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ABSTRACT 

 

Early detection of malignant skin lesions improves patient survival rates. 

Conventional self-detection method for public possess subjectivity, inaccuracy, 

and require experience. The goal of this project is to develop an Android based 

mobile application with object detection deep learning integration that allows 

global users to perform malignant skin lesions self-detection easily using a 

smartphone, for overcoming the limitations of the conventional method. 

Transfer Learning has been performed on various object detection models using 

ISIC skin lesions dataset with TensorFlow Object Detection API. The selected 

object detection model is SSD MobileNet V2 with 93.9% of evaluation accuracy 

after training due to its lightweight architecture therefore suitable for 

smartphone integration. The selected model has surpassed existing 

classification model in terms of accuracy after validation with a new dataset. A 

mobile application has been developed successfully with Android Studio. The 

trained object detection model successfully integrated into the mobile 

application using Firebase ML Kit and has achieved low detection time on 

smartphones. The mobile application has been proven to be compatible with 

various Android versions and screen sizes after tested with 7 different 

smartphones using Firebase Test Lab. 
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1 INTRODUCTION 

 

1.1 General Introduction 

According to the World Health Organisation (WHO), over the past ten years, 

the cases of malignant skin cancer have increased. Some researchers allege that 

early detection of skin cancer is required to classify skin lesions symptoms so 

that dermatologists and clinicians can provide ways to avert it (Abuzaghleh, 

Barkana and Faezipour, 2015). But it has been proven that the diagnose process 

of skin cancer is likely to result in misdiagnosis and inaccuracy because of 

doctor’s subjectivisms. However, due to deep learning has become trendy in 

medical imaging field, the classification and detection of skin lesions could be 

achieved by training object detection deep learning neural network models (Taqi 

et al., 2019). Besides, smartphones already have been widely used recently for 

object recognition, classification, and more due to smartphones provides 

flexibility and convenience. As a result, the combination of smartphones and 

deep learning could help in detecting and classifying malignant skin lesions, as 

well as eradicate the subjectivity in skin cancer diagnosis. Last but not least the 

public could perform self-diagnosis and detection on skin cancer by using a 

smartphone. 

 

1.2 Importance of the Study 

The purpose of this project is to develop a mobile application that can detect 

and classify malignant and benign skin lesions. This mobile application enables 

anyone to perform self-diagnosis on skin lesions. It also able to overcome the 

limitations of conventional self-detection method, therefore, reduce the 

probability of misdiagnosis. In short, this project and studies could contribute to 

skin cancer diagnosis with the development of mobile application that integrates 

trained object detection deep learning model which able to detect malignant and 

benign skin lesions. 
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1.3 Problem Statement 

Early detection of skin cancer which causes by malignant lesions is crucial for 

treatment as it would increase the survival rate of patients. However, 

conventional detection method such as ABCDE criteria possesses various 

limitations such as subjectivity and inaccuracy, due to different experience 

level of dermatologist and irregular characteristics of malignant skin lesions 

(Abuzaghleh, Barkana and Faezipour, 2015).  

 Besides, the current state-of-the-art in detecting skin lesions using deep 

neural networks mainly focuses on the classification and segmentation of skin 

lesions. Also, deep learning model architectures such as ‘ResNet’ used to 

perform these tasks often complex, heavy in size, slow, and difficult to 

implement. Therefore, decrease the accessibility of this technology to the 

public. Also, self-detection method of skin cancer for the public currently still 

using the ABCDE criteria (Farberg and Rigel, 2017), which possess some 

other limitations in terms of public usage, such as layperson might difficult to 

understand the criteria itself which may lead to misdiagnosis (Tsao et al., 

2015).  

 

1.4 Aim and Objectives 

This project aims to replace the conventional skin cancer detection method 

(ABCDE criteria) with mobile application that integrates object detection and 

deep learning technology. State-of-the-art skin lesions classification using deep 

learning only achieves accuracy below 90 %.  Therefore, this project aims to 

transfer learning on a pre-trained object detection model with ISIC dataset and 

achieve an evaluation accuracy higher than 90 % in detecting malignant and 

benign skin lesions. As smartphones became popular nowadays, a mobile 

application can be developed to perform the detection task without having users 

to memorize ABCDE criteria and increase the accessibility of this technology 

to the public. To integrate the object detection model in a smartphone 

application, the selected model requires to be lightweight in terms of number of 

parameters to avoid high computational cost.  The overall mobile application 

requires to achieve: 

(i) Compatible with different Android smartphones. 
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(ii) Integration of object detection model (>90% evaluation 

accuracy) in detecting malignant and benign skin lesions. 

(iii) Small application size (< 50 MB). 

(iv) Fast inference time (< 1 sec). 

 

1.5 Scope and Limitation of the Study 

This project will be focusing on the development of mobile applications, 

integration of object detection deep learning model in mobile application and 

perform object detection deep learning model training on malignant and benign 

skin lesion datasets. In the project study, skin lesion background studies will be 

covered to understand the characteristic of skin lesions. Also, different deep 

neural network architecture, speed, and size will be covered in the studies to 

find the best architecture to be used in this project. The specific skin lesions 

dataset will be discovered in the studies, as well as the methods to train deep 

neural networks and integrate deep neural network into mobile application. 

Besides, the application of deep learning in detecting and classifying skin 

lesions will be covered to explore the existing method of training a deep neural 

network. The implementation of deep learning in a smartphone will be studied 

to discover the platform for mobile application development with deep learning 

integration.  

           In this project, the number of dataset images of skin lesions is important 

to produce a good deep learning model. Also, all skin lesions images are 

required to label manually with bounding box since no existing labelled images 

are found. Due to this constraint, only limited labelled images can produce. 

Furthermore, training a deep learning model could be time consuming if 

computer specifications are not high enough. In this project, a computer with 

Intel i7 3rd generation CPU, 8gb of RAM was used to train a deep learning 

model. Therefore, the deep learning model would be trained using CPU only.
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2 LITERATURE REVIEW 

 

2.1 Skin Cancer 

Skin cancer is defined as the abnormal growth of skin cells and commonly 

develops on the skin with or without a long time exposed to the sun. According 

to The Skin Cancer Foundation (2020), skin cancer is the most common cancer 

in the United States and worldwide. Among five Americans, one person would 

develop skin cancer by 70 years old. Besides that, more than two people died 

because of skin cancer in the United States every hour (The Skin Cancer 

Foundation, 2020). There are two main types of skin cancer which can be 

classified as non-melanoma and melanoma. Non-melanoma skin cancer is a 

type of skin cancer that is not formed by melanoma and the most common types 

of non-melanoma skin cancer are basal cell carcinoma and squamous cell 

carcinoma. Basal cell carcinoma begins to develop in the basal cell layer of the 

skin (Figure 2.1), and Squamous cell carcinoma begins to develop in the 

squamous layer of the skin. On the other hand, melanoma type of skin cancer is 

considered to be the most serious among all types of skin cancer (Mayo 

Clinic.org, 2020). Melanoma started in the melanocytes, which are the cells that 

make melanin, the pigment that gives skin its colour (Cdc.gov, 2020). These 

types of skin cancer are commonly caused by malignant skin lesions and it is 

observable (Rose, 2020). Melanoma possesses a complex cancer staging and 

important to diagnose because it helps doctor to decide on patients’ treatment 

and predict the chance of recovery (The Skin Cancer Foundation, 2020). The 

staging of melanoma is summarized in Table 2.1. 
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Figure 2.1: Skin Anatomy (CDC, 2020). 

 

Table 2.1: Melanoma Stages (The Skin Cancer Foundation, 2020). 

Stages Description 

Stage 0 Melanoma localized at the outermost layer of skin and 

does not grow deeper into skin. 

Stage I The cancer grown deeper into skin which is smaller than 

1mm from the outermost layer of skin. It is localized but 

invasive. 

Stage II  In this stage, the melanoma grown deeper larger than 

1mm from the outermost layer of skin and could be 

grown greater than 4mm. It has a very high risk of 

spreading the cancer. 

Stage III The cancer has spread to local lymph nodes or lymph 

vessel. Besides, melanoma that spread to nearby skin or 

underlying tissue but does not reached lymph nodes are 

also included in current stage.  

Stage IV The cancer has spread to other body area, including 

lymph nodes or organs such as lungs, bone, brain, liver. 

 

In our daily life, we can observe some skin lesions called ‘moles’ 

commonly. Moles are scientifically called ‘nevi’, they are normally benign 

which is not cancerous and with the appearance of flat shape, brown, dark brown, 
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or even black (AIM at Melanoma Foundation, 2020). Moles are formed due to 

the accumulation of melanocytes in your skin, although they are harmless, they 

have the potential to develop into skin cancer (MHealth.org, 2020). According 

to Lodde et al. research, there are various types of nevi or moles with different 

characteristics, such as Junctional nevi, Intradermal nevi, Juvenile melanomas, 

and Blue nevi. Among these types of skin moles, skin lesion with the mixed 

characteristics of Junctional nevi and Intradermal nevi which called Compound 

nevi may develop into malignant skin lesions due to junctional component. 

Besides that, Lodde et al. also mentioned about the giant size of moles may 

develop into malignant skin lesions according to the respective incidence with 

2-13 %. Although moles are seeming to be harmless(benign), there are still some 

possibilities for it to evolve into malignant skin lesions and result in skin cancer 

over time (Lodde et al., 2020). Therefore, it is necessary to study the importance 

of early detection of skin cancer. 

 

2.1.1 Importance of Skin Cancer Early Detection 

Early detection of skin cancer plays an important role to increase the survival 

rate. From Doben and MacGillivray (2009) research, evidence has provided that 

the five-year survival rate of cancer is highly affected by the time period of 

cancer diagnosis (Table 2.2). In Table 2.2, high distribution at diagnosis on an 

early stage of cancer which is ‘localized’ stage, result in a very high 5-year 

survival rate of 98.7%; whereas at the last stage of cancer, which is distant 

metastasis, the 5-year survival rate has only 15.5%. The authors also provided 

that 93% of melanomas cases which were diagnosed early, resulting in a much 

greater survival rate. 
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Table 2.2: Dissemination of Disease at 5-Year Survival and Presentation 

(Doben and MacGillivray, 2009). 

Disease Pattern Distribution at 

Diagnosis (%) 

5-Year Survival Rate 

(%) 

Localized 81 98.7 

Regional spread 12 65.1 

Distant metastasis 4 15.5 

Unknown stage 4 77.4 

 

Moreover, Glazer et al. (2017) also stated that early detection of skin 

cancer can avert the morbidity of skin cancer as well as increase the survival 

rate of the patient. Melanoma would grow horizontally within the first layer of 

the skin in a very early stage and then started to grow vertically or deeper into 

the skin over time (Clark Jr. et al., 1989). Due to this fact, early detection of skin 

cancer able to increase the survival rate is because it results in a higher 

proportion of thinner depth of skin lesions being removed. Besides that, the 

prognosis on skin cancer is directly proportional to the vertical depth of the skin 

lesions and able to further conclude that limit skin cancer burden as well as 

reduce death could be achieved through early detection of skin cancer. 

 

2.1.2 Self-Skin Examination Method and Efficacy 

Despite early detection of skin cancer or melanoma able to increase curability 

in most cases, differentiation between melanoma and benign skin lesion at the 

initial stage is a difficult task even for experienced dermatologists (Jerant et al., 

2000). A large number of existing researches pointed out a common self-skin 

examination method for early detect skin cancer, called ‘ABCDE’ criteria. This 

method was first introduced by Friedman, Rigel and Kopf (1985) with only 

‘ABCD’ without ‘E’ criteria, and this method aims to make an early diagnosis 

of malignant melanoma through observing and differentiating between lesions 

clinical characteristics, such as asymmetry shape, border irregularity, colour 

uniformity, and diameter of lesions. Criteria ‘E’, means evolvement of skin 

lesions in terms of shape, size, and colour is then added on to the ‘ABCD’ 

criteria in Abbasi et al. (2004) research with shreds of evidence supported. The 

‘ABCDE’ criteria for early diagnosis of skin cancer is summarized in Figure 2.2. 
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With these criteria, if the skin lesions fulfil more of the criteria, the more 

suspicious for skin cancer (Tsao et al., 2015).  

 

 

Figure 2.2: ABCDE Criteria for Skin Cancer Diagnosis (Tsao et al., 2015). 

 

 Multiple researchers indicated that ‘ABCDE’ criteria could be used by 

dermatologist or physicians to carry out an early diagnosis of skin cancer for 

patients, and also it can be educated to laypersons or novice for self-examination 

on skin cancer (Friedman, Rigel and Kopf, 1985; Tsao et al., 2015; Farberg and 

Rigel, 2017; Glazer et al., 2017). Besides that, the proposer of this criteria 

Friedman et al. and also ‘E’ criteria proposer Abbasi et al. both had concluded 

that this technique does help in early diagnosis of skin cancer and able to 

enhance layperson’s ability in distinguishing malignant skin lesions. Although 

this technique seems to be convincing for self-examination on skin cancer, some 

researchers pointed out its limitations and doubt its efficacy after reviewing the 

criteria.  

For example, Bränström et al. (2002) experimented on whether ‘ABCD’ 

criteria could help layperson on self-examination of malignant skin lesions. The 

results of their experiment shown that the criteria did enhance their ability to 

predict malignant skin lesions, but respondents have difficulty in recognizing 

benign skin lesions such as nevi or common moles or even overestimated the 
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malignancies of benign skin lesions due to misconceptions about the 

characteristics of malignant skin lesions and benign skin lesions. Besides that, 

Tsao et al. (2015) commented about the ‘ABCDE’ criteria accuracy would 

affect by the level of experience or subjectivity of physicians and also concluded 

that no exact clinical trial evidence shown to prove that by using ‘ABCDE’ 

criteria can improve public’s ability to perform early diagnosis on skin cancer 

even though the diagnosis accuracy of ‘ABCDE’ criteria verified in clinical 

practice. Chamberlain et al. (2003) research results on earlier detection of 

nodular melanoma have shown that nodular melanoma types of skin lesions 

sometimes fail to fulfil ‘ABCD’ criteria due to its shape more to symmetrical, 

uniform colour, non-pigmented as well as does not evolve in a colour change. 

Also, Glazer et al. (2017)  mentioned that ‘D’ diameter > 6mm criteria are not 

very accurate due to the diverse nature of early malignant skin lesions and some 

malignant skin lesions with a diameter smaller than 6mm have been identified. 

Therefore due to skin cancer diversity characteristics, it is still a challenge in 

clinical recognition on malignant skin lesions even for experienced physicians 

or dermatologists (Glazer et al., 2017). 

 Besides the flaws of ‘ABCDE’ criteria stated above, the criteria may still 

difficult to understand and remember by the public (Tsao et al., 2015). A review 

on visual images for patient skin self-diagnose indicated that untrained 

layperson would have problem with the application of ‘ABCDE’ criteria 

without appropriate images (McWhirter and Hoffman-Goetz, 2013). Therefore, 

the development of accurate, sensitive and objective diagnostic tools to aid 

visual diagnosis is vital to enhance and improve the early recognition outcomes 

(Farberg and Rigel, 2017).  

 

2.1.3 Summary 

In summary, skin cancer is caused by malignant skin lesions such as melanoma 

and it would become severe or even hard to cure if the patient was later 

diagnosed. Benign skin lesions could evolve into malignant skin lesions over 

time. Therefore, it is important to have an early diagnosis or detection of skin 

lesions to increase the survival rate of a skin cancer patient. Besides, the most 

common skin self-examination method for early diagnosis of skin cancer called 

‘ABCDE’ criteria can be learned by laypersons to develop the ability to 



10 

distinguish malignant skin lesions. This method was also adopted by physicians 

and dermatologists to carry out an early diagnosis for the patient. Due to many 

reasons, the method possessed some limitations and have been pointed out by 

various researchers, such as subjectivity of dermatologist or physicians, skin 

lesions diverse nature characteristic reduce accuracy, and difficult to remember 

by the public. 

However, automated analysis of skin lesions is a trending research topic 

that intended to develop tools for computer-aided diagnosis of skin cancer 

(Korotkov and Garcia, 2012). Computerized diagnosis is essential due to the 

increasing rate of cases, subjectivity of procedure and time (Amelard et al., 

2015). Hence, it is encouraged to develop a new skin cancer detection technique 

to improve early recognition outcomes for the public and dermatologist.  

 

2.2 Object Detection with Deep Learning 

Object detection is the process of classifying an object and recognizes its 

respective location by outputting a bounding box around the object (Pathak, 

Pandey and Rautaray, 2018). Figure 2.3 shows the general flow of object 

detection, it clearly shows that detection, localization, and classification are 

important components in the process. Besides, due to its wide range of 

applications and technological breakthroughs in transportation, surveillance, 

life, and medical field recently, object detection has brought some attention 

(Jiao et al., 2019). Therefore, object detection could be the potential field to 

develop a new technology for skin lesions detection to improve the traditional 

early diagnosis method. 

 

 

Figure 2.3: General Flow of Object Detection (Pathak, Pandey and Rautaray, 

2018). 
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 In traditional object detection, the technique or methods generally based 

on handcrafted features and simple trainable neural network architecture. Since 

the development of deep learning, more powerful tools which can learn deeper 

features and details, are introduced to solve the limitation in traditional object 

detection (Zhao et al., 2019). With deep learning mechanisms, it can learn high-

level features from low-level ones and approach high accuracy for object 

classification without any extraction of handcrafted features (Nasr-Esfahani et 

al., 2016). The most representative model of deep learning in image analysis is 

called Convolutional Neural Network, as known as CNN (Lecun, Bengio and 

Hinton, 2015).  

 

2.2.1 Overview of CNN Architecture 

Convolutional neural network (CNN) is a feedforward network in which input 

information such as image data flows in one direction to generate some outputs. 

In general, CNN architecture consists of different types of layers, they are 

convolutional and pooling layers. Another layer called fully connected layers 

similar to the artificial neural network is connected after the modules. These 

modules are stacked together to form a deep model or CNN architecture (Rawat 

and Wang, 2017). Figure 2.4 illustrated a general CNN architecture with an 

image classification task. An input image passes into convolutional layers, then 

outputs of the convolutional layers feed into the fully connected layer to do 

classification. The best example of CNN model with the same components 

stated previously is known as AlexNet (Krizhevsky et al., 2012). 

 

 

Figure 2.4: CNN General Architecture (Rawat and Wang, 2017). 
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 The convolutional layers aim for features extraction from an image and 

learn those feature representations from the input image. Feature maps are 

formed by arranging neurons in the convolutional layers, and each neuron in a 

feature map connected to previous layers’ neurons via a set of trainable weights, 

or as known as ‘filter banks’. Inputs and learned weight convolve together to 

generate a new feature map, then the feature map would go through a non-linear 

function such as ReLU (Rectified Linear Unit) or Sigmoid to activate the next 

neurons. Besides, the pooling layer serves the purpose of reducing the spatial 

resolution of the feature maps. In general, max-pooling would be used in the 

architecture, and it selects the largest element value within each receptive field 

(Lecun, Bengio and Hinton, 2015). Whereas fully connected layers interpret the 

output features from previous convolutional and pooling layer to perform high-

level reasoning. In the problem of classification, it generally uses soft-max 

operators which choose the class with the highest probability as the final output 

(Krizhevsky et al., 2012).  

After these layers are constructed, the whole model is required to train 

using labelled dataset to able to classify an object. In normal cases, the dataset 

would be separated into two groups, which are test set and training set. A 

training set is the images that the model would be trained on, whereas testing 

set is the images without feed into training to evaluate the performance of the 

model after training. The dataset will be normally split into 80% of training set 

and 20% of testing set. CNN uses learning algorithms to adjust all the 

parameters which are biases and weights. The most common learning algorithm 

is called back-propagation; it calculates the loss function to determine how 

much adjustments to be made on those parameters to approach desire output. A 

common problem while training a CNN is overfitting, which will affect the 

model’s ability to classify data due to an imbalance of training data. There are 

multiple ways to overcome overfitting problems such as perform training data 

augmentation or modify networks with dropout and batch normalization 

methods (Rawat and Wang, 2017). State-of-the-art results models were 

normally trained based on a dataset, called ImageNet, which is an image 

classification competition also as known as ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) (Image-net.org, 2020).   
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CNN commonly used for classifying an image. For example, Pai and 

Giridharan (2019) trained a popular CNN model called VGG16 to classify seven 

types of skin lesions. Besides the classification purpose of a CNN, CNN also 

acting as the backbone network to serve as a feature extractor role in object 

detection (Jiao et al., 2019).  

 

2.2.2 Backbone Network of Object Detection 

Object detection needs a good backbone network to perform well. The backbone 

network serves the purpose of feature extractor for object detection. It takes an 

input image and output a feature map of the corresponding image. Most of the 

backbone networks for object detection has taken out the last fully connected 

layer (Jiao et al., 2019). 

 Jiao et al. (2019) did a detailed survey on deep learning object detection 

and mentioned that choosing a CNN backbone for object detection consist of 

two requirements which are accuracy and efficiency. People can choose existing 

densely and deeper backbone such as ResNet or lightweight backbone such as 

MobileNet. Choosing the right backbone for object detection is important 

depending on the application requirement as it will make a trade-off between 

speed and accuracy.  

Reddy et al. (2018) did a comparison between deep learning models in 

terms of efficiency and accuracy for user authentication on mobile devices. 

They aim to find suitable CNN architecture for mobile devices. Therefore, 

following Reddy et al. works, some of the state-of-the-art model architecture 

such as ResNet, MobileNet, and VGG, as well as the comparison between each 

model in terms of efficiency and accuracy will be reviewed in this section.  

 

2.2.2.1 Overview of VGG 

The VGG network was introduced by Simonyan and Zisserman in 2015. This 

network possesses the same configuration shown in Figure 2.4, but VGG 

consists of more convolution and pooling layers. Besides, according to the 

authors, VGG uses a small size 3 x 3 convolution filter to replace the large size 

of 11 x 11 and 5 x 5 convolution filter in AlexNet proposed by Krizhevsky et al. 

(2012). The architecture of VGG (Figure 2.5) consists of 13 convolution layers, 

3 fully connected layers, and 5 max-pooling layers stacked up together, total up 
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with 16 trainable layers. Hence the model is commonly called VGG16. The 

input size of VGG16 is 224 x 224 fixed dimension of RGB image. All 

convolution layers are equipped with ReLU (Rectified Linear Unit) (Simonyan 

and Zisserman, 2015). 

 

 

Figure 2.5: VGG16 Layers Definition. 

 

 VGG16 has been experimented with by its authors with training on the 

ImageNet dataset. It achieved a good result with only 7.0% of top-5 test error. 

 

2.2.2.2 Overview of ResNet 

ResNet as known as the residual network was developed by He et al. in 2016 to 

address the solution of degradation in accuracy while training a deep 

convolutional neural network such as VGG16. He et al.'s literature made 

complete documentation about ResNet. In an ideal case, a neural network shall 

get much better in training (low training error) when the neural network has 

deeper layers. But the authors stated that with the increasing depth of the 

network, the accuracy of the respective networks to get saturated and degrades 

in practical cases. Therefore, adding more layers to a traditional deep 

convolutional network would cause higher training errors (He et al., 2016). 

 The main idea of ResNet introduces a technique called “Identity shortcut 

connection” that will skip one or more layers in the convolutional networks as 

shown in Figure 2.6. The idea behind Figure 2.6 residual block is that instead of 

going through each stack of layers that directly fit a desired underlying mapping, 

it can be directly let these layers fit a residual mapping. Identity shortcut 

connection does not add any extra parameter or computational complexity (He 

et al., 2016). Besides, these shortcut connections perform identity mapping, and 

their outputs are added to the output of original stacked layers which propagates 

the gradient from deep layers to shallow units, hence result in reduces training 
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difficulty. This simple modification of ResNet made the possibility to train a 

network up to 1000 convolutional layers, and yet still able to produce low 

training error while increase layers’ depth (Wu, Sahoo and Hoi, 2020).  

 

Figure 2.6: Residual Learning: Residual Block (He et al., 2016). 

 

 After He et al. propose ResNet, the respective model get first place in an 

ImageNet, the image classification competition in 2015. Also, the authors 

compare the results of a different number of layers of ResNet in the competition 

with another model such as VGG16 (Table 2.3). Table 2.3 shows that ResNet 

with more layers can produce low test error than VGG16. 

 

Table 2.3: Error Rates of Different Model on ImageNet Validation (He et al., 

2016). 

 Top-1 error (%) Top-5 error (%) 

VGG16 28.07 9.33 

ResNet-50 22.85 6.71 

ResNet-101 21.75 6.05 

ResNet-152 21.43 5.71 

 

2.2.2.3 Overview of MobileNet 

MobileNet was developed by Howard et al. in 2017. According to the authors’ 

literature, MobileNet is an efficient model for mobile and embedded vision 

system. The general trend is to make deeper and more complicated networks for 

higher accuracy and resulting in these networks do not make itself more efficient 

in terms of size and speed. Hence, the authors address MobileNet is a network 

that focuses on optimizing speed and small in size by reducing the number of 
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multiplication and addition operations occurs in the network, as well as reduce 

overall parameters of the network.  

 MobileNet architecture mainly built from depthwise separable 

convolution to reduce computation at the first few layers of the network. 

Depthwise separable convolution consists of two layers, which are pointwise 

convolutions layers and depthwise convolutions layers (Howard et al., 2017).  

 Depthwise convolutions use a single filter to filter each input channel as 

shown in Figure 2.7, therefore it consists Dk of width and height which normally 

to be 3 x 3 in value, and a thickness of 1 since it only runs through one channel. 

But it does not combine all the outputs to create new features because it only 

filters input channels such as RGB color channels. Therefore, pointwise 

convolution comes into place to compute the linear combination of depthwise 

convolution outputs using 1 x 1 convolution filter as shown in Figure 2.8. With 

these two-component, computational cost (multiplication and addition) is 

reduced drastically compared to the traditional convolutional networks which 

filter and combine all inputs to outputs in one step (Howard et al., 2017).  

 

Figure 2.7: Depthwise Convolution Filter (Howard et al., 2017). 

 

Figure 2.8: 1x1 Pointwise Convolution Filter (Howard et al., 2017). 

 

 In this case, MobileNet that uses depthwise separable convolutions able 

to achieve 8 to 9 times less computational cost than traditional convolutional 
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network but sacrifice some accuracy. A comparison has been made by Howard 

et al between MobileNet with depthwise separable convolution and MobileNet 

with full tradition convolution in terms of accuracy, the number of 

multiplication and addition, and the number of parameters as shown in Table 

2.4 below. From Table 2.4, the results show that MobileNet with full 

convolution contains much more parameters and operation, although it achieved 

71.7% of accuracy. On the other hand, MobileNet with depthwise separable 

convolution although has slightly lower 70.6% accuracy but the number of 

parameters and operation is much less (Howard et al., 2017). 

 

Table 2.4: Depthwise Separable vs Full Convolution MobileNet (Howard et al., 

2017). 

Model Accuracy No. multiplication 

and addition 

(million) 

Parameters 

(million) 

MobileNet with full 

convolution 
71.7% 4866 29.3 

MobileNet with 

depthwise separable 

convolution 

70.6% 569 4.2 

 

 Later, a new mobile architecture called MobileNetV2 was introduced by 

Sandler et al. (2018). The architecture of MobileNetV2 is a combination of 

original MobileNet and inverted ResNet, 3 x 3 convolution layers in ResNet 

replaced to 3 x 3 depthwise separable convolution.  MobileNetV2 architecture 

contains the initial fully convolution layer with 32 filters followed by 19 residual 

bottleneck layers which are similar to the residual block mentioned in section 

2.2.2.2. Sandler et al. also compared its number of multiplication and addition 

operations and parameters with the original version of MobileNet. Table 2.5 

clearly shows that the operations and parameters that occur in MobileNetV2 are 

much lower than the original version when tested with the ImageNet dataset. 

 

 

 



18 

Table 2.5: MobileNet vs MobileNetV2 (Sandler et al., 2018). 

Model No. multiplication and 

addition (million) 

Parameters (million) 

MobileNet 575 4.2 

MobileNetV2 300 3.4 

 

2.2.2.4 Summary 

In summary, four CNN models’ architecture and idea which are VGG, ResNet, 

MobileNet, and MobileNetV2 has been reviewed. According to our project’s 

objective, a backbone model with lightweight and efficient characteristics is 

more favourable. In Reddy et al. (2018)  literature, these models have been 

compared with each other in terms of parameters and number of multiplication 

and addition operations. The results are summarized in Table 2.6, it shows that 

MobileNetV2 contains the least parameters and number of operations. Although 

very deep models such as VGG and ResNet able to achieve high accuracy in the 

ImageNet dataset, but they require lots of memory or size and the number of 

multiplication and addition operation, and therefore these models are not 

suitable for mobile application (Reddy, Rattani and Derakhshani, 2018).  

 

Table 2.6: Comparison of The Number of Parameters and Operation Between 

CNN Models.   

Model Parameters  No. of Multiplication and Addition 

operations  

VGG - 19 140 million 19.6 giga 

ResNet - 50 23.5 million 4 giga 

MobileNet 3.2 million 568 million 

MobileNetV2 2.2 million 300 million 

 

 Besides, Bianco et al. (2018) did a benchmark analysis on deep neural 

network architecture and provided that MobileNetV2 is one of the most efficient 

models with moderate accuracy and lower model complexity (14MB of size) 

than original MobileNet (17MB of size). Therefore, the MobileNetV2 model 
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has characteristics of both lightweight and efficient to serve as object detection 

backbone. 

 

2.2.3 Object Detection Framework 

Most state-of-the-art object detection utilizes deep learning network especially 

CNN as their backbone and combines with a detection network. As mentioned 

in the previous section, CNN deep learning network has the role of feature 

extractor in object detection. Whereas, detection network is the key idea in 

object detection because it serves the purpose of performing classification and 

localization on the object (Jiao et al., 2019).  

 Object detectors can be classified into two types, two-stage detector, and 

one stage detector. Both have some difference in architecture, as well as 

different performance. A two-stage detector tends to have lower detection speed 

due to its more complex architecture than the one-stage detector. One stage 

detector has relatively low performance such as classification accuracy 

compared to a two-stage detector (Wu, Sahoo and Hoi, 2020).  

 

2.2.3.1 Two-stage Detector 

Two-stage detector consists of two stages with different tasks performed. The 

first stage is the proposal generation. During this stage, region proposals that 

may potentially be the object will be performed on the image. The second stage 

would have a deep convolutional network to classify all the proposals from the 

first stage. Figure 2.9 shows the general architecture of a two-stage detector, 

object detection generally would have a backbone network at the front and 

follow by object detection network at the end, in this case, the object detection 

network is a two-stage detector (Wu, Sahoo and Hoi, 2020). 
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Figure 2.9: General Architecture of Two-Stage Object Detector (Jiao et al., 

2019). 

 

Some real examples are using the two-stage detector. The first one is 

RCNN proposed by Girshick et al. (2014). The architecture of RCNN can be 

divided into three different parts, they are region proposal generation, deep 

feature extraction with CNN, classification and localization (Figure 2.10). First 

stage RCNN performs selective search (Uijlings et al., 2013) and generates 

roughly 2000 of region proposals within one image, and provides to the second 

stage. During second stage, the region proposal is then cropped or warped into 

a fixed dimension and using AlexNet CNN model (Krizhevsky et al., 2012) to 

extract 4096 features from the proposed region as outputs. Then, different 

region proposals will be scored on a set of positive and background regions by 

pre-trained linear Support Vector Machine (SVM). The scored regions are then 

adjusted with the regression of bounding box and using non-maximum 

suppression (NMS) to filter out the final object location with a bounding box 

(Zhao et al., 2019).  
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Figure 2.10: Architecture of RCNN (Wu, Sahoo and Hoi, 2020). 

 

A year later, Girshick (2015) proposed a better version of RCNN, called 

Fast-RCNN. Due to RCNN performs convolution operation on each proposed 

region without sharing computation, it takes a long time to classify with SVM. 

Fast-RCNN has been modified to extracts features from the entire input image 

and passes the RoIPool (region of interest pooling) layer to get fixed dimension 

features for the classification and bounding box regression. The key-concept of 

Fast-RCNN is that it extracts features from an input image once, and then pass 

to CNN for localization and classification task. Compared to RCNN which 

inputs every single proposed region into CNN, Fast-CNN saves a lot of time 

and memory to process and store all the features. Also, Fast-RCNN training 

process is faster than RCNN because Fast-RCNN is a one-stage end-to-end 

training process whereas RCNN is a multi-stage training process (Girshick, 

2015). As shown in Figure 2.11, an input image and various RoI are passes into 

a fully convolutional network. Then each RoI pooled into a fixed dimension 

feature map and pass into fully connected layers for predictions. 

 

 

Figure 2.11: Fast-RCNN Architecture (Wu, Sahoo and Hoi, 2020). 

 

Three months later since Fast-RCNN was introduced, a faster version of 

Fast-RCNN was developed by Ren et al. (2017) and it is called Faster-RCNN. 
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Due to the utilization of selective search to propose region in Fast-RCNN which 

is slow, Faster-RCNN replaces it with a Region Proposal Network (RPN) 

module to increase the speed of generating region proposals because it shares 

the same feature maps output from the backbone network with the detection 

network (Ren et al., 2017). In the field of two-stage detector, Faster-RCNN is 

the most representative detector. The architecture of Faster-RCNN is shown in 

Figure 2.12. 

 

 

Figure 2.12: Faster-RCNN with RPN Module (Wu, Sahoo and Hoi, 2020). 

 

2.2.3.2 One-stage Detector 

One stage detector is different from two-stage detector because it does not 

require a separate stage for region proposal. The main feature of one stage 

detector is it consider all regions on the input image as potential objects (Wu, 

Sahoo and Hoi, 2020). Two representatives of one stage detector are YOLO and 

SSD. 

 YOLO (You only look once) was developed by Redmon et al. (2016) 

for real-time detection implementation. YOLO frame object detection as a 

single regression problem and with a relatively simple process compared to 

RCNN, thus make itself extremely fast on detection. YOLO architecture is 

simple, due to it only predicts less than 100 bounding boxes in one image 

compared to RCNN which predicts over 2000 proposed region (Jiao et al., 2019). 

Besides, another reason that makes YOLO so fast is that it combines all the 

separate component of object detection becomes a single neural network, and 
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predict all bounding boxes across all classes for an input image simultaneously 

(Redmon et al., 2016). 

YOLO first divides the input image into 𝑆 × 𝑆 grid (Figure 2.12) and S 

is pre-defined if the object centre falls into a grid cell, the particular grid cell is 

responsible for prediction. Besides, each grid cell would predict some bounding 

boxes and confidence scores. The predicted confidence scores would reflect the 

level of confidence of the model thinks the particular box contains an object, as 

well as how accurate is the predicted box. Meanwhile, besides the bounding 

boxes, the object class probability in each grid cell is also predicted and can be 

plotted into a class probability map as shown in Figure 2.13  (Redmon et al., 

2016). The whole YOLO object detection architecture is combined with 24 

convolution layers and 2 fully connected layers for feature extraction and 

classification, the YOLO architecture is between the convolution layers and 

fully connected layer, as shown in Figure 2.14. 

 

 

Figure 2.13: Main Idea of YOLO (Redmon et al., 2016). 
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Figure 2.14: Architecture of YOLO Object Detection (Wu et al., 2020). 

 

 Although YOLO is fast in detection, it possesses some limitations too. 

One of the limitations is that YOLO has spatial constraints on predictions of 

bounding boxes since one grid cell can only predict a limited bounding box. Due 

to this reason, it limits the prediction of very nearby objects or small objects that 

group together such as flocks of birds. Also, YOLO has a trade-off in 

localization accuracy of objects due to it generalize to objects in unusual aspect 

ratio and generate rough features since it has multiple down sampling operations 

(Redmon et al., 2016). 

 Because of these limitations, Liu et al., (2016) proposed a one stage 

detector called Single Shot Detector (SSD). SSD also divided image feature 

maps into grid cells but in each cell, multiple scales and sizes of anchor boxes 

were generated (Figure 2.15). SSD is based on a convolution neural network to 

produce these anchor boxes and predict the presence of object class instances in 

the boxes. Then, followed by non-maximum suppression step to generate the 

final output detections. The SSD convolutional network is normally added as 

the extra feature layers right after a backbone convolutional network such as 

VGG16 as shown in Figure 2.16. These extra feature layers predict the offsets 

to default boxes of different scales and aspect ratios and their corresponding 

confidences (Liu et al., 2016). 
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Figure 2.15: Main Idea of SSD Generate Multiple Size Anchor Boxed In Grid 

Cell (Liu et al., 2016). 

 

 

Figure 2.16: Complete Architecture of SSD Detector With VGG16 Backbone 

(Liu et al., 2016). 

 

2.2.3.3 Comparison  

After reviewing both two-stage detector (RCNN, Fast-RCNN, Faster-RCNN) 

and one stage detector (YOLO, SSD), they have their advantages and limitations. 

Two-stage detectors able to reach high accuracy but typically slower in 

detection speed, whereas one stage detectors have much faster detection speed 

than two-stage detectors but have lower accuracy (Soviany and Ionescu, 2018). 

A comparison has been made between each other by Wu et al. (2020), all the 

object detectors were tested with same VGG16 backbone, trained on PASCAL 

VOC2007, 2012 dataset with 2501 and 5717 images of 20 categories of the 

object respectively, and evaluated with mean average precision (mAP) which 

will be covered in the next section. The results are summarized in Table 2.7. 



26 

Table 2.7 shows that using the same backbone for feature extraction, every 

detector performs differently with the same dataset used. SSD performs well 

with the highest mAP of 79.8% and 78.5% with VOC 2007 and VOC 2012 

dataset respectively among the other detectors. Higher mAP results in better 

model performance. 

 

Table 2.7: Comparison of Detectors Trained on PASCAL VOC Dataset in 

Terms Of Accuracy (Wu, Sahoo and Hoi, 2020). 

Detectors Backbone Input Size mAP (%) 

VOC 2007 VOC 2012 

RCNN VGG16 Arbitrary 66.0 62.4 

Fast-RCNN VGG16 ~600 x 1000 70.0 68.4 

Faster-

RCNN 

VGG16 ~600 x 1000 73.2 70.4 

YOLO VGG16 448 x 448 66.4 57.9 

SSD VGG16 512 x 512 79.8 78.5 

 

 Besides that, Zhao et al. (2019) also made a comparison of testing time 

on the detectors (Faster-RCNN, YOLO, SSD)which also trained on PASCAL 

VOC 2007 dataset with a powerful computer. Zhao et al. evaluated them with 

mAP, testing time (second/image) and also real-time detection frame per second 

(FPS) but the backbone of some detectors (YOLO, SSD) does not mention very 

clearly in their literature. The results are summarized in Table 2.8 below, Faster- 

RCNN with ResNet 101 convolution layers backbone get the best mAP, but the 

detection time per image was 2.24 seconds on a powerful computer. Whereas 

SSD trained with 300 x 300 and 512 x 512 input size resulted in 74.3 and 76.8 

mAP respectively. The detection time results of both SSD detector are 

optimistic which further prove that single-stage detector is much faster than 

two-stage detector, but sacrifice some accuracy. 
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Table 2.8: Comparison of Testing Consumption on VOC 2007 Dataset (Zhao et 

al., 2019). 

Model mAP (%) Test time 

(sec/img) 

Rate (FPS) 

Faster RCNN(VGG16) 73.2 0.11 9.1 

Faster RCNN 

(ResNet101) 

83.8 2.24 0.4 

YOLO 63.4 0.02 45 

SSD300 74.3 0.02 46 

SSD512 76.8 0.05 19 

 

2.2.3.4 Summary 

In summary, two-stage object detector may produce higher accuracy but 

sacrifice its detection time, whereas one-stage detector produces fast detection 

but sacrifice some accuracy. Due  to smartphone computational power 

constraint, SSD one stage detector is more suitable in this project due to the 

reason of it has low detection time meanwhile able to product moderate level of 

accuracy as shown in the previous studies compared to YOLO. 

  

2.2.4 Transfer Learning and Fine-Tuning 

Fine-tuning is defined as the approach that defines the model parameters for the 

required task from the parameters that pre-trained on other related tasks 

(Ouyang et al., 2016). Training a deep convolutional from scratch is a difficult 

task due to a large number of labelled training images are required. Besides 

training a model from scratch, an alternative is through fine-tuning or transfer 

learning from a model that has been pre-trained on a very large labelled dataset, 

and then uses those pre-trained parameters such a way that performs feature 

extraction on object edges for further training on another specific object 

detection task (Tajbakhsh et al., 2016). Fine-tuning has been successfully used 

in several applications (Razavian et al., 2014; Penatti, Nogueira and Santos, 

2015; Azizpour et al., 2015).  

 Tajbakhsh et al. (2016) analysed the comparison of full training or fine-

tuning convolutional neural networks for medical images. They have 
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investigated the problem by experimenting using AlexNet to train on the 

medical image dataset with and without fine-tune. Their results have concluded 

that using a pre-trained CNN with some fine-tuning on some specific layers in 

the CNN would outperform or may be performed the same as trained from 

scratch. Also, other advantages using fine-tuning is that fine-tuned CNN would 

be more robust to the size of training data than CNN trained from scratch.  

 Besides that, Shin et al. (2016) also did an experiment on training 

AlexNet from scratch and with fine-tuning from pre-trained AlexNet with 

medical images dataset to perform classification. Their result has shown that 

after using transfer learning, the fine-tuned AlexNet has much lower validation 

loss and higher validation accuracy compared to AlexNet which trained from 

scratch. Therefore, they found that using a transfer learning strategy able to 

produce the best performance results. 

 Nevertheless, some existing projects made by other researchers use 

transfer learning or fine-tuning to perform object detection. For example, Goyal 

et al. (2018) using a transfer learning approach on a pre-trained Faster-RCNN 

InceptionV2 object detection model to localize foot ulcer. They addressed that 

due to limited medical imaging datasets, CNN trained from scratch on these 

datasets does not produce a good result as the main reason to use transfer 

learning in their project. (Goyal et al., 2018).  

 In summary, fine-tuning or transfer learning from a pre-trained model is 

much better compared to train from scratch. Due to limited specific labelled 

dataset such as medical images, using fine-tuning and transfer learning is a way 

to solve this problem effectively.   

 

2.2.5 Object Detection Evaluation Metrics 

Before diving into evaluation metrics for object detection, it is necessary to 

introduce some existing object detection challenges, because each challenge 

using different evaluation metrics to judge on the model performance. Currently, 

every developed model would use these challenges as a benchmark to test model. 

PASCAL VOC and MSCOCO is the mainstream benchmark for object 

detection (Jiao et al., 2019). 

 The first one is the PASCAL VOC object detection challenge 

(Everingham et al., 2006) especially the challenges in the years of 2007 and 
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2012 are widely used. Both challenges provide a mid-scale dataset with 20 

categories for object detection, but the number of images in the dataset is 

different. The second one is MSCOCO object detection challenge (Lin et al., 

2014). MSCOCO challenge provides a large-scale dataset with 80 categories. 

Their number of training images is about 118287. 

 The first metrics for object detection is Intersection over Union (IoU) 

also as known as Jaccard Index (DeepAI., 2020). This metric quantified the 

likeness between the predicted bounding box and ground truth bounding box 

(labelled image) to measure how good is the predictions (Figure 2.17). The score 

of IoU ranges from 0 to 1. The higher score of IoU, the more similar of predicted 

box to the ground-truth box. IoU measures the overlapping area between the 

predicted box and the ground-truth box over their union (Manal El Aidouni., 

2020). The equation of IoU is denoted as below. 

   

 
𝐼𝑜𝑈 =  

𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∩ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

  𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ ∪ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
 (2.1) 

 

 

Figure 2.17: Ground Truth and Predicted Bounding Box (DeepAI., 2020). 

  

 By registering the IoU score for every detection, a threshold is set to 

group these scores, where IoU over this threshold are viewed as positive 

predictions and those below the threshold are viewed as false predictions. All 

the more accurately, the predictions are grouped into True Positives (TP), False 

Positives (FP), and False Negatives (FN). The statement above is for the 

localization problem, but in a classification problem, the IoU threshold is 
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replaced with a classification confidence threshold. The descriptions of TP, FN, 

and FP are summarized in Table 2.9. 

 

Table 2.9: TP, FP, and FN (Padilla, R., 2020) 

True Positive Correct detection with IoU/confidence larger than the 

threshold 

False Positive Wrong detection with IoU/confidence smaller than the 

threshold 

False Negative No prediction occurs in the ground-truth  

  

 After determining TP, FP, and FN, some of the basic metrics can be 

calculated such as Precision and Recall, which are important in evaluating 

object detection. Precision, also as known as specificity is to measure the 

probability of the predicted class or bounding boxes matches the actual ground-

truth class or boxes. The value of precision ranging from 0 to 1. For example, if 

the precision score has a value of 0.8, which means that 80% of the time the 

predictions are correct. The formula of precision is denoted below. 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

  𝑇𝑃 + 𝐹𝑃
=  

𝑇𝑃

 𝐴𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 (2.2) 

 

where 

TP = number of true positives 

FP = number of false positives 

  

 Whereas, recall is to measure the probability of ground truth objects are 

detected correctly. Recall is also known as sensitivity. The recall of an object 

detector can be calculated using the equation below. 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

  𝑇𝑃 + 𝐹𝑁
=  

𝑇𝑃

 𝐴𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠
 (2.3) 

 

where 

TP = number of true positives 
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FN = number of false negatives 

 

 Therefore, by determining precision and recall it can know that if the 

object detector has low recall, but high precision means that all the predicted 

boxes are correct but a lot of unpredicted ground truth objects (high number of 

false negatives). On the other hand, if the object detector has high recall but low 

precision means that all ground-truth objects are detected however many of the 

detections are incorrect. Besides, an object detector will predict bounding boxes, 

and each bounding box would have an associated confidence score. This 

confidence score is the probability of the object class shown in the respective 

bounding box. Therefore, by setting a threshold of confidence score, the 

detections with a confidence score higher than the threshold are classified as TP, 

whereas lower than the threshold are classified as FP. Hence, with different 

confidence thresholds, different precision and recall can be calculated to 

determine the model’s performance and with the aid of the precision-recall 

curve (PR-curve) as shown in Figure 2.18. In Figure 2.18 each point in the curve 

represents different precision and recall values with a certain confidence value. 

Ideally, a model would maintain high precision with recall increases (Manal El 

Aidouni., 2020). 

 

 

Figure 2.18: PR-curve (Manal El Aidouni., 2020). 

 

 Besides, another way to evaluate an object detection model is to 

calculate the average precision (AP) with the area under the PR-curve (Figure 

2.19).  AP is the precision averaged across all the recall values and has a range 
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of 0 to 1. After understanding AP, since AP is calculated over 1 class category 

only, therefore mean average precision (mAP) comes into place if the dataset 

contains multiple N class categories (Manal El Aidouni., 2020). The mAP 

averages the sum of AP over several N class, which can be denoted as equation 

below. 

 

 

𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 (2.3) 

 

where  

N = number of class categories 

AP = average precision 

 

 

Figure 2.19: Area Under PR-curve (Padilla, R., 2020). 

 

 In MSCOCO object detection challenge, mAP metrics are used to 

evaluate an object detector. Besides, the AP is averaged with 10 different 

confidence thresholds ranging from 0.5 to 0.95 incrementing with 0.05, thus the 

higher the AP score indicated that the localization of objects is better. Also, 

MSCOCO evaluates AP on two different IoU values which are 0.5 and 0.75. 

Lastly, since MSCOCO contains small objects in their dataset, therefore AP is 

also evaluated on different sizes of object, such as APsmall, APmedium, APlarge  (Lin 

et al., 2014).  
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 PASCAL VOC object detection challenge uses PR-curve and AP as 

model evaluation metrics. The AP is calculated with a 0.5 IoU threshold only 

(Everingham et al., 2006). 

 

2.2.6 Summary 

In summary, object detection is a process of object localization and 

classification. Due to the rise of deep learning, object detection had improved 

drastically compared to traditional object detection. Object detection with deep 

learning does not require any handcraft features but instead using a deep 

convolutional neural network as a feature extractor.  Some of the existing deep 

CNN such as VGG16 and ResNet, and also lightweight CNN especially for 

mobile applications such as MobileNet and MobileNetV2 have been widely 

used by researchers. Besides that, by combining a detection network such as 

RCNN, YOLO, SSD with CNN, an object detector is made. Unfortunately, 

these deep neural networks require large datasets to train in order to achieve 

good performance in the detection task. Due to limited dataset on medical 

imaging, researchers use existing deep neural network model which pre-trained 

on large dataset and perform fine-tuning or transfer learning to train the network 

base on their requirements. Once a model is trained, it is necessary to evaluate 

the model and take a look at the performance. Some existing object detection 

benchmarks were introduced because it has been widely used by researchers. 

 

2.3 Application of Deep Learning in Skin Lesions Classification and 

Detection 

Due to the rising trend of deep learning, many researchers take advantage of 

deep learning to perform skin lesion classification and detection. Especially a 

lot of researchers contribute to skin lesion classification tasks. They train on 

different CNN models with different skin lesion dataset. The classification 

task is found commonly base on classifying between malignant and benign 

skin lesions. The accuracy metric has been used to evaluate the models, which 

is defined as the correct predictions over all predictions. From Table 2.10, 

some researchers (Al-Masni, Kim and Kim, 2020; Hosny, Kassem and Foaud, 

2019; Romero-Lopez et al., 2017) use the existing CNN model to fine-tune or 

transfer learning. However, some others create their own CNN model (Albahar, 
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2019; Nasr-Esfahani et al., 2016), or customize on existing CNN model 

meanwhile transfer its parameters to create a new model (Harangi, 2018; 

Adegun and Viriri, 2020). Among them, Hosny et al. (2019) achieve the highest 

accuracy with 95.91% by fine-tuning AlexNet. 

 

Table 2.10: Summarized Works for Malignant Vs Benign Skin Lesion 

Classification. 

Authors Dataset Model  Accuracy 

Al-Masni et al. (2020) ISIC 2017 InceptionV3 

ResNet-50 

Inception-ResNetV2 

DenseNet-201 

77.04% 

79.95% 

81.79% 

81.27% 

Nasr-Esfahani et al. 

(2016) 

Med-Node CNN from scratch  81% 

Harangi (2018) ISIC 2017 Customized CNN 89% 

Adegun and Viriri 

(2020) 

ISIC 2017 

PH2 

Customized CNN 95% 

95% 

Albahar (2019) ISIC 2017 CNN from scratch  94.94% 

Hosny et al. (2019) ISIC 2017 AlexNet 95.91% 

Romero-Lopez et al. 

(2017) 

ISIC 2016 VGGNet 81.33% 

  

 Since the main focus of this project is about skin lesion localization and 

classification, only one literature that did a similar project has been found. Taqi 

et al. (2019) use object detection with deep learning to localize and classify skin 

lesions. However, the classification task is only performed between skin lesions 

and background. The authors use ISIC 2018 dataset to train and perform transfer 

learning on existing pre-trained SSD-MobileNet model which MobileNet as the 

backbone for feature extraction, SSD as the object detector for bounding box 

prediction and classification. They presented very convincing results on 
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detecting skin lesions from images with a detection accuracy of 99% in model 

testing and 96% of mAP during model training. The authors use a platform 

called TensorFlow Object Detection API to train and evaluate the model. Figure 

2.20 shows the general flow of using TensorFlow Object Detection API. 

 

 

Figure 2.20: General Flow of Using TensorFlow Object Detection API (Taqi et 

al., 2019). 

 

 On the other hand, some similarities have found regarding the skin lesion 

dataset used among all literature stated above. Most of them using the ISIC 

dataset, while some using PH2 or Med-Node dataset. ISIC 2017 dataset contains 

3 types of skin lesions which are benign skin lesion, melanoma, and seborrheic 

keratosis (benign), about 2000 images for training, 150 images for validation, 

and 600 images for testing. Whereas ISIC 2016 only contains 2 types of skin 

lesions which are benign skin lesion and melanoma, about 900 images for model 

training, 379 images for model testing (Al-Masni, Kim and Kim, 2020).  PH2 

dataset contains 3 types of skin lesions which are benign nevi, atypical nevi, and 

melanoma, about 200 images in the dataset (Mendonca et al., 2013). The Med-

Node dataset contains 2 types of skin lesion which are benign nevi and 

melanoma, about 170 images only in the dataset (Giotis et al., 2015). 

 In summary, a lot of researchers contribute to skin lesions classification 

but not detection (localization and classification). However only Taqi et al. 

(2019) using object detection with deep learning to perform skin lesions 

detection. Fortunately, they had done complete documentation on the steps of 



36 

approach. Besides, ISIC skin lesions dataset has been widely used by a lot of 

researchers since it provided more data images compared to PH2 and Med-Node. 

 

2.4 Deep Learning in Mobile Application 

Due to the rise of deep learning technologies nowadays, it enables a lot of 

mobile applications. There are several advantages of deep learning implemented 

on mobile devices including low communication bandwidth, quick response 

time, data privacy, and most importantly is to ease life. To deploy a deep 

learning model into mobile devices, some existing platforms enable you to train 

a mobile suitable model such as TensorFlow Lite, Caffe2, CoreML (Deng, 

2019). 

 TensorFlow Lite is a lightweight version of TensorFlow which 

developed by Google which is an open-source tool that allows anyone to 

perform model training and deployment on a computer using Python 

programming language. TensorFlow Lite architecture allows deployment from 

computers to mobile devices and there is an easy process to bring TensorFlow 

model to mobile devices just by converting the original TensorFlow model into 

TensorFlow Lite (TensorFlow, 2020). Caffe2 was developed by Facebook 

company, it is a lightweight, modular, and also scalable deep learning 

framework. It provides cross-platform libraries for mobile devices deployment. 

Besides, Caffe2 models are extremely lightweight which can under 1MB of size. 

CoreML was developed by Apple company, and it is available on IOS operating 

system only. It can automatically minimize memory usage and power 

consumption on iPhone. Besides, models that are built using TensorFlow or 

Caffe can be converted into CoreML format in just a few lines of code (Deng, 

2019). However, according to Ignatov et al. (2019), the easiest way to use deep 

learning on a mobile phone is TensorFlow Lite because it provides better 

performance, smaller size, and less requirement. To use TensorFlow Lite model, 

the trained model is required to convert into ‘.tflite’ format for further 

implementation. Whereas other platforms such as Caffe2 are much less popular 

and very few problem descriptions and tutorials (Ignatov et al., 2019). 

 According to Deng (2019), there are a lot of deep learning models that 

have made to the public and enable everyone to develop mobile deep learning 

applications. For example, TensorFlow Model Zoo provides various pre-trained 
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models such as ResNet, MobileNet, VGGNet and more. Besides that, it also 

provides some of the object detection models such as SSD MobileNet, Faster-

RCNN ResNet and others. Furthermore, the author has compared some deep 

learning models in terms of accuracy, model size, and execution time on iPhone 

7 (Table 2.11). The results in Table 2.11 have shown MobileNet has the least 

model size and execution time however the classification accuracy is below 

InceptionV3 and ResNet50.  

 

Table 2.11: Benchmark Image Classification Model Performance on iPhone 7 

(Deng, 2019). 

Model 

Architecture 

Accuracy Model Size 

(MB) 

Execution time 

(ms) 

VGG16 71 553 208 

Inception V3 78 95 90 

ResNet50 75 103 64 

MobileNet 71 17 32 

 

 Due to a large variety of mobile phones nowadays in terms of processing 

speed and memory, not every deep learning models are suitable to deploy on 

mobile phones (Ignatov et al., 2019). Therefore, to effectively integrate deep 

learning with mobile applications, it is necessary to choose a model with low 

computational cost which in this case MobileNet architecture (Section 2.2.2.3) 

has the stated potential. Some existing works of literature use MobileNet deep 

learning model to perform classification and object detection on mobile phones. 

For example, Taqi et al., (2019) trained SSD-MobileNet with TensorFlow 

object detection API to perform skin lesion detection on Samsung Galaxy S6 

mobile phone.  

 

2.5 Summary 

In summary, importance of early detection of skin cancer cannot be 

underestimated. To replace the conventional method of skin cancer early 

detection, researchers suggest the development of new technology to support 

this area. However, due to the rise of deep learning on recent years, the 

performance of object detection shows great improvement. Train a high 
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accuracy and lightweight architecture object detection deep learning model such 

as SSD MobileNet V2 then integrated into mobile application could be the 

possible method. 
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3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

The general project workflow is summarized in a flowchart figure below (Figure 

3.1). This project uses TensorFlow Object Detection API to train object 

detection model and Android Studio platform for mobile application 

development. 

 

Figure 3.1: Project Flowchart. 
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3.2 Selection of Object Detection Model 

Theoretically, SSD MobileNet model became the first choice for this project 

after literature studies. However, some comparison will be made across various 

models to proof the reliability of this choice. For object detection network, the 

two highest accuracy networks which came across in literature review are 

chosen, they are SSD and Faster-RCNN. For feature extraction network, a fast 

detection speed with moderate accuracy network MobileNet (V1 and V2) and a 

slow detection speed with high accuracy ResNet are chosen. Therefore, 

comparison will be made between SSD MobileNet V1, SSD Mobilenet V2, and 

Faster-RCNN ResNet in terms of detection speed, mAP, and model size. 

All selected networks will perform transfer learning with their respective 

pre-trained models on the same dataset. GitHub (2020) website provided these 

various pre-trained object detection models on the MSCOCO dataset for 

TensorFlow users. Some object detection models details are provided on the 

website (Table 3.1). 

 

Table 3.1: Pre-Trained Object Detection Model Online (GitHub., 2020) 

Model name Speed 

(ms) 

COCO 

mAP 

Outputs 

ssd_mobilenet_v1_coco 30 21 Boxes 

ssd_mobilenet_v2_coco 31 22 Boxes 

ssd_inception_v2_coco 42 24 Boxes 

faster_rcnn_inception_v2_coco 58 28 Boxes 

faster_rcnn_resnet50_coco 89 30 Boxes 

faster_rcnn_resnet101_coco 106 32 Boxes 

 

 After downloaded and extract the pre-trained model file, inside contains 

various sub-files (Figure 3.2). ‘model.ckpt’ is the model parameters data files 

which trained on MSCOCO dataset. The ‘pipeline.config’ file defines the 

models, which contains all the details about the what model will be trained, what 

parameters should be used to train the model parameters, what set of metrics 

will be used to evaluate the model, and also the input dataset path for the model 

to train on. 

http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_coco_2018_03_29.tar.gz
http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet50_coco_2018_01_28.tar.gz
http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_2018_01_28.tar.gz


41 

 

Figure 3.2: Pre-trained Model Files. 

 

3.3 Selection of Skin Lesions Dataset  

Various researchers selected ISIC skin lesions dataset to perform classification 

(Al-Masni, Kim and Kim, 2020; Harangi, 2018; Adegun and Viriri, 2020; 

Albahar, 2019; Hosny, Kassem and Foaud, 2019; Romero-Lopez et al., 2017) 

and object detection (Taqi et al., 2019), especially on benign and malignant skin 

lesions. Fanconi (2020) provides a malignant and benign skin lesion dataset 

which arranged from ISIC website to address the imbalance number between 

malignant skin lesions images (2286) and benign skin lesions images (19373) 

because imbalance class dataset deteriorates the performance of a model 

(Mazurowski et al., 2008). Therefore, dataset provided by Fanconi (2020) is 

used in this project, 800 images of skin lesions in the training set, 200 images 

in the testing set. All images scaled to the same 224 x 224 dimension. 

Figure 3.3 and Figure 3.4 show an example of benign and malignant skin lesions 

image respectively from the dataset. 

 

 

Figure 3.3: Benign Skin Lesion. 
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Figure 3.4: Malignant Skin Lesion. 

 

3.4 Selection of Evaluation Metrics 

Some evaluation metrics can be selected from an existing object detection 

challenge such as MSCOCO or PASCAL VOC. Various researchers reviewed 

these metric and applied them in their research especially MSCOCO metrics 

(Ren et al., 2017; Pathak, Pandey and Rautaray, 2018; Liu et al., 2016; Goyal et 

al., 2018; Huang et al., 2017; Wu, Sahoo and Hoi, 2020; Girshick, 2015). 

Comparing these metrics, MSCOCO challenge uses AP metric that calculates 

over 10 different IoU thresholds which from 0.5 to 0.95 incrementing with 0.05. 

Then, calculate mAP with the average of these 10 AP. Additionally, MSCOCO 

evaluates the object detection model on AP in a distinct object dimension for 

small, medium, and large. However, PASCAL VOC challenge calculates mAP 

and AP over 0.5 IoU threshold. Furthermore, the selected dataset does not 

contain extremely small or large object in the images, hence, some metrics in 

MSCOCO are redundant and might cause false evaluation on model’s 

performance. Therefore, PASCAL VOC metrics is used to evaluate the model 

performance in this project. 

 

3.5 TensorFlow Object Detection API  

In this project, using Tensorflow Object Detection API is the method to train 

and evaluate object detection model. To train an object detector more efficiently, 

it is necessary to prepare an organized workspace where all the required files 

will be saved into a sub-folder. For example, in Figure 3.5 creates a main folder 

or workspace called ‘training_demo’. Inside the main folder, creates various 

sub-folders such as ‘annotations’, ‘images’, ‘pre-trained model’, and ‘training’. 
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The annotation folder will store all the dataset label files for example ‘.csv’ and 

‘.record’ files. Images folder will store all the dataset images, and the dataset 

shall split into test set folder and train set folder. Besides that, the pre-trained 

model folder will store the selected model. Whereas training folder storing 

‘.config’ and ‘.pbtxt’ files. 

  

 

Figure 3.5: Workspace Example. 

 

3.5.1 Dataset Preparation 

To train an object detection model, all the images require its bounding box and 

class label (Taqi et al., 2019). The bounding box specifies the location of the 

skin lesions and the class specifies the type of skin lesions, in this case only two 

classes, benign and malignant are used. Using ‘LabelImg’ software 

(tzutalin/labelImg, 2020) able to generate bounding box and class label of an 

image into object detection label file (Figure 3.6). All the label detail such as 

bounding box coordinate and image class would be saving with ‘.xml’ format 

into the images test or train folder (Section 3.4.1) depends on which set of 

images are labelling (Figure 3.7).  
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Figure 3.6: Labelimg Software. 

 

 

Figure 3.7: Label Detail Saved as ‘.xml’ Format. 

 

 Once all data images are labeled and saved into ‘.xml’ format (Section 

3.3), all the XML files are required to convert into ‘.csv’ file to combine all 

XML files. TensorFlow Object Detection API provides a Python script called 

‘xml to csv.py’ to perform the conversion. Then, two CSV files for train set and 

test set images will be generated at the annotation folder.  

 Once the CSV files are generated, the next step is to convert the CSV 

files into TensorFlow application readable file called ‘TFrecords’. TensorFlow 

Object Detection API provides a conversion script written in Python to its user. 

To convert the CSV files of both train set and test set to TFrecords files, run the 

script in windows command prompt and further pass in the path of the CSV files 

and the output path which refers to the annotation folder will do. Therefore, all 
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information about the dataset such as image path, bounding box coordinate, 

image class are saved in TFrecords (.record) format.  

 Besides, TensorFlow Object Detection API requires a label map that 

maps each detection classes into an integer number. This file will be used during 

the training model process. In this case, the label map files will map two classes 

which are benign and malignant (Figure 3.8). Then, this file will be saved into 

the annotation folder with ‘.pbtxt’ format. 

 Lastly, the annotation folder should contain these files as shown in 

Figure 3.9. 

 

 

Figure 3.8: Label Map. 

 

  

 

Figure 3.9: Necessary Files in Annotation Folder. 

 

3.5.2 Configure Pipeline and Model Preparation 

The next step requires to configure the pipeline of the model. Open the 

‘pipeline.config’ as shown in Figure 3.1, then edit some of the content such as 

the number of classes, type of feature extractor, fine-tune checkpoint file path, 
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TFrecord file path for train set, label map file path, TFrecord file path for test 

set, evaluation metrics, and the number of training steps. 

 

3.5.3 Model Training 

To train a model, TensorFlow Object Detection API provides a training Python 

script called ‘train.py’ to allow users to train their model in one command line 

without writing the script from scratch. Figure 3.10 shows the command line 

input in windows command prompt to run the Python script. The command line 

passes in the path of the training folder to save the model into the folder once 

the training process finished. Also, the model configuration file is required. 

Once the training started, the command window will show training loss with 

each training step, the lower the training loss the better the model training 

performance. The model should be trained until the training loss reaches 

saturated.  

 

 

Figure 3.10: Model Training Command Line. 

 

3.5.4 Model Evaluation 

Once the model is trained, evaluation will be performed to observe the model’s 

performance on test set images with trained checkpoint. The evaluation metrics 

is PASCAL VOC metrics (Figure 3.11) which consist of mAP, and PR-curve 

(0.5 IoU). TensorFlow Object Detection API also provides a Python script 

called ‘eval.py’ to evaluate the model. The evaluation process generally similar 

to training process, run the script in windows command prompt and enter the 

command line shows in Figure 3.12.  

 

 

Figure 3.11: Configure Evaluation Metrics in The Pipeline Configuration File. 
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Figure 3.12: Model Evaluation Command Line. 

 

3.5.5 Tensorboard 

Tensorboard allows users to observe training and evaluation info. To monitor 

the training and evaluation process, run a command line in windows command 

prompt to activate Tensorboard (Figure 3.13), then an IP address will be output 

for the user to access via an internet browser. The Tensorboard will then read a 

log file inside the training folder or evaluation folder and display all the 

information as shown in Figure 3.14 example. Evaluation metrics mAP and PR-

curve obtained from Tensorboard. 

 

 

Figure 3.13: Tensorboard Activation Command Line. 

 

 

Figure 3.14: Tensorboard Interface. 

 

3.5.6 Convert TensorFlow Lite Model 

After the object detection is trained to a satisfactory level, to deploy this model 

in a mobile application, it requires to convert into TensorFlow Lite model. The 

trained model requires to export into a frozen inference graph for TensorFlow 
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Lite, TensorFlow Object Detection API provides a conversion Python script 

called ‘export_tflit_ssd_graph.py’ to its user, this script only supports the 

conversion with SSD object detector model. Figure 3.15 shows an example of 

running the script in windows command prompt and some necessary 

information to pass in.  Then, a ‘.pb’ model file will be generated in the specified 

output directory (Tanner, 2020). 

 

 

Figure 3.15: Export Inference Graph Command Line. 

 

 To generate a TensorFlow Lite model, Figure 3.16 shows an example of 

running a conversion method provided by TensorFlow. The inference graph 

generated previously is required to pass into the command line. The output file 

will be saved in ‘.tflite’ format which refers to TensorFlow Lite model (Tanner, 

2020). 

 

 

Figure 3.16: Convert Model into Tensorflow Lite Command Line (Tanner, 

2020). 

 

3.6 Mobile Application Development 

For mobile application development, Android Studio platform with JAVA 

programming language will be used. Android Studio is limited to Android 

mobile application development only. Once the development process is 

complete, the application file can be export into ‘.apk’ file which able to install 

in every Android smartphone (Verma, Kansal and Malvi, 2018). Figure 3.17 

shows the process of android mobile application development.  
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Figure 3.17: General Process to Build an Android Application (Verma, Kansal 

and Malvi, 2018). 

 

3.6.1 Integration of TensorFlow Lite Model 

To integrate the trained model into mobile application, Firebase ML Kit will be 

use. Firebase ML Kit supports any Tensorflow Lite model using its model 

interpreter API. To use Firebase ML Kit in Android application, simply adding 

Firebase ML Kit library into Android application dependencies (Figure 3.18). 

 

 

Figure 3.18: Code of Adding Firebase ML Kit Library into Android 

Dependencies. 

 

 Then, create a Tensorflow Lite model interpreter by passing the ‘.tflite’ 

model file path in the Android assets folder into the API. Next, specify the input 

dimension and the output dimension of the model using the API. Lastly, run the 

model using the created interpreter by passing in the input image. 
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 In order to match incoming input image with model input dimension, the 

image must pre-process with downscaling to 224 x 224 dimension, and 

normalize input image 8-bit RGB value from range [0,255] into range [-1,1] 

using the formula (3.1) below which according to the original normalization 

method from TensorFlow. 

 

 
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 𝑅𝐺𝐵 = 𝑅𝐺𝐵 𝑣𝑎𝑙𝑢𝑒 × (

2

255
) − 1 (3.1) 

  

 After the image is scaled and normalized, the image will pass into the 

interpreter for inference. Once the inference is successfully, it is required to 

process the generated outputs which are bounding box, confidence score, and 

predicted class. Generally, the bounding box of a prediction will be encoded in 

a normalized 4 elements array as shown in equation (3.2) below. 

 

 [
𝑦𝑡𝑜𝑝

𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡
,

𝑥𝑙𝑒𝑓𝑡

𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ
,

𝑦𝑏𝑜𝑡𝑡𝑜𝑚

𝑖𝑚𝑎𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡
,

𝑥𝑟𝑖𝑔ℎ𝑡

𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ
] (3.2) 

 

 

where: 

ytop = top y-coordinate of bounding box 

xleft = left x-coordinate of bounding box 

ybottom = bottom y-coordinate of bounding box 

xright = right x-coordinate of bounding box 

 

 Therefore, to obtain the exact bounding box coordinate, every element 

in the array requires to be extracted and denormalized by multiplying image 

width and height. Using these exact coordinates will able to draw and display a 

correct bounding box on the image. 

 Besides that, for predicted class, the output class value will be encoded 

into 0 and 1 which are malignant and benign class respectively. By simply 

creating a reference for the encoded value with the exact class name will obtain 

the predicted class name. For confidence score of the prediction, it returns a 

normalized value ranging from 0 to 1. Multiply the value with 100% will get 

the exact percentage confidence score. 
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3.6.2 Mobile Application Functionalities 

Functionalities of the mobile application will include a main activity which 

displays image, predicted result and some buttons such as run inference button, 

setting button, and document button. Also, a camera activity with flash light on 

to capture skin lesions with constant brightness at the same time automatically 

crop out region of interest from image. The purpose of this concept is to simulate 

a normal dermatoscope (cost nearly RM 1200) for example Figure 3.18 below, 

which commonly used by dermatologist. Moreover, it ensures the image similar 

to the train image which reduce the background noises. Figure 3.19 below shows 

that concept of automatic crop feature of the camera activity. 

 

 

Figure 3.19: Normal Dermatoscope in Market. 

 

 

Figure 3.20: Camera Activity Auto Crop Concept to Simulate Dermatoscope.
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 In camera activity, users require to capture the lesions inside the center 

circle for auto cropping. Once the image captured, the region of interest will be 

slice out from the image, anything outside the circle will be discarded. Besides 

camera activity, add image from phone gallery function is an alternative method 

to perform inference. If user choose to add image from gallery, additional crop 

function will prompt user to crop out region of interest from the image. Once 

image added or captured, a button will need to prompt user to run inference on 

the image including drawing bounding box around lesions and display 

confidence, and class value on the image. On the other hand, a setting function 

enable user to adjust confidence threshold to show predicted result. Lastly, a 

documentation function will display ABCDE criteria with proper illustration for 

users to refer if manual detection is preferred and to overcome the public 

misunderstanding issue of ABCDE criteria mentioned by Tsao et al. (2015). All 

functionality activities are summarized into: 

(i) Main Activity (display image and an inference button). 

(ii) Camera Activity with flash light on and auto crop. 

(iii) Crop Image Activity (if add image from gallery). 

(iv) Setting Activity. 

(v) Document Activity. 

 Moreover, a save image button will also require ensuring the user able 

to save the predicted image. Also, an edit button will require if user choose crop 

image activity to allow user to re-crop the image without re-select image from 

gallery. 

 

3.6.3 Mobile Application Compatibility Test and Inference Time Tracing 

The development of the mobile application mainly focuses on Android version 

6.0 onwards. Besides, multiple dimension design layout will be created to tackle 

different screen sizes of Android smartphones however it should not able to 

support extremely large or small screen sizes. Also, the overall mobile 

application size should not exceed 50MB to maintain lightweight. 

 To test the compatibility of the application, Firebase Test Lab will be 

used. Firebase Test Lab is a cloud-based platform to test applications running 

on Android. It enables users to test applications across many types of devices 
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and Android versions. It will automatically run the app, searching for crashes 

and bugs (Khawas and Shah, 2018). The complete application will be tested 

with 7 various screen sizes and Android version. If any application crashes occur 

during the test, the application would not be able to pass the test for that specific 

device.  

 Besides that, inference time of object detection model on the mobile 

application will be traced using Firebase Performance library. Adding Firebase 

Performance library in the mobile application allows to trace the running time 

for a part of the code by inserting start and stop trace function provided by the 

library. Since the model will be optimized to TensorFlow Lite model, the 

inference time should not exceed 1 seconds or more. 

 

3.7 Summary 

In summary, this chapter explains the project workflow thoroughly. The 

methods of approach are shown in detail. To develop a mobile application to 

detect skin lesions, the workflow can be summarized into dataset preparation, 

model training and evaluation, mobile application development, mobile 

application compatibility testing, and inference time tracing.  
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4 RESULTS AND DISCUSSION 

 

4.1 Introduction 

In this chapter, the result of object detection models and mobile application will 

be discussed. In section 4.2 a comparison of various object detection models 

and validation of the selected model with existing classification model will be 

discussed. Section 4.3 discusses about the result of mobile application 

development. 

 

4.2 Object Detection Models Comparison 

In this section, three object detection model SSD MobileNet V1, SSD 

MobileNet V2, and Faster-RCNN ResNet will be compared in terms of their 

mAP, inference time on a single image, model size, and PR-curve after training. 

All models are trained using the same dataset and evaluation PASCAL VOC 

metrics, however different in training step because training process can be 

terminated once Training Loss does not show any improvement. Data of 

evaluation mAP and PR-curve are obtained from Tensorboard whereas 

inference time on single image data obtained from self-written python script. 

Table 4.1 below shows the respective results from three models. Figure 4.1 

shows the PR-curves of three models for benign and malignant skin lesion 

classes. 

 

Table 4.1: Object Detection Models Comparison in terms of mAP, Inference 

time, and Model Size. 

Model mAP Inference time (single 

image) 

Model Size 

SSD MobileNet V1 92.89% 1.91s 22 MB 

SSD MobileNet V2 93.99% 1.79s 18 MB 

Faster-RCNN 

ResNet 

95.29% 14.53s 112 MB 
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        (a) 

 

 

        (b) 

 

Figure 4.1: (a) PR-curve of three models for malignant skin lesion class. (b) PR-

curve of three models for benign skin lesion class. 

  

 From the result (Table 4.1), no doubt that Faster-RCNN ResNet obtains 

the highest score in mAP. According to Bianco et al. (2018) benchmark analysis 

of feature extraction network and Zhao et al. (2019) reviews of object detection 

network, Faster-RCNN object detector, and ResNet feature extraction network 
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give higher localization and classification accuracy compared to the others. This 

high accuracy achievement from Faster-RCNN ResNet has traded off on its 

inference speed of 14.53 seconds with one single image on a computer. 

Compare to SSD MobileNet V1 and V2, Faster-RCNN ResNet has a relatively 

slower inference speed, due to the number of parameters, multiplication and 

addition operation much higher within ResNet feature extractor (Reddy, Rattani 

and Derakhshani, 2018). This reason also leads to higher model size of 112 MB 

for Faster-RCNN ResNet model.  

 Meanwhile comparing SSD MobileNet V1 and V2 model, SSD 

MobileNet V2 shows more advantages than SSD MobileNet V1 in terms of all 

the data due to MobileNet V2 has some improvement from the MobileNet V1 

version with network architecture changes. These changes decrease the number 

of parameters, multiplication, and addition operation in MobileNet V2 at the 

same time improve its accuracy.  

 According to Bränström et al. (2002), some degree of overdiagnosis of 

benign skin lesions is better than any degree of under-diagnosis of malignant 

skin lesions after they experimented with layperson’s ability to differentiate 

between these two types of skin lesions. This refers that a benign skin lesion 

predicted as a malignant class can be acceptable, but not encourage for a 

malignant skin lesion predicted as a benign class. By following this idea, recalls 

more important than precisions for malignant class, and precisions more 

important than recalls for benign class in PR-curve. Figure 4.1 (a) shows that 

three models have the same recalls of 1 in predicting malignant skin lesions. In 

this case, precision becomes the priority of performance measuring for 

malignant class. At recalls close to 1 in Figure 4.1 (a) SSD MobileNet V2 has 

the highest precision among all the other models, whereas Faster-RCNN ResNet 

has higher precision than SSD MobileNet V1. From Figure 4.1 (b), Faster-

RCNN has the highest precision among other models. Besides that, SSD 

MobileNet V2 precision is higher than the V1 model. A clearer comparison on 

the PR-curve can be summarized by taking the area under the PR-curve, also 

known as Average Precision shown in Table 4.2 below. 
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Table 4.2: Area Under PR-curve (Average Precision) for Benign and Malignant 

Class of Three Models. 

 Predicting Class 

Models Benign Class Malignant Class 

SSD MobileNet V1 90.06% 95.73% 

SSD MobileNet V2 91.67% 96.30% 

Faster-RCNN ResNet 94.92% 95.66% 

 

From the analysis above, Faster-RCNN has the top accuracy however 

bad in inference speed and model size. SSD MobileNet V2 rank on the second 

regarding accuracy but possess highest inference speed and smallest model size. 

To choose from these two models, since finding a lightweight and fast inference 

speed model is one of the objectives in this project, this experimental 

comparison matches the findings in Chapter 2 which proves that the pre-chosen 

model SSD MobileNet V2 during studies was more suitable for mobile phone 

implementation. 

 

4.2.1 Model Validation 

In this section, trained SSD MobileNet V2 model will be compared with an 

existing model from a researcher. Since no existing object detection model 

related to this project, an existing high accuracy ResNet50 classification model 

is obtained from Fanconi (2020) on Kaggle website. This existing model is also 

trained with the same dataset however training set contains 2637 images. Due 

to this reason, only Accuracy metric and Confusion Matrix could use to compare 

performance between an object detection model and classification model. A 

Confusion Matrix is a table with True Positive, True Negative, False Positive, 

False Negative value recorded. The accuracy is as stated in Equation 4.1. 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 × 100% (4.1) 

 

where: 

TP = True Positive 

TN = True Negative 
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FP = False Positive 

FN = False Negative 

 

 Besides, another dataset which contains dimension resolution 224 x 224 

pixels of 50 benign and 50 malignant skin lesions images is selected from ISIC 

archive website for validation. The validation results are generated using self-

written Python script by running inference on the validation dataset with both 

models. The Confusion Matrix for both models are shown in Figure 4.2. 

 

        (a) 

 

        (b) 

 

 

Figure 4.2: Confusion Matrix for (a) SSD MobileNet V2 object detection model, 

(b) ResNet50 classification model. 
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Table 4.3: Accuracy of SSD MobileNet V2 object detection model and 

ResNet50 classification model using a new validation dataset. 

Model Accuracy 

SSD MobileNet V2 96% 

ResNet50 84% 

 

 Figure 4.2 (a) shows that SSD MobileNet V2 has none false predict 

benign skin lesions as malignant, however has 4 malignant skin lesions 

predicted as benign. On the other hand, in Figure 4.2 (b) classification ResNet50 

model has 10 false predict on benign skin lesions as malignant class, and 6 

malignant skin lesions predicted as benign. From these values, Accuracy is 

calculated as shown in Table 4.3. It shows that SSD MobileNet V2 has higher 

accuracy than classification ResNet50 model on this validation dataset. 

 From analysis above, the performance of SSD MobileNet V2 in this 

project surpasses the existing model provided by the researcher. However, the 

generalization of the current model on this detection task has not yet been 

proven since it does not undergo any proper clinical assessment. 

  

4.3 Mobile Application Result 

In this section, the screenshots on the graphical user interface of various 

functions of the mobile application are presented and discussed. The screenshots 

include all the activities such as: 

(i) Main Activity (display image and an inference button). 

(ii) Camera Activity with flashlight on and auto-crop. 

(iii) Crop Image Activity (if add image from gallery). 

(iv) Setting Activity  

(v) Document Activity 
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4.3.1 Main, Setting, Document Activities 

Figure 4.3 shows the screenshots of Main, Setting, and Document activities and 

their respective invoke button especially Setting and Document activity. 

 

 

Figure 4.3: Main, Setting, and Document Activities. 

 

 Figure 4.3 above shows that Setting activity can be invoking from the 

gear icon at the top left corner of the Main activity. In the Setting activity, users 

allow to adjust the confidence threshold of prediction with a seek bar, and able 

to switch whether to display the prediction which has highest confidence. On 

the other hand, the Document activity can be invoked from the document icon 

at the top right corner of the Main activity. The Document activity consists of a 

scrollable instruction with proper illustration of ABCDE self-detection criteria 

for the user to refer.  
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4.3.2 Crop Image and Camera Activities 

In this section, interface of Crop Image and Camera activities is shown and 

discussed. Besides that, the flow of using these two activities to perform 

inference on an image is discussed as well.  

 To add an image for inference, users will be prompted with an intent 

chooser dialog to select either capture image with camera auto crop or choose 

an image from gallery to crop region of interest. Figure 4.4 below shows the 

action flow as stated above. 

 

 

Figure 4.4: Action Flow for Camera and Crop Image Activity. 
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 As shown in Figure 4.4, the users are required to tap on the center frame 

located at Main activity to invoke the chooser dialog. If the users intend to use  

the camera to capture a picture of skin lesions, they can tap on the camera button 

on the dialog to invoke the Camera activity. In Camera activity, to ensure the 

captured image automatically crop out the region of interest, the users will be 

required to place the lesion inside the circle. Besides that, the users are able to 

tap on the screen to ensure the image is well focus and clear. 

 On the other hand, if the users intend to add an image from the gallery, 

they can tap on the gallery button to invoke an image selection. Once the image 

is selected, the users will be prompted with a region of interest crop to crop out 

the lesion from the selected image. 

 

4.3.3  Object Detection Model Integration and Inference 

The trained SSD MobileNet V2 object detection model is converted into 

TensorFlow Lite model and successfully integrated into the mobile application. 

A TensorFlow Lite interpreter is created using Firebase ML Kit. 

 Once the image is cropped or captured, the application will exit from the 

previous activity and return to Main activity to perform preprocessing 

(downscaling and normalization) and inference on the image with the integrated 

model. The inference process includes passing image into interpreter, run 

inference, draw bounding box and display info on the image. Figure 4.5 below 

shows the action flow to perform inference in the mobile application.  

 

(a)  
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(b) 

 

Figure 4.5: Action Flow of Inference (a) if Image Captured from Camera (b) if 

an Image is being Added from the Gallery. 

 

 From Figure 4.5, notice that both (a) and (b) looks similar, however, if 

the user previously captures an image from camera, the edit button at the bottom 

left corner of the center frame will not show up since the image already 

automatically cropped. If the user previously crops and add image from gallery, 

the edit button pops up to allow users able to re-crop the image without 

reselecting from gallery. After the tap on the analyze inference button located 

at the bottom of Main activity, the result will show on the image with bounding 

box, class, and confidence value. Lastly, users able to save the predicted image 

using the save button at the bottom right corner of the center frame. 

 

4.3.3 Application Compatibility Test 

After the development, the application exported into ‘.apk’ file. The ‘.apk’ file 

is uploaded to Firebase Test Lab for compatibility test. The test runs through all 

activities and buttons in the application multiple time to ensure every function 

or action compatible with respective Android version. The application tested 

with 7 different smartphones with various Android versions ranging from 6.0 

onwards and screen resolution. The test result is shown in Table 4.4. 
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Table 4.4: Firebase Test Lab Results. 

Smartphone Model Screen 

Resolution 

Android 

Version 

Result 

Motorola G Play 720 x 1280 6.0 Pass 

Huawei Mate 9 1080 x 1920 7.0 Pass 

Nexus 6 1440 x 2560 7.1 Pass 

Lenovo S5 1080 x 2160 8.0 Pass 

Google Pixel 2 XL 1440 x 2880 8.1 Pass 

Motorola One 720 x 1520 9.0 Pass 

Google Pixel 2 1080 x 1920 10.0 Pass 

 

 Table 4.4 above shows that the application passes all the tests without 

any application crash or bugs occur. Every activity in the mobile application has 

been tested on each smartphone. Besides, none of the UI such as buttons or 

shapes in the mobile application overlaps with each other on various screen 

resolutions. 

 

4.3.4 Inference Time and Application Size 

Firebase able traces every inference (include time of drawing bounding box, 

class, and confidence value on image) on a single image and records its time. 

This result can obtain from Firebase console. On the last 30 days, from 1st 

August to 30th August, Firebase already recorded 1300 samples of inference 

time from 4 different physical smartphones. The inference time distribution 

graph is shown in Figure 4.6 below. 

 

 

Figure 4.6: Inference Time Distribution of 1300 samples collected for the past 

30 days. 
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 Figure 4.6 shows that average inference time falls around 359ms, with 

maximum value of 586ms and minimum value of 286ms, which is surprisingly 

fast. The result is excitingly lower than the preset 1 seconds in Chapter 3. 

Besides that, the inference time showing much lower than the inference time on 

a computer. One possible reason might be due to the trained model already been 

converted into a smartphone-optimized model (TensorFlow Lite). Hence, this 

proves that the integration of TensorFlow Lite object detection model in the 

mobile application will not cause any computation burden to a smartphone. 

 For application size, the finalized application size 30.31MB, which does 

not exceed the preset 50MB in Chapter 3. This proves that a mobile application 

with a smartphone suitable object detection model will not occupy too much 

spaces in a smartphone storage. 

 

4.4 Summary 

In summary, the model selection result tally with the previous literature findings 

on object detection model selection, in other words, SSD MobileNet V2 is 

selected due to its lightweight architecture, meanwhile, achieve 93.9% of 

evaluation mAP and lowest detection time among others. The validation result 

also shows that the selected model surpasses other researcher’s classification 

model in terms of accuracy. Besides, the development of mobile application is 

successful and has achieved the stated objectives in this project.   

 In short, this mobile application allows users to detect malignant and 

benign skin lesions using an Android based smartphone which able to replace 

the conventional ABCDE criteria self-detection method. Complete coding and 

system including the object detection model of the mobile application in this 

project have been uploaded to GitHub website 

(https://github.com/tanhouren/FYP-skin-lesion-detection-mobile-app) to serve 

as a contribution to skin cancer diagnosis. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this project, it is found that most existing skin lesions diagnosis with deep 

learning technology stops at deep learning modelling, and without any further 

deployment or integration with a readily available device such as smartphone. 

However, the advantage of integrating object detection deep learning 

technology and smartphone in the medical field has been discovered throughout 

the project. This technology is able to provide low-cost diagnosis and without 

require years of skin lesion diagnosis experience. Moreover, users able to 

perform diagnosis at home with a smartphone, therefore can provide point-of-

care to the users from a remote area. 

 Although the process of development is challenging due to the immature 

platform of object detection development (TensorFlow Object Detection API) 

and require experiences for Android application development, the success of 

this project has proven that the development of this technology is feasible and 

should be aware. 

 In short, the objectives of this project have been achieved. Besides using 

ABCDE criteria conventional self-detection method, users able to use 

smartphone to perform self-detection on malignant and benign skin lesions with 

this mobile application. This mobile application supports a wide range of 

Android smartphones and does not occupy huge internal storage of smartphones. 

The integrated object detection model has achieved fast detection time and 

higher accuracy after validating with the existing classification model.  

 

5.2 Recommendations for future work 

The integration of telemedicine technology is highly recommended such that it 

provides interaction between users and dermatologists, for example giving 

advice and extra assessment. Also, dermatologists able to receive predicted 

images from their patients to constantly monitor the condition more effectively. 
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With telemedicine integrated, the system can achieve as a more complete and 

professional skin cancer diagnosis tool. 

 Besides, to obtain more convincing object detection performance, a 

larger dataset for training is required to improve the generalization of the model 

on detecting malignant and benign skin lesions. Besides, some image 

preprocessing methods such as image-denoise or contrast enhancement can be 

applied to emphasize the features of the skin lesions therefore increase model 

accuracy. On the other hand, the functionality of the Camera activity in the 

mobile application should be improved with the aid of real-time detection which 

able to ensure the stability of every generated detection hence improve user 

experience. Also, a reminder function can be implemented to remind users to 

observe or perform detection on suspicious skin lesions periodically since 

malignant skin lesions will evolve in shape over time. 

 Lastly, due to the advantages such as processing capability, and high-

resolution image capture provided by smartphones nowadays, the integration of 

object detection deep learning with smartphone application can be applied not 

only for skin lesions detection. In future, this technology can be applied into 

other medical field with the same detection method developed in this project 

such as foot ulcer detection, ear infection detection, and more to provide 

efficient and low-cost point-of-care diagnosis. 
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APPENDIX A: Coding 

 

 

Figure A-1: Android Studio Coding for Creating TensorFlow Lite Interpreter. 

 

 

Figure A-2: Android Studio Code for Inference. 
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Figure A-2: Android Studio Code for Image Downscaling and Normalization. 

 

 


