

OBJECT LOCALIZATION IN 3D POINT CLOUD

CHUNG HUI SZE

A project report submitted in partial fulfilment of the
requirements for the award of Bachelor of Engineering

(Honours) Biomedical Engineering

Lee Kong Chian Faculty of Engineering and Science
Universiti Tunku Abdul Rahman

May 2020

i

DECLARATION

I hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. I also declare that
it has not been previously and concurrently submitted for any other degree or
award at UTAR or other institutions.

Signature :

Name : Chung Hui Sze

ID No. : 15UEB03715

Date : 16 May 2020

ii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “OBJECT LOCALIZATION IN 3D
POINT CLOUD” was prepared by CHUNG HUI SZE has met the required
standard for submission in partial fulfilment of the requirements for the award
of Bachelor of Engineering (Honours) Biomedical Engineering at Universiti
Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor : Dr. Ng Oon-Ee

Date : 16 May 2020

iii

The copyright of this report belongs to the author under the terms of the
copyright Act 1987 as qualified by Intellectual Property Policy of Universiti
Tunku Abdul Rahman. Due acknowledgement shall always be made of the use
of any material contained in, or derived from, this report.

© 2020, Chung Hui Sze. All right reserved.

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to everyone who had supported me
throughout this project. First, I would like to thank my FYP supervisor, Dr. Ng
Oon-Ee for his invaluable suggestions, advices, practical guidance and patience
which had successfully helped me in completing my final year project. In
addition, I would wish to express my sincere thanks to all my friends and family
for giving me endless support and encouragement throughout this period.

v

ABSTRACT

Object localization in 3D point cloud is one of the most complex yet interesting
applications in computer vision, robotics and autonomous agents. The results of
object localization are often affected by many factors such as the quality of the
point clouds and the sensitivity of the algorithms to the occlusion in the point
clouds.
 This project provides an efficient algorithm that is able to recognize and
localize more than one object from the scene at the same time and is also able
to perform localization of an object which undergoes a transformation. There
are a total of four major steps to perform the object localization in the 3D point
cloud - Scale Invariant Feature Transform (SIFT) keypoint detection to mark
the descriptive points in the cloud, Signature of Histograms of OrienTations
(SHOT) descriptor construction to store the geometrical properties of the
keypoints, feature matching to collect point-to-point correspondences between
the scene and the model and Hough Voting hypotheses generation to construct
a model instance and localize it from the scene. In this project, adjustment of
the parameters in each step was carried out to analyse their effects on the final
localization result. The results obtained from each step based on the parameter
adjustment were analysed and discussed.
 Highly descriptive keypoints were detected by using SIFT detector as
the keypoints were mostly located at the outlines of the point clouds. In the
descriptor construction step particularly, two methods, Point Feature Histogram
(PFH) and Signature of Histograms of OrienTations (SHOT) were compared.
SHOT’s performance was better than PFH as it had a higher efficiency in
computing the descriptors. The high accuracy rate of the feature matching
process indicated that the process was able to generate correct correspondences
between the scene and the model. In the final localization step, with the
adjustment of the parameters, the result shows that this algorithm was able to
correctly localize all input models from the scene point cloud, achieving a 100%
localization accuracy.

vi

TABLE OF CONTENTS

DECLARATION i�
APPROVAL FOR SUBMISSION ii�
ACKNOWLEDGEMENTS iv�
ABSTRACT v�
TABLE OF CONTENTS vi�
LIST OF TABLES ix�
LIST OF FIGURES xi�
LIST OF SYMBOLS / ABBREVIATIONS xv�

CHAPTER

1� INTRODUCTION �

1.1� General Introduction 1�
1.2� Importance of the Study 3�
1.3� Problem Statement 4�
1.4� Aim and Objectives 4�
1.5� Scope and Limitation of the Study 5�
1.6� Contribution of the Study 5�
1.7� Outline of the Report 5�

2� LITERATURE REVIEW �

2.1� Introduction 6�
2.2� 3D Keypoint Detection (Feature Extraction) 6

2.2.1 Fixed-Scale Keypoint Detection 7
2.2.2� Adaptive-Scale Keypoint Detection 8
2.2.3� Summary and Comparison between Fixed-

Scale and Adaptive-Scale Keypoint Detection
Methods 10

2.3� Local Surface Feature Description 11
2.3.1� Histogram-Based Methods 12�
2.3.2� Signature-Based Methods 19�

vii

2.3.3� Summary and Comparison between
Histogram-Based and Signature-Based Local
Surface Feature Description Methods 20

2.4� Surface Matching (Coarse Recognition and
 Localization) 23�

2.4.1� Feature Matching 24�
2.4.2� Summary of Feature Matching 26�
2.4.3� Hypothesis Generation 28�
2.4.4� Summary of Hypothesis Generation 33�

2.5� Fine Localization (Verification) 36
2.5.1� Individual Verification Methods 36�
2.5.2� Global Verification Methods 36�
2.5.3� Summary and Comparison between Local

and Global Verification Methods 37�
2.6� Summary 39�

3� METHODOLOGY AND WORK PLAN �

3.1� Introduction 40�
3.2� Point Cloud Library (PCL) 40�
3.3� Project System Overview 40

3.3.1� Surface Normal Estimation 42�
3.3.2� Keypoint Detection 43�
3.3.3� Descriptor Construction 44�
3.3.4� Feature Matching 46�
3.3.5� Hypotheses Generation 47�

3.4 Project Timeline 49
3.5 Summary 50

4� RESULTS AND DISCUSSION
4.1� Introduction 52
4.2� Dataset 52
4.3� Normal Estimation 52
4.4� Keypoint Detection 56�

4.4.1� Keypoint Quantity and Quality 57�
4.4.2� Keypoint Repeatability 59�

viii

4.4.3� Keypoint Detector's Efficiency / Time
Performance 71

4.5� Descriptor Construction 72�
4.6� Feature Matching 77�
4.7� Hypotheses Generation 78�
4.8� Overall Parameter Set and Final Results 80�
4.9� Summary 82�

5� CONCLUSIONS AND RECOMMENDATIONS �

5.1� Conclusions 83�
5.2� Recommendations for Future Work 83�

REFERENCES 85�

ix

LIST OF TABLES

Table 2.1: Summary of Methods of 3D Keypoint Detection. 10�

Table 2.2: Summary of Methods for Local Surface Feature Description. 21�

Table 2.3: Summary of Methods of Feature Matching. 27�

Table 2.4: Summary of Methods of Hypotheses Generation. 33�

Table 2.5: Summary of Methods of Verification. 38�

Table 4.1: Time Taken for Surface Normal Estimation for Each Point Cloud at
Different k. 55�

Table 4.2: Number of Detected Keypoints for Crocodile, Seal, Basin Models
and Scene Point Cloud at Different Minimum Scale. 58�

Table 4.3: Table of Number of Original and Repeated Keypoints for Input
Crocodile, Seal, Basin Models and Scene Point Clouds at Different
Minimum Scale of Gaussian Scale Space. 60�

Table 4.4: Number of Repeated Keypoints between Input Models and Scene at
Different Minimum Scale. 63�

Table 4.5: Mean Distance and Standard Deviation Between Model and Scene
Point Cloud After Matching at Different Minimum Scale. 64�

Table 4.6: Percentage of Keypoints Within Threshold Between Model and Scene
Point Cloud After Matching at Different Minimum Scale. 65�

Table 4.7: Numbers of Repeated Keypoints between Own Models Point Cloud
Under Different Minimum Scale. 68�

Table 4.8: Percentage of Keypoints Within Threshold for Input Models at
Different Minimum Scale. 68�

Table 4.9: Numbers of Exact Repeated Keypoints and Percentage of Repeated
Keypoints within Threshold between Original and Rotated
Keypoints for Each Model. 70�

Table 4.10: Model’s Keypoint Computation Time at Different Minimum
Scale. 71�

Table 4.11: Comparison of Computational Time for PFH and SHOT
Descriptors at Different Radius for Neighbour Searching. 76�

Table 4.12: Quantity of Original and Correct Correspondences and Accuracy
of Feature Matching from Different Thresholds. 78�

x

Table 4.13: Number of Model Instances Generated from Different
cg_thresh. 79�

Table 4.14: Parameters Set for Each Step in Model Localization. 80

Table 4.15: Dimension of Models Localized from Scene 80

Table 4.16: Parameters Set for Rotated Crocodile Localization. 81�

�

�

xi

LIST OF FIGURES

Figure 1.1: Object Recognition and Localization using Convolutional Neural
Networks (Nicholson, 2019). 2�

Figure 2.1: Detected Keypoints (red dots) (Mian, Bennamoun and Owens,
2010). 10�

Figure 2.2: Oriented Point Basis (Johnson and Hebert, 1999). 13�

Figure 2.3: Histogram of 2D Distribution of Parameters C1 versus C2
(Bielicki and Sitnik, 2013). 14�

Figure 2.4: Building of Reference Object Descriptor (Bielicki and Sitnik,
2013). 14�

Figure 2.5: Histogram Bins that Form 3D Shape Context (Frome, et al., 2004).
 15�

Figure 2.6: Comparison of Recognition Rate between Different Descriptors in
Noise Experiments (Frome, et al., 2004). 16�

Figure 2.7: Comparison of Recognition Rate between Different Descriptors in
Clutter Experiments (Frome, et al., 2004). 16�

Figure 2.8: A Keypoint with Two Least Squares Planes and their Related
Normals for One Support Point on a Local Surface s (Flint, Dick
and Hengel, 2014). 17�

Figure 2.9: Tensor Computation (Mian, Bennamoun and Owens, 2006). 18�

Figure 2.10: (a) Local Coordinate System. (b) Local Fingerprint of the Same
Point from Different Views (Sun and Abidi, 2001). 19�

Figure 2.11: Point Signature (Chua and Jarvis, 1997). 20�

Figure 2.12: Sequence of Matching Two Points using Intrinsic Shape
Signature (Zhong, 2009). 26�

Figure 2.13: Schematic of Scale-Hierarchical Interpretation Tree (Bariya and
Nishino, 2010). 29�

Figure 2.14: Algorithm of RANSAC to extract Shapes in the Point Cloud
(Schnabekl, Wahl and Klein, 2007). 32�

Figure 3.1: Overview of Object Localization in 3D Point Cloud. 41�

Figure 3.2: Flowchart of Object Localization in 3D Point Cloud. 41�

xii

Figure 3.3: Timeline of Second Part of Project. 50�

Figure 4.1: Visualization of Surface Normals for All Point Clouds at k = 2. 54�

Figure 4.2: Visualization of Surface Normals for Crocodile (Top: k = 4;
Bottom: k =10). 54�

Figure 4.3: Visualization of Surface Normals for Seal (Left: k = 4; Right: k =10).
 54�

Figure 4.4: Visualization of Surface Normals for Basin (Left: k = 4; Right: k
=10). 54�

Figure 4.5: Visualization of Surface Normals for Scene (Top: k = 4; Bottom: k
=10). 55�

Figure 4.6: Graph of Models' Surface Normal Computational Time against k
Neighbourhood Size. 55�

Figure 4.7: Visualization of Crocodile’s Detected Keypoints (Left: Min Scale
82; Right: Min Scale 65). 58�

Figure 4.8: Visualization of Seal’s Detected Keypoints (Left: Min Scale 82;
Right: Min Scale 65). 58�

Figure 4.9: Visualization of Basin’s Detected Keypoints (Left: Min Scale 82;
Right: Min Scale 65). 58�

Figure 4.10: Visualization of Scene’s Detected Keypoints (Above: Min Scale
82; Below: Min Scale 65). 59�

Figure 4.11: Graph of Number of Total and Repeated Scene’s Keypoints
against Minimum Scale of SIFT Keypoint Detector. 61�

Figure 4.12: Graph of Number of Total and Repeated Crocodile’s Keypoints
against Minimum Scale of SIFT Keypoint Detector. 61�

Figure 4.13: Graph of Number of Total and Repeated Seal’s Keypoints
against Minimum Scale of SIFT Keypoint Detector. 61�

Figure 4.14: Graph of Number of Total and Repeated Basin’s Keypoints
against Minimum Scale of SIFT Keypoint Detector. 62�

Figure 4.15: Visualization of Unique Crocodile’s Keypoints (Left: Min Scale
82; Right: Min Scale 65). 62�

Figure 4.16: Graph of Number of Repeated Keypoints Between Three Input
Models and Scene at Different Min Scale. 63�

xiii

Figure 4.17: C2C Absolute Distance Display Range of Crocodile Model at
Minimum Scale of 70. 65�

Figure 4.18: Normal distribution of Crocodile Model at Minimum Scale of 70.
 65�

Figure 4.19: C2C Absolute Distance Display Range of Seal Model at
Minimum Scale of 70. 66�

Figure 4.20: Normal distribution of Seal Model at Minimum Scale of 70. 66�

Figure 4.21: C2C Absolute Distance Display Range of Basin Model at
Minimum Scale of 70. 66�

Figure 4.22: Normal distribution of Basin Model at Minimum Scale of 70. 67�

Figure 4.23: Histogram of C2C Absolute Distance of Crocodile Model at
Minimum Scale of 70.. 68�

Figure 4.24: Histogram of C2C Absolute Distance of Seal Model at Minimum
Scale of 70. 69�

Figure 4.25: Histogram of C2C Absolute Distance of Basin Model at
Minimum Scale of 70. 69�

Figure 4.26: Crocodile’s Keypoints Before and After 20° Rotation (Left:
Rotated; Right: Original).. 69�

Figure 4.27: Seal’s Keypoints Before and After 20° Rotation (Left: Rotated;
Right: Original). 70�

Figure 4.28: Basin’s Keypoints Before and After 20° Rotation (Left: Rotated;
Right: Original). 70�

Figure 4.29: Graph of Model’s Keypoint Computation Time at Different Min
Scale. 72�

Figure 4.30: Visualization of PFH Output Histogram for Crocodile (Top: r
=20; Bottom: r =60). 73�

Figure 4.31: Visualization of PFH Output Histogram for Seal (Top: r =20;
Bottom: r =60). 73�

Figure 4.32: Visualization of PFH Output Histogram for Basin (Top: r =20;
Bottom: r =60). 74�

Figure 4.33: Visualization of PFH Output Histogram for Scene (Top: r =20;
Bottom: r =60). 74�

xiv

Figure 4.34: Visualization of SHOT Output Histogram for Crocodile (Top: r
=20; Bottom: r =60). 74�

Figure 4.35: Visualization of SHOT Output Histogram for Seal (Top: r =20;
Bottom: r =60). 75�

Figure 4.36: Visualization of SHOT Output Histogram for Basin (Top: r =20;
Bottom: r =60). 75�

Figure 4.37: Visualization of SHOT Output Histogram for Scene (Top: r =20;
Bottom: r =60). 75�

Figure 4.38: Graph of Comparison of Descriptor Computational Time
between PFH and SHOT for Scene against Radius. 77�

Figure 4.39: Localization of Three Models from Scene. 81�

Figure 4.40: Localization of Rotated Crocodile Model from Scene. 82

Figure 4.41: Localization of Rotated Seal Model from Scene. 82�

xv

LIST OF SYMBOLS / ABBREVIATIONS

C covariance matrix
C central
C1 mean curvature

C2 Gaussian curvature

CM model’s centroid
d distance threshold
F keypoint
I point cloud

k number of nearest neighbours
N neighbours

n surface normal
O(k2) complexity of PFH
�� Centroid of neighbours in neighbourhood
p targeted point
R rotation matrix
R radius of sphere
v eigenvector

� eigenvalue
� constraints

� radial coordinate
� elevation coordinate
� surface variation
� standard deviation
� rotation angle

C2C Cloud-to-Cloud
DoG Difference-of-Gaussian
FS feature space
FV feature vector
GRF global reference frame
ICP iterative closest point

xvi

kD k dimensional
LRF local reference frame
LSH locality sensitive hashing
LST locality sensitive trees
LVD-LSDs local variable dimension local shape descriptors
PCA principal component analysis
PCD point cloud data
PCL point cloud library
PFH point feature histogram
RANSAC Random Sample Consensus
RoPS rotational projection statistics
SHOT Signature of Histograms of OrienTations
SIFT Scale Invariant Feature Transform
SURF Speeded up Robust Feature

1

CHAPTER 1

1 INTRODUCTION

1.1 General Introduction
Today, computer vision is slowly encompassing both industrial and non-
industrial applications such as civil engineering and entertainment. It combines
both hardware and software technologies to contribute an operational guidance
and instruction to systems and devices on image capturing and processing.
According to Marr (2019), computer vision is one of the fields under artificial
intelligence where the machine targets to replicate human perception to analyse
visual information, understand the environment and situation, process them and
thereafter work on an image. This technology is often applied to recognize and
identify objects from images. In certain situations, it can be said to have
outperformed human’s recognition capabilities. This is because it can operate

more consistently, measure orders of magnitude faster and more accurate and
will not get tired as easy as human. There are some advanced technologies built
from computer vision, such as autonomous vehicles, facial recognition,
healthcare, agriculture, manufacturing and real-time sports tracking.
 Computer vision is a fast-growing area of research. Tremendous amount
of visual data is one of the reasons behind the fast growth of computer vision
where they are used to train and test the machines. With these huge datasets,
computer vision is able to do computations involving visual data such as image
classification, image captioning, semantic segmentation, instance segmentation,
object recognition (object detection) and object localization.

Object classification is an application of identifying and assigning a
class label to an input image. Instance segmentation functions not just to find
objects in an image, but also to create a mask for every object detected. Next,
the function of object localization is to locate the presence of objects in an image
and draw a bounding box around the position of objects. For object detection, it
is more complex as it first needs to identify objects and then draw a bounding
box around the object of interest in the image. In order to localize an object,
object detection needs to be performed first. According to Brownlee (2019),
when a user or practitioner refers to “object recognition”, they often imply

2

“object detection”. To perform object localization, the algorithm is fed with an

input image with one or more objects. After processing, it will return an object
which is desired to be detected with an axis-aligned bounding box representing
its orientation and scale.

Object recognition and localization in an image is one of the most
complex applications in computer vision, robotics and autonomous agents. This
task still remains challenging because of some constraints such as the number
of objects need to be localized, complexity of the scene, background clutter and
occlusions. According to Huang and You (2013), they mentioned that it is
harder to detect and localize the target object in an unstructured, non-image-
based data input, such as 3D point clouds than 2D images. This is because that
the point cloud data contains lesser structural information and has a high
complexity to extract information from 3D data. Within these few years,
multiple algorithms that have been proposed to process 3D point cloud data to
fix this problem. One of the most common methods to complete this task is to
slide a window across the image and to detect whether the local window
contains the target or background using Convolutional Neural Networks (CNN),
as shown in Figure 1.1. However, inefficiency of algorithms to detect objects in
a highly occluded scene still exists as there is lack of sufficient labelled data to
train the classifier model. Therefore, the task is now focusing on constructing a
good classifier to make the object localization easier.

Figure 1.1: Object Recognition and Localization using Convolutional Neural
Networks (Nicholson, 2019).

3

1.2 Importance of the Study
In the past, most of the object recognition and localization strategies in
conventional computer machine mainly focus on the processing of RGB images
using image-based algorithms. However, in recent years, the acquisition and
processing of 3D point clouds data of real world scenes in object recognition
and localization is gaining more and more attention.

Object recognition and localization is very important in today’s world as

it can assist human in accelerating and improving performance. The applications
of object recognition and localization can be found in many areas, including
image retrieval, object tracking, surveillance and security, autonomous cars,
robotics, indoor navigation and others. For example, self-driving cars require
object recognition and localization to localize vehicles or road signs in the
environment to analyse when to accelerate or apply brakes. Besides, robots
utilized for domestic housekeeping or elderly care must have the ability to detect
and localize certain objects efficiently while performing searching tasks. In
medical image analysis, object recognition and localization can be used to
identify the object (for examples: heart and tumour) correctly together with the
location and scale detected.

Today, 3D scanners can scan objects in an image and convert the raw
data into point cloud representation. A 3D point cloud of an image is basically
presented in a form of a set of points in a 3D coordinate system with x, y, and z
coordinates. In a 3D point cloud, it usually lies on the surface of the object
without containing any information of the object surface, such as the colour,
texture or features. The reason why recognition and localization of object in 3D
point clouds is so important is that the point clouds generated by the 3D scanners
and 3D imaging are easy for measurement. Besides, the cameras used for indoor
mapping purposes which convert image into unstructured point clouds require
less power and are significantly cheaper than laser scanners. Furthermore,
acquisition of point clouds of real world scenes can improve the processing
ability of the computers and contribute to advanced multiple-image
reconstruction algorithms.

4

1.3 Problem Statement
As mentioned before, recognition and localization of objects in a 3D image are
the primary research problem exist in computer vision. They are considered one
of the most challenging as there is a lack of generic 3D data or labelled training
data to build efficient classifiers. There are plenty of image-based algorithms
available but insufficient point cloud processing algorithms to perform object
recognition and localization. This is because that the properties of the point
clouds constructed from real world scene produce more challenges than general
algorithms.
 First, point cloud data might consist of noise points which are the
outliers that are not part of the scene. These noise points can disturb the
detection of the keypoints which further reduce the overall accuracy. Also, some
of the point cloud images available are low in resolution which are constructed
from poor sensors that only perform sparse reconstructions. Furthermore,
certain existing algorithms are sensitive to loss of information or occlusion as
the algorithms are difficult to identify the actual shape of the underlying surface
of an object. This problem can affect the performance of surface matching in
object recognition step. Besides, there are not many methods available in open
source that can be used to measure the scale and dimensions of the detected
objects.

In short, a method that can perform robustly against all constraints such
as noise, clutter and missing data needs to be designed which can recognize and
localize objects on 3D point cloud images, rather than normal RGB images.

1.4 Aim and Objectives
The aim of performing object localization in 3D point clouds is to explore robust
methods for locating and measuring objects within a 3D point cloud.
 In order to localize an object, object searching and recognizing have to
be performed first. There are mainly three objectives to perform this task. The
first objective is to search and identify existing rich 3D point cloud datasets
which consist of multiple objects inside to be used in this project. The second
objective is to develop a method for matching an object (2D or 3D) to objects
within the point cloud and the third objective is to measure the dimensions of
the located object.

5

1.5 Scope and Limitation of the Study
The scope of this research and study is to develop an algorithm which is robust
and able to recognize an object in the scene with multiple objects efficiently and
calculate the dimensions of the located object. The study is mainly focusing on
detecting and locating an object in 3D point clouds. The methodology proposed
is divided into two main parts, where object recognition is performed first,
followed by object localization.
 There are a few limitations whilst performing the study of object
localization in 3D point clouds. First, there is lack of available resources in terms
of point cloud images. Most of the image resources used in this study are RGB
images. Even with the point cloud images, it is difficult to find a point cloud
image with multiple objects inside. Furthermore, most of the latest advanced
algorithms used in this study involve deep learning. Deep learning in image
processing is getting popular in the recent years, thus there is a lack of research
studies on this method.

1.6 Contribution of the Study
This project provided an insightful summary of all the existing methods that had
been implemented in the object localization in 3D point cloud. Besides, the
comparison of performance between each technique that was presented in this
study could provide a quick understanding of all the methods for those who wish
to perform a similar project. This project provides an algorithm that could
recognize and localize rotated objects and multiple objects from a scene point
cloud at the same time. The study could also let others to understand how the
parameters set in the project affect the results.

1.7 Outline of the Report
In this report, Chapter 2 outlines the comprehensive summary and analysis of
all existing methods used in each step to perform object localization in 3D point
cloud. Details of all the techniques implemented are presented in Chapter 3.
Results are shown and the detailed analysis and discussion are provided in
Chapter 4, followed by the conclusion and recommendations in Chapter 5.

6

CHAPTER 2

2 LITERATURE REVIEW

2.1 Introduction
The task of object recognition and localization is getting more and more popular
and most of the task is performing on digital images. Guo, et al. (2014) stated
that object recognition and localization in the rich scenes can be separated into
two types, the global and local feature-based methods. The difference between
these two methods is that the global feature-based methods consist of a group
of global features which can outline the whole desired object while the local
feature-based methods only concern about the local surfaces that surround the
particular interest points.
 For global feature-based methods, there is a need to perform object
segmentation from the scene. This method does not take the object’s shape

information into account. Thus, global feature-based methods are more often
used in 3D shape retrieval and classification rather than recognition of objects
that might be occluded from the cluttered scenes. Since local feature-based
methods can generally deal with clutter and occlusion better, therefore they are
often utilized to recognize and localize object from scenes. Local 3D object
recognition and localization in cluttered scenes has a sequence of steps: 3D
interest point detection (feature extraction), construction of descriptor for local
surface feature, surface matching (coarse recognition and localization) and fine
localization (verification). This chapter reviews current work related to each of
these steps.

2.2 3D Keypoint Detection (Feature Extraction)
In the first step of object recognition, keypoint detection or feature extraction
needs to be performed to search for the keypoints which are 3D points with
discriminative information content. This step is performed to detect the inherent
scale of each keypoint. The location and scale of a keypoint that are obtained
here will be used to determine a local surface. These will be further used to
generate descriptors in next step. Therefore, detection of keypoint locations is
very important as it strongly determines the success of local feature descriptors.

7

 In 2D images, methods like Harris corner detector and SURF are often
used to identify keypoints that have a high chance to be well-localized. Example
of salient points is the corner points which have a high intensity gradient in all
directions. For 3D images, the main idea is the same where keypoints that can
be well localized need to be defined. The only difference is that it needs a
keypoint which has a high surface spatial in all three directions to extract the
unique local 3D coordinate basis. There are generally two methods to perform
keypoint detection, fixed-scale and adaptive-scale methods.

2.2.1 Fixed-Scale Keypoint Detection
In this method, a point that is unique around its point neighbourhood is detected
as keypoint by using either curvatures or surface variation measures.
 A few authors have utilized surface variation measures such as using
eigenvalues to extract keypoints. First, Matei, et al. (2006) figured out that
before constructing descriptor, the scene features of keypoints that have rich 3D
information need to be computed first. Selection of salient point is performed
by computing the eigenvalues of the scatter matrix at all 3D points. Since the
smallest eigenvalues �3 of the scatter of the neighbouring points contributes a
good 3D saliency measure, they are used to compute the surface variation that
surrounds a point p. Then, all point candidates are arranged based on their
surface variations into a list and the keypoints will be chosen from the sorted
list.
 A similar idea was utilized by Zhong (2009) to detect keypoints before
building a shape based descriptor to recognize 3D objects. The surface normal
vector of the local surfaces is often utilized to construct descriptors. However,
Zhong (2009) mentioned that by using only the normal vector of a surface, a 3D
coordinate structure of a point still cannot be determined as there is not sufficient
information. Therefore, they decided to build a local reference frame at each
point. First, they calculated a scatter matrix for the point by utilizing all the
neighbouring points. Then, they calculated three eigenvalues and the
corresponding eigenvectors of the matrix. The salient points which are rich in
3D structure possess huge 3D point variations among the neighbouring points.
To find the points, the smallest eigenvalue is used to determine these variations.
When two eigenvalues are the same, they applied additional constraints on the

8

ratio of two successive eigenvalues only selected the point which satisfies
�2/�1<�21 and �3/�2<�32. This Eigen analysis method which was implemented by
Matei, et al. (2006) and Zhong (2009) are useful as they can be computed
efficiently and achieve excellent outcomes in terms of repeatability.
 Glomb (2009) mentioned the advantages of using Harris operator such
as it is more robust to noise, has high repeatability and sufficient information
content. They summarized four reasons and propositions to extend Harris
operator from 2D images to 3D meshes. Examples of the propositions are using
Gaussian function built from the point cloud, utilizing derivative of fitting
quadratic surface and others. Details of the methods are discussed in the paper
of Sipiran and Bustos (2011) as they referred to the work of Glomb (2009) as a
basis to build an improved version of Harris operator in detecting keypoint on
3D meshes. First, centroid of point neighbourhood is calculated and a set of
neighbouring points is translated to the centroid. The best-fitting plane is
computed to the translated points and the points are rotated so that the normal
of the fitting plane aligns with the z-axis. Next, the points are fitted to a quadratic
surface to compute derivatives. A quadratic surface is chosen as it is simple
enough to express a function of two variables using quadratic terms. Then, they
used the derivatives of the function to formulate a matrix to eliminate noise.
Now in the matrix, each vertex is associated with its Harris operator value.
Finally, the vertex which fulfilled the stated condition is selected as keypoint.

2.2.2 Adaptive-Scale Keypoint Detection
In the paper “Local 3D Structure Recognition”, Flint, Dick and Hengel (2014)

mentioned that it is important to detect the significant keypoint locations in
order to further construct the 3D descriptors. They utilized the adaptive-scale
keypoint detection to extract interest points. This method constructs a scale
space for input images. Points that are unique and contain high distinctiveness
measures in scale and spatial neighbourhoods will be selected as keypoints. A
descriptor that contains strong keypoint information can recognize 3D models
more efficiently in the range data of scene. In range data, the keypoints need to
be well-localized in three dimensions. Since the range data is a set of points,
they first constructed a 3D density map to get a density function by sampling
the points across the data set. Next, they convolved the 3D density map with a

9

group of Gaussian kernels to form a density scale-space. To detect the keypoints
located in the density scale space, they applied the determinant of Hessian
matrix. In the matrix, the local maxima will become keypoints.
 The reason for applying Hessian matrix to search for the keypoints is
that it contributes to an accurate calculation and it is determined for arbitrary
scale. Based on the experiment conducted, Hessian matrix method can detect
the same keypoint under a range of transformations, achieving a high level of
repeatability. However, it is quite time-consuming to perform the sampling step
in the matrix scale-space over the data.
 Mian, Bennamoun and Owens (2010) presented an algorithm used to
detect keypoints which have a high repeatability between 3D models and its
partial views. They also created a keypoint quality measurement technique to
rank the keypoints in order to choose the best ones. There are three constraints
proposed to define the keypoints. First, the keypoints must contain high
repeatability. Second, the keypoints must have a 3D coordinate basis building
from local surface in neighbourhood. Third, the surface of keypoints must have
enough descriptive information.
 First, they cropped out a local surface from the 3D model to obtain a
local reference frame which is insensitive to noise. They then rotated the
neighbouring points on the cropped surface in order to align the normal of the
point with the positive z-axis. Then, Principal Component Analysis (PCA) is
executed on the neighbourhood’s covariance matrix to remove polygons that are

occluded in the cropped surface. The first two principal axes ratio is used to
measure the surface variations. A threshold is set for surface variation
comparison to choose the keypoints. Moreover, an automatic scale selection is
proposed to define the scale of a keypoint as the neighbourhood size when there
is a local maximum occurs in the surface variations, as shown in Figure 2.1. The
keypoints detected have high repeatability and are insensitive to noise. It still
has a drawback which is the incapability to perform efficient computation.

10

Figure 2.1: Detected Keypoints (Red Dots) (Mian, Bennamoun and Owens,
2010).

2.2.3 Summary and Comparison between Fixed-Scale and Adaptive-

Scale Keypoint Detection Methods
Table 2.1 summarizes all methods used to extract keypoint or features. In fixed-
scale based method, there is a possibility where only low number of keypoints
detected as it is using a fixed scale, which subsequently will result in poor object
recognition rate. Besides, this method defines the scale empirically, which
means that it does not extract the scale information entirely in the local surfaces.
For adaptive-scale based method, it might perform better than the fixed scale
based method as it samples all candidate points in a 3D density map, ranks all
the keypoint using quality measurement technique and finally chooses the
qualified keypoints based on certain threshold.

Table 2.1: Summary of Methods of 3D Keypoint Detection.

No. Method
Category

Method
Name

Data
Type

Outcomes Reference

1 Fixed
Scale

Eigen
Analysis

Point
Cloud

This method has
high repeatability
and can be
computed
efficiently.

Matei, et al.
(2006)

2 Fixed
Scale

Eigen
Analysis

Point
Cloud

This method is
computationally
efficient and highly
repeatable.

Zhong
(2009)

3 Fixed
Scale

Harris
Operator

Mesh Reasons and
propositions of

Glomb
(2009)

11

extending Harris
operator from 2D
images to 3D
meshes are
concluded.

4 Fixed
Scale

Harris
Operator

Mesh It is robust to noise,
local scaling, holes
and has high
repeatability and
sufficient
information
content.

Sipiran and
Bustos
(2011)

5 Adaptive
Scale

Gaussian
kernels &
Hessian
Matrix

Point
Cloud

The method is
accurate and
efficient but it is
sensitive to point
density variations
and time-
consuming.

Flint, Dick
and Hengel
(2014)

6 Adaptive
Scale

Principal
Component

Analysis
(PCA) &

Automatic
Keypoint

Scale
Selection

Point
Cloud

This approach is
insensitive to noise
and has high
repeatability, but it
is computationally
inefficient.

Mian,
Bennamoun
and Owens
(2010)

2.3 Local Surface Feature Description
Once the keypoints are extracted, the information of each keypoints needs to be
presented clearly. To complete this, the descriptive local surface information of
each keypoint will be used to build a keypoint descriptor. According to Guo, et
al. (2014), there are mainly two categories of descriptors for interest feature
points, the histogram-based and the signature-based methods.

12

2.3.1 Histogram-Based Methods
Local feature histogram descriptors mainly determine the local neighbourhood
of a feature by grouping geometric or topological measurements into histograms.
In short, a simple descriptor can be created with the distribution of the pixel
intensities represented by histograms.
 In the paper “3D shape-based object recognition system in scenes
containing clutter and occlusion”, Johnson and Hebert (1999) created spin

image descriptors to efficiently recognize multiple objects in cluttered 3D
scenes. The spin image is also known as a data level shape descriptor which is
used to pair or match surfaces represented as surface meshes. In this method,
oriented points that associated with a direction are utilized to construct spin
image descriptors.

 First, every oriented point lying on an object’s surface is further

described with a surface position and surface normal. Now, the point contains
an information of two dimensional local coordinate basis. The two coordinates
basis are the radial coordinate � and elevation coordinate �. By using this
oriented point basis, a spin map can be defined which projects three dimensional
points to the two dimensional coordinates basis related to the oriented point.
Now, each oriented point on the object surface has its own unique spin map
coordinates (�, �). Figure 2.2 shows the basis of an oriented point. A 2D
accumulator indexed by both � and � is constructed. Next, the bin which is

indexed by the coordinate in the accumulator is then increased to update the 2D
accumulator. The 2D array accumulator is bilinear interpolated to smooth the
contribution of the vertex, causing the accumulator to have a less sensitivity to
the vertex’s position, to obtain ideal spin image descriptors. All these steps are
repeated to process all the points located on the model’s surface. In the end, spin
image descriptor with a two dimensional array representation is developed.

By using spin image descriptors in object recognition algorithm, the
algorithm can handle clutter and occlusion well as proved in the experiment part
of the paper of Johnson and Hebert (1999). However, spin image descriptor
consists of some weakness where it can be affected easily by mesh resolutions
and non-uniform sampling. In fact, it is very challenging to build spin images to
recognize objects as there are few parameters need to be taken into consideration.
The first spin image parameter is the bin size, where it regulates both storage

13

volume and averaging of the spin image descriptors. Users have to set the
suitable bin size so that the object scale and resolution do not overly depend on
the bin size setting. The closer the bin size to mesh resolution, the better the
matching of spin images.

The next parameter is the spin image width which represents total rows
and columns. The number of rows and columns must set to be equal to produce
a square spin image. In other words, the image width controls the size of the
square spin image. By properly setting this parameter, amount of a spin image’s

global information can be regulated. Lastly, the last parameter in generating a
spin image is the support angle. It is the largest angle in between the surface
normals and the direction of an oriented point basis. This parameter will affect
the descriptiveness of spin image.

Figure 2.2: Oriented Point Basis (Johnson and Hebert, 1999).

Bielicki and Sitnik (2013) had proposed a method to recognize and

localize 3D objects in a cloud of points by using locally calculated feature vector
(FV) descriptors. In their training phase, the outcomes from pre-processing (PP)
are used to compute local feature vectors (FVs). Then, all the local feature
vectors are compiled into histograms to construct a reference object global
descriptors. This local FV consists of two histograms: first is the 2-D
distribution C1 versus C2 which is shown in Figure 2.3 and the second is a local
surface type distribution. Both of these histograms are computed by the number
of intervals. By using the number of intervals, the dimensionality of the feature
space FS can be calculated. In order to ensure that only the most significant
combination of features will be used in the recognition and localization phase,
principal component analysis (PCA) is used to perform a reduction of feature
space dimensionality. Figure 2.4 shows the brief steps of building a reference
object descriptor.

14

By using the local FVs to build descriptors, the threshold algorithm can
be used even with insufficient and noisy data. Besides, these descriptors allow
detecting even highly occluded objects. FVs can also reduce the clutter effect
on the recognition rate. However, the main weakness of this method is that the
descriptiveness of the proposed descriptors might result in high false-positive
ratio. Geometric representation of the reference object can be further improved
to reduce this error.

Figure 2.3: Histogram of 2D Distribution of Parameters C1 versus C2
(Bielicki and Sitnik, 2013).

Figure 2.4: Building of Reference Object Descriptor (Bielicki and Sitnik,
2013).

In the paper of Frome, et al. (2004), they had proposed two new regional
shape descriptors. The first is known as 3D contexts and the second is harmonic
contexts to recognize three dimensional objects (in this case, vehicles) in noisy
and cluttered point cloud scenes. For shape contexts, histograms directly
function as the descriptors but for harmonic shape contexts, extra transformation
needs to be performed. Before starting to build this descriptor, there are two

15

parameters need to be decided first which are the support region pattern and the
methods of distributing all the histogram bins which located in three-
dimensional space into vector.

For 3D shape context descriptors, they are basically the extension of 2D
shape contexts to a 3D surface. The support region is a sphere centered on the
basis keypoint and a surface normal estimated for the keypoint. Then, the
support region which also known as the spherical neighbourhood is divided
equally by using elevation and azimuth dimensions and logarithmically using
radial dimension into histogram bins as shown in Figure 2.5. Step of performing
logarithmical sampling is to improve the descriptor to become more robust to
distortions in shape. Lastly, by accumulating the weighted count of the number
of points inserting into each bin, a 3D shape context descriptor is constructed.

Figure 2.5: Histogram Bins that Form 3D Shape Context (Frome, et al., 2004).

Next, a harmonic shape context descriptor can be built by applying a
spherical harmonic transform to the 3D shape context. First, it starts with the
same histogram created for 3D shape context. Bin values are used to perform a
spherical harmonic transformation for the shells to build a new histogram. In
short, the harmonic shape context is basically a histogram vector that results
from the amplitudes of the transformation.
 Frome, et al. (2004) compared the recognition ability of both shape
context descriptors and spin image descriptor which was used in 3D shape-
based object recognition system by Johnson and Hebert (1999). Although the
descriptors utilized by Johnson and Hebert (1999) is to define surface meshes,
but its implementation to point clouds is quite fast and direct. The result in
testing the descriptors in vehicle recognition showed that both shape context

16

methods obtained better recognition rates than spin image in noisy scenes. In
cluttered scenes, 3D shape context descriptor achieved the best performance
among other methods. These results are presented in Figure 2.6 and Figure 2.7.

Figure 2.6: Comparison of Recognition Rate between Different Descriptors in
Noise Experiments (Frome, et al., 2004).

Figure 2.7: Comparison of Recognition Rate between Different Descriptors in
Clutter Experiments (Frome, et al., 2004).

In addition, a new 3D feature descriptor known as THRIFT was

presented by Flint, Dick and Hengel (2014) in their local 3D structure
recognition method. The idea of THRIFT is the extension of successful Scale
Invariant Feature Transform (SIFT) and also Speeded up Robust Feature (SURF)
algorithms used in keypoint extraction, identification and matching in range
data. By using the orientation information extracted in keypoint detection,
THRIFT can create a descriptor by counting up the all points into a single
dimensional histogram in accordance with their angles between two surface

normals ������ and ��	
. Lastly, all the surface normals’ angles are fitting into

17

the bins of the histogram to form a descriptor. The reason of using surface
normal information is that it can improve the descriptor by handling the changes
in sampling density better than certain types of descriptors which only utilize
the information of the location extracted from keypoint detection such as shape
contexts and spin images. Figure 2.8 shows the graphical interpretation of the
descriptor.

Figure 2.8: A Keypoint with Two Least Squares Planes and their Related
Normals for One Support Point on a Local Surface. (Flint, Dick and Hengel,
2014).

 Taati, et al. (2007) proposed a method for 3D object recognition and
pose determination between a range data by using local shape descriptors with
variable dimension (VD-LSDs). Similarly, in their paper, they presented three
phases to perform object recognition: point matching, pose reconstruction and
pose finalization. Building of local shape descriptors falls in the first phase,
where they will be used later to determine the point correspondences between
the input range data and full model. In this paper, model point cloud and scene
point cloud are given. The main interest is to determine the rigid transformation
that is able to align the instance found with the model in the scene by if that
particular instance lies there.
 First, on the covariance matrix of each keypoint in the local
neighbourhood, they executed Principal Component Analysis (PCA) to generate
a Local Reference Frame (LRF) and three eigenvalues scalars which represent
vector lengths along each LRF to each point. Next, with all scalars and vectors,
they generated several properties for each point: position properties, direction
properties and dispersion properties. Selection of all these property sets can
affect the effectiveness and robustness of point matching. Then, they chose a
small part from these properties by implementing a feature selection method. In

18

point clouds, there is no need to construct LSDs for every point. Therefore, only
salient points which have a special geometry are selected in order to build more
descriptive LSDs. The last step is to create a scalar-quantized or vector-
quantized histogram. After extracting and accumulating all the chosen
properties into bins of a histogram, the descriptor is finally created. Based on
the experiment conducted, variable dimensional local shape descriptor had a
better recognition rate compared to the spin image on a few data sets.

According to Mian, Bennamoun and Owens (2006), they created a
tensor descriptor using histogram-based method in their object recognition and
segmentation in cluttered scenes paper. The method aims to successfully detect
3D objects and also predict their location and orientation in a complex scene. At
first, an input point cloud scene is converted into decimated triangular meshes,
as shown in Figure 2.9a and Figure 2.9b. Normals are computed for each vertex
and triangular face. Next, two vertices (in pairs) which fulfil particular distance
and angle conditions are chosen to define its 3D coordinate basis as shown in
Figure 2.9c. The 3D coordinate basis is then used to construct a local 3D grid at
the origin. The grid size indicates the amount of locality while the grid’s bin

size controls the granularity level. After determining the tensor grid, surface
areas of the meshes which intersected each bin of the grid are calculated and
summed to construct a 3D tensor descriptor.
 Tensors can handle noise and also changing mesh resolutions very well.
Based on the experiment performed in this paper, Mian, Bennamoun and Owens
(2006) proved that tensor outperformed the spin image in recognizing objects in
cluttered scenes. One of the potential drawbacks is its combinatorial explosion
of vertex pairs.

Figure 2.9: Tensor Computation (Mian, Bennamoun and Owens, 2006).

19

2.3.2 Signature Based Methods
The main idea of this method is that it basically encodes one or more geometric
measures calculated individually at each neighbouring point to describe the
local neighbourhood of a keypoint. Signature descriptors contribute more
descriptive power.
 Besides creating descriptors using histogram-based method, Mian,
Bennamoun and Owens (2010) also built a feature descriptor by using the depth
values of the local surface. Before building the descriptor, they presented a
method to measure and rank the quality of the keypoints. After that, the most
outstanding keypoints are chosen for detecting local features. Next, they derived
a local 3D coordinate system for the local feature and fitted a lattice to all local
surfaces.
 Sun and Abidi (2001) had developed point’s fingerprint descriptor to

perform surface matching efficiently. To generate the point’s fingerprint,

geodesic circles was constructed for each interest point by utilizing the
surrounding points which have the similar geodesic distance to the interest point.
Then, a local coordinate system is constructed with the normal and tangent plane
at the keypoint, as shown in Figure 2.10a. 2D contours which also known as
point’s fingerprint descriptor can be obtained by projecting all geodesic circles

onto a tangential plane of the surface. Figure 2.10b shows the local fingerprint
of the same point from different views. Point’s fingerprint can perform better as

it contains more descriptive information than methods that only utilize one
contour or 2D histogram. Besides, the cost of computation is low compared to
descriptors using 2D image representation.

Figure 2.10: (a) Local Coordinate System. (b) Local Fingerprint of the Same
Point from Different Views (Sun and Abidi, 2001).

20

 Chua and Jarvis (1997) had created descriptors known as point
signatures to perform the task of object recognition. In the paper, they
mentioned that by using point signatures, recognition of an object in both single-
object scene and complex scene containing few partially overlapping objects
can be done. A point signature is known as a 1D signature that expresses the
surface surrounding a keypoint. First, a plane is fit to all contour points and then
translated to the keypoint. After the contour points are being projected onto the
fitted plane to create a curve, each contour point is defined by two parameters
which are the signed distance and the clockwise rotation angle �. Figure 2.11

shows a point signature. The reference direction of the signature may not be
unique as several signatures could be collected from the same point. This
method consists of a drawback which is sensitive to mesh resolutions.

Figure 2.11: Point Signature (Chua and Jarvis, 1997).

2.3.3 Summary and Comparison between Histogram-Based and

Signature-Based Local Surface Feature Description Methods
Table 2.2 summarizes all methods used to construct local descriptors by
different authors. Histogram based methods are often used to construct a
descriptor as they can handle noise and clutter very well. However, since the
descriptor is built by encoding geometric measures computed at every
neighbouring point, it has a more descriptor power compared to histogram
descriptor. Both of these methods have their own advantages and disadvantages.
A better solution can be further proposed which combines both ideas of
histogram and signature to create a descriptor which can share both advantages
and eliminate drawbacks.

21

Table 2.2: Summary of Methods for Local Surface Feature Description.

No Method
Category

Method
Name

Data
Type

Outcomes Reference

1 Histogram Spin Image Mesh It can handle
noise and
occlusion but it
is easily affected
by the changing
mesh resolutions
and non-uniform
sampling.

Johnson and
Hebert
(1999)

2 Histogram Feature
Vector

Point
Cloud

This method can
detect high
occluded objects
even in
insufficient and
noisy scenes,
however, it
might result in
high false-
positive ratio.

Bielicki and
Sitnik
(2013)

3 Histogram 3D Shape
Contexts and

Harmonic
Shape

Contexts

Point
Cloud

By comparing
both shape
contexts with
spin image, both
shape contexts
performed better
than spin image
in noisy scenes
while 3D shape
contexts
outperformed

Frome, et
al. (2004)

22

the rest in
cluttered scenes.

4 Histogram THRIFT Point
Cloud

This descriptor
is more robust to
changes in
sampling
density.

Flint, Dick
and Hengel

(2014)

5 Histogram Variable
Dimensional
Local Shape
Descriptors
(VD-LSDs)

Point
Cloud

The experiment
showed that this
descriptor
achieved better
recognition rate
compared to the
spin image on a
few data sets.

Taati, et al.
(2007)

6 Histogram 3D Tensor Mesh Tensor can
handle very well
with the
changing mesh
resolutions and
also noise. The
experiment
conducted had
proved that it
performed than
the spin image.

Mian,
Bennamoun
and Owens

(2006)

7 Signature Point’s

Fingerprint
Mesh This descriptor

contains more
feature
descriptive
information
where it
outperformed

Sun and
Abidi
(2001)

23

both spin image
and point
signature.

8 Signature Point
Signatures

Mesh Although this
method is able to
recognize
objects in simple
and complex
scenes, but, it is
sensitive to mesh
resolutions.

Chua and
Jarvis
(1997)

9 Signature Depth Values Point
Cloud

The result of the
experiment
showed that this
method has a
better
performance
than the spin
image.

Mian,
Bennamoun
and Owens

(2010)

2.4 Surface Matching (Coarse Recognition and Localization)
There are two parts in this surface matching step which are feature matching
and hypothesis generation. First, after the descriptors which contain local
descriptive information are made from the detected unique keypoints, a set of
feature correspondences between the model and the scene needs to be
established by matching their descriptors. Once the correspondences are
obtained, an algorithm is needed to identify the feature correspondence groups
and use them to vote for candidate models that need to be recognized and
determine transformation hypotheses.

24

2.4.1 Feature Matching
Feature matching aims to extract point relations which also known as feature
correspondences between the desired model and the complex scene. The most
common way to accomplish this is to carry out a brute-force search, where a
comparison between the model features and scene feature is performed to find
the correspondences.

Johnson and Hebert (1999) had proposed a surface matching engine or
slicing based method to show how two surfaces are matched where spin image
descriptors from points on two surfaces (model and scene) are compared to a
best-match to establish point relation. When two spin images (model and scene)
are found to have a high correlation, a feature correspondence between them is
determined. This step is repeated until all the point correspondences are
gathered together.

Besides, hash table from geometric hashing is one of the most popular
ways to detect and store feature correspondences. According to Mian,
Bennamoun and Owens (2006), they had created a correspondence algorithm
known as hash table-based voting scheme which can automatically extract
feature correspondences. First, they built a 4D hash table by using the tensor
descriptors. Besides, since the tensor descriptors already served as the view of
local surface areas, they enable the hash table and matching process to be less
dependent on the resolution and surface sampling. Next, after filling all the
tensors into the 4D hash table, the matching of the tensors is performed by
utilizing a voting scheme to automatically establish the feature correspondences.
Hashing method is efficient and of low polynomial complexity.

Frome, et al. (2004) also utilized the similar locality-sensitive hashing
(LSH) technique to perform feature matching. Since there are a lot of 3D shape
context descriptors need to be matched to establish feature correspondences, it
might take a long time to complete the step. This LSH functions based on the
principle that two points are identified to have the same hash if they are near to
each other in feature space. This results in minimization of the search space by
orders of magnitude which can speed up the matching process. A hash function
is defined to hash the descriptors that located in the same hypercube to the
identical hash score. Hash function that is used in this method targets to
maximize collisions for similar points which desires to make identical items to

25

have a large probability of having the same hash value. LSH is a better choice
compared to traditional hashing as it realizes efficiencies in memory and number
of computations conducted.

Papazov and Burschka (2010) used the idea of the hash table to establish
pairs of correspondences between the oriented model points and oriented scene
points. Before this, the hash table is utilized by them to store the descriptors of
pairs of oriented model points. Besides, descriptors of oriented scene point pair
are also computed. By matching the scene point pair descriptor to the hash table
that stores model point pair descriptors, a corresponding oriented model point
pairs can be established. In contrast to Matei, et al. (2006), they constructed a
hash table for indexing feature of the model to form a collection of geometry
descriptor of single model points. By comparing these two methods, pairs of
correspondences are better than single point correspondences as it can reduce
the time used in the recognition phase and allow for a simple computation of the
subsequent aligning rigid transformation.

According to Rodolà, et al. (2013), they used kd-tree (k-dimensional
Tree) method to match two surfaces (model and scene) to establish means of
point-wise correspondences. First, they determined an original group of so-
called strategies where every scene point is linked with the k-nearest model
points in the descriptor area. In the descriptor space, each scene sample has the
possibility to match the model samples that show identical surface
characteristics. To prevent overcrowding of matching, the total amount of
“attempts” is limited to value of k. When the nearest model descriptor is located
at a great distance from the data, clutter pre-filtering is performed to exclude the
matching correspond scene point. If the model descriptor satisfies the condition
of k, kd-tree is used to perform fast searching to match the scene to the model.
This matching direction can help to minimize the false positive rate for the same
number of strategies. Similarly, Guo, et al. (2013) used a pre-constructed kd-
tree to match the scene features to every model feature to obtain feature
correspondences. A feature correspondence from the scene and its nearest
model is established if the ratio between the shortest and the second shortest
distance is less than a threshold (eigenvalue). Although kd-trees are effective
and efficient in low dimensions. However, it might not be so efficient when

26

encountering high dimensional data as it might require a longer time to
backtrack through the tree to search for the ideal solution.

The method utilized by Zhong (2009) is called Locality Sensitive Trees
(LST). This tree is defined as a randomly-distributed binary tree where the nodes
or leaves represent the feature space’s subdivision to be matched. Moreover, the

inner part of each leaf nodes consists of a unique random test which is useful in
grouping new feature vectors. In this paper, after the intrinsic shape signature
descriptors which represent the 3D point clouds are constructed, the descriptors
from two 3D point clouds are matched to establish the feature correspondences.
Figure 2.12 shows the sequence of matching two points using intrinsic shape
signature. The branch of the tree indicates various model descriptor that can be
matched to the scene. Then, the established feature correspondences are
associated with each of the tree’s leaves.

Figure 2.12: Sequence of Matching Two Points using Intrinsic Shape Signature
(Zhong, 2009).

2.4.2 Summary of Feature Matching
Table 2.3 summarizes all methods used to match features by different authors.
This step is very important as it is performed to establish point relations between
the model and the scene. These feature correspondences will be used in the next
step to vote for the candidate model. Based on research, it can be observed that
the methods that often be used are hashing technique and tree-based method.
Between these two methods, hashing technique might perform better than tree-
based method because it has the ability to minimize the search space, making
the computation time and complexity lower. For tree-based method, although it

27

can also perform fast searching which is efficient in low dimension data, but the
efficiency decreases when it comes to high dimension data.

Table 2.3: Summary of Methods of Feature Matching.

No. Feature
Matching

Outcomes Reference

1 Surface
matching engine
(Slicing based)

No further explanation. Johnson and
Hebert (1999)

2 Hash Table In this paper, since the authors
are using tensor descriptors
that indicates local surface
area of the views, they made
the hash table and matching
step less independent of the
surface sampling and the
resolution. From the
experiment, they
demonstrated that hashing
matching time is not affected
by the number of models in
the data library, unlike the
spin images.

Mian,
Bennamoun and
Owens (2006)

3 Locality-
Sensitive
Hashing (LSH)

This method realizes
efficiencies in memory and
number of computations
conducted.

Frome, et al.
(2004)

4 Hash Table Hash table is utilized to store
oriented model point pair
descriptors. This enables them
to detect doublets between
model and scene faster and it

Papazov and
Burschka (2010)

28

makes the aligning rigid
transform easier.

5 Hash Table The hash table stores
geometry descriptors of single
model points where it makes
the computational time
longer.

Matei, et al.
(2006)

6 kd-tree kd-tree is able to perform fast
searching to match the scene
to the model which can reduce
the time required in the feature
matching process.

Rodolà, et al.
(2013)

7 kd-tree This method is effective and
efficient in low dimension
data.

Guo, et al. (2013)

8 Locality
Sensitive Trees
(LST)

Based on one of the
experiment, with LST
indexing, only 0.4% of the
feature matches are
performed, other 99.6% of the
pairwise feature comparisons
are pruned away. Still, LST is
able to recognize object
accurately similar to how an
exhaustive matching method
does.

Zhong (2009)

2.4.3 Hypothesis Generation
For hypothesis generation, the tasks are to determine candidate models which
are most likely to locate in the scene and to perform transformation hypotheses
for them. By using the feature correspondences established from feature
matching, candidate models which are most likely to be located in the complex
scene are obtained. Then, each candidate models are utilized to further perform
rigid transformations that align one surface with another. There are multiples

29

methods that have been utilized such as interpretation trees, game theory,
geometric consistency, Hough transform, geometric hashing and Random
Sample Consensus (RANSAC).
 First of all, one of the methods is known as constrained interpretation
trees where each branch in the tree represents a feature correspondence. It starts
from the root of the tree where there is no feature correspondence. Then, it
successively constructs the feature correspondence between model and scene to
the leaf node. When the branches become too many, some can be said to be
trimmed to ensure the tree follows the correspondence arranging conditions.
The result of this technique is a tree that can perform consistent interpretations
for the transformation hypotheses for each model. This technique is utilized by
Bariya and Nishino (2010) to perform 3D object recognition where the nodes in
the tree indicate correspondences established between a model and scene feature
with each branch contains a hypothesis of whether the candidate model is
present or absent in the scene. They searched for candidate model in the scene
one at a time by using a constrained interpretation tree that extracts the rich
descriptive information produced by the scale-dependent corners, as shown in
Figure 2.13. Since each leaf node indicates a set of correspondences with its
parent nodes, a rigid transformation is computed for each node in order to align
pairs the scene and model corner points that establish that correspondences.

Figure 2.13: Schematic of Scale-Hierarchical Interpretation Tree (Bariya and
Nishino, 2010).

 According to Johnson and Hebert (1999), when they were matching
features to establish and group correspondences, geometric consistency is

30

performed to eliminate outliers which will exhibit a major error when
undergoing rigid transformation. The remaining correspondences that are
geometrically consistent are utilized to compute a transformation hypothesis.

A similar method is also implemented by Chen and Bhanu (2007).
Previously, they used hash table to store the descriptors which contain model
descriptive information. Then, they compared the descriptors (local surface
patches) between model and objects. Votes are casted and added to the hash
table to know which model receives the highest votes. High quality
corresponding descriptors can be identified as well. Since the hash table may
consist of a lot of local surface patches, those with the maximum similarity and
similar surface type are selected as the potential corresponding patch. Next,
geometric consistency is carried out to group the consistent potential ones and
filter the outliers. The largest group is likely to be the actual corresponding pairs.
After voting, candidate models which gained the top three highest votes are
obtained from the hash table entries. The following step is to apply rigid
transformation which includes rotation matrix and translation vector to the
candidate models. This geometric consistency method is useful because it can
minimize the error of correspondence matching and further improve the
efficiency of hypothesized transformations.

The other technique used to perform hypothesis generation is known as
game theory. According to Rodolà, et al. (2013), they utilized game theoretic
considerations to select the best surviving feature correspondences that satisfy
a global rigidity constraint. They first defined a payoff function to measure the
quality of a hypothesis that is backing up by another hypothesis with respect to
the ultimate aim. The game contest starts by selecting sparse sets of liable
correspondences to survive. The candidate subset then undergoes isometric
transformation. This method is easy to implement and very efficient.

Hough transform or Hough voting is used to vote the feature
correspondences to generate candidate models in 3D Hough space. By referring
to Tombari and Stefano (2012), all votes will be inserted into an array whose
dimensionality is the same as the number of unrecognized parameters of the
shape class. Each Hough space point corresponds to the presence of a
transformation between the scene and the model. In the end, the presence of the
candidate model is obtained through the peaks in the Hough accumulator. Two

31

variants are developed to the standard Hough voting scheme which are Hough
N-N (N represents Neighbours) and Hough N-C (C represents Central). A
similar idea of Hough transform is utilized by Ashbrook, et al. (1998). They
used a Hough voting scheme to perform the transformation of the local
correspondences that aligns complete surfaces. The benefits of implementing
this Hough voting is that it is able to model local correspondences
transformation errors by using a probabilistic Hough transform.

Another useful approach of hypothesis generation is known as geometric
hashing and it is described by Lamdan and Wolfson (1998). Normally, a hash
table is built to store the model points’ coordinates with their own reference

basis. In the recognition phase, an ordered pair of scene points is chosen and all
other scene points in this basis are expressed in this coordinate system. Then,
the basis is used to vote for triplets which are the model, basis and angle for
which these coordinates presented and is indexed into the hash table. The two-
point basis of the triplet and the highest support is then utilized to compute the
model hypothesis.

Random Sample Consensus (RANSAC) is another useful hypothesis
generation technique which it enhances the geometric hashing technique by
cancelling the voting part and further confirms the candidate models’ position

consistency using a minimal set of feature correspondences. The feature
correspondence set will be utilized to generate a rigid transformation which
aligns the model with the scene. All qualified point pairs that exhibit a high
consistency with the transformation will be counted until the total amount
reaches a pre-set threshold. According to Schnabel, Wahl and Klein (2007), they
presented an efficient RANSAC algorithm to detect basic shapes like cylinders,
cones, spheres, planes and tori in unorganized point clouds data even under
adverse conditions where there are a lot of outliers and a high degree of noise.

The input of this method is point cloud with points inside and associated
normal while the output is a group of primitive shapes with their corresponding
disjoint points set and a set of remaining points. First, in their localized sampling
strategy, they implemented an octree to form spatial proximity between samples
where it can adapt the size of minimal sets to the density of outlier and shape
size. A good cell which likely contains mostly points for the primitive shape
needs to be chosen properly from any level of the octree. A cell will keep

32

generating new shape candidates and then collecting them into a candidate set.
The implementation of RANSAC to detect basic shapes might not be useful in
complex object localization. In object localization, it is possible to use this
method to identify a simple chair which only consists of one flat surface and
four cylinders. However, it could not efficiently detect an object with arbitrary
shapes as these shapes are not included in their method. Figure 2.14 presents the
algorithm of RANSAC to extract shapes in the point cloud in this method.

Figure 2.14: Algorithm of RANSAC to extract Shapes in the Point Cloud
(Schnabekl, Wahl and Klein, 2007).

 Papazov and Burschka (2010) also utilized RANSAC algorithm to
sample a minimal point set from the scene. In this method, there are only two
oriented points in a minimal set which are not sampled uniformly. Then, in order
to generate oriented scene point pair from the two oriented points, normals of
both points are computed using Principal Component Analysis. The descriptor
for each scene point pair is created and used to retrieve all model pairs in model
hash table which are identical to scene point pairs. A model corresponding to
model pairs is restored and a rigid transformation that best aligns model pairs to
scene pairs is performed. The location defined in the rigid transformation is
considered to be the transformation hypothesis. Taati, et al. (2007) mentioned
that the feature correspondences which established in the previous point
matching step contain a large percentage of outliers. Therefore, they
implemented a robust RANSAC algorithm to eliminate the outliers and align
the model with its instance in the scene.
 According to Mian, Bennamoun and Owens (2010), they used the
technique of pose clustering to generate transformation hypotheses. They

33

calculated a transformation that aligns the model and the scene based on each k-
feature correspondences. All transformations are grouped and the largest cluster
indicates the actual transformation hypotheses. In addition, Zhong (2009) also
performed pose transforms which includes translation and rotation between the
matching descriptors then clustered them in a six-dimensional pose space close
to the actual pose transform. Guo, et al. (2013) computed a rigid transformation
by aligning the local reference frame of model feature to the local reference
frame of scene feature. A single feature correspondence using their RoPS
feature descriptor can be used to estimate the rigid transformation. It
outperformed other algorithms which used point signatures and spin image
descriptors where they need at least three correspondences to compute a
transformation.

2.4.4 Summary of Hypothesis Generation
Table 2.4 summarizes all methods used to generate model hypotheses by
different authors. For hypothesis generation, the technique must have a high
ability to find the candidate models which have a high possibility locating in the
rich scene and perform a rigid transformation for candidate models. Based on
the research, there are many methods that have been proposed such as
interpretation trees, game theory, geometric consistency, Hough transform,
geometric hashing and Random Sample Consensus (RANSAC). Every method
has its own benefits and drawbacks. Hough Transform might perform better
than geometric consistency and pose space clustering as it has a voting scheme
that can improve the accuracy. However, this voting scheme might result in a
longer computational time. RANSAC can improve the performance by
eliminating the voting part and it is easy to implement.

Table 2.4: Summary of Methods of Hypotheses Generation.

No. Hypotheses
Generation

Outcomes Reference

1 Constrained
Interpretation
Trees

From the experimental results,
hypotheses are generated
effectively depending on the scale

 Bariya and
Nishino (2010)

34

of the corresponding features,
which able to achieve a
recognition rate of 97.5% with up
to 84% occlusion.

2 Geometric
Consistency

It eliminates correspondences that
are not geometrically consistent to
prevent transformation error.

Johnson and
Hebert (1999)

3 Geometric
Consistency

This method exhibits a much
lower computational complexity
and better performance.

Chen and
Bhanu (2007)

4 Game Theory The gameplay that performs the
actual recognition step is able to
produce reliable matches. Besides,
this method is easy to implement
and very efficient.

Rodolà, et al.
(2013)

5 Hough
Transform

Two variants that have been added
to the Hough voting scheme are
more robust to quantization
effects. Based on the experiment,
it showed that this method
outperformed algorithms that
reply on geometric consistency
and pose space clustering.

Tombari and
Stefano (2012)

6 Hough
Transform

The benefit of using Hough voting
is that it can model local
correspondences transformation
errors by utilizing a probabilistic
Hough transform.

Ashbrook, et al.
(1998)

7 Geometric
Hashing

This method can operate in the
presence of only partial
information and it does not require
domain-specific knowledge but

Lamdan and
Wolfson (1998)

35

only the location of the feature
correspondences.

8 Random
Sample
Consensus
(RANSAC)

It improves the geometric hashing
technique by eliminating the
voting part.

Schnabekl,
Wahl and Klein
(2007)

9 RANSAC This method is robust against
outliers and it is easy to
implement. However, it requires
prior knowledge about data in
order to able to calculate the
number of iterations required to
complete the whole sampling
process.

Papazov and
Burschka
(2010)

10 RANSAC One of the drawbacks of this
method is that the number of
iterations is strongly dependent on
inlier percentage.

Taati, et al.
(2007)

11 Pose
Clustering

This method requires only a little
memory and makes accurate
clustering algorithms usage less
costly.

Mian,
Bennamoun and
Owens (2010)

12 Pose
Clustering

No further explanation concluded
in this paper.

Zhong (2009)

13 Pose
Clustering

The experiment showed that it
performed better than other
algorithms which implement point
signatures and spin image
descriptors where at least three
correspondences are needed to
compute a transformation.

Guo, et al.
(2014)

36

2.5 Fine Localization (Verification)
The final step of 3D object recognition and localization is known as fine
localization or verification where it improves the accuracy of the transformation
hypotheses by distinguishing true hypotheses from the false hypotheses. There
are normally two methods to complete this step which are the individual and
global verification approaches.

2.5.1 Individual Verification Methods
After obtaining multiple transformation hypothesis from the previous step, each
of them is used to align a candidate model with the scene. Next, an important
step of measuring the accuracy of the alignment is performed to find the
acceptable hypotheses.
 Iterative Closest Point (ICP) is the most frequently implemented
algorithm to measure the accuracy of the alignment nowadays. This method
normally determines the best transformation hypothesis that minimized the total
distance between the closest points in the model and the scene. Once the best
hypothesis is obtained, the scene features that correspond to that model can be
identified. According to Chen and Bhanu (2007), after they get the transformed
data set from the model rigid transformation, they searched the closest point in
the test image for every point in this data set.
 Guo, et al. (2014) refined the transformation using ICP algorithm which
results in a residual error. They then used the residual error and visible
proportion together with their thresholds to accept the correct transformation
hypothesis and to find the correct candidate model. One of the challenging parts
in using this method is to determine the thresholds as they cannot be too strict
or else it will eliminate the correct ones which are highly occluded in the scene
and they cannot be too loose as well or else many false positives will be
produced.

2.5.2 Global Verification Methods
The difference between this method and the individual verification method is
that it examines the whole set of hypotheses instead of checking the candidate
model one by one.

37

 According to Aldoma, et al. (2012a), they presented a cost function to
perform a global optimization to eliminate wrong active hypotheses. However,
a global cost function consists of a high computational burden, so they used
Simulated Annealing to minimize the cost function to retrieve accurate
hypotheses within a limited amount of time and computational resources. The
benefit of this technique is that it can recognize occluded models without a high
number of false positives.
 By referring to Papazov and Burschka (2010), their object recognition
algorithm utilized the mean of acceptance function to save the useful hypotheses
in solution list. There are two parameters in the acceptance function which are
the support term and penalty term. In contrast to normal RANSAC, there is only
support term (score function) which measures the quality of each hypothesis
(number of transformed model points fall within �-band of the scene). In this
method, an extra penalty term exists to penalize hypothesis of occluding
transformed model parts in the scene. Lastly, a conflict graph is created to filter
the weak hypothesis in the solution list. By implementing non-maximum
suppression or also known as local maximum search over the conflict graph, the
final hypothesis is chosen.
 According to Schnabekl, Wahl and Klein (2007), their algorithm also
consists of a score function (lazy cost function evaluation scheme) which is used
to measure the quality or to be said counting the number of compatible points
of the shape candidates. The best candidate model is chosen if it has the highest
score (highest compatible points). With this score function, it can help to
significantly reduce the overall computational cost. Lastly, a least-squares
approach serves as a refitting tool to optimise the geometric error of the chosen
candidate shape.

2.5.3 Summary and Comparison between Local and Global Verification
Methods

Table 2.5 summarizes all methods used to verify the hypotheses generated by
different authors. For local verification method, since it examines each
hypothesis one by one to align a candidate model, it might increase the overall
computational cost. For global verification method, it examines the whole set of

38

hypotheses at once and some of the algorithms even have the extra acceptance
or score function which allows it to find the correct hypothesis more accurately.

Table 2.5: Summary of Methods of Verification.

No. Verification
Method

Type

Verification
Method Name

Outcomes Reference

1 Individual Iterative Closest
Point (ICP)

No further
information.

Chen and
Bhanu
(2007)

2 Individual Iterative Closest
Point (ICP)

It is difficult to
determine optimal
thresholds to achieve a
high recognition rate.

Guo, et al.
(2014)

3 Global Cost function Based on the
experiment, this
method can recognize
occluded models
without a high number
of false positives.

Aldoma, et
al. (2012a)

4 Global Acceptance
function

In contrast to the
normal algorithm
which consists only
score function, the
extra penalty term can
help to penalize
hypothesis of
occluding transformed
model parts in the
scene to further
improve the accuracy.

Papazov
and
Burschka
(2010)

5 Global Score function
(Cost function)

Overall computational
cost is reduced by

Schnabekl,
Wahl and

39

introducing the score
function in the
algorithm.

Klein
(2007)

2.6 Summary
In summary, the four steps to perform 3D object recognition and localization
are 3D keypoint detection and extraction, construction of local surface feature
descriptors, surface matching and fine localization. In this literature review
section, various techniques and methods proposed by different authors for each
step were summarized and analysed. Different recognition algorithms presented
can be specifically designed to recognize and localize object in different range
image types such as depth image, point cloud or polygonal mesh.
 Based on this literature review, keypoint detection is always the first step
for a capable and accurate 3D exploration of the environment. Keypoints are the
salient points in the environment which contain high discriminative information.
Therefore, it is essential to implement a fast, efficient and robust technique for
an automatic extraction of keypoints in input data. Two methods to perform this
keypoint detection are the fixed-scale and the adaptive-scale methods. After the
keypoints have been detected and extracted, the important descriptive
information of the keypoints are used to construct feature descriptors. There are
mainly two categories of descriptors for interest feature points which are the
histogram-based and the signature-based methods. For surface matching,
feature matching and hypothesis generation are performed to establish a set of
feature correspondences between the interested model and the complex scene
needs with descriptors and use them to vote for candidate models that need to
be recognized and determine transformation hypotheses. Last but not least, after
generating multiple candidate model hypotheses, step of measuring the accuracy
of the alignment is performed to find the final qualified hypotheses.

40

CHAPTER 3

3 METHODOLOGY AND WORK PLAN

3.1 Introduction
In this chapter, the methods used in the project of object localization in 3D point
cloud are explained. It includes the flow of the steps and theories of each method
used in this project. In order to develop an efficient algorithm for this project,
many existing methods were studied to understand the principles behind those
methods and to identify and analyse their potential drawbacks so that the project
design could be further improved in certain advanced algorithm development.
Parameters of the algorithms in each step were the most important factor that
they could affect the performance of the process. While developing algorithms
for each step of the object localization process, parameters were frequently
adjusted as they play a vital role in producing desirable and the targeted results.

3.2 Point Cloud Library (PCL)
The full algorithm of this project was implemented using an open source library
called Point Cloud Library (PCL). According to Aldoma, et al. (2012b), PCL is
a powerful library that can process both 2D or 3D datasets and it contains a lot
of readily available tools together with their source codes. In this project, the
point cloud file format used was Point Cloud Data (PCD) which could be
processed by PCL. Microsoft Visual Studio 2013 was used to develop the
project’s source codes as PCL mainly adopts C++ programming language.

3.3 Project System Overview
Object localization in 3D point cloud project consists of two main phases. The
first phase is known as object recognition and the second phase is object
localization. First, pre-processing of the point clouds was performed. There
were two main types of input point clouds needed to be fed into the main
algorithm, which were the reference point cloud that displayed the scene of
multiple objects and the target point cloud that represented the target object. In
order to obtain target point clouds, significant objects located in the scene point
cloud were segmented from the scene.

41

 In the following object recognition and localization phases, both target
and reference point clouds were processed to extract keypoints/points of interest
which were then used to construct descriptors. Descriptors constructed for each
keypoint contained the local geometry which represented a description of its
local neighbourhood. The next step was to perform feature matching. The
descriptors of the target’s keypoints and reference’s keypoints were compared

to establish point-to-point correspondences. Then, by using these feature
correspondences, transformation model hypotheses were generated. Finally, a
hypotheses verification method was developed to recognize and localize the
final correct hypothesis in the reference point cloud, if there were more than one
hypotheses found. The final hypothesis recognized in the scene was then
localized by using bounding box and the information of the length, height and
width of the object in the bounding box were found. The overview and flowchart
of this project are shown in Figure 3.1 and Figure 3.2 respectively.

Figure 3.1: Overview of Object Localization in 3D Point Cloud.

Figure 3.2: Flowchart of Object Localization in 3D Point Cloud.

Scene Point
Cloud

Point Cloud
Pre-processing

Object
Recognition

Object
Localization

42

3.3.1 Surface Normal Estimation
In this project, the point type in the main point cloud dataset used was PointXYZ
type, where it only consisted of 3D point’s x, y and z information. However,

Point Cloud Library (PCL) (2018a) stated that the SIFT keypoint detector used
in the keypoint detection step which will be explained in next section required
a value, such as colour (RGB) or intensity from the point cloud in computing a
scale space to extract keypoint. Since the point cloud dataset used did not have
these information, surface normal of the points were computed and they acted
as the input information to SIFT keypoint detection. A normal is defined as a
vector perpendicular to a targeted point on the estimated plane. The surface
normal were estimated and computed for each point in the point as described
below.
 Based on Point Cloud Library (PCL) (2012), the surface normal
estimation was performed based on Principal Component Analysis (PCA) with
a user-defined k-neighbourhood size by using pcl::Feature::setKSearch
function. Surface normals were estimated and computed from a set of
neighbours (k-neighbourhood) located at surrounding of a point. After selecting
the size of the k-neighbourhood of a targeted point pi, a covariance matrix C was
generated for the point, as shown in Equation 3.1. PCA was then applied to
obtain the eigenvalues, �j which were in a descending order and the eigenvectors,
�j of the covariance matrix built by the k-nearest neighbours. The final surface
normal of a targeted point was defined as the eigenvector with the smallest
eigenvalue. Equation 3.2 shows how the surface variation, � was obtained from
the relationship between each eigenvalue. Besides, since the input model and
scene point cloud data were very large, an empty three dimensional kD tree (k-
Dimensional tree) was created in the algorithm to increase the speed to search
for k neighbours around a targeted point.

� =
1
�� (�	 � ��) �

�

	��

(�	 � ��)� ,� � ������ = �� � ������, � � {0,1,2} (3.1)

where
k = Number of nearest neighbours contained in neighbourhood of pi

43

�� = Centroid of neighbours in neighbourhood

�� = jth eigenvalue of computed covariance matrix

�� = jth corresponding eigenvector

� =
��

�� + �� + ��
 (3.2)

3.3.2 Keypoint Detection
The next step is known as keypoint detection. Since the input of the algorithm
was a large quantity of points, both useful and poor points were mixed together.
Informative keypoints were more desirable as they contained a rich 3D
information and could be well-localized, for example, edge or corner points.
Besides, keypoint detection helped to reduce potential sample points to
minimize the computational time and complexity. Detection of the keypoint
locations was important as it could further affect the success of the feature
descriptors in the next step.
 The method of keypoint detection used in this project was Scale
Invariant Feature Transform (SIFT) which was proposed by Lowe (2004) for
object recognition and the algorithm was implemented in PCL using
pcl::SIFTKeypoint (Point Cloud Library (PCL), 2018a). The idea of SIFT was
originally proposed for 2D images and it was further adapted and developed by
the PCL teams to 3D point clouds. In PCL, SIFT keypoint detector searches
through the Difference-of-Gaussian (DoG) clouds in the Gaussian scale space
and the 3D keypoints are detected as the local extrema that locate in the scale
space. The Gaussian scale space and its extrema were constructed in PCL by
setting four parameters given in the algorithm: number of octaves, number of
scale levels per octave, minimum scale size and minimum contrast (minimum
DoG value required to mark a keypoint). The number of octaves refers to the
octaves number to compute the keypoints. The number of scale levels per octave
indicates the number of scales set to compute the keypoints within each octave.
The minimum scale parameter is the standard deviation of the smallest scale
contained in the Gaussian scale space. The minimum contrast parameter
provides a threshold to limit the number of keypoints detected without adequate
contrast.

44

 After feeding both model and scene point clouds, I (x,y,z) to the
algorithm, the system created a Gaussian scale space using 3D density that was
convolved with a series of Gaussian kernels to build a pyramid of density maps
whose standard deviations, �j were differed by a fixed multiplicative factor, k

for each point (Lowe, 2004). Besides, a blur filter was constructed by carrying
out a radius search and the weighted average of neighbouring points was taken
as a new local cloud intensity for each point. DoG clouds that contained
different intensity values were obtained by subtracting two adjacent point clouds
repeatedly, as shown in Equation 3.3. Eight nearest neighbours located at the
current scale and nine nearest neighbours located at the neighbouring scale
(above and below) were used to compare with every point in the DoG clouds
(Hansch, Weber and Hellwich, 2014). Originally, SIFT detector requires a value
from point cloud such as colour or intensity to compute keypoints. However,
the point cloud used in this project does not contain the needed information.
Therefore, the value of normal of each point computed in the previous step was
used to compute keypoints rather than intensity variants. Besides, a kD tree was
also built to speed up the neighbour searching step.

 � !, ", #, ��$ = % !,", #,��&�$ � % !, ", #, ��$ (3.3)

where
D = Difference-of-Gaussian (DoG) clouds
G = Convolution of Gaussian yield point cloud

3.3.3 Descriptor Construction
Now, all the important keypoints had been detected. Local descriptors were then
constructed to describe the local geometry for each keypoint. In this project,
there were two methods used to develop the descriptors: Point Feature
Histogram (PFH) and Signature of Histograms of OrienTations (SHOT).
 Point Feature Histogram (PFH) method was proposed by Rusu, et al.
(2008). The algorithm was developed by using module pcl::PFHEstimation

available in Point Cloud Library (PCL) (2020a). This method mainly required
two input information which were the xyz data and surface normals computed
in the previous section. Therefore, the surface normals computed must have a

45

high quality or else it would affect the performance of the descriptor. Basically,
a PFH descriptor mainly uses the difference of surface normals’ directions to

collect the geometrical information of a targeted keypoint from its
neighbourhood.
 After feeding the input keypoint clouds of both model and scene and
their computed surface normals to the algorithm, a k-neighbourhood of point pi
was created by setting the radius of a sphere r that used to search for neighbours.
Next, point pairing was performed. According to Grupo De Robotica (2015a),
a targeted point was not only paired with its k neighbours, but the neighbours
were also paired among themselves. For each point pair ps and pt, a coordinate
frame containing 3 unit vectors was computed by using their normals ns and nt
at either point, as shown in Equation 3.4. By using the computed coordinate
frame, the difference between the normals of the point pair was expressed as
three angular features, as shown in Equation 3.5. Lastly, four main features, the
three angular features and the point pair’s Euclidean distance d were binned into
a histogram with 125 bins. This means that each keypoint would have its own
125-bin histogram. The final PFH descriptor was the combination of all
histograms with their own four features. An empty kD tree was built to perform
the neighbour searching process.

' = �� ,� = ' ×
(�(� ��)
)�(� ��)�

× ' ,* = ' × � (3.4)

where

+ =)�(� ��)�

, = � � �(,- = ' �
(�(� ��)

+ ,. = arctan(* � �(,' � �() (3.5)

 As mentioned by Rusu, Blodow and Beetz (2009), PFH has a very high
complexity of O(k2) in computing descriptors at real time. At first, PFH was
used to generate descriptors for the keypoints. However, it required too much
time, more than two hours to construct the descriptors for a larger scene point
cloud. Therefore, in order to increase the efficiency of the descriptor

46

construction process, Signature of Histograms of OrienTations (SHOT) was
implemented by using readily available module pcl::SHOTEstimation in PCL
(Point Cloud Library (PCL), 2018b). This method was proposed by Tombari,
Salti and Stefano (2010a) which combined both signatures and histograms.
 In the algorithm, the descriptor first built a weighted covariance matrix,
M for a targeted keypoint p by using a fixed radius for neighbouring keypoints
pi, as shown in Equation 3.6. Then, Local Reference Frame (LRF) or the
coordinate system was computed for the keypoint by using eigenvector and
eigenvalue decomposition of the matrix. Then, a 3D isotropic grid in a spherical
form for the targeted keypoint was created as a signature structure and it was
aligned with the corresponding LRF, almost similar like 3D shape context
method proposed by Frome, et al. (2004). In PCL, the spherical grid consists of
32 bins creating from 2 radial divisions, 8 azimuth divisions and 2 elevations.
Next, one dimensional histogram in each bin was obtained by accumulating the
geometric details of the keypoint such as cosine angles between normals of the
keypoints and of the neighbouring keypoints. Lastly, the final SHOT descriptor
was developed by combining all histograms. In the algorithm, the main
parameter to be set and adjusted was the radius defining of which neighbouring
keypoints were involved and described. Besides, a kD tree was provided to help
in radius search for nearest keypoints for both model and scene clouds.

/ =
1

0 (R � +)	:1234
 (R � +)(�	 � �)(�	 � �)�

	:1235

 (3.6)

where
M = Weighted Covariance matrix

+	 =)�	 � �)�
R = Radius of sphere

3.3.4 Feature Matching
Next, once the descriptors of keypoints for both model and scene were computed,
the scene and model keypoints were then successively matched through their
own descriptors to compute a set of point-to-point correspondences.

47

 In this project, the reference cloud was the scene descriptors and model
descriptor cloud was set as the input cloud for matching. Descriptors of the
scene functioned as a key to match themselves to all the descriptors of the model
in order to establish model-scene point pairs that were identical. The reason of
doing this was to account for the existence of a few model hypotheses. If the
model’s descriptors matched themselves against the scene’s descriptors, the
model instances would not be found. Each descriptor in the scene cloud was
matched and compared with the model descriptors by using
pcl:KdTreeFLANN<pcl::KdTreeFLANN> module available in Point Cloud
Library (PCL) (2013). The system then computed a Euclidean distance between
the model and scene descriptor. A distance threshold d was set to determine the
similarity between the scene’s keypoints and the model’s keypoints. Point-to-
point correspondences were obtained and added to a correspondence group if
the distances were within the threshold, meaning that they were similar. All poor
correspondences which had a bigger distance more than the threshold were
eliminated. The threshold should not be too big, or else the number of outliers
or mismatched keypoints would be higher. On the other hand, if a very low
threshold was set, the number of the correspondences would be too less to obtain
the model instances in the hypotheses generation step.

3.3.5 Hypotheses Generation
Through the feature matching step, the point-to-point correspondences between
the scene and the model were collected in a so-called “correspondences”

database. Based on (Grupo De Robotica, 2015b), these correspondences cannot
completely recognise and locate the model in the scene as the outliers due to
errors from keypoint detection or noise might exist among the correspondences.
Therefore, correspondence grouping was performed to retrieve those
correspondences which had a high geometric consistency and eliminate other
poor correspondences. Lastly, by clustering the final set of
correspondences/inliers, the correct model instance was found and localized
with the true model in the scene.
 The method used to group the correspondences and generate model
hypotheses was known as Hough Voting or Hough Transform which was
proposed by Tombari and Stefano (2010). It was implemented in PCL by using

48

pcl::Hough3DGrouping module (Point Cloud Library (PCL), 2020b). First,
three main parameters were set as the input details for the algorithm: rf_rad,
cg_size and cg_thresh. rf_rad was the radius required to compute Local
Reference Frame (LRF) for each keypoint. cg_size was defined as the bin size
in the Hough space that formed the cluster size where cg_thresh was the
threshold set for voting in Hough space, which also known as clustering
threshold.
 According to Tombari and Stefano (2010), Hough voting is based on a
voting process in Hough space to find the qualified correspondences. Once the
algorithm was fed with defined input parameters, LRF was computed for each
pair of correspondences in the “correspondences” database C. The vector
between each keypoint Fi

M and model’s centroid CM was calculated as shown in
Equation 3.7. The vector computed was in global reference frame (GRF). In
order to ensure these vectors were rigid translation and rotation invariant, they
were then transformed to local reference frame (LRF) as shown in Equation 3.8.
Next, the vector was also computed corresponding to scene keypoint. Since the
LRF of the scene keypoint was invariant to transformation, it was assumed that

6	,78 = 6	,79 . The final vector was transformed back into GRF of the scene as

shown in Equation 3.9. By using these transformations, scene keypoints casted

votes in the algorithm-constructed 3D Hough space through the final vector 6	,:8 .

 Inliers/correct correspondences were found by recognizing the peak in
the space. All the inliers were clustered in the peak, representing the presence
of the model hypotheses. In this step, if there were more than one hypotheses
generated, bin size in the Hough space and clustering threshold were adjusted
until a correct model instance was recognized. The final set of correspondences
was visualized and a bounding box was constructed to locate the model instance
in the scene. The length, height and width of the model was printed in the
command window with respect to the unit in the PCL.

6	,:9 = �9 � ;	9 (3.7)

where

6	,:9 = Vector between �9 and ;	9

49

6	,79 = <:7
9 � 6	,:9 (3.8)

where

<:7
9 = [=	,>

9 =	,?
9 =	,@

9]�, model rotation matrix

6	,:8 = <7:
8 � 6	,78 + ;�8 (3.9)

where

<7:
8 = [=�,>

8 =�,?
8 =�,@

8], scene rotation matrix

;�8= Scene keypoint

3.4 Project Timeline
In order to ensure that the project could be done with the fulfilled aim, objectives
and other requirements within the deadline, a work plan was drafted as an
outline for goals and processes and it was strictly followed. By referring to
Figure 3.3, the work plan was planned in weeks.
 During the first week, the software required to develop algorithms for
the project and to analyse the results were installed. The basic idea and operation
of the software were studied and learned. After finished installing the software,
pre-processing of the point cloud was done to create a few model point clouds
from the scene cloud. Once the input point clouds were ready, keypoint
detection was carried out. The following weeks were used to perform the other
processes such as descriptor construction, feature matching and hypotheses
generation. Parameters were adjusted in each step in order to produce a desirable
result. The algorithm of the project was run over and over again to collect results.
After obtaining all the results, the final report was ready to be written.

50

Figure 3.3: Timeline of Second Part of Project.

3.5 Summary
In summary, the algorithm developed in this project is capable of recognizing
and localizing an object from a rich 3D point cloud. First, keypoint detection
using SIFT keypoint detector was performed to mark the points of interest on
both model and scene point clouds. Gaussian scale space of the detector was the
main factor that determined the number of keypoint detected. Next, descriptors
that store the geometrical content of the keypoints were computed. There were
originally two types of descriptor computed: Point Feature Histogram (PFH)
and Signature of Histograms of OrienTations (SHOT). In the end, SHOT was
selected due to its high efficiency which will be explained in Chapter 4. After
the descriptors were computed for both model and scene, feature matching was
carried out to establish point-to-point correspondences between the model and
scene. Since the correspondences consisted of some outliers, Hough Voting
scheme was used to perform a rigid transformation to only collect those good
correspondences. All the good correspondences were clustered to generate
model hypotheses. The parameters in the Hough Voting were adjusted until
there was only one actual model hypothesis found. Next, a bounding box was
computed to locate the model instance from the scene, with the corresponding
lines connecting between the input model and the model instance.
 In this project, the main point cloud used was a fountain scene with three
different objects: crocodile, seal and basin. Two types of input model point
clouds were used to test the functionality of the algorithms. The first input model
point cloud was the non-rotated model point clouds. First, the algorithm tested
the localization of only one non-rotated model from the scene per time. Then,

51

all three non-rotated models were localized from the scene at the same time.
Next, the algorithm performed the localization of the second input model point
cloud which was the transformed model (rotated by 20°). All results will be
shown and discussed in Chapter 4.

52

CHAPTER 4

4 RESULTS AND DISCUSSION

4.1 Introduction
There were total of five steps needed to perform to obtain the final object
localization results in this project. Each step had their own parameters to be
adjusted. The final results will be discussed and analysed in this chapter.

4.2 Dataset
The main multiple-object rich point clouds used in performing object
localization in 3D point cloud was obtained from Artec Europe (2020). It is a
fountain scene containing a crocodile, a seal and a basin. This point cloud’s

texture size was fixed to 16384×16384 and it contains total 1505600 points with
XYZ information. All three single target models were segmented manually by
using CloudCompare where there are 29531, 20859 and 4133 points in crocodile,
seal and basin models respectively.

4.3 Normal Estimation
It is important to estimate surface normals for each point in the point cloud as it
contained geometric surface’s properties that were required to construct
keypoint detector and descriptor. The number of k-nearest neighbours of a point
was the main parameter and it was regularly adjusted in this algorithm. However,
it is difficult to set a correct scale size for the k-neighbourhood. If the number
of the nearest neighbours is too large, the estimated surface normal
representation of a targeted point would be distorted as there are too many
details computed from the surrounding neighbours. If the k-neighbourhood size
is too small, the estimated normal of a targeted point might not get enough
details from surrounding neighbours. Therefore, the scale of the k-
neighbourhood should be adequate where it could sufficiently obtain details
from surrounding neighbours to compute surface normals.
 In this part, k-neighbourhood scale was set as k =2, 4, 6, 8, 10 and the
results of the surface normals computed for crocodile, seal, basin and scene
point clouds were analysed and discussed. The visualizations of the point’s

53

surface normals for each point cloud at k = 2, k = 4 and k =10 were presented in
Figure 4.1, Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5. Besides, time taken
to estimate the surface normals for each point cloud at different neighbourhood
size was measured and tabulated in Table 4.1.
 As shown in Figure 4.1, the surface normals computed at k = 2 for all
point cloud could not be seen. There were not enough details to compute surface
normals since only two nearest neighbours were selected. The result was not
accurate. As the size of k-neighbourhood increased, the distribution of surface
normals all over the point clouds could be observed clearly. Starting from scales
k = 4, the details provided by the nearest neighbours were sufficient as the
surface normals were mostly estimated at the outlines of the point clouds. This
shows that the neighbourhood scales were able to capture small details from the
point clouds. The surface normal results were accurate. Besides, by comparing
the normals at k = 4 and k = 10, the surface normals at k = 10 were more parallel
and had a more consistent orientation. Based on Rocha (2017), a small
neighbourhood could cause noisy normals. The results showed inconsistent
normals at k = 4. To evaluate the efficiency of the surface normal estimator,
time taken for the surface normal computation was measured at different k-
neighbourhood scale. From Table 4.1, the surface normal estimator required
more computational time at a larger neighbourhood as there were more
neighbours involved in the covariance estimation.
 The selected scale for k-neighbourhood to compute surface normals was
k =10. Although it was more complicated, but the results were the most accurate
as the surface normals computed were consistently oriented at the important part
of the point cloud.

Figure 4.1: Visualization of Surface Normals for All Point Clouds at k = 2.

54

Figure 4.2: Visualization of Surface Normals for Crocodile (Top: k = 4;
Bottom: k =10).

Figure 4.3: Visualization of Surface Normals for Seal (Left: k = 4; Right: k

=10).

Figure 4.4: Visualization of Surface Normals for Basin (Left: k = 4; Right: k

=10).

55

Figure 4.5: Visualization of Surface Normals for Scene (Top: k = 4; Bottom: k

=10).

Table 4.1: Time Taken for Surface Normal Estimation for Each Point Cloud at
Different k.

k-Neighbourhood
Size

Computational Time for Surface Normal
Estimation (s)

Crocodile Seal Basin Scene

2 0.421 0.346 0.187 27.154

4 1.202 0.883 0.292 85.678

6 1.346 0.960 0.311 94.665

8 1.415 1.042 0.340 102.560

10 1.528 1.135 0.370 105.999

Figure 4.6: Graph of Models' Surface Normal Computational Time against k

Neighbourhood Size.

0

0.5

1

1.5

2

0 2 4 6 8 10 12M
od

el
s'�
Su
rf
ac
e�
N
or
m
al
�

Co
m
pu

ta
tio

na
l�T
im

e�
(s
)

k Neighbourhood�Size

Graph�of�Models'�Surface�Normal�Computational�Time�
against�k Neighbourhood�Size

Crocodile Seal Basin

56

4.4 Keypoint Detection
According to Tuytelaars and Mikolajczyk (2007), it is difficult to define how
accurate a detected keypoint is. However, it is possible to analyse the properties
of the keypoints. Good detected keypoints should consist of a few properties.
The first property is quantity and quality. The number of keypoints found should
be reasonable and sufficient. The number should not be too high or too low, but
should be able to reflect the details of the model and scene point cloud. The
second property is repeatability. In a single point cloud, the repeatability of
keypoints detected should be low. For keypoint repeatability between model and
scene, the number of duplicates should be high. Noise, changes in viewpoint,
occlusion or any combination of the above may affect this property. The last
property is efficiency / time performance. The efficiency of keypoint detection
is related to the computation time. The shorter the time needed, the more
efficient the detector is.
 The keypoint detector used in this project was Scale Invariant Feature
Transform (SIFT) keypoint detector and it was implemented by using
SIFTKeypoint module available in Point Cloud Library (PCL). This detector
has several parameters to be adjusted: number of octaves, number of scale levels
per octave, minimum scale and minimum contrast. According to Point Cloud
Library (PCL) (2018a), the first three parameters specify the range of scales to
search and detect the keypoints.
 This part tested the behaviour of two sets of the input models: non-
rotated input models and rotated input models. The results of SIFT keypoint
detector for non-rotated input models will be mainly discussed. In order to
analyse the performance of the SIFT keypoint detector on how the Gaussian
scale space sampling rates influenced the number of keypoints detected,
different Gaussian scale spaces were created where all parameters were set to
be the same except for the minimum scale of Gaussian scale space which was
set to be 65, 70, 75, 80 and 82. The minimum contrast was set to 0 to make sure
that every part of the point cloud could be scanned to detect all possible keypoint.
After analysing the behaviour of the detector, the best minimum scale parameter
would be selected for the final SIFT detector. The SIFT keypoint detector was
set as following:

� min_scale = 65, 70, 75, 80, 82.

57

� n_octaves = 70.

� n_scales_per_octave = 90.

� min_contrast = 0.

4.4.1 Keypoint Quantity and Quality
The number of keypoints detected is one of the most important factors that can
affect the performance of the whole object localization process. The number of
keypoints marked should be reasonable and adequate, where it cannot be too
many or too few. For keypoint quality, the keypoints found must be informative
enough to be able to sketch out the model point cloud’s approximate pattern.

The results of the number of detected keypoints for three different input models
(crocodile, seal and basin) and scene point clouds at different minimum scale of
Gaussian scale space were tabulated, as shown in Table 4.2.
 In Point Cloud Library, SIFT keypoint detector goes through a series of
Gaussian filters based on different scales which were then subtracted. The local
maxima were selected as keypoints. Based on Table 4.2, it can be observed that
the bigger the minimum scale of the Gaussian scale space in the SIFT keypoint
detector, less number of keypoints was detected. This means that when the
standard deviation of the smallest scale contained in the Gaussian scale space or
also known as scale of the keypoints increased, a coarser representation was
produced. As the coarser scale of keypoints got higher, some feature went
missing, the amount of maxima would not increase. By comparing the numbers
of keypoints detected in each point cloud to the numbers of total points in their
own point cloud, the number of keypoints found was considered sufficient.
 The visualizations of the keypoints detected in each point cloud at the
largest minimum scale (80) and the smallest minimum scale (65) were shown
in Figure 4.7, Figure 4.8, Figure 4.9 and Figure 4.10. The detected keypoints
were clearly located at the side of the models and they were able to outline the
shape of the models. This shows that both detectors were capable in finding
informative keypoints.

58

Table 4.2: Number of Detected Keypoints for Crocodile, Seal, Basin Models
and Scene Point Cloud at Different Minimum Scale.

Minimum Scale of
Gaussian Scale Space

Crocodile
Model

Seal
Model

Basin
Model

Scene

65 915 861 166 37001

70 830 650 161 31773

75 779 638 116 27615

80 644 496 99 24526

82 629 444 87 22904

Figure 4.7: Visualization of Crocodile’s Detected Keypoints (Left: Min Scale
82; Right: Min Scale 65).

Figure 4.8: Visualization of Seal’s Detected Keypoints (Left: Min Scale 82;
Right: Min Scale 65).

Figure 4.9: Visualization of Basin’s Detected Keypoints (Left: Min Scale 82;
Right: Min Scale 65).

59

Figure 4.10: Visualization of Scene’s Detected Keypoints (Above: Min Scale
82; Below: Min Scale 65).

4.4.2 Keypoint Repeatability
In evaluating keypoints, one of the most crucial properties of SIFT keypoint
detector is its repeatability. In this project, few tests were done to evaluate the
repeatability of the points-of-interest: keypoint repeatability results in own
model and scene point clouds, keypoint repeatability results between model and
scene point clouds and keypoint repeatability results in own model point clouds
under different conditions (Minimum scale of Gaussian scale space in SIFT
detector & rotation).
 First of all, keypoint repeatability resulted in own models and scene
point clouds was analysed. The keypoints of the models and scene at different
minimum scale which were numerically identical were found and tabulated, as
shown in Table 4.3. The number of original keypoint was also tabulated to ease
the comparison. Figure 4.11, Figure 4.12, Figure 4.13 and Figure 4.14 show the
relationships between the changing minimum scale of the SIFT keypoint
detector with the number of total detected and repeated keypoints for both
models and scene. It can be observed that all SIFT keypoint detectors created
resulted in finding a lot of keypoints that were located at similar position.
Besides, with more detected keypoints, there was a higher chance where
repeated keypoints appeared more frequently which resulted in low efficiency.
To further analyse the remaining unique keypoints in each point cloud, the
unique keypoints at the minimum scale of 65 and 80 for the crocodile point
clouds were visualized as presented in Figure 4.15. As the results show, the
location of the unique keypoints was the same as the location of the total

60

keypoints. The brief pattern of the point cloud was still clear even after
removing all the repeated keypoints. This means that the detected keypoints
were actually descriptive enough.

Table 4.3: Table of Number of Original and Repeated Keypoints for Input
Crocodile, Seal, Basin Models and Scene Point Clouds at Different Minimum
Scale of Gaussian Scale Space.

Minimum Scale of Gaussian
Scale Space

65 70 75 80 82

Crocodile
Model

No. of Original
Keypoints

915 830 779 644 629

No. of
Repeated
Keypoints

674 603 560 466 470

Seal
Model

No. of Original
Keypoints

861 650 638 496 444

No. of
Repeated
Keypoints

583 398 413 328 281

Basin
Model

No. of Original
Keypoints

166 161 116 99 87

No. of
Repeated
Keypoints

115 112 87 67 52

Scene No. of Original
Keypoints

37001 31773 27615 24526 22904

No. of
Repeated
Keypoints

24153 20565 18090 16036 14894

61

Figure 4.11: Graph of Number of Total and Repeated Scene’s Keypoints

against Minimum Scale of SIFT Keypoint Detector.

Figure 4.12: Graph of Number of Total and Repeated Crocodile’s Keypoints

against Minimum Scale of SIFT Keypoint Detector.

Figure 4.13: Graph of Number of Total and Repeated Seal’s Keypoints against

Minimum Scale of SIFT Keypoint Detector.

0
10000
20000
30000
40000

65 70 75 80 82
N
o.
�o
f�S
ce
ne

's�
Ke

yp
oi
nt

Min�Scale

Graph�of�Number�of�Total�and�Repeated�Scene's�
Keypoints�against�Minimum�Scale�of�SIFT�Detector�

scene�original�kp scene�repeated�kp

0

500

1000

65 70 75 80 82N
o.
�o
f�C

ro
co
di
le
�M

od
el
's�

Ke
yp
oi
nt

Min�Scale

Graph�of�Number�of�Total�and�Repeated�
Crocodile�Model's�Keypoints�against�Minimum�

Scale�of�SIFT�Detector�

total�keypoints repeated�keypoints

0

500

1000

65 70 75 80 82

N
o.
�o
f�S
ea
l�M

od
el
's�
Ke
yp
oi
nt

Min�Scale

Graph�of�Number�of�Total�and�Repeated�Seal�
Model's�Keypoints�against�Minimum�Scale�of�SIFT�

Detector�

model�original�kp model�repeated�kp

62

Figure 4.14: Graph of Number of Total and Repeated Basin’s Keypoints

against Minimum Scale of SIFT Keypoint Detector.

Figure 4.15: Visualization of Unique Crocodile’s Keypoints (Left: Min Scale

82; Right: Min Scale 65).

 Next, keypoint repeatability resulted between models and scene point
clouds was found and evaluated. The keypoints analysed here were the unique/
non-repeated keypoints remaining after removing all repeated keypoints from
the original detected interest points. The keypoints which were numerically
identical between models and scene were found, tabulated in Table 4.4 and
plotted in Figure 4.16.
 High repeatability of keypoints between the input models and scene is
crucial as it could affect the efficiency performance of object matching and
localization in further steps. The results show that the number of keypoints in
models that actually located at the exact same place in the scene was not many.
Keypoint repeatability did not improve for all input models as the minimum
scale reduced where there was more keypoints. To have a better localization

0
50
100
150
200

65 70 75 80 82

N
o.
�o
f�B

as
in
�M

od
el
's�
Ke
yp
oi
nt

Min�Scale

Graph�of�Number�of�Total�and�Repeated�Basin�
Model's�Keypoints�against�Minimum�Scale�of�SIFT�

Detector�

model�original�kp model�repeated�kp

63

performance, the minimum scale which resulted in a higher number of repeated
keypoint was desirable and it can be seen that each model had their own
preferable minimum scale parameter.

Table 4.4: Number of Repeated Keypoints between Input Models and Scene at
Different Minimum Scale.

Min Scale Crocodile Seal Basin
65 13 25 6

70 13 20 5

75 17 19 0

80 8 8 0

82 9 6 1

Figure 4.16: Graph of Number of Repeated Keypoints Between Three Input
Models and Scene at Different Min Scale.

 Besides, matching of keypoints between models and scene was also
conducted by using CloudCompare to evaluate the repeatability of the keypoints.
Cloud-to-Cloud distance (C2C absolute distance) with octree level 8 (octree’s

subdivision level where the cloud distance calculation will be executed) was
computed after matching each model’s keypoints to the scene’s keypoints at

different minimum scale of detector (CloudCompare, 2015a). The mean
distance and standard deviation of keypoints in each model matching to the
scene’s keypoints were recorded as shown in Table 4.5. Figure 4.17, Figure 4.18,

0
5
10
15
20
25
30

60 65 70 75 80 85

N
o.
�o
f�R

ep
ea
te
d�
Ke
yp
oi
nt
�b
et
w
ee
n�

M
od

el
s�a

nd
�S
ce
ne

Min�Scale

Graph�of�Repeated�Keypoint�between�Models�
and�Scene�against�Min�Scale

Crocodile Seal Basin

64

Figure 4.19, Figure 4.20, Figure 4.21 and Figure 4.22 show the visualization of
C2C absolute distance display range of three input models at minimum scale of
70.
 In CloudCompare, the points’ distances between two clouds are

calculated by setting the scene point cloud as reference cloud and model point
clouds as the compared one. According to CloudCompare (2015b), the distances
between points are computed by implementing the Nearest Neighbour Distance
method. For every point in the model point cloud (compared cloud),
CloudCompare will examine the nearest point in the scene point cloud
(reference cloud). Then, the Euclidean distances between the points are found.
After computing all C2C distances, the mean distance and standard deviation
values were calculated.
 Table 4.5 shows that the minimum parameter of 70 for crocodile and
basin models and of 65 for seal model resulted in the lowest mean distance and
standard deviation values. Based on the colour scale of the value of the C2C
distance computation, the colour range changes from blue to red when the
distance becomes bigger. If the point in the model cloud is at the exact location
in the scene cloud, the C2C distance computed will be zero and the colour shown
will be blue. The results show that the blue point had a bigger distribution and
the histograms of normal distribution were clearly shifted towards left/zero for
all input models. Since there was not many exact same keypoints detected
between models and scene, a threshold C2C distance of approximately 15 or
within the first four classes was set. All points that were within this threshold
were considered as repeated keypoints, as shown in Table 4.6.

Table 4.5: Mean Distance and Standard Deviation Between Model and Scene
Point Cloud After Matching at Different Minimum Scale.

Min
Scale

Crocodile Seal Basin
Mean

Distance
Standard
Deviation

Mean
Distance

Standard
Deviation

Mean
Distance

Standard
Deviation

65 10.13918 20.78699 16.87797 24.92541 15.80206 28.06951

70 9.17489 18.30128 16.90226 25.83518 9.96979 18.08997

75 14.53731 25.18010 18.41618 27.33734 18.40606 28.61948

65

80 14.45363 24.43072 21.71080 28.56758 19.44442 28.54013

82 17.31757 27.98655 21.33786 26.64655 15.14331 23.72197

Table 4.6: Percentage of Keypoints Within Threshold Between Model and
Scene Point Cloud After Matching at Different Minimum Scale.

Min Scale Crocodile
(%)

Seal (%) Basin (%)

65 79.781 67.401 74.405

70 80.723 66.006 74.233

75 70.277 62.188 70.339

80 71.318 57.515 69.307

82 67.987 56.152 68.539

Figure 4.17: C2C Absolute Distance Display Range of Crocodile Model at
Minimum Scale of 70.

Figure 4.18: Normal distribution of Crocodile Model at Minimum Scale of 70.

66

Figure 4.19: C2C Absolute Distance Display Range of Seal Model at
Minimum Scale of 70.

Figure 4.20: Normal distribution of Seal Model at Minimum Scale of 70.

Figure 4.21: C2C Absolute Distance Display Range of Basin Model at
Minimum Scale of 70.

67

Figure 4.22: Normal distribution of Basin Model at Minimum Scale of 70.

 The last keypoint repeatability to be analysed was the keypoints resulted
between own point clouds under different conditions. This was to evaluate the
ability of the detector in identifying the same keypoints even if the environment
changed. The first varying condition was the changing minimum scale of
Gaussian scale space in SIFT detector. Minimum scale of 65 was taken as the
reference for comparison and all the keypoints analysed here were the unique
ones. The numbers of exact repeated keypoints for the models were tabulated in
Table 4.7. The results shown were poor. Similarly, a C2C distance threshold of
approximately 15 or first four classes (bins) was set to collect keypoints which
distances were within the threshold as presented in Table 4.8. Figure 4.23,
Figure 4.24 and Figure 4.25 show the visualization of histogram of C2C
absolute distance of three input models at minimum scale of 70.
 Next, the evaluation of the repeatability for models’ keypoints under

transformation was done. The keypoints for each model at minimum scale of 65
were rotated at 20°, as displayed in Figure 4.26, Figure 4.27 and Figure 4.28.
Table 4.9 shows that the numbers of the exact repeated keypoints and the
percentage of repeated keypoints under C2C absolute distance threshold of 15
(first four classes) between the original and rotated keypoints for each model.
 Based on the results above, SIFT keypoint detector was actually lack of
capability in detecting same set of keypoint under changing circumstances as
the amount of keypoints that located at exact same place was low. However,
with a given distance threshold, the results of repeated keypoints were
acceptable.

68

Table 4.7: Numbers of Repeated Keypoints between Own Models Point Cloud
Under Different Minimum Scale.

Min Scale Crocodile Seal Basin
65

70 0 0 0

75 0 0 0

80 2 0 0

82 0 0 0

Table 4.8: Percentage of Keypoints Within Threshold for Input Models at
Different Minimum Scale.

Min Scale Crocodile
(%)

Seal (%) Basin (%)

65

70 28.434 27.591 15.951

75 16.877 33.750 32.203

80 34.574 29.659 30.693

82 29.002 38.255 24.719

Figure 4.23: Histogram of C2C Absolute Distance of Crocodile Model at
Minimum Scale of 70.

69

Figure 4.24: Histogram of C2C Absolute Distance of Seal Model at Minimum
Scale of 70.

Figure 4.25: Histogram of C2C Absolute Distance of Basin Model at
Minimum Scale of 70.

Figure 4.26: Crocodile’s Keypoints Before and After 20° Rotation (Left:
Rotated; Right: Original).

70

Figure 4.27: Seal’s Keypoints Before and After 20° Rotation (Left: Rotated;

Right: Original).

Figure 4.28: Basin’s Keypoints Before and After 20° Rotation (Left: Rotated;

Right: Original).

Table 4.9: Numbers of Exact Repeated Keypoints and Percentage of Repeated
Keypoints within Threshold between Original and Rotated Keypoints for Each
Model.

Models
(After 20°
Rotation)

Number of Exact
Repeatability

Percentage (%) of
Repeated Keypoints

(Under C2C Threshold)
Crocodile 0 2.295

Seal 0 6.736

Basin 0 24.096

71

4.4.3 Keypoint Detector’s Efficiency / Time Performance
In order to analyse the efficiency of the SIFT keypoint detector based on
different minimum scales, time taken to detect the keypoints was computed, as
shown in Table 4.10. Besides, Figure 4.29 compares the relationship of the total
keypoint computation time for input crocodile, seal and basin model point
clouds at different minimum scale of Gaussian scale space. The runtime
experiments were done on an Intel Core i5 with 8GB RAM and noted that the
time complexity was not 100% accurate as it depended on CPU performance.
 Based on Table 4.10 and Figure 4.29, the SIFT keypoint computation
time decreased with the increasing minimum scale of the Gaussian scale space.
If smaller scales for keypoints detection were used, SIFT detector was actually
using more time to detect keypoints that were located at same position and
location. Therefore, in term of efficiency, the minimum scale of 82 was the ideal
parameter that showed an adequate ratio between the amount of keypoint
detected and execution time.
 After analysing the results of keypoint quantity and quality, keypoint
repeatability and time efficiency, the final minimum Gaussian scale selected for
SIFT keypoint detector was 82 as it produced an adequate number of keypoints
with a high quality. Besides, since the results of the keypoint repeatability rate
were almost the same for every minimum scale, 82 was chosen as it required
only a short period of time to detect the keypoint. This scale produced the
highest efficiency for keypoint detection.

Table 4.10: Model’s Keypoint Computation Time at Different Minimum

Scale.

Min Scale Computation Time (second)
Crocodile Seal Basin

65 154.588 157.578 150.949

70 153.047 154.510 150.328

75 150.011 154.370 150.083

80 142.779 154.057 138.921

82 140.764 151.502 135.045

72

Figure 4.29: Graph of Model’s Keypoint Computation Time at Different Min

Scale.

4.5 Descriptor Construction
There were two main parameters that could affect the qualities of the descriptors
computed. The first parameter was the surface normals estimated for each point
in the very first step as both methods of descriptor construction (PFH and SHOT)
used in this project required them to obtain the local geometry properties of the
keypoints. From the previous results, the quality of the surface normals
computed was high. Therefore, the surface normal would not cause much effect
on the results of the descriptor construction. In this part, the main parameter
that could affect the performance of descriptor construction was the radius of
sphere set for searching neighbouring keypoints. The radius r set to search for
the neighbours in PFH and SHOT should be adequate in collecting enough
information from surrounding keypoints. According to Grupo De Robotica
(2015a), the radius cannot be too large or else the information collected from
the k nearest neighbours may be cluttered. Besides, it cannot be too small or else
there is not enough keypoints to compute the local geometry.
 For both PFH and SHOT descriptors, the radius of sphere was set as r

=20, 40, 60 and the output of histograms of the 50th keypoint at r =20 and r =
60 were plotted as shown in Figure 4.30, Figure 4.31, Figure 4.32, Figure 4.33,
Figure 4.34, Figure 4.35, Figure 4.36 and Figure 4.37. The y-axis represented
the histogram values which formed by the percentage of the points storing in

130

135

140

145

150

155

160

60 65 70 75 80 85

Ke
yp
oi
nt
's�
Co

m
pu

ta
tio

n�
Ti
m
e,
�se

co
nd

Min�Scale

Graph�of�Model's�Keypoint�Computation�Time�
against�Min�Scale

Crocodile Basin Seal

73

each bin while the x-axis represented the number histogram bins. There were
total 125 bins in the PFH histogram and 352 bins in the SHOT histogram. For
both descriptors, when the radius was set larger, the percentage of the points
storing in each bin was higher. r =20 was selected as final scale as all histograms
show an adequate information and it has the highest efficiency in computing the
descriptors.

Figure 4.30: Visualization of PFH Output Histogram for Crocodile (Top: r

=20; Bottom: r =60).

Figure 4.31: Visualization of PFH Output Histogram for Seal (Top: r =20;
Bottom: r =60).

74

Figure 4.32: Visualization of PFH Output Histogram for Basin (Top: r =20;
Bottom: r =60).

Figure 4.33: Visualization of PFH Output Histogram for Scene (Top: r =20;
Bottom: r =60).

Figure 4.34: Visualization of SHOT Output Histogram for Crocodile (Top: r

=20; Bottom: r =60).

75

Figure 4.35: Visualization of SHOT Output Histogram for Seal (Top: r =20;
Bottom: r =60).

Figure 4.36: Visualization of SHOT Output Histogram for Basin (Top: r =20;
Bottom: r =60).

Figure 4.37: Visualization of SHOT Output Histogram for Scene (Top: r =20;
Bottom: r =60).

76

 The efficiency of the PFH and SHOT descriptors construction process
was analysed by measuring their computing time. Based on Table 4.11, with a
larger radius, both methods required a longer calculation time to compute their
descriptors as there were more nearest neighbours involved. By comparing
between PFH and SHOT, PFH spent a much longer time to compute the
descriptors than SHOT as it has a complexity of O(k2). This drawback of PFH
could be later seen when the descriptors were generated for a very large point
cloud. From Table 4.11 and Figure 4.38, SHOT only needed a short time to
compute the descriptors for scene point cloud. However, for PFH, it used more
than 4 hours to compute its descriptors. Therefore, SHOT was more efficient
and it was selected as the main descriptor construction method. The ability of
SHOT descriptor in finding high quality correspondences was determined in the
process of feature matching. The results will be shown and discussed in the next
section.

Table 4.11: Comparison of Computational Time for PFH and SHOT
Descriptors at Different Radius for Neighbour Searching.

Radius, r 20 40 60

Descriptor
Computational

Time, s

Crocodile PFH 3.237 58.454 318.369

SHOT 0.618 1.269 2.209

Seal PFH 1.074 21.542 102.912

SHOT 0.371 0.378 0.679

Basin PFH 0.227 2.509 18.094

SHOT 0.044 0.076 0.131

Scene PFH 220.557 3253.480 15183.000

SHOT 32.649 39.607 87.227

77

Figure 4.38: Graph of Comparison of Descriptor Computational Time between
PFH and SHOT for Scene against Radius.

4.6 Feature Matching
Matching of the scene’s descriptors and model’s descriptor was performed to

obtain point-to-point correspondences. In this step, there was only one
parameter which was the distance threshold, d needed to be set to decide
whether the scene’s keypoints were similar to the model’s keypoints. Three

distance thresholds, d = 0.15, d = 0.20 and d = 0.25 were set to test the effect of
the threshold on the quality of the correspondences found. The thresholds set
were less than 1 as the SHOT descriptors were designed between 0 and 1 (Grupo
De Robotica, 2015b). The quantity of the original correspondences and the
correct correspondences detected between three models and the scene at
different thresholds were tabulated in Table 4.12. Noted that the k nearest
neighbours set for normal estimation was 10, the minimum Gaussian scale space
set for SIFT keypoint detector was 82 and the radius set for constructing SHOT
descriptor was 20.
 Accuracy rate of the feature matching process was also calculated using
the quantity of the original correspondences and the correct correspondences, as
shown in Equation 4.1. The results were recorded in Table 4.12 as well. The
accuracy rate of feature matching also represented the descriptiveness of the
SHOT descriptors computed. Descriptiveness of the SHOT descriptors was
defined as the ability of the descriptors in detecting inliers out of total
correspondences.

0

5000

10000

15000

20000

10 20 30 40 50 60 70Co
m
pu

ta
tio

na
l�T
im

e,
�s

radius

Graph�of�Comparison�of�Descriptor�
Computational�Time�between�PFH�&�SHOT�for�

Scene�against�Radius

scene_pfh scene_shot

78

ABB'CDB" <DEF (A<) =
�GCCFBE �GCCFH�G�+F�BFH
IGEDJ �GCCFH�G�+F�BFH (4.1)

Table 4.12: Quantity of Original and Correct Correspondences and Accuracy
of Feature Matching from Different Thresholds.

Distance Threshold, d 0.15 0.20 0.25

Number of
Correspondences

Crocodile Total 608 1125 2060

Correct 375 375 375

AR 0.617 0.333 0.182

Seal Total 387 811 1598

Correct 227 227 230

AR 0.587 0.280 0.144

Basin Total 93 223 762

Correct 60 60 60

AR 0.645 0.269 0.079

 Based on Table 4.12, when a smaller threshold was set, there were less
correspondences found. It clearly shows that the accuracy rate of the feature
matching process was higher with a smaller threshold. Besides, it can be
observed that the number of correct correspondences was almost the same for
all three models even at the different thresholds. This proved that the SHOT
descriptor had a high capability in determining same set of inliers from different
sets of total correspondences found. Distance threshold d = 0.15 was selected as
it produced the highest accuracy of the feature matching process among other
threshold. The accuracy rate for this threshold shows that the SHOT descriptor
had a high descriptiveness as it was able to generate the correct correspondences
of more than half from the total correspondences for all models.

4.7 Hypotheses Generation
Hypotheses generation was the final step to recognize and locate the input
models from the scene point clouds. It filtered all low quality correspondences
and clustered the remaining inliers to generate a model instance. As mentioned
before, there were three parameters needed to be set: rf_rad, cg_size and
cg_thresh. In this part, only parameter cg_thresh (clustering threshold) was

79

adjusted in order to recognize and localize only one actual model instance from
the scene. It was set as cg_thresh =1, 5 and 20. The number of the model
instances generated was recorded in Table 4.13. The other two parameters were
set as:

� rf_rad = 50.

� cg_size = 30.

 Noted that the k nearest neighbours set for normal estimation was 10,
the minimum Gaussian scale space set for SIFT keypoint detector was 82, the
radius set for constructing SHOT descriptor was 20 and the distance threshold
d set for feature matching was 0.15. The accuracy rate of the model instances
generated or also known as the model localization accuracy was calculated using
Equation 4.2. The number of correct model instance was defined as the final
model instance which was localized correctly with a set of correct
correspondences and it always equalled to 1.

ABB'CDB" <DEF =
K'LMFC GN �GCCFBE /G+FJ O�HED�BF
K'LMFC GN IGEDJ /G+FJ O�HED�BFH (4.2)

Table 4.13: Number of Model Instances Generated from Different cg_thresh.

cg_thresh 1 5 20

Number of
Model

Instances
Generated

Crocodile Total 29 3 1

Correct 1 1 1

AR 0.034 0.333 1

Seal Total 26 2 1

Correct 1 1 1

AR 0.038 0.5 1

Basin Total 6 1 1

Correct 1 1 1

AR 0.167 1 1

 From Table 4.13, when the clustering threshold set to form a cluster was
small, more model instances were generated as they only required a few
correspondences to form a cluster. Since the correspondences was too less, the

80

model instances were mostly matched wrongly with the actual model in the
scene. The accuracy rate of the model localization increased with the increment
of cg_thresh. By adjusting the parameter, it was proved that all models were
recognized and localized correctly when cg_thresh = 20.

4.8 Overall Parameter Set and Final Results
The algorithm first tested the localization of crocodile, seal and basin from the
scene. The parameters set for each processes were set as following:

Table 4.14: Parameters Set for Each Step in Model Localization.

Normal Estimation k 10

SIFT Keypoint
Detection

min-scale 82

n_octaves 70

n_scales_per_octave 90

min_contrast 0

SHOT Descriptor
Construction

r 20

Feature Matching d 0.15

Hypotheses
Generation

rf_rad 50

cg_size 30

cg_thresh 20

Table 4.15: Dimension of Models Localized from Scene.

Dimension Crocodile Seal Basin

Length 1338.49 1037.14 400.716

Height 851.776 750.881 364.901

Depth 662.133 746.483 331.603

81

Figure 4.39: Localization of Three Models from Scene.

 Figure 4.39 shows the localization of the crocodile, seal and basin
models from the scene at the same time and Table 4.15 shows the dimensions
of all three models that were localized from the scene. The yellow models
represented the input models, the red models were the model instances
generated from Hough Voting and the green lines were the correct
correspondences matching between the input models and the model instances.
Besides, the algorithm was used to localize the transformed models (20°
rotation). The parameters set were shown in Table 4.16. Figure 4.40 and Figure
4.41 show the localization of the rotated crocodile and seal from the scene. Since
the input rotated models were accurately localized from the scene, the algorithm
was invariant to transformation.

Table 4.16: Parameters Set for Rotated Crocodile and Seal Localization.

Normal Estimation k 10

SIFT Keypoint
Detection

min-scale 82

n_octaves 70

n_scales_per_octave 90

min_contrast 0

SHOT Descriptor
Construction

r 60

Feature Matching d 0.15

Hypotheses
Generation

rf_rad 50

cg_size 60

cg_thresh 10

82

Figure 4.40: Localization of Rotated Crocodile Model from Scene.

Figure 4.41: Localization of Rotated Seal Model from Scene.

4.9 Summary
There were total five processes to perform the object localization in 3D point
cloud. Adjustment of the parameters in each process was very crucial as it could
affect the final localization results. In normal estimation, the size of the k-
neighbourhood was set as k =10 as it produced a group of consistently oriented
surface normals. Then, min_scale = 82 was set for the SIFT keypoint detector
as the number of the keypoints was adequate and the keypoints computed were
descriptive. Next, radius of sphere r = 20 in SHOT descriptor construction was
selected as it produced the highest efficiency in constructing the descriptors. In
feature matching step, the distance threshold to compute the feature
correspondences was set as d = 0.15 as it had the highest accuracy rate in
detecting inliers out of total correspondences. Lastly, cg_thresh = 20 was set in
Hough Voting as all three models were recognized and localized correctly from
the scene. Besides, the algorithm was invariant to transformation as it was able
to localize rotated models from the scene by simply adjusting the parameters.

83

CHAPTER 5

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions
In conclusion, an efficient algorithm that is invariant to transformation and is
able to recognize and localize multiple models simultaneously from a rich 3D
scene point cloud has been developed for this project. The first and second
objectives were achieved as all targeted models were successfully localized
from a rich fountain scene point cloud which consisted of multiple objects. The
algorithm consists of a total of four major steps to perform the object
localization: keypoint detection, descriptor construction, feature matching and
hypotheses generation. Parameters in each of the steps play a crucial role in
producing desirable and the targeted results. The parameters were carefully
adjusted to ensure a 100% localization accuracy rate. A comprehensive
comparison and evaluation of the results were performed to investigate the
behaviour of the individual methods used. The localization of an object from a
rich 3D point cloud came along with a 3D bounding box. The third objective
was achieved as the length, width and height of the object were well-calculated
from the bounding box. The algorithm was further tested on the transformed
models and the results showed that the models were accurately localized from
the scene. In short, the aim and objectives of this project were successfully
accomplished.

5.2 Recommendations for Future Work
The algorithm provided in this project requires a frequent adjustment on the
parameters and the users have to decide the final parameter manually by
analysing the results. It is very time consuming in finding the perfect parameter
for each process. Therefore, the future work will be focusing on the research of
the object localization in 3D point cloud using machine learning or deep
learning. Training dataset will be provided to the algorithm to allow it to learn
and compute the best parameter. Then, testing dataset will be used to test the
ability of the algorithm in locating objects from a rich point cloud. Perhaps the

84

optimization functions that are provided in machine learning or deep leaning
could produce an even more accurate result and a shorter computational time.

85

REFERENCES

Ashbrook, A. P., Fisher, R. B., Robertson, C. and Werghi, N., 1998. Finding
surface correspondence for object recognition and registration using pairwise
geometric histograms. In: Burkhardt H., Neumann B., Computer Vision —
ECCV’98, 5th European Conference on Computer Vision. Freiburg, Germany,
2-6 June 1998. Springer, Berlin, Heidelberg.

Aldoma, A., Tombari, F., Stefano, L.D. and Vincze, M., 2012a. A Global
Hypotheses Verification Method for 3D Object Recognition. In: Computer
Vision – ECCV 2012: 12th European Conference on Computer Vision. Florence,
Italy, 7-13 October 2012. ResearchGate.

Aldoma, A., Marton, Z. C., Tombari, F., Wohlkinger, W., Potthast, C., Zeisl, B.,
Rusu, R. B., Gedikli, S. and Vincze, M., 2012b. Tutorial: Point Cloud Library:
Three-Dimensional Object Recognition and 6 DOF Pose Estimation. IEEE
Robotics & Automation Magazine, [e-journal] 19(3), pp.80-91. Available
through: Universiti Tunku Abdul Rahman Library website
<http://library.utar.edu.my/> [Accessed 16 April 2020].

Artec Europe, 2020. Fountain Basin. [point cloud] Available at:
<https://www.artec3d.com/3d-models/fountain-basin> [Accessed 26 March
2020].

Bariya, P. and Nishino, K., 2010. Scale-hierarchical 3D object recognition in
cluttered scenes. In: 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. San Francisco, CA, USA, 13-18 June 2010.
IEEE.

Bariya, P. and Nishino, K., 2010. Schematic of Scale-Hierarchical
Interpretation Tree. [image] Available at:
<https://ieeexplore.ieee.org/document/5539774> [Accessed 17 August 2019].

Bielicki, J. and Sitnik, R., 2013. A method of 3D object recognition and
localization in a cloud of points. EURASIP Journal on Advances in Signal
Processing, [e-journal] 2013(1). Available through: Universiti Tunku Abdul
Rahman Library website <http://library.utar.edu.my/> [Accessed 9 August
2019].

Bielicki, J. and Sitnik, R., 2013. Histogram of 2D Distribution of Parameters
C1 versus C2. [image] Available at:
<https://link.springer.com/article/10.1186/1687-6180-2013-29#citeas>
[Accessed 9 August 2019].

Bielicki, J. and Sitnik, R., 2013. Building of Reference Object Descriptor.
[image] Available at: <https://link.springer.com/article/10.1186/1687-6180-
2013-29#citeas> [Accessed 9 August 2019].

Brownlee, J., 2019. A Gentle Introduction to Object Recognition With Deep
Learning. Deep Learning for Computer Vision, [blog] 22 May. Available at:
<https://machinelearningmastery.com/object-recognition-with-deep-learning/>
[Accessed 18 August 2019].

86

Chen, H. and Bhanu, B., 2007. 3D free-form object recognition in range images
using local surface patches. Pattern Recognition Letters, [e-journal] 28(10).
Available through: Universiti Tunku Abdul Rahman Library website
<http://library.utar.edu.my/> [Accessed 17 August 2019].

Chua, C. S. and Jarvis, R., 1997. Point Signatures: A New Representation for
3D Object Recognition. International Journal of Computer Vision, [e-journal]
25. Available through: Universiti Tunku Abdul Rahman Library website
<http://library.utar.edu.my/> [Accessed 15 August 2019].

Chua, C. S. and Jarvis, R., 1997. Point Signature. [image] Available at:
<https://link.springer.com/article/10.1023/A:1007981719186#citeas>
[Accessed 15 August 2019].

CloudCompare, 2015a. Cloud-to-Cloud Distance. [online] Available at:
<https://www.cloudcompare.org/doc/wiki/index.php?title=Cloud-to-
Cloud_Distance> [Accessed 7 April 2020].

CloudCompare, 2015b. Distances Computation. [online] Available at:
<https://www.cloudcompare.org/doc/wiki/index.php?title=Distances_Computa
tion> [Accessed 7 April 2020].

Filipe, S. and Alexandre, L. A., 2014. A comparative evaluation of 3D keypoint
detectors in a RGB-D Object Dataset. In: 2014 International Conference on
Computer Vision Theory and Applications (VISAPP). Lisbon, Portugal, 5-8
January 2014. IEEE.

Flint, A., Dick, A. and Hengel, A. V. D., 2014. Thrift: Local 3D Structure
Recognition. In: 9th Biennial Conference of the Australian Pattern Recognition
Society on Digital Image Computing Techniques and Applications (DICTA
2007). Glenelg, Australia, 3-5 December 2007. IEEE.

Flint, A., Dick, A. and Hengel, A.V. D., 2014. A Keypoint with Two Least
Squares Planes and their Related Normals for One Support Point on a Local
Surface. [image] Available at: <https://ieeexplore.ieee.org/document/4426794>
[Accessed 11 August 2019].

Frome, A. Huber, D., Kolluri, R., Bülow, T. and Malik, J., 2004. Visualization
of Histogram Bins of the 3D Shape Context. [image] Available at:
<https://link.springer.com/chapter/10.1007/978-3-540-24672-5_18#citeas>
[Accessed 10 August 2019].

Frome, A. Huber, D., Kolluri, R., Bülow, T. and Malik, J., 2004. Comparison
of Recognition Rate between Different Descriptors in Noise Experiments.
[image] Available at: <https://link.springer.com/chapter/10.1007/978-3-540-
24672-5_18#citeas> [Accessed 10 August 2019].

Frome, A. Huber, D., Kolluri, R., Bülow, T. and Malik, J., 2004. Comparison
of Recognition Rate between Different Descriptors in Clutter Experiments.
[image] Available at: <https://link.springer.com/chapter/10.1007/978-3-540-
24672-5_18#citeas> [Accessed 10 August 2019].

87

Frome, A., Huber, D., Kolluri, R., Bülow, T. and Malik, J., 2004. ECCV 2004:
Computer Vision - ECCV 2004. [e-book] Springer, Berlin, Heidelberg.
Available through: Universiti Tunku Abdul Rahman Library website
<http://library.utar.edu.my/> [Accessed 18 April 2020].

Glomb, P., 2009. Detection of Interest Points on 3D Data: Extending the Harris
Operator. [e-book] Springer, Berlin, Heidelberg. Available at: Springer Link
<https://link.springer.com/chapter/10.1007/978-3-540-93905-4_13#citeas>
[Accessed 26 July 2019].

Grupo De Robotica., 2015a. PCL/OpenNI tutorial 4: 3D object recognition
(descriptors). [online] Available at:
<http://robotica.unileon.es/index.php/PCL/OpenNI_tutorial_4:_3D_object_rec
ognition_(descriptors)#PFH> [Accessed 18 April 2020].

Grupo De Robotica., 2015b. PCL/OpenNI tutorial 5: 3D object recognition
(pipeline). [online] Available at: <
http://robotica.unileon.es/index.php/PCL/OpenNI_tutorial_5:_3D_object_reco
gnition_(pipeline)#Correspondence_grouping> [Accessed 20 April 2020].

Guo, Y. L., Sohel, F., Bennamoun, M., Lu, M. and Wan, J. W., 2013. Rotational
Projection Statistics for 3D Local Surface Description and Object Recognition.
International Journal of Computer Vision, [e-journal] 105(1), pp.63-86.
10.1007/s11263-013-0627-y.

Guo, Y. L., Sohel, F., Bennamoun, M., Lu, M. and Wan, J. W., 2014. 3D Object
Recognition in Cluttered Scenes with Local Surface Features: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, [e-journal] 36(11),
pp. 2270 – 2287. Available through: Universiti Tunku Abdul Rahman Library
website <http://library.utar.edu.my/> [Accessed 23 July 2019].

Hansch, R., Weber, T. and Hellwich, O., 2014. Comparison of 3D Interest Point
Detectors and Descriptors for Point Cloud Fusion. In: PCV 2014. Zurich,
Switzerland, September 2014. IEEE.

Huang J. and You, S., 2013. Detecting Objects in Scene Point Cloud: A
Combinational Approach. In: 2013 International Conference on 3D Vision -
3DV 2013. Seattle, WA, USA, 29 June-1 July 2013. IEEE.

Johnson, A. E. and Hebert, M., 1999. Using spin images for efficient object
recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, [e-journal] 21(5), pp. 433 - 449. Available through:
Universiti Tunku Abdul Rahman Library website <http://library.utar.edu.my/>
[Accessed 7 August 2019].

Johnson, A. E. and Hebert, M., 1999. Oriented Point Basis. [image] Available
at: <https://ieeexplore.ieee.org/document/765655> [Accessed 7 August 2019].

Lamdan, Y. and Wolfson, H. J., 1998. Geometric Hashing: A General And
Efficient Model-based Recognition Scheme. In: [1988 Proceedings] Second
International Conference on Computer Vision. Tampa, FL, USA, 5-8 December
1988. IEEE.

88

Lowe, D. G., 2004. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, [e-journal] 60(2), pp.91–110.
https://doi-org.libezp2.utar.edu.my/10.1023/B:VISI.0000029664.99615.94

Marr, B., 2019. 7 Amazing Examples Of Computer And Machine Vision In
Practice. [online] Available at:
<https://www.forbes.com/sites/bernardmarr/2019/04/08/7-amazing-examples-
of-computer-and-machine-vision-in-practice/#42cde3851018> [Accessed 18
August 2019].

Matei, B., Shan, Y., Sawhney, H. S., Tan, Y., Kumar, R., Huber, D. and Hebert,
M., 2006. Rapid Object Indexing Using Locality Sensitive Hashing and Joint
3D-Signature Space Estimation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, [e-journal] 28(7), pp. 1111 – 1126. Available through:
Universiti Tunku Abdul Rahman Library website <http://library.utar.edu.my/>
[Accessed 25 July 2019].

Mian, A., Bennamoun, M. and Owens, R., 2006. Three-Dimensional Model-
Based Object Recognition and Segmentation in Cluttered Scenes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, [e-journal] 28(10).
Available through: Universiti Tunku Abdul Rahman Library website
<http://library.utar.edu.my/> [Accessed 16 August 2019].

Mian, A., Bennamoun, M. and Owens, R., 2006. Tensor Computation. [image]
Available at: <https://ieeexplore.ieee.org/document/1677516/versions>
[Accessed 16 August 2019].

Mian, A., Bennamoun, M. and Owens, R., 2010. On the Repeatability and
Quality of Keypoints for Local Feature-based 3D Object Retrieval from
Cluttered Scenes. International Journal of Computer Vision, [e-journal] 89(2-
3), pp. 348–361. Available through: Universiti Tunku Abdul Rahman Library
website <http://library.utar.edu.my/> [Accessed 16 August 2019].

Mian, A., Bennamoun, M. and Owens, R., 2010. Detected Keypoints (Red Dots).
[image] Available at: <https://link.springer.com/article/10.1007/s11263-009-
0296-z> [Accessed 16 August 2019].

Nicholson, C., 2019. Object Recognition and Localization using Convolutional
Neural Networks. [image] Available at:
<https://skymind.com/wiki/autonomous-vehicle> [Accessed 18 August 2019].

Papazov, C. and Burschka, D., 2010. An Efficient RANSAC for 3D Object
Recognition in Noisy and Occluded Scenes. In: Kimmel R., Klette R., Sugimoto
A., Computer Vision – ACCV 2010, Asian Conference on Computer Vision.
Queenstown, New Zealand, 8-12 November 2010. Springer, Berlin, Heidelberg.

89

Point Cloud Library (PCL), 2012. pcl::Feature<PointInT, PointOutT> Class
Template Reference. [online] Available at: <
http://docs.pointclouds.org/1.5.1/classpcl_1_1_feature.html#a50129bc51cb240
eca42df9963f7ac0c0> [Accessed 16 April 2020].

Point Cloud Library (PCL), 2013. pcl::KdTreeFLANN< PointT, Dist > Class
Template Reference. [online] Available at:
<http://docs.pointclouds.org/1.7.1/classpcl_1_1_kd_tree_f_l_a_n_n.html>
[Accessed 18 April 2020].

Point Cloud Library (PCL), 2018a. pcl::SIFTKeypoint<PointInT, PointOutT>
Class Template Reference. [online] Available at: <
http://docs.pointclouds.org/1.8.1/classpcl_1_1_s_i_f_t_keypoint.html>
[Accessed 16 April 2020].

Point Cloud Library (PCL), 2018b. pcl::SHOTEstimation<PointInT, PointNT,
PointOutT, PointRFT> Class Template Reference. [online] Available at: <
http://docs.pointclouds.org/1.8.1/classpcl_1_1_s_h_o_t_estimation.html>
[Accessed 18 April 2020].

Point Cloud Library (PCL), 2020a. pcl::PFHEstimation<PointInT, PointNT,
PointOutT> Class Template Reference. [online] Available at: <
http://docs.pointclouds.org/trunk/classpcl_1_1_p_f_h_estimation.html>
[Accessed 18 April 2020].

Point Cloud Library (PCL), 2020b. pcl::Hough3DGrouping<PointModelT,
PointSceneT, PointModelRfT, PointSceneRfT> Class Template Reference.
[online] Available at:
<http://docs.pointclouds.org/trunk/classpcl_1_1_hough3_d_grouping.html>
[Accessed 20 April 2020].

Rocha, L. C. G., 2017. A Study on Local Feature Descriptors for Point Clouds.
Bachelor. Federal University of Rio Grande do Norte Center for Earth and Exact
Sciences. Available at: <https://www.semanticscholar.org/paper/A-study-on-
local-feature-descriptors-for-point-
Rocha/6ce34d8a3ea5e2ba9a069a8ca86aae63569d905b> [Accessed 18 April
2020].

Rodolà, E., Albarelli, A., Bergamasco, F. and Torsello, A., 2013. A Scale
Independent Selection Process for 3D Object Recognition in Cluttered Scenes.
International Journal of Computer Vision, [e-journal] 102(1-3). Available
through: Universiti Tunku Abdul Rahman Library website
<http://library.utar.edu.my/> [Accessed 17 August 2019].

Rusu, R. B., Marton, Z. C., Blodow, N. and Beetz, M., 2008. Intelligent
Autonomous Systems 10: IAS-10. [e-book] IOS Press. Available at: Google
Books <https://books.google.com> [Accessed 18 April 2020].

Rusu, R. B., Blodow, N. and Beetz, M., 2009. Fast Point Feature Histograms
(FPFH) for 3D registration. In: 2009 IEEE International Conference on
Robotics and Automation. Kobe, Japan, 12-17 May 2009. IEEE.

90

Rusu, R. B., Marton, Z. C., Blodow, N. and Beetz, M., 2008. Aligning Point
Cloud Views using Persistent Feature Histograms. In: Proceedings of the 21st
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Nice, France, 22-26 September 2008.

Rusu, R. B., Marton, Z. C., Blodow, N. and Beetz, M., 2008. Learning
Informative Point Classes for the Acquisition of Object Model Maps. In:
Proceedings of the 10th International Conference on Control, Automation,
Robotics and Vision (ICARCV). Hanoi, Vietnam, 17-20 December 2008.

Rusu, R. B., 2009. Semantic 3D Object Maps for Everyday Manipulation in
Human Living Environments. PhD. Technischen Universität München.
Available at: < http://mediatum.ub.tum.de/doc/800632/941254.pdf> [Accessed
18 April 2020].

Schnabel, R., Wahl, R. and Klein, R., 2007. Efficient RANSAC for Point-Cloud
Shape Detection. Computer Graphics Forum, [e-journal] 26(2), pp. 214-226.
10.1111/j.1467-8659.2007.01016.x.

Schnabel, R., Wahl, R. and Klein, R., 2007. Algorithm of RANSAC to extract
Shapes in the Point Cloud. [image] Available at:
<https://www.researchgate.net/publication/220505939_Efficient_RANSAC_f
or_point-cloud_shape_detection> [Accessed 17 August 2019].

Sipiran, I. and Bustos, B., 2011. Harris 3D: a robust extension of the Harris
operator for interest point detection on 3D meshes. The Visual Computer, [e-
journal] 27(11), pp. 963-976. https://doi.org/10.1007/s00371-011-0610-y.

Sun, Y. and Abidi, M. A., 2001. Surface matching by 3D point's fingerprint. In:
Proceedings Eighth IEEE International Conference on Computer Vision.
Vancouver, BC, Canada, 7-14 July 2001. IEEE.

Sun, Y. and Abidi, M.A., 2001. (a) Local Coordinate System. (b) Local
Fingerprint of the Same Point from Different Views. [image] Available at:
<https://ieeexplore.ieee.org/document/937634> [Accessed 15 August 2019].

Taati, B., Bondy, M., Jasiobedzki, P. and Greenspan, M., 2007. Variable
Dimensional Local Shape Descriptors for Object Recognition in Range Data.
In: 2007 IEEE 11th International Conference on Computer Vision. Rio de
Janeiro, Brazil, 26 December 2007. IEEE.

Tombari, F., Salti, S. and Stefano, L. D., 2010a. Computer Vision – ECCV 2010.
[e-book] Springer, Berlin, Heidelberg. Available through: Universiti Tunku
Abdul Rahman Library website <http://library.utar.edu.my/> [Accessed 18
April 2020].

Tombari, F. and Stefano, L. D., 2010b. Object Recognition in 3D Scenes with
Occlusions and Clutter by Hough Voting. In: 2010 Fourth Pacific-Rim
Symposium on Image and Video Technology. Singapore, Singapore, 14-17
November 2010. IEEE.

Tombari, F. and Stefano, L.D., 2012. Hough Voting for 3D Object Recognition
under Occlusion and Clutter. IPSJ Transactions on Computer Vision and
Applications, [e-journal] 4, pp. 20-29. https://doi.org/10.2197/ipsjtcva.4.20.

91

Tuytelaars, T. and Mikolajczyk, K., 2007. Local Invariant Feature Detectors: A
Survey. Foundations and Trends® in Computer Graphics and Vision, [online]
Available at:
<https://www.researchgate.net/publication/220427977_Local_Invariant_Featu
re_Detectors_A_Survey> [Accessed 29 March 2020].

Zhong, Y., 2009. Intrinsic shape signatures: A shape descriptor for 3D object
recognition. In: IEEE (Institute of Electrical and Electronics Engineers), 2009
IEEE 12th International Conference on Computer Vision Workshops. Kyoto,
Japan, 27 September-4 October 2009. IEEE.

Zhong, Y., 2009. Sequence of Matching Two Points using Intrinsic Shape
Signature. [image] Available at:
<https://ieeexplore.ieee.org/document/5457637> [Accessed 17 August 2019].

