

FAULT TOLERANT CONTAINER-BASED

MESSAGE QUEUING TELEMETRY TRANSPORT

(MQTT) EMBEDDED CLUSTER SYSTEM

THEAN ZHONG YING

MASTER OF ENGINEERING SCIENCE

FACULTY OF ENGINEERING AND GREEN

TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

September 2020

FAULT TOLERANT CONTAINER-BASED MESSAGE QUEUING

TELEMETRY TRANSPORT (MQTT) EMBEDDED CLUSTER

SYSTEM

By

THEAN ZHONG YING

A dissertation submitted to

Faculty of Engineering and Green Technology,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Engineering Science

September 2020

ii

ABSTRACT

FAULT TOLERANT CONTAINER-BASED MESSAGE

QUEUING TELEMETRY TRANSPORT (MQTT) EMBEDDED

CLUSTER SYSTEM

THEAN ZHONG YING

This dissertation work presents implementations of a distributed MQTT

broker cluster in an edge-based environment. Since a single node broker can

lose messages to the clients or the cloud when the node crashes. Hence, the

purpose of this work to implement local fault tolerance to preserve the

distributed system locally at the edge of network. Many previous studies have

focused on distributed publish/subscribe systems but very few of them

addressed the issue of local fault tolerance and the MQTT standard. Due to the

recent popularity of the MQTT protocol, the MQTT middleware layer is

developed to facilitate the cooperation of MQTT brokers without modifying the

MQTT broker software. Also, the use of single-board computers as an edge-

based hosting infrastructure keeps the cost low and can be flexibly sized

according to workload demand and location of deployment. The purpose of the

edge provisioning of the broker cluster is to reduce end-to-end latency for IoT

and M2M streaming applications.

iii

The proposed system uses two approaches to realize fault tolerance.

First, the proposed system tolerates node crashes by maintaining consistency of

state information using time-to-live (TTL) subscription routing entries. Next,

message loss is corrected through retransmission at the broker nodes to the

subscribers. The evaluations demonstrated improved scalability for the

horizontal scaling approach and successful recovery of failed publication during

failover. The worst-case end-to-end latency of the proposed system is at a

maximum of 42 milliseconds. All missed publications are redelivered to the

subscriber during failover without significant delay between the retransmitted

messages. The jitter values between recovered messages during the recovery

period range from 10 to 20 milliseconds. The maximum recovery time of the

proposed broker cluster is at least 256.33 milliseconds, which is within

hundreds of milliseconds difference, compared to 50 milliseconds of the

primary-backup broker approach. The fail-test confirms the reliability of the

MQTT cluster, as failed publications can be redelivered during broker failure.

The evaluations demonstrated the feasibility of the proposed broker cluster to

maintain consistent latencies and support reliable MQTT services despite server

failures.

iv

ACKNOWLEDGEMENT

This work would not have possible without the support of my supervisor, Dr.

Yap Vooi Voon, and co-supervisor, Dr. Teh Peh Chiong, who worked actively

to provide me patient guidance and encouragement. The advice I received on

this dissertation work has been invaluable. Also, I am grateful to all those with

whom I had the pleasure to work during this project. Finally, special thanks to

all my family members.

v

APPROVAL SHEET

This thesis/dissertation entitled “FAULT TOLERANT CONTAINER-

BASED MESSAGE QUEUING TELEMETRY TRANSPORT (MQTT)

EMBEDDED CLUSTER SYSTEM” was prepared by THEAN ZHONG

YING and submitted as partial fulfillment of the requirements for the degree of

Master of Engineering Science at Universiti Tunku Abdul Rahman.

Approved by:

(Dr. Yap Vooi Voon) Date: 06/07/2020

Professor/Supervisor

Department of Electronics Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

(Ir. Dr. Teh Peh Chiong) Date: 06/07/2020

Professor/Co-Supervisor

Department of Electronics Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

vi

SUBMISSION SHEET
FACULTY OF ENGINEERING AND GREEN TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date:

SUBMISSION OF DISSERTATION

It is hereby certified that Thean Zhong Ying (ID No: 18AGM05810) has

completed this dissertation entitled “FAULT TOLERANT CONTAINER-

BASED MESSAGE QUEUING TELEMETRY TRANSPORT (MQTT)

EMBEDDED CLUSTER SYSTEM” under the supervision of Dr. Yap Vooi

Voon (Supervisor) from the Department of Electronics Engineering, Faculty

of Engineering and Green Technology, and Dr. Teh Peh Chiong (Co-

Supervisor) from the Department of Electronics Engineering, Faculty of

Engineering and Green Technology.

I understand that the University will upload a softcopy of my dissertation in

pdf format into UTAR Institutional Repository, which may be made accessible

to UTAR community and public.

Yours truly,

(Thean Zhong Ying)

vii

DECLARATION

I, Thean Zhong Ying hereby declare that the thesis/dissertation is based on my

original work except for quotations and citations which have been duly

acknowledged. I also declare that it has not previously or concurrently

submitted for any other degree at UTAR or other institutions.

(Thean Zhong Ying)

Date: 06/07/2020

viii

TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENT iv
APPROVAL SHEET v
SUBMISSION SHEET vi
DECLARATION vii
TABLE OF CONTENTS viii
LIST OF TABLES xi
LIST OF FIGURES xii
LIST OF ABBREVIATIONS xv
LIST OF PUBLICATIONS
 Err
or! Bookmark not defined.

CHAPTER

1 INTRODUCTION 1

1.1 Scope and Goals 5

1.2 Application Scenario 6

1.3 Contribution of This Research Work 7

1.4 Structure of Dissertation 8

2 EDGE CLOUD SYSTEMS 9

2.1 Edge-cloud Internet of Things 9
2.1.1 Fog Computing 14
2.1.2 Edge Computing 15
2.1.3 Mist Computing 15
2.1.4 Dew Computing 16

2.2 Edge-based Container Orchestration 16
2.2.1 Container Orchestration with Single-board Computers 19
2.2.2 Microservice Architecture 20
2.2.3 Docker Distributed Networking 22

2.3 Fault Tolerance in IoT systems 26
2.3.1 Redundancy 26
2.3.2 Checkpointing 28
2.3.3 Container Service Migration 30
2.3.4 Load Balancing 31

2.4 Summary 31

ix

3 PUBLISH-SUBSCRIBE SYSTEM 33

3.1 MQTT 35

3.2 Commercial and Open Source MQTT Brokers 38

3.3 Distributed Publish-subscribe System 44
3.3.1 Distributed Routing Mechanism 45
3.3.2 Overlay Infrastructure 50

3.4 Publish-subscribe Fault Tolerance 56
3.4.1 Distributed State Recovery 57
3.4.2 Periodic Subscription 58
3.4.3 Self-stabilization 59
3.4.4 Event Retransmission 61
3.4.5 Redundant Paths 63
3.4.6 Consensus-based Publish-subscribe System 63
3.4.7 Availability of Distributed Publish-subscribe Systems 64

4 DESIGN AND IMPLEMENTATION 66

4.1 Broker Cluster Architecture 66

4.2 Software Application Stack 71

4.3 Components Relationship 75

4.4 Broker Cluster Topology 76

4.5 Subscription Routing Management 77

4.6 Publication Message Forwarding 82
4.6.1 Normal Condition 82
4.6.2 Message Forwarding with Failed Brokers 84

4.7 Recovery of Routing State 86
4.7.1 Monitoring and Failure Detection 86
4.7.2 System State Reconfiguration 89

4.8 Implementation 92

5 RESULTS AND EVALUATIONS 95

5.1 Experiment Setup 95

5.2 Throughput 99

5.3 Latency 102

5.4 Microservice and Monolithic Broker Comparison 110

5.5 Inter-message Jitter 114

x

5.6 Evaluating Publication Retransmission 116
5.6.1 Throughput 117
5.6.2 Inter-message Jitter 118
5.6.3 Latency 121

5.7 Resource Usage 129
5.7.1 CPU Utilization 129
5.7.2 RAM Usage 132

5.8 Discussion 137
5.8.1 Throughput 137
5.8.2 Latency 139
5.8.3 Performance overhead of the microservice-based
 broker cluster 140
5.8.4 Inter-message Jitter 141
5.8.5 Impact of Message Publication Rate 142
5.8.6 Failure recovery and comparison to primary/backup
 broker 143
5.8.7 Resource usage 146

6 DISCUSSION AND CONCLUSION 148

6.1 Introduction 148

6.2 Methodology Used 149

6.3 Summary of Results 150

6.4 Future Work 151

REFERENCES 153

APPENDICES

A LIST OF PUBLICATION 163

xi

LIST OF TABLES

Table Page

2.1 Comparison of Edge, Cloud, Fog, and Mist (Dogo et al., 2019) 13

3.1 MQTT broker cluster implementations (Mishra, 2019) 39

3.2 Summary of generic publish-subscribe systems (Setty et al., 2012) 45

5.1 Experimental setup configurations 98

5.2 Summary of latency and throughput results 141

xii

LIST OF FIGURES

Figure Page

2.1 Edge Cloud Paradigm 14

2.2 Monolithic and microservice implementation (Cicizz, 2019) 21

2.3 Docker Network Configuration (To et al., 2015) 23

2.4 Docker Swarm Network Overlay (Church, 2019) 24

2.5 Docker Swarm Ingress Network (Church, 2019) 25

3.1 Publish-subscribe sequence 34

3.2 MQTT publish-subscribe sequence 36

3.3 MQTT message format (Tang et al., 2013) 38

3.4 Distributed and local area broker network 43

4.1 Edge cloud MQTT broker cluster architecture 68

4.2 Data Pipeline 71

4.3 Cluster container application stack 72

4.4 Software component interaction 75

4.5 Topic Trie for Forwarding Table 79

4.6 Broker publication message forwarding 83

4.7 Message routing sequence 84

4.8 Message retransmission process 85

4.9 Cluster membership heartbeat detection 87

4.10 Load balancer TCP health checks 88

4.11 MQTT keep-alive 89

4.12 MQTT broker cluster implementation 94

5.1 System metrics monitor 98

5.2 Average publish throughput with increasing clients (QoS 2) 101

5.3 Throughput variations with 50 and 2000 clients 102

xiii

5.4 Message forwarding between backend servers 104

5.5 Average end-to-end latencies with increasing clients 106

5.6 Worst case end-to-end latencies with increasing clients 107

5.7 Latency histogram with a normal density curve 108

5.8 Latency quantile plot against normal probability distribution 109

5.9 Latency cumulative distribution function with the normal

 probability curve 109

5.10 Latency probability plot against normal probability distribution 110

5.11 End-to-end latencies performance comparison 111

5.12 Average publish throughput (QoS 2) 113

5.13 Throughput degradation (message per second) 113

5.14 Maximum jitter of the broker cluster 115

5.15 Minimum jitter of the broker cluster 115

5.16 Percentile 90 jitter of the broker cluster 116

5.17 Fail test for the broker cluster 116

5.18 Message throughput for fail test 117

5.19 Jitter under normal condition 119

5.20 Jitter under one fail node 120

5.21 Jitter under two fail nodes (at same time) 120

5.22 Latency histogram with a normal density curve 121

5.23 Latency quantile plot against normal 122

5.24 Latency CDF plot with a normal probability distribution curve 122

5.25 Latency probability plot against normal 123

5.26 Latency histogram with a normal density curve 124

5.27 Latency quantile plot against normal 125

5.28 Latency CDF plot with a normal probability distribution curve 125

5.29 Latency probability plot against normal 126

5.30 Latency histogram with a normal curve 127

xiv

5.31 Latency quantile plot against normal 127

5.32 Latency CDF with a normal probability distribution 128

5.33 Latency probability plot against normal 128

5.34 Time series of CPU time utilization for broker cluster 130

5.35 Time series of CPU time utilization for single node broker 131

5.36 Time series of CPU time utilization for two failed brokers 132

5.37 Time series of total memory usage for broker cluster 133

5.38 Time series of total memory usage for single-node broker 135

5.39 Time series of total memory usage under two failed brokers 136

xv

LIST OF ABBREVIATIONS

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

CAP Consistency, availability, and partition

tolerance

COAP Constrained Application Protocol

CPU Central processing unit

DHCP Dynamic Host Configuration Protocol

DHT Distributed hash table

DNS Domain name system

EDF Earliest deadline first

I/O Input/Output

IoT Internet of Things

IP Internet Protocol

IPVS Internet Protocol Virtual Server

LXC Linux userspace interface for container

virtualization

M2M Machine to machine communication

MAC Media Access Control

MQTT Message Queuing Telemetry Transport

xvi

NAT Network address translation

NFC Near field communication

P2P Peer-to-peer

PaaS Platform as a Service

QoS Quality of Service

RAM Random-access memory

RFID Radio frequency identification

RPC Remote procedure call

SBC(s) Single-board computer(s)

SDN Software-Defined Network

SF algorithm Subscription flooding algorithm

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol and the

Internet Protocol

TTL Time-to-live period

UDP User Datagram Protocol

VXLAN Virtual Extensible Local Area Network

Wi-fi A family wireless network protocols

based on IEEE 802.11 standards

WSN Wireless Sensor Network

XMPP Extensible Messaging and Presence

Protocol

CHAPTER 1

INTRODUCTION

Internet of Things (IoT) technology usage is increasing extensively as a

result of the exponential growth of sensor device usage over the past decade

(Robert, 2014). This development will generate huge amounts of traffic on the

internet. Traditional approaches to the Internet of Things (IoT) send data to the

cloud for processing and then transmit the responses back to the end devices.

These approaches are not viable anymore due to the rapid growth of IoT

devices, as cloud facilities will have a difficult time managing the huge amount

of information flow. Even though the size of each sensor data is small, a

substantial amount of data produced by IoT devices could congest the flow of

network traffic and causes delays to the data transfers to and from cloud data

centers. Besides, many IoT applications with timing constraints do not work

well with cloud-based data processing and dissemination, because of the high

bandwidth requirements and unpredictable latency (Lopez et al., 2015).

Recently, sensor-based IoT applications have been using edge and fog

technologies to integrate latency-sensitive edge-based environments with the

cloud (Lopez et al., 2015). Edge computing environment is facilitated by small,

heterogeneous embedded devices that spread across multiple edge networks.

With local data processing, edge computing can reduce end-to-end latency by

immediately updating the results over the network. Nevertheless, deployed

devices on edge infrastructures are often constrained by resource, limited

2

processing power, power supply, and storage capacity. Due to resource

limitations, these smaller edge devices will need a software framework that is

lightweight to deploy distributed applications. Containerization technology

establishes a lightweight middleware platform that provides scalability, service

orchestration, and flexibility for edge-based service deployment (Pahl and Lee,

2015; Pahl, 2015). Containers are software packages like virtual machines but

they are lightweight and smaller in size. Several previous works have

demonstrated the feasibility of using container orchestration technology for

edge-based applications (Roberto Morabito, 2017; Bellavista and Zanni, 2017).

This research work uses the Docker Swarm orchestration tool to deploy

distributed applications for IoT edge devices.

The publish-subscribe paradigm is a communication paradigm, which

provides a loosely coupled form of data dissemination between producers and

consumers. Loose coupling and lightweight properties of the publish-subscribe

paradigm is well suited for two-way communication in between IoT endpoint

devices. Several IoT standards have been adopting the publish-subscribe

interface over recent years. Some examples of them are AMQP, MQTT, XMPP,

ZeroMQ, and COAP. The Message Queuing Telemetry Transport (MQTT) is a

publish-subscribe protocol that uses a central broker to mediate messages

between endpoint devices through the cloud (Popov et al., 2017). The

centralized paradigm of MQTT is suitable for cloud computing as it can

effectively collect and distribute data using a central broker. However, a cloud-

based MQTT broker is very ineffective (Happ and Wolisz, 2016) for data

dissemination between edge devices because MQTT communications usually

3

involve edge-heavy environments (Banno et al., 2017). In edge-heavy

environments, data producers and consumers are located close to each other in

a certain geographical location. Edge-based dissemination with MQTT protocol

provides many benefits particularly in latency reduction (Happ and Wolisz,

2016), as well as additional data analytics near the edge (Cheng et al., 2016).

Edge-based deployment of MQTT moves the centralized single-broker

topology to a distributed, multi-broker topology to serve communication

between devices in multiple edge network bases.

Potential large-scale deployment of IoT creates huge traffic to the

MQTT broker server which causes congestion and reduced throughput. The

MQTT service needs to deal with large volumes of periodical short messages in

M2M and IoT applications (Pereira and Aguiar, 2014). When the volume of

traffic exceeds the capability of the MQTT broker, the MQTT service must scale

horizontally to deal with the traffic. The publish/subscribe-based MQTT

protocol can support horizontal scalability because its message communications

are asynchronous (Happ et al., 2017). With horizontal scaling, the system can

preserve the availability of resources despite server failures.

For IoT and M2M applications, the MQTT server needs to maintain high

availability and resilience. The broker system may lose its messages to its clients

or the cloud when the broker node crashes. Thus, local fault tolerance needs to

be implemented to preserve the system locally at the edge of network. Existing

studies on topic-based publish-subscribe systems address the problem of

scalability and fault tolerance by utilizing distributed brokers on top of various

4

kinds of overlay infrastructures. Examples of used overlay infrastructures for

distributed publish-subscribe systems are DHT (Castro et al., 2002), hybrid

overlay (Rahimian et al., 2011), Skip-Graph overlay (Banno et al., 2015), and

broker-based overlay (Carzaniga et al., 2003). However, very few of the studies

address the issue of local fault tolerance in distributed MQTT system.

The objective of this research work is to develop a lightweight

distributed middleware layer, based on the edge-cloud computing model to

support collective message delivery with a cluster of MQTT brokers and to

improve its fault tolerance. Edge cloud devices often require cost-efficiency,

low power consumption, and robustness (Novo et al., 2015). Edge servers can

use single-board computers (SBCs) with networking capabilities such as

Raspberry Pi as their hardware infrastructure. The broker cluster is deployed on

a single cluster of Raspberry Pi SBCs. Docker Swarm is used for orchestrating

service containers at the edge of the cloud. The proposed broker cluster uses a

single load balancer node to distribute incoming MQTT data to multiple

backend MQTT brokers. The implementation assumes that the load balancer is

reliable so that the focus is on the fault tolerance against the crashing of backend

servers. Experiments are carried out to evaluate the latency, throughput,

computational load, and fault tolerance of the broker system. The evaluation

also compares the performance of the microservice-based broker cluster with

cloud-based, single-broker, and monolithic implementations of the broker-

cluster. The resiliency of the broker cluster is also compared to a primary-

backup approach, in terms of its maximum recovery time. Through combining

multiple MQTT brokers in a single and collective cluster, the system continues

5

to provide MQTT broker service regardless of node failures in the broker

cluster. The clustered broker can resend lost publications and perform failover

and among MQTT brokers in the network.

1.1 Scope and Goals

The main goal of this research work is to develop a distributed MQTT

messaging framework on a set of SBC edge servers. The messaging service

should be scalable and have local fault tolerance capability. This work

establishes the feasibility of the microservice-based MQTT cluster

implementation and Docker Swarm orchestration as a suitable MQTT service

for edge cloud settings. The scope of this research work consists of four goals

detailed below.

- Scalability. The process of matching subscribers and disseminating

publications to subscribers incurs high processing costs. The proposed

broker system must reduce the effect of service degradation under high

loads or sudden load spikes.

- Application transparency. The microservice-based distributed

application layer service offers application transparency to clients.

MQTT service is delivered to clients without their need to know

underlying software and hardware. The application service layer is also

transparent to the broker. The application broker itself does not require

recompilation or relinking.

- Low and predictable latency. Low latency is the response time as

perceived by the client. Unstable latency is inappropriate for delay-

6

sensitive applications that require timely event delivery. Edge-based IoT

applications should ideally provide low and predictable latency for end-

to-end communication between IoT client devices.

- Availability and fault tolerance. Components of a distributed system are

prone to unexpected failures that could potentially bring down an entire

distributed application. For a publish-subscribe system, in-transition

messages may be dropped, which leads to inconsistency among routing

tables. Incorrect routing table state disrupts the entire message delivery

traffic. This invalidates the purpose of the publish-subscribe system to

reliably deliver messages. Therefore, a publish-subscribe service

requires additional redundancy to increase availability and resiliency.

The proposed broker system uses two approaches to realize fault

tolerance. First, it handles node crashes by maintaining consistency of

state information through a leasing approach with the use of time-to-live

(TTL) countdown entries. Next, it uses message redundancy to realize

fault tolerance. Message loss is corrected through the retransmission of

buffered messages from broker nodes to the disconnected subscribers.

1.2 Application Scenario

In centralized cloud computing settings, IoT applications collect and

send data to the centralized cloud data center, where storage and processing take

place. This research work implements a low-cost and lightweight solution to

disseminate MQTT messages and provide local fault tolerance for the edge-

based MQTT system. The main application scenarios are data streaming and

analytics, real-time monitoring, and automation systems. Instead of using a

7

traditional compute cluster, the SBC-based cluster keeps the cost of

incrementing a cluster node low. Also, the flexibility of single-board computers

(SBC) and software implementation can support use cases in secluded locations

with limited connectivity and computational resources. The edge servers help

to provide a subset of resilient online services for communication between edge

devices in the vicinity, by providing redundancy and local fault tolerance.

Examples of applications are local smart grids (Viswanath et al., 2016),

autonomous farm monitoring (Zyrianoff et al., 2018; Zamora-Izquierdo et al.,

2019), and distributed systems for homes and buildings automation (Babou et

al., 2018).

1.3 Contribution of This Research Work

The contributions of this work are the following.

- Develop a microservice-based cluster component to automate the initial

formation of the MQTT cluster and facilitate routing of MQTT

messages.

- Develop an edge to cloud IoT integration framework to stream edge data

to the cloud servers.

- Establish the feasibility of using Docker Swarm as an orchestration

framework for edge-based deployment on Raspberry Pi single-board

computers.

- Establish the feasibility of the software implementation as a scalable,

lightweight solution for the deployment of MQTT service at the edge

network.

8

- Provide resiliency and high availability for the MQTT messaging

application.

1.4 Structure of Dissertation

The rest of this dissertation is presented as follows. Chapter 2 presents

various enabling technologies related to the scope of this research work. The

topics discussed in this chapter are background information about IoT, edge and

cloud computing technologies, container virtualization and orchestration, and

fault tolerance approaches to IoT systems. Chapter 3 discusses fault tolerance

and scalability in publish-subscribe systems, and the MQTT protocol. Chapter

4 presents the architecture and components of the system. Chapter 5 presents

the evaluations on the performance and fault testing of the proposed broker

cluster system. The last chapter presents the conclusions. Chapter 6 concludes

this research work.

9

CHAPTER 2

EDGE CLOUD SYSTEMS

This chapter describes the technologies and related works in the context

of fault tolerance concerning IoT systems, and container orchestration in the

edge-cloud paradigm. The literature review describes various practical and

technology integrated approaches to develop a scalable and fault-tolerant, edge-

based messaging system. This chapter consists of four sections. Section 2.1

compares various edge and cloud technologies in the context of IoT. This

section also outlines the use of container technology in the deployment of IoT

systems. Section 2.2 introduces Docker and the Docker Swarm container

virtualization framework, which will be the software deployment tools used for

MQTT cluster servers. Section 2.3 presents the fault tolerance approaches to the

IoT edge-cloud systems.

2.1 Edge-cloud Internet of Things

In recent years, advancement in cloud computing introduces many

growing progressions in cellular internet and cloud-based Internet of things

through a wide range of software and services. Due to the convergence of IoT

enabling technologies such as ubiquitous computing, communication protocols,

embedded systems, sensors, and wireless communications, all physical objects

can interconnect and exchange data with each other with minimum human

intervention. The sensor devices collect and produce information about internal

states of devices or external environment such as temperature, humidity, light,

soil conditions, pressure, and radiation. These resource-constrained devices are

10

typically are usually equipped with wireless communication technologies such

as Wi-Fi, RFID, Near Field Communication (NFC), and Bluetooth Low Energy.

Each sensor device has a microcontroller, that is either used to manage

communications or to process incoming information. In general, cloud-based

IoT systems involve three major technologies which are embedded systems,

middleware, and cloud computing. Embedded systems process information in

the front-end devices. The middleware interconnects heterogeneous front-end

embedded devices to the cloud. The cloud computing platform provides storage,

processing, and management services.

Recent emerging applications surrounding IoT have increased the

number of connected devices that will require real-time processing (Adjih et al.,

2015). Although IoT commonly uses cloud computing, it becomes a bottleneck

for sensor-based IoT applications due to bandwidth requirements, latency, fault

tolerance, and security issues (Shi and Dustdar, 2016). Applications such as data

streaming will presumably serve devices with a high data rate. Data generated

by sensor devices is transmitted to the distant cloud network for processing,

storage, and analytics. Eventually, the frequent rate of data production will

exceed the bandwidth availability. This results in a long delay in transmission

requests, more network congestion, and reduced network connectivity.

Therefore, it is not feasible to use the cloud as an intermediary transfer medium

between local endpoint devices. Also, waiting for a request from a cloud server

can be disastrous as delay-sensitive applications expect an immediate response,

often within tens of milliseconds. In a safety-critical control system, a delay in

response time may cause severe injury to humans or damage to the machine.

11

Typical cloud computing arrangements fail to achieve the bandwidth and

latency requirements. Consequently, the IoT paradigm is moving away from the

centralized structure as computations are moved closer to the edge of network.

Edge and fog computing are intermediate layers of network

infrastructure which integrate the cloud with sensor-based IoT environments.

The edge computing paradigm complements cloud computing by moving

substantial compute, storage resources, and existing cloud computing services

closer to the edge of a network, usually one hop away from IoT devices (Lopez

et al., 2015). This reduces unnecessary transfer latency as compared to cloud

computing. Local information caching and selective information processing

network edge avoids high data volume transferring to the central cloud, as data

sources and actuation will be processed within the same location. Thus, user

experience and quality of service are improved, since the latency in edge

computing is typically lower than cloud computing.

Edge computing can fulfill the requirements such as improved

bandwidth, low latency, and low power in many IoT applications (Shi and

Dustdar, 2016). According to various studies (Dastjerdi and Buyya, 2016;

Morabito et al., 2016), edge technologies such as IoT gateways, local data

management, data aggregation, and data filtering are becoming the main

preference for integration between cloud and heterogeneous IoT devices.

Morabito et al. (2018) propose LEGIoT, an edge gateway that uses container

virtualization technologies to manage information exchanges between cloud

and sensors. IoT gateways bridge cloud services and IoT sensors and provide

12

them connectivity and data routing functionalities. Lertsinsrubtavee et al.

(2017) present the PiCasso framework for service deployment based on a fog

computing model. The PiCasso framework uses technologies such as SBC,

container service orchestration, and software-defined networks (SDN).

In publish-subscribe scenarios, a centralized cloud model works poorly

for sensor-based IoT environments. This is because most data exchanges that

usually happen locally around the edge network need to travel across the central

cloud (Banno et al., 2017). In an edge broker approach, message brokers are

placed in front of the edge network and directly interact with endpoint devices.

Publications and subscriptions are collected at the broker closest to the devices.

This improves the capability of brokers to send an immediate response without

waiting for responses from the cloud.

13

Table 2.1 Comparison of Edge, Cloud, Fog, and Mist (Dogo et al., 2019)

 Cloud Edge Fog Mist

Deployment
model

Centralized Centralized
with
distribution

Decentralized/
distributed
gateways

Centralized or
distributed with
microcontroller
network

IoT support Yes Yes Yes Yes

Latency High Low Low within
100ms

Very low

Bandwidth Very High Low Low Very Low

Power
consumption

Very High Moderate Moderate Very Low

Computational
power

Very high Moderate Moderate Low

Service Coverage Global Limited Spread Wide Spread Very limited

Hardware High
specifications

Limited Limited Very Limited

The edge cloud architecture is facilitated by smaller devices that spread

across the network consists of edge nodes, fog cloudlets, and cloud servers.

Figure 2.1 shows a variety of edge computing technologies which include fog,

edge, mist, and dew computing (Naha et al., 2018). In the cloud hierarchy, dew

computing has the lowest latency and processing power, while cloud computing

has the highest latency and processing power. This section gives an outline of

the edge computing architecture compares it to cloud and fog computing. Table

2.1 compares different aspects of various edge and cloud technologies. The

following subsections discuss various forms of edge cloud technologies.

14

Figure 2.1 Edge Cloud Paradigm

2.1.1 Fog Computing

Fog computing is a highly virtualized platform service consisting of

computing elements such as fog nodes and cloudlets. These fog computing

elements provide extended services of the central cloud, at the level of routers

and gateway. The fog elements process and store some of the data between

endpoint devices and cloud data centers. Fog computing systems are integrated

into a cellular network for mobile carrier usage which utilizes devices like M2M

communication and wireless routers (Tandon and Simeone, 2016). Fog

computing reaches from IoT devices to the edge and core of the network, while

edge computing is only limited to computing at the edge (Chiang et al., 2017).

Cloudlet is a fog layer mobile computing platform which stores and process data

without going through the remote cloud, to reduce response time (Ahmed and

Ahmed, 2016). Cloudlet uses virtualized technology that sits between mobile

15

devices and remote cloud. Cloudlets can improve processing speed and save

energy, by providing internet services to endpoint mobile devices that offload

resource-intensive tasks and data caching (Pang et al., 2015).

2.1.2 Edge Computing

Edge computing systems deploy edge servers into edge networks where

endpoint devices are connected to a base station. Edge computing reduces the

amount of data being to the cloud by processing latency constrained data locally

at the edge and sends filtered data to the cloud for storage or further processing.

Thus, avoiding network traffic and allows faster response time. However, edge

computing may not assure ultra-low latency for some real-time applications.

Heavy information traffic will overload the edge server. This can cause many

issues such as missing latency deadlines, scalability problems, and server

failures (Satria et al., 2017). Therefore, edge computing facilities need to

provide high availability and fault tolerance to guarantee uptime and

performance.

2.1.3 Mist Computing

Mist computing offloads tasks to the outermost edge of the IoT network

at the layer of microcontrollers and embedded devices, without burdening the

communication network on the Internet (Preden et al., 2015). This results in

reduced latency and bandwidth usage. The main applications of mist computing

are machine-to-machine (M2M) communication services, where edge devices

can access communicative resources in their vicinity (Liyanage et al., 2016;

Tammemäe et al., 2018). Mist computing is used to preserve the privacy of

16

internet applications via local processing in the early days (Campbell et al.,

2003). Recently, mist computing is extended to collaborate with fog and cloud

computing and has self-awareness about its local situation and physical

environment (Tammemäe et al., 2018). The infrastructure of mist computing

consists of heterogeneous devices located in front of the network edge, to

provide various IoT services and improve computational processing power

(Liyanage et al., 2016).

2.1.4 Dew Computing

Dew computing is a local client/server-based paradigm, whereby on-site

local servers provide cloud-independent services, while collaborative to the

cloud services. With dew computing, users can access cloud services even when

there is no internet connection. Babou et al. (2018) propose a framework similar

to dew computing called home-edge computing. The home-edge computing

approach offloads certain latency constrained tasks to the edge compute server

located nearer to end-users. Also, the home-edge server synchronizes with the

edge and central cloud servers. If the local resource is unavailable, the client

requests are delegated in a hierarchical way towards the edge and central cloud

servers. Dew computing is also used to offload cloud computing tasks and

stream data between IoT sensors and devices (Gusev, 2017).

2.2 Edge-based Container Orchestration

Edge devices are constrained in terms of computational power, power

consumption, and connectivity. The hardware of edge computing devices

usually has processing power, memory, and storage capabilities lower than that

17

of typical server machines (R Morabito, 2017). Embedded computers and

micro-servers are widely used in edge-based IoT application domains as they

facilitate lower cost, lower energy consumption, considerable computational

power. Edge-based deployment on constrained devices will require lightweight

software solutions. Container virtualization technology is capable to facilitate

edge because it is lightweight, portable, easy to deploy, and has near-native

performance (Felter et al., 2015; Morabito and Beijar, 2016). One drawback is

the extra User Datagram Protocol (UDP) traffic between containers such as the

Network Address Translation (NAT) feature of Docker.

Container technologies such as Docker provide process isolation, less

virtualization overhead, and local fault-tolerant for edge computing (Ismail et

al., 2015). The size of each container is minimal because kernel resources and

standard libraries are shared between containers. However, a container cannot

run on a different platform within itself. Containers are also easy to deploy

because of continuous integration tools and development environments.

Containers solve the dependency tree issue of the development and deployment

environment as application packages are wrapped in container images along

with utilities and shared libraries. Many container platforms are built on top of

Linux LXC techniques, by using kernel mechanisms such as cgroups and

namespaces to isolate process environments from system resources. Linux

cgroups limits container process to system resources. Linux namespace isolates

the container view of the runtime environment. Processes within different

containers all share the same kernel, but each has different views of isolated

system resources such as process management interfaces, network stack, and

18

filesystem namespace. Popular projects based on container virtualization are

Docker, LXC, CoreOS, and Apache Mesos.

Docker Swarm is a container orchestration tool that enables users to

deploy Docker containers on multiple Docker hosts within the distributed edge-

cloud environment. All host nodes of Docker Swarm run the Docker engine,

and co-operate together as a tightly-coupled unit, to deploy containerized

workloads. Docker Swarm orchestration also helps to improve availability and

fault tolerance by spreading application services across redundant micro-service

nodes (Alam et al., 2018). With microservice, different components of the same

application can be implemented as several small services to achieve a collective

target.

In a cluster of Docker Swarm hosts, a service is an abstraction of Docker

containers. The service is based on specific Docker images, and is comprised of

a set of different tasks, and are implemented as individual containers. Docker

Swarm makes use of the Raft Consensus algorithm to maintain the cluster state

(Vohra, 2017) and preserve fault tolerance of the Swarm cluster. For practical

use, the cluster requires multiple manager nodes to ensure the maintenance of

the cluster state. If there are n manager nodes, the cluster requires a minimum

quorum of

 manager nodes to operate normally, and can tolerate up to

manager node failures.

19

The combination of edge computing and orchestration enables a highly

dynamic and distributed deployment of services. Containerization is a viable

lightweight virtualization option for single-board computers, as demonstrated

in various studies. Pahl et al. (2016) present an architecture to support fault-

tolerant edge-cloud service orchestration through containers, which

consequently avoids the high volume of data flooding into the cloud network.

All communication, decision making, and analytics services are packaged into

different containers and deployed on selected edge nodes. Alam et al. (2018)

have used Docker as a distributed service platform for fault tolerance, via

microservice-based edge deployment. For IoT applications, Docker-based IoT

gateways are also implemented. Morabito and Beijar (2016) propose an IoT

gateway framework and evaluated the performance of containerized IoT

gateways running on single-board computers. Their evaluations show that there

is minimal overhead on containerized applications over native host applications

for the Raspberry Pi 2 SBC in terms of CPU time (2.67%), memory (6.04%),

and disk access speeds (10%), and power consumption (10%).

2.2.1 Container Orchestration with Single-board Computers

Low-cost single-board computers provide low energy and reduced

infrastructure cost while still capable of running complex software services.

Studies have shown the feasibility and limitations of Raspberry Pi boards in

Docker-based edge-cloud deployments regarding their performance, energy,

and cost-effectiveness (Pahl and Lee, 2015; Bellavista and Zanni, 2017). A

Raspberry Pi single-board computer offers lower energy consumption and

considerable computational power. Since the Raspberry Pi SBCs lack

20

computing power, it cannot run computationally intensive software.

Nevertheless, this downside of the SBCs can be remedied by combining a larger

number of these devices into an affordable and energy-efficient cluster. Thus,

edge-based deployment can be flexibly configured and customized to

accommodate demanding workload and scarce environments, where limited

resources are available.

2.2.2 Microservice Architecture

This research work implements a microservice-based MQTT broker

cluster within the Docker Swarm cluster. The microservice architecture splits

the application into a suite of smaller, interconnected services as opposed to a

single monolithic application. Figure 2.2 depicts the difference between

monolithic and microservice-based MQTT cluster implementation. This

implementation follows the adapter pattern (Burns and Oppenheimer, 2016).

The adapter pattern enables the use of any MQTT broker implementations as

long as the middleware present a uniform interface that implements the MQTT

standard. MQTT clustering implementations similar to the microservice

architecture are presented in ILDM and Nucleus (Banno et al., 2017; Sen and

Balasubramanian, 2018).

21

Figure 2.2 Monolithic and microservice implementation (Cicizz, 2019)

The combination of modularity of microservice architecture and Docker

orchestration increases the dynamicity of deployment for distributed systems

(Alam et al., 2018). The services are loosely coupled and have their application

logic combined with various adapters. Some microservices expose an API to

communicate with other services in the application. Some microservices

communicate with established communication protocols such as AMQP,

MQTT, and RPC. The microservice architecture divides a single application

into a discrete set of smaller services, each with its application logic and

communication mechanisms. Microservices are well supported by container

virtualization technologies. Microservices can be independently deployed and

automatically scheduled with an orchestration framework.

2.2.2.1 Benefits of Microservices Architecture

Microservice architecture decomposes a complex application into a set

of manageable services that are easier to understand and maintain. Each service

can be independently maintainable and deployable. This reduces the barrier of

22

adopting new technologies because of the flexibility of technology stacks.

Services can be implemented in different programming languages, which fits

best for their applications. Each microservice can be granularly scaled within

the cluster computer. As demonstrated in (Sen and Balasubramanian, 2018),

microservice can increase fault isolation as the application logic is distributed

across different layers. Failures of devices and microservices can be masked by

the inherently redundant architecture of the system.

2.2.2.2 Drawbacks of microservice architecture

Microservices architecture adds complexity because of additional inter-

process communication mechanisms, such as message passing or RPC, between

components. Developers also have to handle partial failure components in the

application. A monolithic application simply deploys a set of identical servers

behind a load balancer. In contrast, each service in a microservice architecture

will have multiple runtime instances and each instance needs to be

independently managed. A microservice application needs to implement a

service discovery mechanism to support communication between services.

2.2.3 Docker Distributed Networking

Each Docker container is a virtual network host within the host machine.

Each container has an internal network attached to the virtual ethernet interface.

The internal network also provides a private network address. The container

uses the host machine network address as the default gateway for external

communication. As shown in Figure 2.3, the local bridge network of the Docker

23

host connects to containers through a virtual ethernet bridge on the same Docker

host. Docker containers can operate in two network modes. Bridge mode

isolates the network environment for each container residing on the host. The

bridge forwards packets between networks based on each MAC address of the

virtual network interfaces. On the other hand, the host mode directly links

containers to the network interface of the host. The proposed broker system in

this work uses host mode because the host mode performs better in a multi-

container environment (Lee et al., 2018).

The container attached to the default bridge network does not involve in

intra-cluster service communication, because the scope of the bridge network is

limited to the local cluster nodes. Services running on other nodes will be unable

to consume the local service. Docker Swarm overlay is the network solution

used in Swarm to manage communication between containers (Merkel, 2014).

The container clusters in Docker Swarm support network connection of

containers using network virtualization features. Docker Swarm uses overlay

networks, based on VXLAN networking protocol, to enable virtual networks to

span multiple Docker hosts as shown in Figure 2.4.

Figure 2.3 Docker Network Configuration (To et al., 2015)

24

Figure 2.4 Docker Swarm Network Overlay (Church, 2019)

The overlay network forms a single Ethernet network across all

machines within the Swarm cluster. Containers, and services on different

Docker hosts to communicate with each other through dedicated overlay

networks they are associated with. Overlay networks construct virtual links

between machines using a packet tunneling protocol. The tunneling protocol

encapsulates the container packets using a host network address and forwards

the packets to the destination machine. The global scope of the Swarm network

is referred to as swarm. The global swarm network spans across the entire

Swarm cluster. A container consumes a discrete service by querying the

embedded DNS server to resolving its virtual IP address. A prerequisite for this

is the query must be from a container attached to the same network as the

container or service being looked up. Overlay networks can be isolated from

each other by specifying the name resolution in the network scope. However,

Docker containers can use more than one bridge and overlay network at one

time.

25

Then, IP Virtual Server (IPVS) performs load balancing and forwards

traffic to each container of the service. Swarm uses service routing mesh to route

external incoming requests to the published tasks that constitute the service, as

shown in Figure 2.5. The routing mesh of Docker Swarm comprises an ingress

overlay network, netfilter rules, and IPVS. A service running in a Swarm cluster

makes itself available to consumers external to the cluster through the

publication of a port. Docker Swarm routes requests internally from one service

to another via a virtual IP address, resolvable by the service name. Swarm uses

layer 4 (transport layer) load balancing, by making use of the IPVS, which is a

built-in feature of the Linux kernel. Packets destined for the virtual IP address

of a Swarm service, are marked and forwarded according to the kernel netfilter

rules. Through a combination of the netfilter rules and IPVS load balancing via

the service’s virtual IP, traffic is routed through the ingress network to all

Docker containers. The configuration of Docker Swarm overlay is relatively

simple but has a performance lower than that of native host networking (Zeng

et al., 2017).

Figure 2.5 Docker Swarm Ingress Network (Church, 2019)

26

2.3 Fault Tolerance in IoT systems

2.3.1 Redundancy

Failures in edge cloud environments occur regularly as edge devices are

sometimes very unstable. These devices are vulnerable to many types of failures

such as power and hardware failures, which cause instability to the network and

IoT services. Edge cloud systems for IoT data streaming applications require

reliable and timely message delivery. Fault tolerance measures such as detection

of failures, redundancy, and consistent recovery are required to accommodate

reliable IoT services in edge cloud environments. The most common way of

achieving fault tolerance is to incorporate redundancy in the system. In the event

of faults, the system leverages redundancy to mask and tolerate faults, thus

maintaining desired functionality and performance. Redundancy techniques

involve replicating components in the application through redundancy to

eliminate single points of failure.

Typical redundancy techniques are redundant hardware, software

replicas, and distributed networks. A redundant hardware solution consists of a

set of loosely coupled servers that are self-contained and able to defect faults on

other nodes. For example, instead of having a single processor, two or more

processors are used to perform the same function. Static hardware redundancy

is mainly used to immediately mask failure. Dynamic hardware redundancy

involves adaptively activating redundant components when the primary

component fails. Karthikeya et al. (2016) propose a fault-tolerant algorithm,

which determines the minimum number of necessary gateways to provide

redundancy for edge servers in a smart city application. The proposed algorithm

27

detects gateways and link failures to create extra redundant routes between

gateways. Hardware redundancy also facilitates failover processing to take over

the operation of the failed servers. Failover processing involves restarting the

application, initialization of the restarted process, and rollback recovery (Su et

al., 2014). Health checks and error detections of hardware and software is

required to perform failover.

Software redundancy involves replicating software components and

splitting the application into independent components, to tolerate crash failures

(Birman, 2012). For data streaming applications, it is important to have reliable

local fault-tolerant solutions at the edge of network through edge computing.

Through edge computing, centralized computing elements and application logic

are offloaded from centralized nodes to edge servers. Javed et al. (2018) address

local fault tolerance and data resiliency by implementing a fault-tolerant data

pipeline via Kafka, to provide extra redundancy to the edge-cloud environment.

Sen and Balasubramanian (2018) propose the use of data redundancy to resolve

the issue of resiliency in the MQTT broker system. All of the important states

such as client sessions and routing information are maintained in a separate

shared cache. The use of a shared cache improves the fault tolerance of the

system because the failure of broker components will not affect the data.

For networking redundancy, Gia et al. (2015) address network-level

fault tolerance using backup routes to maintain connectivity between all the

nodes in a wireless sensor network (WSN). Network virtualization via Software

Defined Network (SDN) approach is another used to improve resiliency in the

28

distributed network (Gonzalez et al., 2016). This approach focuses on a global

view of the network infrastructure spanning from edge IoT devices to the central

cloud. SDN can provide independent forwarding and routing decisions at

various points of SDN nodes in the fog and edge layer of the network. When

one of the SDN nodes fails, the redundant SDN nodes in the network will build

up alternative network paths for data flow.

Su et al. (2014) present the WuKong framework, which is a

decentralized ring topology where services are delegated from a failed device

to a redundant device in the ring, to recover the lost service. The WuKong

middleware facilitates the failover of identical services among heterogeneous

devices. The proposed framework is designed for sensor networks. One master

device manages and handles failures of all worker devices and their services.

However, the proposed fault tolerance mechanism does not consider the failure

of the master device and the gateway, only the failure of the worker devices.

2.3.2 Checkpointing

It is important to capture runtime progress so they are not lost in the

event of failure. Checkpointing is a recovery-based fault tolerance approach

used for recovery after a system failure. Checkpointing is used for storing the

state of periodically advancing applications such as file systems and databases.

A checkpoint is done after every critical change made to the system. When a

process fails, rather than restarts from the beginning, it starts the task from the

most recent checkpoint. The restarted process starts the recovery process and

replays all of the checkpoints done between the previous state and the time of

29

failure. Most checkpointing techniques are applied in stateful applications to

ensure reliability and continuity of services (Khunteta and Praveen, 2010).

Checkpointing technique with rollback recovery is used to recover from

transient faults in real-time embedded systems (Saraswat et al., 2010). A

transient fault is a type of fault that happens once during runtime and will never

happen again afterward.

Coordinated checkpointing is a centralized checkpointing technique that

uses an atomic commitment protocol to ensure that the global checkpoint is

consistent. The atomic commitment protocol performs a distributed atomic

transaction for every turn of checkpointing. A distributed atomic transaction

involves a querying phase, an agreement phase, and a commit phase.

Uncoordinated checkpointing is a decentralized fault-tolerant technique where

nodes construct their checkpoint individually (Guermouche et al., 2011).

However, this causes the system to have a low level of global consistency. A

global consistent checkpoint must be computed from available checkpoints to

prevent a domino effect. Checkpointing techniques depend on global rollback

for consistency restoration. Global rollbacks lead to systemwide aftermaths

since all entities have to rollback after each failure (Guermouche et al., 2011).

Ozeer et al. (2018) present an uncoordinated checkpoint with message logging

to save the state of IoT devices in the fog environment. In the framework, a set

of data representing the application state is periodically saved in each node and

restored during an occurrence of failure.

30

2.3.3 Container Service Migration

For many virtualized applications, job migration is a strategy to keep

alive important services even in a faulty scenario. If a machine fails, the job can

be migrated to a different machine in the network. Job migration can also be

used pre-emptively in which the application is constantly monitored on a

feedback-loop mechanism (Devi and Saikia, 2014). Container migration via

Docker is being used to preserve system liveliness but it is only for stateless

applications (Ismail et al., 2015). In a distributed edge deployment, live

container migration is a solution to reduce service downtime by moving

containers between different physical machines without restarting the container.

A container cluster requires a shared network infrastructure to support the

reattachment of the container’s network interface to a different location in the

cluster network. Container live migration has been demonstrated working for

stateless applications. However, the live migration technique is still unstable for

stateful application as it is erroneous and will slow down the entire service on

edge infrastructure (Kakakhel et al., 2018).

Deshpande and Liu (2017) proposed a Docker container service

migration framework to transfer service containers in an edge cloud platform

between edge nodes that consist of embedded single-board computers. The

proposed framework prevents service from stopping by check-pointing live

containers and restoring failed containers in redundant nodes. Container

migration mechanism migrates containers across different hosts without

disconnecting the clients. The memory file system and live network connections

that are running on the hardware are transferred to another machine while

31

preserving the state of the container. When a host fails, the process freezes a

container, saves the state of the container, and migrates it to a destined node,

and resumes the state.

2.3.4 Load Balancing

Additionally, fault tolerance can be achieved through load balancing

techniques. Applications can be deployed behind load balancers to mask

failures. Load balancing can be implemented as hardware, software, or network.

A load balancer distributes workload to server nodes to improve response time

and throughput of a system (Rao et al., 2003). A load-balancing algorithm

should have fault tolerance and fault detection ability. This means that it should

perform load balancing accordingly despite node failures and redirects traffic to

healthy nodes.

2.4 Summary

In this chapter, the concepts related to edge cloud systems and container

virtualization are discussed. Section 2.1 presents the drawback of cloud-based

IoT and the comparison of various edge and cloud technologies in the IoT

paradigm. Cloud computing is inappropriate for latency-sensitive IoT

applications due to its high and unstable latency, and large bandwidth demands.

Edge computing moves some of the computing resources closer to end-users to

reduce end-to-end transfer latency and avoid a large volume of information flow

to the central cloud. The hardware of edge computing device has the processing

power, memory, and storage capabilities lower than that of typical mainframe

servers in the cloud. To compensate for the lack of computing power, smaller

32

edge devices such as the Raspberry Pi SBCs are combined into a distributed

computer cluster.

Section 2.2 presents an overview of edge-based orchestration using

Docker containers and SBCs. Docker container is suitable for edge computing

applications because of its lightweight-ness and ease of deployment. This

proposed broker system in this work implements a microservice-based MQTT

broker cluster within the Docker Swarm cluster. The application services can

be automatically deployed and scheduled using Docker Swarm.

Section 2.3 presents various fault-tolerant approaches used in IoT

systems. Hardware and software redundancy involved replicating hardware and

software components and splitting the system into independent components, to

tolerate crash failures. Network redundancy focuses on maintaining routing and

stable connectivity between nodes via backup routes. Checkpointing techniques

restore the system to the correct state after a system failure. Container migration

mechanism migrates containers between different nodes in a distributed

network to provide availability for IoT services.

33

CHAPTER 3

PUBLISH-SUBSCRIBE SYSTEM

This chapter presents an overview of the publish-subscribe

communication paradigm. Section 3.1 presents the MQTT protocol and its

communication patterns. Section 3.2 reviews various distributed MQTT

systems present in the industry and the literature. Section 3.3 presents an

overview of scalability and fault tolerance on generic distributed publish-

subscribe systems. Section 3.4 outlines the fault-tolerant approaches used in

distributed publish-subscribe systems.

The publish-subscribe system is a key technology for information

dissemination in the IoT paradigm. The publish-subscribe paradigm differs

from conventional client-server architecture, in a way that both endpoints do

not communicate directly with each other. The publish-subscribe model

describes a loosely coupled information dissemination middleware for message

exchanges. Each participant in a publish-subscribe system can be either a

publisher or a subscriber of information. Client endpoints do not need

information about each other to work correctly as communications between

clients are managed by a message broker. Figure 3.1 illustrates the publish-

subscribe pattern with a central broker.

34

Figure 3.1 Publish-subscribe sequence

To perform publication or subscription, clients use a publish-subscribe

API to connect to the message broker. Publish operation is invoked by

publishers to produce messages and inject publications into the server.

Subscribers register their interest to the broker to receive messages according to

the topic of interest or based on constraints over the publishing content. Each

subscription is considered a filter on a set of published events. Subscribe and

unsubscribe operations are invoked by subscribers to respectively declare or

remove their interest in certain types of content. The broker accepts connections,

stores subscriptions, and forwards matched publications to subscriptions.

Examples of broker-based protocols include MQTT, Advanced

Message Queuing Protocol (AMQP), CoAP, and Java Message Service API.

The many-to-many communication model of the publish-subscribe paradigm

has the advantage of space and time decoupling. However, the central broker

becomes a single point of failure and bottleneck for performance. Network

concentration and load peaks can potentially slow down message delivery. The

broker server must scale horizontally to avoid these issues.

35

This research work mainly focuses on topic-based publish-subscribe

systems. Topic-based publish-subscribe systems are widely popular in the

industry and open source communities. A topic-based publish-subscribe system

partitions event-space into separate channels, known as topics. A subscriber

uses a topic string as a predicate to register its interest in a topic. Publishers tag

their payload with a topic as the metadata of the message. Subscriptions are

stored as a set of subscribers for every topic entry. When a publication needs to

be matched, one simply needs to find its topic and obtain the corresponding set

of subscribers. Some topic-based publish-subscribe systems such as MQTT

support the organization of topics in a hierarchy. In that case, publications are

matched against subscriptions with an equal topic or with equal upper-level

hierarchies.

3.1 MQTT

Message Queue Telemetry Transport (MQTT) is a topic-based

messaging protocol built on top of TCP/IP protocol. The MQTT protocol is

useful for IoT data exchange in constrained environments due to its lightweight

design and minimal overhead. An MQTT client interacts with the MQTT broker

through the MQTT interface. The MQTT broker mediates data between

publishers and subscribers. The broker filters all incoming messages and

correctly distributes them to all subscribers.

36

Figure 3.2 MQTT publish-subscribe sequence

Figure 3.2 illustrates an example of the publish and subscribe operation

of the MQTT protocol. First, the subscriber sends a CONNECT message to a

broker. The broker replies with a CONNACK message to establish a connection

between the subscriber and the broker. The subscriber then sends a SUBSCRIBE

message to the broker to register its topics of interest to the broker. The

publisher then sends a PUBLISH message, with a specific topic, to the broker.

If the topic is included in the registered topics of interest, this message is

forwarded to the subscriber by the broker. The subscriber sends a

DISCONNECT message to the broker to terminate the connection. MQTT

supports hierarchical topics in the form of topic/sub-topic/sub-sub-topic path.

In MQTT client and server maintain a connection during communication.

However, the central broker configuration presents a bottleneck that results in a

broker queuing delay when a large scale of IoT devices are connected to the

MQTT broker (Xu et al., 2016). This could also potentially result in a single

37

point of failure if the broker crashes. Broker crashes can cause the loss of all

MQTT states maintained by the broker.

The MQTT protocol has three levels of quality of service (QoS) to serve

the reliability of message delivery. QoS 0 is an “at-most-once” message delivery

that delivers on a best-effort basis, without confirmation on message reception.

In some applications where sensor value does not change significantly over a

long period, this QoS can be used because losing data occasionally is not critical

for overall sensor value is still understandable. The reliability of QoS 0 is

dependent on the TCP/IP protocol where messages will be lost if a TCP session

is broken.

QoS 1 is an “at-least-once” message delivery that guarantees message

arrival to the receiver. The receiver must send an acknowledgment to confirm

its message reception. If the connection between the client and the broker is

broken, the client stores a few messages in the buffer and resend them when the

session comes back. This quality of service guarantees the delivery of sent

messages but messages can be delivered more than once. QoS 2 ensures that the

message will be delivered exactly once without duplication. The client and

broker perform a four-way handshake to confirm the message reception on both

sides. This QoS level has the most overhead because it requires 4 hops of

transmission to complete a message transaction.

38

Figure 3.3 MQTT message format (Tang et al., 2013)

Figure 3.3 shows the MQTT message format. Message Type refers to

the type of message. These message types are CONNECT, CONNACK,

PUBLISH, SUBSCRIBE, etc. DUP indicates that the message duplication flag

is used when the broker processes the message. QoS field specifies the quality

of service. Retain field stands for message retention. This means that any

message can be retained and published as the first message to a new subscriber.

Remaining Length field indicates the remaining length of the message. The rest

of the message field is associated with the message payload.

3.2 Commercial and Open Source MQTT Brokers

MQTT is very popular in M2M and IoT applications. Facebook has been

using MQTT as the communication protocol for its messenger application

(Zhang, 2011). IoT platforms such as Amazon IoT and Microsoft Azure also

provide services that use MQTT as their communication interface. AWS IoT,

HiveMQ, and IBM Bluemix are examples of enterprise-ready, cloud-based

MQTT brokers. However, implementations of these cloud-based brokers are

limited for edge servers because they are closed systems. Table 3.1 lists

available commercial and open source MQTT broker servers and their cluster

support.

39

Table 3.1 MQTT broker cluster implementations (Mishra, 2019)

Broker Clustering support MQTT bridge IoT bridge support

jmqtt Multi-host clustering

ActiveMQ Inter-broker bridges

emqttd Multi-host clustering

flespi Inter-broker MQ/job queues

HiveMQ Multi-host clustering

JoramMQ Distributed hierarchical brokers

mosquitto No

RabbitMQ Queue mirroring

VerneMQ Multi-host clustering

The scale of the local sensor environment in edge-based IoT is expected

to serve up to tens of thousands of concurrent clients while providing adequate

latency quality. Unfortunately, standard MQTT brokers have poor scalability

when the network load is heavy. Open-source MQTT brokers such as Mosquito

(A Light, 2017) suffer from single-point-of-failure that results in a complete

breakdown of the system if the broker fails. Data exchanges by an

overwhelming amount of IoT devices can cause large queuing delays for a

single broker (Xu et al., 2016). Overhead of queuing delay may be negligible

for a powerful machine, but for resource-constrained systems, it is very difficult

to handle the significant portion of message overhead. Instead of improving a

single server, the broker can be horizontally scaled adding extra brokers to the

work pool. The distributed system can use a load balancer as a single-entry point

for all client communications. This allows the clients to perceive the system as

a single logical broker, thus providing user transparency.

40

Standard MQTT brokers do not offer a way to group a cluster of MQTT

brokers with similar topics. To operate with any existing MQTT brokers, this

work uses an adapted middleware layer that sits between the MQTT brokers

and MQTT clients so that the clients can use the existing MQTT infrastructure

while obtaining a highly available service. The dissertation work addresses the

fault-tolerance and performance aspects of a topic-based distribution system

that is composed of several MQTT brokers. Standard MQTT brokers like

Mosquitto provide a basic mechanism for edge computing setups. The proposed

broker system extends the MQTT broker using a clustering approach, in which

a set of MQTT brokers are grouped into a cluster, and a load balancer is used to

distribute incoming requests.

MQTT clustering can be achieved by using broker bridging. Many

brokers can be configured at deployment time to bridge their topics tree

structure to a centralized bridge broker (Schmitt et al., 2018). Thus, the bridged

brokers can exchange messages from the bridged remote broker through the

bridge configuration. However, this approach is very static and has limited

scalability. The communication overhead between bridges is significant

because bridging involves propagating messages between all MQTT clients that

are connected to different bridges. If a broker bridge crashes, the MQTT service

stops functioning correctly as a distributed system, and some messages are lost

because there is no failover mechanism for bridging. Besides that, bridging

brokers can potentially trap messages in an endless loop of transmission

between broker nodes (Redondi et al., 2019). This can deplete the bridged

system as the brokers repeatedly send shared messages over the bridge links.

41

Multiple works suggest the deployment of brokers in multiple distributed edge

networks, across several geographical locations (Banno et al., 2017; Rausch et

al., 2018; Park et al., 2018). However, this work will implement MQTT servers

on a single local cluster.

Rausch et al. (2018) present EMMA, which uses bridging tables to

dynamic link MQTT brokers in an MQTT bridge. The EMMA framework

reduces end-to-end latency from client to server by dynamically rerouting the

connections based on proximity and QoS index of the connection. EMMA

changes the connection between clients and MQTT brokers through buffering

gateways that reside in multiple locations. These gateways allow MQTT clients

to transparently connect to the system. The gateways tunnel MQTT traffic and

provide a buffering mechanism during a reconnection process to a different

broker.

JoramMQ introduces two types of distributed brokers, clustered and

tree-based brokers (Scalagent, 2014). Clustered brokers broadcast all

publications messages to all other brokers when they received a publication.

Tree-based brokers are distributed in the network based on the hierarchy of

subscriptions topic. They transfer messages between the upper and lower tier of

brokers. HiveMQ implements subscription topic sharing among clustered

brokers, forwarding publication messages only to brokers that have the same

subscriptions (Hivemq, 2019).

42

DM-MQTT (Park et al., 2018) is an edge-based MQTT broker system

that uses the multicast mechanism of Software Defined Network (SDN) to

transfer data as MQTT packets between MQTT brokers distributed across

different edge networks. SDN switches are distributed across the edge cloud

network to interconnect all edge and cloud brokers. DM-MQTT reduces latency

delay by using a bi-directional SDN approach. The SDN controller forms

multicast groups classified by topics and QoS levels collected in the central

broker. The SDN controller uses this information to form a multicast path along

with the SDN switches, that interconnect edge brokers residing in different edge

networks. The multicast paths are formed between MQTT brokers with the

same subscribed topic, which entirely bypasses the centralized broker.

The ILDM (Banno et al., 2017) framework introduces the use of an

intermediary relay node to support distributed MQTT messaging between edge

servers. For each edge server, the ILDM node is placed between the MQTT

broker and the clients. The ILDM node connects heterogeneous brokers that are

located on multiple edge networks. The routing algorithm used in ILDM is like

a tree-based routing approach that its publication forwarding process routes

along a fixed propagation path towards interested subscribers. However, the

message forwarding process requires multiple forwarding hops between

disperse edge servers and also indirect data flow between the local ILDM and

broker node. This increases forwarding delay and causes network congestion.

The authors showed that in the absence of failure, their system can increase the

throughput by approximately 2 to 4 times without any loss of message. This

research work uses a similar concept of deploying an intermediate layer of

43

software to coordinate between multiple MQTT brokers. However, this research

work addresses local fault tolerance for the MQTT broker cluster where all

MQTT client devices are concentrated around a single access edge node. Figure

3.4 depicts the differences between a distributed broker network and a broker

cluster in a local area network. The target environment depicted in Figure 3.4(b)

consists of only edge servers in a single local cluster, which permits more

reliability in terms of message delivery, and less delay between cluster nodes

(Rooney et al., 2005). In ILDM data is transferred as a unicast MQTT-like

operation and may travel across multiple relay brokers which increases

transmission delay. On the other hand, DM-MQTT delegates the data

transmission function to the SDN networking module which enables multicast

functionality between brokers.

Figure 3.4 Distributed and local area broker network

Nucleus (Sen and Balasubramanian, 2018) improves fault tolerance by

splitting the system into stateless MQTT brokers and a separate shared cache to

maintain its routing state. This way the broker can fail anytime without affecting

the state information. The broker component uses the elasticity mechanism of

44

Kubernetes to dynamically scale the number of stateless brokers according to

the CPU utilization index. However, the distributed data store introduces

additional access delay, which increases overall latency for message delivery.

A similar architecture is also presented in MigratoryData, where worker I/O

threads and state information are separated into discrete components (Rotaru et

al., 2017). MigratoryData partition incoming subscriptions by splitting the

subscribers among all servers, irrespective of their subscribed topic.

3.3 Distributed Publish-subscribe System

Distributed event notification services are implemented through a set of

event brokers that forms a message broker overlay. For a generic publish-

subscribe system, the system stack generally consists of three layers: the overlay

infrastructure, event routing, and subscription matching algorithm. The overlay

infrastructure maintains the routing information and arrangement of member

nodes. Event routing utilizes the underlying overlay infrastructure to perform

message delivery. Event routing will require a subscription matching process,

which evaluates the matching function of a subscription to an event. In the past

years, several research contributions have focused on reliability and scalability

in internet-scale, distributed publish-subscribe systems. These systems use an

application-level overlay network to preserve scalability and fault tolerance.

However, most of these schemes employ their own standards instead of

implementing established IoT protocols like MQTT. Table 3.2 shows a

comparison of various generic internet-scale publish-subscribe systems. The

following subsections present various scalability and fault-tolerant approaches

to publish-subscribe systems found in the literature.

45

3.3.1 Distributed Routing Mechanism

In a distributed event notification network, event routing involves the

global aspect of traversing messages to relevant brokers before reaching

interested subscribers. This subsection discusses available forms of event

routing.

Table 3.2 Summary of generic publish-subscribe systems (Setty et al., 2012)

 Architecture Overlay
Structure

Subscription
Management

Event
Dissemination

Fault
tolerance

Siena Brokers on
top of Mesh

None / mesh Subscription
state at each
node

Broadcasting
states

Best Effort

Scribe Decentralized Pastry DHT Rendezvous
node

Multicast Tree No
subscription
persistence

Tera Decentralized Gossip Based
Overlay

Overlay Per
Topic

Random Walks &
Flooding

Best Effort

Poldercast Decentralized Ring based
DHT,
Victiny,
Cyclon

Ring Per Topic Ring Overlay
Routing

High Churn
resistant

Vitis Decentralized Hybrid
Overlay

Rendezvous &
Overlay Per
Topic & Inter-
topic Gateway

Scoped flooding Best Effort

3.3.1.1 Event Flooding

A straightforward event routing approach is to broadcast publications to

all nodes across the publish-subscribe network. This means that each

subscribing node in the system will match against all publications. This

approach is straightforward and has no memory overhead. However, it does not

scale well in terms of the number of message transfers (Eugster et al., 2003),

since publications are always sent to all brokers regardless of subscriptions they

hold.

46

Subscription flooding involves diffusing each subscription into each

broker to build a locally complete subscription table. Each node knows all the

subscriptions of the entire system so that the event can reach subscribing nodes

in a single hop. This approach incurs large memory overhead when the total

number of subscribers is high, but message overhead is optimal (Eugster et al.,

2003). Subscription flooding is impractical for applications where the

subscriber fluctuation rate is high because each node must propagate changes to

all other nodes in a completely connected overlay. Subscription flooding also

needs a convergence period to stabilize the routing state after subscriptions and

un-subscriptions. The system can only guarantee the delivery of matching

publications to all registered subscriptions after this period. Event propagation

based on an incomplete routing state before state convergence will inevitably

lead to publication loss. In an asynchronous model, the publish-subscribe

system must deliver publications issued within a certain period following the

time of subscription arrival.

The message overhead of publication flooding depends on the network

size because all publications are forwarded to reach every other broker node in

the network. Subscription-based flooding builds up a routing pattern in which

publications are only forwarded to interest subscribers, thus do not depend on

the network size of the group. A recent work that presents flooding techniques

is ILDM (Banno et al., 2017).

47

3.3.1.2 Selective Routing

Selective routing presents a middle ground in terms of memory and

message overhead as compared to event flooding. Selective routing reduces the

message overhead by only allowing a certain subset of the nodes to involve in

routing a specific topic. Selective routing algorithms save more network

resources because an event must be transmitted only to a restricted portion of

subscribers. In filter-based routing (Baldoni et al., 2009), subscriptions are

partially diffused in the system and used to build routing paths. This approach

maintains routing information to construct routing paths that connect publishers

to all interested subscribers. The routing information of a node is associated

with each of its neighbors in the overlay and the set of subscribing nodes that

are reachable through the neighbor. In contrast to subscription flooding, each

node only communicates with its neighbor nodes, thus reducing memory

overhead. The disadvantage of a filter-based routing scheme is that nodes

arranged in the edge of the tree structure are not used for forwarding. This

results in unnecessary long forwarding paths, which causes a large delivery

delay (Siegemund et al., 2015).

Rendezvous routing is based on rendezvous relay brokers in the overlay

network and two sets of functions, to associate respectively subscriptions and

publications to broker nodes. The subscription function S(N) returns a set of

nodes that are responsible for storing the subscription s as well as forwards

events to all matching subscribers. The event function EN(e) returns a set of

nodes that must receive the event e to match it against the subscription they

store. This approach uses a controlled subscription distribution to better load

48

balance the subscriptions for storage and management. All subscriptions that

match the same events will be hosted by the same node to avoid a redundant

matching in several different nodes. One drawback of the rendezvous-based

solution is the reliance on central rendezvous nodes for the correct operation of

distributed event routing. The rendezvous node can quickly become a hot spot

for popular topics. Moreover, rendezvous-based routing does not handle well

dynamicity. When a new node joins the system, the whole routing structure and

rendezvous points must be rearranged among nodes. If many nodes join at

nearly the same time, rendezvous routing will miss some of the message

deliveries because the routing structure takes a long time to converge the topic

paths. Rendezvous-based routing is commonly used on top of DHT overlays

such as in Scribe (Castro et al., 2002), Bayeux (Zhuang et al., 2001).

3.3.1.3 Gossip-based Routing

Gossip-based event propagation is used to cope with dynamism and to

reduce the effect of node churn within a publish-subscribe environment

(Baldoni et al., 2009). In the gossip protocol, each node maintains only a partial

view of the subscriptions of its neighbor in the group and propagates event hop-

by-hop through gossiping to its view. Eugster and Guerraoui (2002) propose an

informed gossip protocol that avoids gossiping a message to uninterested

subscribers. The proposed gossip protocol organizes groups in hierarchies

according to the physical proximity of nodes. PopSub (Salehi et al., 2017)

reduces the message overhead of the publish-subscribe system by propagating

less popular publications through gossiping.

49

Deterministic technique over multicast trees is fast and has minimal

duplication during the stable period but it is fragile to node churn, whereas

gossip-based dissemination is more robust but does not guarantee deterministic

delivery (Baldoni et al., 2009). There is also a probability that uninterested

nodes will receive duplicated messages during event propagation, thus creating

unnecessary network traffic.

3.3.1.4 Clustering Topics

The correctness of the state of multicast trees is easily disrupted when

the subscription fluctuation rate and dynamism of overlay topology are high.

The routing tree needs to be continuously updated to guarantee correct message

delivery. Hence, the dissemination of events incurs additional overhead in

maintaining the routing tree. The topic clustering approach is introduced to

achieve space and time efficiency along routing paths (Milo et al., 2007). Milo

et al. (2007) present a dynamic topic clustering mechanism that groups per-topic

peers to reduce maintenance and relay overhead. The authors adopt a cost-

benefit analysis to dynamically merge or split two topic clusters. The authors

define the overall cost as the sum of maintenance cost and dissemination cost

for the publish-subscribe system. The topic clustering mechanism only takes

place if the overall cost is reduced when merging two clusters. The clustering

algorithm groups topics together into topic clusters. Each topic cluster

represents a single multicast group. When the event reaches one member of the

topic cluster, event forwarding only involves nodes correspond to the cluster to

confine the traffic (Baldoni et al., 2009).

50

3.3.2 Overlay Infrastructure

Publish-subscribe brokers sit on top of an application-level overlay that

characterizes the organization of nodes and the functionality of each node. Data

dissemination and subscription matching happen over an overlay network of

publish-subscribe nodes. Overlay infrastructure provides useful communication

and data structure primitives on the application layer. Examples of overlay

infrastructures are structured and unstructured peer-to-peer overlay, broker-

based overlay, skip-graph overlay, and cloud-based overlay.

3.3.2.1 Broker-based Overlay

In a broker-based overlay, each broker forms an application-level

overlay and communicates through an underlying transport protocol. Unlike

peer-to-peer overlays, broker-based overlays are typically deployed with

dedicated brokers in the network as intermediaries between publishers and

subscribers. Clients can access the publish-subscribe system through any

broker. In general, each broker stores only a part of all the subscriptions in the

system. Connections between broker nodes are application layer links. The

server network can be organized in many types of overlays that are typical in

peer-to-peer networks, such as ring, hierarchical, etc. Network topology

changes are rare. A broker-based overlay is mainly used to facilitate failed

brokers and the addition of a new broker. Examples of the broker overlay

publish-subscribe systems used in past works are TIB/RV (Oki et al., 1993), and

Siena (Carzaniga et al., 2003), and Hermes (Pietzuch and Bacon, 2002). Siena

is content-type broker architecture that uses subscription advertisements to

aggregate events for each subscriber group. Event brokers keep track of routing

51

information to efficiently match publications with brokers with similar

subscriptions. Siena has limited scalability because it relies on a global

broadcast mechanism to disseminate publications. Hermes (Pietzuch and

Bacon, 2002) is a type-based publish-subscribe system implemented using

middleware to route events across the broker network. For fault tolerance,

Hermes uses replicated rendezvous broker nodes, as meeting points, for other

event brokers to advertise their subscriptions and publications. Also, Hermes

periodically refreshes the state of event brokers to adapt to broker failures.

3.3.2.2 Peer-to-peer Overlay

Peer-to-peer (P2P) approaches do not require centralized architecture.

In peer-to-peer publish-subscribe systems, the message dissemination

mechanism is implemented on top of an overlay network that joins all

messaging nodes together. Peer-to-peer based publish-subscribe systems are

generally classified as a structured overlay and unstructured overlay.

3.3.2.3 Structured Peer-to-peer Overlay

Structured P2P overlay infrastructure is based on per-topic multicast

trees on top of P2P DHT overlays. A P2P node exploits P2P communication

primitives of underlying DHT to implement its event routing algorithm. DHT

based publish-subscribe systems are commonly used in conjunction with

rendezvous-based routing schemes.

52

Scribe (Castro et al., 2002) is a topic-based publish-subscribe system

that uses P2P communication primitives of Pastry DHT to implement

rendezvous routing. Scribe uses Pastry DHT to locate an active rendezvous node

that holds nodes subscribe to a topic, in order to build a multicast tree that

connects from publishers to subscribers. Publications sent to the rendezvous

node are then forwarded in a reversed manner along the multicast tree to

corresponding subscribers. Scribe uses the heartbeat detection method to detect

faults in DHT nodes and to maintain the completeness of the multicast trees.

Each parent node periodically sends a heartbeat message to its children. If an

active child node found out that its parent is faulty, the children node will get a

new active parent by issuing a re-subscribe message for the topic to repair the

broken multicast tree.

Dynatops (Zhao et al., 2013) is a topic-based publish-subscribe system

that builds its overlay on top of Chord DHT (Stoica et al., 2003). Dynatops uses

a similarity grouping algorithm to map subscribers into multiple groups of

brokers, based on similar interest to nearby brokers. This reduces the overlay

management overhead of brokers in the network. The overlay of Dynatops

forms multiple per-topic multicast trees to propagate publications to all

interested nodes. For each subscription whose topic matches the publication, the

publication is then propagated hop-by-hop along the topic tree in the reverse

direction of the subscription until it reaches the subscribers. For consistency and

fault tolerance, Dynatops uses a centralized reconfiguration mechanism to

monitor the rate of outgoing publications and change of subscriptions and

restructure the overlay according to these changes. Dynamic reconfiguration of

53

overlay also minimizes the number of unrelated relay brokers along the

publication routing path.

Structured publish-subscribe overlays are scalable and robust with

respect to node degrees. However, this approach incurs more propagation

overhead because event forwarding also traverses through uninterested nodes

(Rahimian et al., 2011). Structured overlays can be well suited for sensor

networks with occasional node churn, frequent failures, and limited node

reliability. One drawback of DHT based publish-subscribe systems is the

dependence on rendezvous points which lead to multiple single points of failure.

Rendezvous points also can become a hotspot for concurrent events on the same

topic.

In most IoT applications, many types of exhaust data have been

occupying most of the IoT data distribution trends (Banno et al., 2015).

According to these trends, most topics in IoT topic-based publish-subscribe

usually have very few subscribers and these data have low value most of the

time. Routing schemes presented in most publish-subscribe systems such as

Scribe and Bayeux waste network resources by excessively circulating a large

amount of low-value data around routing paths. Banno et al. (2015) present a

design of a relay-free overlay network for topic-based publish-subscribe

systems. The proposed framework detects low-value data among the

subscriptions on top of a DHT overlay to minimize unnecessary forwarding of

published messages. The authors use Multi-key skip graph to construct the

application layer overlay. A multi-key skip graph is a distributed data structure

54

that is used to quickly insert and search resources among peer nodes based on

provided keys. The proposed framework uses peer information in the multi-key

skip graph to determine the shortest routing path in order to reduce the length

of routing path during message propagation. The proposed framework is

resistant to failure and subscription fluctuation because the multi-key skip graph

can quickly detect the presence of subscribers by querying into subgraphs in the

overlay. The skip graph overlay maintains information on neighbors’ state and

builds up redundant links to bypass a failed node. In an application of distributed

edge-based publish-subscribe, the authors show that the multi-key skip graph

approach can reduce propagation path but requires larger routing tables.

3.3.2.4 Unstructured Peer-to-peer Overlay

A tree-based structure can be weak against node failure. Unstructured

overlay topology is used to organize nodes in one flat or hierarchical small

diameter network to minimize the effect of node failures (Baldoni et al., 2007).

The publish-subscribe system can continuously repair the overlay topology

even if node failure occurs. The unstructured overlay uses a gossip-based and

uniform sampling protocol to periodically update each local view, about

participant interests at each node and swaps random view entries between

randomly chosen nodes.

Tera (Baldoni et al., 2007) uses a hierarchical structure to implement a

topic-based publish-subscribe based on a uniform peer sampling service. Tera

uses interest clustering by constructing topic overlay networks for each topic

which includes all nodes subscribed to that topic. The inter-cluster routing

55

mechanism performs a random walk that stops at first a broker that holds an

access point for the target topic. Once a subscriber received an event, it

broadcasts the event to all nodes in the sub-cluster. The probabilistic gossip

algorithms used in the system are resistant to both subscription fluctuations and

node failures.

Poldercast (Setty et al., 2012) uses probabilistic event propagation over

a gossip-based dissemination overlay to maintain application-level topic rings.

Each peer node uses gossip to connect to other peers with the same topic to form

an interconnected ring overlay between all subscribing peers. Poldercast

exploits correlation within subscriptions by reusing the same shortcut links

between multiple rings to minimize the number of links maintained in each node

and hence reduces average event propagation paths.

3.3.2.5 Hybrid Overlay

Vitis (Rahimian et al., 2011) is a hybrid approach that extends the

rendezvous routing on top of an unstructured overlay of peers. Vitis uses gossip-

based peer sampling to build sub-clusters covering all subscribing nodes with

the same topic to reduce the number of intermediary nodes along the routing

path. However, due to the bounded node degree implemented in Vitis, disjoint

overlays of similar topics can be formed. Therefore, gateway nodes are selected

by nodes in each sub-cluster to connect to other sub-clusters for the same topic.

One drawback of the Vitis framework is additional relay latency because sub-

clusters need to be connected by additional gateway nodes, rendezvous nodes,

56

and relay nodes. The reliance on central nodes also makes it weak to dynamic

node joining and failures.

3.3.2.6 Cloud-based Overlay

Cloud-based broker systems are single, flat-layer brokers generally

deployed in the cloud. MQTT, ActiveMQ, and Amazon IoT are examples of

single-hop cloud publish-subscribe systems used in IoT applications. BlueDove

(Li et al., 2011) is an elastic cloud-based publish-subscribe system that can

dynamically scale-out according to workload demands. BlueDove utilizes an

attribute-based filtering model for subscriptions. Dynamoth (Gascon-Samson et

al., 2015) is a cloud-based publish-subscribe system with single-hop routing.

Dynamoth uses a hierarchical load balancer to dynamically redistributes topic

channels among elastically replicated publish-subscribe brokers. The cloud-

based publish-subscribe overlay has lower routing latency between brokers but

presents higher end-to-end latency for many IoT applications.

3.4 Publish-subscribe Fault Tolerance

The occurrence of frequent faults is inevitable due to the distributed

nature of the network. To tolerate failures, the distributed publish-subscribe

system must have a built-in fault-tolerant mechanism to ensure that disruptions

do not affect the operation of the message delivery in the long run. This section

presents various approaches to tolerant faults in the publish-subscribe system.

57

3.4.1 Distributed State Recovery

Distributed checkpointing rolls back the entire state of a globally

consistent state after failure (Carbone, Katsifodimos, et al., 2015). Lineage-

based recovery is a logging technique used to recover lost states from the partial

result in a distributed system. Lineage information such as the source of data

and intermediate data flow paths of a message is sent along with the message

payload to other nodes in the distributed system (Zaharia et al., 2013). During

failure, the linage information is used to recover from failure. However, both

checkpointing and lineage-based recovery can take a longer time to recover if

downtime is long, which is not suitable for latency-sensitive applications.

Causal logging protocols send lineage information with each message in the

data plane. On failure, the information on surviving nodes can be used to restore

the system to a globally consistent state. Depending on the size of linage

information, causal logging may incur high runtime overheads. The size of

linage can be decreased to reduce runtime overhead. Linage stash removes the

overhead from the data path by asynchronously logging lineage information to

a decentralized store (S. Wang et al., 2019).

Kazemzadeh and Jacobsen (2009) propose a recovery procedure that the

publish-subscribe system must execute when a new or failed broker enters the

system. Existing broker nodes in the system form a set of synchronization points

to help the recovering broker to synchronize its routing state. Each

synchronization point computes its local topology and subscription information

and sends them over to the recovering broker. Each synchronization point uses

guided messages to improve the message forwarding process that happens

58

concurrently with the recovery process. Each synchronization points attach a

special header to every message sent to the recovering broker. The special

header contains information about the destination of the message. This way the

recovering broker can use the header information to determine its routing path

without relying on the complete routing information of the system. The broker

recovery approach presented in this dissertation work is based on the recovery

procedure proposed by Kazemzadeh and Jacobsen (2009). However, this work

uses a local network with a fully connected topology to implement the broker

network. This eliminates the need to maintain intermediate neighbor nodes,

which is suggested in the former approach.

3.4.2 Periodic Subscription

Every broker in a distributed publish-subscribe system stores a certain

amount of soft state information required to facilitate event routing (Jerzak and

Fetzer, 2009). This soft state information can be permanently lost in the event

of failures. Jerzak and Fetzer (2009) address this problem in a periodic

subscription approach, in which subscribers actively reissue their subscriptions

towards the broker to maintain its soft-state information about client

subscriptions. Each broker maintains a timestamp, which is refreshed every

time, for each received subscription in its routing table. Scribe (Castro et al.,

2002) and Bayeux (Zhuang et al., 2001) use subscription refresh to handle

subscription fluctuations in which subscription enters are refreshed periodically

before each expiry time. Subscriptions entries that are not renewed on-time are

removed from the routing table. This approach ensures any incorrect routing

state is discarded and reinstated by correct routing information which is

59

propagated following new subscription refreshes. The automatic expiration of

subscriptions helps to eliminate the need for unsubscription advertisements

since a subscribing node can unsubscribe just by stopping the subscription

advertisement. By periodically flooding the subscriptions, this approach can

prevent message loss and ensures that subscribers will eventually receive all the

publications to their subscriptions. It also limits the effect of node crashes by

periodically refreshing the subscription message, which guarantees subscription

delivery when the system recovers. However, periodic subscriptions incur large

bandwidth costs and do not consider publication loss.

3.4.3 Self-stabilization

The publish-subscribe systems must ensure that the shared state, which

includes all registered subscriptions, is always consistent with the actual

population of clients. Self-stabilization aims to eventually reach a stable and

correct global state. Self-stabilization uses an approach similar to the periodic

subscription method. Zhenhui Shen and Srikanta Tirthapura (2004) present a

self-stabilization algorithm to maintain the consistent routing state in the

distributed publish-subscribe system. Each node periodically swaps its local

routing state with neighboring nodes and independently updates itself when the

local routing information is inconsistent with neighbor nodes. A mismatch

between the local routing table and neighbor’s subscriptions indicates new

subscriptions or a potential loss of subscriptions at either of the neighbors.

Inconsistencies between the tables lead to corrective actions at each local node.

Each node makes corrections to its local routing state by adding missing

60

subscriptions and discarding stale subscriptions. The series of local corrections

eventually restores the consistency among the distributed routing tables.

For wireless sensor networks, Siegemund et al. (2015) use the self-

stabilization technique to handle subscriptions and un-subscriptions. The

authors use a leasing approach with a time-to-live (TTL) countdown value to

periodically refresh subscriptions and discard un-subscriptions due to faults.

This is similar to a watchdog timer where the subscription routing table entry

must rest a timer before it expires. Otherwise, it is assumed to have failed. The

proposed system can deliver all messages correctly, without receiving

duplicates on the client-side.

Also, DHT infrastructures such as Pastry and Tapestry implements self-

configuration to adjust routing paths according to subscription and overlay

information. Scribe and Bayeux are examples of publish-subscribe systems that

are built on top of Pastry and Tapestry DHT respectively (Zhuang et al., 2001;

Castro et al., 2002).

However, this approach has a large message overhead and lacks

scalability mainly due to the periodic exchange of complete routing tables. Self-

stabilization needs a convergence period to stabilize the routing state after node

failures, subscriptions, and un-subscriptions. The system can only guarantee the

delivery of matching publications to all registered subscriptions after this

period. Updates to routing tables during recovery may take a certain period to

converge the routing state. As a result of recovery action, the subscribers may

61

experience a short disruption in the system. Event propagation based on an

incomplete routing state before state convergence will cause publication loss.

Thus, the recovery period needs to be bounded and fast enough to prevent

message losses.

3.4.4 Event Retransmission

Modern messaging solutions such as Kafka (Kreps et al., 2011), Flink

(Carbone, Fóra, et al., 2015), and Spark Streaming (Zaharia et al., 2013)

implement event retransmission to tolerate publication loss. Through the event

retransmission approach, a broker resends an event whenever the event is

discovered lost. One way of detecting publication loss is to exchange

acknowledgment messages between each broker in the network (Kazemzadeh

and Jacobsen, 2009; Salehi et al., 2016). When a broker receives a publication,

the broker stores a buffer of the message and forwards it to neighbor nodes in

forwarding paths. After receiving this publication message, nodes send an

acknowledgment (ACK) message back to their upstream neighbors. Each

broker will discard the event once it receives all ACK messages from the

forwarding set. If the broker does not receive one or more ACK messages in its

forwarding set, it retransmits the event to the forwarding path until all ACK

messages are collected or until the buffered event becomes expired. A

prerequisite of this approach is the fast recovery of failed brokers. An event may

not be delivered to subscribers if a routing path is disconnected for too long.

62

Sourlas et al. (2009) recover publication lost using in-network caches

that reside on message brokers along the propagation path of publication and

show a high publication rate in presence of broker failure. Publications are

cached at broker devices in the overlay so that multiple concurrent failures can

be tolerated. The availability of multiple replicated copies of the publication

cache eliminates the need for persistent storage and allows each cache to keep

the data in memory. In-network caching reduces access delays as compared to

caching in persistent storage. In-network caching also improves retransmission

time because a lost publication is resent from the closest available cache node

in the overlay.

C. Wang et al. (2019) propose FRAME to tolerate message loss in a real-

time messaging system with the use of a primary-backup broker approach. The

proposed framework presents a configurable scheduling and recovery method

that handles different messages according to their fault-tolerance and latency

requirements in an edge computing environment. Each subscriber is tagged with

a latency deadline and a fault-tolerance level, for each of its topics. FRAME

also uses earliest deadline first (EDF) scheduling to dispatch and deliver

messages according to their deadlines. For message loss tolerance, the primary

broker replicates a copy of the received published message to the backup broker.

The backup broker uses periodic pooling to check the status of the primary

broker. When a failure happens, the backup broker becomes the new primary

broker. The system retains publisher messages during failure and prunes the

backup messages during fault-free operation. When the primary broker fails, the

publisher sends its message to the backup broker, and the subscriber recovers

63

the message from the backup broker. The evaluations confirm that the FRAME

system can improve loss-tolerance performance and reduce the effect of latency

during the fault recovery process. The peak latency due to fault recovery is 50ms

for the FRAME system.

3.4.5 Redundant Paths

Redundant paths are used in the publish-subscribe overlay to guarantee

correct message delivery in the presence of broker/link failures (Sherafat

Kazemzadeh and Jacobsen, 2012). In this approach, the overlay topology

adaptively creates disjoint routing paths to ensure that there is at least one

correct path between the corresponding publisher and subscriber. A broker

sends an update about the neighbor state to every other reachable broker

whenever it detects a change in the live status of any broker. This way broker

will be able to identify and build alternative routing paths towards all the

subscribers. Thus, the redundant path can exclude paths that have failed brokers

or broken links. Extra paths can be created based on the similarity of interest or

vicinity between brokers (Setty et al., 2012). The downside of a redundant

forwarding path is that it may consume high bandwidth and become very

inefficient in the presence of node churn and frequent subscription changes.

Also, this approach incurs additional notification latency under failure.

3.4.6 Consensus-based Publish-subscribe System

Consensus-based techniques are centralized approaches that focus on

the consistency of distributed systems. Paxos-based pub/sub middleware (P2S)

(Chang et al., 2014) is a crash tolerant Paxos-based publish-subscribe

64

middleware based on the Goxos Replication State Machine (RSM), which

extends the original Paxos framework. Paxos is a consensus protocol that

involves a set of processes that are trying to agree on a value. The

implementation of P2S uses multiple instances of Paxos in the Goxos RSM to

execute the publish-subscribe broker. A leader node is responsible to handle

client requests and disseminate them to all replicas to reach a consensus. Each

replica computes the ordering of competing requests and executes them in order.

Upon receiving a subscription or un-subscription, the broker replicas query for

consensus and update their local subscription table. The replicas deliver

messages to each of the subscribed clients. The Paxos implementation tradeoffs

system liveliness for stronger consistency. If more than the maximum number

of replicas fail, the system cannot make progress. This approach uses a

centralized broker-based architecture and replication of a publish-subscribe

broker to achieve resiliency. The fault-tolerant mechanism of P2S shows a

tradeoff between performance overhead and reliability. The replicated approach

has a maximum of 1.25% throughput reduction and 0.58 milliseconds end-to-

end latency compared to its non-replicated counterpart.

3.4.7 Availability of Distributed Publish-subscribe Systems

The CAP theorem (Brewer, 2000) refers to consistency, availability, and

partition tolerance. Many publish-subscribe systems satisfy the AP

characteristic. The availability characteristics keep the continuation of the

messaging service on a high level by using multiple messaging servers on top

of the distributed application-layer overlay. Even though some of the message

servers may fail, the remaining servers can keep the service going. Nevertheless,

65

consistency is also important to maintain reliable messaging. The distributed

publish-subscribe system requires a consistent routing state to correctly process

and deliver messages. Inconsistent routing states can lead to wrong behavior in

message delivery. According to the CAP theorem, a distributed system can

make a trade-off between consistency and availability characteristics. It is

important to balance between consistency and availability for the distributed

broker system. In this research work, the proposed broker cluster will

continuously provide the MQTT service while gracefully handle broker failures.

Even after a broker failure, the broker cluster continues to operate as normal, to

avoid recovery or failover processing. This is because recovery processing

incurs a delay to restart and initialize to a previous correct state (Egwutuoha et

al., 2013), which can temporally stop the clients from using the service. To

increase availability, the system discards the failed broker, and the load balancer

routes the reconnected requests are to the remaining online brokers. The system

achieves eventual consistency by periodically exchanging routing state with

neighbor nodes.

66

CHAPTER 4

DESIGN AND IMPLEMENTATION

This chapter presents the design and implementation of the MQTT

broker cluster system. In a typical cloud-based IoT application, data streaming,

and communication between edge devices suffer from latency problems, which

will create network congestion to the cloud. To resolve prior issues, the

proposed broker system uses an SBC-based broker cluster and deploy it at the

network edge. The broker cluster extends the cloud computing platform to the

edge of the network. An edge-cloud integration layer is deployed to combine

both the cloud and IoT environments. The MQTT edge server provides

communication services and locally processes selected information before

transmitting the information to the cloud, thus reducing overall network traffic.

The implementation targets a clustered set of Raspberry Pi SBCs to deploy

MQTT services in an edge-cloud architecture. The SBC cluster runs Docker

Swarm to orchestrate Docker-based containers and services. This chapter

presents the core components of the middleware platform for the edge cloud

MQTT application.

4.1 Broker Cluster Architecture

This section presents the system design and features of the MQTT

broker cluster. The distributed system comprises a collection of independent

devices that communicate through message passing. The MQTT broker system

consists of several application services distributed across the entire cluster. Each

67

application service is isolated into a set of containers, that are encapsulated with

specific functions. These containers work collectively to execute the distributed

MQTT application. The system appears to its application user as a single

coherent system. The messaging service interacts with the external environment

by sending and receiving messages through the MQTT communication

protocol. The system uses a variation of the broker-based publish-subscribe

overlay, which consists of a set of MQTT brokers.

Each online node in the broker cluster manages its own messages and

client sessions. The cluster nodes communicate with each other via message

passing. The system resembles a single logical unit from outside which is much

like a centralized architecture. Nodes can join the cluster at any moment, by

transmitting join requests to the other active nodes in the cluster. Node crashes

are detected by the membership protocol. As the MQTT broker is a stateful

application, a node that leaves and rejoins after a while is assumed to forget all

its prior state. Therefore, the state information is maintained and is refreshed

periodically to maintain state consistency and correctness. Upon failure of one

node, the remaining brokers can take over and continue to provide the MQTT

service.

As depicted in Figure 4.1(a), there are a few different components in the

system. The entire MQTT functionality of the system is provided by the MQTT

broker. Mosquitto broker is used for the MQTT broker service. The MQTT

broker is the core communication component of MQTT devices that implements

standard MQTT server protocol. The broker accepts subscriptions and

68

disseminates information between subscribers and publishers. The MQTT

broker does all the topic matching, subscriptions management, filtering and

matching, and publication delivery. The broker communicates with its local

clients while the cluster server acts as a message forwarder to the broker. Both

the MQTT broker and the cluster server are stateful applications. Each broker

node shares information about the state of connected sessions and also meta-

information about the cluster itself. If a cluster node is stopped, the other cluster

member will know that there is a node missing. The cluster meta-information

and MQTT subscription state need to be updated to deal with network partition

and possible message loss. By using periodic updates with time-to-live (TTL)

intervals to discard outdated entries, the broker cluster ensures that the

convergence regarding subscription data within the distributed system is

eventually reached.

Figure 4.1 Edge cloud MQTT broker cluster architecture

69

The broker cluster system uses a load balancer to share the load among

multiple brokers. The performance testbed uses a TCP load balancer as a single

endpoint for the communication with publishers and subscribers. The TCP load

balancer can be implemented using software components such as HAProxy

(Tarreau and others, 2012). The load balancer equally spreads incoming

workload across backend MQTT broker nodes, so that neither broker node is

overloaded with too many clients. Since this implementation deals with the

reliability of backend servers and only uses one load-balancing node, the load

balancing server is assumed to be reliable. The focus of the design and

implementation shall be resisting against crash failures among the backend

MQTT brokers.

The design focuses on building routing states among brokers to

efficiently route messages towards interested subscribers. In an edge-based

deployment, the topology of the local network enables higher routing efficiency

because routing only needs one hop, as all the brokers are fully connected in a

local area network. The idea of adding a middle-layer cluster server is to

decouple the MQTT broker’s operations from clients. The MQTT service is

provided to the clients without their need to know the details about underlying

software and hardware. As depicted in Figure 4.1(a), the cluster server separates

the distributed routing mechanism from publish-subscribe operations of

individual MQTT brokers. The cluster server is responsible for coordinating

publish-subscribe and routing operations among all MQTT brokers. It sits on

top of the MQTT broker, and use message passing to communicate with other

cluster nodes. The cluster server is also transparent to the broker.

70

The cluster server is implemented using Golang and deployed using

Docker containers. The MQTT broker application does not need recompilation

or relinking on its software. The cluster server consists of two components as

depicted in Figure 4.1(b). The first component manages and intercepts incoming

MQTT packets asynchronously via pcap-filter. An MQTT Deserializer module

converts input streams of MQTT messages into meaningful application-level

messages. Packets are deserialized according to the MQTT version 3.1.1

standard. The MQTT packets are captured, decoded, and tunneled into the

message receiving buffer for processing.

The second component uses a configurable worker thread pool and a

thread-safe hash table to match publish messages, forward publications, detect

duplication, synchronize subscription state, and retransmit failed publications.

Each worker thread encodes and forwards received publication messages to

matching remote brokers within the cluster. The hash table is a temporary in-

memory storage component used to maintain subscription data necessary for

routing, synchronization, and publication retransmission. The hash table is

updated as part of the synchronization protocol in the cluster. The broker cluster

uses decentralized routing and event dissemination. The system also uses a

gossip-based protocol to maintain node membership, by performing periodic

updates to give a more consistent view of the cluster environment.

Figure 4.2 depicts the data pipeline of MQTT from edge to cloud

through the internet and data bridge. The cloud integration module provides a

publish-subscribe messaging framework to stream edge data to the cloud. The

71

cloud module provides an interface between the MQTT edge services with end-

user requests at the cloud. It also forwards aggregated data from the edge server

to the cloud through an MQTT data streaming bridge. The IoT end-to-end data

pipeline ingests messages from IoT devices to different data stores in the cloud.

In this way, the edge brokers are ubiquitous and do not depend on connectivity

to the cloud broker. The functionality of this module is achieved using Apache

Kafka with MQTT bridge. Kafka is an open-source stream processing data

pipeline developed by LinkedIn (Kreps et al., 2011).

Figure 4.2 Data Pipeline

To integrate MQTT messages to Kafka, the implementation uses an

MQTT extension framework called Kafka connect to ingest data from the edge

MQTT brokers and streams the data to the cloud system. Kafka pushes selected

MQTT messages received in the edge brokers to the cloud for storage and

further processing. Data pipelines of Kafka also maintain network and data

fault-tolerance by allowing data buffer at the edge side when the Internet is

inaccessible.

4.2 Software Application Stack

Docker Swarm orchestration increases the ease of deployment in the

edge cloud settings. Container services scheduling can be set up easily with

Docker compose scripts and Docker Swarm API. The edge to cloud integration

72

and orchestration module is developed based on the architecture presented in

(Alam et al., 2018). Figure 4.3 shows the software components in different

layers of the cloud. The application services are logical groups of containers

based on a set of Docker images. Containers can be easily removed and updated

without impacting overall cluster services. Docker services can be orchestrated

locally, or centrally in the cloud through the middle layer gateway. The edge

broker offers a local connection point to edge devices and MQTT services with

reduced response times.

Figure 4.3 Cluster container application stack

The application in the edge layer has three pieces of services: a cluster

server node, an MQTT broker, and a load balancer. The MQTT brokers are edge

brokers that are responsible for connectivity between sensors. The cluster server

is an interconnect layer that works on top of the distributed MQTT brokers. The

73

cluster service is built to fit between MQTT server protocol and MQTT client

so that existing open-source MQTT broker and client implementations can be

seamlessly integrated. The cluster server makes routing decisions based on the

type of MQTT messages from clients. Critical client information is stored

locally in each node. Distributed state information is maintained using periodic

updates realized by communication primitives in the membership protocol.

Each cluster server node cooperates and communicates with each other within

the network to make routing messages and share routing information. This

removes the necessity for individual brokers to communicate directly with each

other. Each broker node may not be aware of the presence of a proxy or any

other broker nodes in the network.

The MQTT broker is only responsible for its own designated functions.

The MQTT broker manages and delivers messages from publishers to

subscribers local to its own scope. The broker also maintains a session with

connected clients and sends an acknowledgment (ACK) and ping response

(PINGRESP) message to the clients. All incoming MQTT messages are seen by

the broker as MQTT client requests. The cluster server is, therefore, a network

element that enables coordination between physically distributed MQTT

brokers, which themselves do not have any clustering capabilities. Another

purpose of the cluster server is to redeliver failed messages by caching failed

publications.

74

The Docker Swarm master node can scale and update Docker containers

in a cluster of SBC nodes. It ensures efficient allocation and scheduling of

Docker containers by keeping track of the deployed services. The load balancer

sits in the manager node and offers a single-entry point to clients. The clients

connect to the frontline load balancer to receive MQTT services. By using a

load balancer, the backend IP address of each cluster node is not published to

the clients. Each broker node receives a request distributed by the load balancer,

processes the request, and responds to the balancer. The balancer, in turn,

changes the response IP back to the IP of the balancer and forwards the response

to the client. Clients can connect to any node.

A round-robin algorithm usually works fine for short-lived and stateless

connections. However, the application workload for the broker cluster requires

long-lived and bidirectional communication over the load balancer. If an SBC

node crashes, a potentially large number of subscribers will initiate new

connections to other online brokers. A round-robin algorithm for this workload

causes the workload to spread unevenly in the backend. Some backend servers

will have too many connections compared to the others. The load balancing

algorithm should assign new connections to the least loaded backend server

based on the number of active connections on each of the backend servers.

Therefore, the load balancer uses the least connected algorithm so that new

clients will be allocated to the least loaded servers when any backend node fails.

Apart from a better balance in the number of connections to each backend

server, the reconnected clients from a dead backend node will be spread evenly

over the remaining backend servers.

75

4.3 Components Relationship

Figure 4.4 Software component interaction

Figure 4.4 depicts the interaction between each component of the MQTT

broker cluster. Each component of the broker cluster is implemented via Docker

container using the microservice architecture. In the context of the broker

system, an MQTT client that is connected directly to a broker is called a local

client. To the clients, the broker that connects to them is called the local broker.

The MQTT broker directly sends MQTT responses to the load balancer, which

in turn redirects the responses to the clients. A local broker is a broker that sits

within the same host machine as the local cluster node. The local broker delivers

messages to local subscribers while the local cluster node routes messages to

76

remote neighbor brokers inside the cluster. The neighbor cluster server is a

remote cluster node that maintains a connection with the local cluster node. A

neighbor client is a client that is connected to a neighbor broker. The cluster

node works together to facilitate message delivery to all subscribers, regardless

of which node they are connected to.

4.4 Broker Cluster Topology

The broker cluster is configured in a fully connected mesh where every

node in the cluster is connected to every other node. Each peer node is only one

hop away from each other. With this configuration, each node knows about all

the state information and client connections from each neighbor node. Each

cluster server node maintains the routing state information within its local data

store. The routing state information contains a forward table, a recovery table,

and a subscription routing table. The forward table maps each topic to the IP

address of the neighbor brokers that subscribed to the topic. The subscription

routing table maps the IP address of each neighbor broker to a set of its

subscribed topics. The recovery table caches lost publication to facilitate

message retransmission.

The membership framework used here implements the SWIM protocol

(Das et al., 2002). SWIM protocol is a gossip-based membership protocol that

detects node failures and maintains membership information of the cluster

nodes. One drawback of this protocol is weak consistency. The membership

protocol maintains the broker nodes in a mesh topology. Each member node has

a complete view of the topology. At any time, nodes can have a different view

77

of the global overlay and will eventually converge to the same state. A node

disseminates its message in an epidemic protocol by sharing information only

with a random subset of its peers. Subsequent nodes then share this information

with a random subset of its neighbor peers, until the entire cluster receives that

information.

SWIM has separate layers of failure detection and message

dissemination module. Each node in the cluster probes a node at random and

expect an acknowledge message in return within a timeout. If the

acknowledgment message is not received from a node during probing, the node

will try to probe it through other nodes to prevent a false-positive state. A node

is marked as dead when the node cannot be accessed by any of the members.

The event of node failure is propagated across the cluster. The membership

protocol will notify other broker nodes when a new node joins in. Each online

node sends a set of its subscribed topics to that newly joined member so that the

routing information is kept synchronized. The newly joined member node adds

the topic list received to its routing structure.

4.5 Subscription Routing Management

The system uses subscription flooding (Eugster et al., 2003) to propagate

subscription state information across the broker cluster. Each node maintains a

local subscription table, a subscription routing table, and a forward table.

The local subscription table contains entries for each MQTT

subscription received by the MQTT broker. The entry for the local subscription

table is in the form of <ClientID, topicSet>, where ClientID is the identifier of

78

the MQTT client, and topicSet is a set of MQTT topics subscribed by the client.

The broker node uses the local subscription table for the recovery and

synchronization process, which will be described in Section 4.7.2.

For each received MQTT subscription, the broker node sends a

subscribe message along with the MQTT client identifier, and lists of

subscribed topics. An Unsubscription advertisement is like a subscription

advertisement except that it marks the message with an unsubscribe tag. The

subscription routing table contains entries for each subscription advertisement

received by the system.

Each subscription routing entry contains a pair of tuples in the form of

<sNode, ClientID, topicSet> where sNode is the identifier of the broker node

that sends the subscription advertisement, ClientID is the identifier of the

subscribing MQTT client and topicSet is the list of topics specified by the client.

Each broker node that receives the subscription advertisement stores it in a

subscription routing table and a forward table.

79

Figure 4.5 Topic Trie for Forwarding Table

Each broker node uses the subscription routing information to construct

publication forwarding paths. The forward table stores all the routing paths of

each topic with the identity of the neighboring node from which the subscription

advertisement was received. The forward table uses the topic as keys and

destination brokers as values. The forward table takes the form of <topic,

nodeSet>, where topic is the topic of subscription, and nodeSet is a set of broker

nodes that have registered to the given topic. The purpose of the routing table is

to provide fast topic matching for received publication messages. The forward

table implements the prefix trie data structure (Datta et al., 2005) as depicted in

Figure 4.5. A topic trie is a data structure used for fast searching operations on

a given topic. Each broker uses the topic matching routine <MatchTopic> given

in Listing 4.1 to search for broker nodes, whose subscription matches with the

given publication topic. <AddBroker> is a helper function to append all brokers

in the current nodes to the result. <Recursive_Match> is a recursive function

80

that matches the subscriptions for every level of a given pubTopic separated by

‘/’ and appends the brokers for every matching topic level to the search results.

Upon querying the forward table with a topic that comes with the publication

message, it returns a set of forwarding paths consisting of a set of brokers nodes

<brokerSet> that matches the publication topic. This reduces redundancy and

network overhead of message forwarding as all received messages are filtered

before they are forwarded. The system then forwards this message to the list of

destination brokers using the message delivery process described in Section 4.6.

The system implements the subscription routing table using a thread-

safe concurrent hash table, with each neighbor id mapping to the corresponding

clientID and the topics that they subscribed to. The list of topics within the hash

table is implemented as a set so that it is easier to update the structure, during

the synchronization period. A set can be updated through combination set

operations such as union, intersect, and complement. Each subscription entry

has a time-to-live (TTL) period and expects updates from the neighbor nodes to

refresh the TTL period. A subscription entry is discarded when it expires or the

broker receives an unsubscribe advertisement from a neighbor node.

81

function MatchTopic(topicName) {

 // Split string with topic level separator ‘/’

 topicSlice := splitString(topicName, "/")

 brokers := Array(string)

 root := topicTrie.Root

 Recursive_Match(root, topicSlice, brokers)

 return brokers

}

function AddBroker(node, brokers) {

 for each broker in node.Brokers {

 Add broker to brokers

 }

}

function Recursive_Match(node, topicSlice, brokers) {

 endFlag := length_of (topicSlice) == 1 // one token left

 // find for key ‘#’ in set of children Nodes

 if childNode := node.children["#"] { // multi-level wild card

 AddBroker (cnode, brokers)

 }

 if childNode:= node.children["+"] { // single-level wild card

 if endFlag == TRUE {

 AddBroker (childNode, brokers)

 if n := childNode.children["#"] { // multi-level wild card

 AddBroker (n, brokers)

 }

 } else {

 Recursive_Match (childNode, topicSlice[1:], brokers)

 }

 }

 if childNode := node.children[topicSlice[0]] {

 if endFlag == TRUE {

 AddBroker (cnode, rs)

 if n := childNode.children["#"] { // multi-level wild card

 AddBroker (n, brokers)

 }

 } else {

 Recursive_Match (childNode, topicSlice[1:], brokers)

 }

 }

}

 Listing 4.1 Topic matching routine

82

4.6 Publication Message Forwarding

4.6.1 Normal Condition

The broker node uses the forward table to build forwarding paths. For

each publication message, the broker node generates a unique sequence number

<pubMsgSeq> for the reception of this message for the first time. This sequence

number is unique and ascending. Each broker node uses the matching routine

<MatchTopic> to find neighbor nodes with matching MQTT subscription.

After retrieving the <brokerSet> containing the matching destination

brokers, the broker node stores the entry of publication confirmation message

in the form of <pubMsgSeq, ackSet> in the publication acknowledgment table.

ackSet represents the acknowledgment messages received from the destination

brokers, brokerSet. The entries of ackSet are in the form of <broker,

ackReceived>, where ackReceived is a Boolean value that indicates the

reception of acknowledgment message from a destination broker. The value of

ackReceived is false by default and is set to true whenever the forwarding broker

receives a publication acknowledgment (PUBACK) message from a destination

broker. The broker node removes the copy of the publication message after it

receives acknowledgment messages from all destination brokers.

The broker node filters destination brokers in a destinationBrokers by

the brokerSet and Boolean values in the ackSet, given in Equation 4-1.

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐵𝑟𝑜𝑘𝑒𝑟𝑠 = {𝑏𝑟𝑜𝑘𝑒𝑟𝑆𝑒𝑡 ⋀ 𝑎𝑐𝑘𝑆𝑒𝑡} (4-1)

The broker node only forwards the publication message to a neighbor

broker that (i) has subscriptions that match the publication topic and (ii) does

83

not confirm the reception of the publication message. The forwarding broker

sends a copy of the publication message to all the brokers in

<destinationBrokers> using QoS 1 of the MQTT protocol, as depicted in Figure

4.6(a). The neighbor broker sends an acknowledgment message (PUBACK)

back to the forwarding broker to confirm the reception of the publication

message. If PUBACK is not received from the destination broker, the

publication message is stored in a buffered queue for message retransmission,

as depicted in Figure 4.6(b). The message retransmission process is described

in Section 4.6.2. Figure 4.7 shows the message forwarding sequence for the

broker cluster.

Figure 4.6 Broker publication message forwarding

84

Figure 4.7 Message routing sequence

4.6.2 Message Forwarding with Failed Brokers

Message forwarding implements message acknowledgment to confirm

the successful forwarding of a message to a neighbor MQTT broker. If the

PUBACK message is not received from any one of the destination brokers, the

message forwarding process fails. The failed publication message is pushed into

a recovery table that maintains a queue of backup messages. The broker node

redelivers these messages as soon as client connections come back online. The

message retransmission approach realizes fault tolerance in the system by a

compensation approach (Avizienis et al., 2004). Figure 4.6(b) depicts the

message buffering process for if the failed messages when PUBACK is not

received. For each incoming subscription, the message recovery module checks

the client ID and the subscription topic by referring to the recovery table. Each

entry of the recover table is in the form of <ClientID, topic, msgQueue>, where

msgQueue refers to a first-in, first-out (FIFO) buffer of failed messages. Each

85

entry in msgQueue is in the form of <pubMsgSeq, msg>, where pubMsgSeq

refers to the publication message sequence described in Section 4.6.1 and msg

is the copy publication message. If both the ClientID and topic for a subscription

match any entries in the recover table, it means that the subscription is a

disconnected client and not a resubscription by the client itself. The recover

table returns the message queue that corresponds to the ClientID and topic.

 Figure 4.8 Message retransmission process

Figure 4.8 depicts the sequence of the message resending process. The

system will retransmit all the missed publications that are stored in the message

queues. The cluster server records the message IDs of forwarded publications

to prevent forwarding the same message multiple times. If the retransmission

process receives and a publication acknowledgment PUBACK message in

return, the corresponding entry in the publication acknowledgment table is set

86

to true. The publication message is discarded when all of the values in the ackSet

entries are true.

4.7 Recovery of Routing State

The proposed broker cluster only tolerates node crashes, where a process

stops reacting to incoming messages due to software or hardware faults. Node

crashes can lead to inconsistency in state information within the broker overlay

within the cluster. However, the system does not handle Byzantine faults. The

reason for this is to reduce the cost of replication. This section describes the

fault monitoring and recovery process for the broker cluster.

4.7.1 Monitoring and Failure Detection

Without fault tolerance, the failure of a single component can disrupt the

normal operation of the system. The broker cluster provides client connection

failover so that clients can their connection as quickly as possible. Any cluster

nodes can fail independently without affecting other nodes.

4.7.1.1 Cluster Node Failure Detection

Each cluster peer node implements a heartbeat mechanism for

monitoring neighbor peers. It emits heartbeat signals to neighbor servers at

regular intervals. For every heartbeat received, the peer node resets the timeout

for heartbeat reception. Figure 4.9 depicts the UDP heartbeat mechanism among

cluster nodes. When the server failure is detected through a heartbeat timeout,

the client should continue receiving a stream of MQTT service within the broker

cluster. In every broker node, a local failure detector is implemented by the

87

membership protocol to monitor the reachability of a neighboring node, via

periodic pings with timeouts. A live node that detects a failed node will update

the subscription routing table associated with the failed node. If node crashes

occur, the fault mechanism ensures that a live broker node will replace the client

and operations of the failed node.

Figure 4.9 Cluster membership heartbeat detection

4.7.1.2 Load Balancer Health Checks

The load balancer implements layer 4 TCP health checks to prevent

sending packets to an offline server. The load balancer periodically sends health

check probes and attempts to connect to the TCP port of the backend servers.

As depicted in Figure 4.10, a TCP SYN request to a backend port expects a TCP

SYNC ACK response in return. If the response is not received within a

predefined timeout, the server is marked DOWN by the load balancer. The load

balancer isolates the DOWN server and routes packets to the remaining online

servers based on the least connected algorithm. The load balancer then

continues to distribute MQTT requests to the remaining online broker nodes.

88

Figure 4.10 Load balancer TCP health checks

4.7.1.3 MQTT Client Keepalive

For monitoring MQTT server health, the MQTT client uses ping

requests and expects a ping response from the server. The MQTT client starts a

timeout for every ping acknowledgment sent. If the server has not replied within

the timeout period, the client assumes the server to have failed. The client then

reconnects and sends a connect message to the remaining online servers routed

by the load balancer. Figure 4.11 depicts the MQTT client keepalive and

reconnection process.

89

Figure 4.11 MQTT keep-alive

4.7.2 System State Reconfiguration

The system assumes the crash-recovery failure model for broker node

failures. This means that each broker node is assumed to be either online or

offline at any point in time. When a broker node fails, it stops operating until it

comes back online. When a failed broker comes back online, it loses all of its

soft-state subscriptions and routing information that it had before it crashes. To

handle crash failures, the system recovers the subscription routing state into a

consistent state and provides redundancy through message retransmission.

When a broker fails, clients connected to the failed broker reconnect to one of

the online brokers in the cluster. The rest of the cluster stores the publication

messages until the clients restore their connections to the system. If state

90

information in the failed broker cannot be recovered or the recovery process is

slow, the publication messages will be lost. The system updates the routing table

of remaining brokers so that new publication messages are properly routed. The

system will deliver the publication received during the recovery period after the

joining broker is fully recovered.

4.7.2.1 Node Failure and Routing State Synchronization

The state information in each cluster node will become inconsistent

when a broker node fails. To maintain consistency of the routing state after a

failure, the system uses the periodic resubscription approach (Jerzak and Fetzer,

2009; Siegemund et al., 2015). Each broker node maintains a timestamp for

every subscription entry in the subscription routing table. The broker node

refreshes the subscription entry every time it receives a subscription

advertisement from a neighbor broker node. A subscription entry will timeout

when the broker node does not receive a refresh subscription advertisement

within a time-to-live (TTL) period. The broker node discards any outdated

entries in the subscription routing table and the forward table. For fast updates

in the case of failure, the event of failure is propagated across the cluster. Each

broker node immediately updates and deletes the corresponding entry in its

routing tables relative to the failed broker node.

4.7.2.2 Node Initialization and Recovery Operation

A failing or new broker node that joins the cluster topology is treated as

a recovering node by the system. The new node enters a recovery state. When a

node joins the cluster topology, the joining node sends a JOIN message along

91

with a TCP push/pull request to every other live broker node to initialize a

recovery operation. Upon receiving a TCP push/pull request with a JOIN

message from a broker node, each existing broker node computes a set of its

local subscription information from its local subscription table and sends it to

the joining broker over the TCP network. The recovery message is in the form

of <originNode, subscriptionSet>, where originNode is the synchronizing

broker node and subscriptionSet is a set of entries in the local subscription table.

After sending the recovery message, the existing broker node sends a syncOK

message to end the recovery process for the joining broker node. After receiving

a syncOK message, the broker node enters a normal operation state. Each

existing broker uses a syncFlag to indicate the normal operation of a neighbor

broker node. Section 4.7.2.3 discusses the uses of syncFlag.

4.7.2.3 Recovery State

During the recovery state, publication may reach the newly joined

broker node that does not have the complete subscription routing information

of its neighbor broker nodes. This causes missing publication because the

joining broker cannot compute any forwarding paths for the received

publication messages. To prevent this, the joining broker node enters a recovery

state and temporarily stores all publication messages into an initialization

message queue.

The broker node maintains a synchronization set <neighborBroker,

syncFlag>, where neighborBroker is the identifier of a neighbor broker node

and syncFlag is a Boolean value that indicates the completion of the

92

synchronization period. A broker node first enters a recovery state when it joins

the cluster topology. During the recovery state, the joining broker node stores

all received publication messages in the initialization message queue. The

joining broker node updates its subscription routing table from the information

received from neighbor broker nodes during the recovery operation described

in Section 4.7.2.2.

Each neighbor broker node sends a syncOK message to the joining

broker to mark the completion of the recovery operation. After receiving a

syncOK message from a neighbor broker node, the joining broker node sets the

syncFlag for the corresponding neighbor broker node to True. The joining

broker node goes out of the recovery state after all of the values in the

synchronization set entries are True. After going out of the recovery state, the

joining broker retrieves the publication messages from the initialization

message queue and performs the message forwarding process described in

Section 4.6.

4.8 Implementation

Edge computing platform orchestrates services and resources on edge

nodes in a distributed way, similar to typical PaaS functions in the cloud. A

Raspberry Pi board has low power consumption, which makes it possible to

create an affordable and energy-efficient cluster for environments for which

high-tech installations are not possible. A cluster consisting of five Raspberry

Pi 3B boards is used as the hardware infrastructure to deploy the Docker

containers. The clustered configuration also allows better robustness against

93

failure. Each board runs Hypriot OS, a customized version of Raspbian

integrated with Docker engine to deploy container services such as storage and

cluster management. The operating system is a headless version of the Raspbian

system, without a desktop environment, thus freeing up a large amount of

memory and storage. The least amount of RAM is allocated for the board GPU

to fully utilize the CPU in the platform. The Raspberry Pi SBC cluster uses a

star network topology. One switch act as the core of the star and the other

switches then links the core to the Raspberry Pi SBCs. The switch is connected

to a router that supplies the DHCP server to distribute network configuration

parameters.

The implementation of the MQTT broker cluster is illustrated in Figure

4.12. One node is used as the Docker Swarm manager that hosts the load

balancer and manages the scheduling of services. The Docker Swarm manager

node is connected to the internet and serves as a gateway for development and

deployment interface for the cluster. User applications and IoT devices can

connect the broker service through the wireless network. The load balancer is

implemented using HAProxy which routes all requests at the transport layer.

The other four SBCs are worker nodes that run the MQTT broker cluster. The

broker component uses Mosquitto MQTT broker v-1.6.4 and a customized

middleware cluster server for distributed coordination among brokers.

All application services are modular and independent microservices.

This research work uses Docker Swarm for cluster management. One node is

used as the swarm manager that runs a dedicated container for the load balancer

94

and the management interface. For fault tolerance, Docker Swarm supports

redundant Swarm managers and can replicate information in the distributed key-

value store. In the implementation, Docker Swarm orchestrates and distributes

application services into a set of clustered edge nodes. A Docker-compose file

is used to define the orchestration of the microservices and replicas for each

cluster node.

Figure 4.12 MQTT broker cluster implementation

The cloud integration module uses Kafka APIs to implement an

intermediary MQTT bridge for both producer and consumer in the data pipeline.

The Kafka cluster is deployed as Docker containers on two Raspberry Pi boards.

The cloud users can also receive MQTT messages from the IoT devices residing

at the network edge through the cloud MQTT broker. The cloud MQTT broker,

central cloud orchestration, and monitoring are implemented in a generic laptop

running Ubuntu OS.

95

CHAPTER 5

RESULTS AND EVALUATIONS

This chapter presents the evaluations of the microservice-based broker

cluster to support communication between MQTT publishers and subscribers.

To evaluate the distributed broker cluster system and its performance and fault

tolerance, a testbed of an MQTT communication scenario is implemented. As

many as two thousand MQTT devices are emulated as the application load. The

evaluations assume that the load balancer is reliable and the system is secure.

5.1 Experiment Setup

The experiment setup uses a cluster of four broker nodes and one load

balancer node. The results evaluated are end-to-end latency (millisecond),

throughput (messages/second), inter-message jitter (milliseconds), latency after

broker failure, CPU time utilization percentage, and RAM usage. The

performance test is conducted by scaling the clients from 50 to 2000 pairs of

publishers and subscribers. Each pair of clients corresponds to one unique topic.

The performance of the broker cluster system is measured in terms of latency

and message throughput to understand the effect of the number of clients on the

system performance. The MQTT clients establish TCP connections over the

wireless network to the MQTT broker. The testbed is implemented using a

modified version of mqtt-bm-latency (hui6075, 2018), an MQTT load-test

simulation written in Go. The benchmark uses multiple threads to

asynchronously imitates a large number of devices as the publisher (QoS 2) and

subscribers (QoS 0) via MQTT client APIs. The relationship between publishers

96

and subscribers is one-to-one, which represents a maximum of 2000 channels

of MQTT communication.

The script is configured to publish 100 messages per second to the

MQTT cluster, such that each publication is sent between an interval of 10

milliseconds. The message payload is fixed at 32 bytes, where it contains 32

bytes of timestamp value. The message payload is chosen to be small so that it

does not overwhelm the Raspberry Pi 3 SBC that has only 957 MiB of usable

RAM. The throughput is measured in terms of the average number of messages

sent per second for each publisher. The benchmarks were conducted on a local

router network, without any external traffic.

Throughput and latency evaluations are presented in Section 5.2 and 5.3

respectively. Due to variations in the network processing time, the latency and

throughput measurements are slightly different each time the benchmark is

performed. Therefore, the benchmark is repeated five times, and the average

value of the measurements are shown in the result. Section 5.4 presents the jitter

values the message delivery across the broker cluster. Timestamps of message

production in the publisher and message reception in subscribers are both

recorded as a pair to compute the end-to-end delivery latency for each message.

The end-to-end delivery latencies are then measured to obtain their maximum,

minimum, and mean values. Due to time synchronization errors between

different machines, all clients are simulated on the same machine to obtain more

accurate results.

97

Section 5.5 presents the fault tolerance evaluations of the proposed

broker cluster. One of the brokers is deliberately turned off after all clients have

subscribed to the MQTT broker. The end-to-end latencies and successful

delivery rate of missed publications, before and after the failure of one broker,

are evaluated.

Resource usage evaluations are presented in Section 5.6. To obtain

runtime system metrics, the metric data is extracted from a metric server on each

Raspberry Pi board and accumulated to a data aggregator. Prometheus is used

to collect the metrics from the Docker hosts. Both services can be easily

integrated into Docker Swarm. Node Exporter is a server provided by

Prometheus to collect and expose metrics such as CPU utilization, RAM usage

from a Docker host. The Node Exporter acts as a server that periodically sends

out system metrics of the host to the Prometheus server. Prometheus then stores

the metrics data with a timestamp in a database. Grafana is an open analytics

and monitoring platform that is used to visualize the time series data collected

by Prometheus. Instances of Node Exporter are deployed on each Raspberry Pi

SBC host that runs the MQTT broker, while Prometheus and Grafana are

deployed on a generic Ubuntu-based laptop. Figure 5.1 depicts the Prometheus-

based monitoring stack to gather the system metrics, which include CPU

utilization percentage and total RAM usage.

98

Figure 5.1 System metrics monitor

The broker cluster consists of four Raspberry Pi 3 Model B SBCs, each

of which features 1GB of RAM, and 10/100 Mbps Ethernet network interface

card (NIC). Each broker node runs HypriotOS v1.8.0 with Kernel v4.14 and

Docker v18.06. The load balancer node uses Raspberry Pi 3 Model B and runs

HAProxy v1.7 as the load balancer. The network switch used is a 100Mbits per

second switch.

Table 5.1 gives the details of hardware and software configurations for

the experimental setup.

Table 5.1 Experimental setup configurations

Processor Quad-Core 1.2GHz Broadcom BCM2837 64bit

Motherboard Raspberry Pi 3 Model B

RAM 1GB DDR3

Network Interface 10/100 Mbps Ethernet

Storage 16 GB 80MB/s microSD

Operating System Hypriot OS v1.8.0 Linux Kernel 4.14

Docker Version Docker 18.06.3-ce

Network 100Mb/s network switch, 100Mb/s wireless router

Load Balancer HAProxy v1.7-stable

MQTT Broker Eclipse Mosquitto v-1.6.4

99

Payload size 32 bytes (Unix timestamps)

Publish QoS 2

Publish message rate 100 message/sec

5.2 Throughput

The throughput evaluation shows the speed at which data can be

transmitted between devices. The publish throughput evaluated in this section

is the average number of publication messages pushed to the broker per second.

The average throughput is obtained by dividing the total throughput by the

number of messages published. The goal of this benchmark is to evaluate how

the MQTT broker cluster scales with the number of publishers.

As depicted in Figure 5.2(a), the average throughput delivered by each

client decreases slightly when the number of clients increased. The single-node

broker outperforms the broker cluster in terms of average throughput per client.

The decline in overall throughput for the proposed broker cluster is not

desirable, considering the cost of horizontal scaling. This happens as a result of

relay elements presented in the load balancer. Since QoS 2 of the MQTT

protocol involves a 4-way handshake, the total publication runtime increases.

This reduces the overall message throughput since throughput is inversely

proportional to their total runtime.

The average throughput of the clustered system is also compared to that

of a cloud broker. As depicted in Figure 5.2(b), the edge-based broker cluster

has a significantly higher throughput compared to the cloud broker. The average

throughput per client remains below 1.5 messages per second for the cloud

broker. It appears clear that how edge-based MQTT provisioning brings

100

significant advantages when compared to the cloud-based approach. It is also

observed that the connections between the cloud broker and endpoint MQTT

clients are not stable, due to network congestion on the internet. Some of the

clients fail to establish a connection with the broker, while some clients are

disconnected half-way when the broker fails to respond with a ping response

(PINGRESP) message back to the clients. Extra delays are incurred when the

disconnected clients reconnect to the cloud broker, which causes a reduction in

message throughput.

The variations in average throughput per client for 50 and 2000 clients

are provided in Figure 5.3(a). The average throughput values for fifty and two

thousand clients are almost comparable for the broker cluster. The performance

degradation of the broker cluster 12.98% when the number of clients increases.

For the single broker setup, the average throughput decreases by 54%. Despite

having lower average throughput measurements, the 4-node broker cluster

shows better scalability compared to the single node broker. This suggests that

the broker cluster can handle load increase better than the single broker setup.

The type of service provisioning, either edge-based or cloud-based MQTT

broker, does not impact performance degradation. The evaluations in Figure

5.3(a) show that the average throughput of the cloud broker is decreased by

1.18%.

101

(a) 4 node broker cluster and 1 node broker

(b) 4 node broker cluster and cloud MQTT broker

Figure 5.2 Average publish throughput with increasing clients (QoS 2)

0

100

200

300

400

500

600

0 500 1000 1500 2000

T
hr

o
u

gh
p

u
t (

m
sg

/s
e

c)

Clients

4 node
1 node

0

50

100

150

200

250

300

0 500 1000 1500 2000

T
h

ro
u

gh
p

u
t (

m
sg

/s
e

c)

Clients

4 node
fluux.mqtt.io

102

(a) 4 node and 1 node broker publish

throughput
 (b) 4 node and HiveMQ cloud broker

publish throughput

Figure 5.3 Throughput variations with 50 and 2000 clients

5.3 Latency

This section compares the latency performance between the proposed

broker cluster, the cloud broker, and the single node Mosquitto broker. The

measured end-to-end latency consists of transmission delay, the broker

processing delay, and the message forwarding delay within the cluster. For

latency constraints applications, the end-to-end latency should be bounded to an

acceptable threshold depending on the users of the system. The latency

requirement of a typical IoT data streaming application usually ranges between

10 milliseconds to 100 milliseconds, depending on the users of the application

(Nikaein and Krea, 2011). The test script records a timestamp when publications

are sent by a publisher within the MQTT payload. The testbed varies the number

of loads to measure its effect on the end-to-end latency.

0

100

200

300

400

500

600

4 node 1 node

T
h

ro
ug

h
pu

t (
m

sg
/s

ec
)

50 Clients
2000 Clients

0

50

100

150

200

250

300

4 node fluux.mqtt.io

50 Clients
2000 Clients

103

The end-to-end latency of the received messages is computed by

subtracting the timestamp of the published message (sent_t) from the timestamp

of the received message (rcv_t). The same machine is used for both the

receiving and sending side, so clock drifts do not affect the accuracy of the

measured latency. For every test, the difference in the arrival values is computed

using the following calculation.

𝐿 , _ = (𝑚𝑠𝑔 , _ − 𝑚𝑠𝑔 , _) (5-1)

where msg corresponds to the received messages, rcv_ts represents the

reception timestamps, sent_ts represents the sending timestamps, and i is the

current message.

The values of latency are stored in a vector for each test, building a new

data matrix of values whose ith row has the following elements.

 [𝐷𝑎𝑡𝑎] , = (𝐿 , 𝐿 , . . . 𝐿)

(5-2)

where n is the total number of messages (1 ≤ 𝑛 ≤ 2000). Lk

corresponds to the latencies vector of the current test (1 ≤ 𝑘 ≤ 𝑚), and m is the

number of tests. These latency values are used for descriptive and probabilistic

statistical analysis.

Figure 5.5(a) shows the average end-to-end latencies of the broker

cluster and the single node broker setup. The average latency values of the

broker cluster are inconsistent with increasing the number of clients. The reason

behind this is due to the data locality of the backend MQTT broker being routed

by the load balancer. The least connected algorithm of the load balancer routes

104

client requests to backend brokers that were holding the least number of clients.

The results in Figure 5.5(a) show that, with N number of brokers, the non-

deterministic routing happens when the total number of publisher/subscriber

pairs are not divisible by N. This is because of the uneven distribution during

the subscribing process that causes some backend brokers serving more

subscribers than the others. During the publishing process, each publisher is

routed to the broker with the least clients at the time which causes some

mismatches. Hence, more publishers could not reach the backend brokers with

the same registered subscription. As depicted in Figure 5.4, an extra forwarding

delay is incurred when a published message must be forwarded to the broker

that is holding a registered subscriber of the same topic.

Figure 5.4 Message forwarding between backend servers

105

As depicted in Figure 5.6(a), the maximum value of worst-case latency

of the 4-node broker cluster is 42 milliseconds, which is 32.2 milliseconds

higher than that of a single node broker. The maximum worst-case latency of

the single node broker is 9.8 milliseconds. It is observed that the volume of the

load has no direct impact on the worst-case latency.

From the observation in Figure 5.6(b), the broker cluster has an overall

higher worst-case latencies compared to the single node broker. The end-to-end

latency values of the HiveMQ cloud broker are continuously above the latency

of 300 milliseconds, surges to 900 milliseconds when 1800 clients are

connected, and drops to 477 milliseconds afterward. The cloud broker has a

worst-case end-to-end latency of 900 milliseconds when 1800 clients are

connected.

106

(a) 4 node and single node broker

(b) 4 node and HiveMQ cloud broker

Figure 5.5 Average end-to-end latencies with increasing clients

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Clients

4 node
1 node

0

50

100

150

200

250

300

0 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Clients

4 node
fluxx.mqtt.io

107

(a) 4 node and 1 node broker

(b) 4 node and HiveMQ cloud broker

Figure 5.6 Worst case end-to-end latencies with increasing clients

As depicted in Figure 5.7, the data distribution of the latency values does

not follow a normal distribution. The experimental data distribution skews to

the right. This is because most of the measurements (80% according to the CDF

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Clients

4 node
1 node

0

200

400

600

800

1000

0 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Clients

4 node
fluxx.mqtt.io

108

plot in Figure 5.9) are less than or equal to 3 milliseconds, while the rest of the

data are relay latencies between broker nodes. The histogram data within the

lower half hump of the density curve is close to zero, with values between 1 and

8 milliseconds. Based on quartile information in Figure 5.8, only a few outlier

values are greater than 15 milliseconds. The Q-Q plot shows fat tails in small

latency values to the left of the regression line. As depicted in the CDF plot in

Figure 5.9, 95% of values fall between the range of 1 and 8 milliseconds,

confirming that the routing delays between the broker cluster nodes are small.

Also, a few sporadic values of 30 to 44 milliseconds appear. The P-P plot in

Figure 5.10 presents a behavior quite similar to the CDF plot. The measured

values are not aligned along a regression line, with a huge concentration on the

smaller values. The probability statistics demonstrate high data locality for the

test as only less than 5% of messages needs to be forwarded between backend

servers.

Figure 5.7 Latency histogram with a normal density curve

109

Figure 5.8 Latency quantile plot against normal probability distribution

Figure 5.9 Latency cumulative distribution function with the normal

probability curve

110

Figure 5.10 Latency probability plot against normal probability distribution

5.4 Microservice and Monolithic Broker Comparison

This section compares the performance of the microservice-based

Mosquito broker cluster to the monolithic emqttd broker cluster (Emqtt.io,

2018). Emqtt broker implements the mnesia database (Mattsson et al., 1998) to

store and replicate routing tables and uses the SF algorithm (Banno et al., 2017)

to route messages between emqtt broker nodes. The monolithic implementation

of emqttd integrates the broker and cluster component into a single software

package. However, this research work implements the cluster component as a

different set of microservice, which loosely couples with the mosquito MQTT

broker. Figure 2.2 Monolithic and microservice implementation (Cicizz, 2019)

the architectural differences between both implementations.

111

(a) Worst-case latencies

(b) Mean latencies

(c) Standard deviation latencies

Figure 5.11 End-to-end latencies performance comparison

The evaluations in Figure 5.11 show that the performance of the

microservice broker cluster is almost comparable to its monolithic counterpart.

However, the microservice-based Mosquitto broker has lesser performance than

0

10

20

30

40

50

0 500 1000 1500 2000

L
at

e
nc

y
(m

s)

emqttd
mosquitto

0.0

1.0

2.0

3.0

4.0

0 500 1000 1500 2000

L
at

en
cy

 (
m

s)

emqttd
mosquitto

0.0

1.0

2.0

3.0

4.0

5.0

0 500 1000 1500 2000

L
at

en
cy

 (
m

s)

Clients

emqttd
mosquitto

112

the emqttd broker cluster, in terms of end-to-end transmission latency. The

average latency of the Mosquitto broker cluster is 3.42 milliseconds, while the

average latency of the emqttd broker cluster is 2.78 milliseconds. The worst-

case end-to-end latency for the Mosquitto broker cluster is 42 milliseconds,

which is higher compared to the 20.8 milliseconds latency of the emqttd broker

cluster. The lower standard deviation of the emqttd broker cluster suggests that

each latency values among the received messages are less dispersed. The results

confirm that the implementation of the proposed broker cluster presents an

overhead within the microservice layers.

The results in Figure 5.12 show the performance difference between

both the monolithic and microservice implementations. The microservice

broker cluster has a lower average throughput in terms of messages per second

compared to the monolithic emqttd broker cluster. The average performance

difference between both implementations is 3.7%. As depicted in Figure 5.13,

the values of throughput degradation between both implementations are

comparable. When the number of clients increases from 50 to 2000, the publish

throughput of the microservice broker cluster drops by 8.47%, while the

throughput of the emqtt broker cluster drops by 7.37%.

113

Figure 5.12 Average publish throughput (QoS 2)

Clients ■ 4-node mosquitto cluster ■ 4-node emqttd cluster
50 265.68 msg/sec 275.68 msg/sec
2000 233.28 msg/sec 246.28 msg/sec
Percentage drop 8.47 % 7.37 %

Figure 5.13 Throughput degradation (message per second)

230

235

240

245

250

255

260

265

270

275

280

0 500 1000 1500 2000

T
h

ro
ug

hp
u

t (
m

sg
/s

e
c)

Clients

4 node
mosquitto

0

50

100

150

200

250

300

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

114

5.5 Inter-message Jitter

Periodically and continuously transmitted messages will have different

delays because consistent delay pacing cannot be guaranteed due to the

asynchronous nature of distributed systems. This experiment measures the jitter

value between consecutively received messages. The inter-message jitter is the

discrepancy between the delivery times of two consecutively received messages

(Luzuriaga et al., 2014). Inter-message jitter is computed through the following

formula.

𝐽𝑖𝑡𝑡𝑒𝑟 , _ = (𝑚𝑠𝑔 , _ − 𝑚𝑠𝑔 , _) − 𝑇
(5-3)

where msg represents a received message for one iteration, i is the

message for the current iteration (1 ≤ 𝑖 ≤ 𝑁), N is the total number of clients,

rcv_ts is the reception timestamps, and T is the constant value of the inter-

message production period. T is 10 milliseconds in the experiment. Clock drift

is not an issue for Equation (5-3) because both sending and receiving time

stamps are generated on the same machine.

The evaluations compare the maximum, minimum, and 90th percentile

values of the inter-message jitter against the increasing number of clients on

multiple test runs. As depicted in Figure 5.15, the minimum jitter values go from

0.04 to 6.16 milliseconds. The results show that minimum jitter values for each

test run are unaffected by the number of clients. As depicted in Figure 5.14, the

maximum jitter values range from 14.7 to 33.8 milliseconds. The results show

increasing trends in maximum jitter values when the number of clients

increases. Instead of using the average values of each test run, which are heavily

115

affected by outliers, the 90th percentile draws a better representation for most of

the jitter values. The results in Figure 5.16 show that the 90th percentile jitter

for each test run falls between 11 to 15 milliseconds. The results suggest that

the discrepancies between delivery times of two consecutively received

messages are under 15 milliseconds.

Figure 5.14 Maximum jitter of the broker cluster

Figure 5.15 Minimum jitter of the broker cluster

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000

Ji
tt

e
r

(m
s)

Clients

Jitter

0

1

2

3

4

5

6

7

0 500 1000 1500 2000

Ji
tte

r
(m

s)

Clients

Jitter

116

Figure 5.16 Percentile 90 jitter of the broker cluster

5.6 Evaluating Publication Retransmission

To verify the effect of publication retransmission, the throughput

measurements before and after broker failure are evaluated. Figure 5.17 depicts

the fail test experiment for the broker cluster. Server C and D are killed while

after 30 seconds of processing the workload. The client test program monitors

the throughput and end-to-end latency before and after the failure of one broker.

Figure 5.17 Fail test for the broker cluster

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000

Ji
tt

e
r

(m
s)

Clients

Jitter

117

5.6.1 Throughput

Figure 5.18 depicts the throughput in terms of the number of messages

per second for the test environment. The throughput of the broker cluster is

stable when the first server failure happens. Throughput decreases by 7.3%

when a server crash occurs. For the single node broker, the throughput decreases

to zero, showing that the messaging service completely stops. After 5 seconds

of stopping the messaging service, the single-node service is recovered. The

throughput of the broker cluster remains stable before and after the server

failure. This suggests that the broker cluster can maintain the availability of the

MQTT service and gracefully handle the degradation of performance, during

broker failure.

Figure 5.18 Message throughput for fail test

118

5.6.2 Inter-message Jitter

The test script runs with 200 subscribers for 1 minute so that the routing

state has enough time to converge. The test clients are set to have a keepalive

interval of 200 milliseconds. After that, one node and two nodes are deliberately

made to fail respectively in two different tests when the publishers start to send

the messages. The average measurements of 5 test runs are presented. The

results show the jitter measurements between each consecutively received

message.

The broker cluster can provide message loss tolerance for MQTT

clients. The clients previously held by the failed broker automatically reconnect

to other brokers. After one node fails, three remaining broker nodes take over

the subscriptions of the reconnected clients. The broker cluster can recover all

the messages published, during the period of failover, to the reconnected

subscribers.

From the observations, the subscribers do not receive any duplicate

messages during failover. This is because the retransmission process will filter

and send the failed message to the relevant online brokers. Therefore, a

subscriber will not receive the same message again. Also, typical IoT

deployments expect about the same order of magnitude for the number of

publishers, the number of topics, and the number of subscribers (Happ et al.,

2017; Rotaru et al., 2017). There will be no duplicate during failure

retransmission if each subscriber subscribes to a different partition of the topic,

as described in the scenario in (Scalagent, 2014).

119

Figure 5.19 Jitter under normal condition

The inter-message jitter values are plotted against the message received

in ascending order. The jitter values range between 0.67 milliseconds and 21.45

milliseconds when no failure occurs, as depicted in Figure 5.19. Some spikes in

jitter values are because of the inter-cluster message routing delay. These spikes

appear to be large because the jitter values of the other messages without delay

are small.

As depicted in Figure 5.20, a large jitter spike occurs because of message

redelivery by the broker cluster. The maximum jitter value for one failed node

is 210.69 milliseconds. The maximum jitter value for two simultaneous failed

nodes is 215.44 milliseconds, as depicted in Figure 5.21. The differences

between the maximum jitter values for both tests with one and two failed nodes

are almost comparable. This shows that the broker cluster can maintain almost

the same degree of retransmission performance regardless of the number of

node crashes. The results show no significant jitter spikes after the occurrence

0

5

10

15

20

25

0 50 100 150 200

Ji
tt

e
r

(m
s)

nth message

Jitter

120

of the first large spike. The maximum jitter value for the retransmitted message

is 23.58 milliseconds. This suggests that the buffered publication messages are

delivered successfully without significant inconsistencies in message delay.

Figure 5.20 Jitter under one fail node

Figure 5.21 Jitter under two fail nodes (at same time)

0

50

100

150

200

250

0 50 100 150 200

Ji
tt

er
 (

m
s)

nth message

Jitter

0

50

100

150

200

250

0 50 100 150 200

Ji
tt

e
r

(m
s)

nth message

jitter

121

5.6.3 Latency

As depicted in the histogram in Figure 5.22, major portion latency

values are larger than 5 milliseconds. As compared to the latency values during

normal operation shown in Figure 5.7, there are a greater number of high latency

values due to message recovery. The data distribution is concentrated between

0 to 9 milliseconds with a few outliers of 18 to 44 milliseconds. Based on

quartile information in Figure 5.23 only a few outlier values are greater than 15

milliseconds. Also, the majority of smaller values fall within 3 milliseconds

when compared to the regression line. The distribution plot depicted in Figure

5.24 shows that 95% of values are between 1 and 10 milliseconds, which

confirms that most of the latency values are below 10 milliseconds. Also, a few

unusually high of 32 to 40 milliseconds appear. The P-P plot in Figure 5.25

presents a behavior similar to the CDF plot. The measured data is concentrated

on a smaller range of values.

Figure 5.22 Latency histogram with a normal density curve

122

Figure 5.23 Latency quantile plot against normal

Figure 5.24 Latency CDF plot with a normal probability distribution curve

123

Figure 5.25 Latency probability plot against normal

Next, the extra recovery latencies, during failover of one broker node,

are evaluated. The latency incurred in recovering the missed messages is

dependent on the keepalive interval of the client to the broker. The keepalive

interval is the time between each MQTT live-check message sent from a client

to the broker when a connection is established. When the keepalive interval

increases, the latency for getting missing messages increases.

As depicted in Figure 5.26, the data distribution of the latency values

does not follow a normal distribution. The experimental data distribution is

bimodal with values concentrated on the left and right. The histogram data

within the middle of the density curve is zero. Based on quartile information of

the Q-Q plot in Figure 5.27, there are larger values than expected when

compared to the regression line. The regression line intercepts values between

0 and 250 milliseconds. As depicted in the CDF plot in Figure 5.28, 76% of

124

values are between 0 and 3 milliseconds. Also, 24% of the latency values are

larger than 200 milliseconds as a result of message retransmission. The P-P plot

in Figure 5.29 presents a behavior quite similar to the CDF plot, with more

concentration of data distribution on the left and less concentration of data on

the right.

Figure 5.26 Latency histogram with a normal density curve

125

Figure 5.27 Latency quantile plot against normal

Figure 5.28 Latency CDF plot with a normal probability distribution curve

126

Figure 5.29 Latency probability plot against normal

Next, the extra recovery latencies, during failover of two broker nodes,

are evaluated. As depicted in Figure 5.30, as much as half of the experimental

measurements are larger than 200 milliseconds. This shows that almost half of

the messages have failed to be delivered at first and are redelivered by the

system with added delay. On the left of the histogram, the values range from 0

to 25 milliseconds. On the right, the values are larger than 200 milliseconds.

Based on quartile information in Figure 5.31, the data distribution is bimodal.

Also, there are more data with smaller values than expected when compared to

the regression line. Based on the CDF plot in Figure 5.32 50% of values are

between 1 and 25 milliseconds and 50% of values are larger than 210

milliseconds, confirming that the data distribution is bimodal. Also, a few

unusually high of 30 to 44 milliseconds appear. As depicted in Figure 5.33 the

measured values are not aligned along a regression line. The data distribution

was split into half. Half as much of the latency values are above 210

127

milliseconds, indicating the split of the failed messages that are recovered after

the failure of two broker nodes.

Figure 5.30 Latency histogram with a normal curve

Figure 5.31 Latency quantile plot against normal

128

Figure 5.32 Latency CDF with a normal probability distribution

Figure 5.33 Latency probability plot against normal

129

5.7 Resource Usage

To evaluate the system metrics of the broker cluster, Node Exporter and

Prometheus are used to obtain the host’s system metrics such as CPU usage

percentage and RAM usage, when the workload is inserted. The evaluations

shown here are tested using 2000 pairs of MQTT clients, with 32 bytes payload

for each message, and a sending interval of 10ms between each publication.

5.7.1 CPU Utilization

Figure 5.34 depicts the time series of CPU utilization percentage when

the number of connected client devices increases for the clustered broker. Figure

5.34(a) shows the results for four different broker nodes, while Figure 5.34(b)

shows the moving average of four nodes. As depicted in Figure 5.34(b), the

CPU utilization percentage peaks at 10.45% during the initialization of the

docker container and the broker cluster. The CPU percentage is at an average of

3% when the broker cluster is idle. Next, the CPU percentage rises to 4.7%

when clients are subscribing, rises and oscillates around 8% when clients are

publishing, and drops back to 3% afterward.

130

(a) Series of four individual nodes

(b) Series of average of four nodes

Figure 5.34 Time series of CPU time utilization for broker cluster

As depicted in Figure 5.35, the CPU percentage of the single node

broker spikes at 2.8% before dropping to idle at around 1.45%. The CPU utilizes

a maximum of 3.4% when the broker is handling the MQTT workload. The

results show that the extra cluster server component costs about 2% of CPU

overhead.

0

2

4

6

8

10

12

06:40:39 AM 06:45:41 AM 06:50:44 AM 06:55:46 AM 07:00:49 AM 07:05:51 AM

C
P

U
 T

im
e

U
ti

li
za

ti
o

n
 (

%
)

Node 0

Node 1

Node 2

Node 3

0

2

4

6

8

10

12

06:40:39 AM 06:45:41 AM 06:50:44 AM 06:55:46 AM 07:00:49 AM 07:05:51 AM

C
P

U
 T

im
e

 U
ti

li
za

ti
o

n
 (

%
)

Average

131

Figure 5.35 Time series of CPU time utilization for single node broker

The CPU utilization percentage is irregular when clients are subscribing

and publishing. The reason behind this is due to idle times of software processes,

which are blocked while waiting for input-output (I/O) operations to complete

(Bovet and Cesati, 2005). The CPU does not spend clock cycles during I/O wait

times. It can be observed that the CPU has spent a lot of time being idle because

of the intensive number of I/O operations of the network sockets.

Figure 5.36 depicts the CPU time utilization percentage for the MQTT

load test under the condition of two simultaneous failed nodes. The CPU

percentage is at an average of 3% when the broker cluster is idle. Next, the CPU

percentage rises to 4.6% when clients are subscribing. After all of the

subscribers are registered in the system, the CPU percentages of two failed

broker nodes (Node 2 and Node 3) drop to 0. CPU percentage of Node 0 and

Node 1 rise and oscillate around 7.6% when the clients started publishing. The

CPU percentage rises to 4.7% when the disconnected clients came back

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

7:40:01 AM 7:42:54 AM 7:45:47 AM 7:48:40 AM 7:51:33 AM 7:54:25 AM

C
P

U
 T

im
e

U
ti

liz
at

io
n

 (
%

)

132

subscribing to two remaining broker nodes. Retransmission of failed message

happens then the CPU percentage rises and oscillates around 7.6%. With

comparison to the CPU utilization under normal conditions in Figure 5.34(a),

the system encountered a CPU utilization overhead right after the published

messages are delivered for the first time. The results also show that both first-

time publishing and the retransmission process have about the same CPU

utilization peaks at around 7.6%.

Figure 5.36 Time series of CPU time utilization for two failed brokers

5.7.2 RAM Usage

The Raspberry Pi 3 Model B board has 957 Mebibyte (MiB) of total

usable memory. This evaluation demonstrates the impact of increased workload

on the memory usage and the memory overhead incurred within the software

implementation of the broker cluster over the single node broker.

0

2

4

6

8

10

12

01:21:56 PM 01:26:59 PM 01:32:01 PM 01:37:03 PM 01:42:06 PM 01:47:08 PM

C
P

U
 T

im
e

 U
ti

li
za

ti
o

n
 (

%
)

Node 0

Node 1

Node 2

Node 3

133

(a) Series of four individual nodes

(b) Series of average of four nodes

Figure 5.37 Time series of total memory usage for broker cluster

Figure 5.37 depicts the total memory usage during the entire test run.

The average memory used rises from 249 MiB to 347 MiB when initializing the

broker cluster. Figure 5.37(b) demonstrates that the base memory footprint of

the Docker-based broker cluster is 98 MiB on average. As the clients are

subscribing, the memory slowly rises to 352 MiB and remains steadily below

355 MiB during the test run. The results in Figure 5.37(b) show that the average

245

265

285

305

325

345

365

385

06:40:39 AM 06:45:41 AM 06:50:44 AM 06:55:46 AM 07:00:49 AM 07:05:51 AM

T
o

ta
l U

se
d

 M
em

o
ry

 (
M

iB
)

Node 0
Node 1
Node 2
Node 3

245

265

285

305

325

345

365

06:40:39 AM 06:45:41 AM 06:50:44 AM 06:55:46 AM 07:00:49 AM 07:05:51 AM

T
o

ta
l U

s
ed

 M
em

o
ry

 (
M

iB
)

Average

134

memory is larger than 8 MiB (2.28% increase) when the number of connected

MQTT client increases.

Figure 5.38 shows that the RAM usage for the single broker increases

from idle memory of 268.74 MiB to 270.46 MiB (an increase of 1.72 MiB) as

the clients are subscribing. The memory usage falls back to 269.32 MiB when

the MQTT workloads are completed. As compared to the memory overhead of

the single broker setup, the memory overhead of the broker cluster is higher due

to the redundancy of the cluster component.

265

266

267

268

269

270

271

272

7:40:01 AM 7:42:54 AM 7:45:47 AM 7:48:39 AM 7:51:32 AM 7:54:25 AM

T
o

ta
l U

se
d

 M
e

m
o

ry
 (

M
iB

)

Single-node

135

Figure 5.38Figure 5.38 also shows the fluctuation in memory usage for

the single node broker. This can be related to its CPU utilization shown in Figure

5.35, where the broker frequently went idle while waiting for the data stream in

the I/O operation. After the broker completes some of the message deliveries

and the CPU goes to idle, small portions of memory get to free up, which

describes the continuous rise and fall of memory usage during the entire test

run.

Figure 5.38 Time series of total memory usage for single-node broker

265

266

267

268

269

270

271

272

7:40:01 AM 7:42:54 AM 7:45:47 AM 7:48:39 AM 7:51:32 AM 7:54:25 AM

T
o

ta
l U

se
d

 M
em

o
ry

 (
M

iB
)

Single-node

265

266

267

268

269

270

271

272

7:40:01 AM 7:42:54 AM 7:45:47 AM 7:48:39 AM 7:51:32 AM 7:54:25 AM

T
o

ta
l U

se
d

 M
e

m
o

ry
 (

M
iB

)

Single-node

136

Figure 5.39 Time series of total memory usage under two failed brokers

Figure 5.39 depicts the total memory usage during the experiment for

two simultaneously failed broker nodes. The memory usage rises from 260 MiB

to 349 MiB when initializing the broker cluster. When the system is registering

subscribers, the memory usage rises from 349 MiB to 351 MiB. Before

receiving the publish messages, the memory usage of two broker nodes dropped

because of node failure. When the system is receiving publish messages, the

memory rises from 351 MiB to 353 MiB. There is an overhead as compared to

the test under a normal condition in Figure 5.37 when the memory usage slowly

rises to 358 MiB after two broker nodes have completed the delivery of

publication messages. The results show that some of the publication messages

that are failed to be delivered are stored in the memory in the form of a

temporary queue. The system delivers all the message left in the temporary

queue and delete each message in the queue after it is confirmed to be delivered.

The total memory usage drops back to 351 MiB when all of the subscribers are

disconnected.

255

275

295

315

335

355

375

395

01:21:56 PM 01:26:15 PM 01:30:35 PM 01:34:54 PM 01:39:13 PM 01:43:32 PM 01:47:51 PM

T
o

ta
l U

s
ag

e
M

e
m

o
ry

 (
M

iB
)

Node 0
Node 1
Node 2
Node 3

137

5.8 Discussion

This section presents the discussion of the results evaluated in previous

sections with regard to the performance, fault tolerance, and limitations of the

proposed implementation. Since the dissertation focuses on crash failures of the

backend brokers, the discussions of the results assume the load balancer is

reliable and the system is secure.

5.8.1 Throughput

To support interaction between the large volume of devices, the broker

needs to have horizontal scalability. The broker must minimize the degradation

of performance with an increasing number of clients. The evaluations in Section

5.2 show that the broker cluster setup has a higher value of average throughput.

However, the decline in overall throughput is not desirable, considering the cost

of horizontal scaling and replication. The reason behind this is related to the

relay elements present in the microservices layers and in between broker nodes.

The relay element incurs an extra delay in publication time which reduces the

average throughput. Therefore, the evaluations reveal that implementing load

balancing and horizontally scaling MQTT brokers does not directly improve the

performance of the system in terms of message throughput.

The evaluations in Section 5.2 also demonstrates the improvement in

terms of the average publishing throughput of the edge-based MQTT broker

over the cloud-based approach. The edge-based broker significantly

outperforms the cloud broker in terms of average throughput. This occurs due

to the high volume of traffic flow to the cloud broker. The average throughput

138

per client remains below 1.5 messages per second for the cloud broker. The

benefits of an edge-based over a cloud-based MQTT broker are also

demonstrated in (Laaroussi et al., 2018) (Zyrianoff et al., 2018) where the

average throughput is higher for edge-based provisioning of MQTT. Therefore,

it is clear that the edge node is beneficial for many data streaming-based IoT

applications.

Even though the broker cluster has lesser performance in terms of

average throughput, the evaluations demonstrate better scalability than the

single broker. The evaluations in Figure 5.3(a) show that the performance

degradation of the broker cluster is lesser (1.18%) as compared to the single

broker (21.23%). This also shows the bottleneck when a large number of clients

must transmit data to a single broker. The implementation of single-threaded

implementation Mosquitto broker prevents multi-core utilization of the

Raspberry Pi 3 Model B SBC, which features a quad-core processor. As the load

increases, the single node Mosquitto broker presents a bottleneck that limits its

scalability when the entire capacity of the SBC is under-utilized.

In summary, it can be concluded that the broker cluster scales better in

terms of throughput when the workload increases. This shows that the broker

cluster can handle workload increases better than a single node MQTT broker.

A single node MQTT broker will perform more efficiently when the number of

clients is small but scales rather poorly with increasing clients. The single-node

broker shows more severe performance degradation, which explains the reason

for the implementation of the MQTT broker cluster through horizontal scaling.

139

Also, the scalability regarding throughput degradation is independent of the

service provisioning method.

5.8.2 Latency

For the edge brokers, average latencies increase with the number of

client connections, as depicted in Figure 5.5(a). The average latencies of the

cloud broker, as depicted in Figure 5.5(b), are more than 100 milliseconds and

are very unpredictable. Servers with unpredictable latencies are generally

avoided as it can affect IoT applications that are sensitive to delays.

The evaluations in Figure 5.6 show that worst-case latencies are

independent of the number of client connections, but rather the degree of data

locality. The worst-cast latencies are higher when data locality is low. Using the

broker cluster for transmission results in larger average and worst-case

latencies, as depicted in Figure 5.5(a) and Figure 5.6(a). This is because the

workload for the broker cluster has less data locality than a single node broker.

Data locality is present when a publication reaches a broker that also happens

to subscribe to a similar topic.

This is especially true for the subscription diffusion method

implemented for event routing, as discussed in Section 4.4. The subscription

diffusion routing incurs extra software latency to match publications to

subscription and network latency to relay the publication messages to neighbor

nodes. Similar observations are also shown in the work of ILDM (Banno et al.,

140

2017), where the authors tested different patterns of data locality workloads and

confirm that higher data locality results in lower latency.

The setup does not have fine-grain control for data locality as all

requests are routed based on the least connected algorithm in the load balancer.

This is because publication messages need to be forwarded with one extra hop

to the neighbor nodes when subscriptions are scattered across multiple brokers.

Lower overall data locality in the workload causes messages to relay to other

nodes which increases the end-to-end latency. The high transmission latency for

some messages also suggests that publications are buffered in the Mosquitto

broker before being processed because the Mosquitto broker only uses a single

thread for message forwarding (Scalagent, 2014).

The worst-case end-to-end latency for the Mosquitto broker cluster is 40

milliseconds, which is not ideal for real-time messaging but is adequate for less

demanding applications. Also, the Mosquitto cluster will provide more stable

latency as variations between each latency measurement are minor and the

standard deviation is lower.

5.8.3 Performance overhead of the microservice-based broker cluster

Section 5.4 presents the latency evaluations of the microservice-based

Mosquitto cluster and the monolithic emqttd cluster, with 2000 clients

connected. Under normal conditions, without any broker node failure, the

Mosquitto cluster delivers messages with comparable average latency. This

suggests that the delay associated with microservice layers has a low impact on

141

performance in both latency and throughput. The scalability in terms of

throughput degradation is also comparable for both implementations. Table 5.2

gives a summary of the performance comparison in latency and throughput

Table 5.2 Summary of latency and throughput results

 Throughput (msg/sec) End-to-end latency (ms)
 50 2000 % difference Average Worst-case Std
Microservice
broker cluster

265.68 233.28 8.47 3.42 42 3.42

Emqttd broker
cluster

275.73 246.32 7.36 2.78 20.8 2.78

5.8.4 Inter-message Jitter

The jitter value measured here is the variation between response times.

Jitter is a function of queuing, network buffering, processing, and competing for

traffic for the network link. Good connections will have reliable and consistent

response time, which is represented by a lower jitter value. High jitter means

inconsistent response time, which will result in degraded quality of experience

on the end-user for data streaming applications. The lower processing speed of

the broker will tend to produce higher jitter because the delay in processing

speed will cause jitter to increase. The experiment measures jitter values for

periodic messages sent between an interval of 10 milliseconds.

From the evaluations in Section 5.5, the jitter values remain stable under

increasing load. The sender sends messages at a constant rate of 100 messages

per second, but the messages reach the receiver at a variable rate. If every

message takes the same amount of time to travel from publisher to subscriber,

142

there is no jitter. While latency can be improved with optimized software

processing, the jitter value is more random due to the asynchronous nature of

the distributed system. The maximum jitter 35 milliseconds for the experiment.

The maximum jitter value in the tests is the consequence of message forwarding

delay between cluster nodes. Over 90% of jitter values are less than 15

milliseconds. This confirms that the jitter values remain consistent for the load

testing. The receiver will not have significant perceivable abnormalities on the

received messages, as large jitter will affect the quality of user experience.

5.8.5 Impact of Message Publication Rate

It is also noticed that when the fixed publication rate is increased to

1,000 message/sec, which means that each message is sent asynchronously

between the interval of 1 millisecond. Transmission loss is observed for the

broker cluster when more than 200 clients are connected. It is observed that

some of the publications are not received by the cluster server. This can be

related to message loss within the TCP and pcap capture buffers in the Linux

network stack. The packet capture software (tcpdump) which is used in the pcap

API captures and filters raw packets through the ethernet. Delays are incurred

for the process of parsing and filtering of MQTT packets in the user application.

Incoming packets are first queued in a buffer before processing. When the rate

of packet pushed into the buffer exceeds the rate of packets consumed by

tcpdump (Tcpdump&Libpcap, 2019), the buffer becomes full, which forces the

kernel to drop all further packets until there is enough space available in the

buffer.

143

This effect can be reduced by increasing the size of the buffer in the pcap

stack and implementing a ring buffer for the consumer thread as suggested in

(Albin and Rowe, 2012). Also, it could be possible that the Linux kernel has

missed some of the network I/O interrupt due to high message and interrupt rate

(Wu et al., 2007). The received packet is transferred into the main memory and

the I/O receive interrupt is raised only when the packet is accessible in the ring

buffer. The packet receiving process of network interface card (NIC) and

network device driver interrupt is discussed in detail in (Wu and Crawford,

2007).

5.8.6 Failure recovery and comparison to primary/backup broker

To ensure the continuous availability of the MQTT service, the system

has to preserve its message delivery operation in the event of unusual

circumstances and server failures. This is achieved by using redundancy, and

backup brokers, to resist server fault, either broker crashes or network partition

of one server from other servers. The MQTT notification service is a critical

component of the MQTT communication protocol and must not be a single

point of failure. Subscribers will not receive messages if the entire system

collapses.

Resiliency is achieved in the broker cluster by the means of message

retransmissions. The broker cluster can provide continuous service even after

the failure of brokers. The evaluations in Section 5.6 show that the broker cluster

can tolerate and quickly recover from server crashes. Anyone of the broker

nodes will take over the subscribers when the subscribers reconnect.

144

Subscribers that are connected to a failed server can receive previously missed

messages when they reconnect. The MQTT service runs asynchronously by all

redundant MQTT brokers to ensure normal operation under failures.

The connection between the MQTT subscriber and the broker is

maintained through an end-to-end TCP connection through a session. When a

broker fails, the packets are routed to an offline IP node by the load balancer,

and the end-to-end TCP connection with the client breaks. The broker cluster

has to retransmit the MQTT messages received to the disconnected subscribers

if the topic of the message matches.

The evaluations in Figure 5.36 and Figure 5.39 also reveal the overhead

incurred during the failed test as the system uses more memory and CPU time

to store missed messages and to perform the message retransmission process.

The broker stores each received publication as soon as the connections

of previously disconnected subscribers come back online. When the subscriber

reconnects, it receives a burst of messages that it missed when it was

disconnected. With two out of four failed brokers, the retransmission process

takes a maximum of 256.33 milliseconds to recover missed MQTT messages.

This delay includes a 200 milliseconds live-check time client to broker, the

reconnection time, the broker processing delay, and the message forwarding

delay. The minimal jitter values between the retransmitted messages indicate

that the remaining broker nodes can quickly retransmit the failed messages as

soon as the client reconnects.

145

However, FRAME is able to achieve 50 milliseconds of worst-case

recovery latency for its edge-based broker (C. Wang et al., 2019). Compared to

this research work, FRAME uses a two-node primary-backup broker with TAO

publish-subscribe interface. This research work implements a four-node cluster

with a fully connected mesh topology based and uses a backup message queue

to store the failed messages in each cluster node. Both approaches locally deploy

the edge-based publish-subscribe broker system.

Since the proposed method needs to maintain more cluster nodes, their

corresponding routing state is bigger and this leads to a higher recovery delay.

Also, the MQTT protocol includes a keep-alive interval that is used by the client

to detect broker failure. High failure detection timeout increases the time for

broker nodes to recover messages, as confirmed by (Kazemzadeh and Jacobsen,

2009). In the experiment, the keep-alive interval used is 200 milliseconds. As a

result, the client needs to wait for at most 200 milliseconds to detect a broker

failure and reconnects a different broker node, which yields a latency of more

than 200 milliseconds.

The broker cluster will perform additional client ID and message ID

filtering, to prevent forwarding duplicate messages within the cluster, as

described in Section 4.6.1. As a result, the MQTT broker cluster will not

produce duplicate messages during normal operation and recovery process.

However, depending on each MQTT broker, QoS 1 does allow for message

duplicates, as described in the specification of MQTT protocol v3.1.1 (OASIS,

146

2014). A message with a duplicate may also be sent from the broker after the

delivery of the first message instance.

5.8.7 Resource usage

Compared to the CPU time percentage of the single broker setup, the

broker cluster setup utilizes more CPU time for the implementation of an

additional cluster component. The results in Section 5.7 show that the system

resources are not optimally used by the single node Mosquitto broker for both

CPU and memory. The CPU utilization percentage is irregular throughout the

whole test run. This is due to the high frequency of network I/O operations,

which starved the running processes.

Since the Mosquitto broker is I/O bounded and makes use of only one

processor core, the progress of MQTT message transmission is limited by the

speed of network I/O and communication delays. The broker cluster

implementation partly addresses this problem by making use of multiple

processors in a distributed system. The MQTT broker can be faster and more

efficient if the I/O subsystem is made faster. This approach is presented in

(Pipatsakulroj et al., 2017), where the authors make use of the parallelization of

both the MQTT broker components and TCP threads to minimize the effect of

I/O bound. The proposed broker scheme is able to outperform the Mosquitto

broker by 5.38% in terms of message throughput.

Unlike the CPU usage, the RAM usage for the clustered broker remains

stable below 240 MiB despite the increase in workload. The evaluations

147

demonstrate that an increasing number of clients produce a negligible amount

of RAM increases. RAM usage of the single MQTT broker increases by 21 MiB

when the system is loaded with clients. The observations suggest that replication

of the MQTT broker helps reduces the memory footprint for MQTT message

processing.

CPU usage grows fast when handling client subscriptions, while

memory only grows steadily and remains stable afterward. CPU and memory

utilization of the broker cluster is relatively low, with a maximum of 7.8% CPU

utilization and RAM usage below 355 MiB. Hence, the implementation of the

Docker-based MQTT cluster can be considered lightweight.

The results in Section 5.7.2 suggest that the implementation of the

Mosquitto broker cluster is sufficient to support as many as two thousand pairs

of MQTT transmission despite the constraints imposed by the hardware of the

single-board computers.

148

CHAPTER 6

DISCUSSION AND CONCLUSION

6.1 Introduction

This dissertation work presents implementations and evaluations of an

MQTT broker cluster in edge setup and an IoT edge-cloud integration module.

The motivation for the implementation of the proposed broker cluster is to

improve local fault tolerance. The reason for this is because it is also possible

to lose messages to the clients or the cloud due to server failure. Thus, local

fault tolerance needs to be implemented to preserve the system locally at the

edge of network. Many previous studies have focused on distributed publish-

subscribe systems but few of them addressed the issue of local fault tolerance

and the MQTT standard. Due to the recent popularity of the MQTT protocol,

the MQTT middleware layer is developed to facilitate the cooperation of MQTT

brokers without modifying the MQTT broker software. Thus, different broker

implementations can fit together into the local cluster as long as they implement

the MQTT protocol standard. Also, the use of a single-board computer as an

edge-based hosting infrastructure keeps the cost low and can be flexibly sized

according to workload demand and location of deployment. This provides the

means to set up a local MQTT broker cluster in an edge-based environment such

as in rural and remote areas where internet connectivity is limited. Besides,

cloud-based messaging brokers have high and unreliable latency. The purpose

of the edge provisioning of the broker cluster is to reduce end-to-end latency for

IoT and M2M streaming applications. The cluster configuration also helps to

149

horizontally scale to MQTT broker to deal with increasing workload, and to

prevent overloading of a single MQTT broker.

6.2 Methodology Used

This research work implements a microservice-based MQTT broker

cluster where the cluster server is implemented as a separate software

application. The cluster server communicates with its local broker via inter-

process communication and its neighbor cluster server through a gossip-based

membership protocol. The cluster server uses a topic-trie as a routing table to

store neighbor subscription advertised by each neighbor node upon receiving a

subscription locally. The load balancer that is used to distribute MQTT clients

to the backend servers is assumed to be reliable. Each cluster node can fail

independently without affecting other nodes. Each broker node immediately

updates and deletes the corresponding entry in its routing tables when a failed

broker node is detected. A buffered queue is used to store the failed message so

that the message can be retrieved and sent to the affected clients when they

reconnect to the broker cluster. To prevent message loss for recovering brokers

that have previously failed, the joining broker node enters a

recovery/synchronization state and temporarily stores all publication messages

into an initialization message queue. After the recovery state, the broker node

redelivers the message from the message queue to all corresponding neighbor

nodes and clients.

150

The cluster is built using five Raspberry Pi boards that are connected to

a network switch. In the edge layer, four boards are used for MQTT services,

and one board is used as the Swarm manager node for Swarm orchestration and

TCP load balancing. One Mosquitto MQTT broker container and one cluster

server container are deployed into each Docker host.

6.3 Summary of Results

The evaluations demonstrated improved scalability for the broker cluster

and successful recovery of failed publication during failover. The evaluations

in Section 5.2 show that horizontal scaling does not always improve the overall

system performance. Nevertheless, the broker cluster has other benefits to

compensate for the lack of performance. The broker cluster can handle as many

as 2000 connections without any major performance issues. Also, the method

of service provisioning does not always impact the scalability of the system.

The evaluations in Section 5.3 show that the worst-case end-to-end latency is at

a maximum of 42 milliseconds. Although the broker cluster has increased

latency values compared to the single broker, it is still adequate for many IoT

applications, including building automation, smart grids, and smart farms. This

is a tradeoff for reliability as there is an extra message forwarding delay in the

clustered setup when the degree of data locality is low (Banno et al., 2017).

Section 5.4 presents the performance overhead of the microservice-based

Mosquitto cluster over the monolithic emqttd cluster. The proposed broker

cluster delivers messages with higher average latency (3.42ms) compared to the

monolithic-based emqttd cluster (2.78ms). The evaluations in Section 5.6 show

that all missed publications are redelivered to the subscriber during failover

151

without significant delay between the retransmitted messages. This is because

the jitter values after the recovery period are small. With two out of four failed

brokers, the retransmission process takes a maximum of 256.33 milliseconds to

recover missed MQTT messages. The overall system is efficient and overhead

is minimal with Docker container. The observations from load testing show that

the software implementation is lightweight with a CPU usage overhead of less

than 5% and RAM usage overhead of about 8 MiB.

6.4 Future Work

For future work, the broker cluster can be improved by adding a

Byzantine fault tolerance framework, with consideration to secure transactions.

Trinity is a decentralized publish-subscribe broker that integrates the MQTT

broker with Tendermint blockchain (Ramachandran et al., 2019). The Trinity

brokers verify all published data, by executing smart contracts and consensus

algorithm, before distributing the verified data to the other brokers in the

blockchain network. However, the delay takes 1.5 to 4 seconds to deliver an

MQTT message due to the duration of the consensus and transaction validation

process within the Tendermint blockchain. Blockchain-based publish-subscribe

communication can be useful for secure transactions and to provide assurance

to a multiple stakeholder environment. This work can also be extended with the

integration of a real-time latency deadline policy as suggested in (C. Wang et

al., 2019). For the MQTT protocol, this requires the MQTT client to add a

deadline tag on the message payload to indicate the minimum latency

requirement for each message.

152

Taking robustness into account, the latency performance of the broker

cluster is acceptable. The fault tolerance test confirms the reliability of the

MQTT cluster, as failed publications can be redelivered during broker failure.

In conclusion, this research work demonstrated that it is feasible to utilize a

broker cluster to maintain consistent latencies and support reliable MQTT

services despite server failures.

153

REFERENCES

A Light, R., 2017. Mosquitto: server and client implementation of the MQTT
protocol. The Journal of Open Source Software, 2(13), p.265. Available at:
http://dx.doi.org/10.21105/joss.00265.

Adjih, C. et al., 2015. FIT IoT-LAB: A large scale open experimental IoT
testbed. 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT).
December 2015 IEEE.

Ahmed, A. and Ahmed, E., 2016. A survey on mobile edge computing. 2016
10th International Conference on Intelligent Systems and Control (ISCO). 2016
pp. 1–8.

Alam, M. et al., 2018. Orchestration of Microservices for IoT Using Docker and
Edge Computing. IEEE Communications Magazine, 56(9), pp.118–123.

Albin, E. and Rowe, N.C., 2012. A Realistic Experimental Comparison of the
Suricata and Snort Intrusion-Detection Systems. 2012 26th International
Conference on Advanced Information Networking and Applications Workshops.
2012 pp. 122–127.

Avizienis, A., Laprie, J.-., Randell, B. and Landwehr, C., 2004. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1(1), pp.11–33.

Babou, C.S.M. et al., 2018. Home Edge Computing (HEC): Design of a New
Edge Computing Technology for Achieving Ultra-Low Latency BT - Edge
Computing – EDGE 2018. 2018 Springer International Publishing, Cham, pp.
3–17.

Baldoni, R. et al., 2007. TERA: Topic-based Event Routing for Peer-to-peer
Architectures. Proceedings of the 2007 Inaugural International Conference on
Distributed Event-based Systems. DEBS ’07. 2007 ACM, New York, NY, USA,
pp. 2–13.

Baldoni, R., Querzoni, L., Tarkoma, S. and Virgillito, A., 2009. Distributed
Event Routing in Publish-subscribe Systems BT - Middleware for Network
Eccentric and Mobile Applications. In: Garbinato, B., Miranda, H. and
Rodrigues, L., (eds.) Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 219–
244.

154

Banno, R. et al., 2015. Designing Overlay Networks for Handling Exhaust Data
in a Distributed Topic-based Pub/Sub Architecture. Journal of Information
Processing, 23(2), pp.105–116. Available at:
https://doi.org/10.2197/ipsjjip.23.105.

Banno, R. et al., 2017. Dissemination of edge-heavy data on heterogeneous
MQTT brokers. 2017 IEEE 6th International Conference on Cloud Networking
(CloudNet). September 2017 IEEE.

Bellavista, P. and Zanni, A., 2017. Feasibility of Fog Computing Deployment
Based on Docker Containerization over RaspberryPi. Proceedings of the 18th
International Conference on Distributed Computing and Networking. ICDCN
’17. 2017 ACM, New York, NY, USA, pp. 16:1--16:10.

Birman, K.P., 2012. Guide to Reliable Distributed Systems: Building High-
Assurance Applications and Cloud-Hosted Services (Texts in Computer
Science), Springer.

Bovet, D. and Cesati, M., 2005. Chapter 7 Process Scheduling. In:
Understanding the Linux Kernel: From I/O Ports to Process Management.
O’Reilly Media, pp. 258–290.

Brewer, E.A., 2000. Towards Robust Distributed Systems (Abstract).
Proceedings of the Nineteenth Annual ACM Symposium on Principles of
Distributed Computing. PODC ’00. 2000 ACM, New York, NY, USA, pp. 7--.

Burns, B. and Oppenheimer, D., 2016. Design Patterns for Container-based
Distributed Systems. 8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16). June 2016 USENIX Association, Denver, CO.

Campbell, R. et al., 2003. Towards Security and Privacy for Pervasive
Computing BT - Software Security — Theories and Systems. 2003 Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 1–15.

Carbone, P., Katsifodimos, A., et al., 2015. Apache FlinkTM: Stream and Batch
Processing in a Single Engine. IEEE Data Engineering Bulletin, 38.

Carbone, P., Fóra, G., et al., 2015. Lightweight Asynchronous Snapshots for
Distributed Dataflows. CoRR, abs/1506.0. Available at:
http://arxiv.org/abs/1506.08603.

Carzaniga, A., Rosenblum, D.S. and Wolf, A.L., 2003. Design and evaluation
of a wide-area event notification service. Foundations of Intrusion Tolerant
Systems, 2003 [Organically Assured and Survivable Information Systems].
2003 pp. 283–334.

Castro, M., Druschel, P., Kermarrec, A.-M. and Rowstron, A.I.T., 2002. Scribe:
a large-scale and decentralized application-level multicast infrastructure.
{IEEE} Journal on Selected Areas in Communications, 20(8), pp.1489–1499.
Available at: https://doi.org/10.1109/jsac.2002.803069.

155

Chang, T. et al., 2014. P2S: A fault-tolerant publish-subscribe infrastructure.
DEBS 2014 - Proceedings of the 8th ACM International Conference on
Distributed Event-Based Systems.

Cheng, B., Papageorgiou, A. and Bauer, M., 2016. Geelytics: Enabling On-
Demand Edge Analytics over Scoped Data Sources. 2016 IEEE International
Congress on Big Data (BigData Congress). June 2016 IEEE.

Chiang, M. et al., 2017. Clarifying Fog Computing and Networking: 10
Questions and Answers. IEEE Communications Magazine, 55(4), pp.18–20.

Church, M., 2019, Docker Reference Architecture: Designing Scalable,
Portable Docker Container Networks [Online]. Available at:
https://success.docker.com/article/networking [Accessed: 19 July 2019].

Cicizz, 2019. Cicizz/jmqtt. GitHub. Available at:
https://github.com/Cicizz/jmqtt.

Das, A., Gupta, I. and Motivala, A., 2002. SWIM: scalable weakly-consistent
infection-style process group membership protocol. Proceedings International
Conference on Dependable Systems and Networks. 2002 pp. 303–312.

Dastjerdi, A.V. and Buyya, R., 2016. Fog Computing: Helping the Internet of
Things Realize Its Potential. Computer, 49(8), pp.112–116. Available at:
https://doi.org/10.1109/mc.2016.245.

Datta, A. et al., 2005. Range queries in trie-structured overlays. Fifth IEEE
International Conference on Peer-to-Peer Computing (P2P’05). 2005 pp. 57–
66.

Deshpande, L. and Liu, K., 2017. Edge computing embedded platform with
container migration. 2017 IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computed, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and Smart
City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). 2017
pp. 1–6.

Devi, Y.L. and Saikia, L.P., 2014. Fault tolerance techniques and algorithms in
cloud system,

Dogo, E.M., Salami, A.F., Aigbavboa, C.O. and Nkonyana, T., 2019. Taking
Cloud Computing to the Extreme Edge: A Review of Mist Computing for Smart
Cities and Industry 4.0 in Africa BT - Edge Computing: From Hype to Reality.
In: Al-Turjman, F., (ed.) Springer International Publishing, Cham, pp. 107–132.

Egwutuoha, I.P., Levy, D., Selic, B. and Chen, S., 2013. A survey of fault
tolerance mechanisms and checkpoint/restart implementations for high
performance computing systems. The Journal of Supercomputing, 65(3),
pp.1302–1326. Available at: https://doi.org/10.1007/s11227-013-0884-0.

Emqtt.io, 2018, EMQ [Online]. Available at: http://emqtt.io/ [Accessed: 18 June
2019].

156

Eugster, P.T., Felber, P.A., Guerraoui, R. and Kermarrec, A.-M., 2003. The
Many Faces of Publish-subscribe. ACM Comput. Surv., 35(2), pp.114–131.
Available at: http://doi.acm.org/10.1145/857076.857078.

Eugster, P.T. and Guerraoui, R., 2002. Probabilistic multicast. Proceedings
International Conference on Dependable Systems and Networks. 2002 pp. 313–
322.

Felter, W., Ferreira, A., Rajamony, R. and Rubio, J., 2015. An updated
performance comparison of virtual machines and Linux containers. 2015 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS). 2015 pp. 171–172.

Gascon-Samson, J., Garcia, F., Kemme, B. and Kienzle, J., 2015. Dynamoth: A
Scalable Pub/Sub Middleware for Latency-Constrained Applications in the
Cloud. 2015 IEEE 35th International Conference on Distributed Computing
Systems. 2015 pp. 486–496.

Gia, T.N. et al., 2015. Fault tolerant and scalable IoT-based architecture for
health monitoring. 2015 IEEE Sensors Applications Symposium (SAS). 2015 pp.
1–6.

Gonzalez, A.J., Nencioni, G., Helvik, B.E. and Kamisinski, A., 2016. A Fault-
Tolerant and Consistent SDN Controller. 2016 IEEE Global Communications
Conference (GLOBECOM). 2016 pp. 1–6.

Guermouche, A. et al., 2011. Uncoordinated Checkpointing Without Domino
Effect for Send-Deterministic MPI Applications. 2011 IEEE International
Parallel & Distributed Processing Symposium. 2011 pp. 989–1000.

Gusev, M., 2017. A dew computing solution for IoT streaming devices. 2017
40th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO). 2017 pp. 387–392.

Happ, D. et al., 2017. Meeting IoT platform requirements with open pub/sub
solutions. Annals of Telecommunications, 72(1–2), pp.41–52. Available at:
https://doi.org/10.1007/s12243-016-0537-4.

Happ, D. and Wolisz, A., 2016. Limitations of the Pub/Sub pattern for cloud
based IoT and their implications. 2016 Cloudification of the Internet of Things
(CIoT). November 2016 IEEE.

Hivemq, 2019, HiveMQ | Reliable Data Movement for Connected Devices
[Online]. Available at: https://www.hivemq.com/.

hui6075, 2018. hui6075/mqtt-bm-latency. GitHub. Available at:
https://github.com/hui6075/mqtt-bm-latency.

Ismail, B.I. et al., 2015. Evaluation of Docker as Edge computing platform.
2015 IEEE Conference on Open Systems (ICOS). 2015 pp. 130–135.

157

Javed, A., Heljanko, K., Buda, A. and Främling, K., 2018. CEFIoT: A fault-
tolerant IoT architecture for edge and cloud. 2018 IEEE 4th World Forum on
Internet of Things (WF-IoT). 2018 pp. 813–818.

Jerzak, Z. and Fetzer, C., 2009. Soft State in Publish-subscribe. Proceedings of
the Third ACM International Conference on Distributed Event-Based Systems.
DEBS ’09. 2009 ACM, New York, NY, USA, pp. 17:1--17:12.

Kakakhel, S.R.U., Mukkala, L., Westerlund, T. and Plosila, J., 2018.
Virtualization at the network edge: A technology perspective. 2018 Third
International Conference on Fog and Mobile Edge Computing (FMEC). 2018
pp. 87–92.

Karthikeya, S.A., Vijeth, J.K. and Murthy, C.S.R., 2016. Leveraging Solution-
Specific Gateways for cost-effective and fault-tolerant IoT networking. 2016
IEEE Wireless Communications and Networking Conference. 2016 pp. 1–6.

Kazemzadeh, R.S. and Jacobsen, H., 2009. Reliable and Highly Available
Distributed Publish-subscribe Service. 2009 28th IEEE International
Symposium on Reliable Distributed Systems. 2009 pp. 41–50.

Khunteta, A. and Praveen, K., 2010. An Analysis of Checkpointing Algorithms
for Distributed Mobile Systems,

Kreps, J., Narkhede, N. and Rao, J., 2011. Kafka : a Distributed Messaging
System for Log Processing. 2011

Laaroussi, Z., Morabito, R. and Taleb, T., 2018. Service Provisioning in
Vehicular Networks Through Edge and Cloud: An Empirical Analysis. 2018
IEEE Conference on Standards for Communications and Networking (CSCN).
2018 pp. 1–6.

Lee, K., Kim, Y. and Yoo, C., 2018. The Impact of Container Virtualization on
Network Performance of IoT Devices. Mobile Information Systems, 2018, pp.1–
6. Available at: https://doi.org/10.1155/2018/9570506.

Lertsinsrubtavee, A. et al., 2017. PiCasso: A lightweight edge computing
platform. 2017 IEEE 6th International Conference on Cloud Networking
({CloudNet}). September 2017 IEEE.

Li, M. et al., 2011. A Scalable and Elastic Publish-subscribe Service. 2011 IEEE
International Parallel & Distributed Processing Symposium. 2011 pp. 1254–
1265.

Liyanage, M., Chang, C. and Srirama, S.N., 2016. mePaaS: Mobile-Embedded
Platform as a Service for Distributing Fog Computing to Edge Nodes. 2016 17th
International Conference on Parallel and Distributed Computing, Applications
and Technologies (PDCAT). 2016 pp. 73–80.

Lopez, P.G. et al., 2015. Edge-centric Computing. ACM SIGCOMM Computer
Communication Review, 45(5), pp.37–42. Available at:
https://doi.org/10.1145/2831347.2831354.

158

Luzuriaga, J.E. et al., 2014. Testing AMQP Protocol on Unstable and Mobile
Networks BT - Internet and Distributed Computing Systems. 2014 Springer
International Publishing, Cham, pp. 250–260.

Mattsson, H., Nilsson, H. and Wikström, C., 1998. Mnesia — A Distributed
Robust DBMS for Telecommunications Applications BT - Practical Aspects of
Declarative Languages. 1998 Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 152–163.

Merkel, D., 2014. Docker: Lightweight Linux Containers for Consistent
Development and Deployment. Linux J., 2014(239). Available at:
http://dl.acm.org/citation.cfm?id=2600239.2600241.

Milo, T., Zur, T. and Verbin, E., 2007. Boosting Topic-based Publish-subscribe
Systems with Dynamic Clustering. Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’07. 2007 ACM,
New York, NY, USA, pp. 749–760.

Mishra, H., 2019. VerneMQ - Clustering MQTT for high availability and
scalability. IoTbyHVM. Available at: https://iotbyhvm.ooo/vernemq/.

Morabito, R, 2017. Inspecting the performance of low-power nodes during the
execution of edge computing tasks. 2017 14th IEEE Annual Consumer
Communications & Networking Conference (CCNC). 2017 pp. 148–153.

Morabito, Roberto, 2017. Virtualization on Internet of Things Edge Devices
With Container Technologies: A Performance Evaluation. {IEEE} Access, 5,
pp.8835–8850. Available at: https://doi.org/10.1109/access.2017.2704444.

Morabito, R. and Beijar, N., 2016. Enabling Data Processing at the Network
Edge through Lightweight Virtualization Technologies. 2016 IEEE
International Conference on Sensing, Communication and Networking
(SECON Workshops). 2016 pp. 1–6.

Morabito, R., Petrolo, R., Loscr\`\i, V. and Mitton, N., 2018. LEGIoT: A
Lightweight Edge Gateway for the Internet of Things. Future Generation
Computer Systems, 81, pp.1–15. Available at:
https://doi.org/10.1016/j.future.2017.10.011.

Morabito, R., Petrolo, R., Loscri, V. and Mitton, N., 2016. Enabling a
lightweight Edge Gateway-as-a-Service for the Internet of Things. 2016 7th
International Conference on the Network of the Future (NOF). November 2016
IEEE.

Naha, R.K. et al., 2018. Fog Computing: Survey of Trends, Architectures,
Requirements, and Research Directions. IEEE Access, 6, pp.47980–48009.
Available at: https://doi.org/10.1109/access.2018.2866491.

Nikaein, N. and Krea, S., 2011. Latency for Real-Time Machine-to-Machine
Communication in LTE-Based System Architecture. 17th European Wireless
2011 - Sustainable Wireless Technologies. 2011 pp. 1–6.

159

Novo, O. et al., 2015. Capillary networks - bridging the cellular and IoT worlds.
2015 IEEE 2nd World Forum on Internet of Things (WF-IoT). 2015 pp. 571–
578.

OASIS, 2014, MQTT Version v3.1.1 [Online]. Available at: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html [Accessed: 9 September
2019].

Oki, B., Pfluegl, M., Siegel, A. and Skeen, D., 1993. The Information Bus: An
Architecture for Extensible Distributed Systems. SIGOPS Oper. Syst. Rev.,
27(5), pp.58–68. Available at: http://doi.acm.org/10.1145/173668.168624.

Ozeer, U. et al., 2018. Resilience of Stateful IoT Applications in a Dynamic Fog
Environment,

Pahl, C. et al., 2016. A Container-Based Edge Cloud PaaS Architecture Based
on Raspberry Pi Clusters. 2016 IEEE 4th International Conference on Future
Internet of Things and Cloud Workshops (FiCloudW). 2016 pp. 117–124.

Pahl, C., 2015. Containerization and the PaaS Cloud. IEEE Cloud Computing,
2(3), pp.24–31. Available at: https://doi.org/10.1109/mcc.2015.51.

Pahl, C. and Lee, B., 2015. Containers and Clusters for Edge Cloud
Architectures -- A Technology Review. 2015 3rd International Conference on
Future Internet of Things and Cloud. August 2015 IEEE.

Pang, Z. et al., 2015. A Survey of Cloudlet Based Mobile Computing. 2015
International Conference on Cloud Computing and Big Data (CCBD). 2015 pp.
268–275.

Park, J.-H., Kim, H.-S. and Kim, W.-T., 2018. DM-MQTT: An Efficient MQTT
Based on SDN Multicast for Massive IoT Communications. Sensors , 18(9).

Pereira, C. and Aguiar, A., 2014. Towards Efficient Mobile M2M
Communications: Survey and Open Challenges. Sensors, 14(10), pp.19582–
19608. Available at: https://www.mdpi.com/1424-8220/14/10/19582.

Pietzuch, P.R. and Bacon, J.M., 2002. Hermes: a distributed event-based
middleware architecture. Proceedings 22nd International Conference on
Distributed Computing Systems Workshops. 2002 pp. 611–618.

Pipatsakulroj, W., Visoottiviseth, V. and Takano, R., 2017. muMQ: A
lightweight and scalable MQTT broker. 2017 IEEE International Symposium
on Local and Metropolitan Area Networks (LANMAN). 2017 pp. 1–6.

Popov, A., Proletarsky, A., Belov, S. and Sorokin, A., 2017. Fast Prototyping
of the Internet of Things solutions with IBM Bluemix. Proceedings of the 50th
Hawaii International Conference on System Sciences (2017). 2017 Hawaii
International Conference on System Sciences.

Preden, J.S. et al., 2015. The Benefits of Self-Awareness and Attention in Fog
and Mist Computing. Computer, 48(7), pp.37–45.

160

Rahimian, F., Girdzijauskas, S., Payberah, A.H. and Haridi, S., 2011. Vitis: A
Gossip-based Hybrid Overlay for Internet-scale Publish-subscribe Enabling
Rendezvous Routing in Unstructured Overlay Networks. 2011 {IEEE}
International Parallel & Distributed Processing Symposium. May 2011 IEEE.

Ramachandran, G.S. et al., 2019. Trinity: A Byzantine Fault-Tolerant
Distributed Publish-Subscribe System with Immutable Blockchain-based
Persistence. 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC). 2019 pp. 227–235.

Rao, A. et al., 2003. Load Balancing in Structured P2P Systems BT - Peer-to-
Peer Systems II. 2003 Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 68–
79.

Rausch, T., Nastic, S. and Dustdar, S., 2018. EMMA: Distributed QoS-Aware
MQTT Middleware for Edge Computing Applications. 2018 IEEE
International Conference on Cloud Engineering (IC2E). 2018 pp. 191–197.

Redondi, A.E.C., Arcia-Moret, A. and Manzoni, P., 2019. Towards a Scaled
IoT Pub/Sub Architecture for 5G Networks: the Case of Multiaccess Edge
Computing. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). 2019
pp. 436–441.

Robert, B., 2014. Towards the trillion sensors market. Sensor Review, 34(2),
pp.137–142. Available at: https://doi.org/10.1108/SR-12-2013-755.

Rooney, S., Bauer, D. and Scotton, P., 2005. Edge server software architecture
for sensor applications. The 2005 Symposium on Applications and the Internet.
2005 pp. 64–71.

Rotaru, M., Olariu, F., Onica, E. and Rivière, E., 2017. Reliable Messaging to
Millions of Users with Migratorydata. Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference: Industrial Track. Middleware
’17. 2017 ACM, New York, NY, USA, pp. 1–7.

Salehi, P., Doblander, C. and Jacobsen, H.-A., 2016. Highly-available Content-
based Publish-subscribe via Gossiping. Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems. DEBS ’16.
2016 ACM, New York, NY, USA, pp. 93–104.

Salehi, P., Zhang, K. and Jacobsen, H.-A., 2017. PopSub: Improving Resource
Utilization in Distributed Content-based Publish-subscribe Systems.
Proceedings of the 11th ACM International Conference on Distributed and
Event-based Systems. DEBS ’17. 2017 ACM, New York, NY, USA, pp. 88–99.

Saraswat, P.K., Pop, P. and Madsen, J., 2010. Task Mapping and Bandwidth
Reservation for Mixed Hard/Soft Fault-Tolerant Embedded Systems. 2010 16th
IEEE Real-Time and Embedded Technology and Applications Symposium. 2010
pp. 89–98.

161

Satria, D., Park, D. and Jo, M., 2017. Recovery for overloaded mobile edge
computing. Future Generation Computer Systems, 70, pp.138–147. Available
at: http://www.sciencedirect.com/science/article/pii/S0167739X16302096.

Scalagent, 2014, JoramMQ, a distributed MQTT broker for the Internet of
Things. White paper and performance evaluation [Online]. Available at:
http://www.scalagent.com/IMG/pdf/JoramMQ_MQTT_white_paper-v1-2.pdf.

Schmitt, A., Carlier, F. and Renault, V., 2018. Dynamic bridge generation for
IoT data exchange via the MQTT protocol. Procedia Computer Science, 130,
pp.90–97. Available at:
http://www.sciencedirect.com/science/article/pii/S1877050918303661.

Sen, S. and Balasubramanian, A., 2018. A highly resilient and scalable broker
architecture for IoT applications. 2018 10th International Conference on
Communication Systems & Networks (COMSNETS). 2018 pp. 336–341.

Setty, V., van Steen, M., Vitenberg, R. and Voulgaris, S., 2012. PolderCast:
Fast, Robust, and Scalable Architecture for P2P Topic-based Pub/Sub.
Proceedings of the 13th International Middleware Conference. Middleware
’12. 2012 Springer-Verlag New York, Inc., New York, NY, USA, pp. 271–291.

Sherafat Kazemzadeh, R. and Jacobsen, H.-A., 2012. Opportunistic Multipath
Forwarding in Content-Based Publish-subscribe Overlays BT - Middleware
2012. 2012 Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 249–270.

Shi, W. and Dustdar, S., 2016. The Promise of Edge Computing. Computer,
49(5), pp.78–81. Available at: https://doi.org/10.1109/mc.2016.145.

Siegemund, G., Turau, V. and Maâmra, K., 2015. A self-stabilizing publish-
subscribe middleware for wireless sensor networks. 2015 International
Conference and Workshops on Networked Systems (NetSys). 2015 pp. 1–8.

Sourlas, V., Paschos, G.S., Flegkas, P. and Tassiulas, L., 2009. Caching in
Content-Based Publish-subscribe Systems. GLOBECOM 2009 - 2009 IEEE
Global Telecommunications Conference. 2009 pp. 1–6.

Stoica, I. et al., 2003. Chord: a scalable peer-to-peer lookup protocol for Internet
applications. IEEE/ACM Transactions on Networking, 11(1), pp.17–32.

Su, P.H. et al., 2014. Decentralized fault tolerance mechanism for intelligent
IoT/M2M middleware. 2014 IEEE World Forum on Internet of Things (WF-
IoT). 2014 pp. 45–50.

Tammemäe, K. et al., 2018. Self-Aware Fog Computing in Private and Secure
Spheres BT - Fog Computing in the Internet of Things: Intelligence at the Edge.
In: Rahmani, A.M., Liljeberg, P., Preden, J.-S. and Jantsch, A., (eds.) Springer
International Publishing, Cham, pp. 71–99.

Tandon, R. and Simeone, O., 2016. Harnessing cloud and edge synergies:
toward an information theory of fog radio access networks. IEEE
Communications Magazine, 54(8), pp.44–50.

162

Tang, K. et al., 2013. Design and Implementation of Push Notification System
Based on the MQTT Protocol BT - 2013 International Conference on
Information Science and Computer Applications (ISCA 2013). October 2013
Atlantis Press.

Tarreau, W. and others, 2012. HAProxy-the reliable, high-performance
TCP/HTTP load balancer. 2011-8)[2013-4]. http://haproxy. lwt. eu.

Tcpdump&Libpcap, 2019, Manpage of TCPDUMP [Online]. Available at:
https://www.tcpdump.org/manpages/tcpdump.1.html.

To, M.A., Cano, M. and Biba, P., 2015. DOCKEMU -- A Network Emulation
Tool. 2015 IEEE 29th International Conference on Advanced Information
Networking and Applications Workshops. 2015 pp. 593–598.

Viswanath, S.K. et al., 2016. System design of the internet of things for
residential smart grid. IEEE Wireless Communications, 23(5), pp.90–98.

Vohra, D., 2017. Using Docker in Swarm Mode BT - Docker Management
Design Patterns: Swarm Mode on Amazon Web Services. In: Vohra, D., (ed.)
Apress, Berkeley, CA, pp. 9–30.

Wang, C., Gill, C. and Lu, C., 2019. FRAME: Fault Tolerant and Real-Time
Messaging for Edge Computing. 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). 2019 pp. 976–985.

Wang, S. et al., 2019. Lineage Stash: Fault Tolerance off the Critical Path.
Proceedings of the 27th ACM Symposium on Operating Systems Principles.
SOSP ’19. 2019 ACM, New York, NY, USA, pp. 338–352.

Wu, W. and Crawford, M., 2007. Potential performance bottleneck in Linux
TCP. International Journal of Communication Systems, 20(11), pp.1263–1283.
Available at: https://doi.org/10.1002/dac.872.

Wu, W., Crawford, M. and Bowden, M., 2007. The performance analysis of
linux networking – Packet receiving. Computer Communications, 30(5),
pp.1044–1057. Available at:
http://www.sciencedirect.com/science/article/pii/S0140366406004221.

Xu, Y., Mahendran, V. and Radhakrishnan, S., 2016. Towards SDN-based fog
computing: MQTT broker virtualization for effective and reliable delivery.
2016 8th International Conference on Communication Systems and Networks
(COMSNETS). 2016 pp. 1–6.

Zaharia, M. et al., 2013. Discretized Streams: Fault-tolerant Streaming
Computation at Scale. Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. SOSP ’13. 2013 ACM, New York, NY, USA,
pp. 423–438.

Zamora-Izquierdo, M.A. et al., 2019. Smart farming IoT platform based on edge
and cloud computing. Biosystems Engineering, 177, pp.4–17. Available at:
https://doi.org/10.1016/j.biosystemseng.2018.10.014.

163

Zeng, H., Wang, B., Deng, W. and Zhang, W., 2017. Measurement and
Evaluation for Docker Container Networking. 2017 International Conference
on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC).
2017 pp. 105–108.

Zhang, L., 2011, Building Facebook Messenger [Online]. Available at:
https://www.facebook.com/notes/facebook-engineering/building-facebook-
messenger/10150259350998920/.

Zhao, Y., Kim, K. and Venkatasubramanian, N., 2013. DYNATOPS: A
Dynamic Topic-based Publish-subscribe Architecture. Proceedings of the 7th
ACM International Conference on Distributed Event-based Systems. DEBS ’13.
2013 ACM, New York, NY, USA, pp. 75–86.

Zhenhui Shen and Srikanta Tirthapura, 2004. Self-stabilizing routing in publish-
subscribe systems. IET Conference Proceedings, pp.92-97(5). Available at:
https://digital-library.theiet.org/content/conferences/10.1049/ic_20040389.

Zhuang, S. et al., 2001. Bayeux: An architecture for scalable and fault-tolerant
wide-area data dissemination. Proceedings of the IEEE International Workshop
on Network and Operating System Support for Digital Audio and Video. 2001
pp. 11–20.

Zyrianoff, I., Heideker, A., Silva, D. and Kamienski, C., 2018. Scalability of an
Internet of Things Platform for Smart Water Management for Agriculture.
Proceedings of the 23rd Conference of Open Innovations Association FRUCT.
FRUCT’23. 2018 FRUCT Oy, Helsinki, Finland, Finland, pp. 58:432--58:439.

164

APPENDIX A

LIST OF PUBLICATION

Thean, Z.Y., Yap, V.V. and Teh, P.C., 2019. Container-based MQTT Broker
Cluster for Edge Computing. 2019 4th International Conference and Workshops
on Recent Advances and Innovations in Engineering (ICRAIE). 2019 pp. 1–6.

