MODIFICATION OF BISMUTH PHOSPHATE BASED NANOMATERIAL AS SUNLIGHT SENSITIVE PHOTOCATALYSTS

NG JIT JANG

MASTER OF ENGINEERING SCIENCE

FACULTY OF ENGINEERING AND GREEN TECHNOLOGY UNIVERSITI TUNKU ABDUL RAHMAN

JUNE 2021

MODIFICATION OF BISMUTH PHOSPHATE BASED

NANOMATERIAL AS SUNLIGHT SENSITIVE PHOTOCATALYSTS

By

NG JIT JANG

A dissertation submitted to the Faculty of Engineering and Green Technology,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Engineering Science

February 2021

Modification of Bismuth Phosphate based Nanomaterial as Sunlight Sensitive Photocatalysts

ABSTRACT

This research highlighted Bismuth Phosphate (BiPO₄) photocatalysts' modification to enhanced solar-driven photocatalysis for endocrine-disrupting compounds. Pure BiPO₄ was prepared through a simple sol-gel approach. Incorporation of graphitic carbon nitride $(g-C_3N_4)$ and Silver (Ag) nanoparticles onto BiPO₄ via simple thermal deposition and photodeposition, respectively. The BiPO₄/g-C₃N₄ was synthesized with different g-C₃N₄ loading weight percentages: 0.5wt%, 1.5wt% and 2.5wt% whereas the weight percentages for Ag/BiPO₄ were 1.0wt%, 3.0wt% and 5.0wt%. Field Emission Scanning Electron Microscope (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM) investigated the surface morphology while the XRD investigated the structure and particle size of as-prepared BiPO₄/g-C₃N₄ and Ag/BiPO₄. UV-vis Diffuse Reflectance Spectra (UV-DRS) spectrum depicted increment of dopant loading weight percentages leads to increasing light absorption of as-synthesized photocatalysts. Furthermore, Time-Resolved Photoluminescence (TRPL) spectra show the charge carrier lifetime increased with high dopant loading. Photodegradation of 2,4-Dichlorophenols (2,4-DCPs) was conducted to investigate the photodegradation efficacy of $BiPO_4/g-C_3N_4$ and Ag/BiPO₄ in the presence of natural sunlight. With 1.0g of each photocatalyst being added into 50ppm of 2,4-DCPs. The results concluded that both g-C₃N₄ and Ag nanoparticles present in BiPO₄ manage to enhance the photocatalytic activity under sunlight irradiation compared to pure BiPO₄. In

addition, the results for photodegradation of 2,4-DCPs matched well with the characterization results of UV-DRS and TRPL spectra which agreed that the highest dopant loading weight percentage of g-C₃N₄ and Ag possesses the highest light absorption and lowest recombination rate of electron-hole pairs. After 90 min of 2,4-DCPs photodegradation, 0.5wt%, 1.5wt% and 2.5wt% of BiPO₄/g-C₃N₄ achieved 55%, 77% and 100% of 2,4-DCP removal, respectively. On the other hand, 69%, 66%, 76% of 2,4-DCPs photodegradation efficiency after 5hr were achieved by 1.0wt% Ag/BiPO₄, 3.0wt% Ag/BiPO₄, and 5.0wt% Ag/BiPO₄, respectively. The enhanced photodegradation of 2,4-DCPs under sunlight irradiation is mainly contributed by prolonged the charge carriers' lifetime by incorporation with g-C₃N₄. Moreover, the existence of g- C_3N_4 further enhanced the light absorbance to harvest the entire sunlight energy and produce excessive active radicals. Besides that, Ag's incorporation acted as an electron trap to separate the electrons and holes produced in BiPO₄ under sunlight excitation. This separation prevented the generated electrons and holes from recombining to form heat. Therefore, Ag nanoparticles' presence retarted the recombination formation, allowing free electrons to react and form active radicals responsible for the degradation of 2,4-DCPs. A scavenging test was conducted to determine the active radical species. Superoxide anion (O_2) and holes (h^+) radical are the main active radicals for BiPO₄/g-C3N4. Similarly, O₂⁻ and hydroxyl (•OH) radicals are responsible for the photodegradation for Ag/BiPO4. A recycling test was conducted to investigate the stability and reusability of both as-synthesized photocatalysts. Photodegradation efficiency of 2.5wt% BiPO₄/g-C₃N₄ and Ag/BiPO₄ retained above 70% after four cycles of photocatalytic activities.

ACKNOWLEDGEMENT

First of all, I would like to express my utmost gratitude to my supervisor, Ts. Dr. Leong Kah Hon for guiding me patiently throughout the whole research period. My sincere thanks also go to my co-supervisor, Dr. Sim Lan Ching for providing help and support during the research study. Furthermore, I am truly grateful to Universiti Tunku Abdul Rahman for assisting my research work by providing research fund UTARRF (IPSR/RMC/UTARRF/2018-C2/L03).

I would also like to extend my thanks to the technicians of the laboratory, Mr. Choong Man Kit, Ms. Ng Suk Ting, Mr. Yong Yzyy Jeng, and Pn. Zila Binti Mohd Tahir of the Faculty of Engineering and Green Technology (FEGT) department for their help in offering me their resources in running the program.

Finally, I am extremely grateful to my parents for their love and encouragement throughout my research study. I would like to offer my special thanks to Ms. Hoo Sie Kei, who also offer me reassurance and support constantly.

APPROVAL SHEET

This dissertation entitled "MODIFICATION OF BISMUTH PHOSPHATEBASEDNANOMATERIALASSUNLIGHTSENSITIVEPHOTOCATALYSTS"was prepared by NG JIT JANG and submitted aspartial fulfillment of the requirements for the degree of Master of EngineeringScience at Universiti Tunku Abdul Rahman.

Approved by:

(TS. DR. LEONG KAH HON)

Date:.....

Supervisor

Department of Environmental Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

(DR. SIM LAN CHING)

Date:....

Co-supervisor

Department of Chemical Engineering

Lee Kong Chian Faculty of Engineering and Science

Universiti Tunku Abdul Rahman

FACULTY OF ENGINEERING AND GREEN TECHNOLOGY UNIVERSITI TUNKU ABDUL RAHMAN

Date: _____

SUBMISSION OF DISSERTATION

It is hereby certified that **Ng Jit Jang** (ID No: **18AGM07449**) has completed this dissertation entitled "MODIFICATION OF BISMUTH PHOSPHATE BASED NANOMATERIAL AS SUNLIGHT SENSITIVE PHOTOCATALYSTS" under the supervision of Ts. Dr. Leong Kah Hon (Supervisor) from the Department of Environmental Engineering, Faculty of Engineering and Science, and Dr. Sim Lan Ching (Co-Supervisor) from the Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science.

I understand that University will upload a softcopy of my dissertation in pdf format into UTAR Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

(Ng Jit Jang)

DECLARATION

I, NG JIT JANG hereby declare that the dissertation is based on my original work except for quotations and citations which have been duly acknowledged.I also declare that it has not been previously or concurrently submitted for any other degree at UTAR or other institutions.

(NG JIT JANG)

Date _____

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	iii
APPROVAL SHEET	iv
SUBMISSION SHEET	v
DECLARATION SHEET	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS/ABBREVIATIONS	xvi

CHAPTER

1.0	INTRODUCTION		
	1.1	Background	1
	1.2	Problem Statement	5
	1.3	Objectives	7
2.0	LITI	ERATURE REVIEW	8

2.1	Endocrine Disrupting Compounds (EDCSs)	8
	2.1.1 2-4 Dichlorophenols (2,4-DCPs)	10
2.2	Heterogeneous Photocatalysis	12
2.3	Bismuth Phosphate (BiPO ₄)	17
	2.3.1 Synthesis Method of BiPO ₄	19

2.3.2	Modification of BiPO ₄	23
Grank	sitia Carbon Nitrota (a.C.N.)	77

2.4	Graphitic Carbon Nitrate (g-C ₃ N ₄)	27
2.4	Graphitic Carbon Nitrate (g-C ₃ N ₄)	,

34

3.0	RESI	EARCH	I METHODOLOGY	41
	3.1	Mater	ials	41
	3.2	Synth	esis of photocatalysts	42
		3.2.1	Preparation of BiPO ₄	42
		3.2.2	Preparation of g-C ₃ N ₄	43
		3.2.3	Preparation of BiPO4/g-C3N4 composite	44
		3.2.4	Preparation of Ag/BiPO ₄ composite	45
	3.3	Chara	cterization	46
		3.3.1	Field Emission Scanning Electron	46
			Microscope (FESEM)	
		3.3.2	Electron Dispersive X-Ray (EDX)	46
		3.3.3	X-ray Powder Diffraction (XRD)	47
		3.3.4	Fourier Transform Infrared Spectroscopy	47
			(FTIR)	
		3.3.5	UV-vis diffuse reflectance spectra (UV-	47
			DRS)	
		3.3.6	Time-Resolved Photoluminescence (TRPL)	48
		3.3.7	High-Resolution Transmission Electron	48
			Microscopy (HRTEM)	
		3.3.8	X-ray Photoelectron Spectroscopy (XPS)	48

3.4	Photocatalytic Evaluation	48
3.5	Recycling Test	51
3.6	Scavenging Test	52

RESU	JLTS AND DISCUSSIONS	53
4.1	BiPO ₄ modified with Graphitic Carbon Nitrate g-	53
	C_3N_4	
	4.1.1 Characterization of BiPO ₄ modified with g-	53
	C_3N_4	
	4.1.2 Evaluation of Sustainable sunlight	63
	photocatalytic performance of 2,4-DCPs by	
	BiPO ₄ /g-C ₃ N ₄	
4.2	BiPO ₄ modified with Silver Nanoparticles (Ag)	70
	4.2.1 Characterization of BiPO ₄ modified with Ag	71
	nanoparticles	
	4.2.2 Evaluation of sustainable sunlight	81
	photocatalytic performance of different weight	
	percentages of Ag/BiPO ₄ on the degradation of	

2,4-DCPs

4.0

Product cost-benefit analysis	89
	Product cost-benefit analysis

5.0	CONCLUSION AND RECOMMENDATIONS			
	5.1	Conclusions	93	
	5.2	Recommendations	95	

REFERENCES	96
APPENDICES	118
LIST OF PUBLICATION	119

LIST OF TABLES

	Table	Page
2.1	Sources or uses of EDCs	11
2.2	Conventional methods for 2,4-DCPs treatment	16
2.3	Various types of photocatalysts applied in wastewater treatments	19
2.4	Various photocatalysts with their respective energy bandgap	23
2.5	Various studies on the modification of BiPO ₄	29
2.6	Studies of modification on different photocatalysts using g-C ₃ N ₄	38
2.7	Studies of modification of photocatalysts using Ag nanoparticles	41
3.1	HPLC analysis mobile phase parameters	46
4.1	Cost-benefit analysis of 2,4-DCP photodegradation using as-	86
	prepared photocatalysts for current study	

LIST OF FIGURES

Figure		Page
2.1	Basic mechanism of heterogeneous photocatalysis (Yang	13
	and Wang, 2018)	
2.2	three $BiPO_4$ crystal structures: (a) HBIP (b) nMBIP (c)	14
	mMBIP (Pan and Zhu, 2015)	
2.3	Various morphology of BiPO ₄ : (a) Nanorods (b) Nanofiber	27
	(c) Nanowire (Geng et al., 2005; Liu et al., 2014; Lin et al.,	
	2007)	
2.4	(a) 2D structure and (b) structure of g -C ₃ N ₄ (Zhang et al.,	31
	2013; Wen et al., 2017).	
2.5	Proposed mechanism of MO degradation using g-C $_3N_4$ /TiO $_2$	34
	in the presence of visible light irradiation (Zhang et al.,	
	2017)	
2.6	Proposed p-nitrophenol degradation mechanism using g-	35
	$C_3N_4/Zn_{0.94}Fe_{0.04}S$ under solar irradiation (Wang et al.,	
	2020)	
2.7	surface plasmon resonance oscillation of metal electrons	37
	(Bumaidad and Madkour, 2014)	
2.8	Proposed mechanism of azo dye degradation using Ag/TiO_2 $$	37
	(Sobana Muruganadham and Swaminathan, 2006)	
2.9	Mechanism of RhB degradation using Ag/Na $_2$ Ta $_2$ O ₆ (Wang	43
	et al., 2015)	

3.1 Pure BiPO₄ 45

3.2	Pure $g-C_3N_4$	50
3.3	Modification of BiPO ₄ with g-C ₃ N ₄	50
3.4	Modification of BiPO ₄ with Ag	51
3.5	The experimental setup for photocatalytic evaluation of as-	52
	synthesized photocatalyst	
3.6	Standard calibration curve of 2,4-DCP	53
4.1	FESEM images of as-synthesized photocatalysts: (a) BiPO ₄ ,	54
	(b) g-C ₃ N ₄ , (c) 0.5wt% BiPO ₄ /g-C ₃ N ₄ , (d) 2.5wt% BiPO ₄ /g-	
	C ₃ N ₄ , (e-f) HRTEM of 2.5wt% BiPO ₄ /g-C ₃ N ₄	
4.2	Result of EDX analysis: (a) g-C ₃ N ₄ , (b) BiPO ₄ , (c) 0.5 wt%	55
	$BiPO_4/g-C_3N_4$, (d), 1.5wt% $BiPO_4/g-C_3N_4$, and (e) 2.5wt%	
	BiPO ₄ /g-C ₃ N ₄	
4.3	XRD pattern of (a) BiPO4, (b) 0.5wt% BiPO4/g-C3N4, (c)	56
	$1.5wt\% BiPO_4/g-C_3N_4$ (d) $2.5wt\% BiPO_4/g-C_3N_4$	
4.4	FTIR spectra of the as-synthesized photocatalysts: (a) g-	57
	C_3N_4 , (b) BiPO ₄ , (c) 0.5wt% BiPO ₄ /g- C_3N_4 , (d) 1.5wt%	
	$BiPO_4/g$ - C_3N_4 , and (e) 2.5wt% $BiPO_4/g$ - C_3N_4	
4.5	XPS spectra of the as-synthesized photocatalysts	59
4.6	UV-DRS spectra of as-prepared BiPO ₄ and modified BiPO ₄	60
4.7	Bandgap energy of (a) BiPO ₄ , (b) 0.5 wt% g-C ₃ N ₄ /BiPO ₄ , (c)	61
	1.5wt% g-C ₃ N ₄ /BiPO ₄ , and (d) 2.5wt% g-C ₃ N ₄ /BiPO ₄	
4.8	TRPL spectra of (a) BiPO ₄ , (b) 0.5wt% BiPO ₄ /g-C ₃ N ₄ , (c)	63

1.5wt% BiPO₄/g-C₃N₄, (d) 2.5wt% BiPO₄/g-C₃N₄

- 4.9 Photodegradation of 2,4-DCP using as-synthesized 64 photocatalysts in the presence of sunlight
- 4.10 The kinetic study of 2,4-DCPs photodegradation using 66 BiPO4, 0.5wt% g-C₃N₄/BiPO4, 1.5wt% g-C₃N₄/BiPO4, and 2.5wt% g-C₃N₄/BiPO4
- 4.11 Scavenging test conducted on as-synthesized photocatalysts 68
- 4.12 Proposed electron and holes mobility of the 69 photodegradation of 2,4 DCPs under sunlight irradiation
- 4.13 Stability test for prepared photocatalysts 70
- 4.14 (a-b) FESEM images and (c-e) HRTEM of 1.0wt% 72 Ag/BiPO₄
- 4.15 EDX analysis on 5.0wt% Ag/BiPO₄ 73
- 4.16 XRD diffraction pattern of (a) BiPO₄, (b) 1.0wt% Ag/BiPO₄, 74
 (c) 3.0wt% Ag/BiPO₄, (d) 5.0wt% Ag/BiPO₄
- 4.17 FTIR spectra for (a) BiPO₄, (b) 1.0wt% Ag/BiPO₄, (c) 75
 3.0wt% Ag/BiPO₄ and (d) 5.0wt% Ag/BiPO₄
- 4.18 XPS spectra for 5.0wt% Ag-BiPO₄ 77
- 4.19 Uv-vis absorption spectra of (a) 5.0wt% Ag/BiPO₄, (b) 79
 3.0wt% Ag/BiPO₄, (c) 1.0wt% Ag/BiPO₄ and (d) BiPO₄
- 4.20 Energy bandgap of (a) BiPO₄, (b) 1.0wt% Ag/BiPO₄, (c) 79
 3.0wt% Ag/BiPO₄ and (d) 5.0wt% Ag/BiPO₄
- 4.21 TRPL spectra of pure BiPO₄, 1.0wt% Ag/BiPO₄, 3.0wt% 81 Ag/BiPO₄, and 5.0wt% Ag/BiPO₄

- 4.22 (a) Dark absorption and (b) Photodegradation of 2,4-DCP 83
 using BiPO₄,1.0wt% Ag/BiPO₄, 3.0wt% Ag/BiPO₄, and
 5.0wt% Ag/BiPO₄
- 4.23 Kinetic studies of 2,4-DCPs photodegradation with BiPO₄, 84
 1.0wt% Ag/BiPO₄, 3.0wt %Ag/BiPO₄, and
 5.0wt %Ag/BiPO₄
- 4.24 Scavenging test on photodegradation of 2.4-DCPs using 87 Ag/BiPO₄
- 4.25 Proposed electron and holes mobility of photodegradation of 882,4-DCPs under sunlight irradiation
- 4.26 Recycling Test of 5.0wt% Ag/BiPO₄ on photodegradation of 892,4-DCPs

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols/Abbreviations

$^{\bullet}\text{O}_2^{-}$	Superoxide radical anion
(NH4)H2PO4	Ammonium dihydrogen phosphate
•OH	Hydroxyl radicals
2,4-DCP	2,4-dichlorophenol
2,4-DCPs	2,4-Dichlorophenols
ACN	Acetonitrile
AgNO ₃	Silver Nitrate
AOPs	Advanced oxidation processes
Bi	Bismuth
$Bi(NO_3)_3 \bullet 5H_2O$	Bismuth (III) nitrate pentahydrate
BiPO ₄	Bismuth Phosphate
BQ	Benzoquinone
С	Carbon
С	Concentration
$C_2H_8O_7$	Absolute ethanol
CB	Conduction band
Co	Initial Concentration
CO ₂	Carbon dioxide
DMSO	Dimethylsulfoxide
e ⁻	Electrons
E_C	Energy of free electrons
ECB	Band edge potential for conduction band

EDCs	Endocrine Disrupting Compounds
EDTA	Ethylenediaminetetraacetic acid disodium salt
EDX	Electron dispersive X-ray
E_g	Band-gap energy
eV	Electron volt
E_{VB}	Band edge potential for valance band
FESEM	Field Emission Scanning Electron Microscope
FTIR	Fourier Transform Infrared Spectra
g-C ₃ N ₄	Graphitic Carbon Nitride
h^+	Photogenerated holes
H ₂ O	Water
HPLC	High Performance liquid chromatography
HRTEM	High-Resolution Transmission Electron
	Microscopy
hv	Photon energy
IPA	Isopropanol
k	Apparent rate constant of first order reaction
LSPR	Localized Surface Plasmon Resonance
MB	Methylene Blue
МО	Methylene Orange
Ν	Nitrogen
NHE	Normal hydrogen electrode
NIR	Near infra-red
0	Oxygen
O ₂	Oxygen molecules

OH	Hydroxyl ions
Р	Phosphorus
PO4 ³	Phosphate group
R	diffuse reflectance
R ²	Correlation coefficient
RhB	Rhodamine B
Silver	Ag
SPR	Surface Plasmon Resonance
TiO ₂	Titanium dioxide
TRPL	Time Resolved Photoluminescence
UV	Ultraviolet Light
UV-DRS	UV-vis Diffuse Reflectance Spectra
VB	Valence band
WHO	World Health Organization
wt%	Weight percentage
X	Electronegativity of semiconductor
XRD	X-ray Diffraction

CHAPTER 1

INTRODUCTION

1.1 Background

Water is an essential element for all life on Earth. Roughly 71% of Earth's surface is covered with water and 60% of the adult human body is water. Water also played an important role in domestic water usage for indoor and outdoor household purposes such as cooking, bathing, watering and drinking. All living organisms on Earth are dependent on water to complete their life cycles. In this modern era, increased industrialization and urbanization due to the high human population resulted in severe water contamination. Although humans acknowledged the importance of water, yet 80% of the untreated world's wastewater is discharged into the water bodies, leading to reduced availability of clean water and increased water-borne disease, jeopardizing the health of all living organisms (Denchak, 2018). The agricultural sector, which plays a pivotal role in the world economy's growth, is the leading cause of water contamination (Stoyanova and Harizanova, 2019). Fertilizers, animal waste, and pesticides are washed into water bodies, such as lakes and rivers, by rain causing severe water pollution (Singh et al., 2020). Therefore, proper and effective wastewater treatments are required to overcome the drastic increment of water pollution.

Implementing wastewater treatment is to dispose of industrial and human effluents without having an adverse impact on human health and the environment. The conventional wastewater treatment method has been applied to overcome water-related environmental problems. Traditional wastewater treatment can be categorized into biological, chemical and physical processes that can eliminate or reduce the wastewater pollutants before being discharged into water bodies. Physical processes remove solids or organic matter from wastewater, whereas biological and chemical processes involve removing dissolved matter and chemicals or heavy metals (Samer, 2015). Biological processes have drawbacks such as requiring close monitoring of microorganisms, optimum environment required, slow processes and sludge bulking (Crini and Lichtfouse, 2019). On the other hand, chemical processes especially advanced oxidation processes have superior advantages such as no production of sludge, rapid degradation of pollutants, and mineralization of contaminants, which attracted the attention of researchers (Chong et al., 2010). Among these advanced oxidation processes, heterogeneous photocatalysis emerged as a promising wastewater treatment that possesses the ability to convert a wide variety of water persistent organic compounds into harmless, biodegradable compounds by utilizing semiconductor catalysts.

Photocatalysis can be defined as the change in the rate of a chemical transformation under the light's action in the presence of a catalyst that absorbs light and is involved in the chemical reactions (Serpone et al., 2012; Serpone and Emeline, 2012). Photocatalyst, most of the semiconductors, is a substance that absorbs light and acts as a catalyst to alter chemical reactions. A good

photocatalyst possesses criteria such as low cost, environmentally friendly, ability to utilize a wide range of the solar spectrum, chemically and physically stable (Deng et al., 2019). In general, photocatalysis can be illustrated by four steps: (i) generation of electron-hole pairs attributed to light absorption; (ii) photoexcited electron charges separation; (iii) allocation of electrons and holes to the surface of photocatalysis; and (iv) occurrence of redox reaction photocatalyst surface. The excited electron is used for reduction, whereas the generated hole is used for oxidation. In part (iii), recombination of photogenerated electrons and photogenerated holes will occur and dissipate the harnessed energy into heat or light emission (Zhang, Zhang and Gong, 2014; Gershon et al., 2015; Xiang, Cheng, and Yu., 2015). In these modern days, photocatalysis technology has been studied extensively. It is an effective way to solve the arising problems related to environmental pollution and its ability to utilize the abundance of renewable solar energy from the sun.

Titanium dioxide (TiO₂) is one of the conventional photocatalysts that was vastly studied due to its superior characteristics such as nontoxicity, excellent chemical stability and low cost (Lee and Schmuki, 2014). However, TiO₂ has a large bandgap energy (\sim 3.2 eV) that only allows absorption of UV light which is a huge drawback as sunlight contains less than 5% of UV light. In addition, the low separation efficiency of photogenerated electron-hole pairs is another flaw of TiO₂ that limits the photodegradation performance (Qi et al., 2017). Thus, it is crucial to search for alternative semiconductors.

Therefore, introducing Bismuth Phosphate (BiPO₄), a potential alternative to conventional semiconductor, is an innovative inorganic non-metal salt of bismuth-based oxy-acid semiconductor that has exceptional characteristics, such as non-poisonous, good crystallinity, biologically and chemically stable. (Jun et al., 2015; Jun et al., 2016; Lei, Changcun and Jing, 2011). It has been stated that BiPO₄ possessed a higher photocatalysis in comparison to Titanium Oxide (TiO2) on organic degradation due to the lower recombination rate of BiPO₄ (Xu et al., 2013). This is attributed to the inductive effect of a phosphate group (PO4³⁻) that allows the efficient separation of photogenerated electron-hole pairs (Pan and Zhu, 2010). To further enhance its unique properties, it will be modified with graphitic carbon nitride (g-C₃N₄) and silver nanoparticles (Ag). g-C₃N₄ is a semiconductor with a relatively small energy bandgap contributing to better visible light absorbance and the polymeric nature of g-C₃N₄ facilitating the effective generation of photoexcited electron-hole pairs (Ong et al., 2016). Apart from that, Ag nanoparticles are a noble metal that possesses Surface Plasmon Resonance (SPR) that enhances the visible light absorption leading to increment of quantum yield during the photocatalysis process (Nainanni, Thakur and Chaskar, 2012). Thus, the incorporation of both $g-C_3N_4$ and Ag nanoparticles will further enhance the light absorbance ability of BiPO₄ and prolong the lifespan of the charge carriers of BiPO₄ during the photodegradation of pollutants.

1.2 Problem Statement

Endocrine Disrupting Compounds (EDCs) is an exogenous substance or mixture that alters the endocrine system's function, causing a negative impact on the health of an organism (Locatelli et al., 2016). It possesses the ability to directly activate or inactivates the endocrine target receptors via inhibition of endocrine function. Exposure to EDCs also leads to disturbance of hormone synthesis (Guilivo et al., 2016). Pesticides, industrial chemicals, heavy metals, herbicides, artificial sweeteners, pharmaceuticals and personal care products are some of the main sources for EDCs (Tijani et al., 2013). According to the World Health Organization (WHO) stated that EDCs might cause breast cancer, abnormal growth patterns, and neurodevelopment delay in children (Mehrabani-Zeinabad, 2016). Conventional treatment methods, such as coagulation-flocculation process, activated carbon process, adsorption process, biological trickling filter and membrane filtration, had been used for the removal of EDCs with low satisfactory results with secondary pollutants (Choi et al., 2006; Westerhoff et al., 2005; Huang et al., 2016; Bellona and Drewes, 2007; Badia-Fabregat, Oller and Malato, 2015). Contrarily, advanced oxidation processes achieved promising results with complete mineralization of EDCs into carbon dioxide and water without any secondary pollutants (Dolar et al., 2012; Choquette et al., 2014).

Bismuth Phosphate proves to have advantages as compared to conventional semiconductors, however, BiPO₄ still needs to overcome some of its drawbacks, namely poor absorptive performance in visible light, and wide

energy bandgap. Consequently, it is essential to enhance BiPO₄ for better visible light absorption and hinder the recombination rate of electron-hole pairs.

Various modification methods had been conducted to improvise BiPO₄ (Pan et al., 2012; Zong et al., 2015; Liu et al., 2014; Huang et al., 2013). Incorporation of small energy bandgap graphitic carbon nitride (g-C₃N₄) broadens the solar absorbance of BiPO₄, which enables BiPO₄ to harness more energy and prolong the lifetime of charge carriers, leading to improved photodegradation efficiency (Zou et al., 2016; Li et al., 2014). Furthermore, photodeposition of noble metal onto the surface of BiPO₄ yields positive results. Noble metals could generate Surface Plasmon Resonance (SPR) that leads to disturbance in the surrounding matrix's dielectric constant, enabling visible light absorption (Nainani and Chaskar, 2012). In addition, noble metal also can function as an electron trapping epicenter that enables the rapid transmission of an electron from BiPO₄ retarding the recombination rate of photoexcited electron-hole pairs, prolonging the photocatalytic efficacy of BiPO₄ (Wu et al., 2009). Hence, this illustrates that both dopants can enhance BiPO₄ in terms of visible light absorption and hinder the recombination rate of photogenerated electrons.

1.3 Objectives

The current study's objectives are to mitigate the specified drawbacks of BiPO₄ by incorporating graphitic carbon nitride (g-C₃N₄) that will improve the visible light absorbance and promote electron-hole pairs separation efficiency. Separately, doping with noble metal (silver) enhances the visible light absorbance through the SPR effect. Subsequently, modified BiPO₄ photocatalysts were assessed by photodegradation of 2,4-Dichlorophenols (2,4-DCPs) a form of EDC pollutant in the presence of sunlight. This study includes the sustainability evaluation of as-prepared photocatalyst in environmental remediation applications. The objectives of this study are:

- 1. To modify bismuth phosphate through incorporation with silver nanoparticles and graphitic carbon nitride.
- 2. To characterize the synthesized photocatalysts for their various physical and chemical properties.
- 3. To study the mechanism and electron mobility of the synthesized photocatalyst through photodegradation of 2,4-Dichorophenol under sunlight irradiation.
- 4. To study the reusability of the modified nanocomposite photocatalysts.

CHAPTER 2

INTRODUCTION

2.1 Endocrine Disrupting Compounds

Endocrine Disrupting Compounds (EDCs) is defined as exogenous chemicals, or a mixture of chemicals that interfere with any aspect of hormone action (Zoeller et al., 2012). The importance of hormones in the human body is crucial as they play an important role in reproductive function, regulation of response to various nutritional demands, body and brain development, adaptation, and maintenance of bodily processes and health (Gore et al., 2014). EDCs are widely used in various fields such as plastics, cleaning products, cosmetics, pesticides and industrial processes (Kabir et al., 2015). For the benefits of industrial use, EDCs are designed not to decay quickly and have long half-lives (Lubrano et al., 2013). Some EDCs will break down into different harmful compounds through metabolism. Thus, EDCs can be easily detected in food, daily products and the environment, even for those EDCs that were being banned in the past (Yang et al., 2006). According to the World Health Organization (WHO), EDCs may cause breast cancer, abnormal growth patterns, and neurodevelopment delay. One of the standard ways of EDCs entering the human body system is through bioaccumulation. In highly contaminated environments, industrial chemicals leach into the soil, air, and water bodies. Microorganisms and plants will be consumed traces of EDCs, then

moving up the food chain, the human will end up with the highest concentrations of EDCs in the body system. The exposure route of EDCs into the human body is mainly via oral consumption, inhalation, dermal contact, biological transfer from the placenta or mother's milk. Table 2.1 contained some information regarding the type of EDCs and their sources. Therefore, it is undeniable that the removal of EDCs is essential for current and future society.

Table 2.1: Sources or uses of EDCs (Gore et al., 2014)

EDCs	Sources/Uses			
Phthalates, triclosan, parabens,	Cosmetic, personal care products, anti-			
pesticide	bacterial, sunscreens, medications,			
	intravenous tubing.			
Dichlorodiphenyltrichloroethane	Pesticides used in agriculture, home,			
(DDT), chlorpyrifos, vinclozolin,	public disease vector control.			
pyrethroids				
Brominated Flame Retardants	Flame retardants for household			
(BFRs)	furniture.			
Bisphenol A (BPA), phenol	Food and beverage containers.			
Polychlorinated biphenyls (PCBs)	Contaminated soil or groundwater by			
	industrial waste or pesticides.			

2.1.1 2-4 Dichlorophenols

2-4 Dichlorophenols (2,4-DCPs) is classified under endocrinedisrupting compounds that are concerned by researchers and the public. It is a colourless crystalline solid with a medicinal odour. The routes of human exposure to 2,4-DCPs are inhalation, dermal contact and ingestion. 2,4-DCPs is widely used as a precursor in the production of herbicides and pesticides. The agricultural sector that is heavily dependent on herbicides and pesticides is one of the main contributors to the presence of 2,4-DCPs in water bodies. Herbicides and pesticides are washed into the river or lake by rainwater and storm runoff.

Furthermore, discharge of 2,4-DCPs into water bodies by the industrial sector involved in the production of herbicides and pesticides also contributed to the increased risk of 2,4-DCPs exposure to the surrounding environment (Czapicka, 2004; Ahlborg et al., 1980). As 2,4-DCPs is water recalcitrant, it will be retained in the water bodies for a long duration (Huang et al., 2017). Although conventional wastewater treatment methods have been implemented to treat 2,4-DCPs, the effort remains futile as those methods have severe drawbacks such as the production of secondary pollutants and high maintenance cost (Ahn et al., 2002; Tomei et al., 2012; Ranjit et al., 2008; Matafonova et al., 2006; Bhishma and Kumar, 2015). Table 2.2 displayed various conventional treatment method for 2,4-DCPs.

Table 2.2: Convention	al methods for	2,4-DCPs treatment.
------------------------------	----------------	---------------------

Method	Target Condition		Removal	Reference	
			efficiency (%)		
Enzyme Treatment using laccase	2,4-DCP	-Reaction time 1 day	88	Ahn et al., 2002	
Two Phase Partitioning Bioreactors	2,4-DCP	-Reaction time 500 min	91	Tomei et al., 2012	
		-feed of 320mg/L			
Fenton's method	2,4-DCP	-H ₂ O ₂ (580mg/L)	71	Ranjit et al., 2008	
		-Fe ²⁺ (20mg/L)			
		-pH (2.5)			
		-120min			
Aeration Pond	2,4-DCP	-Reaction time 2 days	56-77.6	Matafonova et al., 2006	
Biodegradation	2,4-DCP	-Reaction time 20days	75-80	Bhishma and Kumar,	
				2015	

2.2 Heterogeneous Photocatalysis

Heterogeneous photocatalysis emerged as a promising wastewater treatment method for degrading a wide variety of harmful water persistent organic compounds without producing secondary pollutants. It is a form of advanced nanotechnology that utilizes photocatalysts that harvest energy from the light source to degrade recalcitrant water compounds to form carbon dioxide and water as end products. Previous studies done on photocatalysts are shown in Table 2.3. In general, the photocatalytic process mechanism initiated when the photocatalyst harnessed sufficient energy from light irradiation to photoexcite electrons to bridge through the energy bandgap from the valence band to the conduction band, leading to the generation of electron-hole pairs. Electron (e^{-}) was produced at the conduction band, whereas holes (h^{+}) were generated at the valence band (Molinari et al., 2002). The photogenerated electron will reduce oxygen (O₂) to superoxide anion radicals (\cdot O₂) at the conduction band. At the valence band, the photogenerated holes will convert water (H₂O) and hydroxyl ions (OH⁻) into hydroxyl radicals (•OH). Both radicals are essential in the removal of organic pollutants existing in wastewater. The mechanism below shows the general equation for the occurrence of an oxidation-reduction process during photocatalysis (Coronado et al., 2013):

$$Photocatalyst + hv \to e^-{}_{CB} + h^+{}_{VB} \tag{1}$$

$$e^-{}_{CB} + O_2 \to O_2^- \tag{2}$$

$$h^+_{VB} + H_2 O \to OH + H^+ \tag{3}$$

$$h^+_{VB} + OH^- \to \bullet OH \tag{4}$$

$$Pollutant + \bullet OH, \bullet O_2^- \to CO_2 + H_2O \tag{5}$$

Photocatalyst	Experimental Conditions	Pollutant	Efficiency	Reference
NiAl	The double Ni/Al layered double hydroxides were	2,4-DCP	Attained 94% degradation	Ramos-
	synthesized via the co-precipitation method. The experiment		efficiency after 150 min of	Ramírez et al.,
	was carried out under UV light sources.		irradiation.	2020
BiVO ₄ /RGO	A one-step hydrothermal method was used to synthesized	2,4-DCP	Attained 55% degradation	Tu et al., 2020
	BiVO ₄ /RGO. The experiment was conducted under UV light		efficiency after 6h of irradiation.	
TiO ₂ /ZnO/Sn	$TiO_2/ZnO/SnO_2$ was obtained through the co-precipitation	2,4-DCP	Attained 72% degradation	Ali et al., 2020
O ₂	method. The experiment was carried out under UV light.		efficiency under 120min of	
			irradiation.	
EG/CeO ₂	EG-CeO ₂ was synthesized using impregnation ultrasonic	2,4-DCP	Attained 98.7% degradation	Mafa, Mamba
	agitation. The experiment was carried out under UV light.		efficiency under 180min	and Kuvarega,
			irradiation.	2020

Table 2.3: Various types of photocatalysts applied in wastewater treatments.

Photocatalyst	Experimental Conditions	Pollutant	Efficiency			Reference
ZrO ₂ /TiO ₂	The sol-gel method was used to synthesize ZrO ₂ /TiO ₂ . The	2,4-DCP	Attained	99%	degradation	Guerrero-
	experiment was carried out under UV light		efficiency	under	150min	Araque et al.,
			irradiation.			2020
CeO/g-C ₃ N ₄	Preparation of CeO/g-C ₃ N ₄ via wet-chemical solution	2,4-DCP	Attained	57%	degradation	Humayun et
	method. The experiment conducted under Visible light.		efficiency	under	120min	al., 2019
			irradiation.			
S-TiO ₂	S-TiO ₂ was synthesized by the incorporation of sulfur cations	2,4-DCP	Attained	97%	degradation	Alalm et al.,
	into the lattice of TiO ₂ . Experiments were carried out under		efficiency	under	480min	2018
	UV light.		irradiation.			

Table 2.3: Various types of photocatalysts applied in wastewater treatments (continued).

The photocatalyst is defined as a solid that can stimulate reactions in the presence of light without involving itself in the overall reaction (Mills, Davies and Worsley, 1993). A good photocatalyst possesses criteria such as low cost, environmentally friendly, ability to utilize a wide range of the solar spectrum, chemically and physically stable (Deng et al., 2019). Table 2.4 shows several photocatalysts and their respective bandgap energy. Despite the superior characteristics of photocatalysts, synthesis of highly efficient light-driven photocatalyst remains a challenge as there are drawbacks that required mitigation such as poor absorptive performance, large size, and rapid recombination of photoexcited electron-hole pairs, which hinder the photodegradation efficiencies of photocatalysts (Habisreutinger et al., 2013; Wang et al., 2014).

Figure 2.1: Basic mechanism of heterogeneous photocatalysis (Yang and Wang, 2018).
Photocatalyst	Bandgap	Photocatalys	Bandgap
	energy (eV) t		energy (eV)
Fe ₂ O ₃	2.3	ZnO	3.2
TiO ₂ (rutile)	3.0	TiO ₂ (anatase)	3.2
WO ₃	2.8	CdS	2.5
ZnS	3.7	CeO ₂	2.94
SnO ₂	3.5	Cu ₂ O	2.7
BiPO ₄	3.5	g-C ₃ N ₄	1.7

Table 2.4: Various photocatalysts with their respective energy bandgap(Mamba and Mishra, 2016; Wang et al., 2019).

2.3 Bismuth Phosphate (BiPO₄)

Bismuth Phosphate (BiPO₄) is a novel inorganic non-metallic salt of oxy-acid photocatalyst with excellent criteria, such as non-poisonous, good crystalline, biologically and chemically stable (Lv et al., 2013; Pan and Zhu, 2011). This has attracted the attention of researchers and various experiments were conducted and reported that BiPO₄ possessed high photodegradation ability as compared to commercial Titanium Oxide (TiO₂), contributed by the superior inductive effect of a phosphate group (PO₄³⁻) which enable high electron hole-pairs separation. (Xu et al., 2013; Pan and Zhu, 2010). It was reported that BiPO₄ can be present in 3 types of crystalline phases: (i) monoclinic (nMBIP), (ii) mMBIP, and hexagonal (HBIP) (Darkwah et al.,

2019). Each crystal phase possessed the same energy bandgap and positions of band edge (Pan et al., 2011b). In addition, eight oxygen atoms adjoining a single bismuth atom whereas a phosphorus atom was encircled by four oxygen atoms for each of the crystal's phases. However, each crystal phase exhibited different photocatalytic degradation efficiency as their separation efficacy of the photogenerated electron-hole pairs is different (Pan et al., 2011b). Monoclinic BiPO₄ (nMBIP) is reported to have the highest photocatalytic performance due to the scattered Bi-O polyhedron and P-O tetrahedron bond length (Pan et al., 2011a). In addition, research found that CaIn₂O₄ and SrIn₂O₄ that possessed large dipole moments exhibited higher photocatalytic performance. (Sato et al., 2003). Thus, monoclinic BiPO₄ (nMBIP) owns the most partial PO₄³⁻ tetrahedron attributed by the large dipole presence in BiPO₄ which resulted in superior photocatalytic performance in energy conversion, environmental remediation, and environmental applications.

Figure 2.2: Three BiPO₄ crystal structures: (a) HBIP (b) nMBIP (c) mMBIP (Pan and Zhu, 2015).

2.3.1 Synthesis method for BiPO₄

According to past studies, different synthesis routes had different impacts on the morphology, crystalline structure, chemical and physical properties of BiPO₄. There are various types of BiPO₄ structures, such as nanowires, nano-rods, nanocubic, nanofiber and nano-flowers, that can be acquired by different approaches of synthesis method which resulted in different levels of photocatalytic activities. Figure 2.3 displays the different structures that were successfully synthesized by other researchers (Geng et al., 2005; Liu et al., 2014; Lin et al., 2007).

Figure 2.3: Various morphology of BiPO4: (a) Nanorods (b) Nanofiber (c) Nanowire (Geng et al., 2005; Liu et al., 2014; Lin et al., 2007)

A solvothermal method is a chemical reaction of solvents confined in a totally closed vessel with controlled temperature via heating and autogenous pressure condition which help the solutions to attain their respective critical points (Byrappa and Yoshimura, 2001). The solvothermal method is a common synthesis approach for powdery nanostructure compounds that utilized organic solvent (Walton, 2002). The technique begins with an injection of a proper percentage of reagent mixture and a precursor, followed by stirring (Zhong and Mirkovic, 2011). Next, the mixture is relocated into a sealed vessel autoclave for the crystallization process with controlled temperature, set duration and selfgenerated pressure. Temperature and time held vital roles in specific component crystallization (Yoshimura and Byrappa, 2008). Organic solvents that were widely applied in the solvothermal synthesis procedure are 1,4-butanediol, methyl alcohol, amines, and toluene. In addition, the solvothermal method owns various significant benefits such as (i) low-pressure reaction requirement, (ii) relatively low temperature for reaction, (iii) ability to control highly hydro sensitive precursors, (iv) simple determination of morphology and crystal phase end products and (v) high purify of end products (Liu et al., 2016). Furthermore, the synthesis of BiPO₄ adopting the solvothermal method possessed higher photocatalytic activities as surface oxygen vacancy generated via 450°C calcination leading to the enhancement of photogenerated charges' lifetime, which resulted in 2 times better of Methylene Blue photodegradation efficiency as compared to commercial TiO_2 (Wei et al., 2015). There was also a research on controlled solvothermal synthesis method by varying reaction time which successfully synthesized BiPO₄ that has higher photocatalytic efficacy with controlled morphology and crystal phases, possessed nano-cocoon and monoclinic nanorods structures (Xue et al. 2009).

The hydrothermal synthesis method is mainly for the production of the powdery nanostructure end product. Crystalline nanostructure was prepared by an appropriate ratio of the mixture of precursors and suitable agents into a solvent. Next, the mixture was contained in sealed stainless steel lined Teflon autoclave and transferred into the oven for a set amount of heating duration, pressure and temperature. The internal pressure of the Teflon autoclaves and the amount of solutions dictated by the specific temperature (M. Malekshahi Byranvand et al., 2013). Hydrothermal is similar to the solvothermal method in terms of dissolving most of the materials with appropriate solvent by altering the pressure and temperature. However, the primary solvent utilized by hydrothermal is distilled water. Subsequently, the hydrothermal method is favored for the synthesis of BiPO₄ with nanorods structure. It was reported that nanorods BiPO₄ synthesized via hydrothermal method exhibited superior Methylene Blue photodegradation performance in comparison with ultrasound irradiation method in terms of the efficiency of photoexcited holes and lifetime of charge carrier (Cheng et al., 2014). Furthermore, BiPO₄ prepared by hydrothermal method attained complete removal of phenol in 4 hours (Liu et al., 2013). In addition, BiPO₄ that was synthesized via hydrothermal method performed twofold better at photodecomposition of benzene in comparison to TiO₂ (Long et al., 2012).

Microwave irradiation is known as a favorable practice in the synthesis process of photocatalyst as it is able to control the crystalline and structure of BiPO₄ which is significant for tuning of photocatalytic properties. The microwave irradiation method has advantages such as the microwave couples with the molecules that exist in the reaction mixture directly with the quick rise in temperature, fast reaction, and zero hazardous waste is produced due to the green synthesis process (Palou, 2007). The study of Li et al. (2011) reports BiPO₄ synthesized via microwave irradiation method with distinct morphologies and size in its nanostructures exhibits superior efficacy in the methyl orange (MO) photodegradation. The above findings concluded BiPO₄ in hexagonal phases possessed better MO photodegradation activities compared to monoclinic phase BiPO₄. As present in the supercapacitor's studies of Vadivel al. (2016),synthesizing BiPO₄ the surfactant of et using Ethylenediaminetetraacetic acid (EDTA) through the simple microwave approach, the photocatalyst demonstrates superior cyclic stability. Its capacitance retention is found 92% after 500 cycles at a 1 Ag⁻¹ current density (Vadivel et al., 2016). Apart from that, the hierarchical flower-like BiPO₄ microspheres are synthesized through the method of microwave-aided hydrothermal reaction with bismuth nitrate (Bi(NO₃)₃) and ionic liquid [C4 mim] [PF6] (1-butyl-3-methylimidazolium hexafluorophosphate) in the 160 °C water. The ionic liquid [C4 mim] [PF6] plays a dominant role as the raw materials of phosphorus, surface modified agent as well as template (Lv et al., 2015). The study shows that the modification of synthesized $BiPO_4$ with [C4mim] [PF6], attained 94% of RhB photodegradation in 1 hr UV irradiation, whereas the synthesized BiPO₄ without the modification of ionic liquid demonstrates 75% photodegradation efficiency under the same context.

With the many synthesis methods for BiPO₄ available, we adopted the sol-gel method compared to the rest because it is a chemical method that allows the production of particles with a defined size, dimension, structure and composition (Rao, Mukherjee and Reddy, 2017). Furthermore, the sol-gel method processes require low processing temperature and less energy for the synthesis of photocatalysts, making it economical and sustainable (Rao,

Mukherjee and Reddy, 2017). As mentioned above, a different synthesis method of photocatalyst will produce photocatalysts with a different structure that possesses the other photocatalytic ability. Furthermore, the sol-gel method has been widely applied to synthesise various photocatalyst namely, TiO₂, WO₃, SnO₂ and ZnO (Li, White and Lim 2004; Mahato et al., 2009; Gu et al., 2003; Bessière et al., 2001). Thus, applying the sol-gel method for synthesis is essential as this method provides better control over the shape and size of photocatalysts and yields and improves photocatalysis performance.

2.3.2 Modification of BiPO₄

Similar to other photocatalysts, BiPO₄ required additional modifications to improvise its photodegradation efficiency further. Despite having unique properties, BiPO₄ has low photo-sensing in visible and near-infrared region absorbance attributed by the wide energy bandgap which constrained the full utilization of the solar spectrum resulting in the limitation of BiPO₄ as a sustainable photocatalyst. Furthermore, it possesses a shorter charge carrier lifetime that increases the electron and hole potential to recombine and form heat. Therefore, modifications to BiPO₄ are required to mitigate their drawback. To date, some outstanding improvising approaches such as doping, heterojunction structure formation and phase junction are adopted on BiPO₄ [Zhu et al., 2014; Maeda and Domen, 2007; Guo et al., 2018]. Table 2.5 depicts different modification methods conducted on BiPO₄.

One of the methods to enhance the photocatalytic performance of BiPO₄ photocatalyst is phase junction, where the lifetime of the charged carrier can be prolonged. By utilizing the photocatalysts' band alignment with various phases and structures, phase junction aids the separation efficiency of photoexcited electrons and photogenerated hole pairs at the surfaces of photocatalysts. When the alignment of the photocatalyst's band edge is well-matched, the separation of photogenerated electron-hole pairs will occur efficiently and lead to the improvement of photocatalytic ability (Zhu et al., 2014; Guo et al., 2018; Wang and Li, 2018). Besides, heterojunction is a substitute method that helps to facilitate separation efficacy of photogenerated active electrons and photoinduced holes at the interface between BiPO₄ and the semiconductor as it is attributed to the band alignment or noble metal attributed to the Schottky junction barrier. Doping is one of the approaches that can retard the recombination rate and narrow the bandgap energy by introducing the element of either metal or non-metal into the lattice or surface or BiPO₄ to produce a donor or receptor. It is vital to select dopants with optimum concentration as the excessive concentration will achieve undesirable results of photocatalytic activity. As a case in point, the occurrence of the total surface coating was caused by excessive dopant loading, which restricts the photocatalytic degradation activities as the core photocatalyst is inhibited from the generation of photogenerated electron-hole pairs. Hence, the determination of optimum dopant loading concentration is essential in order to enhance the performance of pristine BiPO₄, for a vast improvement in photodegradation efficiency.

Table 2.5:	Various	studies on	the modification	of BiPO _{4.}
-------------------	---------	------------	------------------	-----------------------

Modification	Synthesis Parameter	Application	Light Source	Efficiency	Reference
Zn ₃ (PO ₄) ₂	Co-precipitation, 900°C	Sulfadiazine	UV	Achieved complete removal of sulfadiazine	Naciri et
		photodegradation		after 240min. The rate of mineralization of	al., 2020
				composite is 3 times of $Zn_3(PO_4)_2$ and 1.5	
				times of BiPO ₄ .	
BiOCl	facile in situ chemical	Rhodamine B	UV	BiPO ₄ /BiOCl-40% completely decompose	Zhang et
	transformation method,	(RhB)		RhB in 45min. BiPO ₄ /BiOCl-40% performed	al., 2020
	80°C, 12h	photodegradation		3.18 times higher than Pure BiOCl.	
Bi ₂ S ₃	One-pot precipitation	Photoreduction of	Visible light	BiPO ₄ /Bi ₂ S ₃ synthesized in DEG attained	Geioushy
	route, anion exchange	toxic Cr (VI) to		95% photoreduction of Cr (VI) to Cr (III)	et al.,
		harmless Cr (III)		after 20min visible light irradiation.	2020

Modification	Synthesis	Application	Light Source	Efficiency	Reference
	Parameter				
ZnAl ₂ O ₄	Co-precipitation	Methylene Blue (MB)	UV	1wt% ZnAl ₂ O ₄ /BiPO ₄ degraded MB under UV	Tian et al.,
	and hydrothermal	photodegradation		irradiation 2.47 and 18.10 times faster than pure	2020
	method, pH=1,			ZnAl ₂ O ₄ and BiPO ₄ , respectively.	
	180°C, 24h, 60°C,				
	24h				
Carbon Dots	Surface group-	reduction of 4-	Visible light	reduction of 4-nitrophenol to 4-aminophenol is	Chang et
(CDs)	mediated	nitrophenol to 4-		enhanced around 2.5 times under visible light	al., 2020
	nucleation reaction,	aminophenol		irradiation, CDs/BiPO4 showed better stability	
	12 h standing,			and reusability than BiPO ₄ .	
	60°C, 2h				
		1			

Table 2.5: Various studies on the modification of BiPO₄ (continued).

In addition, solar energy is abundant energy that is distributed in UV (5%), visible (45%) and NIR (50%), which should be utilized. Artificial light will only provide a single light source, whereas solar energy will have three light sources. Thus, two noteworthy modification approaches are to be prioritized: extend the solar spectrum's absorption and enhance photoexcited electron separation for better photocatalytic performance. Therefore, incorporating graphitic carbon nitride (g-C₃N₄) and Silver (Ag) are selected to modify BiPO₄ in the current study.

2.4 Graphitic Carbon Nitride (g-C₃N₄)

The g-C₃N₄ is a 2-D π -conjugated polymeric semiconductor that owns narrow energy bandgap, physicochemical stability and simple synthesis (Ong et al., 2016). Figure 2.4 displayed the 2D structure and morphology of g-C₃N₄ (Zhang et al., 2013; Wen et al., 2017). g-C₃N₄ displayed better visible light absorption attributed to a 2.7eV small energy bandgap. The polymeric nature of g-C₃N₄ allows multiple excitations from the absorption of a single photon contributing to the effective generation of active radicals for the degradation of pollutants (Cui et al., 2016). Thus, g-C₃N₄ is used for the modification of different photocatalysts in other studies. Zhao et al. fabricated Sb₂MoO₆/g-C₃N₄ heterojunction through physical mixing method for 24h and calcination at 180°C for 2h. 7.5% Sb₂MoO₆/g-C₃N₄ achieved 94% photodegradation of rhodamine B (RhB) after 40min visible light irradiation and attained better H₂ evolution (Zhao et al., 2020). Furthermore, Wang et al. synthesized $Ba_5Nb_4O_{15}/BiPO_4$ by constructing heterojunction for efficient facilitation charge transfer. $Ba_5Nb_4O_{15}/BiPO_4$ (1:20) exhibited 2.345 times higher H₂ evolution in using visible light as the light source (Wang et al., 2019). Samsudin et al. enhanced BiVO₄ using g-C₃N₄ through a wet-impregnation method that minimized the recombination rate of the photo charge carrier. 0.8wt% g-C₃N₄/BiVO₄ exhibited 2.25 times H₂ evolution compared to unmodified BiVO₄ (Samsudin et al., 2020).

Apart from that, Ghattavi and Nezamzadeh-Ejhieh synthesized AgBr/g-C₃N₄ using the deposition-precipitation method. A visible light experiment was conducted to investigate the performance of AgBr/g-C₃N₄. It attained a high yield of methyl orange (MO) photodegradation contributed by a reduced recombination rate (Ghattavi and Nezamzadeh-Ejhieh, 2020). Liu et al. used a one-step calcination method to decorate g-C₃N₄ with Ag for broadening light absorbance and lower recombination rate of photoexcited electron and photogenerated hole. By utilizing visible light irradiation, Ag/g-C₃N₄ achieved 98.7% MO removal in 2h and fully converted 4-nitrophenol to 4-aminophenol in 70 s (Liu et al., 2020). Referring to the above studies regarding modification of different semiconductors using g-C₃N₄, it was deduced that incorporating g-C₃N₄ allows better visible light absorption and higher facilitating of photogenerated efficiency, resulting in bandgap improvement and retarding the recombination rate of photogenerated electrons.

Figure 2.5 shows the proposed photodegradation mechanism of Methylene Orange (MO) using $g-C_3N_4$ decorated TiO₂ (Zhang et al., 2017). Compared to TiO₂, g-C₃N₄ can harness energy from visible light irradiation to provide electrons hole pairs for TiO₂. Besides, the presence of $g-C_3N_4$ allows higher separation efficiency of electron-hole pairs as the photogenerated electron will be transferred from CB of g-C₃N₄ to CB of TiO₂ for reduction purpose whereas the photogenerated hole will be transported from VB of TiO₂ to VB of g-C₃N₄. This condition reduces the recombination rate of electron-hole pairs effectively resulting in higher photocatalytic performance. Subsequently, Wang et al. (2020) also utilized g-C₃N₄ incorporation for better photodegradation of p-nitrophenol using Fe doped ZnS (Zn0.94Fe0.04S) photocatalyst as shown in Figure 2.6. During solar light irradiation, both g-C₃N₄ and $Zn_{0.94}Fe_{0.04}S$ are involved in electron-hole pair generation, leading to the production of large amounts of electron-hole pairs for high-efficiency photodegradation. Due to CB position difference, photogenerated electrons tend to transfer from CB of g-C₃N₄ to CB of Zn_{0.94}Fe_{0.04}S contributing to the occurrence of highly efficient reductive reaction at CB of Zn_{0.94}Fe_{0.04}S. On the other hand, the photogenerated holes at the VB of Zn_{0.94}Fe_{0.04}S, unable to oxidize H_2O/OH^2 for the generation of •OH radicals due to edge potential lower than redox potential, are transported to VB of g-C₃N₄, allow recombination rate of photogenerated electrons and holes to slow down, providing a better pnitrophenol degradation condition (Wang et al., 2020). Table 2.6 shows different past studies conducted on the modification of photocatalysts using g-C₃N₄. Hence, modification of BiPO₄ with g-C₃N₄ is expected to broaden solar spectrum absorbance and prolong the charge carriers' lifetime.

Figure 2.4: (a) 2D structure and (b) structure of g-C₃N₄ (Zhang et al., 2013; Wen et al., 2017).

Figure 2.5: Proposed mechanism of MO degradation using g-C₃N₄/TiO₂ in the presence of visible light irradiation (Zhang et al., 2017).

Figure 2.6: Proposed p-nitrophenol degradation mechanism using g-C₃N₄/ Zn_{0.94}Fe_{0.04}S under solar irradiation (Wang et al., 2020).

Modification	Application	Light Source	Result	Reference
Sb ₂ MoO ₆ /g-	Rhodamine B(RhB)	Visible light	7.5% Sb ₂ MoO ₆ /g-C ₃ N ₄ exhibited	Zhao et al., 2020
C ₃ N ₄	photodegradation and hydrogen		a 6.6- and 5.5-times higher rate of	
	(H ₂) evolution		RhB degradation and H ₂ evolution	
			compared to pure g-C ₃ N ₄	
			respectively.	
Ba5Nb4O15	H ₂ evolution	Visible light	Ba ₅ Nb ₄ O ₁₅ /g-C ₃ N ₄ achieved 2.35	Wang et al., 2019
			times higher H ₂ evolution.	
BiVO ₄	H ₂ evolution	visible light	0.8 wt% g-C ₃ N ₄ /BiVO ₄ achieved	Samsudin et al.,
			2.25 times better H_2 evolution.	2020

Table 2.6: Studies of modification on different photocatalysts using g-C₃N₄.

Modification	Application	Light Source	Result	Reference
AgBr	Methyl orange (MO)	Visible light	Modified composites	Ghattavi and
	photodegradation		showed 1.6- and 1.3-times	Nezamzadeh-Ejhieh, 2020
			greater MO degradation	
			than AgBr and g-C ₃ N ₄	
			respectively.	
Ag	MO and 4-nitrophenol	Visible light	Ag/g-C ₃ N ₄ successfully	Liu et al., 2020
	photodegradation		removed 98.7% of MO in	
			2h and completely	
			removed 4-nitrophenol in	
			70s	

Table 2.6: Studies of modification on different photocatalysts using g-C₃N₄ (continued).

2.5 Silver Nanoparticles (Ag)

Silver (Ag) is a noble metal that exhibits significant advantages when used as a dopant for BiPO₄. Ag as a noble metal acts as an excellent electron acceptor for facilitating quick electron transfer from both exterior and inner BiPO₄ under light irradiation which hinders the recombination rate of electronhole pairs. Likewise, Ag particles can generate Surface Plasmon Resonance (SPR) with BiPO₄ leading to disturbance in the dielectric constant of the surrounding matrix (Nainanni, Thakur and Chaskar, 2012). This enables BiPO₄ to absorb visible light which indirectly enhances the photocatalytic activity of BiPO₄ and increases the quantum yield for the photocatalysis process. Noble metal possesses superior visible light absorption attributed to SPR effect, which is defined as a collective oscillation of electrons generated at the interface of noble metal and photocatalysts. Referring to Figure 2.7, surface plasmon oscillation of metal electrons was generated by the coupling relation between incident oscillating electromagnetic field, the incoming irradiation, and noble metal nanoparticles (Bumaidad and Madkour, 2014). The metal electron density is polarized to one side and oscillates in resonance with the light frequency as lightwaves travel through the noble metal nanoparticles. The above phenomenon resulted in Localized Surface Plasmon Resonance (LSPR) (Fong and Yung, 2013). After excitation of LSPR, the surface plasmon will decay and transfer the harnessed energy to the electron located at the CB of noble metal nanoparticles, producing highly energetic electrons known as hot electrons. The excited electron will be donated to the semiconductor (Paul and Giri, 2018).

Figure 2.7: Surface plasmon resonance oscillation of metal electrons (Bumaidad and Madkour, 2014)

Numbers of research had been conducted on doping of noble metal Silver. Iliev et al. (2006) have shown that deposition of Ag on the surface of TiO₂ has significantly increased the photocatalytic degradation of oxalic acid, which is also contributed by the higher rate of oxygen reduction (Iliev et al., 2006). According to Wu et al (2009), Ag ions act as an electron-hole separation center below optimum dosage concentration, increasing photocatalytic efficiency. In contrast, Ag ions will act as electron-hole recombination center when Ag ions exceed the optimum concentration, which leads to a negative effect in photocatalytic processes (Wu et al., 2009). Thus, attracted by Ag's superior characteristic, several kinds of research had been conducted using Ag to modify different photocatalysts. Chen and Li (2020) applied a one-pot hydrothermal synthesis method to fabricate Ag/TiO₂ for the plasmonic resonance and hinder the photogenerated electron recombination rate. The 2% Ag/TiO₂ achieved 98% conversion of p-ethyl bromobenzene to p-ethyl biphenyl

in 24h under visible light irradiation (Chen and Li, 2020). Paul et al. (2020) synthesized Ag/g-C₃N₄ through thermal polymerization between two precursors. 1mmol Ag/g-C₃N₄ 96% of MB photodegradation in 2h under visible light irradiation (Paul et al., 2020). Abirami et al. (2020) successfully fabricated Ag/PbTiO₃ composite via a simple hydrothermal method. 0.03% Ag/PbTiO₃ attained 92.8% MB removal in 150min under UV light irradiation (Abirami et al., 2020).

Furthermore, Dawound et al. (2020) managed to synthesize silver doped zirconium oxide (Ag/ZrO₂) using milk powder through a single-step solution combustion method. Silver (6 mol %) doped ZrO₂ attained 95% Rhodamine B removal within 105 min under visible light irradiation (Dawound et al., 2020). Silver-doped NiO was fabricated via a sol-gel method using Cydonia oblonga plant extract by Ghazal et al. (2020). The composites degraded 75% of RhB under UV light after 200min. In addition, Ag/NiO also exhibited an inhibitory effect on cancer cells (Ghazal et al., 2020). Figure 2.8 shows the proposed mechanism of azo dyes photodegradation using Ag decorated TiO₂. Deposition of Ag nanoparticles onto the surface of TiO_2 enhanced the photocatalytic performance of TiO₂ by acting as electron traps. After harnessing sufficient energy, photoexcited electrons bridged through the energy bandgap and produced electron-hole pairs. Because of the Fermi level difference, the photoexcited electron was transferred from CB of TiO₂ to CB of Ag nanoparticles effectively preventing the electron at CB of TiO₂ to recombine back to VB of TiO₂. Accumulation of electrons at Ag nanoparticles react with O_2 to form O_2 -radicals. For this study, Ag nanoparticles act as electron traps that prolong the photogenerated electron's life, hindering the recombination rate of photogenerated active electrons (Sobana Muruganadham and Swaminathan, 2006). Furthermore, Wang et al. (2015) carried an experiment involving degradation of Rhodamine B (RhB) using Ag/Na₂Ta₂O₆ nanocomposites under visible light irradiation and the proposed mechanism is depicted in Figure 2.9. Under visible light irradiation, Ag nanoparticles generate hot-electrons via SPR effect, then the hot electrons reduce O₂ to O₂⁻ radicals. The photoexcited electron at Ag nanoparticles also took part in the degradation of RhB (Wang et al., 2015). Table 2.7 summarized various past studies that modified photocatalysts using silver nanoparticles. Hence, Ag is the preferable choice for this thesis, with a controlled concentration of Ag ions which enable BiPO₄ to absorb visible light which indirectly enhances the photocatalytic activity and increases the quantum yield for the photocatalysis process.

Figure 2.8: Proposed mechanism of azo dye degradation using Ag/TiO₂ (Sobana Muruganadham and Swaminathan, 2006).

Figure 2.9: Mechanism of RhB degradation using Ag/Na₂Ta₂O₆ (Wang et al., 2015).

Modification	Application	Light Source	Result	Reference
TiO ₂	Conversion of p-	Visible light	Ag/TiO ₂ achieved 98% conversion of p-ethyl	Chen and Li, 2020
	ethyl bromobenzene		bromobenzene to p-ethyl biphenyl. Decoration of Ag	
	to p-ethyl biphenyl		provides visible light absorption enhancement.	
g-C ₃ N ₄	Methyl Blue (MB)	Visible light	Ag/g-C ₃ N ₄ attained complete removal of MB in 2 h.	Paul et al., 2020
	photodegradation		Composite possessed efficient facilitation of charge	
			transfer and visible light absorption.	
PbTiO ₃	MB	UV light	Ag/PbTiO ₃ achieved 92.8% MB removal and	Abirami et al., 2020
	photodegradation		exhibited excellent reusability. Increased number of	
			active sites on the surface of photocatalyst and	
			presence of Ag that hinder the recombination of the	
			electron-hole pairs.	

Table 2.7: Studies of modification of photocatalysts using Ag nanoparticles.

Modification	Application	Light Source	Result	Reference
ZrO ₂	Rhodamine B (RhB)	Visible light	Silver doped ZrO ₂ achieved 95% removal of RhB in	Dawoud et al., 2020
	photodegradation		105min.	
NiO	RhB photodegradation	UV light	Ag-doped NiO attained 75% RhB removal after	Ghazal et al., 2020
	and inhibition of		200min and showed an inhibitory effect on cancer	
	cancer cells		cells.	

Table 2.7: Studies of modification of photocatalysts using Ag nanoparticles (continued).

CHAPTER 3

MATERIALS AND RESEARCH METHODOLOGY

3.1 Materials

This chapter covers the materials and synthesis methods used in the research in the preparation of modified BiPO₄ photocatalyst composites. All the chemicals used in this research are of analytical purity and were used without further purification. It also includes the characterization methods adopted to examine the materials' physical and chemical properties. Next, it shows procedures of photocatalytic evaluation, active radical detection and stability test of the photocatalyst.

For the synthesis of photocatalysts, Bismuth (III) nitrate pentahydrate $(Bi(NO_3)_3 \cdot 5H_2O)$ ($\geq 98.0\%$, Sigma Aldrich, USA) and Ammonium dihydrogen phosphate ((NH₄)H₂PO₄) (Merck KGaA, Germany) were used as precursors. Ethyl glycol (C₂H₆O₂) (R & M Chemicals, UK) was used as a stabilizing medium. Absolute ethanol (C₂H₈O₇) (95%, Hmbg Chemicals, Germany), Nitric acid (HNO₃) (R & M Chemicals, UK) and ultrapure water were used for washing purpose. Silver nitrate (AgNO₃) (Merck KGaA, Germany) and urea (NH₂CONH₂) (R & M Chemicals, UK) were used as dopants. 2,4-Dichlorophenols (2,4-DCP) (Merck KGaA, Germany) was used as a synthetic pollutant.

For high-performance liquid chromatography (HPLC), Acetonitrile (ACN) (gradient grade, Merck KGaA, Germany) and ultrapure water were used as mobile phase in HPLC analysis. In scavenging test, Dimethylsulfoxide, (DMSO) (99.0%, Ajax Finechem Pty Ltd, Australia) Benzoquinone (BQ) (≥98.0%, Sigma-Aldrich, USA), Isopropyl Alcohol (IPA) (99.9%, Hmbg Chemical, Germany) and Ethylenediaminetetraacetic acid disodium (EDTA) (99.0% ChemSoln, Malaysia) were used as scavenging reagents for each radical

3.2 Synthesis of photocatalysts

3.2.1 Preparation of BiPO₄

BiPO₄ is synthesized by a simple sol-gel route. Typically, 0.031 mmol of Bi $(NO_3)_3 \cdot 5H_2O$ is diluted into 10 mL ethylene glycol in a beaker under magnetic stirring until a clear bismuth precursor solution is formed. Then, 0.04 mmol of NH₄H₂PO₄ was added into the above solution under magnetic stirring over 30 min. Eventually, the resulting precipitated BiPO₄ was collected by centrifugation and washed with deionized water and absolute ethanol and then dried at 60°C for 12 h (Zhang et al., 2018).

Figure 3.1: Pure BiPO₄

3.2.2 Preparation of g-C₃N₄

g-C₃N₄ was prepared by a thermal decomposition method using urea as the precursor. 10 g of the urea was placed in a pastry dish evenly (Zheng, Zhang, and Li, 2017). It was then dried at 80°C for 24 h in an oven. The dry urea was then placed in a crucible before it was placed in a muffle furnace and heated to 550° C for 3 h. The yellow product was washed with nitric acid and ultra-pure water repeated three times to remove any impurities (Liu et al., 2011). Then, the collected sample was dried in the oven at 80°C overnight.

Figure 3.2: Pure g-C₃N₄

3.2.3 Preparation of BiPO₄/g-C₃N₄ composite

A different ratio of 0.5wt%, 1.5wt%, 2.5wt% of $g-C_3N_4$ were well dispersed with a sonicator for 30 mins. Next, 0.4g of BiPO₄ was added to the solutions and stirred for 1 h subjected to 70°C heating. The resulting suspension was then washed repeatedly with ultrapure water. The products were dried overnight at 60°C.

Figure 3.3: Modification of BiPO₄ with g-C₃N₄

3.2.4 Preparation of Ag/BiPO₄ composite

The synthesising Ag/BiPO₄ was initiated by adding 12mL of ethylene glycol with 1.0g of prepared BiPO₄ with a designated amount of AgNO₃, such as 1.0wt%, 3.0wt% and 5.0wt%, respectively to obtain the desired Ag wt% as stated. To promote sustainable photoreduction, the solution was exposed under sunlight with continuous stirring for 60min. Next, the obtained precipitate was centrifuged at 2000 rpm for 5 minutes. The produced Ag/BiPO₄ was then washed with ethanol and deionized water, respectively. Finally, the product was dried at 90°C overnight.

Figure 3.4: Modification of BiPO₄ with Ag.

3.3 Characterizations

3.3.1 Field Emission Scanning Electron Microscope (FESEM)

The morphology and composition of BiPO₄/g-C₃N₄ and Ag/BiPO₄ were characterized by field emission scanning electron microscopes (FESEM). The samples were placed on an adhesive carbon tape on an aluminum stub before coated using Jeol JFC-1600 Auto Fine Coater, then the coated samples were inserted into a Jeol JSM 7601-f field emission scanning microscope at 0.1 to 10⁻⁴ Pa vacuum condition.

3.3.2 Electron Dispersive X-ray (EDX)

Electron dispersive X-ray study (EDX) analysis was conducted to investigate the elemental composition of products using Joel JSM 7601-f equipment coupled with oxford Instruments X-Max energy Dispersive X-Ray Diffractometer. The samples were also inserted into a Jeol JFC-1600 Auto Fine Coater coating and 0.1 to 10⁻⁴ Pa pressure condition.

3.3.3 X-ray Powder Diffraction (XRD)

Determination of the crystalline phase of the composite was done via Xray powder diffraction (XRD) using Cu K α (λ =1.5418Å) radiation. This analysis was carried out from 10° to 80° range at 2 ° *min*⁻¹ resolution.

3.3.4 Fourier Transform Infrared (FTIR) spectra

Fourier transform infrared (FTIR) spectra were carried out in the range of 400 to -4000cm⁻¹ at 2cm⁻¹ spectral resolution to determine the functional groups' presence in the composites using the Perkin Elmer Spectrum 400 Spectrophotometer. The samples were ground and added with potassium bromide (KBr) at a 1:10 ratio before compressed into a disc. The disc was fitted into a sample cell in Perkin Elmer Spectrum 400 Spectrophotometer for analysis.

3.3.5 UV-vis diffuse reflectance spectra (UV-DRS)

UV-vis diffuse reflectance spectra (UV-DRS) determine the optical diffuse reflectance spectra of the product with the BaSO₄ as a standard white reference. The spectrums of the products were analyzed from 200nm to 800nm using a Hach DR600 UV-vis spectrophotometer.

3.3.6 Time-Resolved Photoluminescence (TRPL)

Time-Resolved Photoluminescence (TRPL) analysis was conducted to investigate the charge carrier lifetime using Edinburgh FLS 920 with picoseconds pulsed laser under excitation wavelengths of 450 nm.

3.3.7 High-Resolution Transmission Electron Microscopy (HRTEM)

Images of high-resolution transmission electron microscopy were captured at 200kV using the FEI-TECNAI F20 Transmission Electron Microscope under the low-pressure conditions to observe the lattice fringes, particle size and distribution of the photocatalysts.

3.3.8 X-ray Photoelectron Spectroscopy (XPS)

The functional group in the compounds were investigated by X-ray photoelectron spectroscopy (XPS) using PHI Quantera II and monochromatized aluminum radiation (ALK α) in low 10⁻⁸ Pa vacuum pressure condition of 1487 eV.

3.4 Photocatalytic Evaluation

The photocatalytic activity of prepared photocatalysts was evaluated by the degradation of 2-4 dichlorophenol (2,4-DCP) under sunlight irradiation. 1.0 g of as-synthesized photocatalysts were added into the beakers that contained 20 ppm of 2-4DCP. The absence of catalysts will act as a control for the experiment. The dark reaction was carried out for 24 h to ensure the complete adsorption and desorption equilibrium. Next, the samples were collected at selected intervals. After the dark reaction, photodegradation under sunlight irradiation was carried out for a duration of 5 h. Samples were then taken for every 30 mins intervals. Finally, the collected samples will then be centrifuged and analyzed using High-Performance Liquid Chromatography (HPLC) Analysis. Figure 3.4.1 shows the experimental setup for photocatalytic evaluation. The concentration of 2,4-DCP solution samples was analyzed by High-Performance Liquid Chromatography (HPLC). A standard calibration curve of 2,4-DCPs was obtained before beginning the photocatalytic activity (as shown in Figure 3.4.2). The parameters of the mobile phase for HPLC analysis were tabulated in Table 3.1 below:

Pollutant	2,4-DCP
Column	C18 (2.1 x 50 mm, 1.7 µm)
Mobile phase	Acetonitrile: Water (80:20)
Flow rate (mL/min)	0.6
Column temperature (°C)	Room temperature
Sample temperature (°C)	Room temperature
Wavelength (nm)	270
Light	UV
Injection Volume (µL)	20

Table 3.1. HPLC analysis mobile phase parameters.

Figure 3.5: The experimental setup for photocatalytic evaluation of assynthesized photocatalyst.

Figure 3.6: Standard calibration curve of 2,4-DCP.

3.5 Recycling Test

Recycling tests are carried out for photodegradation of 2,4-DCP to evaluate the stability of the photocatalysts. After each experiment, the photocatalyst is separated from the solution by centrifugation, washed three times with deionized water, dried at 80°C for 12 hrs. The recycling tests are repeated 3 times and the results are analysed by HPLC.

3.6 Scavenging Test

To detect the involvement of radical species during the photodegradation of 2,4-DCP, a scavenger test is conducted. The purpose of determining the active radical species is to evaluate the photocatalytic efficiency of the photocatalyst. During the photocatalytic activity of as-prepared photocatalysts, the active radical species generated were electron, $\bullet O_2^-$, H⁺ and $\bullet OH$. Benzoquinone (BQ) was added as for the detection of $\bullet O_2^-$ radicals, Ethylenediamine Tetraacetic Acid Disodium salt (EDTA) can scavenge H⁺ while the addition of Isopropyl Alcohol (IPA) functions as the $\bullet OH$ radicals (Wu et al., 2017). Each scavenger was added with an amount of 1mM concentration.
CHAPTER 4

RESULTS AND DISCUSSION

4.1 **BiPO**⁴ modified with Graphitic Carbon Nitrate (g-C₃N₄)

A simple thermal deposition method was adopted to modify BiPO₄ using g-C₃N₄. The dopant is expected to prolong the lifetime of charge carriers and provide visible light and NIR absorption.

4.1.1 Characterization of BiPO4 modified with Graphitic Carbon Nitrate

Figure 4.1 displays the images of BiPO₄/g-C₃N₄ (a-d) FESEM and (e-f) HRTEM. The FESEM images show the cubic structure of pure BiPO₄. It can be observed that pure BiPO₄ is in nano cubic structure, whereas pure g-C₃N₄ has a single layer nanosheet structure. It is also seen that nano cubic BiPO₄ particles were deposited on the surface of g-C₃N₄, forming a composite of BiPO₄/g-C₃N₄. In addition, FESEM images also indicate the well homogenous deposition of BiPO₄ onto the surface of g-C₃N₄. Figure 4.1 (e) displays the BiPO₄ lattice fringes spacing of 0.47nm which is consistent with the (110) plane of BiPO₄ (Tian et al., 2017). Furthermore, EDX analysis confirmed the presence of elemental species in the synthesized photocatalysts. Figure 4.2 illustrated the main characteristic peaks of g-C₃N₄ and BiPO₄ that were present in the samples which contained the elements: Bi, P, O, C, N. It can observe the element C

exhibited stronger peaks with the increase of $g-C_3N_4$ content. This is attributed to the successful doping between BiPO₄ and $g-C_3N_4$ that allowed element C from $g-C_3N_4$ to be present inside the modified composite, resulting in higher element C content and exhibiting a more significant peak. These main characteristic peaks indicated the successful doping of BiPO₄/g-C₃N₄ using the simple and facile synthesis method.

Figure 4.1: FESEM images of as-synthesized photocatalysts: (a) BiPO₄, (b) g-C₃N₄, (c) 0.5wt% BiPO₄/g-C₃N₄, (d) 2.5wt% BiPO₄/g-C₃N₄, (e-f) HRTEM of 2.5wt% BiPO₄/g-C₃N₄.

Figure 4.2: Result of EDX analysis: (a) g-C₃N₄, (b) BiPO₄, (c) 0.5wt% BiPO₄/g-C₃N₄, (d), 1.5wt% BiPO₄/g-C₃N₄, and (e) 2.5wt% BiPO₄/g-C₃N₄.

Figure 4.3 depicts the XRD spectra of pure BiPO₄ and various ratios of BiPO₄/g-C₃N₄. The pure BiPO₄ detected the presence of peaks at 18.1° (011), 20° (-111), 25.41° (111), 26.53° (200), 29.50° (120), 31.30° (012), 34.14° (-202), 41.85° (211) and 48.68° (212) respectively (JCPDS no.15-0767) (Zhang

et al., 2014). This inferred that the process of heating at 70°C does not change the lattice structure of BiPO₄ during the doping process. However, peaks for g- C_3N_4 were not detected in the composite which may be due to its low concentration of g-C₃N₄ in the composite samples (Pan and Xu, 2013).

Figure 4.3: XRD pattern of (a) BiPO₄, (b) 0.5wt% BiPO₄/g-C₃N₄, (c) 1.5wt% BiPO₄/g-C₃N₄ (d) 2.5wt% BiPO₄/g-C₃N₄.

Figure 4.4 depicted the FTIR spectra for each as-prepared photocatalysts. The PO₄ group presence in BiPO₄ has an intense band centred at 1016 cm⁻¹ due to the v₃ stretching vibration. The band representing the presence of δ (O-P-O) and v₄ (PO₄) were centred at 592 and 543 cm⁻¹, respectively (Romero et al., 1994). The absorption band centred at 3481 and

1615 cm⁻¹ represents the v(O-H) and δ (H-O-H) of water molecules, respectively (Liu et al., 2015). The peaks at 1237 and 1315 cm⁻¹ are well correlated with the CN heterocycles stretching modes indicating the presence of g-C₃N₄ in the composite (Liao et al., 2012). In addition, the existence of all leading characteristic absorption bands of g-C₃N₄ and BiPO₄ in BiPO₄/g-C₃N₄ photocatalyst suggested no structural change of g-C₃N₄ during the doping process. The results obtained from FTIR analysis concluded that the spectra of both BiPO₄ and g-C₃N₄ were well detected indicating the two components were of harmonious coexistence. This result is correlated well with the FESEM and HRTEM images.

Figure 4.4: FTIR spectra of the as-synthesized photocatalysts: (a) g-C₃N₄, (b) BiPO₄, (c) 0.5wt% BiPO₄/g-C₃N₄, (d) 1.5wt% BiPO₄/g-C₃N₄, and (e) 2.5wt% BiPO₄/g-C₃N₄.

XPS analysis was conducted to investigate the elemental composition and surface composition of as-synthesized photocatalysts. The chemical elements P2p, Bi4f, O1s, C1s and N1s are shown in Figure 4.5. Two peaks of P2p displayed in Figure 4.5(b) are situated at 136.19 eV and 138.47 eV, corresponding to the doublet of P 2p_{1/2} and P 2p_{3/2}, respectively (Chen et al., 2015). This depicted that phosphorus is in the pentavalent oxidation state. Bi4f element was presented in Figure 4.5(c), showing binding energy at 165.12 eV and 162.82 eV attributed to Bi $4f_{7/2}$ and Bi $4f_{5/2}$ designated the presence of Bi in trivalent oxidation state (Ran et al., 2019). For O1s element of BiPO₄, the binding energy at 535.79 eV and 533.38 eV portrayed in Figure 4.5(d) corresponding to the adsorbed -OH group and the adsorbed oxygen (Li et al., 2014; Zou et al., 2015; Ma et al., 2018; Liang et al., 2018). Furthermore, the binding energies of C1s are located at 289.79 eV, 288.44 eV, and 285.85 eV, where the peaks indicated the presence of graphitic carbon (C-C), C-NH₂ on the fringes of the triazine ring and sp² hybrid C atom bonded to a nitrogencontaining aromatic skeleton ring (N-C=N), respectively (Guo et al., 2016; Dou et al., 2018; Cui et al., 2020; Liao et al., 2020). Meanwhile, the N1s element is found to be the peaks in Figure 4.5(f) at binding energies 402.95 eV, 404.41 eVand 405.63 eV indicated the presence of sp^2 hybrid aromatic N atom (C-N=C), N-H and N-N bonding, respectively (Tan et al., 2017). The XPS analysis results further confirm the successful synthesis of BiPO₄/g-C₃N₄ nanocomposite.

Figure 4.5: XPS spectra of the as-synthesized photocatalysts.

The UV-DRS spectra of BiPO₄ and modified BiPO₄ photocatalysts are shown in Figure 4.6. This is due to the incorporation of $g-C_3N_4$ that has a narrow energy bandgap (2.7eV) that allows absorption of light in the visible light range which attributed to the promotion of visible light absorption in the solar spectrum and higher photocatalytic ability in the presence of sunlight irradiation (He et al., 2018). It can be observed that there is a slight red shift towards the visible light region due to the incorporation of g-C₃N₄ as compared to pure BiPO₄. This strongly indicates the enhanced light absorbance ability of BiPO₄ that will lead to a reduction in bandgap energy. The bandgap energy for BiPO₄ 0.5wt% BiPO₄/g-C₃N₄, 1.5wt% BiPO₄/g-C₃N₄, and 2.5wt% BiPO₄/g-C₃N₄ were 3.76, 3.65, 3.59, 3.47 eV, respectively. Referring to Figure 4.7, the incorporation of g-C₃N₄ has enhanced the light absorbance ability of BiPO₄ and reduces its band energy. This will lead to an enhanced photocatalytic activity attributed to the increased charge carrier's life span.

Figure 4.6: UV-DRS spectra of as-prepared (a) BiPO₄, (b) 2.5wt% BiPO₄/g-C₃N₄, (c) 0.5wt% BiPO₄/g-C₃N₄, and (d) 1.5wt% BiPO₄/g-C₃N₄.

Figure 4.7: Bandgap energy of (a) BiPO₄, (b) 0.5wt% g-C₃N₄/BiPO₄, (c) 1.5wt% g-C₃N₄/BiPO₄, and (d) 2.5wt% g-C₃N₄/BiPO₄.

Figure 4.8 shows the time-resolved photoluminescence spectra of the photocatalysts. At 2.5ns to 10ns time region, it is observed that 2.5wt% BiPO₄/g-C₃N₄ exhibited a longer charge carrier lifetime, whereas pure BiPO₄ possessed the shortest charge carrier lifetime. This proves that the incorporation of g-C₃N₄ has drastically prolonged the lifespan of the charge carrier by reduces its bandgap energy. This analysis indicated that 2.5wt% BiPO₄/g-C₃N₄ composite samples had the best photocatalytic performance as it possessed the lowest recombination rate. It can be concluded that the photodegradation process was governed by electron-hole pairs separation. According to Figure 4.6, 1.5wt% BiPO₄/g-C₃N₄ shows better light absorption and produced the most

electron-hole pairs, but due to its higher recombination rate as compare to 2.5wt% BiPO₄/g-C₃N₄, 1.5wt% g- BiPO₄/g-C₃N₄ resulted in low degradation efficiency. The mechanism of improved photocatalytic performance of modified photocatalyst was built to portray the main charge transfer activities between g-C₃N₄ and BiPO₄. In the presence of light solar irradiation, the photoexcited electron will bridge through the energy bandgap of g-C₃N₄ forming an electron-hole pair. The photogenerated electrons at the conduction band of g-C₃N₄ are transferred to the conduction band of BiPO₄ whereas the holes generated at the valence band of BiPO₄ will be donated to the valence band of g-C₃N₄. In this situation, the separation of electron-hole pairs was enhanced. The electron at the conduction band of BiPO₄ will reduce the O₂ adsorbed to \bullet O₂⁻ that will decompose the pollutants. Meanwhile, pollutants are directly oxidized by the holes at the valence band of g-C₃N₄. Consequently, modified BiPO₄/g-C₃N₄ composite exhibits better photocatalytic performance than pure BiPO₄.

Figure 4.8: TRPL spectra of (a) BiPO₄, (b) 0.5wt% BiPO₄/g-C₃N₄, (c) 1.5wt% BiPO₄/g-C₃N₄, (d) 2.5wt% BiPO₄/g-C₃N₄.

4.1.2 Evaluation of sustainable sunlight photocatalytic performance of 2,4-DCPs by BiPO4/g-C₃N₄.

The results of photodegradation experiments and control experiments of 20ppm 2,4-DCPs on as-prepared modified BiPO₄ and pure BiPO₄ under sunlight irradiation were shown in Figure 4.9. 2.5wt% BiPO₄/g-C₃N₄ attained complete removal in 90 mins under sunlight irradiation whereas pure BiPO₄ only achieved 41% degradation of 2,4-DCPs in the same duration of sunlight irradiation. This followed by 1.5wt% BiPO₄/g-C₃N₄ and 1.0wt% BiPO₄/g-C₃N₄ that achieved complete removal in 150 mins and 240 mins respectively. The enhanced performance of 2.5wt% BiPO₄/g-C₃N₄ is mainly contributed by the

presence of g-C₃N₄ that enhanced the charge carrier separation and vigorously generated active electrons and holes to form active radicals (Fan, Wang, and Chen, 2014). Moreover, the incorporation of g-C₃N₄ also contributed to the higher surface area of the composite that promotes adsorption sites and increased the pollutant molecules' contact that resulted in an enhanced photodegradation ability (Singh and Basu, 2020). Meanwhile, the control experiments with the absence of any photocatalysts show only a minimum (~2%) degradation of 2,4-DCPs indicating that this pollutant is a non-photosensitising nature where it is not able to degrade with the absence of photocatalysts.

Figure 4.9: Photodegradation of 2,4-DCP using as-synthesized photocatalysts in the presence of sunlight.

The photodegradation rate of 2,4-DCPs fits well with the pseudo-firstorder kinetic reaction. The following equation were applied:

$$\ln \ln \left(\frac{c}{c_0}\right) = k \times t \tag{1}$$

Where *k* is the apparent rate constant of first-order reaction (min⁻¹), *C* is the pollutant concentration at a specific reaction time, *Co* is the initial concentration of the pollutant, *t* is the reaction time (Xu et al., 2012). Figure 4.10 depicts the calculated apparent rate constants of BiPO₄, 0.5wt% BiPO₄/g-C₃N₄, 1.5wt% BiPO₄/g-C₃N₄ and 2.5wt% BiPO₄/g-C₃N₄ were 0.17755, 0.25416, 0.49340 and 0.84313 h⁻¹, respectively. The rate constant of 2.5wt% BiPO₄/g-C₃N₄ is 4.7 times higher than pure BiPO₄. It can be concluded that the introduction of g-C₃N₄ promoted visible light absorption, prolonged the lifetime of charge carriers and hindered the recombination rate of photogenerated electrons as these positive effects were proved by Tauc's equation, TRPL analysis, and UV-DRS.

Figure 4.10: The kinetic study of 2,4-DCPs photodegradation using BiPO4, 0.5wt% g-C₃N₄/BiPO4, 1.5wt% g-C₃N₄/BiPO4, and 2.5wt% g-C₃N₄/BiPO4.

The mechanism of 2,4-DCP photodegradation is investigated through a scavenging analysis. This is to determine the active radicals by observing the effect of some radical scavengers on photodegradation. Figure 4.11 shows the scavenging analysis by using Isopropyl alcohol (IPA) as the •OH scavenger, benzoquinone (BQ) as the •O₂ scavenger, Ethylenediamine Tetraacetic acid disodium salt (EDTA) as the h⁺ scavenger and dimethyl sulfoxide (DMSO) as electron scavenger. It is clear that photodegradation was slightly suppressed by IPA and has no significant changes in the presence of DMSO which concluded •OH and radical did not hold an essential role in the photocatalytic degradation

of 2,4-DCP. However, the photodegradation rate is heavily suppressed with the addition of EDTA and BQ. This indicates that h^+ and $\bullet O_2^-$ held the dominant role in photodegradation (Xia et al., 2017). In addition, h^+ is essential for hole oxidation that enhances the photocatalytic activity of the photocatalyst (Ilisz and Dombi, 1999). Meanwhile, $\bullet O_2^-$ plays an important role in the photodegradation of the phenolic compound as the superoxide radicals attack specifically the aromatic rings with low electronic density (Palominos et al., 2008). The presence of e- is vital for the production of superoxide radicals generated by the reaction between e- and dissolved oxygen of water (Yan et al., 2013). Figure 4.12 shows the electron mobility of the photodegradation of 2,4 DCPs. The scavenging analysis is further justified with the edge potential calculation of semiconductor at point of zero charges using Tauc's equations:

$$E_{VB} = X - E_C + 0.5E_g \tag{2}$$

$$E_{CB} = E_{VB} - E_g \tag{3}$$

Where E_C is the energy of free electrons (~4.5 eV vs NHE); E_{CB} and E_{VB} are the band edge potential for conduction band (CB) and valence band (VB); X is the electronegativity of semiconductor; Eg is the bandgap energy of semiconductor. The X values of BiPO₄ and g-C₃N₄ are 6.49 eV and 4.64 eV, respectively (Zhao, Wang, and Chen, 2014; Leong et al., 2015). The CB and VB edge potential of BiPO₄ are calculated at 0.33eV and 3.65eV, respectively and the CB and VB edge potential of g-C₃N₄ is calculated at -1.21eV and 1.49eV respectively. The unique ability of g-C₃N₄ in harvesting visible light and low bandgap energy enable it to generate active free electrons and holes when excited with sunlight irradiation (Sim et al., 2020). The free electrons will be excited from the VB to the CB of g-C₃N₄ and then related to the CB of BiPO₄ as the edge potential of g-C₃N₄ (-1.21eV) was more negative than that of BiPO₄ (0.33eV). This excitation formation also contributed to the enhancement of electron-hole pairs separation because the free electrons are not trapped at the CB of BiPO₄. Meanwhile, at the VB level of g-C₃N₄ (1.49eV) which was less positive than the standard redox potential of OH^{-/}•OH (+1.99 eV vs. NHE) and H₂O/•OH (+2.38 eV vs NHE) leads to the holes left behind at the VB of g-C₃N₄ to directly oxidize 2,4-DCPs without reacting with H₂O to produce •OH radicals (Zhao et al., 2012; Ni et al., 2016). Moreover, the CB of BiPO₄ is less negative than the standard redox potential of O₂/•O₂⁻ (-0.33 eV vs. NHE) (Leong et al., 2015b). Consequently, O₂ adsorbed on the surface was reduced to form •O₂⁻ radicals that are responsible for the photodegradation of 2,4-DCPs.

Figure 4.11: Scavenging test conducted on as-synthesized photocatalysts.

Figure 4.12: Proposed electron and hole mobility of the photodegradation of 2,4 DCPs under sunlight irradiation.

Recycle test was carried out to determine the stability and reusability of the as-synthesized samples using 2.5wt% BiPO₄/g-C₃N₄ that has the best photodegradation efficiency. Figure 4.13 displays the total photodegradation efficiency of the initial 2.5wt% BiPO₄/g-C₃N₄ together with its recycled activities. The degradation efficiency decreased from 100% to 73.22% and 76.15%. It can be observed from the Figure 4.13 4th cycle of recycling test has better result compare to 3rd cycle. This is attributed to the low light intensity on the day of 3rd cycle's experiment, the light intensity of photocatalytic evaluation was monitored and recorded using lux meter. The slight loss in photodegradation could occur due to the loss of photocatalyst during washing after centrifuging for each recycled test (Chan and Barteau, 2005). Therefore, it proved that the synthesized composites are stable materials.

Figure 4.13: Stability test for prepared photocatalysts.

4.2 **BiPO4 modified with Silver Nanoparticles (Ag)**

Introduction of Ag nanoparticles to BiPO₄ is via facile photodeposition method. The selection of silver as a dopant for BiPO₄ modification is due to its plasmonic characteristic that can broaden the solar spectrum absorption and the ability to facilitate electron-hole pairs efficiently.

4.2.1 Characterization of BiPO₄ modified with Ag Nanoparticles

The morphological and structural analysis of pure BiPO₄ and Ag modified BiPO₄ were investigated through FESEM, HRTEM and EDX. Figure 4.14(a-b) shows the FESEM images of 1.0wt% Ag/BiPO₄, indicating the doping of Ag on the surface of BiPO₄. Figure 4.14(c-e) are the HRTEM images of modified nanocomposites. It illustrated the nanocubic structure of BiPO₄. The presence of the dark spheres indicated the successful doping of Ag nanoparticles on the surface of BiPO₄. The EDX analysis further confirms the presence of element Bi, P, O, and Ag in as-prepared nanocomposite indicated the success of doping of Ag nanoparticles through the sustainable photodeposition method. The result of EDX analysis was shown in Figure 4.15.

Figure 4.14: (a-b) FESEM images and (c-e) HRTEM of 1.0wt% Ag/BiPO₄.

Figure 4.15: EDX analysis on 5.0wt% Ag/BiPO4.

The determination of the crystalline phase of the composites was carried out via X-ray powder diffraction. Figure 4.16 depicted the XRD patterns of BiPO₄ and Ag/BiPO₄ composites with different Ag weight percentage loading (1.0wt% Ag/BiPO₄, 3.0wt% Ag/BiPO₄, 5.0wt% Ag/BiPO₄). Referring to Figure 4.16, the presence of peaks at 18.1° (011), 20° (-111), 25.41° (111), 26.53° (200), 29.50° (120), 31.30° (012), 34.14° (-202), 41.85° (211) and 48.68° (212) planes show the formation of BiPO₄. (JCPDS no.15-0767) (Zhang et al., 2014). It can be observed that there is no shift in the diffraction peak of pure BiPO₄ after the incorporation of Ag nanoparticles. This deduced that doping of Ag onto BiPO₄ with 70°C heating does not affect the lattice structure of BiPO₄. However, the presence of the diffraction peaks for Ag nanoparticles was not detected which might be due to the low Ag weight percentage loading.

Figure 4.16: XRD diffraction pattern of (a) BiPO₄, (b) 1.0wt% Ag/BiPO₄, (c) 3.0wt% Ag/BiPO₄, (d) 5.0wt% Ag/BiPO₄.

FTIR analysis was conducted to determine the presence of the functional group in BiPO₄ and Ag/BiPO₄. Figure 4.17 shows the FTIR spectra for pure BiPO₄ and Ag/BiPO₄. The PO₄ group presence in BiPO₄ has an intense band centred at 1016 cm⁻¹ due to the v₃ stretching vibration. The band representing the presence of δ (O-P-O) and v₄ (PO₄) were centred at 592 and 543 cm⁻¹, respectively (Romero et al., 1994). The absorption band centred at 3481 and 1615 cm⁻¹ represents the v(O-H) and δ (H-O-H) of water molecules, respectively (Liu et al., 2015). According to Figure 4.17, all characteristic peaks of BiPO₄ are the presence in Ag/BiPO₄ deduced that BiPO₄ had not suffered the loss of its character due to the introduction of Ag nanoparticles.

Figure 4.17: FTIR spectra for (a) BiPO4, (b) 1.0wt% Ag/BiPO4, (c) 3.0wt% Ag/BiPO4 and (d) 5.0wt% Ag/BiPO4.

XPS analysis was carried out to determine further the elemental composition and surface composition of as-prepared photocatalysts. The chemical elements P2p, Bi4f, O1s, and Ag3d are shown in Figure 4.18. Two peaks of P2p shown in Figure 4.18(b) are situated at 136.19 eV and 138.47 eV, corresponding to the doublet of P $2p_{1/2}$ and P $2p_{3/2}$, respectively (Chen et al., 2015). This indicates that phosphorus is in the pentavalent oxidation state. Meanwhile, the Bi4f element was revealed in Figure 4.18(c) with binding energy located at 165.12 eV and 162.82 eV, attributed to Bi $4f_{7/2}$ and Bi $4f_{5/2}$ confirming the presence of Bi in trivalent oxidation state (Ran et al., 2019). Furthermore, the binding energy of O1s element is discovered at 535.79 eV and 533.38 eV displayed in Figure 4.18(d) corresponding to the adsorbed -OH group

and the adsorbed oxygen (Li et al., 2014; Zou et al., 2015; Ma et al., 2018; Liang et al., 2018). Figure 4.18(e) illustrated the peaks for Ag3d. The peaks are located at 378.47 eV and 372.45 eV corresponding to Ag $3d_{5/2}$ and Ag $3d_{3/2}$, respectively. Ag 3d region has a well-separated spin-orbit component with the difference of an estimated 6.0 eV between Ag $3d_{5/2}$ and Ag $3d_{3/2}$, indicating the existence of zerovalent Ag (Zhang et al., 2013). The XPS results proved that Ag nanoparticles were successfully deposited on the BiPO₄.

Figure 4.18: XPS spectra for 5.0wt% Ag-BiPO₄.

UV-DRS spectra of BiPO₄ and different weight percentages of Ag/BiPO₄ nanocomposites are displayed in Figure 4.19. Strong absorbance can be observed in the region 400-600nm. This is contributed by the superior SPR characteristic of Ag nanoparticles that enhance the light absorbance, especially

under the visible light region. When Ag nanoparticles are irradiated by solar light, it will harness energy from the visible light region and trigger the occurrence of surface plasmon oscillation of metal electrons. The metal electron density will be polarized to one side and oscillates in resonance with the light frequency resulting in the generation of localized surface plasmon resonance (LSPR). Electrons from CB of Ag nanoparticles will accumulate energy from the decay of LSPR producing highly energetic hot electrons which will be donated to BiPO₄, contributing to enhanced electron-hole pairs generation. The above condition resulted in an increment of quantum yield leading to photocatalytic processes (Bumaidad and Madkour, 2014; Fong and Yung, 2013; Paul and Giri, 2018). In addition, the difference in Fermi level caused the transfer of electrons to favor Ag nanoparticles, which make Ag an electron trapping center. This prevents early recombination of photogenerated electrons at the CB of BiPO₄ with the hole in VB of BiPO₄. The transferring of electrons contributes to high electron-hole pairs separation efficiency, prolonging the charge carrier lifetime, improving the photodegradation of pollutants. Furthermore, the presence of Ag nanoparticles on the surface of BiPO₄ can be confirmed as higher Ag loading resulted in better light absorbance at 400-600 nm. Thus, it narrows its bandgap energy of BiPO₄. Figure 4.20 depicted the bandgap energies of BiPO₄ and the different weight percentages of Ag/BiPO₄ calculated using Tauc's Equation (Ye et al., 2017). The estimated bandgap energy of BiPO₄, 1.0wt% Ag/BiPO₄, 3.0wt% Ag/BiPO₄, and 5.0wt% Ag/BiPO₄ are 3.88 eV, 3.85 eV, 3.82 eV and 3.75 eV, respectively. Hence, doping of Ag nanoparticles provides LSPR effect and enhance generation of active radicals that yield better photocatalytic performance (Huang, Wu and Lin, 2017).

Figure 4.19: Uv-vis absorption spectra of (a) 5.0wt% Ag/BiPO4, (b) 3.0wt%

Ag/BiPO₄, (c) 1.0wt% Ag/BiPO₄ and (d) BiPO₄.

Figure 4.20: Energy bandgap of (a) BiPO₄, (b) 1.0wt% Ag/BiPO₄, (c) 3.0wt% Ag/BiPO₄ and (d) 5.0wt% Ag/BiPO₄.

TRPL analysis was carried out to study the charge carrier lifetime of BiPO₄ and Ag/BiPO₄. Figure 4.21 indicated that BiPO₄ exhibited the shortest charge carrier lifetime, whereas 5.0wt% Ag/BiPO₄ possessed the highest charge carrier lifetime. The prolonged lifespan of the charge carrier is due to the incorporation of plasmonic noble metal, Ag. The LSPR effect of Ag nanoparticles enhances the absorbance of visible light which allow higher generation of electron-hole pair for better photodegradation of pollutants (Wu et al., 2017). Apart from that, the heterostructure interface between Ag nanoparticles and BiPO₄ hinders the recombination rate of electron-hole pairs. Ag nanoparticles on the surface of BiPO₄ act as electron trapping centers, which hinder the recombination with the generated holes at the surface of BiPO₄ that resulted in a higher yield of generated free radicals. The generated free radicals will then be responsible for the degradation of 2,4-DCPs under the sunlight activation. (Liu et al., 2011). Thus, doping of Ag nanoparticles onto BiPO₄ allows better visible light absorption and hinders the recombination of electrons and holes.

Figure 4.21: TRPL spectra of pure BiPO₄, 1.0wt% Ag/BiPO₄, 3.0wt% Ag/BiPO₄, and 5.0wt% Ag/BiPO₄.

4.2.2 Evaluation of sustainable sunlight photocatalytic performance of different weight percentages of Ag/BiPO₄ on the degradation of 2.4-DCPs.

The degradation of 2,4-DCPs in the presence of sunlight irradiation was conducted to study the photocatalytic degradation efficiency of modified BiPO₄ with Ag nanoparticles. Figure 4.22 displayed the photodegradation result of BiPO₄, 1.0wt% Ag/BiPO₄, 3.0wt% Ag/BiPO₄, and 5.0wt% Ag/BiPO₄. The dark reaction was carried for 24 h to attain a complete adsorption-desorption equilibrium. According to Figure 4.20, Ag/BiPO₄ possessed better photodegradation ability as compare to pure BiPO₄ which is due to the presence of Ag nanoparticles that enhanced the visible light absorbance and retarded the recombination of the electron-hole pairs. In addition, the almost negligible degradation for blank indicated that 2,4-DCPs is a non-photosensitising pollutant and the presence of as-prepared photocatalysts fully carried out the photodegradation. The efficiency of 2,4-DCPs photodegradation of the experiment was in the following sequence: 5.0wt% Ag/BiPO₄ > 3.0wt% Ag/BiPO₄, > 1.0wt% Ag/BiPO₄ > BiPO₄. 5.0wt% Ag/BiPO₄ achieved 76.17% photodegradation efficiency which is 1.3 times high than the photodegradation efficiency of BiPO₄. This photocatalytic evaluation further confirms the importance of Ag doping that provides visible light absorption which enhances the photocatalytic performance of BiPO₄.

According to the photocatalytic degradation of 2,4-DCPs, Ag/BiPO₄ showed promising results that correlated well with the characterization analysis findings. Doping of Ag nanoparticles onto BiPO₄ allows a better absorbance of visible light in accordance with UV-DRS. This enhancement allows BiPO₄ to generate a higher amount of electron-hole pairs that enable better degradation of pollutants due to the massive production of free radicals. Furthermore, the generated electrons from BiPO₄ are then further trapped by the presence of Ag nanoparticles due to the formation of the Schottky junction between the Ag nanoparticle and BiPO₄ surface. In addition, the result of 5.0wt% Ag/BiPO₄ having the best photodegradation efficacy in comparison with other dopant loading and pure BiPO₄ is pursuant to TRPL characterization results as 5.0wt% Ag/BiPO₄ possessed the highest charge carrier lifetime leading to a high yield of free radicals formation. Hence, the incorporation of Ag nanoparticles is

favourable to the overall photocatalytic performance by broadening solar spectrum absorbance and facilitating efficient charge separation (Felukar et al., 2014; Zhang et al., 2013; Huang, Wu, and Lin et al., 2017).

Figure 4.22: (a) Dark absorption and (b) Photodegradation of 2,4-DCP using BiPO₄,1.0wt% Ag/BiPO₄, 3.0wt% Ag/BiPO₄, and 5.0wt% Ag/BiPO₄.

A kinetic study was conducted in order to have a better insight into the photocatalytic efficiency of Ag/BiPO₄, the photodegradation rate of 2,4-DCPs matched well with pseudo-first-order kinetic reaction. Figure 4.23 displays the rate constants for 2,4-DCPs degradation by BiPO₄, 1.0wt% Ag/BiPO₄, 3.0wt% Ag/BiPO₄, and 5.0wt% Ag/BiPO₄ were estimated to be 0.14549, 0.18759, 0.17354 and 0.23379 h⁻¹, respectively. It can be observed that the rate constant

for 5.0wt% Ag/BiPO₄ nanocomposite was approximately 1.6 times that BiPO₄. The result of the kinetic study is in accordance with TRPL result, UV-DRS and Tauc's equation, which further confirm doping of Ag nanoparticles enables the broadening of the visible light absorption spectrum, efficient electron-hole pairs separation and narrowing of energy bandgap.

Figure 4.23: Kinetic studies of 2,4-DCPs photodegradation with BiPO₄, 1.0wt %Ag/BiPO₄, 3.0wt %Ag/BiPO₄, and 5.0wt %Ag/BiPO₄.

The mechanism of 2,4-DCPs photodegradation by Ag/BiPO₄, was studied through the scavenging test to determine the active radicals by observing the effect of different radical scavengers. The scavenging reagents that were used to inhibit electron (e), hydroxyl radicals (•OH), holes (h⁺) and superoxide anion radicals (${}^{\bullet}O_{2}{}^{-}$) were DMSO, IPA, EDTA and BQ, respectively. Figure 4.24 displayed the effects of different scavenging reagents on the photodegradation of 2,4-DCPs. Referring to Figure 4.24, the active radicals that play the dominant roles in the degradation of 2,4-DCPs for Ag/BiPO₄ are ${}^{\bullet}O_{2}{}^{-}$ and ${}^{\bullet}OH$. It is clear that the addition of both BQ and IPA heavily suppressed the photodegradation ability of Ag/BiPO₄. Figure 4.25 depicted the electron mobility of the photodegradation of 2,4-DCPs using Ag/BiPO₄. The scavenging analysis is further justified with the edge potential calculation of semiconductor at point of zero charges using the following equations:

$$E_{VB} = X - E_c + 0.5E_a \tag{4}$$

$$E_{CB} = E_{VB} - E_g \tag{5}$$

Where E_C is the energy of free electrons (~4.5 eV vs normal hydrogen electrode (NHE)); E_{CB} and E_{VB} are the band edge potential for conduction band (CB) and valence band (VB); X is the electronegativity of semiconductor; and Eg is the bandgap energy of semiconductor. The X value of BiPO₄ is 6.49 eV (Li et al., 2015). The CB and VB edge potential of BiPO₄ are calculated at -0.18eV and 4.17eV, respectively. Ag nanoparticle has a Fermi level ($E_{F(Ag)} = 0.4$ eV vs. NHE) (Kumat, 2007), that serves as a decent electron trapping center to facilitating efficient electron transfer from both surface and interior of BiPO₄ under UV light irradiation (Bi et al., 2012). When Ag/BiPO₄ was exposed to sunlight irradiation, the photoexcited electrons will bridge through the bandgap energy from VB to CB, generating electron-hole pairs. Subsequently, electrons in CB of BiPO₄ will be transferred to Ag nanoparticles which act as electron

trapping centers due to Ag nanoparticles having less negative assigned Fermi level (E_f) than CB of BiPO₄. Furthermore, the transfer of an electron from CB of BiPO₄ to Ag nanoparticles will accelerate by the internal electric field (Zhang et al., 2013). This is possible due to the formation of the Schottky junction between the BiPO₄ and Ag. Therefore, this phenomenon leads to a lower recombination rate of electron-hole pairs and increment of a photoexcited electron lifetime, contributing to a high yield of photocatalytic efficacy. Furthermore, the electrons at CB of BiPO₄ is less negative than the standard redox potential of O_2/O_2^- (-0.33 eV vs. NHE) leading to a reduction of O_2 absorbed on the surface to $\cdot O_2^-$ radicals. Apart from that, the potential level of aligned Fermi level of Ag nanoparticle was higher than the standard redox potential of O_2/O_2^- (Leong et al., 2015). Furthermore, Ag nanoparticles can harvest the light absorbance under the sunlight spectrum especially in the visible light region. Therefore, Ag nanoparticles do produce free electrons that will then react with the O_2 . Consequently, the O_2 absorbed on the surface was reduced to $\cdot O_2$ by Ag nanoparticles through interfacial electrons transfer processes. Both generation of $\cdot O_2^-$ radicals site was responsible for photodegradation of 2,4-DCPs and led to an enhanced photocatalysis performance. Meanwhile, VB level of BiPO₄ was more positive than the standard redox potential of OH^{-/}•OH (+1.99 eV vs. NHE) and H₂O/•OH (+2.38 eV vs NHE) (Zhao et al., 2012; Ni et al., 2016). Thus, the h+ at VB involved in the generation of •OH radicals via oxidation of OH^{-} and H_2O , which will assist in the degradation of 2,4-DCPs. Due to most of the free electrons generated by $BiPO_4$ are trapped by the Ag nanoparticles, the potential of recombination between the generated electrons and holes in BiPO₄ does not make it possible. Hence, the generated holes will

then react with H_2O and form active •OH radicals. Both the formation of • $O_2^$ and •OH radicals are the main species in enhancing the photodegradation of 2,4-DCPs under sunlight irradiation.

Figure 4.24: Scavenging test on photodegradation of 2.4-DCPs using Ag/BiPO4.

Figure 4.25: Proposed electron and hole mobility of photodegradation of 2,4-DCPs under sunlight irradiation.

The sustainable application of as-prepared nanocomposites is investigated through the recycling test to study the reusability and stability of the photocatalysts. Figure 4.26 shows the photodegradation of 2,4-DCP using 5.0wt% Ag/BiPO₄. The experiment was repeated 3 times by reusing the same photocatalysts. The photodegradation result of the repeated test showed decreased yet notable degradation efficiency as shown in Figure 4.26. The slight loss in photodegradation could occur due to the loss of photocatalyst during washing after centrifuging for each recycled test (Chan and Barteau, 2005). Thus, Ag modified BiPO₄ nanocomposites proved to have decent stability as photocatalysts.

Figure 4.26: Recycling Test of 5.0wt% Ag/BiPO₄ on photodegradation of 2,4-DCPs.

4.3 Product cost-benefit analysis

The cost-benefit analysis of photocatalyst synthesis was calculated solely for practical evaluation purposes of this project and comparison was made among each as-prepared photocatalyst. Comparison of cost with the commercial product was not carried out due to difference in pricing for raw materials, electricity utilization, equipment, production quantity and production quality. The electricity bill was evaluated under commercial tariff A category using 200kWh in a month as stated in Tenaga Nasional Berhad (2020) Tariff Book.

$$Electrcity \ consumption = RM \ 0.43 \ x \ Consumption \ per \ unit \ kWh$$
(6)

According to Table 4.1, 2.5wt% g-C₃N₄/BiPO₄ possesses the highest costbenefit value by saving 37.28% compared to other dopant loading weight percentages of g-C₃N₄/BiPO₄ and different dopant loading of Ag/BiPO₄. Hence, 2.5wt% g-C₃N₄/BiPO₄ is the best photocatalyst in comparison to other as-synthesized photocatalysts.

	BiPO ₄	0.5wt%	1.5wt%	2.5wt%	1.0wt%	3.0wt%	5.0wt%
		g-C3N4/BiPO4	g-C ₃ N ₄ /BiPO ₄	g-C ₃ N ₄ /BiPO ₄	Ag/BiPO4	Ag/BiPO ₄	Ag/BiPO4
Materials (RM)	8.50	8.52	8.56	8.64	8.52	8.56	8.60
Electric Consumption (RM)	9.44	18.77	18.77	18.77	18.74	18.74	18.74
Total Production Cost (RM)	17.94	27.29	27.33	27.41	27.26	27.3	27.34
Photocatalytic Efficiency after	41.06	55.21	77.23	100	30.39	25.54	33.71
90min (%)							
Total Cost per	43.70	49.43	35.39	27.41	89.70	106.89	81.10
photodegradation efficiency							
(RM)							
Cost Saved (RM)		-5.73	8.31	16.29	-46	-63.19	-37.4
Cost Saved (%)		-13.11	19	37.28	-105.26	-144.60	-85.58

 Table 4.1: Cost-benefit analysis of 2,4-DCP photodegradation using as-prepared photocatalysts for current study.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In summary, the objectives were achieved and proved in the current study. Pure BiPO₄ was successfully synthesized using a simple sol-gel route with bismuth (III) nitrate pentahydrate and ammonium dihydrogen phosphate as precursors. BiPO₄ was then modified using urea and silver nitrate, respectively as doping agents. BiPO₄/g-C₃N₄ was synthesized via a simple hydrothermal method whereas Ag/BiPO₄ was prepared through a facile photodeposition method. Each modification was carried out using different calculated dopant loading.

Different characterizations were conducted to investigate the physical and chemical properties of the as-synthesized nanocomposites. Different dopant loading of g-C₃N₄ and Ag nanoparticles were successfully deposited on BiPO₄. FESEM, EDX, HRTEM, FTIR and XRD analysis were used to prove dopant presence in as-synthesized nanocomposites. The optical properties and electron recombination efficiencies of BiPO₄/g-C₃N₄ and Ag/BiPO₄ were determined through UV-DRS and TRPL analysis.

The photocatalytic performance of BiPO₄/g-C₃N₄ and Ag/BiPO₄ were evaluated through photodegradation of 2,4-DCPs under sunlight irradiation. 2.5wt% BiPO₄/g-C₃N₄ and 5.0wt% Ag/BiPO₄ exhibited the highest photodegradation efficiencies. In a comparison of both modifications with different dopants, incorporation of g-C₃N₄ to BiPO₄ shows better improvement in terms of photodegradation efficiency. 2.5wt% BiPO₄/g-C₃N₄ performed four times better than pure BiPO₄ in 2,4-DCPs photodegradation. This is attributed to the superior characteristics of $g-C_3N_4$ which were proven by the UV-DRS and TRPL analysis. The narrow energy bandgap of g-C₃N₄ broadens the solar spectrum absorbance leading to massive generation of electron-hole pairs. Moreover, the unique polymeric nature of $g-C_3N_4$ allows multiple excitations of absorption of single-photon contributing to an effective generation of active radicals. According to an electron mobility study, the presence of $g-C_3N_4$ assists in facilitating photogenerated electrons, which in turn helps hinder the recombination rate of electron-hole pairs, enhancing the photodegradation of 2,4-DCPs.

The active radicals of BiPO₄/g-C₃N₄ and Ag/BiPO₄ were determined through a scavenging test. It was found out that photogenerated holes (h⁺) and superoxide anion (${}^{\circ}O_{2}^{-}$) held the dominant role in 2,4-DCPs photodegradation using BiPO₄/g-C₃N₄ whereas the main active radicals for Ag/BiPO₄ are hydroxyl (${}^{\circ}OH$) and ${}^{\circ}O_{2}^{-}$ radicals. Subsequently, the recycling test was conducted to evaluate the reusability and stability of both BiPO₄/g-C₃N₄ and Ag/BiPO₄ and found out that both as-synthesized nanocomposites still managed to achieve 70% and above of photodegradation even after 3 cycles. This research portrays $g-C_3N_4$ and Ag nanoparticles' ability to improve BiPO₄ for better photodegradation efficiency in the presence of solar irradiation. The outcome of this research will provide a potential novelty development for facile, green and sustainable photocatalysis of various organic pollutants, energy conversion and energy generation in the future. Last but not least, each of the objectives of this research is achieved.

5.2 Recommendations

In this research, the incorporation of $g-C_3N_4$ and Ag nanoparticles into BiPO₄ exhibited enhancement of 2,4-DCPs photodegradation in the presence of sunlight. However, the following recommendations are taken into considerations for future research works:

- i. Photo-remediation of real industrial wastewater and other categories of recalcitrant water pollutants, then evaluate the photodegradation efficiency.
- Application of as-synthesized nanocomposites into various materials such as filter membrane.
- Recyclability of as-synthesized nanocomposites in the large industrial wastewater treatment plant.

REFERENCES

Abirami, R., Senthil, T.S., Kalpana, S., Kungumadevi, L. and Kang, M., 2020. Hydrothermal synthesis of pure PbTiO₃ and silver doped PbTiO₃ perovskite nanoparticles for enhanced photocatalytic activity. *Materials Letters*, 279, pp. 128507.

Ahlborg, U.G., Thunberg, T.M. and Spencer, H.C., 1980. Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact, *Critical Reviews in Toxicology*, 7(1), pp. 1–35.

Ahn, M.Y., Dec, J., Kim, J.E. and Bollag, J.M., 2002. Treatment of 2,4-Dichlorophenol Polluted Soil with Free and Immobilized Laccase. *Journal of Environment Quality*, 31(5), pp. 1509.

Alalm, M.G., Samy, M., Ookawara, S. and Ohno, T., 2018. Immobilization of S-TiO₂ on reusable aluminum plates by polysiloxane for photocatalytic degradation of 2,4-dichlorophenol in water. *Journal of water process engineering*, 26, pp. 329-335.

Ali, W., Ullah, H., Zada, A., Muhammad, W., Ali, S., Shaheen, S., Alamgir, M.K., Ansar, M.Z., Khan, Z.U., Bilal, H. and Yap, P.S., 2020. Synthesis of TiO₂ modified self-assembled honeycomb ZnO/SnO₂ nanocomposites for exceptional photocatalytic degradation of 2, 4-dichlorophenol and bisphenol A. *Science of the Total Environment*, 746, pp. 141291.

Badia-Fabregat, M., Oller, I. and Malato, S., 2015. Overview on Pilot-Scale Treatments and New and Innovative Technologies for Hospital Effluent. *Hospital Wastewaters*, 60, pp. 209-230. Bellona, C. and Drewes, J.E., 2007. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study. *Water Research*, 41(17), pp. 3948-3958.

Bessière, A., Badot, J.C., Certiat, M.C., Livage, J., Lucas, V. and Baffier, N., 2001. Sol–gel deposition of electrochromic WO₃ thin film on flexible ITO/PET substrate. *Electrochimica Acta*, 46(13-14), pp. 2251-2256.

Bhishma P. P. and Kumar, A., 2015. Biodegradation of 2,4-dichlorophenol by Bacillus endophyticus strain: optimization of experimental parameters using response surface methodology and kinetic study, *Desalination and Water Treatment*, 57(34), pp. 15932-15940.

Bi, Y., Hu, H., Ouyang, S., Jiao, Z., Lu, G. and Ye, J., 2012. Selective growth of Ag₃PO₄ submicro-cubes on Ag nanowires to fabricate necklace-like heterostructures for photocatalytic applications. *Journal of Materials Chemistry*, 22(30), pp. 14847-14850.

Bumajdad, A. and Madkour, M., 2014. Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. *Physical Chemistry Chemical Physics*, 16(16), pp. 7146-7158. Chan, S.C. and Barteau, M.A., 2005. Preparation of highly uniform Ag/TiO₂ and Au/TiO₂ supported nanoparticle catalysts by photodeposition. *Langmuir*, 21(12), pp. 5588-5595.

Chang, Q., Yang, W., Li, F., Xue, C., Wang, H., Li, N., Liu, H., Yang, J. and Hu, S., 2020. Green, energy-efficient preparation of CDs-embedded BiPO₄ heterostructure for better light harvesting and conversion. *Chemical Engineering Journal*, 391, pp. 123551. Chen, D., Kuang, Z., Zhu, Q., Du, Y. and Zhu, H., 2015. Synthesis and characterization of CdS/BiPO₄ heterojunction photocatalyst. *Materials Research Bulletin*, 66, pp. 262-267.

Chen, Y. and Feng, L., 2020. Silver nanoparticles doped TiO₂ catalyzed Suzukicoupling of bromo aryl with phenylboronic acid under visible light. *Journal of Photochemistry and Photobiology B: Biology*, pp.111807.

Choi, K.J., Kim, S.G., Kim, C.W. and Park, J.K., 2006. Removal efficiencies of endocrine disrupting chemicals by coagulation/flocculation, ozonation, powdered/granular activated carbon adsorption, and chlorination. *Korean Journal of Chemical Engineering*, 23, 399-408.

Chong, M. N., Jin, B., Christopher Chow, W. K. and Chris, S., 2010. Recent Development in photocatalytic water treatment technology: A review. *Water Research*, 44, pp. 2997-3027.

Choquette-Labbe, M., Shewa, W.A., Lalman, J.A. and Shanmugam, S.R., 2014. Photocatalytic degradation of phenol and phenol derivatives using a nano-TiO₂ catalyst: Integrating quantitative and qualitative factors using response surface methodology. *Water*, 6(6), pp. 1785-1806.

Coronado, J.M., Fresno, F., Hernández-Alonso, M.D. and Portela, R., 2013. Design of advanced photocatalytic materials for energy and environmental applications. Springer, London.

Crini, G. and Lichtfouse, E., 2019. Advantages and disadvantages of techniques used for wastewater treatment. *Environmental Chemistry Letters*, 17, pp. 145-155.

Cui, W., Chen, L., Sheng, J., Li, J., Wang, H., Zhou, Y., Sun, Y. and Dong, F., 2020. The pivotal roles of spatially separated charge localization centers on the

moleculer activation and photocatalysis mechanism. *Applied Catalysis B: Environmental*, 262, pp. 118251.

Cui, Y., Zhang, G., Lin, Z. and Wang, X., 2016. Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation, *Applied Catalysis B: Environmental*, 181, pp. 413-419. Czaplicka, M., 2004. Sources and transformations of chlorophenols in the natural environment, *Science of the Total Environment*, 322(1–3), pp. 21–39.

Dawoud, T.M., Pavitra, V., Ahmad, P., Syed, A. and Nagaraju, G., 2020. Photocatalytic degradation of an organic dye using Ag doped ZrO₂ nanoparticles: Milk powder facilitated eco-friendly synthesis. *Journal of King Saud University-Science*, 32(3), ppl 1872-1878.

Denchak, M., 2018. *Water Pollution: Everything You Need to Know* [Online]. Available at: <u>https://www.nrdc.org/stories/water-pollution-everything-you-need-know</u> [Accessed:3 December 2020]

Deng, Y., Feng, C., Tang, L., Zeng, G., Chen, Z. and Zhang, M., 2019. Nanohybrid Photocatalysts for Heavy Metal Pollutant Control, *Nanohybrid and Nanoporous Materials for Aquatic Pollution Control*, pp. 125–153.

Dolar, D., Gros, M., Rodriguez-Mozaz, S., Moreno, J., Comas, J., Rodriguez-Roda, I. and Barcelo, D., 2012. Removal of emerging contaminants from municipal wastewater with an integrated membrane system. *Journal of Hazardous Materials*, 239-240, pp. 64-69.

Dou, H., Long, D., Zheng, S. and Zhang, Y., 2018. A facile approach to synthesize graphitic carbon nitride microwires for enhanced photocatalytic H₂ evolution from water splitting under full solar spectrum. *Catalysis Science & Technology*, 8(14), pp. 3599-3609.

Fong, K.E. and Yung, L.Y.L., 2013. Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. *Nanoscale*, 5(24), pp. 12043-12071.

Fulekar, M.H., Singh, A., Dutta, D.P., Roy, M., Ballal, A. and Tyagi, A.K., 2014. Ag incorporated nano BiPO_{4:} sonochemical synthesis, characterization and improved visible light photocatalytic properties. *Rsc Advances*, 4(20), pp. 10097-10107.

Geioushy, R.A., El-Sheikh, S.M., Azzam, A.B., Salah, B.A. and Farida, M., 2020. One-pot fabrication of BiPO₄/Bi₂S₃ hybrid structures for visible-light driven reduction of hazardous Cr (VI). *Journal of hazardous materials*, 381, pp. 120955.

Gershon, T., Shin, B., Bojarczuk, N., Hopstaken, M., Mitzi, D.B. and Guha, S., 2015. The role of sodium as a surfactant and suppressor of non-radiative recombination at internal surfaces in Cu₂ZnSnS₄. *Advanced Energy Materials*, 5(2), pp. 1400849.

Ghattavi, S. and Nezamzadeh-Ejhieh, A., 2020. GC-MASS detection of methyl orange degradation intermediates by AgBr/g-C₃N₄: Experimental design, bandgap study, and characterization of the catalyst. *International Journal of Hydrogen Energy*, 45(46), pp. 24636-24656.

Ghazal, S., Akbari, A., Hosseini, H.A., Sabouri, Z., Forouzanfar, F., Khatami, M. and Darroudi, M., 2020 Biosynthesis of silver-doped nickel oxide nanoparticles and evaluation of their photocatalytic and cytotoxicity properties, *Applied Physic A*, 126, pp. 480.

Gore, A.C., Crews, D., Doon, L.L., Merrill, M.L., Patisaul, H. and Zota, A., 2014. Introduction of Endocrine Disrupting Chemicals (EDCs), *Endocrine Society*, pp. 1-56.

Gu, F., Wang, S.F., Song, C.F., Lü, M.K., Qi, Y.X., Zhou, G.J., Xu, D. and Yuan, D.R., 2003. Synthesis and luminescence properties of SnO₂ nanoparticles. *Chemical Physics Letters*, 372(3-4), pp. 451-454.

Guerrero-Araque, D., Ramírez-Ortega, D., Acevedo-Peña, P., Zanella, R. and Gómez, R., 2020. Photocatalytic degradation of 2,4-dichlorophenol on ZrO₂– TiO₂: influence of crystal size, surface area, and energetic states. *Journal of Materials Science: Materials in Electronics*, 31(4), pp. 3332-3341.

Guilivo, M., Alda,,L.d.M., Capri, E. and Barcelo, D., 2016. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review, *Environmental Research*, 151, pp. 251-264.

Guo, Y., Li, J., Gao, Z., Zhu, X., Liu, Y., Wei, Z., Zhao, W. and Sun, C., 2016. A simple and effective method for fabricating novel p–n heterojunction photocatalyst g-C₃N₄/Bi₄Ti₃O₁₂ and its photocatalytic performances. *Applied Catalysis B: Environmental*, 192, pp. 57-71.

Guo, Y., Wang, P., Qian, J., Ao, Y., Wang, C., and Hou, J., 2018 Phosphate Group Grafted Twinned BiPO₄ with Significantly Enhanced Photocatalytic Activity: Synergistic Effect of Improved Charge Separation Efficiency and Redox Ability. *Applied Catalysis B*, 234, pp. 90–99.

Habisreutinger, S.N., Schmidt-Mende, L. and Stolarczyk, J.K., 2013. Photocatalytic reduction of CO₂ on TiO₂ and other semiconductors. *Angew Chem Int Ed Engl.*, 52(29), pp. 7372-7408.

100

Hak, C.H., Leong, K.H., Chin, Y.H., Saravanan, P., Tan, S.T., Chong, W.C. and Sim, L.C., 2020. Water hyacinth derived carbon quantum dots and g-C₃N₄ composites for sunlight driven photodegradation of 2,4-dichlorophenol. *SN Applied Sciences*, 2, pp. 1-14.

Hak, C.H., Sim, L.C., Leong, K.H., Lim, P.F., Chin, Y.H. and Saravanan, P., 2018. M/g-C₃N₄ (M=Ag, Au, and Pd) composite: synthesis via sunlight photodeposition and application towards the degradation of bisphenol A. *Environmental Science and Pollution Research*, 25(25), pp. 25401-25412.

He, K., Xie, J., Liu, Z.Q., Li, N., Chen, X., Hu, J. and Li, X., 2018. Multifunctional Ni₃C cocatalyst/g-C₃N₄ nanoheterojunctions for robust photocatalytic H₂ evolution under visible light. *Journal of Materials Chemistry* A, 6(27), pp.13110-13122.

Huang, C.W., Wu, M.Y. and Lin, Y.W., 2017. Solvothermal synthesis of Ag hybrid BiPO₄ heterostructures with enhanced photodegradation activity and stability. *Journal of colloid and interface science*, 490, pp. 217-225.

Huang, F., Yan, A. and Zhao, H., 2016. Influences of Doping on Photocatalytic Properties of TiO₂ Photocatalyst. *Nanotechnology and Nanomaterials.*, 2, pp. 31-80.

Huang, H., Qi, H., He, Y., Tian, N., and Zhang, Y., 2013. Enhanced Photocatalytic Activity of Eu³⁺- and Gd³⁺- doped BiPO₄. *Journal of Material Research*, 28(21), pp. 2977-2984.

Huang, Z., Wu, P., Gong, B., Zhang, X., Liao, Z., Chiang, P.C., Hu, X. and Cui, L., 2017. Immobilization of visible light-sensitive (N, Cu) co-doped TiO₂ onto rectorite for photocatalytic degradation of p-chlorophenol in aqueous solution. *Applied Clay Science*, 142, pp.128-135. Humayun, M., Hu, Z., Khan, A., Cheng, W., Yuan, Y., Zheng, Z., Fu, Q. and Luo, W., 2019. Highly efficient degradation of 2,4-dichlorophenol over CeO₂/g-C₃N₄ composites under visible-light irradiation: detailed reaction pathway and mechanism. *Journal of hazardous materials*, 364, pp. 635-644.

Iliev, V., Tomova, D., Bilyarska, L., Eliyas, A. and Petrov, L., 2006. Photocatalytic properties of TiO_2 modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution. *Applied Catalysis B: Environmental*, 63(3-4), pp. 266-271.

Ilisz, I., László, Z. and Dombi, A., 1999. Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO₂ suspensions. I: Effect of charge-trapping species on the degradation kinetics. *Applied Catalysis A: General*, 180(1-2), pp. 25-33.

Jun, D. Jiexiang, X., Mengxia, J., Hongping, L., Hui, X., Huaming, L. and Rong, C., 2015. The synergistic role of carbon quantum dots for the improved photocatalytic performances of Bi₂MoO₆. *Nanoscale*, 7, pp. 11433-11443.

Jun, D., Jiexiang, X., Mengxia, J., Bin, W., Sheng, Y., Qi, Z., Zhigang, C. and Huaming, L., 2016. Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight. *Applied Catalysis. B.*, 183, pp. 254-262.

Kabir, E.R., Rahman, M.S. and Rahman, I., 2015. A review on endocrine disruptors and their possible impacts on human health. Environmental toxicology and pharmacology, 40(1), pp.241-258.

Kamat, P.V., 2007. Meeting the clean energy demand: nanostructure architectures for solar energy conversion. *The Journal of Physical Chemistry C*, 111(7), pp. 2834-2860.

102

Kolaei, M., Tayebi, M. and Lee, B.K., 2020. The synergistic effects of acid treatment and silver (Ag) loading for substantial improvement of photoelectrochemical and photocatalytic activity of Na₂Ti₃O₇/TiO₂ nanocomposite. *Applied Surface Science*, 540(1), pp. 148359.

Lee, K., Mazare, A., and Schmuki, P., 2014. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. *Chemical Review*, 114(19), pp. 9385-9454. Lei, G., Changcun, H. and Jing, L., 2011. Novel visible light-induced g-C₃N₄/Bi₂WO₆ composite photocatalysts for efficient degradation of methyl orange. *Applied Catalysis B.*, 108-109, pp. 100-107.

Leong, K.H., Chu, H.Y., Ibrahim, S. and Saravanan, P., 2015a. Palladium nanoparticles anchored to anatase TiO₂ for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity. *Beilstein Journal of Nanotechnology*, 6(1), pp.428-437.

Leong, K.H., Liu S.L., Sim, L.C., Saravanan, P., Jang, M. and Ibrahim, S., 2015b. Surface reconstruction of titania with g-C₃N₄ and Ag for promoting efficient electrons migration and enhanced visible light photocatalysis, *Applied Surface Science*, 358, pp. 370-376.

Li, Y., Wang, Y., Huang, Y., Cao, J., Ho, W., Lee, S. and Fan, C., 2015. Controllable synthesis of phosphate-modified BiPO 4 nanorods with high photocatalytic activity: surface hydroxyl groups concentrations effects. *RSC advances*, 5(121), pp.99712-99721.

Li, Z., Yang, S., Zhou, J., Li, D., Zhou, X., Ge, C. and Fang, Y., 2014. Novel mesoporous g-C₃N₄ and BiPO₄ nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances. *Chemical Engineering Journal*, 241, pp. 344-351.

103

Liang, Q., Jin, J., Liu, C., Xu, S., Yao, C. and Li, Z., 2018. A stable BiPO₄/g-C₃ N₄ nanosheet composite with highly enhanced visible light photocatalytic activity. *Journal of Materials Science: Materials in Electronics*, 29(3), pp. 2509-2516.

Liao, G., Chen, S., Quan, X., Yu, H. and Zhao, H., 2012. Graphene oxide modified gC_3N_4 hybrid with enhanced photocatalytic capability under visible light irradiation. *Journal of Materials Chemistry*, 22(6), pp. 2721-2726.

Liao, J., Cui, W., Li, J., Sheng, J., Wang, H., Chen, P., Jiang, G., Wang, Z. and Dong, F., 2020. Nitrogen defect structure and NO⁺ intermediate promoted photocatalytic NO removal on H₂ treated g-C₃N₄. *Chemical Engineering Journal*, 379, pp. 122282.

Liu, J., Sun, Y., Li, Z., Li, S. and Zhao, J., 2011, Photocatalytic hydrogen production from water/methanol solutions over highly ordered Ag-SrTiO₃ nanotube arrays, *International Journal of Hydrogen Energy*, 36, pp. 5811-5816. Liu, J., Zhang, T., Wang, Z., Dawson, G., and Chen, W., 2011. Simple Pyrolysis of Urea into Graphitic Carbon Nitride with Recyclable Adsorption and Photocatalytic Activity, *Journal of Material Chemistry*., 21, pp. 14398-401.

Liu, R., Yang, W., He, G., Zheng, W., Li, M., Tao, W. and Tian, M., 2020. Ag-Modified g-C₃N₄ Prepared by a One-Step Calcination Method for Enhanced Catalytic Efficiency and Stability. *ACS omega*, 5(31), pp. 19615-19624.

Liu, Y., Lv, Y., Zhu, Y., Liu, D., Zong, R., and Zhu, Y., 2014. Fluorine Mediated Photocatalytic Activity of BiPO₄. *Applied Catalysis B: Environmental*, 147, pp. 851-857. Liu, Y., Sun, M., Liu, Y., Chen, G. and Zhang, X., 2015. Effects of aging time on phase, morphology, and luminescence by two-photon processes of BiPO₄:
Er3+, Yb3+ in the solvothermal synthesis. *Optical Materials*, 45, pp. 32-36.
Locatelli, M., Sciascia, F., Cifelli, R., Malatesta, L., Bruni, P. and Croce, F., 2016. Analytical Methods for the endocrine disruptor compounds determination in environmental water samples, *Journal of Chromatography A*, 1434, pp. 1-18.
Lubrano, C., Genovesi, G., Specchia, P., Costantini, D., Mariani, S., Petrangeli, E., Lenzi, A. and Gnessi, L., 2013. Obesity and metabolic comorbidities: environmental diseases?. Oxidative medicine and cellular longevity.

Lv, H., Shen, X., Ji, Z., Qiu, D., Zhu, G. and Bi, Y., 2013. Synthesis of graphene oxide-BiPO4 composites with enhanced photocatalytic properties. *Applied surface science*, 284, pp. 308-314.

Ma, X., Hu, J., He, H., Dong, S., Huang, C. and Chen, X., 2018. New understanding on enhanced photocatalytic activity of g-C₃N₄/BiPO₄ heterojunctions by effective interfacial coupling. *ACS Applied Nano Materials*, 1(10), pp. 5507-5515.

Maeda, K., and Domen, K., 2007. New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light, *Journal of Physical Chemistry C*, 111(22), pp. 7851–7861.

Mafa, P.J., Mamba, B.B. and Kuvarega, A.T., 2020. Photoelectrocatalytic evaluation of EG-CeO₂ photoanode on degradation of 2,4-dichlorophenol. *Solar Energy Materials and Solar Cells*, 208, pp. 110416.

Mahato, T.H., Prasad, G.K., Singh, B., Acharya, J., Srivastava, A.R. and Vijayaraghavan, R., 2009. Nanocrystalline zinc oxide for the decontamination of sarin. *Journal of hazardous materials*, 165(1-3), pp. 928-932.

Mamba, G. and Mishra, A. K., 2016. Graphitic carbon nitride (g-C₃N₄) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation, *Applied Catalysis B: Environmental*, 198, pp. 347–377.

Matafonova, G., Shirapova, G., Zimmer, C., Giffhorn, F., Batoev, V. and Kohring, G., 2006. Degradation of 2,4-dichlorophenol by Bacillus sp. isolated from an aeration pond in the Baikalsk pulp and paper mill (Russia), *International Biodeterioration and Biodegradation*, 58, pp. 209–212.

Mehrabani-Zeinabad, M., 2016. Advanced Oxidative Process for Treatment of Emerging Contaminants in Water., PhD. University of Calgary.

Mills, A., Davies, R.H. and Worsley, D., 1993. Water purification by semiconductor photocatalysis, *Chemistry Society Review*, 22, pp. 417-425.

Molinari, R., Borgese, M., Drioli, E., Palmisano, L. and Schiavello, M., 2002. Hybrid processes coupling photocatalysis and membranes for degradation of organic pollutants in water, *Catalysis Today*, 75(1-4), 77–85.

Naciri, Y., Bouddouch, A., Bakiz, B., Taoufyq, A., Ezahri, M. and Benlhachemi, A., 2020. Photocatalytic degradation of sulfadiazine by Zn₃(PO₄)₂/BiPO₄ composites upon UV light irradiation. *Materials Today: Proceedings*, 22, pp. 48-51.

Nainani, R., Thakur, P. and Chaskar, M., 2012. Synthesis of silver doped TiO₂ nanoparticles for the improved photocatalytic degradation of methyl orange. *Journal of Materials Science Nd Engineering B*, 2(1), pp. 52-58.

Ni, Z., Dong, F., Huang, H. and Zhang, Y., 2016. New insights into how Pd nanoparticles influence the photocatalytic oxidation and reduction ability of g-C₃N₄ nanosheets. *Catalysis Science & Technology*, 6(16), pp. 6448-6458.

Ong, W., Ta, L., Ng, Y., Yong, S. and Chai, S., 2016. Graphitic Carbon Nitride (g-C₃N₄)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? *Chemistry Review*, 116(12), pp. 7159-7329.

Palominos, R., Freer, J., Mondaca, M.A. and Mansilla, H.D., 2008. Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine. *Journal of photochemistry and photobiology A: chemistry*, 193(2-3), pp.139-145.

Pan, C. and Zhu, Y., 2010. New Type of BiPO₄ Oxy-Acid Salt Photocatalyst with High Photocatalytic Activity on Degradation of Dye. *Environmental Science & Technology*, 44(14), pp. 5570–5574.

Pan, C. and Zhu, Y., 2011a. Size-controlled synthesis of BiPO₄ nanocrystals for enhanced photocatalytic performance. *Journal of Materials Chemistry*, 21(12), pp. 4235-4241.

Pan, C., Li, D., Ma, X., Chen, Y. and Zhu, Y., 2011b. Effects of distortion of
PO₄ tetrahedron on the photocatalytic performances of BiPO₄. *Catalysis Science*& *Technology*, 1(8), pp. 1399-1405.

Pan, C., Xu, J., Wang, Y., Li, D., and Zhu, Y., 2012. Dramatic Activity of C₃N₄
/BiPO₄ Photocatalyst with Core/Shell Structure Formed by Self-Assembly. *Advanced Functional Materials*, 22, pp. 1518–1524.

Pan, X. and Xu, Y.J., 2013. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO₂ with oxygen vacancies for photocatalytic redox reactions under visible light. *The Journal of Physical Chemistry C*, 117(35), pp. 17996-18005.

Paul, D.R., Sharma, R., Panchal, P., Nehra, S.P., Gupta, A.P. and Sharma, A., 2020. Synthesis, characterization and application of silver doped graphitic carbon nitride as photocatalyst towards visible light photocatalytic hydrogen evolution. *International Journal of Hydrogen Energy*, 45(44), pp. 23937-23946.

Paul, K.K. and Giri, P.K., 2018. Plasmonic metal and semiconductor nanoparticle decorated TiO₂-based photocatalysts for solar light driven photocatalysis, *Reference Module in Chemistry, Molecular Sciences and Chemical Engineering*, pp. 786-794.

Qi, K., Cheng, B., Yu, J., and Ho, W., 2017. A review on TiO₂ -based Z-scheme photocatalysts, *Chinese Journal of Catalysis*, 38(12), pp. 1936–1955.

Ramos-Ramírez, E., Gutiérrez-Ortega, N.L., Tzompantzi-Morales, F., Barrera-Rodríguez, A., Castillo-Rodríguez, J.C., Tzompantzi-Flores, C., Santolalla-Vargas, C.E. and Guevara-Hornedo, M.D.P., 2020. Photocatalytic Degradation of 2,4-Dichlorophenol on NiAl-Mixed Oxides Derivatives of Activated Layered Double Hydroxides. *Topics in Catalysis*, pp. 1-18.

Ran, M., Wang, H., Cui, W., Li, J., Chen, P., Sun, Y., Sheng, J., Zhou, Y., Zhang, Y. and Dong, F., 2019. Light-induced generation and regeneration of oxygen vacancies in BiSbO₄ for sustainable visible light photocatalysis. *ACS applied materials & interfaces*, 11(51), pp. 47984-47991.

Ranjit, P. J. D., Palanivelu, K., and Lee, C.S., 2008. Degradation of 2,4dichlorophenol in aqueous solution by sono-Fenton method. *Korean Journal of Chemical Engineering*, 25(1), pp. 112–117.

Rao, B.G., Mukherjee, D. and Reddy, B.M., 2017. Novel approaches for preparation of nanoparticles. In *Nanostructures for novel therapy* (pp. 1-36). Elsevier.Li, Y., White, T.J. and Lim, S.H., 2004. Low-temperature synthesis

and microstructural control of titania nano-particles. *Journal of solid-state chemistry*, 177(4-5), pp. 1372-1381.

Romero, B., Bruque, S., Aranda, M.A. and Iglesias, J.E., 1994. Syntheses, crystal structures, and characterization of bismuth phosphates. *Inorganic Chemistry*, 33(9), pp. 1869-1874.

Samer, M. 2015. Biological and Chemical Wastewater Treatment Processes. *Wastewater Treatment Engineering*, 1, pp. 1-2.

Samsudin, M.F.R., Ullah, H., Bashiri, R., Mohamed, N.M., Sufian, S. and Ng, Y.H., 2020. Experimental and DFT insights on microflower g-C₃N₄/BiVO₄ photocatalyst for enhanced photoelectrochemical hydrogen generation from lake water. *ACS Sustainable Chemistry & Engineering*, 8(25), pp. 9393-9403. Serpone, N. and Emeline, A.V., 2012. Semiconductor photocatalysis—Past,

present, and future outlook, *Journal of Physical Chemistry Letters*, 3, pp. 673-677.

Serpone, N., Emeline, A.V., Horihoshi, S., Kuznetsov, V.N. and Ryahchuk, V.K., 2012. On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s, *Photochemical and Photobiological Sciences*, 11, pp. 1121-1150.

Sim, L.C., Koh, K.S., Leong, K.H., Chin, Y.H., Abd Aziz, A. and Saravanan, P., 2020. In situ growth of g-C₃N₄ on TiO₂ nanotube arrays: Construction of heterostructures for improved photocatalysis properties. *Journal of Environmental Chemical Engineering*, 8(1), pp. 103611.

Singh, J. and Basu, S., 2020. Synthesis of mesoporous magnetic Fe₂O₃/g-C₃N₄ monoliths for Rhodamine B removal. *Microporous and Mesoporous Materials*, 303, pp. 110299.

Sobana, N., Muruganadham, M. and Swaminathan, M., 2006. Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. *Journal of Molecular Catalysis A: Chemical*, 258(1-2), pp. 124-132.

Stoyanova, Z. and Harizanova, H., 2019. Impact of Agriculture on Water Pollution. *Agrofor*, 4(1).

Singh, J., Yadav, P., Pal, A.K. and Mishra, V., 2020. Water pollutants: Origin and status. In *Sensors in Water Pollutants Monitoring: Role of Material* (pp. 5-20). Springer, Singapore.

Tan, G., She, L., Liu, T., Xu, C., Ren, H. and Xia, A., 2017. Ultrasonic chemical synthesis of hybrid mpg-C₃N₄/BiPO₄ heterostructured photocatalysts with improved visible light photocatalytic activity. *Applied Catalysis B: Environmental*, 207, pp. 120-133.

Tian, Q., Ran, M., Fang, G., Ding, L., Pan, A., Shen, K. and Deng, Y., 2020. ZnAl₂O₄/BiPO₄ composites as a heterogeneous catalyst for photo-Fenton treatment of textile and pulping wastewater. *Separation and Purification Technology*, 239, pp. 116574.

Tian, X., Xu, T., Wang, Y. and Meng, S., 2017. Hierarchical h-, m-and n-BiPO₄ microspheres: facile synthesis and application in the photocatalytic decomposition of refractory phenols and benzene. *RSC advances*, 7(58), pp. 36705-36713.

Tijani, J.O., Fatoba, O.O and Petrik, L.F., 2013. A Review of Pharmaceuticals and Endocrine-Disrupting Compounds: Sources, Effects, Removal, and Detections. *Water, Air, & Soil Pollution*, 224, pp. 1770-1798.

Tomei, M. C., Annesini, M. C. and Daugulis, A. J., 2012. 2,4-Dichlorophenol removal in a solid–liquid two phase partitioning bioreactor (TPPB): kinetics of

absorption, desorption and biodegradation. *New Biotechnology*, 30(1), pp. 44– 50.

Tu, L., Hou, Y., Yuan, G., Yu, Z., Qin, S., Yan, Y., Zhu, H., Lin, H., Chen, Y. and Wang, S., 2020. Bio-photoelectrochemcial system constructed with BiVO₄/RGO photocathode for 2,4-dichlorophenol degradation: BiVO₄/RGO optimization, degradation performance and mechanism. *Journal of Hazardous Materials*, 389, pp. 121917.

Walton, R.I., 2002. Subcritical solvothermal synthesis of condensed inorganic materials. *Chemical Society Reviews*, 31(4), pp. 230-238.

Wang, C., Zhang, G., Zhang, C., Fan, W. and Shi, W., 2014. A facile one-step solvothermal synthesis of BiPO₄-graphene nanocomposites with enhanced photocatalytic activity. *Journal of Colloid and Interface Science*, 435, pp. 156-163.

Wang, K., Li, Y., Li, J. and Zhang, G., 2020. Boosting interfacial charge separation of Ba₅Nb₄O₁₅/g-C₃N₄ photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H₂ generation. *Applied Catalysis B: Environmental*, 263, pp. 117730.

Wang, Q., Wang, P., Xu, P., Li, Y., Duan, J., Zhang, G., Hu, L., Wang, X. and Zhang, W., 2020. Visible-light-driven photo-Fenton reactions using Zn_{1-1.5} _xFe_xS/g-C₃N₄ photocatalyst: Degradation kinetics and mechanisms analysis. *Applied Catalysis B: Environmental*, 266, pp. 118653.

Wang, T., Lang, J., Zhao, Y., Su, Y., Zhao, Y. and Wang, X., 2015. Simultaneous doping and heterojunction of silver on Na 2 Ta 2 O 6 nanoparticles for visible light driven photocatalysis: the relationship between tunable optical absorption, defect chemistry and photocatalytic activity. *CrystEngComm*, 17(35), pp. 6651-6660.

Wang, X., and Li, C., 2018 Roles of Phase-Junction in Photocatalysis and Photoelectrocatalysis, *Journal of Physical Chemistry C*, 122(37), pp. 21083-21096.

Wang, Y., Luo, W., Jiang, W., Wei, Z. and Zhu, Y. 2019. Controlled synthesis of g-C₃N₄@BiPO₄ core–shell nanorods via low temperature reassembled strategy, *Materials Today Advances*, 1, pp. 100006.

Wen, J., Xie, J., Chen, X. and Li, X., 2017. A review on g-C₃N₄-based photocatalysts. *Applied surface science*, 391, pp. 72-123.

Westerhoff, P., Yoon, Y., Snyder, S and Wert, E., 2005. Fate of Endocrine-DIsruptor, Pharmaceutical, and Personal Care Product Chemicals during Simulated Drinking Water Treatment Processes. *Environmental Science & Technology Letter.*, 39(17), pp. 6649-6663.

Wu, Y., Liu, H., Zhang, J. and Chen, F., 2009. Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold. *Journal of Physical Chemistry*. C., 113(33), pp. 14689-14695.

Wu, Z., Zhang, Y., Wang, X. and Zou, Z., 2017. Ag@SrTiO₃ nanocomposite for super photocatalytic degradation of organic dye and catalytic reduction of 4-nitrophenol. *New Journal of Chemistry*, 41(13), pp. 5678-5687.

Xia, J., Zhao, J., Chen, J., Di, J., Ji, M., Xu, L., Chen, Z. and Li, H., 2017. Facile fabrication of g-C₃N₄/BiPO₄ hybrid materials via a reactable ionic liquid for the photocatalytic degradation of antibiotic ciprofloxacin. *Journal of Photochemistry and Photobiology A: Chemistry*, 339, pp.59-66.

Xiang, Q., Cheng, B. and Yu, J., 2015. Graphene-based photocatalysts for solarfuel generation. *Angewandte Chemie International Edition*, 54(39), pp. 11350-11366.

Xu, H., Xu, Y., Li, H., Xia, J., Xiong, J., Yin, S., Huang, C. and Wan, H., 2012. Synthesis, characterization and photocatalytic property of AgBr/BiPO₄ heterojunction photocatalyst. *Dalton transactions*, 41(12), pp. 3387-3394.

Xu, J., Li, L., Guo, C., Zhang, Y. and Meng, W., 2013. Photocatalytic Degradation of Carbamazepine by Tailored BiPO₄: Efficiency, Intermediates and Pathway. *Applied Catalysis B: Environmental*, 130-131, pp. 285-292.

Yang, C., Qin, J., Xue, Z., Ma, M., Zhang, X., and Liu, R., 2017. Rational design of carbon-doped TiO₂ modified g-C₃N₄ via in-situ heat treatment for drastically improved photocatalytic hydrogen with excellent photostability, *Nano Energy*, 41, pp. 1-9.

Yang, M., Park, M.S. and Lee, H.S., 2006. Endocrine disrupting chemicals: human exposure and health risks. Journal of Environmental Science and Health Part C, 24(2), pp.183-224.

Yang, X. and Wang, D., 2018. Photocatalysis: from fundamental principles to materials and applications. *ACS Applied Energy Materials*, 1(12), pp. 6657-6693.

Yoshimura, M. and Byrappa, K., 2008. Hydrothermal processing of materials: past, present and future. *Journal of Materials Science*, 43(7), pp. 2085-2103. Zhang, D., Su, C., Yao, S., Li, H., Pu, X. and Geng, Y., 2020. Facile in situ chemical transformation synthesis, boosted charge separation, and increased photocatalytic activity of BiPO₄/BiOCl p-n heterojunction photocatalysts under

113

simulated sunlight irradiation. *Journal of Physics and Chemistry of Solids*, 147, pp. 109630.

Zhang, G., Zhang, T., Li, B., Jiang, S., Zhang, X., Hai, L., Chen, X. and Wu, W., 2018. An ingenious strategy of preparing TiO₂/g-C₃N₄ heterojunction photocatalyst: In situ growth of TiO₂ nanocrystals on g-C₃N₄ nanosheets via impregnation-calcination method. *Applied Surface Science*, 433, pp. 963-974. Zhang, M., Hou, Z., Ma, W., Zhao, X., Ma, C., Zhu, Z., Yan, Y. and Li, C., 2018. Fabrication of a Visible-Light In₂S₃/BiPO₄ heterojunction with enhanced photocatalytic activity, *New Journal of Chemistry*, 42, pp. 15136-15145.

Zhang, P., Zhang, J. and Gong, J., 2014. Tantalum-based semiconductors for solar water splitting. *Chemical Society Reviews*, 43(13), pp. 4395-4422.

Zhang, Y., Fan, H., Li, M. and Tian, H., 2013. Ag/BiPO₄ heterostructures: synthesis, characterization and their enhanced photocatalytic properties. *Dalton Transactions*, 42(36), pp. 13172-13178.

Zhang, Y., Selvaraj, R., Sillanpää, M., Kim, Y. and Tai, C.W., 2014. The influence of operating parameters on heterogeneous photocatalytic mineralization of phenol over BiPO4. *Chemical Engineering Journal*, 245, pp. 117-123.

Zhang, Y.H., Pan, Q.W., Chai, G.Q., Liang, M.R., Dong, G.P., Zhang, Q., and Qiu, J., 2013. Synthesis and luminescence mechanism of multicolor-emitting g-C₃N₄ nanopowders by low temperature thermal condensation of melamine, *Scientific Reports*, 3(1), pp. 1943.

Zhao, H., Tian, F. and Wang, R., 2014. R, Chen, A Review on bismuth-related nanomaterials for photocatalysis, *Reviews in Advanced Sciences and Engineering*, 3, pp.3-27.

Zhao, S., Chen, S., Yu, H. and Quan, X., 2012. g-C₃N₄/TiO₂ hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation. *Separation and Purification Technology*, 99, pp. 50-54.

Zhao, Y., Shi, H., Yang, D., Fan, J., Hu, X. and Liu, E., 2020. Fabrication of a Sb₂MoO₆/g-C₃N₄ photocatalyst for enhanced RhB degradation and H₂ generation. *The Journal of Physical Chemistry C*, 124(25), pp. 13771-13778.

Zheng, Y., Zhang, Z., and Li, C., 2017. A comparison of graphitic carbon nitrides synthesized from different precursors through pyrolysis, *Journal of Photochemistry and Photobiology A: Chemistry*, 332, pp. 32-44.

Zhong, H., Mirkovic, T. and Scholes, G.D., 2011. Nanocrystal synthesis. In *Comprehensive nanoscience and technology*, pp. 153-201.

Zhu, Y., Liu, Y., Lv, Y., Ling, Q., Liu, D., and Zhu, Y., 2014. Enhancement of Photocatalytic Activity for BiPO₄ via Phase Junction, *Journal of Material Chemistry A*, 2, pp. 13041–13048.

Zoeller, R.T., Brown, T.R., Doan, L.L., Gore, A.C., Skakkebaek, N.E., Soto, A.M., Woodruff, T.J. and Vom Saal, F.S., 2012. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. *Endocrinology*, 153, pp. 4097-4110.

Zong, S., Wei, W., Cui, H., Jiang, Z., Lu, X., Zhang, M., and Xie, J., 2015. A novel Synthesis of P/BiPO₄ Nanocomposites with Enhanced Visible-Light Photocatalysis. *Materials Research Innovations*, 19(5), pp. 361-367.

Zou, X., Dong, Y., Chen, Z., Dong, D., Hu, D., Li, X. and Cui, Y., 2016. Synthesis and characterization of BiPO₄/g-C₃N₄ nanocomposites with significantly enhanced visible-light photocatalytic activity for benzene degradation. *RSC Advances.*, 6, pp. 20664–670.

Zou, X., Dong, Y., Li, X., Zhao, Q., Cui, Y. and Lu, G., 2015. Inorganic–organic photocatalyst BiPO₄/g-C₃N₄ for efficient removal of gaseous toluene under visible light irradiation. *Catalysis Communications*, 69, pp. 109-113.

APPENDICES

Appendix A: Experimental Setup for Photocatalytic Evaluation

LIST OF PUBLICATION

Ng, J.J., Leong, K.H., Sim, L.C., Chin, Y.H. and Pichiah, S., 2020, September. Visible light responsive BiPO4/g-C3N4 for enhanced photocatalysis of 2-4 dichlorophenol under solar irradiation. In *IOP Conference Series: Materials Science and Engineering* (Vol. 917, No. 1, p. 012007). IOP Publishing. Ng, J.J., Leong, K.H., Sim, L.C., Oh, W.D., Dai, C. and Saravanan, P., 2020. Environmental remediation using nano-photocatalyst under visible light irradiation: the case of bismuth phosphate. In *Nanomaterials for Air Remediation* (pp. 193-207). Elsevier.