
 

 

INVESTIGATION INTO SINGLE PIXEL IMAGING:  

IMAGES WITHOUT A CAMERA 

 

 

 

 

 

AU ZHISHAN 

 

 

 

 

 

 

 

A project report submitted in partial fulfilment of the 

requirements for the award of Bachelor of Engineering 

(Honours) Mechatronics Engineering 

 

 

 

 

 

Lee Kong Chian Faculty of Engineering and Science 

Universiti Tunku Abdul Rahman 

 

 

April 2020 



1 

DECLARATION 

 

 

 

 

I hereby declare that this project report is based on my original work except for 

citations and quotations which have been duly acknowledged.  I also declare that it has 

not been previously and concurrently submitted for any other degree or award at 

UTAR or other institutions. 

 

 

 

 

Signature : 

 

Name : Au Zhishan 

ID No. : 1503203 

Date : 21/4/2020 

 

  



2 

APPROVAL FOR SUBMISSION 

 

 

 

 

I certify that this project report entitled “INVESTIGATION INTO SINGLE 

PIXEL IMAGING: IMAGES WITHOUT A CAMERA” was prepared by Au 

Zhishan has met the required standard for submission in partial fulfilment of the 

requirements for the award of Bachelor of Engineering (Honours) Mechatronics 

Engineering at Universiti Tunku Abdul Rahman. 

 

 

 

 

Approved by, 

 

 

 

 

Signature :  

 
Supervisor 

 
: 

 
Chua Sing Yee 

 
Date 

 
: 

 
23/4/2020 

 

 

 

Signature :  

 
Co-Supervisor 

 
: 

 
Chai Tong Yuen 

 
Date 

 
: 

 
23/4/2020 

 

 



3 

 

 

 

 

 

 

 

 

 

 

The copyright of this report belongs to the author under the terms of the 

Copyright Act 1987 as qualified by the Intellectual Property Policy of Universiti 

Tunku Abdul Rahman. Due acknowledgment shall always be made of the use of any 

material contained in, or derived from, this report. 

 

 

© 2019, Au Zhishan. All right reserved. 

  



4 

ACKNOWLEDGEMENTS 

 

 

 

 

 

I would like to thank everyone who had contributed to the successful completion of 

this project. I would like to express my gratitude to my research supervisor, Dr. Chua 

Sing Yee for her invaluable advice, guidance and her enormous patience throughout 

the development of the research. 

 

In addition, I would also like to express my gratitude to my loving parents and 

friends who had helped and given me encouragement throughout my university life.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

ABSTRACT 

 Over the past decades, CCD and CMOS have been dominating in the imaging 

sensor technology. Due to the cost and technological constraints especially in the 

unusual wavelengths and low light condition, single pixel imaging becomes an 

important alternative. This approach samples the target scene with a set of micro-

structured light masks and obtain the spatial information using only a simple 

photodiode as the detector. Single pixel imaging strongly depends on the correlation 

of the mask patterns with the target scene. In this research, various types of mask 

patterns were studied on their behaviours when sampled with different images. This 

project conducts a simulation study on single pixel imaging, analyses various mask 

patterns and reviews their results to form a conclusion.  

Masks can be separated into 2 categories, Deterministic (Fourier and 

Hadamard) and Pseudo-random (Random and Gaussian) masks. As summarized from 

the results, Random mask has the shortest masking time while Hadamard Mask shows 

the shortest image reconstruction time. In general, Pseudo-random masks are better for 

images with random details throughout the images, meanwhile Deterministic masks 

outperform for simple images. However, Deterministic masks can be customized to -

give better performance at sampling certain random images. Furthermore, 

Deterministic masks can be pre-loaded and the imaging results are 100% reproducible 

while it’s not possible for Pseudo-random masks.  

In conclusion, Deterministic masks are overall preferred as compared to 

Pseudo-random masks. This in-depth investigation establishes a comprehensive 

understanding of the mask patterns and their influence on the performance of single 

pixel imaging.  
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CHAPTER 1 

1 INTRODUCTION 

 

1.1 General Introduction 

Single Pixel Imaging is a developing method of obtaining images through devices that 

are only equipped with a single pixel detector (Rousset et al., 2017). Single pixel 

imaging is very different from the existing conventional imaging methods that use 

matrix detectors with a spatial resolution that captures the whole image with an array 

of pixels, usually ranging in the millions. These conventional methods, i.e., charge-

coupled devices (CCD) and complementary metal-oxide semiconductors (CMOS) are 

cheap due to the availability of mass production for these devices. However, when an 

imaging system is needed in the range out of the usual visible spectrum, i.e. infrared 

imaging, the price of using CCD and CMOS usually will skyrocket to 100-1000 times 

its original amount (Aksenov and Sych, 2018). 

 So how does single pixel imaging works? By using a quick pixel detector with 

a Digital Micromirror Array Device (DMD) to project modulating patterns, ‘masks’ 

onto the object. The single pixel detector then captures the sampling measurements 

and image is recovered by using compressive sensing based reconstruction algorithms 

(Mitra, Cossairt and Veeraraghavan, 2014). 

 One of the most important aspects of single pixel imaging is the ‘mask’, the 

modulation light pattern that is projected onto the object by the DMD. This is important 

to single pixel imaging as a mask is needed to sample the image. With the mask, the 

single pixel detector can use compressive sensing algorithms to sample the image and 

reconstruct it quickly. 

 Compressive sensing is an area of study that was first discovered by Emmanuel 

Candes, Terrence Tao, Justin Romberg, and David Donoho. They changed how 

sampling is done forever by proving that you can sample a signal even if you do not 

follow the Shannon-Nyquist Theorem that states that you need to sample the signal at 

2 times the frequency to collect sufficient data. Compressed sensing allows for you to 

sample the data up to 20 times less than the Shannon-Nyquist and still maintain the 

clarity of the image clearly (Brown and Grice, 2011).  
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1.2 Problem Statement 

Background of Problem 

The most important aspect of single pixel imaging is the sampling method used. The 

mask determines the sampling method and this greatly affects the final image produced. 

Several masks are currently available and produce satisfying results, such as the 

Gaussian mask, Hadamard mask, Bernoulli’s mask, etc. However, different masks do 

produce different results.. Therefore, this project would like to investigate the 

behaviors of various mask types and their influence on single pixel imaging. 

 

Problem statement 1 

Lack of In-depth investigation into different Light Modulation Patterns (masks).  

In the current research regarding single pixel imaging, there is a clear differentiation 

of mask. Masks are differentiated into two groups, Deterministic and Pseudo-Random. 

These groups are further divided into another two groups, stating masks in these 

categories are either binary or grayscale (Augustin et al., 2018). 

 

 

Figure 1.1: Classification of masks into different groups (Augustin et al., 2018) 

 

However, to my knowledge, there aren’t any further in-depth studies that investigate 

the behavior of these masks.  For example, if the implementation of a single pixel 

camera is needed to detect words in pictures, there isn’t a simple rubric that allows 
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for the quick selection of masks for that. Testing out every single mask is needed to 

determine which is best suited for their objectives and this is a waste of time. Thus, 

this study is to investigate the behavior of different categories of masks and to show 

their characteristic. 

 

Problem Statement 2 

Deciding the Type of Masks for Different Application 

There are many different applications for single pixel imaging out there, ranging from 

telescopic application (Yu et al., 2014) to MRI scanning (Lustig, Donoho and Pauly, 

2007). Which type of masks is better for their respective applications? This is 

something that this research aims to answer. 

 Many types of application can benefit from single pixel imaging. For example, 

Real-time applications require speedy results when taking an image of the object, thus 

the time taken when reconstructing an image in single pixel imaging will be of utmost 

importance. Whereas for off-line applications, where urgency isn’t needed, it allows 

for more leeway in regards to time spent on reconstructing the image and places more 

importance on the quality of the image instead. If, for example, the general time taken 

for different categories of masks are known, it would allow us to determine which type 

is better for different application 

 

1.3 Aims and Objectives 

This research aims to explore and analyze single pixel imaging as an alternative to 

conventional imaging techniques. The objectives of this research are: 

1. To conduct a simulation study on single pixel imaging. This would eliminate 

the influence of external factors and produces an ideal case result. This can be 

a guideline for the real-world application by striving to achieve the simulated 

results. 

2. To analyze light modulation and sampling methods used in single pixel 

imaging. Different types of light modulation can be explored, be it the ordering 

of masks or the number of resolutions. Besides, different sampling methods 

such as Random, Gaussian, Fourier, Hadamard Basis, etc. are studied. 

3. To analyze the performance of single pixel imaging. The image reconstructed 

from the compressive sensing algorithm is evaluated for the effectiveness of 

the mask used together with masking and reconstruction time. This provides a 
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comprehensive analysis to show the influence of the masks on the performance 

of single pixel imaging in terms of image quality, masking, and reconstruction 

time. 

 

1.4 Scope and Limitation of the Study 

This research focuses on the investigation of single pixel imaging based on the problem 

statement formed. In-depth data analysis was performed based on the findings made.  

 There is a limitation to this study whereby this study only covers a limited 

sample size due to the time constraints. Thus, the behaviour of masks was analysed 

based on the limited types of light modulation and sampling methods but in numbers 

that are adequate for this study. The results were finalized and concluded after in-depth 

data collection and analysis. 

   

 

1.5 Contribution of the Study 

This study contributes to furthering the field of single pixel imaging. The finding 

established allows for the ease of selecting light modulation and sampling methods 

when setting up single pixel imaging systems for different objectives. 

 

1.6 Outline of Report 

 

 

Figure 1.2: Research Approach 

 

The report begins with forming and confirming a specific problem statement. The 

problem found is the lack of in-depth investigation of light modulation masks and 

their behaviour. Once the problem is framed, an extensive literature review was 

written. Areas regarding compressive sensing, light modulation patterns, orders of 

patterns, etc. are studied and compared thoroughly in the literature review. After that, 

Phase 1
Forming a 
Problem 

Statement

Literature 
Review

Forming a 
Hypothesis Simulation

Phase 2 Collecting 
Data

Data Analysis
Report 
Writing
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a hypothesis is formed, based on the problem statement and the findings in this 

study’s literature review.  

 Once a hypothesis is formed, the simulation is conducted to confirm this 

hypothesis. Simulation is to serve as our ideal case result, without any interference 

from external factors practically. As the simulation is done, data is collected and 

compared to our hypothesis. Analysis and interpretation of those data are done. 

Tabulated conclusions are done to represent and convey those data easily. At the 

very last step, a final report is written to convey what has been done and achieved. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

The current imaging industry has developed immensely over the past decade or so ever 

since the introduction of Charge-Coupled Device (CCD) and Complementary Metal-

Oxide-Semiconductor (CMOS). Ever since humans discovered that silicon allows for 

the conversion of photons at visible wavelengths to an electrical signal, conventional 

cameras for everyday use had been affordable and accessible. However, the prices of 

imaging equipment needed to capture images outside the visible wavelength such as 

medium or far infrared wavelengths are astronomical. Cameras of such calibre are also 

heavy, bulky and complicated to operate. This is due to the limitation of conventional 

silicon unable to detect and convert weaker wavelengths of light.  

 A solution to this is to utilize single pixel imaging. Single pixel imaging utilizes 

only one single pixel in the image capturing device. This chapter will be comparing 

conventional imaging methods to single pixel imaging, compressive sensing algorithm 

and light modulation uses in single pixel imaging. 

2.2 CCD and CMOS 

Charge-Coupled Device (CCD) and Complementary Metal-Oxide-Semiconductor 

(CMOS) are conventional image capturing methods that are used in many devices 

nowadays. They consist of thousands and millions of tiny pixels capturing cells that 

will capture light from the image and capture them as an array. 

 

Figure 2.1: An array of pixels with a single black pixel 
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2.3 Single Pixel Imaging 

 

Different from conventional CCD and CMOS that captures images with a pixel array 

that consists of thousands to millions of pixels (Taylor, 1998), single pixel imaging 

detects images with a single pixel and reconstructs them into a picture. This allows for 

the cost of making a single pixel camera for infrared detection much cheaper as it is 

just a single pixel, as compared to millions of pixels in CCD and CMOS. Not only that 

it is cheaper, but single pixel imaging also provides many advantages such as improved 

detection efficiency, faster response, and resolution flexibility. 

 One of single pixel imaging strong points is range detection. In a 2014 

scientific paper report, a single pixel detector managed to detect a Chinese character 

on a billboard 2.6km away with a 20cm resolution (Yu et al., 2014). This opens up a 

whole new area to explore that involves the telescopic industry. Militaries would be 

able to make cheaper cost detection camera; astronomers would be able to improve 

their telescope and produce it at a cheaper price and more.  

A unique advantage that single pixel imaging methods have is resolution 

flexibility. In conventional imaging methods, the resolution of a picture is often fixed. 

Even if the object in question is focused on and the background of the object is blurred, 

the resolution of the whole picture is still the same. 

 

  

Figure 2.2: Conventional Image Stock Photo 

 

 As shown above, in figure 2.2, an object is focused clearly with the background 

blurred. However, the resolution of the throughout the image is still the same, 700x467. 
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There are moments where this isn’t ideal, as it takes up more computational power to 

process the whole image even though only the object in focus is only required. The 

blurred background will be consuming computation power thus more time will be 

spent on processing the image as a whole. In single pixel imaging, adaptive imaging 

methods with dynamic resolution and be achieved. To give an example, an image can 

have a different resolution in different parts to ease the computational load and reduced 

the procession time.  

 

Figure 2.3: Example of dynamic resolution 

 

The above figure is taken from (Barnett et al., 2017), it shows that the dynamic 

resolution image can be achieved to certain parts of the image. This unique advantage 

of single pixel imaging allows for faster processing speed and improved detection 

capabilities, allowing single pixel imaging methods to perform better than 

conventional imaging methods in places such as face detection. Face detection is used 

on many occasions, most commonly in our phones. With this method of single pixel 

imaging, the face could be focused on higher resolution and the background in a lower 

resolution. This allows for faster processing of the face in question and will unlock our 

phones much faster.  

Unfortunately, there is a disadvantage to single pixel imaging when compared 

to CMOS and CCD. The largest disadvantage currently in single pixel imaging is the 

lack of colour in images taken with single pixel imaging methods. This greatly restricts 

the uses of single pixel imaging in the current world. However, there is still plenty of 

room for improvement as conventional imaging method used to be restricted in only 

black and white in just a couple of decades ago. Other than this, there is also a problem 

with minimizing the size of single pixel imaging equipment. As there is a need for a 
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DMD to project light modulation patterns, reduction of size is still an issue to be solved 

for it to be fitted in everyday devices such as mobile phones. Overall, single pixel 

imaging has plenty of room for improvement and a huge potential to overtake 

conventional imaging method such as CCD or CMOS in the future. 

 

Table 2.1: Differences between CCD & CMOS against Single Pixel Imaging 

CCD & CMOS Single Pixel Imaging 

Captures images with a pixel array 

(Taylor, 1998) 

Captures images pixel by pixel & 

reconstructs the image (Rousset et al., 

2017) 

Expensive equipment needed when 

taking unconventional images  

(Aksenov and Sych, 2018) 

Cheap equipment when taking 

unconventional images  

(Aksenov and Sych, 2018) 

Low Visibility when capturing images 

far away (Yu et al., 2014) 

Clear Visibility even when capturing 

images far away (Yu et al., 2014) 

Fixed Resolution  

(Barnett et al., 2017) 

Dynamic Resolution  

(Barnett et al., 2017) 

Images taken are processed slower  

(Barnett et al., 2017) 

Images taken can be processed faster 

(Barnett et al., 2017) 

Captures Colourized images Captures Grayscale images 

Bulky Compact 

 

2.4 Compressive Sensing 

One of the main components that make single pixel imaging works is the algorithm 

that samples and collects data from the object to reconstruct the final image. Different 

from conventional imaging methods that use a pixel array to capture the object, single 

pixel imaging detects and samples the object one pixel at a time and reconstructs them. 

Thus, the algorithm to sample and reconstruct the image is crucial to the whole 

operation. 

There are many different types of signal sampling method, with the most 

famous being the Nyquist-Shannon Sampling Theorem. According to Shannon’s paper, 

“If a function f(t) contains no frequencies higher than W cps, it is completely 

determined by giving its ordinates at a series of points spaced 1/2 seconds apart.” 
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(Shannon, 1998). Therefore, this theorem states that a sufficient sampling rate of a 

signal is 2W samples per second. This is a problem for single pixel imaging if the 

Nyquist-Shannon Sampling Theorem is used, as it takes an enormous amount of time 

to sample at the rate of 2 times the highest frequency in the image. Also, reconstructing 

the image would take a huge amount of time as well. Single pixel imaging would be 

an inefficient, arduous and wasteful process if the Nyquist-Shannon theorem was used.  

Fortunately, there is another sampling theorem out there that is perfect for 

single pixel imaging; Compressive Sensing. The general theory of Compressive 

Sensing was discovered by Emmanuel Candes, Justin Romberg and Terence Tao in a 

2006 paper regarding Stable Signal Recovery from incomplete and inaccurate 

measurements. They state that, 

𝑦 = 𝐴𝑥0    (2.1) 

where 

 𝑥0 ∈ ℝ𝑛  = represents the original signal or image 

A = sensing matric n by m with rows fewer than columns 

y = Sampled signal 

 

and it is possible to recover the signal 𝑥0  accurately based on sample y (Candès, 

Romberg and Tao, 2006). 

 

 

Figure 2.4: Visual representation of compressive sensing equation in matrix form 

 

 A compressive sensing algorithm works on sparse signals, which means that 

signals that are not already compressed. For compressed signals, sampling of these 

signal still follows the Nyquist-Shannon’s theorem. However, most natural signals 

around us are sparse and that includes images. Therefore, compressive sensing allows 

single pixel imaging to sample at a rate much lower than the Nyquist-Shannon theorem 

and will allow us to reconstruct the data back accurately. In a paper regarding 
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compressive sensing and its uses in MRI by (Lustig, Donoho and Pauly, 2007), they 

compared the angiogram of the arteries in a human leg by using both Nyquist-Shannon 

and Compressed Sensing sampling method. When the sampling rate goes lower and 

lower until 20-fold the under-sampling rate, the Nyquist-Shannon reconstructed 

images were degraded lower and lower. However, the angiogram with compressed 

sensing sampling was still crisp and clear even at 20-fold under-sampling. This shows 

that compressed sensing allows for faster and shorter sampling time and yet still 

manage to reconstruct the image back accurately, which is ideal for single pixel 

imaging that requires fast and precise image reconstruction. 

 Reconstructing of signal in compressed sensing is based heavily on the ℓ1 -

norm, as we know that y that was sampled from the whole image is from a high sparse 

signal, thus a sensible decoding method is to look for the sparsest signal among those 

to produce a computationally traceable linear program (Zhang, 2013): 

min {||𝑥||1: 𝑦 = 𝐴𝑥} 

 

Figure 2.5: 2-D analogy of ℓ2 and ℓ1 of a compressed sensing signal 

 

But why ℓ1 - norm? Why not ℓ2 - norm? According to a research paper 

published by Kurt Bryan and Tanya Leise, by using ℓ2- norm, the analog on the left in 

figure 2.5 will form. This does not promote sparsity as there is an x and y vector where 

the circle intersects with the line. However, when ℓ1- norm is used instead a diamond-

like shape is formed and the line is more often than not intersecting the edge of the 

diamond. This allows for a just a y vector and not an x vector or vice versa, promoting 

sparsity (Bryan and Leise, 2013).  

There are several main ingredients to compressed sensing. First, a signal must 

be sparse and we talked about that. Second, measurements must be “incoherent”. 

Lastly, there must be sufficiently many measurements.  
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For measurements to be “incoherent”, it means that sampling of a signal cannot 

be periodic and even. This is due to the nature of the sparsity of a signal.  

 

Figure 2.6: (a)The original sparse signal (b)The signal itself with periodic sampling 

in red dots and pseudo-random sampling in blue dots (c) Results of periodic 

sampling (d) Results of pseudo-random sampling. 

 

If a signal is measured periodically, a coherent aliasing signal that is produced that 

cannot be recovered as there is no way to tell apart which spike is genuine or an 

imposter. However, pseudo-random sampling will allow for the 2 highest spikes to be 

noticed from the background “noise”. The 3rd spike can be recovered with an iterative 

threshold procedure (Lustig, Donoho and Pauly, 2007). 

 So why does compressed sensing works? How does a signal recover itself just 

from a low number of samples? This is mainly due to the Restricted Isometry Property 

(RIP), a concept introduced by Emmanuel Candès and Terence Tao. The RIP states 

that: 

(1 − 𝛿𝑠)||𝑥||2
2 ≤ ||𝐴𝑥||2

2 ≤ (1 + 𝛿𝑠)||𝑥||2
2 

for all S-sparse vector of x. This states that matrix A is definite to only change the 

length of any vector x "slightly" as long as the vector x is at least S-sparse (Cand, 2008). 

This also means that the inner product of sparse vectors is preserved during 

compressed sensing, this allows us to preserve the core relations of the sparse vectors 

thus making recovery of the signal possible. Another important aspect that RIP 

preserves are the correlations of data, this allows for data such as the distances of 2 

vectors to be preserved even under compression. Lastly, fast numerical linear algebra 
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can be done onto compressed data due to RIP and this allows for faster computation 

for large data. 

 

2.5 Light Modulation Patterns 

One of the most important elements in single pixel imaging is the sampling method. 

The pixel detector is only able to detect the object if there is a mask on the object. In 

the previous subsection, it is stated that a sensing matrix A is needed in the general 

equation of compressed sensing. This sensing matrix is the light modulation pattern, 

also known as “mask” needed. This light modulation pattern is illuminated onto the 

object with a Digital Micromirror Device (DMD) or a Spatial light modulator (SLM). 

Many different types of light patterns could be used as a sensing matrix for single pixel 

imaging. The many different light patterns out there could generally be separate into 2 

groups, deterministic patterns or pseudo-random patterns as shown in figure 1.1 

(Augustin et al., 2018). 

 So how does the sensing matrix help the sampling of a non-zero sparse signal? 

The sensing matrix or light modulation mask consists of random entries of +1 or -1; 

when the mask is applied onto the image, this sparse signal will be located either on 

the +1 or -1 entries of the matrix (Nowak, 2006). 

 

Figure 2.7: Illustrative example of how a mask works to sense a sparse signal 

 

 There are many masks out there that can be used as a sensing matrix, a few 

famous ones are Hadamard Basis and Discrete Cosine Transform (DCT) that falls 

under the deterministic mask or Bernoulli Transform and Gaussian Transform that 

falls under the pseudo-random mask’s category. Not all masks are categorized under 

these two categories, but most are. So how do we know which is better? Deterministic 

or pseudo-random? Well, there isn’t an answer to which is the better mask as both 

types are equally good, just at different things. Previously in compressive sensing, 

figure 2.6, it shows that random sampling is much better than sampling at regular 
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interval which in a sense is a deterministic sampling. Random sampling mask is 

supposedly better than a normal deterministic mask since sampling at regular intervals 

means that some sparse data might be missed. Random sampling will allow for a better 

chance of collecting the sparse signal in a data set when the number of sampling 

increases while sampling at regular intervals will not result differently. However, if 

this is the case, why is the most popular light modulation sampling method in the single 

pixel imaging industry using Hadamard basis, a deterministic mask? 

 First, let’s discuss random sampling masks. They are usually Gaussian model 

masks or Bernoulli’s transform model masks that mimic randomness. These are simple 

and fast to generate as there are usually algorithms to generate them. However, as good 

as these masks are, there are a few downsides to them. When these masks are applied 

onto a huge object, the reconstruction time of the object is usually very long after the 

single pixel detects the object. This is because of the incoherent nature of the mask 

with the spatial properties of the object, such that each measurement provides a tiny 

amount of information about every pixel (Edgar, Gibson and Padgett, 2019). This will 

lead to the reconstruction time of the image to be much larger than the acquisition time, 

which makes it seems like the compressive sensing of the object was useless in the 

first place. They are also not efficient, requiring lots of storage spaces with no way to 

recover RIP properties (Nguyen and Shin, 2013). Nevertheless, using a pseudo-

random mask for an application that isn’t pressed to be done in real-time will still 

produce a very good quality image.  

 

2.6 Hadamard Basis 

 This led us to deterministic masks. The deterministic masks single pixel 

imaging utilizes is different from the conventional regular interval sampling method. 

One of the most popular deterministic masks used for single pixel imaging is 

Hadamard Basis mask, Hadamard basis masks is a 2N square matrix whose values are 

either +1 or -1 (Hadamard, 1893). 
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Figure 2.8: Examples of different 4x4 Hadamard Masks 

 

These masks are applied one after another onto the object, this allows the sampling of 

the image to be deterministic yet not at a regular interval. These masks are not exactly 

incoherent with the spatial properties of the object, the masks are applied one-by-one 

onto the object with the single pixel detector taking the resultant light intensity of each 

mask. After that, a fast reconstruction of the image can be done. For example, it could 

be as simple as taking the transpose of the Hadamard matrix and getting back the 

original image of the object, etc. This allows for faster and more efficient 

reconstruction times of the image yet bypassing the problem of sampling at a regular 

interval.  

 A unique advantage to Hadamard Basis masks that most of the other 

deterministic masks don’t have is the many manipulatives method in arranging it. An 

example would be rearranging it in a Russian Doll-like manner. This is an optimized 

measurement that allows for minimal computational overhead instead of applying the 

Hadamard Masks randomly which results in faster image processing (Sun et al., 2017). 

Other than the Russian Doll method, Hadamard Basis mask could also be manipulated 

in ways such as rearranging it similar to an origami folding model. This allows for 

better image quality and decreasing the uncertainty of the pattern sequence at the same 

time, allowing for the reduction of sampling ratio by 0.5% which is important for the 

realization of real-time compressed sensing single pixel imaging (Yu and Liu, 2019). 

Lastly, there are also methods to utilize Hadamard Basis masks to manipulate the 

resulting resolution of the sampled image. By using Hadamard Basis mask with 

different resolution, e.g. 4x4, 8x8, etc., the image output will be of that resolution. This 

allows for quicker object detection in various applications as the resolution and details 

could be redundant in those cases (Zhou et al., 2018). 
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Table 2.2: Comparison of Pseudo-random Masks vs. Deterministic Masks 

Pseudo-random masks Deterministic Masks 

Fast and easy to construct Slow and tedious to construct 

Less efficient  

(Nguyen and Shin, 2013) 

More efficient  

(Nguyen and Shin, 2013) 

Takes up more memory storage  

(Nguyen and Shin, 2013) 

Takes up lesser memory storage 

(Nguyen and Shin, 2013) 

Long image reconstruction time 

(Sun et al., 2017) 

Shorter image reconstruction time 

 (Sun et al., 2017) 

Less flexibility More flexibility (Zhou et al., 2018) 

Suited for off-line application Suited for real-time application 

(Yu and Liu, 2019) 

  

 

2.7 Uniform Distribution (Random) 

Continuous uniform distribution will consist of a constant probability density within a 

stated range. The continuous uniform distribution in the range (0, 1) has connections 

with the probability integral transformation, and with the exponential, logistic, and 

beta distributions. Some characterizations of functions of two independent random 

variables are given. (Deng, 2014) 

 

Figure 2.9: Probability function of uniform distribution (Al-Kheer and Al-Kareem, 

2010) 
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 (2.2) 

Uniform Distribution states all intervals between a and b are equally probable, 

thus ensuring an even chance to get any value between a and b during the selection of 

a value. 

 By using a uniform distribution function in creating a mask for single pixel 

imaging, this will ensure that the mask is equally distributed with no advantage in 

detecting any sort of image. This also allows for simple and fast mask construction as 

the function for creating a uniform distribution mask is easy and short. 

 

2.8 Normal Distribution (Gaussian) 

The normal distribution, or also known as Gaussian Transform is a probability 

distribution that is symmetric around the mean. It shows that data are more likely to 

occur around the mean rather than away from the mean. As a graph, normal 

distribution will appear as a bell curve. (Chen, 2019) 

 

Figure 2.10: Example of normal distribution (Pierce, 2019) 

 

 Standard gaussian transform has 2 parameters, the mean and the standard 

deviation. In a normal distribution, 68% of the data are within +/- 1 standard deviation 

of the mean, 95% are within +/- 2 standard deviations, and 99.7% are within +- 3 

standard deviations. This shows that most of the time, a majority of the data will 

converge towards the mean even while randomness is applied.  

 Applying Gaussian Transform to create a mask for single pixel imaging will 

affect the image in such a way that the majority of the focus will be at the centre of the 

image. This will affect the reconstruction of the image such that details at the edge of 



29 

the image will be either blurred or missing. Although there are drawbacks to using 

Gaussian Transform as a mask for single pixel imaging, the advantages are that if the 

object in question is in the middle of the image, this allows for ease of mask 

construction as Gaussian Transform function are usually a built-in component in most 

software libraries. 

 

 

2.9 Fourier Transform 

Fourier Transform is a very important transformation that allows us to convert an 

image that is in the spatial domain into an equivalent frequency domain. In a Fourier 

domain image, each point represents a particular frequency contained in the spatial 

domain image. (R.Fisher et al., 2003) 

 However, Fourier transform contains complex numbers and has issues with 

poor energy compaction. Therefore, it is difficult to use it as a mask for single pixel 

imaging as constructing a mask with complex numbers is time and resource-

consuming (Vasconcelos, 2015). However, Discrete Cosine Transform (DCT) has the 

properties of Fourier Transform but without the complex numbers. As cosine is from 

-1 to 1, the DCT will only consist of real numbers. 

 

Figure 2.11: DCT matrix function 

 

 The above figure shows us the DCT matrix function. This will be the mask that 

applies to the image in single pixel imaging. The image in question will be weighted 

in regards to the 8x8 section of the DCT matrix function. This allows us to determine 

the sparsity of the image as the higher frequency signals in the image can be wiped out 

due to it being unimportant to the image. Usually, images will be weighted more 
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towards the top left of the matrix, compared to the higher frequency bottom right 

matrix. This deterministic method allows for image compression and faster image 

sampling compared to random sampling such as normal and uniform distribution as 

those methods will still take those unimportant signals in question. Below is an 

example of a section of an image that undergoes DCT and has those unimportant 

signals removed. 

 

Figure 2.12: Example of DCT on an image section 

 

2.10 Root Mean Square Error (RMSE) 

Root Mean Square Error (RMSE) is the measurement of how much error is there 

between 2 data sets, in our case that would be the original image and the reconstructed 

image (How to Calculate Root Mean Square Error (RMSE) in Excel - GIS Geography, 

2014). 

   (2.3) 

P represents the Predicted image 

O represents the original image 

n represents the sample size 

 

As the error between them is squared, the output will always be positive and 

thus the order does not matter as long it order doesn’t change throughout. Also, as the 

errors are squared, this means that RMSE gives larger weightage towards large errors. 

This is useful as a large error in image processing is usually undesirable. 

RMSE quantifies how different the 2 images are. The smaller the RMSE, the 

closer the 2 images are to each other. 
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2.11 Peak Signal-to-Noise Ratio (PSNR) 

Peak Signal-to-Noise Ratio (PSNR) is an expression for the ratio between the 

maximum possible value (power) of a signal and the power of distorting noise that 

affects the quality of its representation.  Because many signals have extensive dynamic 

ranges, (ratio between the largest and smallest possible values of a changeable quantity) 

the PSNR is usually expressed in terms of the logarithmic decibel scale (dB) (Peak 

Signal-to-Noise Ratio as an Image Quality Metric - National Instruments, 2019). 

   (2.4) 

 

Where MSE (Mean Squared Error) is  

  (2.5) 

 

f represents the matrix data of our original image 

g represents the matrix data of our degraded image in question 

m represents the numbers of rows of pixels of the images and i represents the index 

of that row 

n represents the number of columns of pixels of the image and j represents the index 

of that column 

MAXf is the maximum signal value that exists in our original “known to be good” 

image 

  

 The reason for using PSNR as an image quality metric is that MSE allows us 

to compare the true pixel values of our original image to our reconstructed image. Thus, 

the higher the PSNR, the better the quality of the reconstructed image is to the original 

image and therefore the better the mask used to sample the image. Also, when using 2 

identical images to compute the MSE it will be 0 and thus the PSNR will be undefined 

as it is divided by 0. 
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2.12 Structural Similarity Index (SSIM) 

The simplest and most widely used quality metric is the mean squared error (MSE), 

computed by averaging the squared intensity differences of distorted and reference 

image pixels, along with peak signal-to-noise ratio (PSNR). These are appealing 

because they are simple to calculate, have clear physical meanings, and are 

mathematically convenient in the context of optimization. However, they are not very 

well matched to perceived visual quality (Wang et al., 2004). Therefore, the Structural 

Similarity (SSIM) Index was created. It measures the perceptual difference between 

two similar images. It is unable to judge which of the two is better; to know that, it 

must be inferred from knowing which is the “original” and which has been subjected 

to additional processing such as data compression (SSIM: Structural Similarity Index 

| imatest, no date) 

   (2.6) 

 

The SSIM formula is based on three comparison measurements between the samples 

of x and y : luminance (l), contrast (c) and structure (s) (Wang, Simoncelli and Bovik, 

2003). 

With these 3 components, the SSIM can be calculated by  

 (2.7) 

 

with 

μx represents the average of x 

μy represents the average of y 

σ2
x represents the variance of x 

σ2
y represents the variance of y 

σxy represents the covariance of x and y 
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c1 and c2 represent 2 variables to stabilize the division with a weak denominator 

 

 Using SSIM as a quality metric, we can tell how similar is the reconstructed 

image to the original image based on our Human Visual System (HVS). For an SSIM 

value of 1, it means that the two images are perfectly identical, whereas with a value 

of 0 it means that the two images are completely different. By using this quality metric 

in our data analysis, we can determine which image output by different mask sample 

are more similar to the original to the HVS. 
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CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter contains the details about how the data is prepared, collected and analysed. 

Furthermore, a detailed work plan, Work Breakdown Structure (WBS) and Gantt chart 

were created to manage the project activities and ensure timely completion of the 

project. 

 

3.2 Research Methodology 

3.2.1 Light Modulation Patterns (Masks) 

According to the problem statement stated in chapter 1, the analytics of different masks 

behaviours will be done. First, masks are split into 2 categories: deterministic and 

pseudo-random (Augustin et al., 2018).  

 

Table 3.1: Different type of sampling methods in their respective category 

Deterministic Masks Pseudo-Random Masks 

Hadamard Basis Uniformly Distributed pseudo-random  

Fourier Transform Gaussian Transform 

 

 Next, we will use these masks and test them on various images. These images 

will be run through simulation as the object that is being captured by a single pixel 

camera, the images will be sampled with the various masks and the results will be 

analysed thoroughly. Various behaviour can be analysed based on the number of 

samples, resolution sized, and many other parameters that can quantify the quality of 

the image produced. 
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3.2.2 Test Images 

To test the various masks, a set of images have been prepared. 

 

 

Figure 3.1: Black and White Circles  

 

 First, a simple binary image as shown in Figure 3.1. It serves as a baseline for 

all masks, letting us know which mask is better at sampling a simple binary image. 

 

 

Figure 3.2 : Grayscale Cameraman 

 Next up is a grayscale image. Figure 3.2 is a cameraman in grayscale, this 

allows us to test the performance of the various masks on grayscale images. Also, 

Figure 3.2 is a humanoid figure, this will test the masks on detecting humanoid images. 

 

 

Figure 3.3 : Phones 
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 The third is a simple square-ish image. As shown in Figure 3.3, the phones in 

the image are very simple looking, with details that are not randomly spread out in the 

image. This allows us to know which masks are better with non-random images. 

 

             

Figure 3.4 : Flames 

 

Figure 3.5: Rice 

 Figure 3.4 and Figure 3.5 allows us to test the masks detection capability on 

images with random details all around the image.  

 

Figure 3.6 : Face 

 

Figure 3.6 is a human face, which is technically in the same category as Figures 

3.4 and 3.5. Every face is different with details random throughout the image. 
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Figure 3.7: FUW chart 

 

 Figure 3.7 is an FUW chart. It is a chart that is usually used as a test image for 

various applications. It is a binary image, with various sizes of stripes in both 

horizontal and vertical direction, and alphabets in different sizes. As most image 

testing uses this image, we will be testing this image too as a reference to other studies.  

 

 

3.3 Simulation and Data Analysis 

 

Figure 3.8: Logo of MATLAB 

 

 The single pixel imaging process was simulated in MATLAB. A simulation is 

easier and faster to acquire results on the study of light modulation patterns, as this 

allows us to eliminate the environmental and external factor due to hardware. 

MATLAB is chosen for its user-friendly platform and helpful resources that are 

available on the internet.  

Images from Figure 3.1 will be simulated as if it is a picture taken in the real world 

with a single pixel camera, masks will then be placed over them to simulate an 

SLM/DMD device projecting the mask onto the object. After that, the sampling 

process will be simulated. Reconstruction of the image is then done and it will be 

evaluated with factors such as time is taken, resolution and quality of the image. 
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The computational time for each image to process through each mask will be recorded 

and compared. Next, the quality and resolution of the image is also a deciding factor 

as the captured image needs to be clear and precise to provide valuable information to 

the user. These two factors will give a clear idea of the different behaviours for 

different types of masks. 

 

3.4  Work Breakdown Structure 

 

Figure 3.9: Work Breakdown Structure of this project 
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3.5 Project Plan & Gantt Chart 

Task Name Duration(days) Start Date End Date 

Planning Phase 41 30 May 2019 25 July 2019 

Identify Problem 

Statement 

7 30 May 2019 7 June 2019 

Identify Objectives  6 6 June 2019 13 June 2019 

Identify Project 

Scope 

8 6 June 2019 13 June 2019 

Literature Review 26 13 June 2019 18 July 2019 

Project Approach & 

Methodology 

6 18 July 2019 25 July 2019 

Data Collection 117  26 July 2019 6 January 2020 

Matlab Coding 71 26 July 2019 2 November 2019 

Collecting Results 46 3 November 2019 6 January 2020 

Data Analysis 36 7 January 2020 25 February 2020 

Perform 

Descriptive 

Analysis 

11 7 January 2020 21 January 2020 

Build Graphs and 

Charts 

11 22 January 2020 5 February 2020 

Interpretation 14 6 February 2020 25 February 2020 

Report Writing 14 26 February 2020 16 March 2020 

Writing Report 14 25 February 2020 16 March 2020 
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CHAPTER 4 

 

4 RESEARCH RESULTS 

 

4.1 Introduction 

Chapter 4 outlines the outcome of the research. The research was completed by 

MATLAB simulation and the data obtained was tabulated using Excel.  The results for 

each test image were analysed and discussed. 

 

4.2 Results and Discussions  

4.2.1 Binary Circles (Figure 3.1) 

 

Table 4.1 :  Circles 90% sampling ratio  

90% Random Gaussian Fourier Hadamard 

RMSE 0.0480 0.0493 0.0249 0.0248 

SSIM 0.4226 0.4103 0.6714 0.6906 

PSNR 26.3991 26.1305 32.1825 32.1589 

end time 92.0475 94.6590 99.5980 109.4191 

mask time 4.6746 6.2026 6.0016 5.7147 

recon time 86.2920 88.1943 92.5002 103.0032 

 

Table 4.2 : Circles 80% sampling ratio 

80% Random Gaussian Fourier Hadamard 

RMSE 0.0641 0.0599 0.0259 0.0343 

SSIM 0.3805 0.3901 0.6365 0.5003 

PSNR 23.8662 24.4667 31.7963 29.2586 

end time 87.5186 91.5957 90.0122 88.8064 

mask time 3.5347 5.6811 5.4873 5.1065 

recon time 83.7724 85.6446 83.4426 82.9853 

 

Table 4.3 : Circles 70% sampling ratio 

70% Random Gaussian Fourier Hadamard 

RMSE 0.0695 0.0754 0.0261 0.0463 

SSIM 0.3763 0.3667 0.6621 0.4374 

PSNR 23.1808 22.5154 31.7650 26.6954 

end time 86.8023 99.0488 94.6815 85.0416 

mask time 3.2721 5.2158 5.0365 4.7600 

recon time 83.3141 93.5826 88.4014 79.4868 
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Table 4.4 : Circles 60% sampling ratio 

60% Random Gaussian Fourier Hadamard 

RMSE 0.0736 0.0761 0.0326 0.0524 

SSIM 0.3687 0.3648 0.4876 0.4314 

PSNR 22.5966 22.3514 29.6570 25.5146 

end time 73.3617 86.3436 72.3666 68.5568 

mask time 2.9063 4.1452 3.7395 4.0534 

recon time 70.2503 81.9420 67.5874 63.7579 

 

Table 4.5 : Circles 50% sampling ratio 

50% Random Gaussian Fourier Hadamard 

RMSE 0.0773 0.0737 0.0341 0.2994 

SSIM 0.3637 0.3685 0.4855 0.4574 

PSNR 22.1748 22.5338 29.2085 10.4523 

end time 69.1546 78.5869 66.2060 49.6865 

mask time 2.2530 3.5723 3.0438 3.2106 

recon time 66.6971 74.7700 62.1665 45.7592 

 

*Best performance for each category is highlighted 

 

 

 

Figure 4.1 : Best reconstructed image for binary circles (Hadamard 90%) 

 

 As shown in Table 4.1, the best result from RMSE and SSIM is the Hadamard 

mask. Although the Fourier mask shows a better PSNR, it is only 0.0236 higher. Thus, 

it can be concluded that overall, the Hadamard Mask (deterministic) is the best for 

sampling the Binary Circle image (Figure 3.1) at a 90% sampling ratio. For the rest of 

the sampling ratios, it can be seen that Fourier Mask shows the best results. This shows 

that for a simple non-random binary image, a deterministic mask works best.  

For all sampling ratio, Random masks exhibit the fastest masking time. On the 

other hand, other than the 90% sampling ratio case, Hadamard mask shows the fastest 

time for the reconstruction of the image. Masking time is the time taken for the mask 

to be applied onto the image one after another, the time to sample the image and 
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produce an output that represents the sparse signal for that image. Reconstruction time 

is the time taken for the compressive sensing algorithm to convert back that sparse 

signal into an image.  

 

4.2.2 Cameraman (Figure 3.2) 

 

Table 4.6 : Cameraman 90% sampling ratio 

90% Random Gaussian Fourier Hadamard 

RMSE 0.0911 0.0975 0.0774 0.0814 

SSIM 0.9272 0.9244 0.9618 0.9673 

PSNR 21.0381 20.4197 22.4304 21.9771 

end time 71.9615 72.1654 73.8296 70.5902 

mask time 4.1542 5.1994 4.5139 4.3488 

recon time 67.5645 66.7187 68.4236 65.6377 

 

Table 4.7 : Cameraman 80% sampling ratio 

80% Random Gaussian Fourier Hadamard 

RMSE 0.1088 0.1385 0.0905 0.1254 

SSIM 0.9049 0.8836 0.9634 0.9037 

PSNR 19.6540 17.5546 21.2441 18.3216 

end time 69.8103 68.9475 68.5745 65.0338 

mask time 3.4584 4.3960 3.8887 4.3038 

recon time 66.1562 64.3487 63.7821 59.8354 

     
Table 4.8 : Cameraman 70% sampling ratio 

70% Random Gaussian Fourier Hadamard 

RMSE 0.1331 0.1311 0.0950 0.1086 

SSIM 0.8492 0.8527 0.9449 0.8453 

PSNR 18.3756 18.3133 21.0133 19.8489 

end time 62.5036 62.9775 62.8450 59.2065 

mask time 3.0274 3.7532 3.5558 3.3957 

recon time 59.2714 59.0078 58.3086 55.2147 

 

Table 4.9 : Cameraman 60% sampling ratio 

60% Random Gaussian Fourier Hadamard 

RMSE 0.1551 0.1354 0.1246 0.1507 

SSIM 0.8040 0.8088 0.9245 0.7226 

PSNR 17.0831 18.1788 19.0434 16.7230 

end time 54.9866 56.1666 55.5877 46.5523 

mask time 2.7612 3.3259 2.9842 2.9566 

recon time 51.9951 52.6471 51.7505 42.9877 
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Table 4.10 : Cameraman 50% sampling ratio 

50% Random Gaussian Fourier Hadamard 

RMSE 0.1842 0.1658 0.1732 0.2066 

SSIM 0.7725 0.7687 0.8733 0.5538 

PSNR 15.8762 16.7552 16.3296 13.6262 

end time 51.5221 51.6720 47.9395 42.5470 

mask time 2.2499 2.7225 2.5749 2.4440 

recon time 49.0754 48.7482 44.4817 39.4966 

 

* Best performance for each category is highlighted 

 

 

Figure 4.2 : Best reconstructed image for Cameraman (Fourier 90%) 

 

 Based on Table 4.6 to Table 4.10, for all of the sampling ratios, Fourier Mask 

gives the best results for the sampling of the Cameraman image (Figure 3.2). 

Although based on Figure 3.2, Cameraman is a humanoid figure that exhibits 

randomness in detail throughout the image, but as it is shrunk down to 64-by-64 

pixel for the single pixel sampling, the random details in the face of the Cameraman 

are barely noticeable. Instead, as the Cameraman image is shrunk down to 64-by-64 

pixel, the main body of the image is the body which looks rectangular and simple 

(Figure 4.2). Thus, this led to a deterministic mask being advantageous for the 

sampling of this image.  

 For all sampling ratios, the Random mask exhibit the fastest masking time. 

On the other hand, for all sampling ratios, Hadamard Mask shows the fastest time for 

the reconstruction of the image.  
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4.2.3 Phone (Figure 3.3) 

 

Table 4.11 : Phone 90% sampling ratio 

90% Random Gaussian Fourier Hadamard 

RMSE 0.0440 0.0405 0.0379 0.0396 

SSIM 0.9278 0.9286 0.9388 0.9343 

PSNR 27.0369 27.8909 28.4473 28.0858 

end time 95.2952 95.9867 98.5494 96.4459 

mask time 28.2004 29.1992 28.2343 28.2069 

recon time 66.8102 66.5524 69.3582 67.6079 

 

Table 4.12 : Phone 80% sampling ratio 

80% Random Gaussian Fourier Hadamard 

RMSE 0.0444 0.0445 0.0377 0.0450 

SSIM 0.9163 0.9201 0.9365 0.9009 

PSNR 27.1227 27.1695 28.6539 27.0770 

end time 92.9342 93.8433 90.5389 84.3458 

mask time 25.2261 26.2185 25.6103 25.1805 

recon time 67.4763 67.3939 64.0429 58.5296 

 

Table 4.13 : Phone 70% sampling ratio 

70% Random Gaussian Fourier Hadamard 

RMSE 0.0508 0.0527 0.0499 0.0547 

SSIM 0.898033 0.8944 0.9124 0.869 

PSNR 26.11357 25.83227 26.4525 25.472 

end time 83.94627 84.10107 82.1272 76.4744 

mask time 22.0593 22.86273 21.9487 22.4094 

recon time 61.6509 61.00887 59.2696 53.4008 

 

Table 4.14 : Phone 60% sampling ratio 

60% Random Gaussian Fourier Hadamard 

RMSE 0.0540 0.0541 0.0632 0.0653 

SSIM 0.8787 0.8818 0.8819 0.8389 

PSNR 25.7069 25.6591 24.6348 24.1561 

end time 72.9118 73.3669 70.5763 64.6016 

mask time 18.8720 19.5312 19.4322 18.8754 

recon time 53.7969 53.6054 50.2326 45.0926 

 

Table 4.15 : Phone 50% sampling ratio 

50% Random Gaussian Fourier Hadamard 

RMSE 0.0621 0.0620 0.0667 0.1031 

SSIM 0.8613 0.8606 0.8822 0.7174 

PSNR 24.7004 24.7583 24.5762 19.7228 

end time 68.0002 69.0188 62.9051 57.9934 
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mask time 15.7663 16.5264 15.7263 16.0771 

recon time 51.9512 52.2601 46.1850 41.2758 

 

* Best performance for each category is highlighted 

 

 

Figure 4.3 : Best reconstructed image for Phone (Fourier 90%) 

 

 The Phone (Figure 3.3) is a simple rectangular image. Thus, based on earlier 

inferences, simple non-random images will be led to a deterministic mask being the 

better mask to sample these images. As shown in Table 4.11 to 4.13, Fourier Mask 

gives the best results for the sampling of the Phone image. However, as the sampling 

ratio reduces to 60% and 50%, it could be seen that the pseudo-random mask does 

provide a better result. The reason is that as pseudo-random masks are generated 

randomly each time, we need to run and collect the results several times for each 

sampling ratio. Once the results are collected, the average value is obtained. During 

this research, 3 runs are done for each sampling ratio for the pseudo-random masks. 

There might be some runs that the randomly generated masks conform to the image 

nicely and provide a better result. Thus, at the lower sampling ratios where the 

deterministic masks aren’t sampling the image fully, a random sampling of the image 

might provide a better result once several runs of sampling are done. 

 However, the advantage of deterministic masks is that only one run is needed 

to obtain an accurate result. Every single run with the deterministic mask will provide 

the same result as the previous run. Thus, this eliminates the randomness during data 

collection.  

For all sampling ratios except 80% sampling ratio, Random masks exhibit the 

fastest masking time. On the other hand, other than the 90% sampling ratio case, 

Hadamard mask shows the fastest time for the reconstruction of the image. 
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4.2.4 Flames (Figure 3.4) 

 

Table 4.16 : Flames 90% sampling ratio 

90% Random Gaussian Fourier Hadamard 

RMSE 0.0534 0.0588 0.0706 0.0652 

SSIM 0.8604 0.8338 0.7979 0.8631 

PSNR 25.4535 24.6263 22.9990 23.8078 

end time 111.4153 121.5506 96.4389 93.0554 

mask time 26.5824 32.0046 23.7689 23.5407 

recon time 84.5887 89.1916 71.7752 68.8690 

 

Table 4.17 : Flames 80% sampling ratio 

80% Random Gaussian Fourier Hadamard 

RMSE 0.0454 0.0439 0.0667 0.0603 

SSIM 0.8537 0.8551 0.8159 0.8522 

PSNR 26.9874 27.3102 23.4840 24.5557 

end time 84.3690 84.2194 87.8790 85.6382 

mask time 22.1372 21.9989 21.2360 21.2380 

recon time 61.9941 61.9880 65.7570 63.5839 

 

Table 4.18 : Flames 70% sampling ratio 

70% Random Gaussian Fourier Hadamard 

RMSE 0.0498 0.0497 0.0581 0.0724 

SSIM 0.8305 0.8353 0.8502 0.7886 

PSNR 26.2342 26.3160 24.7208 22.8297 

end time 80.4787 78.6327 80.1150 76.4033 

mask time 20.3981 18.7636 18.9263 18.2429 

recon time 59.8438 59.6360 59.8006 57.5199 

 

Table 4.19 : Flames 60% sampling ratio 

60% Random Gaussian Fourier Hadamard 

RMSE 0.0570 0.0517 0.0615 0.0880 

SSIM 0.8006 0.8087 0.8261 0.7112 

PSNR 24.9954 25.9308 24.1911 21.1110 

end time 86.2266 69.4016 67.8132 87.0140 

mask time 21.9365 17.8334 15.7383 28.4180 

recon time 64.0572 51.3345 51.1374 57.6824 

 

Table 4.20 : Flames 50% sampling ratio 

50% Random Gaussian Fourier Hadamard 

RMSE 0.0754 0.0605 0.0584 0.1492 

SSIM 0.7480 0.7626 0.8372 0.5722 
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PSNR 22.4943 24.0764 24.6525 15.7702 

end time 58.8029 59.9543 59.2909 53.9536 

mask time 12.6133 13.4539 13.1493 13.5651 

recon time 45.9585 46.2676 45.2581 39.7067 

 

*Best performance for each category is highlighted 

 

 

Figure 4.4 : Best reconstructed image for Flames (Random 90%) 

 

 The Flames image (Figure3.4) is a random image, where the details of the 

image are random and spread throughout the image. Flames can come in many 

different shapes and forms, thus random. Based on Table 4.16, it can be seen that 

sampling with the Random mask gives the best result in both the RMSE and PSNR 

category. Although the Hadamard mask gives a better SSIM result, it is only 0.0029 

higher. Thus, it can be shown that the Random mask is the best to sample the Flames 

image. For the rest of the sampling ratio other than 50% sampling ratio, the Gaussian 

mask exhibits the best results. Pseudo-random masks are better to sample random 

images as not only the masks are generated randomly without fixing it, as we need to 

run the pseudo-random masks several times, some runs are bound to generate a mask 

that conforms to the random image better.  

 For all sampling ratios except 50% sampling ratio, Fourier masks 

exhibit the fastest masking time. Although the Fourier Mask shows the fastest masking 

time for this image, it is only slightly ahead of the pseudo-random mask. On the other 

hand, for all of the sampling ratio, the Hadamard mask shows the fastest time for the 

reconstruction of the image. 

 

 

 

4.2.5 Rice (Figure 3.5) 
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Table 4.21 : Rice 90% sampling ratio 

90% Random Gaussian Fourier Hadamard 

RMSE 0.0738 0.0767 0.0855 0.0784 

SSIM 0.9260 0.9180 0.8864 0.9284 

PSNR 22.0456 21.8675 20.6998 21.9174 

end time 73.7094 74.0571 78.5739 73.1531 

mask time 4.3221 5.5252 4.6120 4.6372 

recon time 68.8300 68.3257 73.0655 67.9394 

 

Table 4.22 : Rice 80% sampling ratio 

80% Random Gaussian Fourier Hadamard 

RMSE 0.0825 0.0815 0.0804 0.0792 

SSIM 0.9234 0.9176 0.8890 0.9134 

PSNR 21.6800 21.7158 20.7417 22.0202 

end time 66.4609 65.4362 69.4970 67.9482 

mask time 3.9218 4.4278 4.0833 4.0509 

recon time 62.2157 60.7953 64.5476 63.3221 

 

Table 4.23 : Rice 70% sampling ratio 

70% Random Gaussian Fourier Hadamard 

RMSE 0.0810 0.0836 0.0808 0.0970 

SSIM 0.9168 0.9129 0.8809 0.8753 

PSNR 22.0374 21.7087 20.5755 21.0927 

end time 61.8923 64.4193 63.2501 62.3000 

mask time 3.3939 4.1078 3.5735 4.0615 

recon time 58.2915 60.1095 58.8400 57.4803 

 

Table 4.24 : Rice 60% sampling ratio 

60% Random Gaussian Fourier Hadamard 

RMSE 0.0867 0.0896 0.0882 0.1232 

SSIM 0.8953 0.8989 0.8821 0.7902 

PSNR 22.0211 21.8793 20.6114 19.3530 

end time 53.6234 53.6094 54.2106 48.8590 

mask time 2.7145 3.3170 3.0703 2.9817 

recon time 50.6705 50.0881 50.2967 45.3188 

 

 

Table 4.25 : Rice 50% sampling ratio 

50% Random Gaussian Fourier Hadamard 

RMSE 0.1095 0.0906 0.0838 0.1121 

SSIM 0.8583 0.8483 0.8951 0.6642 

PSNR 20.7762 21.4321 21.7444 19.0031 

end time 48.1570 49.1200 52.5940 42.4597 
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mask time 2.3340 2.9215 2.6725 2.5260 

recon time 45.6067 45.9768 49.0693 39.3464 

 

*Best performance for each category is highlighted 

 

 

Figure 4.5 : Best reconstructed image for Rice (Random 90%) 

 

 The Rice image (Figure 3.5) is also a random image, with the image showing 

rice scattering about on a surface. It is included to confirm that pseudo-random masks 

are better at sampling random images. As shown in Table 4.21, the Random mask 

gives the best result in the RMSE and PSNR category, with Hadamard Mask showing 

an SSIM of 0.0024 higher than the random mask. Thus, it can be concluded that the 

Random Mask is the best for the sampling of the Rice image. For the rest of the 

sampling ratios except 50% sampling ratio, Random Masks gives the best results.  

 Although it is shown that pseudo-random masks are better at sampling random 

images than deterministic masks, it is true only if the deterministic masks are not 

specially customed to sample a certain image. Based on a paper named “Hadamard 

single pixel imaging vs Fourier single pixel image” (Zhang, Wang and Zhong, 2016), 

they found out that by customizing the deterministic masks to the image in question 

(e.g. a human face), it reconstructs it better than a normal deterministic mask. However, 

that custom mask can only be used to sample that type of image and will not work well 

for another random image. 

For all sampling ratios, Random masks exhibit the fastest masking time. On 

the other hand, other than the 80% sampling ratio case, Hadamard mask shows the 

fastest time for the reconstruction of the image. 
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4.2.6 Face (Figure 3.6) 

 

Table 4.26 : Face 90% sampling ratio 

90% Random Gaussian Fourier Hadamard 

RMSE 0.0600 0.0603 0.0708 0.0706 

SSIM 0.7090 0.7084 0.6681 0.6781 

PSNR 24.3718 24.2921 22.8878 22.9960 

end time 82.5407 81.2877 81.8394 75.4486 

mask time 14.6534 15.0529 14.6786 14.7505 

recon time 67.6524 66.0276 66.2886 60.0890 

 

Table 4.27 : Face 80% sampling ratio 

80% Random Gaussian Fourier Hadamard 

RMSE 0.0543 0.0509 0.0698 0.0759 

SSIM 0.7285 0.7348 0.6757 0.6545 

PSNR 25.3013 25.8196 23.0219 22.2967 

end time 75.7689 80.8684 71.2612 69.0062 

mask time 12.8564 13.6694 13.4863 13.7545 

recon time 62.6816 66.9455 56.8291 54.4871 

 

Table 4.28 : Face 70% sampling ratio 

70% Random Gaussian Fourier Hadamard 

RMSE 0.0534 0.0546 0.0675 0.0742 

SSIM 0.7411 0.7433 0.6830 0.6316 

PSNR 25.4163 25.3572 23.4291 22.4168 

end time 82.4879 90.7483 65.7167 62.2803 

mask time 13.9664 16.3298 11.4777 11.6067 

recon time 68.2769 74.1533 53.2638 50.0554 

 

Table 4.29 : Face 60% sampling ratio 

60% Random Gaussian Fourier Hadamard 

RMSE 0.0549 0.0510 0.0676 0.0750 

SSIM 0.7406 0.7548 0.6841 0.5976 

PSNR 25.2785 25.8520 23.4471 22.0591 

end time 77.2404 61.7865 56.5918 52.9195 

mask time 12.7655 10.7907 9.8151 10.1875 

recon time 64.2030 50.7895 45.9166 42.1179 
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Table 4.30 : Face 50% sampling ratio 

50% Random Gaussian Fourier Hadamard 

RMSE 0.0506 0.0476 0.0641 0.1114 

SSIM 0.7628 0.7702 0.6892 0.5049 

PSNR 25.7757 26.2738 23.8227 18.8284 

end time 66.8925 54.0815 48.5238 44.6330 

mask time 10.4342 8.7499 8.1679 8.3109 

recon time 56.1969 45.1122 39.4985 35.5570 

 

* Best performance for each category is highlighted 

 

 

Figure 4.6 : Best reconstructed image for Face (Random 90%) 

 

 Face (Figure 3.6) is a random image as all faces are different. There is a 

different colour, different size and different features for all faces. Based on Table 4.26, 

Random Mask gives the best results for the sampling of the Face image. For the rest 

of the sampling ratios, Gaussian Mask gives the best result for sampling the Face image. 

Both masks are pseudo-random masks. 

 For sampling ratios 80% and 90%, Random masks exhibit the fastest masking 

time, with the rest of the sampling ratios showing Fourier Masks having a slightly 

faster masking time. On the other hand, for all of the sampling ratios, the Hadamard 

mask shows the fastest time for the reconstruction of the image. 

 

 

4.2.7 FUW chart (Figure 3.7) 

 

Table 4.31 : FUW chart 90% sampling ratio 

90% Random Gaussian Fourier Hadamard 

RMSE 0.0474 0.0448 0.0295 0.1519 

SSIM 0.613 0.6252 0.7679 0.4312 

PSNR 26.5515 27.0484 30.7421 16.3727 

end time 100.2495 100.0509 103.1744 95.0633 
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mask time 21.54427 22.0243 21.3662 21.8368 

recon time 77.77263 77.8090 80.9289 72.6488 

 

Table 4.32 : FUW chart 80% sampling ratio 

80% Random Gaussian Fourier Hadamard 

RMSE 0.0656 0.0600 0.0730 0.2468 

SSIM 0.5575 0.5718 0.5388 0.3332 

PSNR 23.5472 24.3482 22.6084 12.1298 

end time 87.4066 90.2140 88.9944 92.8839 

mask time 18.6319 19.3962 19.3049 21.7099 

recon time 68.5270 70.6052 68.8931 70.6039 

 

Table 4.33 : FUW chart 70% sampling ratio 

70% Random Gaussian Fourier Hadamard 

RMSE 0.0880 0.0937 0.0862 0.1877 

SSIM 0.5165 0.5021 0.512 0.3556 

PSNR 21.3558 20.5894 21.0506 14.6101 

end time 78.4977 79.9306 85.2271 74.6694 

mask time 16.4700 17.1164 17.0728 16.7979 

recon time 61.8087 62.5998 67.2779 57.3107 

 

Table 4.34 : FUW chart 60% sampling ratio 

60% Random Gaussian Fourier Hadamard 

RMSE 0.0994 0.1203 0.1267 0.2426 

SSIM 0.4896 0.4551 0.4475 0.3085 

PSNR 20.0238 18.3775 18.0056 12.1305 

end time 68.9271 69.8880 69.1194 71.9040 

mask time 14.1497 14.6375 14.7220 15.2180 

recon time 54.5614 55.0326 53.5637 56.1151 

 

Table 4.35 : FUW chart 50% sampling ratio 

50% Random Gaussian Fourier Hadamard 

RMSE 0.1517 0.1362 0.1498 0.1702 

SSIM 0.4070 0.4245 0.3972 0.4601 

PSNR 16.4982 17.3407 16.4462 15.1176 

end time 63.0186 63.7937 60.1467 55.0679 

mask time 11.8573 12.4248 12.5316 12.0140 

recon time 50.9510 51.0691 46.7899 42.3932 

 

* Best performance for each category is highlighted 
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Figure 4.7 : Best reconstructed image for FUW chart (Fourier 90%) 

 

 As shown from Table 4.31, Fourier Mask gives the best results for the sampling 

of the FUW chart (Figure 3.7). The FUW image is an image where there are a series 

of lines in both vertical and horizontal directions, together with alphabets in different 

sizes. Many researches use this image to test their image reconstruction methods, thus 

this image is added for a comparison to other research. Although the Fourier mask 

shows the best results at a 90% sampling ratio, once the sampling ratio drops to 70% 

and below, it seems that the pseudo-random masks are showing better results. This 

could be due to the intricate details on the FUW chart. As the sampling ratio for the 

deterministic masks lowers, it is harder to sample all the small details on the masks, 

thus leading to the pseudo-random masks showing better results. 

For all sampling ratios except 90% sampling ratio, Random masks exhibit the 

fastest masking time. On the other hand, other than the 80% and 70% sampling ratio 

case, Hadamard mask shows the fastest time for the reconstruction of the image. 

 

 

4.2.8 Hadamard 50% Sampling Error 

 

During the data collection for this research topic, a peculiar error was encountered.  As 

sampling ratios for the Hadamard mask drops to 50% and lower, there seems to be an 

error in sampling and reconstructing the image.  

 

 

Figure 4.8 : Binary Circles 50% Hadamard Mask Sampling Error 
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Figure 4.9 : Grayscale Cameraman 50% Hadamard Mask Sampling Error 

 

 

Figure 4.10 : Phones 50% Hadamard Mask Sampling Error 

 

 

Figure 4.11 : Flames 50% Hadamard Mask Sampling Error 

 

 

Figure 4.12 : Rice 50% Hadamard Mask Sampling Error 

 

 

Figure 4.13 : Face 50% Hadamard Mask Sampling Error 
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Figure 4.14 : FUW Chart 50% Hadamard Mask Sampling Error 

 

 As shown from Figure 4.8 to 4.14, the reconstructed image from a 50% 

sampling ratio of Hadamard mask seems to show overlapping of image. Sampling ratio 

under 50% for Hadamard mask too exhibit this problem. However, for the rest of the 

masks, there seems to be no such problem.  

 This error most likely arises from coding issues during simulation of single 

pixel imaging, as other research doesn’t seem to have this issue when the sampling 

ratio is below 50%. 

 

4.3 Summary of Result Analysis 

 

In terms of mask time, the Random mask is more efficient, consistently shows the 

shortest mask time regardless of the sampling ratio. Meanwhile, for 

Gaussian/Fourier/Hadamard, mask time increases with the sampling ratio.  

The Random mask uses uniform distribution function, masks with 0 and 1 are 

generated easily with the MATLAB function as it is built-in without any need for 

modification. For the Gaussian Mask case, masks are generated with values ranging 

from negative to positive. Therefore, there is an extra step in changing values that are 

negative to 0 and positive to 1 to create a mask, thus extra masking time. Fourier and 

Hadamard are the same, which is creating a complete mask, in the beginning, using 

their respective function, and then reconstructing it every iteration of sampling by 

making adjustments to the original masks. Therefore, their masking time is almost 

the same. All 4 masks’ masking time increase with the sampling ratio. Mask time is 

drastically different for different images. 

Masks for Random/Gaussian is different every time a mask is generated. 

Therefore, an averaging method must be done to the results as there are masks that 

provide a nice result and vice versa. This is a disadvantage as overall, to get an accurate 
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result, several runs are needed. On the other hand, Fourier/Hadamard Masks will get 

the same RMSE, PNSR, and SSIM every single time as they are the same masks, there 

is no random element in generating and masking the image. Therefore, not only that it 

is possible to pre-generate and pre-load the mask, but it is also faster because we do 

not need to sample the image more than 1 time to get an accurate result. 

 

In terms of reconstruction time, all 4 patterns consistently increase with a 

higher sampling ratio. Overall, Fourier/Hadamard has lower reconstruction time. 

There are several explanations for this. Other than 2 exceptions, Hadamard has the 

fastest reconstruction time for all sampling ratios across all images. First, as 

Random/Gaussian Masks needs to be averaged after 3 samplings, this means that there 

could be long and short reconstruction time in between those 3 runs. This will lead to 

an average result, but not as accurate as deterministic masks. Second, as we transpose 

the Hadamard matrix to reconstruct the mask, it is inherently faster compared to other 

masks (based on an earlier literature review), thus making Hadamard mask the 

mainstream mask for single pixel imaging. Circles, Phone, FUW chart, Cameraman* 

images are considered the same type of object, simple objects that are round/square-

ish. Both of these images have a better result with deterministic masks. (* With 

cameraman resized down to 64-by-64 pixel, the body of the image is simple and 

squarer looking as the random features of the face is barely visible) Circles, phone, etc, 

the way the details are structured in the image is similar to the masks. The circles in 

the Circles image are in positions that are similar to the Hadamard mask, thus making 

the mask ideal to sample the image. 

 

Figure 4.15: Visual example of how a mask conforms to an image 

 

Random/Gaussian masks will perform better in images that are random in 

nature such as Face, Flames and Rice images as the masking patterns are random, and 

that the results are from averaging 3 runs. Thus, among those runs, there might be a 

mask that conforms to the image better and give a better result. However, if the 

Hadamard/Fourier masks are patterned in such a way that it conforms to the image that 
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we are sampling (flames/face), it will produce a better result than Random/Gaussian 

masks. The Fourier vs Hadamard paper (Zhang, Wang and Zhong, 2016) has several 

examples that as they change the Hadamard/Fourier pattern from square to diamond, 

it performs better on human faces. In the paper, it states that Fourier is better, but with 

tweaks to Hadamard mask the way it samples the images (diamond, zigzag, square, 

spiral, etc), Hadamard will provide a faster and better-quality image.  

 

 

Table 4.36 : Advantages vs Disadvantages of Pseudo-random Masks 

Advantage Disadvantage 

Universal (doesn’t need to know the 

image beforehand) 

Unable to reproduce results 

consistently 

Better for random looking image (rice, 

face, flames, etc) 

Unable to pre-load and pre-generate the 

mask 

 

Table 4.37 : Advantages vs Disadvantages of Deterministic Masks 

Advantage Disadvantage 

Results is able to be reproduced 

consistently 

Have to know the image beforehand 

and create a custom mask to better 

sample the image 

Able to pre-generate and pre-load the 

mask 

 

Better quality image if masks is 

suitable to sample the image 
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CHAPTER 5 

 

5 CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

Single pixel imaging is an-emerging method that could change how we sample images 

in the future. However, as single pixel imaging technique is still in the early stages of 

development, extensive research is needed before it can become an effective 

alternative to conventional imaging methods such as CCD or CMOS. This project aims 

to analyse different light modulation and sampling methods as well as their influence 

on the single pixel imaging.,  

 Based on the data analysis, Random Mask has the fastest masking time overall, 

while Hadamard Mask has the shortest reconstruction time. In term of image quality, 

Pseudo-random Masks give better RMSE, PSNR, and SSIM for random looking 

images such as Face, Flames and Rice. On the other hand, Deterministic masks show 

better results for non-random images such as Circles, Phones, and humanoid figures.  

 Although there are many advantages to apply Pseudo-random masks such as 

simpler mask construction and no prior knowledge is needed on the image being 

sampled. Unfortunately, it has a significant disadvantage of not being able to be pre-

loaded and pre-generated. In practice, this is important as masks that can be pre-loaded 

and pre-generated can save a huge amount of time especially if the sampling needs to 

be done in real-time such as a CCTV camera. Even though Deterministic masks aren’t 

as good in sampling random-looking images but this can be further improved with 

certain customization. If we are to know the type of image that we are sampling 

beforehand, such as a face detection only CCTV, we can create a custom Deterministic 

mask that especially conforms to the shape of a face, which greatly increasing its 

accuracy. In addition, Deterministic masks do not need to sample the image several 

times to get an accurate result as the consistency of the results is guaranteed.  

In conclusion, Deterministic masks are better than Pseudo-random masks 

generally., However, there are advantages of Pseudo-random masks that might make 

it more suitable in some circumstances. The findings established in this project are 

important to provide a comprehensive understanding of various mask patterns, their 

characteristics and impacts to the application of single pixel imaging. 



60 

 

5.2 Limitations 

There are a few limitations during this research. First of all, the maximum size of the 

image that could undergo this single pixel imaging simulation is only 64-by-64 pixels. 

Images that are larger than this needs to be shrunk down to 64-by-64 pixels. Thus, this 

limits the data collection on finer details on a larger image that could affect the results 

inferred. 

 In addition, there was some errors in the Hadamard mask sampling once the 

sampling ratio reduces to 50% and below. This limits the research as we are unable to 

compare the image that is sampled below 50% sampling ratio. Lastly, as single pixel 

imaging currently only works in grayscale, we are unable to obtain data on the 

reconstruction of colour images.  

 

5.3 Recommendation for Future Research 

Further research can be considered by identifying and correcting the error in Hadamard 

mask sampling for 50% and lower sampling ratio. This allows the research to be 

extended on lower sampling ratios for simpler images. This could be possible by 

collaborating with other existing research that managed to sample below 50% 

sampling ratio. 

 Besides, the research can be expanded to sample and reconstruct colour images, 

as currently colour images are not possible to be sampled and reconstructed for single 

pixel imaging. Furthermore, explore other potential application which allow it to be a 

strong contender for conventional imaging methods that are more expensive and 

bulkier.
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