approaches Modality
Average Precision for Cars

Easy (%) Moderate (%) Hard (%)

F-PointNet LiDAR, Image 91.17 84.67 74.77

F-ConvNet LiDAR, Image 91.51 85.84 76.11

MV3D LiDAR, Image 86.62 78.93 69.80

ContFuse LiDAR, Image 94.07 85.35 75.88

PointRCNN LiDAR 92.13 87.39 82.72

PointRGCN LiDAR 91.63 87.49 80.73

PIXOR LiDAR 83.97 80.01 74.31

BirdNet LiDAR 76.88 51.51 50.27

Vote3Deep LiDAR - - -

VoxelNet LiDAR 89.35 79.26 77.39

3DSSD LiDAR 92.66 89.02 85.86

Point-GNN LiDAR 93.11 89.17 83.90

74

TableB-2: Gantt Chart for Project Part I.

No.
Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M1 Project planning ✔ ✔

M2 Literature review ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

M3 Research methodology ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

M4 Report writing & oral presentation ✔ ✔ ✔ ✔ ✔ ✔

Activities

75

TableB-3: Gantt Chart for Project Part II.

No. Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M1 Execution of Point-GNN’s code ✔ ✔ ✔ ✔ ✔

M2 Research methodology ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

M3 Model development ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

M4 Result and discussion ✔ ✔ ✔ ✔ ✔

M5 Poster preparation ✔ ✔ ✔ ✔

M6 Report writing & oral presentation ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Activities

76

TableB-4: Comparison Between Specifications of the Student’s Computer and

the Research Server.

 Student’s computer UTAR research server

Operating system Windows Linux

RAM (GB) 12 64

GPU NVIDIA GeForce GTX 1050 NVIDIA GP104GL

On-screen (FPS) 60.0 13.0

TableB-5: Numerical Result for the Testing Sample 000001.

Object class Car (1) Car (2)

Truncation -1 -1

Occlusion -1 -1

Alpha 0 0

Clip_Xmin 141.20734621538205 36.41744711056066

Clip_Ymin 176.2229789093736 174.03262110345074

Clip_Xmax 351.68137221248566 232.33337647692284

Clip_Ymax 243.90982579877945 289.8086621292917

Height (m) 1.5215358 1.5745287

Width (m) 1.6863366 1.6601882

Length (m) 4.283223 4.113779

X3D -8.645287 -7.8946705

Y3D 1.6074694 1.5971005

Z3D 17.363804 11.835676

Yaw 0.09412821 0.72221255

Score 82.2164862876902 151.07463956706272

77

TableB-6: Combined Numerical Result for the Testing Sample 000001.

Object class Car (1) Car (2) Car (3)

Truncation -1 -1 -1

Occlusion -1 -1 -1

Alpha 0 0 0

Clip_Xmin 141.2073462 640.9306218 36.4174471

Clip_Ymin 176.2229789 118.7164306 174.0326211

Clip_Xmax 351.6813722 711.8680651 232.3333765

Clip_Ymax 243.9098258 166.1110190 289.8086621

Height 1.5215358 1.5051302 1.5745287

Width 1.6863366 1.6225216 1.6601882

Length 4.283223 3.9107132 4.113779

X3D -8.645287 -2.2776604 -7.8946705

Y3D 1.6074694 1.7630962 1.5971005

Z3D 17.363804 -25.551062 11.835676

Yaw 0.09412821 1.4244215 0.72221255

Score 82.2164863 53.6548599 151.0746396

TableB-7: AP Predicted for Point-GNN using the 3D Detection Benchmark

with Different Iteration Numbers.

Number of

Iteration

Average Precision (3D Detection Benchmark)

Easy (%) Moderate (%) Hard (%)

0 73.896561 64.421539 59.909767

1 88.003227 77.887131 76.144211

2 88.336563 78.510040 77.671188

3 87.890259 78.342728 77.377190

78

TableB-8: AP Predicted for Point-GNN using the BEV Detection Benchmark

with Different Iteration Numbers.

Number of

Iteration

Average Precision (BEV Detection Benchmark)

Easy (%) Moderate (%) Hard (%)

0 87.241478 77.389450 75.839111

1 89.833923 87.672905 86.303192

2 89.995453 88.374153 87.218575

3 89.823723 88.308357 87.155525

TableB-9: Comparative 3D Object Localization Results of Various

Approaches on the KITTI Test 3D Detection Benchmark, with an IoU

Threshold of 0.7 for 3D Bounding Box (Guo, et al., 2020).

Approaches Modality
Average Precision for Cars

Easy (%) Moderate (%) Hard (%)

F-PointNet LiDAR, Image 82.19 69.79 60.59

F-ConvNet LiDAR, Image 87.36 76.39 66.69

MV3D LiDAR, Image 74.97 63.63 54.00

ContFuse LiDAR, Image 83.68 68.78 61.67

PointRCNN LiDAR 86.96 75.64 70.70

PointRGCN LiDAR 85.97 75.73 70.60

PIXOR LiDAR - - -

BirdNet LiDAR 13.53 9.47 8.49

Vote3Deep LiDAR - - -

VoxelNet LiDAR 77.47 65.11 57.73

3DSSD LiDAR 88.36 79.57 74.55

Point-GNN LiDAR 88.33 79.47 72.29

