

PASSENGER COUNTING WITH FACE DETECTION

TEOH HAN WEI

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Mechatronics Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

January 2020

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it has

not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature :

Name : TEOH HAN WEI

ID No. : 15UEB05028

Date : 27th APRIL 2020

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “PASSENGER COUNTING WITH FACE

DETECTION” is prepared by TEOH HAN WEI has met the required standard for

submission in partial fulfilment of the requirements for the award of Bachelor of

Engineering (Honours) Mechatronics Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : IR. TS. DR. THAM MAU LUEN

Date : 27th APRIL 2020

Signature :

Co-Supervisor : DR. CHEE PEI SONG

Date : 27th APRIL 2020

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this report.

© 2020, TEOH HAN WEI. All right reserved.

v

ACKNOWLEDGEMENTS

I will like to thank everyone who had contributed to the successful completion of this

project. I will like to express my gratitude to my research supervisor, Ir. Ts. Dr. Tham

Mau Luen for his invaluable advice, guidance and his enormous patience throughout

the development of the research.

Besides, I cannot express enough thanks to UTAR lecturers, lab officers and

staffs especially my co-supervisor, Dr. Chee Pei Song for their continued support,

encouragement and assistance.

In addition, I will also like to express my gratitude to my loving parents and

friends who had helped and given me encouragement and mentally support.

vi

ABSTRACT

Passenger counting exhibits a wide variety of applications in the context of smart cities.

Such applications range from retail analytics, queue management and space

utilizations. Driven by the success of machine learning, this study aims to develop a

real-time passenger counting system. Different from existing works, the designed

solution is deployed on a resource limited Intel UP Squared (UP2) Board, inference of

which is handled by an accelerator called Intel Movidius Neural Compute Stick 2

(NCS2). MobileNet-single shot detector (SSD) is chosen as the object detector model

since it belongs to a class of efficient models that can execute on mobile and embedded

systems. While running detections across every video frames, centroid tracking

algorithm tracks every unique person in video streams, where Kalman filter is further

applied to reduce the noise. The outcome can be visualized on different type of devices

for further analysis through a central cloud server. The performance of the passenger

counting system is evaluated in terms of accuracy and frame per second (FPS).

Furthermore, the feasibility of the solution is demonstrated in several showcases.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS / ABBREVIATIONS xiii

LIST OF APPENDICES xiv

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 1

1.3 Problem Statement 1

1.4 Aim and Objectives 2

1.5 Scope and Limitation of the Study 3

1.6 Contribution of the Study 3

1.7 Outline of the Report 4

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Convolutional Neural Network (ConvNet/CNN) 5

2.2.1 Input Layer 6

2.2.2 Convolution Layer 7

2.3 Face Detection Methods 8

2.3.1 Knowledge-based Method 8

viii

2.3.2 Feature Invariant Approach 9

2.3.3 Template Matching Method 10

2.3.4 Appearance-based Method 10

2.4 Person Counting 11

2.4.1 Camera Orientation 12

2.4.2 Density of People 13

2.4.3 Lighting Condition 13

2.4.4 Presence of Occlusion 14

3 METHODOLOGY AND WORK PLAN 15

3.1 Introduction 15

3.1.1 Prototype Implementation 16

3.2 Hardware Overview 18

3.2.1 Intel UP Squared Board 18

3.3 Software Implementation 20

3.3.1 OpenVINO 21

3.4 Face Recognising and Tracking 21

3.4.1 Centroid Tracking Algorithm 22

3.4.2 Kalman Filter 24

4 RESULTS AND DISCUSSIONS 26

4.1 Performance Measurement for Different Devices 26

4.1.1 Tabulated Results of Performance Measurement for

Different Devices 27

4.2 Performance Measurement for Different Input 31

4.2.1 Performance Measurement for Different Revolutions

Input 31

4.2.2 Performance Measurement for Different Inputs

Complexity 32

4.2.3 Performance Measurement for Different

Performances Complexity 32

4.3 Technical Challenges 33

4.3.1 Camera View Calibration 33

ix

4.3.2 Pedestrian Counting Method 34

4.3.3 Double Counting Problem 35

4.3.4 Counting Method 36

5 CONCLUSIONS AND RECOMMENDATIONS 38

5.1 Conclusions 38

5.2 Recommendations for future work 39

REFERENCES 40

APPENDICES 42

x

LIST OF TABLES

Table 3.1: Data Sheet of Intel UP2 Board 19

Table 4.1: Input Power and Output Power of UP2 Board and PC 27

Table 4.2: Results from UP2 Board with one MYRIAD 28

Table 4.3: Results from PC with one MYRIAD 28

Table 4.4: Results from UP2 Board with two MYRIAD 28

Table 4.5: Results from PC with two MYRIAD 29

Table 4.6: Comparison of Specification between UP2 and PC 29

Table 4.7: Comparison of Results between UP2 and PC for one

MYRIAD 29

Table 4.8: Comparison of Results between UP2 and PC for two

MYRIAD 30

Table 4.9: Comparison of Results between one and two MYRIAD

for both UP2 and PC 30

xi

LIST OF FIGURES

Figure 1.1: Example of dashboard 2

Figure 2.1: Subsets of artificial intelligence (AI) 5

Figure 2.2: Process of convolutional neural network (CNN) 6

Figure 2.3: 4x4x3 RGB plane 7

Figure 2.4: Convolution layer 7

Figure 2.5: Face Detection Methods 8

Figure 2.6: Knowledge-based Method 9

Figure 2.7: Feature Invariant Approach 9

Figure 2.8: Template Matching Method 10

Figure 2.9: Appearance-based Method 11

Figure 2.10: Person Counting 12

Figure 2.11: Different Camera View from Different Camera

Orientation 12

Figure 2.12: High Density of People 13

Figure 2.13: Lighting Condition on Images’ Quality 14

Figure 2.14: Presence of Occlusion 14

Figure 3.1: Flow chart of prototype 15

Figure 3.2: The Prototype 16

Figure 3.3: System Flow of Prototype 17

Figure 3.4: Flow Chart for System Flow 17

Figure 3.5: Communication of electronics components with

microcomputer 18

Figure 3.6: Actual Model of Intel UP2 Board 20

Figure 3.7: Communication of software with microcomputer 20

xii

Figure 3.8: Flow of face recognition, tracking and counting

processes 21

Figure 3.9: Sample actual model of the passenger counting 22

Figure 3.10: Bounding Box with Unique ID 23

Figure 3.11: Euclidean Distance 23

Figure 3.12: Euclidean Distance for Two Points 24

Figure 3.13: Kalman Equation 24

Figure 3.14: Movement Path Prediction from Kalman Filter 25

Figure 3.15: Kalman Filter with Centroid Tracking Algorithm 25

Figure 4.1: Specification of Dell Inspiron 14-3443 27

Figure 4.2: Performance Measurement for Different Revolutions

Input 31

Figure 4.3: Performance Measurement for Different Inputs

Complexity 32

Figure 4.4: Performance Measurement for Different Performances

Complexity 33

Figure 4.5: Changes of Camera View Calibration 34

Figure 4.6: Changes of Pedestrian Counting Method 35

Figure 4.7: Double Counting Problem 36

Figure 4.8: Changes of Counting Methods 37

xiii

LIST OF SYMBOLS / ABBREVIATIONS

5G Fifth Generation Cellular Network Technology

AI Artificial Intelligent

API Application Programming Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

fps frames per second

GPU Graphics processing unit

Industry 4.0 Industry Revolution 4.0

IoT Internet of Things

NCS2 Neural Compute Stick 2

OpenCV Open Source Computer Vision Library

OpenVINO Open Visual Inference and Neural Network Optimization

xiv

LIST OF APPENDICES

APPENDIX A: Datasheet of Intel UP Squared Board 42

APPENDIX B: Datasheet of Movidius Myriad VPU 44

APPENDIX C: Datasheet of AI Core X (Processor Chipset for

Movidius) 46

APPENDIX D: Datasheet of UP HD Camera 47

APPENDIX E: main.py 49

APPENDIX F: CloudDataTransmitter.py 63

APPENDIX G: firebasecloud.py 66

APPENDIX H: dashingrequest.py 69

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction

Today, passenger counting has a capacious of applications and it is often developed

on surveys, management and security. Passenger counting has the capability to provide

a high accuracy and large amount of data for big data analysis, behaviour and

management study. For instance, passenger counting is implemented in public

transport system, where the management able to collect and study the data from this

system. The management is then able to make a more precise decision on optimizing

the public transport system.

Nowadays, technology trend grows dynamically due to the emerging trends of

Industry 4.0 and 5G technology. Industry 4.0 was proposed to send all the data to the

cloud while 5G technology will assist this idea and make it comes true. In the cloud,

the huge amount of data will be collected and big data analysis will be done to collect

the useful analysis results to the end users.

1.2 Importance of the Study

The result of this present study might have significant impact on solving the limitation

of current face recognition technology by improving the flexibility, functionality and

performance of this technology. The prototype from this study is able to embed,

implement and solve multiple problems with one single solution.

The key concern of this study is to catch up the face recognition technology

with the current technology tends such as Internet of Things (IoT), 5G, industry

revolution 4.0 (Industry 4.0) and the big data analysis. In the coming next few years,

the market will be analysed and studied by extracting the auxiliary information based

on the biometric techniques especially the face recognition which has been wisely

implemented in China. (Kumar, et al., 2017)

1.3 Problem Statement

Nowadays, passenger counting has been done using different type of algorithms and

methods. The most common way is to use OpenCV to recognise the moving pixels in

the frame. However, this method has a critical weakness where it might miss track and

2

count passengers if few passengers passed together or passed by each other. The best

solution is to implement a deep learning algorithm which makes the system “smarter”.

Furthermore, the passenger counting that is available in the open source shares some

common weaknesses in terms of poor accuracy, limited features, limited application,

lack of flexibility and high power consumption. These algorithms are easy to miscount

when overlapping or multiple passing Furthermore, the output data from these methods

is traditionally stored or direct display without storing to the cloud.

In order to catch up with the technology trends for Industry 4.0 and 5G

technology, the output data from the system has to share to the cloud where end users

from every end corners of the Earth are able to access to it. By sharing the data to cloud,

the end users are able to access the dashboard from far and receive the important plus

simplified message from it. Figure 1.1 shows the example of dashboard.

Figure 1.1: Example of dashboard

1.4 Aim and Objectives

The aim of this project is to develop a passenger counting with face detection by using

Intel UP Squared Board and Intel Movidius Neural Compute Stick 2 (NCS2). These

components are embedded with the software coding in order to build a prototype that

is able to accomplish the objectives of this project:

 To develop a video analytics with machine learning capability that performs

the face detection technique and tracking of individual in real time.

3

 To integrate the technique with Internet of Things (IoT), industry revolution

4.0 (industry 4.0) and the big data analysis

 To create a cloud based system for the visualization of real time data analysis.

1.5 Scope and Limitation of the Study

This project is divided into few stages which are input data collection at frontend

sensor, data processing and data analysis at central processing unit (CPU), data

synchronization from the CPU to cloud or data storage and data dissemination to the

end users. The challenge of this project is to combine all the stages and performed

them in a single device.

In the data collection stage, the frames per second (fps) is the main challenge

of this project. The communication speed between the sensor with the single board

computer and image resolution of the sensor will be the barrier for this project. The

pre-trained data sets, quantity of data and lack of suitable data sets would affect the

output results from data processing and data analysis. (Fu, 2019)

The specification of the single board computer, transmission speed of Wi-Fi

module and communication speed of the transmission system areimportant in this

project where the response speed, training and inference time depend heavily on these

factors and it might lead to the quality of the performance and results collected. (Kim,

et al., 2019) Furthermore, the total power consumption required for this project is high

as it might lead to few factors like heating problem, power source limitation, lifetime

and costing.

The algorithms and platforms used for face recognition, face tracking and

person counting are important for the accuracy, precision and recall of the results

obtained. The parameters of algorithms and tracking method are tuned and adjusted to

the optimum performance while at the same time the failure detection scheme was

installed and implemented to recover from tracking failure. (Wang, et al., 2019)

1.6 Contribution of the Study

The contribution of this project might help to improve, enhance and combine the

technologies from face recognition, face tracking and person counting into a single

prototype. This system would build by available components, small in size, low power

consumption and cheap in costing which is able to catch up with the technology and

industry trends. Besides, the prototype from this project is a good solution and flexible

4

for many applications. For example, it can be implemented in attendance system,

payments, access and security.

1.7 Outline of the Report

In this report, literature review will be discussed and commented in Chapter 2. Besides,

the methodology involves fulfilling the aim and objectives in this study will be

explained in Chapter 3. All the results and explanations will be discussed in Chapter 4

while the conclusion and recommendation will be written at Chapter 5.

5

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction

Deep learning is a type of machine learning which trained a microprocessor or central

processing unit (CPU) to perform a high level jobs or humanlike tasks such as image

recognition, passenger tracking and speech recognition. Deep learning will help the

computer to study on its own recognizing patterns through multiple layers of

processing. The divergences between the artificial intelligence (AI), machine learning

and deep learning are artificial intelligence which is a technique that enabled computer

to imitate humanlike behavior while machine learning is a subdivision of artificial

intelligence technique which enabled machines to improve itself with experiment by

using statistical method and deep learning is a subdivision of machine learning where

the multi-layer neural networks feasible is made with computation process. Figure 2.1

shows the subsets of artificial intelligence.

Figure 2.1: Subsets of artificial intelligence (AI)

2.2 Convolutional Neural Network (ConvNet/CNN)

In the world of deep learning, a convolutional neural network (CNN) is a class of deep

learning architecture that contains various layers such as pooling layer, convolutional

layer and activation layer. In CNN, it takes in an input data such as images, videos or

any real time data and it will assign learnable biases and weights to the targets in the

6

input data and it will able to classify and differentiate the targets. However, CNN

requires a fine tuned weights and biases to obtain the best result with the help of filters,

pre-processing and number of trainings. For CNN, the pre-processing required is much

lower as compared to other method of classification. (Wu, 2019) Figure 2.2 shows the

sequence of CNN from the input raw data until the output result. (Saha, 2018)

Figure 2.2: Process of convolutional neural network (CNN)

2.2.1 Input Layer

The data collected from the input stage will be processed by separating the data into

three type of colour planes which are the red, green and blue planes where they also

known as the RGB plane. (Atmaja, et al., 2016) The purpose of this process is mainly

on minimizing the data into a more simple form that is easier for the following

processes and at the same time, all the important features from the data will be

remained which is important and critical for getting a good prediction. (Prabhakar, et

al., 2017) In Figure 2.3 shows the RGB plane is separated from a raw data. (Saha, 2018)

7

Figure 2.3: 4x4x3 RGB plane

2.2.2 Convolution Layer

Convolution layer is the major role in CNN. A convolution layer consists of a set of

filters where those variables of filter are required to be trained and learned. The filters

contain of weight and height where the weight and height of the filters have to be

smaller than the input volume. Input volume will be convolved by each filter and

formed neurons which will compute an activation map. For example, Figure 2.4 shows

an example of 5x5 matrix of input data and it is convolved to a feature map. (Dertat,

2017)

Figure 2.4: Convolution layer

8

2.3 Face Detection Methods

There are several existing and mature techniques used in the market to detect the faces

from any single intensity or colour image. These face detection techniques can be

classified into four major categories which are knowledge-based method, template

matching method, appearance-based method and features invariant approach. (Qaim

Mehdi Rizvi, 2011) Face detection can be consider as a substantially part of face

recognition. The method of face detection is complicated due to various features

presented across the human faces such as pose, skin colour, position and orientation,

lighting condition and image resolution. (Chakravartula Raghavachari, 2015) Figure

2.5 shows the list of common face detection methods used.

Figure 2.5: Face Detection Methods

2.3.1 Knowledge-based Method

First of foremost, knowledge-based method also known as the rule-based method

where it will encode human knowledge that the features that should be constituted in

a typical face. (Mayank Chauhan, 2014) Normally, these rubrics capture the

relationships between facial features. This method is designed mainly for face

localization. (Qaim Mehdi Rizvi, 2011) Figure 2.6 shows the knowledge-based

method’s architecture.

9

Figure 2.6: Knowledge-based Method

2.3.2 Feature Invariant Approach

For feature invariant approach, the algorithm in this approach is mainly to find for the

structural features that may exist at certain position even when the pose, gestures,

viewpoint or lighting conditions vary and this approach is to detect the faces. This

method is designed mainly for face localization. (Qaim Mehdi Rizvi, 2011) Figure 2.7

shows the sample of feature invariant approach which found out the relative position

from the random listing.

Figure 2.7: Feature Invariant Approach

10

2.3.3 Template Matching Method

In template matching method, a group of standard patterns of typical faces will be

stored to describe the face as a whole or the facial features separately. (Priyanka

R.Borude, 2015) The correlations between an input image and the stored patterns are

computed for detection. This method is designed mainly for both face localization and

detection. (Qaim Mehdi Rizvi, 2011) This method has been widely used in image face

detection algorithm and programming platforms like Matlab, OpenCV and Python.

Figure 2.8 shows the sample architecture of template matching method.

Figure 2.8: Template Matching Method

2.3.4 Appearance-based Method

In divergence to template matching method, the models are learned from a set of

training images which should capture the representative variability of facial

appearance. (Priyanka R.Borude, 2015) These learned models will be used for face

detection. These methods are designed mainly for face detection. (Qaim Mehdi Rizvi,

2011) This method has been widely used in motion face detection algorithm and

programming platforms like OpenCV and Python where this method able to track the

recognized features or points when the faces are moved. Figure 2.9 shows the sample

result of appearance-based method.

11

Figure 2.9: Appearance-based Method

2.4 Person Counting

In person counting, there are several vision based approaches that need to be consisted

in different scenarios. There are several factors that may affect the performance of

person counting. The factors are camera orientation, density of people, lighting

conditions and presence of occlusion. (Chakravartula Raghavachari, 2015) Figure 2.10

shows sample person counter using OpenCV.

12

Figure 2.10: Person Counting

2.4.1 Camera Orientation

The camera can be installed either in an overhead position or in an inclined position.

The camera installs in an overhead position will have a better result of person counting

due to the occlusion noise caused by person can be reduced as the camera had a better

view of the people arrangement. However, the camera installs in an inclined position

had a better view and enables to extract the human features well. (Chakravartula

Raghavachari, 2015) Figure 2.11 shows the camera view from overhead position and

inclined position.

Figure 2.11: Different Camera View from Different Camera Orientation

13

2.4.2 Density of People

The person counting is highly effected by the human detection accuracy and the human

detection accuracy is highly effected the density of people in the detection region or

coverage region of camera. The person counting has a better result when the density

of people in low. This is due to the high density of people, the people are moving close

to each other and the noise like occlusion may happen and effect the final result.

(Chakravartula Raghavachari, 2015) Figure 2.12 shows the camera view from a high

density of people where the people stood closer to the camera can be viewed but the

people behind are blocked.

Figure 2.12: High Density of People

2.4.3 Lighting Condition

Lighting condition and the environment condition are highly effected the vision based

algorithms. The person counting results are robust to the low lighting condition. The

accuracy under day light condition is less lower that the night mode which may due to

the presence of shadow in day light condition. This noise is effected the accuracy of

human detection which effects the person counting results as well. (Chakravartula

Raghavachari, 2015) Figure 2.13 shows the level of lighting condition and the changes

on the quality of image taken.

14

Figure 2.13: Lighting Condition on Images’ Quality

2.4.4 Presence of Occlusion

In camera view, the detected person is highly sensitive to the obstacles around him.

For instance, someone passes by him or he passes by some objects and the objects

blocked him. The effectiveness of the person counting results is depended on the

number of occlusions occurred. (Chakravartula Raghavachari, 2015) Figure 2.14

shows the effect of occlusion on person tracking.

Figure 2.14: Presence of Occlusion

15

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

In this project, the prototype is made up of three major stages which are input stage,

data processing stage and output stage. In input stage, the sensor used is the UP HD

camera which to collect the real time video analysis as input data. In the processing

stage, the input data collected will be processed by the microcomputer with the support

of Intel Movidius Neural Compute Stick 2 (NCS2), assistance modules and software

algorithms implementation. The last stage is the output stage where the output result

from the previous stage will be collected and stored in cloud storage, displayed to the

end user directly or extracted by the end user when needed. Figure 3.1 shows the flow

chart of the prototype.

Figure 3.1: Flow chart of prototype

16

3.1.1 Prototype Implementation

The prototype of this project is made from Intel UP Squared (UP2) Board, UP HD

camera and Intel Movidius Neural Compute Stick 2 (NCS2) where is showed in Figure

3.2.

Figure 3.2: The Prototype

This prototype is consisting of Intel UP Squared (UP2) Board, UP HD camera

and Intel Movidius Neural Compute Stick 2 (NCS2) in term of hardware. It is

consisting Python 3.6, OpenCV, Linux Operating System (OS) and OpenVINO in term

of software. The prototype will send the results collected to central cloud server which

is the Firebase. The results will be displayed to the users through the monitor screen,

dashboard, phone APP (Android and IOS). Figure 3.3 shows the complete system flow

of the prototype and Figure 3.4 shows the complete flow chart for the system flow.

17

Figure 3.3: System Flow of Prototype

Figure 3.4: Flow Chart for System Flow

18

3.2 Hardware Overview

In this project, a prototype is built with the capability to perform deep learning and

network monitoring tasks, several electronics hardware and microcomputer that

required to fulfil the objectives of this project. The microcomputer used is the Intel UP

Squared (UP2) Board and it will communicate with the UP HD camera where the

camera will act as sensor to collect the input data.

Due to the limitation of the Intel UP2 Board, a mSATA SSD module and M2

Wi-Fi module are added to assist the Intel UP2 as this board did not had a build in Wi-

Fi module and the build in memory storage is limited which needs an external memory

storage to support it. Besides, the Intel Movidius Neural Compute Stick 2 (NCS2) is

used to support the Intel UP2 Board as well which will increase the deep learning

performance up to seven times. Figure 3.5 shows relationship between the electronics

components with the microcomputer.

Figure 3.5: Communication of electronics components with microcomputer

3.2.1 Intel UP Squared Board

Intel UP Squared (UP2) Board is a single board microcomputer or also known as edge

computer which is developed by Intel Corporation (Intel). This board can function like

a mini computer and poared by 5V at 6A which had a dimension of 85.6mm x 90.0mm

x 50.0mm (3.37" x 3.54" x 1.97"). Intel claimed that this board is the world’s faster

maker board with a high performance and low power consumption features of Intel’s

19

Apollo lake processors. The 40 pins I/O connector, three USB 3.0 ports with one OTG,

two gigabit Ethernet and more other powerful features made this board a perfect choice

for different developments and applications like intelligent cars, smart city, smart

home, robotics, machine vision, drone, Internet of Things (IoT) and deep learning.

 This board supports the AI Core X mPCIe module and Intel Movidius Neural

Compute Stick 2 (NCS2) which may speed up to 105 fps and 1 trillion floating point

operations that made the a powerful and smooth solution for real time performances

and visual inspections with deep learning. In Table 3.1 shows the data sheet of Intel

UP2 Board and Figure 3.6 shows the actual model of Intel UP2 Board that is used for

the prototype in this project.

Table 3.1: Data Sheet of Intel UP2 Board

Features Descriptions

UP board version UP Squared

Graphics Intel HD Graphic 505

System memory 4GB RAM

Storage capacity 64GB eMMC

WOL YES

Video output HDMI+DP

CEC Optional

RTC YES

PXE YES

mPCI-e x1

M2 2230 E-key x1

SATA x1

20

Figure 3.6: Actual Model of Intel UP2 Board

3.3 Software Implementation

In this project, a prototype is built with the capability to perform deep learning and

network monitoring tasks, several electronics hardware and microcomputer that

required to fulfil the objectives of this project. The software environment used is the

Ubuntu 18.04 LTS operating system and the software installed is the OpenVINO while

OpenCV and TensorFlow are embedded in the OpenVINO where they are the

fundamental structure of the OpenVINO. Figure 3.7 shows communication of the

software with the microcomputer.

Figure 3.7: Communication of software with microcomputer

21

3.3.1 OpenVINO

Open Visual Inference and Neural Network Optimization (OpenVINO) is a toolkit that

introduced by Intel which is used to perform an optimized deep learning. OpenVINO

is a toolkit that build from the fundamental of OpenCV, in order words OpenVINO is

the update version of the OpenCV. Eventually, OpenCV does not equipped with the

deep learning feature and Intel optimized the OpenCV by combining the free and open-

source software library, TensorFlow and OpenVINO are the product formed.

Intel claims that OpenVINO able to accelerate the deep learning performance

by accessing the Intel computer vision accelerators, speed code performance and it

also supports heterogeneous processing with asynchronous execution. Intel tries to run

with and without OpenVINO under an unleash convolutional neural network (CNN)

based deep learning inference across using a common API & ~10 pre-trained models

and the result shows that OpenVINO able to integrates the deep learning process seven

times faster.

3.4 Face Recognising and Tracking

At the beginning stage, the face recognition technique will detect the human face in

the every frames captured with the help of deep learning. Next, the system will track

the face detected and count the number of passengers when they pass through a certain

area. Figure 3.8 shows the flow of face recognition, tracking and counting processes

and Figure 3.9 shows the sample actual model of the passenger counting.

Figure 3.8: Flow of face recognition, tracking and counting processes

22

Figure 3.9: Sample actual model of the passenger counting

3.4.1 Centroid Tracking Algorithm

At the beginning state of centroid tracking algorithm, the algorithm will detect the

human through the convolution neural network (CNN). The algorithm will initial a

bounding box which will fit the entire human gesture into the region. Next, the

algorithm will try to calculate the centroid point coordinate for the bounding box plus

assigning a unique ID for each bounding boxes formed. The corners bounding box will

generate XY coordinate ([x1, y1], [x1, y2], [x2, y1], [x2, y2]) which is shows in Figure

3.10. The centroid coordinate will be generated by referring the XY coordinate (x, y)

of the corners. The point x is calculated from the submission of x1 and x2 then divided

by 2 while the point y is calculated from the submission of y1 and y2 then divided by

2. The algorithm will repeat this step for every new detected human and assign a

unique ID for all of them.

23

Figure 3.10: Bounding Box with Unique ID

 From the centroid point generated with unique ID, the algorithm will try to

track the human using the centroid point and the Euclidean distance comes in to assist

the algorithm to track human movement. In Figure 3.11, the Euclidean distance, d

between the initial point, P1 (x1, y1) and the final point, P2 (x2, y2) is determined with

the help of formulate. The initial point is the human position at frame t and the final

point is the human position at frame t+1 where the algorithm will get Euclidean

distance to predict the human movement direction. In other way round, the human is

moving from P1 to P2 with certain angel and direction. All the description above are

concluded and shows in Figure 3.12.

Figure 3.11: Euclidean Distance

24

Figure 3.12: Euclidean Distance for Two Points

3.4.2 Kalman Filter

With the centroid tracking algorithm only, the algorithm does not performed well in

real time tracking. During real time tracking, the centroid point formed is not

constantly formed and it will miss in between. The problem causes the missing

tracking of human and the algorithm will assign a new ID again for the same human

again and again. For instance, person A is moving from point A to point B and in this

moving path, the algorithm misses track him for 3 times due to some noises appeared.

The algorithm may assign 3 new ID to him for every miss tracking where the algorithm

will track him as new person after every miss track. When came to the end, this person

A with an initial ID of ID 1 will end up with ID 4 after 3 miss track. In order to

overcome with this problem, Kalman filter is added to assist the centroid tracking

algorithm where this filter will help the algorithm to predict the possible future

movement with the help of formula in Figure 3.13.

Figure 3.13: Kalman Equation

The Kalman filter able to predict the future movement until the human is really

disappeared from the screen and Figure 3.11 shows the predicted movement path from

Kalman filter with the points collected from algorithm. Besides, the Kalman filter able

to eliminate the noise from the points collected by the algorithm during the movement

25

path. This filter plays an important role especially in real time tracking as the centroid

generated may be keep fluctuating and not consistent which may act as noise for the

centroid tracking algorithm and effect the accuracy of the result. With this filter, the

algorithm able to come out a smooth moving path like shows in Figure 3.14 where the

centroid points collect along the movement path is not consistent and fluctuating but

the filter will come out the a smooth predicted movement path. Figure 3.15 shows the

description and explanation above.

Figure 3.14: Movement Path Prediction from Kalman Filter

Figure 3.15: Kalman Filter with Centroid Tracking Algorithm

26

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Performance Measurement for Different Devices

The power specification of Intel UP Squared (UP2) Board and personal computer (PC)

are recorded and tabulated in Table 4.1. The input power of devices are not focused in

this study as they just effected the power consumption and it will not affect the

performance. Thus, input power of devices will not be discussed but the output power

of devices are highlighted as it will affect the performance in term of time needed, s

and FPS. From Table 4.6, a 117% of output power increased in order to have an

improvement of FPS of 42% where by increasing 1% of output power, the FPS will

increase 0.36% which is around 0.01 FPS. From the improvement, a small conclusion

can be made that the UP2 did not have enough power to fully power up the movidius

(MYRIAD). In short, the FPS performance is highly effected by the output power

devices.

From Table 4.9, the results are not so positive and they did not behaviour as

their expected performances. One of the problems may be due to the maximum output

current of USB port which is not enough for the MYRIAD to work efficiently. A unit

load is defined as 100 mA in USB 2.0 and 150 mA in USB 3.0. A device may draw a

maximum of 5 unit loads (500 mA) from a port in USB 2.0 and 6 unit loads (900 mA)

in USB 3.0. This is the ideal output power from USB and in real case for laptop or any

electronic devices, the output power will be lower due to the power consumption in

CPU and power loss. From the datasheet provided, although Intel did not mentioned

the maximum current for the processor (Myriad X) in MYRIAD but an estimation can

be made that it should be optimum around 1V as Intel processor worked under 1.025V

and overclocked processor worked around 1.2V.

The connection of USB ports hub is another problem as well where it will share

the output power among the devices connected. For instance, this hub is connected to

USB 3.0 of laptop and 2 MYRIAD are connected to the hub. The 900mA from laptop

will be share among the MYRIAD where each MYRIAD will receive a power of

450mA. One experiment is done by connecting two MYRIAD directly to the PC but

my PC only had 2 USB 2.0 and 1 USB 3.0 and the results are not that good as well

where the MYRIAD connected to USB 3.0 is heater than the MYRIAD connected to

27

USB 2.0. This phenomena is similar to the UP2 when it is connected with two

MYRIAD where one is heater than another.

The cooling step should be made as a small precaution step when the MYRIAD

to high power port. As the MYRIAD will really heat up and it may spoil the MYRIAD

and USB port as datasheet mentioned that MYRIAD worked under 0℃ to 40℃ and

the USB port may spoil after running the footage under high temperature.

4.1.1 Tabulated Results of Performance Measurement for Different Devices

The PC named is Dell Inspiron 14-3443 and the specification of this PC is shows in

Figure 4.1. All the testing and performance running are done under this PC with the

specification listed.

Figure 4.1: Specification of Dell Inspiron 14-3443

Table 4.1 shows the comparison of input power and output power between the

UP2 Board and PC.

Table 4.1: Input Power and Output Power of UP2 Board and PC

Specification
Input Output

UP2 PC UP2 PC

Voltage, V 240 240 5 19.5

Current, A 1.5 1.7 6 3.34

28

Power, W 360 408 30 65.13

Table 4.2 shows the results collected from UP2 Board with one MYRIAD only.

Table 4.2: Results from UP2 Board with one MYRIAD

Device: MYRIAD

Platform: UP2

 Result 1 Result 2 Result 3 Average

Enter/person 1104 1104 1104 1104

Exit/person 726 726 726 726

Time/s 26659.26 26327.63 27175.65 26720.85

FPS 3.34 3.39 3.28 3.34

Table 4.3 shows the results collected from PC with one MYRIAD only.

Table 4.3: Results from PC with one MYRIAD

Device: MYRIAD

Platform: PC

 Result 1 Result 2 Result 3 Average

Enter/person 1104 1104 1104 1104

Exit/person 726 726 726 726

Time/s 19186.38 18602.61 18539.86 18776.28

FPS 4.65 4.79 4.81 4.75

Table 4.4 shows the results collected from UP2 Board with two MYRIAD.

Table 4.4: Results from UP2 Board with two MYRIAD

Device: MYRIAD, MYRIAD

Platform: UP2

 Result 1 Result 2 Result 3 Average

Enter/person 1104 1104 1104 1104

Exit/person 726 726 726 726

Time/s 26365.16 27139.80 26310.89 26605.28

29

FPS 3.38 3.28 3.39 3.35

Table 4.5 shows the results collected from UP2 Board with two MYRIAD.

Table 4.5: Results from PC with two MYRIAD

Device: MYRIAD, MYRIAD

Platform: PC

 Result 1 Result 2 Result 3 Average

Enter/person 1104 1104 1104 1104

Exit/person 726 726 726 726

Time/s 18884.83 18658.45 18507.09 18683.46

FPS 4.72 4.78 4.82 4.77

Table 4.6 shows the comparison of specification between UP2 Board and PC.

Table 4.6: Comparison of Specification between UP2 and PC

Specification
Percentage Change

from UP2 to PC, %
Status

Input Voltage, V 0.00 Remained

Input Current, A 13.33 Increased

Input Power, W 13.33 Increased

Output Voltage, V 290.00 Increased

Output Current, A -44.33 Decrease

Output Power, W 117.10 Increased

Table 4.7 shows the comparison of results between UP2 Board and PC for one

MYRIAD only.

Table 4.7: Comparison of Results between UP2 and PC for one MYRIAD

Device: MYRIAD

Specification
Percentage Change

from UP2 to PC, %
Status

Enter/person 0.00 Remained

Exit/person 0.00 Remained

30

Time/s -29.73 Decrease

FPS 42.36 Increased

Table 4.8 shows the comparison of results between UP2 Board and PC for two

MYRIAD.

Table 4.8: Comparison of Results between UP2 and PC for two MYRIAD

Device: MYRIAD, MYRIAD

Specification
Percentage Change

from UP2 to PC, %
Status

Enter/person 0.00 Remained

Exit/person 0.00 Remained

Time/s -29.78 Decrease

FPS 42.49 Increased

Table 4.9 shows the comparison of results between one and two MYRIAD for

UP2 Board and PC.

Table 4.9: Comparison of Results between one and two MYRIAD for both UP2 and

PC

Specification

Percentage Change from MYRIAD

to MYRIAD, MYRIAD, %

Status

UP2 PC

Enter/person 0.00 0.00 Remained

Exit/person 0.00 0.00 Remained

Time/s -0.43 -0.49 Decrease

FPS 0.40 0.49 Increased

31

4.2 Performance Measurement for Different Input

Several performance measurements are done in order to figure out the optimum

conditions to fully utilise the UP2 Board with the best outcome. The performance

measurements are done in term of frame per second (fps), accuracy, speed, time needed

and duration. The performance measurements are done under fixed conditions and

during the measurements, the same devices, items and footage are used until the end

of experiments.

4.2.1 Performance Measurement for Different Revolutions Input

First of foremost, the first performance measurement is on the different revolutions

input. A 720p resolution footage is downgraded to 480p, 360p, 240p and 144p. The

footages are ran under the same algorithm and the number of pedestrians detected by

the algorithm is the measurement for this experiment. The fixed conditions in this

measurement are only one movidius (NCS2) and the same UP2 Board are used. From

Figure 4.2, the results shows that better resolution footage has a better result and only

720p resolution footage has detected all the pedestrians in the footage.

Figure 4.2: Performance Measurement for Different Revolutions Input

32

4.2.2 Performance Measurement for Different Inputs Complexity

Next, the second performance measurement is on the different inputs complexity.

Several 720p resolution footages with different number of pedestrians in the footage

are prepared. The footages are ran under the same algorithm and the frame per second

(fps) is the measurement for this experiment. The fixed conditions in this measurement

are only one movidius (NCS2) and the same UP2 Board are used. From Figure 4.3, the

results shows that lesser pedestrians has a better result and when the number of

pedestrians increases, the fps will drop a lot which may affect the accuracy especially

in real time demo as fps is the key in real time demo. In real time demo, the changes

are every seconds. If the fps is not high enough, the algorithm may miss out few

important frames that may affect the final results and accuracy.

Figure 4.3: Performance Measurement for Different Inputs Complexity

4.2.3 Performance Measurement for Different Performances Complexity

The third performance measurement is on the different performances complexity. A

720p resolution footage is prepared and it is ran under the same algorithm and the

frame per second (fps) is the measurement for this experiment. The changes conditions

in this measurement are the performances which are the OpenCV display, pedestrian

detection, tracking and counting with and without OpenCV effects. From Figure 4.4,

the results shows that lesser performances had a better result and when the

33

performances are getting complicated, the fps will drop a lot which may affect the

accuracy especially in real time demo as fps is the key in real time demo. In real time

demo, the changes are every seconds. If the fps is not high enough, the algorithm may

miss out few important frames that may affect the final results and accuracy.

Figure 4.4: Performance Measurement for Different Performances Complexity

4.3 Technical Challenges

After several demo and performance testing, several technical challenges are overcame

which had improved the accuracy of results obtained. The technical challenges

overcame are the camera view calibration, pedestrian counting method, double

counting problem and counting method.

4.3.1 Camera View Calibration

The first technical challenge is the camera view calibration. The camera is adjusted to

a higher position which is suggested to higher than human high. As camera at a higher

position, it has a better view angle and the camera able to capture a better human

posture which will help in the sensitivity of detecting the human. A better view angle

which also gives the algorithm a better detection region. Besides, at a higher position,

the camera will capture less noise and wold not be blocked by any obstacles. This is

34

proved by the closed circuit television (CCTV) and surveillance camera industry.

Figure 4.5 shows the before and after calibration of camera view.

Figure 4.5: Changes of Camera View Calibration

4.3.2 Pedestrian Counting Method

The second technical challenge is the pedestrian counting method. The first version

and also the most popular version is the bounding box counting. This method is simple

and easy to be done. However, it has a big weakness which is this method unable to

detect the pedestrian if the bounding box is greater than the counting region. For

instance, the pedestrian is closed to the camera or the prototype is implemented in a

small and narrow area. This problems will affect the flexibility of the prototype where

it only able to work under limited condition which does not fulfilled this project object.

Thus, some modifications are done and the modifications are adding in centroid point

and centroid tracking algorithm. The algorithm will track the centroid point only in

state of whole bounding box. This modifications also solve the problem and improve

the flexibility of the prototype where this prototype able to work in any narrow and

small area. Figure 4.6 shows the before and after pedestrian counting method.

35

Figure 4.6: Changes of Pedestrian Counting Method

4.3.3 Double Counting Problem

The third technical challenge is the double counting problem. Most of the counting

systems in the internet are having this problem and this may due to the complexity of

the design and the application of the systems. For example, in the manufacturing

industry, the system only needs to count the carriers that passed through on the

conveyor belt and most of the time, the conveyor system workes in one way direction

only. In this project, the prototype is to count the people and human behaviours are the

most challenging part for AI industry. For instance, people may walk around the region,

testing the limitation of the prototype and trying to confuse the algorithm as well. In

order to overcome, the errors caused by human behaviours. Some modifications are

done on the algorithm where more terms and conditions are set around the counting

region to avoid recounting the same person again and again. In short, the algorithm

will only count the person when he is passed the region. Figure 4.7 shows the double

counting problem that caused by human behaviour.

36

Figure 4.7: Double Counting Problem

4.3.4 Counting Method

The fourth technical challenge is the counting method. One of the problem that real

time demo may be occurred is frog problem when the frame per second (fps) dropped.

In real time demo, the fps dropped may be due to the device is overload or too much

information received at the same time. For instance, there are 50 people appears in the

frame during peak hour, the device may not able to handle this situation on time and

caused delay problem. This problem will cause some frames are missed to process by

the algorithm and the algorithm may miss counted this people that crossed during these

missing frames. In order to solve the frog problem, the line counting method is changed

to region counting method. The region counting method is more complex than the line

counting method and it had more conditions needed to fulfil as well. This counting

method able to solve the frog problem as when the people appeared before counting

region, the algorithm will remember him if he suddenly disappeared and appeared at

counting region, the algorithm will understand that this is frog problem and it will

counted the people as well. Figure 4.8 shows the before and after counting method.

37

Figure 4.8: Changes of Counting Methods

38

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The aim and objectives of this project are achieved where a passenger counting with

face detection by using Intel UP Squared Board and Intel Movidius Neural Compute

Stick 2 (NCS2) are successfully developed and implemented into several applications.

These components will be embedded with the software coding to build a prototype

with a developed video analytics with machine learning capability that performs the

face detection technique and tracking of individual in real time. The prototype also

integrated the technique with Internet of Things (IoT), industry revolution 4.0

(industry 4.0) and the big data analysis. It also created with a cloud based system for

the visualization of real time data analysis.

Besides, the prototype has solved and overcame the problems that listed in the

problem statement where the prototype has a better accuracy, more features, more

flexibility, better power consumption and wide applicable applications. The prototype

has been tested and able to overcome the real time demo’s limitations. It also has a

better flexibility which able to perform at any environment and condition. The power

consumption problem also overcomes by running through multiple performance

measurements to figure out the optimum performance with low power consumption.

 In short, this project is successfully met the aim, objectives and some expected

outcomes.

39

5.2 Recommendations for future work

There are several recommended future works that can be done in order to improve this

prototype. First of all, specification of the device selected especially the power supply

and USB port. Sufficient power needed in order to drive multiple devices. For example,

in the Chapter 4, the UP2 board does not had sufficient energy to drive two movidius

(MYRIAD). If the device is powerful enough, it able to drive multiple movidius at the

same time and the performance may improve and optimize. The USB port also plays

an important role where the PC did not had sufficient USB 3.0 port and the result is

not that positive.

Next, the processor selected also needs to be powerful as the processor plays

an important role to split the workload to other devices like movidius and GPU. If the

processor is not powerful enough, it will not able to split the workload consistently and

equally to other devices which may cause the problem of only one movidus heavy

loaded while another lightly loaded.

Some cooling effects need to be done as well. While the movidius is running

under the PC, the temperature is high and may be out of the safety working temperature

range provided by supplier. This may burn the device in long run.

40

REFERENCES

Atmaja, R., Murti, M., Haloman, J. & Suratman, F. Y., 2016. An Image Processing

Method to Convert RGB Image into Binary. 3(2), pp. 377-382.

Chakravartula Raghavachari, A. V. C. S. V. B., 2015. A Comparative Study of Vision

based Human Detection Techniques. Procedia Computer Science, Volume 58, pp.

461-469.

Dertat, A., 2017. Applied Deep Learning - Part 4: Convolutional Neural Networks.

[Online]

Available at: https://towardsdatascience.com/applied-deep-learning-part-4-

convolutional-neural-networks-584bc134c1e2

[Accessed 19 AUGUST 2019].

Fu, Y. a. A. C., 2019. Flotation froth image recognition with convolutional neural

networks. Minerals Engineering, Issue 132, p. 183–190.

Kim, J. H., Moon, J. H., Hwang, E. J. & Kang, P. S., 2019. Recurrent inception

convolution neural network for multi short-term load forecasting. Energy & Buildings,

Issue 194 , p. 328–341.

Kumar, S., Singh, S. & Kmar, J., 2017. A Study on Face Recognition Techniques with

Age and Gender Classification. IEEE, At Greater Noida.

Mayank Chauhan, M. S., 2014. Study & Analysis of Different Face Detection.

International Journal of Computer Science and Information Technologies, 5(2), pp.

1615-1618.

Prabhakar, A., Neeti & Devi, R., 2017. DIFFERENT COLOR DETECTION IN AN

RGB IMAGE. 7(8), pp. 14503-14506.

41

Priyanka R.Borude, S. P. G., 2015. Identification and Tracking of Facial Features.

Identification and Tracking of Facial Features, Volume 49, pp. 2-10.

Qaim Mehdi Rizvi, P. B. G. A. D. R. B., 2011. A Review on Face Detection Methods.

Journal of Management Development and Information Technology , p. 11.

Saha, S., 2018. A Comprehensive Guide to Convolutional Neural Networks — the ELI5

way. [Online]

Available at: https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[Accessed 19 August 2019].

Wah, D. T. W., 2015. theSundaily. [Online]

Available at: https://www.thesundaily.my/archive/1333889-KRARCH296470

[Accessed 30 October 2019].

Wang, Y. et al., 2019. Detection based visual tracking with convolutional neural

network. Knowledge-Based Systems, Issue 175 , p. 62–71.

Wu, J. X., 2019. Convolutional neural networks. pp. 13-32.

42

APPENDICES

APPENDIX A: Datasheet of Intel UP Squared Board

43

44

APPENDIX B: Datasheet of Movidius Myriad VPU

45

46

APPENDIX C: Datasheet of AI Core X (Processor Chipset for Movidius)

47

APPENDIX D: Datasheet of UP HD Camera

48

49

APPENDIX E: main.py

from __future__ import print_function

from openvino.inference_engine import IENetwork, IEPlugin

from argparse import ArgumentParser, SUPPRESS

from pyimagesearch.customcentroidtracker import PersonCentroidTracker

from pyimagesearch.customtrackableobject import PersonTrackableObject

from imutils.video import FPS

import numpy as np

import imutils

import sys

import os

import csv

import cv2

import time

import datetime

import pyautogui

import logging as log

(H, W) = (None, None)

personct = PersonCentroidTracker()

persontrackableObjects = {}

totalcount = 0

persontotalminus = 0

persontotalplus = 0

status = "[Unavailable]"

50

detections = 0

writer = None

leftx1 = 0

lefty1 = 0

leftx2 = 0

lefty2 = 0

rightx1 = 0

righty1 = 0

rightx2 = 0

righty2 = 0

topx1 = 0

topy1 = 0

topx2 = 0

topy2 = 0

bottom = 550

frame_X = 300

frame_Y = 250

region = 30

#band = 200

band = 0

enter = False

exit = False

def build_argparser():

 parser = ArgumentParser(add_help=False)

 args = parser.add_argument_group('Options')

51

 args.add_argument('-k', '--heightmultiplier', type=int, default=10, help='line

multiplier 1/20')

 args.add_argument('-j', '--widthmultiplier', type=int, default=2, help='line

multiplier 1/10')

 args.add_argument("-o", "--output", type=str, help="path to optional output video

file")

 args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show

this help message and exit.')

 args.add_argument("-m", "--model", help="Required. Path to an .xml file with a

trained model.", required=True, type=str)

 args.add_argument("-i", "--input", help="Required. Path to video file or image.

'cam' for capturing video stream from camera",

 required=True, type=str)

 args.add_argument("-d", "--device", help="Optional. Specify the target device to

infer on; CPU, GPU, FPGA, HDDL or MYRIAD is "

 "acceptable. The demo will look for a suitable plugin for device

specified. "

 "Default value is CPU", default="CPU", type=str)

 return parser

log.basicConfig(format="[%(levelname)s] %(message)s", level=log.INFO,

stream=sys.stdout)

args = build_argparser().parse_args()

model_xml = args.model

model_bin = os.path.splitext(model_xml)[0] + ".bin"

print(os.path.splitext(model_xml)[0])

if os.path.splitext(model_xml)[0] == "models/mobilenet-ssd":

 CLASS_PERSON = 1

else:

 CLASS_PERSON = 1

52

Plugin initialization for specified device and load extensions library if specified

log.info("Initializing plugin for {} device...".format(args.device))

plugin = IEPlugin(device=args.device, plugin_dirs=None)

Read IR

log.info("Reading IR...")

net = IENetwork(model=model_xml, weights=model_bin)

if plugin.device == "CPU":

 supported_layers = plugin.get_supported_layers(net)

 not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers]

 if len(not_supported_layers) != 0:

 log.error("Following layers are not supported by the plugin for specified device

{}:\n {}".

 format(plugin.device, ', '.join(not_supported_layers)))

 log.error("Please try to specify cpu extensions library path in demo's command

line parameters using -l "

 "or --cpu_extension command line argument")

 sys.exit(1)

assert len(net.inputs.keys()) == 1, "Demo supports only single input topologies"

assert len(net.outputs) == 1, "Demo supports only single output topologies"

input_blob = next(iter(net.inputs))

out_blob = next(iter(net.outputs))

log.info("Loading IR to the plugin...")

exec_net = plugin.load(network=net, num_requests=2)

Read and pre-process input image

n, c, h, w = net.inputs[input_blob].shape

del net

if args.input == 'cam':

 input_stream = 1

53

else:

 input_stream = args.input

 assert os.path.isfile(args.input), "Specified input file doesn't exist"

k = args.heightmultiplier

j = args.widthmultiplier

cap = cv2.VideoCapture(input_stream)

if cap is None or not cap.isOpened():

 cap = cv2.VideoCapture(0)

cur_request_id = 0

next_request_id = 1

log.info("Starting inference in async mode...")

is_async_mode = True

show_stats = True

flip_mode = False

render_time = 0

ret, frame = cap.read()

print("")

print("To close the application, press 'CTRL+C' or any key with focus on the output

window")

print("")

print("To flip video output, press 'f' on the output window")

print("")

print("To hide or show stats panel, press 's' on the output window")

fps = FPS().start()

54

while cap.isOpened():

 W = int(cap.get(3))

 H = int(cap.get(4))

 center = (W / 2, H / 2)

 if is_async_mode:

 ret, next_frame = cap.read()

 if flip_mode:

 M = cv2.getRotationMatrix2D(center, 180, 1)

 next_frame = cv2.warpAffine(next_frame, M, (W, H))

 else:

 ret, frame = cap.read()

 if not ret:

 break

 output = frame.copy()

 topx1 = j * W // 40

 topy1 = k * H // 40

 topx2 = (40 - j) * W // 40

 topy2 = k * H // 40

 leftx1 = j * W // 40 - band

 lefty1 = H

 leftx2 = j * W // 40

 lefty2 = k * H // 40

 rightx1 = (40 - j) * W // 40 + band

 righty1 = H

 rightx2 = (40 - j) * W // 40

55

 righty2 = k * H // 40

 alpha = 0.5

 rectangle = np.array([[(leftx1, lefty1 - bottom), (topx1, topy1),(topx2, topy2),

(rightx1, righty1 - bottom)]],np.int32)

 cv2.fillPoly(output, rectangle, (0, 150, 0), 255)

 cv2.addWeighted(output, alpha, frame, 1 - alpha, 0, frame)

 initial_w = cap.get(3)

 initial_h = cap.get(4)

 inf_start = time.time()

 if is_async_mode:

 in_frame = cv2.resize(next_frame, (w, h))

 in_frame = in_frame.transpose((2, 0, 1)) # Change data layout from HWC to

CHW

 in_frame = in_frame.reshape((n, c, h, w))

 exec_net.start_async(request_id=next_request_id, inputs={input_blob:

in_frame})

 if exec_net.requests[cur_request_id].wait(-1) == 0:

 inf_end = time.time()

 det_time = inf_end - inf_start

 personrects = []

 detections = 0

 res = exec_net.requests[cur_request_id].outputs[out_blob]

 for obj in res[0][0]:

 personobjects = []

 if obj[2] > 0.3:

56

 if int(obj[1]) == CLASS_PERSON:

 detections += 1

 x1 = int(obj[3] * initial_w)

 y1 = int(obj[4] * initial_h)

 x2 = int(obj[5] * initial_w)

 y2 = int(obj[6] * initial_h)

 box = np.array([x1, y1, x2, y2])

 personrects.append(box.astype(int))

 (startX, startY, endX, endY) = box.astype('int')

cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0), 2)

 personobjects = personct.update(personrects)

 if len(personobjects) != 0:

 for (personobjectID, personcentroid) in \

 personobjects.items():

 if show_stats:

 text = 'ID {}'.format(personobjectID)

 cv2.putText(frame, text, (personcentroid[0] - 10, personcentroid[1] -

10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2,)

 cv2.circle(frame, (personcentroid[0],personcentroid[1]), 4, (0, 255, 0), -

1)

 personto = persontrackableObjects.get(personobjectID, None)

 if personto is None:

 personto = PersonTrackableObject(personobjectID, personcentroid)

 else:

 x = [c[0] for c in personto.personcentroids]

 y = [c[1] for c in personto.personcentroids]

 direction = personcentroid[1] - np.mean(y)

 personto.personcentroids.append(personcentroid)

57

 if not personto.counted:

 if direction > 0 and personcentroid[1] > (righty1 - bottom - region)

and personcentroid[1] < (righty1 - bottom) and personcentroid[0] > leftx1 and

personcentroid[0] < rightx1 and np.mean(y) < (righty1 - bottom - region) and

np.mean(x) > leftx2 and np.mean(x) < rightx2:

 enter = True

 if direction > 0 and personcentroid[1] > (righty1 - bottom) and

personcentroid[1] < (righty1 - bottom + region) and personcentroid[0] > leftx1 and

personcentroid[0] < rightx1 and np.mean(y) < (righty1 - bottom) and np.mean(x) >

leftx2 and np.mean(x) < rightx2 and enter == True:

 cv2.line(frame, (topx1, topy1), (topx2, topy2), (0, 0, 255), 5)

 cv2.line(frame, (leftx1, lefty1 - bottom), (leftx2, lefty2), (0, 0,

255), 5)

 cv2.line(frame, (rightx1, righty1 - bottom), (rightx2, righty2), (0,

0, 255), 5)

 cv2.line(frame, (leftx1, lefty1 - bottom), (rightx1, righty1 -

bottom), (0, 0, 255), 5)

 persontotalplus += 1

 personto.counted = True

 with open('Data/HistoricalData.txt', 'a') as txtfile:

 txtfile.write("Total People Enter: %d,

" %(int(persontotalplus)))

 txtfile.write("Total People Exited: %d,

" %(int(persontotalminus)))

 txtfile.write("Total People in Hall: %d, " %(int(persontotalplus

- persontotalminus)))

 txtfile.write(str(datetime.datetime.now()))

 txtfile.write("\n")

 txtfile.close

 with open('Data/HistoricalArray.txt', 'a') as txtfile:

 txtfile.write("[%d, " %(int(persontotalplus)))

 txtfile.write("%d, " %(int(persontotalminus)))

58

 txtfile.write("%d, " %(int(persontotalplus -

persontotalminus)))

 txtfile.write(str(datetime.datetime.now()))

 txtfile.write("]\n")

 txtfile.close

 enter = False

 if direction < 0 and personcentroid[1] > lefty2 and

personcentroid[1] < (lefty2 + region) and personcentroid[0] > leftx2 and

personcentroid[0] < rightx2 and np.mean(y) > lefty2 and np.mean(x) > leftx2 and

np.mean(x) < rightx2:

 exit = True

 if direction < 0 and personcentroid[1] > (lefty2 - region) and

personcentroid[1] < lefty2 and personcentroid[0] > leftx2 and personcentroid[0] <

rightx2 and np.mean(y) > (lefty2 - region) and np.mean(x) > leftx2 and np.mean(x) <

rightx2 and exit == True:

 cv2.line(frame, (topx1, topy1), (topx2, topy2), (0, 0, 255), 5)

 cv2.line(frame, (leftx1, lefty1 - bottom), (leftx2, lefty2), (0, 0,

255), 5)

 cv2.line(frame, (rightx1, righty1 - bottom), (rightx2, righty2), (0,

0, 255), 5)

 cv2.line(frame, (leftx1, lefty1 - bottom), (rightx1, righty1 -

bottom), (0, 0, 255), 5)

 persontotalminus += 1

 personto.counted = True

 with open('Data/HistoricalData.txt', 'a') as txtfile:

 txtfile.write("Total People Enter: %d,

" %(int(persontotalplus)))

 txtfile.write("Total People Exited: %d,

" %(int(persontotalminus)))

 txtfile.write("Total People in Hall: %d, " %(int(persontotalplus

- persontotalminus)))

59

 txtfile.write(str(datetime.datetime.now()))

 txtfile.write("\n")

 txtfile.close

 with open('Data/HistoricalArray.txt', 'a') as txtfile:

 txtfile.write("[%d, " %(int(persontotalplus)))

 txtfile.write("%d, " %(int(persontotalminus)))

 txtfile.write("%d, " %(int(persontotalplus -

persontotalminus)))

 txtfile.write(str(datetime.datetime.now()))

 txtfile.write("]\n")

 txtfile.close

 exit = False

 if direction > 0 and personcentroid[1] < (righty1 - bottom - region):

 personto.counted = False

 if direction < 0 and personcentroid[1] > (lefty2 + region):

 personto.counted = False

 persontrackableObjects[personobjectID] = personto

 resizedframepic = cv2.resize(frame, (512, 288))

 cv2.imwrite("snapshot/1.jpg", resizedframepic)

 if show_stats:

 cv2.putText(frame, "Total People Enter: " + str(persontotalplus), (10, 50),

cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0, 0, 255), 4)

 cv2.putText(frame, "Total People Exited: " + str(persontotalminus), (10, 100),

cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0, 0, 255), 4)

 cv2.putText(frame, "Total People in Hall: " + str(persontotalplus -

persontotalminus), (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0, 0, 255), 4)

60

 row = [int(persontotalplus), int(persontotalminus), int(persontotalminus -

persontotalplus), int(detections), datetime.datetime.now()]

 with open('Data_File.csv','r') as readfile:

 output_reader = csv.reader(readfile)

 lines = list(output_reader)

 lines[0] = row

 with open('Data_File.csv', 'w') as writefile:

 output_writer = csv.writer(writefile)

 output_writer.writerows(lines)

 readfile.close()

 writefile.close()

 with open('Data/RealTimeUpdateData.txt', 'w') as txtfile:

 txtfile.write("Total People Walked to Left: %d\n" %(int(persontotalplus)))

 txtfile.write("Total People Walked to Right: %d\n" %(int(persontotalminus)))

 txtfile.write("Total People in Hall: %d\n" %(int(persontotalplus -

persontotalminus)))

 txtfile.write(str(datetime.datetime.now()))

 txtfile.close

 with open('Data/RealTimeUpdateArray.txt', 'w') as txtfile:

 txtfile.write("[%d, " %(int(persontotalplus)))

 txtfile.write("%d, " %(int(persontotalminus)))

 txtfile.write("%d, " %(int(persontotalplus - persontotalminus)))

 txtfile.write(str(datetime.datetime.now()))

 txtfile.write("]")

 txtfile.close

 resizedframe = cv2.resize(frame, (1080, 720))

 render_start = time.time()

 cv2.imshow("Detection Results", resizedframe)

61

 render_end = time.time()

 render_time = render_end - render_start

 if writer is not None:

 writer.write(frame)

 if is_async_mode:

 cur_request_id, next_request_id = next_request_id, cur_request_id

 frame = next_frame

 fps.update()

 key = cv2.waitKey(1)

 if key == 27:

 break

 if (115 == key): #s, show

 show_stats = not show_stats

 log.info("Show Stats Panel" if show_stats else "Hide Stats Panel")

 if (102 == key): #f, flipped

 flip_mode = not flip_mode

 log.info("Video Output is NOT flipped" if flip_mode else "Video Output is

flipped")

if writer is not None:

 writer.release()

fps.stop()

print("[INFO] Elapsed Time: {:.2f}s".format(fps.elapsed()))

print("[INFO] Approx. FPS: {:.2f}".format(fps.fps()))

print(persontotalplus)

62

print(persontotalminus)

try:

 os.remove("snapshot/1.jpg")

except:

 pass

cv2.destroyAllWindows()

63

APPENDIX F: CloudDataTransmitter.py

#!/usr/bin/python

-*- coding: utf-8 -*-

from pyimagesearch.firebasecloud import firebasecloud

from pyimagesearch.dashingrequest import dashingrequest

from imutils.video import FPS

import numpy as np

import argparse

import time

import cv2

import os

import csv

import subprocess

import requests

firebasecloud = firebasecloud()

dashingrequest = dashingrequest()

status = 'Unavailable'

cycle = 0

print("[INFO] Starting data transmission to Cloud Server...")

print("[INFO] Transmission Started. To close the application, press 'CTRL+C' in

terminal")

while True:

 try:

 fps = FPS().start()

 with open('Data_File.csv', 'r') as readfile:

 output_reader = csv.reader(readfile)

 last_line = list(output_reader)

64

 cycle += 1

 print("[INFO] Update Cycle: " + str(cycle))

 print(last_line)

 print("")

 persontotalplus = int(last_line[0][0])

 persontotalminus = int(last_line[0][1])

 persontotalcount = int(last_line[0][2])

 persondetections = int(last_line[0][3])

 if persondetections > 10:

 status = 'Heavy'

 elif persondetections >= 5 and persondetections <= 10:

 status = 'Moderate'

 elif persondetections > 0 and persondetections < 5:

 status = 'Low'

 else:

 status = 'None'

 firebasecloud.uploadstats(

 persontotalplus,

 persontotalminus,

 persontotalcount,

 persondetections,

 status

)

 dashingrequest.updatepersonplus(persontotalplus)

 dashingrequest.updatepersonminus(persontotalminus)

 dashingrequest.updatetotalcount(persontotalcount)

65

 dashingrequest.updatetrafficvolume(persondetections)

 dashingrequest.updatecrowdstatus(status)

 fps.update()

 except requests.exceptions.ConnectionError:

 pass

 except IndexError:

 pass

 except ValueError:

 pass

 except KeyboardInterrupt:

 fps.stop()

 break

print("[INFO] Elapsed Time: {:.2f}s".format(fps.elapsed()))

print("[INFO] Total Update Cycles: " + str(cycle))

66

APPENDIX G: firebasecloud.py

from firebase import firebase

from google.cloud import storage

import os

os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="gcloud/FinalYearProje

ct-a9114927741e.json"

firebase = \

 firebase.FirebaseApplication('https://finalyearproject-96e65.firebaseio.com/'

 , None)

client = storage.Client()

bucket = client.get_bucket('finalyearproject-96e65.appspot.com')

imageBlob = bucket.blob("snapshot/")

textBlob = bucket.blob("Data/")

class firebasecloud:

 def uploadstats(self, persontotalplus, persontotalminus, persontotalcount,

persondetections, status):

 persondata = {'Total_Person_Plus': int(persontotalplus),

 'Total_Person_Minus': int(persontotalminus),

 'Total_Person_Count': int(persontotalcount),

 'Person_Detections': int(persondetections),

 'Crowd_Status': status}

 #firebase.put('/Stats/', 'Person', persondata)

 #firebase.put('/UP1/', 'Person', persondata)

 firebase.put('/UP2/', 'Person', persondata)

67

 if os.path.exists('snapshot/1.jpg') == True:

 imagePath = "snapshot/1.jpg"

 else:

 imagePath = "snapshot/sub1.jpg"

 imageBlob = bucket.blob("1.jpg")

 imageBlob.upload_from_filename(imagePath)

 imageBlob = bucket.blob("IllegalCrossing(UP2).jpg")

 imageBlob.upload_from_filename(imagePath)

 if os.path.exists('Data/HistoricalArray(UP2).txt') == True:

 textPath = "Data/HistoricalArray(UP2).txt"

 textBlob = bucket.blob("HistoricalArray(UP2).txt")

 textBlob.upload_from_filename(textPath)

 if os.path.exists('Data/HistoricalData(UP2).txt') == True:

 textPath = "Data/HistoricalData(UP2).txt"

 textBlob = bucket.blob("HistoricalData(UP2).txt")

 textBlob.upload_from_filename(textPath)

 if os.path.exists('Data/RealTimeUpdateArray(UP2).txt') == True:

 textPath = "Data/RealTimeUpdateArray(UP2).txt"

 textBlob = bucket.blob("RealTimeUpdateArray(UP2).txt")

 textBlob.upload_from_filename(textPath)

 if os.path.exists('Data/RealTimeUpdateData(UP2).txt') == True:

 textPath = "Data/RealTimeUpdateData(UP2).txt"

68

 textBlob = bucket.blob("RealTimeUpdateData(UP2).txt")

 textBlob.upload_from_filename(textPath)

69

APPENDIX H: dashingrequest.py

#!/usr/bin/python

-*- coding: utf-8 -*-

import requests # pip install requests

import simplejson as json # pip install simplejson

from urllib import request, parse

url = 'http://localhost:3030'

headers = {'Content-type': 'application/json'}

class dashingrequest:

 def updatepersonplus(self, persontotalplus):

 widget = 'totalpersonplus'

 data = {'auth_token': 'YOUR_AUTH_TOKEN',

 'text': str(persontotalplus)}

 fullUrl = '%s/widgets/%s' % (url, widget)

 requests.post(fullUrl, data=json.dumps(data), headers=headers)

 def updatepersonminus(self, persontotalminus):

 widget = 'totalpersonminus'

 data = {'auth_token': 'YOUR_AUTH_TOKEN',

 'text': str(persontotalminus)}

 fullUrl = '%s/widgets/%s' % (url, widget)

 requests.post(fullUrl, data=json.dumps(data), headers=headers)

70

 def updatetotalcount(self, persontotalcount):

 widget = 'totalcount'

 data = {'auth_token': 'YOUR_AUTH_TOKEN',

 'text': str(persontotalcount)}

 fullUrl = '%s/widgets/%s' % (url, widget)

 requests.post(fullUrl, data=json.dumps(data), headers=headers)

 def updatetrafficvolume(self, persondetections):

 widget = 'trafficvolume'

 data = {"auth_token": 'YOUR_AUTH_TOKEN', 'value': persondetections}

 fullUrl = '%s/widgets/%s' % (url, widget)

 requests.post(fullUrl, data=json.dumps(data), headers=headers)

 def updatecrowdstatus(self, status):

 widget = 'status'

 data = {'auth_token': 'YOUR_AUTH_TOKEN',

 'text': str(status)}

 fullUrl = '%s/widgets/%s' % (url, widget)

 requests.post(fullUrl, data=json.dumps(data), headers=headers)

