
The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Design of An Asynchronous RISC Processor

BY

PEE YAO HONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY

(HONOURS) COMPUTER ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2021

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: __

 __

 __

Academic Session: _____________

 I __

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 __________________________ _________________________

 __________________________ Supervisor’s name

 Date: _____________________ Date: ____________________

The Design of An Asynchronous RISC Processor

2021/01

PEE YAO HONG

K-90L, TAMAN IDAMAN,

MOK KAI MING JALAN JAKAR, 24000

KEMAMAN, TERENGGANU

16/04/2021 16/04/2021

The Design of An Asynchronous RISC Processor

i

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Design of An Asynchronous RISC Processor

BY

PEE YAO HONG

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY

(HONOURS) COMPUTER ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2021

The Design of An Asynchronous RISC Processor

ii

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “The Design of An Asynchronous RISC

Processor” is my own work except as cited in the references. The report has not been

accepted for any degree and is not being submitted concurrently in candidature for

any degree or other award.

Signature :

Name : PEE YAO HONG

Date : 16/04/2021

The Design of An Asynchronous RISC Processor

iii

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Mr

Mok Kai Ming who has given me this bright opportunity to engage in a digital system

design project. It is my first step to establish a career in digital system design field. A

million thanks to you.

A million thanks to my family, especially my parents, for their patience,

unconditional support and love, and for always backing me up throughout the course.

They have always been there to provide me with financial support.

To my course mates of CT course, I would like to txtend my gratitude for their

friendship, company and encouragement during the course of my bachelor degree. We

had been putting in a lot of hard work together as a team for the past 3 years.

Finally, I would like to extend my sincere thanks to my seniors who have willingly

helped me out with their abilities, providing necessary and useful information about

the project. All the advises and suggestions had contributed to the completion of this

project.

The Design of An Asynchronous RISC Processor

iv

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Abstract

This project is an asynchronous processor design project for academic purpose. It

will provide students with the methodology, concept and design of asynchronous

RISC processor. This will be illustrated by converting a synchronous processor to an

asynchronous processor. This can be done by substituting the global clock for a

synchronous processor with a set of controllers that all have an equivalent behavior.

Since asynchronous processor is better than synchronous processor in aspects of no

clock skew, lower power dissipation and etc, it is well suited for digital circuits and

therefore implemented in this project. The tools used in this project are Verilog

hardware description language in combination with ModelSim synthesis tools and

PCSpim. Moreover, there is several types of asynchronous implementation style and

the one used here is the 4-phase single-rail pipeline. The verification plan of the

project is a testbench with numbers of instruction to make sure the processor is

workable. Lastly, the output of the project would be the synthesized hardware of

asynchronous RISC processor with shortest delay for every single instruction in order

to implement that asynchronous processor is better than synchronous processor.

The Design of An Asynchronous RISC Processor

v

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table of Contents

TITLE PAGE i

DECLARATION OF ORIGINALITY ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

TABLE OF CONTENTS v - vii

LIST OF TABLES viii

LIST OF FIGURES ix - x

LIST OF ABBREVIATIONS xi

CHAPTER 1 : INTRODUCTION

 1.1 Problem Statement and Motivation 1 - 4

 1.2 Project Scope 5

 1.3 Problem Objectives 5

 1.4 Impact, Significance and Contribution 6

 1.5 Background Information 7

CHAPTER 2 : LITERATURE REVIEW

 2.1 Literature Review 8 - 15

 2.2 Data Collection 16

 2.3 Critical Remark of Previous Works 17

CHAPTER 3 : HARDWARE DEVELOPMENT

 3.1 System Overview 18

 3.1.1 Design Hierarchy 18 - 19

 3.1.2 Internal Operation 20

 3.1.3 Memory Map 21

 3.2 CPU 22

 3.2.1 Pipeline Micro-architecture 22 - 23

 3.3 Design Block Specification 24

 3.3.1 Main Control Block 24 - 28

The Design of An Asynchronous RISC Processor

vi

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 3.3.2 Arithmetic Logic Control Block 28

 3.3.3 Register File Block 29 - 31

 3.3.4 Forwarding Block 32 - 37

 3.3.5 Interlock Block 38 - 39

 3.3.6 ALU Block 40 - 41

 3.3.7 Multiplier Block 42 - 43

 3.3.8 Boot ROM Unit 43

 3.3.9 Data and Stack RAM Unit 44 - 45

CHAPTER 4 : METHODLOGY AND TOOLS

 4.1 Design Specifications 46

 4.1.1 Methodologies and General Work Procedures 46 - 47

 4.1.2 Development Tools 47 - 48

 4.1.3 Verification Plan 48

 4.2 Timeline 49

CHAPTER 5 : MULLER C-ELEMENT

 5.1 Muller Pipeline 50

 5.2 Circuit Implementation Style 52 - 55

 5.3 Implementation of Pipeline 56

 5.4 Micro-architecture of Asynchronous Processor 57

CHAPTER 6 : VERIFICATION

 6.1 Simulation Result 58 - 60

CHAPTER 7 : SYNTHESIS 61

 7.1 Utilization Report

CHAPTER 8 : CONCLUSION AND FUTURE WORK

 8.1 Conclusion 62

 8.2 Future Work 62

The Design of An Asynchronous RISC Processor

vii

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

BIBLIOGRAPHY 63

POSTER 64 – 65

PLAGIARISM CHECK RESULT 66 - 67

FYP2 CHECKLIST 68

The Design of An Asynchronous RISC Processor

viii

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

List of Tables

Table Number Title Page

Table 2.1
Comparison between different type of

asynchronous processor
16

Table 3.1 Design hierarchy of the processor 19

Table 3.2 Main Control Block I/O description 24 - 28

Table 3.3
Arithmetic Logic Control Block I/O

description
28

Table 3.4
Conventional usange of the registers in

Register File Block
29

Table 3.5 Register File Block I/O description 30

Table 3.6
General condition of Register File related

data hazards
33

Table 3.7 $ra register relater data hazards 34

Table 3.8 HILO register related data hazards 35

Table 3.9 Forwarding Block I/O description 35 - 37

Table 3.10 Interlock Block I/O description 38 - 39

Table 3.11 ALU Block I/O description 40

Table 3.12 ALU Block operation 41

Table 3.13 Multiplier Block I/O description 42 - 43

Table 3.14 Boot ROM Unit I/O description 43

Table 3.15 Data and Stack RAM Unit I/O description 44 - 45

Table 4.1 Gantt chart for Project I 49

Table 4.2 Gantt chart for Project II 49

Table 7.1 The utilization report 61

The Design of An Asynchronous RISC Processor

ix

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

List of Figures

Figure Number Title Page

Figure 2.1 The Caltech Asynchronous Processor 8

Figure 2.2 The Fully Asynchronous Processor 9

Figure 2.3 The Non synchronous RISC 10

Figure 2.4 The Counter Flow Pipeline Processor 12

Figure 2.5 The structure of the STRIP processor 13

Figure 2.6 Amulet1 processor organization 14

Figure 3.1 The overview of the processor 18

Figure 3.2 Micro-architecture of the processor 18

Figure 3.3 Instruction execution cycle 20

Figure 3.4 Memory map 21

Figure 3.5
Abstract view of 5-stage asynchronous

processor
22

Figure 3.6
Micro-architecture of datapath with

memory unit
23

Figure 3.7 Main Control Block chip interface 24

Figure 3.8
Arithmetic Logic Control Block chip

interface
28

Figure 3.9 Register File Block chip interface 30

Figure 3.10 Internal operation of Register File Block 31

Figure 3.11 Forwarding Block chip interface 35

Figure 3.12 Interlock Block chip interface 38

Figure 3.13 ALU Block chip interface 40

Figure 3.14 Multiplier Block chip interface 42

Figure 3.15 Boot ROM Unit chip interface 43

Figure 3.16 Data and Stack RAM Unit chip interface 44

The Design of An Asynchronous RISC Processor

x

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1 Synchronous circuit 46

Figure 4.2 Asynchronous circuit 46

Figure 4.3 An asynchronous control circuit 47

Figure 5.1 The Muller C-element 50

Figure 5.2 Muller pipeline 51

Figure 5.3 The 4 phases single-rail pipeline 52

Figure 5.4 The 2 phases single-rail pipeline 53

Figure 5.5
Operation and Implementation of a

capture-pass event controlled latch
53

Figure 5.6
A simple 3-stage 1-bit wide 4-phase

dual-rail pipeline
54

Figure 5.7 An N-bit latch with completion detection 54

Figure 5.8
Illustration of handshaking on a 2-phase

dual-rail channel
55

Figure 5.9 Pipeline with Muller C-element 56

Figure 5.10
Micro-architecture of asynchronous

processor
57

Figure 6.1 The waveform of muller pipeline 58

Figure 6.2 The results of arithmetic instruction 58

Figure 6.3 The results of logical instruction 58

Figure 6.4
The results of STORE, SET_BR and

LWSW
59

Figure 6.5 The results of t_sb, t_lb and t_lbu 59

Figure 6.6 The results of t_sh, t_lh and t_lhu 59

Figure 6.7 The results of swl, swr, lwl and lwr 59

Figure 6.8 The results of multiplication and loop 60

The Design of An Asynchronous RISC Processor

xi

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

List of Abbreviations

RISC Reduced Instruction Set Computing

FPGA Field Programmable Gate Array

MIPS
Microprocessor without Interlocked Pipeline

Stages

ALU Arithmetic Logic Unit

FIFO First-In First-Out

CMOS Complementary Metal Oxide Semiconductor

RTL Register-Transfer Level

HDL Hardware Description Language

The Design of An Asynchronous RISC Processor

1

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1 : Introduction

1.1 Problem statement and Motivation

A 32-bit five stage pipeline asynchronous RISC soft-core can be beneficial in

creating a core-based environment to support research and development work in the

area of developing IP cores. On the other hand, there are restrictions in obtaining such

workable core-based design environment as microprocessors are developed by

microchip design companies as IP for commercial purpose and most of these IP are

trade secret of those companies.

There are some asynchronous processor cores projects available freely online

such as www.opencore.org, www.ics.forth.gr/carv/aspida/ and etc. However, the

asynchronous processor’s micro-architecture included in these projects is not well

presented. Other than that, the Verilog codes wrote in these projects are also hard to

understand because of the confused naming convention used.

Furthermore, the verification plans for the asynchronous processor which

available on the open source are not completed. The lack of complete verification for

the processor will affect the process of design. Therefore, there is a necessary to

develop a verification plan to verify the functionality of the asynchronous processor.

Last but not least, the senior who took this FYP title previously was not able to

finish her work. The outputs of the supported insturctions are incorrect and the

synthesis of the asynchronous processor on FPGA has not been done yet.

The Design of An Asynchronous RISC Processor

2

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Nowadays, there are a lot of digital system designed as synchronous. In

synchronous circuits, the data stored in memory devices named flip-flops. The

flip-flop output the data at discrete instants of time which specified by a clock signal

connected to it. This synchronous circuits built based on two assumptions which are

the signals are in binary and every parts share a same clock signal. (Jens Sparsø &

Steve 2001, p3)

By assuming all signals are in binary, the logic inside the circuit can be illustrated

by simple Boolean logic. Moreover, by assuming every parts share a same clock

signal, something happen inside the circuit can be ignored such as hazards and

feedback. However, when the complexity of system and speed of clock increase,

synchronous design has a lot of problems because of its way of keeping operations in

lock-step execution. The problems are stated below (Hans Jacobson 1996, p13-14):

⚫ Worst Case Performance

The clock frequency determines the speed of asynchronous circuit. The clock

signal should be big enough to run the worst-case delay and this is the reason

why synchronous circuit has worst case performance.

⚫ Clock Skew

Clock skew is defined as difference in arrival times of a clock signal at

different block or stage. All modules of the synchronous circuit need to

operate with a same clock in order to operate correctly. It is difficult to

minimize the clock skew with a large circuit.

⚫ Higher Power Consumption

As synchronous circuit is clocked by a global clock which include those

which are not use at a certain cycle. It toggles some of the node unnecessarily

and this causes higher power consumption. Other than that, switching of the

gate and fanout problem at the root of the clock tree also consume a lot of

power.

The Design of An Asynchronous RISC Processor

3

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

⚫ Easier Influenced by The Variations

Semiconductors mainly affected by process speed of fabrication, power

supply voltage level and temperature. These three properties will cause a

transistor to operate faster or slower. Synchronous circuit need to consider

these physical properties across its entire range in order to ensure the device

is functioning.

⚫ Worse Modularity and Composability

Synchronous designer always take serious consideration on satify the

detailed interfacial timing specifications. Other than that, replacing new parts

do not give advantage to synchronous circuit because one of the part changes,

the clock frequency of the whole circuit also need to be changed either

follows the old clock frequency or adjust other parts to suit the new clock

frequency.

 Asynchronous circuits also assume all signals are in binary but there is no same

clock signal. Other than that, asynchronous circuits is self-timed instead of governed

by a block clock signal. The components inside the circuits use handshaking between

each other in order to communicate. A particular component only clocked when it is

needed.

Unlike synchronous circuits, asynchronous circuits do not suffer from the

problems stated above but it has a lot of advantages which stated below (Jens Sparsø

& Steve 2001, p3-4):

⚫ Averange Case Performance

Asynchronous circuit is controlled by local communications which will

direct initial the next computation when the other one is completed. When

the computation completed early, the new one can start early and this is why

asynchronous circuit does not exhibit worse case perfromance but an

averange case performance.

The Design of An Asynchronous RISC Processor

4

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

⚫ No Clock Skew

Asynchronous circuit is built up with small self-timed circuit which means

there is no global clock signal connected between each other. So, there is no

need to worry about the clock skew.

⚫ Lower Power Consumption

Asynchronous circuit only toggles the block or stage when it is being used,

thus reduring the power consumption.

⚫ Robustness Towards Variations

The self-timed logic and processing logic in asynchronous circuit are located

in the same area, both of them are affected by the same environmental

changes so that it is more unaffected to transient changes.

⚫ Better Modularity and Composability

Asynchronous circuist is simply connect a proper module with a matching

interfacial specifications which means sequences of events that take place but

not include the timing of the event. It saves a lot of time when designing the

asynchronous circuit because of no need to worry about the delays occur

inside the individual module. Other than that, parts of the asynchronous

circuit can be replaced by the new one in order to improve the performance.

The Design of An Asynchronous RISC Processor

5

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.2 Project Scope

There is an enorous field of research which covers widely diverse techniques to

the implementation of asynchronous design. However, this project will only focus on

the goals listed below:

⚫ Architecture of the asynchronous processor.

⚫ Methodologies used to implement the asynchronous processor.

1.3 Project Objectives

The main objective of this project is to design and synthesis the asynchronous

RISC processor, and it still can be divided into several sub-objectives as stated below:

⚫ Design Level

- To design and develop an asynchronous RISC processor that can meet all

the specifications correctly by using Verilog HDL.

⚫ Verification Level

- To develop a complete testbench to verify all the functional correctness of

the asynchronous RISC processor.

⚫ Synthesis Level

- To synthesis and integrate the asynchronous RISC processor which is the

FPGA technology.

The Design of An Asynchronous RISC Processor

6

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.4 Impact, significance and contribution

As a summary to the problem statement, there is a lack of well-developed and

well-founded 32-bit asynchronous RISC processor core-based development

environment. The development environment refers to the availability of the following:

• A well-developed design document, which includes the chip specification,

architecture specification and micro-architecture specification.

• A fully functional well-developed 32-bit asynchronous RISC architecture

core in the form of synthesis-ready RTL written in Verilog HDL.

• A well-developed verification environment for the 32-bit asynchronous RISC

core. The verification specification should contain suitable verification

methodology, verification techniques, test plans, test bench architectures etc.

• A complete physical design in Field Programmable Gate Array (FPGA) with

documented timing and resource usage information.

With the available well-developed basic 32-bit asynchronous RISC RTL model

(which has been fully functional verified), the verification environment and the design

documents, researchers can develop their own specific RTL model as part of the

development environment (whether directly modifying the internals of the processor

or interface to the processor) and can quickly verify their model to obtain results,

without having to worry about the development of the verification environment and

the modeling environment. This can speed up the research work significantly. For

example, a researcher may have developed an image-processing algorithm and

modified the algorithm to obtain a structure that suits the hardware implementation.

The structure can be modeled in Verilog as part of a specialized data-path or as a

coprocessor interfacing to the asynchronous RISC processor.

The Design of An Asynchronous RISC Processor

7

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.5 Background information

A circuit is considered to be asynchronous if it does not employ a periodic clock

signal to synchronize its internal operations, an obvious example is asynchronous

processor. Unlike a conventional processor, the asynchronous processor does not

require a central clock to coordinate the progress of data through the pipeline. The

first asynchronous design came out on 1952 and are widely used in computer during

1960’s. However, during 1970’s, the interest of asynchronous design dropped and

disappeared after the appearance of synchronous design. The main reasons why was

this happened are because of the rapidly growing of complexity of digital systems and

the simplicity offered by synchronous design.

However, with the progress of time and the advance in technology, synchronous

design showed up several problems when higher performance was a need. The

problems include clock skew for high frequency systems, power consumption due to

increase of portability of digital systems and worst case performance. The

asynchronous design does not suffer from the problems. Therefore, attention of the

researchers and designers were created. Today, the semiconductor industry is giving

serious consideration to the adoption of asynchronous circuit technology. There are

some projects from the industry have proven that the design of asynchronous circuit is

achieve the significant benefits stated in (C.H. Van Berkel, M.B. Josephs & S.M.

Nowick 1999, p224-230).

The Design of An Asynchronous RISC Processor

8

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2 : Literature Review

2.1 Literature Review

There are several different asynchronous processors with their own architecture,

type of communication and data transfer protocol discussed by (Tony Werner &

Venkatesh Akella 1997, p.69-76) & (T.Samyuktha & K.Balachandra 2015,

p.10208-10211).

1. Caltech Asynchronous Processor (CAP) (Alan Martin’s group 1980s cited in

Tony Werner & Venkatesh Akella 1997)

⚫ Concurrent processes, 4-phase, dual-rail.

⚫ The earliest known asynchronous processor.

⚫ Dynamic logic families works efficiently with this design.

⚫ 15 MIPS performance is estimated by the designers.

Figure 2.1 : The Caltech Asynchronous Processor

The Design of An Asynchronous RISC Processor

9

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. Fully Asynchronous Processor (FAM) (Kyoung.R.C, Kazum.O, Kunijiro.A

1990s cited in Tony Werner & Venkatesh Akella 1997)

⚫ 4-stage pipeline (see Figure 2.2), 4-phase, dual-rail.

⚫ The processor contains 32 bits data path and 32 of 32 bits general

registers.

⚫ Only 18 instructions are available for this processor. The method to

design asynchronous data path and control path is achieved by this

effort.

⚫ It uses combined instruction and data cache (ALU and register file are

combined). Disadvantage : Conflicts between the two stages need to be

solved.

⚫ Both computation block and interconnection block are used in this

design. Each pipeline stage or computation block are seperated by the

interconnection block and provides space to separate the computation

blocks.

⚫ FAM uses at most two transistors in series to both set and reset the

flip-flops which called 2-AND logic, describing the state of the system.

⚫ 300 MIPS performance is estimated by the designers.

Figure 2.2 : The Fully Asynchronous Processor

The Design of An Asynchronous RISC Processor

10

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Non synchronous RISC (NSR) (Erik.B 1993 cited in Tony Werner &

Venkatesh Akella 1997)

⚫ 5-stage pipeline (see Figure 2.3), 2-phase, bounded-delay.

⚫ The processor contains sixteen 16-bit registers.

⚫ FIFO queues are added between the concurrent blocks to minimize stalls

caused by slower instructions. Each stage accepts data for processing and

passes the result to the next stage by way of FIFO. Potentially, FIFO

could greatly increases the penalties from memory access, branching and

so on. However, the instructions will only pass through the stages which

are needed.

⚫ The validity of the data path is ensured by adding delay to the control

path which called bounded-delay.

⚫ 1.3MIPS perfromance is reported by the disigners.

Figure 2.3 : The Non synchronous RISC

The Design of An Asynchronous RISC Processor

11

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4. Counter Flow Pipeline Processor (CFPP) (Ivan.S 1994 cited in Tony Werner

& Venkatesh Akella 1997)

⚫ 12 stages pipeline (see Figure 2.4).

⚫ For this processor, the data generated by the instructions flow at opposite

direction of the instructions through the pipeline.

⚫ It places program counter and register file at both end respectively.

Before the packets send to the register file, instruction with opcode,

source and destination register binding, and possibly the corresponding

program counter are inserted. Before the instruction is send back to the

program counter, it reads the source operands and then only inserts the

instruction into the pipeline.

⚫ The instruction packet must match with its source operands is the only

requirement to execute in every stage of pipeline.

⚫ This architecture provide register renaming. When the instrction reaches

the register file, it does not need to wait to receive its source operands.

However, the source operands from the result pipeline will be recerived

maybe before updating the register file.

⚫ This processor supports interrupts and a wrongly predicted branches can

be recoverd by inserting an identifier into the results pipeline. The

instructions in front of the identifier keep on move to the register file and

their results are still posted. However, it prevent alter of rigister file by

marking the instructions which follow the indentifier. It will enters

interrupt routine or loads the correct branch destination when the

identifier reached the program counter.

⚫ Long computation delay instructions are executed by using auxiliary

stages or “siblings”.

The Design of An Asynchronous RISC Processor

12

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.4 : The Counter Flow Pipeline Processor

5. Self-Timed RISC Processor (STRIP) (Mark.D cited in Tony Werner &

Venkatesh Akella 1997)

⚫ 5-stage pipeline, dynamic clock, bounded-delay.

⚫ It is a synchronous processor with an adjustable clock, called dynamic

clocking.

⚫ The slowest critical path of current clock cycle determines the clock

period. Optimization for every stage of pipeline and functional unit are

needed.

⚫ C-element and simple pulse generator are used by STRIP. The

propagation delay of a particular critical path represented by a tracking

cell. An active critical paths determine the clock cycle because the

processor will moves those tracking cells which are not needed for to

their next state. Each tracking cells is then input to C-element. When all

tracking cells are completed, the C-element changes to its next state. The

tracking cells are restarted and the pulse generator is activated (see

Figure 2.5).

⚫ The external interface operates on four phases and dual rail protocol.

⚫ It supports precise interrupts because an instructions cannot change the

processor’s state until the write-back stage. The instructions are stopped

and the program counter will set to zero to begin the exception handling

when an interrupt occurs. The addresses of the register fetch and

The Design of An Asynchronous RISC Processor

13

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

instruction decode, ALU and data memory access stages will be saved

by the processor. Restarting the instructions that occupied these stages

are required to recover from the interrupt.

⚫ The memory access time decides the performance of the processor. It

places memory buffers between each instruction and data memory paths

in order to minimize the memory access latency.

⚫ 62.5 MIPS performance is reported by the designers.

Figure 2.5 : The structure of the STRIP processor

6. Superscalar Asynchronous Low Power Processor (SCALP) (University of

Manchester 1996 cited in T.Samyuktha & K.Balachandra 2015)

⚫ Each instruction only specifies the destination of the results but not the

source of their operands. However, they use the values provided by

instruction before it.

⚫ Each instruction has a functional unit identifier which indicates which

functional unit will execute the instruction.

The Design of An Asynchronous RISC Processor

14

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

7. AMULET1 (Steve.F cited in T.Samyuktha & K.Balachandra 2015)

⚫ 6-stage pipeline, 2-phase, bounded-delay.

⚫ Contains thirty 32-bit general registers for register bank. Only 16 are

able to access once, 15th register contains the program counter.

⚫ First fully functional asynchronous processor.

⚫ Two levels of interrupts and the exceptions generated by virtual memory

system are supported by this processor.

⚫ FIFO structure called pc pipe uses to keep the record of program counter

values. If needed, the value which is at the top of the FIFO queue is

transferred along with the instruction to the execute unit. Otherwise, the

value is removed.

⚫ It uses lock FIFO to eliminate register hazards.

⚫ The physical size and transistor count are reduced by utilizing dynamic

logic of the register bank and execute unit.

Figure 2.6 : Amulet1 processor organization

The Design of An Asynchronous RISC Processor

15

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

8. AMULET2e - An Asynchronous Embedded Controller (Steve.F cited in

T.Samyuktha & K.Balachandra 2015)

⚫ It is designed as embedded system chip with an enhanced ARM core a

4Kbyte pipelined cache, a flexible memory interface and assorted

programmable control functions.

⚫ It also consists of counter-timer for real time reference.

⚫ AMULET2e silicon demonstrates competitive performance, power

efficiency and ease of design.

⚫ Pipeline reorganization was done with respect to AMULET1.

9. AMULET3 (Steve.F cited in T.Samyuktha & K.Balachandra 2015)

⚫ It is a fully asynchronous implementation of ARM architecture which

including 16 bit thumb instruction set.

⚫ Suitable for low power processor.

⚫ It is equal to a 32-bit embedded processor in energy efficiency and was

developed for microcontroller applications.

The Design of An Asynchronous RISC Processor

16

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 Data Collection

The table below shows the comparison between several asynchronous processors

with diffrent architecture, protocol, technology and performance discussed by (Tony

Werner & Venkatesh Akella 1997, p.69-76) & (T.Samyuktha & K.Balachandra 2015,

p.10208-10211).

Microprocessor Architecture Protocol Technology Performance

Caltech

Asynchronous

Processor

(CAP)

Concurrent

processes

4-phase,

dual-rail
2 - µm CMOS 15 MIPS

Fully

Asynchronous

Processor

(FAM)

4-stage

pipeline

4-phase,

dual-rail

0.5 - µm

CMOS
300 MIPS

Non

synchronous

RISC (NSR)

5-stage

pipeline

2-phase,

bounded-delay
Actel FPGAs 1.3 MIPS

Self-Timed

RISC Processor

(STRIP)

5-stage

pipeline
dynamic clock 2 - µm CMOS 62.5 MIPS

AMULET1
6-stage

pipeline

2-phase,

bounded-delay
1 - µm CMOS 9K Dhrystones

Table 2.1 : Comparison between different type of asynchronous processor

The Design of An Asynchronous RISC Processor

17

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.3 Critical Remarks of Previous Works

It can been seen that asynchronous circuits have more advantages than

synchronous circuits but it also have its own limitations. These limitations are stated

below (Hans Jacobson 1996, p15-16):

⚫ Hazards. Asynchronous circuits are easily influenced by glitches and

hazards because it depend on the events within the wire to communicate.

Therefore, it is important to take care of it during state of synthesis in order

to remove the chance of function and logic hazards. Other than that, the

result of the circuit is also sensitive to glitches.

⚫ Latency with Handshake. The method where asynchronous circuits used to

communicate will slow down the performance due to handshake overhead.

The communicating elements are put close to each other in order to solve the

problem.

⚫ Different Design Methodologies. Inconsistent of specification and

implementation styles caused by different methodologies used to design the

asynchronous circuit. It is hard to compare the differences of those systems

and also difficult to pull off on exiting works.

⚫ Immature Synthesis Methodologies. There is a must for mature synthesis

methodologies in order to let asynchronous design to be accepted by those

synchronous designers and industry. Unfortunately, there are many methods

are still in their early stages of research. Other than that, it also has not yet

been modeled with real industrial designs.

The Design of An Asynchronous RISC Processor

18

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3 : Hardware Development

3.1 System Overview

The asynchronous RISC processor built with 2 major parts which are Central

Processing Unit (CPU) and Memory Unit. It is compatible to a 5-stage 32-bit MIPS

Instruction Set Architecture (ISA). It supports instructions included arithmetic, logic,

data memory access, program control and etc. The memory unit consists of Boot

ROM, Stack RAM and Data RAM.

Figure 3.1 : The overview of the processor

3.1.1 Design Hierarchy

Other than that, the processor is divided into two main units which are datapath

unit and control unit. Datapath unit is a collection of functional units and control unit

is to generate control signals to datapath. Moreover, both datapath unit and control

unit can be further split into smaller blocks. (Chip -> Unit -> Block)

Figure 3.2 : Micro-architecture of the processor

The Design of An Asynchronous RISC Processor

19

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

crisc

Datapath Unit

(udata_path)

Address Decoder Block

(baddr_decoder)

ALU Block

(balb)

Forwarding Block

(bfwl_ctrl)

Interlock Block

(bitl_ctrl)

Multiplier Block

(bmult32)

adder_lvl1

adder_lvl1_firstrow

add_lvl1_lastrow

adder_lvl2

adder_lvl2_lastrow

adder_lvl3

adder_lvl4

adder_lvl5

sub_lvl1_lastrow

Register Block

(brf)

Muller Pipeline Block

(bmp)

Muller C Gate

(mcg)

Muller C Element

(mce)

Control Path Unit

(uctrl_path)

Arithmetic Logic Control Block

(balb_ctrl)

Main Control Block

(bmain_ctrl)

Data and Stack

RAM Unit

(uram)

Boot ROM Unit

(uboot_rom)

Table 3.1 : Design hierarchy of the processor

The Design of An Asynchronous RISC Processor

20

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.2 Internal Operation

Stage 1 : Instruction Fetch (IF)

⚫ Intruction fetched from instruction memory

⚫ Pragram counter (PC) incremented

Stage 2 : Instruction Decode (ID)

⚫ Opcode and funct are gathered and decoded

⚫ Read data from register file

Stage 3 : Execution (EX)

⚫ Execute R-type, calculate memory address

⚫ Computation of most instructions are done except jump

Stage 4 : Memory (MEM)

⚫ Read/write the data from/to the data memory

⚫ Only load and store instructions are active in this stage

Stage 5 : Write Back (WB)

⚫ Write the result data into the register file

Figure 3.3 : Instruction execution cycle

The Design of An Asynchronous RISC Processor

21

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.3 Memory Map

Figure 3.4 : Memory map

MIPS memory location is divided into 3 parts, namely text segment, data segment

and stack segment.

Text segment (0x0040 0000 - 0xFFFF FFFC) is used to hold the program’s

instruction.

Data segment is divided into:

-Static data segment (0x1000 0000 - 0x1000 FFFB)

• Holds object whose lifetime is the program’s entire execution

• Cease to exist only after execution completes

-Dynamic data segment or heap (0x1000 FFFF - ?)

• Holds variables declared dynamically as in structures that grow and shrink

• Heap size is not known in advance, so locations are not assigned during compile

time.

Stack segment (0x7FFF FFFC - ?) is used by procedure during execution to store

register values. Stack size is not known in advance, so locations are not assigned

during compile time

The Design of An Asynchronous RISC Processor

22

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 CPU

3.2.1 Pipeline Micro-architecture

Figure 3.5 : Abstract view of 5-stage asynchronous processor

At IF stage, an instruction is fetched from the Boot ROM or I-MEM and

registered to the IF/ID pipeline registers. At ID stage, the instruction that registered in

the IF/ID pipeline registers will be decoded by the Main Control block and the

Arithmetic Logic Control block. Signals output from both hardware components will

be registered to the ID/EX pipeline registers and also pass to the remaining hardware

components in the ID stage, i.e. Register File. At the same time, IF stage continues to

fetch the consecutive instruction from the I-MEM. At EX stage, ALU block covers all

the operation except the multiplication operation. Multiplier block starts the

multiplication operation at EX stage and requires 2 clock cycles (EX and MEM stages)

to perform a multiplication operation on two 32-bit operands. At the MEM stage, only

load and store instructions are permitted to perform the operation, in which other

instructions are bypassing this stage. Load or store instruction is used to access the

memory components at the MEM stage, i.e. D-MEM and Data and Stack RAM. At

WB stage, the result of the operation is updated. Data hazards always exist in a

pipeline processor.

The Design of An Asynchronous RISC Processor

23

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Data hazards can cause the computational error when multiple instructions are

overlapped during execution. The data hazard occurs due to Read-after-Write (RAW)

data dependencies, which involve accessing the processor’s system registers, i.e.

Register File and HILO register. Extra circuitries (forwarding and interlock) are

required to resolve the data hazards arise. However, the high computational speed

achieved by pipelined processor still outweighs its counterparts and remains a popular

choice in processor design.

Figure 3.6 : Micro-architecture of datapath with memory unit

The Design of An Asynchronous RISC Processor

24

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3 Design Block Specification

3.3.1 Main Control Block

The Main Control block is used to decode a 32-bit instruction machine code and

generate control signals to represent the unique identity of each instruction. The

control signals identify the source of operands, destination to save the result and the

respective operation to operate. The Main Control block consists of only

combinational logic, which the decoding can be done within one clock cycle. Figure

3.7 shows the chip interface of the Main Control Block and describes the function of

each pin on Main Control Block.

Figure 3.7 : Main Control Block chip interface

Pin name: bimc_opcode[5:0] Pin direction: input

Source -> Destination: Data-path Unit -> Main Control Block

Pin function: Instruction opcode field

Pin name: bimc_funct[5:0] Pin direction: input

Source -> Destination: Data-path Unit -> Main Control Block

Pin function: Instruction funct field

Pin name: bimc_rs[4:0] Pin direction: input

Source -> Destination: Data-path Unit -> Main Control Block

Pin function: Instruction rs field

Pin name: bomc_alb_src Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Register File data or forwarding data is selected

0: Immediate data is selected

Pin name: bomc_rd_src Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate $rd as destination register

0: Indicate $rt as destination register

The Design of An Asynchronous RISC Processor

25

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Pin name: bomc_alb_op[3:0] Pin direction: output

Source -> Destination: Main Control Block -> Arithmetic Logic Control Block

Pin function: Encoded opcode for Arithmetic Logic Control Block to produce

optimized signal to ALU

Pin name: bomc_mult_en Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate mult instruction is executing

0: Indicate mult instruction is not execute

Pin name: bomc_sign_mult Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate mult or multu instruction is executing

0: Indicate mult and multu instruction is not executing

Pin name: bomc_rf_wr Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Enable write to Register File

0: Disable write to Register File

Pin name: bomc_sw Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Store word (32-bit data)

1: Indicate sw, swl or swr instruction is executing

0: Indicate sw, swl and swr instructions are not executing

Pin name: bomc_swl Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Unaligned store word left (32-bit data)

1: Indicate swl instruction is executing

0: Indicate swl instruction is not executing

Pin name: bomc_swr Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Unaligned store word right (32-bit data)

1: Indicate swr instruction is executing

0: Indicate swr instruction is not executing

Pin name: bomc_lw Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Load word (32-bit data)

1: Indicate lw, lwl or lwr instruction is executing

0: Indicate lw, lwl and lwr instructions are not executing

Pin name: bomc_lwl Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Unaligned load word left (32-bit data)

1: Indicate lwl instruction is executing

0: Indicate lwl instruction is not executing

Pin name: bomc_lwr Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Unaligned load word right (32-bit data)

1: Indicate lwr instruction is executing

0: Indicate lwr instruction is not executing

Pin name: bomc_sh Pin direction: output

The Design of An Asynchronous RISC Processor

26

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Store half-word (16-bit data)

1: Indicate sh instruction is executing

0: Indicate sh instruction is not executing

Pin name: bomc_sh Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Store half-word (16-bit data)

1: Indicate sh instruction is executing

0: Indicate sh instruction is not executing

Pin name: bomc_lhu Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Load half-word unsigned (16-bit data)

1: Indicate lhu instruction is executing

0: Indicate lhu instruction is not executing

Pin name: bomc_sb Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Store byte (8-bit data)

1: Indicate sb instruction is executing

0: Indicate sb instruction is not executing

Pin name: bomc_lb Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Load byte (8-bit data), sign extend required (refer uipr_load_sign_ext)

1: Indicate lb instruction is executing

0: Indicate lb instruction is not executing

Pin name: bomc_lbu Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Load byte unsigned (8-bit data)

1: Indicate lbu instruction is executing

0: Indicate lbu instruction is not executing

Pin name: bomc_load_sign_ext Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate lh or lb instruction is executing, sign extend 16-bit to lh or 24-bit to lb

0: Indicate lh or lb instructions are not executing

Pin name: bomc_sign_ext Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Immediate data sign extend

0: Immediate data zero extend

Pin name: bomc_mem_to_rf Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Data memory data to Register File

0: ALU block result to Register File

Pin name: bomc_alb_to_rf Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function: Reserved for future development

Pin name: bomc_hi_to_rf Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

The Design of An Asynchronous RISC Processor

27

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1: HI register data to Register File

0: LO register data to Register File

Pin name: bomc_hilo_acc Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate mflo or mfhi instruction is executing

0: Indicate mflo and mfhi instructions are not executing

Pin name: bomc_jump Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate j instruction is executing

0: Indicate j instruction is not executing

Pin name: bomc_jr Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate jr instruction is executing

0: Indicate jr instruction is not executing

Pin name: bomc_jal Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate jal instruction is executing

0: Indicate jal instruction is not executing

Pin name: bomc_jalr Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate jalr instruction is executing

0: Indicate jalr instruction is not executing

Pin name: bomc_beq Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate beq instruction is executing

0: Indicate beq instruction is not executing

Pin name: bomc_bne Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate bne instruction is executing

0: Indicate bne instruction is not executing

Pin name: bomc_blez Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate blez instruction is executing

0: Indicate blez instruction is not executing

Pin name: bomc_bgtz Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate bgtz instruction is executing

0: Indicate bgtz instruction is not executing

Pin name: bomc_lui Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

The Design of An Asynchronous RISC Processor

28

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1: Indicate lui instruction is executing

0: Indicate lui instruction is not executing

Pin name: bomc_rtype Pin direction: output

Source -> Destination: Main Control Block -> Data-path Unit

Pin function:

1: Indicate R-type instruction is executing

0: Indicate I-type or J-type instruction is executing

Table 3.2 : Main Control Block I/O description

3.3.2 Arithmetic Logic Control Block

The Arithmetic Logic Control block generates the optimized control signals

which will be used by the ALU block to perform the operation. The decoding is

completed within one clock cycle. The chip interface of the Arithmetic Logic Control

Block is shown in Figure 3.8.

Figure 3.8 : Arithmetic Logic Control Block chip interface

Pin name: bialc_funct[5:0] Pin direction: input

Source -> Destination: PR unit -> Arithmetic Logic Control Block

Pin function: Instruction funct field

Pin name: bialc_op[3:0] Pin direction: input

Source -> Destination: Main Control Block -> Arithmetic Logic Control Block

Pin function: Decoded ALU operation signal from Main Control Block

Pin name: boalc_ctrl[5:0] Pin direction: output

Source -> Destination: Arithmetic Logic Control Block -> PR unit -> Data-path Unit

Pin function:

boalc_ctrl[5]-1: Disable sign overflow

 0: Enable sign overflow to occurs

boalc_ctrl[4]-1: Inverting operand B of the ALU to perform subtraction

 0: No invert required

boalc_ctrl[3:2]- 00: Final output from the shift operation

 01: Final output from the logical operation

 10: Final output from the summation

 11: Final output from the set-on-less-than operation

Table 3.3 : Arithmetic Logic Control Block I/O description

The Design of An Asynchronous RISC Processor

29

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.3 Register File Block

The Register File block consists of thirty-two 32-bit registers. It is designed with

dual read ports and single write port to accommodate the register accessing

requirement from the MIPS ISA. Source register operand ($rs) and target register

operand ($rt) specify for the registers read address, while either target register

operand ($rt) or destination register operand ($rd) specify the register write address.

Table 3.4 shows the conventional usage of each register in the Register File set by

MIPS ISA.

Register

No.

Code Register

Name

Usage

0 00000 $zero The constant value 0

1 00001 $at Assembler temporary

2 00010 $v0 Values for function results and expression evaluation

3 00011 $v1 Values for function results and expression evaluation

4 00100 $a0 Arguments

5 00101 $a1 Arguments

6 00110 $a2 Arguments

7 00111 $a3 Arguments

8 01000 $t0 Temporaries

9 01001 $t1 Temporaries

10 01010 $t2 Temporaries

11 01011 $t3 Temporaries

12 01100 $t4 Temporaries

13 01101 $t5 Temporaries

14 01110 $t6 Temporaries

15 01111 $t7 Temporaries

16 10000 $s0 Saved temporaries

17 10001 $s1 Saved temporaries

18 10010 $s2 Saved temporaries

19 10011 $s3 Saved temporaries

20 10100 $s4 Saved temporaries

21 10101 $s5 Saved temporaries

22 10110 $s6 Saved temporaries

23 10111 $s7 Saved temporaries

24 11000 $t8 Temporaries

25 11001 $t9 Temporaries

26 11010 $k0 Reserved for OS kernel

27 11011 $k1 Reserved for OS kernel

28 11100 $gp Global pointer

29 11101 $sp Stack pointer

30 11110 $fp Frame pointer

31 11111 $ra Return address

Table 3.4 : Conventional usange of the registers in Register File Block

The Design of An Asynchronous RISC Processor

30

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.9 : Register File Block chip interface

Pin name: birf_rs5[4:0] Pin direction: input

Source -> Destination: Data-path Unit -> Register File Block

Pin function: Instruction rs field

Pin name: birf_rt5[4:0] Pin direction: input

Source -> Destination: Data-path Unit -> Register File Block

Pin function: Instruction rt field

Pin name: birf_wr_data1[4:0] Pin direction: input

Source -> Destination: Data-path Unit -> Register File Block

Pin function: Data to be written into Register File

Pin name: birf_wr_addr1[4:0] Pin direction: input

Source -> Destination: Data-path Unit -> Register File Block

Pin function: Address of the register to be updated in Register File

Pin name: birf_wr_en1 Pin direction: input

Source -> Destination: Data-path Unit -> Register File Block

Pin function:

1: Enable write to Register File

0: Disable write to Register File

Pin name: birf_en Pin direction: input

Source -> Destination: Data-path Unit -> Register File Block

Pin function: Global

1: Enable signal

0: No enable signal

Pin name: borf_rs32[31:0] Pin direction: output

Source -> Destination: Register File Block -> Data-path Unit

Pin function: $rs 32-bit data

Pin name: borf_rt32[31:0] Pin direction: output

Source -> Destination: Register File Block -> Data-path Unit

Pin function: $rt 32-bit data

Table 3.5 : Register File Block I/O description

The Design of An Asynchronous RISC Processor

31

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.10 describes the internal operation of the Register File block. There are

three 5-bit multiplexers used to select over thirty-two registers. The write access to the

register starts when enable is asserted while the combinational read accesses of the

registers allow the updated result to be used in the consecutive instruction. This is to

avoid the data hazard that might arise when both read and write access to the same

register happen at the same time.

Figure 3.10 : Internal operation of Register File Block

The Design of An Asynchronous RISC Processor

32

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.4 Forwarding Block

 Data hazards exist when the processor is designed in the pipeline structure. Data

hazard occurs due to Read-after-Write (RAW) data dependency. According to MIPS

ISA, Register File block will only be updated at WB stage. Both read (ID stage) and

write (WB stage) to Register File block is occurred in two different stages, thus, an

instruction may attempt to read Register File block before it is updated with the latest

data. Our approach resolves all the data hazards (except load-use hazard) that might

arise within the range of basic MIPS ISA core instructions, using the Forwarding

block. The data hazards that can be resolved using data forwarding are divided into 4

groups in relation to the system registers: General Condition of Register File, $ra

Register, Load-store and HILO Register.

For General Condition of Register File related data hazards, the data forwarding

is performed as earlier as possible, i.e. from EX or MEM stages to ID stage. This can

reduce the power consumption and pipeline size due to lesser control unit signals

passing through the pipeline structure. Another small advantage is to balance the stage

propagation delay of ID and EX stage: the propagation delay of ALU in EX stage is

longer than RF in ID stage. Table 3.6 shows the combination of instructions that

causes data hazard grouped under general condition of Register File related data

hazards.

The Design of An Asynchronous RISC Processor

33

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1
add $1, $1, $1

add $1, $1, $1
2

add $1, $1, 0x0

add $1, $1, $1
3

add $1, $1, $1

addi $1, $1, 0x0
4

addi $1, $1, 0x0

addi $1, $1, 0x0

5
add $1, $1, $1

lw $1, 100($1)
6

addi $1, $1, 0x0

lw $1, 100($1)
7

add $1, $1, $1

sw $1, 100($1)
8

addi $1, $1, 0x0

sw $1, 100($1)

9
add $1, $1, $1

beq $1, $1, 100
10

addi $1, $1, 0x0

beq $1, $1, 100
11

add $ra, $ra, $ra

jr $ra
10

addi $ra, $ra, 0x0

jr $ra

13
add $1, $1, $1

mult $1, $1
14

addi $1, $1, 0x0

mult $1, $1
15

add $1, $1, $1

mtc0 $1, $epc
16

addi $1, $1, 0x0

mtc0 $1, $epc

17
add $ra, $ra, $ra

jalr $ra
18

addi $ra, $ra, 0x0

jalr $ra
19

add $1, $1, $1

nop

add $1, $1, $1

20

addi $1, $1, 0x0

nop

add $1, $1, $1

21

add $1, $1, $1

nop

addi $1, $1, 0x0

22

addi $1, $1, 0x0

nop

addi $1, $1, 0x0

23

add $1, $1, $1

nop

lw $1, 100($1)

24

addi $1, $1, 0x0

nop

lw $1, 100($1)

25

add $1, $1, $1

nop

sw $1, 100($1)

26

addi $1, $1, 0x0

nop

sw $1, 100($1)

27

add $1, $1, $1

nop

beq $1, $1, 100

28

addi $1, $1, 0x0

nop

beq $1, $1, 100

29

add $ra, $ra, $ra

nop

jr $ra

30

addi $ra, $ra, 0x0

nop

jr $ra

31

add $1, $1, $1

nop

mult $1, $1

32

addi $1, $1, 0x0

nop

mult $1, $1

33

add $1, $1, $1

nop

mtc0 $1, $epc

34

addi $1, $1, 0x0

nop

mtc0 $1, $epc

35

add $ra, $ra, $ra

nop

jalr $ra

36

addi $ra, $ra, 0x0

nop

jalr $ra

37

lw $1, 100($1)

nop

lw $1, 100($1)

38

lw $1, 100($1)

nop

sw $1, 100($1)

39

lw $1, 100($1)

nop

mult $1, $1

40

lw $1, 100($1)

nop

mult $1, $1

41

lw $1, 100($1)

nop

jr $ra

42

lw $1, 100($1)

nop

jalr $ra

43

lw $1, 100($1)

nop

mtc0 $1, $epc

Table 3.6 : General condition of Register File related data hazards

 The $ra register related data hazards arises when the processor issued an

unconditional branch instruction such as jump and link, (jal) and jump and link

register, (jalr) which updates the $ra register with the address of the next instruction

(PC+4). However, the consecutive instruction right after jal or jalr will read the old

value of $ra register at ID stage. jal will update the $ra register at WB stage, but the

corresponding address value (PC+4) in $ra register is needed earlier by the

consecutive instructions at ID stage. Thus, data forwarding should take place to

resolve this problem. Table 3.7 shows the combination of instructions that causes data

hazard grouped under $ra register related data hazards.

The Design of An Asynchronous RISC Processor

34

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1
jal 10000

add $ra, $ra, $ra
2

jalr $ra

add $ra, $ra, $ra
3

jal 10000

lw $ra, 100($ra)
4

jalr $ra

lw $ra, 100($ra)

5
jal 10000

sw $ra, 100($ra)
6

jalr $ra

sw $ra, 100($ra)
7

jal 10000

lw $ra, $ra, 100
8

jalr $ra

beq $ra, $ra, 100

9
jal 10000

jr $ra
10

jalr $ra

jr $ra
11

jal 10000

jalr $ra
12

jalr $ra

jalr $ra

13
jal 10000

mult $ra
14

jalr $ra

mult $ra, $ra
15

jal 10000

jalr $ra
16

jalr $ra

mtc0 $ra, $epc

17

jal 10000

nop

addi $ra, $ra, 0x0

18

jalr $ra

nop

addi $ra, $ra, 0x0

19

jal 10000

nop

add $ra, $ra, $ra

20

jalr $ra

nop

add $ra, $ra, $ra

21

jal 10000

nop

addi $ra, $ra, 0x0

22

jalr $ra

nop

addi $ra, $ra, 0x0

23

jal 10000

nop

lw $ra, 100($ra)

24

jalr $ra

nop

lw $ra, 100($ra)

25

jal 10000

nop

sw $ra, 100($ra)

26

kalr $ra

nop

sw $ra, 100($ra)

27

jal 10000

nop

beq $ra, $ra, 100

28

jalr $ra

nop

beq $ra, $ra, 100

29

jal 10000

nop

jr $ra

30

jalr $ra

nop

jr $ra

31

jal 10000

nop

jalr $ra

32

jalr $ra

nop

jalr $ra

33

jal 10000

nop

mult $ra, $ra

34

jalr $ra

nop

mult $ra, $ra

35

jal 10000

nop

mtc0 $ra, $epc

36

jalr $ra

nop

mtc0 $ra, $epc

Table 3.7 : $ra register relater data hazards

 A load-store hazard has the similar characteristics as load use hazard, which the

RAW dependency exists between the combinations of instructions started with a load

instruction. However, it can be resolved by using data forwarding. By referring to the

MIPS ISA convention, the registers used for load and store instruction can be

classified into two usages, one for holding address ($rs) and another for holding data

($rt). Address calculation of the store instruction is performed at the EX stage: $rs

should be ready before going into the ALU unit for address calculation. Since the data

of the load instruction is only available at the MEM stage onwards, it requires

pipeline stages stalling when the consecutive instruction relies on the respective data

to perform calculation in the EX stage. In contrast, for the case where the store

instruction not using the data of the load instruction in the EX stage but requires the

data at MEM stage, the data can be forwarded from the MEM stage to EX stage of the

consecutive instruction.

 The HILO register related data hazards may arise in two scenarios:

1. when after multiplication, the result is to be read by either mflo or mfhi, but it

is not ready for reading until at the WB stage. The multiplication result should

be forwarded from MEM stage to EX stage.

The Design of An Asynchronous RISC Processor

35

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. when the processor copies the HILO register’s data to the Register File,

reading the same register in the Register File before it is updated. The HILO

register’s data should be forwarded from the EX or MEM stage to ID stage.

The combination of instructions shown in Table 3.8 cover both situations grouped

under HILO register related data hazards.

1
mult $1, $1

mflo $1
2

mult $1, $1

mfhi $1
3

mflo $1 / mfhi $1

add $1, $1, $1
4

mflo $1 / mfhi $1

addi $1, $1, 0x0

5
mflo $1 / mfhi $1

lw $1, 100($1)
6

mflo $1 / mfhi $1

sw $1, 100($1)
7

mflo $1 / mfhi $1

mult $1, $1
8

mflo $1 / mfhi $1

beq $1, $1, 100

9

mflo $1 / mfhi $1

nop

add $1, $1, $1

10

mflo $1 / mfhi $1

nop

addi $1, $1, 0x0

11

mflo $1 / mfhi $1

nop

lw $1, 100($1)

12

mflo $1 / mfhi $1

nop

sw $1, 100($1)

13

mflo $1 / mfhi $1

nop

mult $1, $1

14

mflo $1 / mfhi $1

nop

beq $1, $1, 100

Table 3.8 HILO register related data hazards

 Figure 3.11 shows the chip interface of the Forwarding block and Table 3.9

describes the function of each pin.

Figure 3.11 : Forwarding Block chip interface

Pin name: bifw_ex_jal Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

Block

Pin function: Only use in pipeline microarchitecture, indicate a jal instruction is in EX

stage

Pin name: bifw_ex_jalr Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

The Design of An Asynchronous RISC Processor

36

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Block

Pin function: Only use in pipeline microarchitecture, indicate a jalr instruction is in

EX stage

Pin name: bifw_ex_rf_wr Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

Block

Pin function: Only use in pipeline microarchitecture, indicate enable write to Register

File operation is in EX stage

Pin name: bifw_ex_hilo_acc Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

Block

Pin function: Only use in pipeline microarchitecture, indicate a mflo or mfhi

instruction is in EX stage

Pin name: bifw_ex_hi_to_rf Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

Block

Pin function: Only use in pipeline microarchitecture, indicate a mfhi instruction is in

EX stage

Pin name: bifw_mem_jal Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

Block

Pin function: Only use in pipeline microarchitecture, indicate a jal instruction is in

MEM stage

Pin name: bifw_mem_jalr Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

Block

Pin function: Only use in pipeline microarchitecture, indicate a jalr instruction is in

MEM stage

Pin name: bifw_mem_rf_wr Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

Block

Pin function: Only use in pipeline microarchitecture, indicate enable write to Register

File operation in MEM stage

Pin name: bifw_mem_load Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

Block

Pin function: Only use in pipeline microarchitecture, indicate a lw, lwl, lwr, lh, lhu, lb

or lbu instruction is in MEM stage

Pin name: bifw_mem_mult Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

Block

Pin function: Only use in pipeline microarchitecture, indicate a mult or multu

instruction is in MEM stage

Pin name: bifw_id_rs5[4:0] Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

Block

Pin function: Only use in pipeline microarchitecture, address of source register in ID

stage

Pin name: bifw_id_rt5[4:0] Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchitecture) -> Forwarding

The Design of An Asynchronous RISC Processor

37

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Block

Pin function: Only use in pipeline microarchitecture, address of target register in ID

stage

Pin name: bifw_ex_rt5_rd5[4:0] Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

Block

Pin function: Only use in pipeline microarchitecture, address of destination register in

EX stage

Pin name: bifw_mem_rt5_rd5[4:0] Pin direction: input

Source -> Destination: Data-path Unit (Pipeline microarchiecture) -> Forwarding

Block

Pin function: Only use in pipeline microarchitecture, address of destination register in

MEM stage

Pin name: bofw_rs32_ctrl[2:0] Pin direction: output

Source -> Destination: Forwarding Block -> Data-path Unit (Pipeline

microarchiecture)

Pin function: Only use in pipeline microarchitecture, used as the forward control

signal for the rs path

Pin name: bofw_rt32_ctrl[2:0] Pin direction: output

Source -> Destination: Forwarding Block -> Data-path Unit (Pipeline

microarchiecture)

Pin function: Only use in pipeline microarchitecture, used as the forward control

signal for the rt path

Pin name: bofw_rt32_ctrl[2:0] Pin direction: output

Source -> Destination: Forwarding Block -> Data-path Unit (Pipeline

microarchiecture)

Pin function: Only use in pipeline microarchitecture, used as the forward control

signal for the rt path

Pin name: bofw_rt32_ctrl[2:0] Pin direction: output

Source -> Destination: Forwarding Block -> Data-path Unit (Pipeline

microarchiecture)

Pin function: Only use in pipeline microarchitecture, used as the forward control

signal for the rt path

Table 3.9 : Forwarding Block I/O description

The Design of An Asynchronous RISC Processor

38

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.5 Interlock Block

Our previous work (Kiat, W. P. et al., 2017) also covers resolving the load-use

hazard in pipeline processor using Interlock block. Load-use hazard occurs when the

consecutive instruction performs a read access to the same register that used by a load

instruction to store new memory data. The Interlock block is responsible to detect

such condition, stall IF and ID stage and insert a nop at the EX stage. Figure 3.12

shows the chip interface of the Interlock block and Table 3.10 describes the function

of each pin.

Figure 3.12 : Interlock Block chip interface

Pin name: biitl_id_load Pin direction: input

Source -> Destination: Data-path Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, indicate a lw, lwl, lwr, lh, lhu, lb

or lbu instruction is in ID stage

Pin name: biitl_id_store Pin direction: input

Source -> Destination: Data-path Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, indicate a sw, swl, swr, sh or sb

instruction is in ID stage

Pin name: biitl_id_rtype Pin direction: input

Source -> Destination: Data-path Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture

1: Indicate a R-type instruction is in ID stage

0: Indicate a J-type or I-type instruction is in ID stage

Pin name: biitl_ex_load Pin direction: input

Source -> Destination: Data-path Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, indicate a lw, lwl, lwr, lh, lhu, lb

or lbu instruction is in EX stage

Pin name: biitl_id_rs5[4:0] Pin direction: input

Source -> Destination: Data-path Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, address of source register in ID

stage

Pin name: biitl_id_rt5[4:0] Pin direction: input

Source -> Destination: Data-path Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, address of target register in ID

stage

The Design of An Asynchronous RISC Processor

39

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Pin name: biitl_ex_rt5[4:0] Pin direction: input

Source -> Destination: Data-path Unit -> Interlock Block

Pin function: Only use in pipeline microarchitecture, address of target register in EX

stage

Pin name: boitl_ld_use_pc_en Pin direction: output

Source -> Destination: Interlock Block -> Data-path Unit

Pin function: Only use in pipeline microarchitecture

1: No stall on PC register

0: Stall PC register

Pin name: boitl_ld_use_ifid_en Pin direction: output

Source -> Destination: Interlock Block -> Data-path Unit

Pin function: Only use in pipeline microarchitecture

1: No stall on IF/ID pipeline register

0: Stall IF/ID pipeline register

Pin name: boitl_idex_en Pin direction: output

Source -> Destination: Interlock Block -> Data-path Unit

Pin function: Reserved for future development, temporary always enable

Pin name: boitl_exmem_en Pin direction: output

Source -> Destination: Interlock Block -> Data-path Unit

Pin function: Reserved for future development, temporary always enable

Pin name: boitl_memwb_en Pin direction: output

Source -> Destination: Interlock Block -> Data-path Unit

Pin function: Reserved for future development, temporary always enable

Pin name: boitl_ld_use_flush_ex Pin direction: output

Source -> Destination: Interlock Block -> Data-path Unit

Pin function: Only use in pipeline microarchitecture

1: Flush ID/EX stage pipeline register

0: No pipeline register flush is requires

Table 3.10 : Interlock Block I/O description

The Design of An Asynchronous RISC Processor

40

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.6 ALU Block

The Arithmetic Logic Unit (ALU) block is used to perform the operation of an

instruction. Figure 3.13 shows the chip interface of the ALU block, describes the

function of each pin and Table 3.12 shows the input control signals with respect to the

operation of each instruction.

Figure 3.13 : ALU Block chip interface

Pin name: bialb_op_a[31:0] Pin direction: input

Source -> Destination: Data-path Unit -> ALU Block

Pin function: ALU operand

Pin name: bialb_op_b[31:0] Pin direction: input

Source -> Destination: Data-path Unit -> ALU Block

Pin function: ALU operand

Pin name: bialb_ctrl[5:0] Pin direction: input

Source -> Destination: Data-path Unit -> ALU Block

Pin function: ALU operation to perform

Pin name: bialb_shamt[4:0] Pin direction: input

Source -> Destination: Data-path Unit -> ALU Block

Pin function: Shift amount

Pin name: boalb_out[31:0] Pin direction: output

Source -> Destination: ALU Block ->Data-path Unit

Pin function: ALU output result

Pin name: boalb_ovfs Pin direction: output

Source -> Destination: ALU Block ->Data-path Unit

Pin function:

1: Sign overflow has occur

0: No sign overflow occur

Pin name: boalb_zero Pin direction: output

Source -> Destination: ALU Block ->Data-path Unit

Pin function:

1: ALU output result is zero

0: ALU output result is not zero

Table 3.11 : ALU Block I/O description

The Design of An Asynchronous RISC Processor

41

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

No. Instruction bialb_ctrl[5:0]

1 add 001000

2 addu 101001

3 sub 011010

4 subu 111011

5 mult 100100

6 multu 100100

7 mfhi 100100

8 mflo 100100

9 and 100100

10 or 100101

11 xor 100110

12 nor 100111

13 sll 100000

14 srl 100010

15 sra 100011

16 slt 111110

17 sltu 111111

18 jr 100100

19 jalr 100100

20 addi 001000

21 addiu 101000

22 andi 100100

23 ori 100101

24 xori 100110

25 lui 100001

26 lw 101000

27 lwl 101000

28 lwr 101000

29 lh 101000

30 lhu 101000

31 lb 101000

32 lbu 101000

33 sw 101000

34 swl 101000

35 swr 101000

36 sh 101000

37 sb 101000

38 slti 111110

39 sltiu 111111

40 beq 100100

41 bne 100100

42 blez 100100

43 bgtz 100100

44 j 100100

45 jal 100100

Table 3.12 : ALU Block operation

The Design of An Asynchronous RISC Processor

42

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.7 Multiplier Block

The Multiplier block is developed based on the Booth algorithm. It is used to

perform multiplication operation on two 32-bit values from the Register File block

and stored the 64-bits result in the HILO register. Figure 3.14 shows the chip interface

of the Multiplier block and Table 3.13 describes the function of each pin.

Figure 3.14 : Multiplier Block chip interface

Pin name: bimult32_mulcn[31:0] Pin direction: input

Source -> Destination: Data-path Unit -> Multiplier Block

Pin function: Multiplier operand

Pin name: bimult32_mulpl[31:0] Pin direction: input

Source -> Destination: Data-path Unit -> Multiplier Block

Pin function: Multiplier operand

Pin name: bimult32_reg_wr Pin direction: input

Source -> Destination: Data-path Unit -> Multiplier Block

Pin function: Enable multiplication and also writing intermediate results into

multiplier pipeline

Pin name: bimult32_sign_mult Pin direction: input

Source -> Destination: Data-path Unit -> Multiplier Block

Pin function: Indicate sign multiplication, mult instruction is executing

Pin name: bimult32_rst Pin direction: input

Source -> Destination: Global reset-> Multiplier Block

Pin function:

1: Reset

0: No reset require

Pin name: bimult32_en Pin direction: input

Source -> Destination: Data-path Unit -> Multiplier Block

Pin function: 1: Enable signal 0: no enable signal

Pin name: bomult32_result[63:0] Pin direction: output

Source -> Destination: Multiplier Block ->HILO register

Pin function: Multiplier output result

Pin name: bomult32_mult_valid Pin direction: output

Source -> Destination: Multiplier Block ->Data-path Unit

Pin function:

1: Indicate multiplier result is valid

0: Indicate multiplier result is not ready to use

Pin name: bomult32_mult_busy Pin direction: output

The Design of An Asynchronous RISC Processor

43

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Source -> Destination: Multiplier Block ->Data-path Unit

Pin function: Reserved for future development

Table 3.13 : Multiplier Block I/O description

3.3.8 Boot ROM Unit

The Boot ROM unit is used to store the bootloader program. The Boot ROM unit

to be read-only, i.e. no write data bus, and the bootloader program is pass to the Boot

ROM unit using “$readmemh (`ROM_FILE_PATH, rom_data)” in the Verilog HDL).

A block wrapper module is designed, as shown in Figure 3.15, for the ease of using

the FPGA Block RAM and Table 3.14 describes the function of each pin.

Figure 3.15 : Boot ROM Unit chip interface

Pin name: birom_wb_addr[SIZE:0] Pin direction: input

Source -> Destination: Data-path Unit -> Boot ROM unit

Pin function: Address location of the data in the Boot ROM unit

Pin name: birom_wb_stb Pin direction: input

Source -> Destination: Data-path Unit ->Boot ROM unit

Pin function: Strobe control

1: Boot ROM unit is activated to perform read access for new address location

0: Boot ROM unit is de-activated to perform read access

Pin name: birom_wb_en Pin direction: input

Source -> Destination: Data-path ->Boot ROM unit

Pin function:

1: Enable signal

0: No enable signal

Pin name: birom_wb_rst Pin direction: input

Source -> Destination: Global reset ->Boot ROM unit

Pin function:

1: Reset

0: No reset require

Pin name: borom_wb_dout[31:0] Pin direction: output

Source -> Destination: Boot ROM unit -> Data-path Unit

Pin function: 32-bits data output

Pin name: borom_wb_ack Pin direction: output

Source -> Destination: Boot ROM unit -> Data-path Unit

Pin function: Indicate data is ready to be fetched

Table 3.14 : Boot ROM Unit I/O description

The Design of An Asynchronous RISC Processor

44

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.9 Data and Stack RAM Unit

The Data and Stack RAM Unit is created to store the runtime data. A block

wrapper module is designed, as shown in Figure 3.16, for the ease of using the FPGA

Block RAM and Table 3.15 describes the function of each pin.

Figure 3.16 : Data and Stack RAM Unit chip interface

Pin name: uiram_wb_din[31:0] Pin direction: input

Source -> Destination: Data-path Unit -> Data and Stack RAM Unit

Pin function: 32-bits data input

Pin name: uiram_wb_addr[SIZE:0] Pin direction: input

Source -> Destination: Data-path Unit -> Data and Stack RAM Unit

Pin function: Address location of the data in the Data and Stack RAM Unit

Pin name: uiram_wb_sel[3:0] Pin direction: input

Source -> Destination: Address Decoder Block ->Data-path Unit -> Data and Stack

RAM Unit

Pin function: 4-bit byte select control, to select any one or more bytes to be accessed

Pin name: uiram_wb_we Pin direction: input

Source -> Destination: Address Decoder Block -> Data-path Unit-> Data and Stack

RAM Unit

Pin function: Write control

1: Enable to write to the Data and Stack RAM Unit

0: No operation

Pin name: uiram_wb_stb Pin direction: input

Source -> Destination: Address Decoder Block -> Data-path Unit -> Data and Stack

RAM Unit

Pin function: Strobe control

1: Data and Stack RAM Unit is activated to perform read or write access for new

address location

0: Data and Stack RAM Unit is de-activated to perform read or write access

Pin name: uiram_wb_en Pin direction: input

Source -> Destination: Data-path Unit -> Data and Stack RAM Unit

Pin function:

1: Enable signal

0: No enable signal

Pin name: uiram_wb_rst Pin direction: input

Source -> Destination: Global reset -> Data and Stack RAM Unit

Pin function:

The Design of An Asynchronous RISC Processor

45

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1: Reset

0: No reset require

Pin name: uoram_wb_dout[31:0] Pin direction: output

Source -> Destination: Data and Stack RAM Unit -> Data-path Unit

Pin function: 32-bits data output

Pin name: uoram_wb_ack Pin direction: output

Source -> Destination: Data and Stack RAM Unit -> Data-path Unit

Pin function: Indicate data is ready to be fetched

Table 3.15 : Data and Stack RAM Unit I/O description

The Design of An Asynchronous RISC Processor

46

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4 : Methodology and Tools

4.1 Design Specifications

4.1.1 Methodologies and General Work Procedures

Asynchronous circuits can be done by substituting global clock with a set of

controllers that all have an equivalent behavior (see Figure 4.1 & Figure 4.2). There

are three steps in order to build an asynchronous circuit which listed below:

1. Convert the flip-flop-based synchronous circuit to a latch-based by remove

local clocks for master and slave latches and retiming to improve

performance.

2. Generate a match delays for combinational logic which each delay much be

greater than the delay at the critical path of the combinational block.

3. Substitute the local clocks with controllers.

Figure 4.1 : Synchronous circuit

Figure 4.2 : Asynchronous circuit

The Design of An Asynchronous RISC Processor

47

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Asynchronous circuit is a combination of gates and with some feedback loops.

When one of the output gate changes, it can be noticed by other gates and then all of

the gates will also change their output accordingly. The figure below shows one of the

possible implementation of the CTL circuit.

Figure 4.3 : An asynchronous control circuit

Lt is a local clock meant to control latch

4.1.2 Development Tools

There will be two tools used in the development of asynchronous RISC processor

(Mok K.M 2008):

1. The design of asynchronous RISC processor will be based on Verilog

hardware description language, in combination with the ModelSim synthesis

tools.

⚫ ModelSim is a hardware description language simulator from

Mentor Graphics.

⚫ It provides simulation (gate-level and RTL-level) and integrated

debug environment.

⚫ It is an intuitive GUI for post-simulation debug and analysis.

2. Functional testing will be done by MIPS assembler programming using the

PCSpim.

⚫ Spim is a simulaator that runs MIPS32 assembly language programs.

⚫ It provides a simple assembler, debugger and a simple set of

operating system services.

⚫ It implements both a simple, terminal-style interface (spim) and a

visual windowing interface (xspim and PCSpim).

The Design of An Asynchronous RISC Processor

48

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Synthesis of the design will be done by using Xilinx Vivado 2020.1.

• Vivado is designed for HDL designs analysis and synthesis.

• Artix 7 board will be used to run synthesis of asynchronous design.

4.1.3 Verification Plan

The testbench below is developed to test the instructions supported by the 32-bit

RISC processor. The instructions are stored inside the text file (TEST_CODE_PATH)

with its machine code.

`timescale 1ns / 1ps
`default_nettype none
`define OLD_TEST 1

`ifdef MODEL_TECH
 `ifdef OLD_TEST
 `define TEST_CODE_PATH "oldtest_program_mem.txt"
 `define EXC_HANDLER "oldtest_program_exc_handler_mem.txt"
 `endif
`endif
module tb_r32_pipeline();

reg tb_u_rst;

crisc dut_c_risc
(.uirisc_rst(tb_u_rst)
);

//read memory to get instruction
initial begin
$readmemh(`TEST_CODE_PATH,tb_r32_pipeline.dut_c_risc.imem.bsram_1kw_mem_array);
$readmemh(`EXC_HANDLER,tb_r32_pipeline.dut_c_risc.imem.bsram_1kw_mem_array);
#1 tb_u_rst = 1'b0;
#1 tb_u_rst = 1'b1;
#1 tb_u_rst = 1'b0;

repeat(1200)@(tb_r32_pipeline.dut_c_risc.u_datapath.uodp_req_from_pc);
$stop;
end
endmodule

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

49

4.2 Timeline

Task Start Date End Date
Week

1 2 3 4 5 6 7 8 9 10 11 12

Studying the existing work that being developed 15/6/2020 28/6/2020

Study the concept of Muller C-element 29/6/2020 12/7/2020

Analyze the synchronous processor developed by senior 13/7/2020 26/7/2020

Apply the Muller C-element to the existing processor 27/7/2020 9/8/2020

Fixing bug to get correct outputs 10/8/2020 23/8/2020

Report Writing 24/8/2020 4/9/2020

Table 4.1 : Gantt chart for Project I

Task Start Date End Date
Week

1 2 3 4 5 6 7 8 9 10 11 12

Analyze and fix the size of the RAM 18/1/2021 14/2/2021

Synthesize the asynchronous processor 15/2/2021 28/3/2021

Report Writing 29/3/2021 9/4/2021

Table 4.2 : Gantt chart for Project II

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

50

Chapter 5 : Muller C-Element

Muller C-elemnt is a basic component that is often used in asynchronous circuits.

It is a state-holding element similar to an asynchronous set-reset latch. The output is

set to 0 when both inputs are 0 and when the output is set to 1 when both inputs are 1.

For other input pairs, the output does not make change. So, if the output changes from

0 to 1, it can conclude that both inputs are now at 1; similarly, if output changes from

1 to 0, it can conclude that both inputs are now 0.

Figure 5.1 : The Muller C-element

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

51

5.1 Muller pipeline

Most of the asynchronous circuits are form by the Muller pipeline. When all of

the C-element are set to 0, the left environment may start communication via

handshake. It can be think of the signals inside the pipeline propagate as a sequence of

waves with a careful control in order to ensure the integrity of each wave.

The link between each stage of C-element pipeline provides observation on

correct handshaking. The Muller pipeline will propagate with the speed which comes

from the actual delays of the circuits when the wave has been inserted to it.

The handshake which reaches the right hand environment is came from the first

handshake inserted by the left hand environment. The pipeline will stop handshaking

with the left hand environment if the right hand environment does not respond to the

handshake. It just act like a ripple through FIFO.

Finally, the Muller pipeline is delay-insensitive. It works correctly without affect

by the delays in gates and wires. There are four types of handshake protocol which are

4-phase bundled-data, 2-phase bundled-data, 4-phase dual-rail and 2-phase dual-rail.

The circuit implementation which includes area, speed, power, robustness, etc will be

affect by protocol used.

Figure 5.2 : Muller pipeline

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

52

5.2 Circuit Implementation Style

4-phase single-rail pipeline

The 4-phase single-rail pipeline is simplest. Basically, local clock pulses are

generated by using this pipeline. The pulses generated in the neighbouring stages

overlaps the clock pulse generated in one stage. The request signal paths should be

inserted with matching delays in order to maintain the correct behaviour of the circuit.

Figure 5.3 : The 4 phases single-rail pipeline

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

53

2-phase single-rail pipeline

The 2-phase bundled data pipeline uses a Muller pipeline as the backbone control

circuit but the control signals are explained as events or transitions. Because of this

reason, special capture-pass latches are needed: events on the C and P inputs alternate,

causing the latch to change between capture mode and pass mode. This type of special

latch design is explained below. (see Figure 5.5)

Figure 5.4 : The 2 phases single-rail pipeline

Figure 5.5 : Operation and Implementation of a capture-pass event controlled latch

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

54

4-phase dual-rail pipeline

The 4-phase dual-rail pipeline is the combination of Muller pipeline with

encoding of data and request. It can be inferred as two Muller pipelines connected in

parallel (see Figure 5.6). The C-elements can be store the empty codeword {d.t, d.f} =

{0, 0}, causing the acknowledge signal outputs a 0, or it can store valid codeword {0,

1} and {1, 0}, cause the acknowledge signal outputs a 1.However, the codeword {1, 1}

does not occur and is illegal. In conclusion, the acknowledge signal generated by the

OR gate indicates the state of the pipeline stage as “valid” or “empty”.

Figure 5.6 : A simple 3-stage 1-bit wide 4-phase dual-rail pipeline

Figure 5.7 : An N-bit latch with completion detection

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

55

2-phase dual-rail pipeline

It uses 2 wires which are d.t and d.f. For N-bit channel, when one of the wire of

the N wire pairs has made a transition, a new codeword is received. A valid message

is acknowledged and followed by another message that is acknowledged. So, it is

impossible to get an empty value.

Figure 5.8 : Illustration of handshaking on a 2-phase dual-rail channel

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

56

5.3 Implementation of Pipeline

For the implementation of asynchronous RISC processor, four-phase single-rail

pipeline is used becasue it is the simplest between four types of implementation style

for asynchronous design. The global clock for synchronous design is replaces by the

controllers which is Muller C-element. The originally latches used to seperate the

datapath stages are then locally clocked by the controlles. There are two signals

produced by the controllers which are request and acknowledge. Request signal is

generated when there is data available and acknowledge is generated by the right hand

environment when it accepts the data. The transfer of data only occurs when both

request and acknowledge are asserted.

Figure 5.9 : Pipeline with Muller C-element

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

57

5.4 Micro-architecture of Asynchronous Processor

Figure 5.10 : Micro-architecture of asynchronous processor

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

58

Chapter 6 : Verification

6.1 Simulation Result

The muller pipeline will starts to work when the values of all the Muller

C-element are set to 0 which we need to assert a reset signal at the beginning of the

simulation. After that, the Muller C-element will start to communicate with each other

via handshaking.

Figure 6.1 : The waveform of muller pipeline

Simulation Result:

Figure 6.2 : The results of arithmetic instruction

Figure 6.3 : The results of logical instruction

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

59

Figure 6.4 : The results of STORE, SET_BR and LWSW

Figure 6.5 : The results of t_sb, t_lb and t_lbu

Figure 6.6 : The results of t_sh, t_lh and t_lhu

Figure 6.7 : The results of swl, swr, lwl and lwr

store the

address of setbr

outputs of slt, sltu,

slti and sltiu

outputs

of lw

outputs of t_sb outputs of

t_lb

outputs of

t_lbu

outputs of t_sh outputs of

t_lh

outputs of

t_lhu

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

60

Figure 6.8 : The results of multiplication and loop

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

61

Chapter 7 : Synthesis

 After the behavioral simulation of the asynchronous RISC processor is done, then

it is ready for synthesis by using Xilinx Vivado. The FPGA board used for synthesis

is Artix-7 and the part used is xc7a100tcsg324-1.

7.1 Utilization Report

After the process of synthesis is done, the utilization report obtained, as shown in

Table 7.1 below. From the table, we can conclude that the asynchronous RISC

processor utilized 117.11% of lookup table (LUT), 0.95% of input and output (IO)

and 37.50% of global buffers (BUFG) of the FPGA board.

Resource Estimation Available Utilization %

LUT 74245 63400 117.11

IO 2 210 0.95

BUFG 12 32 37.50

Table 7.1 : The utilization report

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

62

Chapter 8 : Conclusion and Future Work

8.1 Conclusion

 The main objective of this project which is to design and synthesis the

asynchronous RISC processor has been achieved. The asynchronous RISC processor

is done by removing the global clock signal from synchronous processor and replaces

with the Muller C-element which has been discussed in Chapter 5. However. the

FPGA board, Artix-7 has been chosen to synthesis the asynchronous RISC processor

and the utilization report obtained after the synthesis is shown in Chapter 7. Moreover,

the behavioral of the asynchronous RISC processor has been verified correct without

errors. The simulation results are shown in Chapter 6.

8.2 Future Work

 It is possible to do more advanced changes, but a good strategy is necessary to

have a performance gain. The programmable delays would be interesting to look into

so it will be possible to test what delays should be used on the different stages.

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

63

Bibliography

Mok K.M, 2008, Computer Organization and Architecture, lecture notes distributed in

Department of Computer and Communication Technology at Universiti Tunku Abdul

Rahman, 2008.

C.H. Van Berkel, M.B. Josephs & S.M. Nowick, 1999, Applications of Asynchronous

Circuits, Proceeding of the IEEE, vol. 87, no. 2, pp. 223-233.

Jens Sparsø & Steve, 2001, Principle of Asynchronous Circuit Design - A Systems

Perspective, Kluwer Academic Publishers.

Tony Werner & Venkatesh Akella, 1997, Asynchronous Processor Survey, IEEE, vol.

30, no. 11, pp. 67-76.

T.Samyuktha & K.Balachandra, 2015, Design and Performance Analysis of 8-Bit

Asynchronous Pipelined Processor. International Journal of Scientific Engineering

and Technology Research, vol. 4, no. 47, pp. 10206-10211.

Hans Jacobson, 1996, Asynchronous Circuit Design - A Case Study of A Framework

Called Ack, Master Thesis, Lulea University of Technology.

Bjørn Thomas Søreng Vee, 2014, Conversion of a simple Processor to asynchronous

Logic, Norwegian University of Science and Technology.

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

64

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

65

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

66

Plagiarism Check Result

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

67

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

PEE YAO HONG

ID Number(s)

1802826

Programme / Course CT

Title of Final Year Project The Design of An Asynchronous RISC Processor

Similarity Supervisor’s Comments
(Compulsory if parameters of originality
exceeds the limits approved by UTAR)

Overall similarity index: 16% Similarity

by source
Internet Sources: 14%
Publications: 13%
Student Papers: 0%

Number of individual sources listed of
more than 3% similarity: NIL

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the

originality report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the

Final Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

 Name: __________________________

Date: ___________________________ Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

MOK KAI MING

16/04/2021

The Design of An Asynchronous RISC Processor

Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

68

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 1802826

Student Name PEE YAO HONG

Supervisor Name MOK KAI MING

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Front Cover

√ Signed Report Status Declaration Form

√ Title Page

√ Signed form of the Declaration of Originality

√ Acknowledgement

√ Abstract

√ Table of Contents

√ List of Figures (if applicable)

√ List of Tables (if applicable)

- List of Symbols (if applicable)

√ List of Abbreviations (if applicable)

√ Chapters / Content

√ Bibliography (or References)

√ All references in bibliography are cited in the thesis, especially in the chapter of literature
review

- Appendices (if applicable)

√ Poster

√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the
items listed in the table are included in my
report.

(Signature of Student)
Date: 16/04/2021

Supervisor verification. Report with incorrect

format can get 5 mark (1 grade) reduction.

(Signature of Supervisor)
Date: 16/04/2021

