
IMAGE RECOGNITION EXPENSE EXTRACTION

BY

KOK WEI JIN

A REPORT SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfilment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE

(HONOURS) Faculty of Information and

Communication Technology (Kampar Campus)

JANUARY 2021

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: __

__

__

Academic Session: _____________

I __

(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in

Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

_________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

Address:

__________________________ _________________________

__________________________ Supervisor’s name

Date: _____________________ Date: ____________________

IMAGE RECOGNITION EXPENSE EXTRACTION

January 2021

KOK WEI JIN

15, Jalan Bukit Rahman Putra 1/8
47000 Sungai Buloh, Selangor

Malaysia

16/4/2021 16/4/2021

KWJ

LENOVO
Typewriter
Yap Seok Gee

IMAGE RECOGNITION EXPENSE EXTRACTION

BY

KOK WEI JIN

A REPORT SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfilment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE

(HONOURS) Faculty of Information and

Communication Technology (Kampar Campus)

JANUARY 2021

ii

DECLARATION OF ORIGINALITY

I declare that this report entitled “IMAGE RECOGNITION EXPENSE

EXTRACTION” is my own work except as cited in the references. The report has not

been accepted for any degree and is not being submitted concurrently in candidature

for any degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

KOK WEI JIN

16/4/2021

 KWJ

iii

ACKNOWLEDGEMENTS

I shall begin with thanking my supervisor, Ms. Yap Seok Gee. She has helped me

immensely in clarifying the various questions I had about the scope and objectives of

this project, and has played a pivotal role in my journey of transforming this theoretical

idea of a project into a concrete one. Many thanks also to Ts. Phan Koo Yuen, who

helped critique my project in a constructive manner, such that I may improve upon it.

I would also like to thank my family and Ms. Yeo, for they have stood by me in the

hardest of times when it seemed as if my world as I knew it would perish before my

eyes. I am eternally grateful for their unyielding support, and shall never be able to

repay their kindness.

And also to UTAR, which has expended a mighty amount of resources to adapt to this

pandemic, such that their students may continue with their education.

iv

ABSTRACT

This is a mobile application development project developed for academic purposes.

The topics covered are mobile development and OCR. Keeping track of income and

expenses both in the short and long term is integral for long-term financial growth, as

evidenced by the resources allocated for income and expense tracking in large

organizations. Both accounting staff as well as personal assistants to managers may

perform resource tracking work. In order to achieve long-term financial goals, families

may also want to keep track of financial resources. However, while it may be an

essential behaviour for long-term financial growth, income and expense tracking is

generally a behaviour that takes effort and discipline. All parties can benefit if the effort

and discipline required for tracking is lessened through the development of this

application. The examined research includes discussion on the suitability of OCR and

Spectral clustering, as well as the pre-processing steps before using Spectral clustering,

alongside proposed improvements. Research on training neural networks using

transformation and training data of deformed receipt images has examined. The report

also details the process of how deformations may be synthetically added to the training

to the training dataset, which type of neural network is trained to remove deformations

from receipts, and how the receipts may be further processed. The proposed

methodology is rapid application development (RAD). The four deliverables of each

phase include: a list of functional and non-requirements, a sequence diagram,

application iterations, as well as the complete application.

v

UNIVERSITI TUNKU ABDUL RAHMAN

TABLE OF CONTENTS

TITLE PAGE i

DECLARATION OF ORIGINALITY ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF ABBREVIATIONS x

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement 1

1.2 Background and motivation 2

1.3 Project Objectives 4

1.4 Proposed approach 4

1.5 Highlight of what have been achieved 6

1.6 Report organization 9

CHAPTER 2 LITERATURE REVIEW 10

2.1 Application review 10

2.1.1 Easy Expense 10

2.1.2 Smart Receipts 11

2.1.3 Spending Tracker 12

2.1.4 TimelyBills 12

2.1.5 Wallet 14

2.1.6 Money Lover 14

2.2 Summary table of features 15

CHAPTER 3 SYSTEM DESIGN 16

3.1.1 Proposed Methodology 16

3.1.2 Technologies used 17

vi

 3.2 User Requirements 18

 3.3 Use-case diagram 18

 3.4 Activity diagram 20

CHAPTER 4 DISPLAY DAILY EXPENSE DATA

21

4.1 Methodology, tools, libraries and classes of interest

 21

4.2 Requirements 21

4.3 Implementation and testing 21

CHAPTER 5 MANUAL EXPENSE ENTRY 23

 5.1 Methodology, tools, libraries and classes of interest 23

 5.2 Requirements 23

 5.3 Implementation and testing 23

CHAPTER 6 AUTOMATED EXPENSE ENTRY 25

 6.1: Methodology, tools, libraries and classes of interest 25

 6.2 Requirements 25

 6.3 Implementation and testing 25

CHAPTER 7 REPRESENT, VIEW AND MANAGE DEPENDENT

EXPENSES

29

 7.1: Methodology, tools, libraries and classes of interest 29

 7.2: Requirements 29

 7.3: Implementation and testing: 29

CHAPTER 8 SUPPOSED SPENDING RATE 31

 8.1: Methodology, tools, libraries and classes of interest 31

 8.2: Requirements: 31

 8.3: Implementation and testing: 31

CHAPTER 9 CONCLUSION 34

 9.1: Achievements and objectives 34

 9.2 Problems encountered 34

vii

 9.3 Novelties and contributions 36

 9.4 Improvements that can be made 36

REFERENCES 37

PLAGIARISM CHECK RESULT 39

CHECK LISTS 41

viii

LIST OF FIGURES

Figure Number Title Page

Figure 1.1 Activity Diagram of the application 5

Figure 1.2 Dimensions of daily expense and income view 7

Figure 1.3 Dimensions of daily expense and income view 2 8

Figure 1.4 Dimensions of budget list view 8

Figure 3.1 Tools used 17

Figure 3.2 Use-Case diagram of the application 19

Figure 3.3 Activity Diagram of the application 20

Figure 4.1 Class diagram, display daily expense data 22

Figure 5.1 Class diagram, manual expense entry 24

Figure 6.1 Class diagram, automated expense entry 28

Figure 7.1 Class diagram, represent, view and manage dependent

expenses

30

Figure 8.1 SQL Query, spent amount within a period under a

category

32

Figure 8.2 SQL Query, distinct dates with expenses within a

period under a category

32

Figure 8.3 Class diagram, supposed spending rate 33

ix

LIST OF TABLES

Table Number Title Page

Table 1.1 Major functions and corresponding user requirements 6

Table 2.1 Available features for free in Easy Expense 11

Table 2.2 Available features for free in Smart Receipts 12

Table 2.3 Available features for free in Spending Tracker 12

Table 2.4 Available features for free in TimelyBills 13

Table 2.5 Available features for free in Wallet 14

Table 2.6 Available features for free in Money Lover 15

Table 2.7 Available features for free in each application reviewed 15

x

LIST OF ABBREVIATIONS

GUI Graphical User Interface

OCR Optical Character Recognition

MBR Minimum Bounding Rectangles

3D Three-Dimensional

CSV Comma-Separated Values

IDE Integrated Development Environment

GPS Global Positioning System

RAD Rapid Application Development

XML Extensible Mark-up Language

UML Unified Modeling Language

XLS Excel Spreadsheet

Chapter 1: Introduction

1

Chapter 1: Introduction

1.1 Problem Statement

Keeping track of expenses and income is integral for long-term financial growth. This

statement is true for organizations and families. In organizations, this responsibility is

fulfilled by employees at different roles. In families, it is usually up to the parents.

Commonly encountered problems include: a lack of discipline and willingness to track

expenses, the accuracy of OCR functionality in applications which are supposed to ease

the burden, and a lack of functionality to track the expenses of family members.

There are various types of people who keep track of expenses like accounting staff,

personal assistants, and individuals and families who want to follow a budget. For

example, a personal assistant to a manager may need to records various expenses for

his boss as well as help out in errands. If there are many receipts, it is challenging for

the personal assistant find out if the boss is spending at a desired rate, and to notify the

boss. An accounting staff may need to record expenses for all relevant staff to produce

accurate expense reports. It is challenging for accounting staff to use current

applications to accurately record expenses through OCR software. Individuals and

family members who intend to follow a budget would also want to record their

expenses, but may find it hard to maintain the discipline and effort required to do that.

Heads of families also have difficulty in finding an application that allows managing

various dependants’ expenses at a glance from an application.

All types of people and roles that would keep track of expenses find it hard and

cumbersome to maintain the discipline and effort required to manually type and enter

expense records into the various popular budgeting applications available today. This

is especially true if recording expenses is not a person’s job responsibility, but rather a

way for that person, for example a family member to determine if they are following a

budget. Decreasing the discipline and effort required to track expenses and income will

help the above mentioned types of users to actually perform required expenses or

income tracking

Chapter 1: Introduction

2

Of those applications that make recording expenses easier by reducing manual entry of

expenses and including OCR functionality, many applications are inaccurate. It is not

that OCR functionality like those provided through Google’s Mobile Vision API are

inaccurate, it is that the methods used by the various applications to extract expense

data from the text detected by APIs, be they custom algorithms or proprietary expense

data extraction APIs, are inaccurate.

It is important that the above mentioned types of users maintain a high degree of

accuracy in their expense recording, so as to obtain accurate information regarding the

state of personal or organisational expenses and income.

Heads of families may need to be able to view and manage expenses of their dependants

and spouse. To the author’s knowledge, of the few most popular applications today,

none of them have this functionality. It is important that families who want to follow a

budget be able to view and manage the expenses of their dependants so that they are

accountable.

1.2 Background and motivation

The result of this project will be a mobile-based software system.

The scope of this project is to create a mobile Android application that implements the

Google Vision API to accurately identify the text in a receipt image. A custom

algorithm will be used to accurately extract the expense value and date of a whole

individual receipt. However, the scope of this project will not include extracting the

expense values of individual expense items within a whole individual receipt. The scope

will include recording the location of where the expense was incurred through the

device’s GPS coordinates when adding a record, but not through extracting the location

from the receipt image.

The project will implement SQLite as the database management system of choice, and

extract the location where the expenses was incurred by detecting the GPS coordinates

of the device’s location when recording the expense with a single tap.

Chapter 1: Introduction

3

 After extracting expense data from receipts, the application will display the data

through a GUI to allow users to confirm the data that is to be recorded or reject it. This

application will also allow users to backup and restore their data through Google Drive,

according to the Google account currently signed in within the application. This

application will not implement various sub-functions present in the reviewed

applications because of concerns relating to the ratio of time and effort required versus

the frequency of use. Examples of functions not included are: allowing users to see how

much they have spent compared to the same period last year, tracking of credit limits,

and the tracking of gross income spent on debt, as well as monthly and yearly views of

expense and income data.

If time permits, the project may include functions to extract the expense values of

individual expense items within a whole individual receipt, to provide a more detailed

description of each expense.

My motivation is to help people align their spending behaviour with their financial

goals. From personal experience, it is not unusual to spend money in a way that does

not strictly follow a pre-planned budget. It is important for accounting staff, personal

assistants, and individuals and families to be able to know how to spend money in a

way that re-aligns them with their spending goals, in the event that they have exceeded

their budget. In these demographics with busy schedules and many tasks, a more

efficient method perform their task will surely be a valuable addition to their lives and

help allocate more time to solve other problems.

The problems mentioned in section 1.1 are not trivial. Decreasing the effort required

for recording expenses and income, having an accurate enough OCR functionality as

well as being able to view and manage dependent expenses at a glance may help users

be more financially disciplined and aware of their financial situation.

When the above mentioned type of users are aware of financial situation, they may be

able to make more informed decisions regarding their financial resources, and in

consequence increase their financial literacy. Based on the report on Standard & Poor’s

rating services Global Financial Literacy Survey, only 37% of adults in Malaysia are

financially literate (Klapper, Lusardi & van Oudheusden 2014). From this fact, it is

Chapter 1: Introduction

4

clear that there is room for improvement in financial literacy for Malaysians, and this

project seeks to aid in that goal.

1.3 Project Objectives

The aim of the project is to use OCR in identifying text, and then to use a custom

algorithm to extract the expense value (also known as the total value of a receipt) and

date from a whole individual receipt as part of the budgeting application, as well as to

develop a way to view each individual family member income through the device of

the head of family, and also to derive supposed rates of spending intended to achieve a

previously planned budget by developing a custom algorithm. All this proposed

functionality will be implemented on top of basic functions for budgeting applications,

such as the manual recording of income and expenses. Implementing these functions,

the application will able to solve the problems previously stated in 1.1.

Each family member’s income can be represented by an account. At any point in time,

the head of the family can choose to view and manage the expense data of each of each

of these separate family members.

Supposed rates of spending can be determined by allowing a user to determine a budget

for spending for a specific period and category. At any date, a user may records

expenses. The difference between the planned spending of an amount within a period

and the actual amount of money spent, and then divided by days within that period

without any spending will be the supposed spending rate, which gives users an idea of

how much to spend to maintain their budget.

The contribution of this project is to develop a software system as to lower the effort

and discipline required to keep track of a person or organisation’s financial status to

gain knowledge that helps promote financial literacy.

1.4 Proposed approach

Attached below is the activity diagram or system flowchart which illustrates major

decisions and actions related to the each of the major functions in a high-level manner.

Chapter 1: Introduction

5

Figure 1.1 Activity Diagram of the application

Chapter 1: Introduction

6

The Rapid Application Development methodology which has four phases, namely:

requirements planning, user design, construction and cutover phases, will be used in

this project.

The major functions shown in the activity diagram above and their corresponding user

requirements are listed in the following table. Unless stated, a number represents a

functional requirement:

1.5 Highlight of what have been achieved

All user requirements have been achieved. User requirement 1 has been achieved such

that the total amount and date of a whole individual receipt can be extracted through

the use of a custom algorithm, after text from a receipt has been detected and extracted

by using a Google’s Mobile Vision API. After automatic extraction of the total amount

and date, the extracted data is displayed using the GUI that was used for manual entry,

which allows users so confirm the expense by pressing the “Add” button or reject the

expense by pressing the back button, after expense details have been automatically

detected and extracted by the custom algorithm, which satisfies user requirement 2. Of

course, users can also manually enter expense data through the implemented GUI and

activities, which utilize the SQLite DBMS for storage. In both manual and OCR cases,

users can use the in-built function that obtains the device’s location when the user is

recording the expense for location tagging. Thus, user requirements 6 and 7 are

achieved, in addition to 1 and 2.

Users can set a spending limit for a category and for a set period, or a budget. The

application then derives the supposed rate of spending for that budget so that users will

Major functions Corresponding user requirements

Record expenses 1, 5, 6

Non-functional: 1, 2

Drive and login 2, 3

Budget 4

Table 1.1 Major functions and corresponding user requirements

Chapter 1: Introduction

7

know how much to spend per day for days that do not yet have any expenses, given the

amount they have already spent within that period. Finally, users can login and backup

their expense and budget data, implemented using the Drive API, thereby representing

their own expense data using an account, satisfying requirement 3. Additionally, users

can switch between different accounts in the same application on the device, which

means that any user which has dependents can request them to back up their data on

their separate device. The head of family can now log into their dependent’s account

on his own phone, restore the backed up data which allows him to add or remove

expense or budget records and upload any modifications, thereby allowing him to view

or manage his dependent’s expense data. This functionality satisfies requirement 4.

Thus, all user requirements from 1 to 7 have been satisfied, and aligns with the project’s

motivation. The project also succeeds in helping the demographics mentioned in the

problem statement, as well as in its objectives.

Also worth mentioning is the work put into making the project conform to material

design standards, such that the application may be more user-friendly. Below are a few

screenshots of the expense and income daily view as well as the budget list.

Measurements of interest are listed below.

Figure 1.2 Dimensions of daily expense or income view

Figure 1.2 Dimensions of daily expense or income view

Chapter 1: Introduction

8

Figure 1.4 Dimensions of budget list view

Figure 1.3: Dimensions of daily expense or income view 2

Chapter 1: Introduction

9

1.6 Report organization

This report will provide an overview of the system design methodology of the proposed

system, deliverables in each stage, tools used for its development, as well as any design

diagrams that enhance understanding of how to use the application for different use-

cases. In chapter 2, various similar applications will be reviewed in regards to their

functionality, as well as strengths and weaknesses. In chapter 3, the various aspects of

system design will be fleshed out, including the various UML diagrams.

Chapter 2: Literature Review

10

Chapter 2: Literature Review

The author has considered reviewing different text recognition or OCR APIs for this

project. However, from observation Google’s Mobile Vision API detects text

accurately enough, at least for expense total amounts and dates for whole individual

receipt images. This means that for the expense total amounts and dates in most

receipts, there was not a difference large enough between the text in the physical receipt

and the text detected from images of those physical receipts by the API such that the

author was hampered in developing a custom algorithm to extract expense data from

the detected text.

In a practical sense, this meant that if the receipt contained the word “total” or the

number “23.50”, much more than not, the API would detect the text accurately.

However, there was no free API available online as of this report to extract expense

data. This solidified the author’s view that the previous works compared should be

about the expense extraction functionality instead of OCR APIs.

The author has developed a custom algorithm to extract expense data from detected

text. However, due to the nature of examined mobile applications, there is no way of

examining the source code and methods that are part of other products since they are

not open source.

2.1 Application review

2.1.1 Easy Expense

While using Easy Expense (Easy Expense Tracker, 2021), there are 2 ways to record

expenses: “Manual Expense Entry” and “Smart Receipt Capture”, wherein the latter

uses OCR functionality as part of its effort for expense data extraction. From first

capturing the image to saving the expense total amount and date of a whole individual

receipt, the time amounts to about 5 seconds per receipt. However, the Smart Receipt

Capture functionality often times fails to properly identify the bounding area in an

image for which a receipt occupies, needing to user to manually adjust boundaries.

In regards to account related functionality to view and manage different family member

expense data, Easy Expense allows users to login using an Easy Expense account, and

Chapter 2: Literature Review

11

export and import .csv data for free. However, if the user want to use the in-build

backup feature, it is unfortunately a paid one.

The application provides some visualization of expense data, breaking down expenses

by groups, and allowing monthly, quarterly and yearly views of a summary. However,

it does not provide any functionality to calculate the supposed rate of spending.

Functionality

(free)

Automated

data extraction

View and manage

family members

Supposed rate of

spending

Featured in

application

✓ ✕ ✕

2.1.2 Smart Receipts

Smart Receipts (Smart Receipts LLC, 2021) records expenses by first creating

“Expense reports” with a start and end date, within which a user can record expenses

manually either through text or images, which the user can then generate a report

containing a table for all expenses during this period, as well as any attached receipts if

present. The user can also use the “Automatic Scans (OCR)” functionality to record

expenses automatically needing only to capture receipt images. The methods used to

implement this functionality include “Google Vision and Machine Learning” as well as

integration with the Taggun API, which is a paid proprietary API for expense data

extraction.

For account-related functions for viewing and managing dependent related expense

data, the application includes functionality to backup and restore expense data for free

to Google Drive, similar to what this project’s author has done.

However, it needs to be said that there is no functionality to calculate the supposed rate

of spending for a user, nor set a budget for a predefined period. For helping the user

make better decisions about their spending behaviour, there is only functionality to

graphically plot total expenses per day on a graph for a set period, as well as visualizing

the proportion of each expense category using a pie chart.

Table 2.1: Available features for free in Easy Expense

Chapter 2: Literature Review

12

Functionality

(free)

Automated

data extraction

View and manage

family members

Supposed rate of

spending

Featured in

application

✕ ✓ ✕

2.1.3 Spending Tracker

In using Spending Tracker (MH Riley Ltd, 2021), there is only one method to record

expenses, and that is manually. There are no features that help automate the extraction

of expense data.

An upside is that for account-related functions, this Spending Tracker actually does

quite well. Not only is it possible to create multiple accounts under one device to

represent different people or different accounts under the same person, it is possible to

back up and restore expense data to a Dropbox account, for free. If a need arises to

obtain a dependent’s expense data for viewing and managing, it can be done quickly.

A downside to this application is that there is essentially no functionality to help the

user make more informed spending decisions. There is even no functionality to

manually create budgets, much less calculate the supposed rate of spending for any

period. The only upside in this area for this application is that it allows the viewing of

transactions according to the different categories.

Functionality

(free)

Automated

data extraction

View and manage

family members

Supposed rate of

spending

Featured in

application

✕ ✓ ✕

2.1.4 TimelyBills

There is only one way to add an expense record to this TimelyBills (TimelyBills, 2021),

and that is manually. There is automated expense data extraction support through any

other means, whether custom algorithms or proprietary APIs.

Table 2.3: Available features for free in Spending Tracker

Table 2.2: Available features for free in Smart Receipts

Chapter 2: Literature Review

13

For account-related functions, it does quite well. This is because it allows users to

backup and restore their expense data to Google Drive, similar to what is provided by

the author’s application. Not only that, TimelyBills also provides special functionalities

for budgeting and money management for family members. Unfortunately, the big

downside is that for the above mentioned account-related functions, both functions are

paid features, and do not even have a trial option for new users to try out before paying.

TimelyBills provides many features to help the user in making better financial

decisions. In addition to yearly views of expenses, income and balances, it allows the

setting of expense reports to be viewable by family groups, and even tries to predict

trends according to spending behaviour. It is unsure how many of those features are

paid or are provided for free. In addition, another downside of TimelyBills is that it

does not help calculate the supposed rate of spending.

2.1.5 Wallet

Similar to many of the previous applications the Wallet (BudgetBakers.com, 2021)

application only has one way to record expenses, and that is manually. There is no

support for automated expense data extraction from receipt images.

For functionality related to viewing and managing dependent expense data, the

application allows the user to create an account to login. What is there to help backup

and restore expense data? To backup expense data, users have to export either a PDF,

XLS or CSV file using the settings contained within the application. Not only that, the

user still has to confirm the backup process by opening an email which contains a

verification code, which is another step to complicate the back up process. Finally, after

confirming the back up request, the user can go into the application and press import,

so that the expense data can be restored. However, the most frustrating part of this

Functionality

(free)

Automated

data extraction

View and manage

family members

Supposed rate of

spending

Featured in

application

✕ ✕ ✕

Table 2.4: Available features for free in TimelyBills

Chapter 2: Literature Review

14

application is that in addition to the complicated steps required for expense data back

up and restore, the functions required for them are actually paid, and are not free to use.

For functions that help users improve spending behaviour, this application has the most

comprehensive suite of services available. Not only does it allow users to create budgets

for a set period, amount and category while analysing spent amounts and extrapolating

spending totals into the future while plotting all that info on a graph, it also

automatically updates the daily recommended amount to be spent given current expense

records. The daily recommended value in this application is also known as the supposed

spending rate in the author’s application.

2.1.6 Money Lover

For Money Lover (Finsify, 2021), there is only one method of adding expenses records,

and that is manually. There is no support for automated expense data extraction from

images.

For functionality to view and manage dependent expense data, it is possible to export

either CSV or excel files, and to import them manually after the fact. However, this

process is unnecessarily cumbersome. Not only that, the export functionality requires

that the user upgrade and pay for the privilege to do so.

On the bright side, one of the redeeming features of this application is that it not only

allows users to create budgets, events, track recurring transactions and bills to help users

spend more responsibly, it automatically calculated the recommended daily amount that

is to be spent within a period given a certain amount of income and expenses, which is

similar to the function to calculate the supposed rate of spending in the author’s

application.

Functionality

(free)

Automated

data extraction

View and manage

family members

Supposed rate of

spending

Featured in

application

✕ ✕ ✓

Table 2.5: Available features for free in Wallet

Chapter 2: Literature Review

15

2.2 Summary table of features

Below is a table that

summarizes the

available features

for free in each application reviewed.

Functionality

(free)

Automated

data extraction

View and manage

family members

Supposed rate of

spending

Featured in

application

✕ ✕ ✓

Functionality

(free)/

Featured in

application

Automated

data extraction

View and manage

family members

Supposed rate of

spending

Easy Expense ✓ ✕ ✕

Smart

Receipts

✕ ✓ ✕

Spending

Tracker

✕ ✓ ✕

TimelyBills ✕ ✕ ✕

Wallet ✕ ✕ ✓

Money Lover ✕ ✕ ✓

Table 2.6: Available features for free in Money Lover

Table 2.7: Available features for free in each application reviewed

Chapter 3: System Design

16

Chapter 3: System Design

3.1.1 Proposed Methodology

The author proposes that this project be developed using the rapid application

development (RAD) method. Since the author’s proposed system has five well-defined

objectives, where only one person develops the system and makes decisions, this

development methodology suits the proposed system.

The RAD method has four phases: requirements planning, user design, construction

and cutover phases.

Requirements planning phase:

Since there is only one person developing this application, all decisions are made

unilaterally. Project scope, constraints, and system requirements are decided by

developer or author. There are no consensuses to be reached.

Deliverable: List of functional and non-functional requirements

User design phase:

In this phase, the author will develop models that represent the flow of the whole

system, including major actions and decisions. Since the system is not intended to be

deployed in a commercial sense, the sole user in this case will be the author. An activity

diagram will be created using Visual Paradigm to illustrate the system flow and provide

a high level view of how each available major activity is affected by various decisions.

Deliverable: Activity diagram

Construction phase:

In this phase, the author will utilise Android Studio to develop a mobile application

with OCR functionality, in addition to functionalities mentioned in the project scope.

Unit testing of the mobile application will also be carried out.

Deliverable: Application iterations.

Cutover phase:

As there are no outside users to train, there will be no user training done other than

required for the author to be proficient in using the mobile application. Final testing

will be done to make sure application functions as intended.

Chapter 3: System Design

17

Deliverable: Complete application.

3.1.2 Technologies used

Through Android Studio 4.1, the application will have multiple interactive components,

such as buttons, and textboxes throughout the layout of the application. If expenses of

several family members are combined under a master account, the user will be able to

access the various pages in the application to inspect the expense details. The basic

functions of manually recording income and expenses and exporting data will be

developed with this IDE. Separate expenses can only be obtained by synchronization

through an the use of the Drive API (v3-rev110-1.23.0), by backing up dependent

expense data on his or her respective device, and then logging in to the relevant Google

account on the head of family’s device to initiate a restore process, which downloads

the previously backed up database on the latter’s device.

Budget and expense records will be stored inside an SQLite database, version 3.22.0.

The data needed for the calculation of the supposed rate of spending will be stored in

the “expense” table, while all budgets will be stored in the “budgets” table of the

“expenses” database.

Figure 3.1: Tools used

Chapter 3: System Design

18

The recording of the expense location can be done manually by the user by recording

it in the expense description, or it can be done automatically through the detection of

the receipt’s venue through the API. Furthermore, the Google Mobile Vision API will

also be implemented through Android Studio. For the Google Mobile Vision API

(firebase-ml-vision:19.0.3), Internet connectivity is first required for usage.

3.2 User Requirements

User requirements include:

1. Extraction of total amount and date of expense from a receipt image locally by

using a custom algorithm, after using Google’s Mobile Vision Text API to

detect text in individual pictures after it has been taken.

2. Represent each family member’s income by an account.

3. View and manage the expense data of each separate family member.

4. Derive supposed rates of spending intended to achieve a previously planned

budget.

5. Manual recording of income, fixed income and expenses by implementing

relevant user interfaces, activities, and a database for storing such expenses.

6. Location tagging by detecting the device location when a record is added.

Non-functional user requirements include:

1. Display expense data through a GUI to allow users to confirm or reject the data

that is to be recorded after expense details have been detected and extracted

automatically by the custom algorithm.

2. A processing time of 5 seconds per receipt which is the time elapsed from the

capturing of the picture by the user, to displaying expense data in the GUI for

users to confirm or reject.

If time permits, the application would also allow the extraction of individual expenses

from a receipt, and not only the total amount of all expenses.

3.3 Use-case diagram

The image recognition expense extraction system has 3 actors, namely family members,

personal assistants, and accountants.

Chapter 3: System Design

19

The system has four use cases:

1. Extract expenses through images

2. Manually record income and expenses

3. View and manage family member expense data

4. Derive supposed rates of spending

The two use cases of extract expenses through images and manually record income and

expenses can extend their functionality to geographically-tag expenses if location

services are permitted by the user. If any of the actors choose to record expenses through

image recognition, the extracted expense data will first be displayed and confirmed by

the user before being recorded.

Figure 3.2 Use-Case diagram of the application

Chapter 3: System Design

20

3.4 Activity diagram

Below is an activity diagram for the overall execution of the system. It details how the

flow of the system is affected by various inputs, such as the decision of the user to

record expense data using either of the two methods or log in to Google services to

view, manage family member expense data, or to create budgets and view supposed

rates of spending. It also details how the flow is affected if certain data such as location

and budget data are non-existent.

Figure 3.3: Activity Diagram of the application

Chapter 4: Display Daily Expense Data

21

Chapter 4: Display Daily Expense Data

4.1 Methodology, tools, libraries and classes of interest

For displaying the daily expense data on the main activity when the user first starts the

application, a PagerAdapter (SliderAdapter) is used to represent the expense of each

day, with one page representing one day’s expenses. Within one page or day, there

further exists 2 BaseExpandableListAdapters (OneLevelExpenseAdapter), each

representing an expandable list of either expenses or incomes, with the 0th level being

expense or income categories such as Bills, Transport, Food, Eating Out, and so on, and

the 1st level being records under that category for that day. Both the SliderAdapter and

OneLevelExpenseAdapter are integral in organizing the daily expense views.

4.2 Requirements

The display functionality is the most basic of functions in a budget application. A

budgeting application simply cannot exist without it. It is not included as part of the

functional or non-functional user requirements. However, the author has tried to

conform to material design guidelines so that information access will be easier and the

application will be user friendly overall.

4.3 Implementation and testing

In implementing this functionality, the author has performed a reasonable set of tests to

solve possible erroneous situations or cases that might arise that would try to ensure the

viewing function works as designed. A few examples of erroneous cases tested for are:

1. What if expense descriptions are unusually long? Is it possible to ensure the

containing views do not affect neighbouring ones?

2. What if there is only one of expense or income on a day? Will the expense

option view still be positioned properly such as to not negatively affect the

others?

3. If an expense or income is deleted or updated, will the changes show when the

user returns to this activity?

4. If there are a mix of incomes and expenses on a day, will the sum of both options

be correct when listing it alongside the same level as the date?

Below is the class diagram to illustrate the classes relevant to implementing this

functionality:

Chapter 4: Display Daily Expense Data

22

Figure 4.1: Class diagram, display daily expense data

Chapter 5: Manual Expense Entry

23

Chapter 5: Manual Expense Entry

5.1: Methodology, tools, libraries and classes of interest

For manually recording expenses, the author has used a varied amount of more

uncommon classes. The list is: DatePickerDialog, LocationManager, LocationListener,

ScheduledExecutorService, and LocationService, and BroadcastReceiver. As is self-

explanatory, the DatePickerDialog is for users to set a date for the current expense.

LocationManager and LocationListener are used to obtain user permissions regarding

location services and to obtain the user’s device location respectively. LocationService

is actually a service that implements the LocationListener interface, and together with

BroadcastReceiver it can broadcast and relay the obtained location back to

ManualEntryActivity. Not only that, when BroadcastReceiver is used with

ScheduledExecutorService, the author managed to implement a timer function that

counts down and displays on screen the seconds elapsed starting form when the user

requests for location data to be obtained and ending when the result is returned. To note,

the timer function actually runs in a background thread such that it does not interfere

with more time-sensitive operations like UI updates that should have as much leeway

as possible in the main thread to run. The integral classes are ManualEntryActivity and

LocationService.

5.2 Requirements

With this functionality implemented together with the location gathering service, the

functional requirements of 5 and 6 respectively are satisfied.

5.3 Implementation and testing

In implementing this functionality, the author has performed a reasonable set of tests to

solve possible erroneous situations. A few examples of erroneous cases tested for are:

1. Whether the day, month, and year selected by the user is inserted correctly into

the database.

2. Whether the amounts recorded by the user have the correct sign, negative for

expenses and positive for incomes.

Chapter 5: Manual Expense Entry

24

3. Whether there is a prompt for permissions when the user wants to record the

location.

Below is the class diagram to illustrate the classes relevant in implementing this

functionality:

Figure 5.1: Class diagram, manual expense entry

Chapter 6: Automated Expense Entry

25

Chapter 6: Automated Expense Entry

6.1: Methodology, tools, libraries and classes of interest

Classes of interest include ExifInterface and Matrix for creation of file objects to store

captured images. For classes related to OCR and expense data extraction, the

FirebaseVisionDocumentTextRecognizer allows the use of the MobileVision API to

run machine learning models to detect and extract text from an image such that a

FirebaseVisionDocumentText is returned on successful extraction of text. A

FirebaseVisionDocumentText contains successfully smaller divisions of objects, such

as Blocks, Paragraphs, Words and Symbols, where objects like Words have fields such

as BoundingBox, which in turn have properties such as Bottom, or Top that contains

the Y-coordinates or latitude of the bottom and top corners of the BoundingBox that

contains the Word. The above classes of interest all exist in the

ImageRecognitionEntryActivity class, and together with LocationService, are the two

unique classes and services which contain the bulk of the integral code that supports

this functionality.

6.2 Requirements

With this functionality implemented, functional requirement 1 is satisfied, as users no

need to manually extract the expense date and amount of a whole individual receipt.

Non-functional requirement 1 is satisfied, since the extracted data is filled into a form,

where the user can reject it by pressing the back button. Not only that, non-functional

requirement 2 is also satisfied since the processing time is about 5 seconds per receipt,

achievable in a constant and sustainable manner. For clarification, it is worth reiterating

that the processing time is defined as the number of seconds elapsed between the

capturing of an image by the user, and the displaying of the extracted expense data on

the ManualExpenseEntry GUI for confirmation or rejection. This of course includes

processing time for the Mobile Vision API to detect the text and the custom algorithm

to extract the expense data.

6.3 Implementation and testing

Chapter 6: Automated Expense Entry

26

In implementing this functionality, the author has performed a reasonable set of tests to

solve possible erroneous situations. A few examples of erroneous cases tested for are:

1. Whether dates that do not symbols as delimiters between the day, month and

year can be detected for example: 01/02/2020 and 3 Jan 20

2. Whether terms representing months such as “Jan”, “february”, “May”, “mar”

can be accurately identified such that other words that contain subsets of

characters that entirely match those terms can be successfully filtered out.

3. Whether an impossibly wide array of sum key words such as “total”, “amount”,

“due”, “subtotal”, “sub total”, “totl”, “nett” and others can be successfully

identified, so that the corresponding expense sum can be extracted.

The process of extracting expense data is separated into two main groups of effort. Both

start by iterating over all Blocks, Paragraphs and Words.

The first group is for extracting the expense sum by first detecting possible sum

keywords like “total”, “amount” and “due” by iterating over an array and checking for

any matches for any Word, which is then stored. After that, the application iterates over

all the previously stored Words. For each stored Word (sum keyword), it is checked

against all the Words in the receipt. The bottom threshold of the sum keyword is

calculated by increasing the Bottom coordinates of its Bounding Box by 25% of the

Bounding Box’s height. The top threshold of the sum keyword is calculated by

increasing the Top coordinates of its Bounding Box by 40% of the Bounding Box’s

height. The result is that the sum keyword’s top and bottom corners have moved down

of the screen, so to speak, essentially moving the enclosing bounding box in a

downward direction.

The application will then obtain the current word’s Bounding Box bottom coordinates,

which is compared with the sum keyword’s top and bottom threshold. If the current

Word has a bottom coordinates that are more than the top threshold and less than the

bottom threshold, it proceeds to the next check. The checks after this ensures that the

Word is a 2 decimal place number that is more than 0. The last Word in the whole rceipt

that passes this check will be the expense’s total sum amount.

Chapter 6: Automated Expense Entry

27

Secondly, the application moves on to extract the expense date. Similar to the sum

amount, the process takes place when iterating over all Words. There are two broad

categories of dates normally found in receipts. One is with symbols that delimit the

boundary between the day, month and year like “20/01/2020” or “05-Jan-2020”, and

the other consists of no delimiting symbols, or the “symbol” and “no symbol” cases

respectively. However, the “no-symbol” case is further divided into 2 sub-categories,

where one is essentially delimited by a blank space character like “01 Jan 19”, and the

other has no delimiting symbols at all like “01Jan20”, or the “no-space” case. The

“symbol” case is first checked for, where the current Word is checked against a

reasonably exhaustive list of symbols like “/”, “-“ and “,” to see if either one is a

substring of the current Word. Further checks ensure that there are exactly 2 of those

symbols located in different positions, before checking if the year is located in the first

or last third of the Word in question.

“No symbol” cases are separated into 2 cases, the “space” or “no-space” cases. If a

“symbol” case date is not found first, the application checks for “no symbol” cases. The

application then regex matches the current Word against terms like “jan”, “january”,

“feb”, “february” and so on. If a match is found, it is then checked to see if the matching

substring is part of a larger Word where the first and final characters are numbers. If

so, the whole Word is a “no-space” date, and it has finished retrieving the date for that

case.

If the whole Word is only the matching substring, and if in the previous iteration the

Word is a number, then it is a “space” date. By the current iteration, the year has not

been recorded yet. Only after the subsequent iteration can the application obtain the

year.

With this, the expense total amount and date for a receipt has been successfully

extracted from the text. When the author refers to the “custom algorithm” for expense

data extraction, it is in reference to the above mentioned processes. After some

formatting, the results are displayed in the same GUI used for manual addition of

expense records. Users can press back to re-take a picture for better results, or proceed

with adding the expense record.

Located on the next page is a class diagram for all classes relevant to this function:

Chapter 6: Automated Expense Entry

28

Figure 6.1: Class diagram, automated expense entry

Chapter 7: Represent, view and manage dependent expenses

29

Chapter 7: Represent, view and manage dependent expenses

7.1: Methodology, tools, libraries and classes of interest

Of special consideration is the Drive API, and the GoogleSignInClient,

GoogleAccountCredential, GoogleSignInAccount, GoogleSignInOptions, and

DriveServiceHelper classes. The GoogleSignInClient allows us to launch a separate

intent for user-login, if the GoogleSignInButton is pressed. On return, the application

tries to get a GoogleSignInAccount. If it succeeds, a GoogleAccountCredential is

created, allowing us to use the Drive API to create a DriveServiceHelper, which

contains all the tasks necessary to back up and restore expense date to the user’s Google

Drive. The above mentioned classes of interest are located in the MainActivity class.

The DriveServiceHelper class is the unique integral class that supports this

functionality, with the bulk of the code for the restore and back-up tasks defined there.

 7.2: Requirements

Through the Drive API, the application can represent each family member’s expenses

by backing the expense data to their respective Google Drive storage. Furthermore, the

head of family can log in to a dependent’s Google account to view and manage their

expense records and budgets. Thus, functional requirements 2 and 3 are achieved.

7.3: Implementation and testing:

In implementing this functionality, the author has performed a reasonable set of tests to

solve possible erroneous situations or cases that might arise when trying to ensure these

account-related functions work as intended A few examples of erroneous cases tested

for are:

1. Whether earlier versions of back-ups are deleted before backing up the current

local expenses database.

2. Whether the application alerts the user to login before accessing any account-

related functionalities.

3. Whether the back-up expenses file can be downloaded successfully.

4. Whether record values are assigned into correct data types when first extracted

from the back-up database.

 It is worth noting that when backing-up, the uploaded database name is appended with

the current time in milliseconds since January 1, 1970, to ensure a unique file name,

Chapter 7: Represent, view and manage dependent expenses

30

since it will be compared to another previous back-up. For the restore function, the

application will iterate over all of the back-ups records, and query the local database

for any matching records. If there are no results returned, the new unique record will be

inserted into the local database. Otherwise, nothing will be done with the current back-

up record. Contained below is a class diagram for relevant classes:

Figure 6.1: Class diagram, automated expense entry

Figure 7.1: Class diagram, represent, view and manage dependent expenses

Chapter 8: Supposed spending rate

31

Chapter 8: Supposed spending rate

8.1: Methodology, tools, libraries and classes of interest

There are 3 main integral classes that support this functionality, namely

BudgetListActivity, MnaualBudgetActivity, and BudgetAdapter. As its namesake, the

BudgetListActivity displays created budgets using a ListView, while

ManualBudgetActivity allows the user to create a budget. The more unique class here

is the BudgetAdapter, which calculates supposed rates of spending using each budget

record. As an adapter, it will then bind views with the budget records and supposed

rates of spending in BudgetListActivity. Please note the need for more unique SQL

queries used to retrieve data needed for the supposed rate of spending. The SQL queries

will be explained in further detail below.

8.2: Requirements:

With the BudgetAdapter calculating the suppsed rate of spending and

BudgetListActivtiy displaying each budget, functional requirement 4 is achieved, as the

supposed rate of spending is derived and displayed to users to help in achieving a

previously planned budget.

8.3: Implementation and testing:

In implementing this functionality, the author has performed a reasonable set of tests to

solve possible erroneous situations or cases that might arise when trying to ensure

supposed rates of spending are calculated correctly, as well as ensuring budget views

are not distorted due to large values. As stated earlier in the project objective, the

supposed rate of spending is the difference between the total amount spent in a period

under a category and the allocated budget, divided by the number of days with no

spending. In BudgetAdapter, the number of days in a period listed by a budget is

obtained by calculating the difference in milliseconds between those two dates,

converting that value later to days. We then obtain the amount spent within those two

dates by using the following query on the expense table, where the selectionArg array

contains data from the user’s own budget:

Chapter 8: Supposed spending rate

32

The above SQL query first obtains all records for a spending category starting from the

budget’s start date to the latest possible date. It then repeats the same query but in a

different range, starting from the earliest possible date to the provided budget end date.

It then obtains the intersection between those two results, which is all spending records

within a period under of a particular spending category. Finally, it extracts the sum from

that final table.

After getting the amount spent within a period, the application then queries the expense

table in similar fashion as used to obtain the amount spent within a period. The

difference is, this time the intersection of the two tables is queried for unique dates. The

number of records in the result are the number of unique days of spending within a

period. Below is the aforementioned SQL query

We then derive the balance left for a particular period by subtracting the amount spent

within a period, from the user-defined spending limit for that same period. This

spending limit value is obtained from budget records. After obtaining the balance left,

the application simply divides it by the number of days within that period which have

no spending. Thus, the supposed rate of spending is derived, and displayed together

with each Budget-representing-row in BudgetListActivity.

Figure 8.2: SQL Query, distinct dates with expenses within a period under a category

Figure 8.1: SQL Query, spent amount within a period under a category

Chapter 8: Supposed spending rate

33

Located in the following page is the class diagram of classes crucial in implementing

this functionality:

Figure 8.3: Class diagram, supposed spending rate

Chapter 9: Conclusion

34

Chapter 9: Conclusion

9.1: Achievements and objectives

As mentioned in previous chapters, the broad categories of functions that include those

used for the recording of expenses, the derivation of the supposed spending rate, and

the representing of user expense data by accounts have been successfully implemented.

With this, the application manages to cater for all use-cases defined in Chapter 3. Not

only that, the application also satisfies all functional and non-functional requirements

defined in Chapter 3. As a further note, the achievement of all requirements aligns with

the project’s motivation. The project also succeeds in helping the demographics

mentioned in the problem statement, and ultimately, in its objectives.

9.2 Problems encountered

The author has encountered innumerable problems in the process of completing this

project, the amount of which might be able to fill another report of this length. The

major hurdles early on where the lack of knowledge in regards to Android development,

as the author had not taken any course before the before the commencement of project

1, and had to make due with online courses and resources that served as a crash course

of sorts. The online course provided sufficient introduction to various important topics

like views, data adapters, and database functionality in regards to Android

development, but only insofar as to complete the project in the online course, and in

nowhere near sufficient amounts to aid in even completing any major functionality in

this project 2.

One of the most time consuming problems in completing this project is identifying the

correct views and view groups to use in displaying the daily expense data such that the

data can be displayed in a user-friendly manner. There seemed to be innumerable

choices for use in displaying daily expense data, both known and unknown to the author

at the time. The hopelessness and lack of hand-holding in that regard induced quite a

bit of desperation, nervousness, and uncertainty within the author, wondering whether

this project can even have a good basic foundation. For example, the author initially

had the idea to use a 3 level ExpandableListView, with level 0, 1 and 2 representing

Chapter 9: Conclusion

35

dates, expense/income categories and expense/income records respectively. First of all,

the author had to learn how the basic 2 level ExpanableListViews work, which was far

beyond covered material in the online course. This took about 1 or 2 weeks.

Second, the author had to learn how to properly populate and display 3 level

ExpandableListViews e, which took weeks more to adapt to the application’s own data

and by learning solely through online resources. Finally, with the technical aspect done,

the author sought to conform the views to material design guidelines, to increase user-

friendliness.

Unfortunately, the author did not find a way to edit the relevant view dimensions, and

had to start over in re-thinking the best way to present the data. This was quite a blow

to motivation, as a lot of work had been put in that direction. Fortunately, with more

observation of other applications and extensive research and testing, suitable view

groups and views were identified, namely a PageAdapter to represent each day’s

expense data in a separate page, populated with two ExpandableListViews, but this time

they had only 2 levels instead of 3. With much effort and persistence the author manage

to learn how to achieve technical feasibility in conforming the views to material design

guidelines. Issues related to the appropriate identification and feasible utilization of

views occupied the author’s attention for about 3 months as the sole issue being focused

on for this project. There were other major issues afterwards too, but none as time-

consuming as this one.

The author’s personal insight into the total research experience is that the whole process

requires a lot of self-discipline, and certainly gives a new meaning to independent

learning. Furthermore, it has expanded the horizon’s of the author, by observing and

detailing the approaches of other similar applications, their pros and cons, and

engendering a certain respect for the development work put into each of those alternate

applications. However, the author is also no less surprised and flummoxed by the

features that are usable only after payment in these alternate applications, as they have

not caused the user money to include many of those features in this project.

Chapter 9: Conclusion

36

9.3 Novelties and contributions

The project has achieved in combining the three major functions

1. Accurate enough automated expense data extraction through OCR and a custom

algorithm,

2. Viewing and managing separate family member expense data through accounts

and backups, and

3. Deriving supposed rates of spending in one application,

All 3 above functionalities are free of charge, with none of the above functionalities

requiring payment. From the alternative applications examined in Chapter 2, none of

the applications have all 3 at once, paid or unpaid. Even those that might have 2 at once,

many of them require payment. There might be other applications out there that have

all 3 functionalities for free, but it is not feasible to examine all possible existing

applications in Android ecosystem, thus this is only a comparison to the most popular

applications and the topmost results returned in the Google Play Store. In that sense,

this project contributes a novel combination of all 3 of the above functionalities, free of

charge.

9.4 Improvements that can be made

The one major improvement that can instantly increase the utility of this project is a

way to extract expense data of individual expense items that are part of a whole

individual receipt. For example, extracting the expense amount of items like “bread”

or “jam” within a grocery receipt. This will further decrease the burden of those who

buy large quantities of items in a single trip, like families, helping them identify large

and unnecessary expenditures in a more granular fashion and improve their spending

behaviour while being able to spend time in other facets of their lives.

37

References:

BudgetBakers.com, 2021. Wallet. Mobile app. Version 8.2.271. Available from:

https://play.google.com/store/apps/details?id=com.droid4you.application.wallet

Easy Expense Tracker, 2021. Receipt Scanner: smart receipts & expense tracker.

Mobile app. Version 3.27.4. Available from:

https://play.google.com/store/apps/details?id=com.easyexpense

Finsify, 2019. Money Lover: Money Manager, Budget Expense Tracker. Mobile app.

Version 5.18.0.2021031707. Available from:

https://play.google.com/store/apps/details?id=com.bookmark.money

Klapper, L., Lusardi, A. and van Oudheusden, P. (2014) “Insights from the Standard &

Poor’s Ratings Services Global Financial Literacy” Available from:

< https://gflec.org/wp-content/uploads/2015/11/3313-Finlit_Report_FINAL-

5.11.16.pdf?x37292 > [27 July 2019].

Mh Riley Ltd, 2021. Spending Tracker. Mobile app. Version 2.4.1. Available from:

https://play.google.com/store/apps/details?id=com.mhriley.spendingtracker

Smart Receipts LLC, 2021. Smart Receipts. Mobile app. Version 4.21.0.2321.

Available from: https://play.google.com/store/apps/details?id=wb.receipts

TimelyBills, 2021. Money Manager, Budget, Expense Tracker, Bills, Loan. Mobile app.

Version 1.21.115. Available from:

https://play.google.com/store/apps/details?id=in.usefulapp.timelybills

38

Poster

39

Turnitin Summary of Plagiarism Check

40

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

Full Name(s) of
Candidate(s)

KOK WEI JIN

ID Number(s) 16ACB00064

Programme / Course BACHELOR OF COMPUTER SCIENCE (HONOURS)

Title of Final Year Project IMAGE RECOGNITION EXPENSE EXTRACTION

Similarity Supervisor’s Comments
(Compulsory if parameters of originality
exceeds the limits approved by UTAR)

Overall similarity index: ___4__ %

Similarity by source
Internet Sources: ___4_____ %
Publications: __1______ %
Student Papers: _____2____ %

Number of individual sources listed of more
than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

(i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report to

Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final Year Project

Report submitted by my student(s) as named above.

 ______________________________ ______________________________
Signature of Supervisor Signature of Co-Supervisor

Name: __________________________ Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

LENOVO
Typewriter
Yap Seok Gee

LENOVO
Typewriter
16/04/2021

41

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 16ACB00064

Student Name KOK WEI JIN

Supervisor Name YAP SEOK GEE

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Front Cover

Signed Report Status Declaration Form
√ Title Page

Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
√ List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review
√ Appendices (if applicable)
√ Poster

Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed
all the items listed in the table are included
in my report.

(Signature of Student)
Date: 16/04/2021

Supervisor verification. Report with

incorrect format can get 5 mark (1 grade)

reduction.

(Signature of Supervisor)
Date: 16/04/2021

 KWJ

	Chapter 1: Introduction
	1.1 Problem Statement

	2.1.4 TimelyBills
	2.1.5 Wallet
	2.2 Summary table of features

