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ABSTRACT 

 

The application of iris in the usage of biometric recognition systems has gain 

popularity over the years. It has raised the public concern on the reliability and 

consistency that could be achieved by using iris as part of the biometric 

recognition. This study aims to determine how the proposed framework 

performed when it is tested with a different database and the strength of the 

security. The proposed framework consists of 3 different processes, which 

include the Bloom Filter, Indexed First One Hashing, and the Key Binding 

Process. Four different databases have been used to test out the framework and 

the security’s strength. Initial parameters have been optimized through 

extensive trials with the aids of using the Taguchi Method. The three main 

parameters that are crucial to determine the performance and security strength 

have been tested and the results have been tabulated in this report. The results 

indicate that the database with better quality will show much more promising 

results in terms of performance. The strength of the security is partially 

dependent on the performance. The trade-off between the performance and 

strength of the security can be observed across four different databases. Further 

research with a more recent public database that shall have better quality is 

needed to fully identify the performance and strength of the security for the 

proposed methods. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

Biometrics is often coiled with the works that are related to the application of 

statistical and measuring analysis to any biometric characteristic, which can be 

extracted from an individual to undergo the process of biometric recognition 

(International Organization for Standardization, 2017). These biometric 

characteristics would include facial skin texture, finger topography, iris 

structure, retinal pattern, etc (International Organization for Standardization, 

2017).  

The implementation of biometric recognition systems across various 

industry especially airports has been gaining momentum over the years (Del Río 

et al., 2015). However, it also raised the public’s concern regarding the security 

of the implemented system. During the occurrence of the event where the 

biometric characteristic has been compromised, it would render it useless in all 

the other involved biometric applications as well.  

Table 1.1 below shows the comparison between several popular 

biometric characteristics with some of their characteristic which includes ease 

of use, accuracy, acceptability, security, and permanence (High = H, Medium = 

M, Low = L). Among various biometric characteristics, high confidence in the 

recognition of an individual’s identity can be achieved via iris (Daugman, 2004). 

 

Table 1.1: Comparison of Various Biometric Characteristic (Eng and Wahsheh, 

2013)  

Characteristic  Face Fingerprint Speech Hand Iris Signature 

Ease of Use M H H H L H 

Accuracy  M H M M H L 

Acceptability H M H H M H 

Security M H M M H L 

Permanence M H M M H L 
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Iris has become a popular choice when it comes to biometric 

recognition systems due to its high accuracy, high permanence, and high 

security. Iris itself is secure as it not directly accessible by others since it is a 

part of our human organ and it is unique. Although this would reduce the ease 

of use for iris, thanks to the availability of non-contact biometric technologies 

in the market, it helps to resolve the issue and at the same time, it also contributes 

to the high security (Kaudki and Bhurchandi, 2018).  

Despite all the benefits that have been mentioned, there is still a 

downside when it comes to utilizing iris in a biometric recognition system. The 

major issues of using iris are the existence of variability which contribute by not 

limited to lacking clarity due to the fallen of eyelids, affected by the eyelashes, 

reflection on the lens, as well as the changes in pupil size due to the non-

redundant deformation (Nazmdeh et al., 2019).  

Another factor to be taken into consideration is the biometric 

recognition system that is used to process or store the iris database. Iris database 

will still be susceptible to leakage of privacy and loss of uniqueness data if the 

biometric recognition system has been compromised. To overcome this issue, 

the core function of conventional cryptography has been integrated with the 

authentication feature of biometric, which this method is also known as 

Biocryptography. 

Secure communication between two parties can be performed through 

cryptography where the unauthorised thirds parties and potential attackers exist 

in the public environment (Pawar and Harkut, 2018). The high security of the 

cryptography is contributed by its encryption and decryption process. During 

the encryption process, a random key will be generated and bound with the data 

that would require to be transmitted and converted into an unreadable format 

which is known as the cypher to decrypt the cypher, the key will have to be 

present to revert the encryption process. The high security that can be offered 

by utilizing cryptography makes it become a favourable option to be integrated 

with the biometric recognition system.  

The high security by the cryptography would contribute to its low 

robustness at the same time. It will not allow a single bit of variation to exist in 

the generated key for the encryption and decryption process. The existence of 

the variability in iris itself would compromise the system easily and it will not 



3 

be recognised as the authorized user to gain access. Inevitably, this would lead 

to the limitation of the key length that can be generated. In general, the longer 

the generated key length, the higher the complexity it would be, thus increasing 

the secureness that it can offer. But in this scenario the longer the generated key 

that will be bind with the iris data, there will be more chances for the variability 

in the code itself to disrupt the “arrangement” of the key which will inevitably 

compromise the system. 

 To resolve this issue while integrating cryptography into a biometric 

recognition system, alignment-free cancellable iris key binding scheme has been 

proposed by Chai et al. In the proposed method, the iris code was protected 

through the mean of strong and size varying non-invertible cancellable 

transform (Chai et al., 2019), The proposed method is unique in a way that it 

allows the hashed code length to be a controllable parameter which in return 

could provide flexibility in authentication speed and system storage. Constant 

storage of seeds and the re-enrolment process that can be found in the 

conventional biocrytography system has been removed as well due to the 

introduction of the fast key regeneration process. 

 

1.2 Problem Statement 

Based on the new proposed cancellable iris-based key binding scheme, it was 

able to show promising results for the complexity and security level against 

potential attack when applied on public iris database CASIA v3-Interval (Chai 

et al., 2019). The newly proposed method also shows the complexity of 2100 

bits for the brute force attack whereas 266 bits for a false acceptance attack 

under the worst-case scenario.  

However, for various biometric cryptosystems, they are vulnerable to 

various potential attach which not just only limited to brute force and false 

acceptance attacks (Rathgeb and Uhl, 2011a). One of the major potential threats 

that did not verify by Chai et al is the masquerade/hill-climbing attack. Since 

the hill-climbing attack is a major potential threat, without the support of 

evidence, the validity of the proposed scheme can be questioned. Aside from 

the potential threat, the performance of the proposed scheme was tested on just 

one public iris database. The deviation of results might occur if the proposed 

scheme was used to run through another iris database. 
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Therefore, the speculations that can be made would be whether the new 

proposed alignment-free cancellable iris key binding scheme is susceptible to a 

hill-climbing attack as well as what is its performance when it is used to run 

through another set of public iris database.  

 

1.3 Objectives 

The objectives of this study are to identify the performance of the proposed 

scheme under two different condition, which includes: 

1. The security resistance of the proposed scheme against the hill-climbing 

attack and brute force attack.  

2. Evaluate the performance and security of the proposed scheme 

thoroughly through other publicly available databases. 

 

1.4 Scope and Limitation of the Study 

In this study, the performance of the proposed scheme will be solely based on 

the key binding method itself. Chai has assumed that during the communication 

between the bloom filter process and indexing-first-one (IFO) hashing is secure 

and will not be tapped in by the potential malicious attackers. Security analysis 

will be performed solely on the proposed scheme as a whole.  

 The quality of the database would be part of the limitation as well.  3 out 

of 4 for the tested public iris database were having the rather noisy iris image. 

Therefore, it can be observed that the results for these 3 noisy databases would 

deteriorate when compared to the better iris database. 

 

1.5 Outline of the Report 

Further organization of this paper is as described: Chapter 2 is the section of 

literature review which allows the readers to have a better understanding of what 

is a biometric recognition system, how it could integrate with cryptography, and 

how did its implementation has changes throughout history. Chapter 3 explains 

the methodology of how the experiments will take place to achieve the 

objectives of this study. Chapter 4 would include the results and the discussion 

that has been obtained through the experiment. Last but not least, Chapter 5 will 

conclude this study, and recommendations for further study will be included. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

The authentication feature of biometric that was used to integrate with 

conventional cryptography to create biocryptography is known as a biometric 

template. In general, these biometric templates can be further categorised into 

Cancellable Biometric (CB) and Biometric Cryptosystem (BCS). To achieve 

data privacy preservation, the designs of these schemes have to fulfil three main 

criteria, which is the unlikability, cancelability, and irreversibility (Chai et al., 

2019). 

 The philosophy of the biometric cryptosystem can be differentiated into 

two major processes, which are the key binding process and key generation 

process. Binding a biometric data onto a digital key securely is known as the 

key binding process whereas regenerating the digital key through the biometric 

data is known as the key generation process. To achieve a secure biometric 

cryptosystem, first and foremost, it has to be only storing the biometric 

dependent data instead of the cryptographic key itself (Chai et al., 2019). 

Secondly, the biometric data or the digital key has to be computationally 

difficult to retrieve. Last but not least, during the authentication process, the 

input query has to show sufficient similarity above the threshold value to 

retrieve the key as it has to take the slight variation in the biometric data input 

into consideration.  

 Cancellable biometrics, on the other hand, is another approach for 

biometric template protection by utilizing the effort of altering the biometric 

template through repeating the transformation process, which then allowed the 

authentication process to take place in the transformed domain (Ratha et al., 

2007). The storing of the distorted biometric template is more secure as in the 

event of compromised, the new templated can be always reconstructed through 

the transformation process. Therefore, during the design stage for the 

cancellable biometric scheme, four crucial criteria must be fulfilled, which 

include: 



6 

1. Performance: The accuracy that can be achieved by the cancellable 

template when compare to the prior conversion process should yield 

similar results. 

2. Revocability: In the event where multiple protected templates have been 

compromised, the original biometric data must not be able to derive.  

3. Unlikability: The protected biometric template from an individual shall 

be distinct in the way that cross-matching across various applications is 

infeasible. 

4. Non-invertibility: In the event where the protected template has been 

compromised, it should be impossible to be reverse engineered to obtain 

the original biometric data. 

 

2.2 Biometric Cryptosystem – Fuzzy Commitment 

Fuzzy commitment and fuzzy vault are two crucial schemes that have been 

designed to utilize the key binding approach (Chai et al., 2019). Juels and 

Wattenberg are the pioneers of combining the Error Correction Code (ECC) 

with cryptography to produce what is known as the fuzzy commitment scheme 

in these days (C. Rathgeb and Uhl, 2010).  

In a fuzzy commitment scheme, it will consist of a function 𝐹, which 

will be used as a witness where, 𝑤 ∈ {0,1}𝑛 and to commit a codeword where 

𝑐 ∈ 𝐶. The 𝐶 is a set that would contain the error-correcting codewords 𝑐 with 

respective to the length of 𝑛 and the witness would be a 𝑛 bits binary string 

which will be representing the enrolled biometric template  (C. Rathgeb and Uhl, 

2010). The helper data, 𝛿 is the difference vector between 𝑤 and 𝑐, which can 

be obtained via bit-wise XOR operation, 𝛿 = 𝑤 ⊕ 𝑐.  The helper data, 𝛿 will be 

stored into the database with ℎ(𝑐)  together with the hashed function ℎ(. ) . 

During the authentication stage, whenever the query binary string provides 

sufficient similarity within the error correction code capability when compare 

to the enrolled template, the results will be first hash then tested against ℎ(𝑐). If 

it was the authorised access, the comparison would yield a result of ℎ(𝑐 ,) =

ℎ(𝑐) (Chai et al., 2019).  

 The first implementation of a fuzzy commitment scheme on biometric 

was performed by Hao et al (C. Rathgeb and Uhl, 2010). Using the in-house 
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dataset, a false acceptance rate (FAR) was able to achieve 0% while 99.53% 

for the genuine acceptance rate (GAR) (Hao et al., 2006). The main idea of their 

scheme was to eliminate the bits error caused by the variance by applying 

Hadamard code and the burst errors will be corrected by the Reed-Solomon 

codes (Hao et al., 2006). Their approach was to bind the 140-bit cryptographic 

code with the 2048-bit iris codes. 

However, this approach is deemed to be having a high false rejection 

rate of 0.47% (C. Rathgeb and Uhl, 2010). Instead of using the Reed-Solomon 

code, Bringer and et al then proposed a similar approach by using a matrix 

consist of two different Reed-Muller codes (C. Rathgeb and Uhl, 2010). By 

using these approaches, Philips and et al were able to achieve zero FAR and 

GAR of  94.83% on the ICE 2005 iris database (Phillips et al., 2008).  

False acceptance rate and genuine acceptance rate are the two 

parameters that use to measure the effectiveness of a biometric cryptosystem 

(Nagar et al., 2012). Generally, the false acceptance rate of a biometric 

cryptosystem is expected to have a value of zero. Although several approaches 

included those mention above show a promising result of zero for the false 

acceptance rate, fuzzy commitment did not perform well in terms of security 

(Nagar et al., 2012). Fuzzy commitment and fuzzy vault will not able to generate 

revocable templates, which make them vulnerable to linkage attacks (Nagar et 

al., 2012). Aside from the linkage attack, researchers have also performed 

statistical attacks and decodability attacks. 

Rathgeb and Uhl have proposed and performed a statistical attack 

against iris-biometric fuzzy commitment schemes based on error correction 

code histogram (Rathgeb and Uhl, 2011). They have concluded that the fuzzy 

commitment scheme is still vulnerable to the proposed attack even though the 

binary feature vector should have already provided sufficient entropy and able 

to bind with cryptographic key securely (Rathgeb and Uhl, 2011).   

The decodability attack for the vulnerability of the fuzzy commitment 

scheme that was based on linear ECC was first published by Stoianov 

(Kelkboom et al., 2011). This vulnerability arises if decoding the XOR of the 

auxiliary elements can be cross-matched across several different databases and 

leads to a valid codeword, there is a high possibility that the “cracked” codework 

belongs to the same individual thus can be labelled as genuine (Kelkboom et al., 
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2011). Kelkboom et al proved that implementing a bit-permutation mechanism 

could help improve the resistance toward a decodability attack. 

 Aside from vulnerable to potential attacks, fuzzy commitment can only 

be performed in the binary form as matching in the hamming domain can only 

handle binary numbers. Thus, this has limited the scheme to achieve better 

performance as it would not able to utilize a more effective matching technique 

and feature extraction process (Chai et al., 2019). Therefore, the vulnerabilities 

of iris-based fuzzy schemes in terms of the potential attack as well as the 

limitation, the privacy and security it can provide is doubtable (Chai et al., 2019). 

 

2.2.1 Fuzzy Vault 

Other than fuzzy commitment, the fuzzy vaults scheme that was introduced by 

Juels et al would be able to contribute to the error-tolerant verification as well 

as protection for a biometric cryptosystem. Lee et al was the first one to 

implement the scheme with iris and was able to obtain genuine acceptance rate 

of 80% together with the zero false acceptance rate when the employing bit 

keys are equivalent to 128 when it is performed on a CASIAv3-Interval Iris 

database (Lee et al., 2008). 

 The lack of implementation of a fuzzy vault scheme for a biometric 

cryptosystem leads to a lack of detailed security and performance analysis (Chai 

et al., 2019). However, there was a case where the vulnerability of fuzzy vaults 

in biometric was first exposed by Juels and Sudan, it was susceptible to linkage 

attack and correlation attacks when fused it with fingerprint instead of iris (Chai 

et al., 2019).  Chai et al conclude that the implementation of the fuzzy vault for 

biometric is impractical in term of the decoding complexity are infeasible. 

 

2.3 Cancellable Biometrics 

The first cancellable biometric was introduced by Ratha et al (Rathgeb et al., 

2013). To achieve a revocable template, Ratha et al have performed surface-

folding as well as imaged based block permutations (Rathgeb et al., 2013). The 

vulnerability of Ratha et al method was then found in terms of the non-

invertibility although the high accuracy performance was able to achieved 

(Bringer et al., 2015). Despite the setback, the opening of “Pandora’s Box” has 
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encouraged more researchers to look into biometric template protection (Chai 

et al., 2019). 

 In general, cancellable biometric can be classified into non-invertible 

transformation as well as biometric salting. By applying the non-invertible 

transformation, the transformed biometric template will then be able to store 

securely inside the system itself. To achieve non-invertible transformation,  Ali 

and Tahir proposed an encryption process that will be able to distort the 

biometric template while retaining the original biometric information (Ali and 

Tahir, 2018). The encryption will first obtain the size of the array, 𝑠 = 𝑥 × 𝑦, 

where 𝑥 representing the rows and 𝑦 representing the column. The encryption 

process will read through each row and concatenate the first odd element with 

the next odd element that followed by. An additional new array 𝐴𝑁 will be used 

to store the concatenated odd value. The same process will then be repeated for 

the even element. Storing of the element between odd and even value be 

repeated until the end of the array. Figure 2.1 below shows a graphical 

representation of the proposed encryption process.  

 

 

Figure 2.1: Encryption Process (Ali and Tahir, 2018) 

 

 The proposed encryption method by Ali and Tahir will only be 

implemented after the feature extraction and encoding process (Ali and Tahir, 

2018). In their framework, the support vector machine is used as the classifier, 

fusion of mask, and profile approach for iris detection of the pupil and 2D Gabor 

filer as their feature extraction (Ali and Tahir, 2018). 

 The proposed method is then tested on the Bath-A database with a total 

of 1000 samples of iris image which then half of it will be used for training 
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purposes and another half of it to be used as testing. It was able to achieve the 

result of 0.09% FAR and a recognition rate of 99.99% (Ali and Tahir, 2018). 

 Another variation of non-invertible transformation has been performed 

by Rathgeb et al which titled alignment-free cancelable iris biometric templates 

based on adaptive boom filter (Rathgeb et al., 2013). What makes bloom filter 

interesting is the capability to perform many-to-one mapping for the biometric 

data, which will make it non-invertible transformation at the same time (Chai et 

al., 2019). Comparing to the original counterpart, the bloom filter was able to 

achieve similar performance in terms of accuracy. However, the low complexity 

of 225  was all it needs to perform the restoration of the biometric template 

(Mennink et al., 2014).  

 Security analysis was then performed by Bringer et al on the alignment-

free cancelable iris biometric templates based on the adaptive boom filter that 

was proposed by Rathgeb et al (Bringer et al., 2015). In terms of unlikability, it 

was found out that it was susceptible to a brute force attack due to small 

keyspace (Bringer et al., 2015). The attack was considered as a generic attack 

as the exploitation was made possible due to the small keyspace, rather than the 

biometric data itself. Bringer et al proposed a solution that would require the 

tradeoff between security and performance. Increasing the size of the key would 

increase the secureness but at the same time will degrade the 

authentication/identification results.  

 Moving on from non-invertibility transformation, the biometric template 

that undergoes invertible transform can be known as the biometric salting. To 

achieve the distorted biometric template, the biometric data will be combined 

with specific data which is known as the auxiliary data (Choudhury et al., 2017). 

Due to the binding of biometric data with auxiliary data, the revocability was 

able to achieve through the changing of the auxiliary data (Choudhury et al., 

2017). 

 Aside from binding with the user-specific auxiliary data, another 

approach to performing biometric salting would be through the usage of 

synthetic patterns and random noise pattern (Choudhury et al., 2017). Zuo et al 

proposed the method where is known as GRAY-SALT for real-valued iris data 

and BIN-SALT for binary iris data (Zuo et al., 2008). To perform GRAY-SALT, 

a random pattern will be combined with real-valued iris data through either 
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multiplication or addition. A similar concept can be applied to BIN-SALT. 

Instead of multiplication or addition, XOR operations would be used to perform 

the combination. 

 The method proposed by Zuo et al was able to achieve the revocability 

as well, but there was a major flaw. To achieve high accuracy performance, the 

pre-alignment process is a must (Zuo et al., 2008). Several other invertible 

transformations have been proposed by other researchers such as sectored 

random projections and S-Iris Code encoding (Chai et al., 2019). S-Iris Code 

encoding method suffers performance degradation by the noise that causes by 

weaker inner-product but it still can be improved/solved by implementing a 

noise mask. 

 On the other hand, the issue of sectored random projection is either if 

the same random projections matrix has been applied to a different user, the 

performance would be compromised. There is also research showing that the 

disclosure of a random projection matrix will be able to invert the cancelable 

template, which makes it come short when comparing to other methods (Chai 

et al., 2019). 

 To sum up, for biometric salting to be feasible for the application of 

cancelable biometric, one crucial circumstance has to be fulfilled, which is the 

auxiliary data shall not be exposed to the public and has to be kept as a secret 

(Chai et al., 2019).  

 

2.4 Alignment-Free Chaffed Cancellable Iris Key Binding Scheme 

Alignment-free chaffed cancellable iris key binding scheme is a method that 

was proposed by (Chai et al., 2019) which they have integrated bloom filter and 

indexing-first-one hashing to generate the alignment-free biometric template. 

Figure 3.1 below shows the overall framework of the proposed scheme.  

 

2.4.1 Bloom Filter 

According to the experiment performed by (Rathgeb et al., 2013), the increase 

in the dimension of the smaller block, the biometric performance would suffer 

drastically lost as too much information has been missing during the many to 

one mapping. However, the application of the bloom filter can show promising 

results from the range of 1.14% to 1.83% for small block size without taking 
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the feature extract algorithm and word size into consideration (Rathgeb et al., 

2013). 

 Although the methods proposed by (Rathgeb et al., 2013), has been 

proved to have the vulnerability toward generic attack due to low keyspace 

(Bringer et al., 2015), it was still able to obtain the complexity from the range 

of 2126 to 2283 depends on the size of the block (Rathgeb et al., 2013). Rathgeb 

et al also conclude that the trade-off between security and biometric 

performance in the cancellable biometric system is inevitable.  

 

2.4.2 Indexing-First-One-Hashing 

Lai et al have proven that indexing-first-one hashing was able to withstand 

several privacy and security attacks. A complexity of 2512 was able to achieve 

when subject to a single hash attack and 2136 for pre-image attack under no 

degradation of the accuracy performance. Revocability and unlikability was 

able to achieve as well and the permutation token for the user was not required 

to keep as a secret, which make this approach more user-friendly (Lai et al., 

2017)  

 

2.4.3 Performance Evaluation  

EER are usually parts of the parameters that used to evaluate the performance 

of the biometric system, which can be obtained through the false rejection rate 

(FRR) and false acceptance rate (FAR) between the collected imposter and 

genuine score (Chai et al., 2019). In (Chai et al., 2019) approach, the EER was 

approximated as 𝐸𝐸𝑅 ≈ (𝐹𝐴𝑅 + 𝐹𝑅𝑅)/2. The low value of EER indicate a 

better performance. The comparison between the performance of bloom filtered 

iris code and original iris code has been performed, which yield the results as 

shown in Figure 2.2 below. 

 

 

Figure 2.2: System Performance for the Hashed IrisCode and Original 

Alignment-Free (Chai et al., 2019) 
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 The results obtained from (Chai et al., 2019) shows that there is no 

significant drop in system performance. Aside from system performance, it also 

able to prove that the compatible performance with the application of index-

first-one-hashing.  

 In (Chai et al., 2019) paper, three different evaluation has been measured 

to take into consideration on how similarity score threshold, 𝑡 , cryptographic 

key length, 𝑛 and hashed code length, 𝑚 would affect the system performance 

of the proposed scheme. The results for FRR and FAR for 𝑡 from the range of 

𝑡 = [0.16, … ,0.25] with 𝑚 = 100 and 𝑛 = 10 are shown in Figure 2.3 below. 

 

 

Figure 2.3: System Performance for Parameter Set (𝒕, 𝟏𝟎, 𝟏𝟎𝟎) (Chai et al., 

2019) 

 

 FAR are usually recommended to have a value of zero for a 

cryptosystem to be useful so that any unauthorised access personnel would not 

stand a chance to access the system. By keeping this in mind, Chai et al conclude 

that the optimal value for 𝑡 shall fall under the range of 𝑡 ≥ 0.2 to achieve zero 

FAR.  

 Figure 2.4 below shows the system performance for when the value of 

cryptographic key length, 𝑛 is equivalent to 𝑛 = [10,20,40,60,80,100,150,200] 

while 𝑡 = 0.2 and 𝑚 = 100. 
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Figure 2.4: System Performance for Parameter Set (0.2, 𝒏, 100) (Chai et al., 

2019) 

 

 Aside from the FAR and EER, a genuine acceptance rate (GAR) was 

included with 𝐺𝐴𝑅 = 100 − 𝐹𝑅𝑅. It can be observed that a shorter key length 

would yield a higher GAR. Other observations such as EER remain constant 

when the key length has increased to 200, which represents that the performance 

of the system has been able to retained (Chai et al., 2019). 

 Figure 2.5 below tabulates the system performance for hashed code 

length, 𝑚 from the range of 𝑚 = [10, 50, 100 150, 200, 250, 300] where 𝑡 =

0.2 and 𝑛 = 10. There was an additional column that labelled as storage/bit 

included as well. 

 

 

Figure 2.5: System Performance for Parameter Set (0.2, 10, 𝒎) (Chai et al., 

2019) 

 

 Overall, the FAR was able to maintain at the value of zero whereas the 

GAR remain stagnant at a value of 96.37%. Changing of hashed code length 

will be able to alter the storage per bit at the cost of the system performance. 

The proposed scheme by Chai et al also proofed to have a more compact form 

of storage when compared to (Li et al., 2010) which achieves an average of 

31.2𝑘𝑏 for fingerprint application.  
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2.4.4 Security Analysis  

In Chai et al proposed scheme, the synthetic biometric template has been utilized, 

thus it was important to ensure that the unauthorised access personnel would not 

be able to distinguish the genuine and synthetic template. Chai et al had 

designed an indistinguishability game to examine the performance of the 

proposed scheme. Figure 2.6 shows the summary of the result for the 

indistinguishability between synthetic and genuine iris template through the 

proposed game where 𝑆(𝐵𝑔, 𝐵′) =  [0.16, 0.17, 0.18, 0.19] , 𝑀 = 10000  and 

𝑛 = [1, 50, 100, 200]. 

 

  

Figure 2.6: Indistinguishability Between Synthetic and Genuine Iris 

Template (Chai et al., 2019) 

 

 It can be observed that when the total advantages will obtain the value 

that is greater than 1 when the cryptographic key length reaches a length of 200. 

This is due to the increase in the number of iris templates that used to bind with 

the key would have greater information leakage (Chai et al., 2019). 

 In the event when the cryptographic key has been compromised, the 

renewal process is rather easy which would not require the re-enrollment 

process. The new cryptographic key can be updated by just swapping the 

position of the genuine and synthetic template together with the corresponding 

hashing group (Chai et al., 2019).  

 A potential attack such as brute force attack shows a complexity up to 

2200. This is due to the nature of the brute force attack which randomly guessing 

the 𝑛 bit cryptography key. The best performance that can be achieved by the 

proposed scheme was when 𝑛 = 200 with 1.82% 𝐸𝐸𝑅 , which explain the 

complexity of 2200 (Chai et al., 2019). 

 False accept attack was another potential attach that has been studied in 

the scheme proposed as well. Different from the brute force attack, the false 
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accept attack will tap into the adversary of the cancellable storage (Chai et al., 

2019). Figure 2.7 below shows the comparison for false accept attack and brute 

force attack with the similarity score 𝑆(𝐵𝑔 , 𝐵′) =  [0.195, 0.196, 0.197, 0.199, 0.20], 

𝑚 = 200 and 𝑡 = 0.20.  

 

 

Figure 2.7: Comparison of Complexity for Brute Force and False Accept 

Attacks (Chai et al., 2019) 

 

 In general, the complexity of the false accept attack is lower compared 

to the brute force attack. By taking the worst-case into scenario into 

consideration, the proposed scheme would have a false accept complexity of 

266 bits (Chai et al., 2019).  

 

2.5 Hill Climbing Attack 

Hill climbing is an algorithm that will approach an existing problem with an 

arbitrary solution to find for the global optimum solution. The algorithm will 

then keep on improving itself to find a better solution by exploring the other 

possible neighbouring solution. One of the major issues with hill climbing is 

that it will be terminated when a peak is reached, in which the results might be 

trapped in a local optimum. Hill climbing attack is often quoted to be similar to 

a brute force attack, but there are differences in nature.  

 When a hill-climbing attack is applied to an iris biometric system, it is 

performing the task of generating synthetic representations and attacking the 

system iteratively until successful recognition is achieved. During the hill-

climbing attack, it will improve itself based on a fixed algorithm and will retain 

the changes if the observed function or objection score was able to achieve 

improvement whereas a brute force attack will be just merely attacking the 

system blindly until it was able to trick the system with a correct combination. 
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Hill climbing attack has been modified into several variations to suit the 

biometric scheme that the researcher is targeting.  

 In the proposed method by (Christian Rathgeb and Uhl, 2010), an 

assumption has to be made, which is the attacker has to be able to tap into the 

communication channel of the biometric system to retrieve the matching score. 

Rathgeb has summarized his proposed hill-climbing attack into four simple 

steps. First of all, a predefined constant will be used to increase the value of a 

pixel and the authentication will be performed. Such modification will be 

retained if the matching score return has been shown to have increased. If the 

return value of the matching score is reduced or remains the same, the modified 

pixel value will be then decreased by the predefined constant, and authentication 

is performed again. If the return value of the matching score has improved, the 

modification will then be retained. The whole process is then repeated until the 

modified input has been accepted by the system or no significant improvement 

can be made anymore (Christian Rathgeb and Uhl, 2010).  

 However, the proposed HCA will only return high matching score value 

if the target iris biometric system shares the same similarity on the feature 

extraction process as proposed by Masek (Christian Rathgeb and Uhl, 2010).  

 In another study of (Maiorana et al., 2015) for the hill-climbing attack 

that will be applied to a multi-biometric recognition system. Several different 

approaches have been discussed that are targeted to approach the system with a 

fixed-length template.  

 SPSA is a stochastic approach that is used to measure the gradient. A 

starting point will be pre-determined and it will be run for a fixed iteration. If 

the estimated gradient is below a pre-defined threshold, the process will be 

restart with another set of perturbation vector that is randomly generated 

(Maiorana et al., 2015).  

 The implicit filtering algorithm shares some similarities when compared 

to the SPSA algorithm. A scale factor is added into each of the generic iterations. 

The scale will be updated when the obtained estimated gradient is lower than a 

given threshold. The function of the scale is to avoid the local maximum as well 

as in the event when the algorithm went into stagnation, the last working point 

with the largest scale will be used to restart the algorithm (Maiorana et al., 2015).  
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 To implement the proposed algorithm on a unimodal biometric 

recognition system, the obtained similarity scores will be used as the evaluation 

for the unknown objective function.   

 

2.6 Summary  

Table 2.1 below shows the summary or the comparison between the reviewed 

method with the available genuine acceptance rate and false acceptance 

discussed in Chapter 2. 

 

Table 2.1: Summary of State-of-the-arts 

Methods GAR (%) FAR (%) 

Fuzzy Commitment (Hao et al., 2006) 99.53 0 

Fuzzy Commitment (Phillips et al., 2008) 94.38 0 

Fuzzy Vault (Lee et al., 2008) 80.00 0 

Cancellable Biometric (Ali and Tahir, 2018) - 0.09 

Key Binding Scheme (Chai et al., 2019) 97.35 0 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Alignment-Free Chaffed Cancellable Iris Key Binding Scheme 

Referring to Figure 3.1, the proposed scheme can be further categorized into 

three main stages/process, which is the enrolment process, query process, and 

authentication process (Chai et al., 2019). 

 

 

Figure 3.1: Overview of Proposed Scheme (Chai et al., 2019) 

 

 Iris sample that is feed into the proposed scheme will first undergo a 

feature extraction process. In Chai et al paper, they utilized the public available 

iris database, CASIA v3-interval, which is a pre-processed iris code. The iris 

code will then go through a bloom filter, followed by the indexing-first-one-

hashing before the final hashed code that is already bound with a ‘secret key’ is 

stored (Chai et al., 2019).  

 For the authentication process to take place, matching between the 

reference hashed codes and queries will then be performed. Matching will be 

performed through the method of calculating the difference of similarity score 

with a pre-defined threshold. Eventually, a final binary string of keys will be 

able to retrieve if the query input was able to obtain the similarity score that is 

higher than the predefined threshold. 

 The evaluation of the proposed scheme will be tested with four different 

databases, which include the CASIA-v3-interval database, CASIA-Iris-



20 

Thousand database, CASIA-v1 database, and ND0405 database with a laptop 

that equipped with processor core of Intel i7-5500U, 8GB RAM and 

MATLABR2018a. 

 

3.1.1 Bloom Filter 

Bloom filter technique that was proposed by (Rathgeb et al., 2013) was adopted 

by Chai et also that the head rotation issues in iris code can be resolved. The 

original iris code is denoted by, 𝐼 ∈ {1,0}𝑛1×𝑛2 will be transformed into a matrix 

which is denoted as bloom filtered iris code, 𝐵.  

 The matrix of iris code will first be split into 𝐼1 ∙ 𝐼2 blocks, where 𝐼1 =

𝑛1

𝐿
 and 𝐼2 =

𝑛2

𝑊
. Smaller block section will be formed inside the 𝐼1 ∙ 𝐼2 blocks 

with a fixed dimension of 𝑊 and 𝐿, indicating the column and row respectively. 

Each of this smaller block section will be governed by bloom filter with the 

value of 𝑏 ∈ {0,1}2𝐿
. All the elements in 𝑏 will first set to be 0 and the element 

of ‘1’ will be added into it depends on the calculated decimal position govern 

by the column codeword, 𝑥𝑗 ∈ {1,0}𝐿 | 𝑗 = 1, 2, … , 𝑊 in each block (Chai et al., 

2019). To construct the final matrix for bloom filtered iris code, 𝐵 ∈

{0,1}𝐼1∙𝐼2×2𝐿
, the compilation of every bloom filter 𝑏𝑖 for each block (for 𝑖 =

1,2, … , 𝐼1 ∙ 𝐼2 ) will be performed (Chai et al., 2019). 

In this experiment, the iris code from the various database will first be 

segmented into smaller iris blocks govern by the parameters of width, 𝑊, and 

length, 𝐿. Figure 3.2 below shows the illustration of segmenting iris code into 

the iris blocks.  

 

 

Figure 3.2: Segmentation of Iris Code to Iris Block 
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Under normal circumstances where the noise in the iris code is 

negligible, no mask will be applied on it and the decimal number will be 

extracted based on the index of the ‘1’ element in a column-wise manner as 

shown in Figure 3.3 below. By default, all the elements in 𝑅1  will be ‘0’ 

elements. 

 

 

Figure 3.3: Bloom Filtered Iris Code (Normal Circumstances) 

 

 As mentions in (Rathgeb et al., 2013), one of the features of Bloom Filter 

was it was able to perform many to one mapping which being part of the trade-

off between the performance and the security. Figure 3.4 below shows the 

scenario of how the bloom filtered would look like when the column-wise index 

returns the same value. 

 

 

Figure 3.4: Bloom Filtered Iris Code (Loss of Information) 

 

3.1.1.1 Masking of Bloom Filter 

In this experiment, the iris block will be a mask with a binary mask that has the 

same dimension of width, 𝑊, and length, 𝐿. A pre-defined noise threshold, 𝑇 

will be the first set. During the event of the particular iris block having a high 

number of noisy bits that have already over the pre-defined threshold, it will be 

ignored and filtered out without generating a new entry for the bloom filtered 

iris code. Figure 3.5 below shows the illustration for the masking process.  
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Figure 3.5: Masking of Iris Code 

 

3.1.2 Key Binding 

A random binary cryptographic key, 𝐾 with a predefined length will first be 

generated. In the binary key, the ‘1’ element will be bind with the genuine 

template, which is the bloom filtered iris code while the ‘0’ element would be 

bind with a synthetic template. The synthetic template will then be generated by 

applying permutation on the genuine template.  

 The binary cryptographic key which has now stored the biometric data 

will then be going through the indexing-first-one hashing process so that hashed 

code will be stored in the database instead of the cryptographic key, 𝐾 to ensure 

the secureness of it.  

 

3.1.3 Indexing-First-One Hashing 

Similarly, with Bloom Filter, Indexing First One Hashing is one of the methods 

that can be implemented to achieve alignment-free biometric generation (Chai 

et al., 2019). IFO hashing is an extension of utilizing modulo thresholding with 

Hadamard product code coupled with Min-Hashing. To perform IFO Hashing, 

the process itself can be summarised into six steps (Lai et al., 2017).  

 First of all, a 𝑝 number of random permutation will be generated for the 

iris code with the dimension of 𝑛1 × 𝑛2 in a column-wise manner (Lai et al., 

2017). 𝑝-ordered Hadamard product code will be obtained through the mean of 

multiplying all the randomly permutated iris code. This step is essential as to 

avoid reverse engineered of iris code feasible in the event when it has been 

compromised since large amount of binary information will be lost (Lai et al., 

2017). 
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 A 𝐾 window will be first constructed which will use to select the first ‘1’ 

element that appears within that particular window. The concept of min-hashing 

is utilized during this stage (Chai et al., 2019). The index of the first ‘1’ element 

that appears will then be extracted before it was passed through modulo 

thresholding. Implementation of modulo thresholding is to further strengthen 

the non-invertibility properties of the biometric template due to the modulo 

threshold that can induce many to one mapping (Lai et al., 2017). All these steps 

would be repeated by using the independent hash function, 𝑚  to obtain a 

𝑛1 × 𝑚 matrix of IFO hashed code 𝐶 ∈ ℤ𝐾−𝑇
𝑛1×𝑚

 (Lai et al., 2017). 

In this experiment, to perform the IFO hashing, a predefined amount of 

the number of permutation, 𝑝 will be determined. Each row of the bloom filtered 

iris code will then go through 𝑝 amount of permutation. Figure 3.6 below shows 

the permutation of first-row bloom filtered iris code with 𝑝 = 2. 

 

 

Figure 3.6: Permutation of Bloom Filtered Iris Code with 𝒑 = 𝟐 

 

 Hadamard Multiplication will then be performed on the permutated iris 

code which transforms the 𝑝 row of permutated iris code into a single row of 

product code. Figure 3.7 below shows the illustration of the Hadamard 

multiplication.  
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Figure 3.7: Hadamard Multiplication 1 

 

 As mention in (Lai et al., 2017), IFO hashing was able to reduce stored 

information. This occurs during the stage of Hadamard Multiplication and 

selection of window for first ‘1’ elements that appear. Figure 3.8 shows the 

situation of how Hadamard Multiplication could achieve such behaviour.  

 

 

Figure3.8: Hadamard Multiplication 2 

 

 The index of the first ‘1’ element that appears in a predefined K window 

will then be extracted. Based on Figure 3.9 below, it shows the extracted index 

for assuming the K window of 4. Loss of information can occur at this stage 

either is affected by the previous Hadamard Multiplication results or the K 

window size. 
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Figure 3.9: Extracting Index when K Window is 4 

 

 The last step for IFO hashing is to induce the many to one mapping 

through the modulo thresholding through the threshold value, 𝜏 . For the 

extracted index, 𝐶𝑋 that is larger than the difference between the K window and 

threshold value, 𝐶𝑋 ≥ 𝐾 − 𝜏,  𝐶𝑋
′ =  𝐶𝑋 mod  𝐾 − 𝜏. All the process will then 

be repeated with different permutation number and all the extracted index that 

has pass-through modulo threshold will be stored as an IFO Hashed Code.  

 

3.1.4 Key Retrieval 

The matching score between the query IFO hashed code, 𝐶′ and the stored IFO 

hashed code, 𝐶 will be denoted as 𝑆(𝐶, 𝐶′). The query input iris code will first 

have to go through the bloom filter transformation to generate the genuine 

template. The same IFO hashed group will be applied with the respective 

permutation to generate a query of hashed code. 

 An empty array with the same length of the cryptographic key, 𝐾 will 

be first generated. Matching will take place to govern by a pre-defined threshold, 

𝑡. If the 𝑆(𝐶, 𝐶′) ≥ 𝑡, it will fill up the empty array with ‘1’ elements whereas 

‘0’ for the situation where 𝑆(𝐶, 𝐶′) ≤ 𝑡. By repeating the process, the final key, 

𝐾′ will be obtained.  

 Key matching between 𝐾 and 𝐾′ will then be carried out to determine 

whether the query input iris code is authorised personnel or malicious attacker.  

 

3.2 Hill Climbing Attack 

According to (Yang et al., 2019), the best entry point for a hill-climbing attack 

to take place would be the channel between the modules. Figure 3.10 below 

shows the possible entry point for the proposed scheme.  
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Figure 3.10: Possible Attack Entry Point 

  

 To emulate the potential hill-climbing attack on the proposed scheme, 

the query input of the iris code will be replaced with a synthetic or imposter 

template. The threshold for the similarity score to regenerate the genuine 

template is assumed to be known by the malicious attacker and the channel for 

the similarity score has been compromised and the attacker would be able to 

know the similarity score based on the synthetic or imposter template.  

 

3.2.1 Rathgeb Method 

One of the possible hill-climbing attack approaches that can be implemented 

would be the method that has been proposed by (Christian Rathgeb and Uhl, 

2010) with a slight modification. The CASIA-Iris-Thousand iris database is the 

iris code that made up with the binary number, which indicates the possible 

value for a single pixel in the image would be either ‘1’ or ‘0’.  

 A random imposter template can be first chosen to feed into the proposed 

scheme. A 𝑁1 × 𝑁2 smaller window block will then be formed to determine the 

number of pixels that will be toggle (‘1’ pixel will toggle to become ‘0’ and vice 

versa). The similarity score based on the new template will then be tapped into 

to check for any improvement. In the case where the similarity score improves 

and move nearer to the threshold, 𝑡 , the toggle of the pixel in the 𝑁1 × 𝑁2 

window block will be retained and the next 𝑁1 × 𝑁2  window block will be 

going through the same process again.  

 In the event where the similarity score become worst or remain 

unchanged, the original value in the 𝑁1 × 𝑁2  window block will remain 

unchanged. After the first full run on the iris code with modification has been 

done, in the event where the similarity score is still not able to higher than the 
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threshold, a new iteration, 𝑘 will begin with a new starting position, 𝐽𝑛. The new 

position will base on 𝐽𝑛 = 𝐽1 + 𝑥 , where 𝑥  is a user pre-defined value. The 

whole hill-climbing attack will be repeated based on the pre-defined 𝑘 value or 

whichever the similarity score has already pass through the threshold. Figure 

3.11 shows the illustration of the proposed method.  

 

 

Figure 3.11: Modification of Rathgeb’s Hill-Climbing Attack 

 

3.3 Evaluation Metrics 

Throughout the experiment, several evaluation metrics were used to determine 

the performance of the proposed scheme. The most found evaluation metric in 

this research would be the Genuine Acceptance Rate (GAR), False Acceptance 

Rate (FAR), False Rejection Rate (FRR), Equal Error Rate (EER) and 

Decidability.  

 False Acceptance Rate is defined as the percentage of imposters that 

were recognised as genuine by the biometric system. In general, FAR shall be 

minimized to as small as possible as the personnel that was not registered in the 

system shall not gain access.  

 On the other hand, the False Rejection Rate is defined as the percentage 

of genuine users being recognised as the imposter by the biometric system. FRR 

shall be minimized to as small as possible as well so that the system will not 

reject the genuine personnel when they were trying to gain access to the system. 

Genuine Acceptance Rate could be calculated through 100-FAR as it indicates 

the percentage of genuine users that could be accepted by the system.  
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 Equal Error Rate is defined as the intersection point where the both FAR 

and FRR curves were plots on a graph. Therefore, in this context, EER can be 

calculated by the approximation of (𝐹𝐴𝑅 + 𝐹𝑅𝑅)/2. Decidability on the other 

ends is the normalized distance between means of the imposter and genuine 

distributions which could obtain through Equation 3.1 shown below where 𝜇𝐺 

represents the mean for genuine score and 𝜇𝐼 for the imposter score. 

 

 𝑑′ =
|𝜇𝐺−𝜇𝐼|

√(𝜇𝐺
2+𝜇𝐼

2)/2
  (3.1) 

 

 EER is used to gauge the error rate of the database whereas decidability 

will be able to give an overview of the trend of the genuine and imposter score. 

Low EER and high decidability would be the desirable outcome as will indicate 

the difference between genuine and imposter template is huge and the rate for 

the system to behave inaccurately is low.  

 

3.4 Work Plan 

This research project span through two long semesters. Two detail Gantt Chart 

has been used to illustrate the timeline for the works has been done throughout 

this time in Figure 3.12 and Figure 3.13 below.  

 

 

Figure 3.12: Gantt Chart for First Semester 
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Week

Gantt Chart For First Semester
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Figure 3.13: Gantt Chart for Second Semester 
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION 

 

4.1 Performance Evaluation 

A comprehensive analysis of the security and performance of the proposed key 

binding scheme was conducted on 4 different public iris databases, which 

include CASIA-v3-interval database, CASIA-Iris-Thousand database, CASIA-

v1 database, and ND0405. The difference between these databases is 

summarised as shown in Table 4.1 below.  

 

Table 4.1: Summary of 4 Different Databases 

Characteristics 

Databases 

CASIA-v3-

interval 
CASIA-v1 

CASIA-Iris-

Thousand 
ND0405 

No. of Subjects 249 108 1000 356 

No. of Classes 395 108 2000 712 

No. of Images 2639 756 20000 64980 

Resolution 320*280 320*280 640*480 720*100 

Image Quality Highest Lowest Higher Lower 

 

 The example images from the four datasets can be referred to Figure 4.1 

below from Left to Right with the sequence following CASIA-v3 interval, 

CASIA-v1, CASIA-Iris-Thousand and ND0405. 

 

 

Figure 4.1: Example Image for 4 Different Databases 
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 CASIA-v3-interval (also referred to as CASIA-v3 in this paper) has the 

clearest iris texture detail among all the databases whereas the remaining would 

contain the reflection from near-infrared (NIR) illuminator. This was due to the 

sensors, environment, and methods used to capture the iris image that was 

different across the 4 different databases. 

 The attributes of the subject for the database were different as well. 

Subject from CASIA-v3-interval and CASIA-v1 database are mostly graduate 

students whereas subjects from CASIA-Iris-Thousand (also referred to as 

CASIAT in this paper) and ND0405 are having a wide range distribution of ages. 

 CASIAT is a large database where the 1000 subjects were captured with 

near-infrared (NIR) wavelength at a close distance (Hu et al., 2017). It was 

captured by a commercial IKEMB-100 camera. This quality of the database is 

affected by the specular reflections and the spectacles wearer (Hu et al., 2017). 

 On the other hands, ND0405 is also a large database where it contains a 

total of 64980 images that were also taken in NIR wavelength at a close distance 

(Hu et al., 2017). It was capture by a LG2200 iris imaging system. Both 

CASIAT and ND0405 database was used to represent the iris data that came 

from a wide distribution of ages.  

 ND0405 has a lower quality when compared to CASIAT as the process 

of capturing was not performed under the ideal scenario. Several different real-

work issues can be seen throughout the data set, which includes eyelids 

occlusion, rotation, blurring and off-angle. (Hu et al., 2017). Not to mention that 

some of the subjects were wearing contact lens during the capturing process, 

which would contribute to the distortion of the iris textures. 

 CASIA-v3 has the best image quality in overall as it used a self-

developed close-up camera designed by the Chinese Academy of Sciences 

(CASIA) where its sole purpose was to capture clear iris images. CASIA-v1 on 

the other hands was the predecessor for CASIA-v3 where similar approaches 

have been used but higher intraclass variation contributed by various noise can 

be observed. Both these databases were used to represent the iris data that came 

from a rather “controlled” environment. 

 The experiments were conducted in a way where it will emphasize on 

the implementation and the security analysis. It does not take the limitation, 
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potential, and trade-off that might occur in iris biometrics into consideration. 

For starter, the performance trade-off in terms of Equal Error Rate (ERR) and 

decidability index upon the implementation of Bloom Filter and IFO Hashing 

in preserving the system’s performance is shown in the following section. The 

low value of EER would indicate a better performance whereas a high value of 

decidability index would be preferable as it indicates the normalized distance 

between the means of the genuine and imposter distributions.  

 Next, it will follow by an overview of the performance of the proposed 

key binding scheme through standard metric evaluation. The inter-relation of 

the three main parameters: similarity threshold (𝑡), cryptographic key length 

(𝑛), and IFO hashed code length (𝑚) were tested and examined.  

 

4.2 Performance of Bloom Filter Iris Code and IFO Hashing 

The experiments were first carried out by testing the bloom filtered iris code and 

IFO hashing respectively. Taguchi Method was implemented to obtain the 

parameters, 𝑊and 𝐿 for Bloom Filter generation as well as the various IFO 

hashing parameters to achieve the optimum performance where it targets to 

reach the lowest possible EER while maintaining the high decidability. Table 

A-1, Table A-2, Figure B-1, and Figure B-2 show the examples of tabulation for 

data that was obtained through the Taguchi Method for CASIA-v3-interval 

database and CASIA-v1 database. The parameters that were used for the key 

binding scheme was then tabulated into Table 4.2 below. 

 

Table 4.2: Summary of Parameters used for 4 Different Databases 

Parameters 

Databases 

CASIA-

v3-interval 

CASIA-

v1 

CASIA-Iris-

Thousand 
ND0405 

Width 7 5 3 3 

Length 20 10 3 4 

Noise Threshold - 0.1 0.1 0.1 

Number of Permutation 1 1 1 1 

𝐾 Window 128 32 8 8 

Modulo Threshold 0 0 0 0 
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 The inter-relation of the parameters listed in Table 4.2 above was 

experimented thoroughly through the repetitive trial via manipulating one of the 

parameters while others remain as a constant. Table A-3 and Table A-4. Shows 

the tabulated results where the extensive experiment that was performed on the 

CASIA-v1 database to study its effects.  

 Throughout the experiment several different matching protocols have 

been performed, which include genuine and imposter matching. Genuine 

matching was done by comparing the hamming distance between different iris 

codes from the same class whereas the imposter matching was done by 

comparing the hamming distance between different iris codes from a different 

class, which can be also known as inter-class matching. Since 4 different 

databases have been used in this experiment, 4 different sets of genuine and 

imposter matching score will be obtained as the number of the class used were 

different. The same matching protocols were applied for the rest of the 

experiment when the process involved genuine and imposter matching. 

 The comparison between the performance in term of EER and 

decidability before the Key Binding scheme for 4 difference databases are 

shown in Table 4.3 below. 

 

Table 4.3: Summary of the Performances for 4 Different Databases 

 
Equal Error Rate, % Decidability, % 

Database Bloom Filter IFO Hashing Bloom Filter IFO Hashing 

CASIA-v3 1.00 0.66 4.09 3.04 

CASIAT 8.11 6.17 2.34 2.52 

ND0405 10.74 8.17 2.30 2.56 

CASIA-v1 5.91 5.81 2.71 2.77 

 

 The result shown in Table 4.3 shows that the system performance did 

not experience a significant deterioration after the IFO Hashing process.  
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4.3 Performance of the Proposed Key Binding Method 

Extensive experiments were performed on all the databases under different 

parameters configuration to evaluate the performance of the proposed key 

binding method. FAR and FRR were the metric that was used to evaluate the 

performance. As mention in the earlier section, lower FAR and FRR value is 

much preferable as it indicates a higher system performance.  

The protocols to obtain the value for FAR and FRR can be divided into 

two methods. The first one would be referring to the number of wrongly 

retrieved key divided by the total genuine matching score to obtain the FAR. 

The second protocol is referring to the number of correctly retrieved key divided 

by the total imposter matching score to obtain the FRR. 

The retrieval process was done in a way where the intra and inter 

matching process between the hashed code will generate a string of key depends 

on the predefined threshold that would be then later compared with the enrolled 

key in the system to determine the number of correctly and wrongly retrieved 

key. 

 

4.4 Evaluation of Similarity Score Threshold (𝒕) 

The evaluation of the similarity score threshold would require the parameter 

configuration from Table 4.2 to first generate the hashed code that would be 

stored in the system. The three main parameters for the overview proposed 

system (𝑡, 𝑛, 𝑚) will then be tested with different sets of configurations depends 

on the set of databases that have been used. Table 4.4 below shows the 

configuration of fixed parameters 𝑛, and m as well as the range for the 𝑡 that 

will be evaluate. 

 

Table 4.4: Configurations of Parameters for 4 Different Databases 

Databases Parameters 

CASIA-v3 𝑛 = 10, 𝑚 = 100, 𝑡 = [0.17,0.18, … ,0.26] 

CASIA-v1 𝑛 = 10, 𝑚 = 250, 𝑡 = [0.22,0.23, … ,0.31] 

CASIAT 𝑛 = 10, 𝑚 = 050, 𝑡 = [0.56,0.57, … ,0.65] 

ND0405 𝑛 = 10, 𝑚 = 050, 𝑡 = [0.58,0.59, … ,0.67] 
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 The results in terms of FAR and FRR as well as the calculated EER for 

every 𝑡  across the 4 databases obtained through the genuine and imposter 

matching process are tabulated in Table 4.5, Table 4.6, Table 4.7, and Table 4.8 

below. 

 

Table 4.5: System Performance for Parameter Set (𝑡, 10,100) on CASIA-v3-

interval  

𝒕 FRR (%) FAR (%) EER (%) 

0.17 0.19 10.27 5.23 

0.18 0.27 2.65 1.46 

0.19 0.69 0.55 0.62 

0.20 1.92 0.09 1.01 

0.21 2.92 0.00 1.46 

0.22 4.16 0.00 2.08 

0.23 6.61 0.00 3.30 

0.24 9.02 0.00 4.51 

0.25 12.40 0.00 6.20 

0.26 16.36 0.00 8.18 

 

Table 4.6: System Performance for Parameter Set (𝑡, 10,250) on CASIA-v1 

𝒕 FRR (%) FAR (%) EER (%) 

0.22 9.74 0.82 5.28 

0.23 15.52 0.41 7.97 

0.24 23.05 0.24 11.65 

0.25 32.00 0.16 16.08 

0.26 39.81 0.00 19.90 

0.27 47.14 0.00 23.57 

0.28 54.29 0.00 27.14 

0.29 62.48 0.00 31.24 

0.30 69.52 0.00 34.76 

0.31 76.86 0.00 38.43 
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Table 4.7: System Performance for Parameter Set (𝑡, 10,50) on CASIA-Iris 

Thousand 

𝒕 FRR (%) FAR (%) EER (%) 

0.56 4.63 14.92 9.78 

0.57 9.54 5.40 7.47 

0.58 15.17 1.43 8.30 

0.59 21.53 0.16 10.84 

0.60 30.97 0.00 15.49 

0.61 41.14 0.00 20.57 

0.62 50.59 0.00 25.30 

0.63 58.13 0.00 29.06 

0.64 65.67 0.00 32.83 

0.65 72.66 0.00 36.33 

 

Table 4.8: System Performance for Parameter Set (𝑡, 10,50) on ND0405 

𝒕 FRR (%) FAR (%) EER (%) 

0.58 9.51 3.52 6.51 

0.59 13.81 0.95 7.38 

0.60 19.72 0.28 10.00 

0.61 25.29 0.04 12.66 

0.62 32.49 0.00 16.25 

0.63 39.73 0.00 19.87 

0.64 48.12 0.00 24.06 

0.65 56.29 0.00 28.15 

0.66 64.76 0.00 32.38 

0.67 71.30 0.00 35.65 

 

 Based on the results tabulated in Table 4.5 to Table 4.8, the best EER 

from each of the databases did not experience significant deterioration after the 

key binding process. Table 4.9 below shows the comparison between the best 

EER across 4 databases prior and after the key binding process.  
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Table 4.9: Overview Comparison of Best EER across 4 Database 

 
Equal Error Rate, % 

Database IFO Hashing Key Binding  

CASIA-v3 0.66 0.62 

CASIAT 6.17 7.47 

ND0405 8.17 6.51 

CASIA-v1 5.81 5.28 

 

 However, in order to have a cryptosystem that is useful, the FAR shall 

remain zero, so that the system itself will not allow any unauthorised access by 

the imposter, thus increasing the system security. The best EER shown in Table 

4.9 above does not yield the results of FAR= 0, therefore the value for the 

threshold to be selected shall be the one that first yields the results of FAR= 0. 

The suitable threshold for all the databases is tabulated into Table 4.10 below. 

 

Table 4.10: Similarity Score Threshold for all the Database 

Databases Parameters 

CASIA-v3 𝑡 = 0.21  

CASIA-v1 𝑡 = 0.26  

CASIAT 𝑡 = 0.60  

ND0405 𝑡 = 0.62  

 

 The selected value for the parameters in Table 4.10 above can be further 

justified by Figure 4.1 below where it was plotted based on the genuine and 

imposter matching score. According to the zoomed region shown in Figure 4.2, 

the best threshold value to be select for 𝑡  that will successfully block any 

unauthorised access for the CASIA-v3-interval database would be 0.21. 

Therefore, the value chosen for the parameters from the graph itself is tally with 

the data that has been tabulated in Table 4.5 where it shows the value of FAR is 

equivalent to 0 when the threshold was set to be 0.21.  
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Figure 4.2: Genuine and Imposter Matching Score for CASIA-v3-interval 

 

 Aside from the justification, it can be observed that there was an 

overlapping region between the genuine and imposter matching score. This was 

due to the imposter synthetic template matched with the imposter template, 

which results in the system will recognize it as a genuine query. This is useful 

for the proposed system as it will be able to conceal the true genuine IFO hashed 

code from the potential malicious attacker if they were able to tap into the 

system database. The graph for the genuine and imposter matching score for the 

remaining database can be referred to Figure B-3, Figure B-4, and Figure B-5. 

 

4.5 Evaluation of Cryptographic Key Length (𝒏) 

The evaluation of cryptographic key length would require the parameter 

configuration from Table 4.2 to first generate the hashed code that would be 

stored in the system. Table 4.11 below shows the configuration of fixed 

parameters 𝑡, and m as well as the range for the 𝑛 that will be evaluate. 

 

Table 4.11: Configurations of Parameters for 4 Different Databases 

Databases Parameters 

CASIA-v3 𝑚 = 100, t= 0.21, 𝑛 = [10, 20, 40, 60, 80, 100, 150, 200] 

CASIA-v1 𝑚 = 250, t= 0.26, 𝑛 = [10, 20, 40, 60, 80, 100, 150, 200] 

CASIAT 𝑚 = 050, t= 0.60, 𝑛 = [10, 20, 40, 60, 80, 100, 150, 200] 

ND0405 𝑚 = 050, t= 0.62, 𝑛 = [10, 20, 40, 60, 80, 100, 150, 200] 
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 The results in terms of FAR as well as the calculated Genuine 

Acceptance Rate, GAR = 100 −  FRR, and EER for every 𝑛  across the 4 

databases obtained through the genuine and imposter matching process are 

tabulated in Table 4.12 below. Format of the tabulated data follows the 

sequence/format of CASIA-v3/ CASIA-v1/ CASIAT/ ND0405.  

 

Table 4.12: Configurations of Parameters for 4 Different Databases 

𝒏 GAR (%) FAR (%) EER (%) 

10 97.08/60.19/69.03/67.51 0/0/0/0 1.46/19.91/15.49/16.25 

20 97.08/60.19/69.03/67.51 0/0/0/0 1.46/19.91/15.49/16.25 

40 97.08/60.19/69.03/67.51 0/0/0/0 1.46/19.91/15.49/16.25 

60 97.08/60.19/69.03/67.51 0/0/0/0 1.46/19.91/15.49/16.25 

80 97.08/60.19/69.03/67.51 0/0/0/0 1.46/19.91/15.49/16.25 

100 97.08/60.19/69.03/67.51 0/0/0/0 1.46/19.91/15.49/16.25 

150 97.08/60.19/69.03/67.51 0/0/0/0 1.46/19.91/15.49/16.25 

200 97.08/60.19/69.03/67.51 0/0/0/0 1.46/19.91/15.49/16.25 

 

 Based on Table 4.12 above, it can be observed that the increase of key 

length will not cause the performance of the system to deteriorate across 4 

different databases. Thus, the proposed key binding scheme has the advantage 

where it could increase the length of the cryptographic key for security yet still 

maintain the system’s performance at the same time. 

 

4.6 Evaluation of Hashed Code Length (𝒎) 

The evaluation of hashed code length would require the parameters 

configuration from Table 4.2 to first generate the hashed code that would be 

stored in the system. Table 4.13 below shows the configuration of fixed 

parameters 𝑡, and 𝑛 as well as the range for the 𝑚 that will be evaluate. 
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Table 4.13: Configurations of Parameters for 4 Different Databases 

Databases Parameters 

CASIA-v3 𝑛 = 10, t= 0.22, 𝑚 = [10, 50, 100, 150, 200,250, 300] 

CASIA-v1 𝑛 = 10, t= 0.26, 𝑚 = [10, 50, 100, 150, 200,250, 300] 

CASIAT 𝑛 = 10, t= 0.60, 𝑚 = [10, 50, 100, 150, 200,250, 300] 

ND0405 𝑛 = 10, t= 0.62, 𝑚 = [10, 50, 100, 150, 200,250, 300] 

 

 The results in term of FAR and FRR was recorded and the corresponding 

GAR, EER, and storage per bit 𝑘𝐵/𝑛 were computed and tabulated into Table 

4.14, Table 4.15, Table 4.16  and Table 4.17  below.  

 

Table 4.14: System Performance for Parameter Set (0.21,10, 𝑚) on CASIA-

v3-interval  

𝒎 GAR (%) FAR (%) EER (%) Storage/bit (𝒌𝑩/𝒏) 

10 95.31 0.25 2.47 0.07 

50 95.58 0.00 2.21 0.68 

100 95.84 0.00 2.08 1.71 

150 95.97 0.00 2.02 3.31 

200 95.97 0.00 2.02 4.54 

250 95.85 0.00 2.07 5.66 

300 95.89 0.00 2.05 6.80 

 

Table 4.15: System Performance for Parameter Set (0.26,10, 𝑚) on CASIA-

v1  

𝒎 GAR (%) FAR (%) EER (%) Storage/bit (𝒌𝑩/𝒏) 

10 53.05 0.00 23.48 0.50 

50 61.14 0.16 19.51 4.20 

100 59.62 0.00 20.19 8.50 

150 59.43 0.00 20.29 12.60 

200 61.33 0.00 19.33 16.80 

250 60.19 0.00 19.91 20.80 

300 59.52 0.00 20.24 25.00 
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Table 4.16: System Performance for Parameter Set (0.60,10, 𝑚) on CASIA-

Iris-Thousands  

𝒎 GAR (%) FAR (%) EER (%) Storage/bit (𝒌𝑩/𝒏) 

10 74.39 0.16 12.89 19.70 

50 69.03 0.00 15.49 98.50 

100 65.30 0.00 17.35 194.00 

150 60.22 0.00 19.89 293.00 

200 54.50 0.00 22.75 394.00 

250 57.95 0.00 21.03 494.00 

300 58.58 0.00 20.71 604.00 

 

Table 4.17: System Performance for Parameter Set (0.62,10, 𝑚) on ND0405 

𝒎 GAR (%) FAR (%) EER (%) Storage/bit (𝒌𝑩/𝒏) 

10 68.77 0.02 15.62 14.60 

50 67.51 0.00 16.25 72.20 

100 62.42 0.00 18.79 143.00 

150 58.30 0.00 20.85 217.00 

200 53.62 0.00 23.19 292.00 

250 55.25 0.00 22.37 364.00 

300 54.85 0.00 22.58 438.00 

 

 The IFO hashed code length plays an important role where it comes to 

system storage. Aside from affecting the performances of the systems, the IFO 

hashed code length has to be kept within an acceptable length as it will take up 

infinite storage space if there was not any limit. Based on Table 4.14-Table4.17, 

it can be observed that the increment of the hashed code has various impacts on 

system performance. For CASIA-v3 that has the best iris texture, the impact of 

the performance was not that significant to compare to the other 3 databased 

that contain noise. However, all of these share the same trend, which is the 

increase of hashed code length will increase the storage per bit.  
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4.7 Security Analysis 

The security for the proposed key binding scheme will be evaluated through 2 

different aspect, which is the cancelability and potential security attacks that 

might face by the proposed system. 

 

4.7.1 Renewal and Cancelability 

During the occurrence of the event where the current cryptographic key has been 

compromised, a new key shall be reissued for the security purpose. One of the 

advantages contributes by the proposed system was that no re-enrolment of any 

data is required during this process. The update can be done merely by swapping 

the position of the genuine and synthetic template with their corresponding 

hashed code. The process of regenerating a new cryptographic key is fast and 

simple for this proposed method. 

 Moving on to the aspect of the cancelability, the regeneration of the 

cancellable template is guaranteed by the unlikability and revocability of the 

IFO Hashing Scheme (Chai et al., 2019). Referring to the thorough security 

analysis that can be found in Lai et al paper, it has proven that the derivation of 

original biometric information from the IFO hashed code is computationally 

infeasible (Lai et al., 2017). In his paper, various comprehensive analysis 

supported by the empirical data has proven that the IFO hashing scheme will be 

able to satisfy both the unlikability and revocability criteria, which results in the 

implementation of IFO hashing in the proposed key binding methods is suitable. 

 

4.7.2 Brute Force Attack 

In order to perform a brute force attack toward the proposed key binding system, 

it relies on the random guessing for the n bits cryptographic key without actually 

have to intercept the process in between the proposed system. Thus, the 

complexity of the attack is merely depending on the cryptographic key length 

itself, which is the parameter n in the proposed system. The complexity of the 

brute force attack can be simplified into Equation 4.1 as shown below.  

 

 𝐵𝑓𝑛 = 2𝑛 (4.1) 

 



43 

 The higher the value for n will results in a higher complexity as it would 

require more cancellable template (hashed code) to be bound with during the 

key binding process. For example, brute force attack complexity would be 

2200 if the length of the cryptographic key was 200.  

 Based on Table 4.12 above, it shows that the performance of the 

proposed system will not experience any deterioration when the cryptographic 

key length was up to until 200. Therefore, the proposed method provides 

flexibility in terms of allowing the user to decide the complexity of the system 

without having to worry about the performance of the system.  

 

4.7.3 Hill Climbing Attack 

Apart from the brute force attack, another attack that has to be taken into 

consideration was the hill-climbing attack. In conjunction with the brute force 

attack, a hill-climbing attack require an interception of information from the 

system itself. Instead of guessing randomly, the hill-climbing attack will 

penetrate the system by proposing a synthetic template that will keep on 

improving after each attack. In this experiment, the number of the trial is limited 

to the resolution of the iris code. The proposed hill-climbing attack was designed 

as follows: 

 

1. The threshold for the IFO hashed code using the genuine matching 

protocol was first recorded.  

2. The objectives of this attack were to improve the synthetics template 

until a point where after it undergoes the genuine matching protocol and 

will be able to trick the system by achieving the pre-recorded threshold. 

3. The number of attacks will be depending on the resolution of the IFO 

hashed code as the improvement of the synthetic template was perform 

by a bitwise operator.  

 

 Throughout several comprehensive trials, the hill-climbing attack will 

not able to penetrate the proposed system. This is due to the many to one 

mapping that was induced in the proposed key binding system during the bloom 

filter process. The bitwise operator that changes the bits of the synthetic 
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template was not able to create a drastic impact on the genuineness of the 

synthetic template. 

 The validity of the many to one function can be further proven by the 

inverse function from the bloom filtered iris code are not able to be constructed 

as it would violate the definition of many to one mapping as discussed earlier.  

 Hill climbing attack is a method where it can be interrupted at any time, 

in a sense that it can be run for infinite time unless a stopping criterion has been 

predefined or else it would be only returning “the best result so far” that it was 

able to achieve. The hill-climbing method might not be able to provide absolute 

best results, as it yet to reach the global maximum. Thus, it only makes sense 

that the complexity for the hill-climbing attack shall be measure in time, which 

yields the Equation 4.2 as shown below.  

 

 𝐻𝐶𝐴𝑓𝑛 = ∞ (4.2) 

 

 Given the high resolution of the iris code from the various database, it 

was infeasible for a hill-climbing attack to occur as the time needed for it to run 

is up to infinite as the loss of information will keep on occurring during the 

many to one mapping. Eventually, the threshold for the synthetic template will 

not be able to converge toward the actual genuine threshold. 

 

4.8 Summary 

Based on the experiments that have been done for 4 different databases, it has 

been compiled together into Table 4.18 below.  

 

Table 4.18: Summary Results for 4 Different Databases 

Database GAR (%) FAR (%) Keybits 

CASIA-v3 97.08 0 100 

CASIA-v1 60.19 0 250 

CASIAT 69.03 0 50 

ND0405 67.51 0 50 
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CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

Based on the tabulated results, it shows that the implementation of IFO hashing 

would allow the user to control the storage size while at the same time achieve 

the unlikability and non-invertibility requirements. The best performance of 

GAR=97.08% can be achieved with the CASIA-v3 database. The results for the 

database that is not that high-quality fall between the range of GAR= 60.19-

69.03%. However, it is important to understand the degrade of performance was 

caused by the trade-off between performance and strength of the security. This 

was proven by the best EER after the key binding process did not undergo much 

deteriorate as compare to the EER right after IFO hashing. 

 In terms of the strength of the security, it has proven that the proposed 

key length will not induce any trade-off between performance and security. It 

has shown a promising complexity up to 2200 across 4 various databases. It was 

also proven that the occurrence of a hill-climbing attack will not compromise 

the proposed methods as it would have the complexity up to infinite and the 

many to one mapping function will have reduced the impact of the changes that 

have been made during each iteration. 

 

5.2 Recommendations for Future Work 

Based on the drawn conclusion, the degradation of performance when it comes 

to the database that is not that high quality is highly affecting the trade-off 

between the performance and strength of the security. To fully study the 

performance of the proposed method, a more recent database with better quality 

shall be used.  

. 

.
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APPENDICES 

 

APPENDIX A: Table 

 

Table A-1: Taguchi Method for CASIA-v3-interval Database 

Gvm L W G GAR FAR FRR Decidability 

50 5 20 1 98.81 1.19 1.19 3.59233 

50 7 25 2 98.04 1.42 1.52 3.02762 

100 5 20 2 98.76 1.23 1.24 3.19449 

100 7 25 1 99.15 0.84 0.85 3.63363 

150 5 25 1 99.06 0.92 0.94 3.69628 

150 7 20 2 99.04 0.96 0.96 3.00624 

200 5 25 2 99.08 0.92 0.92 3.31572 

200 7 20 1 99.29 0.73 0.71 3.57648 

        

Optimum Parameters 

200 5 25 1 98.97 1.04 1.03 3.69253 
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Table A-2: Taguchi Method for CASIA-v1 database 

L W GVM G K S GAR FAR FRR Decidability 

5 5 10 1 2 0 85.63 14.29 14.37 2.12256 

5 10 50 2 4 1 80.18 19.81 19.82 1.52657 

5 14 100 3 8 2 69.34 30.86 30.65 0.89498 

5 16 150 4 16 3 60.97 39.24 39.03 0.50945 

5 20 200 5 32 4 57.76 42.38 42.23 0.32738 

6 5 50 3 16 4 51.45 44.29 48.52 0.13456 

6 10 100 4 32 0 54.54 44.48 45.46 0.24929 

6 14 150 5 2 1 63.04 66.48 36.96 0.00924 

6 16 200 1 4 2 90.97 8.95 9.03 2.62891 

6 20 10 2 8 3 71.92 28.10 28.08 1.06512 

7 5 100 5 4 3 0.00 0.00 0.00 0.00000 

7 10 150 1 8 4 91.26 8.76 8.70 2.57426 

7 14 200 2 16 0 72.31 28.00 27.69 1.05943 

7 16 10 3 32 1 51.47 48.10 48.53 0.08279 

7 20 50 4 2 2 51.72 49.43 48.28 0.02514 

8 5 150 2 32 2 57.61 39.14 42.36 0.42564 

8 10 200 3 2 3 0.00 0.00 0.00 0.00000 

8 14 10 4 4 4 0.07 0.29 99.93 0.04945 

8 16 50 5 8 0 0.00 0.00 0.00 0.00000 

8 20 100 1 16 1 88.60 11.43 11.40 2.30545 

9 5 200 4 8 1 0.00 0.00 0.00 0.00000 

9 10 10 5 16 2 0.00 0.00 0.00 0.00000 

9 14 50 1 32 3 87.51 12.48 12.49 2.07737 

9 16 100 2 2 4 54.42 54.86 45.52 0.02421 

9 20 150 3 4 0 42.34 42.57 57.92 0.00000 

          

Optimum Parameters 

5 10 200 1 8 2 93.46 6.57 6.54 2.76486 
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Table A-3: Bloom Filter for CASIA-v1 database 

L W Noise Threshold GAR FAR FRR EER Decidability  

5 10 0.00 93.89 6.10 6.11 6.10 2.77264 

5 10 0.10 94.04 6.00 5.96 5.98 2.76436 

5 10 0.25 94.00 6.00 6.00 6.00 2.72416 

5 10 0.30 94.09 5.90 5.91 5.91 2.70747 

5 10 1.00 91.72 8.29 8.28 8.28 2.31952 

        
1 10 0.30 65.97 33.81 34.03 33.92 0.77828 

2 10 0.30 88.16 11.81 11.84 11.82 2.28548 

3 10 0.30 92.50 7.52 7.50 7.51 2.61653 

4 10 0.30 92.94 7.05 7.05 7.05 2.65920 

5 10 0.30 94.09 5.90 5.91 5.91 2.70747 

6 10 0.30 93.92 6.10 6.08 6.09 2.70400 

7 10 0.30 93.60 6.38 6.40 6.39 2.66420 

8 10 0.30 93.66 6.29 6.34 6.31 2.59115 

9 10 0.30 93.51 6.48 6.49 6.49 2.49636 

10 10 0.30 93.19 6.67 6.81 6.74 2.39994 

        
5 1 0.30 91.99 8.00 8.01 8.01 2.27715 

5 2 0.30 92.60 7.43 7.40 7.41 2.42917 

5 3 0.30 93.09 6.95 6.91 6.93 2.46910 

5 4 0.30 93.03 6.95 6.97 6.96 2.50490 

5 5 0.30 93.18 6.86 6.82 6.84 2.55493 

5 6 0.30 93.11 6.86 6.89 6.87 2.60213 

5 7 0.30 92.92 7.05 7.08 7.06 2.60075 

5 8 0.30 93.49 6.48 6.51 6.49 2.65317 

5 9 0.30 93.56 6.38 6.44 6.41 2.67530 

5 10 0.30 94.09 5.90 5.91 5.91 2.70747 

5 11 0.30 92.81 7.24 7.19 7.21 2.67969 
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Table A-4: IFO Hashing for CASIA-v1 database 

L W Noise 

Threshold 

GVM G K S GAR EER Decidability 

5 10 0.3 200 1 8.00 2.00 93.53 6.47 2.70953 

5 10 0.3 200 2 8.00 2.00 82.53 17.50 1.71598 

5 10 0.3 200 3 8.00 2.00 70.17 29.91 0.91694 

          
5 10 0.3 200 1 8.00 2.00 93.53 6.47 2.70953 

5 10 0.3 200 1 16.00 2.00 63.65 6.36 2.71677 

5 10 0.3 200 1 24.00 2.00 93.70 6.29 2.71973 

5 10 0.3 200 1 32.00 2.00 93.71 6.29 2.72108 

          
5 10 0.3 200 1 32.00 0.00 93.73 6.28 2.72115 

5 10 0.3 200 1 32.00 1.00 93.72 6.28 2.72120 

5 10 0.3 200 1 32.00 2.00 93.71 6.29 2.72108 

5 10 0.3 200 1 32.00 3.00 93.75 6.27 2.72100 

5 10 0.3 200 1 32.00 4.00 93.73 6.28 2.72106 

          
5 10 0.3 50 1 32.00 3.00 93.36 6.60 2.70060 

5 10 0.3 100 1 32.00 3.00 93.44 6.56 2.70112 

5 10 0.3 150 1 32.00 3.00 93.74 6.27 2.71564 

5 10 0.3 200 1 32.00 3.00 93.75 6.27 2.72100 

5 10 0.3 250 1 32.00 3.00 93.92 6.09 2.72080 

5 10 0.3 300 1 32.00 3.00 94.10 5.90 2.72126 

          
5 10 0.1 250 1 32.00 0.00 94.19 5.81 2.77229 
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APPENDIX B: Figures 

 

 

Figure B-1: Taguchi Method for CASIA-v3-interval Database 

 

 

Figure B-2: Taguchi Method for CASIA-v1 database 
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Figure B-3: Genuine and Imposter Matching for CASIA-v1 database 

 

 

Figure B-4: Genuine and Imposter Matching for CASIA-Iris-Thousands 
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Figure B-4: Genuine and Imposter Matching for ND0405 

 


