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ABSTRACT 

 

Electroencephalography (EEG) records the electrical potential fields 

generated by the neuronal activities at various parts of the brain. With increasing 

popularity and interest from the research community of different disciplinary 

background, the applicability of EEG is getting more promising in many 

different areas from the research settings to the clinical neurology for diagnosis 

and treatment monitoring. Nonetheless, efficiently identifying and extracting 

the highly representative EEG signal features for a particular scenario is crucial 

for the success of the classification task. Convolutional neural network (CNN) 

which is specialized in processing the data structures with grid-like topology 

can be helpful in achieving automated extraction of key representative features 

from the multichannel EEG signals.  

 

While EEG and images both have grid-like topology, their data format 

are differently organized in the grid. This project which consists of three studies 

aims at developing CNN classifiers that better fit for the processing of EEG 

signals and identifying the factors that influence the performance of the CNN 

classifiers, based on the EEG data obtained from the experiments studying the 

influence of music and emotion on human brain.  

 

In Study 1 which is based on the influence of music on the brain, the 

impacts of various architectural aspects of CNN on the classification 

performance, the importance of spatial-dimension convolution in EEG data 

classification, and the computational resource-efficiency between CNN with 2D 
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and 1D convolution kernels are evaluated. In Study 2 which deals with emotion 

recognition, the possibility of reducing the internal parameters of the model by 

using double-path convolution with kernels of different dilation factors is 

investigated. Study 3, which is also an emotion recognition study, investigates 

the applicability of the CNN models originally developed for image processing 

for EEG data classification and further explores the architectural changes that 

can help in performance improvement in EEG processing.  

 

This project has also revealed the non-uniform or lateralized influence 

of music and emotion on the human brain, based on the discrepancy in 

classification accuracies between EEG subsets from different brain regions. For 

the classification of EEG listening to different pieces of music, the test accuracy 

achieved using the EEG channels from the left cerebral hemisphere (88.91%) is 

approximately 5% higher than the accuracy achieved with the right hemisphere 

(84.12%). The test accuracy discrepancy in music-EEG classification is even 

higher (10% difference) between EEG channels from the frontal cerebral lobes 

(84.93%) and EEG channels from the temporal, parietal and occipital lobes 

combined (74.69%). For emotion classification using EEG in Study 3, emotion 

classification accuracy achieved with EEG from the temporal region (83.84%) 

is approximately 7% higher than that achieved using EEG from the frontal 

(76.90%) and parietal (76.78%) regions. There is 5.1% accuracy discrepancy in 

emotion classification using the EEG channels from the left (88.48%) and right 

(83.38%) cerebral hemispheres.  
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While music appears to be more greatly affecting the frontal cerebral 

lobes than the other (temporal, parietal and occipital) lobes, emotion is more 

greatly reflected on the EEG obtained near the temporal lobes. In addition, both 

the music and emotion have greater influence on EEG of the left cerebral 

hemisphere than the right cerebral hemisphere.  The neurological findings 

relevant to the influence of music and emotion on human brain are potentially 

helpful in selecting a smaller subset of EEG channels for the particular 

classification application.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1     Background  

 

1.1.1  Electroencephalography  

Electroencephalography, commonly abbreviated as EEG, is a 

neurological measurement technique that detects and records the electric 

potentials generated by the neurological activity of the brain, with the recording 

electrodes being placed in non-invasive direct contact with the scalp, as 

contrasted with electrocorticography (ECoG) which has the recording 

electrodes placed directly in contact with the surface of the brain cortex for the 

measurement of electrical activity of the particular region.  

 

Neuronal processes of the brain produce trans-membrane (that spans 

across the cellular membrane) electrical currents which are also detectable in 

the extracellular medium. These electric currents generated from the active 

cellular activities within the neighbouring regions of the brain superimpose and 

generate a field of electrical potentials. The generated field of electrical 

potentials can also be monitored with extra-cellular electrodes (Buzsáki et al., 
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2012). These measurement electrodes typically function over hundred hertz of 

sampling frequency, producing sub-millisecond time resolution. Each of the 

recording electrode generates a different channel of electrical signal. The multi-

channel electrical signals recorded at fine temporal resolution are useful for 

interpreting many aspects of neuronal communication and states of the brain.  

 

This multi-channel array of brain signals, when recorded from the 

scalp, has been conventionally known as the electroencephalogram. When 

recorded from the intra-cranial sub-dural electrodes, the signals are known as 

the electrocorticogram (ECoG). In contrast, the magnetoencephalogram (MEG) 

refers to the recording of magnetic field generated by the same neuronal 

processes.  

 

With increasing popularity and focus from research community of 

different disciplinary background, EEG has advanced to the current state of 

being widely applied in clinical neurology for diagnostic, treatment monitoring, 

prognostic, and research purposes.  

 

EEG is valuable in assisting the diagnostic process. EEG can be helpful 

in identifying the type of seizure in epileptic patients which in turn determine 

the choice of medication (Smith, 2005a). For instance, EEG is especially 

crucial for diagnosing nonconvulsive seizure and nonconvulsive status 

epilepticus (Kaplan, 2007). EEG can also serve in identifying encephalopathies 

of various origins (e.g. tumour, trauma/stroke, encephalitis, or deranged 
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metabolic state), and as an adjunct test for confirmation of brain death in 

persistent coma (Smith, 2005b; St. Louis and Frey, 2016).  

 

EEG can be used in guiding medical treatment. As the compromised 

cerebral perfusion is associated with changes in electrical cortical activity, EEG 

can be used as an informative adjunct indicator to monitor the cerebral blood 

flow during surgery (Foreman and Claassen, 2012; Kreitzer et al., 2018). 

Pharmaco-EEG is also a potential emerging trend where the EEG is used in the 

assessment and guidance of therapeutic drug administration, as well as in the 

assessment of efficacy-toxicity of therapeutic agents (Swatzyna et al., 2015; 

Höller et al., 2018). Besides, EEG shows potential in aiding the prognosis of 

postanoxic coma, cardiac arrest, and epilepsy (Smith, 2005a; Hofmeijer and 

van Putten, 2016; Muhlhofer and Szaflarski, 2018).  

 

The involvement of EEG in neuroscience research is also gaining 

momentum. For example, EEG has been used to study normal sleep pattern and 

sleep anomaly, and various other psychiatric conditions such as schizophrenia, 

attention deficit hyperactive disorder and depression. Besides, EEG is used in 

various cognition studies such as for mapping out the functional brain topology 

for the cognitive task of interest.  
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1.1.2  Challenges Faced in EEG Signal Classification  

Notwithstanding being loaded with various pathological and 

physiological information regarding the neurological activities of the cerebra, 

the EEG recordings have rather low signal-to-noise ratio (SNR). The reason for 

the low SNR of EEG lies innately in the non-invasive nature of the EEG 

recording method.  With the recording electrodes of the EEG being placed in 

the scalp which is centimeters apart from the underlying brain structures, the 

detectible electrical signals truly generated from cerebral cortices is typically 

only at the range of microvolts. Therefore, the electrical activities of many other 

sources such as the muscular activities of blinking the eyelids, rotation of the 

eyeballs, and other muscular contractions especially of those in the face and 

neck can be easily picked up by the recording electrodes as the electrical noises. 

In addition, environment electric noises such as those emitted from the electrical 

lines from the proximity can also be undesirably recorded by the highly 

sensitive EEG electrodes.  

 

Being an organ packed with heavily-interconnected electrically-

excitable neurons, the brain by itself has constantly multiple different lobes or 

regions being activated and deactivated beyond voluntary control. The electrical 

potentials generated from various regions of the brain can be potentially 

interfering with and masking the electrical potentials generated by the brain 

region of interest. Compounding to the above-mentioned difficulty in getting 

high spatial resolution, the non-invasive nature of EEG requires its measuring 

electrodes to be located extracranially at a considerable distance from the 
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cerebral cortices. Therefore, the EEG technique innately has low spatial 

resolution with respect to the source of neurological activities in the brain, in 

spite of the development of high-density EEG recordings headset which can 

accommodate over two hundred of recording electrodes.  

 

To manually decode the information in the EEG signals and identify the 

key features of EEG signals is still a research challenge. Meanwhile, the 

performance of traditional feature-based EEG classifiers is highly dependent on 

the discriminative quality of the EEG features or the relevance of the feature set 

to the particular activity of interest. In the multi-channel time series of EEG data, 

every different EEG channel being measured at different location of the scalp 

can be embedded with different relevant features, which adds to the complexity 

of manual identification of useful EEG features. The manual critical feature 

identification from the raw EEG signals is thus a very time-consuming and 

effort-consuming process. Many useful EEG signal features may yet be beyond 

the current knowledge collection of the research community.  

 

 

1.1.3  Deep Learning and Convolutional Neural Network 

The recent AI techniques that enable machine to perform deep 

hierarchical concept learning (or commonly deep learning) have successfully 

automated the difficult task of representative feature/concept extraction from 

different domains of raw data which include the image processing, the audio 

signal processing, video semantic processing, and language semantic processing 
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(Graves et al., 2008; Graves et al., 2013; Ng et al., 2015).  Deep learning has 

enabled the end-to-end execution of many different classification and regression 

scenarios in those domains with complicated raw data.  

 

Deap learning enables computers to accumulate experience and 

understanding from past encounters of data. Deep learning models allow 

computers to understand the data in the forms of hierarchies of concepts. Each 

of the concepts is defined as a function of simpler concepts or concepts of lower 

hierarchical level (Goodfellow et al., 2016a). This hierarchy of concepts or 

levels of information abstraction allows computers to efficiently extract 

meanings from raw data. As this machine understanding of data is built upon 

many layers of concepts and is granted with greater learning capability with 

more layers or greater depth of concepts or abstraction, this family of approach 

of machine learning is hence termed deep learning.   

 

Deep learning is thus a promising tool in overcoming the long-

experienced difficulties in manual decoding of EEG signals. Various 

architectures of deep learning models have been trained and tested by previous 

studies for the analysis of EEG signals. They have consistently reported better 

performance in comparison with the methods using manual feature extraction 

for EEG classification (Ren and Wu, 2014; Behncke et al., 2018; 

Schirrmeister et al., 2017). Nonetheless, the analysis of EEG using deep 

learning is a new research area that requires further performance improvement 

for higher reliability in the application in practical settings.  
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 Convolutional neural networks (CNN) are a specific family of neural 

networks employing the mathematical convolution operation for the specialized 

processing of data structures with grid-like topology (Goodfellow et al., 2016b). 

While images are typical example of data with grid-like topology, time-series 

data (especially multichannel time-series signals) like the EEG recordings are 

also organized in grid-like pattern which fits the specialized operation of 

convolutional neural networks very much.  

 

 There are three important characteristics of CNN that enable the 

performance improvement of a machine learning system, namely the sparse 

interactions of the computational nodes, parameter sharing, and translation-

equivariant representation (Goodfellow et al., 2016b). As opposed to the 

traditional densely connected neural network layers where every output node of 

the layer interacts with every input unit of the particular layer, the CNN have 

sparse interaction between the output nodes and input nodes of each of its 

convolutional layers which is achieved by using convolution kernels with sizes 

much smaller than the size of input data. Because of the much lower parameter 

counts in the small-size kernels, the memory requirement and statistical 

efficiency of the model can be improved significantly. With the property of 

parameter sharing where each of the constructed kernels is applied at every 

location of the input data rather than learning a different set of parameters for 

every location, the CNN has also the property of being equivariant to translation 

which can be very useful for time-series data such as the EEG. Although the 
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CNN is not innately equivariant to other kinds of transformations such as the 

rotation, EEG signals do not typically experience rotational transformation 

either. Also, the CNN has exemplary ability at exploiting and discovering the 

spatial or temporal correlation in the input data (Khan et al., 2020). 

  

 

1.2     Problem Statement  

EEG are signals packed with multidimensional information. Identifying 

and extracting the true representative EEG features is crucial for the success of 

the tasks of EEG classification. The types of EEG features reported to be 

relevant in a particular application domain may not be as effectively applicable 

to the other domains. For instance, EEG frequency band powers as a set of  

useful features for sleep stages classification may not carry the same 

effectiveness in emotion state classification. On top of that, many of the EEG 

features reported to be accurate at intra-personal mental state classification does 

not scale well into cross-personal classification or the cross-database 

classification.  

 

Meanwhile, deep convolutional neural networks with automatic 

representative feature identification has repeatedly been reported with better 

performance at EEG classification compared with other state-of-art EEG feature 

extraction and classification methods (Ren and Wu, 2014; Behncke et al., 

2018; Schirrmeister et al., 2017). Nevertheless, in many of the application 

domains, deep learning models working on plain EEG signals has not yet seen 
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performance superiority over the models based on pre-extracted EEG features. 

Although the potential of deep learning model as both the feature extractor and 

classifier working on plain EEG signals could likely be limited by the current 

size of available EEG data pool, the increasing amount of publicly available 

research databases of EEG signals should warrant the study into the application 

of very deep networks for plain EEG signals.  

 

Further performance improvement and more understanding of how the 

architectural aspects of the deep CNN affect its EEG classification performance 

is in need, in line with the increasing trend of EEG data availability.    

 

 

1.3     Objectives  

The objectives of this research project are:  

i) To design and develop CNN models for EEG signals for mental state 

classification  

ii) To analyze the effectiveness of variants of CNN models in multichannel 

EEG signal classification and to identify factors that influence the 

performance of the CNN classifiers  

iii) To compare the performance between the CNN classifiers and other non-

neural-network classifiers in EEG signal classification tasks  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1    Visual and Auditory Stimuli EEG Classification   

The human brain actively responds to all kinds of sensory perception 

inputs such as the auditory input through the auditory nerves, visual input 

through the optic nerves, and the input through cutaneous or somatic senses. 

The accurate classification of the EEG signals recorded from the brain while the 

subject is receiving different kinds of sensory inputs can be helpful in myriad 

forms of practical EEG applications. They can serve as a useful guide for the 

biofeedback therapy, in particular the development of neurofeedback system.  

 

In the work by Behncke et al. (2018), deep CNN models and other non-

neural-network classifiers had been used to classify the EEG signals recorded 

from human subjects visually observing different kinds of robotic actions. The 

different scenarios of robotic actions include successful robotic operation versus 

robotic failure in object grasping and pouring tasks. The non-neural network 

classifiers include the regularized Linear Discriminant Analysis (rLDA) and the 

filter bank common spatial patterns (FB-CSP) combined with rLDA. In their 

study, deep CNN has attained accuracy of 75±9%, which is significantly better 

than the other two non-neural-network EEG classifiers. The rLDA classifier has 
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achieved accuracy of 65±10%, while the FB-CSP combined with rLDA has the 

accuracy of 63±6%.  

 

Moinnereau et al. (2018) had worked on the classification of EEG 

signals recorded from human subjects while they were listening to different 

auditory stimuli (specifically in their case, the English vowels ‘a,’ ‘i’ and ‘u’). 

The recurrent neural network in their study had attained the average accuracy 

of 83.2% using sixty-four EEG electrodes and the accuracy of 81.7% using ten 

selected EEG electrodes.  

 

Also working on the task of EEG classification based on auditory 

stimulus, Stober et al. (2014) had constructed convolutional neural networks 

for the classification of EEG signals recorded during their rhythm perception 

study. The subjects in their study listened to a wide variety of musical rhythms 

encompassing twelve Western and twelve East African rhythmic stimuli. For a 

24-class EEG classification task, an average classification accuracy of 24.4% is 

achieved, which is significantly better than the random chance accuracy level 

of 4.2%.  

 

2.2    Emotion Classification 

 Two popular emotion recognition databases are used in the Study 2 and 

Study 3 of this project, namely the DEAP dataset (Koelstra et al., 2012) and 
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the SEED dataset (Duan et al., 2013; Zheng and Lu, 2015). These are both 

open-access databases available upon request for research purpose.  

 

2.2.1. DEAP Dataset Literature Review 

 The previous studies working on DEAP dataset for emotion 

classification is recorded in Table 2.1. The emotional aspects reviewed are the 

emotional valence and the emotional arousal. “Emotional valence describes the 

extent to which an emotion is positive or negative, whereas arousal refers to its 

intensity, i.e., the strength of the associated emotional state.” (Citron et al., 

2014) The overview of the DEAP dataset and the measurement of emotional 

valence and arousal are presented in Section Methodology 3.2.1. 

 

 Vast majority of the previous studies working on the emotional valence 

and arousal level classification had their classifiers constructed based on the 

manually extracted EEG features, instead of pure EEG signals.  

  

 Signal features manually computed from the EEG recording are reported 

to have different degree of correlation to the emotional measurement. Numerous 

studies including Rayatdoost and Soleymani (2018), Zheng et al. (2017), 

Yang et al. (2017), and Zheng et al. (2015) had reported the differential entropy 

(DE) of different EEG frequency bands as a category of highly emotion-relevant 

signal features of EEG data. Meanwhile, Petrantonakis and Hadjileontiadis 

(2010) had recommended EEG features under the category of higher order 
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crossings (HOC) for EEG-based emotion classification. Jenke et al. (2014) had 

also reported the HOC-based EEG features as the most useful signal features in 

the time domain for emotion recognition, among the set of features they had 

investigated. Linear-frequency cepstral coefficients (LFCC) had also been 

suggested as a crucial set of features for EEG-based emotion recognition (Liu 

et al., 2018).  

 

 Among the studies that had focused on manually computing the EEG 

features for emotion classification, a recent study by Liu et al. (2018) had made 

use of the EEG features extracted automatically by pre-optimized residual 

network (ResNet). They had achieved the much higher binary emotion valence-

level and arousal-level classification accuracy. This indicates that convolutional 

neural networks (with ResNet being a form of convolutional neural network) 

can be optimized to extract EEG signal features that are relevant for emotion 

classification.  
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Table 2.1: Literatures Published on Valence and Arousal Classification 

using the DEAP Dataset (Cheah et al., 2019b)  

Research Method 
Accuracy Task 

Valence Arousal Valence Arousal 

Yoon & Chung 

(2013) 
Bayes classifier 

70.9% 70.1% 2-class 2-class 

53.4% 51.0% 3-class 3-class 

Rozgić et al. 

(2013) 
PCA + SVM 76.9% 68.4% 2-class 2-class 

Zhang et al. 

(2013) 

EEG + Ontology 

Reasoning 
75.19% 81.74% 

2-class 2-class 

8 selected subjects 

Li et al. (2016) C-RNN 72.06% 74.12% 2-class 2-class 

Al-Nafjan et al. 

(2017) 
PSD+DNN 82% 82% 2-class 2-class 

Liu et al. (2016) 
Multimodal Deep 

Learning 
85.20% 80.50% 2-class 2-class 

Tripathi et al. 

(2017) 
CNN 

81.41% 73.36% 
2-class  

(LOO) 

2-class  

(LOO) 

66.79% 57.58% 
3-class  

(LOO) 

3-class  

(LOO) 

Zheng et al. 

(2017) 
DE + GELM 69.67% 

4-class (Valence-

arousal space) 

Rayatdoost & 

Soleymani (2018) 

PSD + DE + HOC 

+ HOS + Random 

Forest   

60.86% 58.08% 2-class 2-class 

Liu et al. (2018) 
ResNet + LFCC + 

KNN 

90.39% 89.06% 2-class 2-class 

61.55% 54.53% 
2-class 

(LOO) 

2-class 

(LOO) 

 *LOO denotes the cross-validation method of Leaving-One-(subject)-Out 
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2.2.2. SEED Dataset Literature Review 

 Increasingly significant research attention has been given to emotion 

recognition using EEG in the recent years. The research working on SEED 

dataset in the recent three years (2018-2020) was reviewed and summarized in 

Table 2.2. Although many of the research works were using one or another kind 

of neural network classifier, almost all of the attention had been placed on pre-

extracted EEG features, instead of plain EEG signals. The experiment design 

and overview of SEED dataset are presented in Section Methodology 3.3.1.  

 

2.2.3. Algorithms/Methods used in Emotion Classification 

 The EEG features commonly used in emotion classification include the 

power spectrum density (PSD), the rational asymmetry (RASM), sampling 

entropy (SampEn), wavelet entropy (WE), differential entropy (DE), standard 

deviation (std) of signal, and the Hjorth features (e.g. Hjorth activity, mobility 

and complexity). Among the EEG features investigated, differential entropy 

(DE) has consistently been reported as the most emotion-relevant feature type 

(Song et al., 2018; Li et al., 2019; Wang et al., 2019).  

 

 The algorithms used in the research community for emotion 

classification vary from the conventional machine learning algorithms to the 

more recent families of artificial neural networks. The conventional machine 

learning algorithms used in this research area include the Bayesian classifier, 

Random Forest classifier, K-nearest neighbour (KNN) classifier, logistic 

regression classifier, support vector machine (SVM) classifier, and their 



 
16 

modified variants such as the graph-regularized sparse linear regression and the 

sequential backward selection SVM. The families of artificial neural networks 

reported in the emotion recognition research studies include the CNN, RNN and 

their modified variants such as the dynamic graph CNN, bidirectional LSTM, 

and spiking neural network.   

 

 Regardless of the classification algorithm reported being a conventional 

machine learning classifier or a neural-network based model, almost all of them 

were trained based on the manually-calculated EEG features, instead of the EEG 

signal itself. The applicability of these feature-based algorithms at overcoming 

cross-database variation is yet impractical, reported at below 50% accuracy 

(Lan et al., 2018).  

 

 Using plain EEG signals as the input data to the emotion classifiers has 

currently received relatively much lower research attention. Although the 

amount of currently available public EEG research database may not yet be 

sufficiently representative of the general population, the trend of increasing 

number of publicly available EEG databases shall warrant more research works 

into the application of very-deep neural networks on plain EEG signals.    
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Table 2.2:  Recent Research on SEED Dataset 

Classifier Algorithm / Year Data Input Accuracy (%) 

Dynamic Graph CNN  

(Song et al., 2018) 
DE 79.95 

Logistic Regression Classifier  

(Lan et al., 2018) 
DE 72.47 

GRSLR (Graph regularized sparse 

linear regression)  

(Li et al., 2019) 

DE,  

Hjorth features 
88.41 

Bidirectional LSTM  

(Wang et al., 2019) 
DE / PSD 94.96 / 86.27 

Graph convolutional  

broad network (GCBN)  

(Zhang et al., 2019) 

DE 94.24 

CNN + LSTM  

(Hwang et al., 2019) 
DE 89.88 

Variational Pathway  

Reasoning (VPR)  

(Zhang et al., 2020) 

DE 94.3 

Sequential Backward Selection SVM  

(Yang et al., 2019) 

Hjorth features, std, 

SampEn, WE 
89 

Spiking NN (Luo et al., 2020) DWT, FFT, var 96.67 

 

   

 In line with this, the focus of Study 3 in this project is on eliciting the 

architectural modification on the originally image-oriented ResNet and VGG 

that results in vast improvement of their performance on plain EEG signal. On 

top of the above focus on ResNet and VGG architectural improvement and 

comparison, we have also proposed the location of EEG channels that are most 

useful in emotion recognition.  
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CHAPTER 3 

 

METHODOLOGY 

 

 

3.1. Music-Listening EEG Classification (Study 1) 

 

3.1.1. Experiment Description and EEG Signal Recording  

The EEG dataset used in this study is the EEG signals collected for a 

previous study (Phneah and Nisar, 2017) which had assessed the effect of 

music on mood improvement. The EEG dataset collected in Phneah and Nisar 

(2017) is composed of a long-term music experiment and a short-term music 

experiment.  

 

Figure 3.1(a) illustrates the experiment design of the study by Phneah 

and Nisar (2017). The short-term experiment of the above-mentioned study had 

participation of a total of thirty-three subjects (twenty-seven males and five 

females, with an average of 24.9±7.6 years of age). Three different sets of EEG 

signals were collected from every participant. Corresponding to Figure 3.1(a), 

the three sets of EEG are respectively a resting baseline 3-minute EEG 

recording with eye opened, another open-eye 3-minute EEG recorded while 

each subject was listening to own favourite music, and another open-eye 3-
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minute EEG collected while each subject was listening to the relaxing audio clip 

of alpha binaural beats.  

 

The long-term experiment lasted for two weeks and had the participation 

of ten subjects. Five of the ten subjects were allocated into the control group, 

while the remaining five were assigned into the alpha-binaural-beats treatment 

group. Throughout the 2-week duration, each participant in the alpha-binaural-

beats treatment group listened to the audio clip of alpha binaural beats for thirty 

minutes daily. On the other hand, the control group was not listening to alpha 

binaural beats for the 2-week duration. The EEG signals of each participant 

from both groups were collected three times throughout the 2-week duration, 

i.e. at the start of the 2-week experiment, at the end of the first week, and at the 

end of the second week.  

 

For the alpha-binaural-beats treatment group of the long-term 

experiment, Nawaz et al. (2018) had reported significant changes (with 

ANOVA p-value test) in the manually extracted EEG features (i.e. absolute 

alpha-band power, approximate entropy and sample entropy) before and after 

the experiment. In contrast, no statistically significant difference was reported 

by Nawaz, et al. (2018) in the above-mentioned EEG signal features manually 

extracted from three different categories of EEG signals of the short-term music 

experiment. Therefore, the EEG data of the short-term music experiment in 

Phneah and Nisar (2017) is set as the target dataset for the classification task 

in this study.   
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Figure 3.1: Steps for the collection of EEG datasets for  

(a) short-term music experiment and (b) long-term music experiment 

(Nawaz et al., 2018)  

 

Emotive Epoc wireless headset with 14 recording channels was used to 

record the EEG data. The signal sampling frequency of the recording process 

was 128 Hz. The placement of the fourteen active electrodes was according to 

the international 10-20 system, at the specific locations over the scalp, namely 

“AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1 and O2” (Headset 
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Comparison Chart: Technical Specification, [n.d.]). Nomenclature of the 

EEG channel closely follows the underlying brain lobe over which the recording 

electrode is placed:  

• “AF” overlies the antero-frontal regions.   

• “F” overlies the frontal lobes.   

• “FC” overlies the fronto-central regions.  

• “P” overlies the parietal lobes.   

• “T” overlies the temporal lobes.  

• “O” overlies the occipital lobes.  

 

Bandpass FIR filter with passband of 1-60 Hz was used to filter the 

recorded raw EEG signals. EEGlab (Delorme and Makeig, 2004) was used to 

remove the recording artefacts in the EEG signals to obtain the cleaned/pre-

processed EEG dataset.  

 

Out of the total of thirty-two subjects partook in the short-term music 

experiment, only the pre-processed EEG signals of twenty-eight participants 

were taken in this study for analysis because there are EEG channels with severe 

measuring errors in the recordings of the remaining four of the subjects.  
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3.1.2. Allocation of EEG Segments into Training, Validation, and Test 

Datasets  

 

 

 In this study, binary classification and 3-class classification tasks are 

performed on the EEG dataset of the short-term experiment.  

 

 Only two categories (i.e. the baseline eye-open resting EEG and the 

alpha-binaural-beat eye-open EEG) of the above-mentioned three categories of 

EEG signals are used in the binary classification tasks. All the three classes of 

EEG recordings (i.e. the baseline eye-open resting EEG, respective self-

favourite music eye-open EEG, and the alpha-binaural-beat eye-open EEG) are 

used in the 3-class classification task. Each full recording of the pre-processed 

EEG is segmented along the temporal(time)-dimension into non-overlapping 

short segments of equal lengths. The length of every short segment is two 

seconds, which is equivalent to 256 sampling points.  

 

 

3.1.2.1. EEG Dataset for Short-term Music Experiment Binary  

  Classification  

 

 

There are 3,850 two-second EEG segments in the short-term music 

experiment binary-classification dataset. None of these EEG segments has any 

degree of overlapping with another. Out of the total of 3,850 segments of EEG, 

1,839 segments are the baseline eye-open resting EEG before listening to any 
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piece of music and the remaining 2,011 segments of EEG signals were collected 

while the subjects were listening to the audio clip of alpha-binaural beats. All 

of the 3850 two-second segments of EEG are shuffled randomly with the 

sklearn.utils.shuffle() Python function and then divided into training-validation 

data pool and the test data pool at 10:1 ratio using the 

sklearn.model_selection.train_test_split() Python function. This gives 3,500 

segments of EEG in the training-validation data pool and 350 segments of EEG 

in the test data pool.  

 

The data pool for training and validation which contains 3500 EEG 

segments is further split into ten non-intersecting sub-sets for the 

implementation of ten-fold cross-validation. Every fold of the ten-fold cross-

validation process uses a different EEG data sub-sets as the validation data pool 

(for the purpose of model selection). The other nine sub-sets of EEG data are 

used as the model training pool.  

 

Table 3.1 presents the EEG data distribution in each cycle of model 

training and model validation. The double asterisks (⁑) in Table 3.1 are to 

indicate the number of EEG segments which is approximately half of the total 

of the training set. Analogously, the triple asterisks (⁂) are to indicate the 

number of EEG segments which is approximately half of the total of the 

validation set. These numbers are not constant for every training-validation fold 

because the EEG segments from the baseline category and the alpha-binaural-
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beat category are mixed and shuffled randomly before being split into ten non-

intersecting sub-sets for the ten-fold cross-validation process.  

 

 

Table 3.1: Allocated amount of EEG segments for training, validation 

(trained-model selection), and performance testing for the binary 

classification on the short-term music experiment data  

(Cheah et al., 2019a) 

 

 

 

3.1.2.2. EEG Dataset for Short-term Music Experiment Three-class  

  Classification  

 

 

The three-class classification dataset contains 5,841 two-second EEG 

segments, among which there is no overlapping with each another. Out of the 

total 5,841 EEG segments, there are 1,839 baseline eye-open resting EEG 

segments without listening to music, 1,983 EEG segments recorded while the 

subjects were listening to self-favourite music, and 2,019 segments of EEG 

signals collected while the subjects were listening to the audio clip of alpha-

binaural beats.  
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For the task of three-class EEG signal classification, all of the 5,841 non-

overlapping segments of EEG signals are divided randomly into training-

validation data set and test data set in the proportion of 10:1. The training-

validation data set is further split randomly into ten non-intersecting sub-sets 

for ten-fold cross-validation, as explained in Section 3.1.2.1 above. Table 3.2 

presents the above-discussed distribution of EEG data sets for the three-class 

classification task.  

 

Table 3.2: Allocated amount of EEG segments for training, validation 

(trained-model selection), and performance testing for the three-class 

classification on the short-term music experiment data  

(Cheah et al., 2019a) 

 

 

As in Table 3.1, the double asterisks (⁑) and triple asterisks (⁂) in Table 

3.2 respectively indicate approximately equivalent values for every fold of 

cross-validation. The values do not stay constant because of the randomized 

sub-sets division.    
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3.1.3. Computing Environment Settings 

The computing hardware system used in this study consists of the 

following hardware components:  

• central processing unit  : Intel-Core-i5-7300HQ,  

• graphical processing unit  : NVIDIA-Geforce-GTX-1050 with 4GB 

      dedicated graphic RAM,  

• random access memory  : 12GB DDR4 

 

Of the above hardware components, the graphical processing unit (GPU) 

is of particular importance for the training of deep neural network which 

involves large number of parallel computations. The architectural design of 

GPU which consists of a mass of parallel computing units can substantially 

speed up the training process of the deep neural networks.  

  

 The software programming environment for this study is set up using 

the virtual environment management system by Anaconda distribution of 

Python language. The construction, training, and validation of deep neural 

networks in this study are performed with TensorFlow library. The 

loading/reading of EEG data and the handling the loaded EEG data in Python 

environment is achieved with the MNE-Python library. The signal processing 

functions from the scipy library are used for the extraction of EEG signal 

features which are needed as the input data of the support vector machine (SVM) 

classifier. The machine learning functions in the Scikit-learn library are used for 
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the management of EEG data pools and the construction of SVM classifier. 

Other important auxiliary Python libraries used in this study include the numpy 

for the management of EEG in the form of array data structure, the os library 

and re library for the convenient navigation through the system directory and 

for the efficient access to the target EEG files.      

 

3.1.4. Methodological Steps of Model Training, Validation, and Testing 

Figure 3.2 illustrates the work flow of training-validation cycle for the 

deep neural networks. The neural network models are trained iteratively using 

randomized combination of mini batches of EEG segments instead of using the 

grand sum of the training pool for every training iteration. By splitting the 

training data pool into mini batches and conducting the model training with 

these mini batches of training data, significantly less dedicated GPU memory is 

required. This at the same time allows the construction of neural networks of 

greater complexity and learning capacity. Furthermore, using randomized 

combinations of mini batches (instead of going through all the training iterations 

with the same combination and permutation of training data batches) may 

reduce the likelihood of the optimization process falling into the trap of local 

minima of the objective function.  
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Figure 3.2: Methodological Steps from Model Construction to Model 

Training, Validation and Testing (Cheah et al., 2019a) 
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3.1.5. Design of Classifiers  

 Convolutional neural network (CNN) classifiers of different 

architectures are constructed for performance comparison. In addition, the 

performance of the CNN is also compared with that of the SVM, which is one 

of the most capable machine learning classifiers that are not neural network 

based.  

 

 

3.1.5.1. CNN Models  

Figure 3.3 and Figure 3.4 illustrate the architectural designs of four CNN 

classifiers constructed in this study.  

 

Figure 3.3 presents two CNN classifiers with the whole convolutional 

path containing only temporal (time-dimension) convolution. The CNN model 

in Figure 3.3(a) has three convolution blocks operating in serial order. Every 

convolution block is composed of the convolution layer, the rectified linear unit 

(ReLU) as the activation layer, and the max pooling layer. The shape and size 

of the convolution kernels and pooling filters are specified accordingly in the 

figure. Figure 3.3(b) presents a CNN model with relatively greater depth, 

containing six convolution blocks in serial. For the model in Figure 3.3(b), only 

the first three convolution blocks contain the max pooling operation. The 

remaining convolution blocks are constructed with no pooling operation.  
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On the other hand, Figure 3.4 presents two different CNN classifiers 

composed of both temporal and spatial dimension convolutions. Spatial 

dimension convolution refers to the convolution across different EEG channels, 

as each EEG channel represents a specific location over the scalp. The initial 

three convolutional blocks in Figure 3.4(a) are identical to that of the CNN 

models in Figure 3.3. Every of the subsequent convolution blocks of Figure 

3.4(a) CNN classifier is composed of two-dimensional (spatial-temporal) 

convolution kernels.  

 

The CNN classifier in Figure 3.4(b) is composed of nine convolution 

blocks in serial, with the initial three convolution blocks being identical to that 

of Figure 3.4(a). The remaining six convolution blocks of Figure 3.4(b) are 

designed by splitting the two-dimensional spatial-temporal convolution blocks 

in Figure 3.4(a) into three one-dimensional temporal convolution blocks and 

three one-dimensional spatial convolution blocks. As a result, the CNN 

classifier in Figure 3.4(b) is constructed with only one-dimensional convolution 

kernels (i.e. initial six blocks being purely temporal convolution, while the last 

three blocks being purely spatial convolution).  

 

The convolutional mechanism can be represented with Equation (1) 

(Goodfellow et al., 2016b).   

𝑍𝑘𝑙 = 𝑊𝑘𝑙 ∗ 𝐴𝑙−1 + 𝑏𝑘𝑙     (1) 
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The capital letters (Z, W, A) symbolize matrices, with Z being a two-dimensional 

matrix while W and A being three-dimensional matrices. The lowercase letter b 

symbolizes a scalar value. With the superscript and subscript, 𝑊𝑘𝑙 symbolizes 

the matrix containing the weights of the 𝑘𝑡ℎ  convolution kernel of the 𝑙𝑡ℎ 

convolution block. 𝐴𝑙−1 symbolizes the three-dimensional aggregation of all 

the activated feature maps generated from the immediately preceding (𝑙 − 1)𝑡ℎ 

convolution block. Similarly, 𝑏𝑘𝑙  symbolizes the scalar bias value of the 𝑘𝑡ℎ 

convolution kernel of the 𝑙𝑡ℎ convolution block. Likewise, 𝑍𝑘𝑙  is the 𝑘𝑡ℎ feature 

map generated by the 𝑘𝑡ℎ  convolution kernel of the 𝑙𝑡ℎ  convolution block 

operated on the (𝑙 − 1)𝑡ℎ activated feature maps.  

 

The two-dimensional matrix of a particular feature map (𝑍𝑘𝑙 ) is derived 

by moving the convolution kernel (𝑊𝑘𝑙) across whole width (X) and height (Y) 

of the feature maps collection 𝐴𝑙−1 (Goodfellow et al., 2016c), as in Equation 

(2).  

𝑧𝑘𝑙(𝑥,𝑦) = 𝑊𝑘𝑙 ⋅ 𝐴[𝑙−1](𝑥,𝑦) + 𝑏𝑘𝑙      (2) 

The lowercase 𝑧𝑘𝑙(𝑥,𝑦)
 with the superscripts and subscript now symbolizes a 

scalar point at (x, y) position within the feature map 𝑍𝑘𝑙 . Similarly, 𝐴[𝑙−1](𝑥,𝑦)
 

symbolizes the sub-matrix of 𝐴𝑙−1  of the size of the convolution kernel 𝑊𝑘𝑙 
centered at position (x, y) of the matrix 𝐴𝑙−1.  
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The collection of all the feature map matrices of the 𝑙𝑡ℎ layer (denoted 

as 𝑍𝑙 ) will then be activated by the activation function 𝑔𝑙 , resulting in the 3D 

collection of activated feature maps 𝐴𝑙 , which is equivalently conveyed in the 

equation 𝐴𝑙 = 𝑔𝑙 (𝑍𝑙 ). With k number of independent convolution kernels, 

the particular convolution layer will generate k number of feature maps.  

 

All of the convolution operations in every CNN models presented in this 

study are executed using  

• stride length of convolution kernels of 1 unit in both the temporal and 

spatial directions,  

• kernel dilation factor of 1 (not dilated) in all directions, and  

• the “SAME” padding mode in TensorFlow setting, which maintains the 

dimensional sizes of the input data and the convolutional output.   

 

For every of the CNN models presented, the 3D feature map output of 

the last convolution block is dimensionally flattened into a 1D array (a vector) 

before being passed to the input layer of fully-connected multilayer-perceptron 

(FC-MLP) network. The network of FC-MLP with two hidden layers of 

perceptrons (64 nodes and 32 nodes respectively in the first and the second 

hidden layers) has given the best classification result among the fully connected 

networks examined in this study.  
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In contrast to the convolution mechanism, the densely connected FC-

MLP network (Goodfellow et al., 2016c) is defined in Equation (3).  

𝑎𝑗𝑙 = 𝑔𝑗𝑙 (∑ 𝑤𝑗𝑘𝑙𝐾𝑘=1 𝑎𝑘𝑙−1 + 𝑏𝑗𝑙)    (3) 

The symbol 𝑎𝑗𝑙 represents the activated output of the 𝑗𝑡ℎ perceptron of the 𝑙𝑡ℎ 

layer of the densely-connected network, while the symbol 𝑔𝑗𝑙  represents the 

activation function for the 𝑗𝑡ℎ  perceptron. Similarly, 𝑎𝑘𝑙−1  represents the 

activated output of the 𝑘𝑡ℎ perceptron of the immediately previous layer in the 

densely-connected network which has a total of K number of perceptrons. The 

symbol 𝑤𝑗𝑘𝑙  represents the weight parameter connecting the 𝑗𝑡ℎ  perceptron of 

the 𝑙𝑡ℎ  layer to the 𝑘𝑡ℎ  perceptron of the (𝑙 − 1)𝑡ℎ  layer. Likewise, 𝑏𝑗𝑙 
represents the bias parameter of the 𝑗𝑡ℎ perceptron of the 𝑙𝑡ℎ layer.  

 

The output layer of the CNN binary classifier contains two perceptrons 

activated by the softmax function, while the output layer of the three-class 

classifier contains three softmax-activated perceptrons. Softmax function 

(Goodfellow et al., 2016c) computes the probability distributed over a specific 

number of possible outcomes (two or three outcomes as in this study). Softmax 

function is defined in Equation (4), with the capital letter C denotes the total 

number of possible outcomes, while the lower-case i denotes a specific class of 

outcome.  

𝜎(𝑦𝑗) = 𝑒𝑦𝑗𝛴𝑖=1𝐶 𝑒𝑦𝑖  , 𝑓𝑜𝑟  𝑖 = 1, … , 𝐶.   (4) 
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Other computational nodes of the convolution layers and the densely-

connected network have ReLU as their activation function. For the output error 

backpropagation and internal parameter optimization, Adam optimizer 

(Kingma and Ba, 2015) is used with the softmax cross-entropy loss function 

as the objective function and the learning rate of 0.001.  

 

Softmax cross-entropy loss is used as the loss function for the CNN 

internal parameter optimization. Cross-entropy (CE) loss (Good, 1956) is 

defined in Equation (5).  

𝐶𝐸(𝑠) = − ∑ 𝑡𝑗𝐶𝑗 𝑙𝑜𝑔(𝑠𝑗)     (5) 

The capital letter C denotes total number of possible classes. The symbol 𝑡𝑗  

denotes ground-truth score of the j th class, while 𝑠𝑗  denotes the predicted score 

of the j th class estimated by the CNN.  

 

The loss function adopted is the softmax cross-entropy function, 𝐶𝐸(𝑠 = 𝜎) , which computes the cross-entropy value using the outputs of 

softmax activation function as the predicted score 𝑠𝑗 , resulting in Equation (6).  

𝐶𝐸(𝜎(𝑦)) = − ∑ 𝑡𝑗𝐶𝑗 𝑙𝑜𝑔(𝜎(𝑦𝑗)) = − ∑ 𝑡𝑗𝐶𝑗 𝑙𝑜𝑔 ( 𝑒𝑦𝑗∑ 𝑒𝑦𝑖𝐶𝑖 )  (6) 

Using one-hot encoding, the target class (p) has the ground-truth score (𝑡𝑗 ) of 

one (𝑡𝑗=𝑝 = 1), while all the rest of the non-target classes have ground-truth 
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score of zero (𝑡𝑗≠𝑝 = 0). Therefore, the softmax cross-entropy loss function in 

equation (6) can be simplified to that in Equation (7).  

𝐶𝐸(𝜎(𝑦)) = − 𝑙𝑜𝑔 ( 𝑒𝑦𝑝∑ 𝑒𝑦𝑖𝐶𝑖 )     (7) 

 

Generally, the accuracy for a classification task is equal to 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 × 100% . For binary classification task, the 

accuracy score will be equal to 
𝑇𝑃+𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 × 100%, with TP denoting true 

positives, TN denoting true negatives, FP denoting false positives, and FN 

denoting false negatives. For any classification task of even higher number of 

classes, the accuracy score of the classifier will generally be 

𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑜𝑓 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 × 100%.  

 

Overfitting of CNN model to the training data is a common problem 

during the model optimization process. The overfitted model will have reduced 

accuracy at representing the general population. To avoid the overfitting of 

CNN models to the training data, dropout mechanism (Srivastava et al., 2014) 

is implemented during the model training process serving as the model 

regularization technique. Dropout mechanism with the rate of 0.4 (40%) is 

implemented empirically during the parameter-optimization process of CNN 

model. Dropout mechanism blocks the stipulated percentage of perceptrons 

(with different randomized combination of perceptron at every training iteration) 

from being involved in the forward predictive computation as well as the 



 
36 

backpropagation of prediction error. Consequently, under the dropout 

regularization, every training iteration will have a portion of the full network 

composed of different perceptron connections serving as the predicting model.  

 

 

 

(a)                                        (b) 

Figure 3.3: Architectures of Temporal-dimension CNN with no Spatial-

dimension Convolution (Cheah et al., 2019a)  
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(a)                                      (b)     

Figure 3.4: Architectures of Spatial-Temporal CNN constructed with  

(a) 2-dimensional kernels and (b) only 1-dimensional kernels  

(Cheah et al., 2019a) 
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3.1.5.2. SVM Classifier  

The support vector machine (SVM) classifiers (Hsu et al., 2016) have 

also been constructed in this study for the purpose of performance comparison 

with the CNN classifiers. The SVM classifiers are designed and executed with 

the sklearn.svm.svc package from the popular Python machine learning library 

Scikit-learn. The sklearn.svm.svc package is written with the technical basis of 

LIBSVM (Chang and Lin, 2011).  

 

The kernel used in the SVM classifier in this work is the radial basis 

function (RBF) kernel. The RBF kernel fitting parameters C and gamma, γ, are 

respectively assigned with the values of 106 and 10
－ 5. Since there is no 

definitive direction for estimating suitable values of C and γ for every different 

problem, according to practical guides such as the Hsu et al. (2016), the values 

of those parameters are decided through grid searching.  

 

A total of 161 EEG features are passed into the SVM classifier. These 

features are  

• the powers of EEG signal of 4 different frequency bands (namely the 

delta band: 1-4 Hz, theta band: 4-8 Hz, alpha band: 8-13 Hz, and beta 

band: 13-30 Hz) of every EEG channel,  

• the peak-power frequency of each of the four frequency bands for all 

channels,  
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• the approximate entropy (ApEn) and the sample entropy (SampEn) of 

each EEG channel, and  

• the real value, the imaginary value, and the absolute value of cross 

power spectral density (CPSD) computed from the pairs of 

corresponding left and right hemispheric channels.  

 

Prior to the extraction of the EEG features, the full-length EEG signals 

are split into non-overlapping signals of two-second length. Table 3.3 presents 

the number of features in every feature category. These EEG features are 

computed from every two-second EEG segment.  

 

Table 3.3: The Manually Extracted Features from EEG Signals for the 

Training of SVM Classifier (Cheah et al., 2019a)  
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3.2     CNN for Personalized Emotion Classification (Study 2)  

 Low capacity CNN models with low number of convolutional kernels 

are constructed in this study for personalized emotion classification. The 

emotion classification task in this study is based on the DEAP dataset 

collectively prepared by the researchers from Queen Mary University of 

London, University of Twente, University of Geneva, and the EPFL research 

institute in Switzerland (Koelstra et al., 2012).  

 

 

3.2.1  DEAP Dataset  

 DEAP dataset used in this study is a multimodal dataset for emotion 

recognition containing the EEG, peripheral physiological signals, and facial 

video recordings. The EEG and physiological signals were obtained from thirty-

two healthy participants with the age range of 19-37 years, while each of the 

participants were watching and listening to forty different musical video 

excerpts. Every video has the length of 60 seconds.  

 

 In line with the project objectives, only the EEG signal is used in this 

emotion recognition study. The EEG signals of DEAP dataset are obtained from 

thirty-two recording electrodes, as in Figure 3.5. The placement of the recording 

electrodes over the scalp follows the format of the International 10-20 system. 

The EEG signals were recorded at sampling frequency of 512 Hz, which was 

then down-sampled to 128 Hz during the signal pre-processing. Also, the 
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electrooculography-related artifacts were removed and the EEG signals were 

filtered with bandpass frequency of 4.0 to 45.0 Hz. Each EEG signal has the 

length of 63 seconds, which includes baseline recording of three seconds 

preceding the video length of sixty seconds.  

 

 

Figure 3.5: Layout of the 32 EEG Electrodes in DEAP Dataset (Yazdani 

et al., 2012)  

 

 Corresponding to each EEG recording, the participants had subjectively 

rated their own emotional aspects (i.e. emotional valence, emotional arousal, 

emotional dominance, and liking) experienced by themselves while watching 

the particular video excerpt. The subjective ratings of the emotions were made 

using the self-assessment manikin (SAM) (Bradley and Lang, 1994) with the 

scoring scale ranging from 1 to 9. In terms of the valence SAM scale, the lower 

scores correspond to the negative emotions (unhappy/sad) while the higher 

scores correspond to the positive emotions (happy/joyful). On the other hand, 

the arousal SAM scale which also ranges from 1 to 9, implies how heightened 
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the valence element is. Figure 3.6 shows the SAM scaling for emotional valence 

and arousal rating.  

 

 

 

Figure 3.6: Emotional Valence and Arousal Scaling of SAM (Bartosova et 

al., 2019) and the Three Classes used in this Study 

 

 

3.2.2  Emotion-Class Relabeling 

 In this study, each of the emotional aspects (i.e. valence and arousal) is 

re-labeled into three discrete classes based on the original continuous values 

between 1 and 9. For the emotional valence, SAM scaling values between 1 and 

4 is labeled as the negative valence class. The neutral valence class takes the 

SAM scaling values between 4 and 6, while the positive valence class consists 

of the values between 6 and 9.  
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 Correspondingly, for the emotional arousal aspect, the continuous SAM 

ratings between 1 and 4 are categorized as the low arousal status, SAM ratings 

between 4 and 6 categorized as the mild arousal status, while the ratings from 

between 6 and 9 as the high arousal mental state. The emotional valence and 

arousal classes are indicated by the green doted lines in Figure 3.6 above.   

 

 

3.2.3  EEG Allocation into Training, Validation, and Test Set  

 For personalized emotion recognition, the CNN classifier is optimized 

and validated subject-by-subject. For every EEG recording, the initial thirteen 

seconds of the total signal length of sixty-three seconds are discarded. It is 

because the 1st three seconds are the baseline resting EEG recorded before the 

start of the video excerpt and the subsequent ten-second segment is the duration 

that is allowed for the emotion induced by watching the musical video to set in.  

 

 The remaining fifty-second EEG signal is divided into five non-

overlapping segments, with each segment of the length of ten seconds. The last 

ten seconds of the signals are used as the test dataset. The other four non-

overlapping ten-second signal segments are used in the four-fold cross-

validation training of the CNN classifier. Each validation fold has one of the 

ten-second signal segments as the validation dataset and the remaining signal 

segments as the training dataset. This has ensured that the signal samples in the 

training, validation and testing dataset have no degree of overlap.  
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 For each of the ten-second segments, the sliding window with window 

length of one-second and sliding step overlap of approximately 90% (0.90625 

seconds) is used to further generate EEG sub-segments of one second duration. 

This produces higher number of training examples covering greater signal 

variation for the classifiers to learn from for picking up key features. 

Nevertheless, none of the one-second EEG segments in the test dataset or the 

validation dataset has any degree of overlapping with the segments in the 

training dataset. Similarly, the EEG segments in the test dataset have not 

overlapped with the segments in the validation dataset at all.  

 

 With the above-described extraction operation of sliding window, each 

ten-second EEG segment gives off ninety-seven sub-segments of one-second 

duration, where (1280 − 128) ÷ (128 − 116) + 1 = 97  sub-segments. This 

number of EEG sub-segments generated by the sliding-window operation 

follows the pattern in Equation (8).  

 
1

)(

)(
+

−
−

=
lengthoverlaplengthwindowsliding

lengthwindowslidinglengthsegmenttotal

windowslidingbygeneratedsegmentsofnumber

          (8) 

Therefore, there are a total of 11,640 one-second EEG segments in the training 

dataset (40 videos × 3 ten-second segments/video × 97 sub-segments/ten-

second segments). Validation dataset and test dataset each has 3,880 one-second 

EEG segments (40 videos × 1 ten-second segment/video × 97 sub-segments/ 

ten-second segment).  
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 Figure 3.7 demonstrates the segmentation of the sixty-three-second full-

length EEG signal into training dataset, validation dataset and test dataset for 4-

fold cross validation. Subsequently, Figure 3.8 shows the operation of the 

sliding window for incrementing the number and thus augmenting the variation 

of EEG segments to be presented to the CNN classifiers during the training 

process.  

 

  

Figure 3.7: Segmentation and Allocation of the Full-length EEG 

Recording into Training, Validation and Test Datasets for Four-fold 

Cross-validation (Cheah et al., 2019b)  

 

 

Figure 3.8: Illustration of the sliding window approach for the extraction 

of overlapping one-second sub-segments from every ten-second EEG 

segment (Cheah et al., 2019b) 
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3.2.4  Architectural Details of the CNN  

 The two CNN models trained and validated in this study are a single-

path CNN classifier and a double-path CNN classifier with dilated convolution. 

The information of the architecture of the two CNN classifiers are documented 

in Table 3.4 and Table 3.5.  

 

 The CNN classifiers read in the thirty-two channels of normalized EEG 

segment and perform the emotion classification with no requirement for 

manually extracted features from EEG signals. The single-path CNN classifier 

contains eight successive convolution layers, which are composed of five 

temporal convolution layers and three spatial convolution layers. The feature 

maps output by the last spatial convolution layer is passed to the FC-MLP 

network. The double-path CNN classifier is designed with two convolution 

pathways operating in parallel. Each of the two parallel convolution paths has 

eight successive convolution layers, which are five temporal convolution layers 

followed by three spatial convolution layers. The two parallel convolution paths 

each respectively has the temporal convolution operating at dilation factor of 1 

(without dilation) and 2. The feature maps output by the final convolution layers 

of both parallel paths are flattened and concatenated before being fed into the 

FC-MLP network.  

 

 The FC-MLP networks of both CNN classifiers are each composed of 3 

hidden fully-connected layers. The first hidden fully-connected layer contains 
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ninety-six perceptrons which read in and process the flattened feature maps 

generated by the final layer of convolution operation. The second hidden fully-

connected layer contains thirty-two perceptrons, connecting the first and the 

third fully-connected hidden layer which contains sixteen perceptrons. The third 

fully-connected layer is in turn connected to the final output layer of the FC-

MLP network of the CNN classifier. The three output nodes of the FC-MLP 

have softmax function as their activation function.  

  

 All of the hidden fully-connected layers have the ReLU as their 

activation function. The temporal convolutions are performed using the “SAME” 

Tensorflow padding method which maintains length of the temporal dimension. 

Meanwhile, the spatial convolutions are performed with the “VALID” padding 

method which is essentially striding the convolution kernel without padding the 

particular dimension. The first two temporal convolution layers are the only 

sections constructed with pooling operation, with max pooling on the feature 

maps before passing onto the subsequent layer.  
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Table 3.4: Details of the Architecture of the Single-path CNN Model 

(Cheah et al., 2019b) 
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Table 3.5: Details of the Architecture of the Double-path CNN Model with 

Dilated Convolution in One of the Two Parallel Convolution Paths 

(Cheah et al., 2019b)  
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3.2.5  Dilated Convolution  

In the double-path CNN classifier, one of the two convolution paths is 

implemented completely with dilated convolution with the dilation factor of 2. 

Yu and Koltun (2016) had mathematically described the dilated convolution 

as simply the execution of the usual discrete convolution mechanism with the 

dilated convolution operator, as in Equation (10).  

 

For ℤ symbolizes the integer-number set and ℝ symbolizes the real-

number set, the two-dimensional dilated convolution can be represented 

mathematically as below.  

 

Let F be a discrete function such that F : ℤ2 → ℤ , and k be a discrete 

filter such that k : Ωr → ℝ of size (2r+1)2 with Ωr = [－r , r ]2 ∩ ℤ2 . The usual 

discrete convolution operator * can be expressed as in Equation (9) (Yu and 

Koltun, 2016).  

 

=+

=
pts

tksFpkF )()())(*(

    (9) 

 

The above-mentioned discrete convolution operator * can be 

extrapolated into the discrete dilated convolution operator *l , where l specifies 

the value of dilation factor, as described in Equation (10) (Yu and Koltun, 

2016).   
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

=+

=
ptls

l tksFpkF )()())(*(

    (10) 

 

The above concept of dilated convolution applies to the one-dimensional 

convolution in the CNN classifier in this study, in which case, the filter size 

corresponds to single dimension (2r+1) instead of (2r+1)2. All the superscripts 

that denote the two-dimensional vector space is set to one (which is solely along 

the time dimension).  

 

 

3.2.6  Training, Validation, and Testing of the CNN Models  

 The objective function for model parameter optimization is the cross-

entropy loss of softmax outputs. Adam optimizer (Kingma and Ba, 2015) is 

used as the optimization method for minimizing the loss function. The 

optimization progress is executed at learning rate of 0.004.  

 

 To serve the purpose of model regularization, the CNN classifiers in this 

study are trained using the dropout technique with the dropout rate of 40%. The 

dropout technique is applied to the output of the last convolution layer and all 

the hidden FC-MLP layers. 

 

 The model training process is conducted with mini batches with 800 

EEG segments per training-iteration. The training dataset is randomly shuffled 
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after every three complete training epochs. There are 15 mini-batch training 

iterations for a complete epoch.  

 

 Along the progress of the model training stage, the classification 

performance of the model is validated using the validation dataset. While the 

training dataset plays a role in optimization of the model’s parameters, the 

classification performance using the validation dataset serves to guide the model 

selection process. The model under iterative training with highest validation 

accuracy will be selected for the final performance testing using the test dataset.  
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3.3      Residual Network and VGG for Emotion EEG Classification (Study 

3)  

 

3.3.1  SEED Dataset  

 The SEED dataset (Duan et al., 2013; Zheng and Lu, 2015) is a 

publicly available emotion related EEG dataset for research purpose provided 

by the Shanghai Jiao Tong University (SJTU). The stimuli in the SEED 

experiment were 15 film clips carefully chosen such that each elicits a single 

desired target emotion. Each film clip lasts about 4 minutes and is coherent to 

either positive, neutral, or negative valence emotion as described in Table 3.6.  

 

Table 3.6:  Film Clips in SEED Dataset 

Source Film Name Emotion Number of Clips 

Tangshan Earthquake  Negative 2 

Back to 1942  Negative 3 

Lost in Thailand  Positive 2 

Flirting Scholar  Positive 1 

Just Another Pandora’s Box  Positive 2 

World Heritage in China  Neutral 5 

 

 SEED experiment had 15 participants. Every participant underwent 3 

sessions of experiment, with at least one week interval in between every 2 
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sessions. Each experiment session contained 15 trials, each playing one of the 

15 film clips followed by self-assessment and a short rest. The play sequence of 

the film clips was arranged such that no two consecutive trials carried the clips 

of the same emotion category. Figure 3.9 shows the structure of the experiment 

session.  

 

 

Figure 3.9:  Session Flow of Data Collection Process of SEED Experiment 

(Zheng and Lu, 2015) 

  

 

 The EEG signals were recorded with 62 active AgCl electrodes of the 

ESI NeuroScan System at sampling frequency of 1000 Hz. The electrode 

placement was based on the international 10-20 system as shown in Figure 3.10. 

The recorded EEG signals were then downsampled to 200 Hz and bandpass 

frequency filter of 0.5 Hz to 70 Hz was applied.  
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Figure 3.10:  Placement Layout of EEG Channels in SEED Experiment 

(Zheng and Lu, 2015) 

  

 

3.3.2  EEG Data Preprocessing  

 As the target emotion caused by watching the film clip would not likely 

be successfully induced immediately at the start of film clip, we have set an 

buffering period of 90 seconds for the emotion establishment. Therefore, the 

initial 90 seconds of each of the 4-minute EEG trial were discarded. The 

remaining EEG recording is split into 2-second non-overlapping segments, with 

each EEG segment assuming the length of 400 sampling points for the sampling 

frequency of 200Hz. Table 3.7 presents the emotion labelling of each video clips 

and the number of two-second EEG sub-segments generated from each of the 

EEG recording corresponding to the particular video clip.  

 

 Each of the non-overlapping segments is then normalized along the time 

axis respectively. All the generated EEG segments are split into five sub-pools 

for 5-fold cross validation of the model performance. 
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Table 3.7: Emotion Class Labelling of the Video Clips in the SEED 

Dataset and the EEG Recording Segmented for Study 3 

Emotion Class 

Trial  

(Video Clip) 

Number 

EEG Recording 

Length Retrieved 

(sampling points) 

Number of 2-

second EEG 

subsegments 

negative 

3 23200 58 

4 29600 74 

7 29200 73 

12 28400 71 

15 23200 58 

neutral 

2 28400 71 

5 18800 47 

8 25200 63 

11 28800 72 

13 28800 72 

positive 

1 28800 72 

6 20800 52 

9 34800 87 

10 29200 73 

14 29600 74 

 

 

3.3.3  Optimizing ResNet & VGG for EEG Signals 

 Figure 3.11 and Figure 3.12 respectively illustrate the architectural 

details of different versions of ResNet18 and VGG16 examined in this study.  

 

3.3.3.1. ResNet Optimization 

 The original architecture of ResNet18 (He et al., 2016) consisting of 17 

convolutional layers and 1 layer of fully-connected network is depicted in 

Figure 4(a). As the original ResNet18 is designed for image processing, the 

convolutional kernels within the model are all 2-dimensional kernels. It has 3-

by-3 kernels throughout its convolutional path, except for the very first 

convolutional layer (Conv 0) which has 7-by-7 kernels.  
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 The colour coding of Figure 3 denotes the major convolutional blocks 

of the ResNet. The convolutional layers of the same colour has the same number 

of kernels (e.g. orange for 64 kernels, yellow for 128 kernels, green for 256 

kernels, and blue for 512 kernels). The darker colour layers are convolutional 

layers, while the lighter layers are the other functional layers in the block, such 

as the batch normalization (BN) function, the Rectified Linear Unit (ReLU) 

activation function, the summation (Sum) of the by-passed feature map and the 

main convolution feature map, and the adaptive average pooling (AvgPool). The 

adaptive AvgPool layer before the fully connected (FC) layer allows the model 

to process EEG signals of different numbers of channels without the need to 

reassign the number of connections in the FC network.  

 

 The last layer of the ResNet18 is a single layer of fully connected (FC) 

network with three output nodes, corresponding to the three emotion classes.  

 

 There are two types of bypass connection in the ResNet, i.e. the identity 

bypass and the downsampling bypass. The identity bypass has its feature map 

being passed on, skipping two convolutional layers without any further 

processing before the summation function. The downsampling bypass happens 

at the initial stage of every major convolutional block, where the input feature 

maps will have their map size reduced due to kernel stride and the number of 

feature maps will increase due to the increment of convolutional kernels. 

Therefore, the downsamping bypass is necessary in order to have the dimension 
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of the shortcut data matching the data dimension of the main convolutional path. 

While the identity bypass performs no additional processing on the data passed 

onwards, the downsampling bypass has 1-by-1 convolutional kernels which 

introduce an additional small number of trainable parameters as reported in 

Figure 3.11.  

 

 In this study, three variants of the original ResNet18 were constructed 

and investigated. Two of the three ResNet18 variants are illustrated in Figure 

3.11(b) and 3.11(c). The 2D kernels of the ResNet were all restructured into 1D 

kernels along either the temporal(time)-dimension or the spatial(channel)-

dimension.  

 

 The variant in Figure 3.11(b) has alternating temporal and spatial-

dimension convolution. Eckart and Young (1936) and Maji and Mullins 

(2018) have reported that the matrix such as the convolution filters can be well 

approximated with an arbitrary number of lower rank matrices. Maji and 

Mullins (2018) had also demonstrated the feasibility of separating the 2D 

kernels of the well-established CNNs (e.g. AlexNet, VGG-16, Inception-v1, 

ResNet-152) into alternating 1D vertical and horizontal kernels, achieving near 

baseline accuracy for image classification with significant speedup of training.  
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(a) Original ResNet18  (b) ResNet18 1D kernel (T-S-

alternate) 

(c) ResNet18 1D kernel (T-then-S) 

Figure 3.11: Architectural details of (a) the original ResNet18 and its 

modified variants (b, c) for EEG signal processing.  
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(a) VGG16 1D kernel (b) VGG14 1D kernel (c) VGG14 1D kernel (no batch 

norm) 

Figure 3.12: Architectural details of (a) VGG16 with 1D kernels,  

(b) VGG14 with 1D kernels and (c) VGG14 without batch normalization. 

 

 Nevertheless, given the different format and nature of EEG signals from 

the images, the alternating arrangement of 1D horizontal (time-dimension) 

kernel and 1D vertical (spatial-dimension) kernel may not be the optimal design 
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for EEG signal processing. Therefore, we have constructed another variant of 

ResNet18 (Figure 3.11(c)) with the initial two major convolutional blocks (all 

the nine initial convolutional layers) operating purely in the temporal dimension 

before introducing the spatial convolution kernels. Spatial-dimension 

convolution of this ResNet variant appears only in the final two convolutional 

blocks.  

 

 In addition, we have investigated the effect of initializing the 

convolutional path with spatial-dimension convolution, by making only a single 

change in the initial layer (Conv 0) of ResNet18-1D-kernel-(T-S-alternate) in 

Figure 3.11(b), from time-dimension convolution into spatial-dimension 

convolution. We have name-coded this variant as ResNet18-1D-kernel-(S-T-

alternate), such as for comparison with the model in Figure 3.11(b) in order to 

highlight the effect of the above-mentioned single change on the model’s 

performance which is presented in Figure 4.10.  

 

 The right columns of the Figures 3.11(a), (b) & (c) indicate the number 

of trainable parameters in each architectural layer of the ResNet variants.  

 

 

3.3.3.2. VGG Optimization  

 As illustrated in Figure 3.12, variants of VGG16 are also constructed for 

performance comparison with the variant of ResNet18. The VGG models (Liu 
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and Deng, 2015) have classical convolutional pathway without data bypassing. 

The VGG16 has five major convolutional blocks, with two convolutional layers 

in each of its first two major convolutional blocks and three convolutional layers 

in each of its last three convolutional blocks. These thirteen convolutional layers 

together with the final three FC layers have made up the 16 main functional 

layers in the VGG16.  

 

 Figure 3.12(a) shows the structure of the VGG16 with all the original 2D 

kernels being modified into 1D kernels along either the temporal or spatial 

dimension. The model in Figure 3.12(b) is named VGG14-1D with the removal 

of the two hidden FC layers from the VGG16-1D, such that the fully-connected 

network more closely resembles and is comparable to that of the ResNet18.  

 

 The VGG architectures in Figure 3.12 are also colour-coded such that 

the transition between different colour blocks is preceded by max pooling 

(MaxPool) operation along the dimension of the previous convolution operation. 

The adaptive AvgPool layer placed before the FC networks in the VGG is for 

the same purpose as described for the ResNet18.  

 

 We have also investigated the importance of batch normalization in 

CNN for EEG processing by removing the BN layers of the VGG16 as in Figure 

3.12(c). The performance impact of the BN function is discussed in the Results 

Section 4.3.2.  
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3.3.4  Model Training   

 The objective function for model optimization during training was set as 

the cross-entropy loss of the CNN outputs. Adam optimizer was used to update 

the trainable parameters of the CNN at the learning rate of 0.001, based on the 

backpropagated error from the output cross-entropy loss.  

 

 The model training process was conducted with stochastic mini-batches, 

with the size of each mini-batch being one 200th of the total training pool. Thus, 

one complete training epoch consists of 200 training iterations. The training data 

pool will be re-shuffled after every complete training epoch to ensure different 

combination of mini-batch samples in the subsequent training epochs. 

Stochastic mini-batch training serves to prevent the training process from being 

stuck at local minima of the objective function.   
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CHAPTER 4 

 

RESULTS & DISCUSSION 

 

 

4.1. Music-Listening EEG Classification (Study 1) 

 

4.1.1. Adjusting for the Suitable Hyperparameters and Constituent 

Components in the CNN Architecture  

 

 Different specification of the architectural details of the CNN can have 

considerable impacts on the model’s classification performance. With this 

respect, the impacts of the following architectural aspects on the binary EEG 

classification are investigated based on the pure-temporal shallow CNN model 

presented in Figure 3.3(a):  

• the amount of convolution channels (i.e. the amount of convolution filters),  

• the pooling operation after the convolution, and  

• the presence of hidden perceptron layers in the FC-MLP network.  

 

 The classification performance of the pure-temporal shallow CNN with 

different amounts of convolution channels on the task of binary music-EEG 

classification is presented in Figure 4.1. Among the examined variations, the 
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model with ten convolution kernels in the first layer and twenty kernels each in 

the second and third layers has achieved the highest validation accuracy and the 

lowest validation loss. The model with low number of convolution kernels with 

three in the first layer and six each in the second and third layers has experienced 

significantly lower model learning speed. Low number of convolution kernels 

has also resulted in eventual lower validation accuracy and higher validation 

loss, potentially due to insufficient capacity of the CNN to assume the 

sufficiently complex representation for the data domain. Meanwhile, the model 

with a very high number of convolutional channels (fifty in the first layer, one 

hundred in the second layer and two hundred in the third layer) has attained the 

fastest learning progression at the expense of experiencing early overfitting to 

the training dataset, which is indicated by the pair of red training curve and the 

light blue validation curve in Figure 4.1.  

 

 Figure 4.2 presents the training-validation log which reflects the impact 

of FC-MLP on the performance of binary EEG classification of the CNN model. 

Much resembling the effect of large number of convolution channels, a wider 

and deeper FC-MLP network with higher capacity (with the depth of three 

hidden FC layers of 2048, 512, 64 perceptrons respectively at the first, second, 

and third layers) has attained the fastest learning progress, at the cost of 

undesirable early overfitting to the training dataset. On the contrary, the CNN 

classifier with two hidden fully-connected layers of 64 and 32 perceptrons has 

its learning progress slower than the model with deeper-wider FC-MLP network, 

it has managed to attain a better validation accuracy and a lower validation loss. 

The CNN classifier which has no hidden layer in the fully-connected network 
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has a significantly slower training progress in comparison to its other two CNN 

counterparts.  

 

 

Figure 4.1: Performance Log of the Model Training-Validation Process 

using Different Amounts of Convolution Kernels Working on Short-term 

Music Experiment Binary Classification (Cheah et al., 2019a) 
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 Figure 4.3 presents the performance log of the CNN models with and 

without pooling mechanism. The performance of the CNN without pooling 

mechanism is very susceptible to the problem of overfitting which can be easily 

read from the pair of red and light-blue curves in Figure 4.3(b). The excessive 

overfitting problem does not occur in the CNN with max pooling mechanism. 

This indicates that pooling mechanism does not function merely as a method for 

decreasing the data size of the feature maps to save processing power and to 

improve computational efficiency, but also significantly improves the 

classification performance of the CNN model.  
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Figure 4.2: Performance Log of the Model Training-Validation Process  

with Different Widths and Depths of Fully-Connected (FC) Perceptron 

Networks (Cheah et al., 2019a)  
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Figure 4.3: Performance Log for the Model Training-Validation Process 

with/without Pooling Mechanism on Short-term Music Experiment 

Binary Classification (Cheah et al., 2019a) 
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4.1.2. The Importance of Convolution across the Spatial Dimension for 

EEG Signal Classification  

  

 For investigating the significance of spatial-dimension convolution 

across the EEG channels, Figure 4.4 presents the comparison of the EEG signal 

classification performance of the three different CNN models illustrated in 

Figure 3.3(a), Figure 3.3(b), and Figure 3.4(b), where both the models in Figure 

3.3 are of pure-temporal convolution and the CNN in Figure 3.4(b) is designed 

with temporal-spatial convolution.  

 

 Both of the CNN models with purely temporal convolution have shown 

approximately the same classification performance, with the deep temporal 

CNN with six temporal convolution layers slightly outperforming the shallow 

temporal CNN model with three temporal convolution layers. With the 

inclusion of spatial convolution on top of the temporal convolution, the CNN 

model as illustrated in Figure 3.4(b) has attained considerable performance 

improvement with higher the validation accuracy, smaller the validation loss, 

and also much reduced number of training iterations needed to reach the 

optimally trained state.  
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Figure 4.4: Performance Log for the Model Training-Validation Process 

of Spatial-Temporal CNN vs. Pure-Temporal-CNN without Spatial 

Convolution (Cheah et al., 2019a) 

 

 

4.1.3. Ten-fold Cross-Validation Comparing the CNN with SVM  

 Instead of single cycle of training performance log as in Figure 4.4, the 

Table 4.1 and Figure 4.5 together further present the classification performance 
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of the three CNN models illustrated in Figure 3.3(a), Figure 3.3(b), Figure 3.4(b) 

as well as the performance of SVM classifiers, over ten folds of cross-validation. 

The results presented in Figure 4.5 and Table 4.1 are from the CNN and SVM 

classifiers performing the binary EEG signal classification using the data from 

the short-term experiment.  

 

Figure 4.5: Graphical Performance Comparison across Different CNN 

Architectures and SVM classifiers with Different Input Features across 

Ten Folds of Cross Validation Process (Cheah et al., 2019a) 
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Table 4.1: Performance Comparison across Different CNN Architectures 

and SVM classifiers with Different Input Features across Ten Folds of 

Cross Validation Process (Cheah et al., 2019a)  

 

  

 The CNN classifiers in general have significantly outperformed the 

SVM classifier. The CNN model with six temporal and three spatial convolution 

layers has achieved the averaged validation accuracy of 98.94% over the ten-
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fold cross-validation. The optimized temporal-spatial CNN models selected 

using the top validation performance have an averaged test accuracy of 97.46%. 

The ten-fold cross-validation classification performance of the deep pure 

temporal (6 layers) and shallow pure temporal (3 layers) CNN models are close, 

with the mean test accuracy of 93.8% and 93.69% respectively. The top 

performing SVM classifier has attained the ten-fold cross-validation mean 

accuracy of 80.23%.  

 

 

4.1.4. Three-class Classification by Spatial-Temporal CNN with 1D vs. 2D 

Kernels 

 

 Both of the spatial-temporal CNN models illustrated in Figure 3.4(a) and 

Figure 3.4(b) are trained for the three-class EEG classification task using the 

short-term music experiment dataset as shown in Table 3.2. The CNN model in 

Figure 3.4(a) performs its spatial-temporal convolution with 2D kernels, while 

the model in Figure 3.4(b) consists of only 1D kernels along either the temporal 

dimension or the spatial dimension. The validation and test performance of both 

spatial-temporal CNN models are recorded in Table 4.2 and Figure 4.6. Both of 

the above-mentioned CNN classifiers have attained very similar accuracy and 

cross-entropy loss on both the validation and test datasets. Both have achieved 

the averaged test accuracy of over 95% for the task of three-class EEG 

classification over the ten-fold cross-validation. On top of being highly capable 

at differentiating the EEG signals of the mental states listening to music from 

the EEG of a baseline resting mind, both of the spatial-temporal CNN models 
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are also very accurate at classifying the mental states of listening to own favorite 

music or of listening to the alpha binaural beats.  

 

 Table 4.3(a) presents the confusion matrix of the three-class 

classification performance of the 2D-kernel spatial-temporal CNN with the 

lowest test accuracy (at the 4th fold of the ten-fold cross validation). 

Correspondingly, Table 4.3(b) presents the confusion matrix of three-class 

classification performance of the 1D-kernel spatial-temporal CNN with the 

lowest test accuracy (at the 5th fold out of the ten-fold cross validation).  

 

 Both CNN classifiers are slightly more accurate at recognizing the 

baseline resting EEG segments than at task of identifying EEG segments from 

the two sub-classes with music, indicated by the consistent highest per-class test 

accuracy in both of the confusion matrices.  
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Table 4.2: Performance Comparison between the 2D-kernel Spatial-

Temporal CNN and 1D-kernel Spatial-Temporal CNN over 10-fold 

Cross-Validation based on 3-class Classification on the Short-Term Music 

Experiment Dataset (Cheah et al., 2019a) 
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Figure 4.6: Graphical illustration of the Performance Comparison 

between the 2D-kernel Spatial-Temporal CNN and 1D-kernel Spatial-

Temporal CNN over 10-fold Cross-Validation based on 3-class 

Classification on the Short-Term Music Experiment Dataset (Cheah et al., 

2019a) 
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Table 4.3: Confusion Matrices of the Cross-Validation Fold with the 

Lowest Accuracy in Table 4.2 and Figure 4.6 by  

(a) 2D-kernel Spatial-Temporal CNN and  

(b) 1D-kernel Spatial-Temporal CNN (Cheah et al., 2019a) 

 

 

(a) 

 

 

(b)  
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4.1.5. Comparing the Computational Efficiency of Different Classifiers in 

Terms of Size of Model & Computational Time  

 

4.1.5.1. Size of Model   

 Table 4.4 presents the detailed calculation of the number of trainable 

parameters in the two different spatial-temporal CNN classifiers illustrated in 

Figure 3.4. With similar EEG classification accuracy of both models, the 1D-

kernel spatial-temporal CNN model actually operates on a lower amount of 

trainable parameters than the 2D-kernel spatial-temporal CNN model. The 

lower number of trainable parameters is achieved by avoiding the use of 2D 

convolution kernels. As the 1D-kernel spatial-temporal CNN model contains a 

much lower number of trainable parameters, its storage requires less memory 

on disc (4,918 kilobytes) in comparison to the 2D-kernel CNN model which 

requires 5,776 kilobytes of memory. Such reduction in the required disc 

memory for the model storage can be essential for memory-critical applications 

such as the embedded systems working on EEG signal processing.  

 

“The trainable parameter calculation presented in Table 4.4 is on the following 

conceptual basis:  

• 
kernels) conv of(number   channels)-in of(number   kernel) conv of (size =

 parameter) bias (nolayer n convolutio ain  parameters  trainableofnumber  the


 

• 
layer)current in  nodes of(number   1) + nodes incoming of(number  =

layer  connectedfully  ain  parameters  trainableofnumber  the


 

• Operation of pooling layer will result in the reduction of data points in the particular 

dimension, by a reduction factor equivalent to the length of pooling filter along the 
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dimension (e.g. three successive layers with 1x3 pooling filter reduces the data length by a 

factor of 33 = 27) ” (Cheah et al., 2019a) 

 

 With the adoption of 1D convolution kernels, the amount of trainable 

parameters in the convolution network/section of the CNN is greatly reduced 

from 104060 parameters in the 2D-kernel model to as low as 30860 in the 1D-

kernel model. This is a parameter reduction of 70% in the convolution section 

without affecting the classification performance.  

 

Table 4.4: Detailed Comparison of the Trainable Parameters in the Two 

Different Spatial-Temporal CNN Classifiers (Cheah et al., 2019a)  
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4.1.5.2. Computational Time    

 The efficiency of classifiers in terms of computational time is an 

important aspect of performance measurement of a brain-computer interface 

(BCI) application (Jiao et al., 2019; Jin et al., 2020; Zhang et al. 2016). The 

computational times of the SVM classifier and the various CNN classifiers 

constructed in this study are compared in terms of both the training and 

prediction (test) time which are presented in Table 4.5 and Figure 4.7.  

 

Table 4.5: Training Time and Prediction (Test) Time of Different EEG 

Classifiers for the Short-term Music Experiment Binary Classification 

(Cheah et al., 2019a) 

 

 

Figure 4.7: Graphical Comparison of Training Time and Prediction 

(Test) Time of Different EEG Classifiers on the Short-term Music 

Experiment Binary Classification (Cheah et al., 2019a) 
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 The recorded training time is the average time taken for one of the ten 

folds of cross validation. The presented prediction (test) time is based on the 

task of binary EEG classification for 350 EEG segments. The amount of training 

data is as presented in Table 3.1 in Section 3.1.2.1. With 3150 samples of two-

second EEG segments for each fold of training-validation cycle, the time 

required to optimally train the CNN classifiers and SVM classifier do not differ 

much, ranging from around 3 to 4 minutes, except for the 2D-kernel spatial-

temporal CNN. The time needed for optimizing the SVM classifier will increase 

exponentially with larger training datasets. On the other hand, the time needed 

for the training of CNN classifier depends substantially on the training 

specifications such as the mini-batch size presented per iteration, the learning 

rate of optimization algorithm, and the validation-based stop criteria. The 

spatial-temporal CNN with 2D-kernels is able to reach the optimized state of 

minimal cross-entropy loss in a much shorter training time than the other CNN 

classifiers with 1D kernels.  

 

 Nonetheless, instead of the training time, the prediction time is of greater 

importance for the deployment and applied execution of the model. The 

prediction times needed by the spatial-temporal CNN with pure 1D-kernels and 

the spatial-temporal CNN with 2D-kernels are almost identical, requiring 74.41 

and 74.00 milliseconds respectively.  
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4.1.6. Brain State Classification based on EEG Signals from Different 

Brain Lobes  

 

4.1.6.1. Left Hemisphere vs. Right Hemisphere of the Cerebra    

 Table 4.6 and Figure 4.8 show the validation and test accuracy of the 

three-class music-EEG classification over ten-fold cross-validation, using only 

either the left or the right cerebral hemispheric EEG channels. On average, the 

classification accuracy achieved using the EEG channels from the left cerebral 

hemisphere [“AF3, F3, F7, FC5, T7, P7, O1” (Headset Comparison Chart: 

Technical Specification, [n.d.])] is approximately 5% better than the result 

achieved using the EEG channels from the right cerebral hemisphere [“AF4, F4, 

F8, FC6, T8, P8, O2” (Headset Comparison Chart: Technical Specification, 

[n.d.])]. The discrepancy in the above classification accuracy suggests that the 

left cerebral hemispheric EEG signals elicit a greater difference between the 

resting baseline state and the brain state under different kinds of music stimuli, 

in comparison to that of the right cerebral hemisphere.   

  

 The discrepancy in the left-vs-right cerebral hemispheric EEG 

classification accuracies, under the same auditory stimulus in this study is 

probably because of the fundamental lateralization of cerebral hemispheric 

functions. While the self-favorite music stimulus and the alpha binaural music 

rhythm have induced clearly differentiable EEG signals in the right cerebral 

hemisphere (distinguishable by the CNN classifier with the averaged accuracy 

of 84.12%) which has a dominant role in handling the emotional functions, these 

auditory stimuli have induced an even greater difference in EEG signals 
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generated by the left cerebral hemisphere (distinguishable by the CNN classifier 

with the averaged accuracy of 88.91%) which has a more important role in 

linguistic processing and logical functions.  

 

 The innate differences in the structures and functions of the left and the 

right cerebra have resulted in their different ways of responding to all kinds of 

external or internal stimuli. This is in-fact a well-known widespread primal 

property among the humans as well as the other animals (Corballis, 2014), 

termed as the cerebral lateralization or cerebral asymmetry. Lateralization of 

cerebral functions has been recognized as an indication of successful and 

efficient neurological development (Liu et al., 2009). On the contrary, a number 

of studies had reported the diminished degree of cerebral lateralization or higher 

degree of ambidexterity to be positively correlated with neuropsychological 

dysfunctions such as stuttering, deficiency in academic skills, difficulty in 

maintaining mental health, and even schizophrenia (Crow et al., 1998; 

Kushner, 2011; Orr et al., 1999; Rodriguez et al., 2010). 
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Table 4.6: Three-class Classification Performance (Accuracy and  

Cross-Entropy Loss) Achieved with Left vs. Right Cerebral  

Hemispheric EEG Signals (Cheah et al., 2019a) 

 

 

Figure 4.8: Graphical Comparison of Three-class Classification 

Performance Achieved with Left vs. Right Cerebral  

Hemispheric EEG Signals (Cheah et al., 2019a) 
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4.1.6.2. Significance of Frontal-lobe Signals vs.  Temporal-Parietal- 

 Occipital (TPO) EEG Signals  

 Table 4.7 and Figure 4.9 present the validation and test accuracy of the 

three-class music-EEG classification over ten-fold cross-validation, using only 

either the “six frontal-lobe EEG channels (AF3, AF4, F3, F4, F7, F8)” (Cheah 

et al., 2019a) or the other “six EEG channels from the temporal, parietal and 

occipital lobes (T7, T8, P7, P8, O1, O2)” (Cheah et al., 2019a). The 

classification performance discrepancy between using six frontal lobe channels 

and using the six EEG channels from the temporal, parietal and occipital (TPO) 

lobes is even greater than the discrepancy elicited between the left-vs-right 

cerebral hemispheres. On average, the classification test accuracy achieved with 

six TPO channels is barely 74.69%, which is over 10% worse than the accuracy 

achieved with six frontal-lobe channels of 84.93%. This accuracy discrepancy 

indicates that neural activity of the frontal cerebrum is more strongly activated 

and influenced by the music stimulus than the other cerebral cortices (the 

temporal, parietal and occipital lobes).  

 

 The frontal cerebrum has particularly dominant duty in the integrative, 

imaginative, and executive functions of the mind. These include the integration 

of different modalities related to perception or sensory inputs, integration of 

memory, prospection or future projection, execution planning, and emotional 

mediation (Siddiqui et al., 2008). With this respect, musical stimuli could 

potentially have significant effects on these neurological functions of the frontal 

lobes.   
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Table 4.7: Three-class Classification Performance (Accuracy and  

Cross-Entropy Loss) Achieved with Frontal-lobe EEG vs. TPO-lobe EEG 

(Cheah et al., 2019a) 

 

 

Figure 4.9: Graphical Three-class Classification Performance Achieved 

with Frontal-lobe EEG vs. TPO-lobe EEG (Cheah et al., 2019a)  
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4.2. CNN for Personalized Emotion Classification (Study 2) 

 

 The classification accuracies of the CNN classifiers in Study 2 (in Table 

3.4 and Table 3.5) for the tasks of three-class valence level recognition and 

three-class arousal level recognition are recorded in Table 4.8 and Table 4.9. 

The classification accuracy tabulated is the average of the four-fold cross 

validation for each individual participant.  

 

 The performance of emotion classification of the single-path CNN and 

the double-path CNN classifiers are closely equivalent to each other. The single-

path CNN classifier attains test accuracy of 97.59% and 98.48% respectively 

for the valence and arousal level recognition. The double-path CNN classifier 

attains the corresponding accuracy of 98.75% and 97.58%.  

  

 Although the two CNN classifiers have achieved closely identical 

accuracies, the convolutional networks of the CNN models contain vastly 

different amounts of trainable parameters. The convolution network of the 

double-path CNN model is designed with three kernels in every layer along each 

convolution path, aggregating to a sum of 960 trainable parameters (with 480 in 

one convolution path) in the whole convolution network. On the other hand, the 

single-path CNN model is equipped with six convolution kernels per layer, 

aggregating to a sum of 1824 trainable parameters, which is 1.9 times as many 

as the parameters in the convolution network of the double-path CNN. 

Meanwhile, the FC-MLP sections of both classifiers are designed with exactly 

identical number of hidden perceptrons.  



 
89 

 

 The CNN models in this study are designed with low number of 

convolutional kernels for the purpose of testing the performance of models with 

low convolutional capacity in emotion recognition. Also, with lower number of 

kernels in the convolution layers, both the convolutional filters and the output 

feature maps are more interpretable for the potential identification of new useful 

EEG feature. With lower number of convolution kernels, the CNN classifier 

will also be mannered to identify only the highly relevant signal features, which 

in turn can be helpful in preventing the model from overfitting to the training 

dataset. Meanwhile, with different dilation factors for the operation of the 

convolution kernels, the CNN network is mannered into picking up the signal 

features at different frequencies.  

 

Table 4.8: Average four-fold Cross-Validation and Test Accuracies for 

the Three-Class Emotional Valence Classification (Cheah et al., 2019b) 
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Table 4.9: Averaged 4-fold Cross-Validation and Test Accuracies for the 

Three-Class Emotion Arousal Level Classification (Cheah et al., 2019b) 
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4.3. Residual Network and VGG for Emotion EEG Classification  

(Study 3)  

 

4.3.1. Performance of Variants of ResNet18  

 

 Figure 4.10 presents the averaged 5-fold cross-validation classification 

accuracy of the ResNet variants, using different subsets of EEG channels as their 

data input.  

 

 The ResNet variant with 1D kernels has generally outperformed the 

original ResNet18, particularly at the scenario of using lower number of EEG 

channels (10 channels for each subset). Not only has the classification improved 

with the ResNet18 architectural restructuring from 2D-kernel convolution to 

1D-kernel convolution, the total number of trainable parameters (obtainable by 

summing up the layer-wise parameters in Figure 3.11) in the ResNet18 has also 

seen a reduction of more than 50% from the original 11.17 million parameters 

down to the range of 4.27 to 5.34 million parameters.  

 

 As described above in Section 3.3.3.1, the models ResNet18-1D-(S-T-

alternate) and ResNet18-1D-(T-S-alternate) differ in only their very first 

convolutional layer (the Conv-0 layer of Figure 3.11(b)), where the ResNet18-

1D-(T-S-alternate) model has the layer Conv-0 as temporal convolution while 

the ResNet18-1D-(S-T-alternate) model has its Conv-0 layer as spatial 

convolution. Although this single change in the Conv-0 layer has resulted in the 
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difference in parameter count by only 256 ( (1x9 ‒ 5x1)×64 = 256 ), the 

performance in EEG signal classification has seen substantial improvement by 

about 10% elevation (using either all 62 channels, the outermost 10 channels, 

or outer 10 channels), as presented in Figure 4.10. This strongly indicates that 

the convolution operation on plain EEG signal should not be initiated with 

spatial(channel)-dimension convolution.  

 

 Some other previous works that used CNN for plain EEG signals 

processing had also forced the convolution process to operate only along either 

the temporal or spatial dimension for every single convolutional layer. Most of 

the works (Chambon et al., 2017; Kwak et al., 2017; Manor and Geva, 2015; 

Zafar, Dass and Malik, 2017) applying 1D-kernel CNN on EEG signals had 

initiated the convolutional path with temporal convolution. However, they had 

not justified the reason for design nor had they provided the performance 

comparison with the models that did otherwise, as we highlighted in this study.  

 

 We took a further step of increasing the number of layers of pure 

temporal convolution before starting spatial convolutional operation, as in the 

architecture of ResNet18-1D-(T-then-S) in Figure 3.11(c). The ResNet18-1D-

(T-then-S) model has outperformed all the other ResNet18 variants substantially, 

in every classification scenario as reported in Figure 4.10.  
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 This supports that constructing multiple consecutive layers of temporal 

convolution before starting spatial convolution is beneficial for extracting 

distinctive information from the EEG signals. Although ResNet had been 

reported with inferior performance than the typical CNN at EEG classification 

in Schirrmeister et al. (2017), their ResNet architecture was however designed 

with spatial convolution very early on as the second convolutional layer. If more 

temporal convolutional layers were introduced before the spatial convolution, 

the ResNet presented in Schirrmeister et al. (2017) may perhaps have 

significant performance improvement.  

 

 With the presence of multiple consecutive temporal convolutional layers 

before spatial convolution, higher hierarchical features within each EEG 

channel could be extracted before comparing across different channels. Direct 

cross-channel convolution of rudimentary EEG voltages may not carry as much 

distinctive information as that of the higher hierarchical features.  

 

 Plain EEG signals carry only voltage levels measured over the scalp. 

Every single sampling point of the voltage level in an EEG channel is not as 

meaningful as a sequence of sampling points along the channel. Excessively 

short receptive field over a single channel is susceptible to recording artifacts 

and other non-essential signal variations.  

 

 Therefore, with multiple consecutive temporal convolutional layers, the 

initial stages of the model can cover a larger receptive field over the raw signal, 
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at the same time extracting features of higher level of abstraction from the 

particular channel. Comparing the rudimentary EEG signal sampling-point by 

sampling-point across the channels may have taken into account a considerable 

amount of the undesired meaningless voltage variations, resulting in lower 

classification accuracy in the ResNet18-1D-(S-T-alternate) model.   

 

 We have also constructed and examined another variant of ResNet18-

1D-(S-then-T) model with its several initial convolutional layers all being 

spatial-dimension convolution then only followed by temporal convolution. 

This model which was not presented in Figure 3.11 had presented worse 

performance than even the ResNet18-1D-(S-T-alternate) model, which further 

supports the discussion above that EGG signal convolution for emotion 

recognition should ideally be started with temporal-dimension convolution.  

 

 Figure 4.11 reports the training-validation performance log of the four 

variants of ResNet-1D, using the 10 outermost channels. Based on the training-

validation cross-entropy loss plot, the ResNet18-1D-(T-then-S) model which 

had outperformed all the rest, was clearly less susceptible to overfitting. The 

other three ResNet18-1D models had started to experience overfitting after 

around eight to ten training epochs, with the models ResNet18-1D-(S-then-T) 

and ResNet18-1D-(S-T-alternate) experiencing the greatest degree of 

overfitting.  
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(a) Classification accuracy & total number of model parameters 

 

 

 

(b) Different subsets EEG channels 

 

Figure 4.10:  SEED 3-class Emotion Recognition Accuracy by Variants 

of ResNet18 using Different Subsets of EEG Channels  

 

 

 

 

 



 
96 

 

 

 

 

Figure 4.11:  Training-validation Performance Log of Variants of 

ResNet18-1D 

 

 

4.3.2. Performance of ResNet vs. VGG  

 We have compared the performance of ResNet18 with the more classical 

CNN architecture (the VGG16) from the aspects of classification accuracy, 

number of trainable parameters, and the model training convergence speed.  
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 Figure 4.12 shows that the classification accuracy achieved by 

ResNet18-1D(T-then-S), VGG14-1D, and VGG16-1D models are very close to 

each other. The ResNet18-1D(T-then-S) achieves 93.42% classification 

accuracy, outperforming the VGG at using all 62 EEG channels. The VGG 

models have achieved higher accuracy at the less significant subsets of EEG 

channels (e.g. using the innermost 10 channels).  

 

 Given the almost negligible difference in the classification accuracy, the 

ResNet18-1D(T-then-S) model contains only 5.34 million parameters, which is 

only about 36.3% of that in the VGG14-1D model which has 14.72 million of 

parameters. The VGG16-1D has an even staggering greater number of 

parameters (at 46.18 million) due to the large number of fully-connected 

perceptrons in its original 3-layer FC networks. This densely connected FC 

network containing over 31 million parameters does not appear to be essential 

to the classification accuracy.  

 

 Another aspect of performance measurement investigated is the 

convergence speed of the model under training. With reference to Table 4.10, 

using all 62 EEG channels, the ResNet18-1D(T-then-S) and the VGG14-1D 

models are able to converge to above 95% training accuracy in 11 epochs and 

10 epochs, respectively. The VGG16-1D requires a greater number of training 

epochs (14 complete rounds) to reach its training accuracy of 95%. The lower 

convergence speed of VGG16-1D is likely due to its complex FC network.  
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 The ResNet18-1D(T-then-S) model completes a training epoch with 

(1665/11 ≈ 151) seconds, while the VGG models require much greater amount 

of time to complete a training epoch (VGG14-1D using about 249 seconds, and 

VGG16-1D using about 250 seconds).  

 

 Similarly, the ResNet18-1D(T-then-S) uses only about 38 seconds for a 

complete training epoch with 10 EEG channels, while the two VGG models use 

about 50 seconds for completing a training epoch.  

 

 The VGG14-1D illustrated in Figure 3.12(c) is the version of VGG14-

1D without the batch normalization function after every convolutional layer. 

This model without the batch normalization had failed to progress well even its 

training phase. The training accuracy of this model had stayed at around 35%, 

with the training loss staying at around the initial value. The failure of the 

VGG14-1D without batch normalization has indicated the importance of batch 

normalization in training deep CNN on EEG signals, even with the EEG signals 

being pre-normalized before being passed into the CNN model. All the 

ResNet18 variants in Figure 3.11 are also equipped with batch normalization at 

the output of their convolutional layers.  

 

 In our model, each layer of batch normalization function introduces two 

additional trainable parameters per feature map. The dimension of the feature 
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map depends on the number of convolutional kernels immediately preceding 

the batch norm function.  

  

 The short EEG segments being passed into the classifier may contain 

large signal amplitude variations from segment to segment. Different batches of 

the EEG segments may also encounter the problem of large internal covariate 

shift (Ioffe and Szegedy, 2015) which is a notorious reason for diverging loss 

during model optimization (Bjorck et al., 2018). 

 

 This does not only slow down the training speed by demanding very low 

learning rate, but also potentially disrupt altogether the convergence of the 

model optimization process as experienced in our model (Figure 3.12(c)) 

without batch normalization.  

 

 

Figure 4.12:  Classification Accuracy of Emotion-labelled EEG by 

ResNet18-1D and VGG16 Variants 
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Table 4.10: Convergence Time Needed during Model Training for the 

ResNet and VGG 

 

Training length to reach 95% training 

accuracy  

(epochs // seconds) 

All 62 channels 
Outermost 10 

channels 

ResNet18-1D (T-

then-S) 
11 // 1665 11 // 416 

VGG14-1D 

(T-then-S) 
10 // 2488 10 // 503 

VGG16-1D 

(T-then-S) 
14 // 3505 12 // 622 

 

 

4.3.3. EEG Channel Significance for Emotion Recognition  

 Identifying the most critical subsets of EEG channels can reduce the 

input data redundancy and ease the design and mounting of portable consumer-

friendly EEG recording hardware. Therefore, previous works (Ansari-Asl et al., 

2007; Ozerdem and Polat, 2017; Zheng and Lu, 2015) had tried to identify 

the subsets of EEG channels that are most crucial for emotion recognition. In 

line with the purpose, we have look into the emotion-EEG channel significance 

with regard to lateral-medial placement, along the nasion-inion axis, and in 

terms of left-vs-right hemispheric discrepancy.  
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4.3.3.1. Electrode Distance from the Midline 

 With reference to Figure 4.10(a) & 4.10(b), the relevance of different 

subsets of EEG channels for emotion recognition is investigated, with respect 

to the distance of the EEG channels from the midline.  

 

 The classification accuracies as reported in Figure 4.10 follow the trend 

that the more laterally-placed the EEG channels are, the higher the classification 

accuracy they deliver. This implies that more emotionally-distinctive 

information is carried in the laterally-placed (farther away from midline) EEG 

channels than the medially-placed channels.  

 

 The possible reason for this channel significance distribution pattern is 

that the lateral channels are in fact placed over or close to the temporal region 

above the ears on the scalp. These electrode locations are closer to the brain 

structures that are highly involved in emotion response. These structures such 

as the anterior temporal pole, the insular cortex, the amygdala and the 

hippocampus (Dolan et al., 2000; Dolcos et al., 2005; Iidaka et al., 2002) are 

either part of the temporal lobe itself or lying at just the medial side of the 

temporal lobe. Hence, the more medially-placed EEG electrodes are located 

higher up on top of the scalp and are hence farther away from these emotionally 

important brain structures.  
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4.3.3.2. Significance Along the Nasion-Inion Axis 

 Figure 4.13 shows the 5-fold cross-validated emotion classification 

accuracy of ResNet18-1D(T-then-S) model, using four different subsets of EEG 

channels along the nasion-inion axis.  

 

(a) 5-fold cross validation classification accuracy 

 

 

(b) Electrode placement 

 

Figure 4.13:  SEED 3-class Emotion Recognition Accuracy using 

Different Subsets of EEG Channels along the Nasion-Inion Axis  

 



 
103 

 As indicated by Figure 4.13(b), these subsets of EEG channels 

respectively cover the frontal region (blue), centro-temporal region (green), 

centro-parietal region (yellow), and the parieto-occipital region (red).  

 

 In coherence with the distribution of emotionally important brain 

structures (e.g. the anterior temporal pole, the insular cortex and the amygdala) 

discussed above, the three different emotion classes are best classified with the 

twelve centro-temporal channels (green colour coded) because these twelve 

channels are located nearest to these structures, relative to the other three subsets.  

 

 The twelve frontal channels give the same accuracy as that achieved by 

the twelve parietal channels. The occipital channels are the least emotionally-

correlated set of EEG channels.  

  

 

4.3.3.3. Cerebral Lateralization of Emotion 

 Figure 4.14 shows the 5-fold cross-validation accuracy using EEG 

channels of the left hemisphere versus right hemisphere. The left channels 

present around 4‒5% higher accuracy than the right channels. Using only 10 

lateral channels of the left hemisphere has resulted in 88.48% average accuracy 

which is still even better than using all 27 right hemispheric channels which 

gives 86.96%.  
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(a) 5-fold cross validation classification accuracy 

 

 

(b) Electrode placement 

Figure 4.14:  SEED 3-class Emotion Recognition Accuracy Comparison 

using Left and Right Hemispheric EEG Channels 

 

 This lateralized significance of EEG channels in emotion recognition 

can be due to the fundamental cerebral lateralization (Corballis, 2014; Liu et 

al., 2009) or simply because of the nature of SEED experiment design.  

 

 The stimuli of the SEED experiment were movie clips and the mode of 

content delivery of movies can be heavily verbal or language-based. The center 
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of language processing and understanding is located exactly in the lateral side 

of the left temporal lobe, known as Wernicke’s area (DeWitt and Rauschecker, 

2013). Therefore, the imbalanced activation of the Wernicke’s area in 

comparison to its right hemispheric counterpart area can be a compounding 

factor resulting in the classification accuracy discrepancy. 

 

 

4.3.3.4. Comparing across all the EEG Channel Subsets 

 Reviewing the classification results using various EEG channel subsets 

presented in Figure 4.10, Figure 4.13 and Figure 4.14, the ten lateral-most left-

and-right combination of EEG channels in Figure 4.10 have achieved the 

highest accuracy (91.5%), compared to using the ten lateral left channels in 

Figure 4.14 which has achieved 88.48% recognition accuracy and the twelve 

centro-temporal channels in Figure 4.13 which has achieved 83.84% accuracy.  

 

 With comparable number of channels used in the subsets, the above 

result implies that there is additional distinctive information for emotion 

recognition retrievable from the left-vs-right channel feature cross-correlation, 

in view of the pairing of 10 left-and-right channels in Figure 4.10 gives better 

classification result than the 10 lateral-most left channels in Figure 4.14.  

 

 The highly emotion-correlated subsets of EEG channels identified by 

this work is close to the “12-channel (FT7, FT8, T7, T8, C5, C6, TP7, TP8, CP5, 
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CP6, P7, P8)” subsets used by Zheng and Lu (2015) which was reported to 

have achieved even higher emotion recognition accuracy than using all 62 

channels. The results presented by Zheng and Lu (2015) were based on SVM 

classifier taking signal differential entropy of EEG as the input.   
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CHAPTER 5 

 

CONCLUSION 

 

 

5.1 CNN for EEG Classification 

 The CNN models in Study 1 have accurately classified the EEG data of 

the short-term music experiment which was reported to have insignificant 

statistical difference in a range of EEG signal features manually extracted by 

previous research. The temporal-spatial CNN model with 1D kernels has the 

average ten-fold cross-validation test accuracy of 97.46% in the binary 

classification task and average ten-fold cross-validation test accuracy of 95.71% 

in the three-class classification task.  

  

The performance of the CNN for EEG classification is substantially 

affected by the constituent aspects of the model which include the amount of 

convolution kernels, the pooling method, the depth and width of the densely-

connected perceptron network, and batch normalization.  

 

With insufficient amount of convolution channels, the learning capacity 

of the CNN classifier is adversely affected, resulting in less accurate model 

representation of the target data domain and thus lower classification accuracy 
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as discussed in Section 4.1.1. On the other hand, the model with excessively 

large amount of convolutional kernels is prone to overfitting to the training 

dataset. The depth and width of the densely-connected perceptron network 

deliver a similar impact to the performance of the model where an excessively 

wide and deep network causes early overfitting and a densely-connected 

network without hidden layer faces difficulty in becoming a properly optimized 

representative of the data presented.  

 

Pooling mechanism has beneficial impacts on both the computational 

efficiency and the classification performance of the CNN model. The pooling 

layers lessen the computational load by decreasing the data size to be processed, 

the time-dimensional pooling in our model has elevated the EEG classification 

validation accuracy from 70% to approximately 95%. The CNN classifier 

designed with no pooling layer in between the convolutional blocks has 

experienced substantial overfitting issue.  

 

Regularization techniques that are adopted in this study have helped the 

training progression of the CNN models on EEG classification, which include 

the dropout mechanism and the batch normalization layers. Batch normalization 

layers have shown their essential role in handling the issue of convergence 

failure during model optimization process which is probably due to the internal 

covariate shift.  
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Replacing the 2D convolution kernels with separate 1D-temporal and 

1D-spatial convolution kernels significantly reduce the trainable parameters in 

the CNN model and hence disc memory requirement for the model storage (as 

presented in both Study 1 and Study 3), yet preserving or even improving the 

performance of the CNN classifier on EEG signal classification. The reduction 

in the model size and disc memory demand can be crucial in the applications 

that are memory critical.  

 

The CNN conventionally designed for processing image data (such as 

the ResNet18 and VGG16) are not as effective in the task of EEG signal 

convolution. With kernel shape and arrangement adapted for the nature and 

format of EEG signals by replacing the 2D convolution kernels with separate 

1D-temporal and 1D-spatial convolution kernels at desirable sequence, the 

CNN models in Study 1 as well as the modified variants of ResNet18  in Study 

3 have presented substantial performance elevation in the aspects of both the 

EEG classification accuracy and the disc memory requirement for the model 

storage due to the reduction in model parameters.  

 

The modified versions of ResNet18 have presented faster training 

convergence process than the modified VGG16 models. The sequence of 

convolutional dimension arrangement within the CNN is also proven to be 

crucial for the performance of the classifier on EEG signal processing. The 

results obtained in Study 3 has advised against initiating the sequence of 

convolutional operation along spatial-dimension. Instead, inserting multiple 
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consecutive layers pure temporal-dimension convolution prior to the start of 

spatial-dimension convolution is highly recommended based on the 

performance comparison presented in Figure 4.10 and Figure 4.11 in Study 3. 

Working on the SEED public dataset, the top performing model (ResNet18-1D-

(T-then-S)) among our CNNs for emotion recognition has attained the three-

class emotion classification accuracy of 93.42%.  

 

 

5.2 Non-uniform Influence of Music on Regional Brain Waves 

 Deducing from the discrepancy in the classification accuracies achieved 

using different partial sets of EEG channels from either the left or the right brain, 

the EEG signals emitted from the left cerebral hemisphere show greater 

difference with and without music, than the EEG signals emitted from the right 

cerebral hemisphere. The left-vs-right cerebral hemispheric asymmetry in the 

influence of music recorded in this project agrees with the concept of cerebral 

functional lateralization.  

  

In addition, the EEG signals generated by the frontal lobes are even more 

distinctive with and without music, than that generated by the other cerebral (the 

temporal, parietal and occipital) regions.   
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5.3 Emotion-Relevance of Different EEG Channels 

 The significance of the subsets of EEG channels for the task of emotion 

recognition has also been investigated. The laterally-distributed EEG channels 

deliver higher emotion recognition accuracy compared to the medially-

distributed channels. The EEG channels located near to the temporal lobes 

exhibit greater importance compared to the channels over other regions. 

Emotion classification using the left-sided EEG channels has also resulted in 

higher accuracy than using the channels from the right cerebral hemisphere.   

 

On the whole, the laterally-distributed EEG channels over the temporal 

lobe are of the highest importance. This agrees with the well-established fact 

that many emotion-related brain structures are located within or close to the 

temporal lobes. 

 

5.4 Recommendation for Future Work 

 The high classification accuracy achieved in the emotion recognition 

studies in this project is subject-dependent. The emotion-recognition CNN 

presented may not perform well in cross-subject and cross-database validation. 

The cross-database performance of the CNN is likely affected by the limited 

amount of EEG data available with insufficient signal variation representative 

of that in other databases. Future work with further collection of emotion-

labelled EEG data using standardized recording setting is highly recommended. 

This contribution to the quantity of publicly available EEG datasets is highly 
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valuable to the development of CNN models with plain EEG signals as the input 

data.  

 

 Further investigation into the architectural improvement of CNN for 

EEG classification in the future may include the development of three-

dimensional CNN which accommodates for not only the temporal dimension 

and 1D spatial dimension. With higher-density EEG recording headsets, the 

EEG-channel space could be organized as a two-dimensional space which allow 

for the construction of 3D data input for the CNN. In addition, the frequency 

dimension can be constructed as an addition dimension which is potentially 

useful for further performance improvement.  
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