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ABSTRACT  

 

TOOLCHAIN DEVELOPMENT AND QUEUE SYSTEM ENHANCED 

SECURITY COPROCESSOR FOR FPGA-BASED INTERNET OF 

THINGS (IoT) PROCESSOR 

 

 

See Jin Chuan 

 

 

 

 Internet of Things (IoT) is developing by leaps and bounds in recent 

years, which opens up many interesting applications that potentially 

revolutionize our daily life. Many IoT processors and sensor node designs are 

being proposed in recent years for various applications, including those 

designed based on microcontroller, ASIC and FPGA. A recently proposed 

FPGA based IoT processor, RISC32, is one of the notable examples that 

provide flexible configurability to meet the needs in IoT applications. 

However, it does not come with compilation toolchain that support high level 

language, which increases the code development time. On top of that, one of 

the main reasons that limit the widespread adoption of IoT in many fields, is 

the lack of security feature. For instance, failure to provide data confidentiality 

could cause information leak and bring losses to the users. Unfortunately, 

RISC32 does not support encryption capability in hardware. In view of that, 

this research work aims to improve RISC32 in two aspects: providing 
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compilation toolchain in C language and introduce hardware core to perform 

encryption. 

 

 The most commonly used encryption scheme, Advanced Encryption 

System (AES) was used in this research work. While AES could be effectively 

implemented in software, the performance is slow, at the same time affecting 

the energy efficiency and responsiveness of IoT sensor node. This research 

work implemented AES as a coprocessor to RISC32 to speed up the 

encryption process. Experimental result shows at least 200x speed-up and 

~99% energy reduction achieved by the AES coprocessor, compared to the 

software implementation. However, the RISC32 processor has to wait for AES 

core to complete the encryption before proceeding with other operations, due 

to data dependency. Hence, a novel Queue System is proposed to overlap the 

encryption operation with sampling of data, which follows the typical IoT 

software pattern. Further 1.48x speed-up and ~19% energy reduction was 

achieved with the introduction of Queue System. To enable rapid IoT 

application development on RISC32, this research work also delivers a 

compilation toolchain for RISC32 based on retargetable compiler framework, 

LLVM. By utilizing the existing MIPS Backend, the LLVM is extended to 

support code generation for RISC32. The compilation toolchain enables 

development option using C language on RISC32, where it was previously 

restricted to slow and error prone assembly language development option.  

 

The achievement obtained in this research work is beneficial to IoT 

applications, which emphasize on performance and energy consumption. The 
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proposed Queue System can be used by other processor architectures to 

efficiently integrate with another block cipher coprocessor. On the other hand, 

the developed LLVM compilation toolchain can also allow easy extension of 

additional coprocessors to the RISC32 IoT processor. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 

Developing a processor targeting IoT applications is challenging as 

different IoT applications require microcontroller of different capabilities. The 

selection of processor to implement sensor nodes varies between low-end or 

mid-end microcontroller. For example, sensor nodes for environment 

monitoring only needs low-end processor as the data sampling rate is low; 

whereas surveillance system for smart city requires high-end processor to deal 

with image processing. Due to the wide range of performance requirement 

between each IoT application, manufacturer needs to select a new processor 

for almost every different application. The company will have to bear huge 

operating cost since this indicates the need to maintain engineering team with 

different firmware skill sets for different project. Hence, customizable IoT 

processor was previously developed to resolve this issue (Kiat, 2018). This 

dissertation is an extension to the previous work (Kiat, 2018) which focuses 

on two aspects: development of a new compilation toolchain and novel 

technique to integrate an AES cryptographic coprocessor with improved 

performance. 

 

The customizable IoT processor (RISC32) introduces new hardware 

architecture, so a new compilation toolchain is required to enable firmware 

development in C language. Without toolchain, developing firmware at 
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assembly level is error prone, at the same time requires extensive 

understanding towards the underlying architecture. With compilation 

toolchain, it can greatly reduce the development time. The company is also at 

disadvantage due to the competitive market and constant emergence of new 

product. For example, a compiler takes in source code developed in high-level 

language and generates equivalent assembly language. Output of the compiler 

is then assembled into machine code to be readily executed on target processor 

by assembler. This shows the importance of toolchain as it aids development 

progress by abstracting out most of the details of the underlying architecture. 

This project aims to develop the toolchain that can convert C code to binary 

executables for the RIC32 IoT processor. 

 

Since the primary function of the toolchain is to provide binary 

executables from user source code, this makes the compiler the core 

component of a toolchain. However, developing a compiler from scratch 

requires substantial efforts. A typical compiler consists basic structure as 

shown in Figure 1.1. 

 

 

Figure 1.1:  Basic Compiler Structure 

Source: Lattner, n.d. 
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A basic compiler can be partitioned into three mains parts, namely the 

frontend, optimizer and the backend. The frontend performs analysis on the 

high-level-languages (e.g.: C, C++, FORTAN and etc.) and converts it to 

different representation known as intermediate representation (IR) for further 

transformation. Next, optimizer will analyse and optimize the IR to generate 

shorter and more efficient code. Output from optimizer is then further 

transformed and synthesized to machine code of the target processor by 

backend. Designing a compiler is time consuming, and requires great deal of 

knowledge and experience in algorithm study. Hence, developing a compiler 

from scratch is not an ideal case most of the time. 

 

 To resolve this issue, one of the alternatives available is retargetable 

compilers, which has similar structure to a basic compiler, but is designed to 

be customizable. For instance, retargetable compilers can be extended to 

support compilation of multiple target machine instruction’s set. This feature 

makes cross-compilation possible. To support a new target machine, only new 

backend needs to be developed and paired with the existing framework of the 

retargetable compiler. This flexibility is convenient when compared to normal 

compilers that are targeted for specific machine, which requires a new 

compiler to be developed whenever a new processor is introduced. 

 

 The development toolchain is critical to deliver fast prototyping of IoT 

applications to cope with its rising demands. However, the rising demand for 

IoT applications also raises security concerns. This is because data transfer 

happens between interconnected IoT devices all the time. For example, food 
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factories use bio-sensors to monitor condition of raw food materials in large 

refrigerators (Xu et al., 2014). Household consumers’ electrical usage 

collected by smart meters are transferred periodically in smart grid 

applications (Alahakoon and Yu, 2016).  These IoT applications transfer 

sensitive data’s that could be misused, thus threatening the user’s privacy. For 

instance, the deterioration of raw food material should be kept confidential to 

maintain the reputation of the food factories (Xu et al., 2014). Electrical usage 

patterns of household users could be analysed to determine whether a house is 

currently vacant (Valerio, 2016). These scenarios could lead to financial losses 

of the users, which shows the need for security feature in IoT applications. 

Hence, security is an important criterion to be fulfilled in IoT application-

based processor. 

 

 When it comes to fulfilling IoT security, it refers to providing several 

main features such as confidentiality, integrity, and availability (Humayed et 

al., 2017; Tomić and McCann, 2017). This project aims to provide 

confidentiality at current phase of research. Confidentiality refers to maintain 

the secrecy of transferred data. This could secure the data from attack such as 

eavesdropping, which ensures that the data could not be known even it is 

intercepted during transmission. The confidentiality of data can be protected 

through encryption schemes. With encryption, the data to be transferred 

(plaintext) will go through series of transformation using a secret key. The 

resultant output is cipher text, which is the original data scrambled into 

random and meaningless form. Without knowing the encryption algorithm or 
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secret key used, one could not retrieve the original content of the scrambled 

data. Hence, confidentiality of data is guaranteed. 

 

 Encryption algorithm while available in abundance, have to be 

carefully selected to cater for resource constrained IoT processor. In cases 

where IoT processor is developed for remote sensing purpose, power would be 

the main concern. The implementation of encryption algorithm should not 

burden the power consumption of IoT processor. This is to ensure the 

longevity of the power source (battery) for remote senor node. The choice of 

encryption should also provide reasonable performance (processing speed) and 

strength (security level) in spite of the power constrain. Among the abundant 

encryption algorithm, Advanced Encryption Standard (AES) is one of the 

most popular and recognized by international standards such as International 

Organization for Standardization (ISO/IEC-18033-3, 2005) and National 

Institute of Standards and Technology (FIPS, 2009). It was also adopted as 

part of the Transport Layer Security (TLS) protocol (Rescorla, 2018), which is 

used as secure communication protocol among internet-enabled devices.  

Hence, this project aims to implement AES to provide confidentiality feature 

in the RISC32. New instructions are created in the compilation toolchain to 

support the AES cryptographic coprocessor. At the same time, a Queue 

System is proposed to improve the execution speed of AES cryptographic 

coprocessor in RISC32 IoT processor. 
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1.2 Problem Statement 

 RISC32 (Kiat, 2018), a MIPS-ISA compatible processor, was designed 

as a customizable IoT sensor node.  However, the firmware development 

option is currently limited to assembly programming. This is inconvenient as 

instruction set is machine specific. Unlike assembly language, high-level 

language such as C can be used for any machine, provided with the aid of 

compilation toolchain. Development is also hindered as most of the standard 

libraries are offered in high-level languages. Hence, a development toolchain 

is required to provide rapid development opportunity on RISC32. 

 

 RISC32 is designed for IoT purposes, but it still lacks basic security 

feature, which is one of the main concerns in IoT. Advanced Encryption 

Standard (AES) is selected in this project as it is an industrial standard block 

cipher.  Although AES can be efficiently implemented in software, the speed 

performance is still too slow for IoT application. Prolonged execution of AES 

software might consume high energy, which is non-ideal for low power IoT 

applications. To address this issue, AES hardware coprocessor could provide 

better performance compared to software implementation. However, merely 

adopting an AES coprocessor may not yield optimized performance. When the 

processor is invoking AES encryption, the AES coprocessor is busy 

encrypting data but the processor itself is idle (waiting for encryption result). 

This is a limitation often neglected by other researchers (Wang et al., 2016). 

As such, this research work aims to fill this gap by proposing some techniques 

to integrate the AES coprocessor to an IoT processor (RISC32) with more 

optimized performance 
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1.3 Objectives 

 The primary goal of this research is to implement confidentiality 

feature into the RISC32, to fulfil the security criteria as an IoT processor. The 

implementation shall be able to encrypt sensor data before sending it out from 

RISC32. This project also aims to look into the possibility of utilizing the 

retargetable compiler to establish a compilation toolchain for RISC32. The 

established compilation toolchain shall be able to compile C code to binary 

executables that is compatible to RISC32. The objectives of this research are 

listed in detail as follows: 

 

1) To develop a RISC32 compilation toolchain based on existing 

retargetable compiler framework, LLVM. The research will focus on 

extending the LLVM framework to support RISC32 instruction set 

compilation. The instructions to be extended will include existing 

instruction set of RISC32 and new instruction that might be introduced 

due to the integration of AES cryptographic coprocessor. 

 

2) To integrate the AES as cryptographic coprocessor in RISC32. This 

refers to integrating the cryptographic coprocessor into RISC32 

pipeline without affecting the current performance of RISC32. New 

instructions are created to use the AES coprocessor.  

 

3) To develop a solution to improve the performance of AES 

cryptographic coprocessor in IoT application. This would require 

analysis of the software pattern in a typical IoT application with 
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encryption feature. The derived solution should be able to further 

speed up the encryption process.  

 

4) To synthesis the RISC32 core with AES cryptographic coprocessor 

integrated on Xilinx Artix 7 FPGA chip. Experiments will be 

conducted on the RISC32 with AES coprocessor integrated and the 

proposed solution that optimize the AES coprocessor performance. 
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1.4 Contributions 

Contributions of this dissertation are as follow: 

 

1) A compilation toolchain that compiles C language program into 

RISC32 compatible instruction set. This toolchain is able to reduce the 

firmware development time on RISC32, at the same time enable the 

use of Operating System (OS) and development of device driver for 

existing IO module  

 

2) A customizable IoT processor, RISC32 with encryption feature. The 

integrated AES coprocessor can be used to perform encryption on 

sensor data to be sent out of RISC32. This fulfils the confidentiality 

feature required for security criteria of IoT.  

 

3) A solution to optimize the encryption process using integrated AES 

coprocessor. This solution (Queue System) is catered for typical IoT 

processing pattern. It ensures an optimal encryption performance 

through overlapping the encryption and program execution, eventually 

improving the overall speed performance. At the same time, ensuring 

optimized dynamic energy consumption without burdening the long-

term energy consumption on RISC32. 
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1.5 Dissertation Organization 

 The dissertation starts with Chapter 1, to explain the background of the 

research. In Chapter 2, study is conducted on the existing integration 

technique of AES into processor and existing compilation technology. Chapter 

3 is divided into two parts. The first part is on the toolchain development, 

where LLVM is extended to support RISC32 code generation. Second part 

describes the hardware development of this research work, which discusses 

the integration of AES coprocessor into RISC32. The proposed solution 

(Queue System) to optimize usage of AES Coprocessor is also discussed here. 

Chapter 4 is about the performance analysis of RISC32 with AES coprocessor 

integrated. Detailed assessment on program execution speed and dynamic 

energy consumption is conducted here. Finally, Chapter 5 concludes the 

research work and suggest the potential future directions of this research. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 RISC32 

 RISC32 (Kiat, 2018) is a MIPS Instruction Set Architecture (ISA) 

compatible 5-stage pipeline 32-bit IoT processor. It is able to decode and 

execute a subset of MIPS instructions. Figure 2.1 shows the simplified view of 

RISC32 microarchitecture. 
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Figure 2.1: Simplified view of RISC32 microarchitecture 

 

In RISC32, a Coprocessor 0 (CP0) is implemented to monitor 

hardware interrupts caused by the I/O controllers, and also software 

exceptions such as illegal instructions and arithmetic overflow. RISC32 is also 

integrated with common I/O controllers to provide common interface suitable 

for IoT applications. The I/O controllers available are UART, SPI, GPIO and 

ADC. These interfaces are compatible with wireless communication modules 

such as Bluetooth Low Energy (BLE), WiFi, ZigBee, etc., which provides the 
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connectivity feature for IoT applications. GPIO with 32-bit bidirectional I/O 

pins and 12-bit ADC ports are available from the RISC32 to provide common 

interface to sensors for data collection. Further details of RISC32 can be found 

in the dissertation by Kiat (2018). 
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2.2 Advanced Encryption Standard (AES)  

 AES is a symmetric block cipher published under the FIPS-197 (2009), 

a security standard publication by NIST. A typical block cipher requires two 

inputs: a plaintext/ciphertext, and a secret key. The AES uses the same secret 

key to perform encryption and decryption, hence it is symmetric. For AES, the 

operation is performed on a fixed sized data block, hence it is known as block 

cipher. The block size of AES is fixed at 128 bits (four 32 bits words or 16 

bytes in equivalent) for both its input and output. In AES, a series of operation 

is applied on the input block for a fixed number of rounds to get the final 

output. The number of rounds is determined by the secret key size being used. 

There are three secret key sizes specified in FIPS-197, which is 128 bits (AES-

128), 192 bits (AES-192) and 256 bits (AES-256). The number of rounds with 

respect to each key size is as follows: 10 rounds for AES-128, 12 rounds for 

AES-192 and 14 rounds for AES-256. Despite the difference in number of 

rounds, the operations to be performed on the input block is the same for each 

secret key size. The difference in key size, however, determines the strength of 

the encryption. Larger key size provides higher security level, which implies 

that it is more difficult to decipher the ciphertext using brute force attack. 

Another factor that determines the encryption strength of a block cipher is the 

block cipher mode being used. The mode determines the relationship between 

the secret key and the input block during the operation. The common modes 

available are Electronic Code Book (ECB), Cipher Block Chaining (CBC) and 

Counter (CTR). Other available block cipher modes can be found in NIST SP-

800-38A (2007). 
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2.2.1 Existing AES Hardware Implementation 

 AES hardware implementation has been actively researched in several 

aspects, such as reduced hardware footprint (Lu et al., 2018), energy efficient 

(Hoang et al., 2017) and high throughput (Wang and Ha, 2016). In both work 

by Lu et al. (2018) and Hoang et al. (2017), their design achieved high energy 

efficiency, which is ideal for IoT processor with energy constrain. However, 

both design yields AES hardware with long encryption cycles, which is at 

least 160 over cycles per encryption. The long encryption cycle could be a 

performance bottleneck to IoT applications that requires real-time response.  

 

As for the case of high-throughput design (Wang and Ha, 2016), the 

core design focuses on performing more data encryption by applying pipelined 

design on their core. The pipelined design divides crucial processing 

components for each round into several stages. This approach splits the critical 

path, enabling the design to operate at a higher frequency. This also enables 

encryption of multiple data to overlap, introducing higher throughput. This 

however, results in a larger circuit, which would lead to higher energy 

consumption. The high energy consumption is a concern for IoT processor 

design that has energy constrain. However, all of the proposed work 

mentioned above, while showing effort in optimizing the core, does not 

discuss on how the AES core can be integrated with a main processor 

efficiently. Only a few works (Soliman and Abozaid, 2011; Anwar et al., 

2014; Wang et al., 2016; Yuan et al., 2018) have discussed their design on 

integrating AES core with a host processor. 
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2.2.2 AES Integration to Host Processor 

 This section discusses the works that have presented both their AES 

implementation and integration to a host processor. A total of 4 literatures 

(Soliman and Abozaid, 2011; Anwar et al., 2014; Wang et al., 2016; Yuan et 

al., 2018) will be discussed here. 

 

 

Figure 2.2:Microarchitecture Design of FastCrypto  

Source: Soliman and Abozaid, 2011.  

 

 Figure 2.2 shows the work by Soliman and Abozaid (2011). In this 

work, a high throughput AES hardware implementation was proposed. The 

work is implemented on Xilinx Virtex V FPGA. AES is implemented as a 

crypto coprocessor, which was integrated into the data-path of general-purpose 

processor (GPP) by creating specialized data transfer path between the 

coprocessor and data-path of the GPP. As such, special instructions are created 

to interact with the coprocessor from the data-path of the GPP. The special 

instructions are created to provide information in commanding the AES crypto 
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coprocessor to carry out its task. The special instructions are encoded with 

information such as starting address to read input data, starting address to store 

output data, total length of data to be processed and action to be performed on 

the data (encryption or decryption). Each of the special instructions will first 

go through decoding stage of the GPP data-path. If a special instruction is 

detected, it will be dispatched to a specialized queue known as Crypto 

Instruction Queue (CIQ), waiting to be executed by the crypto coprocessor.  

The crypto coprocessor will further decode the instruction, extracting 

addresses and operation to be performed. The address extracted will be used 

internally by the Address Generation Unit, to generate necessary addresses to 

read range of data from Second-Level Cache (L2) for processing. 

  

 The AES crypto processor (Soliman and Abozaid, 2011) achieve high 

throughput, by using AES core with pipeline design. Furthermore, the 

coprocessor is designed with multiple lanes, which indicates existence of 

multiple AES core in the coprocessor. This design enables large amount of 

data to be processed within a specific time, hence, achieve high-throughput. 

However, this indicates the AES crypto coprocessor is large. The large 

architecture would certainly consume high energy. This high throughput trade-

off for high consumption is definitely not suitable for IoT processor with 

energy constrain. 

 

 Furthermore, the AES crypto coprocessor is integrated in such a 

manner that, the coprocessor is directly interfaced to a L2 Cache. This enables 

data access by the coprocessor without disrupting the data-path of GPP. This 
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results in the requirement for a dual-port L2 Cache. Dual-port L2 Cache 

indicates a larger memory hardware is required, since to create dual-port 

access, an extra address decoder is required in the existing memory hardware. 

This could slow down the performance of the memory system. This also 

introduce a larger memory hardware, which is not beneficial for IoT 

processor, as it will definitely link to higher energy consumption. 

 

 

Figure 2.3:Processor microarchitecture with parameterized AES crypto-

coprocessor 

Source: Anwar et al., 2014. 

 

 Figure 2.3 shows the work by Anwar et al. (2014). In this work, a 

parameterized AES crypto coprocessor was proposed. This work is 

implemented on Xilinx Virtex 6 FPGA. The AES coprocessor was integrated 

to a general purpose 5-stage pipeline 32-bit MIPS processor. Specialized data 

transfer path was created to access the integrated coprocessor from the data-

path of the processor. As such, special instructions are designed to interact the 

coprocessor through the specialized data transfer path. The special 

instructions, contain starting address for input and output, total length of data 
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to be processed, and operation to be performed on the data. The special 

instruction is decoded at the Instruction Decode (ID) stage in the processor, 

and transferred to coprocessor for execution. A specialized AES memory was 

introduced, to provide input data for processing by the AES coprocessor. The 

AES memory also stores the output data by AES coprocessor. 

 

 The AES coprocessor introduced by this work is parameterized, which 

is a pipeline AES architecture with tunable pipeline stages during design time. 

Although the design is tunable, it is still a pipelined AES core, which 

consumes large area and power hungry, so it is not suitable for IoT 

application. Furthermore, this integration method introduces a specialized 

AES memory. The AES memory introduced is large, which could be slow and 

might consume high power. This may not be a concern when the AES 

coprocessor was integrated to a general-purpose MIPS processor. However, it 

might not suitable for our research work, as our target application is IoT-

based, which has power constrain in general. 
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Figure 2.4: OpenRISC1200 interfaced with Crypto-Coprocessor through 

common bus. 

Source: Wang et al., 2016.  

 

 Figure 2.4 shows the work by Wang et.al (2016). The work is 

implemented with Application Specific Integrated Circuit (ASIC) Technology. 

The AES coprocessor is implemented as an Application Specific Instruction 

Set Processor (ASIP). This indicates a special set of instruction is designed 

specifically to command the coprocessor to perform various operation. 

However, unlike special instruction created in previous work (Soliman and 

Abozaid, 2011; Anwar et al., 2014), the instruction set is decoded internally by 

the coprocessor in the case of ASIP. The internal microarchitecture of the AES 

coprocessor is shown in Figure 2.5. 

 

 

Figure 2.5: Proposed ASIP microarchitecture for AES crypto coprocessor 

Source: Wang et al., 2016.  
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 Referring to Figure 2.5, the coprocessor is designed with pipeline 

stages found in common processor pipeline. As for the interfacing between 

coprocessor and host processor (OpenRISC1200), it is interfaced through a 

common shared bus between other peripherals as shown in Figure 2.4. The 

TaskReg, DataOut and DataIn are designated with dedicated memory address. 

Accessing these registers can simply be done using load store instructions. The 

implementation technique used by the author is simple and straightforward. 

No special instruction or specialized transfer is required as shown in the other 

work (Soliman and Abozaid, 2011; Anwar et al., 2014) discussed earlier. Only 

proper assignment of memory address to map and access to the register of 

coprocessor is required. However, the performance of the coprocessor is 

largely dependent on the shared bus. This is because all peripheral behaves 

differently. Between the processor and the peripherals, each of them may have 

different communication protocol and data transaction pattern. These are all 

carried out using the shared bus. Peripherals with the slowest performance 

might be the performance bottleneck for the shared bus.  Not to mention, since 

it is a shared bus, the peripherals are likely assigned with priorities for request 

of bus usage. In the case where multiple peripherals requested to use the bus, 

usage is assigned to the peripherals with highest priorities. If the coprocessor 

is assigned with a lower priority, the performance is likely affected by the 

peripherals with higher priority than the coprocessor. This shows that although 

shared bus technique is straightforward, the performance of coprocessor is not 

guaranteed to be optimal due to the factors mentioned. 
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 Furthermore, the coprocessor implemented by Wang et al. (2016) 

closely resembles the processor pipeline. The coprocessor proposed may have 

high performance, but is expected to have large and complex circuitry. While 

the authors claim the coprocessor is suitable for IoT application, their work is 

implemented using ASIC technology. ASIC technology has been known for 

its high-power efficiency but low flexibility. Our work however, adopts FPGA 

implementation technology. Implementing their coprocessor with our FPGA 

technology is likely to yield higher power consumption. This indicates that 

their AES coprocessor is not suitable for our use case of FPGA 

implementation. 

 

 

Figure 2.6: AES interfaced with MicroBlaze through PLB share bus 

Source: Yuan et al., 2018. 

 

 Figure 2.6 shows the work by Yuan et al. (2018). This work proposed a 

novel implementation of pipelined AES. The work was implemented on 

Xilinx Spartan 6 FPGA. This work uses the share bus interfacing technique to 

interface the AES coprocessor with a host processor (MicroBlaze). As 
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mentioned earlier, the shared bus technique is simple and straightforward. 

However, performance of the coprocessor is not guaranteed, as it is largely 

dependent on other interfaced peripherals as well. Furthermore, the AES 

coprocessor proposed by the author is pipelined design. Pipelined AES core 

may effectively provide higher throughput, enabling more data encryption to 

be performed within a short time. The design, however, may yield a larger 

hardware. Hence, might not be ideal for IoT processor with power 

consumption concern. 

 

Table 2.1: Summary of Existing Work 

 Integration 

Technique 

AES 

Architecture 

Technology Remarks 

Soliman 

and 

Abozaid, 

2011 

Dedicated-

Path 

Pipelined FPGA • Pipelined architecture enables 

high performance at the 

expense of larger hardware 

area. 

• Larger hardware area 

consumes higher energy. 

• Not ideal for IoT use case 

Anwar et 

al., 2014 

Dedicated-

Path 

Pipelined FPGA • Pipelined architecture enables 

high performance at the 

expense of larger hardware 

area. 

• Larger hardware area 

consumes higher energy. 

• Not ideal for IoT use case 

Wang et al., 

2016 

Shared-

Path 

Single-

Stage 

ASIC • Shared-Path integration 

technique is easier to realize  

• But performance of shared-bus 

hardware is dependent on 

overall system bus 

performance 

• ASIC implementation is 

energy efficient but not as 

flexible when compared to 

FPGA 

Yuen et al., 

2018 

Shared-

Path 

Pipelined FPGA • Shared-Path integration 

technique is easier to realize. 

• But performance of shared-bus 

hardware is dependent on 

overall system bus 

performance  
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2.3 Existing Toolchain Technology  

 Toolchain plays important role when developing on a new system. 

Without toolchain, a developer will go through cumbersome process when 

developing a new system. For example, developer may only program in 

assembly language. Then, the developer may need to manually convert each 

assembly language into machine code of the targeted machine. All of this is 

error prone and time consuming. Hence, toolchain is usually developed to be 

distributed as a package with every new system by the vendors. This results in 

variety of both proprietary and free IDE. Example of proprietary IDE is Visual 

Studio developed by Microsoft (2019) is the conventional IDE for x86 

platform. As for free IDE, µVision® IDE (ARM Limited, 2019) is dedicated 

for ARM platforms. These IDE’s are usually targeted to specific processor 

family, which indicates compilation for customized machine might not be 

supported. Extending the IDE’s to support new target machine is also 

impossible as they are usually closed-source, not to mention the risk of 

spreading into infringement issue. Since modification to vendor distributed 

software is not an option, alternatives such as automatic software generation 

using Architecture Description Language (ADL) and retargetable compilers 

are opted. 
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2.3.1 Architecture Description Language (ADL) 

 An ADL is a language designed to specify relationship and interaction 

between each component/block on System-on-Chip’s (SOCs). The 

blocks/components include the processor, peripheral device such as memories, 

and interfacing circuits of each peripheral. Production-grade software 

toolchain such as compiler, assembler, linker, debugger and simulator can be 

synthesized from an ADL (Tomiyama et al., 1999). Based on the paper by 

Kassem et al. (2012), ADL can be further classified based on their contents 

and objectives. In terms of contents, the ADL can be categorized into three 

categories, namely the Behavioural ADL, Structural ADL and Mixed ADL 

(Kassem et al., 2012). The Behavioural ADL can only describe instruction set 

instead of structural details of a processor model. Structural ADL on the other 

hand, can only be used to model structural behaviour such as register transfer 

level of a processor. As for Mixed ADL, they can achieve both structural and 

behavioural modelling of a processor.  In terms of objectives classification, the 

ADL can be categorized into 4 categories, namely the Synthesis ADL, 

Compilation ADL, Validation ADL and Simulation ADL (Kassem et al., 

2012; Tomiyama et al., 1999). Synthesis ADL’s focuses on describing and 

designing hardware architectures. Compilation ADL’s focuses on code 

generator design. Validation ADL’s is mainly used for embedded processor 

functional verification purposes. Simulation ADL’s generates simulator for 

hardware generated.  Over the years, ADL has been widely used for 

Application-Specific Instruction set Processor (ASIP) development as 

presented in several papers (Bejo et al., 2014; Gupta and Pal, 2015; Taglietti et 

al., 2005). Development of RISC processor using ADL has also been 
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presented in this paper (Arora et al., 2015). ADL may be efficient in terms of 

higher abstraction level processor modelling and automatic software toolchain 

generation, there are trade-offs imposed in exchange for the convenience. As 

mentioned in this paper (Witte et al., 2005), unoptimized RTL code generation 

is the bottleneck of ADL generated processor. Hence, various optimization 

schemes have to be introduced in the ADL compiler to generate optimized 

RTL code. Due to the lack of power model, evaluation and optimization of 

power consumption cannot be done on ADL as mentioned here (Yang et al., 

2013). Both mentioned disadvantages impact IoT processor design that 

focuses on low-power and energy efficient design.  

 

2.3.2 Retargetable Compilers 

 Due to the difficulties of designing a new compiler from scratch, 

extending support of existing toolchain is another approach to design new 

toolchain for new machine. As such, retargetable toolchain framework such as 

GNU Compiler Collection (GCC) and LLVM is often being used. Both 

frameworks are retargetable, hence they can be extended to support code 

generation of new instruction set. Since they are open source, both 

frameworks are becoming robust and quality compilers, due to the growing 

contribution from their development community. 
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2.3.3 GCC 

The internals of GCC is shown in the Figure 2.7. 

 

 

Figure 2.7: GCC Internals  

Source: Diego, 2007. 

 

 As shown in Figure 2.7, high-level language input to GCC will first be 

parsed into GENERIC, an intermediate language of GCC. The GENERIC is 

further transformed to GIMPLE, a tree-based intermediate representation of 

GCC by the middle end. Transformation of GIMPLE is done in two phases. 

The GENERIC from frontend will be translated to High GIMPLE, which is 

target independent. After analysis and transformation by several passes, High 

GIMPLE will then be lowered to Lower GIMPLE to be constructed as a more 

target dependent representation. In the backend, GIMPLE is then expanded to 

Register Transfer Language (RTL) form for instruction matching of target 

machine assembly to finally generate the machine code. Hence, to support a 
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new target, most of the effort should be focused on the backend. A number of 

machine description files will be needed to be specified in the backend. Since 

GCC is relatively mature, it has been widely adopted for both industrial and 

academic sectors. In the work by Johann et al. (2016), GCC 4.6.1 is used to 

setup the toolchain for HF-RISC core. The GCC 4.6.1 is modified to support 

new flags that correspond to code generation support for different HF-RISC 

processor configuration.   

 

GCC is also integrated into CooCox CoIDE for cross-compilation of 

ARM Cortex-M processor family. However, the paper (Campi et al., 2003) 

suggests that the backend development on instruction patterns file  (.md) of 

machine description was rather difficult due to limited support from GCC. It 

was also reviewed in this paper (Ghica and Tapus, 2015) that the machine 

description (.md) was rather difficult to read, enhance, construct and maintain. 

“They require specifying instruction patterns using Register Transfer 

Language (RTL) templates, employing a mechanism which is verbose, 

repetitive and requires a lot of detail” (Ghica and Tapus, 2015). The GCC 

Wiki (Bosscher, 2012) also stated that GCC has grown rather big which 

induces steep learning curves for new developers.  
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2.3.4 LLVM 

 Unlike GCC, LLVM is modular in design. The overview of LLVM 

Internals is shown in Figure 2.8. 

 

 

Figure 2.8: LLVM Internals 

Source: Lattner, n.d. 

 

 Compared to GCC, internals of LLVM is relatively straightforward. As 

shown in Figure 2.8, the LLVM is made up of three main components. The 

frontend is responsible for parsing of high-level-language such C, C++ and 

Java. Each LLVM frontend is exclusive to one language, for example the 

Clang is the C Frontend while GHC is the Haskell Frontend. The output from 

frontend is then passed to the LLVM optimizer in the form of LLVM 

Intermediate Representation (IR). LLVM IR is a RISC assembly like language 

used by LLVM framework for internal analysis and transformation. It is used 

to expose lower level information from high level language, but yet target 

independent. By going through various transformation passes in LLVM 

optimizer, the final output will be a more optimized LLVM IR. The backend 

will then generate target specific machine code from the IR. Each backend 

will be exclusively used for a single target family and are independent of each 
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other. In the backend, the LLVM IR will be constructed into SelectionDAG, 

which is a graph-based representation to expose more target dependent 

information. Mapping of native instruction will be based on the constructed 

SelectionDAG. Hence, to support a new target machine, information of 

respective machine is needed. In LLVM backend, the machine description 

files will be generated by a LLVM utility, namely the TableGen (tblgen) tool. 

The TableGen will generate records to represent respective target based on 

their target description (.td) files. The Figure 2.9 shows example of target 

description generation in LLVM. 

 

 

Figure 2.9: Target Description generation using TableGen 

Source: Lattner, n.d. 

 

 When it comes to maturity, GCC superseded LLVM due to its longer 

history. However, LLVM is still a popular selection due to its relatively 

straightforward and easier to understand design. It has been adopted by several 

works as presented in PicoBlaze Processor (Sýkora, n.d.), RISCO processor 

(Vilela et al., 2012) ,microMIPS architecture (Kolek et al., 2013) and LEON 

Processor (Lopez et al., 2015). It is use by Apple Inc. (2017) as their backend 

for their Xcode IDE, which is used to develop various applications for their 

Apple products.   
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2.4 Summary 

 In this chapter, existing techniques to integrate AES coprocessor to 

host processor are explored. The common AES integration techniques are 

dedicated path technique and shared bus integration technique. Dedicated path 

technique requires introduction of specialized transfer path and new 

instructions to access the integrated coprocessor. While this technique requires 

revision to the whole processor architecture, the coprocessor can have a better 

performance due to its independent transfer path. As for shared bus integration 

technique, it is relatively simpler and straightforward to realize. However, the 

performance of integrated coprocessor is dependent on other peripherals that is 

present on the shared bus. 

 

 This chapter also explores existing compilation toolchain technologies. 

The compilation toolchain is usually distributed along with the processor sold 

by vendor. However, vendor distributed Integrated Development Environment 

(IDE) is usually target specific and close source. It cannot be modified for 

code generation of unsupported target. Hence, alternative such as Architecture 

Description Language (ADL) and retargetable compilers are often opted. ADL 

supports automated toolchain generation for the processor modelled using it. 

However, lack of power modelling in ADL makes it harder to gauge the 

energy performance of the processor modelled using it. Retargetable compilers 

are open-source and is retargetable to support compilation for multiple target 

machine. Example of popular retargetable compilers are GCC and LLVM. 

GCC is much mature due to its longer history when compared to LLVM. 
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However, due to the complicated structure of GCC, LLVM gains popularity 

due to its clear-cut design. 
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CHAPTER 3 

 

SYSTEM DESIGN 

 

 

3.1 System Overview: Software 

 This section describes the proposed software compilation toolchain 

design for this research work. The proposed software toolchain design is 

shown in Figure 3.1. 

 

clang opt llc lld objcopy

LLVM
Compiles C 

source 

code(.c) and 

emits LLVM 

IR file(.ll) 

Optimize 

LLVM IR

Process LLVM 

IR and emits 

assembly (.s) or 

object file (.o)

Link object 

file to 

generate 

ELF file

Strip ELF file 

to get raw 

binary file 

(.text, .data 

and .rodata 

segment)

 

Figure 3.1: Simplified architecture of RISC32 compilation toolchain 

 

 The Figure 3.1 shows the simplified architecture of RISC32 

compilation toolchain. The toolchain is developed based on LLVM (2013) 

modular compilation framework, wherein different frontends (process source 

code) can be freely paired with different backends (emits assembly or object 

file). Clang is the frontend for LLVM, which processes C language source 

code and generates LLVM Intermediate Representation (IR). LLVM IR is the 
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initial input into the LLVM framework, which is further analyzed and 

transformed into various intermediate forms in between each compilation 

module. 

 

 The initial module that processes the LLVM IR would be opt, which is 

known as LLVM optimizer, responsible to perform various analyses in order 

to optimize the input LLVM IR. Following this, the llc module (static 

compiler of LLVM) analyzes the LLVM IR further and transform it into 

various intermediate forms, eventually mapped to the instruction set of the 

desired target machine (RISC32 for this research work). It can generate output 

as assembly file or binary object file. The final crucial module would be lld, 

which is the LLVM linker, responsible in performing address calculation for 

the binary object file generated by static compiler llc, and output a final 

executable object file. As lld generates object file in Executable and Linkable 

Format (ELF), it contains various Operating System (OS) related headers or 

information sections. This output file is still not suitable to be executed on 

RISC32, as this research work currently do not intend to host any OS in 

RISC32 at the moment. Hence, the objcopy will be used to extract only the 

Text Segment (.text) and Data Segment (.data and .rodata) which contains the 

instructions and data respectively. The binary content extracted from 

respective sections will be loaded into suitable memory address location based 

on memory map established for RISC32.  The memory map for RISC32 is 

shown in the Figure 3.2. 
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Figure 3.2: Memory map for RISC32 

Source: Kiat, 2018.  

 

The following section (Section 3.1.1) discuss the existing RISC32 Instruction 

Set. Following by, analysis and comparison is performed in Section 3.1.2, on 

the existing instruction set implemented in MIPS Backend of LLVM. Next, 

porting of the instruction by category (Section 3.1.3 to 3.1.6) into LLVM is 

discussed. Finally, the porting of RISC32 Interrupt Service Routine (ISR) 

programming feature (Section 3.1.7) into LLVM. 
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3.1.1 RISC32 Instruction Set 

 RISC32 is a MIPS Instruction Set Architecture (ISA) compatible 

processor, capable in decoding and executing a subset of the standard MIPS 

instruction. Part of our research work is to customize the existing LLVM 

MIPS Backend to compile RISC32 instructions. RISC32 only supports 54 

MIPS instructions (shown in Table 3.1) instead of the full-blown MIPS 

instructions (MIPS, 2016). 

 

Table 3.1: RISC32 Instruction Set 

Instruction Class Instructions 

Memory Access lw, lwl, lwr, lh, lhu, lb, lbu, sw, swl, swr, sh, sb 

 

Arithmetic add, addu, addi, addiu, sub, subu, mult, multu, mfhi, mflo, 

mthi, mtlo 

Bitwise and, or, xor, nor, sll, srl, sra, andi, ori, xori, lui 

Condition 

Checking 

slt, sltu, slti, sltiu 

Program Control beq, bne, blez, bgtz, j, jal, jr, jalr 

System syscall, mtc0, mfc0, eret, mtc2, mfc2, swc2 
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3.1.2 Analysis and Comparison of MIPS II vs RISC32 Instruction Set 

 The current LLVM MIPS Backend supports the MIPS instruction set 

architecture up to the latest generation (MIPS32 Release 6). A suitable MIPS 

architecture, MIPS II (Price, 1995), is chosen as the base to support the code 

generation for RISC32 due to its high similarity in supported instructions. 

However, not all MIPS II instructions can be executed by RISC32. Some 

modification is carried out to mask out the unsupported MIPS II instructions, 

thus, creating a new sub-target in the MIPS Backend for the RISC32 code 

generation. The new sub-target provides information for llc, the LLVM static 

compiler during the compilation phase to select valid instructions for RISC32. 

 

 The following tables (Table 3.2 to Table 3.8) show the comparison 

between RISC32 and MIPS II instruction set that is currently implemented in 

MIPS Backend of LLVM. Through the comparisons, the research work 

determines which instructions that are not supported and should be masked out 

for code generation of RISC32. 
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Table 3.2: Comparison for Memory Access Instructions 

Instruction Description Supported by MIPS 

II? 

Supported by 

RISC32? 

Remarks 

lb Load Byte ✔ ✔ 

Instructions are supported in both instruction set. No action is needed to be done in 

LLVM for RISC32 compilation. 

lbu Load Byte Unsigned ✔ ✔ 

lh Load Halfword ✔ ✔ 

lhu Load Halfword 

Unsigned 
✔ ✔ 

lw Load Word ✔ ✔ 

lwl Load Word Left ✔ ✔ 

lwr  Load Word Right ✔ ✔ 

sb Store Byte ✔ ✔ 

sh Store Halfword ✔ ✔ 

sw Store Word ✔ ✔ 

swl Store Word Left ✔ ✔ 

swr Store Word Right ✔ ✔ 
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Table 3.3: Comparison for Arithmetic Instructions 

Instruction Description Supported by 

MIPS II? 

Supported by 

RISC32? 

Remarks 

add Add Word ✔ ✔ 

Instructions are supported in both instruction set. No action is needed to be done in 

LLVM for RISC32 compilation. 

addu Add Unsigned Word ✔ ✔ 

addi Add Immediate Word ✔ ✔ 

addiu Add Immediate Unsigned 

Word 
✔ ✔ 

sub Subtract Word ✔ ✔ 

subu Subtract Unsigned Word ✔ ✔ 

mult Multiply Word ✔ ✔ 

multu Multiply Unsigned Word ✔ ✔ 

div Divide Word ✔ ✖ No divider hardware is implemented in RISC32. Will need to rely on software 

division. divu Divide Unsigned Word ✔ ✖ 

mthi Move to HI Register ✔ ✔ 

Instructions are supported in both instruction set. No action is needed to be done in 

LLVM for RISC32 compilation. 

mfhi Move from HI Register ✔ ✔ 

mtlo Move to LO Register ✔ ✔ 

mflo Move from LO Register ✔ ✔ 
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Table 3.4: Comparison for Condition Checking Instructions 

Instruction Description Supported by 

MIPS II? 

Supported by 

RISC32? 

Remarks 

slt Set on Less Than ✔ ✔ Instructions are supported in both instruction set. No action is needed to be done in 

LLVM for RISC32 compilation. sltu Set on Less Than Unsigned ✔ ✔ 

slti Set on Less Than Immediate ✔ ✔ 

sltiu Set on Less Than Immediate 

Unsigned 
✔ ✔ 

 

 Through the comparison (Table 3.2 and Table 3.4), all the Memory Access and Condition Checking Instructions of MIPS II is supported 

in RISC32. Hence, the implementation of MIPS II code generation for both categories can be reused. As for Arithmetic Instructions (Table 3.3), 

the division operation is currently not supported in RISC32. The RISC32 also does not plan to implement those instructions, as it is relatively 

expensive to implement a hardware module to perform division. Assuming that division operation is required by user program, simple division 

operation by power 2 divisor can be performed by using logical right shift instructions. For non-power 2 divisor, software division is assumed to 

be implemented by the user. Hence, the Arithmetic Instruction code generation of MIPS II can be reused as well. 
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Table 3.5: Comparison for Bitwise Instructions 

Instruction Description Supported by MIPS II? Supported by RISC32? Remarks 

and AND ✔ ✔ 

Instructions are supported in both instruction set. 

No action is needed to be done in LLVM for 

RISC32 compilation. 

or OR ✔ ✔ 

xor XOR ✔ ✔ 

nor NOR ✔ ✔ 

andi AND Immediate ✔ ✔ 

ori OR Immediate ✔ ✔ 

xori XOR Immediate ✔ ✔ 

lui Load Upper Immediate ✔ ✔ 

sll Shift Word Left Logical ✔ ✔ 

srl Shift Word Right Logical ✔ ✔ 

sra Shift Word Right Arithmetic ✔ ✔ 

sllv Shift Word Left Logical Variable ✔ ✖ Not supported in RISC32, but have valid C-syntax 

that will compile to it. Requires special handling. srlv Shift Word Right Logical Variable ✔ ✖ 

srav Shift Word Right Arithmetic Variable ✔ ✖ 

  

 For Bitwise Instructions (Table 3.5), the Shift-by-Variable operations is not supported. These instructions perform shifting based on 

register operands. This behaviour is quite common, as there might be times where shifting value is not known before program runtime. Hence, 

special handling for their compilation is discussed in Section 3.1.4. 
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Table 3.6: Comparison for Program Control Instructions 

Instruction Description Supported by 

MIPS II? 

Supported by 

RISC32? 

Remarks 

beq Branch on Equal ✔ ✔ 
Instructions are supported in both instruction set. 

No action is needed to be done in LLVM for 

RISC32 compilation. 

bne Branch on Not Equal ✔ ✔ 

blez Branch on Less Than or Equal to Zero ✔ ✔ 

bgtz Branch on Greater Than Zero ✔ ✔ 

bltz Branch on Less Than Zero ✔ ✖ Not supported in RISC32, but have valid C-

syntax that will compile to it. Requires special 

handling. 
bgez Branch on Greater Than or Equal to Zero ✔ ✖ 

bltzal Branch on Less Than Zero and Link ✔ ✖ 

Not supported in RISC32, but does not have valid 

pattern matching implemented in LLVM for these 

instructions. Will never be compiled from C code. 

Hence, no action is needed. 

bgezal Branch on Greater Than or Equal to Zero and Link ✔ ✖ 

beql Branch on Equal Likely ✔ ✖ 

bnel Branch on Not Equal Likely ✔ ✖ 

blezl Branch on Less Than or Equal to Zero Likely ✔ ✖ 

bgtzl Branch on Greater Than Zero Likely ✔ ✖ 

bltzl Branch on Less Than Zero Likely ✔ ✖ 

bgezl Branch on Greater Than or Equal to Zero Likely ✔ ✖ 

bltzall Branch on Less Than Zero and Link Likely ✔ ✖ 

bgezall Branch on Greater Than or Equal to Zero and Link Likely ✔ ✖ 

j Jump ✔ ✔ 
Instructions are supported in both instruction set. 

No action is needed to be done in LLVM for 

RISC32 compilation. 

jal Jump and Link ✔ ✔ 

jr Jump Register ✔ ✔ 

jalr Jump and Link Register ✔ ✔ 
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 For Program Control Instructions (Table 3.6), it is shown that a large 

portion of conditional branch operations in MIPS II is not supported in 

RISC32. The conditional branch operation shown consists of two variants: 

Branch and Branch Likely. The Branch variant refers to conditional branch 

that allows the branch delay slot (instruction scheduled right after conditional 

branch) instruction to execute regardless of branch taken or not. All the 

Branch variant is supported in RISC32, except for Branch on Less Than Zero 

(bltz) and Branch on Greater Than or Equal to Zero (bgez). These two 

instructions are exactly opposite of the existing Branch on Greater Than Zero 

(bgtz) and Branch on Less Than or Equal to Zero (blez) respectively in 

RISC32, hence they will not be implemented as hardware. Compilation 

transformation for the unsupported bltz and bgez will be discussed in Section 

3.1.5. For the Branch Likely variant, this group of instructions refers to 

conditional branch that nullifies the execution of branch delay slot instructions 

if branch untaken. These instructions are not required, as Branch Predictor 

(BP) is implemented in RISC32. The BP performs prediction, eliminating the 

delay slot for conditional branch. Furthermore, BP will also flush the delay 

slot instructions from RISC32 pipeline in the case of branch misprediction. 

Also, these instructions while present in MIPS Backend, no pattern matching 

implementation was specified for them. This means that the intermediate form 

will never be matched to these instructions, and will not select or generate the 

respective group of instructions.  

 

 Another group of branch instruction, long branches (bltzal and bgezal) 

is also not supported in RISC32. The long branches are typically used for 
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procedural calls, allowing conditional jump to a particular label address, at the 

same time, saves the return address to $ra ($31). The long branches are not 

required in RISC32, as one can pair the conditional branch with unconditional 

branch (jal and jalr) to achieve the same effect. Furthermore, the pattern 

matching is also not implemented for long branches, rendering it not selectable 

during compilation. Hence, the existing implementation of long branches 

instruction in MIPS Backend does not affect the code generation for RISC32. 
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Table 3.7: Comparison for System Instructions 

Instruction Description Supported by MIPS II? Supported by RISC32? Remarks 

syscall System Call ✔ ✔ Supported by RISC32. No action is needed 

break Breakpoint ✔ ✖ Not supported, but will not compile from C-code. Hence, 

no action is needed. 

eret Exception Return ✖ ✔ Not supported in MIPS II, but is implemented in LLVM 

MIPS Backend. Does not affect compilation for RISC32, 

as this instruction does not compile directly from C code. 

Will be accessed using inline assembly. 

mtc0 Move Word to Coprocessor 0 ✔ ✔ 

Instructions are supported in both instruction set. No action 

is needed to be done in LLVM for RISC32 compilation. 

mfc0 Move Word from Coprocessor 0 ✔ ✔ 

mtc2 Move Word to Coprocessor 2 ✔ ✔ 

mfc2 Move Word from Coprocessor 2 ✔ ✔ 

lwc2 Load Word from Coprocessor 2 ✔ ✖ Not supported, but will not compile from C-code. Hence, 

no action is needed. 

swc2 Store Word from Coprocessor 2 ✔ ✔ Supported by RISC32. No action is needed 
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 The System Instructions comparison (Table 3.7) shows major system 

level instructions of MIPS II was supported in RISC32. The Breakpoint 

(break) instruction, is a software debugging feature, which allows processor to 

stop temporarily at a particular point of user program.  This feature however, 

is not supported in RISC32 and shall be considered for future implementation. 

As for the Exception Return (eret), this instruction is required in RISC32 to 

return from the kernel mode (exception handler) to user mode. While it is not 

present in MIPS II, it was implemented in MIPS Backend for the later MIPS 

generation. This however, does not affect the code generation for RISC32, 

because the system instructions are typically non-mappable from C-syntax, 

and they can only be accessed by means of inline assembly. In other words, as 

long as their instruction format and encoding is implemented in the MIPS 

Backend, the LLVM assembler could still generate the machine codes for 

these instructions. For the Coprocessor 2 instructions, Load Word from 

Coprocessor 2 (lwc2) is not implemented for RISC32. This will not affect the 

RISC32 code generation as well (non-mappable from C), but shall be 

considered for future implementations. However, to ensure proper usage of the 

Coprocessor 2 in the user program, CP2 intrinsic functions were implemented 

for RISC32 sub-target and will be discussed in Section 3.1.6. 
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Table 3.8: Comparison for Miscellaneous Instructions 

Instruction Description Supported by MIPS II? Supported by RISC32? Remarks 

tge Trap if Greater Than or Equal ✔ ✖ 

Not supported by RISC32, but 

does not have valid C-syntax. Will 

not compile from C-code. Hence, 

no action is needed. 

tgeu Trap if Greater Than or Equal Unsigned ✔ ✖ 

tlt Trap if Less Than ✔ ✖ 

tltu Trap if Less Than Unsigned ✔ ✖ 

teq Trap if Equal ✔ ✖ 

tne Trap if Not Equal ✔ ✖ 

tgei Trap if Greater Than or Equal Immediate ✔ ✖ 

tgeiu Trap if Greater Than or Equal Unsigned Immediate ✔ ✖ 

tlti Trap if Less Than Immediate ✔ ✖ 

tltiu Trap if Less Than Unsigned Immediate ✔ ✖ 

teqi Trap if Equal Immediate ✔ ✖ 

tnei Trap if Not Equal Immediate ✔ ✖ 

ll Load Linked Word ✔ ✖ 

sc Store Conditional Word ✔ ✖ 

sync Synchronize Shared Memory ✔ ✖ 
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 The Trap, Atomic Load Store and Serialization operations in MIPS II 

instruction set (Table 3.8) are currently unsupported in RISC32. The Trap 

operation is a software exception, which triggers the processor to enter kernel 

mode (exception handler) upon meeting a certain condition during user 

program execution. However, compilation of C code to Trap instructions are 

uncommon, as there are no known C-syntax that could be directly mapped to 

them. As for Atomic (ll and sc) and Serialization (sync) operation, these 

operations are commonly found in multiprocessor systems. The RISC32 is not 

a multiprocessor system, hence the user is not expected to implement 

multiprocessor application with RISC32.  In short, there is no concern for 

these instructions to be compiled even if they are currently implemented in the 

MIPS Backend for MIPS II. 
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3.1.3 Implementing RISC32 as a Legal MIPS Sub-target in LLVM 

 To ensure the LLVM will correctly generate instructions that is 

compatible to RISC32 instruction set, the LLVM requires “RISC32” to be 

declared as one of the supported MIPS sub-targets in the MIPS Backend. The 

Figure 3.3 shows the associated file in declaring a new sub-target for MIPS 

Backend. 

 

uses uses

class MipsSubtarget{

enum MipsArchEnum{…, RISC32, ...};

bool hasRISC32();

};

MipsSubtarget.h

MipsInstrInfo.td

class ISA_RISC32

uses

Mips.td

def FeatureRISC32
 

Figure 3.3: Files associated to declare new sub-target in MIPS Backend 

 

 The MipsSubtarget.h contains a MipsSubtarget class. This class 

contains information of MIPS sub-target supported in the MIPS Backend. The 

list of supported MIPS sub-target is declared in the class member, 

MipsArchEnum enumerator type. The enumerator assigns integer constant to 

each of the MIPS Architecture declared with respect to their order. In the 

previous Section 3.1.2, it has been discussed that, RISC32 supported 

instructions closely resembles MIPS II Instruction Set. Hence, RISC32 will 

inherit all of the MIPS II instruction, by introducing a new enumerator 

element after MIPS II. The declaration is shown in the Figure 3.4. 
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Figure 3.4: RISC32 declared after MIPS II in the enumerator 

MipsArchEnum 

 

 This enumerator type is used to declare as the class member, 

MipsArchVersion enumerator variable. The MipsArchVersion is used in 

predicate functions, to determine which MIPS Architecture is being requested 

for each code generation session. Hence, a new predicate function, 

hasRISC32() is created for this purpose as indicated in Figure 3.3. 

 

 The next associated file is Mips.td file. This file is the main target 

description (.td) file for MIPS Backend, which is also the main reference point 

for generation of MIPS Backend (also known as target machine library, 

Mips.a). It contains a list of features that is supported in the MIPS Backend. 

The feature here refers to MIPS Architecture, or advanced architecture 

instruction set extension such as Digital Signal Processor (DSP) and MIPS 

SIMD Architecture (MSA). The feature declared here will be used as 

command line arguments, to be passed in during invocation of compilation to 

enable or disable a certain feature. As such, a new feature, FeatureRISC32 

was declared to inherit all MIPS II feature.  

 

 Another associated file to introduce new sub-target is MipsInstrInfo.td. 

This .td file contains every instruction supported by every generation of the 

MIPS instruction set. This refers to information such as instruction 
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mnemonics, instruction encoding and pattern to be matched with the 

SelectionDAG (intermediate form for LLVM code generation). This file also 

contains instruction membership class, which is used to check if the 

instruction declared belongs to a particular MIPS Architecture. The Figure 3.5 

shows a sample declaration of instructions in MipsInstrInfo.td. 

 

 

Figure 3.5: Instruction declaration in MipsInstrInfo.td 

 

 The sample (Figure 3.5) shows the declaration for Multiply Word 

(mul) and Add Word (add) instructions. They are shown at the end of each 

declarations, which are also assigned with an instruction membership class. 

The ISA_MIPS32_NOT_32R6_64R6 indicates that the mul instruction is 

introduced in MIPS32 instruction set but removed from both MIPS32 

Revision 6 and MIPS64 Revision 6. Similarly, the instruction membership 

class, ISA_MIPS1 indicates that the add instruction belongs to MIPS I 

instruction set. The ISA_MIPS1 also indicates it is available for every MIPS 

generation, since every subsequent MIPS generation inherits instructions from 

its previous generation, unless specified, like the case of mul instruction. 

Hence, a new instruction membership class, ISA_RISC32 was declared.  The 

new instruction membership class can change the instruction availability that 

is not found in MIPS II but in later generation (eret) and to identify new 

instruction that is exclusive to RISC32 to be introduced in future. 
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3.1.4 Porting Shift-by-Variable Instructions from MIPS II to RISC32 

 As presented in the Table 3.5 in earlier section (Section 3.1.2), all of 

the bitwise Shift-by-Variable instructions in MIPS II instruction set is not 

supported in RISC32. The Shift-by-Variable instructions is generated by the C 

code construct in the Figure 3.6. 

  

 

Figure 3.6: C code construct for Shift-by-Variable Instructions 

 

 The Shifting-by-Variable is generated when a shift operator (<< or 

>>) is used between variable declared. Shift-Left-Logical-Variable is 

generated when a left shift operator (<<) and the shift amount is based on a 

variable declared (variable ‘b’ in Figure 3.6). For Shift-Right-Logical-Variable 

and Shift-Right-Arithmetic-Variable however, their generation is determined 

by the variable type declared as shown in Figure 3.6. If a variable is declared 

as unsigned variable type, a Shift-Right-Logical Variable will be compiled. 

Otherwise, a Shift-Right-Arithmetic Variable will be compiled. The variable b 

is declared as volatile type, to prevent compiler perform optimization on the 

shift operations so that Shift-by-Variable instructions can be generated for 

testing purpose. Without the volatile keyword, the compiler will directly 

generate Shift-by-Immediate instructions with the known shift value.  
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 The Shift-by-Variable instruction syntax are shown in the Table 3.9. 

 

Table 3.9: Shift-by-Variable Instruction Syntax 

Instruction Syntax Description 

sllv $rd, $rt, $rs Shift Left Logical Variable 

srlv $rd, $rt, $rs Shift Right Logical Variable 

srav $rd, $rt, $rs Shift Right Arithmetic Variable 

 

 The Shift-by-Variable instructions performs shifting on the operand 

value in target register $rt, based on the shift value specified in source register 

$rs. The shifted result is then updated to destination register, $rd. These 

instructions have the same behaviour as the normal Shift-by-Immediate (sll, 

srl and sra), except the shift value is obtained from register file, instead of 

encoded in the instruction as immediate value. This also indicates Shift-by-

Variable instructions could not be compiled to the normal shift instructions 

directly, as the shift value might be unknown before program runtime.  Hence, 

to obtain the same effect of Shift-by-Variable using Shift-by-Immediate 

instructions, the pseudocode in the Algorithm 3.1 is proposed. 

 

ALGORITHM 3.1:  SHIFT-BY-VARIABLE TO SHIFT-BY-IMMEDIATE PSEUDO-CODE 

Input: Shift-by-Variable Instruction 

Output: Expanded routine replaced with Shift-by-Immediate Instruction 

1. Read shift-value from Shift-by-Variable source register 

2. Read input operand to be shifted from Shift-by-Variable target register 

3. while shift-value != 0 do 

a. Shift 1 bit on input operand using Shift-by-Immediate 

b. Subtract shift-value by 1 

4. endwhile 

5. Store shift result to destination register of Shift-by-Variable 

 

Algorithm 3.1: Pseudo-code for Shift-by-Variable transformation 
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 To insert the pseudo-code (Algorithm 3.1) presented, understanding of 

the code generation in LLVM Backend is required. The Figure 3.7 presents a 

simplified view of code generation in LLVM Backend.  

 

 

Figure 3.7: Simplified view of code generation in LLVM Backend 

 

 The code generation in LLVM relies on its static compiler, llc as 

illustrated in the Figure 3.7. The initial input to llc is LLVM Intermediate 

Representation (IR). LLVM IR is a generic assembly-like language, and is 

translated from the input source code (Eg: C, C++) by the LLVM frontend. llc 

will then construct an initial Selection Directed-Acyclic-Graph (DAG). The 

SelectionDAG is a graph-like data structure, where each graph nodes 

represents a pattern that is mapped from the LLVM IR. The initial 

SelectionDAG is generic, and goes through Lowering Phase and Legalizing 

Phase to be transformed into a more target dependent SelectionDAG. The 

target dependent SelectionDAG will then go through Instruction Selection 

phase, where each graph node is mapped to an instruction with a matching 
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pattern. The instructions supported and its respective pattern is specified in the 

InstructionInfo.td files of the respective target machine. Once each graph node 

is replaced with a matching instruction, the SelectionDAG goes through 

Instruction Scheduling and is further transformed into Machine Single Static 

Assignment (SSA) form. The MachineSSA is the final intermediate form in 

LLVM, where each graph node in SelectionDAG is assigned with an order, 

and emitted as machine instructions. In MachineSSA form however, the 

compiler assumes the target machine supports infinite virtual registers. This 

MachineSSA will then go through Register Allocation Phase, to replace all the 

virtual registers with limited registers (specified in respective target 

RegisterInfo.td file) in the target machine. Following by, the Prologue and 

Epilogue Phase will insert starting and ending routine such as stack allocation 

to the generated machine instructions. Finally, the code emission will generate 

the desired output by user, either in assembly instruction or binary format. 

 

 By observing the process of code generation, the possible way to 

transform the Shift-by-Variable into Shift-by-Immediate instructions is after 

Instruction Selection Phase. This is because, during Lowering and Legalizing 

Phase, the SelectionDAG is still undergoing transformation to be more target 

dependent. Depending on the transformation and optimization in the phases, 

the graph node may or may not yield a matching pattern for Shift-by-Variable. 

Hence, only after the Instruction Selection Phase, a Shift-by-Variable will be 

mapped to the graph node and determined to need transformation to Shift-by-

Immediate. However, after the Instruction Selection Phase, the intermediate 

representation form is still in SelectionDAG, where no order established 
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between each graph node. Implementing the Shift-by-Variable transformation 

while it is still in SelectionDAG may not be able to reflect execution order as 

required in the pseudocode proposed. Order of the instruction is only 

established when it is transformed into the MachineSSA form. 

 

 This research work utilizes a transformation pass, 

processFunctionAfterISel(), to implement the transformation of Shift-by-

Variable to Shift-by Immediate. This transformation pass is an existing 

implementation in the MIPS Backend, and is placed after Instruction 

Scheduling Phase but before Register Allocation Phase. Hence, the 

processFunctionAfterISel() processes on the MachineSSA form. However, it is 

not straightforward to implement the pseudo-code proposed (Algorithm 3.1) in 

MachineSSA form.  A basic understanding is required on a few terminologies 

such as MachineFunction (MF), MachineBasicBlock (MBB) and Machine 

Instruction (MI).   
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MachineFunction(MF):

MachineBasicBlock(MBB) 0:

MachineInstruction(MI) 1;

MI 2;

MI N;

MBB 1:

MI 1;

MI 2;

MI N;

MBB N:

MI 1;

MI 2;

MI N;

 

Figure 3.8: Relationship between MF, MBB and MI 

 

 In the LLVM Backend, when SelectionDAG is transformed into 

MachineSSA form, it is expressed in the structure as shown in Figure 3.8. 

Each user input source code file is interpreted as a MachineFunction (MF). 

Within each MF, it is made up of several MachineBasicBlock(MBB), where 

each MBB consists a group of MachineInstructions (MI). The size (number of 

MI) of each MBB is determined by common control flow structure (loops or 

if-else statements), function calls or program labels. New MBB is always 

spawned upon meeting branching instructions or program labels. The MI here 

refers to the generated target machine assembly instruction. They are 

expressed in SSA form, hence the name MachineSSA. These MI are translated 
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from SelectionDAG that has undergone Instruction Selection and Instruction 

Scheduling Phase.  

 

 As mentioned earlier, this research work utilize the transformation 

pass, processFunctionAfterISel() to perform the expand the Shift-by-Variable 

instruction into a series of instructions accompanied by Shift-by-Immediate 

instruction. The processFunctionAfterISel() takes in MBB(s) and scans 

through every MI present in it. Upon Shift-by-Variable instructions detected, 

and compilation for RISC32 Sub-target (using predicate function in Section 

3.1.3) is detected, the following routine in Table 3.10 is expected with srlv as 

example. 

 

Table 3.10: Expected Routine for srlv 

Original Instruction Expanded Instruction 

 

 

 

srlv $1,$2,$3 

 andi $3, $3, 0x1f 

srlv:  beq  $3, $0, end 

         sub  $3, $3, 1 

         srl    $2, $2, 1 

         j       srlv 

end:  addu $1, $2, $0 

 

 However, processFunctionAfterISel() processes MBB(s) in 

MachineSSA form. Table 3.11 shows the MachineSSA routine to be inserted 

to generate the expanded instruction. 
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Table 3.11: MachineSSA form for srlv expansion routine 

Original Instruction Original Expanded Form MachineSSA Form 

 

 

 

srlv $1,$2,$3 

  

 andi $3, $3, 0x1f 

srlv:  beq  $3, $0, end 

         sub  $3, $3, 1 

         srl    $2, $2, 1 

         j       srlv 

end:  addu $1, $2, $0 

 andi %C1, %C, 0x1f 

cond: %B1 = PHI(%B , %B2) 

 %C2  = PHI(%C1,%C3) 

 beq %C2, $0, end 

srlv: sub %C3, %C2, 1 

 srl %B2, %B1, 1 

 j cond 

end: addu %A, %B1, $0 

 

 

 The MachineSSA form illustrated in Table 3.11 is inserted using 

BuildMI(), an existing function implemented in the MI class of LLVM library. 

It is shown that, the MachineSSA form introduces various virtual registers 

(%A, %B1, %C3…) and new MBBs (cond, srlv, end). The virtual register %A 

is mapped to the destination register ($1), that stores the shifted result for srlv 

instruction. The virtual registers %B, %B1, and %B2 are mapped to the target 

register ($2), which contains the input operand to be shifted by srlv 

instruction. Finally, the virtual registers %C, %C1, %C2, and %C3 are mapped 

to source register ($3) of srlv instruction, which contains the shift amount. It 

should be noted that, none of the virtual register naming was repeated. This is 

to conform to the rules of SSA form, where each register can only be assigned 

once. Also, each register must have been assigned or declared earlier before 

their usage. For cases where repeated assignment to an SSA register is 

required, a special decision structure in SSA form, PHI() functions is used 

instead. This function allows repeated assignment to an SSA register in the 

cases where source of SSA register originates from several MBBs (MBB 

before cond and srlv MBB). These PHI() functions will be removed after the 

Register Allocation Phase.  
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 The Table 3.12, Table 3.13 and Table 3.14 shows the changes in 

generated assembly code for the respective Shift-by-Variable instructions after 

the implementation of RISC32 Sub-target. These tables are the compilation 

output with respect to the C code in Figure 3.6. It can be seen that each Shift-

by-Variable instruction has been replaced with their Shift-by-Immediate 

variant instructions according to the proposed pseudo-code in Algorithm 3.1. 

The proposed routine shifts bit-by-bit and subtract the extracted shift amount 

after every loop. The shifting operation is performed until the shift amount 

equals to zero. The routine will then branch out, and transfer the final shifted 

value into the destination register as indicated in the original Shift-by-Variable 

instruction. 

 

Table 3.12: Shift-Left-Logical-Variable compiled using RISC32 Sub-

target 

Before (Compiled using MIPS II) After (Compiled using RISC32) 
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Table 3.13: Shift-Right-Arithmetic-Variable compiled using RISC32 Sub-

target 

Before (Compiled using MIPS II) After (Compiled using RISC32) 

 

 
 

Table 3.14: Shift-Right-Logical-Variable compiled using RISC32 Sub-

target 

Before (Compiled using MIPS II) After (Compiled using RISC32) 
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3.1.5 Porting Branch on Conditional Instructions from MIPS II to 

RISC32 

 As discussed in Section 3.1.2, the RISC32 will only require 

implementation to handle compilation for Branch on Less Than Zero (bltz) 

and Branch on Greater Than or Equal to Zero (bgez). Other branch variant 

(Conditional Branch Likely, Long Branch and Long Branch Likely) does not 

requires handling, as compilation from C code to these instructions was not 

possible with their existing implementation in MIPS LLVM Backend. The 

Figure 3.9 and Figure 3.10 shows their respective C construct. 

 

 

Figure 3.9: C construct for bgez instruction 

 

 

Figure 3.10: C construct for bltz instruction 

 

 It is shown in both Figure 3.9 and Figure 3.10 that the condition of the 

if-construct determines the compiled Conditional Branch instruction. 

However, the Conditional Branch instruction is always compiled with the 
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reversed condition with respect to their C code. For instance, the “c < 0” in 

Figure 3.9, while interpreted as branch on c less than zero, it is expected to be 

compiled to bgez. The compilation of reverse branching condition ensures the 

execution order of the code as interpreted from their C language semantics. If 

a reverse condition is detected, it will branch away, to a further point of the 

program. Otherwise, the consecutive code segment right after the reverse 

branching instruction is executed, which fulfils the execution condition in their 

C language semantics.  

 

Table 3.15: Instruction syntax for bltz and bgez 

Instruction Syntax Description 

bltz $rs, offset Branch on Less Than Zero 

bgez $rs, offset Branch on Greater Than or Equal to Zero 

 

 The Table 3.15 illustrates the instruction syntax for both bltz and bgez 

instruction. Both instructions perform comparison of source register ($rs) 

against register zero ($0), and branch to the 16-bit offset if branching 

condition is matched.  They can both be replaced with a combination of beq, 

bgtz and j instructions. The expected routine for both bltz and bgez is shown in 

the Table 3.16. 

 

Table 3.16: Expected Routine and equivalent MachineSSA form for bltz 

and bgez 
Original Instruction Expanded Instruction MachineSSA form 

bltz $rs, br_label bltz:  bgtz $rs, exit 

 beq $rs, $zero, exit 

 j      br_label 

exit: 

bltz:  bgtz %rs, exit 

 beq %rs, $zero, exit 

 j      br_label 

exit: 

bgez $rs, br_label bgez: bgtz $rs, br_label 

 beq, $rs, $zero, br_label 

exit: 

bgez: bgtz %rs, br_label 

 beq, %rs, $zero, br_label 

exit: 
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 The labels (exit and br_label) shown in Table 3.16 corresponds to the 

16-bit branch offset. These labels are replaced with calculated PC-relative 

offset during the Linking Phase. The bltz performs branching upon source 

register ($rs) less than register zero ($0). It can be interpreted as: the $rs must 

not be greater than zero and must not equal to zero as well. Hence, the 

proposed expanded routine shown for bltz (1st row of Table 3.16) achieve $rs 

must not be greater than zero by branching away to the exit label using bgtz. 

The beq branching away to exit label achieves $rs must not be equal to zero. If 

both conditions (bgtz and beq) are not met, the final unconditional branch (j) 

will take place and branch to the intended bltz offset. The bgez performs 

branching upon $rs greater or equal to $0. This can be interpreted as: the $rs is 

either greater than zero or equal to zero. The proposed expansion routine for 

bgez (2nd row of Table 3.16) achieve $rs greater than zero using bgtz 

instruction and branch to the intended branch offset. beq is used to achieve $rs 

equals to zero. Subsequent instructions will be executed if neither bgtz nor beq 

is taken, which fulfils the branch not taken condition for bgez.  

 

 Similar to Shift-by-Variable transformation, the bltz and bgez will only 

be transformed at the processFunctionAfterISel() transformation pass. The 

pass will iterate over every MI of MBB(s) passed in to find out every bltz and 

bgez instruction. If RISC32 Sub-target is requested, every instance of both 

instructions will be replaced with the equivalent MachineSSA form of the 

proposed routine (Table 3.16). It should be noted as well, the proposed 

MachineSSA form does not require complicated virtual register renaming as 
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presented in Section 3.1.4, as there was no assignment statement for 

branching. 

 

 The Table 3.17 and Table 3.18 shows the compilation of bgez (Figure 

3.9) and bltz (Figure 3.10) for RISC32 as suggested in Table 3.16. It should be 

noted that, for the compilation before RISC32 is implemented in LLVM, both 

conditional branches (beq, bgtz, bgez, etc…) and unconditional branches (j, jr, 

jal, etc…) will have a NOP inserted right after them. This is to fill the delay 

slots of the branching instructions, to prevent the subsequent instruction after 

from executing. For RISC32 however, the implementation of Branch Predictor 

(BP) eliminates the need for delay slots. Hence, no NOP insertion is required 

for RISC32 compilation. It should be noted as well, the proposed solution in 

Table 3.16 uses beq to compare the source register with the $zero register. The 

illustrated compilation however, uses beqz instruction instead. This does not 

affect the behaviour of the code, as beqz is the alias instruction for beq 

instructions that compares to $zero register. They both have the same 

instruction encoding and behaves in the same manner. 
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Table 3.17: Branch on Greater or Equal to Zero compiled using RISC32 

Sub-target 

Before (Compiled using MIPS II) After (Compiled using RISC32) 

  

 

Table 3.18: Branch on Less Than Zero compiled using RISC32 Sub-target 

Before (Compiled using MIPS II) After (Compiled using RISC32) 
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3.1.6 Implementation of CP2 Intrinsic Functions in LLVM for RISC32 

 The CP2 is the AES Coprocessor integrated into RISC32 to provide 

encryption functionality. The introduction of CP2 introduces three 

instructions, namely the Move to Coprocessor 2 (mtc2), Move from 

Coprocessor 2 (mfc2) and Store Word from Coprocessor 2 (swc2). The CP2 

integration into RISC32 and its instructions will be discussed under Section 

3.2. In the previous Section 3.1.2, it has been discussed that the system 

instructions are typically non-mappable from C-syntax. This includes the CP2 

instructions as well.  They can only be accessed using inline assembly 

programming. The inline assembly programming feature is by default 

supported in LLVM, hence will not be discussed here. However, programming 

with inline assembly for CP2 use case is not recommended.  This is to prevent 

user from creating a sequence of assembly code that is not compatible with the 

CP2 execution behavior. This research work introduces the implementation of 

new intrinsic function that maps to a specific sequence of assembly 

instructions which is compatible to the underlying CP2 hardware. 

 

 The intrinsic function is a special C function that maps to a specific 

sequence of instruction defined by the compiler. The frontend (clang) 

translates C intrinsic function and emits an equivalent LLVM IR intrinsic 

function call to llc. llc then transforms the LLVM IR and maps it to a specific 

sequence of instructions accordingly. The instruction sequence is specified in 

a custom function inserter implemented by respective target machine backend. 

Hence, implementation of new intrinsic function requires extension to both the 

frontend and backend as shown in the Figure 3.11. 
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Figure 3.11: Overview of intrinsic porting in LLVM 

 

 At the frontend, clang, valid intrinsic function prototypes are declared 

in each target machines’ respective BuiltinsXX.def file, where XX specifies the 

target machine. For example, BuiltinsMips.def is specific to MIPS target 

machine only. For RISC32, two new intrinsic function was implemented. The 

new intrinsic function header is shown in Table 3.19. 

 

Table 3.19: CP2 Intrinsic Function Header 

CP2 Key Expansion Intrinsic Function Header: 

__builtin_risc32_aes128_keyinit (uint32_t* key)     (1) 

CP2 Encryption Intrinsic Function Header:  

__builtin_risc32_aes128_enc (uint32_t*plaintext,  

volatile uint32_t* ciphertext)       (2) 

 

 

 Function (1) is for invoking key expansion. Input argument required is 

the base address (uint32_t* key) for the 128-bit secret key. As there is no 128-

bit data type in C, the secret key is split into array of four words (32-bit each), 
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which is represented using integer data type in C. This intrinsic function is 

designed to load secret key from RISC32 data memory and pass it to CP2 for 

key expansion. The expanded round keys will be stored in CP2 and used 

during encryption call. 

 

 Function (2) is for plaintext encryption. Two arguments are required: 

base address (uint32_t * plaintext) for the 128-bit plaintext and base address 

(volatile uint32_t* ciphertext) to store 128-bit ciphertext. Similarly, both 

plaintext and ciphertext are stored in array of four words. This intrinsic 

function is designed to read plaintext from the base address (plaintext) and 

pass it to the CP2 for encryption. Once the encryption completes, ciphertext 

from CP2 will be stored into the memory location specified by the base 

address, ciphertext. 

 

 After declaring the new function prototype, its code generation 

implementation is needed. Through code generation, the function argument 

from the source code will be extracted to construct a proper function call to be 

mapped to LLVM IR. These implementations are done under target specific 

intrinsic function expression emitter method which is labeled as 

EmitXXBuiltinExpr(), where XX specifies the target machine. They all are 

implemented under the code generation of clang frontend, CGBuiltin.cpp file. 

For RISC32, the EmitMipsBuitlinExpr(), is used instead. This function will 

detect the intrinsic function header (1) and (2) that has been defined in 

BuiltinsMips.def and emit equivalent LLVM IR intrinsic function call.  
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 With the code generation for the newly implemented intrinsic function, 

its equivalent LLVM IR pattern is needed. This LLVM IR pattern is required 

for initial construction of SelectionDAG in llc, which will then further be 

transformed by target specific transformation routine to yield a target specific 

SelectionDAG. The new LLVM IR pattern is implemented under the target 

specific intrinsic .td file, for example IntrinsicMips.td. The frontend will 

utilize the record of the new pattern to map the function call construct from 

code generation phase to its equivalent intrinsic function LLVM IR construct. 

For CP2 intrinsic function (1) and (2), it will be emitted as the LLVM IR as 

illustrated in Table 3.20 

 

Table 3.20: LLVM IR for CP2 Intrinsic Function 

CP2 Key Expansion Intrinsic LLVM IR: 

void @llvm.mips.__builtin_risc32_aes128_keyinit(i32*)    (1) 

 

CP2 Encryption Intrinsic LLVM IR: 

void @llvm.mips.__builtin_risc32_aes128_enc(i32*, i32*)   (2) 

 

 

 

 With the LLVM IR in Table 3.20, an equivalent Instruction 

SelectionDAG (ISD) node will be generated during Lowering Phase. This ISD 

node will be mapped using pattern matching by recognizing the ISD input 

pattern during Instruction Selection Phase of llc. However, since the intrinsic 

functions are not exactly an instruction on its own, it is implemented as pseudo 

instruction node.  
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Figure 3.12: CP2 Intrinsic Function pseudo instruction node in 

MipsInstrInfo.td 

 

 The pseudo instructions nodes declared (AES128_KEYINIT and 

AES128_ENC) shown in Figure 3.12 utilizes the usesCustomInserter flag. 

With the flag set, a Custom Inserter Function, EmitInstrWithCustomInserter() 

is call upon during Expand Instruction Selection Pseudo Pass. This pass is 

responsible to expand pseudo instructions generated after Instruction Selection 

Phase. Within the Custom Inserter Function, all pseudo instructions are 

specifically translated to a suitable instruction, or in the cases of intrinsic 

function, it will be mapped to a specific sequence of instructions. 

 

Table 3.21: CP2 Key Expansion Routine 

Instruction Comment 

lw $rt0, 0($rs)  

Load 128-bit secret key (four words) from memory lw $rt1, 4($rs) 

lw $rt2, 8($rs) 

lw $rt3, 12($rs) 

mtc2 $rt0, $0  Move loaded 128-bit secret key (four words) into secret key 

register ($0~$3) of CP2 mtc2 $rt1, $1  

mtc2 $rt2, $2  

mtc2 $rt3, $3  

addi $rt4, $zero,0x1 Prepare key expansion command 

mtc2 $rt4, $12 Move key expansion command to command register ($12) 

of CP2 and start key expansion 

nop Insert NOPS to wait for key expansion to complete. Key 

expansion requires 15 clock cycles to complete, hence 15 

NOPS is inserted. 
nop 

.. 
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Table 3.22: CP2 Encryption Routine 

Instruction Comment 

lw $rt0, 0($rs)  

Load 128-bit plaintext (four words) from memory lw $rt1, 4($rs) 

lw $rt2, 8($rs) 

lw $rt3, 12($rs) 

mtc2 $rt0, $4  Move loaded 128-bit plaintext in terms of (four words) into 

secret key register ($0~$3) of CP2 mtc2 $rt1, $5  

mtc2 $rt2, $6  

mtc2 $rt3, $7  

addi $rt4, $zero,0x2 Prepare encrypt plaintext command 

mtc2 $rt4, $12 Move key expansion command to command register ($12) 

of CP2 and start encryption 

nop Insert NOPS to wait for encryption to complete. CP2 

encryption requires 55 clock cycles to complete, hence 55 

NOPS is inserted. 
nop 

.. 

swc2 $8,0($rs) Read encrypted 128-bit cipher text (four words) from cipher 

text register ($8~$11) of CP2 swc2 $9,4($rs) 

swc2 $10,8($rs) 

swc2 $11,12($rs) 

 

 

 The Table 3.21 and Table 3.22 shows expected sequence of 

instructions generated for both CP2 key expansion intrinsic Function (1) and 

CP2 encryption intrinsic Function (2) respectively. For Table 3.21, 15 NOPS 

are inserted to wait for all round keys to be generated. The NOPS inserted will 

have insignificant impact on overall program execution performance, as the 

secret key is assumed to be the same for consecutive batch of data (N byte in 

Section 3.2.4) of plaintext. A new secret key is only required when the sensor 

node sends another N byte of data. Hence, key expansion should only be 

executed once for the same consecutive blocks of plaintext. As for Table 3.22, 

the 55 NOPS is only inserted if the Queue System (Section 3.2.6) for CP2 is 

not implemented. With Queue System implemented, the NOPS can be 

removed, which will result a shorter instruction sequence. 
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3.1.7 LLVM Compilation of Interrupt Service Routine (ISR) for 

RISC32 

 The Interrupt Service Routine (ISR) is a common programming feature 

for microcontroller and IoT sensor nodes. It is typically used to serve 

hardware I/O interrupts, where I/O transaction between the sensor node and 

outer world is usually slow and could happen anytime. With ISR programming 

support, the processor does not need to constantly poll for an I/O action to 

happen and proceed with another task. The processor could even go into sleep 

mode when no operation is required, to preserve its limited energy supply, and 

waken again when interrupt event is triggered. 

 

 In LLVM, the ISR programming feature is supported by default. The 

Table 3.23 shows an example of writing an ISR in C code using the LLVM C 

frontend, Clang. 

 

Table 3.23: Sample ISR using Clang 

C code Compiled Assembly Comment 

unsigned char a = 0; 

 

__attribute((interrupt)) 

void isr0()  

{ 

 a++; 

} 

mfc0 $26, $13, 0 

mfc0 $27, $14, 0 

sw $27, 4($sp) 

mfc0 $27, $12, 0 

ext $26, $26, 10, 6 

sw $27, 0($sp) 

ins $27, $26, 10, 6 

ins $27, $zero, 1, 4 

ins $27, $zero, 29, 1 

mtc0 $27, $12, 0 

addiu $sp, $sp, -16 

sw $2, 12($sp) 

sw $1, 8($sp) 

lui $1, %hi(a) 

lbu $2, %lo(a)($1) 

addiu $2, $2, 1 

sb $2, %lo(a)($1) 

lw $1, 8($sp) 

lw $2, 12($sp) 

Exception handler Prologue 

in LLVM  

a++; 
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Continued from Table 3.23 

 di 

ehb 

lw $27, 4($sp) 

mtc0 $27, $14, 0 

lw $27, 0($sp) 

mtc0 $27, $12, 0 

addiu $sp, $sp, 16 

eret 

Exception Handler Epilogue 

in LLVM 

Exception Return 

 

 

 Each ISR is identified by Clang specific C programming attribute 

feature, __attribute((interrupt)). With the interrupt attribute, function body 

implemented under it will be compiled with Exception Handler Prologue, 

Epilogue and Exception Return (eret). The Exception Handler Prologue reads, 

process and records the Coprocessor 0 (CP0) registers (Cause, Status and 

EPC) before proceeding to carry out the ISR function body. The Exception 

Handler Epilogue updates the CP0 registers after serving the ISR. Exception 

Return allows the kernel mode (Exception Handling) to return to the user 

program.  Due to this convention, each ISR currently will have a separate 

instance of Exception Handler Prologue and Epilogue compiled together. This 

also indicates that each ISR is expected to have a separate program address. 

The hardware will need to keep track the entry address or have a fixed entry 

address for each ISR.  



74 

 

Exception Handler Prologue1

ISR_1

Exception Handler Epilogue1

eret

Exception Handler Prologue0

ISR_0

Exception Handler Epilogue0

eret

ISR_N

Exception Handler EpilogueN

eret

Exception Handler PrologueN

LLVM:

Exception Handler

ISR_0

RISC32:

ISR_1

eret

Return to Exception Handler

Return to Exception Handler

ISR_N

Return to Exception Handler

 

Figure 3.13: ISR Convention Comparison between LLVM and RISC32 

 

 In RISC32, only a single instance of Exception Handler will always be 

referenced and the starting address for it is always fixed at 0x8001_B400 

(Section 3.1, Figure 3.2). The RISC32 Exception Handler will always read, 

record and process CP0 registers, perform checking for software exceptions or 

hardware interrupt sources, and then branch to their respective ISR. At the end 

of each ISR, it will branch back to the same Exception Handler again, to 

update CP0 registers and perform Exception Return (eret). Due to this 

convention in RISC32, the hardware does not need to keep track the entry 

address or have a fixed entry address for each ISR. However, the RISC32 

Exception Handler will have to be compiled together with all the ISR. This is 

to resolve the label address of every ISR in the Exception Handler by utilizing 

the Linking Phase of code compilation.  
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 Through the comparison in Figure 3.13, this research work is required 

to: 

1) Eliminate the Exception Handler Prologue and Epilogue generation 

by LLVM if current ISR is generated for RISC32 

2) Replace the eret at the end of each ISR with instruction to return to 

the RISC32 Exception Handler 

3) Specify the MIPS register usage convention for RISC32 ISR 

 

Build Initial DAG

Lowering, 

Legalizing and 

Combining

Instruction 

Selection

Instruction 

Scheduling

Register 

Allocation

Prologue/Epilogue 

Insertion

2)

Perform Lowering 

for RISC32 ISR 

Interrupt Return

3)

Allocate only 

saved registers 

in RISC32 ISR

2)

Expand RISC32 

ISR Interrupt 

Return

1)

Bypass 

Exception 

Handler 

generation for 

RISC32 ISR

 

Figure 3.14: Overview of RISC32 ISR Porting 

 

 The Figure 3.14 presents the overview of implementation required to 

the code generation process of LLVM for RISC32 ISR Porting. To prevent the 

generation of Exception Handler Prologue and Epilogue of existing LLVM 

implementation for RISC32, modification to the Prologue and Epilogue 
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Insertion is required.  The Prologue and Epilogue Phase of MIPS Backend is 

implemented under MipsSEFrameLowering.cpp. This phase is responsible to 

perform stack allocation, and insert special starting and ending code if the 

interrupt attribute is detected. By utilizing the RISC32 Sub-target predicate 

function (discussed in Section 3.1.3, Figure 3.3), whenever the interrupt 

attribute is detected, the generation of both Exception Handler Prologue and 

Epilogue will be skipped. 

 

 The eret as mentioned in Section 3.1.2, is categorized as System 

Instructions. Hence, this instruction cannot be compiled from C code directly. 

In the existing implementation, eret is implemented as a pseudo type MIPS 

Instruction SelectionDAG (ISD) graph node. This pseudo MIPS ISD is 

inserted during Lowering Phase as a return graph node when the interrupt 

attribute is detected. Unlike the implementation of CP2 intrinsic node in 

Section 3.1.6, the eret code generation does not takes place in the Custom 

Inserter method. It is only inserted during the Post Register Allocation (RA) 

Phase, by detecting the eret pseudo MIPS ISD and insert it as an MI. This 

research work will utilize the same approach, by first declaring a new interrupt 

return node for RISC32 and expand the new return node during Post RA 

Phase. 

 

 
Figure 3.15: MIPS Interrupt Return ISD Node declaration for RISC32 in 

MipsInstrInfo.td 
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 The created pseudo INTRet MIPS ISD (Figure 3.15) node is inserted 

during the Lowering Phase, if the interrupt attribute and RISC32 Sub-target is 

detected. During Post RA Phase, this INTRet node will be replaced as j 

POP_STACK. The POP_STACK is a program label in the RISC32 Exception 

Handler (Figure 3.16). It is the return address when RISC32 Exception 

Handler branch to respective software or hardware ISR.  

 

Store register to stack

Exception Return 
(ERET)

Reset $stat.EXL bit

User Interrupt 
handling code

Load previous 
information from 

stack back to 
registers

Set $state.EXL bit 
and reset $stat.IE bit

Set $state.IE bit

$k0

$epc

$a2

Exception frame, EF

$k1

$a1

$a0

$stat

$a3

$cause
If(interrupt){
     Copy $cause.RIPL to $stat.IPL 
     //to prevent lower priority interrupt occurs
}

POP_STACK:

 

Figure 3.16: RISC32 Exception Handler Flow 

Source: Kiat, 2018. 
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 By referring to Figure 3.16, only a limited set of registers is saved 

(Exception Frame) upon entering RISC32 Exception Handler. To specify the 

limited register sets for ISR compilation, modification is made to the 

MipsRegisterInfo.td. This file specifies the register size, available register set 

and their usage convention. The information is used during Register 

Allocation Phase, where virtual registers of MachineSSA form is replaced 

with the supported register files of respective target machine. 

 

 

Figure 3.17: Alternate List of Allocable Register File for RISC32 ISR 

 

The Figure 3.17 shows the register class definition for MIPS. This definition is 

for the default MIPS 32 General Purpose Register (GPR), which allows the 32 

registers file allocable during Register Allocation Phase. Due to the 

construction of RISC32 Exception Handler, the Exception Frame (Figure 

3.16) only saves the $k0, $k1, $a0, $a1, $a2 and $a3 register. Hence, the 

AltOrders specifies the available registers for RISC32 during the ISR 

compilation. The AltOrderSelect specifies the condition to be fulfilled in order 

to allocate the register file with the alternate list.    
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Figure 3.18: Compilation of RISC32 ISR using LLVM 

 

 Finally, to compile the RISC32 ISR, the ISR programming will utilize 

the interrupt attribute as illustrated in Figure 3.18. The ISR C source code 

(isr.c) will be translated and compiled until it yields an object file, isr.o by the 

llc. The RISC32 Exception Handler (exc_handler.s) is handcrafted using 

RISC32 assembly language, and assembled using the llvm-mc, a machine code 

assembler in LLVM, to yield exc_handler.o object file. This llvm-mc is also 

part of the llc, and is responsible to generate the isr.o object file as well. With 

both exc_handler.o and isr.o obtained, they will be passed into the LLVM 

linker, lld to resolve all ISR label address in the RISC32 Exception Handler. 

The lld is also responsible to link the object files (exc_handler.o and isr.o) and 

generate the final output in the form as illustrated in Figure 3.13 earlier. This 

final output will be an executable, ready to be flashed into RISC32 memory at 

the address 0x8001_B400, and executed whenever software or hardware 

exception is raised in RISC32. 
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3.2 System Overview: Hardware 

 This section will describe the proposed hardware design for this 

research work. This research work aims to provide confidentiality feature in 

the IoT processor, RISC32. The confidentiality here refers to providing 

secrecy to the data being transferred. This can be achieved by encrypting the 

data before it is transferred out of the processor. As such, the Advanced 

Encryption Standard (AES) encryption core is selected to be integrated as 

cryptographic coprocessor into RISC32. However, there are several techniques 

to integrate a new coprocessor into a host processor. The techniques can be 

categorized as dedicated path integration and share memory path integration. 

In this research work, dedicated path is selected to integrate the new AES core 

in order to ensure a better performance of the integrated AES core. In contrast, 

if the shared memory path technique is being used, performance of the AES 

core will be dependent on the traffic condition in shared transfer path. Since 

the integration technique selected will introduce a new transfer path for the 

AES core, new special instructions are required to activate and utilize this new 

transfer path. 

  

While the AES core implemented in hardware performs encryption 

faster than its software implementation, the AES core is expected to have a 

processing latency. The processing latency here refers to time taken for the 

AES core to complete its encryption of a single input (128 bits or 16 bytes in 

equivalent). For all block cipher algorithms, the input data (plaintext) goes 

through a series of transformation iteratively to obtain an encrypted output 

(ciphertext). The processing latency is caused by the number of iterations 
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required. Common approach used to compensate the processing latency is by 

implementing AES architecture with higher throughput. However, architecture 

with higher throughput usually involves pipelined architecture. These 

pipelined architectures will still have the processing latency issue, but it 

allowed more encryptions to be performed at the same time. This may 

improve the encryption core performance, with the trade-off of larger 

hardware.  

 

Since IoT sensor nodes are operating on battery power supply, it may 

not be a good idea to implement a power-hungry encryption hardware. As 

such, instead of having high throughput AES core, single stage AES core is 

selected for this research work. Further software analysis was made on a 

typical IoT application processing pattern to seek potential solutions to 

compensate the processing latency issue present in the AES core. The analysis 

results in a solution, which is inspired by the Tomasulo Algorithm (Hennessy 

and Patterson, 2011). A Queue System was designed to perform dynamic 

scheduling, which is optimized for the processing pattern of the typical IoT 

application.  

 

The following section (Section 3.2.1) will first discuss on how 

integration of the AES core will be realized in RISC32 pipeline. Following by, 

the design of new instruction (Section 3.2.2) and the AES core used in this 

research work (Section 3.2.3). Next, analysis is made on the software pattern 

(Section 3.2.4) to eventually derive the solution, Queue System. Finally, the 

design of Queue System is discussed (Section 3.2.6).   
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3.2.1 Placement of the AES Coprocessor 

 The selected technique to integrate the AES core is dedicated path. As 

such, a new transfer path is required for the AES core. However, the new 

transfer path requires careful design consideration to prevent disruption to the 

work load balance in the processor pipeline. In this research work, the target 

RISC32 IoT processor is a 5-stage pipeline processor. Figure 3.19 revisits the 

architecture of RISC32 as discussed in Chapter 2.  
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Figure 3.19: Simplified view of RISC32 microarchitecture revisited 

 

 The 5 stages of RISC32 pipeline consists of Instruction Fetch (IF), 

Instruction Decode (ID), Execution (EX), Memory (MEM) and Write Back 

(WB). The IF stage performs instruction fetching from the instruction 

memory. The instruction fetched is transferred into ID stage, where in ID 

stage, the instruction fetched is decoded. The decoding here refers to actions 

such as Control-Path Unit assessing instruction opcodes to generate control 

signals, operands is fetched from Register File, and immediate value 

extraction from instruction. The information generated is further processed in 
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the EX stage. At EX stage, the desired operation decoded from the instructions 

is carried out by the Arithmetic Logic Block (ALB). The Address Decoder 

generates the necessary control signals to activate the memory modules at 

MEM stage. At the MEM stage, load store operation is carried out. Data is 

either loaded from or stored into the requested data memory location (Data 

RAM, Data Cache or Stack RAM). Other Input/Output (I/O) modules 

integrated with the shared memory technique is also situated at MEM stage. If 

load store operation was not requested by the current instruction, the data from 

EX stage will resume its transfer to WB stage. Similarly, loaded data from the 

requested memory address also resumes its transfer to WB stage. The WB 

stage will update the Register File with the data it obtained from the MEM 

stage.  

 

 To determine the placement of the AES core, workload in each 

pipeline stage is analysed. The Table 3.24 shows the longest timing delay for 

each stage in RISC32. 

 

Table 3.24: Longest Timing Delay for Each Stage in RISC32 

Pipeline 

Stage 

IF ID EX MEM WB 

Timing delay 14.537ns 13.309ns 14.668ns 17.830ns 2.556ns 

*These values are derived from the post-synthesis static timing analysis of the RISC32 using 

the Xilinx Vivado HLx 2017.2 IDE 

 

 The timing delay indicates the workload incurred to each pipeline 

stage. Performance of the processor is determined by the stage with the 

longest timing delay of all. From Table 3.24, it is indicated that the longest 
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delay path among all stages is situated in MEM stage. Apart from WB stage, 

the IF and ID stage has a lighter workload when compared to MEM stage and 

EX stage. However, the AES core is not suitable to be placed in the IF stage, 

because the current instruction is not yet decoded at this stage. For ID stage, 

important information is already extracted from the instruction. This makes ID 

stage a potential selection. In EX stage, most of the desired operation by the 

instruction is carried out by the ALB. All desired computation at EX stage has 

to be completed within one cycle. Hence, the ALB is expected to have a fairly 

large combinational logic in order to achieve the one cycle constraint. This in 

turn introduces a relatively long delay path to EX stage. The EX stage can be a 

viable selection, provided, the integrated AES Core would not introduce 

another longer delay path than the existing one’s in MEM stage.  

 

In MEM stage, it is reserved for shared memory integration technique. 

The module (data memory and I/O) here is expected to have a common 

interface so that the common controls and data bus is shared among each 

other. This reduces the logic needed to create a new transfer path whenever a 

new module is attached to MEM stage. However, since this research work 

focuses on the dedicated path approach, the integrated AES core will have a 

different interface than the modules at MEM stage. Furthermore, the timing 

analysis in Table 3.24 indicates that, MEM stage currently has the highest 

workload among all stages. Introducing the AES Core to MEM stage could 

lengthen the existing longest delay path and further reduce the overall 

performance of RISC32. Hence, MEM stage will not be considered. As for the 

WB stage, it only performs updates to the Register File. However, only 
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minimal information of the instruction is carried over to the WB stage. 

Introducing AES core could further complicate the transfer logic at WB stage. 

Furthermore, since RISC32 is a 5-stage pipeline processor, all instruction 

takes exactly 5 clock cycles to complete. No stages can be bypassed without 

going through all the 5 stages. Introducing new transfer path to WB stage 

would certainly affect all of the previous stages as well. Hence, WB stage 

would not be considered as well.  

 

 In summary, the viable stages for inserting the AES core are ID stage 

and EX stage. For this research work, ID stage is selected because it possesses 

the necessary information extracted from the instruction. The necessary 

operands and control signals are ready to be transferred into AES core by this 

stage. Moreover, it has been indicated in Table 3.24, ID stage currently has a 

lighter workload than the EX stages. Introducing AES Core into EX stage 

might lengthen the existing EX stage delay path, further reducing the overall 

performance of RISC32 due to workload imbalance.  
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3.2.2 New Instructions for AES Coprocessor 

 To utilize the AES core, new instructions are designed to activate and 

transfer the data along the new transfer path into the AES core during ID 

stage. 
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Figure 3.20: RISC32 Microarchitecture with Coprocessor 2 (CP2) 

 

 Figure 3.20 shows the RISC32 pipeline connected with AES 

Coprocessor, which was assigned as Coprocessor 2 (CP2). Coprocessor 0 

(CP0) has been assigned for interrupt controller, which monitors various 

software and hardware interrupt flags in RISC32. Coprocessor 1 (CP1) is 

reserved for Floating-Point Unit (FPU), which is responsible to perform all 

floating points computations. CP1 is not implemented in this research work, 

but it is reserved for future expansion when the needs arise. The new 

instructions created for CP2 are Move from Coprocessor 2 (mfc2) and Move to 

Coprocessor 2 (mtc2).  
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010010 00000 rt rd

opcode[31:26] rs[25:21] rd[15:11]rt[20:16]

00000 000000

funct[5:0]shamt[10:6]

mfc2 $rt ,$rd #Regfile($rt) ß CP2($rd)
 

Figure 3.21: Move from Coprocessor 2 (mfc2) R-Type Instruction 

Encoding and Syntax  

 

 The Figure 3.21 shows the instruction encoding and syntax for Move 

from Coprocessor 2 (mfc2). This instruction moves a 32-bit data into the 

Register File of RISC32 specified by the $rt in the instruction. The $rd 

specifies the location of data to read from, which is the register file in CP2. 

The registers available for reading in CP2 is shown in Figure 3.22.  
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Figure 3.22: mfc2 implemented using Register Addressing Mode  
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Figure 3.23: Logical view of mfc2 execution 

 

 The Figure 3.23 shows the logical view of the execution of mfc2. The 

mfc2 is first decoded by Control-path Unit and executed by CP2 at ID stage. 

The data obtained from CP2 will propagate along the pipeline registers, 

carried along to EX and MEM stage with no operation performed on it, until it 

reaches WB stage. The data from CP2 is then updated into the Register File at 

WB stage.  

  

 The Forwarding Block is connected to resolve data hazard related to 

mfc2 instructions. The mfc2 related data hazard arises when the status from 

CP2 (CP2 status register is read) is used by other instructions but has not 

reached RISC32 Register File. Another potential scenario for data hazard in 

mfc2 occurs when the data (ciphertext) from CP2 has not reached RISC32 

Register File, but sw instruction is requesting for the ciphertext. Table 3.25 

lists all the potential data hazard related to mfc2. 
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Table 3.25: Potential mfc2 related data hazard 

No. Instructions Scenario 

1 mfc2 $8, $13  

and $7, $8, $7 

Reading status register of CP2 to check CP2 

status. Can be resolved by forwarding CP2 data 

from EX stage to ID stage. 2 mfc2 $8, $13  

andi $7, $8, 0x1  

3 mfc2 $8, $13  

beq $7, $8, 500 

4 mfc2 $8, $13  

nop 

and $7, $8, $7 

Reading status register of CP2 to check CP2 

status. Can be resolved by forwarding CP2 data 

from MEM stage to ID stage. 

5 mfc2 $8, $13 

nop  

andi $7, $8, 0x1  

6 mfc2 $8, $13 

nop  

beq $7, $8, 500 

7 mfc2 $8, $8  

sw $8, 0($7) 

Store requested before data (ciphertext) of CP2 

reaches RISC32 Register File. Can be resolved 

by forwarding CP2 data from EX stage to ID 

stage. 

8 mfc2 $8, $8  

nop 

sw $8, 0($7)  

Store requested before data (ciphertext) of CP2 

reaches RISC32 Register File. Can be resolved 

by forwarding CP2 data from MEM stage to ID 

stage. 
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010010 00100 rt rd

opcode[31:26] rs[25:21] rd[15:11]rt[20:16]

00000 000000

funct[5:0]shamt[10:6]

mtc2 $rt ,$rd #Regfile($rt) à CP2($rd)
  

Figure 3.24: Move to Coprocessor 2 (mtc2) R-Type Instruction Encoding 

and Syntax  

 

 The Figure 3.24 shows the instruction encoding and syntax for Move 

to Coprocessor 2 (mtc2). This instruction reads a 32-bit data from RISC32 

Register File, which is specified by $rt. The data being read is then written 

into the CP2 register file, which is specified by $rd. The available register for 

writing in CP2 is shown in the Figure 3.25. 
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Figure 3.25: mtc2 implemented using Register Addressing Mode 
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Figure 3.26: Logical view of mtc2 execution 

 

 The Figure 3.26 shows the logical view of mtc2 execution. It is shown 

that mtc2 is decoded in ID stage and its operand is obtained from the Register 

File during ID stage. This data is then transferred into the CP2 register file 

during EX stage. Hence, reading the CP2 is in the ID stage whereas writing 

into CP2 occurs in the EX stage.  Note that this does not incur longer delay 

path to EX stage, because the function of mtc2 is to transfer data and 

commands to CP2. It is a write instruction, wherein no computation is 

involved. Furthermore, the computation path (more details in Section 3.2.3) of 

CP2 does not yield output within one cycle as compared to the ALB in the EX 

stage. The output can only be obtained using mfc2, which is just a read 

instruction that does not perform any computation as well.  Hence, the 

alignment of writing into CP2 to EX stage will not affect the overall 

performance of EX stage. 
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 Similar to mfc2, potential data hazard exists for mtc2 instruction as 

well. The scenario for data hazard in mtc2 is considered as general condition 

related to data hazard in Register File, which is extensively analysed in prior 

work (Kiat et al., 2017). Another potential data hazard for mtc2 instruction is 

load use hazard, which requires Interlock Block to resolve. Table 3.26 lists the 

possible data hazard condition for mtc2 instructions. 

 

Table 3.26: Potential mtc2 related data hazard 

No. Instructions Scenario 

1 add $8, $8, $7 

mtc2 $8, $12 

mtc2 require data computed by previous 

instruction. Can be resolved by forwarding 

from EX stage to ID stage  2 addi $8, $8, 0x1 

mtc2 $8, $12 

3 lw $8, 0($7) 

mtc2 $8, $0 

Load Use hazard. mtc2 required data that is 

currently loaded from data memory. Require 

Interlock Block to stall pipeline cycle. Then 

loaded data is forwarded from MEM stage to 

ID stage by Forwarding Block  
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3.2.3 CP2 Overview 

 The AES core is assigned to Coprocessor 2 in RISC32. The AES core 

used in the research work is an open source single stage AES core designed by 

Strömbergson (2014). It is a single stage rolled AES architecture; hence, 

computation is performed iteratively (55 clock cycle) with respect to the 

number of iterations established for the standard AES algorithm. In this work, 

the AES core by Strömbergson (2014) is redesigned to perform encryption 

with 128-bit secret key. Other secret key sizes (192-bit and 256-bit) are not 

supported currently, as the 128-bit is sufficient to provide a strong security in 

IoT applications. The AES core will also perform only encryption; decryption 

is not implemented as RISC32 is targeted for sensor node applications. The 

decryption is expected to be performed by the gateway device, which collects 

all the data transmitted from all the sensor nodes in the wireless sensor 

network. Figure 3.27 shows the top-level interface for CP2 block. Table 3.27 

contains the pin description for CP2 block interface. Table 3.28 contains list of 

CP2 register file and its respective usage.  

 

bicp2_clk

bicp2_rst

bicp2_mtc2

bicp2_addr[3:0]

bicp2_write_data[31:0]

bocp2_read_data[31:0]

bcp2
[31:0]

[3:0]

[31:0]

 

Figure 3.27: Top-Level Interface for CP2 Block 
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Table 3.27: Pin Description for CP2 Block Interface 

Pin Name: bocp2_read_data[31:0]  Pin Direction: Output 

Pin Size: 32 bits 

Source à Destination: CP2 Block à RISC32 Pipeline 

Pin Function: 

Output port for data read from the CP2 register file specified by mfc2 instruction 

Pin Name: bicp2_write_data[31:0]  Pin Direction: Input 

Pin Size: 32 bits 

Source à Destination: Register File à CP2 Block 

Pin Function: 

Input port for data and command to be written into CP2 register file specified by mtc2 

instruction 

Pin Name: bicp2_addr[3:0]   Pin Direction: Input 

Pin Size: 4 bits 

Source à Destination:  Data-path Unit à CP2 Block 

Pin Function: 

Input port for address of CP2 register file to be accessed by mtc2 and mfc2 instruction 

Pin Name: bicp2_mtc2  Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: Control-path Unit à CP2 Block 

Pin Function: 

Input signal to write data from bicp2_write data into CP2 register file. 

0: Do not write into CP2 register file 

1: Write into CP2 register file     

Pin Name: bicp2_rst   Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: Global Reset à CP2 Block 

Pin Function: 

0: Do not reset CP2 

1: Reset CP2 

Pin Name: bicp2_clk    Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: Global Clock à CP2 Block 

Pin Function: 

Clock Source 

 

Table 3.28: CP2 register file and their conventions 

Register 

Number 

Instruction 

Encoding 

Register 

Name 

Usage 

0 0000 key[0] Stores bit 127 to bit 96 of the128-bit secret key 

1 0001 key[1] Stores bit 95 to bit 64 of the128-bit secret key 

2 0010 key[2] Stores bit 63 to bit 32 of the128-bit secret key 

3 0011 key[3] Stores bit 31 to bit 0 of the128-bit secret key 

4 0100 block[0] Stores bit 127 to bit 96 of the128-bit plaintext 

5 0101 block[1] Stores bit 95 to bit 64 of the128-bit plaintext 

6 0110 block[2] Stores bit 63 to bit 32 of the128-bit plaintext 

7 0111 block[3] Stores bit 31 to bit 0 of the128-bit plaintext 

8 1000 result[0] Stores bit 127 to bit 96 of the128-bit ciphertext 

9 1001 result[1] Stores bit 95 to bit 64 of the128-bit ciphertext 

10 1010 result[2] Stores bit 63 to bit 32 of the128-bit ciphertext 

11 1011 result[3] Stores bit 31 to bit 0 of the128-bit ciphertext 
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Continued from Table 3.28 

12 1100 control Stores command to be executed by CP2 core. 

Available options: 

0x00000001: Round Key Generation 

0x00000002: Encryption  

13 1101 status Stores status of current CP2 core. 

 

RESERVED readyvalid

31 012

 

Figure 3.28: Status Register ($13) layout of CP2 

 

 The Figure 3.28 shows the Status Register layout of CP2. The ready 

(bit 0) indicates if the CP2 core is currently idle. If this bit is HIGH (1), CP2 

core is free to perform encryption or key generation; otherwise if it is LOW 

(0), CP2 is currently busy in performing encryption or key generation. The 

valid (bit 1) indicates current CP2 core completes its encryption. If this bit is 

HIGH (1), ciphertext is ready for reading; otherwise if it is LOW (0), it means 

no ciphertext for reading or the current encryption is not yet completed. 
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Figure 3.29: The microarchitecture of CP2 Block derived from analysing the AES source code by Strömbergson (2014).  
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 The Figure 3.29 shows the internal microarchitecture of CP2 Block. 

The top-level architecture of CP2 Block is responsible in registering every 

input data (secret key and plaintext) and command from the RISC32 pipeline. 

It is also responsible in storing the output (ciphertext) and status of current 

CP2 core. Based on the mtc2 (bicp2_mtc2) input signal and CP2 register file 

address (bicp2_addr[3:0]), read write operation to the register files of CP2 is 

decoded and performed by the control logic (bcp2_api). The main operations 

(round key generation and encryption) of AES is performed by the CP2 Core 

(sbcp2_core) that is implemented as a sub-block in CP2. Operation to be 

carried out by it is determined by the command requested in the Control 

Register of CP2 Block. Figure 3.30 shows the interface for CP2 Core 

(sbcp2_core). Pin description of the CP2 Core Sub-Block is provided in Table 

3.29. 
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Figure 3.30: CP2 Core Sub-Block interface 
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Table 3.29: Pin Description for CP2 Core Sub-Block 

Pin Name: sbocp2_result[127:0]  Pin Direction: Output 

Pin Size: 128 bits 

Sourceà Destination: CP2 Core Sub-Block à CP2 Block 

Pin Function: 

Output port for 128 bits encrypted ciphertext from the CP2 Core Sub-Block 
Pin Name: sbocp2_ready  Pin Direction: Output 

Pin Size: 1 bit 

Source à Destination: CP2 Core Sub-Block à CP2 Block 

Pin Function: 

Output status signal to indicate is it currently busy or ready for operation 

0: CP2 Core Sub-Block busy. Currently performing encryption or round key generation 

1: CP2 Core Sub-Block ready. Request for encryption or round key generation is permitted 

Pin Name: sbocp2_result_valid Pin Direction: Output 

Pin Size:1 bit 

Source à Destination: CP2 Core Sub-Block à CP2 Block 

Pin Function: 

Output status signal to indicate current ciphertext ready for reading 

0: Ciphertext not valid or no ciphertext for reading. Encryption is still ongoing in CP2 Core 

Sub-Block 

1: Ciphertext valid. Encryption has been completed by CP2 Core Sub-Block  

Pin Name: sbicp2_key[127:0]  Pin Direction: Input 

Pin Size: 128 bits 

Source à Destination: CP2 Block à CP2 Core Sub-Block 

Pin Function: 

Input port for 128-bit secret key for round key generation 

Pin Name: sbicp2_init  Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: CP2 Block à CP2 Core Sub-Block 

Pin Function: 

Input control signal to request for round key generation based on Control Register ($12) of 

CP2 register file 

0: No request for round key generation 

1: Request for round key generation 

Pin Name: sbicp2_block[127:0]  Pin Direction: Input 

Pin Size: 128 bits 

Source à Destination: CP2 Block à CP2 Core Sub-Block 

Pin Function: 

Input port for 128-bit plaintext for encryption 

Pin Name: sbicp2_enc  Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: CP2 Block à CP2 Core Sub-Block 

Pin Function: 

Input control signal to request for encryption based on Control Register ($12) of CP2 register 

file 

0: No request for encryption 

1: Request for encryption 

Pin Name: sbicp2_rst  Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: Global Reset à CP2 Core Sub-Block 

Pin Function: 

Reset Signal for CP2 Core Sub-Block  

Pin Name: sbicp2_clk  Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: Global Clock à CP2 Core Sub-Block 

Pin Function: 

Clock Source for CP2 Core Sub-Block 
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Figure 3.31: Internal microarchitecture of CP2 Core Sub-Block
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 The Figure 3.31 shows the internal microarchitecture of CP2 Core 

Sub-Block. The sub-block consists 4 main regions: CP2 Core Finite State 

Machine (sbcp2_core_ctrl), Round Key Generator (Section 3.2.3.1), Encrypter 

(Section 3.2.3.2) and Substitution Box (sbcp2_sbox). The main function of 

CP2 Core Finite State Machine (FSM) is to synchronize activities between 

Round Key Generator and Encrypter. Also, since there is only single 32-bit 

Substitution Box, the CP2 Core FSM is also responsible to control share usage 

of Substitution Box between Round Key Generator and Encrypter. Figure 3.32 

shows the states of CP2 Core FSM. The state descriptions and corresponding 

output is shown in Table 3.30 and Table 3.31. 
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Figure 3.32: CP2 Core FSM state diagram 

 

Table 3.30: CP2 Core FSM state description  

State Name Description 

CORE_CTRL_IDLE No Operation 

CORE_CTRL_INIT Performing round key generation 

CORE_CTRL_NEXT Performing encryption 
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Table 3.31: CP2 Core FSM state corresponding output 

State Name Corresponding Output 

CORE_CTRL_IDLE When sbicp2_init is HIGH 

  sbcp2_core_init = 1'b1; 

  sbcp2_core_ready_new = 1'b0; 

  sbcp2_core_ready_we = 1'b1;  

  sbcp2_core_result_valid_new = 1'b0; 

  sbcp2_core_result_valid_we = 1'b1; 

  sbcp2_core_ctrl_new = CORE_CTRL_INIT; 

  sbcp2_core_ctrl_we = 1'b1;   

When sbicp2_enc is HIGH 

  sbcp2_core_init = 1'b0; 

  sbcp2_core_ready_new = 1'b0; 

  sbcp2_core_ready_we = 1'b1; 

  sbcp2_core_result_valid_new = 1'b0; 

  sbcp2_core_result_valid_we = 1'b1; 

  sbcp2_core_ctrl_new = CORE_CTRL_NEXT; 

  sbcp2_core_ctrl_we = 1'b1; 

CORE_CTRL_INIT sbcp2_core_init = 1'b1; 

 

When sbcp2_core_key_ready is HIGH 

  sbcp2_core_ready_new = 1'b1; 

  sbcp2_core_ready_we = 1'b1; 

  sbcp2_core_ctrl_new = CORE_CTRL_IDLE; 

  sbcp2_core_ctrl_we = 1'b1; 

 

CORE_CTRL_NEXT sbcp2_core_init = 1'b0; 

 

When sbcp2_core_enc_ready is HIGH 

  sbcp2_core_ready_new = 1'b1; 

  sbcp2_core_ready_we = 1'b1; 

  sbcp2_core_result_valid_new = 1'b1; 

  sbcp2_core_result_valid_we = 1'b1; 

  sbcp2_core_ctrl_new = CORE_CTRL_IDLE; 

  sbcp2_core_ctrl_we = 1'b1; 
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3.2.3.1 Round Key Generator 

 The Round Key Generator generates round key based on a 128-bit 

secret key input. Since AES-128 supported by the CP2 core executes for 10 

rounds, a total of 11 round keys will be generated. The round keys generated is 

stored in a dedicated key memory in the Round Key Generator. These round 

keys are retrieved by Encrypter when there is an encryption requested. It 

should be noted that, round key generation and encryption operation cannot be 

performed simultaneously. Hence, round key generation must always be 

performed before encryption.  

 

 The standard procedure to use CP2 core for round key generation is as 

follows: 

1) Load 128-bit secret key from RISC32 data memory into RISC32 

Register File using four Load Word (lw) instructions. 

2) Move 128-bit secret key from RISC32 Register File into key registers 

($0 to $3) of CP2 register file, using four Move to Coprocessor 2 

(mtc2) instructions.  

3) Set round key generation command, 0x00000001 into the RISC32 

Register File using Add Immediate (addi) instruction. 

4) Move round key generation command from RISC32 Register File into 

Control Register ($12) of CP2 register file using mtc2 to start round 

key generation. 

5) Wait 15 clock cycles for round key generation to complete. 
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Figure 3.33: Microarchitecture for Round Key Generator
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 Figure 3.33 illustrates the microarchitecture for Round Key Generator. 

The Round Key Generator consists of Round Key Generator FSM 

(sbcp2_key_mem_ctrl), Key Expansion Logic, Round Constant Generator 

(rcon_logic), Key Expansion Round Counter (key_round_ctr[3:0]) and Key 

Memory (key_mem). The Round Key Generator FSM generates necessary 

control signals to control the whole round key expansion operation. The Key 

Expansion Logic contains logic to be performed on every round of key 

expansion operation. The Key Expansion Round Counter is a 4-bit up counter 

that counts from 0 to 10, which corresponds to the rounds of round key 

generation. The Round Constant Generator generates round constant to be 

used for each round of the round key expansion operation. Key memory is 

used to store round keys generated. A total of 11 round keys (128 bits each) is 

generated upon every round key generation. The Figure 3.34 shows the state 

diagram for Round Key Generator FSM. Table 3.32 and Table 3.33 provides 

its state description and state output respectively.  

 

KEY_CTRL_IDLE KEY_CTRL_INIT
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Figure 3.34: Round Key Generator FSM state diagram 
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Table 3.32: State Description for Round Key Generator FSM 

State Name Description 

KEY_CTRL_IDLE No Operation 

KEY_CTRL_INIT Initialize first round key  

KEY_CTRL_GENERATE Generate next 10 round keys for 10 rounds 

KEY_CTRL_DONE Round key generation completes 

 

Table 3.33: State Output for Round Key Generator FSM 

State Name Corresponding Output 

KEY_CTRL_IDLE When sbicp2_init is HIGH 

  sbcp2_key_ready_new = 1'b0; 

  sbcp2_key_ready_we = 1'b1; 

  sbcp2_key_mem_ctrl_new = KEY_CTRL_INIT; 

  sbcp2_key_mem_ctrl_we = 1'b1; 

 

KEY_CTRL_INIT sbcp2_key_round_ctr_rst = 1'b1; 

sbcp2_key_mem_ctrl_new= KEY_CTRL_GENERATE; 

sbcp2_key_mem_ctrl_we   = 1'b1; 

 

KEY_CTRL_GENERATE sbcp2_key_round_ctr_inc = 1'b1; 

sbcp2_round_key_update = 1'b1; 

 

When sbcp2_key_round_ctr_reg equals 10 

  sbcp2_key_mem_ctrl_new = KEY_CTRL_DONE; 

  sbcp2_key_mem_ctrl_we = 1'b1; 

 

KEY_CTRL_DONE   sbcp2_key_ready_new = 1'b1; 

  sbcp2_key_ready_we = 1'b1; 

  sbcp2_key_mem_ctrl_new = KEY_CTRL_IDLE; 

  sbcp2_key_mem_ctrl_we = 1'b1; 

 

 

 The round key generation in CP2 Core takes 15 clock cycles to 

complete. This is contributed by: 

1) mtc2 transfer round key generation command (0x00000001) into CP2. 

This command is only registered at next clock cycleà 1 clock cycle. 

2) The Round Key Generator FSM takes 13 clock cycles to complete all 

states. 
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3) The CP2 Core FSM only generates sbcp2_core_ready signal at next 

clock cycle after Round Key Generator FSM reaches 

KEY_CTRL_DONE state. à 1 clock cycle.  

 

 The Algorithm 3.2 illustrates the round key expansion algorithm 

implemented for CP2 core with respect to the specification published in NIST 

FIPS-197(2009). 

 

ALGORITHM 3.2:  ROUND KEY EXPANSION ALGORITHM 

Input: 128-bit Secret Key 

Output: key_mem[0] to key_mem[10] as 11 Round Keys 

1. while round!=10 do 

2. if round == 0  

a. Store Input as key_mem[0] 

b. Assign Input as previous_key 

c. Calculate next 8-bit rcon 

3. else   

a. Assign previous_key[127:96] as word[0] 

b. Assign previous_key[95:65] as word[1] 

c. Assign previous_key[64:32] as word[2] 

d. Assign previous_key[31:0] as word[3] 

e. Assign word[3] to Substitution Box 

f. Assign Substitution Box output to word[3] 

g. Zero-pad 8-bit rcon up to 32-bit 

h. Assign word[3] XOR 32-bit rcon to word[3] 

i. Assign word[3] XOR word[0] to word[0] 

j. Assign word[0] XOR word[1] to word[1] 

k. Assign word[1] XOR word[2] to word[2] 

l. Assign word[2] XOR word[3] to word[3] 

m. Concatenate all word to form 128-bit new_round_key 

n. Store new_round_key to key_mem[round] 

o. Assign new_round_key as previous_key 

p. Calculate next 8-bit rcon 

4. endif 

5. Increment round by 1 

6. endwhile 

 

Algorithm 3.2: Round Key Expansion Algorithm of CP2 Core derived 

from AES Source Code by Strömbergson (2014)  
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3.2.3.2 Encrypter 

 The Encrypter performs encryption operation for the CP2 Core. The 

Encrypter takes 128 bits input plaintext and perform a series of operations on 

the input for a fixed number of iterations. The resultant 128 bits output 

between each operation is known as state. The series of operations are 

AddRoundKey(), ShiftRows(), MixColumns() and SubByte(). The 

AddRoundKey() operation perform simple XOR operation between state and 

the round key. The round key is retrieved from the key memory of the Round 

Key Generator. In ShiftRows() and MixColumns(), the operation is performed 

with the state in four words form. The four words state is rearranged and 

assume the form of a 4x4 matrix. The ShiftRows() operation perform left 

cyclic byte shifting on each rows. Number of bytes to be shifted is with 

respect to the row number. For instance, the first row does not perform any 

rotation, while at the fourth row, three bytes is rotated to the left and vice 

versa. The MixColumns(), perform a 4x1 matrix multiplication between a 

fixed polynomial matrix and each column of the 4x4 matrix. Detailed 

discussion of the fixed polynomial matrix can be found from the NIST FIPS-

197 (2009) document.  The SubByte() operation performs byte substitution 

between all bytes of the state and the Substitution Box (refer to Section 

3.2.3.3), which is also known as Sbox. All of the operations mentioned above 

is performed in every round for 10 rounds.  
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 The standard procedure to use CP2 core for encryption is as follows: 

1) Load 128-bit plaintext from RISC32 data memory into RISC32 

Register File using four Load Word (lw) instructions. 

2) Move 128-bit plaintext from RISC32 Register File using four Move to 

Coprocessor 2 (mtc2) instructions into plaintext registers ($4 to $7) of 

CP2 register file. 

3) Set encryption command, 0x00000002 using Add Immediate (addi) 

instruction into RISC32 Register File. 

4) Move encryption command from RISC32 Register File into Control 

Register ($12) of CP2 register file using mtc2 to start encryption. 

5) Wait 55 clock cycles for encryption to complete. 

6) Move 128-bit ciphertext from ciphertext registers ($8 to $11) of CP2 

register file to RISC32 Register File using four Move from 

Coprocessor 2 (mfc2) instructions. 

7) Store 128-bit ciphertext from RISC32 Register File into data memory 

using Store Word (sw) instructions.  
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Figure 3.35: Microarchitecture for Encrypter
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 The Figure 3.35 illustrates the microarchitecture of Encrypter. The 

Encrypter consists of Encrypter FSM (sbcp2_encipher_ctrl), Encryption 

Round Logic, Encryption Round Counter (enc_round_ctr[3:0]) and Encryption 

Substitution Word Counter (enc_sword_ctr[1:0]). The Encrypter FSM 

generates control logic to control Encryption Round Logic, Encryption Round 

Counter and Encryption Substitution Word Counter. The Encryption Round 

Logic performs the AddRoundkey(), ShiftRows(), SubByte() and MixColumns() 

operation. The Encryption Round Counter is a 4-bit up counter that counts 

from 0 to 10, which corresponds to the rounds of encryption. The counter 

value is also used for reading the round keys from the round key memory. The 

Encryption Substitution Word Counter is a 2-bit up counter to track the word 

position of the current state to be substituted by Sbox. The Figure 3.36 shows 

the state diagram of Encrypter FSM. Table 3.34 and Table 3.35 provides its 

state description and corresponding output for each state. 
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Figure 3.36: Encrypter FSM state diagram 
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Table 3.34: State Description for Encrypter FSM 

State Name Description 

ENC_CTRL_IDLE No Operation 

ENC_CTRL_INIT Initialize first state 

ENC_CTRL_SBOX Perform SubByte() operation on every word of state 

ENC_CTRL_MAIN Perform ShiftRows() , MixColumns() , and AddRoundKey() 

 

Table 3.35: State Output for Encrypter FSM 

State Name Corresponding Output 

ENC_CTRL_IDLE When sbicp2_ enc is HIGH 

  sbcp2_enc_round_ctr_rst = 1'b1; 

  sbcp2_enc_ready_new = 1'b0; 

  sbcp2_enc_ready_we = 1'b1; 

  sbcp2_enc_ctrl_new = ENC_CTRL_INIT; 

  sbcp2_enc_ctrl_we = 1'b1; 

 

ENC_CTRL_INIT sbcp2_enc_round_ctr_inc = 1'b1; 

sbcp2_enc_sword_ctr_rst = 1'b1; 

sbcp2_enc_update_type = ENC_INIT_UPDATE; 

sbcp2_enc_ctrl_new = ENC_CTRL_SBOX; 

sbcp2_enc_ctrl_we   = 1'b1; 

 

ENC_CTRL_SBOX sbcp2_enc_sword_ctr_inc = 1'b1; 

sbcp2_enc_update_type = ENC_SBOX_UPDATE; 

 

When sbcp2_enc_sword_ctr_reg equals 3 

  sbcp2_enc_ctrl_new = ENC_CTRL_MAIN; 

  sbcp2_enc_ctrl_we = 1'b1; 

 

ENC_CTRL_MAIN sbcp2_enc_sword_ctr_rst = 1'b1; 

sbcp2_enc_round_ctr_inc = 1'b1; 

 

When sbcp2_enc_round_ctr_reg less than 10 

  sbcp2_enc_update_type = ENC_MAIN_UPDATE; 

  sbcp2_enc_ctrl_new = ENC_CTRL_SBOX; 

  sbcp2_enc_ctrl_we = 1'b1; 

 

When sbcp2_enc_round_ctr_reg equals 10 

  sbcp2_enc_update_type = ENC_FINAL_UPDATE; 

  sbcp2_enc_ready_new = 1'b1; 

  sbcp2_enc_ready_we = 1'b1; 

  sbcp2_enc_ctrl_new = ENC_CTRL_IDLE; 

  sbcp2_enc_ctrl_we = 1'b1; 
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 The encryption in CP2 Core takes 55 clock cycles to complete. This is 

contributed by: 

1) mtc2 transfer encryption command (0x00000002) into CP2. This 

command is only registered at next clock cycleà 1 clock cycle 

2) The Encrypter FSM takes 53 clock cycles to complete all states 

3) The CP2 Core FSM only generates sbcp2_core_ready signal and 

sbcp2_core_result_valid at next clock cycle after Encrypter FSM 

return to the ENC_CTRL_IDLE state. à 1 clock cycle  
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 The Algorithm 3.3 illustrates the encryption algorithm implemented in 

CP2 core with respect to the specification published in NIST FIPS-197(2009). 

 

ALGORITHM 3.3:  ENCRYPTION ALGORITHM 

Input: 128-bit Plaintext, Eleven (11) 128-bit Rounds Keys 

Output: Final state as 128-bit Ciphertext 

1. while round ≤ 10 do 

2. Read key_mem[round]  

3. if round == 0  

a. Assign AddRoundKey(Input, key_mem[round]) as state 

b. Increment round by 1 

4. else 

a. Assign state[127:96] as word[0] 

b. Assign state[95:64] as word[1] 

c. Assign state[63:32] as word[2] 

d. Assign state[31:0] as word[3] 

e. Reset sword 

f. while sword ≤ 3 do 

i. Assign SubByte(word[sword]) as word[sword] 

ii. Increment sword by 1 

g. endwhile 

h. Concatenate all word and assign to state 

i. Assign ShiftRows(state) as state 

j. if round != 10 then 

i. Assign MixColumns(state) as state 

k. endif 

l. Assign AddRoundKey(state, key_mem[round]) as state 

m. Increment round by 1 

5. endif 

6. endwhile 

 

Algorithm 3.3: Encryption Algorithm of CP2 Core derived from AES 

Source Code by Strömbergson (2014)  
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3.2.3.3 Substitution Box (Sbox) 

 The Substitution Box (Sbox) is a substitution table used in both round 

key generation and encryption operation. The values in Sbox is predefined and 

implemented as an 8-bit x 256 lookup-table. The Sbox performs substitution 

by using the one-byte input as offset to retrieve value from the lookup-table. 

Details of the calculation for each value is not discussed in this research work, 

but can be found from the NIST FIPS-197 (2009) document. The Table 3.36 

shows the values in Sbox. 

 

Table 3.36: SBox Table 

Source: NIST FIPS-197, 2009 

 
*The x and y represent rows and columns position. Eg: Input = {0x3b}, then Output of sbox = 

{0xe2} and vice versa 

 

 In CP2 Core, the Sbox is implemented as four 8-bit x 256 ROM. Each 

of these ROM can only output one byte every clock cycle. Hence, CP2 Core 

performs 4 parallel substitution on every clock cycle to output a complete 32-

bit word. However, substitution transformation is present in both round key 

generation and encryption operation. Due to this reason and the maximum 
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output of Sbox (32-bit substitution per clock cycle) in CP2, both operations 

cannot be executed in parallel and have to share the Sbox. The design of Sbox 

also affects encryption operation, where each round requires SubByte() to be 

performed on the 128-bit state. Since Sbox can only output 32-bit every clock 

cycle, the SubByte() operation takes 4 clock cycles to complete, which 

contributes a longer clock cycle for the encryption operation in CP2 Core. 

However, this Sbox design has a smaller hardware consumption, as it only 

implements four 8-bit x 256 ROM (32-bit) instead of 16 (128-bit). The smaller 

hardware consumption is beneficial in terms of power consumption for IoT 

implementation purposes. Figure 3.37 shows the internal structure of Sbox for 

CP2 Core. 
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Figure 3.37: Internal structure of Sbox in CP2 Core 
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3.2.4 Software Pattern Analysis for CP2 

 The primary aim of RISC32 (Kiat, 2018) was to develop a processor 

for implementing IoT sensor nodes. With the integration of CP2, this research 

works aims to provide security feature to RISC32. This security feature can 

ensure confidentiality of the sensor data, which will be transferred out of the 

sensor node periodically. Figure 3.38 shows a typical software pattern of the 

IoT applications in sensor nodes.  

 

Acquire N Byte

(Eg: ADC)

Process N Byte

(Eg: Encrypt with AES)

Send N Byte

(Eg:UART,SPI)
 

Figure 3.38: Typical IoT application in sensor nodes 

 

 Referring to Figure 3.38, the typical software pattern performs three 

tasks, namely Data Acquisition, Data Processing and Data Sending. The Data 

Acquisition refers to collecting data through various sensors. Common sensors 

available are humidity sensor, temperature sensor, infrared sensor and 

vibration sensor. These sensors are usually interfaced to Analog-to-Digital 

Converter (ADC), so that the analog output by the sensors are converted to 

digital values for processing. Data Processing refers to performing 

computation on the collected sensor data. For example, calculation (e.g. 

average, minimum/maximum and etc.) may need to be performed on the ADC 

data to yield meaningful representation of the sensor data. Action of Data 

Processing varies between each IoT applications. In the context of this 

research work, Data Processing is assumed to be AES Encryption. After Data 

Processing, Data Sending sends processed data out to gateway and cloud 
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server, so that it can be analysed to derive meaningful patterns. The sending 

can usually be done through common I/O modules such as WiFi, Bluetooth 

Low Energy (BLE) or ZigBee modules. These I/O modules are usually 

interfaced with I/O interface such as UART, SPI and I2C.  

 

 All the task mentioned in previous paragraph revolves around specific 

data size, which is labelled as N bytes. The typical size for N ranges from 64B, 

128B, 256B, 512B and 1024B. Sizes of N could differ between applications. 

This research work recommends N between the range of 256 to 1024 for IoT 

applications that constantly monitors and send large data size. The 

recommended range could reduce the need for frequent sending.  Smaller data 

size would indicate the need to frequent sending, which increases activity of 

IoT processor. This could cause higher power consumption, which is not ideal 

for sensor nodes with energy constrain. Moreover, the proposed sizes can also 

fit into the RAM of targeted FPGA and other common microcontrollers.    

 

 However, the CP2 currently integrated into RISC32 cannot fully utilize 

the software pattern presented in Figure 3.38. Figure 3.39 shows the software 

pattern incorporated with encryption using CP2.  

 

Acquire N Byte Encrypt N Byte Send N Byte

Encrypting with CP2:

T =(N/16B) * (18 CP2 read write instructions + 55 cycle per Encryption)  

T

 

Figure 3.39: Data processing pattern with CP2 encryption 
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 Referring to Figure 3.39, the encryption of N byte of data requires total 

T clock cycles. T is determined from the total number of instructions required 

to prepare and read the sensor data from CP2, setting command for CP2, 

together with 55 clock cycles of encryption computation. The Table 3.37 

shows the instructions required to use CP2 for encryption. 

 

Table 3.37: Encryption Routine for CP2 Excluding Data Acquisition 

Instruction Comment 

lw $rt0, 0($rs) Load 128-bit plaintext (four words) from 

memory into RISC32 Register File lw $rt1, 4($rs) 

lw $rt2, 8($rs) 

lw $rt3, 12($rs) 

mtc2 $rt0, $4 Move loaded 128-bit plaintext (four words) 

into secret key register ($0 to $3) of CP2 mtc2 $rt1, $5 

mtc2 $rt2, $6 

mtc2 $rt3, $7 

addi $rt4, $zero,0x2 Prepare encrypt plaintext command 

mtc2 $rt4, $12 Move key expansion command to command 

register ($12) of CP2 and start encryption 

nop Insert NOPS to wait for encryption to 

complete. CP2 encryption requires 55 clock 

cycles to complete, hence 55 NOPS is 

inserted. 

nop 

.. 

mfc2 $rt0, $8 Read encrypted 128-bit cipher text (four 

words) from cipher text register ($8 to $11) 

of CP2 and write into RISC32 Register File 
mfc2 $rt1, $9 

mfc2 $rt2, $10 

mfc2 $rt3, $11 

sw $rt0,0($rs) Store 128-bit cipher text (four words) from 

RISC32 Register File into data memory sw $rt1,4($rs) 

sw $rt2,8($rs) 

sw $rt3,12($rs) 

 

  A total of 18 instructions are required to start and read CP2 data, with 

additional 55 NOP instructions to wait for CP2 to output the valid ciphertext. 

Hardware pipeline stalling is another solution where the pipeline stages are 

held whenever there is a read to the CP2 register file while CP2 is still 

encrypting.  Both solutions are not efficient, as it creates 55 cycles of idle time 

in the processor pipeline. Consider the case where N = 1024, then T is 4672 
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clock cycles, wherein 3520 cycles (75%) are spent idle for waiting the 

encryption to complete!   

 

 To utilize the idle time caused by CP2 encryption, a more effective 

way would be to overlap the data acquisition and encryption, which is 

illustrated in the Figure 3.40. 

 

Encrypt N Byte

Send N Byte

Encrypting with CP2:

Acquire N Byte

T

 

Figure 3.40: Data processing pattern with encryption and data acquisition 

overlapped 

 

 The data processing pattern (Figure 3.40), however, is highly 

dependent on the AES encryption mode used. The common AES encryption 

modes available are Electronic Code Book (ECB), Cipher Block Chaining 

(CBC) and Counter (CTR). 

  

AESPlaintext
(N/16B data)

Secret Key

Ciphertext
( N/16B data)

ECB Mode

 

Figure 3.41: Electronic Code Book (ECB) AES Encryption Mode 
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 The ECB encryption mode (Figure 3.41) performs encryption directly 

on the input plaintext. The plaintext here refers to the sensor data collected 

during Data Acquisition task. This shows that the ECB has dependency on the 

sensor data. Data Acquisition needs to take place before encryption can be 

started. Hence, ECB mode could not fit the proposed processing pattern 

(Figure 3.40) as Data Acquisition and encryption could not be overlapped due 

to the dependency. 

 

AES

CBC Mode

Plaintext
(16B data)

Ciphertext
(16B data)

Initialization 
Vector

(IV)

XOR

Secret
Key

AES

Plaintext
(16B data)

Ciphertext
(16B data)

XOR

AES

Plaintext
(16B data)

Ciphertext
(16B data)

XOR

Secret
Key

Secret
Key

N/16B data  

Figure 3.42: Cipher Block Chaining (CBC) AES Encryption Mode 

 

 The CBC encryption mode is illustrated in the Figure 3.42. For the first 

encryption among all data (N Byte), the input plaintext will be XORed with an 

equivalent size (16 Byte) Initialization Vector (IV). The consecutive 

encryption is dependent on previous encryption, where their input is the XOR 

of respective plaintext and previous ciphertext. This dependency of CBC on 

previous ciphertext does fit to the consecutive encryption for all data (N Byte) 

as illustrated in Figure 3.40. However, the CBC also has dependency for the 

plaintext. Data Acquisition has to be performed first to obtain plaintext (sensor 
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data) before the first encryption can be started. This does not fit the proposed 

software pattern (Figure 3.40), as encryption and Data Acquisition is expected 

to be performed together independently.  

 

AES

CTR Mode
Secret Key

Counter
(N/16B CTR Value)

Plaintext
(N/16B data)

Ciphertext
(N/16B data)

XOR

 

Figure 3.43: Counter (CTR) AES Encryption Mode 

 

 The Counter (CTR) AES Encryption Mode (Figure 3.43) has a 

distinctive difference than the two (ECB and CBC) encryption mode 

mentioned earlier. Instead of performing encryption directly on the plaintext, 

the encryption is first applied on a counter. The counter is constructed from a 

random Initialization Vector and an initial counter value to form a 128-bit 

value. The counter is incremented between each encryption for consecutive 

series of data (N Byte). The encrypted counter value is then XORed with the 

respective plaintext to yield ciphertext. The process of CTR mode shows that 

encryption can be executed independently without needing the plaintext 

beforehand. The encryption can be executed first. The idle time (55 clock 

cycles per encryption using CP2) can be used to perform Data Acquisition of 

N byte. By the time both encryption and Data Acquisition completes, simple 

XOR operation will be carried out to obtain the final ciphertext. This 
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encryption mode certainly fits the proposed software pattern (Figure 3.40). 

Hence, the Figure 3.44 shows the software pattern from Figure 3.40 fitted with 

CTR AES Encryption Mode. 

 

Encrypt N/16B CTR Value(1)

Acquire N Byte(2) Send N ByteXOR N Byte(1),(2)

CTR Mode

 

Figure 3.44: Data processing pattern with encryption and data acquisition 

overlapped in CTR Mode 

 

 The RISC32 integrated with CP2 at the current stage however, are not 

catered for data processing as shown in Figure 3.44. The proposed data 

processing pattern (Figure 3.44) requires RISC32 to carry out two separate 

tasks in parallel together. While the CP2 can execute independently from other 

functional unit of RISC32, the CP2 integrated are single stage architecture. 

This means the CP2 can only process a single plaintext at a time. The CP2 

cannot be used before the encryption completes. This is to prevent overwriting 

the intermediate data that would yield ciphertext by the end of encryption. 

Furthermore, the RISC32 currently can only dispatch one instruction at a time. 

To obtain the effect of executing two different tasks together in Figure 3.44, 

RISC32 is required to dispatch two different set of instructions for two 

different tasks. As such, a Queue System (Section 3.2.6) was proposed to 

realize the data processing pattern in Figure 3.44. The Queue system will 

schedule the encryption task so that it could be executed alongside with Data 

Acquisition tasks. Additionally, a new instruction, Store Word Coprocessor 2 
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(swc2) (Section 3.2.5) is introduced, to resolve potential register file 

dependency issue present with the Queue System.    



124 

 

3.2.5 Store Word from Coprocessor 2 (swc2) 

offset111010 base rt

swc2 $rt ,offset($rs) #Memory[base+offset] ß  CP2($rt)

opcode[31:26] rs[25:21] rt[20:16] immediate[15:0]

 

Figure 3.45: Store Word from Coprocessor 2 (swc2) I-Type Instruction 

Encoding and Syntax 

 

 Figure 3.45 shows the instruction encoding and syntax for Store Word 

from Coprocessor 2 (swc2). This instruction has a similar behaviour as mfc2, 

which also reads from CP2 register file. This instruction reads 32 bits data 

from CP2 register file specified by the $rt in the instruction. Unlike mfc2, 

swc2 writes to the memory address specified, instead of the Register File in 

RISC32. The memory address, with $rs providing the base address, and 

memory offset as immediate value from bit 15 to bit 0 is encoded into the 

swc2 instruction. The addressing mode of swc2 is shown in Figure 3.46. 

 

mem_addr

offset111010 base rt

opcode[31:26] rs[25:21] rt[20:16] immediate[15:0]

Control-path 

Unit
mfc2
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[1]

[2]

...
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[31]

CP2

result[0]

result[1]

result[2]

result[3]

control

status

[31:0]

[31:0]From CP0

From 

Register 

File

[31:0]

[31:0]

[31:0]

[15:0]

ALB
Sign-extend [31:0]

[31:0]

Address 

Decoder
sw

Data 

Memory
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Figure 3.46: swc2 implemented using Base Addressing Mode  
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Figure 3.47: Logical view of swc2 execution 

 

 The Figure 3.47 shows the logical view of swc2 execution. As shown 

in Figure 3.47, the swc2 is decoded by Control-path Unit and executed by CP2 

at ID stage. The data obtained from CP2 at this stage is carried along EX 

through pipeline register until it reaches MEM stage. At EX stage, the memory 

address for swc2 is calculated using ALB. The calculated address is decoded 

by the Address Decoder to activate the desired memory module (Data RAM, 

Stack RAM, Data Cache or I/O modules). At MEM stage, the data is written 

into the desired memory location, based on the activated memory module 

decoded during EX stage.  

 

 Unlike mfc2, swc2 does not have data hazard issue. This is because the 

data fetched during ID stage is directly stored into the memory location at 

MEM stage. Since both actions are performed within the execution of the 

same instruction, data hazard will not happen.  
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 The swc2 is introduced to resolve potential scheduling issue with the 

Queue System. Before swc2 is introduced, the ciphertext can only be read 

from CP2 using mfc2. The ciphertext should not be stored in the limited 

Register File of RISC32 due to its large size, which is 128 bits. Since the mfc2 

can only write back to Register File of RISC32, mfc2 is required to pair with 

sw to store the ciphertext into data memory.  Table 3.38 shows the required 

instructions to store a complete 128-bit ciphertext into data memory. 

 

Table 3.38: Storage of ciphertext from CP2 using mfc2-sw pair 

Potential Instruction Pattern 1 Potential Instruction Pattern 2 

mfc2 $rt0, $8    #Read result[0] from CP2 mfc2 $rt0, $8   #Read result[0] from CP2 

mfc2 $rt1, $9    #Read result[1] from CP2 sw $rt0,0($rs) #Store result[0] 

mfc2 $rt2, $10  #Read result[2] from CP2 mfc2 $rt1, $9 #Read result[1] from CP2 

mfc2 $rt3, $11  #Read result[3] from CP2 sw $rt1,4($rs) #Store result[1] 

sw $rt0,0($rs)  #Store result[0] mfc2 $rt2, $10 #Read result[2] from CP2 

sw $rt1,4($rs)  #Store result[1] sw $rt2,8($rs) #Store result[2] 

sw $rt2,8($rs)  #Store result[2] mfc2 $rt3, $11 #Read result[3] from CP2 

sw $rt3,12($rs)  #Store result[3] sw $rt3,12($rs) #Store result[3] 

 

 It is shown that for both instruction pattern (Table 3.38), the sw and 

mfc2 has a weak link. There is not enough information to determine a strong 

relationship between them, except that both instructions use the same $rt. 

However, determining the sw and mfc2 based on their $rt has a potential risk. 

If there is an exception raised during the execution of the instruction pattern 

illustrated (Table 3.38), the exception handler or interrupt service routine 

(ISR) might have a sw instruction that has the matching $rt to preceding mfc2. 

The Queue System might not be able to queue the correct sw if such case 

arises. With swc2 however, Queue System will only need to detect swc2 

instead. Total instructions required to store ciphertext is also reduced. 
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3.2.6 Overview of the Queue System  

 In Section 3.2.4, analysis was performed on the typical software 

pattern of IoT applications, where an overlapping data processing pattern is 

proposed (Figure 3.44). This section discusses the Queue System proposed in 

this research work to implement the overlapping pattern. The proposed 

hardware solution is inspired by the Tomasulo Algorithm (Hennessy and 

Patterson, 2011). The Tomasulo Algorithm is a common dynamic scheduling 

technique found in Floating Point Units (FPU) to handle long computation 

cycle of floating-point operations. In Tomasulo Algorithm, dynamic 

scheduling is realized by reservation stations. The reservation stations 

constantly monitor the status (busy or idle) of its respective functional units 

(Eg: Floating-Point Adder, Floating-Point Multiplier), determining whether 

the functional units are ready to execute an instruction. In cases where 

functional units are busy, the reservation stations will hold any incoming 

instructions until the functional units are idle again. The reservation stations 

also have the ability to resolve data dependency issue between instructions.  

  

 The Queue System proposed have similar function to the reservation 

stations. It consists of two new hardware, namely the Coprocessor 2 Queue 

(CP2Q) and Store Word Queue (SWQ). The CP2Q (Section 3.2.6.1) is 

responsible to monitor the status of CP2 and scheduling of CP2 related 

instruction. The SWQ (Section 3.2.6.2) is controlled by CP2Q, to schedule 

store instructions that is awaiting output from CP2 due to its long encryption 

clock cycle.  



128 

 

Forwarding Block

ID

I-Cache

To Control Unit

Register 

File

CP2

CP0

CP2 

Queue

StoreWord 

Queue

ALB

Address 

Decoder

UART 

Controller

SPI 

Controller

ADC 

Controller

IF EX MEM WB

Data Cache

Stack RAM

Data RAM

IF
/I
D

 P
ip

e
lin

e
 R

e
g

is
te

r

ID
/E

X
 P

ip
e

lin
e

 R
e

g
is

te
r

E
X

/M
E

M
 P

ip
e

lin
e

 R
e

g
is

te
r

M
E

M
/W

B
 P

ip
e

lin
e

 R
e

g
is

te
r

 

Figure 3.48: RISC32 with CP2 and Queue System 

 

 The Figure 3.48 shows the RISC32 with CP2 and Queue System. The 

Queue System composes of CP2 Queue (CP2Q) and Store Word Queue 

(SWQ). The CP2Q and SWQ work together with CP2 to queue and execute 

the CP2 instructions in the pipeline. All queuing and re-insertion of CP2 

instructions into the processor pipeline, is completely hidden from the 

software. The user can write program with the pattern shown in Figure 3.49, 

while the underlying hardware queue will reschedule the execution of the CP2 

instructions as proposed at the end of Section 3.2.4 (Figure 3.44).  

 

Encrypt N/16B CTR Value Acquire N Byte Send N ByteXOR N Byte
 

Figure 3.49: Serial processing pattern in CTR mode 
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Figure 3.50: Logical view of Queue System execution when CP2 is busy 

 

 The Figure 3.50 shows the Queue System execution when CP2 is busy. 

Every decoded instruction at ID stage will go through CP2Q before 

proceeding to EX stage. When CP2 is busy, the CP2 Queue (CP2Q) will 

determine if current instruction at ID stage should be queued. This refers to 

mtc2 and swc2. Any other instruction that is not related will bypass CP2Q and 

proceed as usual. It should be noted as well, the Queue System will allow CP2 

instruction to bypass for direct execution when CP2 is idle.   

 

 When an mtc2 instruction is detected by CP2Q, the decoded mtc2 

instruction is stored into CP2Q. CP2 register file address and decoded mtc2 

control signal is stored into CP2Q Instruction RAM. Fetched operand for mtc2 

is stored into the CP2Q Data RAM. In cases where data hazard occurred for 

mtc2, the operand will be forwarded to the CP2Q by the Forwarding Block. 

Otherwise, the operand comes directly from the Register File. When swc2 is 

detected by the CP2Q, the decoded swc2 control signal and CP2 register file 

address will be stored into the CP2Q Instruction RAM. With the detection of 
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swc2 in CP2Q, the address encoded with swc2 will be recorded in SWQ as 

well. This action is triggered by CP2Q, where a control signal 

(bcp2Q_swQ_sw_wr) will be generated by CP2Q at the next cycle and 

transmitted to EX stage. This control signal will instruct SWQ to store the 

calculated address by ALB into SWQ Address RAM. 
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Figure 3.51: Logical view of Queue System execution when CP2 is ready 

 

 Figure 3.51 shows the Queue System execution when CP2 is ready. 

The illustrated execution only applies if CP2 instruction is previously queued 

in the Queue System. If CP2 is idle and no unexecuted CP2 instruction were 

present in the Queue System, the CP2 instructions (mtc2, mfc2, and swc2) are 

allowed to bypass Queue System and executed by CP2 directly.  

 

 When CP2Q detects that CP2 is ready (encryption completes), the 

CP2Q will fetch decoded CP2 instruction (mtc2 or swc2 control signal) and 

CP2 register file address from CP2Q Instruction RAM. In the case of mtc2, 

operand is fetched from the CP2Q Data RAM as well. The information for 
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mtc2 instruction will be carried over to ID stage and executed by CP2 as 

discussed in Section 3.2.2. In the case of swc2 fetched, the action to read 

ciphertext from CP2 will be executed at ID stage, and updated into SWQ Data 

RAM at EX stage. The SWQ will keep track of the number of words read 

from CP2, until it accumulated 4 words (32-bit) from CP2, which is equivalent 

to 128-bit ciphertext. These data from CP2 is stored into SWQ Data RAM. 

When a complete ciphertext is being read, the address for previously queued 

swc2 instructions will be fetched from SWQ Address RAM. Ciphertext 

accumulated is also fetched from SWQ Data RAM again. These actions 

(reading from SWQ Address and Data RAM) will trigger SWQ to generate a 

stall signal (bswQ_pipe_stall), eventually stalls the IF and ID stage of RISC32 

pipeline. At the same time, the stall signal also flushes the EX stage. These 

series of actions are performed to allow swc2 instruction to be reinserted into 

EX stage from SWQ.  The ciphertext will then be stored into the desired 

memory location at the MEM stage. The stall signal (bswQ_pipe_stall) will be 

deactivated as soon as the 128-bit ciphertext is stored into the memory, where 

it is hold for four clock cycle (equivalent to four swc2 instructions). From this 

point onward, the pipeline will resume its operation from the instruction that 

was previously stalled in ID stage.   
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3.2.6.1 Coprocessor 2 Queue (CP2Q) Design 

 The Coprocessor 2 Queue (CP2Q) is responsible in keeping track of 

the CP2 related instructions and the status of CP2. Based on the status signal 

from RISC32 pipeline and CP2, the CP2Q determines whether to execute 

detected CP2 related instructions. The Figure 3.52 shows the CP2Q Block Top 

Level interface. Pin description for the CP2Q Block is provided at Table 3.39. 
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Figure 3.52: Top-level Interface for CP2Q Block 
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Table 3.39: Pin Description for CP2Q Block Interface  

Pin Name: bocp2Q_dout[31:0]  Pin Direction: Output 

Pin Size: 32 bits 

Sourceà Destination: CP2Q Block à CP2 Block 

Pin Function: 

Output port for 32-bit data to be processed by CP2  
Pin Name: bocp2Q_cp2_addr[3:0] Pin Direction: Output 

Pin Size: 4 bits 

Source à Destination: CP2Q Block à CP2 Block 

Pin Function: 

Output port for 4-bit CP2 register file address  

Pin Name: bocp2Q_mtc2  Pin Direction: Output 

Pin Size: 1 bit 

Source à Destination: CP2Q Block à CP2 Block 

Pin Function: 

Output control signal for CP2 to perform mtc2 instructions  

0: mtc2 instruction not requested 

1: mtc2 instruction requested 

Pin Name: bocp2Q_swQ_data_wr Pin Direction: Output 

Pin Size: 1 bit 

Source à Destination: CP2Q Block à SWQ Block 

Pin Function: 

Output control signal to SWQ to store CP2 output   

0: Do not store CP2 ciphertext output 

1: Store CP2 ciphertext output 

Pin Name: bocp2Q_swQ_sw_wr  Pin Direction: Output 

Pin Size: 1 bit 

Source à Destination: CP2Q Block à SWQ Block 

Pin Function: 

Output control signal to SWQ to store calculated address for swc2 instruction 

0: Do not store address calculated by Arithmetic Logic Block 

1: Store address calculated by Arithmetic Logic Block 

Pin Name: bocp2Q_id_swc2_path Pin Direction: Output 

Pin Size: 1 bit 

Source à Destination: CP2Q Block à RISC32 Pipeline  

Pin Function: 

Output control signal to RISC32 pipeline ID stage to select read source as CP2 output 

0: swc2 is queued by CP2Q. Do not select CP2 output as read source 

1: swc2 bypassed CP2Q. Select CP2 output as read source 

Pin Name: bocp2Q_ex_swc2_path Pin Direction: Output 

Pin Size: 1 bit 

Source à Destination: CP2Q Block à SWQ Block 

Pin Function:  

Output control signal to RISC32 pipeline EX stage to allow CP2 output from ID stage bypass 

SWQ 

0: swc2 is queued by CP2Q. SWQ wait for control signal from CP2Q  

1: swc2 bypassed CP2Q. SWQ ignore control signal from CP2Q 

Pin Name:  bocp2Q_q_stall Pin Direction: Output 

Pin Size: 1 bit 

Source à Destination: CP2Q Block à Interlock Block 

Pin Function: 

Output control signal to Interlock Block to indicate currently CP2Q is full 

0: CP2Q is not full. RISC32 pipeline can continue fetch new instruction 

1: CP2Q is full. RISC32 pipeline should be stalled to prevent fetching of new instruction 
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Continued from Table 3.39 

Pin Name: bocp2Q_empty  Pin Direction: Output 

Pin Size: 1 bit 

Source à Destination: CP2Q Block à Programmable Interrupt Controller  

Pin Function: 

Output control signal to Programmable Interrupt Controller to indicate currently CP2Q is 

empty 

0: CP2Q is not empty 

1: CP2Q is empty. Trigger CP0 if Queue System Interrupt is enabled 

Pin Name: bicp2Q_cp2_ready Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: CP2 Block à CP2Q Block 

Pin Function: 

Input status signal to indicate current status of CP2 

0: CP2 is busy. Do not dispatch instruction from CP2Q and queue incoming CP2 related 

instructions 

1: CP2 is idle. Dispatch instruction from CP2Q if queue is not empty 

Pin Name: bicp2Q_cp2_enc Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: CP2 Block à CP2Q Block 

Pin Function: 

Input control signal to indicate if encryption command (0x2) is currently requested in CP2 

0: No encryption requested. Dispatch instruction from CP2Q if queue is not empty 

1: Encryption requested. Do not dispatch instruction from CP2Q and queue incoming CP2 

related instructions 

Pin Name: bicp2Q_swQ_stall Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: SWQ Block à CP2Q Block 

Pin Function: 

Input control signal to indicate if SWQ is performing swc2 reinserting into RISC32 pipeline 

and CP2Q Block should be stalled 

0: No swc2 reinserting by SWQ. CP2Q operate as usual 

1: SWQ is reinserting swc2. Stall writing operation for CP2Q. 

Pin Name: bicp2Q_din[31:0]  Pin Direction: Input 

Pin Size: 32 bits 

Source à Destination: RISC32 Register File à CP2Q Block 

Pin Function: 

Input port for operand fetched by decoding mtc2 instructions 

Pin Name: bicp2Q_id_rt5[4:0]  Pin Direction: Input 

Pin Size: 5 bits 

Source à Destination: RISC32 Pipeline à CP2Q Block 

Pin Function: 

Input port for CP2 register file address for swc2 instruction 

Pin Name: bicp2Q_id_rd5[4:0]  Pin Direction: Input 

Pin Size: 5 bits 

Source à Destination: RISC32 Pipeline à CP2Q Block 

Pin Function: 

Input port for CP2 register file address for mtc2 or mfc2 instruction  

Pin Name: bicp2Q_id_mtc2 Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: Control-path Unit à CP2Q Block 

Pin Function: 

Input control signal from Control-path Unit when mtc2 instruction is decoded  

0: No mtc2 decoded by Control-path Unit 

1: mtc2 decoded by Control-path Unit 
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Continued from Table 3.39 

Pin Name: bicp2Q_id_mfc2 Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: Control-path Unit à CP2Q Block 

Pin Function: 

Input control signal from Control-path Unit when mfc2 or swc2 is decoded 

0: No mfc2 or swc2 instruction decoded Control-path Unit 

1: mfc2 or swc2 instruction decoded by Control-path Unit 

Pin Name: bicp2Q_write_stall Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: RISC32 Pipeline à CP2Q Block 

Pin Function: 

Input status signal to prevent CP2Q Block to queue any incoming CP2 instructions when 

instruction cache miss occurred 

0: No global stall signal detected. CP2Q Block operates as usual 

1: Global stall signal detected. Stall CP2Q Block from queueing any incoming instruction 

Pin Name: bicp2Q_itl_id_flush_ex Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: Interlock block à CP2Q Block 

Pin Function: 

Input status signal to prevent CP2Q Block to queue any incoming CP2 instructions when load 

use data hazard occurred 

0: No load use hazard detected by Interlock Block. CP2Q operates as usual 

1: Load use hazard detected by Interlock Block. Stall CP2Q Block from queueing any 

incoming instructions  
Pin Name: bicp2Q_rst  Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: Global Reset à CP2Q Block 

Pin Function: 

Reset signal for CP2Q Block 

Pin Name:  bicp2Q_clk  Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: Global Clock à CP2Q Block 

Clock Source for CP2Q Block 
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Figure 3.53: Microarchitecture of CP2Q Block
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 The Figure 3.53 illustrates the microarchitecture of CP2Q Block. The 

main components in CP2Q Block are CP2Q Data RAM (bcp2Q_data_ram), 

CP2Q Instruction RAM (bcp2Q_instruction_ram), Queue Address Generator 

and CP2Q Control Logic.  

 

 The CP2Q Instruction RAM stores CP2 instructions decoded form, 

which is the mtc2 control signal, mfc2 control signal and CP2 register file 

address. The CP2Q Data RAM stores operand for mtc2 instructions. Both 

CP2Q Instruction RAM and Data RAM is implemented with Block RAM 

technology available on Digilent Nexys 4 DDR Artix-7 FPGA Board, and has 

a total of 1024 word locations. The number 1024 is estimated by calculating 

the worst-case scenario of maximum unexecuted encryption task based on the 

recommend range of N byte during software pattern analysis in Section 3.2.4. 

With swc2 implemented, an encryption request consists of four mtc2 for 

plaintext transfer, one mtc2 for encryption command transfer and four swc2 

for ciphertext reading. By assuming the worst-case, the largest N = 1024B is 

selected. The 1024B is arranged into a total of 64 encryption request (16B per 

encryption). This is equivalent to a maximum of 576 CP2 instructions to be 

expected for the encryption task. Since the Block RAM comes in the size of 

32-bit x 512 and 32-bit x1024, the location of CP2Q Instruction RAM and 

Data RAM is determined to be 1024 to meet the worst-case scenario.   

 

 The Queue Address Generator is responsible to generate the read and 

write addresses for both CP2Q Data RAM and Instruction RAM. It also keeps 

track the number of instructions currently queued in the CP2Q Data RAM and 
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Instruction RAM. The CP2Q Control Logic assess the input status signals 

from CP2, SWQ and RISC32 pipeline to generate control signals for read 

write operation in CP2Q. All main components in CP2Q works together to 

form a First-In-First-Out (FIFO) queue. This ensures the queued CP2 

instruction to be executed In-Order with respect to their sequence in the user 

program. It should be noted as well, the CP2Q Instruction RAM and Data 

RAM has separate read port and write port. This allows the CP2Q to dispatch 

older instruction from the head of the FIFO if the CP2 is ready, at the same 

time, queue any incoming instruction by appending at the end of FIFO. Figure 

3.54 shows the algorithm flowchart for CP2Q Control Logic. 

 

START

Is SWQ 

reinserting 

swc2 into 

pipeline?

Is Load Use 

Data Hazard 

Detected?

Is Global Stall 

Detected?

Is CP2 

instruction 

detected?

Bypass CP2Q

Is CP2 busy?

Store CP2 instruction 

and data into 

respective queue

Is CP2Q 

Empty?

Is swc2?

Activate SWQ on next 

clock cycle to store 

calculated memory 

address

END

Yes

No

Yes

No

No

Yes

Yes No

Is CP2 busy?

Is CP2Q 

Empty?

No

To WriteTo Read

No

Read oldest CP2 

instruction and data 

from respective 

queue

Yes

Yes

No

No

No

Yes

Yes

Yes

Is CP2Q currently 

reading older 

instruction and data?

No Yes

 

Figure 3.54: Algorithm Flowchart for CP2Q Control Logic 
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3.2.6.2 Store Word Queue (SWQ) Design 

 The Store Word Queue (SWQ) is responsible in storing address and 

reading data for swc2 instruction that is previously queued in CP2Q. Based on 

the control signals generated from CP2Q, the SWQ determines whether to 

queue the swc2 instruction from RISC32 pipeline. The execution of queued 

swc2 from SWQ is also controlled by CP2Q. Figure 3.55 shows the top-level 

interface for SWQ Block. Pin description for top-level interface of SWQ 

Block is listed in Table 3.40. 
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Figure 3.55: Top-Level Interface for SWQ Block 

 

Table 3.40: Pin Description for SWQ Block Interface 

Pin Name: boswQ_ex_dout[31:0]  Pin Direction: Output 

Pin Size: 32 bits 

Sourceà Destination: SWQ Block à RISC32 EX stage 

Pin Function: 

Output port for 32-bit data to be stored into specified memory location 
Pin Name: boswQ_ex_addr[31:0]]  Pin Direction: Output 

Pin Size: 32 bits 

Source à Destination: SWQ Block à Address Decoder à RISC32 EX Stage 

Pin Function: 

Output port for 32-bit address to store output data of CP2. It is also decoded by Address 

Decoder to select between RISC32 Data RAM and integrated I/O module.  
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Continued from Table 3.40 

Pin Name: boswQ_ex_sw   Pin Direction: Output 

Pin Size: 1 bit 

Source à Destination: SWQ Block à Address Decoder 

Pin Function: 

Output control signal activated when reinserting swc2 instructions into RISC32 pipeline. 

Required for Address Decoder to activate memory module at MEM stage for store data 

operation 

0: No swc2 instruction reinsertion. 

1: swc2 instruction is reinserting into RISC32 pipeline 
Pin Name: boswQ_pipe_stall  Pin Direction: Output 

Pin Size: 1 bit 

Source à Destination: SWQ Block à RISC32 Pipeline 

Pin Function: 

Output status signal activated when reinserting swc2 instructions. This signal stalls the IF and 

ID stage to prevent new instruction entering pipeline. The CP2Q is also stalled, to prevent any 

execution of previously queued instructions. The EX stage is flushed, to allow swc2 to reuse 

the existing sw transfer path. 

0: No swc2 instruction reinsertion.  

1: swc2 instruction is reinserting into RISC32 pipeline 

Pin Name: boswQ_empty   Pin Direction: Output 

Pin Size: 1 bit 

Source à Destination: SWQ Block à Programmable Interrupt Controller 

Pin Function: 

Output status signal to indicate SWQ is currently empty.  

0: SWQ is not empty. 

1: SWQ is empty. Trigger CP0 to raise exception if Queue System Interrupt is enabled 

Pin Name: biswQ_cp2_din[31:0]  Pin Direction: Input 

Pin Size: 32 bits 

Source à Destination: CP2 Block à SWQ Block 

Pin Function: 

Input port for ciphertext output from CP2 Block. To be stored into memory module  

Pin Name: biswQ_data_wr  Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: CP2Q Block à SWQ Block 

Pin Function: 

Input control signal to store current ciphertext output from CP2 Block.  

0: Do not store output from CP2 Block 

1: Store current output from CP2 Block  

Pin Name: biswQ_sw_addr[31:0]  Pin Direction: Input 

Pin Size: 32 bits 

Source à Destination: Arithmetic Logic Block à SWQ Block 

Pin Function: 

Input port for memory address of swc2 queued in CP2Q Block. To be used when swc2 is 

reinserted back into RISC32 pipeline 

Pin Name: biswQ_addr_wr  Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: CP2Q Block à SWQ Block 

Pin Function: 

Input control signal to store calculated output from Arithmetic Logic Block as memory 

address encoded with swc2 instruction 

0: Do not store output from Arithmetic Logic Block 

1: Store current output from Arithmetic Logic Block 
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Continued from Table 3.40 

Pin Name: biswQ_rst   Pin Direction: Input 

Pin Size: 1 bit 

Source à Destination: Global Reset à SWQ Block 

Pin Function: 

Reset Signal for SWQ Block 

Pin Name: biswQ_clk   Pin Direction: Input  

Pin Size: 1 bit 

Source à Destination: Global Clock à SWQ Block 

Pin Function: 

Clock Source for SWQ Block 
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Figure 3.56: Microarchitecture of SWQ Block
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 Figure 3.56 shows the microarchitecture for SWQ Block. The SWQ 

Block contains four main components, which is the SWQ Address RAM, 

SWQ Data RAM, Queue Address Generator and Data Counter. The SWQ 

Address RAM stores the memory address of the swc2 instruction if it is 

queued in CP2Q. The SWQ Address RAM is implemented using Block RAM 

technology, and has a total location of 1024 in word size. The number of 

locations corresponds to the size implemented for CP2Q Instruction RAM and 

CP2Q Data RAM. The SWQ Data RAM stores the ciphertext output from 

CP2. Unlike SWQ Address RAM, the SWQ Data RAM is implemented with 

Distributed RAM technology, and only has four locations in total. Each of 

these locations are in word size, and all four locations will be concatenated to 

form 128-bit in total, which is the size of ciphertext from CP2. Since the 

number of locations for SWQ Data RAM is limited, the SWQ has to stall 

CP2Q when it has accumulated a complete ciphertext.  This is to prevent 

CP2Q from executing any previously queued swc2 and overwrite the SWQ 

Data RAM. The Queue Address Generator for SWQ generates read and write 

address for SWQ Address RAM. It also keeps track the number of address 

currently queued. The Data Counter keeps track the number of data currently 

accumulated in SWQ Data RAM. The Data Counter also serves as the read 

and write address for SWQ Data RAM. 
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 The SWQ however, does not have Control Logic that is present in 

CP2Q. This is because the main controls (biswQ_data_wr and 

biswQ_addr_wr) for SWQ has been handled by the CP2Q Control Logic. The 

internal operation of SWQ is presented as flowchart in the Figure 3.57. 
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3.3 Summary 

 This chapter has discussed the compiler development to realize the 

RISC32 toolchain. The RISC32 toolchain is established around the LLVM 

retargetable compiler. Currently, MIPS was one of the supported backend in 

LLVM. While RISC32 was designed to be MIPS-ISA compatible, the 

supported MIPS instruction set in LLVM is up to the latest MIPS generation, 

which has much more instruction than RISC32 could support. As such, a 

suitable sub-target, MIPS II in the MIPS Backend of LLVM has been selected, 

to narrow down the instruction set available for code generation.  However, 

the RISC32 and MIPS II instruction set is not completely compatible. Special 

transformation routine was discussed to convert the unsupported instructions 

in MIPS II into RISC32 equivalent instructions. The CP2 intrinsic function 

was also implemented, to allow compatible code generation that fits the usage 

of integrated CP2 and Queue System in RISC32. Interrupt Service Routine 

(ISR) programming feature was implemented to allow programming of 

interrupt-based applications, which is commonly used to realize I/O 

transactions between IoT sensor node and its surrounding IoT devices.  

 

 This chapter has also discussed the CP2 integration into RISC32. The 

CP2 integrated is an AES-128 Coprocessor. With the introduction of CP2, 2 

new instructions, namely Move to Coprocessor 2 (mtc2) and Move from 

Coprocessor 2 (mfc2) has been created to allow data transfer between the 

RISC32 pipeline and CP2 register file. However, the CP2 requires 55 clock 

cycle to perform encryption on its 16-byte/128-bit plaintext input. After 

analysing the typical IoT pattern, a solution was derived to utilize the long 
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encryption clock cycle. This solution utilizes the Counter (CTR) AES 

encryption mode and the idea of dynamic scheduling, to allow both Data 

Acquisition and Data Processing task to execute in parallel. A Queue System 

was proposed to realize the dynamic scheduling idea.  Additionally, Store 

Word from Coprocessor 2 (swc2) instruction was introduced to resolve the 

potential data hazard faced by the Queue System. 
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CHAPTER 4 

 

SYSTEM VERIFICATION 

  

 The developed RISC32 integrated with CP2 and Queue System is 

synthesized and implemented onto the Xilinx Artix-7 XC7A100T FPGA in 

Digilent Nexys 4 DDR board using Xilinx Vivado HLx 2017.2 IDE. All C test 

programs developed are compiled using the customized RISC32 Toolchain 

developed in this work, which is based on LLVM version 5.0. The RISC32 

Toolchain is installed on a host computer with Ubuntu 16.04 LTS Operating 

System. The Figure 4.1 shows the RISC32 microarchitecture implemented 

with CP2 and Queue System. Table 4.1 shows the FPGA resource 

consumption for microarchitecture of RISC32 with CP2 and Queue System. 

Resource overhead between each microarchitecture is calculated in Table 4.2. 
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Figure 4.1: RISC32 Microarchitecture Components with CP2 and Queue 

System 
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Table 4.1: FPGA Resource Usage for RISC32 with CP2 and Queue 

System 

FPGA Resources 
Microarchitecture 

RISC321 RISC32_CP2-NQ2 RISC32_CP2-Q3 

LUT 6046 7573 7849 

LUTRAM 311 311 343 

FF 2574 4661 4745 

BRAM 3.50 3.50 5.00 

IO 49 49 50 

BUFG 2 2 2 

*Note: 

1. Original RISC32 without CP2 and Queue System 

2. RISC32 implemented with CP2 but without Queue System 

3. RISC32 implemented with CP2 and Queue System 

 

Table 4.2: FPGA Resource overhead comparison 

FPGA Resources 

Microarchitecture 

RISC32 to 

RISC32_CP2-NQ 

RISC32 to 

RISC32_CP2-Q 

RISC32_CP2-NQ to 

RISC32_CP2-Q 

LUT 25.25% 29.82% 3.64% 

LUTRAM 0.00% 10.29% 10.29% 

FF 81.08% 84.34% 1.80% 

BRAM 0.00% 42.86% 42.86% 

IO 0.00% 2.04% 2.04% 

BUFG 0.00% 0.00% 0.00% 

*Resource overhead = ((improved implementation / existing implementation)- existing 

implementation) * 100% 

 

Table 4.3: Longest Timing Delay for Each Stage for Different RISC32 

Microarchitecture 

Microarchitecture 
Pipeline Stage 

IF ID EX MEM WB 

RISC32 14.537ns 13.309ns 14.668ns 17.830ns 2.556ns 

RISC32_CP2-NQ 14.287ns 14.347ns 14.486ns 17.945ns 2.763ns 

RISC32_CP2-Q 13.986ns 15.655ns 16.436ns 18.541ns 2.936ns 

 

  From the timing analysis result in Table 4.3, it could be seen in 

RISC32_CP2-Q microarchitecture, the longest timing delay is now 18.541 ns. 

However, this timing is still within the minimum clock period requirement of 

RISC32, which is 20 ns. This shows that integrating the CP2 and Queue 

System does not impose a huge effect on the overall RISC32 performance.
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4.1 Functional Verification 

 

4.1.1 RISC32 Toolchain Compilation Verification 

 The RISC32 Toolchain was established using the retargetable LLVM 

compiler. As the MIPS backend was currently implemented in LLVM, it could 

be used for code compilation for RISC32. However, the MIPS backend 

implemented supports more instructions than the existing RISC32 instruction 

set has. As such among the legal sub-target supported by the MIPS backend, 

MIPS II was selected as a base for RISC32 code compilation due to their high 

similarity in instruction set. The following efforts was made on LLVM to use 

the MIPS II for RISC32 code compilation: 

 

1) Analysis and comparison between the instructions supported by MIPS 

II and RISC32 instruction set. Discussion on action to be taken for 

each instruction has been discussed in Chapter 3, Section 3.1.2. 

 

2) Through the analysis, several instructions in MIPS II instruction set 

which were not supported by the RISC32 are also implemented. The 

affected instruction groups are Shift-by-Variable and Branch on 

Conditional. The porting to support compilation for both instruction 

groups in RISC32 was discussed and verified in Section 3.1.4 and 

Section 3.1.5 of Chapter 3. 

 

3) With the introduction of CP2 core to RISC32, new instructions (mtc2, 

mfc2 and swc2) were implemented to support data transaction between 
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the RISC32 pipeline and CP2 Core. These instructions were 

implemented by default in existing MIPS backend of LLVM. 

However, to ensure a compatible routine to be compiled for the proper 

usage of the CP2 core and Queue System, intrinsic functions were 

implemented. Test programs were developed using these intrinsic 

functions.  

 

4) The Interrupt Service Routine (ISR) compilation is currently supported 

in LLVM. However, the compiled ISR output does not conform to the 

ISR convention of RISC32. Detailed discussion on the ISR 

compilation for both LLVM and RISC32 can be found in Chapter 3, 

Section 3.1.7.  

 

 With all the implementations performed above, the LLVM is now 

ready to generate compatible code to be executed on RISC32. All of the C 

test programs in this Chapter 4 is compiled using this RISC32 Toolchain.  
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4.1.2 Coprocessor 2 (CP2) and Queue System Verification 

 The CP2 core integrated into RISC32 IoT processor performs AES-

128 Encryption. A C test program was developed to perform encryption using 

the CP2 core. The C test program was written using the CP2 intrinsic 

functions as discussed in Chapter 3, Section 3.1.6. The test program is setup as 

follows: 

 

1) Initialize control register (UARTCR) of UART Controller with 

baud rate of 9600. 

2) Perform secret key expansion using CP2 key expansion intrinsic 

function, __builtin_risc32_aes128_keyinit (). 

3) Load 128-bit of input test vector plaintext into a 4 word 128-bit 

array.  

4) Perform AES-128 Encryption using CP2 encryption intrinsic 

function, __builtin_risc32_aes128_enc (). 

5) Prepare address for next 128-bit of input test vector plaintext. 

6) Repeat Step 3 to 5 until all test vector is encrypted 

7) Transmit all encrypted ciphertext through UART to host computer  

8) Repeat from Step 3 until Step 7 

 

The test program first sets up the UART control register, to allow the 

transmission of the encrypted ciphertext. Detailed information of the RISC32 

UART Controller can be found in the work by Kiat (2018). The test program 

will then prepare the round keys, before starting encryption on the input test 
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vectors. The secret key and input vectors are shown in the Figure 4.2. The 

encrypted value is then sent back to a host computer to verify their 

correctness, which is compared against the test vector provided for AES-128 

in the NIST SP800-38 (2007) document. The sample ciphertext output is 

provided in Figure 4.2.  

 

 

Figure 4.2: AES-128 Test Vector  

Source: NIST SP800-38, 2007  

 

 The same test program is used to test both the CP2 core encryption and 

also the Queue System proposed. For CP2 core verification only, the CP2 

encryption intrinsic function is compiled with 55 NOPS to wait for CP2 to 

complete its encryption. The main purpose is to test the CP2 instructions 

(mtc2, mfc2 and swc2). If these instructions can be carried out successfully, 

the encryption should be performed successfully and yield the correct 

ciphertext output as compared to Figure 4.2. As for Queue System, the CP2 



153 

 

encryption intrinsic function will be compiled without the 55 NOPS as 

discussed in Chapter 3, Section 3.1.6. This will induce the Queue System to 

queue up the CP2 instructions when the CP2 is busy. To verify the 

functionality of the Queue System, the final ciphertext output stored into the 

data memory of RISC32 will be checked if it matches the expected ciphertext 

in Figure 4.2. If the output ciphertext is matched, this indicates the CP2Q and 

SWQ of the Queue System had successfully rescheduled the execution of the 

CP2 encryption task while the CP2 is busy. The Figure 4.3 shows the received 

ciphertext through UART transmission. The ciphertext is read from the data 

memory of RISC32. 

 

 

Figure 4.3: Ciphertext received from UART on the host computer. Data is 

displayed using RealTerm 
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4.2 Performance Analysis 

 To evaluate the effectiveness of the proposed Queue System, three test 

programs were developed. The evaluation metrics that are being assessed are 

execution time and energy consumption of each test program. The test 

combinations are shown in Table 4.4 

 

Table 4.4: Test Combination for Performance Analysis 

Test Program Hardware Architecture  Test Case 

tiny-AES-C (kokke, 2014) RISC32 T_C 

Assembly AES RISC32 T_ASM 

AES using CP2 instructions RISC32_CP2-NQ T_CP2-NQ 

AES using CP2 instructions RISC32_CP2-Q T_CP2-Q 

 

Encrypt N/16B CTR Value Acquire N Byte Send N ByteXOR N Byte
 

Figure 4.4: Test Program Software Pattern 

 

 The test programs are developed with the software pattern shown in 

Figure 4.4.  Note that test program for T_C and T_ASM implements AES 

encryption in software (C and assembly language). T_CP2-NQ is assessed on 

RISC32 with CP2 core but without Queue System. T_CP2-Q is performed on 

RISC32 with CP2 Core and incorporates proposed Queue System to overlap 

data acquisition and AES encryption for better speed and energy performance. 

Both T_CP2-NQ and T_CP2-Q executes the same software program, but they 

achieved varied performance due to different hardware architecture.  
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4.2.1 Timing Performance 

 The total execution clock cycle (C.C) count for each test case is shown 

in Table 4.5. This is measured by executing the data processing part (Encrypt, 

Data Acquisition and XOR) of the test program. The data sizes (N) used in the 

experiment are 256 Byte, 512 Byte and 1024 Byte. 

 

Table 4.5: Data Processing Execution Time (C.C) For Each Test Case 

Test Case 
Data Size (Byte) 

256 512 1024 

T_C 663674 1326346 2651690 

T_ASM 355741 708989 1415485 

T_CP2 2471 4935 9863 

T_CP2-Q 1671 3335 6663 

 

 

Figure 4.5: Speed-Up achieved in T_CP2-Q compared to other test cases 
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 The experimental results shown in Figure 4.5 are the speed-up ratio 

achieved in T_CP2-Q against other test cases. The speed-up ratio refers to the 

ratio of total clock cycle count between original implementation and improved 

implementation. Note that result for T_CP2-Q shows that it is much faster 

than the software implementation in T_C and T_ASM, with more than 200x 

speed up. This is not surprising, as software implementation of AES is 

fundamentally slower than hardware. In software AES, the 128-bit operation 

has to be broken down to multiple serial 32-bit operation due to the maximum 

data size supported in RISC32, which is 32-bit only. Furthermore, a single 

substitution box in AES is a 256 Byte lookup-table. It is impractical to 

implement multiple substitution box on limited memory of IoT sensor node. 

Hence, common practice of software AES only implements a single 

substitution box. Every substitution process of 32-bit operation have to be 

further spilt down into 4 load store operation. Executing 4 parallel load store 

instruction in software is not possible, as there is only single core in RISC32. 

Also, there are no single load store instruction that supports parallel 4-byte 

load store operation between random memory location in RISC32.  

 

In the case of hardware implemented AES, more parallel operations 

can be performed on a single transformation AES round. While the AES 

operations are fundamentally performed on words (32-bit), the 128-bit 

operation can be broken into four parallel 32-bit operation in the hardware. 

Hence, the opportunity to perform parallel operations in hardware 

implementation could achieve better performance compared to software 

implementation. Comparing between hardware implementations 
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(RISC32_CP2-NQ vs RISC32_CP2-Q), a significant improvement (1.48x 

speed up) is observed for all data sizes. This speed-up is achieved is because 

there is no data dependency between data acquisition and encryption in CTR 

mode. Hence, both tasks can be effectively overlapped. It can be concluded 

that, the proposed Queue System in RISC32_CP2-Q of test case T_CP2-Q, 

can reorder the execution sequence of CP2 instructions in the program, at the 

same time effectively overlaps the encryption task with other processing task 

(data acquisition and XOR), eventually achieve good speed performance 

against RISC32_CP2-NQ in test case T_CP2-NQ. 
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4.2.2 Energy Consumption 

 The energy measurement is obtained by monitoring the current drawn 

during the execution of the data processing (Encrypt, Data Acquisition and 

XOR) part of the test program. The current drawn measurement is derived 

from the voltage difference across a 0.01 Ω shunt-resistor connected serially 

between Digilent Nexys 4 Artix-7 FPGA Board and a 1.0V power supply. The 

voltage difference across the shunt-resistor is amplified with instrumentation 

amplifier, INA215 configured with 75 amplifier gain. 

 

 For measurement purpose, the test program was written to 

continuously loop the data processing activity (Encrypt, Data Acquisition and 

XOR). To identify the starting and ending of the data processing activity, the 

test program sets a GPIO output pin to HIGH upon starting the encryption 

(T1). Upon completion of the encryption of final CTR value, the GPIO output 

pin is toggle to LOW (T2) so that it can be set HIGH again upon the start of 

new encryption. The region between the two rising-edges of the waveform 

marks the region for data processing activity used to measure the energy 

consumption. Both the amplified voltage difference and GPIO output pin are 

monitored using Tektronix TBS1202B-EDU Oscilloscope at Channel 1 

(voltage across 0.01 Ω shunt-resistor) and Channel 2 (GPIO trigger) 

respectively. Figure 4.6 shows the screenshot from oscilloscope during the 

measurement for T_CP2-Q with data size of 256 Byte. Voltage readings along 

the two rising-edges are recorded to calculate the energy consumption for each 

test case. 
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Figure 4.6: Screenshot during energy measurement for T_CP2-Q 

 

 To obtain the current drawn at each time instance, the formula I = V / 

R / 75 is being used, where R refers to the 0.01 Ω shunt-resistor and 75 is the 

amplifier gain. With the current drawn (I) obtained, power is calculated using 

P = V * I, where V refers to the power supply voltage (1.0V). Energy is then 

calculated using the formula E = P * t, where t refers to the time interval 

between two measurement data. Since the time is in discretized form, 

 , where N is the total time points within the measurement 

region. The energy consumption measured for each test case is shown in Table 

4.6. 

 

Table 4.6: Data Processing Energy Consumption (mJ) For Each Test 

Case 

Test Case 
Data Size (Byte) 

256 512 1024 

T_C 0.9051mJ 1.7966mJ 3.5933mJ 

T_ASM 0.5031mJ 0.9909mJ 2.0080mJ 

T_CP2-NQ 0.0046mJ 0.0089mJ 0.0178mJ 

T_CP2-Q 0.0037mJ 0.0073mJ 0.0145mJ 

T1 T2 
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Figure 4.7: Energy reduction achieved in T_CP2-Q compared to other 

test cases 

 

 Figure 4.7 shows the energy reduction achieved in T_CP2-Q when 

compare to other test cases. Note that result of T_CP2-Q shows ~99% energy 

reduction against software implementation in test case T_C and T_ASM. 

Although RISC32_CP2-Q used in T_CP2-Q does have additional hardware 

consumption (resulting in more static power) as shown in Table 4.2, it also 

reduces the data processing time significantly, eventually reduce the energy 

consumption when compared to software implementation. Comparing both 

hardware implementations (RISC32_CP2-NQ vs RISC32_CP2-Q), the 

averaged energy reduction for all data size is ~19%. This shows that the 

proposed Queue System (in RISC32_CP2-Q) not only has faster performance 

than conventional hardware implementation without Queue System 

(RISC32_CP2-NQ), but also better in terms of energy efficiency. 
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4.3 Summary 

 In this chapter, the RISC32 Toolchain and RISC32 integrated with 

CP2 and Queue System has been verified its functionality. The RISC32 

Toolchain is able to transform unsupported instructions to RISC32 compatible 

instruction sets. The Queue System proposed successfully rescheduled the 

encryption task when CP2 is busy, to ensure encryption could be correctly 

performed in an orderly fashion. The RISC32 integrated with CP2 and Queue 

System was assessed for its performance in terms of execution time and 

energy reduction by testing with a typical IoT software pattern. With the 

Queue System, a 1.48x speed-up and ~19% of energy reduction was achieved. 

This is an important achievement for IoT applications, which stresses on low 

latency communication and energy efficiency. 
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORK 

 

 

5.1 Conclusion 

 In this research work, a C compilation toolchain was developed to 

support RISC32 (Kiat, 2018) IoT processor. This helps in reducing the code 

development time, as the programmer no longer need to code in assembly 

language. This also provides rapid development opportunity on RISC32 with 

the enabling of standard libraries usage that is usually delivered in high-level 

language.  On top of that, a hardware AES core was integrated into the 

RISC32, which provides confidentiality, allowing the data transmitted within 

IoT network in encrypted form. A queue system was proposed to further 

optimize the speed performance of data encryption. 

 

 In summary, this dissertation has provided answers to the following 

research challenges: 

1) RISC32 is an IoT processor that lacks security feature. Cryptography 

algorithms can be implemented in software, but could achieve better 

performance if implemented as hardware. Since energy efficiency is an 

important criterion in IoT processor, how should the cryptography core 

integrated to achieve performance without significantly increasing the 

energy consumption of IoT processor?  
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• The AES cryptography core was selected for this research 

work. Dedicated-path integration technique was opted to ensure 

the integrated AES core does not face performance cap that is 

present in shared-path technique. Due to the energy constrain, 

AES core with single-stage rolled architecture and smaller 

hardware consumption was selected. As Counter Mode is being 

used in encryption, only AES-128 encryption and round key 

generation are implemented. The decryption circuit is not 

required as most of the IoT applications do not requires sensor 

node to decrypt data; it only sends data to the gateway device. 

Most importantly, these decisions could further reduce the 

hardware resource required for implementation, hence does not 

introduce significant energy consumption to IoT sensor node. 

 

2) The AES core encryption operation is expected to have data processing 

latency. This data processing latency was due to the single-stage rolled 

architecture. The data processing latency indicates that the processor 

has to wait for the encryption to complete before proceeding to other 

task, rendering significant idle time. Can this idle time be utilized to 

perform other tasks, at the same time, improving the speed 

performance of the overall program?  

 

• The AES core is implemented as Coprocessor 2 (CP2) in RISC32. 

The CP2 requires 55 clock cycles to perform one block of 

encryption (128-bit). Considering the software pattern of a typical 
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IoT applications, RISC32 remains idle for at least 75% of the time 

during the encryption with CP2. As such, a solution is proposed to 

overlap the sensor data sampling and encryption task. Overlapping 

of both tasks is only possible if Counter (CTR) encryption mode is 

being used. Hence, Queue System is being proposed to realize this 

overlapping mechanism, which is realized by the hardware. This 

Queue System will queue the encryption task when CP2 is busy, 

and re-execute the pending encryption task when the CP2 is ready.   

This frees up the RISC32 pipeline from waiting the output from 

CP2 for 55 clock cycle. At the same time, it allows the sensor data 

sampling to execute while the CP2 performing encryption, 

overlapping the encryption and data sampling, eventually reducing 

the overall program execution time.   

 

3) The retargetable compiler framework, LLVM was selected to develop 

the RISC32 compilation toolchain. The LLVM currently supports code 

generation for MIPS target machine. However, is the MIPS backend of 

LLVM completely compatible for RISC32 code generation?  

 

• The MIPS instruction set is an incremental instruction set, where 

instructions from previous generation MIPS is inherited by the 

newer MIPS instruction set. The current MIPS backend of LLVM 

supports up to the latest generation MIPS instruction set.  However, 

the RISC32 only supports a subset of these implemented 

instructions. By comparing the implemented instructions with 
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RISC32 instruction set, a suitable sub-target, MIPS II instruction 

set was selected as a base for RISC32 code generation. However, 

MIPS II is not completely compatible with RISC32 instruction set. 

As such, transformation routine was derived to convert the 

unsupported MIPS II instruction to RISC32 equivalent instructions. 

To support the compilation for CP2 instructions of RISC32, 

intrinsic functions were implemented, to generate compatible 

software routine to ensure proper usage of the CP2 and Queue 

System. The existing Interrupt Service Routine (ISR) programming 

in LLVM was also modified to conform to RISC32 ISR 

programming convention.  

 

4) How was the performance of RISC32 with the Queue System and 

compilation toolchain? 

 

• The RISC32 integrated with CP2 and Queue System was 

synthesized and implemented on the Xilinx Artix 7 FPGA Chip on 

Digilent Nexys DDR4 Development board. Test programs were 

developed in C language, compiled using the RISC32 toolchain 

and successfully executed on the RISC32. The assessed 

performance metrics is program execution speed and energy 

consumption. The RISC32 with CP2 achieved at least 200x speed-

up in terms of program execution when compared to software 

solution. With the introduction of Queue System to the existing 

RISC32 with CP2, a further 1.48x speed-up was achieved. In terms 
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of energy consumption, a reduction of ~99% was shown when 

comparing hardware solution to the software encryption. A further 

~19% energy reduction was shown when RISC32 with CP2 was 

introduced with Queue System. These result shows, by overlapping 

the encryption and data sampling task, better performance can be 

achieved in terms of execution speed at the expense of extra 

hardware implementation. At the same time, the improved timing 

performance achieves better energy efficiency. To sum up, these 

achievements will further aid the RISC32 IoT processor to be 

implemented as an energy efficient, yet secure IoT sensor node. 

 

In summary, this research work had accomplished all the planned 

objectives. This greatly improved the capability of RISC32 IoT processor, 

since it can be programmed through C language, at the same time equipped 

with AES core with Queue System to perform data encryption. 
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5.2 Future Work 

 The established RISC32 toolchain supports code compilation using 

high-level language (C). The next potential direction is to develop device 

libraries for the existing I/O controllers (ADC, UART, SPI and GPIO 

controller) in RISC32. These device libraries will be useful to interface with 

the common I/O modules such as WiFi, ZigBee and Bluetooth Low Energy 

(BLE) in IoT applications. With the toolchain, standard benchmarking suite 

such as CoreMark and Dhrystone can also be compiled and benchmarked on 

the RISC32 IoT processor. The benchmarking result obtained should be 

compared with existing IoT processor on the market, to observe the further 

improvement required on RISC32. 

 

 While this research work has been focusing on energy reduction on the 

RISC32 core alone, the energy consumption during I/O transmission was not 

explored. The energy consumption pattern during I/O should be studied, as I/O 

transaction is fundamentally slow. If high energy consumption was 

contributed by slow I/O transaction, it is a concerning factor that relates to the 

longevity of the energy source on IoT sensor nodes. Effective communication 

protocols should be explored to reduce the energy consumption toll 

contributed by slow I/O transaction to minimum.   

 

 In recent years, light-weight cryptosystems have been actively 

researched, to introduce low-power cryptography core design, and provide 

decent security level. However, these light-weight cryptosystems are still 

under review for NIST standardization (2019). As such, AES core still 
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remains as the widely recognized cryptography standards in the industry. In 

future, with the standardization finalized, these light-weight cryptosystems 

should be explored and considered as encryption core to be integrated into 

RISC32.  
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