
DESIGN AND DEVELOPMENT OF

WIRELESS TELEMEDICINE SYSTEMS

TEH CHEK MIN

A project report submitted in partial fulfillment of the
requirements for the award of Bachelor of Engineering

(Hons.) Biomedical Engineering

Faculty of Engineering and Science
Universiti Tunku Abdul Rahman

April 2011

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : ________________________

Name : TEH CHEK MIN

ID No. : 07UEB04649

Date : _________________________

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled DESIGN AND DEVELOPMENT OF

WIRELESS TELEMEDICINE SYSTEMS was prepared by TEH CHEK MIN

has met the required standard for submission in partial fulfillment of the

requirements for the award of Bachelor of Engineering (Hons.) Biomedical

Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _______________________

Supervisor : Mr. Teoh Chee Hooi

Date : _______________________

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of University Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2011, Teh Chek Min. All right reserved.

v

DESIGN AND DEVELOPMENT OF

WIRELESS TELEMEDICINE SYSTEMS

ABSTRACT

As wireless technology advances, many applications went mobiles. It enabled

medical processes to be done across geographic obstacles and distance. In the present

time, home healthcare has been an important sector in telehealth. This involves

telemonitoring system on the patient at home. In the project, a simple telemonitoring

system is developed, consist of a temperature, humidity and audio sensor. The

telemonitoring system is design for infant home care. This report is mainly for the

audio sensor and its use in detecting infant's cry. In doing so, a

Microelectromechanical system (MEMS) microphone is used. In the process of

detecting crying sound, the amplitude and the frequency of the sound are compared

to a threshold to determine the result. The result was 50 % efficacy. The wireless

technology used is XBee, which is the most suitable method after reviewed along

with Bluetooth and Wireless Local Area Network (WLAN) technology. A home

server will be developed to receive and record the signal from the XBee transceiver

installed. These component constituted a simple home telemonitoring system.

vi

TABLE OF CONTENTS

DECLARATION...ii

APPROVAL OF SUBMISSION..iii

COPYRIGHT..iv

ABSTRACT..v

TABLE OF CONTENTS..vi

LIST OF TABLES...ix

LIST OF FIGURES...x

LIST OF EQUATIONS...xii

LIST OF SYMBOLS / ABBREVIATIONS..xiii

LIST OF APPENDICES...xiv

vii

CHAPTER PAGE

1 INTRODUCTION 1

1.1 Background 1

1.2 Aims and Objectives 1

2 LITERATURE REVIEW 3

2.1 Infant Crying 3

2.2 Wireless Technologies 4

2.2.1 Bluetooth 4

2.2.2 ZigBee 5

2.2.3 WLAN 8

2.3 Radiation Concern 9

2.4 Microphones 9

2.5 Crying Detection 12

3 METHODOLOGY 14

3.1 Wireless Sensors Communication 14

3.1.1 Network Topology 14

3.1.2 Communication Protocol 15

3.1.3 API Packet Structure 17

3.1.4 Utilised Programming Software & Tools 20

3.1.5 Modem Configuration 24

3.1.6 Standalone XBee Module Connection 25

3.2 Audio Capture 26

3.3 Microcontroller Unit 28

3.4 Power Supply 30

3.5 Software & Program Design 31

3.5.1 Programming for MCU 31

3.5.1.1 ADC Programming 31

3.5.1.2 UART & XBee Module Interface
Programming

33

3.5.2 Programming for Home Server 35

3.5.2.1 Serial Port Programming 36

3.5.2.2 Graphic User Interface (GUI) Programming 36

3.5.2.3 Program Flow Chart 39

3.6 Crying Detection 40

viii

4 RESULT & DISCUSSION 41

4.1 Result & Discussion 41

4.1.1 Microphone Output 41

4.1.2 Infant Crying Noise 44

4.1.3 Crying Detection 46

4.1.4 XBee Modem to Modem Communication 48

4.1.5 Power Supply & Power Consumption 48

4.1.6 Challenges in Infant Crying Detection 49

4.1.7 Challenges of XBee API Packet Implementation 50

5 CONCLUSION & RECOMMENDATION 52

5.1 Conclusion 52

5.2 Recommendation 52

REFERENCE 54

APPENDICES 57

ix

LIST OF TABLES

TABLE TITLE PAGE

2.1: Transfer Rate of Various Version of Bluetooth...................................4

2.2: Bluetooth Radio Power Class...5

3.1: (a) Common Configuration on Both Modem.................................25

(b) Different Configuration on Both Modem.................................25

4.1: Voltage Output of LM2907 Corresponding to..................................42

Frequency of Noise

x

LIST OF FIGURES

FIGURE TITLE PAGE

2.1: ZigBee Network Structure..8

2.2: Electret Condenser Microphone (ECM)..10

2.3: Microelectromechanical System (MEMS) Microphone...................10

2.4: Cross-Section of A Typical Condenser Microphone..........................11

2.5: Cross-Section View of A Typical MEMS Microphone......................12

3.1: Project Network Topology...14

3.2: A SKXBee...16

3.3: (a) Sparkfun Logic Level
Converter..17

(b) Connection Between XBee, Logic Level
Converter..................17

and Microcontroller

3.4: The General Structure of an API Packet...19

3.5: The API Structure of Transmit Request Packet (16-bit Address)...19

3.6: The Packet to Request Microphone Information Sent by................19

Home Server

3.7: The API Structure of Received Packet (16-bit Address)..................19

3.8: The Structure of Packet Reply by Microcontroller in......................19

Response to the Request

3.9: The API Structure of Transmit Status Packet...................................20

3.10: Opening a Com Port with X-CTU Software......................................22

xi

3.11: Success Test / Query Modem on Com Port..22

3.12: Modem Configuration Tab on X-CTU Software...............................23

3.13: Connection to Configure and Upgrade Firmware on.......................24

Standalone XBee Module

3.14: (a) The Standalone XBee Module..26

(b) The Connection for Standalone XBee Module..........................26

3.15: The Connection of the Microphone..27

3.16: The Connection for PIC18F4523..29

3.17: Cascade Configuration for Supply Voltage.......................................30

3.18: Baby Monitor GUI Program...37

3.19: Program Flow Chart..39

4.1: Graph of Voltage, V / V, Against Frequency, f / kHz.........................42

4.2: The Real Time Plot of Infant Crying Sound......................................44

4.3: Sampling Graph of Crowd Noise..46

4.4: Sample Audio Log Showing the Event of Crying Pulses..................47

xii

LIST OF EQUATION

EQUATION TITLE PAGE

2.1: Relationship Between Charge, Q, Voltage, V, and.......................11

Capacitance, C, of a Capacitor

2.2: Change of V Resulted from the Change of C................................11

3.1: Equation to Calculate XBee API Checksum................................18

3.2: Equation to Determine R1 and C1 for LM2907.............................27

3.3: Equation to Derive the Period of Clock Cycle.............................29

3.4: Equation to Calculate SPBRG...33

4.1: Gradient of Sound Intensity over Voltage....................................41

4.2: Equation for Conversion from ADC Result to.............................41

Sound Intensity

4.3: Relationship Between Voltage and Frequency.............................43

4.4: Conversion from ADC Result to Frequency.................................43

xiii

LIST OF SYMBOLS / ABBREVITATIONS

C Capacitance, F

f Frequency, Hz

FOSC Crystal frequency, Hz

Q Charge, C

R Resistance, Ω

Tclock Period of one clock cycle, s

V Voltage, V

API Application Program Interface

ECM Electret Condenser Microphone

GUI Graphic User Interface

MCU Microcontroller Unit

MEMS Microelectromechanical System

PDA Personal Digital Assistance

POSIX Portable Operating System Interface for Unix

UART Universal Asynchronous Receiver / Transmitter

USB Universal Serial Bus

WLAN Wireless Local Area Network

xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A: Source Codes for Program in MCU..57

Appendix B: Sampling Result of Infant Crying Sample.............................67

Appendix C: Full Circuit Diagram..74

Appendix D: The Pictures of Circuit Connections.......................................75

CHAPTER 1

INTRODUCTION

1.1 Background

Telemedicine may be briefly defined as the healthcare carried out at a distance. At

this period of time, the advancement of technology has enabled telemedicine

implementation to able to dispose of cable. Further supported by many organisations,

such as Intel / Cisco in their guide for wireless local area network (WLAN)

healthcare deployment (Intel / Cisco, March 3, 2008), and also the ZigBee ® Alliance

collaboration with the American Telemedicine Association (ATA) to promote the

wireless health care (ZigBee ® Alliance, November 17, 2009), the telemedicine

concept is no longer an innovation. In a study by Koch (2006), search terms often

used to retrieve scientific literature from Medline database in January / February

2004 which related to home telehealth have recorded 5600 hits, and 72.2% (4045) of

the searches were for home monitoring, and the related publication showed increment

over time. Acknowledging the trend, this project is innovated to develop a prototype

wireless homecare system for infant care and infant monitoring.

1.2 Aims and Objectives

The objective of this project is to develop a prototype wireless homecare system for

infant care and infant monitoring. The whole system consist of three sensors, namely

(1) temperature sensor, (2) humidity sensor, and (3) audio sensor. This project part is

2

focused on the audio sensor. The function of the temperature sensor is to sense the

body temperature of an infant, while the humidity sensor is to sense the humidity

level in the room.

The audio sensor is meant to detect the crying sound of an infant. The home

server unit will periodically request the audio information of the sensor through the

on site processing unit that physically connect to the sensor and done processing and

monitoring on the home server unit. Once a crying noise is detected, the caregiver

will be alarmed.

CHAPTER 2

LITERATURE REVIEW

2.1 Infant Crying

Infants cry the moment they were born as the sign of them taking over their own life.

Through the first few months after born, infants have yet to develop speech-like

voice (Hsu, Fogel, & Cooper, 2000) and thus unable to learn to speak. Crying is their

only communication. In a study by Nikayama (2010), aside from biological reasons

such as hunger, disturbance of sleep and discomfort, infants also cried for

sociological reasons such getting attention and getting company. For instance, an

infant cried more when the caregiver is out of the infant's visible and hearing range.

This phenomena gave the idea to the present project as one of the method for a

caregiver to monitor the crying status of the infant under care.

Many researches have been done on infant crying, most was about diagnosing

the crying signal that may lead to a medical abnormalities. Várallyay, Illényi, Benyó,

Farkas and Katona (2005) have been attempted to detect hearing disorder by acoustic

features of the infant cry. In a study by Stifter (2005), Barr (2006), and Zeskind

(2007), the crying behavior of an infant is related to the importance for psychosocial

development in children. These research implied that the analysis of infant cries have

the potential to diagnose the medical abnormalities. However, these studies were not

reported as performed by remote analysis, nor by automated detection, recording, and

analysis.

4

2.2 Wireless Technologies

There are many type of wireless technologies existed on the market nowadays.

Complying with the project requirement, only a short range wireless communication

area is required and this is used as the first concern in narrowing down the choices of

the available wireless technologies in the market. The most used Bluetooth, ZigBee,

and Wireless Local Area Network (WLAN) for homecare are reviewed.

2.2.1 Bluetooth

The “Bluetooth is a way for devices to wirelessly communicate over short distances”

(Huang and Rudolph, 2007). The Bluetooth is regulated by Bluetooth Special Interest

Group (SIG) and it is complied with IEEE 802.15.1 standards for Wireless Personal

Area Network (WPAN), operate in 2.4 GHz, Industrial Scientific and Medical (ISM)

band.

Relative to other versatile wireless technologies, Bluetooth is the lowest cost,

simple and ubiquitous. The transceiver of Bluetooth is readily embedded in most

gadgets in the market, such as PDAs, mobile phones and computers. The Bluetooth

external transceiver, called a dongle, is widely available in market for years, for a

relatively low price.

The connection between Bluetooth device is based on master-slave

relationship, any device can be set to be a master or slave at any time (Kammer et al.,

2002). The maximum communication one master device connects is seven slave

devices at a time, forming a piconet. The transfer rate varies by their version:

Table 2.1: Transfer Rate of Various Version of Bluetooth

Version Rate

1.2 1 Mbit/s

2.0 + EDR 3 Mbit/s

3.0 + HS 24 Mbit/s

5

The most conventional version used is bluetooth version 1.2. The 1 Mbps

transfer rate is adequate for application such as document / audio / video transfers.

The effective range of the communication will determine how far two device can

communicate before they lost connection from the wireless system, while power

system will determine the duration in which the device can operate before it's power

source is recharged/replaced. The range and power output varies according to their

class:

Table 2.2: Bluetooth Radio Power Classes

Power Class Max Output Power Range

Class 1 100 mW 100 meters+

Class 2 2.5 mW 10 meters

Class 3 1 mW 1 meter

For home-care application, Class 2 Bluetooth is preferable so that the

communication valid around the range of the house. In an open area or place with

less obstacle, the range could go more than the range indicated in Table 2.2.

All wireless communication systems nowadays are subjected to interference.

With Bluetooth, interference may result of microwave (ovens, etc), thunderstorms,

Wi-Fi or with other Bluetooth devices in that area, and hence Bluetooth technology

should not be used for safety-critical applications where data absolutely must get

through (Kammer et al., 2002). Nevertheless, a study made by Khoór, Nieberl,

Fügedi and Kail (2001) used Bluetooth in Electrocardiography (ECG)-telemetry to

compress and to convey the digital ECG data to their WEB-server. The performance

of the implementation was not discussed, but the study successfully recorded various

abnormalities in patients.

2.2.2 ZigBee

ZigBee is a wireless technology with low cost, low power, and short range

specification. It comply with IEEE 802.15.4 standards for WPAN. The ZigBee

6

standard is published and maintained by a group of company called The ZigBee

Alliance. In November 17, 2009, The ZigBee Alliance officially collaborated with

American Telemedicine Association (ATA) to educate both health care professionals

and consumers on wireless health care solutions. By this collaboration, wireless

telemedicine, specifically with ZigBee, will be more popular among the medical

practitioner and consumer. There is even ZigBee Health Care (ZHC) Public

Application Profile free to download at http://www.zigbee.org/Products/DownloadZi

gBeeTechnicalDocuments.aspx to provide standard interfaces and device definitions

to allow easy interoperability among telemedicine.

The ZigBee have transfer rate ranging of 20~250 Kbit/s. The communication

range usually is between 10 and 75 meters, and may up to 1500 meters for ZigBee

Pro, depending on surrounding condition. For normal ZigBee transceiver the output

power of the radio can be as low as 1 mW (Cirronet, 2005). The low power

consumption is the main advantage of the ZigBee in designing a battery-powered,

embedded device. The network capabilities of ZigBee is self-organizing and self-

healing dynamic mesh network based on ZigBee public standard, the network size

may up to thousands of devices per network.

The ZigBee radiofrequency wave is also transmitted in the 2.4 GHz band,

which means it will interfere with other users of this ISM band. However these

consequences were expected by ZigBee Alliance and thus ZigBee is designed with

the concept of coexistence in mind. The coexistence technique described in “ZigBee

and Wireless Radio Frequency Coexistence (2007)” by the ZigBee Alliance is

claimed to be effective in the coexistence. On the other hand, to get approved as an

IEEE 802 wireless standards, the technology is required to attach with a Coexistence

Assurance Document and implement it in a standards to ensure that all 802 wireless

standards can operate and coexist in the same area.

A study by Vergari, Auteri, Corsi and Lamberti on ZigBee-based ECG

telemonitoring showed the early research of the wireless technology in the field. The

single lead ECG captured signals from a person, amplified and filtered in the

embedded system before transmit it to a computer via ZigBee for further data

processing. The signal was sampled at 500 Hz, encoded and sent through ZigBee

7

with the concern on the transfer rate because the transmission did not support high

transfer rate. If too many bytes are sent to the radio module, the module will not be

able to send all of them, resulting in data loss at the receiver end. This reflected to the

project here that the audio captured from the infant will have difficulty to send

through ZigBee to the base station for processing because the audio generally require

much higher sampling rate and thus higher bitrate.

In another study by Srovnal and Penhaker (2006), ZigBee is used in homecare

and health maintenance system using embedded system for the diagnostic and the

maintenance planning in healthcare applications. In the study, ZigBee was chosen for

their sensor network because it matched the main criteria for their project, which is

bandwidth, range, energy, consumption, robustness, availability, usability and

security. The sensor nets they built consist of ZigBee technology combined with

ambient intelligence sensor technology.

The ZigBee have the lowest transfer rate among the wireless technologies

reviewed, but due to its simplicity, low power consumption and fast respond time

from the sleep mode (Andriana, Victor, & Ioan, 2008), it is more suitable for the

wireless sensor network.

There are two types of ZigBee devices, (1) the full function device (FFD) and

(2) the reduced function device (RFD) (Kinney, 2003). The advantage of FFD over

RFD is the capabilities of the device to act as router to relay signal from other device

to another, forming peer-to-peer and mesh networks, thus provide the ability to

connect to devices at a greater extent. FFD device can also act as coordinator. RFD

can only communicate with other device but cannot act as router. There are three

types of topologies supported by ZigBee: star topology, peer-to-peer (mesh)

topology, and cluster tree (Figure 2.1) (Kinney, 2003). RFD can only be used in the

star topology.

8

Figure 2.1: ZigBee Network Structure

The ZigBee device is not readily available in embedded form in daily life

gadgets (phones, laptop, PDA etc) in the current time. They must be independently

provided as a functional system for some applications. However there are ZigBee

products and have sufficient amount of development tools readily for purchase in

Malaysia; there are ZigBee resources available here for development.

2.2.3 WLAN

Wireless Local Area Network (WLAN) is widely used for conventional internet

connection from devices to an access point. It comply with IEEE 802.11a/b/c/g/n

standards and also operates in ISM bands. WLAN offers higher data transfer rate and

may up to maximum 300 Mbit/s for 802.11n (the power consumption also high, in

the range of a few Watts). The range usually goes around 100 meters outdoor and

around 35 meters indoor, however, by forming access points, the range could be

extended. WLAN establishes connection through IP address recognition, and security

could be enhanced by MAC address recognition.

9

Like others RF that communicate in the ISM band, WLAN also subjected to

the similar interference. However the 802.11a and 802.11n can operate in 5-GHz,

providing high data throughput, reduced interference from non-802.11 wireless

devices and generally provide improved performance in RF-reflective environments,

which is a better option for high risk monitoring medical devices.

A design by Kugean, Krishnan, Chutatape et al. showed the possibility of

implementing mobile telemedicine using WLAN. Their design was meant to provide

mobility, reliable and cost-effective telemedicine network. The WLAN have high

transfer rate and it was able to support all of the telemedicine requirement including

videoconferencing. Noted in the paper, occasional interference was inevitable.

2.3 Radiation Concern

This project aims is to develop a device for infant application that involves Radio

Frequency (RF) transmission. The RF is a type of electromagnetic (EM) wave and it

contains energy. The energy of the wave is depend on the radio emitter. Bluetooth

and ZigBee both have maximum radio power output around 50 mW. The duration of

time of exposure to the power is equal to the energy delivered by the radio. In the

project, it is important that the EM wave have no adverse effect on infants.

The wireless technologies reviewed is under the control of Code of Federal

Regulation (United States), Title 47, Part 15 (47 CFR 15). The emission of the

wireless technologies is within the tolerable range for human safety. However

currently there was no adequate researches on the subject.

2.4 Microphones

Audio capturing is needed for infant crying detection and is done by a microphone. A

microphone is a transducer that can convert the sound mechanical signal into

10

electrical signal. this project is aimed at designing a portable device and thus

compactness is one f the design factors. The market existing compact microphone is

Electret Condenser Microphone (ECM) (Figure 2.2) (Hosiden) and

Microelectromechanical system (MEMS) microphone (Figure 2.3) (Justin, 2009).

ECM have been used in many daily gadgets such as mobile phones, headset, digital

camera and laptop (Nielsen and Fürst).

Figure 2.2: Electret Condenser Microphone (ECM)

Figure 2.3: Microelectromechanical System (MEMS) Microphone

ECM is a capacitance microphone. Figure 2.4 shows the cross-section of a

typical condenser microphone (MediaCollege.com). The front plate and the back

plate forms a capacitance. The front plate, which is also a diaphragm, will vibrate

upon receiving sound waves. The back plate is in fixed position and is charged by a

battery. Upon vibrating occurs at the diaphragm, the capacitance of the capacitor will

change, resulting in a change of voltage, which is the output audio signal. The ECM

differ from normal condenser microphone in such as way that the battery does not

exist, but being replaced by a fixed charge material that could discharge for years

11

(Nielsen and Fürst).

Figure 2.4: Cross-section of A Typical Condenser Microphone

The general relationship between charge, Q, voltage, V, and capacitance, C, is

given in equation 2.1. The equation of the change of the V resulted from the change

of C is given by equation 2.2. The ΔV is the audio output signal. Note that Q is

constant, supplying a constant voltage over the plates. From equation 2.1, when C is

small, then V will be higher. When the front plate vibrated, the capacitance changed.

Through a threshold at about 50 Hz (hardware dependent), the capacitance is

almost constant and the voltage will also changed. Thus, The changes of voltage will

reflects in the changes of the amplitude of the output signal. This can be use to detect

the intensity of the sound, or how loud the sound was.

 (2.1)

 (2.2)

where

V = voltage, V

ΔV = change of voltage, V

V =
Q
C

ΔV≃−V [
ΔC
C

]

12

C = capacitance, F

ΔC = change of capacitance, F

Q = charge, C

MEMS microphone works on the same concept as the ECM, except that the

components are built onto a single chip using Complementary Metal-Oxide

Semiconductor (CMOS) technology, while ECM is assembled from discrete parts

(Justin, 2009). MEMS microphone is newer technology compare to ECM and have

the same range of application to ECM. MEMS microphone can be found in two

types: (1) Analogue output type, and (2) Digital output type. Digital output is in the

form of Pulse-Density Modulation (PDM) and readily integrated into digital device.

The digital MEMS microphone also immune to Radio Frequency (RF) interference.

Figure 2.5 illustrate the cross-section of a typical MEMS microphone.

Figure 2.5: Cross-section View of A Typical MEMS Microphone

2.5 Crying Detection

There were several automated infant crying detection researches conducted until

present. One of the study by Reyes-Galaviz and Reyes-Garcia (2004) used neural

networks to automatically recognize infant cry and also classifies them into three

kinds of cries, namely: normal, deaf, and asphyxiating infants cry. However to

achieve that, a high end processor (and using Matlab®) is required to process the

recorded signal.

13

The infant crying sound can be regarded as a form of music melody

(Várallyay, 2007). In analysis of the crying sound, the audio sample is grouped in

samples of 50 ms and Fast-Fourier Transform (FFT) is performed on the sample and

the fundamental frequency is evaluated (Várallyay, 2007) (Manfredi, Bocchi, &

Orlandi, 2009). Although the fundamental frequency changes during the crying audio

detection can be use to recognise infant cry, however the processing algorithm is

difficult in implementation for embedded system. This project uses the frequency

threshold as the crying detection.

Infant crying frequency centered around 3500 Hz, differ between each

individual and ranging from 1000 to 6000 Hz (Goodman, May 4, 2006). Frequency

threshold method was implemented for the detection (Chau-Kai, 1992) in the

commercial product on the market. The method is simple to implement and require

relatively less processing, thus provides the real-time processing and embedded

system application realisable.

CHAPTER 3

METHODOLOGY

3.1 Wireless Sensors Communication

3.1.1 Network Topology

This project used XBee (XBee 1mW Wire Antenna, Digi International) for the

wireless communication. The peer-to-peer topology will be used to form a mesh

network between the sensors and the home server, although there are only two nodes,

this will increase the versatility of the node. The sensors will shares the common

transceiver, while the other transceiver will be connected to a home server, which is a

computer. The illustration is shown in Figure 3.1. The remote station that accumulate

the data from the sensors are called base station. It performs ADC for the analog

output from sensors and then send it to home server.

Figure 3.1: Project Network Topology

15

3.1.2 Communication Protocol

The XBee modules was able to communicate through 2 types of mode: 1) transparent

mode, and 2) application program interface (API) mode. The transparent mode is the

simplest way of communicating, including allowing the use of AT command to

configure the properties of the modules. In transparent mode, the data are sent just as

if they are sent through a serial port. However the destination address and source

address of communicating devices must match and be configured prior to

communicating. This mode however, only set for one pair of communicating devices

because the destination address are fixed.

The API mode allows sending of data to destination with different addresses,

depending on which destination address are put in the packet and regardless of the

pre-configured destination address set in the register. Other than that, API packet also

can be used to apply remote command on other XBee modem. To make use of this

ability, the project has implemented the API communication mode for the XBee

modules.

The communication with hosts (home server, microcontroller) was using

Universal Asynchronous Receiver Transmitter (UART) protocol. The XBee USB

dongle (Cytron SKXBEE, XBee Startup Kit) (Figure 3.2) is used to connect the with

the home server. The dongle is based on UART protocol which converted to

Universal Serial Bus (USB) data through an Integrated Circuit (IC) chip (FTDI

FT232) which convert between RS232 and USB data. With this dongle, the data

received from the XBee module will output the data to computer through a USB port

which will act as a virtual serial port.

16

Figure 3.2: A SKXBee

The communication with the microcontroller require a logic level converter

because the voltage required by these ICs are not same. The microcontroller used and

transceive 5 Volt transistor-transistor logic (TTL) data while the XBee used 3.3 Volt.

A logic level converter (Sparkfun Logic Level Converter) was used to convert

between these voltage levels so the communication can be done without spoiling the

IC. The communication between the XBee and the microcontroller used UART

protocol. The connection between these IC and the logic level converter are as shown

in Figure 3.3.

The UART protocol between XBee and hosts was configured to have 19200

baud, 8 bits data, no flow control and 1 stop bit. These parameter have to be matched

between UART devices in order to communicate with their host.

17

(a)

(b)

Figure 3.3: (a) Sparkfun Logic Level Converter, (b) Connection Between XBee,

Logic Level Converter and Microcontroller

3.1.3 API Packet Structure

The general API packet structure is shown in Figure 3.4 below. The start delimiter is

a fixed symbol (with hex code 0x7E) for the start of the API packet. The MSB and

LSB combined are a two-bytes number indicating the number of bytes in the frame

data. In the frame data, there separated into two parts: 1) API identifier, and 2)

18

identifier-specific data. The API identifier will let the module know the purpose of

the packet. For instance, API identifier with value 0x01 is for transmit request (16-bit

address) packet, 0x89 is for transmit status packet, 0x81 is for receive packet (16-bit

address) etc. The identifier-specific data, as it was named, is the data required based

on the API identifier that was given. For example, if the packet is transmit request

packet, the data will have destination address, frame identifier, option, and the data to

be transmit out. The last byte is the checksum byte. It was an important byte to

ensure there was no error in the sent data. For this module, the checksum is define by

equation 3.1.

Checksum = 0xFF – sum of all bytes in the Frame Data (3.1)

In order to request microphone information from the microcontroller, the

packet as shown in Figure 3.6 is sent to the XBee module attached to the home server

(host) which is a personal computer from the computer itself. The transmit request

used 16-bits address and have the structure as shown in Figure 3.5. It can be seen that

the request packet was a transmit request packet (16-bit address) with 0x52 as frame

identifier, 0x1010 as the destination address and the character 'M' as the content.

When the packet received and processed by the XBee module and when the

checksum is correct, the modem then will send the data to the other XBee module

attached to the microcontroller (another host), which will respond by performing the

task required and then assemble a packet and then send the packet back to the home

server following the similar path. The packet respond to the microphone information

request packet will have the data structure shown in Figure 3.7 and Figure 3.8, total

of 14 bytes. The receive packet was not of a constant value, because its content

depends on the Receive Signal Strength Indicator (RSSI) which was 0x28 in the

figure and the content of the data, and thus the checksum too will be varied. The

0x4D and the 4 consecutive 0x00 are the content of the data, containing the

microphone information that requested by the home server.

19

Figure 3.4: The General Structure of an API Packet

Figure 3.5: The API Structure of Transmit Request Packet (16-bit Address)

7E 00 06 01 52 10 10 04 4D 3B
Figure 3.6: The Packet to Request Microphone Information Sent by Home

Server

Figure 3.7: The API Structure of Received Packet (16-bit Address)

7E 00 0A 81 10 10 28 00 4D 00 00 00 00 E9
Figure 3.8: The Structure of Packet Reply by Microcontroller in Response to the

Request

20

The request for microphone information will retrieve two parameters: 1) the

amplitude of the microphone, and 2) the frequency of the microphone. These

information were expressed in digital format as the result of analog-to-digital (ADC)

conversion process. The interval of time for each request of 0.2 seconds, which

means 5 inquiry per second. By unwrapping the API frame, the request basically send

a character 'M', and the reply will send 'M' and followed by 4 information bytes. The

first two bytes was the ADC result of the amplitude of noise, and the last two was the

ADC result of the frequency.

When a transmit request data has been successfully sent out through the

XBee, the XBee will reply the host with a transmit status packet, shown in Figure

3.9. This packet can be use to inform the host about the status of packet delivery. If

the packet should not be missed, the host can use the status to trigger resend if the

delivery was not success. However, the usage of this packet was no implemented in

the project. The transmit status packet received upon a success or non-success

delivery will just be ignored.

Figure 3.9: The API Structure of Transmit Status Packet

3.1.4 Utilised Programming Software & Tools

The firmware in the standalone XBee module and the XBee module on the USB

dongle was upgraded before the XBee is used. The program used to configure and

upgrade the XBee properties and firmware was Digi's X-CTU software. The

21

firmware upgrade and configuration steps for XBee USB dongle were easier than

that of standalone XBee module. The reason was that XBee USB dongle have readily

plug and play design so that upon plugged into the a USB port, the device will be

detected and ready to be use.

Prior to use the X-CTU software with the attached XBee USB dongle, some

configuration and additional software installation have to be done because the

operating system used in this project was Linux (Ubuntu) operating system and the

X-CTU software was made to run in Microsoft Windows operating system. First

WINE Is Not an Emulator (WINE) software is installed so that the Linux can run

some basic Windows application (Lizard43, 2008). The X-CTU installer was then

used to install the software inside WINE. The X-CTU can now run through WINE,

but the com port will not be detected. To make this works, a link of device file (where

the XBee USB dongle is attached) has to be created in the ~/.wine/dosdevices

directory. These can be explained in a few steps:

i) The XBee USB dongle is inserted in a USB port.

ii) From terminal, run “dmesg | tail” and identify where the device is attached to.

For example, /dev/ttyUSB0.

iii) A soft link of /dev/ttyUSB0 is created in ~/.wine/dosdevices directory using

command:

ln -s /dev/ttyUSB0 ~/.wine/dosdevices/com8

In the steps the soft link created is named com8, but it can be any com

number. After these steps, the XBee USB dongle will now be recognized by the X-

CTU software. The X-CTU software is now switched on and the com number that

was assigned is inserted in the text area within “Add User Com Port” group box

(Figure 3.10). To communicate with the dongle, proper communication configuration

need to be set. The default baud rate is 9600, flow control is NONE, data bits is 8,

parity is NONE and stop bits is 1. The “Test / Query” button is then clicked and the

software will try to establish a connection with the dongle. If the configuration was

correct, the connection will success and the windows will be as shown in Figure 3.11.

22

To configure the modem, modem configuration tab in the X-CTU software is

used (Figure 3.12). To know the current configuration, the “read” button is clicked.

The parameters of the modem will be shown. To change the value of the parameter,

the name of the parameter shown is clicked and the new value is entered. The “write”

button is then clicked to write the new value into the register of the modem.

Figure 3.10: Opening a Com Port with X-CTU Software

Figure 3.11: Success Test / Query Modem on Com Port

23

Figure 3.12: Modem Configuration Tab in X-CTU Software

The configuration set were the Channel (0x0B), Destination Address Low

(0x1010), 16-bit Source Address (0x0101), Interface Data Rate (19200),

Packetization Timeout (0) and API Enable (API ENABLED). After these changes are

written into the modem, the connection need to be reestablished with 19200 baud

rate.

The firmware upgrade is also done in the modem configuration tab. In the tab,

in the “Version” group box, the “Download new versions...” button is clicked and

then the new version firmware will be automatically downloaded and can be write

into the modem. The firmware version used between two communicating modems

must be the same to avoid unexpected error. The firmware version used here is

version 10E8.

To upgrade and configure the XBee modem module, extra components are

needed. Serial port communication was used to upgrade the firmware, through a hex

inverter (HD74HC04, Hitachi) (Faludi, 2011). The connection is shown in Figure

24

3.13. The serial port communication was done using a FTDI chip based usbserial

converter so that the protocol can work as virtual serial port over USB protocol. The

hex inverter was used to invert the digital signal between 5.0 Volts and 3.3 Volts.

Thus, the hex inverter was powered by 3.3 V supply. Then the similar steps used with

configuring and upgrading modem firmware of XBee USB dongle with X-CTU can

be applied to this standalone XBee module.

Figure 3.13: Connection to Configure and Upgrade Firmware on Standalone

XBee Module

Other than using hex inverter to configure and upgrade the standalone XBee

modem, the API packet can be sent by the XBee USB dongle to execute command on

the standalone modem.

3.1.5 Modem Configuration

Several configuration were done on the XBee modems so that they can establish

connection with their host. The XBee modem to modem communication did not

affected by these configuration. The configuration were baud rate, data bits, parity

bit, flow control, stop bits, channel, addresses, API enable, and packetization timeout.

The configuration that were common to both modem is shown in Table 3.1 (a) while

25

the different one is shown in Table 3.1 (b).

Table 3.1: (a) Common Configuration on Both Modem, (b) Different

Configuration on Both Modem

(a)

Parameter Value

Baud rate 19200

Data bits 8 bits

Parity bits None

Stop bits 1 bit

Channel B

API Enable API Enabled
(no escape character)

Packetization timeout 0 second

Flow control None

(b)

Home Server side Base Station side

Parameter Value Parameter Value

DL 0x1010 DL 0x0101

MY 0x0101 MY 0x1010

3.1.6 Standalone XBee Module Connection

The XBee USB dongle did not need a manual circuit configuration to power up the

modem because it was all prepared by the manufacturer. However the standalone

XBee module need to be manually power up to make it function. The connection for

the modem is shown in Figure 3.14 (b). The modem and its circuit works in 3.3 V

range, so a LM1117 (LM1117, National Semiconductor Corp.) 3.3 V voltage

regulator was used to regulate 3.3 V in the circuit. It can be seen that 5.0 V voltage is

fed into the LM1117 to produce 3.3 V regulated voltage.

26

(a)

(b)

Figure 3.14: (a) The Standalone XBee Module and (b) The Connection for

Standalone XBee Module

3.2 Audio Capture

Audio capture is done by a microphone. The microphone used in the project to detect

infant cry is an analog MEMS microphone (ADMP401 (Analog Devices) breakout

board, Sparkfun). Because the crying detection used the amplitude and the frequency

27

of the noise from which the microphone captured, the analog signal output from the

microphone is first modified before feed into the ADC of the microcontroller.

The signal output from the microphone was an AC signal with an offset DC

voltage. The amplitude of the peak-to-peak voltage (Vpp) varied with the intensity of

the noise. Therefore, the Vpp is attached parallel with a capacitor to reduce the ripple

(Figure 3.15). The rectifier is not used to rectify the voltage because the amplitude of

the voltage drop across the diode is significantly big relative to the magnitude of the

other signal in the circuit.

Figure 3.15: The Connection of the Microphone

To convert the frequency of the noise from the output of the microphone, an

external IC is used. The LM2907 (LM2907, 14 pins, National Semiconductor) IC is a

frequency to voltage (F / V) converter. The connection from microphone output to

LM2907 is shown in Figure 3.15. A capacitor is used at the output of the microphone

before feeding into LM2907 to block the DC offset voltage of the signal. The

selection of capacitors and resistor is based on equation 3.2 (National Semiconductor,

2008).

V out= f in×V cc×R1×C1 (3.2)

28

where

Vout = the output voltage from LM2907, in V

fin = the frequency of the input, in Hz

Vcc = the supply voltage, in V

R1 = the resistance of the resistor, in Ω

C1 = the capacitance of the timing capacitor, in F

In Figure 3.12, the capacitor (1 nF) connected to pin 2 of the is C1, the resistor

(130 kOhm) connected to pin 3 and pin 4 is R1. The supply voltage to this IC was 5 V,

and the desired maximum detectable frequency and voltage output is 5 kHz and 3.3 V

respectively. By using the LM2907, the frequency of the microphone output can be

converted into voltage, which can be converted to digital signal by the ADC of the

microcontroller.

3.3 Microcontroller Unit

The microcontroller unit or MCU chosen for the project is PIC18F4523

(PIC18F4523, Microchip Technology Inc.). The main reason for using the IC was

because the 12-bit ADC function that it offers compares to other IC in the same

family that offers 10-bit ADC. The 12-bit ADC provides higher resolution detection.

The full range of the conversion have 4096 steps. Since the analog signal from the

microphone that feed into the ADC have voltage range slightly lower than 3.3 V, the

positive reference voltage, Vref+ of the ADC was 3.3 V. The negative reference

voltage, Vref- was zero or ground. This allowed each step to correspond to 0.806 mV.

The connection of the MCU is shown in Figure 3.16. The MCU also provided with

13 channels of the ADC, allowing multiple sensors to attach to a single MCU.

29

Figure 3.16: The Connection for PIC18F4523

From AC adapter, the voltage supply, Vs was feed into the LM7805 (LM7805,

National Semicondutor Corp.) 5.0 V voltage regulator before supplying to the whole

MCU circuit that uses 5.0 V (except the positive reference voltage at pin 5). A 20

MHz crystal was used to derive system clock, which is given by equation 3.3.

T clock=
4

FOSC
 (3.3)

where

Tclock = period of clock cycle, in second

Fosc = frequency of the crystal, in Hz

Therefore one clock cycle took 2 x 10-7 seconds. The speed of the system

clock determine how fast the instruction within the MCU can be execute. Using 20

MHz to derive system clock, the MCU is ensured to be able to perform well to

manage the sensors attached to it and also the UART function. The analog output

from microphone amplitude and microphone frequency are fed to ADC channel 5

(AN5, pin 8) and channel 6 (AN6, pin 9) respectively.

30

3.4 Power Supply

The full circuit consists of MCU circuit and XBee module circuit require proper

design to manage the supply voltage. As mentioned in the previous section, XBee

module used 3.3 V voltage supply and MCU used 5.0 V. Two voltage regulator

involved were LM7805 (5 Volts regulator) and LM1117 (3.3 Volts regulator).

LM7805 was connected directly to the AC adapter (Deluxe Universal AC/DC

Adapter, NS) while LM1117 was powered by the 5.0 V voltage from LM7805

(Figure 3.17). This configuration is called cascade configuration. The purpose of the

configuration was to reduce heat generated by the voltage regulators. The capacitors

installed to the input and output of the voltage regulator were to function as filter to

reduce ripple voltage from supply. The capacitor (100 μF) at the input supply have

bigger value to prevent backflow voltage when the power supply was off and the

other capacitors were discharging.

Figure 3.17: Cascade Configuration for Supply Voltage

The full circuit diagram is attached in Appendix C. The pictures of circuit

connection are attached in Appendix D.

31

3.5 Software & Program Design

3.5.1 Programming for MCU

The program that was loaded into the MCU was written in C programming language

and compiled with Microchip C18 Compiler (Student Version). The project was build

within the Microchip MPLAB Integrated Development Environment (IDE). After

obtaining the hex file, the program was loaded into the MCU using PK2CMD (Pickit

2 Command) software through a Pickit 2 compatible programmer (UIC00A

Programmer, Cytron Technology Inc.). The MPLAB, C18 Compiler and PK2CMD

software can be downloaded at http://www.microchip.com.

3.5.1.1 ADC Programming

To use the ADC peripheral function offered by the MCU, the registers to activate and

setup the ADC were configured. Three registers to configure the ADC: 1) ADCON0,

2) ADCON1, and 3) ADCON2. ADCON0 was set to 0x00 to turn off the ADC

module and disable the ADC before the program start. ADCON1 was set to 0x17 to

enable the use of positive reference voltage at pin 5, and to enable analog input from

ADC channel 0 to channel 7 (AN0 to AN7). ADCON2 was set to 0xBE to configure

the right justified alignment of the conversion result in ADRESH and ADRESL

register, set the ADC acquisition time to 20 TAD, and clock derivation from FOSC/64.

The 20 TAD was needed to ensure the time is enough for complete analogue

input level acquisition. This was because the start conversion instruction was given

after enabling the ADC module, and at least 3 TAD was needed to begin acquisition

(Microchip, 2007). Each ADC bit require 1 TAD for acquisition, so 12-bit ADC

requires 12 TAD. When the conversion ended, it requires another 1 TAD. Summing up

the minimum TAD required was 16 TAD. To be safe and avoid error, 20 TAD was used

instead. The part of the code:

32

ADCON0 = 0x00;

ADCON1 = 0x17;

ADCON2 = 0xBE;

The prescaler FOSC/64 was needed to ensure that the TAD that derived was

bigger than the typical minimum TAD needed which is 2.5 μs. This prescaler produced

3.2 μs for one TAD and therefore acceptable. Smaller value, which is FOSC/32 with 1.6

μs of TAD was not acceptable because it was lesser then the minimum TAD needed.

There was 4 channels of ADC used on the MCU, although only two channels

(AN5 and AN6) were for this project. To change the channel, ADCON0 register must

be changed. To set AN5, ADCON0 was set to 0x14, and 0x18 for AN6. After

changing this register, the ADC is switched on, and the GO bits in the ADCON0

register is set so that the conversion is started. For example, to change to AN5 and

start conversion, the code will look like:

ADCON0 = 0x14; /* set the channel */

ADCON0bits.ADON = 1; /* switch on the ADC module */

ADCON0bits.GO = 1; /* start conversion */

The ADC conversion was waited until it finished before the result is collected.

To wait the ADC conversion, a loop was polling on the DONE bit in the ADCON0

register. When the DONE bit is zero, the conversion is done and the result can be

read from ADRESH and ADRESL register. The code for the routine:

while(ADCON0bits.DONE == 1); /* loop here if DONE is 1 */

resultHighByte = ADRESH; /* storing result once conversion done */

resultLowByte = ADRESL;

33

After the result was stored, the ADC module was then turned off. This was

done was setting zero to ADON bit in ADCON0 register. The code:

ADCON0bits.ADON = 0; /* turn off the ADC module */

3.5.1.2 UART & XBee Module Interface Programming

The UART peripheral on the MCU communicate with XBee modem through a logic

level converter. The MCU acted as a host while the modem was a slave. The UART

setting was set to on both devices to allow them communicate successfully. The

setting were baud rate (19200 baud), and data bits (8 bits). The configuration of the

modem was discussed earlier. Four registers on the MCU were needed to configure

the UART: 1) TXSTA, 2) RCSTA, 3) BAUDCON, and 4) SPBRG. The TXSTA was

set with 0x20, to switch on the UART transmitter in asynchronous mode, and RCSTA

was set with 0x90, to switch on the UART receiver and the master serial port enable

bit. The BRG16 and ABDEN bits in BAUDCON was switched off by assigning zero

to the bit to set the baud rate generator (BRG) to be 8 bits, and disable the auto baud

rate detection function. Then the SPBRG was set to decimal value 15 for desired

baud rate of 19200. The equation for calculating the SPBRG value was given in

equation 3.4.

SPBRG=FOSC/Desired Baud Rate /64−1 (3.4)

The error percentage for the transmission can be calculated by substitute back

the SPBRG in the equation and calculate the baud rate generated, and then use the

baud rate to compare with the desired baud rate to calculate the error percentage. For

the UART with SPBRG of 15, the baud rate generated was 19531.25, which have

1.73 % of error compared to the original 19200 baud.

To send a byte of data, the byte just need to be assigned into TXREG register

of the MCU, and to read a received byte, the data is read from the RCREG register of

34

the MCU. To ensure all sent byte was sent, the TXIF flag in PIR1 register was

checked with an infinite polling loop. The code for sending a byte of data:

while(PIR1bits.TXIF == 1); /* waiting for TXREG to be empty */

TXREG = data; /* put a byte of data to be sent out */

The UART receiving part was similar, but made use of interrupt. When a byte

of data has filled the RCREG, the interrupt flag (RCIF) will be raised, and the

interrupt service routine (ISR) will be executed to check the source of the interrupt.

The following code demonstrate how the low priority interrupt was used to receive a

byte of data and store the byte of data in a buffer:

#pragma code lowPriorityInterrupt = 0x18 /* address of low priority

 interrupt at 0x18 */

void lowPriorityInterrupt(void)

{

_asm

GOTO chk_isr_low /* go there when interrupt triggered */

_endasm

}

#pragma code

#pragma interrupt chk_isr_low

void chk_isr_low(void) /* interrupt service routine */

{

if(PIR1bits.RCIF) receiving_function();

}

void receiving_function(void)

{

char buffer = RCREG; /* stored the receive data in a buffer */

}

35

The receiving function used in the project will start a timer everytime a byte

was received. This is because to interface with XBee modem which used API packet

structure, the receiving function must know when to start to process the data stored in

the buffer. The timer was set 10 msec to timeout. Every time a byte was received, the

timer is stopped and reseted, and turned on again with 10 msec to timeout. Once

timeout event occurred, it triggers the high priority interrupt. During that time,

receiving function will be disabled and the process data function will be called to

process the data in the buffer.

The process data function was to identify XBee API packet, verify the

checksum and to read the content of the data sent from home server. The method was

to loop through every byte in the buffer and search for data with value 0x7E, which is

the constant starting value of the XBee API packet. Then the next byte will be MSB,

LSB, and so forth. All the bytes from receive packet were stored in a XBee API

packet structure defined in file xbee_def.h. The bytes then being arithmetically

processed to verify the checksum and then the content data will be read. A character

'M' in the data will ask the MCU to send back the information of microphone

amplitude and frequency at that time.

To send back a packet from MCU to home server, the MCU assembled a

transmit request packet (also 16-bits address) with the data requested and calculate

the checksum to send to the modem. The sending to modem was byte by byte data,

and upon finish sending, the modem will verify the checksum before sending back to

home server. If the checksum was incorrect, the packet will be dropped silently. The

full coding for the program in the MCU is attached in Appendix A.

3.5.2 Programming for Home Server

The program used on the home server was written in C++ programming language.

The compiler used was GNU GCC compiler version 4.4.3. To program the graphic

user interface (GUI), Qt4 C++ library version 4.6.2 was used.

36

3.5.2.1 Serial Port Programming

The XBee USB dongle that attached to home server uses virtual serial port for

communication. When the dongle is inserted, it will mount to a device file in /dev

directory in the Linux. Depending on the number of the mounted devices to the

computer at that time, it will mounted to /dev/ttyUSBx file in the directory where the

x is an integer indicating which file it was attached to. The first attached USB serial

device will be ttyUSB0 and then the next one would be ttyUSB1 and so forth.

The serial port programming in Linux uses Portable Operating System

Interface for Unix (POSIX) standard. The standard included with the definitions and

function calls which are common to system that apply them. The language used was

C programming language combined with C++ programming language for Object

Oriented Programming (OOP).

To make use of the device file, the file was opened for read and write with

system call. The stdin and stdout were duplicated for the use with the serial port

program. The function of the serial program was to receive data from the an opened

device file and convey the data to the stdout. The program will exit when an escape

character (ESC or ^[or 0x1B) was sent to stdin of the program.

3.5.2.2 Graphic User Interface (GUI) Programming

The Qt4 C++ GUI library was used to program the GUI for the visual presentation of

the sensors and control. Other than that, the back end of the GUI also contains the

algorithm to process the data from the sensors. The GUI programmed and used for

the project is shown in Figure 3.18.

37

Figure 3.18: Baby Monitor GUI Program

For the microphone part, the GUI presents the amplitude and the frequency of

the noise the microphone received at 5 samples per second, in real time. The graph

widget on the lower will presents the changes in both amplitude and frequency in

time range of 60 seconds. User can type in the path for serial port device file and

open the serial port. The alarm system also commonly shared with the temperature

and humidity sensing features. Therefore user can control the on / off of the alarm

system. Other than that, signal strength of the received packet also will be shown at

lower right corner of the GUI.

The back end of the GUI did the conversion for the amplitude and frequency

of the microphone. The received data from base station was in binary format

containing the actual value of the number of the steps on the ADC channels

measured. After the conversion, the label on the GUI will be updated with the newest

values obtained.

To interface with the XBee USB dongle attached to the home server, the serial

port program was used. When opening the serial port from the GUI, a new process

38

was created which runs the serial port program. This ensure that both GUI and the

serial port were independent of each other and communicate only through the stdin

and stdout of the serial port program.

The alarm system also used another external program called “mplayer”,

which function to run the alarm sound file. The alarm sound playing will run as

another process, so that both alarm playing and the GUI will also be independent of

each other.

The graph widget was used to plot graph with painting method. As the label

for amplitude and frequency of the noise are updated, the graph will also be updated.

By using graph to show the data, the user can visually track the recent changes (up to

60 seconds) and the pattern of amplitude and frequency of the noise. The size of the

graph widget was fixed at 600x200 resolution. The program also used in the project

to analyse the amplitude and frequency of the infant crying noise.

Upon successfully opened a serial port, the back end program will start to

send pre-assembled data request packet to the modem through the serial port program

5 times per second to request microphone information, resulted in 5 samples per

second of data acquisition. The request packet content is shown in Figure 3.6.

Because the request packet content was the same throughout the whole program, the

packet only needed to be assembled once during the initialisation of the GUI

program.

39

3.5.2.3 Program Flow Chart

The flow chart in Figure 3.19 shows how the GUI program flow and how the

program interacts with the XBee modem through the serial port program.

Figure 3.19: Program Flow Chart

Yes

No

40

3.6 Crying Detection

Based on the analysis of infant crying noise discussed in section 4.1.1 and section

4.1.2, the method to detect infant crying was designed. Three parameters was used in

the detection: 1) intensity (amplitude), 2) frequency, and 3) duration of noise.

The intensity was used for crying detection using a threshold at 19 dB SPL.

This is because the frequency detection only occurred at over this threshold. When

the noise intensity reached the threshold, the frequency value approximately at the

moment will be read. Then the consecutive readings will be recorded. When three

consecutive readings have frequency detected, a counter will be increase by one,

indicating one pulse of crying noise. The consecutive readings with frequency

detected will not be taken into account because the threshold for duration was three

readings (0.6 seconds), until a reading with no frequency detected was measured.

When five pulse was recorded with the count, the infant crying is said to be detected.

To prevent false positive detection, a timer was added in to limit the time for the

occurrence of the pulse. If no pulse was detected in 10 seconds, the pulse count will

be reseted to zero.

CHAPTER 4

RESULT & DISCUSSION

4.1 Result and Discussion

4.1.1 Microphone Output

The microphone output centered around 1.70 Volts and oscillate as noise was

detected. By measuring the microphone amplitude generated, it was found that the

voltage was centered at 1.08 V, and went up to 2.25 V at the maximum. Maximum

acoustic input to the microphone is 120 deciBel Sound Pressure Level (dB SPL)

(Analog Devices, 2010). So it can be concluded that at 0 dB SPL, the voltage output

was 1.08 V and 120 dB SPL at 2.25 V. Therefore the linear gradient is calculated as in

equation 4.1. The offset is calculated as -110.769.

gradient , m=
120−0

2.25−1.08
=102.564 dB /V (4.1)

Because the frequency response at the range that desired (1 kHz to 6 kHz) was

approximately constant, it was assumed that the amplitude was proportional to the

SPL. From 12-bit ADC, there was 2^12 steps. The conversion to dB SPL is given by

equation 4.2.

dB SPL=102.564⋅
ADC result

4096
×3.3−110.769 (4.2)

42

For the microphone frequency, the output from the LM2907 was measured

against the frequency of noise applied with a buzzer powered by adjustable signal

generator. The data was tabulated (Table 4.1) and plotted (Figure 4.1).

Table 4.1: Voltage Output of LM2907 Corresponding to Frequency of Noise

Figure 4.1: Graph of Voltage, V/V Against Frequency, f/kHz

The equation of the trend line in the plot is given in equation 4.3. The

conversion equation from ADC result is given in equation 4.4.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

0.5

1

1.5

2

2.5

3

3.5

Graph of Voltage, V/V Against Frequency, f/kHz

Frequency, f/kHz

V
o

lta
g

e
, V

/V

Frequency Voltage
kHz V
1.0 0.57
1.5 0.83
2.0 1.11
2.5 1.38
3.0 1.71
3.5 1.95
4.0 2.24
4.5 2.48
5.0 2.74
5.5 2.94
6.0 3.04

43

Frequency , f =1.923⋅V−0.154 (4.3)

Frequency , f =1.923⋅
ADC result

4096
×3.3−0.154 (4.4)

where

f = Frequency of the noise in kHz.

V = Voltage output produced by the LM2907 in V.

The ADC results was sent to home server upon request and the unit

conversion was done in the home server program.

It is noted that the center voltage of the microphone was stepped down from

1.70 V to 1.08 V. This was due to the voltage drop across the diode (1N4007) (Figure

3.15) that used to prevent back flow of current when the capacitor was discharging.

Because the AC signal from the microphone was of relatively high frequency

(desired frequency was 1 kHz and above), the signal was not filtered with a rectifier,

instead, the discharging capacitor will smooth out the signal. However this did not

always true, when low frequency and high amplitude signal were fed, the

microphone output could went below 1.08 V. On the other hand, the capacitor value

will determine the charging and discharging time and therefore cannot be too slow or

too fast. The 1 μF capacitor was chosen for the best suitability.

For the LM2907, a graph need to be plotted to identify the linearity and

corresponding voltage output to the frequency. Theoretically these can be calculated

by equation 3.2. But in practical the result was not the same. However, linearity

achieved for frequency range of 1 kHz to 5 kHz, which was used in equation 3.2 to

calculate the resistance of the resistor and the capacitance of the capacitor used. The

offset voltage to response by the LM2907 was important in the design, because the

output of the microphone ranged approximately + / - 1.17 Volts. It was required 250

mV Vp-p to trigger the LM2907 output. Theoretically, frequency only be detected

when the intensity is at least 25.6 dB SPL. However, this was used as an advantage to

the design because it can filter out low amplitude noise within the frequency range.

Referring to Figure 3.15, the capacitor between 3, 4 and ground was for filtering. By

44

setting the large capacitance value, the ripple voltage will reduced, but it also slow

down the charging and discharging time. Smaller capacitance has fast charging and

discharging time but the ripple voltage will be greater. Therefore it was found that 1

μF capacitor did the job just fine.

The resolution of the noise intensity was calculated to be 0.0826 dB SPL and

the minimum frequency detectable was 1.55 Hz in the linear range.

4.1.2 Infant Crying Noise

Ten samples of infant crying sound were used to identify the pattern and features of

the sound. Because the crying detection will be done in the GUI program, the

sampling will be done using the GUI program too. The sampling was done by

running the digital recorded infant crying sound through the speaker and put the

microphone directly facing the sound. One result of the crying noise sampling is

shown in Figure 4.2. The white colour painted graph was for the amplitude of the

noise, using the white colour scale, and the yellow colour painted graph was for the

frequency of the noise, using the yellow colour scale. The full sampling result is in

Appendix B.

Figure 4.2: Real Time Plot of Infant Crying Sound

45

From those samples, it can be recognized that the crying pattern of infant was

of irregular pulsatile noise. The frequency of the crying noise went up in almost

synchronous with the intensity of the noise. Because the frequency detection

threshold is 1 kHz, the graph for the frequency only detect the frequency above the

threshold.

From the log file produced for these values, it can be seen that the frequency

can be detected frequently at SPL as low as around 19 dB SPL compared to the

theoretically calculated value at 25.6 dB SPL. Although the frequency was also read

at as low as 10 – 11 dB SPL, but these were seldom occurred and therefore could be

explained as that the time to read ADC channel for microphone amplitude and

frequency was differ by a small amount of time which the the amplitude might have

increase over the threshold to allow the detection of frequency after lower amplitude

was converted by ADC. However another explanation for the low intensity frequency

read was probably because of the heuristic characteristic of the LM2907 IC. This can

be showed by checking the position of the low-intensity-frequency read log, which

was all occurred at the end of each crying noise pulse.

The log file also revealed the duration of each irregular crying noise pulse.

The typical crying pulse last for around 0.8 seconds, although in some of the samples

the duration went down to 0.2 seconds, or went up to 3.0 seconds. However, these

duration was not in high resolution enough to tell the exact duration because the

sampling rate was 5 samples per seconds. Therefore crying detection methods could

be done on the duration parameter, taking 0.6 seconds as the threshold for the

occurrence of the crying pulse.

The crying noise samples from analysis only produces noise that hardly went

over 3500 Hz of frequency, contrary to the infant crying noise centering at 3500 Hz

as stated in the review. The first explanation would be the fact that most infant crying

noise was below this value. The second explanation would be the fact that those

higher frequency (>3500 kHz) noise were short and therefore hardly be detected by

the sampling setup (5 samples per seconds). The third explanation would be the fact

that the samples used in the sampling did not contain the crying noise with those

frequencies.

46

Without running the samples, the recording of the ambient noise centered at

10 dB SPL and never reaches the threshold of frequency detection. After running

several crowd noise sound effects, the sampling graph produced is as shown in

Figure 4.3. The sound effects mainly consist of noise of crowd chatting in the

background. This showed that although the noise of people chatting might be loud,

but the frequency does not gone over 1 kHz, and therefore the detection will not be

done the type of noise.

Figure 4.3: Sampling Graph of Crowd Noise

4.1.3 Crying Detection

After implementing the crying detection method as describe in section 3.6, the

samples were used to test the performance of the algorithm. Out of ten samples used,

five of them were able to be detected, giving 50 % efficacy. Some of the samples

with short crying pulses were not detected, otherwise the detectable pulses were too

far apart in time. The counting of pulses was reseted when the timeout of 10 seconds

signaled. The sample with graph as shown in Figure 4.3 was able to be detected

because the pulse occurred before the timeout.

The example audio log that produced by the sample is shown in Figure 4.4.

The first column (number 183 to 214) is the line number, the second column is the

time (hh:mm:ss), the third column is the amplitude value, and the fourth column is

the frequency value. Three consecutive positive detections constitute a start of crying

pulse and an negative detection following constitute the end of the crying pulse. If

47

crying pulses detection within 10 seconds of the pulse before, the pulses count will

accumulate and when 5 counts are detected, the alarm will sound.

Figure 4.4: Sample Audio Log Showing the Event of Crying Pulses

Three of the samples were too short (7 – 12 sec) for the detection to perform

and therefore the algorithm was failed to detect it. The intensity of the noise also one

factor that affect the detection. The sampling was done with the microphone directly

facing the speaker output of the digital crying sound clips with distance

approximately and therefore the intensity was intense enough for the frequency to

reach the threshold. When the microphone was placed approximately at distance 15

cm, the intensity measured was relatively lower and the frequency was not detected at

all. Therefore, for the detection to work, the microphone must be placed adjacent to

the sound source.

48

4.1.4 XBee Modem to Modem Communication

For a XBee to establish a communication from power up, it was estimated that the

time before the first data sent in was 7 seconds. The reason was that the modem was

searching for the target destination based on the destination address.

The signal strength indication of received packet (RSSI) shown at the GUI

allows the user to know whether the modems were in range, so that the it could be

use to determine the location and the distance suitable for the placing of the modems.

4.1.5 Power Supply & Power Consumption

The cascade configuration used for the power supply greatly reduced the heat

generated at LM1117 3.3 V voltage regulator. The amount of heat generated from

voltage regulator depends on how much voltage was stepped down during the

regulation. Since there was only one AC adapter used, and at least 7.0 Volts are

required to power up the LM7805, to minimize the heat generated, only LM7805 was

connected directly to the AC adapter while LM1117 was powered by the 5.0 V

voltage from LM7805. A multimeter measurement of the voltage from the power

supply was around 8.79 V, although the configuration at the adapter was 6 V. This

was due to the low current consumption from the circuit compared to the maximum

current drawable from the adapter itself. In other words, the load used was

considerably small compared to the maximum load that the adapter can support. If

LM1117 was also connected to the power supply, the voltage gap that needed to be

stepped down is 5.49 V. Compared to voltage that needed to be stepped down by

LM7805, the LM1117 will generate relatively more heat. The cascade configuration

let LM1117 to step down from 5.0 V to 3.3 V, with gap of only 1.7 V. Therefore, by

using the cascade configuration the heat generated was reduced by minimizing the

voltage gap that needed to be stepped down. Therefore, only LM7805 was felt to heat

up when powered by AC adapter.

49

The current drew by the circuit measured steadily at 92.1 mA with one LED in

the circuit that constantly on, and 70.8 mA when the LED was removed. If the circuit

was to power up with a battery that can be purchase from the grocery store instead of

AC adapter, the most suitable type of battery would be C-type battery. This is

because the typical drain of the battery is 100 mA. Using battery with lower typical

drain than the application required would damage the battery. With C-type alkaline

battery, the capacity could be up to 8000 mAh. Which means it will give roughly 86

hours (3.5 days) of application with the LED attached, and roughly 113 hours (4.7

days) of application without the LED.

The voltage dropped across the whole circuit was 8.79 V. From this, the power

consumption can be calculated from multiplying the voltage dropped and the current

sank together, which gave 810 mW with the LED and 622 mW without the LED.

Therefore, to minimize the power consumption, the LED should be removed.

4.1.6 Challenges in Infant Crying Detection

Audio is an analogue signal that requires high processing speed to process it. In the

project, embedded system that being used was not having high processing unit.

Therefore the crying detection method used was to measure the noise intensity and

frequency. However, these parameters also varies very quickly in crying sound.

Theoretically, high sampling rate was required to capture as much changes in

those parameters as possible. But due to the design utilized XBee API packet

structure, which requiring additional processing time, the sampling rate was reduced

to 5 samples per second. Then the microphone processed output was attached with

capacitor, which allows discharge when the output voltage drop below the voltage of

the charged capacitor. These made the noise intensity and frequency to be read

approximately from the peak noise intensity and frequency that detectable before the

reading done by the ADC.

50

To recognize the crying, a simple algorithm was used instead of implementing

advance artificial intelligence algorithm. This allowed the detection to be done on

low speed processor and therefore it can be done in real time measure. Although the

chances of false positive detection was high if different kind of noise was used to test

the efficacy of the algorithm, but since to limit the usage of the detection to a quiet

room with an infant placed in the room, the most probably false positive detection

was due to infant's laughing noise.

The detection also depend on the quality of the crying noise. If the crying

pulse did not last at last 0.6 seconds and recurrence within 10 seconds, the crying will

not be detected. The intensity of the crying sound also need to be loud, otherwise the

microphone need to be placed near to the sound source so that the intensity threshold

is reached to enable frequency detection.

4.1.7 Challenges of XBee API Packet Implementation

Using XBee API packet for transmitting and receiving, the structure of the data sent

and received was longer. The microphone information request packet used in the

project consist of 10 bytes (Figure 3.6), but the actually data that need to be sent is

just a character 'M' (one byte). When receiving the packet from the MCU respond,

the RX packet consisted of 14 bytes (Figure 3.8), the actual requested data was only

5 bytes (a character 'M', and the following 4 bytes of ADC results for microphone

amplitude and frequency). It can be seen that the API frame was only negligible if the

data content is consisted of many bytes. Otherwise, the bytes were just wasted on the

frame and more time will be consumed to send the bytes.

The extra instruction cycles also needed to process the API packet. The API

identifier need to be checked to determine the type of packet received, and the

checksum need to be calculated to verify the validity of the data. For home server

computer, these processing was not a problem, but for the MCU, the processing will

took significance processing time. To reduce the processing time, the API packet

used in the project was reduced to just 16-bit address transmit request packet and 16-

51

bit address receive packet. The other packet that received will be discarded.

By limiting the type of API packet used in the project, many functions of the

XBee cannot be applied, such as to execute command on attached XBee modem and

also to apply remote command. However, these functions were just for the

configuration and will not be used when the modems were properly configured.

The project implement the API mode to demonstrate the feature of the XBee

API packet. The advantages gained were checksum ability, destination address

targeting, and also the received signal strength indicator (RSSI) value.

CHAPTER 5

CONCLUSION & RECOMMENDATION

5.1 Conclusion

The telemonitoring as a branch of telemedicine is a potential field for expansion and

development. Although most homecare telemonitoring under research nowadays is

focused on diseased adults and elderly people, infant monitoring is also an important

field. By using the method described, the crying of an infant will be able to be

detected. Even though the equivalent infant crying detection product is already

available in market, but the aim of the present project is focus on multiple sensors

network and healthcare, partly shows the realisation of self-designed crying detection

device using XBee wireless transmission.

5.2 Recommendation

There were still improvement that can be done on the infant crying detector. The

processor used can be replaced with high performance processor and better ADC IC

can be used to increase the resolution and ADC time. The sampling rate can then be

increased. A digital signal processing artificial intelligence algorithm also can be

developed and implemented to recognise the event of crying. By doing this the false

positive detection could be reduced. When having better data processing, one may

develop a crying recognition algorithm that can recognize the cause of the crying,

such as hunger, lonely or uncomfortable.

53

A medical server can also be developed in the future work to implement the

bigger range of telemonitoring. The medical server at the remote area can use to log

the event of crying and record it in the server data base.

The XBee Pro can be used to improve the distance range of communication,

which allows the use of the device in a wide area.

An amplifier can be added to the microphone output to improve the signal

amplitude. The amplified signal will have larger range of output and therefore easier

to be detected by ADC. The threshold of the LM2907 will also can be reached easily

when the signal is amplified, allowing the frequency of low intensity sound to be

detected. With amplifier, the microphone will not need to strictly placed near the

source of the sound, instead it can be placed at a distance away.

REFERENCE

Analog Devices (2010). Omnidirectional Microphone with Bottom Port and Analog
Output ADMP401. Analog Devices, Inc. 2010.

Andriana, N., Victor, A.V.D., Ioan, I. (2008). A ZigBee solution for telemedicine
applications. Acta Technica Napocensis: Electronics and Telecommunications
(2008), Vol. 49-3.

Barr, R.G. (2006). Crying Behaviour and its importance for psychosocial
development in children. Encyclopedia on Early Childhood Development.
Published online April 13, 2006, at http://www.child-encyclopedia.com/en-
ca/child-crying-behaviour/according-to-experts.html

Chau-Kai, H. (1992). Baby cry recognizer. Patern Storm. Retrieved August 31,
2010, from http://www.patentstorm.us/patents/5668780/claims.html

Cirronet, Inc. (2005). RF power options in ZigBeeTM solutions. Cirronet, Inc. (Fall
2005).

Faludi, R. (2011). XBee Firmware Upgrade. Retrieved February 16, 2011, at
http://www.faludi.com/itp_coursework/meshnetworking/XBee/XBee_firmware_
upgrade.html

Goodman, B. (May 4, 2006). I hear ringing and there's no one there. I wonder why.
The New York Times (May 4, 2006). Retrieved August 31, 2010, from
http://www.sounddogs.com/htm/article24.htm

Hosiden. Guide for electret condenser microphones. Retrieved August 30, 2010
from http://www.hosiden.co.jp/web/english/web/products/pdf/e_on07_mems.pdf

Hsu, H-C., Fogel, A., & Cooper, R.B. (2000). Infant vocal development during the
first 6 months: speech quality and melodic complexity. Infant and Child
Development (2000), 9. 1-16.

Huang, A.S., & Rudolph, L. (2007). Bluetooth essentials for programmers.

55

Massachusetts Institue of Technology. Cambridge University Press, UK.

Intel ®, CISCOTM (2010). Intel and Cisco WLAN deployment guide for healthcare.

Justin, L. (October 19, 2009). MEMS microphones. MECH207. Retrieved August
31, from http://mech207.engr.scu.edu/SensorPresentations/Lee%20-
%20MEMS_Microphone%20Combined.pdf

Kammer, D., McNutt, G., Senese, B., & Bray, J. (2002). Bluetooth, Application
developer's guide: the short range interconnect solution. Rockland: Syngress
Publishing, Inc. (2002).

Khoór, S., Nieberl, J., Fügedi, K., & Kail, E. (2001). Telemedicine ECG-Telemetry
with Bluetooth Technology. Computers in Cardiology (2001) 28. 585-588.

Kinney, P. (October 2, 2003). ZigBee technology: Wireless control that simply
works. Communications Design Conference (2003).

Koch, S. (2006). Home telehealth-current state and fuure trends. International
Journal of Medical Informatics (2006) 75. 565-576.

Kugean, C., Krishnan, S.M., Chutatpe, O., Swaminathan, S., Srinivasan, N., &
Wang, P. (2002). Design of a mobile telemedicine system with wireless LAN.
IEEE © 2002, 0-7803-7690-0/02.

Lizard43 (2008). X-CTU with Linux. Retrieved on February 15, 2011, at
http://lizard43.blogspot.com/2008/10/x-ctu-with-linux.html

Manfredi, C., Bocchi, L., Orlandi, S., Spaccaterra, L., & Donzelli, G.P. (2009). High
resolution cry analysis in preterm newborn infants. Medical Engineering &
Physics (2009), 31. 528-532.

MediaCollege.com. Condenser microphones. Retrieved August 30, 2010, from
http://www.mediacollege.com/audio/microphones/condenser.html

Microchip (2007). PIC18F2423/2523/4423/4523 Data Sheet. Microchip
Technology Inc. (2007).

Nakayama, H. (2010). Development of infant crying behavior: A longitudinal case
study. Infant Behavior and Development (2010), doi:
10.1016/j.infbeh.2010.05.002.

National Semiconductor (2008). LM2907/LM2917 Frequency to Voltage Converter.

56

National Semiconductor Corporation (2008).

Nielsen, J.H., & Fürst, C. (2007). Toward more-compact digital microphones.
Analog Dialogue, Vol. 41 (September 2007).

Reyes-Galaviz, O.F., & Reyes-Garcia, C.A. (2004). A system for the processing of
infant cry to recognize pathologies in recently born babies with neural networks.
SPECOM 2004: 9th Conference Speech and Computer (September 20-22, 2004).

Srovnal, V., & Panhaker, M. (2006). Home care and health maintenance systems.
Retrieved July 10, 2010, from
http://medlab.cs.uoi.gr/itab2006/proceedings/eHealth.htm

Stifter, C.A. (2005). Crying Behaviour and its impact on psycholsocial child
development. Encyclopedia on Early Childhood Development. Published online
April 4, 2005, at http://www.child-encyclopedia.com/en-ca/child-crying-
behaviour/according-to-experts.html

Várallyay, G. (2007). The melody of crying. International Journal of Pediatric
Otorhinolaryngology (2007), 71. 1699-1708.

Várallyay, G., Illényi, A., Benyó, Z., Farkas, Z., & Katona, G. (2005). An attempt to
detect hearing disorder by acoutic features of the infant cry. Proceedings of the
Forum Acusticum 2005 Congress, Budapest. 526/1-6. ISBN 963 8241 68 3.

Vergari, F., Auteri, V., Corsi, C., Lamberti, C.. A ZigBee-based ECG transmission
for a low cost solution in home care services delivery. Mediterranean Journal of
Pacing and Electrophysiology.

Zeskind, T.S. (2007). Impact of the cry of the infant at risk on psychosocial
development (Revised August 24, 2007). Encyclopedia on Early Childhood
Development. Published online April 4, 2005, at http://www.child-
encyclopedia.com/en-ca/child-crying-behaviour/according-to-experts.html

ZigBee ® Alliance, American Telemedicine Association (November 17, 2009). The
ZigBee Alliance and the American Telemedicine Association to collaborate on
advancing use of telehealth solution.

ZigBee ® Alliance. ZigBee and wireless radio frequency coexistence. ZigBee White
Paper – June 2007. ZigBee ® Alliance (2009).

APPENDICES

APPENDIX A: Source Codes for Program in MCU

SOURCE CODES FOR PROGRAM IN MCU

File name: test18.c

/* receiving rx packet from xbee, and blink LED on PB7 upon success checksum */

/** C O N F I G U R A T I O N B I T S
**************************************/

#include <p18f4523.h>
#include <string.h> /* to use memset */
#include "mytype.h"
#include "xbee_def.h"

#pragma config IESO = OFF, FCMEN = OFF, OSC = HS
#pragma config PWRT = ON, BOREN = OFF, BORV = 3
#pragma config WDT = ON, WDTPS = 256
#pragma config MCLRE = ON, LPT1OSC = OFF, PBADEN = OFF, CCP2MX =
PORTC
#pragma config STVREN = ON, LVP = OFF, XINST = OFF, DEBUG = OFF
#pragma config CP0 = OFF, CP1 = OFF, CP2 = OFF, CP3 = OFF
#pragma config CPB = OFF, CPD = OFF
#pragma config WRT0 = ON, WRT1 = OFF, WRT2 = OFF, WRT3 = OFF

#pragma config WRTB = ON, WRTC = OFF, WRTD = OFF
#pragma config EBTR0 = OFF, EBTR1 = OFF, EBTR2 = OFF, EBTR3 = OFF

#pragma config EBTRB = OFF

#define PB6 LATBbits.LATB6
#define PB7 LATBbits.LATB7
#define RXINT PIR1bits.RCIF
#define TXINT PIR1bits.TXIF
#define TMR0INT INTCONbits.TMR0IF
#define RX_BUFFER_SIZE 32

58

#define DELIMITER 0x7E

volatile static uchar rxbuffer[RX_BUFFER_SIZE];
volatile static uchar rxbuffer_count;
volatile static uchar timeout_flag;
volatile static uchar process_data_flag;
volatile static uchar send_TH_flag;
volatile static uchar send_M_flag;
volatile static RX_PKT_16 rx_sample;
volatile static TX_PKT_16 tx_sample;
volatile static uchar tempbuffer[4];
volatile static uchar mbuffer[4];

void init_tx_pkt(void);
void rx_func(void);
void tx_func(uchar);
void timeout_func(void);
void process_data_func(void);
void send_TH_func(void);
void send_M_func(void);
void getTH(void);
void getM(void);

void chk_isr_high(void);
void chk_isr_low(void);

#pragma code highPrioINT = 0x0008
void highPrioINT (void)
{

_asm
GOTO chk_isr_high
_endasm

}
#pragma code

#pragma code lowPrioINT = 0x00018
void lowPrioINT (void)
{

_asm
GOTO chk_isr_low
_endasm

}
#pragma code

#pragma interrupt chk_isr_high
void chk_isr_high(void)
{

/* check our high priority interrupt flag(s) here */
if(TMR0INT) timeout_func();

59

}

#pragma interrupt chk_isr_low
void chk_isr_low(void)
{

/* check our low priority interrupt flag(s) here */
if(RXINT) rx_func();

}

void main()
{

TRISBbits.TRISB6 = 0;
TRISBbits.TRISB7 = 0;
TRISCbits.TRISC6 = 0; /* set tx = output */
TRISCbits.TRISC7 = 1; /* set rx = input */
TRISAbits.TRISA0 = 1;

/* interrupt enables */
INTCONbits.GIE = 1;
INTCONbits.PEIE = 1;
RCONbits.IPEN = 1; /* enable interrupt priorities */
PIE1bits.RCIE = 1; /* receive interrupt */
IPR1bits.RCIP = 0; /* set low priority for rx INT */
INTCONbits.TMR0IE = 1; /* timer interrupt */
INTCON2bits.TMR0IP = 1; /* set high priority for timer INT */

/* ADC stuff */
ADCON1 = 0x17; /* up to AN7 */
ADCON0 = 0x00; /* channel 0, disable conv. first */
ADCON2 = 0xBE; /* right justified, 20 TAD, Fosc/64 */

/* serial port stuff */
TXSTA = 0x20;
RCSTAbits.RX9 = 0;
BAUDCONbits.BRG16 = 0; /* 8 bits BRG */
BAUDCONbits.ABDEN = 0; /* disable the auto baud rate detection */
SPBRG = 15; /* 19200 with 1.73 error */
RCSTAbits.SPEN = 1; /* enable corresponding pins to be serial port */
TXSTAbits.TXEN = 1;
RCSTAbits.CREN = 1;
OSCCONbits.IDLEN = 1; /* idle when "SLEEP" is issued */

/* timer setup stuff */
T0CON = 0x07; /* prescale 256 */

/* set the initial condition of register & variables */
memset((char*)rxbuffer, '\0', RX_BUFFER_SIZE);
memset((char*)tempbuffer, '\0', 4);
memset((char*)mbuffer, '\0', 4);
rxbuffer_count = 0;

60

timeout_flag = 0;
process_data_flag = 0;
send_TH_flag = 0;
send_M_flag = 0;

init_tx_pkt();

PB6 = 1;
PB7 = 1;

while(1)
{

Sleep();

PB6 = ~PB6;
if(process_data_flag) process_data_func();

if(send_M_flag){
getM();
send_M_func();

}
else if(send_TH_flag)
{

getTH(); /* do adc read & convert and put in global static var
*/

send_TH_func();
}
RCSTAbits.CREN = 1;
INTCONbits.GIE = 1;

}
}

void init_tx_pkt(void) // initiate fixed values of tx packet
{

tx_sample.DELIM = 0x7E;
tx_sample.APIID = 0x01;
tx_sample.FrameID = 0x52;
tx_sample.AddrH = 0x01;
tx_sample.AddrL = 0x01;
tx_sample.opt = 0x04;

tx_sample.checksum = 0;
tx_sample.dataSize = 0;

}

void rx_func(void)
{

/* stop timer, receive data, reset time */
T0CONbits.TMR0ON = 0;
rxbuffer[rxbuffer_count] = RCREG;

61

if((!timeout_flag)&&(rxbuffer_count < RX_BUFFER_SIZE - 1))
{

++rxbuffer_count;
TMR0H = 0xFF; /* 0.01 second to timeout */
TMR0L = 0x3D;
T0CONbits.TMR0ON = 1;

}
}

void timeout_func(void)
{

INTCONbits.GIE = 0;
RCSTAbits.CREN = 0;
TMR0INT = 0;
T0CONbits.TMR0ON = 0;
timeout_flag = 1;
process_data_flag = 1;

}

void process_data_func(void)
{

uchar i, j, k;
uchar rx_checksum= 0, cal_checksum = 0, data_sum = 0;
rx_sample.dataSize = 0;

for(i = 0; i < rxbuffer_count; i++)
{

if(rxbuffer[i] == DELIMITER)
{

rx_sample.DELIM = rxbuffer[i];
i++;
rx_sample.MSB = rxbuffer[i];
i++;
rx_sample.LSB = rxbuffer[i];
i++;
rx_sample.APIID = rxbuffer[i];
i++;
if(rx_sample.APIID == 0x89) break; /* if tx status */

rx_sample.AddrH = rxbuffer[i];
i++;
rx_sample.AddrL = rxbuffer[i];
i++;
rx_sample.RSSI = rxbuffer[i];
i++;
rx_sample.opt = rxbuffer[i];
i++;

k = 0;

62

for(j = i; j < (i + rx_sample.LSB); j++)
{

rx_sample.data[k] = rxbuffer[j];
data_sum += rx_sample.data[k];
rx_sample.dataSize++;
k++;

}
rx_checksum = rxbuffer[j];

cal_checksum = 0xFF - (rx_sample.APIID + rx_sample.AddrH
+ rx_sample.AddrL + rx_sample.RSSI +
rx_sample.opt + data_sum);

if(cal_checksum == rx_checksum)
{

PB7 = ~PB7;
for(i=0;i<rx_sample.dataSize;i++)
{

if(rx_sample.data[i] == 'M'){
send_M_flag = 1;
break;

}
else if(rx_sample.data[i]=='T')
{

send_TH_flag = 1;
break;

}
}

}

break;

} /* finish process one packet if exist */

} /* finish looping & detecting delimiter */

/* clear the rxbuffer */
memset((char*)rxbuffer, '\0', RX_BUFFER_SIZE);

/* reset counter */
rxbuffer_count = 0;

/* restore the flags */
process_data_flag = 0;
timeout_flag = 0;

}

void send_TH_func(void)

63

{
uchar i;

tx_sample.dataSize = 11; /* T__H__M____ */
tx_sample.MSB = 0x00;
tx_sample.LSB = tx_sample.dataSize + 5;

tx_sample.data[0] = 'T';
tx_sample.data[1] = tempbuffer[0];
tx_sample.data[2] = tempbuffer[1];
tx_sample.data[3] = 'H';
tx_sample.data[4] = tempbuffer[2];
tx_sample.data[5] = tempbuffer[3];
tx_sample.data[6] = 'M';
tx_sample.data[7] = mbuffer[0];
tx_sample.data[8] = mbuffer[1];
tx_sample.data[9] = mbuffer[2];
tx_sample.data[10] = mbuffer[3];

tx_sample.checksum = tx_sample.APIID + tx_sample.FrameID +
tx_sample.AddrH + tx_sample.AddrL + tx_sample.opt;

for(i = 0; i< tx_sample.dataSize; i++)
{

tx_sample.checksum += tx_sample.data[i];
}

tx_sample.checksum = 0xFF - tx_sample.checksum;

/* sending of tx pkt */
tx_func(tx_sample.DELIM);
tx_func(tx_sample.MSB);
tx_func(tx_sample.LSB);
tx_func(tx_sample.APIID);
tx_func(tx_sample.FrameID);
tx_func(tx_sample.AddrH);
tx_func(tx_sample.AddrL);
tx_func(tx_sample.opt);
for(i = 0; i< tx_sample.dataSize; i++)
{

tx_func(tx_sample.data[i]);
}
tx_func(tx_sample.checksum);
/* end packet */

send_TH_flag = 0; /* reset the flag */

tx_sample.checksum = 0;
tx_sample.dataSize = 0;

}

64

void getTH(void)
{

ADCON0 = 0x00; // channel A0
ADCON0bits.ADON = 1;
ADCON0bits.GO = 1;

while(ADCON0bits.DONE == 1);
tempbuffer[0] = ADRESH;
tempbuffer[1] = ADRESL;

ADCON0 = 0x04; // channel A1
ADCON0bits.ADON = 1;
ADCON0bits.GO = 1;

while(ADCON0bits.DONE == 1);
tempbuffer[2] = ADRESH;
tempbuffer[3] = ADRESL;

ADCON0bits.ADON = 0;

getM();
}

void send_M_func(void)
{

uchar i;

tx_sample.dataSize = 5; /* M____ */
tx_sample.MSB = 0x00;
tx_sample.LSB = tx_sample.dataSize + 5;

tx_sample.data[0] = 'M';
tx_sample.data[1] = mbuffer[0];
tx_sample.data[2] = mbuffer[1];
tx_sample.data[3] = mbuffer[2];
tx_sample.data[4] = mbuffer[3];

tx_sample.checksum = tx_sample.APIID + tx_sample.FrameID +
tx_sample.AddrH + tx_sample.AddrL + tx_sample.opt;

for(i = 0; i< tx_sample.dataSize; i++)
{

tx_sample.checksum += tx_sample.data[i];
}

tx_sample.checksum = 0xFF - tx_sample.checksum;

/* sending of tx pkt */
tx_func(tx_sample.DELIM);

65

tx_func(tx_sample.MSB);
tx_func(tx_sample.LSB);
tx_func(tx_sample.APIID);
tx_func(tx_sample.FrameID);
tx_func(tx_sample.AddrH);
tx_func(tx_sample.AddrL);
tx_func(tx_sample.opt);
for(i = 0; i< tx_sample.dataSize; i++)
{

tx_func(tx_sample.data[i]);
}
tx_func(tx_sample.checksum);
/* end packet */

send_M_flag = 0; /* reset the flag */

tx_sample.checksum = 0;
tx_sample.dataSize = 0;

}

void getM(void)
{

ADCON0 = 0x14; // channel A5
ADCON0bits.ADON = 1;
ADCON0bits.GO = 1;

while(ADCON0bits.DONE == 1);
mbuffer[0] = ADRESH;
mbuffer[1] = ADRESL;

ADCON0 = 0x18; // channel A6
ADCON0bits.ADON = 1;
ADCON0bits.GO = 1;

while(ADCON0bits.DONE == 1);
mbuffer[2] = ADRESH;
mbuffer[3] = ADRESL;

ADCON0bits.ADON = 0;
}

void tx_func(uchar bdata)
{

while(!TXINT);
TXREG = bdata;

}

66

File name: xbee_def.h

#ifndef XBEE_DEF_H
#define XBEE_DEF_H

#include"mytype.h"

typedef struct rx_pkt_16
{

uchar DELIM;
uchar MSB;
uchar LSB;
uchar APIID;
uchar AddrH;
uchar AddrL;
uchar RSSI;
uchar opt;
uchar data[32];
uchar dataSize;
uchar checksum;

} RX_PKT_16;

typedef struct tx_pkt_16
{

uchar DELIM;
uchar MSB;
uchar LSB;
uchar APIID;
uchar FrameID;
uchar AddrH;
uchar AddrL;
uchar opt;
uchar data[32];
uchar dataSize;
uchar checksum;

} TX_PKT_16;

#endif

File name: mytype.h

#ifndef MYTYPE_H
#define MYTYPE_H

typedef unsigned char uchar;

#endif

67

Appendix B: Sampling Result of Infant Crying Sample

Sampling Results

The sampling was done using BabyMonitor4 GUI program. And the comparison of

the waveform was done with Audacity program (Audacity ® 1.3.12-beta (Unicode)).

File name: 28101__neonaeon__babycry2.flac

Graph

Audacity Output

68

File name: 59578__morgantj__babycrying.mp3

Graph

Description: the audio repeated once during sampling

Audacity Output

File name: 59579__morgantj__babycrying2.mp3

Graph

Description: the audio repeated once during sampling

69

Audacity Output

File name: baby_cry_1_(simplythebest).mp3

Graph

Description: the audio repeated three times during sampling

Audacity Output

70

File name: Baby crying 38 sec_(dramatic_publishing).mp3

Graph

Audacity Output

File name: Baby Crying-SoundBible.com-1143552027.mp3

Graph

Description: the audio was repeated three times during sampling

71

Audacity Output

File name: baby_cry_(simplythebest).mp3

Graph

Description: the audio was repeated once during sampling

Audacity Output

72

File name: 26760__zerolagtime__baby_crying1.wav

Graph

Audacity Output

File name: 58178__Robinhood76__00235_baby_newborn_first_voice.wav

Graph

Description: the audio was repeated three times during sampling

73

Audacity Output

File name: 58741__Robinhood76__00255_baby_crying_long_1.wav

Graph

Audacity Output

74

Appendix C: Full Circuit Diagram

75

Appendix D: The Pictures of Circuit Connections

Full Circuit Connection

Microcontroller Connection (PIC18F4523)

76

Humidity Sensor Connection (HSM-20G)

LM2907 F / V Converter Connection

77

Microphone Connection (ADMP401)

LM35 Temperature Sensor Connection

78

Logic Level Converter

Power Supply (LM7805 & LM1117)

79

(This page is intentionally left blank)

