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ABSTRACT 

 

FAULT TOLERANT CONTAINER-BASED MESSAGE 

QUEUING TELEMETRY TRANSPORT (MQTT) EMBEDDED 

CLUSTER SYSTEM 

 

THEAN ZHONG YING 

 
 
 

 
 
 

This dissertation work presents implementations of a distributed MQTT 

broker cluster in an edge-based environment. Since a single node broker can 

lose messages to the clients or the cloud when the node crashes. Hence, the 

purpose of this work to implement local fault tolerance to preserve the 

distributed system locally at the edge of network. Many previous studies have 

focused on distributed publish/subscribe systems but very few of them 

addressed the issue of local fault tolerance and the MQTT standard. Due to the 

recent popularity of the MQTT protocol, the MQTT middleware layer is 

developed to facilitate the cooperation of MQTT brokers without modifying the 

MQTT broker software. Also, the use of single-board computers as an edge-

based hosting infrastructure keeps the cost low and can be flexibly sized 

according to workload demand and location of deployment. The purpose of the 

edge provisioning of the broker cluster is to reduce end-to-end latency for IoT 

and M2M streaming applications.  
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The proposed system uses two approaches to realize fault tolerance. 

First, the proposed system tolerates node crashes by maintaining consistency of 

state information using time-to-live (TTL) subscription routing entries. Next, 

message loss is corrected through retransmission at the broker nodes to the 

subscribers. The evaluations demonstrated improved scalability for the 

horizontal scaling approach and successful recovery of failed publication during 

failover. The worst-case end-to-end latency of the proposed system is at a 

maximum of 42 milliseconds. All missed publications are redelivered to the 

subscriber during failover without significant delay between the retransmitted 

messages. The jitter values between recovered messages during the recovery 

period range from 10 to 20 milliseconds. The maximum recovery time of the 

proposed broker cluster is at least 256.33 milliseconds, which is within 

hundreds of milliseconds difference, compared to 50 milliseconds of the 

primary-backup broker approach. The fail-test confirms the reliability of the 

MQTT cluster, as failed publications can be redelivered during broker failure. 

The evaluations demonstrated the feasibility of the proposed broker cluster to 

maintain consistent latencies and support reliable MQTT services despite server 

failures. 
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CHAPTER 1 
 

INTRODUCTION 
 

 

Internet of Things (IoT) technology usage is increasing extensively as a 

result of the exponential growth of sensor device usage over the past decade 

(Robert, 2014). This development will generate huge amounts of traffic on the 

internet. Traditional approaches to the Internet of Things (IoT) send data to the 

cloud for processing and then transmit the responses back to the end devices. 

These approaches are not viable anymore due to the rapid growth of IoT 

devices, as cloud facilities will have a difficult time managing the huge amount 

of information flow. Even though the size of each sensor data is small, a 

substantial amount of data produced by IoT devices could congest the flow of 

network traffic and causes delays to the data transfers to and from cloud data 

centers. Besides, many IoT applications with timing constraints do not work 

well with cloud-based data processing and dissemination, because of the high 

bandwidth requirements and unpredictable latency (Lopez et al., 2015).  

 

Recently, sensor-based IoT applications have been using edge and fog 

technologies to integrate latency-sensitive edge-based environments with the 

cloud (Lopez et al., 2015). Edge computing environment is facilitated by small, 

heterogeneous embedded devices that spread across multiple edge networks. 

With local data processing, edge computing can reduce end-to-end latency by 

immediately updating the results over the network. Nevertheless, deployed 

devices on edge infrastructures are often constrained by resource, limited 
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processing power, power supply, and storage capacity. Due to resource 

limitations, these smaller edge devices will need a software framework that is 

lightweight to deploy distributed applications. Containerization technology 

establishes a lightweight middleware platform that provides scalability, service 

orchestration, and flexibility for edge-based service deployment (Pahl and Lee, 

2015; Pahl, 2015). Containers are software packages like virtual machines but 

they are lightweight and smaller in size. Several previous works have 

demonstrated the feasibility of using container orchestration technology for 

edge-based applications (Roberto Morabito, 2017; Bellavista and Zanni, 2017). 

This research work uses the Docker Swarm orchestration tool to deploy 

distributed applications for IoT edge devices.  

 

The publish-subscribe paradigm is a communication paradigm, which 

provides a loosely coupled form of data dissemination between producers and 

consumers. Loose coupling and lightweight properties of the publish-subscribe 

paradigm is well suited for two-way communication in between IoT endpoint 

devices. Several IoT standards have been adopting the publish-subscribe 

interface over recent years. Some examples of them are AMQP, MQTT, XMPP, 

ZeroMQ, and COAP. The Message Queuing Telemetry Transport (MQTT) is a 

publish-subscribe protocol that uses a central broker to mediate messages 

between endpoint devices through the cloud (Popov et al., 2017). The 

centralized paradigm of MQTT is suitable for cloud computing as it can 

effectively collect and distribute data using a central broker. However, a cloud-

based MQTT broker is very ineffective (Happ and Wolisz, 2016) for data 

dissemination between edge devices because MQTT communications usually 
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involve edge-heavy environments (Banno et al., 2017). In edge-heavy 

environments, data producers and consumers are located close to each other in 

a certain geographical location. Edge-based dissemination with MQTT protocol 

provides many benefits particularly in latency reduction (Happ and Wolisz, 

2016), as well as additional data analytics near the edge (Cheng et al., 2016). 

Edge-based deployment of MQTT moves the centralized single-broker 

topology to a distributed, multi-broker topology to serve communication 

between devices in multiple edge network bases.  

 

Potential large-scale deployment of IoT creates huge traffic to the 

MQTT broker server which causes congestion and reduced throughput. The 

MQTT service needs to deal with large volumes of periodical short messages in 

M2M and IoT applications (Pereira and Aguiar, 2014). When the volume of 

traffic exceeds the capability of the MQTT broker, the MQTT service must scale 

horizontally to deal with the traffic. The publish/subscribe-based MQTT 

protocol can support horizontal scalability because its message communications 

are asynchronous (Happ et al., 2017). With horizontal scaling, the system can 

preserve the availability of resources despite server failures.  

 

For IoT and M2M applications, the MQTT server needs to maintain high 

availability and resilience. The broker system may lose its messages to its clients 

or the cloud when the broker node crashes. Thus, local fault tolerance needs to 

be implemented to preserve the system locally at the edge of network. Existing 

studies on topic-based publish-subscribe systems address the problem of 

scalability and fault tolerance by utilizing distributed brokers on top of various 
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kinds of overlay infrastructures. Examples of used overlay infrastructures for 

distributed publish-subscribe systems are DHT (Castro et al., 2002), hybrid 

overlay (Rahimian et al., 2011), Skip-Graph overlay (Banno et al., 2015), and 

broker-based overlay (Carzaniga et al., 2003). However, very few of the studies 

address the issue of local fault tolerance in distributed MQTT system. 

 

The objective of this research work is to develop a lightweight 

distributed middleware layer, based on the edge-cloud computing model to 

support collective message delivery with a cluster of MQTT brokers and to 

improve its fault tolerance. Edge cloud devices often require cost-efficiency, 

low power consumption, and robustness (Novo et al., 2015). Edge servers can 

use single-board computers (SBCs) with networking capabilities such as 

Raspberry Pi as their hardware infrastructure. The broker cluster is deployed on 

a single cluster of Raspberry Pi SBCs. Docker Swarm is used for orchestrating 

service containers at the edge of the cloud. The proposed broker cluster uses a 

single load balancer node to distribute incoming MQTT data to multiple 

backend MQTT brokers. The implementation assumes that the load balancer is 

reliable so that the focus is on the fault tolerance against the crashing of backend 

servers. Experiments are carried out to evaluate the latency, throughput, 

computational load, and fault tolerance of the broker system. The evaluation 

also compares the performance of the microservice-based broker cluster with 

cloud-based, single-broker, and monolithic implementations of the broker-

cluster. The resiliency of the broker cluster is also compared to a primary-

backup approach, in terms of its maximum recovery time. Through combining 

multiple MQTT brokers in a single and collective cluster, the system continues 
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to provide MQTT broker service regardless of node failures in the broker 

cluster. The clustered broker can resend lost publications and perform failover 

and among MQTT brokers in the network. 

 

1.1 Scope and Goals 

The main goal of this research work is to develop a distributed MQTT 

messaging framework on a set of SBC edge servers. The messaging service 

should be scalable and have local fault tolerance capability. This work 

establishes the feasibility of the microservice-based MQTT cluster 

implementation and Docker Swarm orchestration as a suitable MQTT service 

for edge cloud settings. The scope of this research work consists of four goals 

detailed below. 

 

- Scalability. The process of matching subscribers and disseminating 

publications to subscribers incurs high processing costs. The proposed 

broker system must reduce the effect of service degradation under high 

loads or sudden load spikes. 

- Application transparency. The microservice-based distributed 

application layer service offers application transparency to clients. 

MQTT service is delivered to clients without their need to know 

underlying software and hardware. The application service layer is also 

transparent to the broker. The application broker itself does not require 

recompilation or relinking.  

- Low and predictable latency. Low latency is the response time as 

perceived by the client. Unstable latency is inappropriate for delay-
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sensitive applications that require timely event delivery. Edge-based IoT 

applications should ideally provide low and predictable latency for end-

to-end communication between IoT client devices. 

- Availability and fault tolerance. Components of a distributed system are 

prone to unexpected failures that could potentially bring down an entire 

distributed application. For a publish-subscribe system, in-transition 

messages may be dropped, which leads to inconsistency among routing 

tables. Incorrect routing table state disrupts the entire message delivery 

traffic. This invalidates the purpose of the publish-subscribe system to 

reliably deliver messages. Therefore, a publish-subscribe service 

requires additional redundancy to increase availability and resiliency. 

The proposed broker system uses two approaches to realize fault 

tolerance. First, it handles node crashes by maintaining consistency of 

state information through a leasing approach with the use of time-to-live 

(TTL) countdown entries. Next, it uses message redundancy to realize 

fault tolerance. Message loss is corrected through the retransmission of 

buffered messages from broker nodes to the disconnected subscribers. 

 

1.2 Application Scenario 

In centralized cloud computing settings, IoT applications collect and 

send data to the centralized cloud data center, where storage and processing take 

place. This research work implements a low-cost and lightweight solution to 

disseminate MQTT messages and provide local fault tolerance for the edge-

based MQTT system. The main application scenarios are data streaming and 

analytics, real-time monitoring, and automation systems. Instead of using a 
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traditional compute cluster, the SBC-based cluster keeps the cost of 

incrementing a cluster node low. Also, the flexibility of single-board computers 

(SBC) and software implementation can support use cases in secluded locations 

with limited connectivity and computational resources. The edge servers help 

to provide a subset of resilient online services for communication between edge 

devices in the vicinity, by providing redundancy and local fault tolerance. 

Examples of applications are local smart grids (Viswanath et al., 2016), 

autonomous farm monitoring (Zyrianoff et al., 2018; Zamora-Izquierdo et al., 

2019), and distributed systems for homes and buildings automation (Babou et 

al., 2018).  

 

1.3 Contribution of This Research Work 

The contributions of this work are the following.  

- Develop a microservice-based cluster component to automate the initial 

formation of the MQTT cluster and facilitate routing of MQTT 

messages. 

- Develop an edge to cloud IoT integration framework to stream edge data 

to the cloud servers. 

- Establish the feasibility of using Docker Swarm as an orchestration 

framework for edge-based deployment on Raspberry Pi single-board 

computers. 

- Establish the feasibility of the software implementation as a scalable, 

lightweight solution for the deployment of MQTT service at the edge 

network. 
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- Provide resiliency and high availability for the MQTT messaging 

application. 

 

1.4 Structure of Dissertation 

The rest of this dissertation is presented as follows. Chapter 2 presents 

various enabling technologies related to the scope of this research work. The 

topics discussed in this chapter are background information about IoT, edge and 

cloud computing technologies, container virtualization and orchestration, and 

fault tolerance approaches to IoT systems. Chapter 3 discusses fault tolerance 

and scalability in publish-subscribe systems, and the MQTT protocol. Chapter 

4 presents the architecture and components of the system. Chapter 5 presents 

the evaluations on the performance and fault testing of the proposed broker 

cluster system. The last chapter presents the conclusions. Chapter 6 concludes 

this research work.  
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CHAPTER 2 
 

EDGE CLOUD SYSTEMS 
 

 

This chapter describes the technologies and related works in the context 

of fault tolerance concerning IoT systems, and container orchestration in the 

edge-cloud paradigm. The literature review describes various practical and 

technology integrated approaches to develop a scalable and fault-tolerant, edge-

based messaging system. This chapter consists of four sections. Section 2.1 

compares various edge and cloud technologies in the context of IoT. This 

section also outlines the use of container technology in the deployment of IoT 

systems. Section 2.2 introduces Docker and the Docker Swarm container 

virtualization framework, which will be the software deployment tools used for 

MQTT cluster servers. Section 2.3 presents the fault tolerance approaches to the 

IoT edge-cloud systems. 

 

2.1 Edge-cloud Internet of Things 

In recent years, advancement in cloud computing introduces many 

growing progressions in cellular internet and cloud-based Internet of things 

through a wide range of software and services. Due to the convergence of IoT 

enabling technologies such as ubiquitous computing, communication protocols, 

embedded systems, sensors, and wireless communications, all physical objects 

can interconnect and exchange data with each other with minimum human 

intervention. The sensor devices collect and produce information about internal 

states of devices or external environment such as temperature, humidity, light, 

soil conditions, pressure, and radiation. These resource-constrained devices are 
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typically are usually equipped with wireless communication technologies such 

as Wi-Fi, RFID, Near Field Communication (NFC), and Bluetooth Low Energy. 

Each sensor device has a microcontroller, that is either used to manage 

communications or to process incoming information. In general, cloud-based 

IoT systems involve three major technologies which are embedded systems, 

middleware, and cloud computing. Embedded systems process information in 

the front-end devices. The middleware interconnects heterogeneous front-end 

embedded devices to the cloud. The cloud computing platform provides storage, 

processing, and management services. 

 

Recent emerging applications surrounding IoT have increased the 

number of connected devices that will require real-time processing (Adjih et al., 

2015). Although IoT commonly uses cloud computing, it becomes a bottleneck 

for sensor-based IoT applications due to bandwidth requirements, latency, fault 

tolerance, and security issues (Shi and Dustdar, 2016). Applications such as data 

streaming will presumably serve devices with a high data rate. Data generated 

by sensor devices is transmitted to the distant cloud network for processing, 

storage, and analytics. Eventually, the frequent rate of data production will 

exceed the bandwidth availability. This results in a long delay in transmission 

requests, more network congestion, and reduced network connectivity. 

Therefore, it is not feasible to use the cloud as an intermediary transfer medium 

between local endpoint devices. Also, waiting for a request from a cloud server 

can be disastrous as delay-sensitive applications expect an immediate response, 

often within tens of milliseconds. In a safety-critical control system, a delay in 

response time may cause severe injury to humans or damage to the machine. 
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Typical cloud computing arrangements fail to achieve the bandwidth and 

latency requirements. Consequently, the IoT paradigm is moving away from the 

centralized structure as computations are moved closer to the edge of network. 

 

Edge and fog computing are intermediate layers of network 

infrastructure which integrate the cloud with sensor-based IoT environments. 

The edge computing paradigm complements cloud computing by moving 

substantial compute, storage resources, and existing cloud computing services 

closer to the edge of a network, usually one hop away from IoT devices (Lopez 

et al., 2015). This reduces unnecessary transfer latency as compared to cloud 

computing. Local information caching and selective information processing 

network edge avoids high data volume transferring to the central cloud, as data 

sources and actuation will be processed within the same location. Thus, user 

experience and quality of service are improved, since the latency in edge 

computing is typically lower than cloud computing.  

 

Edge computing can fulfill the requirements such as improved 

bandwidth, low latency, and low power in many IoT applications (Shi and 

Dustdar, 2016). According to various studies (Dastjerdi and Buyya, 2016; 

Morabito et al., 2016), edge technologies such as IoT gateways, local data 

management, data aggregation, and data filtering are becoming the main 

preference for integration between cloud and heterogeneous IoT devices. 

Morabito et al. (2018) propose LEGIoT, an edge gateway that uses container 

virtualization technologies to manage information exchanges between cloud 

and sensors. IoT gateways bridge cloud services and IoT sensors and provide 
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them connectivity and data routing functionalities. Lertsinsrubtavee et al. 

(2017) present the PiCasso framework for service deployment based on a fog 

computing model. The PiCasso framework uses technologies such as SBC, 

container service orchestration, and software-defined networks (SDN).  

  

In publish-subscribe scenarios, a centralized cloud model works poorly 

for sensor-based IoT environments. This is because most data exchanges that 

usually happen locally around the edge network need to travel across the central 

cloud (Banno et al., 2017). In an edge broker approach, message brokers are 

placed in front of the edge network and directly interact with endpoint devices. 

Publications and subscriptions are collected at the broker closest to the devices. 

This improves the capability of brokers to send an immediate response without 

waiting for responses from the cloud. 
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Table 2.1 Comparison of Edge, Cloud, Fog, and Mist (Dogo et al., 2019) 

 Cloud Edge Fog Mist 

Deployment 
model 

Centralized Centralized 
with 
distribution 

Decentralized/
distributed 
gateways 

Centralized or 
distributed with 
microcontroller 
network 

IoT support Yes Yes Yes Yes 

Latency High Low Low within 
100ms 

Very low 

Bandwidth Very High Low Low Very Low 

Power 
consumption 

Very High Moderate Moderate Very Low 

Computational 
power 

Very high Moderate Moderate Low 

Service Coverage Global Limited Spread Wide Spread Very limited 

Hardware High 
specifications 

Limited Limited Very Limited 

 

The edge cloud architecture is facilitated by smaller devices that spread 

across the network consists of edge nodes, fog cloudlets, and cloud servers. 

Figure 2.1 shows a variety of edge computing technologies which include fog, 

edge, mist, and dew computing (Naha et al., 2018). In the cloud hierarchy, dew 

computing has the lowest latency and processing power, while cloud computing 

has the highest latency and processing power. This section gives an outline of 

the edge computing architecture compares it to cloud and fog computing. Table 

2.1 compares different aspects of various edge and cloud technologies. The 

following subsections discuss various forms of edge cloud technologies. 
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Figure 2.1 Edge Cloud Paradigm 

 

2.1.1 Fog Computing 

Fog computing is a highly virtualized platform service consisting of 

computing elements such as fog nodes and cloudlets. These fog computing 

elements provide extended services of the central cloud, at the level of routers 

and gateway. The fog elements process and store some of the data between 

endpoint devices and cloud data centers. Fog computing systems are integrated 

into a cellular network for mobile carrier usage which utilizes devices like M2M 

communication and wireless routers (Tandon and Simeone, 2016). Fog 

computing reaches from IoT devices to the edge and core of the network, while 

edge computing is only limited to computing at the edge (Chiang et al., 2017). 

Cloudlet is a fog layer mobile computing platform which stores and process data 

without going through the remote cloud, to reduce response time (Ahmed and 

Ahmed, 2016). Cloudlet uses virtualized technology that sits between mobile 
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devices and remote cloud. Cloudlets can improve processing speed and save 

energy, by providing internet services to endpoint mobile devices that offload 

resource-intensive tasks and data caching (Pang et al., 2015).  

 

2.1.2 Edge Computing 

Edge computing systems deploy edge servers into edge networks where 

endpoint devices are connected to a base station. Edge computing reduces the 

amount of data being to the cloud by processing latency constrained data locally 

at the edge and sends filtered data to the cloud for storage or further processing. 

Thus, avoiding network traffic and allows faster response time. However, edge 

computing may not assure ultra-low latency for some real-time applications. 

Heavy information traffic will overload the edge server. This can cause many 

issues such as missing latency deadlines, scalability problems, and server 

failures (Satria et al., 2017). Therefore, edge computing facilities need to 

provide high availability and fault tolerance to guarantee uptime and 

performance. 

 

2.1.3 Mist Computing 

Mist computing offloads tasks to the outermost edge of the IoT network 

at the layer of microcontrollers and embedded devices, without burdening the 

communication network on the Internet (Preden et al., 2015). This results in 

reduced latency and bandwidth usage. The main applications of mist computing 

are machine-to-machine (M2M) communication services, where edge devices 

can access communicative resources in their vicinity (Liyanage et al., 2016; 

Tammemäe et al., 2018). Mist computing is used to preserve the privacy of 
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internet applications via local processing in the early days (Campbell et al., 

2003). Recently, mist computing is extended to collaborate with fog and cloud 

computing and has self-awareness about its local situation and physical 

environment (Tammemäe et al., 2018). The infrastructure of mist computing 

consists of heterogeneous devices located in front of the network edge, to 

provide various IoT services and improve computational processing power 

(Liyanage et al., 2016). 

 

2.1.4 Dew Computing 

Dew computing is a local client/server-based paradigm, whereby on-site 

local servers provide cloud-independent services, while collaborative to the 

cloud services. With dew computing, users can access cloud services even when 

there is no internet connection. Babou et al. (2018) propose a framework similar 

to dew computing called home-edge computing. The home-edge computing 

approach offloads certain latency constrained tasks to the edge compute server 

located nearer to end-users. Also, the home-edge server synchronizes with the 

edge and central cloud servers. If the local resource is unavailable, the client 

requests are delegated in a hierarchical way towards the edge and central cloud 

servers. Dew computing is also used to offload cloud computing tasks and 

stream data between IoT sensors and devices (Gusev, 2017). 

 

2.2 Edge-based Container Orchestration 

Edge devices are constrained in terms of computational power, power 

consumption, and connectivity. The hardware of edge computing devices 

usually has processing power, memory, and storage capabilities lower than that 
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of typical server machines (R Morabito, 2017). Embedded computers and 

micro-servers are widely used in edge-based IoT application domains as they 

facilitate lower cost, lower energy consumption, considerable computational 

power. Edge-based deployment on constrained devices will require lightweight 

software solutions. Container virtualization technology is capable to facilitate 

edge because it is lightweight, portable, easy to deploy, and has near-native 

performance (Felter et al., 2015; Morabito and Beijar, 2016). One drawback is 

the extra User Datagram Protocol (UDP) traffic between containers such as the 

Network Address Translation (NAT) feature of Docker.  

 

Container technologies such as Docker provide process isolation, less 

virtualization overhead, and local fault-tolerant for edge computing (Ismail et 

al., 2015). The size of each container is minimal because kernel resources and 

standard libraries are shared between containers. However, a container cannot 

run on a different platform within itself. Containers are also easy to deploy 

because of continuous integration tools and development environments. 

Containers solve the dependency tree issue of the development and deployment 

environment as application packages are wrapped in container images along 

with utilities and shared libraries. Many container platforms are built on top of 

Linux LXC techniques, by using kernel mechanisms such as cgroups and 

namespaces to isolate process environments from system resources. Linux 

cgroups limits container process to system resources. Linux namespace isolates 

the container view of the runtime environment. Processes within different 

containers all share the same kernel, but each has different views of isolated 

system resources such as process management interfaces, network stack, and 
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filesystem namespace. Popular projects based on container virtualization are 

Docker, LXC, CoreOS, and Apache Mesos. 

 

Docker Swarm is a container orchestration tool that enables users to 

deploy Docker containers on multiple Docker hosts within the distributed edge-

cloud environment. All host nodes of Docker Swarm run the Docker engine, 

and co-operate together as a tightly-coupled unit, to deploy containerized 

workloads. Docker Swarm orchestration also helps to improve availability and 

fault tolerance by spreading application services across redundant micro-service 

nodes (Alam et al., 2018). With microservice, different components of the same 

application can be implemented as several small services to achieve a collective 

target. 

  

In a cluster of Docker Swarm hosts, a service is an abstraction of Docker 

containers. The service is based on specific Docker images, and is comprised of 

a set of different tasks, and are implemented as individual containers. Docker 

Swarm makes use of the Raft Consensus algorithm to maintain the cluster state 

(Vohra, 2017) and preserve fault tolerance of the Swarm cluster. For practical 

use, the cluster requires multiple manager nodes to ensure the maintenance of 

the cluster state. If there are n manager nodes, the cluster requires a minimum 

quorum of 
  

 manager nodes to operate normally, and can tolerate up to 
  

 

manager node failures. 
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The combination of edge computing and orchestration enables a highly 

dynamic and distributed deployment of services. Containerization is a viable 

lightweight virtualization option for single-board computers, as demonstrated 

in various studies. Pahl et al. (2016) present an architecture to support fault-

tolerant edge-cloud service orchestration through containers, which 

consequently avoids the high volume of data flooding into the cloud network. 

All communication, decision making, and analytics services are packaged into 

different containers and deployed on selected edge nodes. Alam et al. (2018) 

have used Docker as a distributed service platform for fault tolerance, via 

microservice-based edge deployment. For IoT applications, Docker-based IoT 

gateways are also implemented. Morabito and Beijar (2016) propose an IoT 

gateway framework and evaluated the performance of containerized IoT 

gateways running on single-board computers. Their evaluations show that there 

is minimal overhead on containerized applications over native host applications 

for the Raspberry Pi 2 SBC in terms of CPU time (2.67%), memory (6.04%), 

and disk access speeds (10%), and power consumption (10%).  

 

2.2.1 Container Orchestration with Single-board Computers 

Low-cost single-board computers provide low energy and reduced 

infrastructure cost while still capable of running complex software services. 

Studies have shown the feasibility and limitations of Raspberry Pi boards in 

Docker-based edge-cloud deployments regarding their performance, energy, 

and cost-effectiveness (Pahl and Lee, 2015; Bellavista and Zanni, 2017). A 

Raspberry Pi single-board computer offers lower energy consumption and 

considerable computational power. Since the Raspberry Pi SBCs lack 



 
 

20 

computing power, it cannot run computationally intensive software. 

Nevertheless, this downside of the SBCs can be remedied by combining a larger 

number of these devices into an affordable and energy-efficient cluster. Thus, 

edge-based deployment can be flexibly configured and customized to 

accommodate demanding workload and scarce environments, where limited 

resources are available.  

 

2.2.2 Microservice Architecture 

This research work implements a microservice-based MQTT broker 

cluster within the Docker Swarm cluster. The microservice architecture splits 

the application into a suite of smaller, interconnected services as opposed to a 

single monolithic application. Figure 2.2 depicts the difference between 

monolithic and microservice-based MQTT cluster implementation. This 

implementation follows the adapter pattern (Burns and Oppenheimer, 2016). 

The adapter pattern enables the use of any MQTT broker implementations as 

long as the middleware present a uniform interface that implements the MQTT 

standard. MQTT clustering implementations similar to the microservice 

architecture are presented in ILDM and Nucleus (Banno et al., 2017; Sen and 

Balasubramanian, 2018). 
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Figure 2.2 Monolithic and microservice implementation (Cicizz, 2019) 

 

The combination of modularity of microservice architecture and Docker 

orchestration increases the dynamicity of deployment for distributed systems 

(Alam et al., 2018). The services are loosely coupled and have their application 

logic combined with various adapters. Some microservices expose an API to 

communicate with other services in the application. Some microservices 

communicate with established communication protocols such as AMQP, 

MQTT, and RPC. The microservice architecture divides a single application 

into a discrete set of smaller services, each with its application logic and 

communication mechanisms. Microservices are well supported by container 

virtualization technologies. Microservices can be independently deployed and 

automatically scheduled with an orchestration framework.  

 

2.2.2.1 Benefits of Microservices Architecture 

Microservice architecture decomposes a complex application into a set 

of manageable services that are easier to understand and maintain. Each service 

can be independently maintainable and deployable. This reduces the barrier of 
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adopting new technologies because of the flexibility of technology stacks. 

Services can be implemented in different programming languages, which fits 

best for their applications. Each microservice can be granularly scaled within 

the cluster computer. As demonstrated in (Sen and Balasubramanian, 2018), 

microservice can increase fault isolation as the application logic is distributed 

across different layers. Failures of devices and microservices can be masked by 

the inherently redundant architecture of the system. 

 

2.2.2.2 Drawbacks of microservice architecture 

Microservices architecture adds complexity because of additional inter-

process communication mechanisms, such as message passing or RPC, between 

components. Developers also have to handle partial failure components in the 

application. A monolithic application simply deploys a set of identical servers 

behind a load balancer. In contrast, each service in a microservice architecture 

will have multiple runtime instances and each instance needs to be 

independently managed. A microservice application needs to implement a 

service discovery mechanism to support communication between services.  

 

 

2.2.3 Docker Distributed Networking 

Each Docker container is a virtual network host within the host machine. 

Each container has an internal network attached to the virtual ethernet interface. 

The internal network also provides a private network address. The container 

uses the host machine network address as the default gateway for external 

communication. As shown in Figure 2.3, the local bridge network of the Docker 
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host connects to containers through a virtual ethernet bridge on the same Docker 

host. Docker containers can operate in two network modes. Bridge mode 

isolates the network environment for each container residing on the host. The 

bridge forwards packets between networks based on each MAC address of the 

virtual network interfaces. On the other hand, the host mode directly links 

containers to the network interface of the host. The proposed broker system in 

this work uses host mode because the host mode performs better in a multi-

container environment (Lee et al., 2018).  

 

The container attached to the default bridge network does not involve in 

intra-cluster service communication, because the scope of the bridge network is 

limited to the local cluster nodes. Services running on other nodes will be unable 

to consume the local service. Docker Swarm overlay is the network solution 

used in Swarm to manage communication between containers (Merkel, 2014). 

The container clusters in Docker Swarm support network connection of 

containers using network virtualization features. Docker Swarm uses overlay 

networks, based on VXLAN networking protocol, to enable virtual networks to 

span multiple Docker hosts as shown in Figure 2.4.  

 

 

Figure 2.3 Docker Network Configuration (To et al., 2015) 
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Figure 2.4 Docker Swarm Network Overlay (Church, 2019) 

 

The overlay network forms a single Ethernet network across all 

machines within the Swarm cluster. Containers, and services on different 

Docker hosts to communicate with each other through dedicated overlay 

networks they are associated with. Overlay networks construct virtual links 

between machines using a packet tunneling protocol. The tunneling protocol 

encapsulates the container packets using a host network address and forwards 

the packets to the destination machine. The global scope of the Swarm network 

is referred to as swarm. The global swarm network spans across the entire 

Swarm cluster. A container consumes a discrete service by querying the 

embedded DNS server to resolving its virtual IP address. A prerequisite for this 

is the query must be from a container attached to the same network as the 

container or service being looked up. Overlay networks can be isolated from 

each other by specifying the name resolution in the network scope. However, 

Docker containers can use more than one bridge and overlay network at one 

time.  
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Then, IP Virtual Server (IPVS) performs load balancing and forwards 

traffic to each container of the service. Swarm uses service routing mesh to route 

external incoming requests to the published tasks that constitute the service, as 

shown in Figure 2.5. The routing mesh of Docker Swarm comprises an ingress 

overlay network, netfilter rules, and IPVS. A service running in a Swarm cluster 

makes itself available to consumers external to the cluster through the 

publication of a port. Docker Swarm routes requests internally from one service 

to another via a virtual IP address, resolvable by the service name. Swarm uses 

layer 4 (transport layer) load balancing, by making use of the IPVS, which is a 

built-in feature of the Linux kernel. Packets destined for the virtual IP address 

of a Swarm service, are marked and forwarded according to the kernel netfilter 

rules. Through a combination of the netfilter rules and IPVS load balancing via 

the service’s virtual IP, traffic is routed through the ingress network to all 

Docker containers. The configuration of Docker Swarm overlay is relatively 

simple but has a performance lower than that of native host networking (Zeng 

et al., 2017). 

 

 

Figure 2.5 Docker Swarm Ingress Network (Church, 2019) 
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2.3 Fault Tolerance in IoT systems 

2.3.1 Redundancy 

Failures in edge cloud environments occur regularly as edge devices are 

sometimes very unstable. These devices are vulnerable to many types of failures 

such as power and hardware failures, which cause instability to the network and 

IoT services. Edge cloud systems for IoT data streaming applications require 

reliable and timely message delivery. Fault tolerance measures such as detection 

of failures, redundancy, and consistent recovery are required to accommodate 

reliable IoT services in edge cloud environments. The most common way of 

achieving fault tolerance is to incorporate redundancy in the system. In the event 

of faults, the system leverages redundancy to mask and tolerate faults, thus 

maintaining desired functionality and performance. Redundancy techniques 

involve replicating components in the application through redundancy to 

eliminate single points of failure.  

 

Typical redundancy techniques are redundant hardware, software 

replicas, and distributed networks. A redundant hardware solution consists of a 

set of loosely coupled servers that are self-contained and able to defect faults on 

other nodes. For example, instead of having a single processor, two or more 

processors are used to perform the same function. Static hardware redundancy 

is mainly used to immediately mask failure. Dynamic hardware redundancy 

involves adaptively activating redundant components when the primary 

component fails. Karthikeya et al. (2016) propose a fault-tolerant algorithm, 

which determines the minimum number of necessary gateways to provide 

redundancy for edge servers in a smart city application. The proposed algorithm 
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detects gateways and link failures to create extra redundant routes between 

gateways. Hardware redundancy also facilitates failover processing to take over 

the operation of the failed servers. Failover processing involves restarting the 

application, initialization of the restarted process, and rollback recovery (Su et 

al., 2014). Health checks and error detections of hardware and software is 

required to perform failover. 

 

Software redundancy involves replicating software components and 

splitting the application into independent components, to tolerate crash failures 

(Birman, 2012). For data streaming applications, it is important to have reliable 

local fault-tolerant solutions at the edge of network through edge computing. 

Through edge computing, centralized computing elements and application logic 

are offloaded from centralized nodes to edge servers. Javed et al. (2018) address 

local fault tolerance and data resiliency by implementing a fault-tolerant data 

pipeline via Kafka, to provide extra redundancy to the edge-cloud environment. 

Sen and Balasubramanian (2018) propose the use of data redundancy to resolve 

the issue of resiliency in the MQTT broker system. All of the important states 

such as client sessions and routing information are maintained in a separate 

shared cache. The use of a shared cache improves the fault tolerance of the 

system because the failure of broker components will not affect the data. 

 

For networking redundancy, Gia et al. (2015) address network-level 

fault tolerance using backup routes to maintain connectivity between all the 

nodes in a wireless sensor network (WSN). Network virtualization via Software 

Defined Network (SDN) approach is another used to improve resiliency in the 
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distributed network (Gonzalez et al., 2016). This approach focuses on a global 

view of the network infrastructure spanning from edge IoT devices to the central 

cloud. SDN can provide independent forwarding and routing decisions at 

various points of SDN nodes in the fog and edge layer of the network. When 

one of the SDN nodes fails, the redundant SDN nodes in the network will build 

up alternative network paths for data flow. 

 

Su et al. (2014) present the WuKong framework, which is a 

decentralized ring topology where services are delegated from a failed device 

to a redundant device in the ring, to recover the lost service. The WuKong 

middleware facilitates the failover of identical services among heterogeneous 

devices. The proposed framework is designed for sensor networks. One master 

device manages and handles failures of all worker devices and their services. 

However, the proposed fault tolerance mechanism does not consider the failure 

of the master device and the gateway, only the failure of the worker devices. 

 

2.3.2 Checkpointing 

It is important to capture runtime progress so they are not lost in the 

event of failure. Checkpointing is a recovery-based fault tolerance approach 

used for recovery after a system failure. Checkpointing is used for storing the 

state of periodically advancing applications such as file systems and databases. 

A checkpoint is done after every critical change made to the system. When a 

process fails, rather than restarts from the beginning, it starts the task from the 

most recent checkpoint. The restarted process starts the recovery process and 

replays all of the checkpoints done between the previous state and the time of 
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failure. Most checkpointing techniques are applied in stateful applications to 

ensure reliability and continuity of services (Khunteta and Praveen, 2010). 

Checkpointing technique with rollback recovery is used to recover from 

transient faults in real-time embedded systems (Saraswat et al., 2010). A 

transient fault is a type of fault that happens once during runtime and will never 

happen again afterward.  

 

Coordinated checkpointing is a centralized checkpointing technique that 

uses an atomic commitment protocol to ensure that the global checkpoint is 

consistent. The atomic commitment protocol performs a distributed atomic 

transaction for every turn of checkpointing. A distributed atomic transaction 

involves a querying phase, an agreement phase, and a commit phase. 

Uncoordinated checkpointing is a decentralized fault-tolerant technique where 

nodes construct their checkpoint individually (Guermouche et al., 2011). 

However, this causes the system to have a low level of global consistency. A 

global consistent checkpoint must be computed from available checkpoints to 

prevent a domino effect. Checkpointing techniques depend on global rollback 

for consistency restoration. Global rollbacks lead to systemwide aftermaths 

since all entities have to rollback after each failure (Guermouche et al., 2011). 

Ozeer et al. (2018) present an uncoordinated checkpoint with message logging 

to save the state of IoT devices in the fog environment. In the framework, a set 

of data representing the application state is periodically saved in each node and 

restored during an occurrence of failure.  
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2.3.3 Container Service Migration 

For many virtualized applications, job migration is a strategy to keep 

alive important services even in a faulty scenario. If a machine fails, the job can 

be migrated to a different machine in the network. Job migration can also be 

used pre-emptively in which the application is constantly monitored on a 

feedback-loop mechanism (Devi and Saikia, 2014). Container migration via 

Docker is being used to preserve system liveliness but it is only for stateless 

applications (Ismail et al., 2015). In a distributed edge deployment, live 

container migration is a solution to reduce service downtime by moving 

containers between different physical machines without restarting the container. 

A container cluster requires a shared network infrastructure to support the 

reattachment of the container’s network interface to a different location in the 

cluster network. Container live migration has been demonstrated working for 

stateless applications. However, the live migration technique is still unstable for 

stateful application as it is erroneous and will slow down the entire service on 

edge infrastructure (Kakakhel et al., 2018).  

 

Deshpande and Liu (2017) proposed a Docker container service 

migration framework to transfer service containers in an edge cloud platform 

between edge nodes that consist of embedded single-board computers. The 

proposed framework prevents service from stopping by check-pointing live 

containers and restoring failed containers in redundant nodes. Container 

migration mechanism migrates containers across different hosts without 

disconnecting the clients. The memory file system and live network connections 

that are running on the hardware are transferred to another machine while 
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preserving the state of the container. When a host fails, the process freezes a 

container, saves the state of the container, and migrates it to a destined node, 

and resumes the state. 

 

2.3.4 Load Balancing 

Additionally, fault tolerance can be achieved through load balancing 

techniques. Applications can be deployed behind load balancers to mask 

failures. Load balancing can be implemented as hardware, software, or network. 

A load balancer distributes workload to server nodes to improve response time 

and throughput of a system (Rao et al., 2003).  A load-balancing algorithm 

should have fault tolerance and fault detection ability. This means that it should 

perform load balancing accordingly despite node failures and redirects traffic to 

healthy nodes. 

 

2.4 Summary 

In this chapter, the concepts related to edge cloud systems and container 

virtualization are discussed. Section 2.1 presents the drawback of cloud-based 

IoT and the comparison of various edge and cloud technologies in the IoT 

paradigm. Cloud computing is inappropriate for latency-sensitive IoT 

applications due to its high and unstable latency, and large bandwidth demands. 

Edge computing moves some of the computing resources closer to end-users to 

reduce end-to-end transfer latency and avoid a large volume of information flow 

to the central cloud. The hardware of edge computing device has the processing 

power, memory, and storage capabilities lower than that of typical mainframe 

servers in the cloud. To compensate for the lack of computing power, smaller 
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edge devices such as the Raspberry Pi SBCs are combined into a distributed 

computer cluster.  

 

Section 2.2 presents an overview of edge-based orchestration using 

Docker containers and SBCs. Docker container is suitable for edge computing 

applications because of its lightweight-ness and ease of deployment. This 

proposed broker system in this work implements a microservice-based MQTT 

broker cluster within the Docker Swarm cluster. The application services can 

be automatically deployed and scheduled using Docker Swarm.  

 

Section 2.3 presents various fault-tolerant approaches used in IoT 

systems. Hardware and software redundancy involved replicating hardware and 

software components and splitting the system into independent components, to 

tolerate crash failures. Network redundancy focuses on maintaining routing and 

stable connectivity between nodes via backup routes. Checkpointing techniques 

restore the system to the correct state after a system failure. Container migration 

mechanism migrates containers between different nodes in a distributed 

network to provide availability for IoT services.   
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CHAPTER 3 
 

PUBLISH-SUBSCRIBE SYSTEM 
 

 

This chapter presents an overview of the publish-subscribe 

communication paradigm. Section 3.1 presents the MQTT protocol and its 

communication patterns. Section 3.2 reviews various distributed MQTT 

systems present in the industry and the literature. Section 3.3 presents an 

overview of scalability and fault tolerance on generic distributed publish-

subscribe systems. Section 3.4 outlines the fault-tolerant approaches used in 

distributed publish-subscribe systems. 

 

The publish-subscribe system is a key technology for information 

dissemination in the IoT paradigm. The publish-subscribe paradigm differs 

from conventional client-server architecture, in a way that both endpoints do 

not communicate directly with each other. The publish-subscribe model 

describes a loosely coupled information dissemination middleware for message 

exchanges. Each participant in a publish-subscribe system can be either a 

publisher or a subscriber of information. Client endpoints do not need 

information about each other to work correctly as communications between 

clients are managed by a message broker. Figure 3.1 illustrates the publish-

subscribe pattern with a central broker. 
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Figure 3.1 Publish-subscribe sequence 

 

To perform publication or subscription, clients use a publish-subscribe 

API to connect to the message broker. Publish operation is invoked by 

publishers to produce messages and inject publications into the server. 

Subscribers register their interest to the broker to receive messages according to 

the topic of interest or based on constraints over the publishing content. Each 

subscription is considered a filter on a set of published events. Subscribe and 

unsubscribe operations are invoked by subscribers to respectively declare or 

remove their interest in certain types of content. The broker accepts connections, 

stores subscriptions, and forwards matched publications to subscriptions.  

 

Examples of broker-based protocols include MQTT, Advanced 

Message Queuing Protocol (AMQP), CoAP, and Java Message Service API. 

The many-to-many communication model of the publish-subscribe paradigm 

has the advantage of space and time decoupling. However, the central broker 

becomes a single point of failure and bottleneck for performance. Network 

concentration and load peaks can potentially slow down message delivery. The 

broker server must scale horizontally to avoid these issues. 
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This research work mainly focuses on topic-based publish-subscribe 

systems. Topic-based publish-subscribe systems are widely popular in the 

industry and open source communities. A topic-based publish-subscribe system 

partitions event-space into separate channels, known as topics. A subscriber 

uses a topic string as a predicate to register its interest in a topic. Publishers tag 

their payload with a topic as the metadata of the message. Subscriptions are 

stored as a set of subscribers for every topic entry. When a publication needs to 

be matched, one simply needs to find its topic and obtain the corresponding set 

of subscribers. Some topic-based publish-subscribe systems such as MQTT 

support the organization of topics in a hierarchy. In that case, publications are 

matched against subscriptions with an equal topic or with equal upper-level 

hierarchies.  

 

3.1 MQTT 

Message Queue Telemetry Transport (MQTT) is a topic-based 

messaging protocol built on top of TCP/IP protocol. The MQTT protocol is 

useful for IoT data exchange in constrained environments due to its lightweight 

design and minimal overhead. An MQTT client interacts with the MQTT broker 

through the MQTT interface. The MQTT broker mediates data between 

publishers and subscribers. The broker filters all incoming messages and 

correctly distributes them to all subscribers. 
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Figure 3.2 MQTT publish-subscribe sequence 

 

Figure 3.2 illustrates an example of the publish and subscribe operation 

of the MQTT protocol. First, the subscriber sends a CONNECT message to a 

broker. The broker replies with a CONNACK message to establish a connection 

between the subscriber and the broker. The subscriber then sends a SUBSCRIBE 

message to the broker to register its topics of interest to the broker. The 

publisher then sends a PUBLISH message, with a specific topic, to the broker. 

If the topic is included in the registered topics of interest, this message is 

forwarded to the subscriber by the broker. The subscriber sends a 

DISCONNECT message to the broker to terminate the connection. MQTT 

supports hierarchical topics in the form of topic/sub-topic/sub-sub-topic path. 

In MQTT client and server maintain a connection during communication. 

However, the central broker configuration presents a bottleneck that results in a 

broker queuing delay when a large scale of IoT devices are connected to the 

MQTT broker (Xu et al., 2016). This could also potentially result in a single 
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point of failure if the broker crashes. Broker crashes can cause the loss of all 

MQTT states maintained by the broker. 

 

The MQTT protocol has three levels of quality of service (QoS) to serve 

the reliability of message delivery. QoS 0 is an “at-most-once” message delivery 

that delivers on a best-effort basis, without confirmation on message reception. 

In some applications where sensor value does not change significantly over a 

long period, this QoS can be used because losing data occasionally is not critical 

for overall sensor value is still understandable. The reliability of QoS 0 is 

dependent on the TCP/IP protocol where messages will be lost if a TCP session 

is broken.  

 

QoS 1 is an “at-least-once” message delivery that guarantees message 

arrival to the receiver. The receiver must send an acknowledgment to confirm 

its message reception. If the connection between the client and the broker is 

broken, the client stores a few messages in the buffer and resend them when the 

session comes back. This quality of service guarantees the delivery of sent 

messages but messages can be delivered more than once. QoS 2 ensures that the 

message will be delivered exactly once without duplication. The client and 

broker perform a four-way handshake to confirm the message reception on both 

sides. This QoS level has the most overhead because it requires 4 hops of 

transmission to complete a message transaction.  
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Figure 3.3 MQTT message format (Tang et al., 2013) 

 

Figure 3.3 shows the MQTT message format. Message Type refers to 

the type of message. These message types are CONNECT, CONNACK, 

PUBLISH, SUBSCRIBE, etc. DUP indicates that the message duplication flag 

is used when the broker processes the message. QoS field specifies the quality 

of service. Retain field stands for message retention. This means that any 

message can be retained and published as the first message to a new subscriber. 

Remaining Length field indicates the remaining length of the message. The rest 

of the message field is associated with the message payload. 

 

3.2 Commercial and Open Source MQTT Brokers 

MQTT is very popular in M2M and IoT applications. Facebook has been 

using MQTT as the communication protocol for its messenger application 

(Zhang, 2011). IoT platforms such as Amazon IoT and Microsoft Azure also 

provide services that use MQTT as their communication interface. AWS IoT,  

HiveMQ, and IBM Bluemix are examples of enterprise-ready, cloud-based 

MQTT brokers. However, implementations of these cloud-based brokers are 

limited for edge servers because they are closed systems. Table 3.1 lists 

available commercial and open source MQTT broker servers and their cluster 

support. 
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Table 3.1 MQTT broker cluster implementations (Mishra, 2019) 

Broker Clustering support MQTT bridge IoT bridge support 

jmqtt Multi-host clustering   

ActiveMQ Inter-broker bridges   

emqttd Multi-host clustering   

flespi Inter-broker MQ/job queues   

HiveMQ Multi-host clustering   

JoramMQ Distributed hierarchical brokers   

mosquitto No   

RabbitMQ Queue mirroring 
  

VerneMQ Multi-host clustering   

 

The scale of the local sensor environment in edge-based IoT is expected 

to serve up to tens of thousands of concurrent clients while providing adequate 

latency quality. Unfortunately, standard MQTT brokers have poor scalability 

when the network load is heavy. Open-source MQTT brokers such as Mosquito 

(A Light, 2017) suffer from single-point-of-failure that results in a complete 

breakdown of the system if the broker fails. Data exchanges by an 

overwhelming amount of IoT devices can cause large queuing delays for a 

single broker (Xu et al., 2016). Overhead of queuing delay may be negligible 

for a powerful machine, but for resource-constrained systems, it is very difficult 

to handle the significant portion of message overhead. Instead of improving a 

single server, the broker can be horizontally scaled adding extra brokers to the 

work pool. The distributed system can use a load balancer as a single-entry point 

for all client communications. This allows the clients to perceive the system as 

a single logical broker, thus providing user transparency.  
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Standard MQTT brokers do not offer a way to group a cluster of MQTT 

brokers with similar topics. To operate with any existing MQTT brokers, this 

work uses an adapted middleware layer that sits between the MQTT brokers 

and MQTT clients so that the clients can use the existing MQTT infrastructure 

while obtaining a highly available service. The dissertation work addresses the 

fault-tolerance and performance aspects of a topic-based distribution system 

that is composed of several MQTT brokers. Standard MQTT brokers like 

Mosquitto provide a basic mechanism for edge computing setups. The proposed 

broker system extends the MQTT broker using a clustering approach, in which 

a set of MQTT brokers are grouped into a cluster, and a load balancer is used to 

distribute incoming requests. 

 

MQTT clustering can be achieved by using broker bridging. Many 

brokers can be configured at deployment time to bridge their topics tree 

structure to a centralized bridge broker (Schmitt et al., 2018). Thus, the bridged 

brokers can exchange messages from the bridged remote broker through the 

bridge configuration. However, this approach is very static and has limited 

scalability. The communication overhead between bridges is significant 

because bridging involves propagating messages between all MQTT clients that 

are connected to different bridges. If a broker bridge crashes, the MQTT service 

stops functioning correctly as a distributed system, and some messages are lost 

because there is no failover mechanism for bridging. Besides that, bridging 

brokers can potentially trap messages in an endless loop of transmission 

between broker nodes (Redondi et al., 2019). This can deplete the bridged 

system as the brokers repeatedly send shared messages over the bridge links. 
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Multiple works suggest the deployment of brokers in multiple distributed edge 

networks, across several geographical locations (Banno et al., 2017; Rausch et 

al., 2018; Park et al., 2018). However, this work will implement MQTT servers 

on a single local cluster. 

 

Rausch et al. (2018) present EMMA, which uses bridging tables to 

dynamic link MQTT brokers in an MQTT bridge. The EMMA framework 

reduces end-to-end latency from client to server by dynamically rerouting the 

connections based on proximity and QoS index of the connection. EMMA 

changes the connection between clients and MQTT brokers through buffering 

gateways that reside in multiple locations. These gateways allow MQTT clients 

to transparently connect to the system. The gateways tunnel MQTT traffic and 

provide a buffering mechanism during a reconnection process to a different 

broker. 

 

JoramMQ introduces two types of distributed brokers, clustered and 

tree-based brokers (Scalagent, 2014). Clustered brokers broadcast all 

publications messages to all other brokers when they received a publication. 

Tree-based brokers are distributed in the network based on the hierarchy of 

subscriptions topic. They transfer messages between the upper and lower tier of 

brokers. HiveMQ implements subscription topic sharing among clustered 

brokers, forwarding publication messages only to brokers that have the same 

subscriptions (Hivemq, 2019). 
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DM-MQTT (Park et al., 2018) is an edge-based MQTT broker system 

that uses the multicast mechanism of Software Defined Network (SDN) to 

transfer data as MQTT packets between MQTT brokers distributed across 

different edge networks. SDN switches are distributed across the edge cloud 

network to interconnect all edge and cloud brokers. DM-MQTT reduces latency 

delay by using a bi-directional SDN approach. The SDN controller forms 

multicast groups classified by topics and QoS levels collected in the central 

broker. The SDN controller uses this information to form a multicast path along 

with the SDN switches, that interconnect edge brokers residing in different edge 

networks. The multicast paths are formed between MQTT brokers with the 

same subscribed topic, which entirely bypasses the centralized broker. 

 

The ILDM (Banno et al., 2017) framework introduces the use of an 

intermediary relay node to support distributed MQTT messaging between edge 

servers. For each edge server, the ILDM node is placed between the MQTT 

broker and the clients. The ILDM node connects heterogeneous brokers that are 

located on multiple edge networks. The routing algorithm used in ILDM is like 

a tree-based routing approach that its publication forwarding process routes 

along a fixed propagation path towards interested subscribers. However, the 

message forwarding process requires multiple forwarding hops between 

disperse edge servers and also indirect data flow between the local ILDM and 

broker node. This increases forwarding delay and causes network congestion. 

The authors showed that in the absence of failure, their system can increase the 

throughput by approximately 2 to 4 times without any loss of message. This 

research work uses a similar concept of deploying an intermediate layer of 
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software to coordinate between multiple MQTT brokers. However, this research 

work addresses local fault tolerance for the MQTT broker cluster where all 

MQTT client devices are concentrated around a single access edge node. Figure 

3.4 depicts the differences between a distributed broker network and a broker 

cluster in a local area network. The target environment depicted in Figure 3.4(b) 

consists of only edge servers in a single local cluster, which permits more 

reliability in terms of message delivery, and less delay between cluster nodes 

(Rooney et al., 2005). In ILDM data is transferred as a unicast MQTT-like 

operation and may travel across multiple relay brokers which increases 

transmission delay. On the other hand, DM-MQTT delegates the data 

transmission function to the SDN networking module which enables multicast 

functionality between brokers. 

 

 

Figure 3.4 Distributed and local area broker network 

 
Nucleus (Sen and Balasubramanian, 2018) improves fault tolerance by 

splitting the system into stateless MQTT brokers and a separate shared cache to 

maintain its routing state. This way the broker can fail anytime without affecting 

the state information. The broker component uses the elasticity mechanism of 
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Kubernetes to dynamically scale the number of stateless brokers according to 

the CPU utilization index. However, the distributed data store introduces 

additional access delay, which increases overall latency for message delivery. 

A similar architecture is also presented in MigratoryData, where worker I/O 

threads and state information are separated into discrete components (Rotaru et 

al., 2017). MigratoryData partition incoming subscriptions by splitting the 

subscribers among all servers, irrespective of their subscribed topic. 

 

3.3 Distributed Publish-subscribe System 

Distributed event notification services are implemented through a set of 

event brokers that forms a message broker overlay. For a generic publish-

subscribe system, the system stack generally consists of three layers: the overlay 

infrastructure, event routing, and subscription matching algorithm. The overlay 

infrastructure maintains the routing information and arrangement of member 

nodes. Event routing utilizes the underlying overlay infrastructure to perform 

message delivery. Event routing will require a subscription matching process, 

which evaluates the matching function of a subscription to an event. In the past 

years, several research contributions have focused on reliability and scalability 

in internet-scale, distributed publish-subscribe systems. These systems use an 

application-level overlay network to preserve scalability and fault tolerance. 

However, most of these schemes employ their own standards instead of 

implementing established IoT protocols like MQTT. Table 3.2 shows a 

comparison of various generic internet-scale publish-subscribe systems. The 

following subsections present various scalability and fault-tolerant approaches 

to publish-subscribe systems found in the literature. 
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3.3.1 Distributed Routing Mechanism 

In a distributed event notification network, event routing involves the 

global aspect of traversing messages to relevant brokers before reaching 

interested subscribers. This subsection discusses available forms of event 

routing.  

 

Table 3.2 Summary of generic publish-subscribe systems (Setty et al., 2012) 

 Architecture Overlay 
Structure 

Subscription 
Management 

Event 
Dissemination 

Fault 
tolerance 

Siena Brokers on 
top of Mesh 

None / mesh Subscription 
state at each 
node 

Broadcasting 
states 

Best Effort 

Scribe Decentralized Pastry DHT Rendezvous 
node 

Multicast Tree No 
subscription 
persistence 

Tera Decentralized Gossip Based 
Overlay 

Overlay Per 
Topic 

Random Walks & 
Flooding 

Best Effort 

Poldercast Decentralized Ring based 
DHT, 
Victiny, 
Cyclon 

Ring Per Topic Ring Overlay 
Routing 

High Churn 
resistant 

Vitis Decentralized Hybrid 
Overlay 

Rendezvous & 
Overlay Per 
Topic & Inter-
topic Gateway 

Scoped flooding Best Effort 

 

3.3.1.1 Event Flooding 

A straightforward event routing approach is to broadcast publications to 

all nodes across the publish-subscribe network. This means that each 

subscribing node in the system will match against all publications. This 

approach is straightforward and has no memory overhead. However, it does not 

scale well in terms of the number of message transfers (Eugster et al., 2003), 

since publications are always sent to all brokers regardless of subscriptions they 

hold.  
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Subscription flooding involves diffusing each subscription into each 

broker to build a locally complete subscription table. Each node knows all the 

subscriptions of the entire system so that the event can reach subscribing nodes 

in a single hop. This approach incurs large memory overhead when the total 

number of subscribers is high, but message overhead is optimal (Eugster et al., 

2003). Subscription flooding is impractical for applications where the 

subscriber fluctuation rate is high because each node must propagate changes to 

all other nodes in a completely connected overlay. Subscription flooding also 

needs a convergence period to stabilize the routing state after subscriptions and 

un-subscriptions. The system can only guarantee the delivery of matching 

publications to all registered subscriptions after this period. Event propagation 

based on an incomplete routing state before state convergence will inevitably 

lead to publication loss. In an asynchronous model, the publish-subscribe 

system must deliver publications issued within a certain period following the 

time of subscription arrival. 

 

The message overhead of publication flooding depends on the network 

size because all publications are forwarded to reach every other broker node in 

the network. Subscription-based flooding builds up a routing pattern in which 

publications are only forwarded to interest subscribers, thus do not depend on 

the network size of the group. A recent work that presents flooding techniques 

is ILDM (Banno et al., 2017). 
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3.3.1.2 Selective Routing 

Selective routing presents a middle ground in terms of memory and 

message overhead as compared to event flooding. Selective routing reduces the 

message overhead by only allowing a certain subset of the nodes to involve in 

routing a specific topic. Selective routing algorithms save more network 

resources because an event must be transmitted only to a restricted portion of 

subscribers. In filter-based routing (Baldoni et al., 2009), subscriptions are 

partially diffused in the system and used to build routing paths. This approach 

maintains routing information to construct routing paths that connect publishers 

to all interested subscribers. The routing information of a node is associated 

with each of its neighbors in the overlay and the set of subscribing nodes that 

are reachable through the neighbor. In contrast to subscription flooding, each 

node only communicates with its neighbor nodes, thus reducing memory 

overhead. The disadvantage of a filter-based routing scheme is that nodes 

arranged in the edge of the tree structure are not used for forwarding. This 

results in unnecessary long forwarding paths, which causes a large delivery 

delay (Siegemund et al., 2015).  

 

Rendezvous routing is based on rendezvous relay brokers in the overlay 

network and two sets of functions, to associate respectively subscriptions and 

publications to broker nodes. The subscription function S(N) returns a set of 

nodes that are responsible for storing the subscription s as well as forwards 

events to all matching subscribers. The event function EN(e) returns a set of 

nodes that must receive the event e to match it against the subscription they 

store. This approach uses a controlled subscription distribution to better load 
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balance the subscriptions for storage and management. All subscriptions that 

match the same events will be hosted by the same node to avoid a redundant 

matching in several different nodes. One drawback of the rendezvous-based 

solution is the reliance on central rendezvous nodes for the correct operation of 

distributed event routing. The rendezvous node can quickly become a hot spot 

for popular topics. Moreover, rendezvous-based routing does not handle well 

dynamicity. When a new node joins the system, the whole routing structure and 

rendezvous points must be rearranged among nodes. If many nodes join at 

nearly the same time, rendezvous routing will miss some of the message 

deliveries because the routing structure takes a long time to converge the topic 

paths. Rendezvous-based routing is commonly used on top of DHT overlays 

such as in Scribe (Castro et al., 2002), Bayeux (Zhuang et al., 2001).  

 

3.3.1.3 Gossip-based Routing 

Gossip-based event propagation is used to cope with dynamism and to 

reduce the effect of node churn within a publish-subscribe environment 

(Baldoni et al., 2009). In the gossip protocol, each node maintains only a partial 

view of the subscriptions of its neighbor in the group and propagates event hop-

by-hop through gossiping to its view. Eugster and Guerraoui (2002) propose an 

informed gossip protocol that avoids gossiping a message to uninterested 

subscribers. The proposed gossip protocol organizes groups in hierarchies 

according to the physical proximity of nodes. PopSub (Salehi et al., 2017) 

reduces the message overhead of the publish-subscribe system by propagating 

less popular publications through gossiping. 
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Deterministic technique over multicast trees is fast and has minimal 

duplication during the stable period but it is fragile to node churn, whereas 

gossip-based dissemination is more robust but does not guarantee deterministic 

delivery (Baldoni et al., 2009). There is also a probability that uninterested 

nodes will receive duplicated messages during event propagation, thus creating 

unnecessary network traffic.  

 

3.3.1.4 Clustering Topics 

The correctness of the state of multicast trees is easily disrupted when 

the subscription fluctuation rate and dynamism of overlay topology are high. 

The routing tree needs to be continuously updated to guarantee correct message 

delivery. Hence, the dissemination of events incurs additional overhead in 

maintaining the routing tree. The topic clustering approach is introduced to 

achieve space and time efficiency along routing paths (Milo et al., 2007). Milo 

et al. (2007) present a dynamic topic clustering mechanism that groups per-topic 

peers to reduce maintenance and relay overhead. The authors adopt a cost-

benefit analysis to dynamically merge or split two topic clusters. The authors 

define the overall cost as the sum of maintenance cost and dissemination cost 

for the publish-subscribe system. The topic clustering mechanism only takes 

place if the overall cost is reduced when merging two clusters. The clustering 

algorithm groups topics together into topic clusters. Each topic cluster 

represents a single multicast group. When the event reaches one member of the 

topic cluster, event forwarding only involves nodes correspond to the cluster to 

confine the traffic (Baldoni et al., 2009). 
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3.3.2 Overlay Infrastructure 

Publish-subscribe brokers sit on top of an application-level overlay that 

characterizes the organization of nodes and the functionality of each node. Data 

dissemination and subscription matching happen over an overlay network of 

publish-subscribe nodes. Overlay infrastructure provides useful communication 

and data structure primitives on the application layer. Examples of overlay 

infrastructures are structured and unstructured peer-to-peer overlay, broker-

based overlay, skip-graph overlay, and cloud-based overlay.  

 

3.3.2.1 Broker-based Overlay 

In a broker-based overlay, each broker forms an application-level 

overlay and communicates through an underlying transport protocol. Unlike 

peer-to-peer overlays, broker-based overlays are typically deployed with 

dedicated brokers in the network as intermediaries between publishers and 

subscribers. Clients can access the publish-subscribe system through any 

broker. In general, each broker stores only a part of all the subscriptions in the 

system. Connections between broker nodes are application layer links. The 

server network can be organized in many types of overlays that are typical in 

peer-to-peer networks, such as ring, hierarchical, etc. Network topology 

changes are rare. A broker-based overlay is mainly used to facilitate failed 

brokers and the addition of a new broker. Examples of the broker overlay 

publish-subscribe systems used in past works are TIB/RV (Oki et al., 1993), and 

Siena (Carzaniga et al., 2003), and Hermes (Pietzuch and Bacon, 2002). Siena 

is content-type broker architecture that uses subscription advertisements to 

aggregate events for each subscriber group. Event brokers keep track of routing 
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information to efficiently match publications with brokers with similar 

subscriptions. Siena has limited scalability because it relies on a global 

broadcast mechanism to disseminate publications. Hermes (Pietzuch and 

Bacon, 2002) is a type-based publish-subscribe system implemented using 

middleware to route events across the broker network. For fault tolerance, 

Hermes uses replicated rendezvous broker nodes, as meeting points, for other 

event brokers to advertise their subscriptions and publications. Also, Hermes 

periodically refreshes the state of event brokers to adapt to broker failures.  

 

3.3.2.2 Peer-to-peer Overlay 

Peer-to-peer (P2P) approaches do not require centralized architecture. 

In peer-to-peer publish-subscribe systems, the message dissemination 

mechanism is implemented on top of an overlay network that joins all 

messaging nodes together. Peer-to-peer based publish-subscribe systems are 

generally classified as a structured overlay and unstructured overlay. 

 

3.3.2.3 Structured Peer-to-peer Overlay 

Structured P2P overlay infrastructure is based on per-topic multicast 

trees on top of P2P DHT overlays. A P2P node exploits P2P communication 

primitives of underlying DHT to implement its event routing algorithm. DHT 

based publish-subscribe systems are commonly used in conjunction with 

rendezvous-based routing schemes.  
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Scribe (Castro et al., 2002) is a topic-based publish-subscribe system 

that uses P2P communication primitives of Pastry DHT to implement 

rendezvous routing. Scribe uses Pastry DHT to locate an active rendezvous node 

that holds nodes subscribe to a topic, in order to build a multicast tree that 

connects from publishers to subscribers. Publications sent to the rendezvous 

node are then forwarded in a reversed manner along the multicast tree to 

corresponding subscribers. Scribe uses the heartbeat detection method to detect 

faults in DHT nodes and to maintain the completeness of the multicast trees. 

Each parent node periodically sends a heartbeat message to its children. If an 

active child node found out that its parent is faulty, the children node will get a 

new active parent by issuing a re-subscribe message for the topic to repair the 

broken multicast tree.  

 

Dynatops (Zhao et al., 2013) is a topic-based publish-subscribe system 

that builds its overlay on top of Chord DHT (Stoica et al., 2003). Dynatops uses 

a similarity grouping algorithm to map subscribers into multiple groups of 

brokers, based on similar interest to nearby brokers. This reduces the overlay 

management overhead of brokers in the network. The overlay of Dynatops 

forms multiple per-topic multicast trees to propagate publications to all 

interested nodes. For each subscription whose topic matches the publication, the 

publication is then propagated hop-by-hop along the topic tree in the reverse 

direction of the subscription until it reaches the subscribers. For consistency and 

fault tolerance, Dynatops uses a centralized reconfiguration mechanism to 

monitor the rate of outgoing publications and change of subscriptions and 

restructure the overlay according to these changes. Dynamic reconfiguration of 
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overlay also minimizes the number of unrelated relay brokers along the 

publication routing path.  

 

Structured publish-subscribe overlays are scalable and robust with 

respect to node degrees. However, this approach incurs more propagation 

overhead because event forwarding also traverses through uninterested nodes 

(Rahimian et al., 2011). Structured overlays can be well suited for sensor 

networks with occasional node churn, frequent failures, and limited node 

reliability. One drawback of DHT based publish-subscribe systems is the 

dependence on rendezvous points which lead to multiple single points of failure. 

Rendezvous points also can become a hotspot for concurrent events on the same 

topic. 

 

In most IoT applications, many types of exhaust data have been 

occupying most of the IoT data distribution trends (Banno et al., 2015). 

According to these trends, most topics in IoT topic-based publish-subscribe 

usually have very few subscribers and these data have low value most of the 

time. Routing schemes presented in most publish-subscribe systems such as 

Scribe and Bayeux waste network resources by excessively circulating a large 

amount of low-value data around routing paths. Banno et al. (2015) present a 

design of a relay-free overlay network for topic-based publish-subscribe 

systems. The proposed framework detects low-value data among the 

subscriptions on top of a DHT overlay to minimize unnecessary forwarding of 

published messages. The authors use Multi-key skip graph to construct the 

application layer overlay. A multi-key skip graph is a distributed data structure 
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that is used to quickly insert and search resources among peer nodes based on 

provided keys. The proposed framework uses peer information in the multi-key 

skip graph to determine the shortest routing path in order to reduce the length 

of routing path during message propagation. The proposed framework is 

resistant to failure and subscription fluctuation because the multi-key skip graph 

can quickly detect the presence of subscribers by querying into subgraphs in the 

overlay. The skip graph overlay maintains information on neighbors’ state and 

builds up redundant links to bypass a failed node. In an application of distributed 

edge-based publish-subscribe, the authors show that the multi-key skip graph 

approach can reduce propagation path but requires larger routing tables. 

 

3.3.2.4 Unstructured Peer-to-peer Overlay 

A tree-based structure can be weak against node failure. Unstructured 

overlay topology is used to organize nodes in one flat or hierarchical small 

diameter network to minimize the effect of node failures (Baldoni et al., 2007). 

The publish-subscribe system can continuously repair the overlay topology 

even if node failure occurs. The unstructured overlay uses a gossip-based and 

uniform sampling protocol to periodically update each local view, about 

participant interests at each node and swaps random view entries between 

randomly chosen nodes. 

 

Tera (Baldoni et al., 2007) uses a hierarchical structure to implement a 

topic-based publish-subscribe based on a uniform peer sampling service. Tera 

uses interest clustering by constructing topic overlay networks for each topic 

which includes all nodes subscribed to that topic. The inter-cluster routing 
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mechanism performs a random walk that stops at first a broker that holds an 

access point for the target topic. Once a subscriber received an event, it 

broadcasts the event to all nodes in the sub-cluster. The probabilistic gossip 

algorithms used in the system are resistant to both subscription fluctuations and 

node failures. 

 

Poldercast (Setty et al., 2012) uses probabilistic event propagation over 

a gossip-based dissemination overlay to maintain application-level topic rings. 

Each peer node uses gossip to connect to other peers with the same topic to form 

an interconnected ring overlay between all subscribing peers. Poldercast 

exploits correlation within subscriptions by reusing the same shortcut links 

between multiple rings to minimize the number of links maintained in each node 

and hence reduces average event propagation paths. 

 

3.3.2.5 Hybrid Overlay 

Vitis (Rahimian et al., 2011) is a hybrid approach that extends the 

rendezvous routing on top of an unstructured overlay of peers. Vitis uses gossip-

based peer sampling to build sub-clusters covering all subscribing nodes with 

the same topic to reduce the number of intermediary nodes along the routing 

path. However, due to the bounded node degree implemented in Vitis, disjoint 

overlays of similar topics can be formed. Therefore, gateway nodes are selected 

by nodes in each sub-cluster to connect to other sub-clusters for the same topic. 

One drawback of the Vitis framework is additional relay latency because sub-

clusters need to be connected by additional gateway nodes, rendezvous nodes, 
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and relay nodes. The reliance on central nodes also makes it weak to dynamic 

node joining and failures.  

 

3.3.2.6 Cloud-based Overlay 

Cloud-based broker systems are single, flat-layer brokers generally 

deployed in the cloud. MQTT, ActiveMQ, and Amazon IoT are examples of 

single-hop cloud publish-subscribe systems used in IoT applications. BlueDove 

(Li et al., 2011) is an elastic cloud-based publish-subscribe system that can 

dynamically scale-out according to workload demands. BlueDove utilizes an 

attribute-based filtering model for subscriptions. Dynamoth (Gascon-Samson et 

al., 2015) is a cloud-based publish-subscribe system with single-hop routing. 

Dynamoth uses a hierarchical load balancer to dynamically redistributes topic 

channels among elastically replicated publish-subscribe brokers. The cloud-

based publish-subscribe overlay has lower routing latency between brokers but 

presents higher end-to-end latency for many IoT applications. 

 

3.4 Publish-subscribe Fault Tolerance  

The occurrence of frequent faults is inevitable due to the distributed 

nature of the network. To tolerate failures, the distributed publish-subscribe 

system must have a built-in fault-tolerant mechanism to ensure that disruptions 

do not affect the operation of the message delivery in the long run. This section 

presents various approaches to tolerant faults in the publish-subscribe system.  
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3.4.1 Distributed State Recovery 

Distributed checkpointing rolls back the entire state of a globally 

consistent state after failure (Carbone, Katsifodimos, et al., 2015). Lineage-

based recovery is a logging technique used to recover lost states from the partial 

result in a distributed system. Lineage information such as the source of data 

and intermediate data flow paths of a message is sent along with the message 

payload to other nodes in the distributed system (Zaharia et al., 2013). During 

failure, the linage information is used to recover from failure. However, both 

checkpointing and lineage-based recovery can take a longer time to recover if 

downtime is long, which is not suitable for latency-sensitive applications. 

Causal logging protocols send lineage information with each message in the 

data plane. On failure, the information on surviving nodes can be used to restore 

the system to a globally consistent state. Depending on the size of linage 

information, causal logging may incur high runtime overheads. The size of 

linage can be decreased to reduce runtime overhead. Linage stash removes the 

overhead from the data path by asynchronously logging lineage information to 

a decentralized store (S. Wang et al., 2019).  

 

Kazemzadeh and Jacobsen (2009) propose a recovery procedure that the 

publish-subscribe system must execute when a new or failed broker enters the 

system. Existing broker nodes in the system form a set of synchronization points 

to help the recovering broker to synchronize its routing state. Each 

synchronization point computes its local topology and subscription information 

and sends them over to the recovering broker. Each synchronization point uses 

guided messages to improve the message forwarding process that happens 
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concurrently with the recovery process. Each synchronization points attach a 

special header to every message sent to the recovering broker. The special 

header contains information about the destination of the message. This way the 

recovering broker can use the header information to determine its routing path 

without relying on the complete routing information of the system. The broker 

recovery approach presented in this dissertation work is based on the recovery 

procedure proposed by Kazemzadeh and Jacobsen (2009). However, this work 

uses a local network with a fully connected topology to implement the broker 

network. This eliminates the need to maintain intermediate neighbor nodes, 

which is suggested in the former approach. 

 

3.4.2 Periodic Subscription 

Every broker in a distributed publish-subscribe system stores a certain 

amount of soft state information required to facilitate event routing (Jerzak and 

Fetzer, 2009). This soft state information can be permanently lost in the event 

of failures. Jerzak and Fetzer (2009) address this problem in a periodic 

subscription approach, in which subscribers actively reissue their subscriptions 

towards the broker to maintain its soft-state information about client 

subscriptions. Each broker maintains a timestamp, which is refreshed every 

time, for each received subscription in its routing table. Scribe (Castro et al., 

2002) and Bayeux (Zhuang et al., 2001) use subscription refresh to handle 

subscription fluctuations in which subscription enters are refreshed periodically 

before each expiry time. Subscriptions entries that are not renewed on-time are 

removed from the routing table. This approach ensures any incorrect routing 

state is discarded and reinstated by correct routing information which is 
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propagated following new subscription refreshes. The automatic expiration of 

subscriptions helps to eliminate the need for unsubscription advertisements 

since a subscribing node can unsubscribe just by stopping the subscription 

advertisement. By periodically flooding the subscriptions, this approach can 

prevent message loss and ensures that subscribers will eventually receive all the 

publications to their subscriptions. It also limits the effect of node crashes by 

periodically refreshing the subscription message, which guarantees subscription 

delivery when the system recovers. However, periodic subscriptions incur large 

bandwidth costs and do not consider publication loss.  

 

3.4.3 Self-stabilization 

The publish-subscribe systems must ensure that the shared state, which 

includes all registered subscriptions, is always consistent with the actual 

population of clients. Self-stabilization aims to eventually reach a stable and 

correct global state. Self-stabilization uses an approach similar to the periodic 

subscription method. Zhenhui Shen and Srikanta Tirthapura (2004) present a 

self-stabilization algorithm to maintain the consistent routing state in the 

distributed publish-subscribe system. Each node periodically swaps its local 

routing state with neighboring nodes and independently updates itself when the 

local routing information is inconsistent with neighbor nodes. A mismatch 

between the local routing table and neighbor’s subscriptions indicates new 

subscriptions or a potential loss of subscriptions at either of the neighbors. 

Inconsistencies between the tables lead to corrective actions at each local node. 

Each node makes corrections to its local routing state by adding missing 
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subscriptions and discarding stale subscriptions. The series of local corrections 

eventually restores the consistency among the distributed routing tables.  

 

For wireless sensor networks, Siegemund et al. (2015) use the self-

stabilization technique to handle subscriptions and un-subscriptions. The 

authors use a leasing approach with a time-to-live (TTL) countdown value to 

periodically refresh subscriptions and discard un-subscriptions due to faults. 

This is similar to a watchdog timer where the subscription routing table entry 

must rest a timer before it expires. Otherwise, it is assumed to have failed. The 

proposed system can deliver all messages correctly, without receiving 

duplicates on the client-side. 

 

Also, DHT infrastructures such as Pastry and Tapestry implements self-

configuration to adjust routing paths according to subscription and overlay 

information. Scribe and Bayeux are examples of publish-subscribe systems that 

are built on top of Pastry and Tapestry DHT respectively (Zhuang et al., 2001; 

Castro et al., 2002).  

 

However, this approach has a large message overhead and lacks 

scalability mainly due to the periodic exchange of complete routing tables. Self-

stabilization needs a convergence period to stabilize the routing state after node 

failures, subscriptions, and un-subscriptions. The system can only guarantee the 

delivery of matching publications to all registered subscriptions after this 

period. Updates to routing tables during recovery may take a certain period to 

converge the routing state. As a result of recovery action, the subscribers may 
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experience a short disruption in the system. Event propagation based on an 

incomplete routing state before state convergence will cause publication loss. 

Thus, the recovery period needs to be bounded and fast enough to prevent 

message losses.  

 

3.4.4 Event Retransmission 

Modern messaging solutions such as Kafka (Kreps et al., 2011), Flink 

(Carbone, Fóra, et al., 2015), and Spark Streaming (Zaharia et al., 2013) 

implement event retransmission to tolerate publication loss. Through the event 

retransmission approach, a broker resends an event whenever the event is 

discovered lost. One way of detecting publication loss is to exchange 

acknowledgment messages between each broker in the network (Kazemzadeh 

and Jacobsen, 2009; Salehi et al., 2016). When a broker receives a publication, 

the broker stores a buffer of the message and forwards it to neighbor nodes in 

forwarding paths. After receiving this publication message, nodes send an 

acknowledgment (ACK) message back to their upstream neighbors. Each 

broker will discard the event once it receives all ACK messages from the 

forwarding set. If the broker does not receive one or more ACK messages in its 

forwarding set, it retransmits the event to the forwarding path until all ACK 

messages are collected or until the buffered event becomes expired. A 

prerequisite of this approach is the fast recovery of failed brokers. An event may 

not be delivered to subscribers if a routing path is disconnected for too long.  
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Sourlas et al. (2009) recover publication lost using in-network caches 

that reside on message brokers along the propagation path of publication and 

show a high publication rate in presence of broker failure. Publications are 

cached at broker devices in the overlay so that multiple concurrent failures can 

be tolerated. The availability of multiple replicated copies of the publication 

cache eliminates the need for persistent storage and allows each cache to keep 

the data in memory. In-network caching reduces access delays as compared to 

caching in persistent storage. In-network caching also improves retransmission 

time because a lost publication is resent from the closest available cache node 

in the overlay. 

 

C. Wang et al. (2019) propose FRAME to tolerate message loss in a real-

time messaging system with the use of a primary-backup broker approach. The 

proposed framework presents a configurable scheduling and recovery method 

that handles different messages according to their fault-tolerance and latency 

requirements in an edge computing environment. Each subscriber is tagged with 

a latency deadline and a fault-tolerance level, for each of its topics. FRAME 

also uses earliest deadline first (EDF) scheduling to dispatch and deliver 

messages according to their deadlines. For message loss tolerance, the primary 

broker replicates a copy of the received published message to the backup broker. 

The backup broker uses periodic pooling to check the status of the primary 

broker. When a failure happens, the backup broker becomes the new primary 

broker. The system retains publisher messages during failure and prunes the 

backup messages during fault-free operation. When the primary broker fails, the 

publisher sends its message to the backup broker, and the subscriber recovers 
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the message from the backup broker. The evaluations confirm that the FRAME 

system can improve loss-tolerance performance and reduce the effect of latency 

during the fault recovery process. The peak latency due to fault recovery is 50ms 

for the FRAME system. 

 

3.4.5 Redundant Paths 

Redundant paths are used in the publish-subscribe overlay to guarantee 

correct message delivery in the presence of broker/link failures (Sherafat 

Kazemzadeh and Jacobsen, 2012). In this approach, the overlay topology 

adaptively creates disjoint routing paths to ensure that there is at least one 

correct path between the corresponding publisher and subscriber. A broker 

sends an update about the neighbor state to every other reachable broker 

whenever it detects a change in the live status of any broker. This way broker 

will be able to identify and build alternative routing paths towards all the 

subscribers. Thus, the redundant path can exclude paths that have failed brokers 

or broken links. Extra paths can be created based on the similarity of interest or 

vicinity between brokers (Setty et al., 2012). The downside of a redundant 

forwarding path is that it may consume high bandwidth and become very 

inefficient in the presence of node churn and frequent subscription changes. 

Also, this approach incurs additional notification latency under failure. 

 

3.4.6 Consensus-based Publish-subscribe System 

Consensus-based techniques are centralized approaches that focus on 

the consistency of distributed systems. Paxos-based pub/sub middleware (P2S) 

(Chang et al., 2014) is a crash tolerant Paxos-based publish-subscribe 



 
 

64 

middleware based on the Goxos Replication State Machine (RSM), which 

extends the original Paxos framework. Paxos is a consensus protocol that 

involves a set of processes that are trying to agree on a value. The 

implementation of P2S uses multiple instances of Paxos in the Goxos RSM to 

execute the publish-subscribe broker. A leader node is responsible to handle 

client requests and disseminate them to all replicas to reach a consensus. Each 

replica computes the ordering of competing requests and executes them in order. 

Upon receiving a subscription or un-subscription, the broker replicas query for 

consensus and update their local subscription table. The replicas deliver 

messages to each of the subscribed clients. The Paxos implementation tradeoffs 

system liveliness for stronger consistency. If more than the maximum number 

of replicas fail, the system cannot make progress. This approach uses a 

centralized broker-based architecture and replication of a publish-subscribe 

broker to achieve resiliency. The fault-tolerant mechanism of P2S shows a 

tradeoff between performance overhead and reliability. The replicated approach 

has a maximum of 1.25% throughput reduction and 0.58 milliseconds end-to-

end latency compared to its non-replicated counterpart. 

 

3.4.7 Availability of Distributed Publish-subscribe Systems 

The CAP theorem (Brewer, 2000) refers to consistency, availability, and 

partition tolerance. Many publish-subscribe systems satisfy the AP 

characteristic. The availability characteristics keep the continuation of the 

messaging service on a high level by using multiple messaging servers on top 

of the distributed application-layer overlay. Even though some of the message 

servers may fail, the remaining servers can keep the service going. Nevertheless, 
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consistency is also important to maintain reliable messaging. The distributed 

publish-subscribe system requires a consistent routing state to correctly process 

and deliver messages. Inconsistent routing states can lead to wrong behavior in 

message delivery. According to the CAP theorem, a distributed system can 

make a trade-off between consistency and availability characteristics. It is 

important to balance between consistency and availability for the distributed 

broker system. In this research work, the proposed broker cluster will 

continuously provide the MQTT service while gracefully handle broker failures. 

Even after a broker failure, the broker cluster continues to operate as normal, to 

avoid recovery or failover processing. This is because recovery processing 

incurs a delay to restart and initialize to a previous correct state (Egwutuoha et 

al., 2013), which can temporally stop the clients from using the service. To 

increase availability, the system discards the failed broker, and the load balancer 

routes the reconnected requests are to the remaining online brokers. The system 

achieves eventual consistency by periodically exchanging routing state with 

neighbor nodes.  
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CHAPTER 4 
 

DESIGN AND IMPLEMENTATION 
 

 

This chapter presents the design and implementation of the MQTT 

broker cluster system. In a typical cloud-based IoT application, data streaming, 

and communication between edge devices suffer from latency problems, which 

will create network congestion to the cloud. To resolve prior issues, the 

proposed broker system uses an SBC-based broker cluster and deploy it at the 

network edge. The broker cluster extends the cloud computing platform to the 

edge of the network. An edge-cloud integration layer is deployed to combine 

both the cloud and IoT environments. The MQTT edge server provides 

communication services and locally processes selected information before 

transmitting the information to the cloud, thus reducing overall network traffic. 

The implementation targets a clustered set of Raspberry Pi SBCs to deploy 

MQTT services in an edge-cloud architecture. The SBC cluster runs Docker 

Swarm to orchestrate Docker-based containers and services. This chapter 

presents the core components of the middleware platform for the edge cloud 

MQTT application. 

 

4.1 Broker Cluster Architecture 

This section presents the system design and features of the MQTT 

broker cluster. The distributed system comprises a collection of independent 

devices that communicate through message passing. The MQTT broker system 

consists of several application services distributed across the entire cluster. Each 
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application service is isolated into a set of containers, that are encapsulated with 

specific functions. These containers work collectively to execute the distributed 

MQTT application. The system appears to its application user as a single 

coherent system. The messaging service interacts with the external environment 

by sending and receiving messages through the MQTT communication 

protocol. The system uses a variation of the broker-based publish-subscribe 

overlay, which consists of a set of MQTT brokers. 

 

Each online node in the broker cluster manages its own messages and 

client sessions. The cluster nodes communicate with each other via message 

passing.  The system resembles a single logical unit from outside which is much 

like a centralized architecture. Nodes can join the cluster at any moment, by 

transmitting join requests to the other active nodes in the cluster. Node crashes 

are detected by the membership protocol. As the MQTT broker is a stateful 

application, a node that leaves and rejoins after a while is assumed to forget all 

its prior state. Therefore, the state information is maintained and is refreshed 

periodically to maintain state consistency and correctness. Upon failure of one 

node, the remaining brokers can take over and continue to provide the MQTT 

service. 

 

As depicted in Figure 4.1(a), there are a few different components in the 

system. The entire MQTT functionality of the system is provided by the MQTT 

broker. Mosquitto broker is used for the MQTT broker service. The MQTT 

broker is the core communication component of MQTT devices that implements 

standard MQTT server protocol. The broker accepts subscriptions and 
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disseminates information between subscribers and publishers. The MQTT 

broker does all the topic matching, subscriptions management, filtering and 

matching, and publication delivery. The broker communicates with its local 

clients while the cluster server acts as a message forwarder to the broker. Both 

the MQTT broker and the cluster server are stateful applications. Each broker 

node shares information about the state of connected sessions and also meta-

information about the cluster itself. If a cluster node is stopped, the other cluster 

member will know that there is a node missing. The cluster meta-information 

and MQTT subscription state need to be updated to deal with network partition 

and possible message loss. By using periodic updates with time-to-live (TTL) 

intervals to discard outdated entries, the broker cluster ensures that the 

convergence regarding subscription data within the distributed system is 

eventually reached. 

 

 

Figure 4.1 Edge cloud MQTT broker cluster architecture 
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The broker cluster system uses a load balancer to share the load among 

multiple brokers. The performance testbed uses a TCP load balancer as a single 

endpoint for the communication with publishers and subscribers. The TCP load 

balancer can be implemented using software components such as HAProxy 

(Tarreau and others, 2012). The load balancer equally spreads incoming 

workload across backend MQTT broker nodes, so that neither broker node is 

overloaded with too many clients. Since this implementation deals with the 

reliability of backend servers and only uses one load-balancing node, the load 

balancing server is assumed to be reliable. The focus of the design and 

implementation shall be resisting against crash failures among the backend 

MQTT brokers. 

 

The design focuses on building routing states among brokers to 

efficiently route messages towards interested subscribers. In an edge-based 

deployment, the topology of the local network enables higher routing efficiency 

because routing only needs one hop, as all the brokers are fully connected in a 

local area network. The idea of adding a middle-layer cluster server is to 

decouple the MQTT broker’s operations from clients. The MQTT service is 

provided to the clients without their need to know the details about underlying 

software and hardware. As depicted in Figure 4.1(a), the cluster server separates 

the distributed routing mechanism from publish-subscribe operations of 

individual MQTT brokers. The cluster server is responsible for coordinating 

publish-subscribe and routing operations among all MQTT brokers. It sits on 

top of the MQTT broker, and use message passing to communicate with other 

cluster nodes. The cluster server is also transparent to the broker. 
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The cluster server is implemented using Golang and deployed using 

Docker containers. The MQTT broker application does not need recompilation 

or relinking on its software. The cluster server consists of two components as 

depicted in Figure 4.1(b). The first component manages and intercepts incoming 

MQTT packets asynchronously via pcap-filter. An MQTT Deserializer module 

converts input streams of MQTT messages into meaningful application-level 

messages. Packets are deserialized according to the MQTT version 3.1.1 

standard. The MQTT packets are captured, decoded, and tunneled into the 

message receiving buffer for processing. 

 

The second component uses a configurable worker thread pool and a 

thread-safe hash table to match publish messages, forward publications, detect 

duplication, synchronize subscription state, and retransmit failed publications. 

Each worker thread encodes and forwards received publication messages to 

matching remote brokers within the cluster. The hash table is a temporary in-

memory storage component used to maintain subscription data necessary for 

routing, synchronization, and publication retransmission. The hash table is 

updated as part of the synchronization protocol in the cluster. The broker cluster 

uses decentralized routing and event dissemination. The system also uses a 

gossip-based protocol to maintain node membership, by performing periodic 

updates to give a more consistent view of the cluster environment. 

 

Figure 4.2 depicts the data pipeline of MQTT from edge to cloud 

through the internet and data bridge. The cloud integration module provides a 

publish-subscribe messaging framework to stream edge data to the cloud. The 
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cloud module provides an interface between the MQTT edge services with end-

user requests at the cloud. It also forwards aggregated data from the edge server 

to the cloud through an MQTT data streaming bridge. The IoT end-to-end data 

pipeline ingests messages from IoT devices to different data stores in the cloud. 

In this way, the edge brokers are ubiquitous and do not depend on connectivity 

to the cloud broker. The functionality of this module is achieved using Apache 

Kafka with MQTT bridge. Kafka is an open-source stream processing data 

pipeline developed by LinkedIn (Kreps et al., 2011).  

 

 

Figure 4.2 Data Pipeline 

 

To integrate MQTT messages to Kafka, the implementation uses an 

MQTT extension framework called Kafka connect to ingest data from the edge 

MQTT brokers and streams the data to the cloud system. Kafka pushes selected 

MQTT messages received in the edge brokers to the cloud for storage and 

further processing. Data pipelines of Kafka also maintain network and data 

fault-tolerance by allowing data buffer at the edge side when the Internet is 

inaccessible.  

 

4.2 Software Application Stack 

Docker Swarm orchestration increases the ease of deployment in the 

edge cloud settings. Container services scheduling can be set up easily with 

Docker compose scripts and Docker Swarm API. The edge to cloud integration 
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and orchestration module is developed based on the architecture presented in 

(Alam et al., 2018). Figure 4.3 shows the software components in different 

layers of the cloud. The application services are logical groups of containers 

based on a set of Docker images. Containers can be easily removed and updated 

without impacting overall cluster services. Docker services can be orchestrated 

locally, or centrally in the cloud through the middle layer gateway. The edge 

broker offers a local connection point to edge devices and MQTT services with 

reduced response times.  

 

 

Figure 4.3 Cluster container application stack 

 

The application in the edge layer has three pieces of services: a cluster 

server node, an MQTT broker, and a load balancer. The MQTT brokers are edge 

brokers that are responsible for connectivity between sensors. The cluster server 

is an interconnect layer that works on top of the distributed MQTT brokers. The 
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cluster service is built to fit between MQTT server protocol and MQTT client 

so that existing open-source MQTT broker and client implementations can be 

seamlessly integrated. The cluster server makes routing decisions based on the 

type of MQTT messages from clients. Critical client information is stored 

locally in each node. Distributed state information is maintained using periodic 

updates realized by communication primitives in the membership protocol. 

Each cluster server node cooperates and communicates with each other within 

the network to make routing messages and share routing information. This 

removes the necessity for individual brokers to communicate directly with each 

other. Each broker node may not be aware of the presence of a proxy or any 

other broker nodes in the network.  

 

The MQTT broker is only responsible for its own designated functions. 

The MQTT broker manages and delivers messages from publishers to 

subscribers local to its own scope. The broker also maintains a session with 

connected clients and sends an acknowledgment (ACK) and ping response 

(PINGRESP) message to the clients. All incoming MQTT messages are seen by 

the broker as MQTT client requests. The cluster server is, therefore, a network 

element that enables coordination between physically distributed MQTT 

brokers, which themselves do not have any clustering capabilities. Another 

purpose of the cluster server is to redeliver failed messages by caching failed 

publications.  

 

 



 
 

74 

The Docker Swarm master node can scale and update Docker containers 

in a cluster of SBC nodes. It ensures efficient allocation and scheduling of 

Docker containers by keeping track of the deployed services. The load balancer 

sits in the manager node and offers a single-entry point to clients. The clients 

connect to the frontline load balancer to receive MQTT services. By using a 

load balancer, the backend IP address of each cluster node is not published to 

the clients. Each broker node receives a request distributed by the load balancer, 

processes the request, and responds to the balancer. The balancer, in turn, 

changes the response IP back to the IP of the balancer and forwards the response 

to the client. Clients can connect to any node.  

 

A round-robin algorithm usually works fine for short-lived and stateless 

connections. However, the application workload for the broker cluster requires 

long-lived and bidirectional communication over the load balancer. If an SBC 

node crashes, a potentially large number of subscribers will initiate new 

connections to other online brokers. A round-robin algorithm for this workload 

causes the workload to spread unevenly in the backend. Some backend servers 

will have too many connections compared to the others. The load balancing 

algorithm should assign new connections to the least loaded backend server 

based on the number of active connections on each of the backend servers. 

Therefore, the load balancer uses the least connected algorithm so that new 

clients will be allocated to the least loaded servers when any backend node fails. 

Apart from a better balance in the number of connections to each backend 

server, the reconnected clients from a dead backend node will be spread evenly 

over the remaining backend servers.  
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4.3 Components Relationship 

 

Figure 4.4 Software component interaction 

 

Figure 4.4 depicts the interaction between each component of the MQTT 

broker cluster. Each component of the broker cluster is implemented via Docker 

container using the microservice architecture. In the context of the broker 

system, an MQTT client that is connected directly to a broker is called a local 

client. To the clients, the broker that connects to them is called the local broker. 

The MQTT broker directly sends MQTT responses to the load balancer, which 

in turn redirects the responses to the clients. A local broker is a broker that sits 

within the same host machine as the local cluster node. The local broker delivers 

messages to local subscribers while the local cluster node routes messages to 
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remote neighbor brokers inside the cluster. The neighbor cluster server is a 

remote cluster node that maintains a connection with the local cluster node. A 

neighbor client is a client that is connected to a neighbor broker. The cluster 

node works together to facilitate message delivery to all subscribers, regardless 

of which node they are connected to. 

 

4.4 Broker Cluster Topology 

The broker cluster is configured in a fully connected mesh where every 

node in the cluster is connected to every other node. Each peer node is only one 

hop away from each other. With this configuration, each node knows about all 

the state information and client connections from each neighbor node. Each 

cluster server node maintains the routing state information within its local data 

store. The routing state information contains a forward table, a recovery table, 

and a subscription routing table. The forward table maps each topic to the IP 

address of the neighbor brokers that subscribed to the topic. The subscription 

routing table maps the IP address of each neighbor broker to a set of its 

subscribed topics. The recovery table caches lost publication to facilitate 

message retransmission.  

 

The membership framework used here implements the SWIM protocol 

(Das et al., 2002). SWIM protocol is a gossip-based membership protocol that 

detects node failures and maintains membership information of the cluster 

nodes. One drawback of this protocol is weak consistency. The membership 

protocol maintains the broker nodes in a mesh topology. Each member node has 

a complete view of the topology. At any time, nodes can have a different view 
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of the global overlay and will eventually converge to the same state. A node 

disseminates its message in an epidemic protocol by sharing information only 

with a random subset of its peers. Subsequent nodes then share this information 

with a random subset of its neighbor peers, until the entire cluster receives that 

information.  

 

SWIM has separate layers of failure detection and message 

dissemination module. Each node in the cluster probes a node at random and 

expect an acknowledge message in return within a timeout. If the 

acknowledgment message is not received from a node during probing, the node 

will try to probe it through other nodes to prevent a false-positive state. A node 

is marked as dead when the node cannot be accessed by any of the members. 

The event of node failure is propagated across the cluster. The membership 

protocol will notify other broker nodes when a new node joins in. Each online 

node sends a set of its subscribed topics to that newly joined member so that the 

routing information is kept synchronized. The newly joined member node adds 

the topic list received to its routing structure.  

 

4.5 Subscription Routing Management 

The system uses subscription flooding (Eugster et al., 2003) to propagate 

subscription state information across the broker cluster. Each node maintains a 

local subscription table, a subscription routing table, and a forward table.  

The local subscription table contains entries for each MQTT 

subscription received by the MQTT broker. The entry for the local subscription 

table is in the form of <ClientID, topicSet>, where ClientID is the identifier of 
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the MQTT client, and topicSet is a set of MQTT topics subscribed by the client. 

The broker node uses the local subscription table for the recovery and 

synchronization process, which will be described in Section 4.7.2.  

 

For each received MQTT subscription, the broker node sends a 

subscribe message along with the MQTT client identifier, and lists of 

subscribed topics. An Unsubscription advertisement is like a subscription 

advertisement except that it marks the message with an unsubscribe tag. The 

subscription routing table contains entries for each subscription advertisement 

received by the system.  

 

Each subscription routing entry contains a pair of tuples in the form of 

<sNode, ClientID, topicSet> where sNode is the identifier of the broker node 

that sends the subscription advertisement, ClientID is the identifier of the 

subscribing MQTT client and topicSet is the list of topics specified by the client. 

Each broker node that receives the subscription advertisement stores it in a 

subscription routing table and a forward table.  
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Figure 4.5 Topic Trie for Forwarding Table 

 

Each broker node uses the subscription routing information to construct 

publication forwarding paths. The forward table stores all the routing paths of 

each topic with the identity of the neighboring node from which the subscription 

advertisement was received. The forward table uses the topic as keys and 

destination brokers as values. The forward table takes the form of <topic, 

nodeSet>, where topic is the topic of subscription, and nodeSet is a set of broker 

nodes that have registered to the given topic. The purpose of the routing table is 

to provide fast topic matching for received publication messages. The forward 

table implements the prefix trie data structure (Datta et al., 2005) as depicted in 

Figure 4.5. A topic trie is a data structure used for fast searching operations on 

a given topic. Each broker uses the topic matching routine <MatchTopic> given 

in  Listing 4.1 to search for broker nodes, whose subscription matches with the 

given publication topic. <AddBroker> is a helper function to append all brokers 

in the current nodes to the result. <Recursive_Match> is a recursive function 
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that matches the subscriptions for every level of a given pubTopic separated by 

‘/’ and appends the brokers for every matching topic level to the search results. 

Upon querying the forward table with a topic that comes with the publication 

message, it returns a set of forwarding paths consisting of a set of brokers nodes 

<brokerSet> that matches the publication topic. This reduces redundancy and 

network overhead of message forwarding as all received messages are filtered 

before they are forwarded. The system then forwards this message to the list of 

destination brokers using the message delivery process described in Section 4.6.  

 

The system implements the subscription routing table using a thread-

safe concurrent hash table, with each neighbor id mapping to the corresponding 

clientID and the topics that they subscribed to. The list of topics within the hash 

table is implemented as a set so that it is easier to update the structure, during 

the synchronization period. A set can be updated through combination set 

operations such as union, intersect, and complement. Each subscription entry 

has a time-to-live (TTL) period and expects updates from the neighbor nodes to 

refresh the TTL period. A subscription entry is discarded when it expires or the 

broker receives an unsubscribe advertisement from a neighbor node. 
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function MatchTopic(topicName) { 

        // Split string with topic level separator ‘/’ 

 topicSlice := splitString(topicName, "/")  

 brokers := Array(string) 

 root := topicTrie.Root 

 Recursive_Match(root, topicSlice, brokers) 

 return brokers 

} 

 

function AddBroker(node, brokers) { 

 for each broker in node.Brokers { 

  Add broker to brokers 

 } 

} 

 

function Recursive_Match(node, topicSlice, brokers) { 

 endFlag := length_of (topicSlice) == 1   // one token left 

       // find for key ‘#’ in set of children Nodes 

 if childNode := node.children["#"] {   // multi-level wild card 

  AddBroker (cnode, brokers) 

 } 

 if childNode:= node.children["+"] {  // single-level wild card 

  if endFlag == TRUE { 

   AddBroker (childNode, brokers) 

   if n := childNode.children["#"] { // multi-level wild card 

    AddBroker (n, brokers) 

   } 

  } else { 

   Recursive_Match (childNode, topicSlice[1:], brokers) 

  } 

 } 

 if childNode := node.children[topicSlice[0]] { 

  if endFlag == TRUE { 

   AddBroker (cnode, rs) 

                    if n := childNode.children["#"] {  // multi-level wild card 

    AddBroker (n, brokers) 

   } 

  } else { 

   Recursive_Match (childNode, topicSlice[1:], brokers) 

  } 

 }  

} 

 Listing 4.1 Topic matching routine 
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4.6 Publication Message Forwarding 

4.6.1 Normal Condition 

The broker node uses the forward table to build forwarding paths. For 

each publication message, the broker node generates a unique sequence number 

<pubMsgSeq> for the reception of this message for the first time. This sequence 

number is unique and ascending. Each broker node uses the matching routine 

<MatchTopic> to find neighbor nodes with matching MQTT subscription.  

 

After retrieving the <brokerSet> containing the matching destination 

brokers, the broker node stores the entry of publication confirmation message 

in the form of <pubMsgSeq, ackSet> in the publication acknowledgment table. 

ackSet represents the acknowledgment messages received from the destination 

brokers, brokerSet. The entries of ackSet are in the form of <broker, 

ackReceived>, where ackReceived is a Boolean value that indicates the 

reception of acknowledgment message from a destination broker. The value of 

ackReceived is false by default and is set to true whenever the forwarding broker 

receives a publication acknowledgment (PUBACK) message from a destination 

broker. The broker node removes the copy of the publication message after it 

receives acknowledgment messages from all destination brokers.  

 

The broker node filters destination brokers in a destinationBrokers by 

the brokerSet and Boolean values in the ackSet, given in Equation 4-1. 

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐵𝑟𝑜𝑘𝑒𝑟𝑠 = {𝑏𝑟𝑜𝑘𝑒𝑟𝑆𝑒𝑡 ⋀ 𝑎𝑐𝑘𝑆𝑒𝑡} (4-1) 

The broker node only forwards the publication message to a neighbor 

broker that (i) has subscriptions that match the publication topic and (ii) does 
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not confirm the reception of the publication message. The forwarding broker 

sends a copy of the publication message to all the brokers in 

<destinationBrokers> using QoS 1 of the MQTT protocol, as depicted in Figure 

4.6(a). The neighbor broker sends an acknowledgment message (PUBACK) 

back to the forwarding broker to confirm the reception of the publication 

message. If PUBACK is not received from the destination broker, the 

publication message is stored in a buffered queue for message retransmission, 

as depicted in Figure 4.6(b). The message retransmission process is described 

in Section 4.6.2. Figure 4.7 shows the message forwarding sequence for the 

broker cluster.  

 

 

Figure 4.6 Broker publication message forwarding 
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Figure 4.7 Message routing sequence 

 

4.6.2 Message Forwarding with Failed Brokers 

Message forwarding implements message acknowledgment to confirm 

the successful forwarding of a message to a neighbor MQTT broker. If the 

PUBACK message is not received from any one of the destination brokers, the 

message forwarding process fails. The failed publication message is pushed into 

a recovery table that maintains a queue of backup messages. The broker node 

redelivers these messages as soon as client connections come back online. The 

message retransmission approach realizes fault tolerance in the system by a 

compensation approach (Avizienis et al., 2004). Figure 4.6(b) depicts the 

message buffering process for if the failed messages when PUBACK is not 

received. For each incoming subscription, the message recovery module checks 

the client ID and the subscription topic by referring to the recovery table. Each 

entry of the recover table is in the form of <ClientID, topic, msgQueue>, where 

msgQueue refers to a first-in, first-out (FIFO) buffer of failed messages. Each 
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entry in msgQueue is in the form of <pubMsgSeq, msg>, where pubMsgSeq 

refers to the publication message sequence described in Section 4.6.1 and msg 

is the copy publication message. If both the ClientID and topic for a subscription 

match any entries in the recover table, it means that the subscription is a 

disconnected client and not a resubscription by the client itself. The recover 

table returns the message queue that corresponds to the ClientID and topic. 

 

 

 Figure 4.8 Message retransmission process 

 

Figure 4.8 depicts the sequence of the message resending process. The 

system will retransmit all the missed publications that are stored in the message 

queues. The cluster server records the message IDs of forwarded publications 

to prevent forwarding the same message multiple times. If the retransmission 

process receives and a publication acknowledgment PUBACK message in 

return, the corresponding entry in the publication acknowledgment table is set 
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to true. The publication message is discarded when all of the values in the ackSet 

entries are true.  

 

4.7 Recovery of Routing State 

The proposed broker cluster only tolerates node crashes, where a process 

stops reacting to incoming messages due to software or hardware faults. Node 

crashes can lead to inconsistency in state information within the broker overlay 

within the cluster. However, the system does not handle Byzantine faults. The 

reason for this is to reduce the cost of replication. This section describes the 

fault monitoring and recovery process for the broker cluster.  

 

4.7.1 Monitoring and Failure Detection 

Without fault tolerance, the failure of a single component can disrupt the 

normal operation of the system. The broker cluster provides client connection 

failover so that clients can their connection as quickly as possible. Any cluster 

nodes can fail independently without affecting other nodes.  

 

4.7.1.1 Cluster Node Failure Detection 

Each cluster peer node implements a heartbeat mechanism for 

monitoring neighbor peers. It emits heartbeat signals to neighbor servers at 

regular intervals. For every heartbeat received, the peer node resets the timeout 

for heartbeat reception. Figure 4.9 depicts the UDP heartbeat mechanism among 

cluster nodes. When the server failure is detected through a heartbeat timeout, 

the client should continue receiving a stream of MQTT service within the broker 

cluster. In every broker node, a local failure detector is implemented by the 
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membership protocol to monitor the reachability of a neighboring node, via 

periodic pings with timeouts. A live node that detects a failed node will update 

the subscription routing table associated with the failed node. If node crashes 

occur, the fault mechanism ensures that a live broker node will replace the client 

and operations of the failed node.  

 

 

Figure 4.9 Cluster membership heartbeat detection 

 

4.7.1.2 Load Balancer Health Checks 

The load balancer implements layer 4 TCP health checks to prevent 

sending packets to an offline server. The load balancer periodically sends health 

check probes and attempts to connect to the TCP port of the backend servers. 

As depicted in Figure 4.10, a TCP SYN request to a backend port expects a TCP 

SYNC ACK response in return. If the response is not received within a 

predefined timeout, the server is marked DOWN by the load balancer. The load 

balancer isolates the DOWN server and routes packets to the remaining online 

servers based on the least connected algorithm. The load balancer then 

continues to distribute MQTT requests to the remaining online broker nodes. 
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Figure 4.10 Load balancer TCP health checks 

 

4.7.1.3 MQTT Client Keepalive 

For monitoring MQTT server health, the MQTT client uses ping 

requests and expects a ping response from the server. The MQTT client starts a 

timeout for every ping acknowledgment sent. If the server has not replied within 

the timeout period, the client assumes the server to have failed. The client then 

reconnects and sends a connect message to the remaining online servers routed 

by the load balancer. Figure 4.11 depicts the MQTT client keepalive and 

reconnection process. 
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Figure 4.11 MQTT keep-alive 

 

4.7.2 System State Reconfiguration  

The system assumes the crash-recovery failure model for broker node 

failures. This means that each broker node is assumed to be either online or 

offline at any point in time. When a broker node fails, it stops operating until it 

comes back online. When a failed broker comes back online, it loses all of its 

soft-state subscriptions and routing information that it had before it crashes. To 

handle crash failures, the system recovers the subscription routing state into a 

consistent state and provides redundancy through message retransmission. 

When a broker fails, clients connected to the failed broker reconnect to one of 

the online brokers in the cluster. The rest of the cluster stores the publication 

messages until the clients restore their connections to the system. If state 
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information in the failed broker cannot be recovered or the recovery process is 

slow, the publication messages will be lost. The system updates the routing table 

of remaining brokers so that new publication messages are properly routed. The 

system will deliver the publication received during the recovery period after the 

joining broker is fully recovered. 

 

4.7.2.1 Node Failure and Routing State Synchronization 

The state information in each cluster node will become inconsistent 

when a broker node fails. To maintain consistency of the routing state after a 

failure, the system uses the periodic resubscription approach (Jerzak and Fetzer, 

2009; Siegemund et al., 2015). Each broker node maintains a timestamp for 

every subscription entry in the subscription routing table. The broker node 

refreshes the subscription entry every time it receives a subscription 

advertisement from a neighbor broker node. A subscription entry will timeout 

when the broker node does not receive a refresh subscription advertisement 

within a time-to-live (TTL) period. The broker node discards any outdated 

entries in the subscription routing table and the forward table. For fast updates 

in the case of failure, the event of failure is propagated across the cluster. Each 

broker node immediately updates and deletes the corresponding entry in its 

routing tables relative to the failed broker node.  

 

4.7.2.2 Node Initialization and Recovery Operation  

A failing or new broker node that joins the cluster topology is treated as 

a recovering node by the system. The new node enters a recovery state. When a 

node joins the cluster topology, the joining node sends a JOIN message along 
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with a TCP push/pull request to every other live broker node to initialize a 

recovery operation. Upon receiving a TCP push/pull request with a JOIN 

message from a broker node, each existing broker node computes a set of its 

local subscription information from its local subscription table and sends it to 

the joining broker over the TCP network. The recovery message is in the form 

of <originNode, subscriptionSet>, where originNode is the synchronizing 

broker node and subscriptionSet is a set of entries in the local subscription table. 

After sending the recovery message, the existing broker node sends a syncOK 

message to end the recovery process for the joining broker node. After receiving 

a syncOK message, the broker node enters a normal operation state. Each 

existing broker uses a syncFlag to indicate the normal operation of a neighbor 

broker node. Section 4.7.2.3 discusses the uses of syncFlag. 

 

4.7.2.3 Recovery State 

During the recovery state, publication may reach the newly joined 

broker node that does not have the complete subscription routing information 

of its neighbor broker nodes. This causes missing publication because the 

joining broker cannot compute any forwarding paths for the received 

publication messages. To prevent this, the joining broker node enters a recovery 

state and temporarily stores all publication messages into an initialization 

message queue. 

  

The broker node maintains a synchronization set <neighborBroker, 

syncFlag>, where neighborBroker is the identifier of a neighbor broker node 

and syncFlag is a Boolean value that indicates the completion of the 



 
 

92 

synchronization period. A broker node first enters a recovery state when it joins 

the cluster topology. During the recovery state, the joining broker node stores 

all received publication messages in the initialization message queue. The 

joining broker node updates its subscription routing table from the information 

received from neighbor broker nodes during the recovery operation described 

in Section 4.7.2.2.  

 

Each neighbor broker node sends a syncOK message to the joining 

broker to mark the completion of the recovery operation. After receiving a 

syncOK message from a neighbor broker node, the joining broker node sets the 

syncFlag for the corresponding neighbor broker node to True. The joining 

broker node goes out of the recovery state after all of the values in the 

synchronization set entries are True. After going out of the recovery state, the 

joining broker retrieves the publication messages from the initialization 

message queue and performs the message forwarding process described in 

Section 4.6. 

 

4.8 Implementation 

Edge computing platform orchestrates services and resources on edge 

nodes in a distributed way, similar to typical PaaS functions in the cloud. A 

Raspberry Pi board has low power consumption, which makes it possible to 

create an affordable and energy-efficient cluster for environments for which 

high-tech installations are not possible. A cluster consisting of five Raspberry 

Pi 3B boards is used as the hardware infrastructure to deploy the Docker 

containers. The clustered configuration also allows better robustness against 
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failure. Each board runs Hypriot OS, a customized version of Raspbian 

integrated with Docker engine to deploy container services such as storage and 

cluster management. The operating system is a headless version of the Raspbian 

system, without a desktop environment, thus freeing up a large amount of 

memory and storage. The least amount of RAM is allocated for the board GPU 

to fully utilize the CPU in the platform. The Raspberry Pi SBC cluster uses a 

star network topology. One switch act as the core of the star and the other 

switches then links the core to the Raspberry Pi SBCs. The switch is connected 

to a router that supplies the DHCP server to distribute network configuration 

parameters.  

 

The implementation of the MQTT broker cluster is illustrated in Figure 

4.12. One node is used as the Docker Swarm manager that hosts the load 

balancer and manages the scheduling of services. The Docker Swarm manager 

node is connected to the internet and serves as a gateway for development and 

deployment interface for the cluster. User applications and IoT devices can 

connect the broker service through the wireless network. The load balancer is 

implemented using HAProxy which routes all requests at the transport layer. 

The other four SBCs are worker nodes that run the MQTT broker cluster. The 

broker component uses Mosquitto MQTT broker v-1.6.4 and a customized 

middleware cluster server for distributed coordination among brokers.   

 

All application services are modular and independent microservices. 

This research work uses Docker Swarm for cluster management. One node is 

used as the swarm manager that runs a dedicated container for the load balancer 
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and the management interface. For fault tolerance, Docker Swarm supports 

redundant Swarm managers and can replicate information in the distributed key-

value store. In the implementation, Docker Swarm orchestrates and distributes 

application services into a set of clustered edge nodes. A Docker-compose file 

is used to define the orchestration of the microservices and replicas for each 

cluster node.  

 

 

Figure 4.12 MQTT broker cluster implementation 

 

The cloud integration module uses Kafka APIs to implement an 

intermediary MQTT bridge for both producer and consumer in the data pipeline. 

The Kafka cluster is deployed as Docker containers on two Raspberry Pi boards. 

The cloud users can also receive MQTT messages from the IoT devices residing 

at the network edge through the cloud MQTT broker. The cloud MQTT broker, 

central cloud orchestration, and monitoring are implemented in a generic laptop 

running Ubuntu OS. 
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CHAPTER 5 
 

RESULTS AND EVALUATIONS 
 

 

This chapter presents the evaluations of the microservice-based broker 

cluster to support communication between MQTT publishers and subscribers. 

To evaluate the distributed broker cluster system and its performance and fault 

tolerance, a testbed of an MQTT communication scenario is implemented. As 

many as two thousand MQTT devices are emulated as the application load. The 

evaluations assume that the load balancer is reliable and the system is secure. 

 

5.1 Experiment Setup 

The experiment setup uses a cluster of four broker nodes and one load 

balancer node. The results evaluated are end-to-end latency (millisecond), 

throughput (messages/second), inter-message jitter (milliseconds), latency after 

broker failure, CPU time utilization percentage, and RAM usage. The 

performance test is conducted by scaling the clients from 50 to 2000 pairs of 

publishers and subscribers. Each pair of clients corresponds to one unique topic. 

The performance of the broker cluster system is measured in terms of latency 

and message throughput to understand the effect of the number of clients on the 

system performance. The MQTT clients establish TCP connections over the 

wireless network to the MQTT broker. The testbed is implemented using a 

modified version of mqtt-bm-latency (hui6075, 2018), an MQTT load-test 

simulation written in Go. The benchmark uses multiple threads to 

asynchronously imitates a large number of devices as the publisher (QoS 2) and 

subscribers (QoS 0) via MQTT client APIs. The relationship between publishers 
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and subscribers is one-to-one, which represents a maximum of 2000 channels 

of MQTT communication. 

 

The script is configured to publish 100 messages per second to the 

MQTT cluster, such that each publication is sent between an interval of 10 

milliseconds. The message payload is fixed at 32 bytes, where it contains 32 

bytes of timestamp value. The message payload is chosen to be small so that it 

does not overwhelm the Raspberry Pi 3 SBC that has only 957 MiB of usable 

RAM. The throughput is measured in terms of the average number of messages 

sent per second for each publisher. The benchmarks were conducted on a local 

router network, without any external traffic.  

 

Throughput and latency evaluations are presented in Section 5.2 and 5.3 

respectively. Due to variations in the network processing time, the latency and 

throughput measurements are slightly different each time the benchmark is 

performed. Therefore, the benchmark is repeated five times, and the average 

value of the measurements are shown in the result. Section 5.4 presents the jitter 

values the message delivery across the broker cluster. Timestamps of message 

production in the publisher and message reception in subscribers are both 

recorded as a pair to compute the end-to-end delivery latency for each message. 

The end-to-end delivery latencies are then measured to obtain their maximum, 

minimum, and mean values. Due to time synchronization errors between 

different machines, all clients are simulated on the same machine to obtain more 

accurate results.  
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Section 5.5 presents the fault tolerance evaluations of the proposed 

broker cluster. One of the brokers is deliberately turned off after all clients have 

subscribed to the MQTT broker. The end-to-end latencies and successful 

delivery rate of missed publications, before and after the failure of one broker, 

are evaluated.  

 

Resource usage evaluations are presented in Section 5.6. To obtain 

runtime system metrics, the metric data is extracted from a metric server on each 

Raspberry Pi board and accumulated to a data aggregator. Prometheus is used 

to collect the metrics from the Docker hosts. Both services can be easily 

integrated into Docker Swarm. Node Exporter is a server provided by 

Prometheus to collect and expose metrics such as CPU utilization, RAM usage 

from a Docker host. The Node Exporter acts as a server that periodically sends 

out system metrics of the host to the Prometheus server. Prometheus then stores 

the metrics data with a timestamp in a database. Grafana is an open analytics 

and monitoring platform that is used to visualize the time series data collected 

by Prometheus. Instances of Node Exporter are deployed on each Raspberry Pi 

SBC host that runs the MQTT broker, while Prometheus and Grafana are 

deployed on a generic Ubuntu-based laptop. Figure 5.1 depicts the Prometheus-

based monitoring stack to gather the system metrics, which include CPU 

utilization percentage and total RAM usage. 
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Figure 5.1 System metrics monitor 

 

The broker cluster consists of four Raspberry Pi 3 Model B SBCs, each 

of which features 1GB of RAM, and 10/100 Mbps Ethernet network interface 

card (NIC). Each broker node runs HypriotOS v1.8.0 with Kernel v4.14 and 

Docker v18.06. The load balancer node uses Raspberry Pi 3 Model B and runs 

HAProxy v1.7 as the load balancer. The network switch used is a 100Mbits per 

second switch.  

 

Table 5.1 gives the details of hardware and software configurations for 

the experimental setup. 

 

Table 5.1 Experimental setup configurations 

Processor Quad-Core 1.2GHz Broadcom BCM2837 64bit 

Motherboard Raspberry Pi 3 Model B 

RAM 1GB DDR3 

Network Interface 10/100 Mbps Ethernet 

Storage 16 GB 80MB/s microSD  

Operating System Hypriot OS v1.8.0 Linux Kernel 4.14 

Docker Version Docker 18.06.3-ce  

Network 100Mb/s network switch, 100Mb/s wireless router 

Load Balancer HAProxy v1.7-stable 

MQTT Broker Eclipse Mosquitto v-1.6.4 
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Payload size 32 bytes (Unix timestamps) 

Publish QoS 2 

Publish message rate 100 message/sec 

5.2 Throughput 

The throughput evaluation shows the speed at which data can be 

transmitted between devices. The publish throughput evaluated in this section 

is the average number of publication messages pushed to the broker per second. 

The average throughput is obtained by dividing the total throughput by the 

number of messages published. The goal of this benchmark is to evaluate how 

the MQTT broker cluster scales with the number of publishers.  

 

As depicted in Figure 5.2(a), the average throughput delivered by each 

client decreases slightly when the number of clients increased. The single-node 

broker outperforms the broker cluster in terms of average throughput per client. 

The decline in overall throughput for the proposed broker cluster is not 

desirable, considering the cost of horizontal scaling. This happens as a result of 

relay elements presented in the load balancer. Since QoS 2 of the MQTT 

protocol involves a 4-way handshake, the total publication runtime increases. 

This reduces the overall message throughput since throughput is inversely 

proportional to their total runtime.  

 

The average throughput of the clustered system is also compared to that 

of a cloud broker. As depicted in Figure 5.2(b), the edge-based broker cluster 

has a significantly higher throughput compared to the cloud broker. The average 

throughput per client remains below 1.5 messages per second for the cloud 

broker.  It appears clear that how edge-based MQTT provisioning brings 
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significant advantages when compared to the cloud-based approach. It is also 

observed that the connections between the cloud broker and endpoint MQTT 

clients are not stable, due to network congestion on the internet. Some of the 

clients fail to establish a connection with the broker, while some clients are 

disconnected half-way when the broker fails to respond with a ping response 

(PINGRESP) message back to the clients. Extra delays are incurred when the 

disconnected clients reconnect to the cloud broker, which causes a reduction in 

message throughput. 

 

The variations in average throughput per client for 50 and 2000 clients 

are provided in Figure 5.3(a). The average throughput values for fifty and two 

thousand clients are almost comparable for the broker cluster. The performance 

degradation of the broker cluster 12.98% when the number of clients increases. 

For the single broker setup, the average throughput decreases by 54%. Despite 

having lower average throughput measurements, the 4-node broker cluster 

shows better scalability compared to the single node broker. This suggests that 

the broker cluster can handle load increase better than the single broker setup. 

The type of service provisioning, either edge-based or cloud-based MQTT 

broker, does not impact performance degradation. The evaluations in Figure 

5.3(a) show that the average throughput of the cloud broker is decreased by 

1.18%. 
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(a) 4 node broker cluster and 1 node broker 

(b) 4 node broker cluster and cloud MQTT broker 

Figure 5.2 Average publish throughput with increasing clients (QoS 2) 
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(a) 4 node and 1 node broker publish 

throughput 
 (b) 4 node and HiveMQ cloud broker 

publish throughput 

Figure 5.3 Throughput variations with 50 and 2000 clients 

 

5.3 Latency 

This section compares the latency performance between the proposed 

broker cluster, the cloud broker, and the single node Mosquitto broker. The 

measured end-to-end latency consists of transmission delay, the broker 

processing delay, and the message forwarding delay within the cluster. For 

latency constraints applications, the end-to-end latency should be bounded to an 

acceptable threshold depending on the users of the system. The latency 

requirement of a typical IoT data streaming application usually ranges between 

10 milliseconds to 100 milliseconds, depending on the users of the application 

(Nikaein and Krea, 2011). The test script records a timestamp when publications 

are sent by a publisher within the MQTT payload. The testbed varies the number 

of loads to measure its effect on the end-to-end latency.  
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The end-to-end latency of the received messages is computed by 

subtracting the timestamp of the published message (sent_t) from the timestamp 

of the received message (rcv_t). The same machine is used for both the 

receiving and sending side, so clock drifts do not affect the accuracy of the 

measured latency. For every test, the difference in the arrival values is computed 

using the following calculation.  

𝐿 , _ = (𝑚𝑠𝑔 , _  −  𝑚𝑠𝑔 , _ ) (5-1) 

where msg corresponds to the received messages, rcv_ts represents the 

reception timestamps, sent_ts represents the sending timestamps, and i is the 

current message. 

 

The values of latency are stored in a vector for each test, building a new 

data matrix of values whose ith row has the following elements. 

 [𝐷𝑎𝑡𝑎] , =  ( 𝐿 , 𝐿 , . . . 𝐿  )  
 

(5-2) 

where n is the total number of messages (1 ≤ 𝑛 ≤ 2000). Lk 

corresponds to the latencies vector of the current test (1 ≤ 𝑘 ≤ 𝑚), and m is the 

number of tests. These latency values are used for descriptive and probabilistic 

statistical analysis.  

 

Figure 5.5(a) shows the average end-to-end latencies of the broker 

cluster and the single node broker setup. The average latency values of the 

broker cluster are inconsistent with increasing the number of clients. The reason 

behind this is due to the data locality of the backend MQTT broker being routed 

by the load balancer. The least connected algorithm of the load balancer routes 
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client requests to backend brokers that were holding the least number of clients. 

The results in Figure 5.5(a) show that, with N number of brokers, the non-

deterministic routing happens when the total number of publisher/subscriber 

pairs are not divisible by N. This is because of the uneven distribution during 

the subscribing process that causes some backend brokers serving more 

subscribers than the others. During the publishing process, each publisher is 

routed to the broker with the least clients at the time which causes some 

mismatches. Hence, more publishers could not reach the backend brokers with 

the same registered subscription. As depicted in Figure 5.4, an extra forwarding 

delay is incurred when a published message must be forwarded to the broker 

that is holding a registered subscriber of the same topic.  

 

 
Figure 5.4 Message forwarding between backend servers 
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As depicted in Figure 5.6(a), the maximum value of worst-case latency 

of the 4-node broker cluster is 42 milliseconds, which is 32.2 milliseconds 

higher than that of a single node broker. The maximum worst-case latency of 

the single node broker is 9.8 milliseconds. It is observed that the volume of the 

load has no direct impact on the worst-case latency.  

 

From the observation in Figure 5.6(b), the broker cluster has an overall 

higher worst-case latencies compared to the single node broker. The end-to-end 

latency values of the HiveMQ cloud broker are continuously above the latency 

of 300 milliseconds, surges to 900 milliseconds when 1800 clients are 

connected, and drops to 477 milliseconds afterward. The cloud broker has a 

worst-case end-to-end latency of 900 milliseconds when 1800 clients are 

connected. 
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(a) 4 node and single node broker 

(b) 4 node and HiveMQ cloud broker 

Figure 5.5 Average end-to-end latencies with increasing clients 
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(a) 4 node and 1 node broker 

(b) 4 node and HiveMQ cloud broker 

Figure 5.6 Worst case end-to-end latencies with increasing clients 

 

As depicted in Figure 5.7, the data distribution of the latency values does 

not follow a normal distribution. The experimental data distribution skews to 

the right. This is because most of the measurements (80% according to the CDF 
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plot in Figure 5.9) are less than or equal to 3 milliseconds, while the rest of the 

data are relay latencies between broker nodes. The histogram data within the 

lower half hump of the density curve is close to zero, with values between 1 and 

8 milliseconds. Based on quartile information in Figure 5.8, only a few outlier 

values are greater than 15 milliseconds. The Q-Q plot shows fat tails in small 

latency values to the left of the regression line. As depicted in the CDF plot in 

Figure 5.9, 95% of values fall between the range of 1 and 8 milliseconds, 

confirming that the routing delays between the broker cluster nodes are small. 

Also, a few sporadic values of 30 to 44 milliseconds appear. The P-P plot in 

Figure 5.10 presents a behavior quite similar to the CDF plot. The measured 

values are not aligned along a regression line, with a huge concentration on the 

smaller values. The probability statistics demonstrate high data locality for the 

test as only less than 5% of messages needs to be forwarded between backend 

servers. 

 

 

Figure 5.7 Latency histogram with a normal density curve 
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Figure 5.8 Latency quantile plot against normal probability distribution 

 

 

Figure 5.9 Latency cumulative distribution function with the normal 

probability curve 
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Figure 5.10 Latency probability plot against normal probability distribution 

 

5.4 Microservice and Monolithic Broker Comparison 

This section compares the performance of the microservice-based 

Mosquito broker cluster to the monolithic emqttd broker cluster (Emqtt.io, 

2018). Emqtt broker implements the mnesia database (Mattsson et al., 1998) to 

store and replicate routing tables and uses the SF algorithm (Banno et al., 2017) 

to route messages between emqtt broker nodes. The monolithic implementation 

of emqttd integrates the broker and cluster component into a single software 

package. However, this research work implements the cluster component as a 

different set of microservice, which loosely couples with the mosquito MQTT 

broker. Figure 2.2 Monolithic and microservice implementation (Cicizz, 2019) 

the architectural differences between both implementations. 
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(a) Worst-case latencies 

(b) Mean latencies 

(c) Standard deviation latencies 

Figure 5.11 End-to-end latencies performance comparison 

 

The evaluations in Figure 5.11 show that the performance of the 

microservice broker cluster is almost comparable to its monolithic counterpart. 
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the emqttd broker cluster, in terms of end-to-end transmission latency. The 

average latency of the Mosquitto broker cluster is 3.42 milliseconds, while the 

average latency of the emqttd broker cluster is 2.78 milliseconds. The worst-

case end-to-end latency for the Mosquitto broker cluster is 42 milliseconds, 

which is higher compared to the 20.8 milliseconds latency of the emqttd broker 

cluster. The lower standard deviation of the emqttd broker cluster suggests that 

each latency values among the received messages are less dispersed. The results 

confirm that the implementation of the proposed broker cluster presents an 

overhead within the microservice layers. 

 

The results in Figure 5.12 show the performance difference between 

both the monolithic and microservice implementations. The microservice 

broker cluster has a lower average throughput in terms of messages per second 

compared to the monolithic emqttd broker cluster. The average performance 

difference between both implementations is 3.7%. As depicted in Figure 5.13, 

the values of throughput degradation between both implementations are 

comparable. When the number of clients increases from 50 to 2000, the publish 

throughput of the microservice broker cluster drops by 8.47%, while the 

throughput of the emqtt broker cluster drops by 7.37%.  
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Figure 5.12 Average publish throughput (QoS 2)  

 

 
Clients ■   4-node mosquitto cluster ■   4-node emqttd cluster 
50 265.68 msg/sec 275.68 msg/sec 
2000 233.28 msg/sec 246.28 msg/sec 
Percentage drop 8.47 % 7.37 % 

 

Figure 5.13 Throughput degradation (message per second) 
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5.5 Inter-message Jitter 

Periodically and continuously transmitted messages will have different 

delays because consistent delay pacing cannot be guaranteed due to the 

asynchronous nature of distributed systems. This experiment measures the jitter 

value between consecutively received messages. The inter-message jitter is the 

discrepancy between the delivery times of two consecutively received messages 

(Luzuriaga et al., 2014). Inter-message jitter is computed through the following 

formula. 

𝐽𝑖𝑡𝑡𝑒𝑟 , _ = (𝑚𝑠𝑔 , _  − 𝑚𝑠𝑔 , _ )  −  𝑇 
(5-3) 

where msg represents a received message for one iteration, i is the 

message for the current iteration (1 ≤ 𝑖 ≤ 𝑁), N is the total number of clients, 

rcv_ts is the reception timestamps, and T is the constant value of the inter-

message production period. T is 10 milliseconds in the experiment. Clock drift 

is not an issue for Equation (5-3) because both sending and receiving time 

stamps are generated on the same machine.  

 

The evaluations compare the maximum, minimum, and 90th percentile 

values of the inter-message jitter against the increasing number of clients on 

multiple test runs. As depicted in Figure 5.15, the minimum jitter values go from 

0.04 to 6.16 milliseconds. The results show that minimum jitter values for each 

test run are unaffected by the number of clients. As depicted in Figure 5.14, the 

maximum jitter values range from 14.7 to 33.8 milliseconds. The results show 

increasing trends in maximum jitter values when the number of clients 

increases. Instead of using the average values of each test run, which are heavily 
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affected by outliers, the 90th percentile draws a better representation for most of 

the jitter values.  The results in Figure 5.16 show that the 90th percentile jitter 

for each test run falls between 11 to 15 milliseconds. The results suggest that 

the discrepancies between delivery times of two consecutively received 

messages are under 15 milliseconds.  

 

 

Figure 5.14 Maximum jitter of the broker cluster  

 

Figure 5.15 Minimum jitter of the broker cluster  
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Figure 5.16 Percentile 90 jitter of the broker cluster  

 

5.6 Evaluating Publication Retransmission 

To verify the effect of publication retransmission, the throughput 

measurements before and after broker failure are evaluated. Figure 5.17 depicts 

the fail test experiment for the broker cluster. Server C and D are killed while 

after 30 seconds of processing the workload. The client test program monitors 

the throughput and end-to-end latency before and after the failure of one broker. 

 

 

Figure 5.17 Fail test for the broker cluster 
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5.6.1 Throughput    

Figure 5.18 depicts the throughput in terms of the number of messages 

per second for the test environment. The throughput of the broker cluster is 

stable when the first server failure happens. Throughput decreases by 7.3% 

when a server crash occurs. For the single node broker, the throughput decreases 

to zero, showing that the messaging service completely stops. After 5 seconds 

of stopping the messaging service, the single-node service is recovered. The 

throughput of the broker cluster remains stable before and after the server 

failure. This suggests that the broker cluster can maintain the availability of the 

MQTT service and gracefully handle the degradation of performance, during 

broker failure. 

 

 

Figure 5.18 Message throughput for fail test 
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5.6.2 Inter-message Jitter 

The test script runs with 200 subscribers for 1 minute so that the routing 

state has enough time to converge. The test clients are set to have a keepalive 

interval of 200 milliseconds. After that, one node and two nodes are deliberately 

made to fail respectively in two different tests when the publishers start to send 

the messages. The average measurements of 5 test runs are presented. The 

results show the jitter measurements between each consecutively received 

message. 

 

The broker cluster can provide message loss tolerance for MQTT 

clients. The clients previously held by the failed broker automatically reconnect 

to other brokers. After one node fails, three remaining broker nodes take over 

the subscriptions of the reconnected clients. The broker cluster can recover all 

the messages published, during the period of failover, to the reconnected 

subscribers.  

 

From the observations, the subscribers do not receive any duplicate 

messages during failover. This is because the retransmission process will filter 

and send the failed message to the relevant online brokers. Therefore, a 

subscriber will not receive the same message again. Also, typical IoT 

deployments expect about the same order of magnitude for the number of 

publishers, the number of topics, and the number of subscribers (Happ et al., 

2017; Rotaru et al., 2017). There will be no duplicate during failure 

retransmission if each subscriber subscribes to a different partition of the topic, 

as described in the scenario in (Scalagent, 2014).  
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Figure 5.19 Jitter under normal condition 

 

The inter-message jitter values are plotted against the message received 

in ascending order. The jitter values range between 0.67 milliseconds and 21.45 

milliseconds when no failure occurs, as depicted in Figure 5.19. Some spikes in 

jitter values are because of the inter-cluster message routing delay. These spikes 

appear to be large because the jitter values of the other messages without delay 

are small.  

 

As depicted in Figure 5.20, a large jitter spike occurs because of message 

redelivery by the broker cluster. The maximum jitter value for one failed node 

is 210.69 milliseconds. The maximum jitter value for two simultaneous failed 

nodes is 215.44 milliseconds, as depicted in Figure 5.21. The differences 

between the maximum jitter values for both tests with one and two failed nodes 
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0

5

10

15

20

25

0 50 100 150 200

Ji
tt

e
r 

(m
s)

nth message

Jitter



 
 

120 

of the first large spike. The maximum jitter value for the retransmitted message 

is 23.58 milliseconds. This suggests that the buffered publication messages are 

delivered successfully without significant inconsistencies in message delay. 

  

 

Figure 5.20 Jitter under one fail node 

 

 
Figure 5.21 Jitter under two fail nodes (at same time) 
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5.6.3 Latency 

As depicted in the histogram in Figure 5.22, major portion latency 

values are larger than 5 milliseconds. As compared to the latency values during 

normal operation shown in Figure 5.7, there are a greater number of high latency 

values due to message recovery. The data distribution is concentrated between 

0 to 9 milliseconds with a few outliers of 18 to 44 milliseconds. Based on 

quartile information in Figure 5.23 only a few outlier values are greater than 15 

milliseconds. Also, the majority of smaller values fall within 3 milliseconds 

when compared to the regression line. The distribution plot depicted in Figure 

5.24 shows that 95% of values are between 1 and 10 milliseconds, which 

confirms that most of the latency values are below 10 milliseconds. Also, a few 

unusually high of 32 to 40 milliseconds appear. The P-P plot in Figure 5.25 

presents a behavior similar to the CDF plot. The measured data is concentrated 

on a smaller range of values. 

 

 

Figure 5.22 Latency histogram with a normal density curve 
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Figure 5.23 Latency quantile plot against normal 

 
Figure 5.24 Latency CDF plot with a normal probability distribution curve 
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Figure 5.25 Latency probability plot against normal 

 

Next, the extra recovery latencies, during failover of one broker node, 

are evaluated. The latency incurred in recovering the missed messages is 

dependent on the keepalive interval of the client to the broker. The keepalive 

interval is the time between each MQTT live-check message sent from a client 

to the broker when a connection is established. When the keepalive interval 

increases, the latency for getting missing messages increases.  

 

As depicted in Figure 5.26, the data distribution of the latency values 

does not follow a normal distribution. The experimental data distribution is 

bimodal with values concentrated on the left and right. The histogram data 

within the middle of the density curve is zero. Based on quartile information of 

the Q-Q plot in Figure 5.27, there are larger values than expected when 

compared to the regression line. The regression line intercepts values between 

0 and 250 milliseconds. As depicted in the CDF plot in Figure 5.28, 76% of 
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values are between 0 and 3 milliseconds. Also, 24% of the latency values are 

larger than 200 milliseconds as a result of message retransmission. The P-P plot 

in Figure 5.29 presents a behavior quite similar to the CDF plot, with more 

concentration of data distribution on the left and less concentration of data on 

the right. 

 

 
Figure 5.26 Latency histogram with a normal density curve 
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Figure 5.27 Latency quantile plot against normal 

 

 
Figure 5.28 Latency CDF plot with a normal probability distribution curve 
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Figure 5.29 Latency probability plot against normal 

 

Next, the extra recovery latencies, during failover of two broker nodes, 

are evaluated. As depicted in Figure 5.30, as much as half of the experimental 

measurements are larger than 200 milliseconds. This shows that almost half of 

the messages have failed to be delivered at first and are redelivered by the 

system with added delay. On the left of the histogram, the values range from 0 

to 25 milliseconds. On the right, the values are larger than 200 milliseconds. 

Based on quartile information in Figure 5.31, the data distribution is bimodal. 

Also, there are more data with smaller values than expected when compared to 

the regression line. Based on the CDF plot in Figure 5.32 50% of values are 

between 1 and 25 milliseconds and 50% of values are larger than 210 

milliseconds, confirming that the data distribution is bimodal. Also, a few 

unusually high of 30 to 44 milliseconds appear. As depicted in Figure 5.33 the 

measured values are not aligned along a regression line. The data distribution 

was split into half. Half as much of the latency values are above 210 



 
 

127 

milliseconds, indicating the split of the failed messages that are recovered after 

the failure of two broker nodes. 

 

 
Figure 5.30 Latency histogram with a normal curve 

 

 
Figure 5.31 Latency quantile plot against normal 

 



 
 

128 

 
Figure 5.32 Latency CDF with a normal probability distribution 

 

 
Figure 5.33 Latency probability plot against normal 
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5.7 Resource Usage 

To evaluate the system metrics of the broker cluster, Node Exporter and 

Prometheus are used to obtain the host’s system metrics such as CPU usage 

percentage and RAM usage, when the workload is inserted. The evaluations 

shown here are tested using 2000 pairs of MQTT clients, with 32 bytes payload 

for each message, and a sending interval of 10ms between each publication. 

 

5.7.1 CPU Utilization 

Figure 5.34 depicts the time series of CPU utilization percentage when 

the number of connected client devices increases for the clustered broker. Figure 

5.34(a) shows the results for four different broker nodes, while Figure 5.34(b) 

shows the moving average of four nodes. As depicted in Figure 5.34(b), the 

CPU utilization percentage peaks at 10.45% during the initialization of the 

docker container and the broker cluster. The CPU percentage is at an average of 

3% when the broker cluster is idle. Next, the CPU percentage rises to 4.7% 

when clients are subscribing, rises and oscillates around 8% when clients are 

publishing, and drops back to 3% afterward. 
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(a) Series of four individual nodes 

(b) Series of average of four nodes  

Figure 5.34 Time series of CPU time utilization for broker cluster 

 

As depicted in Figure 5.35, the CPU percentage of the single node 

broker spikes at 2.8% before dropping to idle at around 1.45%. The CPU utilizes 

a maximum of 3.4% when the broker is handling the MQTT workload. The 

results show that the extra cluster server component costs about 2% of CPU 

overhead. 
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Figure 5.35 Time series of CPU time utilization for single node broker 

 

The CPU utilization percentage is irregular when clients are subscribing 

and publishing. The reason behind this is due to idle times of software processes, 

which are blocked while waiting for input-output (I/O) operations to complete 

(Bovet and Cesati, 2005). The CPU does not spend clock cycles during I/O wait 

times. It can be observed that the CPU has spent a lot of time being idle because 

of the intensive number of I/O operations of the network sockets. 

 

Figure 5.36 depicts the CPU time utilization percentage for the MQTT 

load test under the condition of two simultaneous failed nodes. The CPU 

percentage is at an average of 3% when the broker cluster is idle. Next, the CPU 

percentage rises to 4.6% when clients are subscribing. After all of the 

subscribers are registered in the system, the CPU percentages of two failed 
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subscribing to two remaining broker nodes. Retransmission of failed message 

happens then the CPU percentage rises and oscillates around 7.6%. With 

comparison to the CPU utilization under normal conditions in Figure 5.34(a), 

the system encountered a CPU utilization overhead right after the published 

messages are delivered for the first time. The results also show that both first-

time publishing and the retransmission process have about the same CPU 

utilization peaks at around 7.6%. 

 

Figure 5.36 Time series of CPU time utilization for two failed brokers 

 

5.7.2 RAM Usage 

The Raspberry Pi 3 Model B board has 957 Mebibyte (MiB) of total 

usable memory. This evaluation demonstrates the impact of increased workload 

on the memory usage and the memory overhead incurred within the software 

implementation of the broker cluster over the single node broker. 
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(a) Series of four individual nodes 

(b) Series of average of four nodes 

Figure 5.37 Time series of total memory usage for broker cluster 

 

Figure 5.37 depicts the total memory usage during the entire test run. 
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355 MiB during the test run. The results in Figure 5.37(b) show that the average 
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memory is larger than 8 MiB (2.28% increase) when the number of connected 

MQTT client increases.  

 

Figure 5.38 shows that the RAM usage for the single broker increases 

from idle memory of 268.74 MiB to 270.46 MiB (an increase of 1.72 MiB) as 

the clients are subscribing. The memory usage falls back to 269.32 MiB when 

the MQTT workloads are completed. As compared to the memory overhead of 

the single broker setup, the memory overhead of the broker cluster is higher due 

to the redundancy of the cluster component.  
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Figure 5.38Figure 5.38 also shows the fluctuation in memory usage for 

the single node broker. This can be related to its CPU utilization shown in Figure 

5.35, where the broker frequently went idle while waiting for the data stream in 

the I/O operation. After the broker completes some of the message deliveries 

and the CPU goes to idle, small portions of memory get to free up, which 

describes the continuous rise and fall of memory usage during the entire test 

run. 

 

Figure 5.38 Time series of total memory usage for single-node broker 
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Figure 5.39 Time series of total memory usage under two failed brokers 

 
Figure 5.39 depicts the total memory usage during the experiment for 

two simultaneously failed broker nodes. The memory usage rises from 260 MiB 

to 349 MiB when initializing the broker cluster. When the system is registering 

subscribers, the memory usage rises from 349 MiB to 351 MiB. Before 

receiving the publish messages, the memory usage of two broker nodes dropped 

because of node failure. When the system is receiving publish messages, the 

memory rises from 351 MiB to 353 MiB. There is an overhead as compared to 

the test under a normal condition in Figure 5.37 when the memory usage slowly 

rises to 358 MiB after two broker nodes have completed the delivery of 

publication messages. The results show that some of the publication messages 

that are failed to be delivered are stored in the memory in the form of a 

temporary queue. The system delivers all the message left in the temporary 

queue and delete each message in the queue after it is confirmed to be delivered. 

The total memory usage drops back to 351 MiB when all of the subscribers are 

disconnected. 
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5.8 Discussion 

This section presents the discussion of the results evaluated in previous 

sections with regard to the performance, fault tolerance, and limitations of the 

proposed implementation. Since the dissertation focuses on crash failures of the 

backend brokers, the discussions of the results assume the load balancer is 

reliable and the system is secure. 

 

5.8.1 Throughput 

To support interaction between the large volume of devices, the broker 

needs to have horizontal scalability. The broker must minimize the degradation 

of performance with an increasing number of clients. The evaluations in Section 

5.2 show that the broker cluster setup has a higher value of average throughput. 

However, the decline in overall throughput is not desirable, considering the cost 

of horizontal scaling and replication. The reason behind this is related to the 

relay elements present in the microservices layers and in between broker nodes. 

The relay element incurs an extra delay in publication time which reduces the 

average throughput. Therefore, the evaluations reveal that implementing load 

balancing and horizontally scaling MQTT brokers does not directly improve the 

performance of the system in terms of message throughput.  

 

The evaluations in Section 5.2 also demonstrates the improvement in 

terms of the average publishing throughput of the edge-based MQTT broker 

over the cloud-based approach. The edge-based broker significantly 

outperforms the cloud broker in terms of average throughput. This occurs due 

to the high volume of traffic flow to the cloud broker. The average throughput 
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per client remains below 1.5 messages per second for the cloud broker. The 

benefits of an edge-based over a cloud-based MQTT broker are also 

demonstrated in (Laaroussi et al., 2018) (Zyrianoff et al., 2018) where the 

average throughput is higher for edge-based provisioning of MQTT. Therefore, 

it is clear that the edge node is beneficial for many data streaming-based IoT 

applications. 

 

Even though the broker cluster has lesser performance in terms of 

average throughput, the evaluations demonstrate better scalability than the 

single broker. The evaluations in Figure 5.3(a) show that the performance 

degradation of the broker cluster is lesser (1.18%) as compared to the single 

broker (21.23%). This also shows the bottleneck when a large number of clients 

must transmit data to a single broker. The implementation of single-threaded 

implementation Mosquitto broker prevents multi-core utilization of the 

Raspberry Pi 3 Model B SBC, which features a quad-core processor. As the load 

increases, the single node Mosquitto broker presents a bottleneck that limits its 

scalability when the entire capacity of the SBC is under-utilized.  

 

In summary, it can be concluded that the broker cluster scales better in 

terms of throughput when the workload increases. This shows that the broker 

cluster can handle workload increases better than a single node MQTT broker. 

A single node MQTT broker will perform more efficiently when the number of 

clients is small but scales rather poorly with increasing clients. The single-node 

broker shows more severe performance degradation, which explains the reason 

for the implementation of the MQTT broker cluster through horizontal scaling. 
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Also, the scalability regarding throughput degradation is independent of the 

service provisioning method.  

 

5.8.2 Latency 

For the edge brokers, average latencies increase with the number of 

client connections, as depicted in Figure 5.5(a). The average latencies of the 

cloud broker, as depicted in Figure 5.5(b), are more than 100 milliseconds and 

are very unpredictable. Servers with unpredictable latencies are generally 

avoided as it can affect IoT applications that are sensitive to delays. 

 

The evaluations in Figure 5.6 show that worst-case latencies are 

independent of the number of client connections, but rather the degree of data 

locality. The worst-cast latencies are higher when data locality is low. Using the 

broker cluster for transmission results in larger average and worst-case 

latencies, as depicted in Figure 5.5(a) and Figure 5.6(a). This is because the 

workload for the broker cluster has less data locality than a single node broker. 

Data locality is present when a publication reaches a broker that also happens 

to subscribe to a similar topic.  

 

This is especially true for the subscription diffusion method 

implemented for event routing, as discussed in Section 4.4. The subscription 

diffusion routing incurs extra software latency to match publications to 

subscription and network latency to relay the publication messages to neighbor 

nodes. Similar observations are also shown in the work of ILDM (Banno et al., 
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2017), where the authors tested different patterns of data locality workloads and 

confirm that higher data locality results in lower latency. 

 

The setup does not have fine-grain control for data locality as all 

requests are routed based on the least connected algorithm in the load balancer. 

This is because publication messages need to be forwarded with one extra hop 

to the neighbor nodes when subscriptions are scattered across multiple brokers. 

Lower overall data locality in the workload causes messages to relay to other 

nodes which increases the end-to-end latency. The high transmission latency for 

some messages also suggests that publications are buffered in the Mosquitto 

broker before being processed because the Mosquitto broker only uses a single 

thread for message forwarding (Scalagent, 2014).  

 

The worst-case end-to-end latency for the Mosquitto broker cluster is 40 

milliseconds, which is not ideal for real-time messaging but is adequate for less 

demanding applications. Also, the Mosquitto cluster will provide more stable 

latency as variations between each latency measurement are minor and the 

standard deviation is lower. 

 

5.8.3 Performance overhead of the microservice-based broker cluster 

Section 5.4 presents the latency evaluations of the microservice-based 

Mosquitto cluster and the monolithic emqttd cluster, with 2000 clients 

connected. Under normal conditions, without any broker node failure, the 

Mosquitto cluster delivers messages with comparable average latency. This 

suggests that the delay associated with microservice layers has a low impact on 
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performance in both latency and throughput. The scalability in terms of 

throughput degradation is also comparable for both implementations. Table 5.2 

gives a summary of the performance comparison in latency and throughput 

 

Table 5.2 Summary of latency and throughput results 

 Throughput (msg/sec) End-to-end latency (ms) 
 50 2000 % difference Average Worst-case Std 
Microservice 
broker cluster 

265.68 233.28 8.47 3.42 42 3.42 

Emqttd broker 
cluster 

275.73 246.32 7.36 2.78 20.8 2.78 

 

 

5.8.4 Inter-message Jitter 

The jitter value measured here is the variation between response times. 

Jitter is a function of queuing, network buffering, processing, and competing for 

traffic for the network link. Good connections will have reliable and consistent 

response time, which is represented by a lower jitter value. High jitter means 

inconsistent response time, which will result in degraded quality of experience 

on the end-user for data streaming applications. The lower processing speed of 

the broker will tend to produce higher jitter because the delay in processing 

speed will cause jitter to increase. The experiment measures jitter values for 

periodic messages sent between an interval of 10 milliseconds. 

 

From the evaluations in Section 5.5, the jitter values remain stable under 

increasing load. The sender sends messages at a constant rate of 100 messages 

per second, but the messages reach the receiver at a variable rate. If every 

message takes the same amount of time to travel from publisher to subscriber, 
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there is no jitter. While latency can be improved with optimized software 

processing, the jitter value is more random due to the asynchronous nature of 

the distributed system. The maximum jitter 35 milliseconds for the experiment. 

The maximum jitter value in the tests is the consequence of message forwarding 

delay between cluster nodes. Over 90% of jitter values are less than 15 

milliseconds. This confirms that the jitter values remain consistent for the load 

testing. The receiver will not have significant perceivable abnormalities on the 

received messages, as large jitter will affect the quality of user experience. 

 

5.8.5 Impact of Message Publication Rate 

It is also noticed that when the fixed publication rate is increased to 

1,000 message/sec, which means that each message is sent asynchronously 

between the interval of 1 millisecond. Transmission loss is observed for the 

broker cluster when more than 200 clients are connected. It is observed that 

some of the publications are not received by the cluster server. This can be 

related to message loss within the TCP and pcap capture buffers in the Linux 

network stack. The packet capture software (tcpdump) which is used in the pcap 

API captures and filters raw packets through the ethernet. Delays are incurred 

for the process of parsing and filtering of MQTT packets in the user application. 

Incoming packets are first queued in a buffer before processing. When the rate 

of packet pushed into the buffer exceeds the rate of packets consumed by 

tcpdump (Tcpdump&Libpcap, 2019), the buffer becomes full, which forces the 

kernel to drop all further packets until there is enough space available in the 

buffer.  
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This effect can be reduced by increasing the size of the buffer in the pcap 

stack and implementing a ring buffer for the consumer thread as suggested in 

(Albin and Rowe, 2012). Also, it could be possible that the Linux kernel has 

missed some of the network I/O interrupt due to high message and interrupt rate 

(Wu et al., 2007). The received packet is transferred into the main memory and 

the I/O receive interrupt is raised only when the packet is accessible in the ring 

buffer. The packet receiving process of network interface card (NIC) and 

network device driver interrupt is discussed in detail in (Wu and Crawford, 

2007). 

 

5.8.6 Failure recovery and comparison to primary/backup broker 

To ensure the continuous availability of the MQTT service, the system 

has to preserve its message delivery operation in the event of unusual 

circumstances and server failures. This is achieved by using redundancy, and 

backup brokers, to resist server fault, either broker crashes or network partition 

of one server from other servers. The MQTT notification service is a critical 

component of the MQTT communication protocol and must not be a single 

point of failure. Subscribers will not receive messages if the entire system 

collapses.  

 

Resiliency is achieved in the broker cluster by the means of message 

retransmissions. The broker cluster can provide continuous service even after 

the failure of brokers. The evaluations in Section 5.6 show that the broker cluster 

can tolerate and quickly recover from server crashes. Anyone of the broker 

nodes will take over the subscribers when the subscribers reconnect. 
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Subscribers that are connected to a failed server can receive previously missed 

messages when they reconnect. The MQTT service runs asynchronously by all 

redundant MQTT brokers to ensure normal operation under failures.  

 

The connection between the MQTT subscriber and the broker is 

maintained through an end-to-end TCP connection through a session. When a 

broker fails, the packets are routed to an offline IP node by the load balancer, 

and the end-to-end TCP connection with the client breaks. The broker cluster 

has to retransmit the MQTT messages received to the disconnected subscribers 

if the topic of the message matches.  

 

The evaluations in Figure 5.36 and Figure 5.39 also reveal the overhead 

incurred during the failed test as the system uses more memory and CPU time 

to store missed messages and to perform the message retransmission process. 

 

The broker stores each received publication as soon as the connections 

of previously disconnected subscribers come back online. When the subscriber 

reconnects, it receives a burst of messages that it missed when it was 

disconnected. With two out of four failed brokers, the retransmission process 

takes a maximum of 256.33 milliseconds to recover missed MQTT messages. 

This delay includes a 200 milliseconds live-check time client to broker, the 

reconnection time, the broker processing delay, and the message forwarding 

delay. The minimal jitter values between the retransmitted messages indicate 

that the remaining broker nodes can quickly retransmit the failed messages as 

soon as the client reconnects.  
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However, FRAME is able to achieve 50 milliseconds of worst-case 

recovery latency for its edge-based broker (C. Wang et al., 2019). Compared to 

this research work, FRAME uses a two-node primary-backup broker with TAO 

publish-subscribe interface. This research work implements a four-node cluster 

with a fully connected mesh topology based and uses a backup message queue 

to store the failed messages in each cluster node. Both approaches locally deploy 

the edge-based publish-subscribe broker system.  

 

Since the proposed method needs to maintain more cluster nodes, their 

corresponding routing state is bigger and this leads to a higher recovery delay. 

Also, the MQTT protocol includes a keep-alive interval that is used by the client 

to detect broker failure. High failure detection timeout increases the time for 

broker nodes to recover messages, as confirmed by (Kazemzadeh and Jacobsen, 

2009). In the experiment, the keep-alive interval used is 200 milliseconds. As a 

result, the client needs to wait for at most 200 milliseconds to detect a broker 

failure and reconnects a different broker node, which yields a latency of more 

than 200 milliseconds. 

 

The broker cluster will perform additional client ID and message ID 

filtering, to prevent forwarding duplicate messages within the cluster, as 

described in Section 4.6.1. As a result, the MQTT broker cluster will not 

produce duplicate messages during normal operation and recovery process. 

However, depending on each MQTT broker, QoS 1 does allow for message 

duplicates, as described in the specification of MQTT protocol v3.1.1 (OASIS, 
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2014). A message with a duplicate may also be sent from the broker after the 

delivery of the first message instance.  

 

5.8.7 Resource usage 

Compared to the CPU time percentage of the single broker setup, the 

broker cluster setup utilizes more CPU time for the implementation of an 

additional cluster component. The results in Section 5.7 show that the system 

resources are not optimally used by the single node Mosquitto broker for both 

CPU and memory. The CPU utilization percentage is irregular throughout the 

whole test run. This is due to the high frequency of network I/O operations, 

which starved the running processes.  

 

Since the Mosquitto broker is I/O bounded and makes use of only one 

processor core, the progress of MQTT message transmission is limited by the 

speed of network I/O and communication delays. The broker cluster 

implementation partly addresses this problem by making use of multiple 

processors in a distributed system. The MQTT broker can be faster and more 

efficient if the I/O subsystem is made faster. This approach is presented in 

(Pipatsakulroj et al., 2017), where the authors make use of the parallelization of 

both the MQTT broker components and TCP threads to minimize the effect of 

I/O bound. The proposed broker scheme is able to outperform the Mosquitto 

broker by 5.38% in terms of message throughput.  

 

Unlike the CPU usage, the RAM usage for the clustered broker remains 

stable below 240 MiB despite the increase in workload. The evaluations 
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demonstrate that an increasing number of clients produce a negligible amount 

of RAM increases. RAM usage of the single MQTT broker increases by 21 MiB 

when the system is loaded with clients. The observations suggest that replication 

of the MQTT broker helps reduces the memory footprint for MQTT message 

processing. 

 

CPU usage grows fast when handling client subscriptions, while 

memory only grows steadily and remains stable afterward. CPU and memory 

utilization of the broker cluster is relatively low, with a maximum of 7.8% CPU 

utilization and RAM usage below 355 MiB. Hence, the implementation of the 

Docker-based MQTT cluster can be considered lightweight. 

 

The results in Section 5.7.2 suggest that the implementation of the 

Mosquitto broker cluster is sufficient to support as many as two thousand pairs 

of MQTT transmission despite the constraints imposed by the hardware of the 

single-board computers.  
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CHAPTER 6 
 

DISCUSSION AND CONCLUSION 
 

 

6.1 Introduction 

This dissertation work presents implementations and evaluations of an 

MQTT broker cluster in edge setup and an IoT edge-cloud integration module. 

The motivation for the implementation of the proposed broker cluster is to 

improve local fault tolerance. The reason for this is because it is also possible 

to lose messages to the clients or the cloud due to server failure. Thus, local 

fault tolerance needs to be implemented to preserve the system locally at the 

edge of network. Many previous studies have focused on distributed publish-

subscribe systems but few of them addressed the issue of local fault tolerance 

and the MQTT standard. Due to the recent popularity of the MQTT protocol, 

the MQTT middleware layer is developed to facilitate the cooperation of MQTT 

brokers without modifying the MQTT broker software. Thus, different broker 

implementations can fit together into the local cluster as long as they implement 

the MQTT protocol standard. Also, the use of a single-board computer as an 

edge-based hosting infrastructure keeps the cost low and can be flexibly sized 

according to workload demand and location of deployment. This provides the 

means to set up a local MQTT broker cluster in an edge-based environment such 

as in rural and remote areas where internet connectivity is limited. Besides, 

cloud-based messaging brokers have high and unreliable latency. The purpose 

of the edge provisioning of the broker cluster is to reduce end-to-end latency for 

IoT and M2M streaming applications. The cluster configuration also helps to 
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horizontally scale to MQTT broker to deal with increasing workload, and to 

prevent overloading of a single MQTT broker.  

 

6.2 Methodology Used 

This research work implements a microservice-based MQTT broker 

cluster where the cluster server is implemented as a separate software 

application. The cluster server communicates with its local broker via inter-

process communication and its neighbor cluster server through a gossip-based 

membership protocol. The cluster server uses a topic-trie as a routing table to 

store neighbor subscription advertised by each neighbor node upon receiving a 

subscription locally. The load balancer that is used to distribute MQTT clients 

to the backend servers is assumed to be reliable. Each cluster node can fail 

independently without affecting other nodes. Each broker node immediately 

updates and deletes the corresponding entry in its routing tables when a failed 

broker node is detected. A buffered queue is used to store the failed message so 

that the message can be retrieved and sent to the affected clients when they 

reconnect to the broker cluster. To prevent message loss for recovering brokers 

that have previously failed, the joining broker node enters a 

recovery/synchronization state and temporarily stores all publication messages 

into an initialization message queue. After the recovery state, the broker node 

redelivers the message from the message queue to all corresponding neighbor 

nodes and clients. 
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The cluster is built using five Raspberry Pi boards that are connected to 

a network switch. In the edge layer, four boards are used for MQTT services, 

and one board is used as the Swarm manager node for Swarm orchestration and 

TCP load balancing. One Mosquitto MQTT broker container and one cluster 

server container are deployed into each Docker host. 

 

6.3 Summary of Results 

The evaluations demonstrated improved scalability for the broker cluster 

and successful recovery of failed publication during failover. The evaluations 

in Section 5.2 show that horizontal scaling does not always improve the overall 

system performance. Nevertheless, the broker cluster has other benefits to 

compensate for the lack of performance. The broker cluster can handle as many 

as 2000 connections without any major performance issues. Also, the method 

of service provisioning does not always impact the scalability of the system. 

The evaluations in Section 5.3 show that the worst-case end-to-end latency is at 

a maximum of 42 milliseconds. Although the broker cluster has increased 

latency values compared to the single broker, it is still adequate for many IoT 

applications, including building automation, smart grids, and smart farms. This 

is a tradeoff for reliability as there is an extra message forwarding delay in the 

clustered setup when the degree of data locality is low (Banno et al., 2017). 

Section 5.4 presents the performance overhead of the microservice-based 

Mosquitto cluster over the monolithic emqttd cluster. The proposed broker 

cluster delivers messages with higher average latency (3.42ms) compared to the 

monolithic-based emqttd cluster (2.78ms). The evaluations in Section 5.6 show 

that all missed publications are redelivered to the subscriber during failover 



 
 

151 

without significant delay between the retransmitted messages. This is because 

the jitter values after the recovery period are small. With two out of four failed 

brokers, the retransmission process takes a maximum of 256.33 milliseconds to 

recover missed MQTT messages. The overall system is efficient and overhead 

is minimal with Docker container. The observations from load testing show that 

the software implementation is lightweight with a CPU usage overhead of less 

than 5% and RAM usage overhead of about 8 MiB. 

 

6.4 Future Work 

For future work, the broker cluster can be improved by adding a 

Byzantine fault tolerance framework, with consideration to secure transactions. 

Trinity is a decentralized publish-subscribe broker that integrates the MQTT 

broker with Tendermint blockchain (Ramachandran et al., 2019). The Trinity 

brokers verify all published data, by executing smart contracts and consensus 

algorithm, before distributing the verified data to the other brokers in the 

blockchain network. However, the delay takes 1.5 to 4 seconds to deliver an 

MQTT message due to the duration of the consensus and transaction validation 

process within the Tendermint blockchain. Blockchain-based publish-subscribe 

communication can be useful for secure transactions and to provide assurance 

to a multiple stakeholder environment. This work can also be extended with the 

integration of a real-time latency deadline policy as suggested in (C. Wang et 

al., 2019). For the MQTT protocol, this requires the MQTT client to add a 

deadline tag on the message payload to indicate the minimum latency 

requirement for each message. 

 



 
 

152 

 

Taking robustness into account, the latency performance of the broker 

cluster is acceptable. The fault tolerance test confirms the reliability of the 

MQTT cluster, as failed publications can be redelivered during broker failure. 

In conclusion, this research work demonstrated that it is feasible to utilize a 

broker cluster to maintain consistent latencies and support reliable MQTT 

services despite server failures.   
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