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ABSTRACT 
 
Object localization in 3D point cloud is one of the most complex yet interesting 
applications in computer vision, robotics and autonomous agents. The results of 
object localization are often affected by many factors such as the quality of the 
point clouds and the sensitivity of the algorithms to the occlusion in the point 
clouds.  
 This project provides an efficient algorithm that is able to recognize and 
localize more than one object from the scene at the same time and is also able 
to perform localization of an object which undergoes a transformation. There 
are a total of four major steps to perform the object localization in the 3D point 
cloud - Scale Invariant Feature Transform (SIFT) keypoint detection to mark 
the descriptive points in the cloud, Signature of Histograms of OrienTations 
(SHOT) descriptor construction to store the geometrical properties of the 
keypoints, feature matching to collect point-to-point correspondences between 
the scene and the model and Hough Voting hypotheses generation to construct 
a model instance and localize it from the scene. In this project, adjustment of 
the parameters in each step was carried out to analyse their effects on the final 
localization result. The results obtained from each step based on the parameter 
adjustment were analysed and discussed. 
 Highly descriptive keypoints were detected by using SIFT detector as 
the keypoints were mostly located at the outlines of the point clouds. In the 
descriptor construction step particularly, two methods, Point Feature Histogram 
(PFH) and Signature of Histograms of OrienTations (SHOT) were compared. 
SHOT’s performance was better than PFH as it had a higher efficiency in 
computing the descriptors. The high accuracy rate of the feature matching 
process indicated that the process was able to generate correct correspondences 
between the scene and the model. In the final localization step, with the 
adjustment of the parameters, the result shows that this algorithm was able to 
correctly localize all input models from the scene point cloud, achieving a 100% 
localization accuracy.  
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CHAPTER 1 
 

1 INTRODUCTION 
 

1.1 General Introduction 
Today, computer vision is slowly encompassing both industrial and non-
industrial applications such as civil engineering and entertainment. It combines 
both hardware and software technologies to contribute an operational guidance 
and instruction to systems and devices on image capturing and processing. 
According to Marr (2019), computer vision is one of the fields under artificial 
intelligence where the machine targets to replicate human perception to analyse 
visual information, understand the environment and situation, process them and 
thereafter work on an image. This technology is often applied to recognize and 
identify objects from images. In certain situations, it can be said to have 
outperformed human’s recognition capabilities. This is because it can operate 

more consistently, measure orders of magnitude faster and more accurate and 
will not get tired as easy as human. There are some advanced technologies built 
from computer vision, such as autonomous vehicles, facial recognition, 
healthcare, agriculture, manufacturing and real-time sports tracking. 
 Computer vision is a fast-growing area of research. Tremendous amount 
of visual data is one of the reasons behind the fast growth of computer vision 
where they are used to train and test the machines. With these huge datasets, 
computer vision is able to do computations involving visual data such as image 
classification, image captioning, semantic segmentation, instance segmentation, 
object recognition (object detection) and object localization.  

Object classification is an application of identifying and assigning a 
class label to an input image. Instance segmentation functions not just to find 
objects in an image, but also to create a mask for every object detected. Next, 
the function of object localization is to locate the presence of objects in an image 
and draw a bounding box around the position of objects. For object detection, it 
is more complex as it first needs to identify objects and then draw a bounding 
box around the object of interest in the image. In order to localize an object, 
object detection needs to be performed first. According to Brownlee (2019), 
when a user or practitioner refers to “object recognition”, they often imply 
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“object detection”. To perform object localization, the algorithm is fed with an 

input image with one or more objects. After processing, it will return an object 
which is desired to be detected with an axis-aligned bounding box representing 
its orientation and scale. 

Object recognition and localization in an image is one of the most 
complex applications in computer vision, robotics and autonomous agents. This 
task still remains challenging because of some constraints such as the number 
of objects need to be localized, complexity of the scene, background clutter and 
occlusions. According to Huang and You (2013), they mentioned that it is 
harder to detect and localize the target object in an unstructured, non-image-
based data input, such as 3D point clouds than 2D images. This is because that 
the point cloud data contains lesser structural information and has a high 
complexity to extract information from 3D data. Within these few years, 
multiple algorithms that have been proposed to process 3D point cloud data to 
fix this problem. One of the most common methods to complete this task is to 
slide a window across the image and to detect whether the local window 
contains the target or background using Convolutional Neural Networks (CNN), 
as shown in Figure 1.1. However, inefficiency of algorithms to detect objects in 
a highly occluded scene still exists as there is lack of sufficient labelled data to 
train the classifier model. Therefore, the task is now focusing on constructing a 
good classifier to make the object localization easier. 

 

 
Figure 1.1: Object Recognition and Localization using Convolutional Neural 
Networks (Nicholson, 2019). 
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1.2 Importance of the Study 
In the past, most of the object recognition and localization strategies in 
conventional computer machine mainly focus on the processing of RGB images 
using image-based algorithms. However, in recent years, the acquisition and 
processing of 3D point clouds data of real world scenes in object recognition 
and localization is gaining more and more attention. 

Object recognition and localization is very important in today’s world as 

it can assist human in accelerating and improving performance. The applications 
of object recognition and localization can be found in many areas, including 
image retrieval, object tracking, surveillance and security, autonomous cars, 
robotics, indoor navigation and others. For example, self-driving cars require 
object recognition and localization to localize vehicles or road signs in the 
environment to analyse when to accelerate or apply brakes. Besides, robots 
utilized for domestic housekeeping or elderly care must have the ability to detect 
and localize certain objects efficiently while performing searching tasks. In 
medical image analysis, object recognition and localization can be used to 
identify the object (for examples: heart and tumour) correctly together with the 
location and scale detected. 

Today, 3D scanners can scan objects in an image and convert the raw 
data into point cloud representation. A 3D point cloud of an image is basically 
presented in a form of a set of points in a 3D coordinate system with x, y, and z 
coordinates. In a 3D point cloud, it usually lies on the surface of the object 
without containing any information of the object surface, such as the colour, 
texture or features. The reason why recognition and localization of object in 3D 
point clouds is so important is that the point clouds generated by the 3D scanners 
and 3D imaging are easy for measurement. Besides, the cameras used for indoor 
mapping purposes which convert image into unstructured point clouds require 
less power and are significantly cheaper than laser scanners. Furthermore, 
acquisition of point clouds of real world scenes can improve the processing 
ability of the computers and contribute to advanced multiple-image 
reconstruction algorithms. 
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1.3 Problem Statement 
As mentioned before, recognition and localization of objects in a 3D image are 
the primary research problem exist in computer vision. They are considered one 
of the most challenging as there is a lack of generic 3D data or labelled training 
data to build efficient classifiers. There are plenty of image-based algorithms 
available but insufficient point cloud processing algorithms to perform object 
recognition and localization. This is because that the properties of the point 
clouds constructed from real world scene produce more challenges than general 
algorithms. 
 First, point cloud data might consist of noise points which are the 
outliers that are not part of the scene. These noise points can disturb the 
detection of the keypoints which further reduce the overall accuracy. Also, some 
of the point cloud images available are low in resolution which are constructed 
from poor sensors that only perform sparse reconstructions. Furthermore, 
certain existing algorithms are sensitive to loss of information or occlusion as 
the algorithms are difficult to identify the actual shape of the underlying surface 
of an object. This problem can affect the performance of surface matching in 
object recognition step. Besides, there are not many methods available in open 
source that can be used to measure the scale and dimensions of the detected 
objects. 

In short, a method that can perform robustly against all constraints such 
as noise, clutter and missing data needs to be designed which can recognize and 
localize objects on 3D point cloud images, rather than normal RGB images. 
 
1.4 Aim and Objectives 
The aim of performing object localization in 3D point clouds is to explore robust 
methods for locating and measuring objects within a 3D point cloud. 
 In order to localize an object, object searching and recognizing have to 
be performed first. There are mainly three objectives to perform this task. The 
first objective is to search and identify existing rich 3D point cloud datasets 
which consist of multiple objects inside to be used in this project. The second 
objective is to develop a method for matching an object (2D or 3D) to objects 
within the point cloud and the third objective is to measure the dimensions of 
the located object.  
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1.5 Scope and Limitation of the Study 
The scope of this research and study is to develop an algorithm which is robust 
and able to recognize an object in the scene with multiple objects efficiently and 
calculate the dimensions of the located object. The study is mainly focusing on 
detecting and locating an object in 3D point clouds. The methodology proposed 
is divided into two main parts, where object recognition is performed first, 
followed by object localization. 
 There are a few limitations whilst performing the study of object 
localization in 3D point clouds. First, there is lack of available resources in terms 
of point cloud images. Most of the image resources used in this study are RGB 
images. Even with the point cloud images, it is difficult to find a point cloud 
image with multiple objects inside. Furthermore, most of the latest advanced 
algorithms used in this study involve deep learning. Deep learning in image 
processing is getting popular in the recent years, thus there is a lack of research 
studies on this method. 
 

1.6 Contribution of the Study 
This project provided an insightful summary of all the existing methods that had 
been implemented in the object localization in 3D point cloud. Besides, the 
comparison of performance between each technique that was presented in this 
study could provide a quick understanding of all the methods for those who wish 
to perform a similar project. This project provides an algorithm that could 
recognize and localize rotated objects and multiple objects from a scene point 
cloud at the same time. The study could also let others to understand how the 
parameters set in the project affect the results. 
 
1.7 Outline of the Report 
In this report, Chapter 2 outlines the comprehensive summary and analysis of 
all existing methods used in each step to perform object localization in 3D point 
cloud. Details of all the techniques implemented are presented in Chapter 3. 
Results are shown and the detailed analysis and discussion are provided in 
Chapter 4, followed by the conclusion and recommendations in Chapter 5. 
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CHAPTER 2 
 

2 LITERATURE REVIEW 
 

2.1 Introduction 
The task of object recognition and localization is getting more and more popular 
and most of the task is performing on digital images. Guo, et al. (2014) stated 
that object recognition and localization in the rich scenes can be separated into 
two types, the global and local feature-based methods. The difference between 
these two methods is that the global feature-based methods consist of a group 
of global features which can outline the whole desired object while the local 
feature-based methods only concern about the local surfaces that surround the 
particular interest points. 
 For global feature-based methods, there is a need to perform object 
segmentation from the scene. This method does not take the object’s shape 

information into account. Thus, global feature-based methods are more often 
used in 3D shape retrieval and classification rather than recognition of objects 
that might be occluded from the cluttered scenes. Since local feature-based 
methods can generally deal with clutter and occlusion better, therefore they are 
often utilized to recognize and localize object from scenes. Local 3D object 
recognition and localization in cluttered scenes has a sequence of steps: 3D 
interest point detection (feature extraction), construction of descriptor for local 
surface feature, surface matching (coarse recognition and localization) and fine 
localization (verification). This chapter reviews current work related to each of 
these steps. 
 
2.2 3D Keypoint Detection (Feature Extraction) 
In the first step of object recognition, keypoint detection or feature extraction 
needs to be performed to search for the keypoints which are 3D points with 
discriminative information content. This step is performed to detect the inherent 
scale of each keypoint. The location and scale of a keypoint that are obtained 
here will be used to determine a local surface. These will be further used to 
generate descriptors in next step. Therefore, detection of keypoint locations is 
very important as it strongly determines the success of local feature descriptors.  
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 In 2D images, methods like Harris corner detector and SURF are often 
used to identify keypoints that have a high chance to be well-localized. Example 
of salient points is the corner points which have a high intensity gradient in all 
directions. For 3D images, the main idea is the same where keypoints that can 
be well localized need to be defined. The only difference is that it needs a 
keypoint which has a high surface spatial in all three directions to extract the 
unique local 3D coordinate basis. There are generally two methods to perform 
keypoint detection, fixed-scale and adaptive-scale methods. 
 
2.2.1 Fixed-Scale Keypoint Detection 
In this method, a point that is unique around its point neighbourhood is detected 
as keypoint by using either curvatures or surface variation measures.  
 A few authors have utilized surface variation measures such as using 
eigenvalues to extract keypoints. First, Matei, et al. (2006) figured out that 
before constructing descriptor, the scene features of keypoints that have rich 3D 
information need to be computed first. Selection of salient point is performed 
by computing the eigenvalues of the scatter matrix at all 3D points. Since the 
smallest eigenvalues �3 of the scatter of the neighbouring points contributes a 
good 3D saliency measure, they are used to compute the surface variation that 
surrounds a point p. Then, all point candidates are arranged based on their 
surface variations into a list and the keypoints will be chosen from the sorted 
list. 
 A similar idea was utilized by Zhong (2009) to detect keypoints before 
building a shape based descriptor to recognize 3D objects. The surface normal 
vector of the local surfaces is often utilized to construct descriptors. However, 
Zhong (2009) mentioned that by using only the normal vector of a surface, a 3D 
coordinate structure of a point still cannot be determined as there is not sufficient 
information. Therefore, they decided to build a local reference frame at each 
point. First, they calculated a scatter matrix for the point by utilizing all the 
neighbouring points. Then, they calculated three eigenvalues and the 
corresponding eigenvectors of the matrix. The salient points which are rich in 
3D structure possess huge 3D point variations among the neighbouring points. 
To find the points, the smallest eigenvalue is used to determine these variations. 
When two eigenvalues are the same, they applied additional constraints on the 
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ratio of two successive eigenvalues only selected the point which satisfies 
�2/�1<�21 and �3/�2<�32. This Eigen analysis method which was implemented by 
Matei, et al. (2006) and Zhong (2009) are useful as they can be computed 
efficiently and achieve excellent outcomes in terms of repeatability.  
 Glomb (2009) mentioned the advantages of using Harris operator such 
as it is more robust to noise, has high repeatability and sufficient information 
content. They summarized four reasons and propositions to extend Harris 
operator from 2D images to 3D meshes. Examples of the propositions are using 
Gaussian function built from the point cloud, utilizing derivative of fitting 
quadratic surface and others. Details of the methods are discussed in the paper 
of Sipiran and Bustos (2011) as they referred to the work of Glomb (2009) as a 
basis to build an improved version of Harris operator in detecting keypoint on 
3D meshes. First, centroid of point neighbourhood is calculated and a set of 
neighbouring points is translated to the centroid. The best-fitting plane is 
computed to the translated points and the points are rotated so that the normal 
of the fitting plane aligns with the z-axis. Next, the points are fitted to a quadratic 
surface to compute derivatives. A quadratic surface is chosen as it is simple 
enough to express a function of two variables using quadratic terms. Then, they 
used the derivatives of the function to formulate a matrix to eliminate noise. 
Now in the matrix, each vertex is associated with its Harris operator value. 
Finally, the vertex which fulfilled the stated condition is selected as keypoint. 
 

2.2.2 Adaptive-Scale Keypoint Detection 
In the paper “Local 3D Structure Recognition”, Flint, Dick and Hengel (2014) 

mentioned that it is important to detect the significant keypoint locations in 
order to further construct the 3D descriptors. They utilized the adaptive-scale 
keypoint detection to extract interest points. This method constructs a scale 
space for input images. Points that are unique and contain high distinctiveness 
measures in scale and spatial neighbourhoods will be selected as keypoints. A 
descriptor that contains strong keypoint information can recognize 3D models 
more efficiently in the range data of scene. In range data, the keypoints need to 
be well-localized in three dimensions. Since the range data is a set of points, 
they first constructed a 3D density map to get a density function by sampling 
the points across the data set. Next, they convolved the 3D density map with a 
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group of Gaussian kernels to form a density scale-space. To detect the keypoints 
located in the density scale space, they applied the determinant of Hessian 
matrix. In the matrix, the local maxima will become keypoints.  
 The reason for applying Hessian matrix to search for the keypoints is 
that it contributes to an accurate calculation and it is determined for arbitrary 
scale. Based on the experiment conducted, Hessian matrix method can detect 
the same keypoint under a range of transformations, achieving a high level of 
repeatability. However, it is quite time-consuming to perform the sampling step 
in the matrix scale-space over the data. 
 Mian, Bennamoun and Owens (2010) presented an algorithm used to 
detect keypoints which have a high repeatability between 3D models and its 
partial views. They also created a keypoint quality measurement technique to 
rank the keypoints in order to choose the best ones. There are three constraints 
proposed to define the keypoints. First, the keypoints must contain high 
repeatability. Second, the keypoints must have a 3D coordinate basis building 
from local surface in neighbourhood. Third, the surface of keypoints must have 
enough descriptive information.  
 First, they cropped out a local surface from the 3D model to obtain a 
local reference frame which is insensitive to noise. They then rotated the 
neighbouring points on the cropped surface in order to align the normal of the 
point with the positive z-axis. Then, Principal Component Analysis (PCA) is 
executed on the neighbourhood’s covariance matrix to remove polygons that are 

occluded in the cropped surface. The first two principal axes ratio is used to 
measure the surface variations. A threshold is set for surface variation 
comparison to choose the keypoints. Moreover, an automatic scale selection is 
proposed to define the scale of a keypoint as the neighbourhood size when there 
is a local maximum occurs in the surface variations, as shown in Figure 2.1. The 
keypoints detected have high repeatability and are insensitive to noise. It still 
has a drawback which is the incapability to perform efficient computation. 
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Figure 2.1: Detected Keypoints (Red Dots) (Mian, Bennamoun and Owens, 
2010). 
 
2.2.3 Summary and Comparison between Fixed-Scale and Adaptive-

Scale Keypoint Detection Methods 
Table 2.1 summarizes all methods used to extract keypoint or features. In fixed-
scale based method, there is a possibility where only low number of keypoints 
detected as it is using a fixed scale, which subsequently will result in poor object 
recognition rate. Besides, this method defines the scale empirically, which 
means that it does not extract the scale information entirely in the local surfaces. 
For adaptive-scale based method, it might perform better than the fixed scale 
based method as it samples all candidate points in a 3D density map, ranks all 
the keypoint using quality measurement technique and finally chooses the 
qualified keypoints based on certain threshold. 
 

Table 2.1: Summary of Methods of 3D Keypoint Detection. 

No. Method 
Category 

Method 
Name 

Data 
Type 

Outcomes Reference 

1 Fixed 
Scale 

Eigen 
Analysis 

Point 
Cloud 

This method has 
high repeatability 
and can be 
computed 
efficiently. 

Matei, et al. 
(2006) 

2 Fixed 
Scale 

Eigen 
Analysis 

Point 
Cloud 

This method is 
computationally 
efficient and highly 
repeatable. 

Zhong 
(2009) 

3 Fixed 
Scale 

Harris 
Operator 

Mesh Reasons and 
propositions of 

Glomb 
(2009) 
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extending Harris 
operator from 2D 
images to 3D 
meshes are 
concluded. 

4 Fixed 
Scale 

Harris 
Operator 

Mesh It is robust to noise, 
local scaling, holes 
and has high 
repeatability and 
sufficient 
information 
content. 

Sipiran and 
Bustos 
(2011) 

5 Adaptive 
Scale 

Gaussian 
kernels & 
Hessian 
Matrix 

Point 
Cloud 

The method is 
accurate and 
efficient but it is 
sensitive to point 
density variations 
and time-
consuming.   

Flint, Dick 
and Hengel 
(2014) 

6 Adaptive 
Scale 

Principal 
Component 

Analysis 
(PCA) & 

Automatic 
Keypoint 

Scale 
Selection 

Point 
Cloud 

This approach is 
insensitive to noise 
and has high 
repeatability, but it 
is computationally 
inefficient.  

Mian, 
Bennamoun 
and Owens 
(2010) 

 
2.3 Local Surface Feature Description 
Once the keypoints are extracted, the information of each keypoints needs to be 
presented clearly. To complete this, the descriptive local surface information of 
each keypoint will be used to build a keypoint descriptor. According to Guo, et 
al. (2014), there are mainly two categories of descriptors for interest feature 
points, the histogram-based and the signature-based methods. 
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2.3.1 Histogram-Based Methods 
Local feature histogram descriptors mainly determine the local neighbourhood 
of a feature by grouping geometric or topological measurements into histograms. 
In short, a simple descriptor can be created with the distribution of the pixel 
intensities represented by histograms. 
 In the paper “3D shape-based object recognition system in scenes 
containing clutter and occlusion”, Johnson and Hebert (1999) created spin 

image descriptors to efficiently recognize multiple objects in cluttered 3D 
scenes. The spin image is also known as a data level shape descriptor which is 
used to pair or match surfaces represented as surface meshes. In this method, 
oriented points that associated with a direction are utilized to construct spin 
image descriptors. 

 First, every oriented point lying on an object’s surface is further 

described with a surface position and surface normal. Now, the point contains 
an information of two dimensional local coordinate basis. The two coordinates 
basis are the radial coordinate � and elevation coordinate �. By using this 
oriented point basis, a spin map can be defined which projects three dimensional 
points to the two dimensional coordinates basis related to the oriented point. 
Now, each oriented point on the object surface has its own unique spin map 
coordinates (�, �). Figure 2.2 shows the basis of an oriented point. A 2D 
accumulator indexed by both � and � is constructed. Next, the bin which is 

indexed by the coordinate in the accumulator is then increased to update the 2D 
accumulator. The 2D array accumulator is bilinear interpolated to smooth the 
contribution of the vertex, causing the accumulator to have a less sensitivity to 
the vertex’s position, to obtain ideal spin image descriptors. All these steps are 
repeated to process all the points located on the model’s surface. In the end, spin 
image descriptor with a two dimensional array representation is developed.  

By using spin image descriptors in object recognition algorithm, the 
algorithm can handle clutter and occlusion well as proved in the experiment part 
of the paper of Johnson and Hebert (1999). However, spin image descriptor 
consists of some weakness where it can be affected easily by mesh resolutions 
and non-uniform sampling. In fact, it is very challenging to build spin images to 
recognize objects as there are few parameters need to be taken into consideration. 
The first spin image parameter is the bin size, where it regulates both storage 
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volume and averaging of the spin image descriptors. Users have to set the 
suitable bin size so that the object scale and resolution do not overly depend on 
the bin size setting. The closer the bin size to mesh resolution, the better the 
matching of spin images. 

The next parameter is the spin image width which represents total rows 
and columns. The number of rows and columns must set to be equal to produce 
a square spin image. In other words, the image width controls the size of the 
square spin image. By properly setting this parameter, amount of a spin image’s 

global information can be regulated. Lastly, the last parameter in generating a 
spin image is the support angle. It is the largest angle in between the surface 
normals and the direction of an oriented point basis. This parameter will affect 
the descriptiveness of spin image.  
 

 

Figure 2.2: Oriented Point Basis (Johnson and Hebert, 1999). 
 
Bielicki and Sitnik (2013) had proposed a method to recognize and 

localize 3D objects in a cloud of points by using locally calculated feature vector 
(FV) descriptors. In their training phase, the outcomes from pre-processing (PP) 
are used to compute local feature vectors (FVs). Then, all the local feature 
vectors are compiled into histograms to construct a reference object global 
descriptors. This local FV consists of two histograms: first is the 2-D 
distribution C1 versus C2 which is shown in Figure 2.3 and the second is a local 
surface type distribution. Both of these histograms are computed by the number 
of intervals. By using the number of intervals, the dimensionality of the feature 
space FS can be calculated. In order to ensure that only the most significant 
combination of features will be used in the recognition and localization phase, 
principal component analysis (PCA) is used to perform a reduction of feature 
space dimensionality. Figure 2.4 shows the brief steps of building a reference 
object descriptor.  
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By using the local FVs to build descriptors, the threshold algorithm can 
be used even with insufficient and noisy data. Besides, these descriptors allow 
detecting even highly occluded objects. FVs can also reduce the clutter effect 
on the recognition rate. However, the main weakness of this method is that the 
descriptiveness of the proposed descriptors might result in high false-positive 
ratio. Geometric representation of the reference object can be further improved 
to reduce this error. 

 

 
Figure 2.3: Histogram of 2D Distribution of Parameters C1 versus C2 
(Bielicki and Sitnik, 2013). 

 

 
Figure 2.4: Building of Reference Object Descriptor (Bielicki and Sitnik, 
2013). 
 

In the paper of Frome, et al. (2004), they had proposed two new regional 
shape descriptors. The first is known as 3D contexts and the second is harmonic 
contexts to recognize three dimensional objects (in this case, vehicles) in noisy 
and cluttered point cloud scenes. For shape contexts, histograms directly 
function as the descriptors but for harmonic shape contexts, extra transformation 
needs to be performed. Before starting to build this descriptor, there are two 
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parameters need to be decided first which are the support region pattern and the 
methods of distributing all the histogram bins which located in three-
dimensional space into vector. 

For 3D shape context descriptors, they are basically the extension of 2D 
shape contexts to a 3D surface. The support region is a sphere centered on the 
basis keypoint and a surface normal estimated for the keypoint. Then, the 
support region which also known as the spherical neighbourhood is divided 
equally by using elevation and azimuth dimensions and logarithmically using 
radial dimension into histogram bins as shown in Figure 2.5. Step of performing 
logarithmical sampling is to improve the descriptor to become more robust to 
distortions in shape. Lastly, by accumulating the weighted count of the number 
of points inserting into each bin, a 3D shape context descriptor is constructed. 
 

 
Figure 2.5: Histogram Bins that Form 3D Shape Context (Frome, et al., 2004). 
 

Next, a harmonic shape context descriptor can be built by applying a 
spherical harmonic transform to the 3D shape context. First, it starts with the 
same histogram created for 3D shape context. Bin values are used to perform a 
spherical harmonic transformation for the shells to build a new histogram. In 
short, the harmonic shape context is basically a histogram vector that results 
from the amplitudes of the transformation. 
 Frome, et al. (2004) compared the recognition ability of both shape 
context descriptors and spin image descriptor which was used in 3D shape-
based object recognition system by Johnson and Hebert (1999). Although the 
descriptors utilized by Johnson and Hebert (1999) is to define surface meshes, 
but its implementation to point clouds is quite fast and direct. The result in 
testing the descriptors in vehicle recognition showed that both shape context 
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methods obtained better recognition rates than spin image in noisy scenes. In 
cluttered scenes, 3D shape context descriptor achieved the best performance 
among other methods. These results are presented in Figure 2.6 and Figure 2.7.  
 

 
Figure 2.6: Comparison of Recognition Rate between Different Descriptors in 
Noise Experiments (Frome, et al., 2004). 

 

 
Figure 2.7: Comparison of Recognition Rate between Different Descriptors in 
Clutter Experiments (Frome, et al., 2004). 

 
In addition, a new 3D feature descriptor known as THRIFT was 

presented by Flint, Dick and Hengel (2014) in their local 3D structure 
recognition method. The idea of THRIFT is the extension of successful Scale 
Invariant Feature Transform (SIFT) and also Speeded up Robust Feature (SURF) 
algorithms used in keypoint extraction, identification and matching in range 
data. By using the orientation information extracted in keypoint detection, 
THRIFT can create a descriptor by counting up the all points into a single 
dimensional histogram in accordance with their angles between two surface 

normals ������  and ��	
. Lastly, all the surface normals’ angles are fitting into 
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the bins of the histogram to form a descriptor. The reason of using surface 
normal information is that it can improve the descriptor by handling the changes 
in sampling density better than certain types of descriptors which only utilize 
the information of the location extracted from keypoint detection such as shape 
contexts and spin images. Figure 2.8 shows the graphical interpretation of the 
descriptor. 

 

 
Figure 2.8: A Keypoint with Two Least Squares Planes and their Related 
Normals for One Support Point on a Local Surface. (Flint, Dick and Hengel, 
2014). 

 
 Taati, et al. (2007) proposed a method for 3D object recognition and 
pose determination between a range data by using local shape descriptors with 
variable dimension (VD-LSDs). Similarly, in their paper, they presented three 
phases to perform object recognition: point matching, pose reconstruction and 
pose finalization. Building of local shape descriptors falls in the first phase, 
where they will be used later to determine the point correspondences between 
the input range data and full model. In this paper, model point cloud and scene 
point cloud are given. The main interest is to determine the rigid transformation 
that is able to align the instance found with the model in the scene by if that 
particular instance lies there.  
 First, on the covariance matrix of each keypoint in the local 
neighbourhood, they executed Principal Component Analysis (PCA) to generate 
a Local Reference Frame (LRF) and three eigenvalues scalars which represent 
vector lengths along each LRF to each point. Next, with all scalars and vectors, 
they generated several properties for each point: position properties, direction 
properties and dispersion properties. Selection of all these property sets can 
affect the effectiveness and robustness of point matching. Then, they chose a 
small part from these properties by implementing a feature selection method. In 
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point clouds, there is no need to construct LSDs for every point. Therefore, only 
salient points which have a special geometry are selected in order to build more 
descriptive LSDs. The last step is to create a scalar-quantized or vector-
quantized histogram. After extracting and accumulating all the chosen 
properties into bins of a histogram, the descriptor is finally created. Based on 
the experiment conducted, variable dimensional local shape descriptor had a 
better recognition rate compared to the spin image on a few data sets. 

According to Mian, Bennamoun and Owens (2006), they created a 
tensor descriptor using histogram-based method in their object recognition and 
segmentation in cluttered scenes paper. The method aims to successfully detect 
3D objects and also predict their location and orientation in a complex scene. At 
first, an input point cloud scene is converted into decimated triangular meshes, 
as shown in Figure 2.9a and Figure 2.9b. Normals are computed for each vertex 
and triangular face. Next, two vertices (in pairs) which fulfil particular distance 
and angle conditions are chosen to define its 3D coordinate basis as shown in 
Figure 2.9c. The 3D coordinate basis is then used to construct a local 3D grid at 
the origin. The grid size indicates the amount of locality while the grid’s bin 

size controls the granularity level. After determining the tensor grid, surface 
areas of the meshes which intersected each bin of the grid are calculated and 
summed to construct a 3D tensor descriptor.  
 Tensors can handle noise and also changing mesh resolutions very well. 
Based on the experiment performed in this paper, Mian, Bennamoun and Owens 
(2006) proved that tensor outperformed the spin image in recognizing objects in 
cluttered scenes. One of the potential drawbacks is its combinatorial explosion 
of vertex pairs. 
 

 
Figure 2.9: Tensor Computation (Mian, Bennamoun and Owens, 2006). 
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2.3.2 Signature Based Methods 
The main idea of this method is that it basically encodes one or more geometric 
measures calculated individually at each neighbouring point to describe the 
local neighbourhood of a keypoint. Signature descriptors contribute more 
descriptive power.  
 Besides creating descriptors using histogram-based method, Mian, 
Bennamoun and Owens (2010) also built a feature descriptor by using the depth 
values of the local surface. Before building the descriptor, they presented a 
method to measure and rank the quality of the keypoints. After that, the most 
outstanding keypoints are chosen for detecting local features. Next, they derived 
a local 3D coordinate system for the local feature and fitted a lattice to all local 
surfaces. 
 Sun and Abidi (2001) had developed point’s fingerprint descriptor to 

perform surface matching efficiently. To generate the point’s fingerprint, 

geodesic circles was constructed for each interest point by utilizing the 
surrounding points which have the similar geodesic distance to the interest point. 
Then, a local coordinate system is constructed with the normal and tangent plane 
at the keypoint, as shown in Figure 2.10a. 2D contours which also known as 
point’s fingerprint descriptor can be obtained by projecting all geodesic circles 

onto a tangential plane of the surface. Figure 2.10b shows the local fingerprint 
of the same point from different views. Point’s fingerprint can perform better as 

it contains more descriptive information than methods that only utilize one 
contour or 2D histogram. Besides, the cost of computation is low compared to 
descriptors using 2D image representation.  
 

 
Figure 2.10: (a) Local Coordinate System. (b) Local Fingerprint of the Same 
Point from Different Views (Sun and Abidi, 2001). 
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 Chua and Jarvis (1997) had created descriptors known as point 
signatures to perform the task of object recognition. In the paper, they 
mentioned that by using point signatures, recognition of an object in both single-
object scene and complex scene containing few partially overlapping objects 
can be done. A point signature is known as a 1D signature that expresses the 
surface surrounding a keypoint. First, a plane is fit to all contour points and then 
translated to the keypoint. After the contour points are being projected onto the 
fitted plane to create a curve, each contour point is defined by two parameters 
which are the signed distance and the clockwise rotation angle �. Figure 2.11 

shows a point signature. The reference direction of the signature may not be 
unique as several signatures could be collected from the same point. This 
method consists of a drawback which is sensitive to mesh resolutions.  
 

 
Figure 2.11: Point Signature (Chua and Jarvis, 1997). 

 
2.3.3 Summary and Comparison between Histogram-Based and 

Signature-Based Local Surface Feature Description Methods 
Table 2.2 summarizes all methods used to construct local descriptors by 
different authors. Histogram based methods are often used to construct a 
descriptor as they can handle noise and clutter very well. However, since the 
descriptor is built by encoding geometric measures computed at every 
neighbouring point, it has a more descriptor power compared to histogram 
descriptor. Both of these methods have their own advantages and disadvantages. 
A better solution can be further proposed which combines both ideas of 
histogram and signature to create a descriptor which can share both advantages 
and eliminate drawbacks. 
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Table 2.2: Summary of Methods for Local Surface Feature Description. 

No Method 
Category 

Method 
Name 

Data 
Type 

Outcomes Reference 

1 Histogram Spin Image Mesh It can handle 
noise and 
occlusion but it 
is easily affected 
by the changing 
mesh resolutions 
and non-uniform 
sampling. 

Johnson and 
Hebert 
(1999) 

2 Histogram Feature 
Vector 

Point 
Cloud 

This method can 
detect high 
occluded objects 
even in 
insufficient and 
noisy scenes, 
however, it 
might result in 
high false-
positive ratio. 

Bielicki and 
Sitnik 
(2013) 

3 Histogram 3D Shape 
Contexts and 

Harmonic 
Shape 

Contexts 

Point 
Cloud 

By comparing 
both shape 
contexts with 
spin image, both 
shape contexts 
performed better 
than spin image 
in noisy scenes 
while 3D shape 
contexts 
outperformed 

Frome, et 
al. (2004) 
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the rest in 
cluttered scenes. 

4 Histogram THRIFT Point 
Cloud 

This descriptor 
is more robust to 
changes in 
sampling 
density. 

Flint, Dick 
and Hengel 

(2014) 

5 Histogram Variable 
Dimensional 
Local Shape 
Descriptors 
(VD-LSDs) 

Point 
Cloud 

The experiment 
showed that this 
descriptor 
achieved better 
recognition rate 
compared to the 
spin image on a 
few data sets. 

Taati, et al. 
(2007) 

6 Histogram 3D Tensor Mesh Tensor can 
handle very well 
with the 
changing mesh 
resolutions and 
also noise. The 
experiment 
conducted had 
proved that it 
performed than 
the spin image. 

Mian, 
Bennamoun 
and Owens 

(2006) 

7 Signature Point’s 

Fingerprint 
Mesh This descriptor 

contains more 
feature 
descriptive 
information 
where it 
outperformed 

Sun and 
Abidi 
(2001) 
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both spin image 
and point 
signature. 

8 Signature Point 
Signatures 

Mesh Although this 
method is able to 
recognize 
objects in simple 
and complex 
scenes, but, it is 
sensitive to mesh 
resolutions. 

Chua and 
Jarvis 
(1997) 

9 Signature Depth Values Point 
Cloud 

The result of the 
experiment 
showed that this 
method has a 
better 
performance 
than the spin 
image. 

Mian, 
Bennamoun 
and Owens 

(2010) 

 
2.4 Surface Matching (Coarse Recognition and Localization) 
There are two parts in this surface matching step which are feature matching 
and hypothesis generation. First, after the descriptors which contain local 
descriptive information are made from the detected unique keypoints, a set of 
feature correspondences between the model and the scene needs to be 
established by matching their descriptors. Once the correspondences are 
obtained, an algorithm is needed to identify the feature correspondence groups 
and use them to vote for candidate models that need to be recognized and 
determine transformation hypotheses. 
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2.4.1 Feature Matching 
Feature matching aims to extract point relations which also known as feature 
correspondences between the desired model and the complex scene. The most 
common way to accomplish this is to carry out a brute-force search, where a 
comparison between the model features and scene feature is performed to find 
the correspondences.  

Johnson and Hebert (1999) had proposed a surface matching engine or 
slicing based method to show how two surfaces are matched where spin image 
descriptors from points on two surfaces (model and scene) are compared to a 
best-match to establish point relation. When two spin images (model and scene) 
are found to have a high correlation, a feature correspondence between them is 
determined. This step is repeated until all the point correspondences are 
gathered together.  

Besides, hash table from geometric hashing is one of the most popular 
ways to detect and store feature correspondences. According to Mian, 
Bennamoun and Owens (2006), they had created a correspondence algorithm 
known as hash table-based voting scheme which can automatically extract 
feature correspondences. First, they built a 4D hash table by using the tensor 
descriptors. Besides, since the tensor descriptors already served as the view of 
local surface areas, they enable the hash table and matching process to be less 
dependent on the resolution and surface sampling. Next, after filling all the 
tensors into the 4D hash table, the matching of the tensors is performed by 
utilizing a voting scheme to automatically establish the feature correspondences. 
Hashing method is efficient and of low polynomial complexity.  

Frome, et al. (2004) also utilized the similar locality-sensitive hashing 
(LSH) technique to perform feature matching. Since there are a lot of 3D shape 
context descriptors need to be matched to establish feature correspondences, it 
might take a long time to complete the step. This LSH functions based on the 
principle that two points are identified to have the same hash if they are near to 
each other in feature space. This results in minimization of the search space by 
orders of magnitude which can speed up the matching process. A hash function 
is defined to hash the descriptors that located in the same hypercube to the 
identical hash score. Hash function that is used in this method targets to 
maximize collisions for similar points which desires to make identical items to 
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have a large probability of having the same hash value. LSH is a better choice 
compared to traditional hashing as it realizes efficiencies in memory and number 
of computations conducted. 

Papazov and Burschka (2010) used the idea of the hash table to establish 
pairs of correspondences between the oriented model points and oriented scene 
points. Before this, the hash table is utilized by them to store the descriptors of 
pairs of oriented model points. Besides, descriptors of oriented scene point pair 
are also computed. By matching the scene point pair descriptor to the hash table 
that stores model point pair descriptors, a corresponding oriented model point 
pairs can be established. In contrast to Matei, et al. (2006), they constructed a 
hash table for indexing feature of the model to form a collection of geometry 
descriptor of single model points. By comparing these two methods, pairs of 
correspondences are better than single point correspondences as it can reduce 
the time used in the recognition phase and allow for a simple computation of the 
subsequent aligning rigid transformation. 

According to Rodolà, et al. (2013), they used kd-tree (k-dimensional 
Tree) method to match two surfaces (model and scene) to establish means of 
point-wise correspondences. First, they determined an original group of so-
called strategies where every scene point is linked with the k-nearest model 
points in the descriptor area. In the descriptor space, each scene sample has the 
possibility to match the model samples that show identical surface 
characteristics. To prevent overcrowding of matching, the total amount of 
“attempts” is limited to value of k. When the nearest model descriptor is located 
at a great distance from the data, clutter pre-filtering is performed to exclude the 
matching correspond scene point. If the model descriptor satisfies the condition 
of k, kd-tree is used to perform fast searching to match the scene to the model. 
This matching direction can help to minimize the false positive rate for the same 
number of strategies. Similarly, Guo, et al. (2013) used a pre-constructed kd-
tree to match the scene features to every model feature to obtain feature 
correspondences. A feature correspondence from the scene and its nearest 
model is established if the ratio between the shortest and the second shortest 
distance is less than a threshold (eigenvalue). Although kd-trees are effective 
and efficient in low dimensions. However, it might not be so efficient when 
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encountering high dimensional data as it might require a longer time to 
backtrack through the tree to search for the ideal solution.  

The method utilized by Zhong (2009) is called Locality Sensitive Trees 
(LST). This tree is defined as a randomly-distributed binary tree where the nodes 
or leaves represent the feature space’s subdivision to be matched. Moreover, the 

inner part of each leaf nodes consists of a unique random test which is useful in 
grouping new feature vectors. In this paper, after the intrinsic shape signature 
descriptors which represent the 3D point clouds are constructed, the descriptors 
from two 3D point clouds are matched to establish the feature correspondences. 
Figure 2.12 shows the sequence of matching two points using intrinsic shape 
signature. The branch of the tree indicates various model descriptor that can be 
matched to the scene. Then, the established feature correspondences are 
associated with each of the tree’s leaves. 

 

 
Figure 2.12: Sequence of Matching Two Points using Intrinsic Shape Signature 
(Zhong, 2009). 
 
2.4.2 Summary of Feature Matching 
Table 2.3 summarizes all methods used to match features by different authors. 
This step is very important as it is performed to establish point relations between 
the model and the scene. These feature correspondences will be used in the next 
step to vote for the candidate model. Based on research, it can be observed that 
the methods that often be used are hashing technique and tree-based method. 
Between these two methods, hashing technique might perform better than tree-
based method because it has the ability to minimize the search space, making 
the computation time and complexity lower. For tree-based method, although it 
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can also perform fast searching which is efficient in low dimension data, but the 
efficiency decreases when it comes to high dimension data. 
 

Table 2.3: Summary of Methods of Feature Matching. 

No. Feature 
Matching 

Outcomes Reference 

1 Surface 
matching engine 
(Slicing based) 

No further explanation. Johnson and 
Hebert (1999) 

2 Hash Table In this paper, since the authors 
are using tensor descriptors 
that indicates local surface 
area of the views, they made 
the hash table and matching 
step less independent of the 
surface sampling and the 
resolution. From the 
experiment, they 
demonstrated that hashing 
matching time is not affected 
by the number of models in 
the data library, unlike the 
spin images. 

Mian, 
Bennamoun and 
Owens (2006) 

3 Locality-
Sensitive 
Hashing (LSH) 

This method realizes 
efficiencies in memory and 
number of computations 
conducted. 

Frome, et al. 
(2004) 

4 Hash Table Hash table is utilized to store 
oriented model point pair 
descriptors. This enables them 
to detect doublets between 
model and scene faster and it 

Papazov and 
Burschka (2010) 
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makes the aligning rigid 
transform easier. 

5 Hash Table The hash table stores 
geometry descriptors of single 
model points where it makes 
the computational time 
longer. 

Matei, et al. 
(2006) 

6 kd-tree kd-tree is able to perform fast 
searching to match the scene 
to the model which can reduce 
the time required in the feature 
matching process. 

Rodolà, et al. 
(2013) 

7 kd-tree This method is effective and 
efficient in low dimension 
data. 

Guo, et al. (2013) 

8 Locality 
Sensitive Trees 
(LST) 

Based on one of the 
experiment, with LST 
indexing, only 0.4% of the 
feature matches are 
performed, other 99.6% of the 
pairwise feature comparisons 
are pruned away. Still, LST is 
able to recognize object 
accurately similar to how an 
exhaustive matching method 
does. 

Zhong (2009) 

 

2.4.3 Hypothesis Generation 
For hypothesis generation, the tasks are to determine candidate models which 
are most likely to locate in the scene and to perform transformation hypotheses 
for them. By using the feature correspondences established from feature 
matching, candidate models which are most likely to be located in the complex 
scene are obtained. Then, each candidate models are utilized to further perform 
rigid transformations that align one surface with another. There are multiples 
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methods that have been utilized such as interpretation trees, game theory, 
geometric consistency, Hough transform, geometric hashing and Random 
Sample Consensus (RANSAC).  
 First of all, one of the methods is known as constrained interpretation 
trees where each branch in the tree represents a feature correspondence. It starts 
from the root of the tree where there is no feature correspondence. Then, it 
successively constructs the feature correspondence between model and scene to 
the leaf node. When the branches become too many, some can be said to be 
trimmed to ensure the tree follows the correspondence arranging conditions. 
The result of this technique is a tree that can perform consistent interpretations 
for the transformation hypotheses for each model. This technique is utilized by 
Bariya and Nishino (2010) to perform 3D object recognition where the nodes in 
the tree indicate correspondences established between a model and scene feature 
with each branch contains a hypothesis of whether the candidate model is 
present or absent in the scene. They searched for candidate model in the scene 
one at a time by using a constrained interpretation tree that extracts the rich 
descriptive information produced by the scale-dependent corners, as shown in 
Figure 2.13. Since each leaf node indicates a set of correspondences with its 
parent nodes, a rigid transformation is computed for each node in order to align 
pairs the scene and model corner points that establish that correspondences. 

 

 
Figure 2.13: Schematic of Scale-Hierarchical Interpretation Tree (Bariya and 
Nishino, 2010). 

 
 According to Johnson and Hebert (1999), when they were matching 
features to establish and group correspondences, geometric consistency is 
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performed to eliminate outliers which will exhibit a major error when 
undergoing rigid transformation. The remaining correspondences that are 
geometrically consistent are utilized to compute a transformation hypothesis. 

A similar method is also implemented by Chen and Bhanu (2007). 
Previously, they used hash table to store the descriptors which contain model 
descriptive information. Then, they compared the descriptors (local surface 
patches) between model and objects. Votes are casted and added to the hash 
table to know which model receives the highest votes. High quality 
corresponding descriptors can be identified as well. Since the hash table may 
consist of a lot of local surface patches, those with the maximum similarity and 
similar surface type are selected as the potential corresponding patch. Next, 
geometric consistency is carried out to group the consistent potential ones and 
filter the outliers. The largest group is likely to be the actual corresponding pairs. 
After voting, candidate models which gained the top three highest votes are 
obtained from the hash table entries. The following step is to apply rigid 
transformation which includes rotation matrix and translation vector to the 
candidate models. This geometric consistency method is useful because it can 
minimize the error of correspondence matching and further improve the 
efficiency of hypothesized transformations. 

The other technique used to perform hypothesis generation is known as 
game theory. According to Rodolà, et al. (2013), they utilized game theoretic 
considerations to select the best surviving feature correspondences that satisfy 
a global rigidity constraint. They first defined a payoff function to measure the 
quality of a hypothesis that is backing up by another hypothesis with respect to 
the ultimate aim. The game contest starts by selecting sparse sets of liable 
correspondences to survive. The candidate subset then undergoes isometric 
transformation. This method is easy to implement and very efficient. 

Hough transform or Hough voting is used to vote the feature 
correspondences to generate candidate models in 3D Hough space. By referring 
to Tombari and Stefano (2012), all votes will be inserted into an array whose 
dimensionality is the same as the number of unrecognized parameters of the 
shape class. Each Hough space point corresponds to the presence of a 
transformation between the scene and the model. In the end, the presence of the 
candidate model is obtained through the peaks in the Hough accumulator. Two 
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variants are developed to the standard Hough voting scheme which are Hough 
N-N (N represents Neighbours) and Hough N-C (C represents Central). A 
similar idea of Hough transform is utilized by Ashbrook, et al. (1998). They 
used a Hough voting scheme to perform the transformation of the local 
correspondences that aligns complete surfaces. The benefits of implementing 
this Hough voting is that it is able to model local correspondences 
transformation errors by using a probabilistic Hough transform. 

Another useful approach of hypothesis generation is known as geometric 
hashing and it is described by Lamdan and Wolfson (1998). Normally, a hash 
table is built to store the model points’ coordinates with their own reference 

basis. In the recognition phase, an ordered pair of scene points is chosen and all 
other scene points in this basis are expressed in this coordinate system. Then, 
the basis is used to vote for triplets which are the model, basis and angle for 
which these coordinates presented and is indexed into the hash table. The two-
point basis of the triplet and the highest support is then utilized to compute the 
model hypothesis.  

Random Sample Consensus (RANSAC) is another useful hypothesis 
generation technique which it enhances the geometric hashing technique by 
cancelling the voting part and further confirms the candidate models’ position 

consistency using a minimal set of feature correspondences. The feature 
correspondence set will be utilized to generate a rigid transformation which 
aligns the model with the scene. All qualified point pairs that exhibit a high 
consistency with the transformation will be counted until the total amount 
reaches a pre-set threshold. According to Schnabel, Wahl and Klein (2007), they 
presented an efficient RANSAC algorithm to detect basic shapes like cylinders, 
cones, spheres, planes and tori in unorganized point clouds data even under 
adverse conditions where there are a lot of outliers and a high degree of noise.  

The input of this method is point cloud with points inside and associated 
normal while the output is a group of primitive shapes with their corresponding 
disjoint points set and a set of remaining points. First, in their localized sampling 
strategy, they implemented an octree to form spatial proximity between samples 
where it can adapt the size of minimal sets to the density of outlier and shape 
size. A good cell which likely contains mostly points for the primitive shape 
needs to be chosen properly from any level of the octree. A cell will keep 
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generating new shape candidates and then collecting them into a candidate set. 
The implementation of RANSAC to detect basic shapes might not be useful in 
complex object localization. In object localization, it is possible to use this 
method to identify a simple chair which only consists of one flat surface and 
four cylinders. However, it could not efficiently detect an object with arbitrary 
shapes as these shapes are not included in their method. Figure 2.14 presents the 
algorithm of RANSAC to extract shapes in the point cloud in this method. 

 

 
Figure 2.14: Algorithm of RANSAC to extract Shapes in the Point Cloud 
(Schnabekl, Wahl and Klein, 2007). 
 
 Papazov and Burschka (2010) also utilized RANSAC algorithm to 
sample a minimal point set from the scene. In this method, there are only two 
oriented points in a minimal set which are not sampled uniformly. Then, in order 
to generate oriented scene point pair from the two oriented points, normals of 
both points are computed using Principal Component Analysis. The descriptor 
for each scene point pair is created and used to retrieve all model pairs in model 
hash table which are identical to scene point pairs. A model corresponding to 
model pairs is restored and a rigid transformation that best aligns model pairs to 
scene pairs is performed. The location defined in the rigid transformation is 
considered to be the transformation hypothesis. Taati, et al. (2007) mentioned 
that the feature correspondences which established in the previous point 
matching step contain a large percentage of outliers. Therefore, they 
implemented a robust RANSAC algorithm to eliminate the outliers and align 
the model with its instance in the scene. 
 According to Mian, Bennamoun and Owens (2010), they used the 
technique of pose clustering to generate transformation hypotheses. They 
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calculated a transformation that aligns the model and the scene based on each k-
feature correspondences. All transformations are grouped and the largest cluster 
indicates the actual transformation hypotheses. In addition, Zhong (2009) also 
performed pose transforms which includes translation and rotation between the 
matching descriptors then clustered them in a six-dimensional pose space close 
to the actual pose transform. Guo, et al. (2013) computed a rigid transformation 
by aligning the local reference frame of model feature to the local reference 
frame of scene feature. A single feature correspondence using their RoPS 
feature descriptor can be used to estimate the rigid transformation. It 
outperformed other algorithms which used point signatures and spin image 
descriptors where they need at least three correspondences to compute a 
transformation.  
 
2.4.4 Summary of Hypothesis Generation 
Table 2.4 summarizes all methods used to generate model hypotheses by 
different authors. For hypothesis generation, the technique must have a high 
ability to find the candidate models which have a high possibility locating in the 
rich scene and perform a rigid transformation for candidate models. Based on 
the research, there are many methods that have been proposed such as 
interpretation trees, game theory, geometric consistency, Hough transform, 
geometric hashing and Random Sample Consensus (RANSAC). Every method 
has its own benefits and drawbacks. Hough Transform might perform better 
than geometric consistency and pose space clustering as it has a voting scheme 
that can improve the accuracy. However, this voting scheme might result in a 
longer computational time. RANSAC can improve the performance by 
eliminating the voting part and it is easy to implement.  
 

Table 2.4: Summary of Methods of Hypotheses Generation. 

No. Hypotheses 
Generation 

Outcomes Reference 

1 Constrained 
Interpretation 
Trees 

From the experimental results, 
hypotheses are generated 
effectively depending on the scale 

 Bariya and 
Nishino (2010) 
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of the corresponding features, 
which able to achieve a 
recognition rate of 97.5% with up 
to 84% occlusion. 

2 Geometric 
Consistency 

It eliminates correspondences that 
are not geometrically consistent to 
prevent transformation error.  

Johnson and 
Hebert (1999) 

3 Geometric 
Consistency 

This method exhibits a much 
lower computational complexity 
and better performance. 

Chen and 
Bhanu (2007) 

4 Game Theory The gameplay that performs the 
actual recognition step is able to 
produce reliable matches. Besides, 
this method is easy to implement 
and very efficient. 

Rodolà, et al. 
(2013) 

5 Hough 
Transform 

Two variants that have been added 
to the Hough voting scheme are 
more robust to quantization 
effects. Based on the experiment, 
it showed that this method 
outperformed algorithms that 
reply on geometric consistency 
and pose space clustering. 

Tombari and 
Stefano (2012) 

6 Hough 
Transform 

The benefit of using Hough voting 
is that it can model local 
correspondences transformation 
errors by utilizing a probabilistic 
Hough transform.  

Ashbrook, et al. 
(1998) 

7 Geometric 
Hashing 

This method can operate in the 
presence of only partial 
information and it does not require 
domain-specific knowledge but 

Lamdan and 
Wolfson (1998) 
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only the location of the feature 
correspondences. 

8 Random 
Sample 
Consensus 
(RANSAC) 

It improves the geometric hashing 
technique by eliminating the 
voting part. 

Schnabekl, 
Wahl and Klein 
(2007) 

9 RANSAC This method is robust against 
outliers and it is easy to 
implement. However, it requires 
prior knowledge about data in 
order to able to calculate the 
number of iterations required to 
complete the whole sampling 
process. 

Papazov and 
Burschka 
(2010) 

10 RANSAC One of the drawbacks of this 
method is that the number of 
iterations is strongly dependent on 
inlier percentage.  

Taati, et al. 
(2007) 

11 Pose 
Clustering 

This method requires only a little 
memory and makes accurate 
clustering algorithms usage less 
costly.  

Mian, 
Bennamoun and 
Owens (2010) 

12 Pose 
Clustering 

No further explanation concluded 
in this paper.  

Zhong (2009) 

13 Pose 
Clustering 

The experiment showed that it 
performed better than other 
algorithms which implement point 
signatures and spin image 
descriptors where at least three 
correspondences are needed to 
compute a transformation.  

Guo, et al. 
(2014) 
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2.5 Fine Localization (Verification) 
The final step of 3D object recognition and localization is known as fine 
localization or verification where it improves the accuracy of the transformation 
hypotheses by distinguishing true hypotheses from the false hypotheses. There 
are normally two methods to complete this step which are the individual and 
global verification approaches. 
 
2.5.1 Individual Verification Methods 
After obtaining multiple transformation hypothesis from the previous step, each 
of them is used to align a candidate model with the scene. Next, an important 
step of measuring the accuracy of the alignment is performed to find the 
acceptable hypotheses.   
 Iterative Closest Point (ICP) is the most frequently implemented 
algorithm to measure the accuracy of the alignment nowadays. This method 
normally determines the best transformation hypothesis that minimized the total 
distance between the closest points in the model and the scene. Once the best 
hypothesis is obtained, the scene features that correspond to that model can be 
identified. According to Chen and Bhanu (2007), after they get the transformed 
data set from the model rigid transformation, they searched the closest point in 
the test image for every point in this data set. 
  Guo, et al. (2014) refined the transformation using ICP algorithm which 
results in a residual error. They then used the residual error and visible 
proportion together with their thresholds to accept the correct transformation 
hypothesis and to find the correct candidate model. One of the challenging parts 
in using this method is to determine the thresholds as they cannot be too strict 
or else it will eliminate the correct ones which are highly occluded in the scene 
and they cannot be too loose as well or else many false positives will be 
produced. 
 

2.5.2 Global Verification Methods 
The difference between this method and the individual verification method is 
that it examines the whole set of hypotheses instead of checking the candidate 
model one by one.  
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 According to Aldoma, et al. (2012a), they presented a cost function to 
perform a global optimization to eliminate wrong active hypotheses. However, 
a global cost function consists of a high computational burden, so they used 
Simulated Annealing to minimize the cost function to retrieve accurate 
hypotheses within a limited amount of time and computational resources. The 
benefit of this technique is that it can recognize occluded models without a high 
number of false positives. 
 By referring to Papazov and Burschka (2010), their object recognition 
algorithm utilized the mean of acceptance function to save the useful hypotheses 
in solution list. There are two parameters in the acceptance function which are 
the support term and penalty term. In contrast to normal RANSAC, there is only 
support term (score function) which measures the quality of each hypothesis 
(number of transformed model points fall within �-band of the scene). In this 
method, an extra penalty term exists to penalize hypothesis of occluding 
transformed model parts in the scene. Lastly, a conflict graph is created to filter 
the weak hypothesis in the solution list. By implementing non-maximum 
suppression or also known as local maximum search over the conflict graph, the 
final hypothesis is chosen. 
 According to Schnabekl, Wahl and Klein (2007), their algorithm also 
consists of a score function (lazy cost function evaluation scheme) which is used 
to measure the quality or to be said counting the number of compatible points 
of the shape candidates. The best candidate model is chosen if it has the highest 
score (highest compatible points). With this score function, it can help to 
significantly reduce the overall computational cost. Lastly, a least-squares 
approach serves as a refitting tool to optimise the geometric error of the chosen 
candidate shape. 
 

2.5.3 Summary and Comparison between Local and Global Verification 
Methods 

Table 2.5 summarizes all methods used to verify the hypotheses generated by 
different authors. For local verification method, since it examines each 
hypothesis one by one to align a candidate model, it might increase the overall 
computational cost. For global verification method, it examines the whole set of 
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hypotheses at once and some of the algorithms even have the extra acceptance 
or score function which allows it to find the correct hypothesis more accurately. 
 

Table 2.5: Summary of Methods of Verification. 

No. Verification 
Method 

Type 

Verification 
Method Name 

Outcomes Reference 

1 Individual Iterative Closest 
Point (ICP) 

No further 
information. 

Chen and 
Bhanu 
(2007) 

2 Individual Iterative Closest 
Point (ICP) 

It is difficult to 
determine optimal 
thresholds to achieve a 
high recognition rate. 

Guo, et al. 
(2014) 

3 Global Cost function Based on the 
experiment, this 
method can recognize 
occluded models 
without a high number 
of false positives. 

Aldoma, et 
al. (2012a) 

4 Global Acceptance 
function 

In contrast to the 
normal algorithm 
which consists only 
score function, the 
extra penalty term can 
help to penalize 
hypothesis of 
occluding transformed 
model parts in the 
scene to further 
improve the accuracy. 

Papazov 
and 
Burschka 
(2010) 

5 Global Score function  
(Cost function) 

Overall computational 
cost is reduced by 

Schnabekl, 
Wahl and 
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introducing the score 
function in the 
algorithm.  

Klein 
(2007) 

 
2.6 Summary 
In summary, the four steps to perform 3D object recognition and localization 
are 3D keypoint detection and extraction, construction of local surface feature 
descriptors, surface matching and fine localization. In this literature review 
section, various techniques and methods proposed by different authors for each 
step were summarized and analysed. Different recognition algorithms presented 
can be specifically designed to recognize and localize object in different range 
image types such as depth image, point cloud or polygonal mesh. 
 Based on this literature review, keypoint detection is always the first step 
for a capable and accurate 3D exploration of the environment. Keypoints are the 
salient points in the environment which contain high discriminative information. 
Therefore, it is essential to implement a fast, efficient and robust technique for 
an automatic extraction of keypoints in input data. Two methods to perform this 
keypoint detection are the fixed-scale and the adaptive-scale methods. After the 
keypoints have been detected and extracted, the important descriptive 
information of the keypoints are used to construct feature descriptors. There are 
mainly two categories of descriptors for interest feature points which are the 
histogram-based and the signature-based methods. For surface matching, 
feature matching and hypothesis generation are performed to establish a set of 
feature correspondences between the interested model and the complex scene 
needs with descriptors and use them to vote for candidate models that need to 
be recognized and determine transformation hypotheses. Last but not least, after 
generating multiple candidate model hypotheses, step of measuring the accuracy 
of the alignment is performed to find the final qualified hypotheses. 
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CHAPTER 3 
 

3 METHODOLOGY AND WORK PLAN 
 

3.1 Introduction 
In this chapter, the methods used in the project of object localization in 3D point 
cloud are explained. It includes the flow of the steps and theories of each method 
used in this project. In order to develop an efficient algorithm for this project, 
many existing methods were studied to understand the principles behind those 
methods and to identify and analyse their potential drawbacks so that the project 
design could be further improved in certain advanced algorithm development. 
Parameters of the algorithms in each step were the most important factor that 
they could affect the performance of the process. While developing algorithms 
for each step of the object localization process, parameters were frequently 
adjusted as they play a vital role in producing desirable and the targeted results. 
 

3.2 Point Cloud Library (PCL) 
The full algorithm of this project was implemented using an open source library 
called Point Cloud Library (PCL). According to Aldoma, et al. (2012b), PCL is 
a powerful library that can process both 2D or 3D datasets and it contains a lot 
of readily available tools together with their source codes. In this project, the 
point cloud file format used was Point Cloud Data (PCD) which could be 
processed by PCL. Microsoft Visual Studio 2013 was used to develop the 
project’s source codes as PCL mainly adopts C++ programming language. 
 

3.3 Project System Overview 
Object localization in 3D point cloud project consists of two main phases. The 
first phase is known as object recognition and the second phase is object 
localization. First, pre-processing of the point clouds was performed. There 
were two main types of input point clouds needed to be fed into the main 
algorithm, which were the reference point cloud that displayed the scene of 
multiple objects and the target point cloud that represented the target object. In 
order to obtain target point clouds, significant objects located in the scene point 
cloud were segmented from the scene.  
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 In the following object recognition and localization phases, both target 
and reference point clouds were processed to extract keypoints/points of interest 
which were then used to construct descriptors. Descriptors constructed for each 
keypoint contained the local geometry which represented a description of its 
local neighbourhood. The next step was to perform feature matching. The 
descriptors of the target’s keypoints and reference’s keypoints were compared 

to establish point-to-point correspondences. Then, by using these feature 
correspondences, transformation model hypotheses were generated. Finally, a 
hypotheses verification method was developed to recognize and localize the 
final correct hypothesis in the reference point cloud, if there were more than one 
hypotheses found. The final hypothesis recognized in the scene was then 
localized by using bounding box and the information of the length, height and 
width of the object in the bounding box were found. The overview and flowchart 
of this project are shown in Figure 3.1 and Figure 3.2 respectively. 
 

 
Figure 3.1: Overview of Object Localization in 3D Point Cloud. 

 

 
Figure 3.2: Flowchart of Object Localization in 3D Point Cloud. 
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3.3.1 Surface Normal Estimation 
In this project, the point type in the main point cloud dataset used was PointXYZ 
type, where it only consisted of 3D point’s x, y and z information. However, 

Point Cloud Library (PCL) (2018a) stated that the SIFT keypoint detector used 
in the keypoint detection step which will be explained in next section required 
a value, such as colour (RGB) or intensity from the point cloud in computing a 
scale space to extract keypoint. Since the point cloud dataset used did not have 
these information, surface normal of the points were computed and they acted 
as the input information to SIFT keypoint detection. A normal is defined as a 
vector perpendicular to a targeted point on the estimated plane. The surface 
normal were estimated and computed for each point in the point as described 
below. 
 Based on Point Cloud Library (PCL) (2012), the surface normal 
estimation was performed based on Principal Component Analysis (PCA) with 
a user-defined k-neighbourhood size by using pcl::Feature::setKSearch 
function. Surface normals were estimated and computed from a set of 
neighbours (k-neighbourhood) located at surrounding of a point. After selecting 
the size of the k-neighbourhood of a targeted point pi, a covariance matrix C was 
generated for the point, as shown in Equation 3.1. PCA was then applied to 
obtain the eigenvalues, �j which were in a descending order and the eigenvectors, 
�j of the covariance matrix built by the k-nearest neighbours. The final surface 
normal of a targeted point was defined as the eigenvector with the smallest 
eigenvalue. Equation 3.2 shows how the surface variation, � was obtained from 
the relationship between each eigenvalue. Besides, since the input model and 
scene point cloud data were very large, an empty three dimensional kD tree (k-
Dimensional tree) was created in the algorithm to increase the speed to search 
for k neighbours around a targeted point. 
 

� =  
1
�� (�	 � ��) �

�

	��

(�	 � ��)� ,� � ������ = �� � ������, � � {0,1,2}        (3.1) 

 
where  
k = Number of nearest neighbours contained in neighbourhood of pi 
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�� = Centroid of neighbours in neighbourhood 

�� = jth eigenvalue of computed covariance matrix 

��  = jth corresponding eigenvector 

 

� =
��

�� + �� + ��
                                             (3.2) 

                                            
3.3.2 Keypoint Detection 
The next step is known as keypoint detection. Since the input of the algorithm 
was a large quantity of points, both useful and poor points were mixed together. 
Informative keypoints were more desirable as they contained a rich 3D 
information and could be well-localized, for example, edge or corner points. 
Besides, keypoint detection helped to reduce potential sample points to 
minimize the computational time and complexity. Detection of the keypoint 
locations was important as it could further affect the success of the feature 
descriptors in the next step.  
 The method of keypoint detection used in this project was Scale 
Invariant Feature Transform (SIFT) which was proposed by Lowe (2004) for 
object recognition and the algorithm was implemented in PCL using 
pcl::SIFTKeypoint (Point Cloud Library (PCL), 2018a). The idea of SIFT was 
originally proposed for 2D images and it was further adapted and developed by 
the PCL teams to 3D point clouds. In PCL, SIFT keypoint detector searches 
through the Difference-of-Gaussian (DoG) clouds in the Gaussian scale space 
and the 3D keypoints are detected as the local extrema that locate in the scale 
space. The Gaussian scale space and its extrema were constructed in PCL by 
setting four parameters given in the algorithm: number of octaves, number of 
scale levels per octave, minimum scale size and minimum contrast (minimum 
DoG value required to mark a keypoint). The number of octaves refers to the 
octaves number to compute the keypoints. The number of scale levels per octave 
indicates the number of scales set to compute the keypoints within each octave. 
The minimum scale parameter is the standard deviation of the smallest scale 
contained in the Gaussian scale space. The minimum contrast parameter 
provides a threshold to limit the number of keypoints detected without adequate 
contrast. 
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 After feeding both model and scene point clouds, I (x,y,z) to the 
algorithm, the system created a Gaussian scale space using 3D density that was 
convolved with a series of Gaussian kernels to build a pyramid of density maps 
whose standard deviations, �j were differed by a fixed multiplicative factor, k 

for each point (Lowe, 2004). Besides, a blur filter was constructed by carrying 
out a radius search and the weighted average of neighbouring points was taken 
as a new local cloud intensity for each point. DoG clouds that contained 
different intensity values were obtained by subtracting two adjacent point clouds 
repeatedly, as shown in Equation 3.3. Eight nearest neighbours located at the 
current scale and nine nearest neighbours located at the neighbouring scale 
(above and below) were used to compare with every point in the DoG clouds 
(Hansch, Weber and Hellwich, 2014). Originally, SIFT detector requires a value 
from point cloud such as colour or intensity to compute keypoints. However, 
the point cloud used in this project does not contain the needed information.  
Therefore, the value of normal of each point computed in the previous step was 
used to compute keypoints rather than intensity variants. Besides, a kD tree was 
also built to speed up the neighbour searching step. 
 

                      � !, ", #, ��$ = % !,", #,��&�$ � % !, ", #, ��$                   (3.3) 

 
where  
D = Difference-of-Gaussian (DoG) clouds 
G = Convolution of Gaussian yield point cloud 
 
3.3.3 Descriptor Construction 
Now, all the important keypoints had been detected. Local descriptors were then 
constructed to describe the local geometry for each keypoint. In this project, 
there were two methods used to develop the descriptors: Point Feature 
Histogram (PFH) and Signature of Histograms of OrienTations (SHOT).  
 Point Feature Histogram (PFH) method was proposed by Rusu, et al. 
(2008). The algorithm was developed by using module pcl::PFHEstimation 

available in Point Cloud Library (PCL) (2020a). This method mainly required 
two input information which were the xyz data and surface normals computed 
in the previous section. Therefore, the surface normals computed must have a 
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high quality or else it would affect the performance of the descriptor. Basically, 
a PFH descriptor mainly uses the difference of surface normals’ directions to 

collect the geometrical information of a targeted keypoint from its 
neighbourhood.  
 After feeding the input keypoint clouds of both model and scene and 
their computed surface normals to the algorithm, a k-neighbourhood of point pi 
was created by setting the radius of a sphere r that used to search for neighbours. 
Next, point pairing was performed. According to Grupo De Robotica (2015a), 
a targeted point was not only paired with its k neighbours, but the neighbours 
were also paired among themselves. For each point pair ps and pt, a coordinate 
frame containing 3 unit vectors was computed by using their normals ns and nt 
at either point, as shown in Equation 3.4. By using the computed coordinate 
frame, the difference between the normals of the point pair was expressed as 
three angular features, as shown in Equation 3.5. Lastly, four main features, the 
three angular features and the point pair’s Euclidean distance d were binned into 
a histogram with 125 bins. This means that each keypoint would have its own 
125-bin histogram. The final PFH descriptor was the combination of all 
histograms with their own four features. An empty kD tree was built to perform 
the neighbour searching process. 

    

' = ��  ,� = ' ×
(�( � ��)
)�( � ��)�

× ' ,* = ' × �                      (3.4) 

 
where 

+ = )�( � ��)� 
 

, = � � �(   ,- = ' �
(�( � ��)

+  ,. = arctan(* � �(   ,' � �()         (3.5) 

 
 As mentioned by Rusu, Blodow and Beetz (2009), PFH has a very high 
complexity of O(k2) in computing descriptors at real time. At first, PFH was 
used to generate descriptors for the keypoints. However, it required too much 
time, more than two hours to construct the descriptors for a larger scene point 
cloud. Therefore, in order to increase the efficiency of the descriptor 
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construction process, Signature of Histograms of OrienTations (SHOT) was 
implemented by using readily available module pcl::SHOTEstimation in PCL 
(Point Cloud Library (PCL), 2018b). This method was proposed by Tombari, 
Salti and Stefano (2010a) which combined both signatures and histograms.  
 In the algorithm, the descriptor first built a weighted covariance matrix, 
M for a targeted keypoint p by using a fixed radius for neighbouring keypoints 
pi, as shown in Equation 3.6. Then, Local Reference Frame (LRF) or the 
coordinate system was computed for the keypoint by using eigenvector and 
eigenvalue decomposition of the matrix. Then, a 3D isotropic grid in a spherical 
form for the targeted keypoint was created as a signature structure and it was 
aligned with the corresponding LRF, almost similar like 3D shape context 
method proposed by Frome, et al. (2004). In PCL, the spherical grid consists of 
32 bins creating from 2 radial divisions, 8 azimuth divisions and 2 elevations. 
Next, one dimensional histogram in each bin was obtained by accumulating the 
geometric details of the keypoint such as cosine angles between normals of the 
keypoints and of the neighbouring keypoints. Lastly, the final SHOT descriptor 
was developed by combining all histograms. In the algorithm, the main 
parameter to be set and adjusted was the radius defining of which neighbouring 
keypoints were involved and described. Besides, a kD tree was provided to help 
in radius search for nearest keypoints for both model and scene clouds. 
 

/ =    
1

0 (R � +	)	:1234
 (R � +	)(�	 � �)(�	 � �)�

	:1235

        (3.6) 

 
where  
M = Weighted Covariance matrix 

+	 =   )�	 � �)� 
R = Radius of sphere 
 

3.3.4 Feature Matching 
Next, once the descriptors of keypoints for both model and scene were computed, 
the scene and model keypoints were then successively matched through their 
own descriptors to compute a set of point-to-point correspondences.  
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 In this project, the reference cloud was the scene descriptors and model 
descriptor cloud was set as the input cloud for matching. Descriptors of the 
scene functioned as a key to match themselves to all the descriptors of the model 
in order to establish model-scene point pairs that were identical. The reason of 
doing this was to account for the existence of a few model hypotheses. If the 
model’s descriptors matched themselves against the scene’s descriptors, the 
model instances would not be found. Each descriptor in the scene cloud was 
matched and compared with the model descriptors by using 
pcl:KdTreeFLANN<pcl::KdTreeFLANN> module available in Point Cloud 
Library (PCL) (2013). The system then computed a Euclidean distance between 
the model and scene descriptor. A distance threshold d was set to determine the 
similarity between the scene’s keypoints and the model’s keypoints. Point-to-
point correspondences were obtained and added to a correspondence group if 
the distances were within the threshold, meaning that they were similar. All poor 
correspondences which had a bigger distance more than the threshold were 
eliminated. The threshold should not be too big, or else the number of outliers 
or mismatched keypoints would be higher. On the other hand, if a very low 
threshold was set, the number of the correspondences would be too less to obtain 
the model instances in the hypotheses generation step. 
 

3.3.5 Hypotheses Generation 
Through the feature matching step, the point-to-point correspondences between 
the scene and the model were collected in a so-called “correspondences” 

database. Based on (Grupo De Robotica, 2015b), these correspondences cannot 
completely recognise and locate the model in the scene as the outliers due to 
errors from keypoint detection or noise might exist among the correspondences. 
Therefore, correspondence grouping was performed to retrieve those 
correspondences which had a high geometric consistency and eliminate other 
poor correspondences. Lastly, by clustering the final set of 
correspondences/inliers, the correct model instance was found and localized 
with the true model in the scene.  
 The method used to group the correspondences and generate model 
hypotheses was known as Hough Voting or Hough Transform which was 
proposed by Tombari and Stefano (2010). It was implemented in PCL by using 
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pcl::Hough3DGrouping module (Point Cloud Library (PCL), 2020b). First, 
three main parameters were set as the input details for the algorithm: rf_rad, 
cg_size and cg_thresh. rf_rad was the radius required to compute Local 
Reference Frame (LRF) for each keypoint. cg_size was defined as the bin size 
in the Hough space that formed the cluster size where cg_thresh was the 
threshold set for voting in Hough space, which also known as clustering 
threshold.  
 According to Tombari and Stefano (2010), Hough voting is based on a 
voting process in Hough space to find the qualified correspondences. Once the 
algorithm was fed with defined input parameters, LRF was computed for each 
pair of correspondences in the “correspondences” database C. The vector 
between each keypoint Fi

M and model’s centroid CM was calculated as shown in 
Equation 3.7. The vector computed was in global reference frame (GRF). In 
order to ensure these vectors were rigid translation and rotation invariant, they 
were then transformed to local reference frame (LRF) as shown in Equation 3.8. 
Next, the vector was also computed corresponding to scene keypoint. Since the 
LRF of the scene keypoint was invariant to transformation, it was assumed that 

6	,78 = 6	,79 . The final vector was transformed back into GRF of the scene as 

shown in Equation 3.9. By using these transformations, scene keypoints casted 

votes in the algorithm-constructed 3D Hough space through the final vector 6	,:8  .  

 Inliers/correct correspondences were found by recognizing the peak in 
the space. All the inliers were clustered in the peak, representing the presence 
of the model hypotheses. In this step, if there were more than one hypotheses 
generated, bin size in the Hough space and clustering threshold were adjusted 
until a correct model instance was recognized. The final set of correspondences 
was visualized and a bounding box was constructed to locate the model instance 
in the scene. The length, height and width of the model was printed in the 
command window with respect to the unit in the PCL. 
 

6	,:9 = �9 � ;	9                                               (3.7) 

 
where  

6	,:9 = Vector between �9 and ;	9 
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6	,79 = <:7
9 � 6	,:9                                                 (3.8) 

  
where  

<:7
9 = [=	,>

9 =	,?
9 =	,@

9 ]�, model rotation matrix 

 

6	,:8 = <7:
8 � 6	,78 + ;�8                                          (3.9) 

 
where  

<7:
8 = [=�,>

8 =�,?
8 =�,@

8 ], scene rotation matrix 

;�8= Scene keypoint 

 

3.4 Project Timeline 
In order to ensure that the project could be done with the fulfilled aim, objectives 
and other requirements within the deadline, a work plan was drafted as an 
outline for goals and processes and it was strictly followed. By referring to 
Figure 3.3, the work plan was planned in weeks.  
 During the first week, the software required to develop algorithms for 
the project and to analyse the results were installed. The basic idea and operation 
of the software were studied and learned. After finished installing the software, 
pre-processing of the point cloud was done to create a few model point clouds 
from the scene cloud. Once the input point clouds were ready, keypoint 
detection was carried out. The following weeks were used to perform the other 
processes such as descriptor construction, feature matching and hypotheses 
generation. Parameters were adjusted in each step in order to produce a desirable 
result. The algorithm of the project was run over and over again to collect results. 
After obtaining all the results, the final report was ready to be written. 
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Figure 3.3: Timeline of Second Part of Project. 

 

3.5 Summary 
In summary, the algorithm developed in this project is capable of recognizing 
and localizing an object from a rich 3D point cloud. First, keypoint detection 
using SIFT keypoint detector was performed to mark the points of interest on 
both model and scene point clouds. Gaussian scale space of the detector was the 
main factor that determined the number of keypoint detected. Next, descriptors 
that store the geometrical content of the keypoints were computed. There were 
originally two types of descriptor computed: Point Feature Histogram (PFH) 
and Signature of Histograms of OrienTations (SHOT). In the end, SHOT was 
selected due to its high efficiency which will be explained in Chapter 4. After 
the descriptors were computed for both model and scene, feature matching was 
carried out to establish point-to-point correspondences between the model and 
scene. Since the correspondences consisted of some outliers, Hough Voting 
scheme was used to perform a rigid transformation to only collect those good 
correspondences. All the good correspondences were clustered to generate 
model hypotheses. The parameters in the Hough Voting were adjusted until 
there was only one actual model hypothesis found. Next, a bounding box was 
computed to locate the model instance from the scene, with the corresponding 
lines connecting between the input model and the model instance.  
 In this project, the main point cloud used was a fountain scene with three 
different objects: crocodile, seal and basin. Two types of input model point 
clouds were used to test the functionality of the algorithms. The first input model 
point cloud was the non-rotated model point clouds. First, the algorithm tested 
the localization of only one non-rotated model from the scene per time. Then, 
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all three non-rotated models were localized from the scene at the same time. 
Next, the algorithm performed the localization of the second input model point 
cloud which was the transformed model (rotated by 20°). All results will be 
shown and discussed in Chapter 4. 
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CHAPTER 4 
 

4 RESULTS AND DISCUSSION 
 

4.1 Introduction 
There were total of five steps needed to perform to obtain the final object 
localization results in this project. Each step had their own parameters to be 
adjusted. The final results will be discussed and analysed in this chapter. 
 
4.2 Dataset 
The main multiple-object rich point clouds used in performing object 
localization in 3D point cloud was obtained from Artec Europe (2020). It is a 
fountain scene containing a crocodile, a seal and a basin. This point cloud’s 

texture size was fixed to 16384×16384 and it contains total 1505600 points with 
XYZ information. All three single target models were segmented manually by 
using CloudCompare where there are 29531, 20859 and 4133 points in crocodile, 
seal and basin models respectively.  
 

4.3 Normal Estimation 
It is important to estimate surface normals for each point in the point cloud as it 
contained geometric surface’s properties that were required to construct 
keypoint detector and descriptor. The number of k-nearest neighbours of a point 
was the main parameter and it was regularly adjusted in this algorithm. However, 
it is difficult to set a correct scale size for the k-neighbourhood. If the number 
of the nearest neighbours is too large, the estimated surface normal 
representation of a targeted point would be distorted as there are too many 
details computed from the surrounding neighbours. If the k-neighbourhood size 
is too small, the estimated normal of a targeted point might not get enough 
details from surrounding neighbours. Therefore, the scale of the k-
neighbourhood should be adequate where it could sufficiently obtain details 
from surrounding neighbours to compute surface normals.  
 In this part, k-neighbourhood scale was set as k =2, 4, 6, 8, 10 and the 
results of the surface normals computed for crocodile, seal, basin and scene 
point clouds were analysed and discussed. The visualizations of the point’s 
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surface normals for each point cloud at k = 2, k = 4 and k =10 were presented in 
Figure 4.1, Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5. Besides, time taken 
to estimate the surface normals for each point cloud at different neighbourhood 
size was measured and tabulated in Table 4.1.  
 As shown in Figure 4.1, the surface normals computed at k = 2 for all 
point cloud could not be seen. There were not enough details to compute surface 
normals since only two nearest neighbours were selected. The result was not 
accurate. As the size of k-neighbourhood increased, the distribution of surface 
normals all over the point clouds could be observed clearly. Starting from scales 
k = 4, the details provided by the nearest neighbours were sufficient as the 
surface normals were mostly estimated at the outlines of the point clouds. This 
shows that the neighbourhood scales were able to capture small details from the 
point clouds. The surface normal results were accurate. Besides, by comparing 
the normals at k = 4 and k = 10, the surface normals at k = 10 were more parallel 
and had a more consistent orientation. Based on Rocha (2017), a small 
neighbourhood could cause noisy normals. The results showed inconsistent 
normals at k = 4. To evaluate the efficiency of the surface normal estimator, 
time taken for the surface normal computation was measured at different k-
neighbourhood scale. From Table 4.1, the surface normal estimator required 
more computational time at a larger neighbourhood as there were more 
neighbours involved in the covariance estimation. 
 The selected scale for k-neighbourhood to compute surface normals was 
k =10. Although it was more complicated, but the results were the most accurate 
as the surface normals computed were consistently oriented at the important part 
of the point cloud.  
 

  
Figure 4.1: Visualization of Surface Normals for All Point Clouds at k = 2. 
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Figure 4.2: Visualization of Surface Normals for Crocodile (Top: k = 4; 
Bottom: k =10). 

 

 
Figure 4.3: Visualization of Surface Normals for Seal (Left: k = 4; Right: k 

=10). 

 
Figure 4.4: Visualization of Surface Normals for Basin (Left: k = 4; Right: k 

=10). 
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Figure 4.5: Visualization of Surface Normals for Scene (Top: k = 4; Bottom: k 

=10). 
 
Table 4.1: Time Taken for Surface Normal Estimation for Each Point Cloud at 
Different k. 

k-Neighbourhood 
Size 

Computational Time for Surface Normal 
Estimation (s) 

Crocodile Seal Basin Scene 

2 0.421 0.346 0.187 27.154 

4 1.202 0.883 0.292 85.678 

6 1.346 0.960 0.311 94.665 

8 1.415 1.042 0.340 102.560 

10 1.528 1.135 0.370 105.999 

 

 
Figure 4.6: Graph of Models' Surface Normal Computational Time against k 

Neighbourhood Size. 
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4.4 Keypoint Detection 
According to Tuytelaars and Mikolajczyk (2007), it is difficult to define how 
accurate a detected keypoint is. However, it is possible to analyse the properties 
of the keypoints. Good detected keypoints should consist of a few properties. 
The first property is quantity and quality. The number of keypoints found should 
be reasonable and sufficient. The number should not be too high or too low, but 
should be able to reflect the details of the model and scene point cloud. The 
second property is repeatability. In a single point cloud, the repeatability of 
keypoints detected should be low. For keypoint repeatability between model and 
scene, the number of duplicates should be high. Noise, changes in viewpoint, 
occlusion or any combination of the above may affect this property. The last 
property is efficiency / time performance. The efficiency of keypoint detection 
is related to the computation time. The shorter the time needed, the more 
efficient the detector is. 
 The keypoint detector used in this project was Scale Invariant Feature 
Transform (SIFT) keypoint detector and it was implemented by using 
SIFTKeypoint module available in Point Cloud Library (PCL). This detector 
has several parameters to be adjusted: number of octaves, number of scale levels 
per octave, minimum scale and minimum contrast. According to Point Cloud 
Library (PCL) (2018a), the first three parameters specify the range of scales to 
search and detect the keypoints.  
 This part tested the behaviour of two sets of the input models: non-
rotated input models and rotated input models. The results of SIFT keypoint 
detector for non-rotated input models will be mainly discussed. In order to 
analyse the performance of the SIFT keypoint detector on how the Gaussian 
scale space sampling rates influenced the number of keypoints detected, 
different Gaussian scale spaces were created where all parameters were set to 
be the same except for the minimum scale of Gaussian scale space which was 
set to be 65, 70, 75, 80 and 82. The minimum contrast was set to 0 to make sure 
that every part of the point cloud could be scanned to detect all possible keypoint. 
After analysing the behaviour of the detector, the best minimum scale parameter 
would be selected for the final SIFT detector. The SIFT keypoint detector was 
set as following: 

�    min_scale = 65, 70, 75, 80, 82. 
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�    n_octaves = 70. 

�    n_scales_per_octave = 90. 

�    min_contrast = 0. 
 

4.4.1 Keypoint Quantity and Quality 
The number of keypoints detected is one of the most important factors that can 
affect the performance of the whole object localization process. The number of 
keypoints marked should be reasonable and adequate, where it cannot be too 
many or too few. For keypoint quality, the keypoints found must be informative 
enough to be able to sketch out the model point cloud’s approximate pattern. 

The results of the number of detected keypoints for three different input models 
(crocodile, seal and basin) and scene point clouds at different minimum scale of 
Gaussian scale space were tabulated, as shown in Table 4.2.  
 In Point Cloud Library, SIFT keypoint detector goes through a series of 
Gaussian filters based on different scales which were then subtracted. The local 
maxima were selected as keypoints. Based on Table 4.2, it can be observed that 
the bigger the minimum scale of the Gaussian scale space in the SIFT keypoint 
detector, less number of keypoints was detected. This means that when the 
standard deviation of the smallest scale contained in the Gaussian scale space or 
also known as scale of the keypoints increased, a coarser representation was 
produced. As the coarser scale of keypoints got higher, some feature went 
missing, the amount of maxima would not increase. By comparing the numbers 
of keypoints detected in each point cloud to the numbers of total points in their 
own point cloud, the number of keypoints found was considered sufficient.  
 The visualizations of the keypoints detected in each point cloud at the 
largest minimum scale (80) and the smallest minimum scale (65) were shown 
in Figure 4.7, Figure 4.8, Figure 4.9 and Figure 4.10. The detected keypoints 
were clearly located at the side of the models and they were able to outline the 
shape of the models. This shows that both detectors were capable in finding 
informative keypoints. 
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Table 4.2: Number of Detected Keypoints for Crocodile, Seal, Basin Models 
and Scene Point Cloud at Different Minimum Scale. 

Minimum Scale of 
Gaussian Scale Space 

Crocodile 
Model 

Seal 
Model 

Basin 
Model 

Scene 

65 915 861 166 37001 

70 830 650 161 31773 

75 779 638 116 27615 

80 644 496 99 24526 

82 629 444 87 22904 

 

 
Figure 4.7: Visualization of Crocodile’s Detected Keypoints (Left: Min Scale 
82; Right: Min Scale 65). 
 

 
Figure 4.8: Visualization of Seal’s Detected Keypoints (Left: Min Scale 82; 
Right: Min Scale 65). 
 

 
Figure 4.9: Visualization of Basin’s Detected Keypoints (Left: Min Scale 82; 
Right: Min Scale 65). 
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Figure 4.10: Visualization of Scene’s Detected Keypoints (Above: Min Scale 
82; Below: Min Scale 65). 
 

4.4.2 Keypoint Repeatability 
In evaluating keypoints, one of the most crucial properties of SIFT keypoint 
detector is its repeatability. In this project, few tests were done to evaluate the 
repeatability of the points-of-interest: keypoint repeatability results in own 
model and scene point clouds, keypoint repeatability results between model and 
scene point clouds and keypoint repeatability results in own model point clouds 
under different conditions (Minimum scale of Gaussian scale space in SIFT 
detector & rotation). 
 First of all, keypoint repeatability resulted in own models and scene 
point clouds was analysed. The keypoints of the models and scene at different 
minimum scale which were numerically identical were found and tabulated, as 
shown in Table 4.3. The number of original keypoint was also tabulated to ease 
the comparison. Figure 4.11, Figure 4.12, Figure 4.13 and Figure 4.14 show the 
relationships between the changing minimum scale of the SIFT keypoint 
detector with the number of total detected and repeated keypoints for both 
models and scene. It can be observed that all SIFT keypoint detectors created 
resulted in finding a lot of keypoints that were located at similar position. 
Besides, with more detected keypoints, there was a higher chance where 
repeated keypoints appeared more frequently which resulted in low efficiency. 
To further analyse the remaining unique keypoints in each point cloud, the 
unique keypoints at the minimum scale of 65 and 80 for the crocodile point 
clouds were visualized as presented in Figure 4.15. As the results show, the 
location of the unique keypoints was the same as the location of the total 
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keypoints. The brief pattern of the point cloud was still clear even after 
removing all the repeated keypoints. This means that the detected keypoints 
were actually descriptive enough. 
 
Table 4.3: Table of Number of Original and Repeated Keypoints for Input 
Crocodile, Seal, Basin Models and Scene Point Clouds at Different Minimum 
Scale of Gaussian Scale Space. 

Minimum Scale of Gaussian 
Scale Space 

65 70 75 80 82 

Crocodile 
Model 

No. of Original 
Keypoints 

915 830 779 644 629 

No. of  
Repeated 
Keypoints 

674 603 560 466 470 

Seal 
Model 

No. of Original 
Keypoints 

861 650 638 496 444 

No. of 
Repeated 
Keypoints 

583 398 413 328 281 

Basin 
Model 

No. of Original 
Keypoints 

166 161 116 99 87 

No. of 
Repeated 
Keypoints 

115 112 87 67 52 

Scene No. of Original 
Keypoints 

37001 31773 27615 24526 22904 

No. of 
Repeated 
Keypoints 

24153 20565 18090 16036 14894 
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Figure 4.11: Graph of Number of Total and Repeated Scene’s Keypoints 

against Minimum Scale of SIFT Keypoint Detector. 
 

 
Figure 4.12: Graph of Number of Total and Repeated Crocodile’s Keypoints 

against Minimum Scale of SIFT Keypoint Detector. 
 

 
Figure 4.13: Graph of Number of Total and Repeated Seal’s Keypoints against 

Minimum Scale of SIFT Keypoint Detector. 
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Figure 4.14: Graph of Number of Total and Repeated Basin’s Keypoints 

against Minimum Scale of SIFT Keypoint Detector. 
 

 
Figure 4.15: Visualization of Unique Crocodile’s Keypoints (Left: Min Scale 

82; Right: Min Scale 65). 
 
 Next, keypoint repeatability resulted between models and scene point 
clouds was found and evaluated. The keypoints analysed here were the unique/ 
non-repeated keypoints remaining after removing all repeated keypoints from 
the original detected interest points. The keypoints which were numerically 
identical between models and scene were found, tabulated in Table 4.4 and 
plotted in Figure 4.16.  
 High repeatability of keypoints between the input models and scene is 
crucial as it could affect the efficiency performance of object matching and 
localization in further steps. The results show that the number of keypoints in 
models that actually located at the exact same place in the scene was not many. 
Keypoint repeatability did not improve for all input models as the minimum 
scale reduced where there was more keypoints. To have a better localization 

0
50
100
150
200

65 70 75 80 82

N
o.
�o
f�B

as
in
�M

od
el
's�
Ke
yp
oi
nt

Min�Scale

Graph�of�Number�of�Total�and�Repeated�Basin�
Model's�Keypoints�against�Minimum�Scale�of�SIFT�

Detector�

model�original�kp model�repeated�kp



63 

performance, the minimum scale which resulted in a higher number of repeated 
keypoint was desirable and it can be seen that each model had their own 
preferable minimum scale parameter. 
 
Table 4.4: Number of Repeated Keypoints between Input Models and Scene at 
Different Minimum Scale. 

Min Scale Crocodile Seal Basin 
65 13 25 6 

70 13 20 5 

75 17 19 0 

80 8 8 0 

82 9 6 1 

 

 
Figure 4.16: Graph of Number of Repeated Keypoints Between Three Input 
Models and Scene at Different Min Scale. 
 
 Besides, matching of keypoints between models and scene was also 
conducted by using CloudCompare to evaluate the repeatability of the keypoints. 
Cloud-to-Cloud distance (C2C absolute distance) with octree level 8 (octree’s 

subdivision level where the cloud distance calculation will be executed) was 
computed after matching each model’s keypoints to the scene’s keypoints at 

different minimum scale of detector (CloudCompare, 2015a). The mean 
distance and standard deviation of keypoints in each model matching to the 
scene’s keypoints were recorded as shown in Table 4.5. Figure 4.17, Figure 4.18, 
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Figure 4.19, Figure 4.20, Figure 4.21 and Figure 4.22 show the visualization of 
C2C absolute distance display range of three input models at minimum scale of 
70.  
 In CloudCompare, the points’ distances between two clouds are 

calculated by setting the scene point cloud as reference cloud and model point 
clouds as the compared one. According to CloudCompare (2015b), the distances 
between points are computed by implementing the Nearest Neighbour Distance 
method. For every point in the model point cloud (compared cloud), 
CloudCompare will examine the nearest point in the scene point cloud 
(reference cloud). Then, the Euclidean distances between the points are found. 
After computing all C2C distances, the mean distance and standard deviation 
values were calculated.   
 Table 4.5 shows that the minimum parameter of 70 for crocodile and 
basin models and of 65 for seal model resulted in the lowest mean distance and 
standard deviation values. Based on the colour scale of the value of the C2C 
distance computation, the colour range changes from blue to red when the 
distance becomes bigger. If the point in the model cloud is at the exact location 
in the scene cloud, the C2C distance computed will be zero and the colour shown 
will be blue. The results show that the blue point had a bigger distribution and 
the histograms of normal distribution were clearly shifted towards left/zero for 
all input models. Since there was not many exact same keypoints detected 
between models and scene, a threshold C2C distance of approximately 15 or 
within the first four classes was set. All points that were within this threshold 
were considered as repeated keypoints, as shown in Table 4.6. 
 
Table 4.5: Mean Distance and Standard Deviation Between Model and Scene 
Point Cloud After Matching at Different Minimum Scale. 

Min 
Scale 

Crocodile Seal Basin 
Mean 

Distance 
Standard 
Deviation 

Mean 
Distance 

Standard 
Deviation 

Mean 
Distance 

Standard 
Deviation 

65 10.13918 20.78699 16.87797 24.92541 15.80206 28.06951 

70 9.17489 18.30128 16.90226 25.83518 9.96979 18.08997 

75 14.53731 25.18010 18.41618 27.33734 18.40606 28.61948 
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80 14.45363 24.43072 21.71080 28.56758 19.44442 28.54013 

82 17.31757 27.98655 21.33786 26.64655 15.14331 23.72197 

 
Table 4.6: Percentage of Keypoints Within Threshold Between Model and 
Scene Point Cloud After Matching at Different Minimum Scale. 

Min Scale Crocodile 
(%) 

Seal (%) Basin (%) 

65 79.781 67.401 74.405 

70 80.723 66.006 74.233 

75 70.277 62.188 70.339 

80 71.318 57.515 69.307 

82 67.987 56.152 68.539 

 

 
Figure 4.17: C2C Absolute Distance Display Range of Crocodile Model at 
Minimum Scale of 70. 
 

 
Figure 4.18: Normal distribution of Crocodile Model at Minimum Scale of 70. 
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Figure 4.19: C2C Absolute Distance Display Range of Seal Model at 
Minimum Scale of 70. 
 

 
Figure 4.20: Normal distribution of Seal Model at Minimum Scale of 70. 
 

 
Figure 4.21: C2C Absolute Distance Display Range of Basin Model at 
Minimum Scale of 70. 
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Figure 4.22: Normal distribution of Basin Model at Minimum Scale of 70. 
 
 The last keypoint repeatability to be analysed was the keypoints resulted 
between own point clouds under different conditions. This was to evaluate the 
ability of the detector in identifying the same keypoints even if the environment 
changed. The first varying condition was the changing minimum scale of 
Gaussian scale space in SIFT detector. Minimum scale of 65 was taken as the 
reference for comparison and all the keypoints analysed here were the unique 
ones. The numbers of exact repeated keypoints for the models were tabulated in 
Table 4.7. The results shown were poor. Similarly, a C2C distance threshold of 
approximately 15 or first four classes (bins) was set to collect keypoints which 
distances were within the threshold as presented in Table 4.8. Figure 4.23, 
Figure 4.24 and Figure 4.25 show the visualization of histogram of C2C 
absolute distance of three input models at minimum scale of 70. 
 Next, the evaluation of the repeatability for models’ keypoints under 

transformation was done. The keypoints for each model at minimum scale of 65 
were rotated at 20°, as displayed in Figure 4.26, Figure 4.27 and Figure 4.28. 
Table 4.9 shows that the numbers of the exact repeated keypoints and the 
percentage of repeated keypoints under C2C absolute distance threshold of 15 
(first four classes) between the original and rotated keypoints for each model. 
 Based on the results above, SIFT keypoint detector was actually lack of 
capability in detecting same set of keypoint under changing circumstances as 
the amount of keypoints that located at exact same place was low. However, 
with a given distance threshold, the results of repeated keypoints were 
acceptable. 
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Table 4.7: Numbers of Repeated Keypoints between Own Models Point Cloud 
Under Different Minimum Scale. 

Min Scale Crocodile Seal Basin 
65    

70 0 0 0 

75 0 0 0 

80 2 0 0 

82 0 0 0 

 
Table 4.8: Percentage of Keypoints Within Threshold for Input Models at 
Different Minimum Scale. 

Min Scale Crocodile 
(%) 

Seal (%) Basin (%) 

65    

70 28.434 27.591 15.951 

75 16.877 33.750 32.203 

80 34.574 29.659 30.693 

82 29.002 38.255 24.719 

 

 
Figure 4.23: Histogram of C2C Absolute Distance of Crocodile Model at 
Minimum Scale of 70. 
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Figure 4.24: Histogram of C2C Absolute Distance of Seal Model at Minimum 
Scale of 70. 

 

 
Figure 4.25: Histogram of C2C Absolute Distance of Basin Model at 
Minimum Scale of 70. 
 

 
Figure 4.26: Crocodile’s Keypoints Before and After 20° Rotation (Left: 
Rotated; Right: Original). 
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Figure 4.27: Seal’s Keypoints Before and After 20° Rotation (Left: Rotated; 

Right: Original). 
 

 
Figure 4.28: Basin’s Keypoints Before and After 20° Rotation (Left: Rotated; 

Right: Original). 
 

Table 4.9: Numbers of Exact Repeated Keypoints and Percentage of Repeated 
Keypoints within Threshold between Original and Rotated Keypoints for Each 
Model. 

Models 
(After 20° 
Rotation) 

Number of Exact 
Repeatability 

Percentage (%) of 
Repeated Keypoints  

(Under C2C Threshold) 
Crocodile 0 2.295 

Seal 0 6.736 

Basin 0 24.096 
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4.4.3 Keypoint Detector’s Efficiency / Time Performance 
In order to analyse the efficiency of the SIFT keypoint detector based on 
different minimum scales, time taken to detect the keypoints was computed, as 
shown in Table 4.10. Besides, Figure 4.29 compares the relationship of the total 
keypoint computation time for input crocodile, seal and basin model point 
clouds at different minimum scale of Gaussian scale space. The runtime 
experiments were done on an Intel Core i5 with 8GB RAM and noted that the 
time complexity was not 100% accurate as it depended on CPU performance.  
 Based on Table 4.10 and Figure 4.29, the SIFT keypoint computation 
time decreased with the increasing minimum scale of the Gaussian scale space. 
If smaller scales for keypoints detection were used, SIFT detector was actually 
using more time to detect keypoints that were located at same position and 
location. Therefore, in term of efficiency, the minimum scale of 82 was the ideal 
parameter that showed an adequate ratio between the amount of keypoint 
detected and execution time. 
 After analysing the results of keypoint quantity and quality, keypoint 
repeatability and time efficiency, the final minimum Gaussian scale selected for 
SIFT keypoint detector was 82 as it produced an adequate number of keypoints 
with a high quality. Besides, since the results of the keypoint repeatability rate 
were almost the same for every minimum scale, 82 was chosen as it required 
only a short period of time to detect the keypoint. This scale produced the 
highest efficiency for keypoint detection. 

 
Table 4.10: Model’s Keypoint Computation Time at Different Minimum 

Scale. 

Min Scale Computation Time (second) 
Crocodile Seal Basin 

65 154.588 157.578 150.949 

70 153.047 154.510 150.328 

75 150.011 154.370 150.083 

80 142.779 154.057 138.921 

82 140.764 151.502 135.045 
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Figure 4.29: Graph of Model’s Keypoint Computation Time at Different Min 

Scale. 
 

4.5 Descriptor Construction 
There were two main parameters that could affect the qualities of the descriptors 
computed. The first parameter was the surface normals estimated for each point 
in the very first step as both methods of descriptor construction (PFH and SHOT) 
used in this project required them to obtain the local geometry properties of the 
keypoints. From the previous results, the quality of the surface normals 
computed was high. Therefore, the surface normal would not cause much effect 
on the results of the descriptor construction.  In this part, the main parameter 
that could affect the performance of descriptor construction was the radius of 
sphere set for searching neighbouring keypoints. The radius r set to search for 
the neighbours in PFH and SHOT should be adequate in collecting enough 
information from surrounding keypoints. According to Grupo De Robotica 
(2015a), the radius cannot be too large or else the information collected from 
the k nearest neighbours may be cluttered. Besides, it cannot be too small or else 
there is not enough keypoints to compute the local geometry.  
 For both PFH and SHOT descriptors, the radius of sphere was set as r 

=20, 40, 60 and the output of histograms of the 50th keypoint at r =20 and r = 
60 were plotted as shown in Figure 4.30, Figure 4.31, Figure 4.32, Figure 4.33, 
Figure 4.34, Figure 4.35, Figure 4.36 and Figure 4.37. The y-axis represented 
the histogram values which formed by the percentage of the points storing in 
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each bin while the x-axis represented the number histogram bins. There were 
total 125 bins in the PFH histogram and 352 bins in the SHOT histogram. For 
both descriptors, when the radius was set larger, the percentage of the points 
storing in each bin was higher. r =20 was selected as final scale as all histograms 
show an adequate information and it has the highest efficiency in computing the 
descriptors. 

 

 
Figure 4.30: Visualization of PFH Output Histogram for Crocodile (Top: r 

=20; Bottom: r =60). 
 

 
Figure 4.31: Visualization of PFH Output Histogram for Seal (Top: r =20; 
Bottom: r =60). 
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Figure 4.32: Visualization of PFH Output Histogram for Basin (Top: r =20; 
Bottom: r =60). 
 

 
Figure 4.33: Visualization of PFH Output Histogram for Scene (Top: r =20; 
Bottom: r =60). 

 

 
Figure 4.34: Visualization of SHOT Output Histogram for Crocodile (Top: r 

=20; Bottom: r =60). 
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Figure 4.35: Visualization of SHOT Output Histogram for Seal (Top: r =20; 
Bottom: r =60). 
 

 
Figure 4.36: Visualization of SHOT Output Histogram for Basin (Top: r =20; 
Bottom: r =60). 

 

 
Figure 4.37: Visualization of SHOT Output Histogram for Scene (Top: r =20; 
Bottom: r =60). 
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 The efficiency of the PFH and SHOT descriptors construction process 
was analysed by measuring their computing time. Based on Table 4.11, with a 
larger radius, both methods required a longer calculation time to compute their 
descriptors as there were more nearest neighbours involved. By comparing 
between PFH and SHOT, PFH spent a much longer time to compute the 
descriptors than SHOT as it has a complexity of O(k2). This drawback of PFH 
could be later seen when the descriptors were generated for a very large point 
cloud. From Table 4.11 and Figure 4.38, SHOT only needed a short time to 
compute the descriptors for scene point cloud. However, for PFH, it used more 
than 4 hours to compute its descriptors. Therefore, SHOT was more efficient 
and it was selected as the main descriptor construction method. The ability of 
SHOT descriptor in finding high quality correspondences was determined in the 
process of feature matching. The results will be shown and discussed in the next 
section. 
 
Table 4.11: Comparison of Computational Time for PFH and SHOT 
Descriptors at Different Radius for Neighbour Searching.  

Radius, r 20 40 60 

 
 

Descriptor 
Computational 

Time, s 

Crocodile PFH 3.237 58.454 318.369 

SHOT 0.618 1.269 2.209 

Seal PFH 1.074 21.542 102.912 

SHOT 0.371 0.378 0.679 

Basin PFH 0.227 2.509 18.094 

SHOT 0.044 0.076 0.131 

Scene PFH 220.557 3253.480 15183.000 

SHOT 32.649 39.607 87.227 
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Figure 4.38: Graph of Comparison of Descriptor Computational Time between 
PFH and SHOT for Scene against Radius. 
 
4.6 Feature Matching 
Matching of the scene’s descriptors and model’s descriptor was performed to 

obtain point-to-point correspondences. In this step, there was only one 
parameter which was the distance threshold, d needed to be set to decide 
whether the scene’s keypoints were similar to the model’s keypoints. Three 

distance thresholds, d = 0.15, d = 0.20 and d = 0.25 were set to test the effect of 
the threshold on the quality of the correspondences found. The thresholds set 
were less than 1 as the SHOT descriptors were designed between 0 and 1 (Grupo 
De Robotica, 2015b). The quantity of the original correspondences and the 
correct correspondences detected between three models and the scene at 
different thresholds were tabulated in Table 4.12. Noted that the k nearest 
neighbours set for normal estimation was 10, the minimum Gaussian scale space 
set for SIFT keypoint detector was 82 and the radius set for constructing SHOT 
descriptor was 20.  
 Accuracy rate of the feature matching process was also calculated using 
the quantity of the original correspondences and the correct correspondences, as 
shown in Equation 4.1. The results were recorded in Table 4.12 as well. The 
accuracy rate of feature matching also represented the descriptiveness of the 
SHOT descriptors computed. Descriptiveness of the SHOT descriptors was 
defined as the ability of the descriptors in detecting inliers out of total 
correspondences. 
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ABB'CDB" <DEF (A<) =
�GCCFBE �GCCFH�G�+F�BFH
IGEDJ �GCCFH�G�+F�BFH             (4.1) 

 
Table 4.12: Quantity of Original and Correct Correspondences and Accuracy 
of Feature Matching from Different Thresholds.  

Distance Threshold, d 0.15 0.20 0.25 

Number of 
Correspondences 

Crocodile Total 608 1125 2060 

Correct 375 375 375 

AR 0.617 0.333 0.182 

Seal Total 387 811 1598 

Correct 227 227 230 

AR 0.587 0.280 0.144 

Basin Total 93 223 762 

Correct 60 60 60 

AR 0.645 0.269 0.079 

 
 Based on Table 4.12, when a smaller threshold was set, there were less 
correspondences found. It clearly shows that the accuracy rate of the feature 
matching process was higher with a smaller threshold. Besides, it can be 
observed that the number of correct correspondences was almost the same for 
all three models even at the different thresholds. This proved that the SHOT 
descriptor had a high capability in determining same set of inliers from different 
sets of total correspondences found. Distance threshold d = 0.15 was selected as 
it produced the highest accuracy of the feature matching process among other 
threshold. The accuracy rate for this threshold shows that the SHOT descriptor 
had a high descriptiveness as it was able to generate the correct correspondences 
of more than half from the total correspondences for all models. 
 

4.7 Hypotheses Generation 
Hypotheses generation was the final step to recognize and locate the input 
models from the scene point clouds. It filtered all low quality correspondences 
and clustered the remaining inliers to generate a model instance. As mentioned 
before, there were three parameters needed to be set: rf_rad, cg_size and 
cg_thresh. In this part, only parameter cg_thresh (clustering threshold) was 
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adjusted in order to recognize and localize only one actual model instance from 
the scene. It was set as cg_thresh =1, 5 and 20. The number of the model 
instances generated was recorded in Table 4.13. The other two parameters were 
set as: 

�       rf_rad = 50. 

�       cg_size = 30. 
 

 Noted that the k nearest neighbours set for normal estimation was 10, 
the minimum Gaussian scale space set for SIFT keypoint detector was 82, the 
radius set for constructing SHOT descriptor was 20 and the distance threshold 
d set for feature matching was 0.15. The accuracy rate of the model instances 
generated or also known as the model localization accuracy was calculated using 
Equation 4.2. The number of correct model instance was defined as the final 
model instance which was localized correctly with a set of correct 
correspondences and it always equalled to 1.  
 

ABB'CDB" <DEF =  
K'LMFC GN �GCCFBE /G+FJ O�HED�BF
K'LMFC GN IGEDJ /G+FJ O�HED�BFH       (4.2) 

 
Table 4.13: Number of Model Instances Generated from Different cg_thresh. 

cg_thresh 1 5 20 

Number of 
Model 

Instances 
Generated 

Crocodile Total 29 3 1 

Correct 1 1 1 

AR 0.034 0.333 1 

Seal Total 26 2 1 

Correct 1 1 1 

AR 0.038 0.5 1 

Basin Total 6 1 1 

Correct 1 1 1 

AR 0.167 1 1 

 
 From Table 4.13, when the clustering threshold set to form a cluster was 
small, more model instances were generated as they only required a few 
correspondences to form a cluster. Since the correspondences was too less, the 
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model instances were mostly matched wrongly with the actual model in the 
scene. The accuracy rate of the model localization increased with the increment 
of cg_thresh. By adjusting the parameter, it was proved that all models were 
recognized and localized correctly when cg_thresh = 20. 
 
4.8 Overall Parameter Set and Final Results 
The algorithm first tested the localization of crocodile, seal and basin from the 
scene. The parameters set for each processes were set as following: 
 

Table 4.14: Parameters Set for Each Step in Model Localization. 

Normal Estimation k 10 

SIFT Keypoint 
Detection 

min-scale 82 

n_octaves 70 

n_scales_per_octave 90 

min_contrast 0 

SHOT Descriptor 
Construction 

r 20 

Feature Matching d 0.15 

Hypotheses 
Generation 

rf_rad  50 

cg_size  30 

cg_thresh 20 

 
Table 4.15: Dimension of Models Localized from Scene. 

Dimension Crocodile Seal  Basin 

Length 1338.49 1037.14 400.716 

Height 851.776 750.881 364.901 

Depth 662.133 746.483 331.603 
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Figure 4.39: Localization of Three Models from Scene.  

 
 Figure 4.39 shows the localization of the crocodile, seal and basin 
models from the scene at the same time and Table 4.15 shows the dimensions 
of all three models that were localized from the scene. The yellow models 
represented the input models, the red models were the model instances 
generated from Hough Voting and the green lines were the correct 
correspondences matching between the input models and the model instances. 
Besides, the algorithm was used to localize the transformed models (20° 
rotation). The parameters set were shown in Table 4.16. Figure 4.40 and Figure 
4.41 show the localization of the rotated crocodile and seal from the scene. Since 
the input rotated models were accurately localized from the scene, the algorithm 
was invariant to transformation.  
 

Table 4.16: Parameters Set for Rotated Crocodile and Seal Localization. 

Normal Estimation k 10 

SIFT Keypoint 
Detection 

min-scale 82 

n_octaves 70 

n_scales_per_octave 90 

min_contrast 0 

SHOT Descriptor 
Construction 

r 60 

Feature Matching d 0.15 

Hypotheses 
Generation 

rf_rad  50 

cg_size  60 

cg_thresh 10 
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Figure 4.40: Localization of Rotated Crocodile Model from Scene.  

 

 
Figure 4.41: Localization of Rotated Seal Model from Scene. 

 
4.9 Summary 
There were total five processes to perform the object localization in 3D point 
cloud. Adjustment of the parameters in each process was very crucial as it could 
affect the final localization results. In normal estimation, the size of the k-
neighbourhood was set as k =10 as it produced a group of consistently oriented 
surface normals. Then, min_scale = 82 was set for the SIFT keypoint detector 
as the number of the keypoints was adequate and the keypoints computed were 
descriptive. Next, radius of sphere r = 20 in SHOT descriptor construction was 
selected as it produced the highest efficiency in constructing the descriptors. In 
feature matching step, the distance threshold to compute the feature 
correspondences was set as d = 0.15 as it had the highest accuracy rate in 
detecting inliers out of total correspondences. Lastly, cg_thresh = 20 was set in 
Hough Voting as all three models were recognized and localized correctly from 
the scene. Besides, the algorithm was invariant to transformation as it was able 
to localize rotated models from the scene by simply adjusting the parameters. 
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CHAPTER 5 
 

5 CONCLUSIONS AND RECOMMENDATIONS 
 

5.1 Conclusions 
In conclusion, an efficient algorithm that is invariant to transformation and is 
able to recognize and localize multiple models simultaneously from a rich 3D 
scene point cloud has been developed for this project. The first and second 
objectives were achieved as all targeted models were successfully localized 
from a rich fountain scene point cloud which consisted of multiple objects. The 
algorithm consists of a total of four major steps to perform the object 
localization: keypoint detection, descriptor construction, feature matching and 
hypotheses generation. Parameters in each of the steps play a crucial role in 
producing desirable and the targeted results. The parameters were carefully 
adjusted to ensure a 100% localization accuracy rate. A comprehensive 
comparison and evaluation of the results were performed to investigate the 
behaviour of the individual methods used. The localization of an object from a 
rich 3D point cloud came along with a 3D bounding box. The third objective 
was achieved as the length, width and height of the object were well-calculated 
from the bounding box. The algorithm was further tested on the transformed 
models and the results showed that the models were accurately localized from 
the scene. In short, the aim and objectives of this project were successfully 
accomplished. 
 
5.2 Recommendations for Future Work 
The algorithm provided in this project requires a frequent adjustment on the 
parameters and the users have to decide the final parameter manually by 
analysing the results. It is very time consuming in finding the perfect parameter 
for each process. Therefore, the future work will be focusing on the research of 
the object localization in 3D point cloud using machine learning or deep 
learning. Training dataset will be provided to the algorithm to allow it to learn 
and compute the best parameter. Then, testing dataset will be used to test the 
ability of the algorithm in locating objects from a rich point cloud. Perhaps the 



84 

optimization functions that are provided in machine learning or deep leaning 
could produce an even more accurate result and a shorter computational time. 
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