

SKIN LESION DETECTION USING DEEP NEURAL NETWORK BY

SMART HANDHELD DEVICES

TAN HOU REN

A project report submitted in partial fulfilment of the

requirements for the award of Bachelor of Engineering

(Honours) Biomedical Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

September 2020

i

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare

that it has not been previously and concurrently submitted for any other degree

or award at UTAR or other institutions.

Signature :

Name : TAN HOU REN

ID No. : 17UEB00832

Date : 4th October 2020

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “SKIN LESION DETECTION

USING DEEP NEURAL NETWORK BY SMART HANDHELD

DEVICES” was prepared by TAN HOU REN has met the required standard

for submission in partial fulfilment of the requirements for the award of

Bachelor of Engineering (Honours) Biomedical Engineering at Universiti

Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Ir. Dr. Hum Yan Chai

Date : 4/10/2020

Signature :

Co-Supervisor : Dr. Tee Yee Kai

Date : 4/10/2020

iii

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti

Tunku Abdul Rahman. Due acknowledgement shall always be made of the use

of any material contained in, or derived from, this report.

© 2020, Tan Hou Ren All right reserved.

iv

ABSTRACT

Early detection of malignant skin lesions improves patient survival rates.

Conventional self-detection method for public possess subjectivity, inaccuracy,

and require experience. The goal of this project is to develop an Android based

mobile application with object detection deep learning integration that allows

global users to perform malignant skin lesions self-detection easily using a

smartphone, for overcoming the limitations of the conventional method.

Transfer Learning has been performed on various object detection models using

ISIC skin lesions dataset with TensorFlow Object Detection API. The selected

object detection model is SSD MobileNet V2 with 93.9% of evaluation accuracy

after training due to its lightweight architecture therefore suitable for

smartphone integration. The selected model has surpassed existing

classification model in terms of accuracy after validation with a new dataset. A

mobile application has been developed successfully with Android Studio. The

trained object detection model successfully integrated into the mobile

application using Firebase ML Kit and has achieved low detection time on

smartphones. The mobile application has been proven to be compatible with

various Android versions and screen sizes after tested with 7 different

smartphones using Firebase Test Lab.

v

TABLE OF CONTENTS

DECLARATION i

APPROVAL FOR SUBMISSION ii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF TABLES vii

LIST OF FIGURES ix

LIST OF SYMBOLS / ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER

1 INTRODUCTION 1

1.1 General Introduction 1

1.2 Importance of the Study 1

1.3 Problem Statement 2

1.4 Aim and Objectives 2

1.5 Scope and Limitation of the Study 3

2 LITERATURE REVIEW 4

2.1 Skin Cancer 4

2.1.1 Importance of Skin Cancer Early Detection 6

2.1.2 Self-Skin Examination Method and Efficacy 7

2.1.3 Summary 9

2.2 Object Detection with Deep Learning 10

2.2.1 Overview of CNN Architecture 11

2.2.2 Backbone Network of Object Detection 13

2.2.3 Object Detection Framework 19

2.2.4 Transfer Learning and Fine-Tuning 27

2.2.5 Object Detection Evaluation Metrics 28

2.2.6 Summary 33

2.3 Application of Deep Learning in Skin Lesions

Classification and Detection 33

2.4 Deep Learning in Mobile Application 36

2.5 Summary 37

vi

3 METHODOLOGY AND WORK PLAN 39

3.1 Introduction 39

3.2 Selection of Object Detection Model 40

3.3 Selection of Skin Lesions Dataset 41

3.4 Selection of Evaluation Metrics 42

3.5 TensorFlow Object Detection API 42

3.5.1 Dataset Preparation 43

3.5.2 Configure Pipeline and Model Preparation 45

3.5.3 Model Training 46

3.5.4 Model Evaluation 46

3.5.5 Tensorboard 47

3.5.6 Convert TensorFlow Lite Model 47

3.6 Mobile Application Development 48

3.6.1 Integration of TensorFlow Lite Model 49

3.6.2 Mobile Application Functionalities 51

3.6.3 Mobile Application Compatibility Test and

Inference Time Tracing 52

3.7 Summary 53

4 RESULTS AND DISCUSSION 54

4.1 Introduction 54

4.2 Object Detection Models Comparison 54

4.2.1 Model Validation 57

4.3 Mobile Application Result 59

4.3.1 Main, Setting, Document Activities 60

4.3.2 Crop Image and Camera Activities 61

4.3.3 Application Compatibility Test 63

4.3.4 Inference Time and Application Size 64

4.4 Summary 65

5 CONCLUSIONS AND RECOMMENDATIONS 66

5.1 Conclusions 66

5.2 Recommendations for future work 66

REFERENCES 68

APPENDICES 76

vii

LIST OF TABLES

TABLE TITLE PAGE

2.1 Melanoma Stages (The Skin Cancer Foundation,

2020). 5

2.2 Dissemination of Disease at 5-Year Survival and

Presentation (Doben and MacGillivray, 2009). 7

2.3 Error Rates of Different Model on ImageNet

Validation (He et al., 2016). 15

2.4 Depthwise Separable vs Full Convolution

MobileNet (Howard et al., 2017). 17

2.5 MobileNet vs MobileNetV2 (Sandler et al., 2018).

 18

2.6 Comparison of The Number of Parameters and

Operation Between CNN Models. 18

2.7 Comparison of Detectors Trained on PASCAL

VOC Dataset in Terms Of Accuracy (Wu, Sahoo

and Hoi, 2020). 26

2.8 Comparison of Testing Consumption on VOC

2007 Dataset (Zhao et al., 2019). 27

2.9 TP, FP, and FN (Padilla, R., 2020) 30

2.10 Summarized Works for Malignant Vs Benign

Skin Lesion Classification. 34

2.11 Benchmark Image Classification Model

Performance on iPhone 7 (Deng, 2019). 37

3.1 Pre-Trained Object Detection Model Online

(GitHub., 2020) 40

4.1 Object Detection Models Comparison in terms of

mAP, Inference time, and Model Size. 54

4.2 Area Under PR-curve (Average Precision) for

Benign and Malignant Class of Three Models. 57

4.3 Accuracy of SSD MobileNet V2 object detection

model and ResNet50 classification model using a

new validation dataset. 59

viii

4.4 Firebase Test Lab Results. 64

ix

LIST OF FIGURES

FIGURE TITLE PAGE

2.1 Skin Anatomy (CDC, 2020). 5

2.2 ABCDE Criteria for Skin Cancer Diagnosis (Tsao

et al., 2015). 8

2.3 General Flow of Object Detection (Pathak,

Pandey and Rautaray, 2018). 10

2.4 CNN General Architecture (Rawat and Wang,

2017). 11

2.5 VGG16 Layers Definition. 14

2.6 Residual Learning: Residual Block (He et al.,

2016). 15

2.7 Depthwise Convolution Filter (Howard et al.,

2017). 16

2.8 1x1 Pointwise Convolution Filter (Howard et al.,

2017). 16

2.9 General Architecture of Two-Stage Object

Detector (Jiao et al., 2019). 20

2.10 Architecture of RCNN (Wu, Sahoo and Hoi,

2020). 21

2.11 Fast-RCNN Architecture (Wu, Sahoo and Hoi,

2020). 21

2.12 Faster-RCNN with RPN Module (Wu, Sahoo and

Hoi, 2020). 22

2.13 Main Idea of YOLO (Redmon et al., 2016). 23

2.14 Architecture of YOLO Object Detection (Wu et

al., 2020). 24

2.15 Main Idea of SSD Generate Multiple Size Anchor

Boxed In Grid Cell (Liu et al., 2016). 25

2.16 Complete Architecture of SSD Detector With

VGG16 Backbone (Liu et al., 2016). 25

x

2.17 Ground Truth and Predicted Bounding Box

(DeepAI., 2020). 29

2.18 PR-curve (Manal El Aidouni., 2020). 31

2.19 Area Under PR-curve (Padilla, R., 2020). 32

2.20 General Flow of Using TensorFlow Object

Detection API (Taqi et al., 2019). 35

3.1 Project Flowchart. 39

3.2 Pre-trained Model Files. 41

3.3 Benign Skin Lesion. 41

3.4 Malignant Skin Lesion. 42

3.5 Workspace Example. 43

3.6 Labelimg Software. 44

3.7 Label Detail Saved as ‘.xml’ Format. 44

3.8 Label Map. 45

3.9 Necessary Files in Annotation Folder. 45

3.10 Model Training Command Line. 46

3.11 Configure Evaluation Metrics in The Pipeline

Configuration File. 46

3.12 Model Evaluation Command Line. 47

3.13 Tensorboard Activation Command Line. 47

3.14 Tensorboard Interface. 47

3.15 Export Inference Graph Command Line. 48

3.16 Convert Model into Tensorflow Lite Command

Line (Tanner, 2020). 48

3.17 General Process to Build an Android Application

(Verma, Kansal and Malvi, 2018). 49

3.18 Code of Adding Firebase ML Kit Library into

Android Dependencies. 49

xi

3.19 Normal Dermatoscope in Market. 51

3.20 Camera Activity Auto Crop Concept to Simulate

Dermatoscope. 51

4.1 (a) PR-curve of three models for malignant skin

lesion class. (b) PR-curve of three models for

benign skin lesion class. 55

4.2 Confusion Matrix for (a) SSD MobileNet V2

object detection model, (b) ResNet50

classification model. 58

4.3 Main, Setting, and Document Activities. 60

4.4 Action Flow for Camera and Crop Image Activity.

 61

4.5 Action Flow of Inference (a) if Image Captured

from Camera (b) if Image Add from Gallery. 63

4.6 Inference Time Distribution of 1300 samples

collected for the past 30 days. 64

xii

LIST OF SYMBOLS / ABBREVIATIONS

mAP Mean Average Precision

RoI Region of Interest

IoU Intersection of Union

TP True Positive

FP False Negative

FN False Negative

AP Average Precision

xiii

LIST OF APPENDICES

APPENDIX A: Coding 76

A-1 Android Studio Coding for Creating

TensorFlow Lite Interpreter.

76

A-2 Android Studio Code for Inference.

76

A-3 Android Studio Code for Image

Downscaling and Normalization.

77

1

1 INTRODUCTION

1.1 General Introduction

According to the World Health Organisation (WHO), over the past ten years,

the cases of malignant skin cancer have increased. Some researchers allege that

early detection of skin cancer is required to classify skin lesions symptoms so

that dermatologists and clinicians can provide ways to avert it (Abuzaghleh,

Barkana and Faezipour, 2015). But it has been proven that the diagnose process

of skin cancer is likely to result in misdiagnosis and inaccuracy because of

doctor’s subjectivisms. However, due to deep learning has become trendy in

medical imaging field, the classification and detection of skin lesions could be

achieved by training object detection deep learning neural network models (Taqi

et al., 2019). Besides, smartphones already have been widely used recently for

object recognition, classification, and more due to smartphones provides

flexibility and convenience. As a result, the combination of smartphones and

deep learning could help in detecting and classifying malignant skin lesions, as

well as eradicate the subjectivity in skin cancer diagnosis. Last but not least the

public could perform self-diagnosis and detection on skin cancer by using a

smartphone.

1.2 Importance of the Study

The purpose of this project is to develop a mobile application that can detect

and classify malignant and benign skin lesions. This mobile application enables

anyone to perform self-diagnosis on skin lesions. It also able to overcome the

limitations of conventional self-detection method, therefore, reduce the

probability of misdiagnosis. In short, this project and studies could contribute to

skin cancer diagnosis with the development of mobile application that integrates

trained object detection deep learning model which able to detect malignant and

benign skin lesions.

2

1.3 Problem Statement

Early detection of skin cancer which causes by malignant lesions is crucial for

treatment as it would increase the survival rate of patients. However,

conventional detection method such as ABCDE criteria possesses various

limitations such as subjectivity and inaccuracy, due to different experience

level of dermatologist and irregular characteristics of malignant skin lesions

(Abuzaghleh, Barkana and Faezipour, 2015).

 Besides, the current state-of-the-art in detecting skin lesions using deep

neural networks mainly focuses on the classification and segmentation of skin

lesions. Also, deep learning model architectures such as ‘ResNet’ used to

perform these tasks often complex, heavy in size, slow, and difficult to

implement. Therefore, decrease the accessibility of this technology to the

public. Also, self-detection method of skin cancer for the public currently still

using the ABCDE criteria (Farberg and Rigel, 2017), which possess some

other limitations in terms of public usage, such as layperson might difficult to

understand the criteria itself which may lead to misdiagnosis (Tsao et al.,

2015).

1.4 Aim and Objectives

This project aims to replace the conventional skin cancer detection method

(ABCDE criteria) with mobile application that integrates object detection and

deep learning technology. State-of-the-art skin lesions classification using deep

learning only achieves accuracy below 90 %. Therefore, this project aims to

transfer learning on a pre-trained object detection model with ISIC dataset and

achieve an evaluation accuracy higher than 90 % in detecting malignant and

benign skin lesions. As smartphones became popular nowadays, a mobile

application can be developed to perform the detection task without having users

to memorize ABCDE criteria and increase the accessibility of this technology

to the public. To integrate the object detection model in a smartphone

application, the selected model requires to be lightweight in terms of number of

parameters to avoid high computational cost. The overall mobile application

requires to achieve:

(i) Compatible with different Android smartphones.

3

(ii) Integration of object detection model (>90% evaluation

accuracy) in detecting malignant and benign skin lesions.

(iii) Small application size (< 50 MB).

(iv) Fast inference time (< 1 sec).

1.5 Scope and Limitation of the Study

This project will be focusing on the development of mobile applications,

integration of object detection deep learning model in mobile application and

perform object detection deep learning model training on malignant and benign

skin lesion datasets. In the project study, skin lesion background studies will be

covered to understand the characteristic of skin lesions. Also, different deep

neural network architecture, speed, and size will be covered in the studies to

find the best architecture to be used in this project. The specific skin lesions

dataset will be discovered in the studies, as well as the methods to train deep

neural networks and integrate deep neural network into mobile application.

Besides, the application of deep learning in detecting and classifying skin

lesions will be covered to explore the existing method of training a deep neural

network. The implementation of deep learning in a smartphone will be studied

to discover the platform for mobile application development with deep learning

integration.

 In this project, the number of dataset images of skin lesions is important

to produce a good deep learning model. Also, all skin lesions images are

required to label manually with bounding box since no existing labelled images

are found. Due to this constraint, only limited labelled images can produce.

Furthermore, training a deep learning model could be time consuming if

computer specifications are not high enough. In this project, a computer with

Intel i7 3rd generation CPU, 8gb of RAM was used to train a deep learning

model. Therefore, the deep learning model would be trained using CPU only.

4

2 LITERATURE REVIEW

2.1 Skin Cancer

Skin cancer is defined as the abnormal growth of skin cells and commonly

develops on the skin with or without a long time exposed to the sun. According

to The Skin Cancer Foundation (2020), skin cancer is the most common cancer

in the United States and worldwide. Among five Americans, one person would

develop skin cancer by 70 years old. Besides that, more than two people died

because of skin cancer in the United States every hour (The Skin Cancer

Foundation, 2020). There are two main types of skin cancer which can be

classified as non-melanoma and melanoma. Non-melanoma skin cancer is a

type of skin cancer that is not formed by melanoma and the most common types

of non-melanoma skin cancer are basal cell carcinoma and squamous cell

carcinoma. Basal cell carcinoma begins to develop in the basal cell layer of the

skin (Figure 2.1), and Squamous cell carcinoma begins to develop in the

squamous layer of the skin. On the other hand, melanoma type of skin cancer is

considered to be the most serious among all types of skin cancer (Mayo

Clinic.org, 2020). Melanoma started in the melanocytes, which are the cells that

make melanin, the pigment that gives skin its colour (Cdc.gov, 2020). These

types of skin cancer are commonly caused by malignant skin lesions and it is

observable (Rose, 2020). Melanoma possesses a complex cancer staging and

important to diagnose because it helps doctor to decide on patients’ treatment

and predict the chance of recovery (The Skin Cancer Foundation, 2020). The

staging of melanoma is summarized in Table 2.1.

5

Figure 2.1: Skin Anatomy (CDC, 2020).

Table 2.1: Melanoma Stages (The Skin Cancer Foundation, 2020).

Stages Description

Stage 0 Melanoma localized at the outermost layer of skin and

does not grow deeper into skin.

Stage I The cancer grown deeper into skin which is smaller than

1mm from the outermost layer of skin. It is localized but

invasive.

Stage II In this stage, the melanoma grown deeper larger than

1mm from the outermost layer of skin and could be

grown greater than 4mm. It has a very high risk of

spreading the cancer.

Stage III The cancer has spread to local lymph nodes or lymph

vessel. Besides, melanoma that spread to nearby skin or

underlying tissue but does not reached lymph nodes are

also included in current stage.

Stage IV The cancer has spread to other body area, including

lymph nodes or organs such as lungs, bone, brain, liver.

In our daily life, we can observe some skin lesions called ‘moles’

commonly. Moles are scientifically called ‘nevi’, they are normally benign

which is not cancerous and with the appearance of flat shape, brown, dark brown,

6

or even black (AIM at Melanoma Foundation, 2020). Moles are formed due to

the accumulation of melanocytes in your skin, although they are harmless, they

have the potential to develop into skin cancer (MHealth.org, 2020). According

to Lodde et al. research, there are various types of nevi or moles with different

characteristics, such as Junctional nevi, Intradermal nevi, Juvenile melanomas,

and Blue nevi. Among these types of skin moles, skin lesion with the mixed

characteristics of Junctional nevi and Intradermal nevi which called Compound

nevi may develop into malignant skin lesions due to junctional component.

Besides that, Lodde et al. also mentioned about the giant size of moles may

develop into malignant skin lesions according to the respective incidence with

2-13 %. Although moles are seeming to be harmless(benign), there are still some

possibilities for it to evolve into malignant skin lesions and result in skin cancer

over time (Lodde et al., 2020). Therefore, it is necessary to study the importance

of early detection of skin cancer.

2.1.1 Importance of Skin Cancer Early Detection

Early detection of skin cancer plays an important role to increase the survival

rate. From Doben and MacGillivray (2009) research, evidence has provided that

the five-year survival rate of cancer is highly affected by the time period of

cancer diagnosis (Table 2.2). In Table 2.2, high distribution at diagnosis on an

early stage of cancer which is ‘localized’ stage, result in a very high 5-year

survival rate of 98.7%; whereas at the last stage of cancer, which is distant

metastasis, the 5-year survival rate has only 15.5%. The authors also provided

that 93% of melanomas cases which were diagnosed early, resulting in a much

greater survival rate.

7

Table 2.2: Dissemination of Disease at 5-Year Survival and Presentation

(Doben and MacGillivray, 2009).

Disease Pattern Distribution at

Diagnosis (%)

5-Year Survival Rate

(%)

Localized 81 98.7

Regional spread 12 65.1

Distant metastasis 4 15.5

Unknown stage 4 77.4

Moreover, Glazer et al. (2017) also stated that early detection of skin

cancer can avert the morbidity of skin cancer as well as increase the survival

rate of the patient. Melanoma would grow horizontally within the first layer of

the skin in a very early stage and then started to grow vertically or deeper into

the skin over time (Clark Jr. et al., 1989). Due to this fact, early detection of skin

cancer able to increase the survival rate is because it results in a higher

proportion of thinner depth of skin lesions being removed. Besides that, the

prognosis on skin cancer is directly proportional to the vertical depth of the skin

lesions and able to further conclude that limit skin cancer burden as well as

reduce death could be achieved through early detection of skin cancer.

2.1.2 Self-Skin Examination Method and Efficacy

Despite early detection of skin cancer or melanoma able to increase curability

in most cases, differentiation between melanoma and benign skin lesion at the

initial stage is a difficult task even for experienced dermatologists (Jerant et al.,

2000). A large number of existing researches pointed out a common self-skin

examination method for early detect skin cancer, called ‘ABCDE’ criteria. This

method was first introduced by Friedman, Rigel and Kopf (1985) with only

‘ABCD’ without ‘E’ criteria, and this method aims to make an early diagnosis

of malignant melanoma through observing and differentiating between lesions

clinical characteristics, such as asymmetry shape, border irregularity, colour

uniformity, and diameter of lesions. Criteria ‘E’, means evolvement of skin

lesions in terms of shape, size, and colour is then added on to the ‘ABCD’

criteria in Abbasi et al. (2004) research with shreds of evidence supported. The

‘ABCDE’ criteria for early diagnosis of skin cancer is summarized in Figure 2.2.

8

With these criteria, if the skin lesions fulfil more of the criteria, the more

suspicious for skin cancer (Tsao et al., 2015).

Figure 2.2: ABCDE Criteria for Skin Cancer Diagnosis (Tsao et al., 2015).

 Multiple researchers indicated that ‘ABCDE’ criteria could be used by

dermatologist or physicians to carry out an early diagnosis of skin cancer for

patients, and also it can be educated to laypersons or novice for self-examination

on skin cancer (Friedman, Rigel and Kopf, 1985; Tsao et al., 2015; Farberg and

Rigel, 2017; Glazer et al., 2017). Besides that, the proposer of this criteria

Friedman et al. and also ‘E’ criteria proposer Abbasi et al. both had concluded

that this technique does help in early diagnosis of skin cancer and able to

enhance layperson’s ability in distinguishing malignant skin lesions. Although

this technique seems to be convincing for self-examination on skin cancer, some

researchers pointed out its limitations and doubt its efficacy after reviewing the

criteria.

For example, Bränström et al. (2002) experimented on whether ‘ABCD’

criteria could help layperson on self-examination of malignant skin lesions. The

results of their experiment shown that the criteria did enhance their ability to

predict malignant skin lesions, but respondents have difficulty in recognizing

benign skin lesions such as nevi or common moles or even overestimated the

9

malignancies of benign skin lesions due to misconceptions about the

characteristics of malignant skin lesions and benign skin lesions. Besides that,

Tsao et al. (2015) commented about the ‘ABCDE’ criteria accuracy would

affect by the level of experience or subjectivity of physicians and also concluded

that no exact clinical trial evidence shown to prove that by using ‘ABCDE’

criteria can improve public’s ability to perform early diagnosis on skin cancer

even though the diagnosis accuracy of ‘ABCDE’ criteria verified in clinical

practice. Chamberlain et al. (2003) research results on earlier detection of

nodular melanoma have shown that nodular melanoma types of skin lesions

sometimes fail to fulfil ‘ABCD’ criteria due to its shape more to symmetrical,

uniform colour, non-pigmented as well as does not evolve in a colour change.

Also, Glazer et al. (2017) mentioned that ‘D’ diameter > 6mm criteria are not

very accurate due to the diverse nature of early malignant skin lesions and some

malignant skin lesions with a diameter smaller than 6mm have been identified.

Therefore due to skin cancer diversity characteristics, it is still a challenge in

clinical recognition on malignant skin lesions even for experienced physicians

or dermatologists (Glazer et al., 2017).

 Besides the flaws of ‘ABCDE’ criteria stated above, the criteria may still

difficult to understand and remember by the public (Tsao et al., 2015). A review

on visual images for patient skin self-diagnose indicated that untrained

layperson would have problem with the application of ‘ABCDE’ criteria

without appropriate images (McWhirter and Hoffman-Goetz, 2013). Therefore,

the development of accurate, sensitive and objective diagnostic tools to aid

visual diagnosis is vital to enhance and improve the early recognition outcomes

(Farberg and Rigel, 2017).

2.1.3 Summary

In summary, skin cancer is caused by malignant skin lesions such as melanoma

and it would become severe or even hard to cure if the patient was later

diagnosed. Benign skin lesions could evolve into malignant skin lesions over

time. Therefore, it is important to have an early diagnosis or detection of skin

lesions to increase the survival rate of a skin cancer patient. Besides, the most

common skin self-examination method for early diagnosis of skin cancer called

‘ABCDE’ criteria can be learned by laypersons to develop the ability to

10

distinguish malignant skin lesions. This method was also adopted by physicians

and dermatologists to carry out an early diagnosis for the patient. Due to many

reasons, the method possessed some limitations and have been pointed out by

various researchers, such as subjectivity of dermatologist or physicians, skin

lesions diverse nature characteristic reduce accuracy, and difficult to remember

by the public.

However, automated analysis of skin lesions is a trending research topic

that intended to develop tools for computer-aided diagnosis of skin cancer

(Korotkov and Garcia, 2012). Computerized diagnosis is essential due to the

increasing rate of cases, subjectivity of procedure and time (Amelard et al.,

2015). Hence, it is encouraged to develop a new skin cancer detection technique

to improve early recognition outcomes for the public and dermatologist.

2.2 Object Detection with Deep Learning

Object detection is the process of classifying an object and recognizes its

respective location by outputting a bounding box around the object (Pathak,

Pandey and Rautaray, 2018). Figure 2.3 shows the general flow of object

detection, it clearly shows that detection, localization, and classification are

important components in the process. Besides, due to its wide range of

applications and technological breakthroughs in transportation, surveillance,

life, and medical field recently, object detection has brought some attention

(Jiao et al., 2019). Therefore, object detection could be the potential field to

develop a new technology for skin lesions detection to improve the traditional

early diagnosis method.

Figure 2.3: General Flow of Object Detection (Pathak, Pandey and Rautaray,

2018).

11

 In traditional object detection, the technique or methods generally based

on handcrafted features and simple trainable neural network architecture. Since

the development of deep learning, more powerful tools which can learn deeper

features and details, are introduced to solve the limitation in traditional object

detection (Zhao et al., 2019). With deep learning mechanisms, it can learn high-

level features from low-level ones and approach high accuracy for object

classification without any extraction of handcrafted features (Nasr-Esfahani et

al., 2016). The most representative model of deep learning in image analysis is

called Convolutional Neural Network, as known as CNN (Lecun, Bengio and

Hinton, 2015).

2.2.1 Overview of CNN Architecture

Convolutional neural network (CNN) is a feedforward network in which input

information such as image data flows in one direction to generate some outputs.

In general, CNN architecture consists of different types of layers, they are

convolutional and pooling layers. Another layer called fully connected layers

similar to the artificial neural network is connected after the modules. These

modules are stacked together to form a deep model or CNN architecture (Rawat

and Wang, 2017). Figure 2.4 illustrated a general CNN architecture with an

image classification task. An input image passes into convolutional layers, then

outputs of the convolutional layers feed into the fully connected layer to do

classification. The best example of CNN model with the same components

stated previously is known as AlexNet (Krizhevsky et al., 2012).

Figure 2.4: CNN General Architecture (Rawat and Wang, 2017).

12

 The convolutional layers aim for features extraction from an image and

learn those feature representations from the input image. Feature maps are

formed by arranging neurons in the convolutional layers, and each neuron in a

feature map connected to previous layers’ neurons via a set of trainable weights,

or as known as ‘filter banks’. Inputs and learned weight convolve together to

generate a new feature map, then the feature map would go through a non-linear

function such as ReLU (Rectified Linear Unit) or Sigmoid to activate the next

neurons. Besides, the pooling layer serves the purpose of reducing the spatial

resolution of the feature maps. In general, max-pooling would be used in the

architecture, and it selects the largest element value within each receptive field

(Lecun, Bengio and Hinton, 2015). Whereas fully connected layers interpret the

output features from previous convolutional and pooling layer to perform high-

level reasoning. In the problem of classification, it generally uses soft-max

operators which choose the class with the highest probability as the final output

(Krizhevsky et al., 2012).

After these layers are constructed, the whole model is required to train

using labelled dataset to able to classify an object. In normal cases, the dataset

would be separated into two groups, which are test set and training set. A

training set is the images that the model would be trained on, whereas testing

set is the images without feed into training to evaluate the performance of the

model after training. The dataset will be normally split into 80% of training set

and 20% of testing set. CNN uses learning algorithms to adjust all the

parameters which are biases and weights. The most common learning algorithm

is called back-propagation; it calculates the loss function to determine how

much adjustments to be made on those parameters to approach desire output. A

common problem while training a CNN is overfitting, which will affect the

model’s ability to classify data due to an imbalance of training data. There are

multiple ways to overcome overfitting problems such as perform training data

augmentation or modify networks with dropout and batch normalization

methods (Rawat and Wang, 2017). State-of-the-art results models were

normally trained based on a dataset, called ImageNet, which is an image

classification competition also as known as ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) (Image-net.org, 2020).

13

CNN commonly used for classifying an image. For example, Pai and

Giridharan (2019) trained a popular CNN model called VGG16 to classify seven

types of skin lesions. Besides the classification purpose of a CNN, CNN also

acting as the backbone network to serve as a feature extractor role in object

detection (Jiao et al., 2019).

2.2.2 Backbone Network of Object Detection

Object detection needs a good backbone network to perform well. The backbone

network serves the purpose of feature extractor for object detection. It takes an

input image and output a feature map of the corresponding image. Most of the

backbone networks for object detection has taken out the last fully connected

layer (Jiao et al., 2019).

 Jiao et al. (2019) did a detailed survey on deep learning object detection

and mentioned that choosing a CNN backbone for object detection consist of

two requirements which are accuracy and efficiency. People can choose existing

densely and deeper backbone such as ResNet or lightweight backbone such as

MobileNet. Choosing the right backbone for object detection is important

depending on the application requirement as it will make a trade-off between

speed and accuracy.

Reddy et al. (2018) did a comparison between deep learning models in

terms of efficiency and accuracy for user authentication on mobile devices.

They aim to find suitable CNN architecture for mobile devices. Therefore,

following Reddy et al. works, some of the state-of-the-art model architecture

such as ResNet, MobileNet, and VGG, as well as the comparison between each

model in terms of efficiency and accuracy will be reviewed in this section.

2.2.2.1 Overview of VGG

The VGG network was introduced by Simonyan and Zisserman in 2015. This

network possesses the same configuration shown in Figure 2.4, but VGG

consists of more convolution and pooling layers. Besides, according to the

authors, VGG uses a small size 3 x 3 convolution filter to replace the large size

of 11 x 11 and 5 x 5 convolution filter in AlexNet proposed by Krizhevsky et al.

(2012). The architecture of VGG (Figure 2.5) consists of 13 convolution layers,

3 fully connected layers, and 5 max-pooling layers stacked up together, total up

14

with 16 trainable layers. Hence the model is commonly called VGG16. The

input size of VGG16 is 224 x 224 fixed dimension of RGB image. All

convolution layers are equipped with ReLU (Rectified Linear Unit) (Simonyan

and Zisserman, 2015).

Figure 2.5: VGG16 Layers Definition.

 VGG16 has been experimented with by its authors with training on the

ImageNet dataset. It achieved a good result with only 7.0% of top-5 test error.

2.2.2.2 Overview of ResNet

ResNet as known as the residual network was developed by He et al. in 2016 to

address the solution of degradation in accuracy while training a deep

convolutional neural network such as VGG16. He et al.'s literature made

complete documentation about ResNet. In an ideal case, a neural network shall

get much better in training (low training error) when the neural network has

deeper layers. But the authors stated that with the increasing depth of the

network, the accuracy of the respective networks to get saturated and degrades

in practical cases. Therefore, adding more layers to a traditional deep

convolutional network would cause higher training errors (He et al., 2016).

 The main idea of ResNet introduces a technique called “Identity shortcut

connection” that will skip one or more layers in the convolutional networks as

shown in Figure 2.6. The idea behind Figure 2.6 residual block is that instead of

going through each stack of layers that directly fit a desired underlying mapping,

it can be directly let these layers fit a residual mapping. Identity shortcut

connection does not add any extra parameter or computational complexity (He

et al., 2016). Besides, these shortcut connections perform identity mapping, and

their outputs are added to the output of original stacked layers which propagates

the gradient from deep layers to shallow units, hence result in reduces training

15

difficulty. This simple modification of ResNet made the possibility to train a

network up to 1000 convolutional layers, and yet still able to produce low

training error while increase layers’ depth (Wu, Sahoo and Hoi, 2020).

Figure 2.6: Residual Learning: Residual Block (He et al., 2016).

 After He et al. propose ResNet, the respective model get first place in an

ImageNet, the image classification competition in 2015. Also, the authors

compare the results of a different number of layers of ResNet in the competition

with another model such as VGG16 (Table 2.3). Table 2.3 shows that ResNet

with more layers can produce low test error than VGG16.

Table 2.3: Error Rates of Different Model on ImageNet Validation (He et al.,

2016).

 Top-1 error (%) Top-5 error (%)

VGG16 28.07 9.33

ResNet-50 22.85 6.71

ResNet-101 21.75 6.05

ResNet-152 21.43 5.71

2.2.2.3 Overview of MobileNet

MobileNet was developed by Howard et al. in 2017. According to the authors’

literature, MobileNet is an efficient model for mobile and embedded vision

system. The general trend is to make deeper and more complicated networks for

higher accuracy and resulting in these networks do not make itself more efficient

in terms of size and speed. Hence, the authors address MobileNet is a network

that focuses on optimizing speed and small in size by reducing the number of

16

multiplication and addition operations occurs in the network, as well as reduce

overall parameters of the network.

 MobileNet architecture mainly built from depthwise separable

convolution to reduce computation at the first few layers of the network.

Depthwise separable convolution consists of two layers, which are pointwise

convolutions layers and depthwise convolutions layers (Howard et al., 2017).

 Depthwise convolutions use a single filter to filter each input channel as

shown in Figure 2.7, therefore it consists Dk of width and height which normally

to be 3 x 3 in value, and a thickness of 1 since it only runs through one channel.

But it does not combine all the outputs to create new features because it only

filters input channels such as RGB color channels. Therefore, pointwise

convolution comes into place to compute the linear combination of depthwise

convolution outputs using 1 x 1 convolution filter as shown in Figure 2.8. With

these two-component, computational cost (multiplication and addition) is

reduced drastically compared to the traditional convolutional networks which

filter and combine all inputs to outputs in one step (Howard et al., 2017).

Figure 2.7: Depthwise Convolution Filter (Howard et al., 2017).

Figure 2.8: 1x1 Pointwise Convolution Filter (Howard et al., 2017).

 In this case, MobileNet that uses depthwise separable convolutions able

to achieve 8 to 9 times less computational cost than traditional convolutional

17

network but sacrifice some accuracy. A comparison has been made by Howard

et al between MobileNet with depthwise separable convolution and MobileNet

with full tradition convolution in terms of accuracy, the number of

multiplication and addition, and the number of parameters as shown in Table

2.4 below. From Table 2.4, the results show that MobileNet with full

convolution contains much more parameters and operation, although it achieved

71.7% of accuracy. On the other hand, MobileNet with depthwise separable

convolution although has slightly lower 70.6% accuracy but the number of

parameters and operation is much less (Howard et al., 2017).

Table 2.4: Depthwise Separable vs Full Convolution MobileNet (Howard et al.,

2017).

Model Accuracy No. multiplication

and addition

(million)

Parameters

(million)

MobileNet with full

convolution
71.7% 4866 29.3

MobileNet with

depthwise separable

convolution

70.6% 569 4.2

 Later, a new mobile architecture called MobileNetV2 was introduced by

Sandler et al. (2018). The architecture of MobileNetV2 is a combination of

original MobileNet and inverted ResNet, 3 x 3 convolution layers in ResNet

replaced to 3 x 3 depthwise separable convolution. MobileNetV2 architecture

contains the initial fully convolution layer with 32 filters followed by 19 residual

bottleneck layers which are similar to the residual block mentioned in section

2.2.2.2. Sandler et al. also compared its number of multiplication and addition

operations and parameters with the original version of MobileNet. Table 2.5

clearly shows that the operations and parameters that occur in MobileNetV2 are

much lower than the original version when tested with the ImageNet dataset.

18

Table 2.5: MobileNet vs MobileNetV2 (Sandler et al., 2018).

Model No. multiplication and

addition (million)

Parameters (million)

MobileNet 575 4.2

MobileNetV2 300 3.4

2.2.2.4 Summary

In summary, four CNN models’ architecture and idea which are VGG, ResNet,

MobileNet, and MobileNetV2 has been reviewed. According to our project’s

objective, a backbone model with lightweight and efficient characteristics is

more favourable. In Reddy et al. (2018) literature, these models have been

compared with each other in terms of parameters and number of multiplication

and addition operations. The results are summarized in Table 2.6, it shows that

MobileNetV2 contains the least parameters and number of operations. Although

very deep models such as VGG and ResNet able to achieve high accuracy in the

ImageNet dataset, but they require lots of memory or size and the number of

multiplication and addition operation, and therefore these models are not

suitable for mobile application (Reddy, Rattani and Derakhshani, 2018).

Table 2.6: Comparison of The Number of Parameters and Operation Between

CNN Models.

Model Parameters No. of Multiplication and Addition

operations

VGG - 19 140 million 19.6 giga

ResNet - 50 23.5 million 4 giga

MobileNet 3.2 million 568 million

MobileNetV2 2.2 million 300 million

 Besides, Bianco et al. (2018) did a benchmark analysis on deep neural

network architecture and provided that MobileNetV2 is one of the most efficient

models with moderate accuracy and lower model complexity (14MB of size)

than original MobileNet (17MB of size). Therefore, the MobileNetV2 model

19

has characteristics of both lightweight and efficient to serve as object detection

backbone.

2.2.3 Object Detection Framework

Most state-of-the-art object detection utilizes deep learning network especially

CNN as their backbone and combines with a detection network. As mentioned

in the previous section, CNN deep learning network has the role of feature

extractor in object detection. Whereas, detection network is the key idea in

object detection because it serves the purpose of performing classification and

localization on the object (Jiao et al., 2019).

 Object detectors can be classified into two types, two-stage detector, and

one stage detector. Both have some difference in architecture, as well as

different performance. A two-stage detector tends to have lower detection speed

due to its more complex architecture than the one-stage detector. One stage

detector has relatively low performance such as classification accuracy

compared to a two-stage detector (Wu, Sahoo and Hoi, 2020).

2.2.3.1 Two-stage Detector

Two-stage detector consists of two stages with different tasks performed. The

first stage is the proposal generation. During this stage, region proposals that

may potentially be the object will be performed on the image. The second stage

would have a deep convolutional network to classify all the proposals from the

first stage. Figure 2.9 shows the general architecture of a two-stage detector,

object detection generally would have a backbone network at the front and

follow by object detection network at the end, in this case, the object detection

network is a two-stage detector (Wu, Sahoo and Hoi, 2020).

20

Figure 2.9: General Architecture of Two-Stage Object Detector (Jiao et al.,

2019).

Some real examples are using the two-stage detector. The first one is

RCNN proposed by Girshick et al. (2014). The architecture of RCNN can be

divided into three different parts, they are region proposal generation, deep

feature extraction with CNN, classification and localization (Figure 2.10). First

stage RCNN performs selective search (Uijlings et al., 2013) and generates

roughly 2000 of region proposals within one image, and provides to the second

stage. During second stage, the region proposal is then cropped or warped into

a fixed dimension and using AlexNet CNN model (Krizhevsky et al., 2012) to

extract 4096 features from the proposed region as outputs. Then, different

region proposals will be scored on a set of positive and background regions by

pre-trained linear Support Vector Machine (SVM). The scored regions are then

adjusted with the regression of bounding box and using non-maximum

suppression (NMS) to filter out the final object location with a bounding box

(Zhao et al., 2019).

21

Figure 2.10: Architecture of RCNN (Wu, Sahoo and Hoi, 2020).

A year later, Girshick (2015) proposed a better version of RCNN, called

Fast-RCNN. Due to RCNN performs convolution operation on each proposed

region without sharing computation, it takes a long time to classify with SVM.

Fast-RCNN has been modified to extracts features from the entire input image

and passes the RoIPool (region of interest pooling) layer to get fixed dimension

features for the classification and bounding box regression. The key-concept of

Fast-RCNN is that it extracts features from an input image once, and then pass

to CNN for localization and classification task. Compared to RCNN which

inputs every single proposed region into CNN, Fast-CNN saves a lot of time

and memory to process and store all the features. Also, Fast-RCNN training

process is faster than RCNN because Fast-RCNN is a one-stage end-to-end

training process whereas RCNN is a multi-stage training process (Girshick,

2015). As shown in Figure 2.11, an input image and various RoI are passes into

a fully convolutional network. Then each RoI pooled into a fixed dimension

feature map and pass into fully connected layers for predictions.

Figure 2.11: Fast-RCNN Architecture (Wu, Sahoo and Hoi, 2020).

Three months later since Fast-RCNN was introduced, a faster version of

Fast-RCNN was developed by Ren et al. (2017) and it is called Faster-RCNN.

22

Due to the utilization of selective search to propose region in Fast-RCNN which

is slow, Faster-RCNN replaces it with a Region Proposal Network (RPN)

module to increase the speed of generating region proposals because it shares

the same feature maps output from the backbone network with the detection

network (Ren et al., 2017). In the field of two-stage detector, Faster-RCNN is

the most representative detector. The architecture of Faster-RCNN is shown in

Figure 2.12.

Figure 2.12: Faster-RCNN with RPN Module (Wu, Sahoo and Hoi, 2020).

2.2.3.2 One-stage Detector

One stage detector is different from two-stage detector because it does not

require a separate stage for region proposal. The main feature of one stage

detector is it consider all regions on the input image as potential objects (Wu,

Sahoo and Hoi, 2020). Two representatives of one stage detector are YOLO and

SSD.

 YOLO (You only look once) was developed by Redmon et al. (2016)

for real-time detection implementation. YOLO frame object detection as a

single regression problem and with a relatively simple process compared to

RCNN, thus make itself extremely fast on detection. YOLO architecture is

simple, due to it only predicts less than 100 bounding boxes in one image

compared to RCNN which predicts over 2000 proposed region (Jiao et al., 2019).

Besides, another reason that makes YOLO so fast is that it combines all the

separate component of object detection becomes a single neural network, and

23

predict all bounding boxes across all classes for an input image simultaneously

(Redmon et al., 2016).

YOLO first divides the input image into 𝑆 × 𝑆 grid (Figure 2.12) and S

is pre-defined if the object centre falls into a grid cell, the particular grid cell is

responsible for prediction. Besides, each grid cell would predict some bounding

boxes and confidence scores. The predicted confidence scores would reflect the

level of confidence of the model thinks the particular box contains an object, as

well as how accurate is the predicted box. Meanwhile, besides the bounding

boxes, the object class probability in each grid cell is also predicted and can be

plotted into a class probability map as shown in Figure 2.13 (Redmon et al.,

2016). The whole YOLO object detection architecture is combined with 24

convolution layers and 2 fully connected layers for feature extraction and

classification, the YOLO architecture is between the convolution layers and

fully connected layer, as shown in Figure 2.14.

Figure 2.13: Main Idea of YOLO (Redmon et al., 2016).

24

Figure 2.14: Architecture of YOLO Object Detection (Wu et al., 2020).

 Although YOLO is fast in detection, it possesses some limitations too.

One of the limitations is that YOLO has spatial constraints on predictions of

bounding boxes since one grid cell can only predict a limited bounding box. Due

to this reason, it limits the prediction of very nearby objects or small objects that

group together such as flocks of birds. Also, YOLO has a trade-off in

localization accuracy of objects due to it generalize to objects in unusual aspect

ratio and generate rough features since it has multiple down sampling operations

(Redmon et al., 2016).

 Because of these limitations, Liu et al., (2016) proposed a one stage

detector called Single Shot Detector (SSD). SSD also divided image feature

maps into grid cells but in each cell, multiple scales and sizes of anchor boxes

were generated (Figure 2.15). SSD is based on a convolution neural network to

produce these anchor boxes and predict the presence of object class instances in

the boxes. Then, followed by non-maximum suppression step to generate the

final output detections. The SSD convolutional network is normally added as

the extra feature layers right after a backbone convolutional network such as

VGG16 as shown in Figure 2.16. These extra feature layers predict the offsets

to default boxes of different scales and aspect ratios and their corresponding

confidences (Liu et al., 2016).

25

Figure 2.15: Main Idea of SSD Generate Multiple Size Anchor Boxed In Grid

Cell (Liu et al., 2016).

Figure 2.16: Complete Architecture of SSD Detector With VGG16 Backbone

(Liu et al., 2016).

2.2.3.3 Comparison

After reviewing both two-stage detector (RCNN, Fast-RCNN, Faster-RCNN)

and one stage detector (YOLO, SSD), they have their advantages and limitations.

Two-stage detectors able to reach high accuracy but typically slower in

detection speed, whereas one stage detectors have much faster detection speed

than two-stage detectors but have lower accuracy (Soviany and Ionescu, 2018).

A comparison has been made between each other by Wu et al. (2020), all the

object detectors were tested with same VGG16 backbone, trained on PASCAL

VOC2007, 2012 dataset with 2501 and 5717 images of 20 categories of the

object respectively, and evaluated with mean average precision (mAP) which

will be covered in the next section. The results are summarized in Table 2.7.

26

Table 2.7 shows that using the same backbone for feature extraction, every

detector performs differently with the same dataset used. SSD performs well

with the highest mAP of 79.8% and 78.5% with VOC 2007 and VOC 2012

dataset respectively among the other detectors. Higher mAP results in better

model performance.

Table 2.7: Comparison of Detectors Trained on PASCAL VOC Dataset in

Terms Of Accuracy (Wu, Sahoo and Hoi, 2020).

Detectors Backbone Input Size mAP (%)

VOC 2007 VOC 2012

RCNN VGG16 Arbitrary 66.0 62.4

Fast-RCNN VGG16 ~600 x 1000 70.0 68.4

Faster-

RCNN

VGG16 ~600 x 1000 73.2 70.4

YOLO VGG16 448 x 448 66.4 57.9

SSD VGG16 512 x 512 79.8 78.5

 Besides that, Zhao et al. (2019) also made a comparison of testing time

on the detectors (Faster-RCNN, YOLO, SSD)which also trained on PASCAL

VOC 2007 dataset with a powerful computer. Zhao et al. evaluated them with

mAP, testing time (second/image) and also real-time detection frame per second

(FPS) but the backbone of some detectors (YOLO, SSD) does not mention very

clearly in their literature. The results are summarized in Table 2.8 below, Faster-

RCNN with ResNet 101 convolution layers backbone get the best mAP, but the

detection time per image was 2.24 seconds on a powerful computer. Whereas

SSD trained with 300 x 300 and 512 x 512 input size resulted in 74.3 and 76.8

mAP respectively. The detection time results of both SSD detector are

optimistic which further prove that single-stage detector is much faster than

two-stage detector, but sacrifice some accuracy.

27

Table 2.8: Comparison of Testing Consumption on VOC 2007 Dataset (Zhao et

al., 2019).

Model mAP (%) Test time

(sec/img)

Rate (FPS)

Faster RCNN(VGG16) 73.2 0.11 9.1

Faster RCNN

(ResNet101)

83.8 2.24 0.4

YOLO 63.4 0.02 45

SSD300 74.3 0.02 46

SSD512 76.8 0.05 19

2.2.3.4 Summary

In summary, two-stage object detector may produce higher accuracy but

sacrifice its detection time, whereas one-stage detector produces fast detection

but sacrifice some accuracy. Due to smartphone computational power

constraint, SSD one stage detector is more suitable in this project due to the

reason of it has low detection time meanwhile able to product moderate level of

accuracy as shown in the previous studies compared to YOLO.

2.2.4 Transfer Learning and Fine-Tuning

Fine-tuning is defined as the approach that defines the model parameters for the

required task from the parameters that pre-trained on other related tasks

(Ouyang et al., 2016). Training a deep convolutional from scratch is a difficult

task due to a large number of labelled training images are required. Besides

training a model from scratch, an alternative is through fine-tuning or transfer

learning from a model that has been pre-trained on a very large labelled dataset,

and then uses those pre-trained parameters such a way that performs feature

extraction on object edges for further training on another specific object

detection task (Tajbakhsh et al., 2016). Fine-tuning has been successfully used

in several applications (Razavian et al., 2014; Penatti, Nogueira and Santos,

2015; Azizpour et al., 2015).

 Tajbakhsh et al. (2016) analysed the comparison of full training or fine-

tuning convolutional neural networks for medical images. They have

28

investigated the problem by experimenting using AlexNet to train on the

medical image dataset with and without fine-tune. Their results have concluded

that using a pre-trained CNN with some fine-tuning on some specific layers in

the CNN would outperform or may be performed the same as trained from

scratch. Also, other advantages using fine-tuning is that fine-tuned CNN would

be more robust to the size of training data than CNN trained from scratch.

 Besides that, Shin et al. (2016) also did an experiment on training

AlexNet from scratch and with fine-tuning from pre-trained AlexNet with

medical images dataset to perform classification. Their result has shown that

after using transfer learning, the fine-tuned AlexNet has much lower validation

loss and higher validation accuracy compared to AlexNet which trained from

scratch. Therefore, they found that using a transfer learning strategy able to

produce the best performance results.

 Nevertheless, some existing projects made by other researchers use

transfer learning or fine-tuning to perform object detection. For example, Goyal

et al. (2018) using a transfer learning approach on a pre-trained Faster-RCNN

InceptionV2 object detection model to localize foot ulcer. They addressed that

due to limited medical imaging datasets, CNN trained from scratch on these

datasets does not produce a good result as the main reason to use transfer

learning in their project. (Goyal et al., 2018).

 In summary, fine-tuning or transfer learning from a pre-trained model is

much better compared to train from scratch. Due to limited specific labelled

dataset such as medical images, using fine-tuning and transfer learning is a way

to solve this problem effectively.

2.2.5 Object Detection Evaluation Metrics

Before diving into evaluation metrics for object detection, it is necessary to

introduce some existing object detection challenges, because each challenge

using different evaluation metrics to judge on the model performance. Currently,

every developed model would use these challenges as a benchmark to test model.

PASCAL VOC and MSCOCO is the mainstream benchmark for object

detection (Jiao et al., 2019).

 The first one is the PASCAL VOC object detection challenge

(Everingham et al., 2006) especially the challenges in the years of 2007 and

29

2012 are widely used. Both challenges provide a mid-scale dataset with 20

categories for object detection, but the number of images in the dataset is

different. The second one is MSCOCO object detection challenge (Lin et al.,

2014). MSCOCO challenge provides a large-scale dataset with 80 categories.

Their number of training images is about 118287.

 The first metrics for object detection is Intersection over Union (IoU)

also as known as Jaccard Index (DeepAI., 2020). This metric quantified the

likeness between the predicted bounding box and ground truth bounding box

(labelled image) to measure how good is the predictions (Figure 2.17). The score

of IoU ranges from 0 to 1. The higher score of IoU, the more similar of predicted

box to the ground-truth box. IoU measures the overlapping area between the

predicted box and the ground-truth box over their union (Manal El Aidouni.,

2020). The equation of IoU is denoted as below.

𝐼𝑜𝑈 =

𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
 (2.1)

Figure 2.17: Ground Truth and Predicted Bounding Box (DeepAI., 2020).

 By registering the IoU score for every detection, a threshold is set to

group these scores, where IoU over this threshold are viewed as positive

predictions and those below the threshold are viewed as false predictions. All

the more accurately, the predictions are grouped into True Positives (TP), False

Positives (FP), and False Negatives (FN). The statement above is for the

localization problem, but in a classification problem, the IoU threshold is

30

replaced with a classification confidence threshold. The descriptions of TP, FN,

and FP are summarized in Table 2.9.

Table 2.9: TP, FP, and FN (Padilla, R., 2020)

True Positive Correct detection with IoU/confidence larger than the

threshold

False Positive Wrong detection with IoU/confidence smaller than the

threshold

False Negative No prediction occurs in the ground-truth

 After determining TP, FP, and FN, some of the basic metrics can be

calculated such as Precision and Recall, which are important in evaluating

object detection. Precision, also as known as specificity is to measure the

probability of the predicted class or bounding boxes matches the actual ground-

truth class or boxes. The value of precision ranging from 0 to 1. For example, if

the precision score has a value of 0.8, which means that 80% of the time the

predictions are correct. The formula of precision is denoted below.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

 𝑇𝑃 + 𝐹𝑃
=

𝑇𝑃

 𝐴𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (2.2)

where

TP = number of true positives

FP = number of false positives

 Whereas, recall is to measure the probability of ground truth objects are

detected correctly. Recall is also known as sensitivity. The recall of an object

detector can be calculated using the equation below.

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

 𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

 𝐴𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
 (2.3)

where

TP = number of true positives

31

FN = number of false negatives

 Therefore, by determining precision and recall it can know that if the

object detector has low recall, but high precision means that all the predicted

boxes are correct but a lot of unpredicted ground truth objects (high number of

false negatives). On the other hand, if the object detector has high recall but low

precision means that all ground-truth objects are detected however many of the

detections are incorrect. Besides, an object detector will predict bounding boxes,

and each bounding box would have an associated confidence score. This

confidence score is the probability of the object class shown in the respective

bounding box. Therefore, by setting a threshold of confidence score, the

detections with a confidence score higher than the threshold are classified as TP,

whereas lower than the threshold are classified as FP. Hence, with different

confidence thresholds, different precision and recall can be calculated to

determine the model’s performance and with the aid of the precision-recall

curve (PR-curve) as shown in Figure 2.18. In Figure 2.18 each point in the curve

represents different precision and recall values with a certain confidence value.

Ideally, a model would maintain high precision with recall increases (Manal El

Aidouni., 2020).

Figure 2.18: PR-curve (Manal El Aidouni., 2020).

 Besides, another way to evaluate an object detection model is to

calculate the average precision (AP) with the area under the PR-curve (Figure

2.19). AP is the precision averaged across all the recall values and has a range

32

of 0 to 1. After understanding AP, since AP is calculated over 1 class category

only, therefore mean average precision (mAP) comes into place if the dataset

contains multiple N class categories (Manal El Aidouni., 2020). The mAP

averages the sum of AP over several N class, which can be denoted as equation

below.

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 (2.3)

where

N = number of class categories

AP = average precision

Figure 2.19: Area Under PR-curve (Padilla, R., 2020).

 In MSCOCO object detection challenge, mAP metrics are used to

evaluate an object detector. Besides, the AP is averaged with 10 different

confidence thresholds ranging from 0.5 to 0.95 incrementing with 0.05, thus the

higher the AP score indicated that the localization of objects is better. Also,

MSCOCO evaluates AP on two different IoU values which are 0.5 and 0.75.

Lastly, since MSCOCO contains small objects in their dataset, therefore AP is

also evaluated on different sizes of object, such as APsmall, APmedium, APlarge (Lin

et al., 2014).

33

 PASCAL VOC object detection challenge uses PR-curve and AP as

model evaluation metrics. The AP is calculated with a 0.5 IoU threshold only

(Everingham et al., 2006).

2.2.6 Summary

In summary, object detection is a process of object localization and

classification. Due to the rise of deep learning, object detection had improved

drastically compared to traditional object detection. Object detection with deep

learning does not require any handcraft features but instead using a deep

convolutional neural network as a feature extractor. Some of the existing deep

CNN such as VGG16 and ResNet, and also lightweight CNN especially for

mobile applications such as MobileNet and MobileNetV2 have been widely

used by researchers. Besides that, by combining a detection network such as

RCNN, YOLO, SSD with CNN, an object detector is made. Unfortunately,

these deep neural networks require large datasets to train in order to achieve

good performance in the detection task. Due to limited dataset on medical

imaging, researchers use existing deep neural network model which pre-trained

on large dataset and perform fine-tuning or transfer learning to train the network

base on their requirements. Once a model is trained, it is necessary to evaluate

the model and take a look at the performance. Some existing object detection

benchmarks were introduced because it has been widely used by researchers.

2.3 Application of Deep Learning in Skin Lesions Classification and

Detection

Due to the rising trend of deep learning, many researchers take advantage of

deep learning to perform skin lesion classification and detection. Especially a

lot of researchers contribute to skin lesion classification tasks. They train on

different CNN models with different skin lesion dataset. The classification

task is found commonly base on classifying between malignant and benign

skin lesions. The accuracy metric has been used to evaluate the models, which

is defined as the correct predictions over all predictions. From Table 2.10,

some researchers (Al-Masni, Kim and Kim, 2020; Hosny, Kassem and Foaud,

2019; Romero-Lopez et al., 2017) use the existing CNN model to fine-tune or

transfer learning. However, some others create their own CNN model (Albahar,

34

2019; Nasr-Esfahani et al., 2016), or customize on existing CNN model

meanwhile transfer its parameters to create a new model (Harangi, 2018;

Adegun and Viriri, 2020). Among them, Hosny et al. (2019) achieve the highest

accuracy with 95.91% by fine-tuning AlexNet.

Table 2.10: Summarized Works for Malignant Vs Benign Skin Lesion

Classification.

Authors Dataset Model Accuracy

Al-Masni et al. (2020) ISIC 2017 InceptionV3

ResNet-50

Inception-ResNetV2

DenseNet-201

77.04%

79.95%

81.79%

81.27%

Nasr-Esfahani et al.

(2016)

Med-Node CNN from scratch 81%

Harangi (2018) ISIC 2017 Customized CNN 89%

Adegun and Viriri

(2020)

ISIC 2017

PH2

Customized CNN 95%

95%

Albahar (2019) ISIC 2017 CNN from scratch 94.94%

Hosny et al. (2019) ISIC 2017 AlexNet 95.91%

Romero-Lopez et al.

(2017)

ISIC 2016 VGGNet 81.33%

 Since the main focus of this project is about skin lesion localization and

classification, only one literature that did a similar project has been found. Taqi

et al. (2019) use object detection with deep learning to localize and classify skin

lesions. However, the classification task is only performed between skin lesions

and background. The authors use ISIC 2018 dataset to train and perform transfer

learning on existing pre-trained SSD-MobileNet model which MobileNet as the

backbone for feature extraction, SSD as the object detector for bounding box

prediction and classification. They presented very convincing results on

35

detecting skin lesions from images with a detection accuracy of 99% in model

testing and 96% of mAP during model training. The authors use a platform

called TensorFlow Object Detection API to train and evaluate the model. Figure

2.20 shows the general flow of using TensorFlow Object Detection API.

Figure 2.20: General Flow of Using TensorFlow Object Detection API (Taqi et

al., 2019).

 On the other hand, some similarities have found regarding the skin lesion

dataset used among all literature stated above. Most of them using the ISIC

dataset, while some using PH2 or Med-Node dataset. ISIC 2017 dataset contains

3 types of skin lesions which are benign skin lesion, melanoma, and seborrheic

keratosis (benign), about 2000 images for training, 150 images for validation,

and 600 images for testing. Whereas ISIC 2016 only contains 2 types of skin

lesions which are benign skin lesion and melanoma, about 900 images for model

training, 379 images for model testing (Al-Masni, Kim and Kim, 2020). PH2

dataset contains 3 types of skin lesions which are benign nevi, atypical nevi, and

melanoma, about 200 images in the dataset (Mendonca et al., 2013). The Med-

Node dataset contains 2 types of skin lesion which are benign nevi and

melanoma, about 170 images only in the dataset (Giotis et al., 2015).

 In summary, a lot of researchers contribute to skin lesions classification

but not detection (localization and classification). However only Taqi et al.

(2019) using object detection with deep learning to perform skin lesions

detection. Fortunately, they had done complete documentation on the steps of

36

approach. Besides, ISIC skin lesions dataset has been widely used by a lot of

researchers since it provided more data images compared to PH2 and Med-Node.

2.4 Deep Learning in Mobile Application

Due to the rise of deep learning technologies nowadays, it enables a lot of

mobile applications. There are several advantages of deep learning implemented

on mobile devices including low communication bandwidth, quick response

time, data privacy, and most importantly is to ease life. To deploy a deep

learning model into mobile devices, some existing platforms enable you to train

a mobile suitable model such as TensorFlow Lite, Caffe2, CoreML (Deng,

2019).

 TensorFlow Lite is a lightweight version of TensorFlow which

developed by Google which is an open-source tool that allows anyone to

perform model training and deployment on a computer using Python

programming language. TensorFlow Lite architecture allows deployment from

computers to mobile devices and there is an easy process to bring TensorFlow

model to mobile devices just by converting the original TensorFlow model into

TensorFlow Lite (TensorFlow, 2020). Caffe2 was developed by Facebook

company, it is a lightweight, modular, and also scalable deep learning

framework. It provides cross-platform libraries for mobile devices deployment.

Besides, Caffe2 models are extremely lightweight which can under 1MB of size.

CoreML was developed by Apple company, and it is available on IOS operating

system only. It can automatically minimize memory usage and power

consumption on iPhone. Besides, models that are built using TensorFlow or

Caffe can be converted into CoreML format in just a few lines of code (Deng,

2019). However, according to Ignatov et al. (2019), the easiest way to use deep

learning on a mobile phone is TensorFlow Lite because it provides better

performance, smaller size, and less requirement. To use TensorFlow Lite model,

the trained model is required to convert into ‘.tflite’ format for further

implementation. Whereas other platforms such as Caffe2 are much less popular

and very few problem descriptions and tutorials (Ignatov et al., 2019).

 According to Deng (2019), there are a lot of deep learning models that

have made to the public and enable everyone to develop mobile deep learning

applications. For example, TensorFlow Model Zoo provides various pre-trained

37

models such as ResNet, MobileNet, VGGNet and more. Besides that, it also

provides some of the object detection models such as SSD MobileNet, Faster-

RCNN ResNet and others. Furthermore, the author has compared some deep

learning models in terms of accuracy, model size, and execution time on iPhone

7 (Table 2.11). The results in Table 2.11 have shown MobileNet has the least

model size and execution time however the classification accuracy is below

InceptionV3 and ResNet50.

Table 2.11: Benchmark Image Classification Model Performance on iPhone 7

(Deng, 2019).

Model

Architecture

Accuracy Model Size

(MB)

Execution time

(ms)

VGG16 71 553 208

Inception V3 78 95 90

ResNet50 75 103 64

MobileNet 71 17 32

 Due to a large variety of mobile phones nowadays in terms of processing

speed and memory, not every deep learning models are suitable to deploy on

mobile phones (Ignatov et al., 2019). Therefore, to effectively integrate deep

learning with mobile applications, it is necessary to choose a model with low

computational cost which in this case MobileNet architecture (Section 2.2.2.3)

has the stated potential. Some existing works of literature use MobileNet deep

learning model to perform classification and object detection on mobile phones.

For example, Taqi et al., (2019) trained SSD-MobileNet with TensorFlow

object detection API to perform skin lesion detection on Samsung Galaxy S6

mobile phone.

2.5 Summary

In summary, importance of early detection of skin cancer cannot be

underestimated. To replace the conventional method of skin cancer early

detection, researchers suggest the development of new technology to support

this area. However, due to the rise of deep learning on recent years, the

performance of object detection shows great improvement. Train a high

38

accuracy and lightweight architecture object detection deep learning model such

as SSD MobileNet V2 then integrated into mobile application could be the

possible method.

39

3 METHODOLOGY AND WORK PLAN

3.1 Introduction

The general project workflow is summarized in a flowchart figure below (Figure

3.1). This project uses TensorFlow Object Detection API to train object

detection model and Android Studio platform for mobile application

development.

Figure 3.1: Project Flowchart.

40

3.2 Selection of Object Detection Model

Theoretically, SSD MobileNet model became the first choice for this project

after literature studies. However, some comparison will be made across various

models to proof the reliability of this choice. For object detection network, the

two highest accuracy networks which came across in literature review are

chosen, they are SSD and Faster-RCNN. For feature extraction network, a fast

detection speed with moderate accuracy network MobileNet (V1 and V2) and a

slow detection speed with high accuracy ResNet are chosen. Therefore,

comparison will be made between SSD MobileNet V1, SSD Mobilenet V2, and

Faster-RCNN ResNet in terms of detection speed, mAP, and model size.

All selected networks will perform transfer learning with their respective

pre-trained models on the same dataset. GitHub (2020) website provided these

various pre-trained object detection models on the MSCOCO dataset for

TensorFlow users. Some object detection models details are provided on the

website (Table 3.1).

Table 3.1: Pre-Trained Object Detection Model Online (GitHub., 2020)

Model name Speed

(ms)

COCO

mAP

Outputs

ssd_mobilenet_v1_coco 30 21 Boxes

ssd_mobilenet_v2_coco 31 22 Boxes

ssd_inception_v2_coco 42 24 Boxes

faster_rcnn_inception_v2_coco 58 28 Boxes

faster_rcnn_resnet50_coco 89 30 Boxes

faster_rcnn_resnet101_coco 106 32 Boxes

 After downloaded and extract the pre-trained model file, inside contains

various sub-files (Figure 3.2). ‘model.ckpt’ is the model parameters data files

which trained on MSCOCO dataset. The ‘pipeline.config’ file defines the

models, which contains all the details about the what model will be trained, what

parameters should be used to train the model parameters, what set of metrics

will be used to evaluate the model, and also the input dataset path for the model

to train on.

http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_coco_2018_03_29.tar.gz
http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet50_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_2018_01_28.tar.gz

41

Figure 3.2: Pre-trained Model Files.

3.3 Selection of Skin Lesions Dataset

Various researchers selected ISIC skin lesions dataset to perform classification

(Al-Masni, Kim and Kim, 2020; Harangi, 2018; Adegun and Viriri, 2020;

Albahar, 2019; Hosny, Kassem and Foaud, 2019; Romero-Lopez et al., 2017)

and object detection (Taqi et al., 2019), especially on benign and malignant skin

lesions. Fanconi (2020) provides a malignant and benign skin lesion dataset

which arranged from ISIC website to address the imbalance number between

malignant skin lesions images (2286) and benign skin lesions images (19373)

because imbalance class dataset deteriorates the performance of a model

(Mazurowski et al., 2008). Therefore, dataset provided by Fanconi (2020) is

used in this project, 800 images of skin lesions in the training set, 200 images

in the testing set. All images scaled to the same 224 x 224 dimension.

Figure 3.3 and Figure 3.4 show an example of benign and malignant skin lesions

image respectively from the dataset.

Figure 3.3: Benign Skin Lesion.

42

Figure 3.4: Malignant Skin Lesion.

3.4 Selection of Evaluation Metrics

Some evaluation metrics can be selected from an existing object detection

challenge such as MSCOCO or PASCAL VOC. Various researchers reviewed

these metric and applied them in their research especially MSCOCO metrics

(Ren et al., 2017; Pathak, Pandey and Rautaray, 2018; Liu et al., 2016; Goyal et

al., 2018; Huang et al., 2017; Wu, Sahoo and Hoi, 2020; Girshick, 2015).

Comparing these metrics, MSCOCO challenge uses AP metric that calculates

over 10 different IoU thresholds which from 0.5 to 0.95 incrementing with 0.05.

Then, calculate mAP with the average of these 10 AP. Additionally, MSCOCO

evaluates the object detection model on AP in a distinct object dimension for

small, medium, and large. However, PASCAL VOC challenge calculates mAP

and AP over 0.5 IoU threshold. Furthermore, the selected dataset does not

contain extremely small or large object in the images, hence, some metrics in

MSCOCO are redundant and might cause false evaluation on model’s

performance. Therefore, PASCAL VOC metrics is used to evaluate the model

performance in this project.

3.5 TensorFlow Object Detection API

In this project, using Tensorflow Object Detection API is the method to train

and evaluate object detection model. To train an object detector more efficiently,

it is necessary to prepare an organized workspace where all the required files

will be saved into a sub-folder. For example, in Figure 3.5 creates a main folder

or workspace called ‘training_demo’. Inside the main folder, creates various

sub-folders such as ‘annotations’, ‘images’, ‘pre-trained model’, and ‘training’.

43

The annotation folder will store all the dataset label files for example ‘.csv’ and

‘.record’ files. Images folder will store all the dataset images, and the dataset

shall split into test set folder and train set folder. Besides that, the pre-trained

model folder will store the selected model. Whereas training folder storing

‘.config’ and ‘.pbtxt’ files.

Figure 3.5: Workspace Example.

3.5.1 Dataset Preparation

To train an object detection model, all the images require its bounding box and

class label (Taqi et al., 2019). The bounding box specifies the location of the

skin lesions and the class specifies the type of skin lesions, in this case only two

classes, benign and malignant are used. Using ‘LabelImg’ software

(tzutalin/labelImg, 2020) able to generate bounding box and class label of an

image into object detection label file (Figure 3.6). All the label detail such as

bounding box coordinate and image class would be saving with ‘.xml’ format

into the images test or train folder (Section 3.4.1) depends on which set of

images are labelling (Figure 3.7).

44

Figure 3.6: Labelimg Software.

Figure 3.7: Label Detail Saved as ‘.xml’ Format.

 Once all data images are labeled and saved into ‘.xml’ format (Section

3.3), all the XML files are required to convert into ‘.csv’ file to combine all

XML files. TensorFlow Object Detection API provides a Python script called

‘xml to csv.py’ to perform the conversion. Then, two CSV files for train set and

test set images will be generated at the annotation folder.

 Once the CSV files are generated, the next step is to convert the CSV

files into TensorFlow application readable file called ‘TFrecords’. TensorFlow

Object Detection API provides a conversion script written in Python to its user.

To convert the CSV files of both train set and test set to TFrecords files, run the

script in windows command prompt and further pass in the path of the CSV files

and the output path which refers to the annotation folder will do. Therefore, all

45

information about the dataset such as image path, bounding box coordinate,

image class are saved in TFrecords (.record) format.

 Besides, TensorFlow Object Detection API requires a label map that

maps each detection classes into an integer number. This file will be used during

the training model process. In this case, the label map files will map two classes

which are benign and malignant (Figure 3.8). Then, this file will be saved into

the annotation folder with ‘.pbtxt’ format.

 Lastly, the annotation folder should contain these files as shown in

Figure 3.9.

Figure 3.8: Label Map.

Figure 3.9: Necessary Files in Annotation Folder.

3.5.2 Configure Pipeline and Model Preparation

The next step requires to configure the pipeline of the model. Open the

‘pipeline.config’ as shown in Figure 3.1, then edit some of the content such as

the number of classes, type of feature extractor, fine-tune checkpoint file path,

46

TFrecord file path for train set, label map file path, TFrecord file path for test

set, evaluation metrics, and the number of training steps.

3.5.3 Model Training

To train a model, TensorFlow Object Detection API provides a training Python

script called ‘train.py’ to allow users to train their model in one command line

without writing the script from scratch. Figure 3.10 shows the command line

input in windows command prompt to run the Python script. The command line

passes in the path of the training folder to save the model into the folder once

the training process finished. Also, the model configuration file is required.

Once the training started, the command window will show training loss with

each training step, the lower the training loss the better the model training

performance. The model should be trained until the training loss reaches

saturated.

Figure 3.10: Model Training Command Line.

3.5.4 Model Evaluation

Once the model is trained, evaluation will be performed to observe the model’s

performance on test set images with trained checkpoint. The evaluation metrics

is PASCAL VOC metrics (Figure 3.11) which consist of mAP, and PR-curve

(0.5 IoU). TensorFlow Object Detection API also provides a Python script

called ‘eval.py’ to evaluate the model. The evaluation process generally similar

to training process, run the script in windows command prompt and enter the

command line shows in Figure 3.12.

Figure 3.11: Configure Evaluation Metrics in The Pipeline Configuration File.

47

Figure 3.12: Model Evaluation Command Line.

3.5.5 Tensorboard

Tensorboard allows users to observe training and evaluation info. To monitor

the training and evaluation process, run a command line in windows command

prompt to activate Tensorboard (Figure 3.13), then an IP address will be output

for the user to access via an internet browser. The Tensorboard will then read a

log file inside the training folder or evaluation folder and display all the

information as shown in Figure 3.14 example. Evaluation metrics mAP and PR-

curve obtained from Tensorboard.

Figure 3.13: Tensorboard Activation Command Line.

Figure 3.14: Tensorboard Interface.

3.5.6 Convert TensorFlow Lite Model

After the object detection is trained to a satisfactory level, to deploy this model

in a mobile application, it requires to convert into TensorFlow Lite model. The

trained model requires to export into a frozen inference graph for TensorFlow

48

Lite, TensorFlow Object Detection API provides a conversion Python script

called ‘export_tflit_ssd_graph.py’ to its user, this script only supports the

conversion with SSD object detector model. Figure 3.15 shows an example of

running the script in windows command prompt and some necessary

information to pass in. Then, a ‘.pb’ model file will be generated in the specified

output directory (Tanner, 2020).

Figure 3.15: Export Inference Graph Command Line.

 To generate a TensorFlow Lite model, Figure 3.16 shows an example of

running a conversion method provided by TensorFlow. The inference graph

generated previously is required to pass into the command line. The output file

will be saved in ‘.tflite’ format which refers to TensorFlow Lite model (Tanner,

2020).

Figure 3.16: Convert Model into Tensorflow Lite Command Line (Tanner,

2020).

3.6 Mobile Application Development

For mobile application development, Android Studio platform with JAVA

programming language will be used. Android Studio is limited to Android

mobile application development only. Once the development process is

complete, the application file can be export into ‘.apk’ file which able to install

in every Android smartphone (Verma, Kansal and Malvi, 2018). Figure 3.17

shows the process of android mobile application development.

49

Figure 3.17: General Process to Build an Android Application (Verma, Kansal

and Malvi, 2018).

3.6.1 Integration of TensorFlow Lite Model

To integrate the trained model into mobile application, Firebase ML Kit will be

use. Firebase ML Kit supports any Tensorflow Lite model using its model

interpreter API. To use Firebase ML Kit in Android application, simply adding

Firebase ML Kit library into Android application dependencies (Figure 3.18).

Figure 3.18: Code of Adding Firebase ML Kit Library into Android

Dependencies.

 Then, create a Tensorflow Lite model interpreter by passing the ‘.tflite’

model file path in the Android assets folder into the API. Next, specify the input

dimension and the output dimension of the model using the API. Lastly, run the

model using the created interpreter by passing in the input image.

50

 In order to match incoming input image with model input dimension, the

image must pre-process with downscaling to 224 x 224 dimension, and

normalize input image 8-bit RGB value from range [0,255] into range [-1,1]

using the formula (3.1) below which according to the original normalization

method from TensorFlow.

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 𝑅𝐺𝐵 = 𝑅𝐺𝐵 𝑣𝑎𝑙𝑢𝑒 × (

2

255
) − 1 (3.1)

 After the image is scaled and normalized, the image will pass into the

interpreter for inference. Once the inference is successfully, it is required to

process the generated outputs which are bounding box, confidence score, and

predicted class. Generally, the bounding box of a prediction will be encoded in

a normalized 4 elements array as shown in equation (3.2) below.

 [
𝑦𝑡𝑜𝑝

𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡
,

𝑥𝑙𝑒𝑓𝑡

𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ
,

𝑦𝑏𝑜𝑡𝑡𝑜𝑚

𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡
,

𝑥𝑟𝑖𝑔ℎ𝑡

𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ
] (3.2)

where:

ytop = top y-coordinate of bounding box

xleft = left x-coordinate of bounding box

ybottom = bottom y-coordinate of bounding box

xright = right x-coordinate of bounding box

 Therefore, to obtain the exact bounding box coordinate, every element

in the array requires to be extracted and denormalized by multiplying image

width and height. Using these exact coordinates will able to draw and display a

correct bounding box on the image.

 Besides that, for predicted class, the output class value will be encoded

into 0 and 1 which are malignant and benign class respectively. By simply

creating a reference for the encoded value with the exact class name will obtain

the predicted class name. For confidence score of the prediction, it returns a

normalized value ranging from 0 to 1. Multiply the value with 100% will get

the exact percentage confidence score.

51

3.6.2 Mobile Application Functionalities

Functionalities of the mobile application will include a main activity which

displays image, predicted result and some buttons such as run inference button,

setting button, and document button. Also, a camera activity with flash light on

to capture skin lesions with constant brightness at the same time automatically

crop out region of interest from image. The purpose of this concept is to simulate

a normal dermatoscope (cost nearly RM 1200) for example Figure 3.18 below,

which commonly used by dermatologist. Moreover, it ensures the image similar

to the train image which reduce the background noises. Figure 3.19 below shows

that concept of automatic crop feature of the camera activity.

Figure 3.19: Normal Dermatoscope in Market.

Figure 3.20: Camera Activity Auto Crop Concept to Simulate Dermatoscope.

52

 In camera activity, users require to capture the lesions inside the center

circle for auto cropping. Once the image captured, the region of interest will be

slice out from the image, anything outside the circle will be discarded. Besides

camera activity, add image from phone gallery function is an alternative method

to perform inference. If user choose to add image from gallery, additional crop

function will prompt user to crop out region of interest from the image. Once

image added or captured, a button will need to prompt user to run inference on

the image including drawing bounding box around lesions and display

confidence, and class value on the image. On the other hand, a setting function

enable user to adjust confidence threshold to show predicted result. Lastly, a

documentation function will display ABCDE criteria with proper illustration for

users to refer if manual detection is preferred and to overcome the public

misunderstanding issue of ABCDE criteria mentioned by Tsao et al. (2015). All

functionality activities are summarized into:

(i) Main Activity (display image and an inference button).

(ii) Camera Activity with flash light on and auto crop.

(iii) Crop Image Activity (if add image from gallery).

(iv) Setting Activity.

(v) Document Activity.

 Moreover, a save image button will also require ensuring the user able

to save the predicted image. Also, an edit button will require if user choose crop

image activity to allow user to re-crop the image without re-select image from

gallery.

3.6.3 Mobile Application Compatibility Test and Inference Time Tracing

The development of the mobile application mainly focuses on Android version

6.0 onwards. Besides, multiple dimension design layout will be created to tackle

different screen sizes of Android smartphones however it should not able to

support extremely large or small screen sizes. Also, the overall mobile

application size should not exceed 50MB to maintain lightweight.

 To test the compatibility of the application, Firebase Test Lab will be

used. Firebase Test Lab is a cloud-based platform to test applications running

on Android. It enables users to test applications across many types of devices

53

and Android versions. It will automatically run the app, searching for crashes

and bugs (Khawas and Shah, 2018). The complete application will be tested

with 7 various screen sizes and Android version. If any application crashes occur

during the test, the application would not be able to pass the test for that specific

device.

 Besides that, inference time of object detection model on the mobile

application will be traced using Firebase Performance library. Adding Firebase

Performance library in the mobile application allows to trace the running time

for a part of the code by inserting start and stop trace function provided by the

library. Since the model will be optimized to TensorFlow Lite model, the

inference time should not exceed 1 seconds or more.

3.7 Summary

In summary, this chapter explains the project workflow thoroughly. The

methods of approach are shown in detail. To develop a mobile application to

detect skin lesions, the workflow can be summarized into dataset preparation,

model training and evaluation, mobile application development, mobile

application compatibility testing, and inference time tracing.

54

4 RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the result of object detection models and mobile application will

be discussed. In section 4.2 a comparison of various object detection models

and validation of the selected model with existing classification model will be

discussed. Section 4.3 discusses about the result of mobile application

development.

4.2 Object Detection Models Comparison

In this section, three object detection model SSD MobileNet V1, SSD

MobileNet V2, and Faster-RCNN ResNet will be compared in terms of their

mAP, inference time on a single image, model size, and PR-curve after training.

All models are trained using the same dataset and evaluation PASCAL VOC

metrics, however different in training step because training process can be

terminated once Training Loss does not show any improvement. Data of

evaluation mAP and PR-curve are obtained from Tensorboard whereas

inference time on single image data obtained from self-written python script.

Table 4.1 below shows the respective results from three models. Figure 4.1

shows the PR-curves of three models for benign and malignant skin lesion

classes.

Table 4.1: Object Detection Models Comparison in terms of mAP, Inference

time, and Model Size.

Model mAP Inference time (single

image)

Model Size

SSD MobileNet V1 92.89% 1.91s 22 MB

SSD MobileNet V2 93.99% 1.79s 18 MB

Faster-RCNN

ResNet

95.29% 14.53s 112 MB

55

 (a)

 (b)

Figure 4.1: (a) PR-curve of three models for malignant skin lesion class. (b) PR-

curve of three models for benign skin lesion class.

 From the result (Table 4.1), no doubt that Faster-RCNN ResNet obtains

the highest score in mAP. According to Bianco et al. (2018) benchmark analysis

of feature extraction network and Zhao et al. (2019) reviews of object detection

network, Faster-RCNN object detector, and ResNet feature extraction network

56

give higher localization and classification accuracy compared to the others. This

high accuracy achievement from Faster-RCNN ResNet has traded off on its

inference speed of 14.53 seconds with one single image on a computer.

Compare to SSD MobileNet V1 and V2, Faster-RCNN ResNet has a relatively

slower inference speed, due to the number of parameters, multiplication and

addition operation much higher within ResNet feature extractor (Reddy, Rattani

and Derakhshani, 2018). This reason also leads to higher model size of 112 MB

for Faster-RCNN ResNet model.

 Meanwhile comparing SSD MobileNet V1 and V2 model, SSD

MobileNet V2 shows more advantages than SSD MobileNet V1 in terms of all

the data due to MobileNet V2 has some improvement from the MobileNet V1

version with network architecture changes. These changes decrease the number

of parameters, multiplication, and addition operation in MobileNet V2 at the

same time improve its accuracy.

 According to Bränström et al. (2002), some degree of overdiagnosis of

benign skin lesions is better than any degree of under-diagnosis of malignant

skin lesions after they experimented with layperson’s ability to differentiate

between these two types of skin lesions. This refers that a benign skin lesion

predicted as a malignant class can be acceptable, but not encourage for a

malignant skin lesion predicted as a benign class. By following this idea, recalls

more important than precisions for malignant class, and precisions more

important than recalls for benign class in PR-curve. Figure 4.1 (a) shows that

three models have the same recalls of 1 in predicting malignant skin lesions. In

this case, precision becomes the priority of performance measuring for

malignant class. At recalls close to 1 in Figure 4.1 (a) SSD MobileNet V2 has

the highest precision among all the other models, whereas Faster-RCNN ResNet

has higher precision than SSD MobileNet V1. From Figure 4.1 (b), Faster-

RCNN has the highest precision among other models. Besides that, SSD

MobileNet V2 precision is higher than the V1 model. A clearer comparison on

the PR-curve can be summarized by taking the area under the PR-curve, also

known as Average Precision shown in Table 4.2 below.

57

Table 4.2: Area Under PR-curve (Average Precision) for Benign and Malignant

Class of Three Models.

 Predicting Class

Models Benign Class Malignant Class

SSD MobileNet V1 90.06% 95.73%

SSD MobileNet V2 91.67% 96.30%

Faster-RCNN ResNet 94.92% 95.66%

From the analysis above, Faster-RCNN has the top accuracy however

bad in inference speed and model size. SSD MobileNet V2 rank on the second

regarding accuracy but possess highest inference speed and smallest model size.

To choose from these two models, since finding a lightweight and fast inference

speed model is one of the objectives in this project, this experimental

comparison matches the findings in Chapter 2 which proves that the pre-chosen

model SSD MobileNet V2 during studies was more suitable for mobile phone

implementation.

4.2.1 Model Validation

In this section, trained SSD MobileNet V2 model will be compared with an

existing model from a researcher. Since no existing object detection model

related to this project, an existing high accuracy ResNet50 classification model

is obtained from Fanconi (2020) on Kaggle website. This existing model is also

trained with the same dataset however training set contains 2637 images. Due

to this reason, only Accuracy metric and Confusion Matrix could use to compare

performance between an object detection model and classification model. A

Confusion Matrix is a table with True Positive, True Negative, False Positive,

False Negative value recorded. The accuracy is as stated in Equation 4.1.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 × 100% (4.1)

where:

TP = True Positive

TN = True Negative

58

FP = False Positive

FN = False Negative

 Besides, another dataset which contains dimension resolution 224 x 224

pixels of 50 benign and 50 malignant skin lesions images is selected from ISIC

archive website for validation. The validation results are generated using self-

written Python script by running inference on the validation dataset with both

models. The Confusion Matrix for both models are shown in Figure 4.2.

 (a)

 (b)

Figure 4.2: Confusion Matrix for (a) SSD MobileNet V2 object detection model,

(b) ResNet50 classification model.

59

Table 4.3: Accuracy of SSD MobileNet V2 object detection model and

ResNet50 classification model using a new validation dataset.

Model Accuracy

SSD MobileNet V2 96%

ResNet50 84%

 Figure 4.2 (a) shows that SSD MobileNet V2 has none false predict

benign skin lesions as malignant, however has 4 malignant skin lesions

predicted as benign. On the other hand, in Figure 4.2 (b) classification ResNet50

model has 10 false predict on benign skin lesions as malignant class, and 6

malignant skin lesions predicted as benign. From these values, Accuracy is

calculated as shown in Table 4.3. It shows that SSD MobileNet V2 has higher

accuracy than classification ResNet50 model on this validation dataset.

 From analysis above, the performance of SSD MobileNet V2 in this

project surpasses the existing model provided by the researcher. However, the

generalization of the current model on this detection task has not yet been

proven since it does not undergo any proper clinical assessment.

4.3 Mobile Application Result

In this section, the screenshots on the graphical user interface of various

functions of the mobile application are presented and discussed. The screenshots

include all the activities such as:

(i) Main Activity (display image and an inference button).

(ii) Camera Activity with flashlight on and auto-crop.

(iii) Crop Image Activity (if add image from gallery).

(iv) Setting Activity

(v) Document Activity

60

4.3.1 Main, Setting, Document Activities

Figure 4.3 shows the screenshots of Main, Setting, and Document activities and

their respective invoke button especially Setting and Document activity.

Figure 4.3: Main, Setting, and Document Activities.

 Figure 4.3 above shows that Setting activity can be invoking from the

gear icon at the top left corner of the Main activity. In the Setting activity, users

allow to adjust the confidence threshold of prediction with a seek bar, and able

to switch whether to display the prediction which has highest confidence. On

the other hand, the Document activity can be invoked from the document icon

at the top right corner of the Main activity. The Document activity consists of a

scrollable instruction with proper illustration of ABCDE self-detection criteria

for the user to refer.

61

4.3.2 Crop Image and Camera Activities

In this section, interface of Crop Image and Camera activities is shown and

discussed. Besides that, the flow of using these two activities to perform

inference on an image is discussed as well.

 To add an image for inference, users will be prompted with an intent

chooser dialog to select either capture image with camera auto crop or choose

an image from gallery to crop region of interest. Figure 4.4 below shows the

action flow as stated above.

Figure 4.4: Action Flow for Camera and Crop Image Activity.

62

 As shown in Figure 4.4, the users are required to tap on the center frame

located at Main activity to invoke the chooser dialog. If the users intend to use

the camera to capture a picture of skin lesions, they can tap on the camera button

on the dialog to invoke the Camera activity. In Camera activity, to ensure the

captured image automatically crop out the region of interest, the users will be

required to place the lesion inside the circle. Besides that, the users are able to

tap on the screen to ensure the image is well focus and clear.

 On the other hand, if the users intend to add an image from the gallery,

they can tap on the gallery button to invoke an image selection. Once the image

is selected, the users will be prompted with a region of interest crop to crop out

the lesion from the selected image.

4.3.3 Object Detection Model Integration and Inference

The trained SSD MobileNet V2 object detection model is converted into

TensorFlow Lite model and successfully integrated into the mobile application.

A TensorFlow Lite interpreter is created using Firebase ML Kit.

 Once the image is cropped or captured, the application will exit from the

previous activity and return to Main activity to perform preprocessing

(downscaling and normalization) and inference on the image with the integrated

model. The inference process includes passing image into interpreter, run

inference, draw bounding box and display info on the image. Figure 4.5 below

shows the action flow to perform inference in the mobile application.

(a)

63

(b)

Figure 4.5: Action Flow of Inference (a) if Image Captured from Camera (b) if

an Image is being Added from the Gallery.

 From Figure 4.5, notice that both (a) and (b) looks similar, however, if

the user previously captures an image from camera, the edit button at the bottom

left corner of the center frame will not show up since the image already

automatically cropped. If the user previously crops and add image from gallery,

the edit button pops up to allow users able to re-crop the image without

reselecting from gallery. After the tap on the analyze inference button located

at the bottom of Main activity, the result will show on the image with bounding

box, class, and confidence value. Lastly, users able to save the predicted image

using the save button at the bottom right corner of the center frame.

4.3.3 Application Compatibility Test

After the development, the application exported into ‘.apk’ file. The ‘.apk’ file

is uploaded to Firebase Test Lab for compatibility test. The test runs through all

activities and buttons in the application multiple time to ensure every function

or action compatible with respective Android version. The application tested

with 7 different smartphones with various Android versions ranging from 6.0

onwards and screen resolution. The test result is shown in Table 4.4.

64

Table 4.4: Firebase Test Lab Results.

Smartphone Model Screen

Resolution

Android

Version

Result

Motorola G Play 720 x 1280 6.0 Pass

Huawei Mate 9 1080 x 1920 7.0 Pass

Nexus 6 1440 x 2560 7.1 Pass

Lenovo S5 1080 x 2160 8.0 Pass

Google Pixel 2 XL 1440 x 2880 8.1 Pass

Motorola One 720 x 1520 9.0 Pass

Google Pixel 2 1080 x 1920 10.0 Pass

 Table 4.4 above shows that the application passes all the tests without

any application crash or bugs occur. Every activity in the mobile application has

been tested on each smartphone. Besides, none of the UI such as buttons or

shapes in the mobile application overlaps with each other on various screen

resolutions.

4.3.4 Inference Time and Application Size

Firebase able traces every inference (include time of drawing bounding box,

class, and confidence value on image) on a single image and records its time.

This result can obtain from Firebase console. On the last 30 days, from 1st

August to 30th August, Firebase already recorded 1300 samples of inference

time from 4 different physical smartphones. The inference time distribution

graph is shown in Figure 4.6 below.

Figure 4.6: Inference Time Distribution of 1300 samples collected for the past

30 days.

65

 Figure 4.6 shows that average inference time falls around 359ms, with

maximum value of 586ms and minimum value of 286ms, which is surprisingly

fast. The result is excitingly lower than the preset 1 seconds in Chapter 3.

Besides that, the inference time showing much lower than the inference time on

a computer. One possible reason might be due to the trained model already been

converted into a smartphone-optimized model (TensorFlow Lite). Hence, this

proves that the integration of TensorFlow Lite object detection model in the

mobile application will not cause any computation burden to a smartphone.

 For application size, the finalized application size 30.31MB, which does

not exceed the preset 50MB in Chapter 3. This proves that a mobile application

with a smartphone suitable object detection model will not occupy too much

spaces in a smartphone storage.

4.4 Summary

In summary, the model selection result tally with the previous literature findings

on object detection model selection, in other words, SSD MobileNet V2 is

selected due to its lightweight architecture, meanwhile, achieve 93.9% of

evaluation mAP and lowest detection time among others. The validation result

also shows that the selected model surpasses other researcher’s classification

model in terms of accuracy. Besides, the development of mobile application is

successful and has achieved the stated objectives in this project.

 In short, this mobile application allows users to detect malignant and

benign skin lesions using an Android based smartphone which able to replace

the conventional ABCDE criteria self-detection method. Complete coding and

system including the object detection model of the mobile application in this

project have been uploaded to GitHub website

(https://github.com/tanhouren/FYP-skin-lesion-detection-mobile-app) to serve

as a contribution to skin cancer diagnosis.

66

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this project, it is found that most existing skin lesions diagnosis with deep

learning technology stops at deep learning modelling, and without any further

deployment or integration with a readily available device such as smartphone.

However, the advantage of integrating object detection deep learning

technology and smartphone in the medical field has been discovered throughout

the project. This technology is able to provide low-cost diagnosis and without

require years of skin lesion diagnosis experience. Moreover, users able to

perform diagnosis at home with a smartphone, therefore can provide point-of-

care to the users from a remote area.

 Although the process of development is challenging due to the immature

platform of object detection development (TensorFlow Object Detection API)

and require experiences for Android application development, the success of

this project has proven that the development of this technology is feasible and

should be aware.

 In short, the objectives of this project have been achieved. Besides using

ABCDE criteria conventional self-detection method, users able to use

smartphone to perform self-detection on malignant and benign skin lesions with

this mobile application. This mobile application supports a wide range of

Android smartphones and does not occupy huge internal storage of smartphones.

The integrated object detection model has achieved fast detection time and

higher accuracy after validating with the existing classification model.

5.2 Recommendations for future work

The integration of telemedicine technology is highly recommended such that it

provides interaction between users and dermatologists, for example giving

advice and extra assessment. Also, dermatologists able to receive predicted

images from their patients to constantly monitor the condition more effectively.

67

With telemedicine integrated, the system can achieve as a more complete and

professional skin cancer diagnosis tool.

 Besides, to obtain more convincing object detection performance, a

larger dataset for training is required to improve the generalization of the model

on detecting malignant and benign skin lesions. Besides, some image

preprocessing methods such as image-denoise or contrast enhancement can be

applied to emphasize the features of the skin lesions therefore increase model

accuracy. On the other hand, the functionality of the Camera activity in the

mobile application should be improved with the aid of real-time detection which

able to ensure the stability of every generated detection hence improve user

experience. Also, a reminder function can be implemented to remind users to

observe or perform detection on suspicious skin lesions periodically since

malignant skin lesions will evolve in shape over time.

 Lastly, due to the advantages such as processing capability, and high-

resolution image capture provided by smartphones nowadays, the integration of

object detection deep learning with smartphone application can be applied not

only for skin lesions detection. In future, this technology can be applied into

other medical field with the same detection method developed in this project

such as foot ulcer detection, ear infection detection, and more to provide

efficient and low-cost point-of-care diagnosis.

68

REFERENCES

Abbasi, N.R., Shaw, H.M., Rigel, D.S., Friedman, R.J., McCarthy, W.H.,

Osman, I., Kopf, A.W. and Polsky, D., 2004. Early Diagnosis of Cutaneous

Melanoma. Jama, 292(22), p.2771.

Abuzaghleh, O., Barkana, B.D. and Faezipour, M., 2015. Noninvasive Real-

Time Automated Skin Lesion Analysis System for Melanoma Early Detection

and Prevention. IEEE Journal of Translational Engineering in Health and

Medicine, [online] 3, pp.1–12. Available at: <https://ieeexplore-ieee-

org.libezp2.utar.edu.my/document/7079463>.

Adegun, A.A. and Viriri, S., 2020. Deep learning-based system for automatic

melanoma detection. IEEE Access, 8, pp.7160–7172.

Al-Masni, M.A., Kim, D.H. and Kim, T.S., 2020. Multiple skin lesions

diagnostics via integrated deep convolutional networks for segmentation and

classification. Comput Methods Programs Biomed, [online] 190, p.105351.

Available at: <https://www.ncbi.nlm.nih.gov/pubmed/32028084>.

Albahar, M.A., 2019. Skin Lesion Classification Using Convolutional Neural

Network with Novel Regularizer. IEEE Access, 7, pp.38306–38313.

AIM at Melanoma Foundation. 2020. Moles & Other Lesions - AIM At

Melanoma Foundation. [online] Available at:

<https://www.aimatmelanoma.org/about-melanoma/other-lesions/> [Accessed

21 April 2020].

Aidouni, M., 2020. Evaluating Object Detection Models: Guide To

Performance Metrics. [online] Manal El Aidouni. Available at:

<https://manalelaidouni.github.io/manalelaidouni.github.io/Evaluating-Object-

Detection-Models-Guide-to-Performance-Metrics.html#precision-x-recall-

curve> [Accessed 21 April 2020].

Amelard, R., Glaister, J., Wong, A. and Clausi, D.A., 2015. High-Level Intuitive

Features (HLIFs) for intuitive skin lesion description. IEEE Transactions on

Biomedical Engineering, 62(3), pp.820–831.

Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A. and Carlsson, S., 2015.

From generic to specific deep representations for visual recognition. In: 2015

IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW). pp.36–45.

69

Bianco, S., Cadene, R., Celona, L. and Napoletano, P., 2018. Benchmark

analysis of representative deep neural network architectures. IEEE Access, 6,

pp.64270–64277.

Bränström, R., Hedblad, M.A., Krakau, I. and Ullén, H., 2002. Laypersons’

perceptual discrimination of pigmented skin lesions. Journal of the American

Academy of Dermatology, 46(5), pp.667–673.

Cdc.gov., 2020. What Is Skin Cancer? | CDC. [online] Available at:

<https://www.cdc.gov/cancer/skin/basic_info/what-is-skin-cancer.htm>

[Accessed 21 April 2020].

Chamberlain, A.J., Fritschi, L. and Kelly, J.W., 2003. Nodular melanoma:

Patients’ perceptions of presenting features and implications for earlier

detection. Journal of the American Academy of Dermatology, [online] 48(5),

pp.694–701. Available at:

<https://linkinghub.elsevier.com/retrieve/pii/S0190962203000227>.

Clark Jr., W.H., Elder, D.E., Guerry IV, D., Braitman, L.E., Trock, B.J., Schultz,

D., Synnestvedt, M. and Halpern, A.C., 1989. Model Predicting Survival in

Stage I Melanoma Based on Tumor Progression. JNCI: Journal of the National

Cancer Institute, [online] 81(24), pp.1893–1904. Available at:

<https://doi.org/10.1093/jnci/81.24.1893>.

Deng, Y., 2019. Deep learning on mobile devices: a review. In: S.S. Agaian,

S.P. DelMarco and V.K. Asari, eds. Mobile Multimedia/Image Processing,

Security, and Applications 2019. [online] SPIE.p.11. Available at:

<https://www.spiedigitallibrary.org/conference-proceedings-of-

spie/10993/2518469/Deep-learning-on-mobile-devices-a-

review/10.1117/12.2518469.full>.

DeepAI. 2020. Jaccard Index. [online] Available at:

<https://deepai.org/machine-learning-glossary-and-terms/jaccard-index>

[Accessed 21 April 2020].

Doben, A.R. and MacGillivray, D.C., 2009. Current Concepts in Cutaneous

Melanoma: Malignant Melanoma. Surgical Clinics of North America, [online]

89(3), pp.713–725. Available at:

<http://www.sciencedirect.com/science/article/pii/S0039610909000371>.

Everingham, M., Everingham, M., Zisserman, A., Zisserman, A., Williams, C.

and Williams, C., 2006. The PASCAL visual object classes challenge 2006

(VOC2006) results. Workshop in ECCV06, May. Graz, Austria, [online]

2006(January 2006). Available at:

<http://scholar.google.co.uk/scholar?start=10&q=%22bag+of+visual+words%

22&hl=en#3>.

70

Farberg, A.S. and Rigel, D.S., 2017. The Importance of Early Recognition of

Skin Cancer. Dermatologic Clinics, 35(4), pp.xv–xvi.

Friedman, R.J., Rigel, D.S. and Kopf, A.W., 1985. Early Detection of Malignant

Melanoma: The Role of Physician Examination and Self-Examination of the

Skin. CA: A Cancer Journal for Clinicians, [online] 35(3), pp.130–151.

Available at: <https://doi.org/10.3322/canjclin.35.3.130>.

Fanconi, C., 2020. Skin Cancer: Malignant Vs. Benign. [online] Kaggle.com.

Available at: <https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-

benign> [Accessed 17 April 2020].

Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M. and Petkov, N., 2015.

MED-NODE: A Computer-Assisted Melanoma Diagnosis System using Non-

Dermoscopic Images. Expert Systems with Applications, 42.

Girshick, R., 2015. Fast R-CNN. Proceedings of the IEEE International

Conference on Computer Vision, 2015 Inter, pp.1440–1448.

Girshick, R., Donahue, J., Darrell, T. and Malik, J., 2014. Rich feature

hierarchies for accurate object detection and semantic segmentation. In:

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition. pp.580–587.

GitHub. 2020. Tensorflow/Models. [online] Available at:

<https://github.com/tensorflow/models/blob/master/research/object_detection/

g3doc/detection_model_zoo.md> [Accessed 17 April 2020].

GitHub. 2020. Tzutalin/Labelimg. [online] Available at:

<https://github.com/tzutalin/labelImg> [Accessed 18 April 2020].

Glazer, A.M., Rigel, D.S., Winkelmann, R.R. and Farberg, A.S., 2017. Clinical

Diagnosis of Skin Cancer: Enhancing Inspection and Early Recognition.

Dermatologic Clinics, 35(4), pp.409–416.

Goyal, M., Reeves, N., Rajbhandari, S. and Yap, M.H., 2018. Robust Methods

for Real-Time Diabetic Foot Ulcer Detection and Localization on Mobile

Devices. IEEE Journal of Biomedical and Health Informatics, PP, p.1.

Harangi, B., 2018. Skin lesion classification with ensembles of deep

convolutional neural networks. Journal of Biomedical Informatics, [online]

86(June), pp.25–32. Available at: <https://doi.org/10.1016/j.jbi.2018.08.006>.

He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image

recognition. In: Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition. pp.770–778.

71

Hosny, K.M., Kassem, M.A. and Foaud, M.M., 2019. Classification of skin

lesions using transfer learning and augmentation with Alex-net. PLOS ONE,

[online] 14(5), p.e0217293. Available at:

<http://dx.plos.org/10.1371/journal.pone.0217293>.

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,

Andreetto, M. and Adam, H., 2017. MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications. [online] Available at:

<http://arxiv.org/abs/1704.04861>.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I.,

Wojna, Z., Song, Y., Guadarrama, S. and Murphy, K., 2017. Speed/accuracy

trade-offs for modern convolutional object detectors. Proceedings - 30th IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-

Janua, pp.3296–3305.

Ignatov, A., Timofte, R., Chou, W., Wang, K., Wu, M., Hartley, T. and Van

Gool, L., 2019. AI Benchmark: Running deep neural networks on android

smartphones. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11133

LNCS, pp.288–314.

Jerant, A.F., Johnson, J.T., Sheridan, C.D. and Caffrey, T.J., 2000. Early

detection and treatment of skin cancer. [online] American family physician.

Available at: <https://www.aafp.org/afp/2000/0715/p357.html> [Accessed 17

Mar. 2020].

Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z. and Qu, R., 2019. A survey

of deep learning-based object detection. IEEE Access, 7, pp.128837–128868.

Khawas, C. and Shah, P., 2018. Application of Firebase in Android App

Development-A Study. International Journal of Computer Applications, [online]

179(46), pp.49–53. Available at:

<http://www.ijcaonline.org/archives/volume179/number46/khawas-2018-ijca-

917200.pdf>.

Korotkov, K. and Garcia, R., 2012. Computerized analysis of pigmented skin

lesions: A review. Artificial Intelligence in Medicine, [online] 56(2), pp.69–90.

Available at: <http://dx.doi.org/10.1016/j.artmed.2012.08.002>.

Krizhevsky, A., Hinton, G.E., Sutskever, I. and Hinton, G.E., 2012. ImageNet

Classification with Deep Convolutional Neural Networks. Neural Information

Processing Systems, 25, pp.1–9.

Lecun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature, 521(7553),

pp.436–444.

72

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.

and Zitnick, C.L., 2014. Microsoft COCO: Common objects in context. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), .

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y. and Berg,

A.C., 2016. SSD: Single shot multibox detector. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 9905 LNCS, pp.21–37.

Lodde, G., Zimmer, L., Livingstone, E., Schadendorf, D. and Ugurel, S., 2020.

Malignant melanoma. Hautarzt.

Mazurowski, M.A., Habas, P.A., Zurada, J.M., Lo, J.Y., Baker, J.A. and

Tourassi, G.D., 2008. Training neural network classifiers for medical decision

making: The effects of imbalanced datasets on classification performance.

Neural Networks, 21(2–3), pp.427–436.

Mayo Clinic. 2020. Melanoma - Symptoms And Causes. [online] Available at:

<https://www.mayoclinic.org/diseases-conditions/melanoma/symptoms-

causes/syc-20374884> [Accessed 21 April 2020].

McWhirter, J.E. and Hoffman-Goetz, L., 2013. Visual images for patient skin

self-examination and melanoma detection: A systematic review of

published studies. Journal of the American Academy of Dermatology,

[online] 69(1), pp.47-55.e9. Available at:

<https://doi.org/10.1016/j.jaad.2013.01.031>.

Mendonca, T., Ferreira, P.M., Marques, J.S., Marcal, A.R.S. and Rozeira, J.,

2013. PH2 - A dermoscopic image database for research and benchmarking. In:

2013 35th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC). [online] IEEE.pp.5437–5440. Available

at: <http://ieeexplore.ieee.org/document/6610779/>.

Mhealth.org. 2020. Five Things You Should Know About Skin Lesions |

Mhealth.Org. [online] Available at:

<https://www.mhealth.org/blog/2018/october-2018/five-things-you-should-

know-skin-lesions> [Accessed 21 April 2020].

Moroney, L., 2020. Using Tensorflow Lite On Android. [online]

Blog.tensorflow.org. Available at: <https://blog.tensorflow.org/2018/03/using-

tensorflow-lite-on-android.html> [Accessed 19 April 2020].

Nasr-Esfahani, E., Samavi, S., Karimi, N., Soroushmehr, S.M.R., Jafari, M.H.,

Ward, K. and Najarian, K., 2016. Melanoma detection by analysis of clinical

images using convolutional neural network. In: 2016 38th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

73

[online] IEEE.pp.1373–1376. Available at:

<http://ieeexplore.ieee.org/document/7590963/>.

Ouyang, W., Wang, X., Zhang, C. and Yang, X., 2016. Factors in finetuning

deep model for object detection with long-tail distribution. In: Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. pp.864–873.

Pai, K. and Giridharan, A., 2019. Convolutional Neural Networks for

classifying skin lesions. In: IEEE Region 10 Annual International Conference,

Proceedings/TENCON. IEEE.pp.1794–1796.

Pathak, A.R., Pandey, M. and Rautaray, S., 2018. Application of Deep Learning

for Object Detection. In: Procedia Computer Science. [online] Elsevier

B.V.pp.1706–1717. Available at:

<https://doi.org/10.1016/j.procs.2018.05.144>.

Padilla, R., 2020. Rafaelpadilla/Object-Detection-Metrics. [online] GitHub.

Available at: <https://github.com/rafaelpadilla/Object-Detection-Metrics>

[Accessed 21 April 2020].

Penatti, O.A.B., Nogueira, K. and Santos, J.A. dos, 2015. Do deep features

generalize from everyday objects to remote sensing and aerial scenes domains?

In: 2015 IEEE Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW). pp.44–51.

Rawat, W. and Wang, Z., 2017. Deep Convolutional Neural Networks for Image

Classification: A Comprehensive Review. Neural Computation, [online] 29(9),

pp.2352–2449. Available at: <https://doi.org/10.1162/neco_a_00990>.

Razavian, A.S., Azizpour, H., Sullivan, J. and Carlsson, S., 2014. CNN features

off-the-shelf: An astounding baseline for recognition. IEEE Computer Society

Conference on Computer Vision and Pattern Recognition Workshops, pp.512–

519.

Reddy, N., Rattani, A. and Derakhshani, R., 2018. Comparison of deep learning

models for biometric-based mobile user authentication. In: 2018 IEEE 9th

International Conference on Biometrics Theory, Applications and Systems,

BTAS 2018.

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. You only look once:

Unified, real-time object detection. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2016-Decem,

pp.779–788.

Ren, S., He, K., Girshick, R. and Sun, J., 2017. Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks. IEEE Transactions on

74

Pattern Analysis and Machine Intelligence, 39(6), pp.1137–1149.

Rose, L., 2020. Recognizing Neoplastic Skin Lesions: A Photo Guide. [online]

Aafp.org. Available at: <https://www.aafp.org/afp/1998/0915/p873.html>

[Accessed 21 April 2020].

Romero-Lopez, A., Giro-i-Nieto, X., Burdick, J. and Marques, O., 2017. Skin

Lesion Classification from Dermoscopic Images Using Deep Learning

Techniques. In: Biomedical Engineering. [online] Calgary,AB,Canada:

ACTAPRESS.pp.49–54. Available at:

<http://www.actapress.com/PaperInfo.aspx?paperId=456417>.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.C., 2018.

MobileNetV2: Inverted Residuals and Linear Bottlenecks. In: Proceedings of

the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. IEEE.pp.4510–4520.

Shin, H., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D.

and Summers, R.M., 2016. Deep Convolutional Neural Networks for Computer-

Aided Detection: CNN Architectures, Dataset Characteristics and Transfer

Learning. IEEE Transactions on Medical Imaging, 35(5), pp.1285–1298.

Simonyan, K. and Zisserman, A., 2015. Very deep convolutional networks for

large-scale image recognition. In: 3rd International Conference on Learning

Representations, ICLR 2015 - Conference Track Proceedings. pp.1–14.

Soviany, P. and Ionescu, R.T., 2018. Optimizing the trade-off between single-

stage and two-stage deep object detectors using image difficulty prediction. In:

Proceedings - 2018 20th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, SYNASC 2018. pp.209–214.

Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway,

M.B. and Liang, J., 2016. Convolutional Neural Networks for Medical Image

Analysis: Full Training or Fine Tuning? IEEE Transactions on Medical Imaging,

35(5), pp.1299–1312.

Taqi, A., al azzo, F., Awad, A. and Milanova, M., 2019. Skin Lesion Detection

by Android Camera based on SSD-Mo- bilenet and TensorFlow Object

Detection API. International Journal of Advanced Research, 3(July), pp.5–11.

Tanner, G., 2020. Convert Your Tensorflow Object Detection Model To

Tensorflow Lite.. [online] Gilberttanner.com. Available at:

<https://gilberttanner.com/blog/convert-your-tensorflow-object-detection-

model-to-tensorflow-lite> [Accessed 19 April 2020].

TensorFlow. 2020. Tensorflow. [online] Available at:

<https://www.tensorflow.org/> [Accessed 22 April 2020].

75

The Skin Cancer Foundation. 2020. Skin Cancer Facts & Statistics - The Skin

Cancer Foundation. [online] Available at: <https://www.skincancer.org/skin-

cancer-information/skin-cancer-facts/> [Accessed 21 April 2020].

The Skin Cancer Foundation. 2020. Melanoma Stages - The Skin Cancer

Foundation. [online] Available at: <https://www.skincancer.org/skin-cancer-

information/melanoma/the-stages-of-melanoma/> [Accessed 21 April 2020].

Tsao, H., Olazagasti, J.M., Cordoro, K.M., Brewer, J.D., Taylor, S.C., Bordeaux,

J.S., Chren, M.-M., Sober, A.J., Tegeler, C., Bhushan, R. and Begolka, W.S.,

2015. Early detection of melanoma: reviewing the ABCDEs. Journal of the

American Academy of Dermatology, 72(4), pp.717–723.

Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T. and Smeulders, A.W.M.,

2013. Selective Search for Object Recognition. International Journal of

Computer Vision, [online] 104(2), pp.154–171. Available at:

<https://doi.org/10.1007/s11263-013-0620-5>.

Verma, N., Kansal, S. and Malvi, H., 2018. Development of Native Mobile

Application Using Android Studio for Cabs and Some Glimpse of Cross

Platform Apps. International Journal of Applied Engineering Research, [online]

13(16), pp.12527–12530. Available at: <http://www.ripublication.com>.

Wu, X., Sahoo, D. and Hoi, S.C.H.H., 2020. Recent advances in deep learning

for object detection. Neurocomputing, [online] (xxxx). Available at:

<http://www.sciencedirect.com/science/article/pii/S0925231220301430>.

Zhao, Z.Q., Zheng, P., Xu, S.T. and Wu, X., 2019. Object Detection with Deep

Learning: A Review. IEEE Transactions on Neural Networks and Learning

Systems, 30(11), pp.3212–3232.

76

APPENDICES

APPENDIX A: Coding

Figure A-1: Android Studio Coding for Creating TensorFlow Lite Interpreter.

Figure A-2: Android Studio Code for Inference.

77

Figure A-2: Android Studio Code for Image Downscaling and Normalization.

