
BUIDING A HA MQTT BROKERAGE SOLUTION USING MOSQUITTO

BY

WONG KEI YIN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology
(Kampar Campus)

MAY 2021

ii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

BUIDING A HA MQTT BROKERAGE SOLUTION USING

MOSQUITTO

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: __

__

__

Academic Session: ____MAY 2021____

I ______________________ WONG KEI YIN ____________________________

(CAPITAL LETTER)

declare that I allow this Final Year Project Report to be kept in

Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

Verified by,

_________________________ _________________________

(Author’s signature) (Supervisor’s signature)

Address:
__132, Jalan Suasa 5, 31900___

___Perak__________________ ____ TS DR OOI BOON YAIK ___

__________________________ Supervisor’s name

Date: 1 September 2021 Date: 2 September 2021

iii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Universiti Tunku Abdul Rahman
Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 1 September 2021

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that WONG KEI YIN (ID No: 19ACB00582) has completed this final year

project entitled “BUIDING A HA MQTT BROKERAGE SOLUTION USING MOSQUITTO” under

the supervision of TS DR OOI BOON YAIK (Supervisor) from the Department of Computer Science,

Faculty of Information and Communication Technology.

I understand that University will upload softcopy of my final year project in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

(WONG KEI YIN)

1 September 2021

iv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Wong Kei Yin

1 September 2021

DECLARATION OF ORIGINALITY

I declare that this report entitled “BUIDING A HA MQTT BROKERAGE SOLUTION

USING MOSQUITTO” is my own work except as cited in the references. The report has

not been accepted for any degree and is not being submitted concurrently in candidature for

any degree or other award.

Signature : _________________________

Name : _________________________

Date : _________________________

v
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Ts Dr

Ooi Boon Yaik who have given me a golden opportunity to involve in the Internet of Things

field study. It is my first step to establish a career in the software development field. A million

thanks to you

Finally, a million thanks to my family and parents who have given me all the support I

need throughout this project

vi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

ABSTRACT

Message Queuing Telemetry Transport (MQTT) is a protocol that has been widely used by

IoTs because of it has less bandwidth requirement, lightweight and suitable for unreliable

connection. It is a publish/subscribed pattern-based protocol. Mosquitto is one of the famous

message brokers that implement MQTT protocol. Due to MQTT brokered architecture,

typically broker is a single point of the failure. Single broker may spend more time to respond,

and performance is affected when high traffic. In this context, high availability refers to ability

of system to be continuously operational and also quick response time to user request. Other

message brokers such as HiveMQ and Bevywise brokers are support clustering, but not the

Mosquitto. Without clustering, there is no high availability solution for Mosquitto. In this

project, two high availability solutions have been proposed for Mosquitto. By using the solution,

Mosquitto brokers work together and can be view as a single broker. If one of the brokers fail,

the remaining broker can cover the same task. In order to develop this solution successfully,

the PPDIOO Methodology is being adopted, which is a commonly used methodology for

network design.

vii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Table of Contents
TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 2

1.2 Project Scope 4

1.3 Project Objectives 4

1.4 Contribution 4

1.5 Background Information 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 MQTT 6

2.1.1 Publish/Subscribe Pattern 6

2.1.2 Topic and Quality of Service 7

2.2 High availability 8

2.3 High availability MQTT clusters using HiveMQ 9

CHAPTER 3 SYSTEM DESIGN AND CONFIGURATION 11

3.1 System Overview 11

viii

3.2 HA Mosquitto broker using Mosquitto bridge 11

3.2.1 Implementation of HA Mosquitto broker using Mosquitto bridge 12

3.3 HA Mosquitto broker using python bridge 18

3.3.1 Overview of python bridge 18

3.3.2 Detailed Callback Function Flowcharts 21

3.5.3 Configuration of HA Mosquitto broker using python bridge 27

CHAPTER 4 METHODOLOGY AND TOOLS 31

4.1 Methodology 31

4.2 Technologies and Tools Involved 32

CHAPTER 5 TESTING 34

5.1 Performance testing 34

5.1.1 Performance testing configuration 35

5.2 Network bandwidth consumption testing 36

5.2.1 Network bandwidth consumption testing configuration 36

5.3 Comparison Results 38

5.3.1 Performance comparison results 38

5.3.2 Network bandwidth consumption comparison results 39

5.4 Result Discussion 39

CHAPTER 6 CONCLUSION AND FUTURE WORK 41

6.1 Conclusion 41

6.2 Future Work 41

43

45

49

50

REFERENCES

WEEKLY LOG

POSTER

PLAGIARISM CHECK RESULT

FYP2 CHECKLIST

Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

53

ix
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 MQTT Publish/Subscribe Architecture 6

Figure 2.2 MQTT topic structure 7

Figure 2.3 High availability structure 9

Figure 2.4 HiveMQ cluster with load balancer 10

Figure 3.1 Network design of using Mosquitto bridge 11

Figure 3.2 Running Mosquitto on broker 1 13

Figure 3.3 Running Mosquitto on broker 2 15

Figure 3.4 Network design of using python bridge 18

Figure 3.5 on_message_forward() Function Flowchart 21

Figure 3.6 on_message_forward_from_otherbroker() Function

Flowchart

22

Figure 3.7 on_message_sub_top() Function Flowchart 23

Figure 3.8 on_message_unsub_top() Function Flowchart 24

Figure 3.9 on_message_disconn_topic() Function Flowchart 25

Figure 3.10 on_message_get_topic() Function Flowchart 26

Figure 3.11 Running Mosquitto in broker 1 28

Figure 3.12 Running python bridge on broker 1 28

Figure 3.13 Running Mosquitto in broker 2 29

Figure 3.14 Running python bridge on broker 2 30

Figure 4.1 Phases of PPIDOO 31

Figure 5.1 Figure 5.1 Network design for HA brokers

performance testing

34

Figure 5.2 Network design for single broker performance testing 35

Figure 5.3 Network design for HA brokers network bandwidth

consumption testing

36

x
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Figure 5.4 Interface of iftop 37

Figure 5.5 Msg time mean mean (msg/sec) comparison result 38

Figure 5.6 Average bandwidth (msg/sec) comparison result 39

Figure 5.7 Network bandwidth consumption (MB) between

brokers

39

xi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

LIST OF TABLES

Table Number Title Page

Table 3.1 Callback functions for python bridge 20

Table 1.1 Brief description of each phase in PPDIOO 32

Table 4.2 Specification of Desktop 32

Table 4.3 Specification of virtual machine 33

xii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

LIST OF ABBREVIATIONS

IoT Internet of Things

MQTT Message Queuing Telemetry Transport

HA High Availability

MEP Message Exchange Patterns

QoS Quality of Services

AMQP Advanced Message Queuing Protocol

HTTP Hyper Text Transfer Protocol

VRRP Virtual Router Redundancy Protocol

Chapter 1: Introduction

1
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

CHAPTER 1 INTRODUCTION
The term Internet of Things (IoT) is a collective term for the number of electronic

devices that are able to connect to the Internet, capable of sending data, receiving

instructions, or both, was first proposed by British technical experts (Fruhlinger, 2020).

The use of IoT has increased significantly because of the evolution of multiple

technologies such as sensor network, wireless connection, and low power electronics

over the last few years. IoTs connect the physical and digital worlds by bringing the

internet's power, data processing, and analytics to the real world of objects. According

to Fruhlinger (2020), there are more than 50 billion IoT devices as of 2020, and those

devices will generate 4.4 zettabytes of data. IoTs can communicate to each other

through the internet, it means that they can be monitored and controlled remotely.

Therefore, IoTs infiltrate various fields such as industrial automation, smart cities, and

etc. Apart from it, a myriad of IoT protocols have been proposed for communication

between IoT devices. MQTT (Message Queuing Telemetry Transport) has been widely

used because of it has less bandwidth requirement, lightweight and suitable for

unreliable connection.

Compared to other protocols such as HTTP protocols and Advanced Message Queuing

Protocol (AMQP), MQTT is a lightweight publish/subscribe protocol for IoT and It can

be used on restricted devices as well as high-latency networks. HTTP is a synchronous

protocol, and it applied the request and response pattern. Client always need to wait for

the server to respond and result in poor scalability. In IoT worlds, the high latency and

low bandwidth network always make the synchronous communication problematic.

Moreover, HTTP also is a heavy weight protocol that include many headers and rules

which make expensive to broadcast messages to all IoTs over the network. The

synchronous messaging protocol is far more suitable for IoT applications than the

synchronous protocol. Besides HTTP protocols, AMQP is a binary TCP-based protocol

that can use either a publish/subscribed model or a request/pattern (Solovev & Petrova,

2020). At the aspect of memory and power consumption, AMQP consumes more

memory and power than MQTT because of AMQP has more complex messaging

system. Unfortunately, it is not suitable for resource constrained IoT applications

although it has a lot of features.

Chapter 1 Introduction

2
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 The key feature that makes MQTT protocol lightweight and flexible is it publish

-subscribe model. Brokers and clients are the two types of network entities that make

up the MQTT protocol. (IBM, 2017). Clients connect to the broker and subscribe to or

publish data on specific topics. When a topic receives a new message, the broker will

send the message to all devices that have been connected to that topic. The

responsibility of broker is receiving all messages, filtering the messages, classifying the

subscribers based on the topic and publishing the message them. Depending on

implementation, thousands of MQTT clients may connect to a broker concurrently. Due

to broker to handle various tasks such as filtering, publishing, therefore high availability

is significant for the broker. Any component that without redundancy is considered as

a single point of failure. The goals of high availability are to eliminate the single point

of failure in the system and handle increased loads and high levels of traffic. (Digital

Ocean, 2016).

 Mosquitto is a lightweight MQTT broker written in C compared to others and

it is famous and open source. Unfortunately, Mosquitto does not support clustering, it

makes high availability difficult. This work proposed high-availability solutions for

MQTT brokers using the Mosquitto, which aim to improve the performance of

Mosquitto brokers and provide redundancy for Mosquitto brokers. This paper

organized as follows. The first chapter contain about brief explanation of MQTT, the

problem of Mosquitto, and the objectives of the project. Chapter 2 is about the

definition of high availability, the detail explanation of MQTT protocol and the existing

high availability solution using other broker. The next few chapters are about the

proposed solution and the configuration, methodology, and testing result. The last

chapter concludes this paper and talk about the future improvement.

1.1 Problem Statement and Motivation

1. No cluster functionality built-in for Mosquitto to achieve high availability

Unlike other brokers such as HiveMQ, Mosquitto does not support clustering

(Tomosvari, 2017). High availability can be achieved through architecture of

cluster. For example, HiveMQ can form MQTT broker clusters through its

built-in cluster functionality to eliminate the single point of failure (HiveMQ,

n.d.). With cluster functionality, HiveMQ broker allows MQTT clients

Chapter 1 Introduction

3
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

reconnect to any HiveMQ cluster node and can resume their MQTT session.

HiveMQ cluster also has sophisticated and very efficient message routing

between brokers. However, due to Mosquitto does not support clustering, it does

not handle high availability in it (Kumar, 2020).

2. The period of downtime can cause negative impact

High availability is essential for any organization to against the lost cause by

service outage. However, no matter of how reliable the system and software are,

situation like power outage and equipment failure that can bring down the

servers are inevitable. A single MQTT broker could be a single point of failure,

causing service disruption if it went down. Without high availability, when the

broker goes down, all messages cannot be forward, and it may cause the

business processes that depend on the broker stop. For business, short period of

downtime can cause negative impacts such as business brand reputation will be

damaged, loss of trust among customer and etc.

3. Performance of single broker may be affected when high traffic

Depending on implementation, a broker can support up to a thousand concurrent

connected MQTT clients. It is critical for broker able to handle increased loads

and high traffic. A single broker may spend more time to respond or even

inaccessible when high traffic. Instead of a single broker, some implementation

such as multiple brokers with load balancing may increase reliability, maximize

throughput, minimize respond time and avoid overload. Without high

availability, MQTT broker cannot provide optimal performance during the

period of high traffic.

Although failover can be implemented on broker, but without cluster functionality,

redundant broker cannot work together with the original broker to optimize

performance. The key motivation of this project is to provide high availability solution

for Mosquitto brokers because of Mosquito does not support clustering to achieve high

availability.

Chapter 1 Introduction

4
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

1.2 Project Scope

This project is about developing solutions to achieve high availability MQTT brokerage

using Mosquitto. In this project, high availability refers to the capability to recover from

unexpected events in the shortest time possible and quick response time to users’

requests. The reliability (of hardware and software components) and performance

(response-time) are parts of system availability. The previous work done by HiveMQ

team was using the HiveMQ brokers to build high availability environment because

HiveMQ broker support cluster. However, Mosquitto does not support cluster. Bridge

is a technique which allows two MQTT brokers connect together, generally used for

sharing messages between system. This study proposed two methods for Mosquitto

broker to achieve high availability. The first method is using Mosquitto bridge, the

second method is using python script provided by this study.

1.3 Project Objectives

The objectives of this project be summarized as below:

1. Create redundant broker that able to cover same task and eliminate single point

of failure.

2. Use bridge to connect original and redundant broker together for messages

sharing.

3. Efficiently distribute incoming traffic across MQTT brokers to minimize

response time.

This project mainly focuses on providing high availability for the Mosquitto. The

security for Mosquitto broker did not cover in this project. For example, this project did

not configure the authentication and authorization for Mosquitto broker. it allows

anonymous client to connect to the broker.

1.4 Contribution

With the rapid development of science and technology, IoT technology is becoming

more accessible, allowing a wider range of businesses to benefit from IoT applications.

The lightweight features make MQTT has been widely used in IoT world. There are

many types of public and private brokers available by different vendors, one of the

Chapter 1 Introduction

5
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

famous brokers is Mosquitto. Due to the MQTT architecture, MQTT system typically

have a single point of failure which is broker. Broker that does not support clustering

such as Mosquitto will not be able to provide high availability. Through the solutions

provided by this project, user able to build Mosquitto brokers with high availability.

This project not only create redundant brokers but also allows Mosquitto brokers

connect and work together to optimize the performance without clustering. By using

the solution, Mosquitto brokers able to continuously work without any interruption and

able to handle the load when high traffic, minimize the request response time and

provide better experience to the user.

1.5 Background Information

Before proceeding, there are a few terms need to be explained here. MQTT clusters is

distributed system that represent a logical MQTT brokers. MQTT broker nodes are

installed on different physical machine and connected over the internet. From client’s

perspective, a cluster of brokers behaves like a single broker. MQTT cluster able to

eliminate the single point of failure since multiple brokers acts as a single broker. The

message can be distributed across brokers by using clustering.

 Bridging is one of the Mosquitto feature which basically let us connect two or

more brokers together. It is supporting multiple connections to share about the

publish/subscribe each topic. For example, broker 1 and broker 2 have configured

bridge, message that publish on broker 1 will be distributed to broker 2 via bridge. Any

client that subscribed to the broker 2 will get the message as well. Bridging is a main

technology used by this project to replace the clustering.

 Load balancing is the technique of distributing network or application traffic

among multiple servers in a server farm in an efficient manner. By distributing traffic

to all devices, it can reduce the load on a single device and improves application

responsiveness. HA proxy is one of the software that offering load balancing.

Chapter 2 Literature Review

6
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

CHAPTER 2 LITERATURE REVIEW
2.1 MQTT

MQTT protocol was originally created by IBM in 1999 (IBM, 2017). It was developed

for minimal bandwidth to connect with oil pipelines via satellite. In late 2014, MQTT

became an officially approved OASIS open standard (IBM, 2017). Despite the fact that

it was designed for remote site communication, it has been widely adopted for IoT

because it is suitable for wireless network that experience various level of latency due

to bandwidth constraints or unreliable network.

2.1.1 Publish/Subscribe Pattern

Message exchange patterns (MEP) are a set of templates that define how messages

should be exchanged. (Flylib, n.d.). The most popular MEP has been widely used is

request/response pattern that uses a synchronous communication model for

communication. Another common pattern is publish/subscribe pattern. The

publish/subscribe pattern provides an alternative to traditional request/response model.

The publish/subscribe pattern decouples the data senders (publishers) and receivers

(subscribers) to facilitate distribution of messages to subscribers. The connection

between them through a third component which is broker. The publishers and

subscribers never contact to each other directly. The MQTT protocol utilises broker to

exchange messages between clients based on the publish/subscribe pattern. MQTT

protocol surround three subject which are publisher, broker, and subscriber as shown

in Figure 1.

Figure 2.1 MQTT Publish/Subscribe Architecture (Eclipse foundation, 2014)

Chapter 2 Literature Review

7
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

The publishers generate and broadcast message on the particular topic to all of the

topic’s subscribers through the brokers. The central communication point is the MQTT

broker, in charge of filtering all incoming message, decide who is interested in them

and distributing them correctly to all subscribed clients (Eclipse foundation 2014).

When a device send data to broker, it is called publish. When the operation is reversed,

it is called subscribe. The advantage of this pattern is the decoupling of the publisher

message from the subscriber. The decoupling can be broker down into the following

three dimensions shown below (Eugster, Felber, Guerraoui, & Kermarrec, 2003):

• Space decoupling: The interacting parties which are data sender

(publisher) and data receiver (subscriber) do not know each other

because there is a broker between them.

• Time decoupling: The interacting parties which are publisher and

subscriber do not to be active at the same time.

• Synchronization decoupling: publishers are not blocked while

producing events, and subscribers can get asynchronously notified

(through a callback) of the occurrence of an event while performing

some concurrent activity.

2.1.2 Topic and Quality of Service

MQTT broker plays a vital role because it filters all the message so that every subscriber

only receives the message of interest. To route the messages to relevant subscribers,

MQTT used subject-based filtering. Every message contains a topic. Subject-based

filtering is based on subject or topic, the brokers ensures that the subscriber gets all the

message published to the subscribed topics. A topic is a simple string that can consists

of one or more hierarchy level. Each topic level is separated by a slash. The Figures 2

shows the MQTT topic structure.

Figure 2.2 MQTT topic structure (STS MQTT n.d.)

In MQTT, it also supports wildcards to subscribe to multiple topics simultaneously. For

example, multilevel wildcard (#) allows to subscribe entire subtree.

Chapter 2 Literature Review

8
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

MQTT provides quality level of service, which is called QoS. MQTT protocol

supports three levels of QoS (Eclipse foundation 2014). Level 0 message does not have

guarantee at all, is sent only once, no acknowledgement from receiver. Level 1 ensures

the messages are delivered at least once at the arrive. Receiver can receive the message

multiple times. Level 2 is the highest QoS provided in MQTT. It ensures that the exactly

once message arrives the destination, avoided from duplication of message sent.

2.2 High availability

Availability is divided into two parts: how long a service is available and how long it

takes the system to respond to user request. When high traffic, the server needs to take

a long time responds to the user request or become inaccessible, then it does not

consider as high availability. High availability refers to those systems that can operate

continuously without fail and provide a high level of operational performance,

are commonly equipped with redundant components. s (AVI Networks, n.d). The

impact of unexpected incidents that can bring the servers down such as hardware and

software failures, environmental anomaly can be mitigated via high availability. We

must identify and eliminate single points of failure in the system to achieve high

availability. (Digital Ocean 2016). To eliminate single points of failure, there are two

things needed

1. Redundant components can cover the same task.

2. The mechanism that is able to detect failures in the components such as load

balancer.

Chapter 2 Literature Review

9
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Figure 2.3 High availability structure (Digital Ocean 2016)

Imagine that there are two redundant servers behind the load balancer. The traffic

coming from clients can be spread evenly among the servers. It can provide optimal

performance if servers can work together. When one of them goes down, traffic will be

redirected by load balancer to remaining online server, eliminate single of points failure.

The Figure 3 shows the high availability architecture.

2.3 High availability MQTT clusters using HiveMQ

One of the unique features of HiveMQ is its cluster ability to form an MQTT broker

cluster (HiveMQ, n.d.). A MQTT broker clusters is a distributed system that one behalf

of one logical MQTT broker. From client’s perspective, it can be viewed as a single

MQTT broker. Due to HiveMQ come with cluster functionality built-in, HiveMQ team

(2016) suggested to build a high availability cluster environment by using a TCP load

balancer and the HiveMQ broker cluster. Figure 4 shows the HiveMQ cluster with load

balancer.

Chapter 2 Literature Review

10
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Figure 2.4 HiveMQ cluster with load balancer. (The HiveMQ Team, 2016)

MQTT broker cluster consists of different MQTT broker nodes that connected over a

network. Load balancer are also used together in this architecture. HiveMQ cluster is

clever for distributing messages across the clusters. The message only gets distributed

among the cluster nodes, if necessary, it can prevent nodes from forwarding

unnecessary messages. Compare to bridging, cluster subscriptions work dynamically.

By using cluster, it can eliminate the single point of failure since multiple brokers act

as single broker. For example, if one of the brokers goes down, the load balancer will

automatically transfer all incoming traffic to the active broker.

Chapter 3 System Design and Configuration

11
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

CHAPTER 3 SYSTEM DESIGN AND CONFIGURATION
3.1 System Overview

In this project, two high availability methods have been proposed for the Mosquitto

brokers. The first method is using Mosquitto bridge to forward messages within brokers.

By using Mosquitto bridge, any message received by broker will be sent to the other

broker. Even though nobody subscribes to the topic, the message also will be forwarded

to the other broker. Therefore, the second method is using the python bridge that is

provided by this study to replace the Mosquitto bridge. The python bridge able to

determine whether forward the message to the other broker. It can significantly reduce

the network bandwidth consumption between brokers.

3.2 HA Mosquitto broker using Mosquitto bridge

Figure 3.1 Network design of using Mosquitto bridge
Figure 3.1 describes the network design of using Mosquitto bridge. Broker 2 is a

redundant broker in order to eliminate single point of failure. Both of the brokers are

connected using the Mosquitto bridge to forward message within brokers. The bridge

connects two brokers together, to share about the publish/subscribe message of each

topic.

HA proxy is used in the project to act as a load balancer. HA proxy dispatch request to

the different brokers according to the simple algorithm round robin and make services

of broker to appear as a virtual service on single IP address. If one of the brokers down,

Chapter 3 System Design and Configuration

12
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

HA proxy able to detect the failed broker and redirect to remaining online broker. In

case HA proxy become a single point of the failure, redundant HA proxy are also used

to cover the task when the HA proxy failed. Keepalived are configured to enable

failover between two HA proxy. If the primary HA proxy goes down, the floating IP

will be moved to the second HA proxy automatically.

3.2.1 Implementation of HA Mosquitto broker using Mosquitto bridge

Brokers and HA proxies are implemented on different virtual machine with Kali Linux

OS respectively. Four virtual machines are used in this project for two brokers and two

HA proxies.

Broker 1 Configuration

1. Installation

Install Mosquitto on the virtual machine. This is a package for Mosquitto broker.
$ sudo apt-get install mosquitto

2. Mosquitto Configuration

Change to directory /etc/mosquitto/ and create a new mosquitto configuration

file called mosquitto_bridge.conf. To create a mosquitto configuration file,

administrative privilege is needed.

$ cd /etc/mosquitto/

$ sudo nano /etc/mosquitto/mosquitto_bridge.conf

Follow the configuration file below,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

#Place your local configuration in /etc/mosquitto/conf.d/

A full description of the configuration file is at
/usr/share/doc/mosquitto/examples/mosquitto.conf.example

#pid_file /run/mosquitto/mosquitto.pid

#persistence true
#persistence_location /var/lib/mosquitto/

#log_dest file /var/log/mosquitto/mosquitto.log

Chapter 3 System Design and Configuration

13
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

13
14
15
16
17
18
19
20

#include_dir /etc/mosquitto/conf.d

listener 1883 0.0.0.0
allow_anonymous true

log_type all
log_dest topic
log_dest stdout

mosquitto_bridge.conf

The network ports that mosquitto listens on can be controlled using listener. In

the configuration file, broker 1 listen all incoming network connection (0.0.0.0)

at port 1883. It sends all log messages to two destinations which are console and

topic using log_dest. Broker 1 does not have the bridge configuration because

only one of the brokers need to be configured to act as bridge. Bridge is

configured at broker 2.

3. Run the Mosquitto

Run the command line below to start the Mosquitto broker. –c is used to specify

the configuration file for Mosquitto broker.
$ mosquitto –c /etc/mosquitto/mosquitto_bridge.conf

Figure 3.2 Running Mosquitto on broker 1

Broker 2 Configuration

1. Installation

Install Mosquitto on the virtual machine.

$ sudo apt-get install mosquitto

Chapter 3 System Design and Configuration

14
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

2. Mosquitto Configuration

Change to directory /etc/mosquitto/ and create a new mosquitto configuration

file called mosquitto_bridge.conf. To create a mosquitto configuration file,

administrative privilege is needed.

$ cd /etc/mosquitto/

$ sudo nano /etc/mosquitto/mosquitto_bridge.conf

Follow the configuration file below,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Place your local configuration in /etc/mosquitto/conf.d/

A full description of the configuration file is at
/usr/share/doc/mosquitto/examples/mosquitto.conf.example

#pid_file /run/mosquitto/mosquitto.pid

#persistence true
#persistence_location /var/lib/mosquitto/

#log_dest file /var/log/mosquitto/mosquitto.log

listener 1883 0.0.0.0
allow_anonymous true

connection bridge-01
address 192.168.0.139
topic # out 2
topic # in 2

log_type all
log_dest topic
log_dest stdout

mosquitto_bridge.conf

The red rectangle box is about the bridge setting. The connection is the variable

marks the start of a new bridge connection. It is also used to give the bridge a

name which is used as the client id on the remote broker. In the configuration,

the bridge name is bridge-01. The address is the address that bridge to connect

to, which is 192.168.0.139 in this project. The last two lines are about the topic

and its pattern.

3. Start the Mosquitto

Run the command line below to start the Mosquitto broker. –c is used to specify

the configuration file for Mosquitto broker.
$ mosquitto –c /etc/mosquitto/mosquitto_bridge.conf

Chapter 3 System Design and Configuration

15
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Figure 3.3 Running Mosquitto on broker 2

HA Proxy 1 Configuration

1. Installation
Install keepalived and HA proxy in the virtual machine.

$ sudo apt-get install haproxy
$ sudo apt-get install keepalived

2. HA proxy configuration

Change to directory /etc/haproxy/ and modify haproxy.cfg. To modify the

haproxy.cfg, administrative privileges are needed.

$ cd /etc/haproxy/
$ sudo nano /etc/haproxy/haproxy.cfg

Add the following code to the haproxy.cfg

1
2
3
4
5
6
7

listen mqtt
 bind *:1883
 mode tcp
 option tcplog
 balance roundrobin
 server broker1 192.168.0.139:1883 check
 server broker2 192.168.0.107:1883 check

Chapter 3 System Design and Configuration

16
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

haproxy.cfg

HA proxy listens for all coming requests to port 1883, forwarding them to two

Mosquitto brokers using the round robin algorithm. The server setting first

argument is a name, followed by the IP address of Mosquitto broker. Each

broker performs health checks by adding a check argument.

3. Keepalived configuration

Configure the keepalived.conf which is located at

/etc/keepalived/keepalived.conf. To modify the keepalived.conf, administrative

privileges are needed. Create a keepalived.conf if no configuration file at

/etc/keepalived/.
$ sudo nano /etc/haproxy/keepalived.conf

Add the following code to the keepalived.conf

1
2
3
4
5
6
7
8
9

vrrp_instance p1 {
state MASTER
interface eth0
virtual_router_id 101
priority 100
virtual_ipaddress{

192.168.0.181
}

}

keepalived.conf

Vrrp_instance describe the instance of the VRRP protocol. The state MASTER

indicates active server. Interface defines the interface the VRRP runs on.

The priority specifies the order in which the assigned interface takes over in a

failover, the higher the number, the higher the priority. Finally, the

virtual_ipaddress specifies the floating IP address shared by two HA proxy

which is 192.168.0.181.

4. Start the HA proxy and Keepalived

Run the command line below to start the HA proxy and Keepalived.

$ sudo service haproxy start
$ sudo service keepalived start

HA Proxy 2 Configuration

1. Installation

Chapter 3 System Design and Configuration

17
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Install keepalived and HA proxy in the virtual machine.

$ sudo apt-get install haproxy
$ sudo apt-get install keepalived

2. HA proxy configuration

Configure the haproxy.conf which is located at /etc/haproxy/haproxy.cfg. To

modify the haproxy.cfg, administrative privileges are needed. The HA proxy 2

configuration is same as the HA proxy 1.
$ sudo nano /etc/haproxy/haproxy.cfg

3. Keepalived configuration

Configure the keepalived.conf which is located at

/etc/keepalived/keepalived.conf. To modify the keepalived.conf, administrative

privileges are needed. Create a keepalived.conf if no configuration file at

/etc/keepalived/.

1
2
3
4
5
6
7
8
9

vrrp_instance p2 {
 state BACKUP
 interface eth0
 virtual_router_id 102
 priority 200
 virtual_ipaddress{
 192.168.0.181
 }
}

The state BACKUP designates the backup HA proxy. HA proxy 2 use the same

virtual IP address as HA proxy 1 which is 192.168.0.181. HA proxy 2 priority

is lower than broker 1.

4. Start the HA proxy and Keepalived

Run the command line below to start the HA proxy and Keepalived.

$ sudo service haproxy start
$ sudo service keepalived start

Chapter 3 System Design and Configuration

18
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

3.3 HA Mosquitto broker using python bridge

Figure 3.4 Network design of using python script

Figure 3.4 describes the network design of using python script. Instead of using

Mosquitto bridge, this method use python bridge to forward message within brokers.

Python bridge is a python script provided by this study. It use Paho Python Client

provide by Eclipse to perform various functions. Both python bridges are running on

their respective brokers. Compare to Mosquitto bridge, the python bridge able to

determine whether forward the message to the other broker.

3.3.1 Overview of python bridge

The functions of python bridge can be summarized as below:

1. Subscribes to all topic at local broker. Any message received by local broker

will be sent to python bridge. Python bridge determines whether forward the

message to the other broker using a list of available topics that is obtained from

the other broker.

2. Subscribes to system log topic at local broker. Use log information to manage

available topic and publish a list of available topics to topic “topic” at local

broker with retained message flag.

3. Get a list of available topic from the other broker by subscribing topic “topic”.

Python bridge consists of two clients which are “client_sys” and “client_sys_forward”.

“client_sys” connects to local broker and “client_sys_forward” connects to the other

broker. Message exchanges between local broker and python bridge do not consume

any network bandwidth. The main concept of the python bridge is using mqtt clients

Chapter 3 System Design and Configuration

19
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

subscribe to different topics. Different callback functions will be assigned to different

topics. It will triggers different callback functions according to the topic when received

messages. For example, “client_sys” subscribes to all topic at local broker by using

topic “#”. Any messages received by local broker will be sent to python bridge and

trigger the callback function which is on_message_forward(). The

on_message_forward() determines whether forwards the message to the other broker.

Python bridge uses callback functions to perform various actions. The callback

functions are listed in Table 3.1 .

Client

object

variable

name

Callback function Topic Description

client_sys on_message_forward

()

It subscribes all topic on

local broker. The callback

function can determine

whether publish the

message to the other

broker.

client_sys on_message_forward

_from

_otherbroker()

forward/#

In order to prevent looping,

all messages come from the

other broker, prefix

“forward” will be added to

the topic. The callback

function removes the topic

prefix and republishes the

message to local broker.

client_sys on_message_sub_top

()

$SYS/broker/log

/M/subscribe

The callback function add

the topic and client id to the

dictionary and publishes a

list of available topic to

topic “topic” on local

broker when client

subscribes topic.

Chapter 3 System Design and Configuration

20
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

client_sys on_message_unsub_t

op()

$SYS/broker/log

/M/unsubscribe

The callback function

removes topic and client id

from dictionary and

publishes a list of avaiable

topics to topic “topic” on

local broker when client

unsubscribes topic.

client_sys on_message_disconn

_topic()

$SYS/broker/log

/N

The callback function

removes topic and client id

from dictionary and

publishes a list of avaiable

topics to topic “topic” on

local broker when client

disconnects from local

broker.

client_sys

_forward

on_message_get_top

ic()

topic Get a list of available topics

from the other broker.

Table 3.1 Callback functions for python bridge

Chapter 3 System Design and Configuration

21
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

3.3.2 Detailed Callback Function Flowcharts

3.3.2.1 on_message_forward() Function Flowchart

Figure 2.5 on_message_forward() Function Flowchart

Chapter 3 System Design and Configuration

22
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

3.3.2.2 on_message_forward_from_otherbroker() Function Flowchart

Figure 3.6 on_message_forward_from_otherbroker() Function Flowchart

Chapter 3 System Design and Configuration

23
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

3.3.2.3 on_message_sub_top() Function Flowchart

Figure 3.7 on_message_sub_top() Function Flowchart

Chapter 3 System Design and Configuration

24
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

3.3.2.4 on_message_unsub_top() Function Flowchart

Figure 3.8 on_message_unsub_top() Function Flowchart

Chapter 3 System Design and Configuration

25
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

3.3.2.5 on_message_disconn_topic() Function Flowchart

Figure 3.9 on_message_disconn_topic() Function Flowchart

Chapter 3 System Design and Configuration

26
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

3.3.2.6 on_message_get_topic() Function Flowchart

Figure 3.10 on_message_get_topic() Function Flowchart

Chapter 3 System Design and Configuration

27
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

3.5.3 Configuration of HA Mosquitto broker using python bridge

Brokers and HA proxies are implemented on different virtual machine with Kali Linux

OS respectively. Four virtual machines are used in this project for two brokers and two

HA proxies. The configuration of Haproxy 1 and Haproxy 2 are same as above

(configuration using Mosquitto bridge).

Broker 1 Configuration

1. Install Mosquitto

Install Mosquitto on the virtual machine. This is a package for Mosquitto broker.
$ sudo apt-get install mosquitto

2. Mosquitto Configuration

Change to directory /etc/mosquitto/ and create a new mosquitto configuration

file called mosquitto_python_bridge.conf. To create a mosquitto configuration

file, administrative privilege is needed.

$ cd /etc/mosquitto/

$ sudo nano /etc/mosquitto/mosquitto_python_bridge.conf

Follow the configuration file below,

1
2
3
4
5
6

listener 1883 0.0.0.0
allow_anonymous true

log_type all
log_dest topic
log_dest stdout

mosquitto_python_bridge.conf

The network ports that mosquitto listens on can be controlled using listener. In

the configuration file, broker 1 listen all incoming network connection (0.0.0.0)

at port 1883. It sends all log messages to two destinations which are console and

topic using log_dest.

3. Run the Mosquitto

Run the command line below to start the Mosquitto broker. –c is used to specify

the configuration file for Mosquitto broker.
$ mosquitto –c /etc/mosquitto/mosquitto_python_bridge.conf

Chapter 3 System Design and Configuration

28
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Figure 3.11 Running Mosquitto in broker 1

4. Install paho-mqtt

$ pip install paho-mqtt

5. Run the python bridge

$ python3 python_script.py -b 192.168.0.107

The argument “-b” is used to specify the other broker’s IP address. In this

project, the other broker’s IP address for broker 1 is 192.168.0.107 which is

broker 2 IP address.

Figure 3.12 Running python bridge on broker 1

Broker 2 Configuration

• Install Mosquitto

Install Mosquitto on the virtual machine. This is a package for Mosquitto broker.
$ sudo apt-get install mosquitto

• Mosquitto Configuration

Chapter 3 System Design and Configuration

29
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Change to directory /etc/mosquitto/ and create a new mosquitto configuration

file called mosquitto_python_bridge.conf. To create a mosquitto configuration

file, administrative privilege is needed.

$ cd /etc/mosquitto/

$ sudo nano /etc/mosquitto/mosquitto_python_bridge.conf

Follow the configuration file below,

1
2
3
4
5
6

listener 1883 0.0.0.0
allow_anonymous true

log_type all
log_dest topic
log_dest stdout

mosquitto_python_bridge.conf

The network ports that mosquitto listens on can be controlled using listener. In

the configuration file, broker 1 listen all incoming network connection (0.0.0.0)

at port 1883. It sends all log messages to two destinations which are console and

topic using log_dest.

• Run the Mosquitto

Run the command line below to start the Mosquitto broker. –c is used to specify

the configuration file for Mosquitto broker.
$ mosquitto –c /etc/mosquitto/mosquitto_python_bridge.conf

Figure 3.13 Running Mosquitto in broker 2

• Install paho-mqtt

$ pip install paho-mqtt

• Run the python bridge

Chapter 3 System Design and Configuration

30
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

$ python3 python_script.py -b 192.168.0.139

The argument “-b” is used to specify the other broker’s IP address. In this

project, the other broker’s IP address for broker 2 is 192.168.0.139 which is

broker 1 IP address.

Figure 3.14 Running python bridge on broker 2

Chapter 4 Methodology and Tools

31
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

CHAPTER 4 METHODOLOGY AND TOOLS

4.1 Methodology

Since this is a project mainly on network deployment and deployment, the PPDIOO

network design methodology is used. The methodology is composed by six phases

which are prepare, plan, design, implement, operate, optimize. The Figure 4.1 shows

the PPDIOO lifecycle phase.

Figure 4.1 Phases of PPIDOO

Chapter 4 Methodology and Tools

32
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Prepare Study all the necessary knowledge for problem. For

example, the MQTT protocol, Mosquitto and etc.

Plan Perform analysis on the existing problem and determine

infrastructure or technology that could be used in the

proposed system.

Design Design the details for the proposed solution. For example,

the configuration file details for implementing the bridge.

Implement The building process of the proposed solution.

Operate Testing for the proposed solution.

Optimize Revise the proposed solution and solve the problem that

found in operate phase. Improve the proposed solution if

possible

Table 3.2 Brief description of each phase in PPDIOO

4.2 Technologies and Tools Involved

Hardware

Desktop:

• Used to run multiple_client_sub.py and Krylovsk mqtt benchmark tool in testing.

• Used to run 4 virtual machines.

Processor Intel(R) Core (TM) i5-3340 CPU @ 3.10GHz, 3101 Mhz,

4 Core(s), 4 Logical Processor(s)

Graphics GTX 1050

RAM 16GB

OS Microsoft Windows 10 Pro

Table 4.3 Specification of Desktop
Virtual Machine:

• Used to run HA proxy 1, HA proxy 2, broker 1 and broker 2 in this project.

Chapter 4 Methodology and Tools

33
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Processor Intel(R) Core (TM) i5-3340 CPU @ 3.10GHz, 3101 Mhz,

1 Core

RAM 1048MB

OS Kali Linux

Table 4.4 Specification of virtual machine

Software

1. Oracle virtual box:

In order to run Mosquitto and HA proxy, virtual machine is needed in this

project. It is an ideal utility for running virtual machine on a Window or Linux

PC.

2. Kali Linux OS

Kali Linux OS will be installed on each virtual machine to run Mosquitto.

3. Mosquitto

An open-source message broker that implements MQTT protocol.

4. Paho – MQTT

This is Eclipse Paho MQTT Python client library.

5. HA proxy

It is an open-source software that can provide load balancing and proxying for

TCP.

6. Keepalived

Enable a shared IP address between two servers.

7. krylovsk mqtt benchmark tool

This is a simple MQTT (broker) benchmarking tool provided by krylovsk.

(Krylovskiy A, n.d.)

8. iftop

A Real Time Linux Network Bandwidth Monitoring Tool.

Chapter 5 Testing

34
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

CHAPTER 5 TESTING
5.1 Performance testing

To investigate performance comparison of single broker, HA Mosquitto brokers using

Mosquitto bridge and HA Mosquitto brokers using python bridge, krylovsk mqtt

benchmark tool has been used to perform load tests in a publish scenario. This is a

simple MQTT (broker) benchmarking tool written in GO. Besides that, a python script

multiple_client_sub.py is created to simulate subscribers. The script creates 500

subscribers. Each subscriber subscribes one topic, topic from “test/0, test/1, …, test/498,

test/499”, total 500 topics. For HA brokers, HA proxy forward messages according to

the round robin algorithm, therefore subscribers connect broker alternately. It results in

Figure 5.1 Network design for HA brokers performance testing

Broker 1: [test_1/0, test_1/2, test_1/3, …, test_1/496, test_1/498]

Broker 2: [test_1/1, test_1/3, test_1/5, …, test_1/497, test_1/499].

Krylovsk mqtt benchmark tool is used to create 25 publishers. Each publisher connects

to the broker alternately through the HA proxy. Each publisher publishes 3000

messages to topic test_1/499, the size of the message payload is 100 bytes. The quality

of service is 1. Figure 5.1 shows the network design for HA brokers. For single broker,

subscribers and publishers directly connect to the broker. The mosquitto broker start

with the default configuration. Figure 5.2 shows the testing network design for single

broker.

https://github.com/krylovsk/mqtt-benchmark
https://github.com/krylovsk/mqtt-benchmark

Chapter 5 Testing

35
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Figure 5.2 Network design for single broker performance testing

5.1.1 Performance testing configuration

For Single Broker

1. Run the multiple_client_sub.py to create subscribers subscribe to different topic.

All subscribers directly connect to the broker 1.

$ python multiple_client_sub.py -b 192.168.0.139

The argument “-b” is used to specify the broker IP address.

2. Run the krylovsk mqtt benchmark tool to perform load tests in

a publish scenario. After finish publishing, krylovsk mqtt benchmark tool will

return result.

$ mqtt-benchmark.exe --broker tcp://192.168.0.139:1883 -count
3000 --clients 20 --qos 1 --topic test_1/1 --size 100

For HA brokers (Mosquitto bridge and python bridge)

1. Run the multiple_client_sub.py to create subscribers subscribe to different topic.

Each subscriber connects to brokers alternately through the HA proxy.

$ python multiple_client_sub.py -b 192.168.0.181

The argument “-b” is used to specify the HA proxy floating IP address. In this

project, the HA proxy floating IP address is 192.168.0.181.

Chapter 5 Testing

36
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

2. Run the krylovsk mqtt benchmark tool to Run the krylovsk mqtt benchmark tool

to perform load tests in a publish scenario. After finish publishing, krylovsk

mqtt benchmark tool will return result.

$ mqtt-benchmark.exe --broker tcp://192.168.0.181:1883 -count
3000 --clients 20 --qos 1 --topic test_1/1 --size 100

5.2 Network bandwidth consumption testing

This testing aims to test the network bandwidth consumption between brokers when

message forward from one broker to the other broker. The test targets are Mosquitto

bridge and python bridge. Figure 5.3 illustrates the testing of network bandwidth

consumption between brokers.

Figure 4.3 Network design for HA brokers network bandwidth consumption testing
To monitor the network bandwidth consumption between brokers, iftop program is used

on broker 1. iftop is a real time Linux console-based network bandwidth monitoring

tool. It will show a quick overview of network activities based on port. Same as

performance testing, multiple_client_sub.py is used to create subscribers subscribe to

topic on broker 1. Krylovsk mqtt benchmark is used to create publishers and publish

message with qos 0 to both broker through HA proxy.

5.2.1 Network bandwidth consumption testing configuration

For HA brokers (Mosquitto bridge and Python bridge)

1. Install iftop on broker 1

Chapter 5 Testing

37
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

$ sudo apt install iftop

2. Run iftop on broker 1

$ sudo iftop

Press T to display cumulative line total.

Figure 5.4 Interface of iftop

3. Run the multiple_client_sub.py to create subscribers subscribe to different topic.

Each subscriber connects to brokers alternately through the HA proxy.

$ python multiple_client_sub.py -b 192.168.0.181

The argument “-b” is used to specify the HA proxy floating IP address. In this

project, the HA proxy floating IP address is 192.168.0.181.

4. Run the krylovsk mqtt benchmark tool to act as publishers publish messages to

both brokers.

$ mqtt-benchmark.exe --broker tcp://192.168.0.181:1883 -count
3000 --clients 20 --qos 0 --topic test_1/1 --size 100

Cumulative line total

Chapter 5 Testing

38
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

5.3 Comparison Results

5.3.1 Performance comparison results

Figure 5.5 Msg time mean mean (msg/sec) comparison result

Figure 5.6 Average bandwidth (msg/sec) comparison result

9.185

6.417

7.670

0.000
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000

Single Broker Mosquitto Bridge Python Bridge

Msg time mean mean(ms)

Msg time mean mean(ms)

108.749

157.661

130.944

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

Single Broker Mosquitto Bridge Python Bridge

Average Bandwidth (msg/sec)

Average Bandwidth (msg/sec)

Chapter 5 Testing

39
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

5.3.2 Network bandwidth consumption comparison results

Figure 5.7 Network bandwidth consumption (MB) between brokers

5.4 Result Discussion

According to Figure 5.6, Mosquitto bridge is the highest average bandwidth because of

it consists of two brokers to handle the messages. The average bandwidth of python

bridge is lower than Mosquitto bridge because the script needs to do some stuff to

determine whether forward the message to another broker. The single broker is lowest

because it only one broker to handle messages. By using the high availability broker

solution can achieve higher throughput than single broker under the publishing

conditions.

Although the Mosquitto bridge’s performance is better than python bridge, but

Mosquitto bridge consumes more network bandwidth than python bridge. Figure 5.7

shows the network bandwidth consumption. The bandwidth usage between two brokers

using Mosquitto bridge is 4.5 MB. By using the python bridge, the bandwidth usage is

2.45 MB. This is because there is no client subscribes to topic “test_1/1” on broker 1,

the messages that is sent to topic “test_1/1” on broker 2 are not forwarded to broker 1,

therefore the bandwidth usage of python bridge is lower than Mosquitto bridge.

4.5

2.45

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Mosquitto Bridge Python Bridge

Network bandwidth consumption (MB)

Network bandwidth consumption (MB)

Chapter 5 Testing

40
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

By using the python bridge provided by this study, it can reduce the network usage

between brokers. However, the performance is lower than Mosquitto bridge. This is a

trade-off between performance and network bandwidth consumption.

Chapter 6 Conclusion and Future Work

41
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

CHAPTER 6 CONCLUSION AND FUTURE WORK
6.1 Conclusion

Compared to other protocol such as HTTP, MQTT is a lightweight publish/subscribed

messaging protocol design for low-bandwidth and high latency network. These kinds

of features make MQTT has been widely used in IoT world. In MQTT based network,

broker plays the prime role because it mainly responsible for receiving and processing

all the messages from clients. The broker is the heart of the MQTT protocol. Therefore,

MQTT broker should be high available. There are many types of public and private

brokers available by different vendors, one of them is Mosquitto. However, Mosquitto

does not support clustering and it makes high availability become difficult. Although

high availability for Mosquitto brokers can be achieved by implementing the failover,

but Mosquitto brokers are not able work together to maximizes capacity utilization

without clustering. Without high availability, single broker could be a single point of

failure and performance will be affected when high traffic.

This project proposed two solutions for Mosquitto brokers to achieve high availability.

The first method was using Mosquitto bridge to connect original broker and redundant

broker. However, Mosquitto bridge will send all messages to the other broker even

though nobody subscribes to the topic on the other broker. Hence, the python bridge

was developed to reduce bandwidth usage between brokers. The python bridge is a

python script provided by this study and it can determine whether forward the message

to the other broker. HA proxy also has been used to act as load balancer in both solutions.

In this study, both solutions are able to eliminate single point of failure by using

redundant broker. Redundant broker can work with original broker using bridge. HA

proxy can efficiently distribute incoming traffic to both original and redundant broker.

The high availability brokers can give better performance than single broker.

6.2 Future Work

There is one issue with the python bridge. The python bridge does not support topic

wildcard. For example, client A subscribes to a topic “sensor/#” at broker 2. The topic

“sensor/#” means any message topic with the prefix “sensor” will be sent to client A.

If client B publishes a message to topic “sensor/1” on broker 1, broker 1 will not

forward the message to broker 2 because the python bridge does not recognize topic

Chapter 6 Conclusion and Future Work

42
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

wildcard. The python bridge can be improved by adding functions to recognize topic

wildcard. Moreover, tree data structure can be used instead of python dictionary in

python bridge. Due to the mqtt topic is a simple string that can consists of one or more

hierarchy level, tree data structure is more suitable for managing topic and client id in

python bridge.

43
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

REFERENCES

AVI Networks, What is High Availability? Definition & FAQs. [online]Available fro

m: https://avinetworks.com/glossary/high-availability/#main. [27 November 2

020]

Digital Ocean, 2016. What is High Availability? [online]Available from: https://www.

digitalocean.com/community/tutorials/what-is-high-availability. [27 Novembe

r 2020]

Eclipse foundation, 2014. How to Get Started with the lightweight IoT Protocol? [onli

ne] Available from: https://www.eclipse.org/community/eclipse_newsletter/20

14/october/article2.php. [29 November 2020]

Eugster P.T., Felber, P.A., Guerraoui, P., & Kermarrec, A.-M., 2003. The Many Faces

 of Publish/Subscribe. Research Gate. [online] Available from: https://www.re

searchgate.net/publication/220566321_The_Many_Faces_of_PublishSubscrib

e. [29 November 2020].

Flylib, Message exchange patterns. [online] Available from: https://flylib.com/books/

en/2.365.1/message_exchange_patterns.html. [29 November 2020]

Fruhlinger, J, 2020. What is IoT? The internet of things explained. Available from: [2

7 November 2020]

HiveMQ, Clustering Hive MQ. [online] Available from: https://www.hivemq.com/do

wnloads/clustering_hivemq.pdf [1 April 2020]

HiveMQ, HiveMQ Cluster :: HiveMQ Documentation. [online] Available from: https:

//www.hivemq.com/docs/hivemq/4.4/user-guide/cluster.html. [30 November 2

020]

IBM Developer, 2017. What is MQTT? Why use MQTT? [online] Available from: http

s://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/. [29 November 202

0]

https://avinetworks.com/glossary/high-availability/#main
https://www.digitalocean.com/community/tutorials/what-is-high-availability
https://www.digitalocean.com/community/tutorials/what-is-high-availability
https://www.eclipse.org/community/eclipse_newsletter/2014/october/article2.php
https://www.eclipse.org/community/eclipse_newsletter/2014/october/article2.php
https://www.researchgate.net/publication/220566321_The_Many_Faces_of_PublishSubscribe
https://www.researchgate.net/publication/220566321_The_Many_Faces_of_PublishSubscribe
https://www.researchgate.net/publication/220566321_The_Many_Faces_of_PublishSubscribe
https://flylib.com/books/en/2.365.1/message_exchange_patterns.html
https://flylib.com/books/en/2.365.1/message_exchange_patterns.html
https://www.hivemq.com/downloads/clustering_hivemq.pdf
https://www.hivemq.com/downloads/clustering_hivemq.pdf
https://www.hivemq.com/docs/hivemq/4.4/user-guide/cluster.html
https://www.hivemq.com/docs/hivemq/4.4/user-guide/cluster.html
https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/
https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/

44
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

Kumar R., 2020. MQTT Broker Comparison – MQTTRoute vs Mosquitto. [onlin

e] Available from: https://www.bevywise.com/blog/mqtt-broker-comparison-

mqttroute-vs-mosquitto/

Lavoie C., 2017. Proxy-protocol-figure-2.png (620×338). [online] Available fro

m: https://www.haproxy.com/wp-content/uploads/2017/03/Proxy-protoco

l-figure-1.png [7 April 2020]

Solovev A.& Petrova A., 2020. Peculiarities of Choosing MQTT Protocol for Y

our IoT Devices. [online] Available from: https://www.integrasources.com/blog

/mqtt-protocol-iot-devices/ [10 September 2020]

STS MQTT, MQTT Docs: Topics and access control. Available from: https://docs.sen

setecnic.com/mqtt/topics-and-access-control/. [29 November 2020]

The HiveMQ Team, 2016. Creating highly available and ultra-scalable MQTT cluster

s., HiveMQ. [online] Available from: https://www.hivemq.com/blog/clustering

-mqtt-introduction-benefits/. [30 November 2020]

Tomosvari I., 2017. Choosing an MQTT broker for your IoT project, AutSoft. [online]

 Available from: https://blog.autsoft.hu/choosing-an-mqtt-broker-for-your-iot-

project/ [1 April 2020]

Krylovskiy A., krylovsk/mqtt-benchmark: MQTT broker benchmarking tool, GitHub.

[online] Available from: https://github.com/krylovsk/mqtt-benchmark [1Septe

mber 2021]

https://www.bevywise.com/blog/mqtt-broker-comparison-mqttroute-vs-mosquitto/
https://www.bevywise.com/blog/mqtt-broker-comparison-mqttroute-vs-mosquitto/
https://www.haproxy.com/wp-content/uploads/2017/03/Proxy-protocol-figure-1.png
https://www.haproxy.com/wp-content/uploads/2017/03/Proxy-protocol-figure-1.png
https://www.integrasources.com/blog/mqtt-protocol-iot-devices/
https://www.integrasources.com/blog/mqtt-protocol-iot-devices/
https://docs.sensetecnic.com/mqtt/topics-and-access-control/
https://docs.sensetecnic.com/mqtt/topics-and-access-control/
https://www.hivemq.com/blog/clustering-mqtt-introduction-benefits/
https://www.hivemq.com/blog/clustering-mqtt-introduction-benefits/
https://blog.autsoft.hu/choosing-an-mqtt-broker-for-your-iot-project/
https://blog.autsoft.hu/choosing-an-mqtt-broker-for-your-iot-project/
https://github.com/krylovsk/mqtt-benchmark

45
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 2, Year 3 Study week no.: 1, 2

Student Name & ID: Wong Kei Yin (19ACB00582)

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Building A Ha Mqtt Brokerage Solution Using Mosquitto

1. WORK DONE

None

2. WORK TO BE DONE

1. Find out how to develop a bridge.

3. PROBLEMS ENCOUNTERED

None

4. SELF EVALUATION OF THE PROGRESS

None

_________________________ _________________________

Supervisor’s signature Student’s signature

46
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 2, Year 3 Study week no.: 3, 4

Student Name & ID: Wong Kei Yin (19ACB00582)

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Building A Ha Mqtt Brokerage Solution Using Mosquitto

1. WORK DONE

None

2. WORK TO BE DONE

2. Write a python script to act as a bridge between brokers. The python bridge able to
determine whether forward the messages.

3. PROBLEMS ENCOUNTERED

None

4. SELF EVALUATION OF THE PROGRESS

None

 _________________________ _________________________

 Supervisor’s signature Student’s signature

47
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 2, Year 3 Study week no.: 5, 6

Student Name & ID: Wong Kei Yin (19ACB00582)

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Building A Ha Mqtt Brokerage Solution Using Mosquitto

1. WORK DONE

1. Python bridge was developed

2. WORK TO BE DONE

1. Fix the bug in the python bridge
2. Find out how to do the testing for Mosquitto bridge and python bridge.

3. PROBLEMS ENCOUNTERED

1. A little bug in the python bridge

4. SELF EVALUATION OF THE PROGRESS

None

_________________________ _________________________

Supervisor’s signature Student’s signature

48
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

FINAL YEAR PROJECT WEEKLY REPORT
(Project I / Project II)

Trimester, Year: Semester 2, Year 3 Study week no.: 9, 10

Student Name & ID: Wong Kei Yin (19ACB00582)

Supervisor: Ts Dr Ooi Boon Yaik

Project Title: Building A Ha Mqtt Brokerage Solution Using Mosquitto

1. WORK DONE

1. Testing is done. The direction for testing is correct

2. WORK TO BE DONE

1. Make the testing report more readable and more detailed

3. PROBLEMS ENCOUNTERED

None

4. SELF EVALUATION OF THE PROGRESS

None

 _________________________ _________________________

 Supervisor’s signature Student’s signature

49
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

POSTER

50
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

PLAGIARISM CHECK RESULT

51
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

52
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

 FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

WONG KEI YIN

ID Number(s) 19ACB00582

Programme / Course Bachelor of Computer Science (Honours)

Title of Final Year Project Building A Ha MQTT Brokerage Solution Using Mosquitto

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: __8 %

Similarity by source
Internet Sources: _____6________%
Publications: _4____ %
Student Papers: ___5_____
%

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:
(i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report
to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final
Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________
Signature of Supervisor Signature of Co-Supervisor

Name: Ts Dr Ooi Boon Yaik Name: __________________________

Date: 2 September 2021 Date: ___________________________

Universiti Tunku Abdul Rahman
Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin
for Submission of Final Year Project Report (for Undergraduate Programmes)
Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

53
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR.

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION
TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION
Student Id 19ACB00582
Student Name WONG KEI YIN
Supervisor Name Ts Dr OOI BOON YAIK

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.
N/A Front Plastic Cover (for hardcopy)
√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgement
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)
N/A List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter of

literature review
N/A Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all
the items listed in the table are included in my
report.

(Signature of Student)
Date: 1 September 2021

Supervisor verification. Report with incorrect
format can get 5 mark (1 grade) reduction.

(Signature of Supervisor)
Date: 2 September 2021

	CHAPTER 1 INTRODUCTION
	1.1 Problem Statement and Motivation
	1.2 Project Scope
	1.3 Project Objectives
	1.4 Contribution
	1.5 Background Information

	CHAPTER 2 LITERATURE REVIEW
	2.1 MQTT
	2.1.1 Publish/Subscribe Pattern
	2.1.2 Topic and Quality of Service

	2.2 High availability
	2.3 High availability MQTT clusters using HiveMQ

	CHAPTER 3 SYSTEM DESIGN AND CONFIGURATION
	3.1 System Overview
	3.2 HA Mosquitto broker using Mosquitto bridge
	3.2.1 Implementation of HA Mosquitto broker using Mosquitto bridge

	3.3 HA Mosquitto broker using python bridge
	3.3.1 Overview of python bridge
	3.3.2 Detailed Callback Function Flowcharts
	3.3.2.1 on_message_forward() Function Flowchart
	3.3.2.2 on_message_forward_from_otherbroker() Function Flowchart
	3.3.2.3 on_message_sub_top() Function Flowchart
	3.3.2.4 on_message_unsub_top() Function Flowchart
	3.3.2.5 on_message_disconn_topic() Function Flowchart
	3.3.2.6 on_message_get_topic() Function Flowchart

	3.5.3 Configuration of HA Mosquitto broker using python bridge

	CHAPTER 4 METHODOLOGY AND TOOLS
	4.1 Methodology
	4.2 Technologies and Tools Involved

	CHAPTER 5 TESTING
	5.1 Performance testing
	5.1.1 Performance testing configuration

	5.2 Network bandwidth consumption testing
	5.2.1 Network bandwidth consumption testing configuration

	5.3 Comparison Results
	5.3.1 Performance comparison results
	5.3.2 Network bandwidth consumption comparison results

	5.4 Result Discussion

	CHAPTER 6 CONCLUSION AND FUTURE WORK
	6.1 Conclusion
	6.2 Future Work

	REFERENCES
	FINAL YEAR PROJECT WEEKLY REPORT
	POSTER
	PLAGIARISM CHECK RESULT
	CHECKLIST FOR FYP2 THESIS SUBMISSION

