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ABSTRACT

Deep learning is an Artificial Intelligence (Al) method that mimics the ways human
brain processing data and recognizes the data or objects. It is a subset of machine
learning which utilizes the hierarchical level of artificial neural networks (ANN) to
perform the process of machine learning (Hargrave, 2019). Deep learning has very great
potential of wide adoption in various industries. In fact, deep learning has already been
used by corporations and start-ups such as Google, Facebook, Amazon, Tesla etc for
several different tasks such as filtering fake news, analysing shopping trends and
developing self-driving cars. In the manufacturing sectors, deep learning techniques
were usually used to aid the engineers or inspectors in making decisions in the
production line or the quality inspection phase. However, there are still various reasons
why deep learning was not largely implemented in the manufacturing sector especially
in the detection of Head in Pillow (HIP) defects that occurred in the Ball Grid Array
(BGA) of a printed circuit board (PCB). This project aims to design a robust deep
learning model that could be implemented to speed up and ease the process of detecting
the HIP defects. The 3 Dimensional (3D) Convolutional Neural Network (CNN) will
be the foundation of the deep learning model which will deal with the grayscale BGA
slice images that were stacked together. The outcome of the project will be a robust
deep learning model that could classify the HIP defects on BGA joints in greyscale
which have not more than 9 slices. Over 200 of 3D CNN models with different
hyperparameters and architecture are created in this project to achieve the objectives of

the project.
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CHAPTER 1 INTRODUCTION

Chapter 1 Introduction

1.1 Problem Statement and Motivation

With the developing use of leadless soldering and reduction of size and pitch of solder
joints in gadgets producing, the Head-in-Pillow (HIP) defects which also known as the
ball-and-socket is a solder joint defect had become a common issue during the Ball Grid
Array (BGA) assembly. The HIP defects could be caused by several issues such as the
oxidation of BGA ball or the oxygen barrier in solder pastes individually/ jointly,
warpage, misalignment of the components, et cetera. (Chen et al., 2014). A printed
circuit board (PCB) with HIP defects will result in joints with sufficient association of
electrical integrity yet missing the adequate machinal strength. This conceivably
expensive imperfection isn’t generally distinguished in practical testing and would just
appear as a disappointment in the field after the components are exposed to some
physical or thermal stress as they could barely withstand the stress strength due to
insufficient mechanical strength (Seelig, 2008).

Despite various ways or precaution steps such as verified and measure the print
definition and the print height consistency before the solder paste are applied onto the
solder bump with the print definition, using a square or rounding opening aperture with
excessive print volume reducing time above the glass transition temperature (Tg) and
ensuring minimum delta temperature difference between BGA components and the rest
of the components on the PCB which suggested by Alpha Assembly Solutions (n.d.,
p.2) to reduce the occurrence of the HIP defects, the inspection for HIP defects in BGA
is still unavoidable even though the defects ratio is 0 for almost all of the time as it

would be a loss to the company if there are defects board produced.

Moreover, the time required for HIP defects inspection could range from seconds to
half an hour depending on the PCB board size, the components size, and the number of
joints. Speed is a factor that could affect the overall productivity and the efficiency in
manufacturing. Thus, the HIP defects inspection speed should be fast enough so that
the following inspections are not delayed. Furthermore, the accuracy on detecting the
HIP defects with the Automated X-ray Inspection (AXI1) machine currently is not ideal/
perfect as many defects and good joints were classified wrongly by the machine.
Therefore, the inspectors would have to manually inspect the false calls from the
machine again with the help of a real-time X-ray viewing machine. This process is

BCS (Honours) Computer Science
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CHAPTER 1 INTRODUCTION

necessarily as by viewing the 2D images captured from the AXI machine is insufficient
for decision making. Thus, the BGA HIP defects inspection process would be

decelerated which would cause a delay to the following inspections.

1.2 Project Scope

The aim of the project is to build a 3D neural network that could receive BGA images
and separate or classify to two classes which are HIP defects or non-defects and an
image stacking technique. The model should be able to receive up BGA joints with not
more than 9 slices that are in grayscale.

1.3 Project Objectives

The objectives of this project are:

i.  Todesigna3D CNN for BGA HIP defect detection
ii.  To design an image stacking technique using salient layers based on domain
heuristics
ili.  To retrain BGA dataset on the proposed 3D CNN model to improve upon
existing Manufacturer 2D CNN architecture
Iv.  Tooptimize a 3D CNN model that could inference the BGA HIP defects in less

than 200ms per inference.

1.4 Impact, significance, and contribution

With the help of the 3D CNN model, the time required for the HIP defects inspection
could be reduced significantly. In fact, the inference speed is expected to be at least
200ms or below per inference. Since the 3D CNN is expected to have an accuracy of
99%, the false calls from the AXI machines are expected to reduce drastically too. With
a lesser false calls rate, the manual inspection process is expected to be sped up and the
workload of the inspector could be reduced as the use of the real-time X-ray viewing
machine could be reduced. Assuming there are 1, 000 BGA joints per inspections, one
single inspection could be done in just under 5 mins with 10 false calls leftover at max
which required manual inspection with the help of the real-time X-ray viewing machine.
The result obtained is significant, as this feat had not been able to be achieved by any

previous reviewed literature. Besides that, the image stacking technique could help
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CHAPTER 1 INTRODUCTION

understand which slices are more important in detecting the HIP defects for this
particular dataset.

1.5 Background information

1.5.1 Introduction to image processing

Image processing usually consists of several stages, image importation, image analysis,
image manipulation and image output. There are two methods of image processing
which is digital image processing and analogue image processing. In analogue image
processing, the processing is done on the two-dimensional (2D) analogue signals.
Generally, the images such as television images which are manipulated by electricity
are used in this image processing method. On the contrary, digital image processing
usually deals with digital images which are matrices of small pixels and elements. The
images are manipulated through software and algorithms to solve different tasks such
as image detection, image reconstruction, image restoration, compression,
enhancement, and etc. Since digital image processing has a wider range of applications,
digital image processing has dominated over analogue image processing as the time
goes by. There are a few major techniques of digital image processing such as image
editing which altered the image through graphic software tools, independent component
analysis which separates the multivariate signal into additive subcomponents, pixilation
which refers to turning printed images into digitized images such as GIF, and etc.
(Adoriasoft, 2017)

1.5.2 Convolutional Neural Network (CNN)
According to ‘Understanding of Convolutional Neural Network (CNN) — Deep
Learning written by Prabhu (2018):

Convolutional neural network (CNN) is one the deep neural networks which are
widely used for image recognition, image classification, objects detections, face
recognition, etc. The concept of the convolutional networks was inspired by the
connectivity pattern between neurons that assemble the organization of animal
visual cortex. The cortical neurons are triggered by different stimuli and only a
restricted region of the visual field known as the receptive field will respond to it.
When there is a presence of a collection of reception fields overlapping each other

that cover the entire visual area, a vision will be formed.
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CHAPTER 1 INTRODUCTION

When CNN model is trained/ tested, the input images will have to pass through a series
of convolution layers with filters (Kernels), Pooling, fully connected layers (FC) and a
SoftMax function that normalized the output of the network to a probability distribution

with probabilistic values between 0 and 1 as shown in Figure 1.5.2.1.

-

g

— CAR
— TRUCK
— VAN

D D — BICYCLE

FULLY
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN ¥ cp SOFTMAX
FEATURE LEARNING CLASSIFICATION

Figure 1.5.2.1 Overview of a convolution neural network on classifying an image

The convolution layers refer to layers that extract the features of the input images which
is actually a mathematical operation that requires two inputs, input matrix and a
filter/kernel as shown in Figure 1.5.2.2. The relationship between the pixels of the
images are preserved as convolution learns the image features with the help of small
squares of input data. Operations such as edge detection, blurring, sharpening could be
done with convolution by applying different filters/ ‘Feature Map’ on the images.

« Animage matrix (volume) of dimension (h x w x d)

s A filter (fnx fux d)
¢ QOutputs a volume dimension (h - fn + 1) x (w-fu+ 1) x 1

Figure 1.5.2.2 Image matrix multiplies with kernel to obtain the output matrix

Padding will be done on the input matrix when the filter does not fit the input images
perfectly. There are two type of padding which is the zero-padding and also the valid
padding. Whenever zero-padding is applied, zeros will be padded to the image until the

filter could fit the image perfect. On the other hand, valid padding will cause any part
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CHAPTER 1 INTRODUCTION

of the images that the filter could not fit in to be dropped and only valid parts of the
image remain. In addition, Rectified Linear Unit (ReLU) will also be introduced at this
stage of the model to pump in some non-negative linear values to the matrix. ReLU is
chosen instead of other non-linear functions such as tanh or sigmoid and is prefered by

most of the data scientists as ReLU outperforms most of the non-linear functions.

After the input matrix goes through iterations of convolutions, it will be arrived at the
pooling layer and the input matrix parameters will be cut down if the matrix is too large.
Pooling is referred to a sample-based discretization process where the matrix will be
subsampled or down sampled without discarding the important information in the
matrix. There are a few different types of pooling such as max or min pooling, average
pooling and also sum pooling. In max pooling, the largest element in the rectified
feature map will be chosen while in min pooling, the smallest element in that particular

rectified feature map will be chosen.
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Figure 1.5.2.3 Fully Connected (FC) Layer

Finally, the pooled matrix will enter the fully connected (FC) layer where it would be
flattened into a vector and being fed into a neural like network. The filter matrix will
be converted as a vector (e.g. x1) as shown in Figure 1.5.2.3 and the features will be
combined to form a model. The SoftMax function will then classify the output into
specific classes.
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CHAPTER 1 INTRODUCTION

1.5.3 Deep Neural Network (DNN)

The name neural network is a derivation from the neural connections of the human
brain. The basic building blocks of a neural network are known as neurons which is
similar to the biology term neuron which is the basic working unit of the brain which
is a specialized cell that was designed to transmit information from a nerve cell to the
other nerve cells, muscle cells or the gland cells. The neurons in neural networks can
be said as a mathematical function or method which takes in inputs and produces a
specific number of outputs. These functions which are contained within the neurons are

generally referred as activation functions.

When these artificial neurons are arranged in together in a specific way, a layer is
formed. These layers could then be stacked together in desired ways to form a neural
network. The output from the previous layer of neurons would act as the inputs and will
be fed into the following or next layer for further processing. This process forms a
complex chain which impersonates the inner workings of a human brain. A neural
network with more layers is usually more complex and more powerful to solve a more
complex problem. However, the number of the layers should be determined based on
the complexity of the problem.

hyyp(X)

Layer L,

+1

Layer L, Layer L,

Figure 1.5.3.1 Example of layers in Convolutional Neural Network (CNN)
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CHAPTER 1 INTRODUCTION

Based on Figure 1.5.3.1, the input layer, L1 which is located at the leftmost layer will
be receiving input from the previous layer or the raw input. These data will be passed
along the neural network and the rightmost layer will be outputting the prediction. The
layers between the output layers and the input layers are known as the hidden layer as
it computes those intermediate values that are invisible throughout the training phase.
A Deep Neural Network (DNN) could be formed by having multiple or more than one
hidden layer.

1.5.4 Ball Grid Array (BGA) Head-In-Pillow (HIP) Defects

The Ball Grid Array (BGA) Head-In-Pillow (HIP) or Head-On-Pillow (HOP) defects
is a solder joint defects that refers to a phenomenon which occurred when pre-deposited
solder ball on the chip and the solder paste applied to the circuit board does not join
together even though they are melted. The name HIP derived from the distinct boundary
between the solder ball on the chip and the solder paste on the circuit board which is

somewhat similar to a head resting on a pillow.

HOP defects

Y %
-

Figure 1.5.4.1 Grayscale HIP defects in 3D

Figure 1.5.4.1 shows the image of the BGA and the solder joint with HIP defects that
will normally be seen in the real-time X-ray machine. This machine is usually used by
manufacturers for board inspection after the AXI machines classified the joints. The
difference between this machine and the AXI machines is that AXI machine can do
auto inspection while manual inspection had to be done by the inspector when the real
time machine is used. However, the real-time X-ray machine could generate images of
the board in different angels much faster compare to the AXI machines as the AXI
machines are required to inspect all the components that are present on the PCB.
Despite the image generation process being much faster for the real-time X-ray machine,
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CHAPTER 1 INTRODUCTION

inspection had to be done manually and usually this machine would not be used if
defects inspection could be done with the help of images generated by the AXI

machines.

sen
LA X B
oo

ABIS (escaped) L13 (detected)

Figure 1.5.4.2 Grayscale HIP defects slices

The slice image of the BGA based on the offsets that are predefined by the user before
the machine starts to inspect the board. Based on Figure 1.5.4.1, it is very hard for the
inspectors to classify the defects from the good BGA joints. This is because there are

various environmental issues that might cause the slice images to be blurred or unclear.

1.6 Proposed approach

The models with the best result obtained are built with 2 3D convolution layers, 2 3D
batch normalization layers, 2 3D max pooling layers, 1 1D batch normalization layer,
1 dropout layer with 2 fully connected layers. Leaky ReLLU activation function is used
in this model instead of the common ReLU activation function. Dummy images are
padded to those BGA images that have slices less than 9 to create an input volume of
9x224x224.

1.7 Highlight of what has been achieved.

A total of 244 models are trained in this project and the highest accuracy achieved on
3 different combinations of datasets are 86.90%, 95.41% and 93.41%. These models
are able to classify BGA images with a number of slices of 5,6 and 9. However, the
models are able to accept BGA images with different number of slices which are not
more than 9 as those images will be padded with dummy images to 9 slices before the
input enters the model for classification. A special padding technique where the dummy
images are padded in front of the BGA slice images instead of padding it after the slice
images are used in this project. Moreover, the models could also inference a BGA joint
in less than 200ms. Significant improvement could also be seen as compared to the 2D
CNN model produced by Manufacturer.

BCS (Honours) Computer Science
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CHAPTER 1 INTRODUCTION

1.8 Report Organization

The research of this project will be discussed in the following chapter. Channel-Wise
Pre-processing method, some model architectures and review on convolution layers
could be expected in the following chapter. The proposed model architecture, tools and
technologies used in this project, details on the datasets used in this project and the
project timeline is located in chapter 3. Hyperparameter used, model summary, result
of the preliminary models and also the evaluation of the preliminary models could be
found in chapter 4. Experiment and Evaluation of the models on 3 different
combinations of datasets could be seen in Chapter 5. The comparison of the proposed
3D CNN models and the Manufacturer 2D CNN models could also be observed in the
same chapter. Chapter 6 of the report will be in charge of concluding the whole report.

Steps and ideas for improving the model will also be stated in Chapter 6.

BCS (Honours) Computer Science
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CHAPTER 2 LITERATURE REVIEW

Chapter 2 Literature Review

2.1 Channel-Wise Pre-Processing method
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Figure 2.1.1 Channel-wise pre-processing output

The channel-wise pre-processing method proposed by Zhang et al. (2020) is similar to
a pipeline process where the accumulated instructions are executed in an expected order.
According to Zhang et al. (2020), the channel-wise pre-processing method is able to
process raw solder joint X-ray images and output them into six channels as shown in
Figure 2.1.1. Due to the inconsistent number of BGAs’ X-ray imaging slices and the
fact that the region of interests (ROIs) for the BGAs might not be as accurate as
expected when the values are applied on the images, the channel-wise pre-processing
method could help in addressing such problems. The channel-wise pre-processing
method will deal with the inconsistency of BGA’s X-ray imaging slices first by
applying both deep and shallow depth of the imaging or either of them. Subsequently,
the zero-slices will be used to pad those joints that do not have 6 slice images to the
maximum number of slices which is six. A ROI based cropping will then be
implemented to the image to segment the joints out from the image that might consist
of other surrounding solders or components. The cropped images should only be
focused on one single solder joint instead of having additional noise in it. Each
individual slice of the solder will then be sent to 6 different channels accordingly for

training the model.
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CHAPTER 2 LITERATURE REVIEW

2.2 Residual Neural Network (ResNet)

The residual neural network (ResNet) is one of the variants of deep convolutional neural
networks proposed by He et al. (2015) that won the 1 place of the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) 2015 organized by ImageNet. The
Resnet is proposed by the authors as another method in addressing the degradation
problem that occurred when more layers are used in the neural network. Although the
problem were largely addressed before the emergence of ResNet through normalized
initialization and intermediate normalization layers which enable the networks with an
additional of tens of layers to converge the stochastic gradient descent (SGD) with
backward-propagation, ResNet is able to surpass the other methods in term of

optimization and accuracy from considerably increased depth.

X
4
weight layer
f(xj l relu N
weight layer identity

Figure 2.2.1 A residual block of ResNet

According to “An Overview of ResNet and its Variants” by Fung (2017), the core idea
of the ResNet is the introduction of “identity shortcut connection” that enables the
skipping of multiple layers as shown in Figure 2.2.1. Thus, instead of hoping the
stacked layers directly fit into a desired underlying mapping, the stacked layers will be
fitted into a residual mapping with the help of residual blocks. However, the Highway
Network proposed by Srivastava et al. (2015) cited in Fung (2017) which introduce the
concept of gated shortcut connections which control the volume of information that are
allowed to flow across the shortcut which is similar to the Long Term Short Memory
(LSTM) cell proposed by Hochreiter (1997) in terms of concept where the

parameterized forget gate is used to controls the flow could not performs as well as the
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CHAPTER 2 LITERATURE REVIEW

ResNet. This is something extraordinary as the solution space of the Highway Network

contains ResNet, but it could not even perform as good as the ResNet could.
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Figure 2.2.2 Variants of residual blocks

A pre-activation variant of residual block is then introduced by He et al. (2017) where
the gradients could now flow through the shortcut connections to any other previous
layers unimpededly. With the help of the pre-activation variant residual block, the
Resnet-110 which contains only 110 of pre-activation variant residual layers is able to
outperform a ResNet-1202 that has more than 10 times that of the layers in Resnet-110.
However, the residual layers in ResNet-1202 are non-pre-activation variant residual
layers as in the Resnet-110. He et al. (2017) also further demonstrated that a Resnet-
1001 with 1001 of pre-activation variant residual layers is able to outperform its
counterpart which have lesser layers. This proof that stacking of residual layers will
further improve the performance of the neural networks and ResNet is further escalated
as one of the widely implemented deep learning architectures in various computer

vision projects.

2.3 Visual Geometry Group Neural Network (VGGNet)

In 2014, Simonyan and Zisserman (2015) from the Visual Geometry Group,
Department of Engineering Science, University of Oxford proposed the VGGNet which
is one of the most remarkable CNNs of that year. Even though VGGNet is the 1%
runner-up instead of the winner of the ILSVRC 2014 in classification task, VGGNet is
still able to defeat GoogLeNet the winner of ILSVRC 2014 on the localization task.
The VGGNet not only had a significant improvement over the ZFNet which is the
winner of the ILSVRC 2013 and the winner of the ILSVRC 2012, AlexNet, VGGNet
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is one of the deep learning models that is able to obtained an error rate of under 10% in
2014.

Error Rate in ILSVRC 2014 (%)

9.00% 8.06% 8.06% 8.11% 8.20% 8.23%

8.00% 7.33%  7.34% 7.41% 7.41%
7.00% 6.66%

6.00%

5.00%

4.00%

3.00%

2.00%

1.00%

0.00%

B GoogleNet VGG MSRA Visual Computing  ® Andrew Howard

Figure 2.3.1 Error Rate of models in ILSVRC 2014

Instead of directly addressing the vanishing gradient problem faced by CNNs as
convolution layers in the neural network increased, Simonyan and Zisserman (2015)
proposed VGGNet to address it in another way. Instead of using larger filter matrices,
multiple layers of 3 x 3 filter matrices could help in converging the neural network
faster and reducing the overfitting problem. Multiple layers of small filters are able to
reduce the number of parameters which is better for faster convergence and reduce
overfitting problems of the models. For example, 3 layers of 3 x 3 filters are able to
reduce 45% of the parameters of the input matrix with a similar effective area of a 7 x
7 filter (Tsang, 2018).
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Figure 2.3.2 Different VGG Layer Structures using single scale (256) Evaluation

With the concept of multiple smaller filters are better than one big filter, an ablation
study is done by the author on VGGNet (Tsang, 2018). Based on Figure 2.3.2, we can
see that the performance of the model is increasing as convolution layers increase.
However, the result obtained from VGG-19 is contradicted with the statement stated
above, as the model had started to converge when 16 convolution layers were added to
19 convolution layers. This is where multi-scale training and testing come into play.

The phrase multi-scale is referring to multiple sizes / dimensions of the images. When
the neural network is trained with images with the same scale/ size, the model’s
performance might seem very good in classifying images with the same scale as the
training data. However, when an image with a larger scale as compared to the training
images, the model might be biased towards the training data and classify that larger
scale images wrongly. Thus, training a neural network with multi-scale images is
necessary. During a multi-scale training or testing, an image is scaled with smaller-size
equal to a range from 256 to 512 and then the image will be cropped to 224 x 224 before
it is used for training or testing. The results obtained by Simonyan and Zisserman
showed that VGGNets with multi-scale training or/ and multi-scale training are

performing much better than networks with single-scale training and testing.
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Figure 2.3.3 VGGNet During Testing

AlexNet introduced us to the concept of multi-cropping during testing which could
increase the accuracy of the models. The idea of multi-cropping is referred to multiple
cropping of corners, centre and the horizontal flips of the images. The cropped images
will then be outputted as a probability vector which will be added or averaged and act
as additional features to the models to obtain a better result. In VGGNet testing the
concept of replacing the first fully connected layer (FC) with a 7x7 convolutional layer
while replacing the second and third FC layers with 1 x 1 convolutional layers is known
as convolutionalized/ dense testing. With the concept of multi-cropping and dense
testing, the performance of the VGGNets are improved. In order to further improve the
VGGNets, fusion of concepts as mentioned in the past few paragraphs is involved. By
combining multi-scale training, multi-scale testing, multi-cropping dense as well as
VGG-16/ VGG-19, an accuracy of 93.2% could be achieved.

2.4 Long Short-Term Memory (LSTM) Networks

Recurrent neural networks (RNNs) are one of the neural networks that are able to
recognize previous state sequences and utilize them to get a better result. Yet, RNNs
are also facing the vanishing gradients problems during back-propagation (Wenninger
et al. 2015) which is similar to the problems faced by CNNs. Long Short-Term Memory
networks which are usually known as LSTMs are variants of the RNNs which have the
capability of learning long-term dependencies are implemented to solve the vanishing
gradients problem faced by RNNSs. This concept of LSTM network was first introduced
by Hochreiter and Schmidhuber (1997) and was further refined and popularized by

other people who are in the computer vision field.
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Figure 2.4.1 Underlying concepts of LSTMs’ memory cells
According to Olah (2015):

By replacing the hidden nodes of RNNs with memory cells containing input,
out and forget gates that have the ability to control the flows of the information
of the cells, LSTMs are able to alleviate the vanishing gradients problem faced
by RNNs. In addition, the memory cells are able to modify the data stored within
them. The gradient of value 1 is recurred in the connections between the
memory cells helps to prevent the gradient from vanishing even though the
model is backward propagated from time to time.

2.5 Types of Convolutions

There are many different types of convolutions including 1D convolutions, 2D
convolutions, 3D convolutions, dilated convolutions, transposed convolutions etc. 2D
and 3D convolutions are the most common convolutions types that were applied in

various Convolutional Neural Networks (CNN) for image or object recognition.

1D convolutions are the most simplistic convolutions that are usually used on sequential
datasets. Extracting the 1D subsequence from the input sequences and identifying the
local patterns within the window of convolution is one of the major usages of the 1D
convolutions. 1D convolutions are usually used in Natural Language Processing (NLP)
where each sentence is represented as a sequence of words. Figure 2.5.1 shows how a

1D convolution filter is applied to a sequence of data to obtain new features from it.
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Figure 2.5.1 1D convolutional filtering

2D Convolutions are the most common type of convolutions as it had been widely used
in CNN architectures on image datasets. In the 2D convolutions, the filter moves in a
2-directions (X, y) to compute the features from the spatial dimensions. The output

shape of a 2D convolutions layer will be a 2-Dimensional matrix.

In 3D CNNs, convolutions are applied on a 3-dimensional filter that moves 3-direction
(X, y, z) instead of 2-dimensional filter that moves 2-direction (X, y) to compute the
low-level feature representations. The output shape of the 3D convolution layers is a 3-
dimensional volume space such as cube or cuboid. 3D convolutions are useful in event
detection in videos, 3D medical images, etc and they are not limited to 3D space only,
3D convolution could also be applied to 2D space inputs such as images.

Figure 2.5.2 3D convolutions demonstration
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Chapter 3 Proposed Method/ Approach
3.1 Methodology and General Work Procedures

Data Preprocessing

Y

Design 3DCNN Model

Preliminary Training and
Testing

Output analysis
visualization

A4

3DCNN Model Training
and Testing

A

Y

Hyperparameter Tuning

Y

Performance evaluation

Figure 3.1.1 Research Methodology

During the early phase of the project methodology, datasets were received, and pre-
processing is done on the image sets. The pre-processing of datasets includes, splitting
the image sets into training and testing set, ensuring that each slice images of the joint

are available and stacking the slice images together in various combinations.

Once the datasets are split and stacking combinations are planned, the 3DCNN model
will be designed based on existing literature as references with some modification to fit
the datasets. During the preliminary phase, only part of the datasets will be trained with

the model. For instance, the datasets with 9 slice images per joint will be prioritized
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first in the preliminary phase. The reason 9 slice BGA images are prioritized first is
because the amount of 9 slices BGA images are larger compared to 5 slices or 11 slices
BGA images. The models will be trained with the training data that were prepared
during the pre-processing phase, 20% of the training data will be used to validate the
model performance first before testing them on the testing data. Amendments such as
hyperparameter tuning and stacking combination were made to get a more desirable

result or outcome.

Once the results for 9 slice BGA images are acceptable, the models are trained with
different slices of BGA images at once. Some modifications were done on the models
for it to accept input with different numbers of slices. When dealing with input that
doesn’t have a total of 9 slices, dummy images were padded to the slices so that the
input could fit the model. The models were trained with a combination of training data
on stressing the model’s limit. This particular step is used to ensure the model is not
overfitting the training data which will cause the test accuracy to drop when facing new
data. In the final phases of the project methodology, amendments such as
hyperparameter tuning and stacking combination were made to get a more desirable

result or outcome in order to achieve the objective of the project.

3.2 Tools and technologies used

Python is selected as the programming language of choice for the proposed deep
learning model in this project. Pytorch which is a Python-based scientific computing
package that targeted audiences who wish to get a replacement for Numpy to use the
power of GPUs and a deep learning research platform that provides maximum
flexibility and speed will be used in this project. The Pytorch library is used for building
the 3ADCNN while the matplotlib library is used for plotting the graphs and also creating
the confusion matrix for model evaluation. Other libraries such as the os, Numpy and
Pandas libraries will be used as well in this project. Jupyter Notebook which is generally
used for developing open-source software, open-standards, and services for interactive
computing across multiple programming languages will be the Integrated development

environment (IDE) for this project.
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Hardware details:

OS Windows 10 Pro 64-bit
CPU Intel®Xeon®Silver 4210
RAM 128.0 GB

Storage 1.0TB

Table 3.2.1 Hardware details

Python library version:

Pandas 111
Numpy 1.19.1
PIL 7.2.0
Pytorch 1.2.0
Torchvision 0.4.0
Sklearn 0.23.2

Table 3.2.2 Python library version

3.3 System Design / Overview

| Input Layer | 4~| LeakyReLu -7

] ConvD 1 | | MaxPool3D - 8

| BatchNorm3D — 2 | | FC1 -9

| LeakyReLu 3 | | LeakyReLu _ 10
| MaxPool3D 4 | [ BatchNormiD 11
| Com3D 5 | | Dropout — 12

| BachNorm3D-6 | | FC2 13

Figure 3.3.1 Proposed 3D CNN Architecture
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Figure 3.3.1 provides the general overview of the proposed 3D CNN. This CNN
consists of 2 3D convolution layers, 2 3D Batch Normalization layers, 2 Max Pooling
layers, 4 LeakyRelu layers, 1 1D Batch Normalization layer, 1 Dropout layer and 2
fully connected layers. During the training phase, augmentation such as random
flipping and random rotating would be done on the data with the help of torch vision
transforms library. Data augmentation was done on the training data to increase the
features captured by the model. Besides augmentation, the training data would also be
shuffled thus the sequence of training data during the forward propagation of the model
for each batch would be different. No data augmentation would be done during the
validation phase where the validation data are actually part of the training data that were
sampled for validating the model. During the testing phase, the testing data will be used
to test the model’s performance. All three data used in this project are individual BGA
joints that have no repeated occurrence in three of the data. Fine tuning such as adding
a fully connected layer, changing the number of neurons in the fully connected layer,
changing the number of filters in the convolution layers, using a different optimizer,
adding initialization to the fully connected layers, etc. were done to improve the

model’s performance.

Conv3d-1
BatchNorm3d-2
LeakyRelLU-3
MaxPool3d-4
Conv3d-5
BatchNorm3d-6
LeakyRelLU-7
MaxPool3d-8
Linear-9
LeakyRelLU-10
BatchNormid-11
Dropout-12
Linear-13

Total params: 77,087,906
Trainable params: 77,087,906
Non-trainable params: @

Input size (MB): 1.72
Forward/backward pass size (MB): 562
Params size (MB): 294.67

Estimated Total Size (MB): 798.72

Figure 3.3.2 Model summary

Models that performed best on three different combinations of datasets respectively are

created with the same model architecture. The model summary of the models is shown
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in Figure 3.3.2. Even though three of the models have the same architecture but the

hyperparameters used in each of the models are slightly different to each other.

3.4 Implementation Issues and Challenges

There are several issues that arise during the preliminary phase of the project. Due to
the slicing feature provided to the AXI machines, there is a chance that HIP defects are
not present in any of the slices for the particular joint. The accuracy of the model might
be influenced by this issue as the label for that particular joint is incorrect based on the

interpretation of the slice images.

Moreover, the size of the model is one of the factors that would influence the inference
speed. The larger the size of the model, the longer the inference speed will be. Thus,
the number of layers and the number of neurons in the fully connected layers must be
controlled even though models with more layers are usually more suitable for such
complicated project. Besides that, more resources will be allocated to the model when
the size of the model is huge. This would cause lesser resources being allocated to the

datasets which might cause error due to insufficient memory during the training phase.

Furthermore, due to various environmental issues, the BGA slice images might be blur,
unclear or even shady. Additional pre-processing might be required to be done on the
datasets before they were used for training and testing the model. Besides that, more
time are required for standardizing the datasets which would reduce the time available
for model training and testing.

Besides that, the models could only receive BGA images with slices ranging from 1 to
9. This is because the input layer of the model is fixed to receive 9 slices only. BGA
images with slices less than 9 will be padded to 9 slices with dummy images. This limits
the ability of the model to classify BGA joints with slices more than 9. Padding is the
main issue that causes this problem as the expected number of slices had to be
configured first before the number of dummy images required to be padded could be
determined.

Moreover, the resolution of BGA images is limited to 224 x 224 only because images
with different resolutions will result in different activation volumes produced by the
convolution layer. A different activation volume would not fit the fully connected layer
as the volumes are hardcoded and should be consistent. In order to enable the model to

received images with different resolution, a global pooling could be used to replace the
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first fully connected layer. However, the results produced by the models with global

pooling layer are not as good as the models with 2 fully connected layers. Therefore,

the models are created with 2 fully connected layers instead of 1 global pooling layer

and 1 fully connected layer.

Lastly, due to the variance in the number of BGA slices, experiments must be done on

the various stacking combinations in order to optimize the output of the model. Time

allocation for each of the sections is very crucial or extremely important for this project

as there are various factors that would delay the progression of the project.

3.5 Dataset

Recipes Good Joint Defects Number of Slices

Slice Sequences

A 84 68 5

Pad
s2
Mid slice
sl
Chip

B 368 319 9

s6
Pad

s5

s4

s3

Mid slice

s2

sl
Chip

C 329 239 6

s3
Pad
s2
sl
Mid slice
Chip

s6

s4
Chip

s3

Mid slice

sl
Pad

s2

s5

s6

s4
Chip

s3

Mid slice

sl
Pad
s2

s5
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F 185 159 9 s6
s4

Chip
s3

Mid slice

sl

Pad
s2
s5

G 166 159 9 s6
s4

Chip
s3

Mid slice

sl

Pad
s2
s5

H 381 264 9 s6
s4

Chip
s3

Mid slice

sl

Pad
s2
s5

| 419 334 9 s6
Pad
s5
s4
s3
Mid slice
s2
sl
Chip

J 175 239 6 s3
Pad
s2
sl
Mid slice
Chip

K 282 126 9 s6
s4

Chip
s3

Mid slice

sl

Pad
s2
s5

L 124 14 9 s6
s4

Chip
s3

Mid slice

sl

Pad
s2
sb
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Total 2587 1972
Table 3.5.1 Datasets

There is a total amount of 12 datasets that will be used for training and testing in this
project. These datasets are directly collected from the AXI machines. The total number
of BGA joints in this dataset is 4,559 joints with 2,587 good joints and 1,972 defect

joints. There are 3 different slices settings which are 5, 6 and 9.

Combination Recipes Good Joint Defects Train Validate Test
A A B,C,D,EFG 1206 995 1326 333 542
B A B, C 781 626 898 226 283
C A B, CH 1162 890 1137 397 518
D I,J,K, L 1000 713 1084 280 349

Table 3.5.2 Combinations

Table 3.5.2 shows the combination of data that will be used to train, test and validate
the models. Combination B is created because data in Recipe D, E, F and G are having
shading issues that would affect the result of the model. The statement is proven as the
model trained with combination B has a significant improvement in terms of accuracy.
Recipe H is actually the recaptured and processed version of Recipe D, E, F and G.
Since the setting of the AXI machine is different, result return by the machine will be
different thus the total amount of data in combination A and B are different. Therefore,
combination C is created. Model trained, validated and tested with combination C are
slightly better than results obtained with combination A however, the accuracy couldn’t
surpass the results obtained with combination B. This is quite odd as the images in
Recipe H are better than those in Recipe D, E, F, G. In order to investigate this issue, a
decision to standardize the capturing method and processing method is done on the
other Recipes too. This result in the production of combination D. Recipe | is the
recaptured and processed version of Recipe B, Recipe J is the recaptured and processed
version of Recipe C, Recipe K is the recaptured and processed version of Recipe D and
E while Recipe L is the recaptured and processed version of Recipe F and G. In other
words, combination D was the recapture and processed version of combination A with

the exclusion of Recipe A. The processing method used in Recipe I, J, K and L are
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similar to Recipe H so that this would not be a factor that will affect the result obtained
by the models trained, validated and tested with this combination. Results show that the
accuracy did improve using combination D however it does not exceed the accuracy
obtained with combination B. Due to time constraint, the project had to be put to and
end thus no more combinations and investigations are produced and done to solve the
issue. Combination A, B, D will be the main focus in this project as the images in

combination C are not standardized.

Side View

} TOP

BOT

PAD

MID SLICE Possible Extra Slice location:
AB,C,D

CHIP

Figure 3.5.1 BGA details

Figure 3.4.1 shows the possible slicing location of the BGA. The sequence of the pad,
Mid slice and chip is based on the location of the BGA. The pad slice will come first if
the BGA is located on top of the chip. On the contrary, the chip slice will come first if
the BGA is located below the chip. The default slicing setting will be pad, Mid slice
and chip as HIP occurred more frequently in these few locations. The slicing setting is
not fixed to the settings shown in the datasets. Users of the AXI machine could increase
the number of slices that would be produced per BGA joint to increase the chances of
detecting the HIP defects.
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3.6 Timeline
DAYS
TASK NAME START DATE END DATE
COMPLETE

Literature Review

Research on 3D Convolution Neural Network 26-0ct-20 22-Nov-20 28
Dataset Preparation

Dataset pre-processing 23-Nov-20 25-Nov-20 3
Design 3D Convolution Model

Preliminary training 25-Nov-20 29-Nov-20 5

Preliminary testing 26-Nov-20 29-Nov-20 4

Output analysis visualization 27-Nov-20 29-Nov-20 3

Model training and testing 18-Jan-21 28-Feb-21 42

Hyperparameter tuning 25-Jan-21 28-Feb-21 35

Performance evaluation 1-Feb-21 28-Feb-21 28
Miscellaneous

Bug-fixing 1-Mar-21 28-Mar-21 28

Documentation restructuring 29-Mar-21 11-Apr-21 14
Report Writing

FYP Report 1 30-Nov-20 6-Dec-20 7

FYP Report 2 12-Apr-21 16-Apr-21 5

Table 3.6.1 Timeline

Research on the 3D convolution neural network (CNN) had been done this semester
before receiving the datasets. After receiving the dataset, some analysis had been done
to understand the datasets. Pre-processing steps such as labelling, splitting, and stacking
had been done to split the datasets to training and testing sets. After a preliminary
3DCNN model is designed and built based on existing literature as references, the
model is trained and tested with a portion of the datasets. Evaluation is done based on
the training loss and the accuracy of the model on predicting the testing sets. This pretty

much wrapped up the progression of the project in phase 1.

In the second phase, more hyperparameter tuning is done on the models to produce a
better result before it has any contact with other portions of the data. After the data are
combined with the combination as mentioned in Table 3.5.2, the models are trained,
validated and tested. Results are recorded and more hyperparameter tunings are done
to the models. Some time was spent for bug-fixing during the hyperparameter tuning
and model architecture redesigning phase. The project is halted as restructuring and
editing are required to be done on the FYP report 1 to fit it into the format specified for
the FYP report 2.

BCS (Honours) Computer Science
Faculty of Information and Communication Technology (Kampar Campus), UTAR 27



7 Hoday gA4

T Hoday gAd

Sunnynuisal uonejuswnloQ
auy-ang

UoI1eN|eAd AAUBLLIOMA
Suiuny JajawesedadAy
8unsay pue Suiuies [3pop
uoreziensia sishjeue ndng
dunsay Aseuiwnjalg

uiuresy Adeujwijalg

Buissanoud-aud 1aseneq)

Figure 3.6.1 Gantt Chart
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Chapter 4 Preliminary Work

4.1 Preliminary Work Experimental Setup

Layer Name Output shape Parameters
Input [224 x 224 x 9 x 1] -
Conv3D -1 [224 x 224 x 9 x 32] 896
BatchNorm3D - 2 [224 x 224 x 9 x 32] 128
LeakyRelu — 3 [224 x 224 x 9 x 32] 0
MaxPool3d - 4 [56 x 56 x 9 x 32] 0
Conv3D -5 [56 x 56 x 9 x 64] 55,360
BatchNorm3D — 6 [56 x 56 x 9 x 64] 256
LeakyRelu — 7 [56 x 56 x 9 x 64] 0
MaxPool3d - 8 [14 x 14 x 9 x 64] 0
Linear — 9 [128 x 1] 14,450,816
LeakyRelu — 10 [128 x 1] 0
BatchNorm1D — 11 [128 x 1] 512
Dropout — 12 [128 x 1] 0
Linear — 13 [2x1] 258
Table 4.1.1 3DCNN Architecture 1
Layer Name Output shape Parameters
Input [224 x 224 x 6 x 1] -
Conv3D -1 [224 x 224 x 6 x 32] 896
BatchNorm3D — 2 [224 x 224 x 6 x 32] 128
LeakyRelu — 3 [224 x 224 x 6 x 32] 0
MaxPool3d - 4 [56 x 56 x 6 x 32] 0
Conv3D -5 [56 x 56 x 6 x 64] 55,360
BatchNorm3D — 6 [56 x 56 x 6 x 64] 256
LeakyRelu — 7 [56 x 56 x 6 X 64] 0
MaxPool3d — 8 [14 x 14 x 6 x 64] 0
Linear -9 [128 x 1] 9,633,920
LeakyRelu — 10 [128 x 1] 0
BatchNorm1D — 11 [128 x 1] 512
Dropout — 12 [128 x 1] 0

BCS (Honours) Computer Science

Faculty of Information and Communication Technology (Kampar Campus), UTAR

29



CHAPTER 4 PRELIMINARY WORK

Linear — 13 [2 x 1] 258
Table 4.1.2 3DCNN Architecture 2
Layer Name Output shape Parameters
Input [224 x 224 x 3 x 1] -
Conv3D -1 [224 x 224 x 3 x 32] 896
BatchNorm3D — 2 [224 x 224 x 3 x 32] 128
LeakyRelu -3 [224 x 224 x 3 x 32] 0
MaxPool3d - 4 [56 x 56 x 3 x 32] 0
Conv3D -5 [56 x 56 x 3 x 64] 55,360
BatchNorm3D — 6 [56 x 56 x 3 x 64] 256
LeakyRelu — 7 [56 x 56 x 3 x 64] 0
MaxPool3d — 8 [14 x 14 x 3 x 64] 0
Linear — 9 [128 x 1] 4,817,024
LeakyRelu — 10 [128 x 1] 0
BatchNorm1D — 11 [128 x 1] 512
Dropout — 12 [128 x 1] 0
Linear — 13 [2x1] 258
Table 4.1.3 3DCNN Architecture 3
Layer Name Output shape Parameters
Input [224 x 224 x 9 x 1] -
Conv3D -1 [224 x 224 x 9 x 32] 896
BatchNorm3D — 2 [224 x 224 x 9 x 32] 128
LeakyRelu -3 [224 x 224 x 9 x 32] 0
MaxPool3d - 4 [112 x 112 x 4 x 32] 0
Conv3D -5 [112 x 112 x 4 x 64] 55,360
BatchNorm3D — 6 [112 x 112 x 4 x 64] 256
LeakyRelu — 7 [112 x 112 x 4 x 64] 0
MaxPool3d — 8 [56 X 56 x 2 x 64] 0
Linear — 9 [128 x 1] 51,380,352
LeakyRelu — 10 [128 x 1] 0
BatchNorm1D - 11 [128 x 1] 512
Dropout — 12 [128 x 1] 0
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Linear — 13 [2 x 1] 258
Table 4.1.4 3DCNN Architecture 4
Layer Name Output shape Parameters
Input [224 x 224 x 6 x 1] -
Conv3D -1 [224 x 224 x 6 x 32] 896
BatchNorm3D — 2 [224 x 224 x 6 x 32] 128
LeakyRelu -3 [224 x 224 x 6 x 32] 0
MaxPool3d - 4 [112 x 112 x 3 x 32] 0
Conv3D -5 [112 x 112 x 3 x 64] 55,360
BatchNorm3D — 6 [112 x 112 x 3 x 64] 256
LeakyRelu — 7 [112 x 112 x 3 x 64] 0
MaxPool3d — 8 [56 x 56 x 1 x 64] 0
Linear — 9 [128 x 1] 25,690,240
LeakyRelu — 10 [128 x 1] 0
BatchNorm1D — 11 [128 x 1] 512
Dropout — 12 [128 x 1] 0
Linear — 13 [2x1] 258
Table 4.1.5 3DCNN Architecture 5
Layer Name Output shape Parameters
Input [224 x 224 x 3 x 1] -
Conv3D -1 [224 x 224 x 3 x 32] 896
BatchNorm3D — 2 [224 x 224 x 3 x 32] 128
LeakyRelu -3 [224 x 224 x 3 x 32] 0
MaxPool3d - 4 [112 x 112 x 3 x 32] 0
Conv3D -5 [112 x 112 x 3 x 64] 55,360
BatchNorm3D — 6 [112 x 112 x 3 x 64] 256
LeakyRelu — 7 [112 x 112 x 3 x 64] 0
MaxPool3d — 8 [56 x 56 x 3 x 64] 0
Linear — 9 [128 x 1] 77,070,464
LeakyRelu — 10 [128 x 1] 0
BatchNorm1D - 11 [128 x 1] 512
Dropout — 12 [128 x 1] 0
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Linear — 13 [2 x 1] 258
Table 4.1.6 3DCNN Architecture 6

There is a total of 6 3DCNN model architectures that are designed and tested during
the preliminary phase. Table 3.3.1 to Table 3.3.3 are having a 1 x 4 x 4 kernel size in
the 3D Max Pooling layers while the architectures shown in Table 3.3.4 to Table 3.3.6
are having a 4 x 4 x 4 kernel size in the 3D Max Pooling layers. The filter size in the
3D Max Pooling layers control the depth of the image, with the first three architectures
the depth of the images are not reduced before it reaches the Fully Connected (FC)
layers while the depth of the images in the architecture 4 and 5 will be reduced. The
input 3DCNN architecture 6 will have constant depth before reaching the FC layers,
however the width and the height of the input will be increased as the size of the kernel
has decreased. In other words, the input of the first FC layer for the model architecture

4, 5 and 6 will be bigger than the remaining 3 architectures.
The hyperparameter used for the models:

i.  Number of epochs: 100
ii. Batchsize: 16
iii.  Optimizer: Adam / SGD, weight_decay: 0.0005
iv.  Learning rate: 0.01
v.  Scheduler: ReduceLROnPIlateau, factor: 0.1, patience: 5, eps: 1e"%
vi.  Loss Function: CrossEntropyLoss

Data Augmentation on training data:

i.  RandomHorizontalFlip: 0.5
ii.  RandomVerticalFlip: 0.5

iii. RandomRotation: 0.5

4.2 Training, Validation and Testing dataset
Training data (B) Validation data (B) Testing data (F)
Good Joints 382 66 185
Defect Joints 247 72 159

Table 4.2.1 Datasets for preliminary training and testing
The train_test_split from sklearn.model_selection library is used to split the training

and validation data. The training and validation data were split from the dataset B with
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the ratio of 80:20. Dataset F was chosen to be the testing data for this phase as the
number of the data in dataset F is the highest among the remaining 9 slices dataset.
Dataset B and F are the best preliminary training and testing candidates as the slicing
sequence and the location of the BGA is different for both datasets.

4.3 Performance evaluation

Model | Slices | Sequence |Optimizer [Training Time| Testing Time | Accuracy | Confusion Matrix

1 158

0
A 9 PMPS1S6 Adam 2075.9 6.3 50.29% 13 172

130 29

C 9 Ori Adam 1978.5 5.7 100 a5

7 152

E 3 Ori Adam 722.1 2 ” 151

158 1
168 17

G 3 PadMP Adam 704 2.2 50.87%

53.78%
57.27%

| 3 PackageMP  Adam 650.5 1.9

174 11

K 6 S1S6 Adam 1372.3 4.5

121 38

M 6 Ori Adam 1357.5 4.4 77 108

85 74
79 106

O 9 Ori Adam 2363.8 6 55.52%

59.01%

Q 6 Ori Adam 1642.7 5 7 11

S 3 Ori Adam 1100.5

2.1 50.29%

Table 4.3.1 Model Performance
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Model Architecture Model

1 A B,C,D
2 K, L, M, N
3 E,F,G H,IJ
4 0,P

5 Q.R

6 ST

Table 4.3.2 Model Architecture to Model

Based on Table 4.3.1, the top 3 highest accuracy is 68.6% by model Q, 66.57 by model
M and 63.66% by model R. The statistic also shows that the model trained with original
stacking sequence could produce a better accuracy compared to those with random
sequence. Moreover, the statistic also shows that the SGD optimizer is dealing better
with BGA stacks with random sequence, but it is outperformed by the Adam optimizer
when dealing with original BGA stacking sequence. Despite having a better training
time, models with SGD optimizer required more time for making predictions. Besides
that, model trained with only 3 slices often misclassified the defect joints when
compared to model trained with 6 or 9 slices. Based on this statistic, it is strongly
believed that the model proposed in this project should be trained with the original

stacking sequence with Adam optimizer.

Model Q Training/Validation Loss

4.5
4
35
3
2.5
2
1.5
1
0.5 \\'\.“.\’_ .
0
0 20 40 60 80 100
Training Loss Validation Loss

Figure 4.3.1 Model Q Training/Validation Loss
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12

10

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

Despite having a higher loss in the first 20 to 40 epochs, model Q and M still
outperformed model R in the long run. Based on the three figures above, none of the
models can achieve 0 loss in the training and validation process. However, the lowest
loss value for model R is still significantly higher when compared to model Q and M.
This results in a poorer performance when model R is used to predict the testing data.
Since none of the models can achieve 100% accuracy in predicting validation data, it is
strongly believed that all of them are still slightly underfitting the training data. The

\0\’\

Model M Training/ Validation Loss

20 40 60 80 100

Training Loss Validation Loss

Figure 4.3.2 Model M Training/Validation Loss

Model R Training/Validation Loss

A /N
N/ -
W e e P S e PSS S S

20 40 60 80 100

Training Loss Validation Loss

Figure 4.3.3 Model R Training/Validation Loss
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result is expected to be better when a deeper model or model with a different

hyperparameter or different number of neurons in the FC layers is used
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Chapter 5 Experiments and Evaluation.

5.1 Experimental setup

Preprocessing

FC Layer (2)

Input Layer (1,9, 224, 224) Dropout, p=0.15

BatchNorm1d (128)

MaxPool3d 2x2x2, s =

BatchNorm3d(32) LeakyRelU 2

LeakyRelLU

BatchNorm3d(64) LeakyReLU MaxPool3d 2x2x2 s = 2 FC1 (128)

Figure 5.1.1 Model Architecture

Figure 5.1.1 shows the model architecture that is used to build the models that obtained

the best result in 3 different combinations of datasets in this project. Layers, filter size,

number of neurons and activation function used are specified in the figure to help others

to replicate the model. The input volume will have a shape of (1, 9, 224, 224) where 1

represents the channel of the image, 9 represents the number of slices after padding,

followed by the resolution of the image. The models are trained with different

hyperparameters to suit different combinations of datasets as shown below.

Hyperparameters for best model in combination A:

Vi.

Vii.

viii.

Number of epochs: 100

Batch size: 16

Optimizer: Adam, weight_decay: 0.0005

Learning rate: 0.01

Scheduler: ReduceLROnNPlateau, factor: 0.1, patience: 5, eps: 1%

Loss Function: CrossEntropyLoss

Initialization on fully connected layer: Xavier Normal initialization for weight,
zero for bias.

Image stacking method used: Dummy images first followed with BGA images

stacked with original sequence.
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There are two models that could achieve the same accuracy in classifying BGA images
in combination B, however the model with the least number of false positives is selected

here.
Hyperparameters for best model in combination B:

I.  Number of epochs: 100
ii. Batchsize: 16
iii.  Optimizer: Adam, weight_decay: 1e™%
iv.  Learning rate: 0.01
v.  Scheduler: ReduceLROnPIlateau, factor: 0.1, patience: 5, eps: 1e%
vi.  Loss Function: CrossEntropyLoss
vii.  Image stacking method used: Dummy images first followed with BGA images

stacked with original sequence.

There are multiple models that could achieve the same accuracy in classifying BGA
images in combination D, however the model with the least number of false positives

is selected here.
Hyperparameters for best model in combination D:

i.  Number of epochs: 100
ii. Batchsize: 16
iii.  Optimizer: Adam, weight_decay: 0.0005
iv.  Learning rate: 0.01
v.  Scheduler: ReduceLRONPIlateau, factor: 0.1, patience: 5, eps: 1e"%
vi.  Loss Function: CrossEntropyLoss
vii.  Initialization on fully connected layer: Xavier Uniform initialization for weight,
zero for bias.
viii.  Image stacking method used: Dummy images first followed with BGA images
stacked with original sequence. (Normalized version)

The data augmentation used in this phase remains unchanged as in the preliminary stage.
Only training data will be augmented while testing and validating data will not.
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5.2 Result evaluation

Combination Validation Validation Testing Testing Inference
Confusion  Accuracy Confusion Accuracy Speed per
Matrix Matrix Joint (ms)
129 | 15 214 | 45
A 89.69 86.90 16.7
18 | 158 26 | 257
94 8 137 | 5
B 95.13 95.41 19.5
3 121 8 133
104 7 143 | 9
D 96.69 93.41 21.3
2 159 14 | 183
Table 5.2.1 Result obtained with 3D CNN models
Combination Testing Confusion Matrix Testing Accuracy
191 68
A 79.15
45 238
125 17
B 92.23
5 136
0 152
D 56.45
0 197

Table 5.2.2 Result obtained with Manufacturer 2D CNN models

Table 5.2.1 shows the result obtained by the 3D CNN models created in this project

while Table 5.2.2 shows the performance of the manufacturer 2D CNN models on 3 of

the datasets. The tables show that the performance of the 3D CNN models is must better
when compared to the 2D CNN models. Both of the 2D CNN models and 3D CNN

models are trained, validated and tested with the similar training, validating and testing

data. However, since the hyperparameters in the 2D CNN are not tuned to fit each of

the dataset while in the 3DCNN each models’ hyperparameters are tuned to fit the

datasets. Therefore, to make it fair, the average accuracy score is used compared with
the 2D CNN models instead of the best results obtained by the 3D CNN models in each

dataset.
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Combination  Average 3DCNN Models  Manufacturer’s 2D CNN models

Accuracy Accuracy
82.63 79.15
B 82.11 92.23
91.43 56.45

Table 5.2.3 Performance comparison

As can be seen in Table 5.2.3, the 3D CNN models are outperforming the 2DCNN
models in combination A and combination D. The average accuracy for 3D CNN
models in combination B doesn’t exceed the accuracy obtained with the 2D CNN as
there are a few models that are very underfitting the datasets which causes the average
to be low. When those outliers are excluded, an average accuracy score of 92.58% could
be obtained by the 3D CNN models in combination B. Besides that, the models are able
to classify a BGA joint within 200ms as shown in Table 5.2.1 More details regarding
the performance, the setting used and the inference speed for the models could be seen

in the appendix.
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Chapter 6 Conclusion

6.1 Project Review

HIP defect is always a pain for the inspector when inspecting the PCB as HIP defects
are sometimes misclassified by the AXI machine. This led to the need of manual
inspection with the help of a real-time X-ray machine which had a lower efficiency rate
when compared to the AXI machine. Despite having a longer processing time, manual
inspection is having a higher accuracy rate when compared to machine inspection.
Hence, a more efficient way to classify the HIP defects is required. With the help of the
3D CNN model that achieved all the objectives in this project, it is strongly believed
that the model would cause a huge impact in the manufacturing sector. The model is
able to classify one BGA joint in less than 200ms with a better performance when
compared to the 2D CNN.

6.2 Future work

More experiments are expected to be done with different BGA slices images as the
current models could only accept BGA joints with slices less than or equal to 9. A
specific stacking technique together with the solution for different input size are
expected to be proposed in the coming future. In addition, the size of the best models
at the moment is approximately 210 MB which is considered quite huge when
compared to models trained with 2D-squeezenet or 2D-mobilenet which is only about
20 — 40 MB. Therefore, a solution for reducing the model size is required as deploying
a huge model would require a better and powerful machine which would increase the
cost for the manufacturing organizations who wish to have this model. Moreover, there
is still room for improvement as the models are not able to achieve 99% in terms of
accuracy. This is crucial as the HIP defects would cause a huge damage to humans and

the PCB manufacturer when the defects are not being detected.
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INTRODUCTION

The Head-in-Pillow (HIP) defects had
always been an issue during the Ball
Grid Array (BGA) assembly. This
conceivably expensive imperfection
isn't generally distinguished in
practical testing, and would just
appears as a disappointment in the
field after the components are
exposed to some physical or thermal
stress. Hence, a 3-Dimensional
Convolutional Neural Network model
is proposed to ease the HIP defects
inspection process.
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PERFORMANCE COMPARISION

Combination  Average 3DCNN Models Vitrox 2D CNN models
Accuracy Accuracy
A 82.63 79.15
82,11 0.3
D 9143 56.45

PROJECT OBJECTIVES

* Todesign a 3D CNN for BGA HIP defects detection

* Todesign an image stacking technique using salient layers based on
domain heuristics

« To retrain BCA dataset on the proposed 3D CNN model to improve
upon existing Vitrox 2D CNN architecture

* To optimize a 3D CNN model that could inference the BCA HIP
defects in less than 200ms per inference.

MODEL ARCHITECTURE

Preprocessing

FC Layer (2)

Input Layer (1,5, 24, 224)

BatchNorm3d(32) LeakyRell

LeakyRell

Conv3d 26242, k=64,5=1,p= 1

BatchNorm3d(64) LeakyRell MaxPool3d 2:2x25=2 FC1 {128)
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and Image Processing Technique

Project Title: Detecting Head-In-Pillow Defect (HIP) By Using Deep Learning
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[Please write the details of the work done in the last fortnight.]

i.  Reversing the image stacking sequence

ii.  Retrain the model with the stacking method

2. WORK TO BE DONE

i.  Hyperparameter tuning for the models

ii.  Try to test the model with a different dataset.

3. PROBLEMS ENCOUNTERED

i.  Accuracy is still fairly low for the current models

4. SELF EVALUATION OF THE PROGRESS

Self-assigned tasks are completed within expected timeframe.
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FINAL YEAR PROJECT WEEKLY REPORT

Project Il

Trimester, Year: Y3S3 Study week no.: 4

Student Name & ID: Tan Wei Jin 17ACB02302

Supervisor: Dr. Aun Yichiet

Project Title: Detecting Head-In-Pillow Defect (HIP) By Using Deep Learning

and Image Processing Technique

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

. Hyperparameter tuning and new stacking method did improve the
accuracy of the model.
ii. The model is tested with new datasets from the similar PCB board. 90%

accuracy in classifying is achieved for the first time.

2. WORK TO BE DONE

I. Try to add more neurons in the fully connected layers
ii. Try to add a fully connected layers to increase the complexity of the

model

3. PROBLEMS ENCOUNTERED

I. Models couldn’t classify the defects correctly even if its from the same

PCB board.

4. SELF EVALUATION OF THE PROGRESS

Self-assigned tasks are completed within expected timeframe.
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FINAL YEAR PROJECT WEEKLY REPORT

Project Il

Trimester, Year: Y3S3 Study week no.: 6

Student Name & ID: Tan Wei Jin 17ACB02302

Supervisor: Dr. Aun Yichiet

Project Title: Detecting Head-In-Pillow Defect (HIP) By Using Deep Learning
and Image Processing Technique

1. WORK DONE

[Please write the details of the work done in the last fortnight.]

. More neurons are added to the fully connected layer, not much
improvement in term of accuracy.
ii. An additional fully connected layer is added to the model, not much

improvement in term of accuracy.

2. WORK TO BE DONE

i. Hyperparameter tuning on model with new architecture.

3. PROBLEMS ENCOUNTERED

i. Models could only classify BGA images with 9 slices.

4. SELF EVALUATION OF THE PROGRESS

Self-assigned tasks are completed within expected timeframe.
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FINAL YEAR PROJECT WEEKLY REPORT

Project Il

Trimester, Year: Y3S3 Study week no.: 8

Student Name & ID: Tan Wei Jin 17ACB02302

Supervisor: Dr. Aun Yichiet

Project Title: Detecting Head-In-Pillow Defect (HIP) By Using Deep Learning
and Image Processing Technique

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

I. Hyperparameter tuning on new model architecture didn’t have much
improvement in terms of accuracy.

ii. Model is able to classify BGA defects with 5,6 and 9 slices through
dummy image padding method.

iii. Model’s accuracy is stable at 80%.

2. WORK TO BE DONE

i. Perform hyperparameter tuning on the models.
ii. Train the model by excluding some of the datasets that might cause the
accuracy to be low.

iii. Train the model on new datasets received from Vitrox

3. PROBLEMS ENCOUNTERED

I. Have to allocate some time on other assignments,

4. SELF EVALUATION OF THE PROGRESS

Self-assigned tasks are completed within expected timeframe.

. -
s <R

Supervisor’s signature Student’s signature

BCS (Honours) Computer Science
Faculty of Information and Communication Technology (Kampar Campus), UTAR B-4



APPENDICES

FINAL YEAR PROJECT WEEKLY REPORT

Project Il

Trimester, Year: Y3S3 Study week no.: 10

Student Name & ID: Tan Wei Jin 17ACB02302

Supervisor: Dr. Aun Yichiet

Project Title: Detecting Head-In-Pillow Defect (HIP) By Using Deep Learning
and Image Processing Technique

1. WORK DONE
[Please write the details of the work done in the last fortnight.]
I. Models’ accuracy improved slight with hyperparameter tuning.
ii. Model train without certain datasets could achieved 95% accuracy.
ii. Model train with dataset received by Vitrox could only achieved about
89% accuracy.

2. WORK TO BE DONE
. Fully connected layer initialization.
ii. Try to pad the dummy images in front of the slice images.
iii. More hyperparameter tuning.

iv. Train model with newly collected data by Vitrox.

3. PROBLEMS ENCOUNTERED
I. Model accuracy is currently cap at 95% and few of the dataset for a
particular PCB is excluded.
ii. Model accuracy is cap at 85% if all data from 4 different PCB boards

are used.

4. SELF EVALUATION OF THE PROGRESS

Self-assigned tasks are completed within expected timeframe.
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FINAL YEAR PROJECT WEEKLY REPORT

Project Il

Trimester, Year: Y3S3 Study week no.: 12

Student Name & ID: Tan Wei Jin 17ACB02302

Supervisor: Dr. Aun Yichiet

Project Title: Detecting Head-In-Pillow Defect (HIP) By Using Deep Learning
and Image Processing Technique

1. WORK DONE
[Please write the details of the work done in the last fortnight.]
. Padding dummy images in front of slice image could improve the
accuracy of the model.
ii. Normalization and initialization in fully connected layer are able to help
the model trained with new data collected by Vitrox to achieved 93%
accuracy.

iii. Finalization meeting to freeze the project with Vitrox.

2. WORK TO BE DONE

i. Start to prepare FYP report 2.

ii. Finalizing all the results obtained through out the process.

3. PROBLEMS ENCOUNTERED

i. Had to spend more time in assignments that due by this week.

ii. Accuracy of model is not as high as expectation.

4. SELF EVALUATION OF THE PROGRESS

Self-assigned tasks are completed within expected timeframe.
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APPENDIX D: Models’ Performance
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