

TOOLCHAIN DEVELOPMENT AND QUEUE SYSTEM
ENHANCED SECURITY COPROCESSOR FOR FPGA-

BASED INTERNET OF THINGS (IoT) PROCESSOR

SEE JIN CHUAN

MASTER OF SCIENCE (COMPUTER SCIENCE)

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN
DECEMBER 2019

TOOLCHAIN DEVELOPMENT AND QUEUE SYSTEM ENHANCED

SECURITY COPROCESSOR FOR FPGA-BASED INTERNET OF

THINGS (IoT) PROCESSOR

By

SEE JIN CHUAN

A dissertation submitted to the Department of Computer and Communication

Technology,

Faculty of Information and Communication Technology,

Universiti Tunku Abdul Rahman,

in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

December 2019

ii

ABSTRACT

TOOLCHAIN DEVELOPMENT AND QUEUE SYSTEM ENHANCED

SECURITY COPROCESSOR FOR FPGA-BASED INTERNET OF

THINGS (IoT) PROCESSOR

See Jin Chuan

 Internet of Things (IoT) is developing by leaps and bounds in recent

years, which opens up many interesting applications that potentially

revolutionize our daily life. Many IoT processors and sensor node designs are

being proposed in recent years for various applications, including those

designed based on microcontroller, ASIC and FPGA. A recently proposed

FPGA based IoT processor, RISC32, is one of the notable examples that

provide flexible configurability to meet the needs in IoT applications.

However, it does not come with compilation toolchain that support high level

language, which increases the code development time. On top of that, one of

the main reasons that limit the widespread adoption of IoT in many fields, is

the lack of security feature. For instance, failure to provide data confidentiality

could cause information leak and bring losses to the users. Unfortunately,

RISC32 does not support encryption capability in hardware. In view of that,

this research work aims to improve RISC32 in two aspects: providing

iii

compilation toolchain in C language and introduce hardware core to perform

encryption.

 The most commonly used encryption scheme, Advanced Encryption

System (AES) was used in this research work. While AES could be effectively

implemented in software, the performance is slow, at the same time affecting

the energy efficiency and responsiveness of IoT sensor node. This research

work implemented AES as a coprocessor to RISC32 to speed up the

encryption process. Experimental result shows at least 200x speed-up and

~99% energy reduction achieved by the AES coprocessor, compared to the

software implementation. However, the RISC32 processor has to wait for AES

core to complete the encryption before proceeding with other operations, due

to data dependency. Hence, a novel Queue System is proposed to overlap the

encryption operation with sampling of data, which follows the typical IoT

software pattern. Further 1.48x speed-up and ~19% energy reduction was

achieved with the introduction of Queue System. To enable rapid IoT

application development on RISC32, this research work also delivers a

compilation toolchain for RISC32 based on retargetable compiler framework,

LLVM. By utilizing the existing MIPS Backend, the LLVM is extended to

support code generation for RISC32. The compilation toolchain enables

development option using C language on RISC32, where it was previously

restricted to slow and error prone assembly language development option.

The achievement obtained in this research work is beneficial to IoT

applications, which emphasize on performance and energy consumption. The

iv

proposed Queue System can be used by other processor architectures to

efficiently integrate with another block cipher coprocessor. On the other hand,

the developed LLVM compilation toolchain can also allow easy extension of

additional coprocessors to the RISC32 IoT processor.

v

ACKNOWLEDMENT

 First, I would like to thank the university for funding this project. This

project was funded under Universiti Tunku Abdul Rahman Research Fund

(UTARRF) with the grant number IPSR/RMC/UTARRF/2016-C2/L04. Next,

I would like to thank both of my supervisors Dr. Lee Wai Kong and Mr. Mok

Kai Ming for their patience and guidance. Without them, I would have not

been able to complete this dissertation. Also, I would like to thank all

postgraduate friends that I have met during my master’s degree. Although not

all us working in the same domain, we share our knowledge and experience

among us from time to time. Finally, I would like to thank my family for their

support and encouragement. Their support and encouragement are the ones

that keeps me motivated to continue and pursue my master’s degree.

vi

APPROVAL SHEET

This dissertation entitled “TOOLCHAIN DEVELOPMENT AND QUEUE

SYSTEM ENHANCED SECURITY COPROCESSOR FOR FPGA-

BASED INTERNET OF THINGS (IoT) PROCESSOR” was prepared by

SEE JIN CHUAN and submitted as partial fulfillment of the requirements for

the degree of Master of Science (Computer Science) at Universiti Tunku

Abdul Rahman.

Approved by:

(Dr. Lee Wai Kong) Date: 24th December 2019

Supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

(Mr. Mok Kai Ming) Date: 24th December 2019

Co-supervisor

Department of Computer and Communication Technology

Faculty of Information and Communication Technology

Universiti Tunku Abdul Rahman

vii

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 24th December 2019

SUBMISSION OF DISSERTATION

It is hereby certified that SEE JIN CHUAN (ID No: _17ACM05149_) has

completed this dissertation entitled “TOOLCHAIN DEVELOPMENT AND

QUEUE SYSTEM ENHANCED SECURITY COPROCESSOR FOR FPGA-

BASED INTERNET OF THINGS (IoT) PROCESSOR” under the supervision

of Dr. Lee Wai Kong (Supervisor) from the Department of Computer and

Communication Technology, Faculty of Information and Communication

Technology , and Mr. Mok Kai Ming (Co-Supervisor) from the Department of

Computer and Communication Technology, Faculty of Information and

Communication Technology.

I understand that University will upload softcopy of my dissertation in pdf format

into UTAR Institutional Repository, which may be made accessible to UTAR

community and public.

Yours truly,

(SEE JIN CHUAN)

*Delete whichever not applicable

viii

DECLARATION

I hereby declare that the dissertation is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare

that it has not been previously or concurrently submitted for any other degree

at UTAR or other institutions.

 (SEE JIN CHUAN)

 Date: 24th December 2019

ix

LIST OF TABLES

Table

2.1

Summary of Existing Work

Page

22

3.1 RISC32 Instruction Set

35

3.2 Comparison for Memory Access Instructions 37

3.3 Comparison for Arithmetic Instructions 38

3.4 Comparison for Condition Checking Instructions 39

3.5 Comparison for Bitwise Instructions 40

3.6 Comparison for Program Control Instructions 41

3.7 Comparison for System Instructions 44

3.8 Comparison for Miscellaneous Instructions 46

3.9 Shift-by-Variable Instruction Syntax 52

3.10 Expected Routine for srlv 57

3.11 MachineSSA form for srlv expansion routine 58

3.12 Shift-Left-Logical-Variable compiled using

RISC32 Sub-target

59

3.13 Shift-Right-Arithmetic-Variable compiled using

RISC32 Sub-target

60

3.14 Shift-Right-Logical-Variable compiled using

RISC32 Sub-target

60

3.15 Instruction syntax for bltz and bgez 62

3.16 Expected Routine and equivalent MachineSSA

form for bltz and bgez

62

3.17 Branch on Greater or Equal to Zero compiled using

RISC32 Sub-target

65

3.18 Branch on Less Than Zero compiled using RISC32

Sub-target

65

x

3.19 CP2 Intrinsic Function Header 67

3.20 LLVM IR for CP2 Intrinsic Function 69

3.21 CP2 Key Expansion Routine 70

3.22 CP2 Encryption Routine 71

3.23 Sample ISR using Clang 72

3.24 Longest Timing Delay for Each Stage in RISC32 83

3.25 Potential mfc2 related data hazard 89

3.26 Potential mtc2 related data hazard 92

3.27 Pin Description for CP2 Block Interface 94

3.28 CP2 register file and their conventions 94

3.29 Pin Description for CP2 Core Sub-Block 98

3.30 CP2 Core FSM state description 100

3.31 CP2 Core FSM state corresponding output 101

3.32 State Description for Round Key Generator FSM 105

3.33 State Output for Round Key Generator FSM 105

3.34 State Description for Encrypter FSM 111

3.35 State Output for Encrypter FSM 111

3.36 SBox Table 114

3.37 Encryption Routine for CP2 Excluding Data

Acquisition

118

3.38 Storage of ciphertext from CP2 using mfc2-sw pair 126

3.39 Pin Description for CP2Q Block Interface 133

3.40 Pin Description for SWQ Block Interface 139

4.1 FPGA Resource Usage for RISC32 with CP2 and

Queue System

148

4.2 FPGA Resource overhead comparison 148

xi

4.3 Longest Timing Delay for Each Stage for Different

RISC32 Microarchitecture

148

4.4 Test Combination for Performance Analysis 154

4.5 Data Processing Execution Time (C.C) For Each

Test Case

155

4.6 Data Processing Energy Consumption (mJ) For

Each Test Case

159

xii

LIST OF FIGURES

Figures

1.1

Basic Compiler Structure

Page

2

2.1 Simplified view of RISC32 microarchitecture

11

2.2 Microarchitecture Design of FastCrypto 15

2.3 Processor microarchitecture with parameterized

AES crypto-coprocessor

17

2.4 OpenRISC1200 interfaced with Crypto-

Coprocessor through common bus.

19

2.5 Proposed ASIP microarchitecture for AES crypto

coprocessor

19

2.6 AES interfaced with MicroBlaze through PLB

share bus

21

2.7 GCC Internals 26

2.8 LLVM Internals 28

2.9 Target Description generation using TableGen 29

3.1 Simplified architecture of RISC32 compilation

toolchain

32

3.2 Memory map for RISC32 34

3.3 Files associated to declare new sub-target in MIPS

Backend

48

3.4 RISC32 declared after MIPS II in the enumerator

MipsArchEnum

49

3.5 Instruction declaration in MipsInstrInfo.td 50

3.6 C code construct for Shift-by-Variable Instructions 51

3.7 Simplified view of code generation in LLVM

Backend

53

3.8 Relationship between MF, MBB and MI 56

xiii

3.9 C construct for bgez instruction 61

3.10 C construct for bltz instruction 61

3.11 Overview of intrinsic porting in LLVM 67

3.12 CP2 Intrinsic Function pseudo instruction node in

MipsInstrInfo.td

70

3.13 ISR Convention Comparison between LLVM and

RISC32

74

3.14 Overview of RISC32 ISR Porting 75

3.15 MIPS Interrupt Return ISD Node declaration for

RISC32 in MipsInstrInfo.td

76

3.16 RISC32 Exception Handler Flow 77

3.17 Alternate List of Allocable Register File for

RISC32 ISR

78

3.18 Compilation of RISC32 ISR using LLVM 79

3.19 Simplified view of RISC32 microarchitecture

revisited

82

3.20 RISC32 Microarchitecture with Coprocessor 2

(CP2)

86

3.21 Move from Coprocessor 2 (mfc2) R-Type

Instruction Encoding and Syntax

87

3.22 mfc2 implemented using Register Addressing

Mode

87

3.23 Logical view of mfc2 execution 88

3.24 Move to Coprocessor 2 (mtc2) R-Type Instruction

Encoding and Syntax

90

3.25 mtc2 implemented using Register Addressing

Mode

90

3.26 Logical view of mtc2 execution 91

3.27 Top-Level Interface for CP2 Block 93

3.28 Status Register ($13) layout of CP2 95

xiv

3.29 The microarchitecture of CP2 Block derived from

analysing the AES source code by Strömbergson

(2014)

96

3.30 CP2 Core Sub-Block interface 97

3.31 Internal microarchitecture of CP2 Core Sub-Block 99

3.32 CP2 Core FSM state diagram 100

3.33 Microarchitecture for Round Key Generator 103

3.34 Round Key Generator FSM state diagram 104

3.35 Microarchitecture for Encrypter 109

3.36 Encrypter FSM state diagram 110

3.37 Internal structure of Sbox in CP2 Core 115

3.38 Typical IoT application in sensor nodes 116

3.39 Data processing pattern with CP2 encryption 117

3.40 Data processing pattern with encryption and data

acquisition overlapped

119

3.41 Electronic Code Book (ECB) AES Encryption

Mode

119

3.42 Cipher Block Chaining (CBC) AES Encryption

Mode

120

3.43 Counter (CTR) AES Encryption Mode 121

3.44 Data processing pattern with encryption and data

acquisition overlapped in CTR Mode

122

3.45 Store Word from Coprocessor 2 (swc2) I-Type

Instruction Encoding and Syntax

124

3.46 swc2 implemented using Base Addressing Mode 124

3.47 Logical view of swc2 execution 125

3.48 RISC32 with CP2 and Queue System 128

xv

3.49 Serial processing pattern in CTR mode 128

3.50 Logical view of Queue System execution when

CP2 is busy

129

3.51 Logical view of Queue System execution when

CP2 is ready

130

3.52 Top-level Interface for CP2Q Block 132

3.53 Microarchitecture of CP2Q Block 136

3.54 Algorithm Flowchart for CP2Q Control Logic 138

3.55 Top-Level Interface for SWQ Block 139

3.56 Microarchitecture of SWQ Block 142

3.57 Internal Operation of SWQ 144

4.1 RISC32 Microarchitecture Components with CP2

and Queue System

147

4.2 AES-128 Test Vector 152

4.3 Ciphertext received from UART on the host

computer. Data is displayed using RealTerm

153

4.4 Test Program Software Pattern 154

4.5 Speed-Up achieved in T_CP2-Q compared to other

test cases

155

4.6 Screenshot during energy measurement for

T_CP2-Q

159

4.7 Energy reduction achieved in T_CP2-Q compared

to other test cases

160

xvi

LIST OF ALGORITHMS

Algorithms

3.1

Pseudo-code for Shift-by-Variable

transformation

Page

52

3.2 Round Key Expansion Algorithm of CP2 Core

derived from AES Source Code by

Strömbergson (2014)

106

3.3 Encryption Algorithm of CP2 Core derived

from AES Source Code by Strömbergson

(2014)

113

xvii

LIST OF ABBREVIATIONS

ADC

Analog-to-Digital Converter

ADL Architecture Description Language

AES Advanced Encryption Standard

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction set Processor

BLE Bluetooth Low Energy

BRAM Block RAM

BUFG Global Buffer

CBC Cipher Block Chaining

CP0 Coprocessor 0

CP1 Coprocessor 1

CP2 Coprocessor 2

CTR Counter

DAG Directed-Acyclic-Graph

ECB Electronic Codebook

EX Execution

MEM Memory

FF Flip-Flop

FIPS Federal Information Processing Standards

FPGA Field Programmable Gate Array

FPU Floating Point Unit

GCC GNU Compiler Collection

xviii

GPIO General-Purpose Input Output

GPP General Purpose Processor

I/O Input/Output

ID Instruction Decode

IDE Integrated Development Environment

IF Instruction Fetch

IoT Internet of Things

IR Intermediate Representation

ISO International Organization for Standardization

ISR Interrupt Service Routine

IV Initialization Vector

LUT Look-Up Table

LUTRAM Look-Up Table Random Access Memory

NIST National Institute of Standards and Technology

OS Operating System

RAM Random Access Memory

RTL Register-Transfer Level

SoC System-on-Chip

SPI Serial Peripheral Interface

TLS Transport Layer Security

UART Universal Asynchronous Receiver Transmitter

WB

Write Back

xix

TABLE OF CONTENTS

 Page

ABSTRACT ii

ACKNOWLEDGEMENT v

APPROVAL SHEET vi

SUBMISSION SHEET vii

DECLARATION viii

LIST OF TABLES ix

LIST OF FIGURES xii

LIST OF ALGORITHMS xvi

LIST OF ABBREVIATIONS xvii

CHAPTER

1 INTRODUCTION 1

 1.1 Introduction 1

 1.2 Problem Statement 6

 1.3 Objectives 7

 1.4 Contributions 9

 1.5 Dissertation Organization 10

2 LITERATURE REVIEW 6

2.1 RISC32 11

2.2 Advanced Encryption Standard (AES) 13

2.2.1 Existing AES Hardware Implementation 14

2.2.2 AES Integration to Host Processor 15

2.3 Existing Toolchain Technology 23

2.3.1 Architecture Description Language (ADL) 24

2.3.2 Retargetable Compilers 25

2.3.3 GCC 26

2.3.4 LLVM 28

2.4 Summary 30

3 SYSTEM DESIGN 32

3.1 System Overview: Software 32

3.1.1 RISC32 Instruction Set 35

3.1.2 Analysis and Comparison of MIPS II vs RISC32

Instruction Set 36

3.1.3 Implementing RISC32 as a Legal MIPS Sub-

Target in LLVM 48

xx

3.1.4 Porting Shift-by-Variable Instructions from

MIPS II to RISC32 51

3.1.5 Porting Branch on Conditional Instructions

from MIPS II to RISC32 61

3.1.6 Implementation of CP2 Intrinsic Functions in

LLVM for RISC32 66

3.1.7 LLVM Compilation of Interrupt Service

Routine (ISR) for RISC32 72

3.2 System Overview: Hardware 80

3.2.1 Placement of the AES Coprocessor 82

3.2.2 New Instructions for AES Coprocessor 86

3.2.3 CP2 Overview 93

3.2.3.1 Round Key Generator 102

3.2.3.2 Encrypter 107

3.2.3.3 Substitution Box (Sbox) 114

3.2.4 Software Pattern Analysis for CP2 116

3.2.5 Store Word from Coprocessor 2 (swc2) 124

3.2.6 Overview of the Queue System 127

3.2.6.1 Coprocessor 2 Queue (CP2Q)

 Design 132

3.2.6.2 Store Word Queue (SWQ) Design 139

3.3 Summary 145

4 SYSTEM VERIFICATION 147

4.1 Functional Verification 149

4.1.1 RISC32 Toolchain Compilation Verification 149

4.1.2 Coprocessor 2 (CP2) and Queue System

Verification 151

4.2 Performance Analysis 154

4.2.1 Timing Performance 155

4.2.2 Energy Consumption 158

4.3 Summary 161

5 CONCLUSION AND FUTURE WORK 162

5.1 Conclusion 162

5.2 Future Work 167

LIST OF PUBLICATIONS 169

BIBLIOGRAPHY 170

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Developing a processor targeting IoT applications is challenging as

different IoT applications require microcontroller of different capabilities. The

selection of processor to implement sensor nodes varies between low-end or

mid-end microcontroller. For example, sensor nodes for environment

monitoring only needs low-end processor as the data sampling rate is low;

whereas surveillance system for smart city requires high-end processor to deal

with image processing. Due to the wide range of performance requirement

between each IoT application, manufacturer needs to select a new processor

for almost every different application. The company will have to bear huge

operating cost since this indicates the need to maintain engineering team with

different firmware skill sets for different project. Hence, customizable IoT

processor was previously developed to resolve this issue (Kiat, 2018). This

dissertation is an extension to the previous work (Kiat, 2018) which focuses

on two aspects: development of a new compilation toolchain and novel

technique to integrate an AES cryptographic coprocessor with improved

performance.

The customizable IoT processor (RISC32) introduces new hardware

architecture, so a new compilation toolchain is required to enable firmware

development in C language. Without toolchain, developing firmware at

2

assembly level is error prone, at the same time requires extensive

understanding towards the underlying architecture. With compilation

toolchain, it can greatly reduce the development time. The company is also at

disadvantage due to the competitive market and constant emergence of new

product. For example, a compiler takes in source code developed in high-level

language and generates equivalent assembly language. Output of the compiler

is then assembled into machine code to be readily executed on target processor

by assembler. This shows the importance of toolchain as it aids development

progress by abstracting out most of the details of the underlying architecture.

This project aims to develop the toolchain that can convert C code to binary

executables for the RIC32 IoT processor.

Since the primary function of the toolchain is to provide binary

executables from user source code, this makes the compiler the core

component of a toolchain. However, developing a compiler from scratch

requires substantial efforts. A typical compiler consists basic structure as

shown in Figure 1.1.

Figure 1.1: Basic Compiler Structure

Source: Lattner, n.d.

3

A basic compiler can be partitioned into three mains parts, namely the

frontend, optimizer and the backend. The frontend performs analysis on the

high-level-languages (e.g.: C, C++, FORTAN and etc.) and converts it to

different representation known as intermediate representation (IR) for further

transformation. Next, optimizer will analyse and optimize the IR to generate

shorter and more efficient code. Output from optimizer is then further

transformed and synthesized to machine code of the target processor by

backend. Designing a compiler is time consuming, and requires great deal of

knowledge and experience in algorithm study. Hence, developing a compiler

from scratch is not an ideal case most of the time.

 To resolve this issue, one of the alternatives available is retargetable

compilers, which has similar structure to a basic compiler, but is designed to

be customizable. For instance, retargetable compilers can be extended to

support compilation of multiple target machine instruction’s set. This feature

makes cross-compilation possible. To support a new target machine, only new

backend needs to be developed and paired with the existing framework of the

retargetable compiler. This flexibility is convenient when compared to normal

compilers that are targeted for specific machine, which requires a new

compiler to be developed whenever a new processor is introduced.

 The development toolchain is critical to deliver fast prototyping of IoT

applications to cope with its rising demands. However, the rising demand for

IoT applications also raises security concerns. This is because data transfer

happens between interconnected IoT devices all the time. For example, food

4

factories use bio-sensors to monitor condition of raw food materials in large

refrigerators (Xu et al., 2014). Household consumers’ electrical usage

collected by smart meters are transferred periodically in smart grid

applications (Alahakoon and Yu, 2016). These IoT applications transfer

sensitive data’s that could be misused, thus threatening the user’s privacy. For

instance, the deterioration of raw food material should be kept confidential to

maintain the reputation of the food factories (Xu et al., 2014). Electrical usage

patterns of household users could be analysed to determine whether a house is

currently vacant (Valerio, 2016). These scenarios could lead to financial losses

of the users, which shows the need for security feature in IoT applications.

Hence, security is an important criterion to be fulfilled in IoT application-

based processor.

 When it comes to fulfilling IoT security, it refers to providing several

main features such as confidentiality, integrity, and availability (Humayed et

al., 2017; Tomić and McCann, 2017). This project aims to provide

confidentiality at current phase of research. Confidentiality refers to maintain

the secrecy of transferred data. This could secure the data from attack such as

eavesdropping, which ensures that the data could not be known even it is

intercepted during transmission. The confidentiality of data can be protected

through encryption schemes. With encryption, the data to be transferred

(plaintext) will go through series of transformation using a secret key. The

resultant output is cipher text, which is the original data scrambled into

random and meaningless form. Without knowing the encryption algorithm or

5

secret key used, one could not retrieve the original content of the scrambled

data. Hence, confidentiality of data is guaranteed.

 Encryption algorithm while available in abundance, have to be

carefully selected to cater for resource constrained IoT processor. In cases

where IoT processor is developed for remote sensing purpose, power would be

the main concern. The implementation of encryption algorithm should not

burden the power consumption of IoT processor. This is to ensure the

longevity of the power source (battery) for remote senor node. The choice of

encryption should also provide reasonable performance (processing speed) and

strength (security level) in spite of the power constrain. Among the abundant

encryption algorithm, Advanced Encryption Standard (AES) is one of the

most popular and recognized by international standards such as International

Organization for Standardization (ISO/IEC-18033-3, 2005) and National

Institute of Standards and Technology (FIPS, 2009). It was also adopted as

part of the Transport Layer Security (TLS) protocol (Rescorla, 2018), which is

used as secure communication protocol among internet-enabled devices.

Hence, this project aims to implement AES to provide confidentiality feature

in the RISC32. New instructions are created in the compilation toolchain to

support the AES cryptographic coprocessor. At the same time, a Queue

System is proposed to improve the execution speed of AES cryptographic

coprocessor in RISC32 IoT processor.

6

1.2 Problem Statement

 RISC32 (Kiat, 2018), a MIPS-ISA compatible processor, was designed

as a customizable IoT sensor node. However, the firmware development

option is currently limited to assembly programming. This is inconvenient as

instruction set is machine specific. Unlike assembly language, high-level

language such as C can be used for any machine, provided with the aid of

compilation toolchain. Development is also hindered as most of the standard

libraries are offered in high-level languages. Hence, a development toolchain

is required to provide rapid development opportunity on RISC32.

 RISC32 is designed for IoT purposes, but it still lacks basic security

feature, which is one of the main concerns in IoT. Advanced Encryption

Standard (AES) is selected in this project as it is an industrial standard block

cipher. Although AES can be efficiently implemented in software, the speed

performance is still too slow for IoT application. Prolonged execution of AES

software might consume high energy, which is non-ideal for low power IoT

applications. To address this issue, AES hardware coprocessor could provide

better performance compared to software implementation. However, merely

adopting an AES coprocessor may not yield optimized performance. When the

processor is invoking AES encryption, the AES coprocessor is busy

encrypting data but the processor itself is idle (waiting for encryption result).

This is a limitation often neglected by other researchers (Wang et al., 2016).

As such, this research work aims to fill this gap by proposing some techniques

to integrate the AES coprocessor to an IoT processor (RISC32) with more

optimized performance

7

1.3 Objectives

 The primary goal of this research is to implement confidentiality

feature into the RISC32, to fulfil the security criteria as an IoT processor. The

implementation shall be able to encrypt sensor data before sending it out from

RISC32. This project also aims to look into the possibility of utilizing the

retargetable compiler to establish a compilation toolchain for RISC32. The

established compilation toolchain shall be able to compile C code to binary

executables that is compatible to RISC32. The objectives of this research are

listed in detail as follows:

1) To develop a RISC32 compilation toolchain based on existing

retargetable compiler framework, LLVM. The research will focus on

extending the LLVM framework to support RISC32 instruction set

compilation. The instructions to be extended will include existing

instruction set of RISC32 and new instruction that might be introduced

due to the integration of AES cryptographic coprocessor.

2) To integrate the AES as cryptographic coprocessor in RISC32. This

refers to integrating the cryptographic coprocessor into RISC32

pipeline without affecting the current performance of RISC32. New

instructions are created to use the AES coprocessor.

3) To develop a solution to improve the performance of AES

cryptographic coprocessor in IoT application. This would require

analysis of the software pattern in a typical IoT application with

8

encryption feature. The derived solution should be able to further

speed up the encryption process.

4) To synthesis the RISC32 core with AES cryptographic coprocessor

integrated on Xilinx Artix 7 FPGA chip. Experiments will be

conducted on the RISC32 with AES coprocessor integrated and the

proposed solution that optimize the AES coprocessor performance.

9

1.4 Contributions

Contributions of this dissertation are as follow:

1) A compilation toolchain that compiles C language program into

RISC32 compatible instruction set. This toolchain is able to reduce the

firmware development time on RISC32, at the same time enable the

use of Operating System (OS) and development of device driver for

existing IO module

2) A customizable IoT processor, RISC32 with encryption feature. The

integrated AES coprocessor can be used to perform encryption on

sensor data to be sent out of RISC32. This fulfils the confidentiality

feature required for security criteria of IoT.

3) A solution to optimize the encryption process using integrated AES

coprocessor. This solution (Queue System) is catered for typical IoT

processing pattern. It ensures an optimal encryption performance

through overlapping the encryption and program execution, eventually

improving the overall speed performance. At the same time, ensuring

optimized dynamic energy consumption without burdening the long-

term energy consumption on RISC32.

10

1.5 Dissertation Organization

 The dissertation starts with Chapter 1, to explain the background of the

research. In Chapter 2, study is conducted on the existing integration

technique of AES into processor and existing compilation technology. Chapter

3 is divided into two parts. The first part is on the toolchain development,

where LLVM is extended to support RISC32 code generation. Second part

describes the hardware development of this research work, which discusses

the integration of AES coprocessor into RISC32. The proposed solution

(Queue System) to optimize usage of AES Coprocessor is also discussed here.

Chapter 4 is about the performance analysis of RISC32 with AES coprocessor

integrated. Detailed assessment on program execution speed and dynamic

energy consumption is conducted here. Finally, Chapter 5 concludes the

research work and suggest the potential future directions of this research.

11

CHAPTER 2

LITERATURE REVIEW

2.1 RISC32

 RISC32 (Kiat, 2018) is a MIPS Instruction Set Architecture (ISA)

compatible 5-stage pipeline 32-bit IoT processor. It is able to decode and

execute a subset of MIPS instructions. Figure 2.1 shows the simplified view of

RISC32 microarchitecture.

I-Cache

Register

File

Coprocessor

0

ALB

Address

Decoder

UART

Controller

SPI

Controller

ADC

Controller

To Control-path Unit

IF ID EX MEM WB

Data Buses

Control Signals

Legends

Forwarding Block

Interlock Block

Data Cache

Stack RAM

Data RAM

IF
/I
D

 P
ip

e
lin

e
 R

e
g

is
te

r

ID
/E

X
 P

ip
e

lin
e

 R
e

g
is

te
r

E
X

/M
E

M
 P

ip
e

lin
e

 R
e

g
is

te
r

M
E

M
/W

B
 P

ip
e

lin
e

 R
e

g
is

te
r

Figure 2.1: Simplified view of RISC32 microarchitecture

In RISC32, a Coprocessor 0 (CP0) is implemented to monitor

hardware interrupts caused by the I/O controllers, and also software

exceptions such as illegal instructions and arithmetic overflow. RISC32 is also

integrated with common I/O controllers to provide common interface suitable

for IoT applications. The I/O controllers available are UART, SPI, GPIO and

ADC. These interfaces are compatible with wireless communication modules

such as Bluetooth Low Energy (BLE), WiFi, ZigBee, etc., which provides the

12

connectivity feature for IoT applications. GPIO with 32-bit bidirectional I/O

pins and 12-bit ADC ports are available from the RISC32 to provide common

interface to sensors for data collection. Further details of RISC32 can be found

in the dissertation by Kiat (2018).

13

2.2 Advanced Encryption Standard (AES)

 AES is a symmetric block cipher published under the FIPS-197 (2009),

a security standard publication by NIST. A typical block cipher requires two

inputs: a plaintext/ciphertext, and a secret key. The AES uses the same secret

key to perform encryption and decryption, hence it is symmetric. For AES, the

operation is performed on a fixed sized data block, hence it is known as block

cipher. The block size of AES is fixed at 128 bits (four 32 bits words or 16

bytes in equivalent) for both its input and output. In AES, a series of operation

is applied on the input block for a fixed number of rounds to get the final

output. The number of rounds is determined by the secret key size being used.

There are three secret key sizes specified in FIPS-197, which is 128 bits (AES-

128), 192 bits (AES-192) and 256 bits (AES-256). The number of rounds with

respect to each key size is as follows: 10 rounds for AES-128, 12 rounds for

AES-192 and 14 rounds for AES-256. Despite the difference in number of

rounds, the operations to be performed on the input block is the same for each

secret key size. The difference in key size, however, determines the strength of

the encryption. Larger key size provides higher security level, which implies

that it is more difficult to decipher the ciphertext using brute force attack.

Another factor that determines the encryption strength of a block cipher is the

block cipher mode being used. The mode determines the relationship between

the secret key and the input block during the operation. The common modes

available are Electronic Code Book (ECB), Cipher Block Chaining (CBC) and

Counter (CTR). Other available block cipher modes can be found in NIST SP-

800-38A (2007).

14

2.2.1 Existing AES Hardware Implementation

 AES hardware implementation has been actively researched in several

aspects, such as reduced hardware footprint (Lu et al., 2018), energy efficient

(Hoang et al., 2017) and high throughput (Wang and Ha, 2016). In both work

by Lu et al. (2018) and Hoang et al. (2017), their design achieved high energy

efficiency, which is ideal for IoT processor with energy constrain. However,

both design yields AES hardware with long encryption cycles, which is at

least 160 over cycles per encryption. The long encryption cycle could be a

performance bottleneck to IoT applications that requires real-time response.

As for the case of high-throughput design (Wang and Ha, 2016), the

core design focuses on performing more data encryption by applying pipelined

design on their core. The pipelined design divides crucial processing

components for each round into several stages. This approach splits the critical

path, enabling the design to operate at a higher frequency. This also enables

encryption of multiple data to overlap, introducing higher throughput. This

however, results in a larger circuit, which would lead to higher energy

consumption. The high energy consumption is a concern for IoT processor

design that has energy constrain. However, all of the proposed work

mentioned above, while showing effort in optimizing the core, does not

discuss on how the AES core can be integrated with a main processor

efficiently. Only a few works (Soliman and Abozaid, 2011; Anwar et al.,

2014; Wang et al., 2016; Yuan et al., 2018) have discussed their design on

integrating AES core with a host processor.

15

2.2.2 AES Integration to Host Processor

 This section discusses the works that have presented both their AES

implementation and integration to a host processor. A total of 4 literatures

(Soliman and Abozaid, 2011; Anwar et al., 2014; Wang et al., 2016; Yuan et

al., 2018) will be discussed here.

Figure 2.2:Microarchitecture Design of FastCrypto

Source: Soliman and Abozaid, 2011.

 Figure 2.2 shows the work by Soliman and Abozaid (2011). In this

work, a high throughput AES hardware implementation was proposed. The

work is implemented on Xilinx Virtex V FPGA. AES is implemented as a

crypto coprocessor, which was integrated into the data-path of general-purpose

processor (GPP) by creating specialized data transfer path between the

coprocessor and data-path of the GPP. As such, special instructions are created

to interact with the coprocessor from the data-path of the GPP. The special

instructions are created to provide information in commanding the AES crypto

16

coprocessor to carry out its task. The special instructions are encoded with

information such as starting address to read input data, starting address to store

output data, total length of data to be processed and action to be performed on

the data (encryption or decryption). Each of the special instructions will first

go through decoding stage of the GPP data-path. If a special instruction is

detected, it will be dispatched to a specialized queue known as Crypto

Instruction Queue (CIQ), waiting to be executed by the crypto coprocessor.

The crypto coprocessor will further decode the instruction, extracting

addresses and operation to be performed. The address extracted will be used

internally by the Address Generation Unit, to generate necessary addresses to

read range of data from Second-Level Cache (L2) for processing.

 The AES crypto processor (Soliman and Abozaid, 2011) achieve high

throughput, by using AES core with pipeline design. Furthermore, the

coprocessor is designed with multiple lanes, which indicates existence of

multiple AES core in the coprocessor. This design enables large amount of

data to be processed within a specific time, hence, achieve high-throughput.

However, this indicates the AES crypto coprocessor is large. The large

architecture would certainly consume high energy. This high throughput trade-

off for high consumption is definitely not suitable for IoT processor with

energy constrain.

 Furthermore, the AES crypto coprocessor is integrated in such a

manner that, the coprocessor is directly interfaced to a L2 Cache. This enables

data access by the coprocessor without disrupting the data-path of GPP. This

17

results in the requirement for a dual-port L2 Cache. Dual-port L2 Cache

indicates a larger memory hardware is required, since to create dual-port

access, an extra address decoder is required in the existing memory hardware.

This could slow down the performance of the memory system. This also

introduce a larger memory hardware, which is not beneficial for IoT

processor, as it will definitely link to higher energy consumption.

Figure 2.3:Processor microarchitecture with parameterized AES crypto-

coprocessor

Source: Anwar et al., 2014.

 Figure 2.3 shows the work by Anwar et al. (2014). In this work, a

parameterized AES crypto coprocessor was proposed. This work is

implemented on Xilinx Virtex 6 FPGA. The AES coprocessor was integrated

to a general purpose 5-stage pipeline 32-bit MIPS processor. Specialized data

transfer path was created to access the integrated coprocessor from the data-

path of the processor. As such, special instructions are designed to interact the

coprocessor through the specialized data transfer path. The special

instructions, contain starting address for input and output, total length of data

18

to be processed, and operation to be performed on the data. The special

instruction is decoded at the Instruction Decode (ID) stage in the processor,

and transferred to coprocessor for execution. A specialized AES memory was

introduced, to provide input data for processing by the AES coprocessor. The

AES memory also stores the output data by AES coprocessor.

 The AES coprocessor introduced by this work is parameterized, which

is a pipeline AES architecture with tunable pipeline stages during design time.

Although the design is tunable, it is still a pipelined AES core, which

consumes large area and power hungry, so it is not suitable for IoT

application. Furthermore, this integration method introduces a specialized

AES memory. The AES memory introduced is large, which could be slow and

might consume high power. This may not be a concern when the AES

coprocessor was integrated to a general-purpose MIPS processor. However, it

might not suitable for our research work, as our target application is IoT-

based, which has power constrain in general.

19

Figure 2.4: OpenRISC1200 interfaced with Crypto-Coprocessor through

common bus.

Source: Wang et al., 2016.

 Figure 2.4 shows the work by Wang et.al (2016). The work is

implemented with Application Specific Integrated Circuit (ASIC) Technology.

The AES coprocessor is implemented as an Application Specific Instruction

Set Processor (ASIP). This indicates a special set of instruction is designed

specifically to command the coprocessor to perform various operation.

However, unlike special instruction created in previous work (Soliman and

Abozaid, 2011; Anwar et al., 2014), the instruction set is decoded internally by

the coprocessor in the case of ASIP. The internal microarchitecture of the AES

coprocessor is shown in Figure 2.5.

Figure 2.5: Proposed ASIP microarchitecture for AES crypto coprocessor

Source: Wang et al., 2016.

20

 Referring to Figure 2.5, the coprocessor is designed with pipeline

stages found in common processor pipeline. As for the interfacing between

coprocessor and host processor (OpenRISC1200), it is interfaced through a

common shared bus between other peripherals as shown in Figure 2.4. The

TaskReg, DataOut and DataIn are designated with dedicated memory address.

Accessing these registers can simply be done using load store instructions. The

implementation technique used by the author is simple and straightforward.

No special instruction or specialized transfer is required as shown in the other

work (Soliman and Abozaid, 2011; Anwar et al., 2014) discussed earlier. Only

proper assignment of memory address to map and access to the register of

coprocessor is required. However, the performance of the coprocessor is

largely dependent on the shared bus. This is because all peripheral behaves

differently. Between the processor and the peripherals, each of them may have

different communication protocol and data transaction pattern. These are all

carried out using the shared bus. Peripherals with the slowest performance

might be the performance bottleneck for the shared bus. Not to mention, since

it is a shared bus, the peripherals are likely assigned with priorities for request

of bus usage. In the case where multiple peripherals requested to use the bus,

usage is assigned to the peripherals with highest priorities. If the coprocessor

is assigned with a lower priority, the performance is likely affected by the

peripherals with higher priority than the coprocessor. This shows that although

shared bus technique is straightforward, the performance of coprocessor is not

guaranteed to be optimal due to the factors mentioned.

21

 Furthermore, the coprocessor implemented by Wang et al. (2016)

closely resembles the processor pipeline. The coprocessor proposed may have

high performance, but is expected to have large and complex circuitry. While

the authors claim the coprocessor is suitable for IoT application, their work is

implemented using ASIC technology. ASIC technology has been known for

its high-power efficiency but low flexibility. Our work however, adopts FPGA

implementation technology. Implementing their coprocessor with our FPGA

technology is likely to yield higher power consumption. This indicates that

their AES coprocessor is not suitable for our use case of FPGA

implementation.

Figure 2.6: AES interfaced with MicroBlaze through PLB share bus

Source: Yuan et al., 2018.

 Figure 2.6 shows the work by Yuan et al. (2018). This work proposed a

novel implementation of pipelined AES. The work was implemented on

Xilinx Spartan 6 FPGA. This work uses the share bus interfacing technique to

interface the AES coprocessor with a host processor (MicroBlaze). As

22

mentioned earlier, the shared bus technique is simple and straightforward.

However, performance of the coprocessor is not guaranteed, as it is largely

dependent on other interfaced peripherals as well. Furthermore, the AES

coprocessor proposed by the author is pipelined design. Pipelined AES core

may effectively provide higher throughput, enabling more data encryption to

be performed within a short time. The design, however, may yield a larger

hardware. Hence, might not be ideal for IoT processor with power

consumption concern.

Table 2.1: Summary of Existing Work

 Integration

Technique

AES

Architecture

Technology Remarks

Soliman

and

Abozaid,

2011

Dedicated-

Path

Pipelined FPGA • Pipelined architecture enables

high performance at the

expense of larger hardware

area.

• Larger hardware area

consumes higher energy.

• Not ideal for IoT use case

Anwar et

al., 2014

Dedicated-

Path

Pipelined FPGA • Pipelined architecture enables

high performance at the

expense of larger hardware

area.

• Larger hardware area

consumes higher energy.

• Not ideal for IoT use case

Wang et al.,

2016

Shared-

Path

Single-

Stage

ASIC • Shared-Path integration

technique is easier to realize

• But performance of shared-bus

hardware is dependent on

overall system bus

performance

• ASIC implementation is

energy efficient but not as

flexible when compared to

FPGA

Yuen et al.,

2018

Shared-

Path

Pipelined FPGA • Shared-Path integration

technique is easier to realize.

• But performance of shared-bus

hardware is dependent on

overall system bus

performance

23

2.3 Existing Toolchain Technology

 Toolchain plays important role when developing on a new system.

Without toolchain, a developer will go through cumbersome process when

developing a new system. For example, developer may only program in

assembly language. Then, the developer may need to manually convert each

assembly language into machine code of the targeted machine. All of this is

error prone and time consuming. Hence, toolchain is usually developed to be

distributed as a package with every new system by the vendors. This results in

variety of both proprietary and free IDE. Example of proprietary IDE is Visual

Studio developed by Microsoft (2019) is the conventional IDE for x86

platform. As for free IDE, µVision® IDE (ARM Limited, 2019) is dedicated

for ARM platforms. These IDE’s are usually targeted to specific processor

family, which indicates compilation for customized machine might not be

supported. Extending the IDE’s to support new target machine is also

impossible as they are usually closed-source, not to mention the risk of

spreading into infringement issue. Since modification to vendor distributed

software is not an option, alternatives such as automatic software generation

using Architecture Description Language (ADL) and retargetable compilers

are opted.

24

2.3.1 Architecture Description Language (ADL)

 An ADL is a language designed to specify relationship and interaction

between each component/block on System-on-Chip’s (SOCs). The

blocks/components include the processor, peripheral device such as memories,

and interfacing circuits of each peripheral. Production-grade software

toolchain such as compiler, assembler, linker, debugger and simulator can be

synthesized from an ADL (Tomiyama et al., 1999). Based on the paper by

Kassem et al. (2012), ADL can be further classified based on their contents

and objectives. In terms of contents, the ADL can be categorized into three

categories, namely the Behavioural ADL, Structural ADL and Mixed ADL

(Kassem et al., 2012). The Behavioural ADL can only describe instruction set

instead of structural details of a processor model. Structural ADL on the other

hand, can only be used to model structural behaviour such as register transfer

level of a processor. As for Mixed ADL, they can achieve both structural and

behavioural modelling of a processor. In terms of objectives classification, the

ADL can be categorized into 4 categories, namely the Synthesis ADL,

Compilation ADL, Validation ADL and Simulation ADL (Kassem et al.,

2012; Tomiyama et al., 1999). Synthesis ADL’s focuses on describing and

designing hardware architectures. Compilation ADL’s focuses on code

generator design. Validation ADL’s is mainly used for embedded processor

functional verification purposes. Simulation ADL’s generates simulator for

hardware generated. Over the years, ADL has been widely used for

Application-Specific Instruction set Processor (ASIP) development as

presented in several papers (Bejo et al., 2014; Gupta and Pal, 2015; Taglietti et

al., 2005). Development of RISC processor using ADL has also been

25

presented in this paper (Arora et al., 2015). ADL may be efficient in terms of

higher abstraction level processor modelling and automatic software toolchain

generation, there are trade-offs imposed in exchange for the convenience. As

mentioned in this paper (Witte et al., 2005), unoptimized RTL code generation

is the bottleneck of ADL generated processor. Hence, various optimization

schemes have to be introduced in the ADL compiler to generate optimized

RTL code. Due to the lack of power model, evaluation and optimization of

power consumption cannot be done on ADL as mentioned here (Yang et al.,

2013). Both mentioned disadvantages impact IoT processor design that

focuses on low-power and energy efficient design.

2.3.2 Retargetable Compilers

 Due to the difficulties of designing a new compiler from scratch,

extending support of existing toolchain is another approach to design new

toolchain for new machine. As such, retargetable toolchain framework such as

GNU Compiler Collection (GCC) and LLVM is often being used. Both

frameworks are retargetable, hence they can be extended to support code

generation of new instruction set. Since they are open source, both

frameworks are becoming robust and quality compilers, due to the growing

contribution from their development community.

26

2.3.3 GCC

The internals of GCC is shown in the Figure 2.7.

Figure 2.7: GCC Internals

Source: Diego, 2007.

 As shown in Figure 2.7, high-level language input to GCC will first be

parsed into GENERIC, an intermediate language of GCC. The GENERIC is

further transformed to GIMPLE, a tree-based intermediate representation of

GCC by the middle end. Transformation of GIMPLE is done in two phases.

The GENERIC from frontend will be translated to High GIMPLE, which is

target independent. After analysis and transformation by several passes, High

GIMPLE will then be lowered to Lower GIMPLE to be constructed as a more

target dependent representation. In the backend, GIMPLE is then expanded to

Register Transfer Language (RTL) form for instruction matching of target

machine assembly to finally generate the machine code. Hence, to support a

27

new target, most of the effort should be focused on the backend. A number of

machine description files will be needed to be specified in the backend. Since

GCC is relatively mature, it has been widely adopted for both industrial and

academic sectors. In the work by Johann et al. (2016), GCC 4.6.1 is used to

setup the toolchain for HF-RISC core. The GCC 4.6.1 is modified to support

new flags that correspond to code generation support for different HF-RISC

processor configuration.

GCC is also integrated into CooCox CoIDE for cross-compilation of

ARM Cortex-M processor family. However, the paper (Campi et al., 2003)

suggests that the backend development on instruction patterns file (.md) of

machine description was rather difficult due to limited support from GCC. It

was also reviewed in this paper (Ghica and Tapus, 2015) that the machine

description (.md) was rather difficult to read, enhance, construct and maintain.

“They require specifying instruction patterns using Register Transfer

Language (RTL) templates, employing a mechanism which is verbose,

repetitive and requires a lot of detail” (Ghica and Tapus, 2015). The GCC

Wiki (Bosscher, 2012) also stated that GCC has grown rather big which

induces steep learning curves for new developers.

28

2.3.4 LLVM

 Unlike GCC, LLVM is modular in design. The overview of LLVM

Internals is shown in Figure 2.8.

Figure 2.8: LLVM Internals

Source: Lattner, n.d.

 Compared to GCC, internals of LLVM is relatively straightforward. As

shown in Figure 2.8, the LLVM is made up of three main components. The

frontend is responsible for parsing of high-level-language such C, C++ and

Java. Each LLVM frontend is exclusive to one language, for example the

Clang is the C Frontend while GHC is the Haskell Frontend. The output from

frontend is then passed to the LLVM optimizer in the form of LLVM

Intermediate Representation (IR). LLVM IR is a RISC assembly like language

used by LLVM framework for internal analysis and transformation. It is used

to expose lower level information from high level language, but yet target

independent. By going through various transformation passes in LLVM

optimizer, the final output will be a more optimized LLVM IR. The backend

will then generate target specific machine code from the IR. Each backend

will be exclusively used for a single target family and are independent of each

29

other. In the backend, the LLVM IR will be constructed into SelectionDAG,

which is a graph-based representation to expose more target dependent

information. Mapping of native instruction will be based on the constructed

SelectionDAG. Hence, to support a new target machine, information of

respective machine is needed. In LLVM backend, the machine description

files will be generated by a LLVM utility, namely the TableGen (tblgen) tool.

The TableGen will generate records to represent respective target based on

their target description (.td) files. The Figure 2.9 shows example of target

description generation in LLVM.

Figure 2.9: Target Description generation using TableGen

Source: Lattner, n.d.

 When it comes to maturity, GCC superseded LLVM due to its longer

history. However, LLVM is still a popular selection due to its relatively

straightforward and easier to understand design. It has been adopted by several

works as presented in PicoBlaze Processor (Sýkora, n.d.), RISCO processor

(Vilela et al., 2012) ,microMIPS architecture (Kolek et al., 2013) and LEON

Processor (Lopez et al., 2015). It is use by Apple Inc. (2017) as their backend

for their Xcode IDE, which is used to develop various applications for their

Apple products.

30

2.4 Summary

 In this chapter, existing techniques to integrate AES coprocessor to

host processor are explored. The common AES integration techniques are

dedicated path technique and shared bus integration technique. Dedicated path

technique requires introduction of specialized transfer path and new

instructions to access the integrated coprocessor. While this technique requires

revision to the whole processor architecture, the coprocessor can have a better

performance due to its independent transfer path. As for shared bus integration

technique, it is relatively simpler and straightforward to realize. However, the

performance of integrated coprocessor is dependent on other peripherals that is

present on the shared bus.

 This chapter also explores existing compilation toolchain technologies.

The compilation toolchain is usually distributed along with the processor sold

by vendor. However, vendor distributed Integrated Development Environment

(IDE) is usually target specific and close source. It cannot be modified for

code generation of unsupported target. Hence, alternative such as Architecture

Description Language (ADL) and retargetable compilers are often opted. ADL

supports automated toolchain generation for the processor modelled using it.

However, lack of power modelling in ADL makes it harder to gauge the

energy performance of the processor modelled using it. Retargetable compilers

are open-source and is retargetable to support compilation for multiple target

machine. Example of popular retargetable compilers are GCC and LLVM.

GCC is much mature due to its longer history when compared to LLVM.

31

However, due to the complicated structure of GCC, LLVM gains popularity

due to its clear-cut design.

32

CHAPTER 3

SYSTEM DESIGN

3.1 System Overview: Software

 This section describes the proposed software compilation toolchain

design for this research work. The proposed software toolchain design is

shown in Figure 3.1.

clang opt llc lld objcopy

LLVM
Compiles C

source

code(.c) and

emits LLVM

IR file(.ll)

Optimize

LLVM IR

Process LLVM

IR and emits

assembly (.s) or

object file (.o)

Link object

file to

generate

ELF file

Strip ELF file

to get raw

binary file

(.text, .data

and .rodata

segment)

Figure 3.1: Simplified architecture of RISC32 compilation toolchain

 The Figure 3.1 shows the simplified architecture of RISC32

compilation toolchain. The toolchain is developed based on LLVM (2013)

modular compilation framework, wherein different frontends (process source

code) can be freely paired with different backends (emits assembly or object

file). Clang is the frontend for LLVM, which processes C language source

code and generates LLVM Intermediate Representation (IR). LLVM IR is the

33

initial input into the LLVM framework, which is further analyzed and

transformed into various intermediate forms in between each compilation

module.

 The initial module that processes the LLVM IR would be opt, which is

known as LLVM optimizer, responsible to perform various analyses in order

to optimize the input LLVM IR. Following this, the llc module (static

compiler of LLVM) analyzes the LLVM IR further and transform it into

various intermediate forms, eventually mapped to the instruction set of the

desired target machine (RISC32 for this research work). It can generate output

as assembly file or binary object file. The final crucial module would be lld,

which is the LLVM linker, responsible in performing address calculation for

the binary object file generated by static compiler llc, and output a final

executable object file. As lld generates object file in Executable and Linkable

Format (ELF), it contains various Operating System (OS) related headers or

information sections. This output file is still not suitable to be executed on

RISC32, as this research work currently do not intend to host any OS in

RISC32 at the moment. Hence, the objcopy will be used to extract only the

Text Segment (.text) and Data Segment (.data and .rodata) which contains the

instructions and data respectively. The binary content extracted from

respective sections will be loaded into suitable memory address location based

on memory map established for RISC32. The memory map for RISC32 is

shown in the Figure 3.2.

34

I/O peripherals register

Boot code

Exception handler

User program code

.rodata

.bss

FLASH

RAM

Physical Memory

KSEG1

KSEG0

Virtual Memory

0xA000_0000

0x8000_0000

0xC000_0000

0x8001_B400

0x8001_F400

0xA002_0800

.stack

.heap0xA002_1000

0xA002_2000

0x8001_FFFF

0xBFFF_FE00

0xBFC0_0000

0xBFC0_1000

.data

.data

0xA002_0000

0x8001_F800

KSEG0/
KSEG1

0x0000_0000

0x2000_0000

User program code

.rodata
.data

0x0001_B400

0x0001_F400
0x0001_F800

.bss0x0002_0800

.stack

.heap0x0002_1000

0x0002_2000

.data0x0002_0000

Exception handler

I/O peripherals register

Boot code

0x1FFF_FE00

0x1FC0_0000

0x1FC0_1000

BOOT ROM

Exception handler

User program code

.rodata
.data

User program code

.rodata
.data

Exception handler

Figure 3.2: Memory map for RISC32

Source: Kiat, 2018.

The following section (Section 3.1.1) discuss the existing RISC32 Instruction

Set. Following by, analysis and comparison is performed in Section 3.1.2, on

the existing instruction set implemented in MIPS Backend of LLVM. Next,

porting of the instruction by category (Section 3.1.3 to 3.1.6) into LLVM is

discussed. Finally, the porting of RISC32 Interrupt Service Routine (ISR)

programming feature (Section 3.1.7) into LLVM.

35

3.1.1 RISC32 Instruction Set

 RISC32 is a MIPS Instruction Set Architecture (ISA) compatible

processor, capable in decoding and executing a subset of the standard MIPS

instruction. Part of our research work is to customize the existing LLVM

MIPS Backend to compile RISC32 instructions. RISC32 only supports 54

MIPS instructions (shown in Table 3.1) instead of the full-blown MIPS

instructions (MIPS, 2016).

Table 3.1: RISC32 Instruction Set

Instruction Class Instructions

Memory Access lw, lwl, lwr, lh, lhu, lb, lbu, sw, swl, swr, sh, sb

Arithmetic add, addu, addi, addiu, sub, subu, mult, multu, mfhi, mflo,

mthi, mtlo

Bitwise and, or, xor, nor, sll, srl, sra, andi, ori, xori, lui

Condition

Checking

slt, sltu, slti, sltiu

Program Control beq, bne, blez, bgtz, j, jal, jr, jalr

System syscall, mtc0, mfc0, eret, mtc2, mfc2, swc2

36

3.1.2 Analysis and Comparison of MIPS II vs RISC32 Instruction Set

 The current LLVM MIPS Backend supports the MIPS instruction set

architecture up to the latest generation (MIPS32 Release 6). A suitable MIPS

architecture, MIPS II (Price, 1995), is chosen as the base to support the code

generation for RISC32 due to its high similarity in supported instructions.

However, not all MIPS II instructions can be executed by RISC32. Some

modification is carried out to mask out the unsupported MIPS II instructions,

thus, creating a new sub-target in the MIPS Backend for the RISC32 code

generation. The new sub-target provides information for llc, the LLVM static

compiler during the compilation phase to select valid instructions for RISC32.

 The following tables (Table 3.2 to Table 3.8) show the comparison

between RISC32 and MIPS II instruction set that is currently implemented in

MIPS Backend of LLVM. Through the comparisons, the research work

determines which instructions that are not supported and should be masked out

for code generation of RISC32.

37

Table 3.2: Comparison for Memory Access Instructions

Instruction Description Supported by MIPS

II?

Supported by

RISC32?

Remarks

lb Load Byte ✔ ✔

Instructions are supported in both instruction set. No action is needed to be done in

LLVM for RISC32 compilation.

lbu Load Byte Unsigned ✔ ✔

lh Load Halfword ✔ ✔

lhu Load Halfword

Unsigned
✔ ✔

lw Load Word ✔ ✔

lwl Load Word Left ✔ ✔

lwr Load Word Right ✔ ✔

sb Store Byte ✔ ✔

sh Store Halfword ✔ ✔

sw Store Word ✔ ✔

swl Store Word Left ✔ ✔

swr Store Word Right ✔ ✔

38

Table 3.3: Comparison for Arithmetic Instructions

Instruction Description Supported by

MIPS II?

Supported by

RISC32?

Remarks

add Add Word ✔ ✔

Instructions are supported in both instruction set. No action is needed to be done in

LLVM for RISC32 compilation.

addu Add Unsigned Word ✔ ✔

addi Add Immediate Word ✔ ✔

addiu Add Immediate Unsigned

Word
✔ ✔

sub Subtract Word ✔ ✔

subu Subtract Unsigned Word ✔ ✔

mult Multiply Word ✔ ✔

multu Multiply Unsigned Word ✔ ✔

div Divide Word ✔ ✖ No divider hardware is implemented in RISC32. Will need to rely on software

division. divu Divide Unsigned Word ✔ ✖

mthi Move to HI Register ✔ ✔

Instructions are supported in both instruction set. No action is needed to be done in

LLVM for RISC32 compilation.

mfhi Move from HI Register ✔ ✔

mtlo Move to LO Register ✔ ✔

mflo Move from LO Register ✔ ✔

39

Table 3.4: Comparison for Condition Checking Instructions

Instruction Description Supported by

MIPS II?

Supported by

RISC32?

Remarks

slt Set on Less Than ✔ ✔ Instructions are supported in both instruction set. No action is needed to be done in

LLVM for RISC32 compilation. sltu Set on Less Than Unsigned ✔ ✔

slti Set on Less Than Immediate ✔ ✔

sltiu Set on Less Than Immediate

Unsigned
✔ ✔

 Through the comparison (Table 3.2 and Table 3.4), all the Memory Access and Condition Checking Instructions of MIPS II is supported

in RISC32. Hence, the implementation of MIPS II code generation for both categories can be reused. As for Arithmetic Instructions (Table 3.3),

the division operation is currently not supported in RISC32. The RISC32 also does not plan to implement those instructions, as it is relatively

expensive to implement a hardware module to perform division. Assuming that division operation is required by user program, simple division

operation by power 2 divisor can be performed by using logical right shift instructions. For non-power 2 divisor, software division is assumed to

be implemented by the user. Hence, the Arithmetic Instruction code generation of MIPS II can be reused as well.

40

Table 3.5: Comparison for Bitwise Instructions

Instruction Description Supported by MIPS II? Supported by RISC32? Remarks

and AND ✔ ✔

Instructions are supported in both instruction set.

No action is needed to be done in LLVM for

RISC32 compilation.

or OR ✔ ✔

xor XOR ✔ ✔

nor NOR ✔ ✔

andi AND Immediate ✔ ✔

ori OR Immediate ✔ ✔

xori XOR Immediate ✔ ✔

lui Load Upper Immediate ✔ ✔

sll Shift Word Left Logical ✔ ✔

srl Shift Word Right Logical ✔ ✔

sra Shift Word Right Arithmetic ✔ ✔

sllv Shift Word Left Logical Variable ✔ ✖ Not supported in RISC32, but have valid C-syntax

that will compile to it. Requires special handling. srlv Shift Word Right Logical Variable ✔ ✖

srav Shift Word Right Arithmetic Variable ✔ ✖

 For Bitwise Instructions (Table 3.5), the Shift-by-Variable operations is not supported. These instructions perform shifting based on

register operands. This behaviour is quite common, as there might be times where shifting value is not known before program runtime. Hence,

special handling for their compilation is discussed in Section 3.1.4.

41

Table 3.6: Comparison for Program Control Instructions

Instruction Description Supported by

MIPS II?

Supported by

RISC32?

Remarks

beq Branch on Equal ✔ ✔
Instructions are supported in both instruction set.

No action is needed to be done in LLVM for

RISC32 compilation.

bne Branch on Not Equal ✔ ✔

blez Branch on Less Than or Equal to Zero ✔ ✔

bgtz Branch on Greater Than Zero ✔ ✔

bltz Branch on Less Than Zero ✔ ✖ Not supported in RISC32, but have valid C-

syntax that will compile to it. Requires special

handling.
bgez Branch on Greater Than or Equal to Zero ✔ ✖

bltzal Branch on Less Than Zero and Link ✔ ✖

Not supported in RISC32, but does not have valid

pattern matching implemented in LLVM for these

instructions. Will never be compiled from C code.

Hence, no action is needed.

bgezal Branch on Greater Than or Equal to Zero and Link ✔ ✖

beql Branch on Equal Likely ✔ ✖

bnel Branch on Not Equal Likely ✔ ✖

blezl Branch on Less Than or Equal to Zero Likely ✔ ✖

bgtzl Branch on Greater Than Zero Likely ✔ ✖

bltzl Branch on Less Than Zero Likely ✔ ✖

bgezl Branch on Greater Than or Equal to Zero Likely ✔ ✖

bltzall Branch on Less Than Zero and Link Likely ✔ ✖

bgezall Branch on Greater Than or Equal to Zero and Link Likely ✔ ✖

j Jump ✔ ✔
Instructions are supported in both instruction set.

No action is needed to be done in LLVM for

RISC32 compilation.

jal Jump and Link ✔ ✔

jr Jump Register ✔ ✔

jalr Jump and Link Register ✔ ✔

42

 For Program Control Instructions (Table 3.6), it is shown that a large

portion of conditional branch operations in MIPS II is not supported in

RISC32. The conditional branch operation shown consists of two variants:

Branch and Branch Likely. The Branch variant refers to conditional branch

that allows the branch delay slot (instruction scheduled right after conditional

branch) instruction to execute regardless of branch taken or not. All the

Branch variant is supported in RISC32, except for Branch on Less Than Zero

(bltz) and Branch on Greater Than or Equal to Zero (bgez). These two

instructions are exactly opposite of the existing Branch on Greater Than Zero

(bgtz) and Branch on Less Than or Equal to Zero (blez) respectively in

RISC32, hence they will not be implemented as hardware. Compilation

transformation for the unsupported bltz and bgez will be discussed in Section

3.1.5. For the Branch Likely variant, this group of instructions refers to

conditional branch that nullifies the execution of branch delay slot instructions

if branch untaken. These instructions are not required, as Branch Predictor

(BP) is implemented in RISC32. The BP performs prediction, eliminating the

delay slot for conditional branch. Furthermore, BP will also flush the delay

slot instructions from RISC32 pipeline in the case of branch misprediction.

Also, these instructions while present in MIPS Backend, no pattern matching

implementation was specified for them. This means that the intermediate form

will never be matched to these instructions, and will not select or generate the

respective group of instructions.

 Another group of branch instruction, long branches (bltzal and bgezal)

is also not supported in RISC32. The long branches are typically used for

43

procedural calls, allowing conditional jump to a particular label address, at the

same time, saves the return address to $ra ($31). The long branches are not

required in RISC32, as one can pair the conditional branch with unconditional

branch (jal and jalr) to achieve the same effect. Furthermore, the pattern

matching is also not implemented for long branches, rendering it not selectable

during compilation. Hence, the existing implementation of long branches

instruction in MIPS Backend does not affect the code generation for RISC32.

44

Table 3.7: Comparison for System Instructions

Instruction Description Supported by MIPS II? Supported by RISC32? Remarks

syscall System Call ✔ ✔ Supported by RISC32. No action is needed

break Breakpoint ✔ ✖ Not supported, but will not compile from C-code. Hence,

no action is needed.

eret Exception Return ✖ ✔ Not supported in MIPS II, but is implemented in LLVM

MIPS Backend. Does not affect compilation for RISC32,

as this instruction does not compile directly from C code.

Will be accessed using inline assembly.

mtc0 Move Word to Coprocessor 0 ✔ ✔

Instructions are supported in both instruction set. No action

is needed to be done in LLVM for RISC32 compilation.

mfc0 Move Word from Coprocessor 0 ✔ ✔

mtc2 Move Word to Coprocessor 2 ✔ ✔

mfc2 Move Word from Coprocessor 2 ✔ ✔

lwc2 Load Word from Coprocessor 2 ✔ ✖ Not supported, but will not compile from C-code. Hence,

no action is needed.

swc2 Store Word from Coprocessor 2 ✔ ✔ Supported by RISC32. No action is needed

45

 The System Instructions comparison (Table 3.7) shows major system

level instructions of MIPS II was supported in RISC32. The Breakpoint

(break) instruction, is a software debugging feature, which allows processor to

stop temporarily at a particular point of user program. This feature however,

is not supported in RISC32 and shall be considered for future implementation.

As for the Exception Return (eret), this instruction is required in RISC32 to

return from the kernel mode (exception handler) to user mode. While it is not

present in MIPS II, it was implemented in MIPS Backend for the later MIPS

generation. This however, does not affect the code generation for RISC32,

because the system instructions are typically non-mappable from C-syntax,

and they can only be accessed by means of inline assembly. In other words, as

long as their instruction format and encoding is implemented in the MIPS

Backend, the LLVM assembler could still generate the machine codes for

these instructions. For the Coprocessor 2 instructions, Load Word from

Coprocessor 2 (lwc2) is not implemented for RISC32. This will not affect the

RISC32 code generation as well (non-mappable from C), but shall be

considered for future implementations. However, to ensure proper usage of the

Coprocessor 2 in the user program, CP2 intrinsic functions were implemented

for RISC32 sub-target and will be discussed in Section 3.1.6.

46

Table 3.8: Comparison for Miscellaneous Instructions

Instruction Description Supported by MIPS II? Supported by RISC32? Remarks

tge Trap if Greater Than or Equal ✔ ✖

Not supported by RISC32, but

does not have valid C-syntax. Will

not compile from C-code. Hence,

no action is needed.

tgeu Trap if Greater Than or Equal Unsigned ✔ ✖

tlt Trap if Less Than ✔ ✖

tltu Trap if Less Than Unsigned ✔ ✖

teq Trap if Equal ✔ ✖

tne Trap if Not Equal ✔ ✖

tgei Trap if Greater Than or Equal Immediate ✔ ✖

tgeiu Trap if Greater Than or Equal Unsigned Immediate ✔ ✖

tlti Trap if Less Than Immediate ✔ ✖

tltiu Trap if Less Than Unsigned Immediate ✔ ✖

teqi Trap if Equal Immediate ✔ ✖

tnei Trap if Not Equal Immediate ✔ ✖

ll Load Linked Word ✔ ✖

sc Store Conditional Word ✔ ✖

sync Synchronize Shared Memory ✔ ✖

47

 The Trap, Atomic Load Store and Serialization operations in MIPS II

instruction set (Table 3.8) are currently unsupported in RISC32. The Trap

operation is a software exception, which triggers the processor to enter kernel

mode (exception handler) upon meeting a certain condition during user

program execution. However, compilation of C code to Trap instructions are

uncommon, as there are no known C-syntax that could be directly mapped to

them. As for Atomic (ll and sc) and Serialization (sync) operation, these

operations are commonly found in multiprocessor systems. The RISC32 is not

a multiprocessor system, hence the user is not expected to implement

multiprocessor application with RISC32. In short, there is no concern for

these instructions to be compiled even if they are currently implemented in the

MIPS Backend for MIPS II.

48

3.1.3 Implementing RISC32 as a Legal MIPS Sub-target in LLVM

 To ensure the LLVM will correctly generate instructions that is

compatible to RISC32 instruction set, the LLVM requires “RISC32” to be

declared as one of the supported MIPS sub-targets in the MIPS Backend. The

Figure 3.3 shows the associated file in declaring a new sub-target for MIPS

Backend.

uses uses

class MipsSubtarget{

enum MipsArchEnum{…, RISC32, ...};

bool hasRISC32();

};

MipsSubtarget.h

MipsInstrInfo.td

class ISA_RISC32

uses

Mips.td

def FeatureRISC32

Figure 3.3: Files associated to declare new sub-target in MIPS Backend

 The MipsSubtarget.h contains a MipsSubtarget class. This class

contains information of MIPS sub-target supported in the MIPS Backend. The

list of supported MIPS sub-target is declared in the class member,

MipsArchEnum enumerator type. The enumerator assigns integer constant to

each of the MIPS Architecture declared with respect to their order. In the

previous Section 3.1.2, it has been discussed that, RISC32 supported

instructions closely resembles MIPS II Instruction Set. Hence, RISC32 will

inherit all of the MIPS II instruction, by introducing a new enumerator

element after MIPS II. The declaration is shown in the Figure 3.4.

49

Figure 3.4: RISC32 declared after MIPS II in the enumerator

MipsArchEnum

 This enumerator type is used to declare as the class member,

MipsArchVersion enumerator variable. The MipsArchVersion is used in

predicate functions, to determine which MIPS Architecture is being requested

for each code generation session. Hence, a new predicate function,

hasRISC32() is created for this purpose as indicated in Figure 3.3.

 The next associated file is Mips.td file. This file is the main target

description (.td) file for MIPS Backend, which is also the main reference point

for generation of MIPS Backend (also known as target machine library,

Mips.a). It contains a list of features that is supported in the MIPS Backend.

The feature here refers to MIPS Architecture, or advanced architecture

instruction set extension such as Digital Signal Processor (DSP) and MIPS

SIMD Architecture (MSA). The feature declared here will be used as

command line arguments, to be passed in during invocation of compilation to

enable or disable a certain feature. As such, a new feature, FeatureRISC32

was declared to inherit all MIPS II feature.

 Another associated file to introduce new sub-target is MipsInstrInfo.td.

This .td file contains every instruction supported by every generation of the

MIPS instruction set. This refers to information such as instruction

50

mnemonics, instruction encoding and pattern to be matched with the

SelectionDAG (intermediate form for LLVM code generation). This file also

contains instruction membership class, which is used to check if the

instruction declared belongs to a particular MIPS Architecture. The Figure 3.5

shows a sample declaration of instructions in MipsInstrInfo.td.

Figure 3.5: Instruction declaration in MipsInstrInfo.td

 The sample (Figure 3.5) shows the declaration for Multiply Word

(mul) and Add Word (add) instructions. They are shown at the end of each

declarations, which are also assigned with an instruction membership class.

The ISA_MIPS32_NOT_32R6_64R6 indicates that the mul instruction is

introduced in MIPS32 instruction set but removed from both MIPS32

Revision 6 and MIPS64 Revision 6. Similarly, the instruction membership

class, ISA_MIPS1 indicates that the add instruction belongs to MIPS I

instruction set. The ISA_MIPS1 also indicates it is available for every MIPS

generation, since every subsequent MIPS generation inherits instructions from

its previous generation, unless specified, like the case of mul instruction.

Hence, a new instruction membership class, ISA_RISC32 was declared. The

new instruction membership class can change the instruction availability that

is not found in MIPS II but in later generation (eret) and to identify new

instruction that is exclusive to RISC32 to be introduced in future.

51

3.1.4 Porting Shift-by-Variable Instructions from MIPS II to RISC32

 As presented in the Table 3.5 in earlier section (Section 3.1.2), all of

the bitwise Shift-by-Variable instructions in MIPS II instruction set is not

supported in RISC32. The Shift-by-Variable instructions is generated by the C

code construct in the Figure 3.6.

Figure 3.6: C code construct for Shift-by-Variable Instructions

 The Shifting-by-Variable is generated when a shift operator (<< or

>>) is used between variable declared. Shift-Left-Logical-Variable is

generated when a left shift operator (<<) and the shift amount is based on a

variable declared (variable ‘b’ in Figure 3.6). For Shift-Right-Logical-Variable

and Shift-Right-Arithmetic-Variable however, their generation is determined

by the variable type declared as shown in Figure 3.6. If a variable is declared

as unsigned variable type, a Shift-Right-Logical Variable will be compiled.

Otherwise, a Shift-Right-Arithmetic Variable will be compiled. The variable b

is declared as volatile type, to prevent compiler perform optimization on the

shift operations so that Shift-by-Variable instructions can be generated for

testing purpose. Without the volatile keyword, the compiler will directly

generate Shift-by-Immediate instructions with the known shift value.

52

 The Shift-by-Variable instruction syntax are shown in the Table 3.9.

Table 3.9: Shift-by-Variable Instruction Syntax

Instruction Syntax Description

sllv $rd, $rt, $rs Shift Left Logical Variable

srlv $rd, $rt, $rs Shift Right Logical Variable

srav $rd, $rt, $rs Shift Right Arithmetic Variable

 The Shift-by-Variable instructions performs shifting on the operand

value in target register $rt, based on the shift value specified in source register

$rs. The shifted result is then updated to destination register, $rd. These

instructions have the same behaviour as the normal Shift-by-Immediate (sll,

srl and sra), except the shift value is obtained from register file, instead of

encoded in the instruction as immediate value. This also indicates Shift-by-

Variable instructions could not be compiled to the normal shift instructions

directly, as the shift value might be unknown before program runtime. Hence,

to obtain the same effect of Shift-by-Variable using Shift-by-Immediate

instructions, the pseudocode in the Algorithm 3.1 is proposed.

ALGORITHM 3.1: SHIFT-BY-VARIABLE TO SHIFT-BY-IMMEDIATE PSEUDO-CODE

Input: Shift-by-Variable Instruction

Output: Expanded routine replaced with Shift-by-Immediate Instruction

1. Read shift-value from Shift-by-Variable source register

2. Read input operand to be shifted from Shift-by-Variable target register

3. while shift-value != 0 do

a. Shift 1 bit on input operand using Shift-by-Immediate

b. Subtract shift-value by 1

4. endwhile

5. Store shift result to destination register of Shift-by-Variable

Algorithm 3.1: Pseudo-code for Shift-by-Variable transformation

53

 To insert the pseudo-code (Algorithm 3.1) presented, understanding of

the code generation in LLVM Backend is required. The Figure 3.7 presents a

simplified view of code generation in LLVM Backend.

Figure 3.7: Simplified view of code generation in LLVM Backend

 The code generation in LLVM relies on its static compiler, llc as

illustrated in the Figure 3.7. The initial input to llc is LLVM Intermediate

Representation (IR). LLVM IR is a generic assembly-like language, and is

translated from the input source code (Eg: C, C++) by the LLVM frontend. llc

will then construct an initial Selection Directed-Acyclic-Graph (DAG). The

SelectionDAG is a graph-like data structure, where each graph nodes

represents a pattern that is mapped from the LLVM IR. The initial

SelectionDAG is generic, and goes through Lowering Phase and Legalizing

Phase to be transformed into a more target dependent SelectionDAG. The

target dependent SelectionDAG will then go through Instruction Selection

phase, where each graph node is mapped to an instruction with a matching

54

pattern. The instructions supported and its respective pattern is specified in the

InstructionInfo.td files of the respective target machine. Once each graph node

is replaced with a matching instruction, the SelectionDAG goes through

Instruction Scheduling and is further transformed into Machine Single Static

Assignment (SSA) form. The MachineSSA is the final intermediate form in

LLVM, where each graph node in SelectionDAG is assigned with an order,

and emitted as machine instructions. In MachineSSA form however, the

compiler assumes the target machine supports infinite virtual registers. This

MachineSSA will then go through Register Allocation Phase, to replace all the

virtual registers with limited registers (specified in respective target

RegisterInfo.td file) in the target machine. Following by, the Prologue and

Epilogue Phase will insert starting and ending routine such as stack allocation

to the generated machine instructions. Finally, the code emission will generate

the desired output by user, either in assembly instruction or binary format.

 By observing the process of code generation, the possible way to

transform the Shift-by-Variable into Shift-by-Immediate instructions is after

Instruction Selection Phase. This is because, during Lowering and Legalizing

Phase, the SelectionDAG is still undergoing transformation to be more target

dependent. Depending on the transformation and optimization in the phases,

the graph node may or may not yield a matching pattern for Shift-by-Variable.

Hence, only after the Instruction Selection Phase, a Shift-by-Variable will be

mapped to the graph node and determined to need transformation to Shift-by-

Immediate. However, after the Instruction Selection Phase, the intermediate

representation form is still in SelectionDAG, where no order established

55

between each graph node. Implementing the Shift-by-Variable transformation

while it is still in SelectionDAG may not be able to reflect execution order as

required in the pseudocode proposed. Order of the instruction is only

established when it is transformed into the MachineSSA form.

 This research work utilizes a transformation pass,

processFunctionAfterISel(), to implement the transformation of Shift-by-

Variable to Shift-by Immediate. This transformation pass is an existing

implementation in the MIPS Backend, and is placed after Instruction

Scheduling Phase but before Register Allocation Phase. Hence, the

processFunctionAfterISel() processes on the MachineSSA form. However, it is

not straightforward to implement the pseudo-code proposed (Algorithm 3.1) in

MachineSSA form. A basic understanding is required on a few terminologies

such as MachineFunction (MF), MachineBasicBlock (MBB) and Machine

Instruction (MI).

56

MachineFunction(MF):

MachineBasicBlock(MBB) 0:

MachineInstruction(MI) 1;

MI 2;

MI N;

MBB 1:

MI 1;

MI 2;

MI N;

MBB N:

MI 1;

MI 2;

MI N;

Figure 3.8: Relationship between MF, MBB and MI

 In the LLVM Backend, when SelectionDAG is transformed into

MachineSSA form, it is expressed in the structure as shown in Figure 3.8.

Each user input source code file is interpreted as a MachineFunction (MF).

Within each MF, it is made up of several MachineBasicBlock(MBB), where

each MBB consists a group of MachineInstructions (MI). The size (number of

MI) of each MBB is determined by common control flow structure (loops or

if-else statements), function calls or program labels. New MBB is always

spawned upon meeting branching instructions or program labels. The MI here

refers to the generated target machine assembly instruction. They are

expressed in SSA form, hence the name MachineSSA. These MI are translated

57

from SelectionDAG that has undergone Instruction Selection and Instruction

Scheduling Phase.

 As mentioned earlier, this research work utilize the transformation

pass, processFunctionAfterISel() to perform the expand the Shift-by-Variable

instruction into a series of instructions accompanied by Shift-by-Immediate

instruction. The processFunctionAfterISel() takes in MBB(s) and scans

through every MI present in it. Upon Shift-by-Variable instructions detected,

and compilation for RISC32 Sub-target (using predicate function in Section

3.1.3) is detected, the following routine in Table 3.10 is expected with srlv as

example.

Table 3.10: Expected Routine for srlv

Original Instruction Expanded Instruction

srlv $1,$2,$3

 andi $3, $3, 0x1f

srlv: beq $3, $0, end

 sub $3, $3, 1

 srl $2, $2, 1

 j srlv

end: addu $1, $2, $0

 However, processFunctionAfterISel() processes MBB(s) in

MachineSSA form. Table 3.11 shows the MachineSSA routine to be inserted

to generate the expanded instruction.

58

Table 3.11: MachineSSA form for srlv expansion routine

Original Instruction Original Expanded Form MachineSSA Form

srlv $1,$2,$3

 andi $3, $3, 0x1f

srlv: beq $3, $0, end

 sub $3, $3, 1

 srl $2, $2, 1

 j srlv

end: addu $1, $2, $0

 andi %C1, %C, 0x1f

cond: %B1 = PHI(%B , %B2)

 %C2 = PHI(%C1,%C3)

 beq %C2, $0, end

srlv: sub %C3, %C2, 1

 srl %B2, %B1, 1

 j cond

end: addu %A, %B1, $0

 The MachineSSA form illustrated in Table 3.11 is inserted using

BuildMI(), an existing function implemented in the MI class of LLVM library.

It is shown that, the MachineSSA form introduces various virtual registers

(%A, %B1, %C3…) and new MBBs (cond, srlv, end). The virtual register %A

is mapped to the destination register ($1), that stores the shifted result for srlv

instruction. The virtual registers %B, %B1, and %B2 are mapped to the target

register ($2), which contains the input operand to be shifted by srlv

instruction. Finally, the virtual registers %C, %C1, %C2, and %C3 are mapped

to source register ($3) of srlv instruction, which contains the shift amount. It

should be noted that, none of the virtual register naming was repeated. This is

to conform to the rules of SSA form, where each register can only be assigned

once. Also, each register must have been assigned or declared earlier before

their usage. For cases where repeated assignment to an SSA register is

required, a special decision structure in SSA form, PHI() functions is used

instead. This function allows repeated assignment to an SSA register in the

cases where source of SSA register originates from several MBBs (MBB

before cond and srlv MBB). These PHI() functions will be removed after the

Register Allocation Phase.

59

 The Table 3.12, Table 3.13 and Table 3.14 shows the changes in

generated assembly code for the respective Shift-by-Variable instructions after

the implementation of RISC32 Sub-target. These tables are the compilation

output with respect to the C code in Figure 3.6. It can be seen that each Shift-

by-Variable instruction has been replaced with their Shift-by-Immediate

variant instructions according to the proposed pseudo-code in Algorithm 3.1.

The proposed routine shifts bit-by-bit and subtract the extracted shift amount

after every loop. The shifting operation is performed until the shift amount

equals to zero. The routine will then branch out, and transfer the final shifted

value into the destination register as indicated in the original Shift-by-Variable

instruction.

Table 3.12: Shift-Left-Logical-Variable compiled using RISC32 Sub-

target

Before (Compiled using MIPS II) After (Compiled using RISC32)

60

Table 3.13: Shift-Right-Arithmetic-Variable compiled using RISC32 Sub-

target

Before (Compiled using MIPS II) After (Compiled using RISC32)

Table 3.14: Shift-Right-Logical-Variable compiled using RISC32 Sub-

target

Before (Compiled using MIPS II) After (Compiled using RISC32)

61

3.1.5 Porting Branch on Conditional Instructions from MIPS II to

RISC32

 As discussed in Section 3.1.2, the RISC32 will only require

implementation to handle compilation for Branch on Less Than Zero (bltz)

and Branch on Greater Than or Equal to Zero (bgez). Other branch variant

(Conditional Branch Likely, Long Branch and Long Branch Likely) does not

requires handling, as compilation from C code to these instructions was not

possible with their existing implementation in MIPS LLVM Backend. The

Figure 3.9 and Figure 3.10 shows their respective C construct.

Figure 3.9: C construct for bgez instruction

Figure 3.10: C construct for bltz instruction

 It is shown in both Figure 3.9 and Figure 3.10 that the condition of the

if-construct determines the compiled Conditional Branch instruction.

However, the Conditional Branch instruction is always compiled with the

62

reversed condition with respect to their C code. For instance, the “c < 0” in

Figure 3.9, while interpreted as branch on c less than zero, it is expected to be

compiled to bgez. The compilation of reverse branching condition ensures the

execution order of the code as interpreted from their C language semantics. If

a reverse condition is detected, it will branch away, to a further point of the

program. Otherwise, the consecutive code segment right after the reverse

branching instruction is executed, which fulfils the execution condition in their

C language semantics.

Table 3.15: Instruction syntax for bltz and bgez

Instruction Syntax Description

bltz $rs, offset Branch on Less Than Zero

bgez $rs, offset Branch on Greater Than or Equal to Zero

 The Table 3.15 illustrates the instruction syntax for both bltz and bgez

instruction. Both instructions perform comparison of source register ($rs)

against register zero ($0), and branch to the 16-bit offset if branching

condition is matched. They can both be replaced with a combination of beq,

bgtz and j instructions. The expected routine for both bltz and bgez is shown in

the Table 3.16.

Table 3.16: Expected Routine and equivalent MachineSSA form for bltz

and bgez
Original Instruction Expanded Instruction MachineSSA form

bltz $rs, br_label bltz: bgtz $rs, exit

 beq $rs, $zero, exit

 j br_label

exit:

bltz: bgtz %rs, exit

 beq %rs, $zero, exit

 j br_label

exit:

bgez $rs, br_label bgez: bgtz $rs, br_label

 beq, $rs, $zero, br_label

exit:

bgez: bgtz %rs, br_label

 beq, %rs, $zero, br_label

exit:

63

 The labels (exit and br_label) shown in Table 3.16 corresponds to the

16-bit branch offset. These labels are replaced with calculated PC-relative

offset during the Linking Phase. The bltz performs branching upon source

register ($rs) less than register zero ($0). It can be interpreted as: the $rs must

not be greater than zero and must not equal to zero as well. Hence, the

proposed expanded routine shown for bltz (1st row of Table 3.16) achieve $rs

must not be greater than zero by branching away to the exit label using bgtz.

The beq branching away to exit label achieves $rs must not be equal to zero. If

both conditions (bgtz and beq) are not met, the final unconditional branch (j)

will take place and branch to the intended bltz offset. The bgez performs

branching upon $rs greater or equal to $0. This can be interpreted as: the $rs is

either greater than zero or equal to zero. The proposed expansion routine for

bgez (2nd row of Table 3.16) achieve $rs greater than zero using bgtz

instruction and branch to the intended branch offset. beq is used to achieve $rs

equals to zero. Subsequent instructions will be executed if neither bgtz nor beq

is taken, which fulfils the branch not taken condition for bgez.

 Similar to Shift-by-Variable transformation, the bltz and bgez will only

be transformed at the processFunctionAfterISel() transformation pass. The

pass will iterate over every MI of MBB(s) passed in to find out every bltz and

bgez instruction. If RISC32 Sub-target is requested, every instance of both

instructions will be replaced with the equivalent MachineSSA form of the

proposed routine (Table 3.16). It should be noted as well, the proposed

MachineSSA form does not require complicated virtual register renaming as

64

presented in Section 3.1.4, as there was no assignment statement for

branching.

 The Table 3.17 and Table 3.18 shows the compilation of bgez (Figure

3.9) and bltz (Figure 3.10) for RISC32 as suggested in Table 3.16. It should be

noted that, for the compilation before RISC32 is implemented in LLVM, both

conditional branches (beq, bgtz, bgez, etc…) and unconditional branches (j, jr,

jal, etc…) will have a NOP inserted right after them. This is to fill the delay

slots of the branching instructions, to prevent the subsequent instruction after

from executing. For RISC32 however, the implementation of Branch Predictor

(BP) eliminates the need for delay slots. Hence, no NOP insertion is required

for RISC32 compilation. It should be noted as well, the proposed solution in

Table 3.16 uses beq to compare the source register with the $zero register. The

illustrated compilation however, uses beqz instruction instead. This does not

affect the behaviour of the code, as beqz is the alias instruction for beq

instructions that compares to $zero register. They both have the same

instruction encoding and behaves in the same manner.

65

Table 3.17: Branch on Greater or Equal to Zero compiled using RISC32

Sub-target

Before (Compiled using MIPS II) After (Compiled using RISC32)

Table 3.18: Branch on Less Than Zero compiled using RISC32 Sub-target

Before (Compiled using MIPS II) After (Compiled using RISC32)

66

3.1.6 Implementation of CP2 Intrinsic Functions in LLVM for RISC32

 The CP2 is the AES Coprocessor integrated into RISC32 to provide

encryption functionality. The introduction of CP2 introduces three

instructions, namely the Move to Coprocessor 2 (mtc2), Move from

Coprocessor 2 (mfc2) and Store Word from Coprocessor 2 (swc2). The CP2

integration into RISC32 and its instructions will be discussed under Section

3.2. In the previous Section 3.1.2, it has been discussed that the system

instructions are typically non-mappable from C-syntax. This includes the CP2

instructions as well. They can only be accessed using inline assembly

programming. The inline assembly programming feature is by default

supported in LLVM, hence will not be discussed here. However, programming

with inline assembly for CP2 use case is not recommended. This is to prevent

user from creating a sequence of assembly code that is not compatible with the

CP2 execution behavior. This research work introduces the implementation of

new intrinsic function that maps to a specific sequence of assembly

instructions which is compatible to the underlying CP2 hardware.

 The intrinsic function is a special C function that maps to a specific

sequence of instruction defined by the compiler. The frontend (clang)

translates C intrinsic function and emits an equivalent LLVM IR intrinsic

function call to llc. llc then transforms the LLVM IR and maps it to a specific

sequence of instructions accordingly. The instruction sequence is specified in

a custom function inserter implemented by respective target machine backend.

Hence, implementation of new intrinsic function requires extension to both the

frontend and backend as shown in the Figure 3.11.

67

clang opt llc lld objcopy

LLVMImplement

Intrinsic

Function header

into clang, C

frontend.

Implement

transformation and

mapping of intrinsic

function in backend

Figure 3.11: Overview of intrinsic porting in LLVM

 At the frontend, clang, valid intrinsic function prototypes are declared

in each target machines’ respective BuiltinsXX.def file, where XX specifies the

target machine. For example, BuiltinsMips.def is specific to MIPS target

machine only. For RISC32, two new intrinsic function was implemented. The

new intrinsic function header is shown in Table 3.19.

Table 3.19: CP2 Intrinsic Function Header

CP2 Key Expansion Intrinsic Function Header:

__builtin_risc32_aes128_keyinit (uint32_t* key) (1)

CP2 Encryption Intrinsic Function Header:

__builtin_risc32_aes128_enc (uint32_t*plaintext,

volatile uint32_t* ciphertext) (2)

 Function (1) is for invoking key expansion. Input argument required is

the base address (uint32_t* key) for the 128-bit secret key. As there is no 128-

bit data type in C, the secret key is split into array of four words (32-bit each),

68

which is represented using integer data type in C. This intrinsic function is

designed to load secret key from RISC32 data memory and pass it to CP2 for

key expansion. The expanded round keys will be stored in CP2 and used

during encryption call.

 Function (2) is for plaintext encryption. Two arguments are required:

base address (uint32_t * plaintext) for the 128-bit plaintext and base address

(volatile uint32_t* ciphertext) to store 128-bit ciphertext. Similarly, both

plaintext and ciphertext are stored in array of four words. This intrinsic

function is designed to read plaintext from the base address (plaintext) and

pass it to the CP2 for encryption. Once the encryption completes, ciphertext

from CP2 will be stored into the memory location specified by the base

address, ciphertext.

 After declaring the new function prototype, its code generation

implementation is needed. Through code generation, the function argument

from the source code will be extracted to construct a proper function call to be

mapped to LLVM IR. These implementations are done under target specific

intrinsic function expression emitter method which is labeled as

EmitXXBuiltinExpr(), where XX specifies the target machine. They all are

implemented under the code generation of clang frontend, CGBuiltin.cpp file.

For RISC32, the EmitMipsBuitlinExpr(), is used instead. This function will

detect the intrinsic function header (1) and (2) that has been defined in

BuiltinsMips.def and emit equivalent LLVM IR intrinsic function call.

69

 With the code generation for the newly implemented intrinsic function,

its equivalent LLVM IR pattern is needed. This LLVM IR pattern is required

for initial construction of SelectionDAG in llc, which will then further be

transformed by target specific transformation routine to yield a target specific

SelectionDAG. The new LLVM IR pattern is implemented under the target

specific intrinsic .td file, for example IntrinsicMips.td. The frontend will

utilize the record of the new pattern to map the function call construct from

code generation phase to its equivalent intrinsic function LLVM IR construct.

For CP2 intrinsic function (1) and (2), it will be emitted as the LLVM IR as

illustrated in Table 3.20

Table 3.20: LLVM IR for CP2 Intrinsic Function

CP2 Key Expansion Intrinsic LLVM IR:

void @llvm.mips.__builtin_risc32_aes128_keyinit(i32*) (1)

CP2 Encryption Intrinsic LLVM IR:

void @llvm.mips.__builtin_risc32_aes128_enc(i32*, i32*) (2)

 With the LLVM IR in Table 3.20, an equivalent Instruction

SelectionDAG (ISD) node will be generated during Lowering Phase. This ISD

node will be mapped using pattern matching by recognizing the ISD input

pattern during Instruction Selection Phase of llc. However, since the intrinsic

functions are not exactly an instruction on its own, it is implemented as pseudo

instruction node.

70

Figure 3.12: CP2 Intrinsic Function pseudo instruction node in

MipsInstrInfo.td

 The pseudo instructions nodes declared (AES128_KEYINIT and

AES128_ENC) shown in Figure 3.12 utilizes the usesCustomInserter flag.

With the flag set, a Custom Inserter Function, EmitInstrWithCustomInserter()

is call upon during Expand Instruction Selection Pseudo Pass. This pass is

responsible to expand pseudo instructions generated after Instruction Selection

Phase. Within the Custom Inserter Function, all pseudo instructions are

specifically translated to a suitable instruction, or in the cases of intrinsic

function, it will be mapped to a specific sequence of instructions.

Table 3.21: CP2 Key Expansion Routine

Instruction Comment

lw $rt0, 0($rs)

Load 128-bit secret key (four words) from memory lw $rt1, 4($rs)

lw $rt2, 8($rs)

lw $rt3, 12($rs)

mtc2 $rt0, $0 Move loaded 128-bit secret key (four words) into secret key

register ($0~$3) of CP2 mtc2 $rt1, $1

mtc2 $rt2, $2

mtc2 $rt3, $3

addi $rt4, $zero,0x1 Prepare key expansion command

mtc2 $rt4, $12 Move key expansion command to command register ($12)

of CP2 and start key expansion

nop Insert NOPS to wait for key expansion to complete. Key

expansion requires 15 clock cycles to complete, hence 15

NOPS is inserted.
nop

..

71

Table 3.22: CP2 Encryption Routine

Instruction Comment

lw $rt0, 0($rs)

Load 128-bit plaintext (four words) from memory lw $rt1, 4($rs)

lw $rt2, 8($rs)

lw $rt3, 12($rs)

mtc2 $rt0, $4 Move loaded 128-bit plaintext in terms of (four words) into

secret key register ($0~$3) of CP2 mtc2 $rt1, $5

mtc2 $rt2, $6

mtc2 $rt3, $7

addi $rt4, $zero,0x2 Prepare encrypt plaintext command

mtc2 $rt4, $12 Move key expansion command to command register ($12)

of CP2 and start encryption

nop Insert NOPS to wait for encryption to complete. CP2

encryption requires 55 clock cycles to complete, hence 55

NOPS is inserted.
nop

..

swc2 $8,0($rs) Read encrypted 128-bit cipher text (four words) from cipher

text register ($8~$11) of CP2 swc2 $9,4($rs)

swc2 $10,8($rs)

swc2 $11,12($rs)

 The Table 3.21 and Table 3.22 shows expected sequence of

instructions generated for both CP2 key expansion intrinsic Function (1) and

CP2 encryption intrinsic Function (2) respectively. For Table 3.21, 15 NOPS

are inserted to wait for all round keys to be generated. The NOPS inserted will

have insignificant impact on overall program execution performance, as the

secret key is assumed to be the same for consecutive batch of data (N byte in

Section 3.2.4) of plaintext. A new secret key is only required when the sensor

node sends another N byte of data. Hence, key expansion should only be

executed once for the same consecutive blocks of plaintext. As for Table 3.22,

the 55 NOPS is only inserted if the Queue System (Section 3.2.6) for CP2 is

not implemented. With Queue System implemented, the NOPS can be

removed, which will result a shorter instruction sequence.

72

3.1.7 LLVM Compilation of Interrupt Service Routine (ISR) for

RISC32

 The Interrupt Service Routine (ISR) is a common programming feature

for microcontroller and IoT sensor nodes. It is typically used to serve

hardware I/O interrupts, where I/O transaction between the sensor node and

outer world is usually slow and could happen anytime. With ISR programming

support, the processor does not need to constantly poll for an I/O action to

happen and proceed with another task. The processor could even go into sleep

mode when no operation is required, to preserve its limited energy supply, and

waken again when interrupt event is triggered.

 In LLVM, the ISR programming feature is supported by default. The

Table 3.23 shows an example of writing an ISR in C code using the LLVM C

frontend, Clang.

Table 3.23: Sample ISR using Clang

C code Compiled Assembly Comment

unsigned char a = 0;

__attribute((interrupt))

void isr0()

{

 a++;

}

mfc0 $26, $13, 0

mfc0 $27, $14, 0

sw $27, 4($sp)

mfc0 $27, $12, 0

ext $26, $26, 10, 6

sw $27, 0($sp)

ins $27, $26, 10, 6

ins $27, $zero, 1, 4

ins $27, $zero, 29, 1

mtc0 $27, $12, 0

addiu $sp, $sp, -16

sw $2, 12($sp)

sw $1, 8($sp)

lui $1, %hi(a)

lbu $2, %lo(a)($1)

addiu $2, $2, 1

sb $2, %lo(a)($1)

lw $1, 8($sp)

lw $2, 12($sp)

Exception handler Prologue

in LLVM

a++;

73

Continued from Table 3.23

 di

ehb

lw $27, 4($sp)

mtc0 $27, $14, 0

lw $27, 0($sp)

mtc0 $27, $12, 0

addiu $sp, $sp, 16

eret

Exception Handler Epilogue

in LLVM

Exception Return

 Each ISR is identified by Clang specific C programming attribute

feature, __attribute((interrupt)). With the interrupt attribute, function body

implemented under it will be compiled with Exception Handler Prologue,

Epilogue and Exception Return (eret). The Exception Handler Prologue reads,

process and records the Coprocessor 0 (CP0) registers (Cause, Status and

EPC) before proceeding to carry out the ISR function body. The Exception

Handler Epilogue updates the CP0 registers after serving the ISR. Exception

Return allows the kernel mode (Exception Handling) to return to the user

program. Due to this convention, each ISR currently will have a separate

instance of Exception Handler Prologue and Epilogue compiled together. This

also indicates that each ISR is expected to have a separate program address.

The hardware will need to keep track the entry address or have a fixed entry

address for each ISR.

74

Exception Handler Prologue1

ISR_1

Exception Handler Epilogue1

eret

Exception Handler Prologue0

ISR_0

Exception Handler Epilogue0

eret

ISR_N

Exception Handler EpilogueN

eret

Exception Handler PrologueN

LLVM:

Exception Handler

ISR_0

RISC32:

ISR_1

eret

Return to Exception Handler

Return to Exception Handler

ISR_N

Return to Exception Handler

Figure 3.13: ISR Convention Comparison between LLVM and RISC32

 In RISC32, only a single instance of Exception Handler will always be

referenced and the starting address for it is always fixed at 0x8001_B400

(Section 3.1, Figure 3.2). The RISC32 Exception Handler will always read,

record and process CP0 registers, perform checking for software exceptions or

hardware interrupt sources, and then branch to their respective ISR. At the end

of each ISR, it will branch back to the same Exception Handler again, to

update CP0 registers and perform Exception Return (eret). Due to this

convention in RISC32, the hardware does not need to keep track the entry

address or have a fixed entry address for each ISR. However, the RISC32

Exception Handler will have to be compiled together with all the ISR. This is

to resolve the label address of every ISR in the Exception Handler by utilizing

the Linking Phase of code compilation.

75

 Through the comparison in Figure 3.13, this research work is required

to:

1) Eliminate the Exception Handler Prologue and Epilogue generation

by LLVM if current ISR is generated for RISC32

2) Replace the eret at the end of each ISR with instruction to return to

the RISC32 Exception Handler

3) Specify the MIPS register usage convention for RISC32 ISR

Build Initial DAG

Lowering,

Legalizing and

Combining

Instruction

Selection

Instruction

Scheduling

Register

Allocation

Prologue/Epilogue

Insertion

2)

Perform Lowering

for RISC32 ISR

Interrupt Return

3)

Allocate only

saved registers

in RISC32 ISR

2)

Expand RISC32

ISR Interrupt

Return

1)

Bypass

Exception

Handler

generation for

RISC32 ISR

Figure 3.14: Overview of RISC32 ISR Porting

 The Figure 3.14 presents the overview of implementation required to

the code generation process of LLVM for RISC32 ISR Porting. To prevent the

generation of Exception Handler Prologue and Epilogue of existing LLVM

implementation for RISC32, modification to the Prologue and Epilogue

76

Insertion is required. The Prologue and Epilogue Phase of MIPS Backend is

implemented under MipsSEFrameLowering.cpp. This phase is responsible to

perform stack allocation, and insert special starting and ending code if the

interrupt attribute is detected. By utilizing the RISC32 Sub-target predicate

function (discussed in Section 3.1.3, Figure 3.3), whenever the interrupt

attribute is detected, the generation of both Exception Handler Prologue and

Epilogue will be skipped.

 The eret as mentioned in Section 3.1.2, is categorized as System

Instructions. Hence, this instruction cannot be compiled from C code directly.

In the existing implementation, eret is implemented as a pseudo type MIPS

Instruction SelectionDAG (ISD) graph node. This pseudo MIPS ISD is

inserted during Lowering Phase as a return graph node when the interrupt

attribute is detected. Unlike the implementation of CP2 intrinsic node in

Section 3.1.6, the eret code generation does not takes place in the Custom

Inserter method. It is only inserted during the Post Register Allocation (RA)

Phase, by detecting the eret pseudo MIPS ISD and insert it as an MI. This

research work will utilize the same approach, by first declaring a new interrupt

return node for RISC32 and expand the new return node during Post RA

Phase.

Figure 3.15: MIPS Interrupt Return ISD Node declaration for RISC32 in

MipsInstrInfo.td

77

 The created pseudo INTRet MIPS ISD (Figure 3.15) node is inserted

during the Lowering Phase, if the interrupt attribute and RISC32 Sub-target is

detected. During Post RA Phase, this INTRet node will be replaced as j

POP_STACK. The POP_STACK is a program label in the RISC32 Exception

Handler (Figure 3.16). It is the return address when RISC32 Exception

Handler branch to respective software or hardware ISR.

Store register to stack

Exception Return
(ERET)

Reset $stat.EXL bit

User Interrupt
handling code

Load previous
information from

stack back to
registers

Set $state.EXL bit
and reset $stat.IE bit

Set $state.IE bit

$k0

$epc

$a2

Exception frame, EF

$k1

$a1

$a0

$stat

$a3

$cause
If(interrupt){
 Copy $cause.RIPL to $stat.IPL
 //to prevent lower priority interrupt occurs
}

POP_STACK:

Figure 3.16: RISC32 Exception Handler Flow

Source: Kiat, 2018.

78

 By referring to Figure 3.16, only a limited set of registers is saved

(Exception Frame) upon entering RISC32 Exception Handler. To specify the

limited register sets for ISR compilation, modification is made to the

MipsRegisterInfo.td. This file specifies the register size, available register set

and their usage convention. The information is used during Register

Allocation Phase, where virtual registers of MachineSSA form is replaced

with the supported register files of respective target machine.

Figure 3.17: Alternate List of Allocable Register File for RISC32 ISR

The Figure 3.17 shows the register class definition for MIPS. This definition is

for the default MIPS 32 General Purpose Register (GPR), which allows the 32

registers file allocable during Register Allocation Phase. Due to the

construction of RISC32 Exception Handler, the Exception Frame (Figure

3.16) only saves the $k0, $k1, $a0, $a1, $a2 and $a3 register. Hence, the

AltOrders specifies the available registers for RISC32 during the ISR

compilation. The AltOrderSelect specifies the condition to be fulfilled in order

to allocate the register file with the alternate list.

79

clang opt llc lld objcopy

exc_handler.s

__attribute((interrupt))

void isr0()

{...}

__attribute((interrupt))

void isr0()

{...}

.

.

.

__attribute((interrupt))

void isrN()

{...}

isr.c

llvm-mc

exc_handler.o

isr.o

LLVM

Figure 3.18: Compilation of RISC32 ISR using LLVM

 Finally, to compile the RISC32 ISR, the ISR programming will utilize

the interrupt attribute as illustrated in Figure 3.18. The ISR C source code

(isr.c) will be translated and compiled until it yields an object file, isr.o by the

llc. The RISC32 Exception Handler (exc_handler.s) is handcrafted using

RISC32 assembly language, and assembled using the llvm-mc, a machine code

assembler in LLVM, to yield exc_handler.o object file. This llvm-mc is also

part of the llc, and is responsible to generate the isr.o object file as well. With

both exc_handler.o and isr.o obtained, they will be passed into the LLVM

linker, lld to resolve all ISR label address in the RISC32 Exception Handler.

The lld is also responsible to link the object files (exc_handler.o and isr.o) and

generate the final output in the form as illustrated in Figure 3.13 earlier. This

final output will be an executable, ready to be flashed into RISC32 memory at

the address 0x8001_B400, and executed whenever software or hardware

exception is raised in RISC32.

80

3.2 System Overview: Hardware

 This section will describe the proposed hardware design for this

research work. This research work aims to provide confidentiality feature in

the IoT processor, RISC32. The confidentiality here refers to providing

secrecy to the data being transferred. This can be achieved by encrypting the

data before it is transferred out of the processor. As such, the Advanced

Encryption Standard (AES) encryption core is selected to be integrated as

cryptographic coprocessor into RISC32. However, there are several techniques

to integrate a new coprocessor into a host processor. The techniques can be

categorized as dedicated path integration and share memory path integration.

In this research work, dedicated path is selected to integrate the new AES core

in order to ensure a better performance of the integrated AES core. In contrast,

if the shared memory path technique is being used, performance of the AES

core will be dependent on the traffic condition in shared transfer path. Since

the integration technique selected will introduce a new transfer path for the

AES core, new special instructions are required to activate and utilize this new

transfer path.

While the AES core implemented in hardware performs encryption

faster than its software implementation, the AES core is expected to have a

processing latency. The processing latency here refers to time taken for the

AES core to complete its encryption of a single input (128 bits or 16 bytes in

equivalent). For all block cipher algorithms, the input data (plaintext) goes

through a series of transformation iteratively to obtain an encrypted output

(ciphertext). The processing latency is caused by the number of iterations

81

required. Common approach used to compensate the processing latency is by

implementing AES architecture with higher throughput. However, architecture

with higher throughput usually involves pipelined architecture. These

pipelined architectures will still have the processing latency issue, but it

allowed more encryptions to be performed at the same time. This may

improve the encryption core performance, with the trade-off of larger

hardware.

Since IoT sensor nodes are operating on battery power supply, it may

not be a good idea to implement a power-hungry encryption hardware. As

such, instead of having high throughput AES core, single stage AES core is

selected for this research work. Further software analysis was made on a

typical IoT application processing pattern to seek potential solutions to

compensate the processing latency issue present in the AES core. The analysis

results in a solution, which is inspired by the Tomasulo Algorithm (Hennessy

and Patterson, 2011). A Queue System was designed to perform dynamic

scheduling, which is optimized for the processing pattern of the typical IoT

application.

The following section (Section 3.2.1) will first discuss on how

integration of the AES core will be realized in RISC32 pipeline. Following by,

the design of new instruction (Section 3.2.2) and the AES core used in this

research work (Section 3.2.3). Next, analysis is made on the software pattern

(Section 3.2.4) to eventually derive the solution, Queue System. Finally, the

design of Queue System is discussed (Section 3.2.6).

82

3.2.1 Placement of the AES Coprocessor

 The selected technique to integrate the AES core is dedicated path. As

such, a new transfer path is required for the AES core. However, the new

transfer path requires careful design consideration to prevent disruption to the

work load balance in the processor pipeline. In this research work, the target

RISC32 IoT processor is a 5-stage pipeline processor. Figure 3.19 revisits the

architecture of RISC32 as discussed in Chapter 2.

I-Cache

Register

File

Coprocessor

0

ALB

Address

Decoder

UART

Controller

SPI

Controller

ADC

Controller

To Control-path Unit

IF ID EX MEM WB

Data Buses

Control Signals

Legends

Forwarding Block

Interlock Block

Data Cache

Stack RAM

Data RAM

IF
/I
D

 P
ip

e
lin

e
 R

e
g

is
te

r

ID
/E

X
 P

ip
e

lin
e

 R
e

g
is

te
r

E
X

/M
E

M
 P

ip
e

lin
e

 R
e

g
is

te
r

M
E

M
/W

B
 P

ip
e

lin
e

 R
e

g
is

te
r

Figure 3.19: Simplified view of RISC32 microarchitecture revisited

 The 5 stages of RISC32 pipeline consists of Instruction Fetch (IF),

Instruction Decode (ID), Execution (EX), Memory (MEM) and Write Back

(WB). The IF stage performs instruction fetching from the instruction

memory. The instruction fetched is transferred into ID stage, where in ID

stage, the instruction fetched is decoded. The decoding here refers to actions

such as Control-Path Unit assessing instruction opcodes to generate control

signals, operands is fetched from Register File, and immediate value

extraction from instruction. The information generated is further processed in

83

the EX stage. At EX stage, the desired operation decoded from the instructions

is carried out by the Arithmetic Logic Block (ALB). The Address Decoder

generates the necessary control signals to activate the memory modules at

MEM stage. At the MEM stage, load store operation is carried out. Data is

either loaded from or stored into the requested data memory location (Data

RAM, Data Cache or Stack RAM). Other Input/Output (I/O) modules

integrated with the shared memory technique is also situated at MEM stage. If

load store operation was not requested by the current instruction, the data from

EX stage will resume its transfer to WB stage. Similarly, loaded data from the

requested memory address also resumes its transfer to WB stage. The WB

stage will update the Register File with the data it obtained from the MEM

stage.

 To determine the placement of the AES core, workload in each

pipeline stage is analysed. The Table 3.24 shows the longest timing delay for

each stage in RISC32.

Table 3.24: Longest Timing Delay for Each Stage in RISC32

Pipeline

Stage

IF ID EX MEM WB

Timing delay 14.537ns 13.309ns 14.668ns 17.830ns 2.556ns

*These values are derived from the post-synthesis static timing analysis of the RISC32 using

the Xilinx Vivado HLx 2017.2 IDE

 The timing delay indicates the workload incurred to each pipeline

stage. Performance of the processor is determined by the stage with the

longest timing delay of all. From Table 3.24, it is indicated that the longest

84

delay path among all stages is situated in MEM stage. Apart from WB stage,

the IF and ID stage has a lighter workload when compared to MEM stage and

EX stage. However, the AES core is not suitable to be placed in the IF stage,

because the current instruction is not yet decoded at this stage. For ID stage,

important information is already extracted from the instruction. This makes ID

stage a potential selection. In EX stage, most of the desired operation by the

instruction is carried out by the ALB. All desired computation at EX stage has

to be completed within one cycle. Hence, the ALB is expected to have a fairly

large combinational logic in order to achieve the one cycle constraint. This in

turn introduces a relatively long delay path to EX stage. The EX stage can be a

viable selection, provided, the integrated AES Core would not introduce

another longer delay path than the existing one’s in MEM stage.

In MEM stage, it is reserved for shared memory integration technique.

The module (data memory and I/O) here is expected to have a common

interface so that the common controls and data bus is shared among each

other. This reduces the logic needed to create a new transfer path whenever a

new module is attached to MEM stage. However, since this research work

focuses on the dedicated path approach, the integrated AES core will have a

different interface than the modules at MEM stage. Furthermore, the timing

analysis in Table 3.24 indicates that, MEM stage currently has the highest

workload among all stages. Introducing the AES Core to MEM stage could

lengthen the existing longest delay path and further reduce the overall

performance of RISC32. Hence, MEM stage will not be considered. As for the

WB stage, it only performs updates to the Register File. However, only

85

minimal information of the instruction is carried over to the WB stage.

Introducing AES core could further complicate the transfer logic at WB stage.

Furthermore, since RISC32 is a 5-stage pipeline processor, all instruction

takes exactly 5 clock cycles to complete. No stages can be bypassed without

going through all the 5 stages. Introducing new transfer path to WB stage

would certainly affect all of the previous stages as well. Hence, WB stage

would not be considered as well.

 In summary, the viable stages for inserting the AES core are ID stage

and EX stage. For this research work, ID stage is selected because it possesses

the necessary information extracted from the instruction. The necessary

operands and control signals are ready to be transferred into AES core by this

stage. Moreover, it has been indicated in Table 3.24, ID stage currently has a

lighter workload than the EX stages. Introducing AES Core into EX stage

might lengthen the existing EX stage delay path, further reducing the overall

performance of RISC32 due to workload imbalance.

86

3.2.2 New Instructions for AES Coprocessor

 To utilize the AES core, new instructions are designed to activate and

transfer the data along the new transfer path into the AES core during ID

stage.

I-Cache

Register

File

Coprocessor 2

Coprocessor 0

ALB

Address

Decoder

UART

Controller

SPI

Controller

ADC

Controller

To Control-path Unit

IF ID EX MEM WB

Forwarding Block

Interlock Block

Data Cache

Stack RAM

Data RAM

IF
/I
D

 P
ip

e
lin

e
 R

e
g

is
te

r

ID
/E

X
 P

ip
e

lin
e

 R
e

g
is

te
r

E
X

/M
E

M
 P

ip
e

lin
e

 R
e

g
is

te
r

M
E

M
/W

B
 P

ip
e

lin
e

 R
e

g
is

te
r

Figure 3.20: RISC32 Microarchitecture with Coprocessor 2 (CP2)

 Figure 3.20 shows the RISC32 pipeline connected with AES

Coprocessor, which was assigned as Coprocessor 2 (CP2). Coprocessor 0

(CP0) has been assigned for interrupt controller, which monitors various

software and hardware interrupt flags in RISC32. Coprocessor 1 (CP1) is

reserved for Floating-Point Unit (FPU), which is responsible to perform all

floating points computations. CP1 is not implemented in this research work,

but it is reserved for future expansion when the needs arise. The new

instructions created for CP2 are Move from Coprocessor 2 (mfc2) and Move to

Coprocessor 2 (mtc2).

87

010010 00000 rt rd

opcode[31:26] rs[25:21] rd[15:11]rt[20:16]

00000 000000

funct[5:0]shamt[10:6]

mfc2 $rt ,$rd #Regfile($rt) ß CP2($rd)

Figure 3.21: Move from Coprocessor 2 (mfc2) R-Type Instruction

Encoding and Syntax

 The Figure 3.21 shows the instruction encoding and syntax for Move

from Coprocessor 2 (mfc2). This instruction moves a 32-bit data into the

Register File of RISC32 specified by the $rt in the instruction. The $rd

specifies the location of data to read from, which is the register file in CP2.

The registers available for reading in CP2 is shown in Figure 3.22.

010010 00000 rt rd

opcode[31:26] rs[25:21] rd[15:11]rt[20:16]

Control-path

Unit
mfc2

Register File

[0]

[1]

[2]

...

[30]

[31]

CP2

result[0]

result[1]

result[2]

result[3]

[31:0]

[31:0]From CP0

From

Register

File

[31:0]

[31:0]

rf_wr

control

status

00000 000000

funct[5:0]shamt[10:6]

Figure 3.22: mfc2 implemented using Register Addressing Mode

88

I-Cache Register

File
CP2

ALB

Address

Decoder

Control-path

Unit

IF ID EX MEM WB

Forwarding Block

Interlock Block

CP0

UART

Controller

SPI

Controller

ADC

Controller

Data Cache

Stack RAM

Data RAM

IF
/I
D

 P
ip

e
lin

e
 R

e
g

is
te

r

ID
/E

X
 P

ip
e

lin
e

 R
e

g
is

te
r

E
X

/M
E

M
 P

ip
e

lin
e

 R
e

g
is

te
r

M
E

M
/W

B
 P

ip
e

lin
e

 R
e

g
is

te
r

Figure 3.23: Logical view of mfc2 execution

 The Figure 3.23 shows the logical view of the execution of mfc2. The

mfc2 is first decoded by Control-path Unit and executed by CP2 at ID stage.

The data obtained from CP2 will propagate along the pipeline registers,

carried along to EX and MEM stage with no operation performed on it, until it

reaches WB stage. The data from CP2 is then updated into the Register File at

WB stage.

 The Forwarding Block is connected to resolve data hazard related to

mfc2 instructions. The mfc2 related data hazard arises when the status from

CP2 (CP2 status register is read) is used by other instructions but has not

reached RISC32 Register File. Another potential scenario for data hazard in

mfc2 occurs when the data (ciphertext) from CP2 has not reached RISC32

Register File, but sw instruction is requesting for the ciphertext. Table 3.25

lists all the potential data hazard related to mfc2.

89

Table 3.25: Potential mfc2 related data hazard

No. Instructions Scenario

1 mfc2 $8, $13

and $7, $8, $7

Reading status register of CP2 to check CP2

status. Can be resolved by forwarding CP2 data

from EX stage to ID stage. 2 mfc2 $8, $13

andi $7, $8, 0x1

3 mfc2 $8, $13

beq $7, $8, 500

4 mfc2 $8, $13

nop

and $7, $8, $7

Reading status register of CP2 to check CP2

status. Can be resolved by forwarding CP2 data

from MEM stage to ID stage.

5 mfc2 $8, $13

nop

andi $7, $8, 0x1

6 mfc2 $8, $13

nop

beq $7, $8, 500

7 mfc2 $8, $8

sw $8, 0($7)

Store requested before data (ciphertext) of CP2

reaches RISC32 Register File. Can be resolved

by forwarding CP2 data from EX stage to ID

stage.

8 mfc2 $8, $8

nop

sw $8, 0($7)

Store requested before data (ciphertext) of CP2

reaches RISC32 Register File. Can be resolved

by forwarding CP2 data from MEM stage to ID

stage.

90

010010 00100 rt rd

opcode[31:26] rs[25:21] rd[15:11]rt[20:16]

00000 000000

funct[5:0]shamt[10:6]

mtc2 $rt ,$rd #Regfile($rt) à CP2($rd)

Figure 3.24: Move to Coprocessor 2 (mtc2) R-Type Instruction Encoding

and Syntax

 The Figure 3.24 shows the instruction encoding and syntax for Move

to Coprocessor 2 (mtc2). This instruction reads a 32-bit data from RISC32

Register File, which is specified by $rt. The data being read is then written

into the CP2 register file, which is specified by $rd. The available register for

writing in CP2 is shown in the Figure 3.25.

010010 00100 rt rd

opcode[31:26] rs[25:21] rd[15:11]rt[20:16]

Control-path

Unit
mtc2

Register File

[0]

[1]

[2]

...

[30]

[31]

CP2
key[0]

key[1]

key[2]

key[3]

block[2]

block[3]
[31:0]

block[0]

block[1]

control

00000 000000

funct[5:0]shamt[10:6]

Figure 3.25: mtc2 implemented using Register Addressing Mode

91

I-Cache
Register

File

CP2

CP0

ALB

Address

Decoder

UART

Controller

SPI

Controller

ADC

Controller

Control-path

Unit

IF ID EX MEM WB

Forwarding Block

Interlock Block

Data Cache

Stack RAM

Data RAM

IF
/I
D

 P
ip

e
lin

e
 R

e
g

is
te

r

ID
/E

X
 P

ip
e

lin
e

 R
e

g
is

te
r

E
X

/M
E

M
 P

ip
e

lin
e

 R
e

g
is

te
r

M
E

M
/W

B
 P

ip
e

lin
e

 R
e

g
is

te
r

Figure 3.26: Logical view of mtc2 execution

 The Figure 3.26 shows the logical view of mtc2 execution. It is shown

that mtc2 is decoded in ID stage and its operand is obtained from the Register

File during ID stage. This data is then transferred into the CP2 register file

during EX stage. Hence, reading the CP2 is in the ID stage whereas writing

into CP2 occurs in the EX stage. Note that this does not incur longer delay

path to EX stage, because the function of mtc2 is to transfer data and

commands to CP2. It is a write instruction, wherein no computation is

involved. Furthermore, the computation path (more details in Section 3.2.3) of

CP2 does not yield output within one cycle as compared to the ALB in the EX

stage. The output can only be obtained using mfc2, which is just a read

instruction that does not perform any computation as well. Hence, the

alignment of writing into CP2 to EX stage will not affect the overall

performance of EX stage.

92

 Similar to mfc2, potential data hazard exists for mtc2 instruction as

well. The scenario for data hazard in mtc2 is considered as general condition

related to data hazard in Register File, which is extensively analysed in prior

work (Kiat et al., 2017). Another potential data hazard for mtc2 instruction is

load use hazard, which requires Interlock Block to resolve. Table 3.26 lists the

possible data hazard condition for mtc2 instructions.

Table 3.26: Potential mtc2 related data hazard

No. Instructions Scenario

1 add $8, $8, $7

mtc2 $8, $12

mtc2 require data computed by previous

instruction. Can be resolved by forwarding

from EX stage to ID stage 2 addi $8, $8, 0x1

mtc2 $8, $12

3 lw $8, 0($7)

mtc2 $8, $0

Load Use hazard. mtc2 required data that is

currently loaded from data memory. Require

Interlock Block to stall pipeline cycle. Then

loaded data is forwarded from MEM stage to

ID stage by Forwarding Block

93

3.2.3 CP2 Overview

 The AES core is assigned to Coprocessor 2 in RISC32. The AES core

used in the research work is an open source single stage AES core designed by

Strömbergson (2014). It is a single stage rolled AES architecture; hence,

computation is performed iteratively (55 clock cycle) with respect to the

number of iterations established for the standard AES algorithm. In this work,

the AES core by Strömbergson (2014) is redesigned to perform encryption

with 128-bit secret key. Other secret key sizes (192-bit and 256-bit) are not

supported currently, as the 128-bit is sufficient to provide a strong security in

IoT applications. The AES core will also perform only encryption; decryption

is not implemented as RISC32 is targeted for sensor node applications. The

decryption is expected to be performed by the gateway device, which collects

all the data transmitted from all the sensor nodes in the wireless sensor

network. Figure 3.27 shows the top-level interface for CP2 block. Table 3.27

contains the pin description for CP2 block interface. Table 3.28 contains list of

CP2 register file and its respective usage.

bicp2_clk

bicp2_rst

bicp2_mtc2

bicp2_addr[3:0]

bicp2_write_data[31:0]

bocp2_read_data[31:0]

bcp2
[31:0]

[3:0]

[31:0]

Figure 3.27: Top-Level Interface for CP2 Block

94

Table 3.27: Pin Description for CP2 Block Interface

Pin Name: bocp2_read_data[31:0] Pin Direction: Output

Pin Size: 32 bits

Source à Destination: CP2 Block à RISC32 Pipeline

Pin Function:

Output port for data read from the CP2 register file specified by mfc2 instruction

Pin Name: bicp2_write_data[31:0] Pin Direction: Input

Pin Size: 32 bits

Source à Destination: Register File à CP2 Block

Pin Function:

Input port for data and command to be written into CP2 register file specified by mtc2

instruction

Pin Name: bicp2_addr[3:0] Pin Direction: Input

Pin Size: 4 bits

Source à Destination: Data-path Unit à CP2 Block

Pin Function:

Input port for address of CP2 register file to be accessed by mtc2 and mfc2 instruction

Pin Name: bicp2_mtc2 Pin Direction: Input

Pin Size: 1 bit

Source à Destination: Control-path Unit à CP2 Block

Pin Function:

Input signal to write data from bicp2_write data into CP2 register file.

0: Do not write into CP2 register file

1: Write into CP2 register file

Pin Name: bicp2_rst Pin Direction: Input

Pin Size: 1 bit

Source à Destination: Global Reset à CP2 Block

Pin Function:

0: Do not reset CP2

1: Reset CP2

Pin Name: bicp2_clk Pin Direction: Input

Pin Size: 1 bit

Source à Destination: Global Clock à CP2 Block

Pin Function:

Clock Source

Table 3.28: CP2 register file and their conventions

Register

Number

Instruction

Encoding

Register

Name

Usage

0 0000 key[0] Stores bit 127 to bit 96 of the128-bit secret key

1 0001 key[1] Stores bit 95 to bit 64 of the128-bit secret key

2 0010 key[2] Stores bit 63 to bit 32 of the128-bit secret key

3 0011 key[3] Stores bit 31 to bit 0 of the128-bit secret key

4 0100 block[0] Stores bit 127 to bit 96 of the128-bit plaintext

5 0101 block[1] Stores bit 95 to bit 64 of the128-bit plaintext

6 0110 block[2] Stores bit 63 to bit 32 of the128-bit plaintext

7 0111 block[3] Stores bit 31 to bit 0 of the128-bit plaintext

8 1000 result[0] Stores bit 127 to bit 96 of the128-bit ciphertext

9 1001 result[1] Stores bit 95 to bit 64 of the128-bit ciphertext

10 1010 result[2] Stores bit 63 to bit 32 of the128-bit ciphertext

11 1011 result[3] Stores bit 31 to bit 0 of the128-bit ciphertext

95

Continued from Table 3.28

12 1100 control Stores command to be executed by CP2 core.

Available options:

0x00000001: Round Key Generation

0x00000002: Encryption

13 1101 status Stores status of current CP2 core.

RESERVED readyvalid

31 012

Figure 3.28: Status Register ($13) layout of CP2

 The Figure 3.28 shows the Status Register layout of CP2. The ready

(bit 0) indicates if the CP2 core is currently idle. If this bit is HIGH (1), CP2

core is free to perform encryption or key generation; otherwise if it is LOW

(0), CP2 is currently busy in performing encryption or key generation. The

valid (bit 1) indicates current CP2 core completes its encryption. If this bit is

HIGH (1), ciphertext is ready for reading; otherwise if it is LOW (0), it means

no ciphertext for reading or the current encryption is not yet completed.

96

bcp2
key[0]

key[1]

key[2]

key[3]

block[0]

block[1]

block[2]

block[3]

sbcp2_core

[127:96]

[31:0]

bicp2_write_data[31:0]

bicp2_addr[3:0]

bicp2_mtc2

[3:0]

bcp2_key_we

bcp2_block_we

[31:0]

[127:0]

{key[0],key[1],key[2],key[3]}

[127:0]
{block[0],block[1],

block[2],block[3]}

bcp2_init_new

bocp2_read_data[31:0]
[31:0]

bcp2_enc_new

[95:64] [63:32] [31:0] [127:0]

Moore Edge Detector

sbicp2_key[127:0]

sbicp2_block[127:0]

sbicp2_init

sbicp2_enc

sbocp2_result[127:0]

[31:2] [1] [0]

[31:2] [1] [0]

sbocp2_ready

sbocp2_result_valid

sbicp2_rst

bicp2_rst

bcp2_api

bicp2_clk

control[31:0]

status[31:0]

result[127:0]

Figure 3.29: The microarchitecture of CP2 Block derived from analysing the AES source code by Strömbergson (2014).

97

 The Figure 3.29 shows the internal microarchitecture of CP2 Block.

The top-level architecture of CP2 Block is responsible in registering every

input data (secret key and plaintext) and command from the RISC32 pipeline.

It is also responsible in storing the output (ciphertext) and status of current

CP2 core. Based on the mtc2 (bicp2_mtc2) input signal and CP2 register file

address (bicp2_addr[3:0]), read write operation to the register files of CP2 is

decoded and performed by the control logic (bcp2_api). The main operations

(round key generation and encryption) of AES is performed by the CP2 Core

(sbcp2_core) that is implemented as a sub-block in CP2. Operation to be

carried out by it is determined by the command requested in the Control

Register of CP2 Block. Figure 3.30 shows the interface for CP2 Core

(sbcp2_core). Pin description of the CP2 Core Sub-Block is provided in Table

3.29.

sbcp2_core

sbocp2_result_validsbicp2_enc

sbicp2_init

sbicp2_key[127:0]

sbicp2_block[127:0]

sbicp2_clk

sbicp2_rst

sbocp2_ready

sbocp2_result[127:0]

[127:0]

[127:0]

[127:0]

Figure 3.30: CP2 Core Sub-Block interface

98

Table 3.29: Pin Description for CP2 Core Sub-Block

Pin Name: sbocp2_result[127:0] Pin Direction: Output

Pin Size: 128 bits

Sourceà Destination: CP2 Core Sub-Block à CP2 Block

Pin Function:

Output port for 128 bits encrypted ciphertext from the CP2 Core Sub-Block
Pin Name: sbocp2_ready Pin Direction: Output

Pin Size: 1 bit

Source à Destination: CP2 Core Sub-Block à CP2 Block

Pin Function:

Output status signal to indicate is it currently busy or ready for operation

0: CP2 Core Sub-Block busy. Currently performing encryption or round key generation

1: CP2 Core Sub-Block ready. Request for encryption or round key generation is permitted

Pin Name: sbocp2_result_valid Pin Direction: Output

Pin Size:1 bit

Source à Destination: CP2 Core Sub-Block à CP2 Block

Pin Function:

Output status signal to indicate current ciphertext ready for reading

0: Ciphertext not valid or no ciphertext for reading. Encryption is still ongoing in CP2 Core

Sub-Block

1: Ciphertext valid. Encryption has been completed by CP2 Core Sub-Block

Pin Name: sbicp2_key[127:0] Pin Direction: Input

Pin Size: 128 bits

Source à Destination: CP2 Block à CP2 Core Sub-Block

Pin Function:

Input port for 128-bit secret key for round key generation

Pin Name: sbicp2_init Pin Direction: Input

Pin Size: 1 bit

Source à Destination: CP2 Block à CP2 Core Sub-Block

Pin Function:

Input control signal to request for round key generation based on Control Register ($12) of

CP2 register file

0: No request for round key generation

1: Request for round key generation

Pin Name: sbicp2_block[127:0] Pin Direction: Input

Pin Size: 128 bits

Source à Destination: CP2 Block à CP2 Core Sub-Block

Pin Function:

Input port for 128-bit plaintext for encryption

Pin Name: sbicp2_enc Pin Direction: Input

Pin Size: 1 bit

Source à Destination: CP2 Block à CP2 Core Sub-Block

Pin Function:

Input control signal to request for encryption based on Control Register ($12) of CP2 register

file

0: No request for encryption

1: Request for encryption

Pin Name: sbicp2_rst Pin Direction: Input

Pin Size: 1 bit

Source à Destination: Global Reset à CP2 Core Sub-Block

Pin Function:

Reset Signal for CP2 Core Sub-Block

Pin Name: sbicp2_clk Pin Direction: Input

Pin Size: 1 bit

Source à Destination: Global Clock à CP2 Core Sub-Block

Pin Function:

Clock Source for CP2 Core Sub-Block

99

sbcp2_core

sbicp2_key[127:0]

sbocp2_result[127:0]

sbocp2_result_valid

sbocp2_ready

sbicp2_block[127:0]

sbicp2_init

sbicp2_enc

sbicp2_rst

sbicp2_clk

key_expand_round_logic

encryption_round_logic

sbcp2_sbox

rcon_logic

sbcp2_encipher_ctrl

sbcp2_key_mem_ctrl

sbcp2_core_ctrl

key_mem

[0]

[1]

[2]

[10]

[127:0]

Round Key Generator

Encrypter

[127:0]

[127:0]

sbcp2_core_init

[31:0]

[127:0]

[31:0]

[31:0]

key_round_ctr[3:0]

sword_ctr[1:0]

enc_round_ctr[3:0]

1

0

Figure 3.31: Internal microarchitecture of CP2 Core Sub-Block

100

 The Figure 3.31 shows the internal microarchitecture of CP2 Core

Sub-Block. The sub-block consists 4 main regions: CP2 Core Finite State

Machine (sbcp2_core_ctrl), Round Key Generator (Section 3.2.3.1), Encrypter

(Section 3.2.3.2) and Substitution Box (sbcp2_sbox). The main function of

CP2 Core Finite State Machine (FSM) is to synchronize activities between

Round Key Generator and Encrypter. Also, since there is only single 32-bit

Substitution Box, the CP2 Core FSM is also responsible to control share usage

of Substitution Box between Round Key Generator and Encrypter. Figure 3.32

shows the states of CP2 Core FSM. The state descriptions and corresponding

output is shown in Table 3.30 and Table 3.31.

sbicp2_initsb
ic

p2
_e

nc

sbcp2_core_key_ready

!sbcp2_core_key_ready

sb
cp

2_
co

re
_e

nc
_r

ea
dy

!sbcp2_core_enc_ready

CORE_CTRL_IDLE

CORE_CTRL_INITCORE_CTRL_NEXT

!sbicp2_enc && !sbicp2_init

sbicp2_rst

Figure 3.32: CP2 Core FSM state diagram

Table 3.30: CP2 Core FSM state description

State Name Description

CORE_CTRL_IDLE No Operation

CORE_CTRL_INIT Performing round key generation

CORE_CTRL_NEXT Performing encryption

101

Table 3.31: CP2 Core FSM state corresponding output

State Name Corresponding Output

CORE_CTRL_IDLE When sbicp2_init is HIGH

 sbcp2_core_init = 1'b1;

 sbcp2_core_ready_new = 1'b0;

 sbcp2_core_ready_we = 1'b1;

 sbcp2_core_result_valid_new = 1'b0;

 sbcp2_core_result_valid_we = 1'b1;

 sbcp2_core_ctrl_new = CORE_CTRL_INIT;

 sbcp2_core_ctrl_we = 1'b1;

When sbicp2_enc is HIGH

 sbcp2_core_init = 1'b0;

 sbcp2_core_ready_new = 1'b0;

 sbcp2_core_ready_we = 1'b1;

 sbcp2_core_result_valid_new = 1'b0;

 sbcp2_core_result_valid_we = 1'b1;

 sbcp2_core_ctrl_new = CORE_CTRL_NEXT;

 sbcp2_core_ctrl_we = 1'b1;

CORE_CTRL_INIT sbcp2_core_init = 1'b1;

When sbcp2_core_key_ready is HIGH

 sbcp2_core_ready_new = 1'b1;

 sbcp2_core_ready_we = 1'b1;

 sbcp2_core_ctrl_new = CORE_CTRL_IDLE;

 sbcp2_core_ctrl_we = 1'b1;

CORE_CTRL_NEXT sbcp2_core_init = 1'b0;

When sbcp2_core_enc_ready is HIGH

 sbcp2_core_ready_new = 1'b1;

 sbcp2_core_ready_we = 1'b1;

 sbcp2_core_result_valid_new = 1'b1;

 sbcp2_core_result_valid_we = 1'b1;

 sbcp2_core_ctrl_new = CORE_CTRL_IDLE;

 sbcp2_core_ctrl_we = 1'b1;

102

3.2.3.1 Round Key Generator

 The Round Key Generator generates round key based on a 128-bit

secret key input. Since AES-128 supported by the CP2 core executes for 10

rounds, a total of 11 round keys will be generated. The round keys generated is

stored in a dedicated key memory in the Round Key Generator. These round

keys are retrieved by Encrypter when there is an encryption requested. It

should be noted that, round key generation and encryption operation cannot be

performed simultaneously. Hence, round key generation must always be

performed before encryption.

 The standard procedure to use CP2 core for round key generation is as

follows:

1) Load 128-bit secret key from RISC32 data memory into RISC32

Register File using four Load Word (lw) instructions.

2) Move 128-bit secret key from RISC32 Register File into key registers

($0 to $3) of CP2 register file, using four Move to Coprocessor 2

(mtc2) instructions.

3) Set round key generation command, 0x00000001 into the RISC32

Register File using Add Immediate (addi) instruction.

4) Move round key generation command from RISC32 Register File into

Control Register ($12) of CP2 register file using mtc2 to start round

key generation.

5) Wait 15 clock cycles for round key generation to complete.

103

XOR

key_mem

[0]

[1]

[2]

[10]

[127:0]

Round Key Generator

[127:0] 1

0

1

0128'b0

[127:0]
[127:0]

rcon_logic

[23:00] [31:24]

[127:96] [96:64] [63:32] [31:0]

XOR XORXOR XOR

[127:96] [96:64] [63:32] [31:0] [127:0]

rcon_reg[7:0]

rcon_reg[7:0] 24'b0

[31:0]

[31:0]

[31:0]

key_round_ctr_reg[3:0]

Key Expansion Round Logic

key_round_ctr[3:0]

key_round_ctr_rst
round_key_update

key_round_ctr_inc

rcon_next

rcon_set

k
ey

_
m

em
_
w

e

p
rev

_
k
ey

_
reg

_
w

e

enc_round_ctr_reg[3:0]

round_key_reg[127:0]

sbcp2_key_mem_ctrl

key_ready_reg

To sbox

From

sbox

To Encryption

Round Logic

To

sbcp2_core_ctrl

From

enc_round_ctr[3:0]

sbicp2_key[127:0]

sbicp2_init

Figure 3.33: Microarchitecture for Round Key Generator

104

 Figure 3.33 illustrates the microarchitecture for Round Key Generator.

The Round Key Generator consists of Round Key Generator FSM

(sbcp2_key_mem_ctrl), Key Expansion Logic, Round Constant Generator

(rcon_logic), Key Expansion Round Counter (key_round_ctr[3:0]) and Key

Memory (key_mem). The Round Key Generator FSM generates necessary

control signals to control the whole round key expansion operation. The Key

Expansion Logic contains logic to be performed on every round of key

expansion operation. The Key Expansion Round Counter is a 4-bit up counter

that counts from 0 to 10, which corresponds to the rounds of round key

generation. The Round Constant Generator generates round constant to be

used for each round of the round key expansion operation. Key memory is

used to store round keys generated. A total of 11 round keys (128 bits each) is

generated upon every round key generation. The Figure 3.34 shows the state

diagram for Round Key Generator FSM. Table 3.32 and Table 3.33 provides

its state description and state output respectively.

KEY_CTRL_IDLE KEY_CTRL_INIT

KEY_CTRL_DONE KEY_CTRL_GENERATE

sbicp2_key_init

sbicp2_rst !sbicp2_key_init

sbcp2_key_round_ctr_reg == 4'ha

sbcp2_key_round_ctr_reg < 4'ha

Figure 3.34: Round Key Generator FSM state diagram

105

Table 3.32: State Description for Round Key Generator FSM

State Name Description

KEY_CTRL_IDLE No Operation

KEY_CTRL_INIT Initialize first round key

KEY_CTRL_GENERATE Generate next 10 round keys for 10 rounds

KEY_CTRL_DONE Round key generation completes

Table 3.33: State Output for Round Key Generator FSM

State Name Corresponding Output

KEY_CTRL_IDLE When sbicp2_init is HIGH

 sbcp2_key_ready_new = 1'b0;

 sbcp2_key_ready_we = 1'b1;

 sbcp2_key_mem_ctrl_new = KEY_CTRL_INIT;

 sbcp2_key_mem_ctrl_we = 1'b1;

KEY_CTRL_INIT sbcp2_key_round_ctr_rst = 1'b1;

sbcp2_key_mem_ctrl_new= KEY_CTRL_GENERATE;

sbcp2_key_mem_ctrl_we = 1'b1;

KEY_CTRL_GENERATE sbcp2_key_round_ctr_inc = 1'b1;

sbcp2_round_key_update = 1'b1;

When sbcp2_key_round_ctr_reg equals 10

 sbcp2_key_mem_ctrl_new = KEY_CTRL_DONE;

 sbcp2_key_mem_ctrl_we = 1'b1;

KEY_CTRL_DONE sbcp2_key_ready_new = 1'b1;

 sbcp2_key_ready_we = 1'b1;

 sbcp2_key_mem_ctrl_new = KEY_CTRL_IDLE;

 sbcp2_key_mem_ctrl_we = 1'b1;

 The round key generation in CP2 Core takes 15 clock cycles to

complete. This is contributed by:

1) mtc2 transfer round key generation command (0x00000001) into CP2.

This command is only registered at next clock cycleà 1 clock cycle.

2) The Round Key Generator FSM takes 13 clock cycles to complete all

states.

106

3) The CP2 Core FSM only generates sbcp2_core_ready signal at next

clock cycle after Round Key Generator FSM reaches

KEY_CTRL_DONE state. à 1 clock cycle.

 The Algorithm 3.2 illustrates the round key expansion algorithm

implemented for CP2 core with respect to the specification published in NIST

FIPS-197(2009).

ALGORITHM 3.2: ROUND KEY EXPANSION ALGORITHM

Input: 128-bit Secret Key

Output: key_mem[0] to key_mem[10] as 11 Round Keys

1. while round!=10 do

2. if round == 0

a. Store Input as key_mem[0]

b. Assign Input as previous_key

c. Calculate next 8-bit rcon

3. else

a. Assign previous_key[127:96] as word[0]

b. Assign previous_key[95:65] as word[1]

c. Assign previous_key[64:32] as word[2]

d. Assign previous_key[31:0] as word[3]

e. Assign word[3] to Substitution Box

f. Assign Substitution Box output to word[3]

g. Zero-pad 8-bit rcon up to 32-bit

h. Assign word[3] XOR 32-bit rcon to word[3]

i. Assign word[3] XOR word[0] to word[0]

j. Assign word[0] XOR word[1] to word[1]

k. Assign word[1] XOR word[2] to word[2]

l. Assign word[2] XOR word[3] to word[3]

m. Concatenate all word to form 128-bit new_round_key

n. Store new_round_key to key_mem[round]

o. Assign new_round_key as previous_key

p. Calculate next 8-bit rcon

4. endif

5. Increment round by 1

6. endwhile

Algorithm 3.2: Round Key Expansion Algorithm of CP2 Core derived

from AES Source Code by Strömbergson (2014)

107

3.2.3.2 Encrypter

 The Encrypter performs encryption operation for the CP2 Core. The

Encrypter takes 128 bits input plaintext and perform a series of operations on

the input for a fixed number of iterations. The resultant 128 bits output

between each operation is known as state. The series of operations are

AddRoundKey(), ShiftRows(), MixColumns() and SubByte(). The

AddRoundKey() operation perform simple XOR operation between state and

the round key. The round key is retrieved from the key memory of the Round

Key Generator. In ShiftRows() and MixColumns(), the operation is performed

with the state in four words form. The four words state is rearranged and

assume the form of a 4x4 matrix. The ShiftRows() operation perform left

cyclic byte shifting on each rows. Number of bytes to be shifted is with

respect to the row number. For instance, the first row does not perform any

rotation, while at the fourth row, three bytes is rotated to the left and vice

versa. The MixColumns(), perform a 4x1 matrix multiplication between a

fixed polynomial matrix and each column of the 4x4 matrix. Detailed

discussion of the fixed polynomial matrix can be found from the NIST FIPS-

197 (2009) document. The SubByte() operation performs byte substitution

between all bytes of the state and the Substitution Box (refer to Section

3.2.3.3), which is also known as Sbox. All of the operations mentioned above

is performed in every round for 10 rounds.

108

 The standard procedure to use CP2 core for encryption is as follows:

1) Load 128-bit plaintext from RISC32 data memory into RISC32

Register File using four Load Word (lw) instructions.

2) Move 128-bit plaintext from RISC32 Register File using four Move to

Coprocessor 2 (mtc2) instructions into plaintext registers ($4 to $7) of

CP2 register file.

3) Set encryption command, 0x00000002 using Add Immediate (addi)

instruction into RISC32 Register File.

4) Move encryption command from RISC32 Register File into Control

Register ($12) of CP2 register file using mtc2 to start encryption.

5) Wait 55 clock cycles for encryption to complete.

6) Move 128-bit ciphertext from ciphertext registers ($8 to $11) of CP2

register file to RISC32 Register File using four Move from

Coprocessor 2 (mfc2) instructions.

7) Store 128-bit ciphertext from RISC32 Register File into data memory

using Store Word (sw) instructions.

109

Encrypter

block_w0_reg[31:0]

block_w1_reg[31:0]

block_w2_reg[31:0]

block_w3_reg[31:0]
addroundkey()

1

2

3

4

[127:0]

mixcolumns()shiftrows()

0
1
2
3

[127:0] [127:0]

{w0,w1,w2,w3}

sbcp2_encipher_ctrl

[31:0]

[31:0]

[127:96] [96:64] [63:32] [31:0]

[127:0]

4

3

1

[127:96]

[95:64]

[63:32]

[31:0]

[127:0]

enc_sword_ctr

[1:0]

To sbox

From sbox

enc_block_w0_we

enc_block_w1_we

enc_block_w2_we

enc_block_w3_we

enc_update_type[2:0]

[0]
[1]

enc_sword_ctr_inc

[1]

[0]

enc_sword_ctr_reg[1:0]

enc_round_inc

enc_round_ctr_reg[3:0]

enc_ready_reg

enc_round_rst

enc_sword_ctr_rst

Encryption Round Logic

sbicp2_block[127:0]

[127:0]
From key

mem

To key

mem

To

sbcp2_core_ctrl

sbocp2_result[127:0]

2-to-4

Decoder

sbicp2_enc

enc_round_ctr[3:0]

Figure 3.35: Microarchitecture for Encrypter

110

 The Figure 3.35 illustrates the microarchitecture of Encrypter. The

Encrypter consists of Encrypter FSM (sbcp2_encipher_ctrl), Encryption

Round Logic, Encryption Round Counter (enc_round_ctr[3:0]) and Encryption

Substitution Word Counter (enc_sword_ctr[1:0]). The Encrypter FSM

generates control logic to control Encryption Round Logic, Encryption Round

Counter and Encryption Substitution Word Counter. The Encryption Round

Logic performs the AddRoundkey(), ShiftRows(), SubByte() and MixColumns()

operation. The Encryption Round Counter is a 4-bit up counter that counts

from 0 to 10, which corresponds to the rounds of encryption. The counter

value is also used for reading the round keys from the round key memory. The

Encryption Substitution Word Counter is a 2-bit up counter to track the word

position of the current state to be substituted by Sbox. The Figure 3.36 shows

the state diagram of Encrypter FSM. Table 3.34 and Table 3.35 provides its

state description and corresponding output for each state.

ENC_CTRL_IDLE ENC_CTRL_INIT

ENC_CTRL_SBOXENC_CTRL_MAIN

sbicp2_rst

sbicp2_enc

!sbicp2_enc

sbcp2_enc_sword_ctr_reg == 2'h3

sbcp2_enc_sword_ctr_reg < 2'h3

sbcp2_enc_round_ctr_reg < 4'ha
sbcp2_enc_round_ctr_reg == 4'ha

Figure 3.36: Encrypter FSM state diagram

111

Table 3.34: State Description for Encrypter FSM

State Name Description

ENC_CTRL_IDLE No Operation

ENC_CTRL_INIT Initialize first state

ENC_CTRL_SBOX Perform SubByte() operation on every word of state

ENC_CTRL_MAIN Perform ShiftRows() , MixColumns() , and AddRoundKey()

Table 3.35: State Output for Encrypter FSM

State Name Corresponding Output

ENC_CTRL_IDLE When sbicp2_ enc is HIGH

 sbcp2_enc_round_ctr_rst = 1'b1;

 sbcp2_enc_ready_new = 1'b0;

 sbcp2_enc_ready_we = 1'b1;

 sbcp2_enc_ctrl_new = ENC_CTRL_INIT;

 sbcp2_enc_ctrl_we = 1'b1;

ENC_CTRL_INIT sbcp2_enc_round_ctr_inc = 1'b1;

sbcp2_enc_sword_ctr_rst = 1'b1;

sbcp2_enc_update_type = ENC_INIT_UPDATE;

sbcp2_enc_ctrl_new = ENC_CTRL_SBOX;

sbcp2_enc_ctrl_we = 1'b1;

ENC_CTRL_SBOX sbcp2_enc_sword_ctr_inc = 1'b1;

sbcp2_enc_update_type = ENC_SBOX_UPDATE;

When sbcp2_enc_sword_ctr_reg equals 3

 sbcp2_enc_ctrl_new = ENC_CTRL_MAIN;

 sbcp2_enc_ctrl_we = 1'b1;

ENC_CTRL_MAIN sbcp2_enc_sword_ctr_rst = 1'b1;

sbcp2_enc_round_ctr_inc = 1'b1;

When sbcp2_enc_round_ctr_reg less than 10

 sbcp2_enc_update_type = ENC_MAIN_UPDATE;

 sbcp2_enc_ctrl_new = ENC_CTRL_SBOX;

 sbcp2_enc_ctrl_we = 1'b1;

When sbcp2_enc_round_ctr_reg equals 10

 sbcp2_enc_update_type = ENC_FINAL_UPDATE;

 sbcp2_enc_ready_new = 1'b1;

 sbcp2_enc_ready_we = 1'b1;

 sbcp2_enc_ctrl_new = ENC_CTRL_IDLE;

 sbcp2_enc_ctrl_we = 1'b1;

112

 The encryption in CP2 Core takes 55 clock cycles to complete. This is

contributed by:

1) mtc2 transfer encryption command (0x00000002) into CP2. This

command is only registered at next clock cycleà 1 clock cycle

2) The Encrypter FSM takes 53 clock cycles to complete all states

3) The CP2 Core FSM only generates sbcp2_core_ready signal and

sbcp2_core_result_valid at next clock cycle after Encrypter FSM

return to the ENC_CTRL_IDLE state. à 1 clock cycle

113

 The Algorithm 3.3 illustrates the encryption algorithm implemented in

CP2 core with respect to the specification published in NIST FIPS-197(2009).

ALGORITHM 3.3: ENCRYPTION ALGORITHM

Input: 128-bit Plaintext, Eleven (11) 128-bit Rounds Keys

Output: Final state as 128-bit Ciphertext

1. while round ≤ 10 do

2. Read key_mem[round]

3. if round == 0

a. Assign AddRoundKey(Input, key_mem[round]) as state

b. Increment round by 1

4. else

a. Assign state[127:96] as word[0]

b. Assign state[95:64] as word[1]

c. Assign state[63:32] as word[2]

d. Assign state[31:0] as word[3]

e. Reset sword

f. while sword ≤ 3 do

i. Assign SubByte(word[sword]) as word[sword]

ii. Increment sword by 1

g. endwhile

h. Concatenate all word and assign to state

i. Assign ShiftRows(state) as state

j. if round != 10 then

i. Assign MixColumns(state) as state

k. endif

l. Assign AddRoundKey(state, key_mem[round]) as state

m. Increment round by 1

5. endif

6. endwhile

Algorithm 3.3: Encryption Algorithm of CP2 Core derived from AES

Source Code by Strömbergson (2014)

114

3.2.3.3 Substitution Box (Sbox)

 The Substitution Box (Sbox) is a substitution table used in both round

key generation and encryption operation. The values in Sbox is predefined and

implemented as an 8-bit x 256 lookup-table. The Sbox performs substitution

by using the one-byte input as offset to retrieve value from the lookup-table.

Details of the calculation for each value is not discussed in this research work,

but can be found from the NIST FIPS-197 (2009) document. The Table 3.36

shows the values in Sbox.

Table 3.36: SBox Table

Source: NIST FIPS-197, 2009

*The x and y represent rows and columns position. Eg: Input = {0x3b}, then Output of sbox =

{0xe2} and vice versa

 In CP2 Core, the Sbox is implemented as four 8-bit x 256 ROM. Each

of these ROM can only output one byte every clock cycle. Hence, CP2 Core

performs 4 parallel substitution on every clock cycle to output a complete 32-

bit word. However, substitution transformation is present in both round key

generation and encryption operation. Due to this reason and the maximum

115

output of Sbox (32-bit substitution per clock cycle) in CP2, both operations

cannot be executed in parallel and have to share the Sbox. The design of Sbox

also affects encryption operation, where each round requires SubByte() to be

performed on the 128-bit state. Since Sbox can only output 32-bit every clock

cycle, the SubByte() operation takes 4 clock cycles to complete, which

contributes a longer clock cycle for the encryption operation in CP2 Core.

However, this Sbox design has a smaller hardware consumption, as it only

implements four 8-bit x 256 ROM (32-bit) instead of 16 (128-bit). The smaller

hardware consumption is beneficial in terms of power consumption for IoT

implementation purposes. Figure 3.37 shows the internal structure of Sbox for

CP2 Core.

Sbox
8-bit x 256

ROM

8-bit x 256

ROM

8-bit x 256

ROM

8-bit x 256

ROM

[31:0]

[15:8]

[31:24]

[23:16]

[7:0]

[31:0]

[15:8]

[31:24]

[23:16]

[7:0]

From

sbcp2_core_ctrl

From

Encrypter

From

Round Key

Generator

To Round Key

Generator and

Encryption

sb
cp

2
_
co

re_
in

it

1

0

Figure 3.37: Internal structure of Sbox in CP2 Core

116

3.2.4 Software Pattern Analysis for CP2

 The primary aim of RISC32 (Kiat, 2018) was to develop a processor

for implementing IoT sensor nodes. With the integration of CP2, this research

works aims to provide security feature to RISC32. This security feature can

ensure confidentiality of the sensor data, which will be transferred out of the

sensor node periodically. Figure 3.38 shows a typical software pattern of the

IoT applications in sensor nodes.

Acquire N Byte

(Eg: ADC)

Process N Byte

(Eg: Encrypt with AES)

Send N Byte

(Eg:UART,SPI)

Figure 3.38: Typical IoT application in sensor nodes

 Referring to Figure 3.38, the typical software pattern performs three

tasks, namely Data Acquisition, Data Processing and Data Sending. The Data

Acquisition refers to collecting data through various sensors. Common sensors

available are humidity sensor, temperature sensor, infrared sensor and

vibration sensor. These sensors are usually interfaced to Analog-to-Digital

Converter (ADC), so that the analog output by the sensors are converted to

digital values for processing. Data Processing refers to performing

computation on the collected sensor data. For example, calculation (e.g.

average, minimum/maximum and etc.) may need to be performed on the ADC

data to yield meaningful representation of the sensor data. Action of Data

Processing varies between each IoT applications. In the context of this

research work, Data Processing is assumed to be AES Encryption. After Data

Processing, Data Sending sends processed data out to gateway and cloud

117

server, so that it can be analysed to derive meaningful patterns. The sending

can usually be done through common I/O modules such as WiFi, Bluetooth

Low Energy (BLE) or ZigBee modules. These I/O modules are usually

interfaced with I/O interface such as UART, SPI and I2C.

 All the task mentioned in previous paragraph revolves around specific

data size, which is labelled as N bytes. The typical size for N ranges from 64B,

128B, 256B, 512B and 1024B. Sizes of N could differ between applications.

This research work recommends N between the range of 256 to 1024 for IoT

applications that constantly monitors and send large data size. The

recommended range could reduce the need for frequent sending. Smaller data

size would indicate the need to frequent sending, which increases activity of

IoT processor. This could cause higher power consumption, which is not ideal

for sensor nodes with energy constrain. Moreover, the proposed sizes can also

fit into the RAM of targeted FPGA and other common microcontrollers.

 However, the CP2 currently integrated into RISC32 cannot fully utilize

the software pattern presented in Figure 3.38. Figure 3.39 shows the software

pattern incorporated with encryption using CP2.

Acquire N Byte Encrypt N Byte Send N Byte

Encrypting with CP2:

T =(N/16B) * (18 CP2 read write instructions + 55 cycle per Encryption)

T

Figure 3.39: Data processing pattern with CP2 encryption

118

 Referring to Figure 3.39, the encryption of N byte of data requires total

T clock cycles. T is determined from the total number of instructions required

to prepare and read the sensor data from CP2, setting command for CP2,

together with 55 clock cycles of encryption computation. The Table 3.37

shows the instructions required to use CP2 for encryption.

Table 3.37: Encryption Routine for CP2 Excluding Data Acquisition

Instruction Comment

lw $rt0, 0($rs) Load 128-bit plaintext (four words) from

memory into RISC32 Register File lw $rt1, 4($rs)

lw $rt2, 8($rs)

lw $rt3, 12($rs)

mtc2 $rt0, $4 Move loaded 128-bit plaintext (four words)

into secret key register ($0 to $3) of CP2 mtc2 $rt1, $5

mtc2 $rt2, $6

mtc2 $rt3, $7

addi $rt4, $zero,0x2 Prepare encrypt plaintext command

mtc2 $rt4, $12 Move key expansion command to command

register ($12) of CP2 and start encryption

nop Insert NOPS to wait for encryption to

complete. CP2 encryption requires 55 clock

cycles to complete, hence 55 NOPS is

inserted.

nop

..

mfc2 $rt0, $8 Read encrypted 128-bit cipher text (four

words) from cipher text register ($8 to $11)

of CP2 and write into RISC32 Register File
mfc2 $rt1, $9

mfc2 $rt2, $10

mfc2 $rt3, $11

sw $rt0,0($rs) Store 128-bit cipher text (four words) from

RISC32 Register File into data memory sw $rt1,4($rs)

sw $rt2,8($rs)

sw $rt3,12($rs)

 A total of 18 instructions are required to start and read CP2 data, with

additional 55 NOP instructions to wait for CP2 to output the valid ciphertext.

Hardware pipeline stalling is another solution where the pipeline stages are

held whenever there is a read to the CP2 register file while CP2 is still

encrypting. Both solutions are not efficient, as it creates 55 cycles of idle time

in the processor pipeline. Consider the case where N = 1024, then T is 4672

119

clock cycles, wherein 3520 cycles (75%) are spent idle for waiting the

encryption to complete!

 To utilize the idle time caused by CP2 encryption, a more effective

way would be to overlap the data acquisition and encryption, which is

illustrated in the Figure 3.40.

Encrypt N Byte

Send N Byte

Encrypting with CP2:

Acquire N Byte

T

Figure 3.40: Data processing pattern with encryption and data acquisition

overlapped

 The data processing pattern (Figure 3.40), however, is highly

dependent on the AES encryption mode used. The common AES encryption

modes available are Electronic Code Book (ECB), Cipher Block Chaining

(CBC) and Counter (CTR).

AESPlaintext
(N/16B data)

Secret Key

Ciphertext
(N/16B data)

ECB Mode

Figure 3.41: Electronic Code Book (ECB) AES Encryption Mode

120

 The ECB encryption mode (Figure 3.41) performs encryption directly

on the input plaintext. The plaintext here refers to the sensor data collected

during Data Acquisition task. This shows that the ECB has dependency on the

sensor data. Data Acquisition needs to take place before encryption can be

started. Hence, ECB mode could not fit the proposed processing pattern

(Figure 3.40) as Data Acquisition and encryption could not be overlapped due

to the dependency.

AES

CBC Mode

Plaintext
(16B data)

Ciphertext
(16B data)

Initialization
Vector

(IV)

XOR

Secret
Key

AES

Plaintext
(16B data)

Ciphertext
(16B data)

XOR

AES

Plaintext
(16B data)

Ciphertext
(16B data)

XOR

Secret
Key

Secret
Key

N/16B data

Figure 3.42: Cipher Block Chaining (CBC) AES Encryption Mode

 The CBC encryption mode is illustrated in the Figure 3.42. For the first

encryption among all data (N Byte), the input plaintext will be XORed with an

equivalent size (16 Byte) Initialization Vector (IV). The consecutive

encryption is dependent on previous encryption, where their input is the XOR

of respective plaintext and previous ciphertext. This dependency of CBC on

previous ciphertext does fit to the consecutive encryption for all data (N Byte)

as illustrated in Figure 3.40. However, the CBC also has dependency for the

plaintext. Data Acquisition has to be performed first to obtain plaintext (sensor

121

data) before the first encryption can be started. This does not fit the proposed

software pattern (Figure 3.40), as encryption and Data Acquisition is expected

to be performed together independently.

AES

CTR Mode
Secret Key

Counter
(N/16B CTR Value)

Plaintext
(N/16B data)

Ciphertext
(N/16B data)

XOR

Figure 3.43: Counter (CTR) AES Encryption Mode

 The Counter (CTR) AES Encryption Mode (Figure 3.43) has a

distinctive difference than the two (ECB and CBC) encryption mode

mentioned earlier. Instead of performing encryption directly on the plaintext,

the encryption is first applied on a counter. The counter is constructed from a

random Initialization Vector and an initial counter value to form a 128-bit

value. The counter is incremented between each encryption for consecutive

series of data (N Byte). The encrypted counter value is then XORed with the

respective plaintext to yield ciphertext. The process of CTR mode shows that

encryption can be executed independently without needing the plaintext

beforehand. The encryption can be executed first. The idle time (55 clock

cycles per encryption using CP2) can be used to perform Data Acquisition of

N byte. By the time both encryption and Data Acquisition completes, simple

XOR operation will be carried out to obtain the final ciphertext. This

122

encryption mode certainly fits the proposed software pattern (Figure 3.40).

Hence, the Figure 3.44 shows the software pattern from Figure 3.40 fitted with

CTR AES Encryption Mode.

Encrypt N/16B CTR Value(1)

Acquire N Byte(2) Send N ByteXOR N Byte(1),(2)

CTR Mode

Figure 3.44: Data processing pattern with encryption and data acquisition

overlapped in CTR Mode

 The RISC32 integrated with CP2 at the current stage however, are not

catered for data processing as shown in Figure 3.44. The proposed data

processing pattern (Figure 3.44) requires RISC32 to carry out two separate

tasks in parallel together. While the CP2 can execute independently from other

functional unit of RISC32, the CP2 integrated are single stage architecture.

This means the CP2 can only process a single plaintext at a time. The CP2

cannot be used before the encryption completes. This is to prevent overwriting

the intermediate data that would yield ciphertext by the end of encryption.

Furthermore, the RISC32 currently can only dispatch one instruction at a time.

To obtain the effect of executing two different tasks together in Figure 3.44,

RISC32 is required to dispatch two different set of instructions for two

different tasks. As such, a Queue System (Section 3.2.6) was proposed to

realize the data processing pattern in Figure 3.44. The Queue system will

schedule the encryption task so that it could be executed alongside with Data

Acquisition tasks. Additionally, a new instruction, Store Word Coprocessor 2

123

(swc2) (Section 3.2.5) is introduced, to resolve potential register file

dependency issue present with the Queue System.

124

3.2.5 Store Word from Coprocessor 2 (swc2)

offset111010 base rt

swc2 $rt ,offset($rs) #Memory[base+offset] ß CP2($rt)

opcode[31:26] rs[25:21] rt[20:16] immediate[15:0]

Figure 3.45: Store Word from Coprocessor 2 (swc2) I-Type Instruction

Encoding and Syntax

 Figure 3.45 shows the instruction encoding and syntax for Store Word

from Coprocessor 2 (swc2). This instruction has a similar behaviour as mfc2,

which also reads from CP2 register file. This instruction reads 32 bits data

from CP2 register file specified by the $rt in the instruction. Unlike mfc2,

swc2 writes to the memory address specified, instead of the Register File in

RISC32. The memory address, with $rs providing the base address, and

memory offset as immediate value from bit 15 to bit 0 is encoded into the

swc2 instruction. The addressing mode of swc2 is shown in Figure 3.46.

mem_addr

offset111010 base rt

opcode[31:26] rs[25:21] rt[20:16] immediate[15:0]

Control-path

Unit
mfc2

Register File

[0]

[1]

[2]

...

[30]

[31]

CP2

result[0]

result[1]

result[2]

result[3]

control

status

[31:0]

[31:0]From CP0

From

Register

File

[31:0]

[31:0]

[31:0]

[15:0]

ALB
Sign-extend [31:0]

[31:0]

Address

Decoder
sw

Data

Memory

mem_wr

Figure 3.46: swc2 implemented using Base Addressing Mode

125

I-Cache CP2

ALB

Address

Decoder

Control-

path Unit

IF ID EX MEM WB

Forwarding Block

Interlock Block

CP0

Register

File

UART

Controller

SPI

Controller

ADC

Controller

Data Cache

Stack RAM

Data RAM

IF
/I
D

 P
ip

e
lin

e
 R

e
g

is
te

r

ID
/E

X
 P

ip
e

lin
e

 R
e

g
is

te
r

E
X

/M
E

M
 P

ip
e

lin
e

 R
e

g
is

te
r

M
E

M
/W

B
 P

ip
e

lin
e

 R
e

g
is

te
r

Figure 3.47: Logical view of swc2 execution

 The Figure 3.47 shows the logical view of swc2 execution. As shown

in Figure 3.47, the swc2 is decoded by Control-path Unit and executed by CP2

at ID stage. The data obtained from CP2 at this stage is carried along EX

through pipeline register until it reaches MEM stage. At EX stage, the memory

address for swc2 is calculated using ALB. The calculated address is decoded

by the Address Decoder to activate the desired memory module (Data RAM,

Stack RAM, Data Cache or I/O modules). At MEM stage, the data is written

into the desired memory location, based on the activated memory module

decoded during EX stage.

 Unlike mfc2, swc2 does not have data hazard issue. This is because the

data fetched during ID stage is directly stored into the memory location at

MEM stage. Since both actions are performed within the execution of the

same instruction, data hazard will not happen.

126

 The swc2 is introduced to resolve potential scheduling issue with the

Queue System. Before swc2 is introduced, the ciphertext can only be read

from CP2 using mfc2. The ciphertext should not be stored in the limited

Register File of RISC32 due to its large size, which is 128 bits. Since the mfc2

can only write back to Register File of RISC32, mfc2 is required to pair with

sw to store the ciphertext into data memory. Table 3.38 shows the required

instructions to store a complete 128-bit ciphertext into data memory.

Table 3.38: Storage of ciphertext from CP2 using mfc2-sw pair

Potential Instruction Pattern 1 Potential Instruction Pattern 2

mfc2 $rt0, $8 #Read result[0] from CP2 mfc2 $rt0, $8 #Read result[0] from CP2

mfc2 $rt1, $9 #Read result[1] from CP2 sw $rt0,0($rs) #Store result[0]

mfc2 $rt2, $10 #Read result[2] from CP2 mfc2 $rt1, $9 #Read result[1] from CP2

mfc2 $rt3, $11 #Read result[3] from CP2 sw $rt1,4($rs) #Store result[1]

sw $rt0,0($rs) #Store result[0] mfc2 $rt2, $10 #Read result[2] from CP2

sw $rt1,4($rs) #Store result[1] sw $rt2,8($rs) #Store result[2]

sw $rt2,8($rs) #Store result[2] mfc2 $rt3, $11 #Read result[3] from CP2

sw $rt3,12($rs) #Store result[3] sw $rt3,12($rs) #Store result[3]

 It is shown that for both instruction pattern (Table 3.38), the sw and

mfc2 has a weak link. There is not enough information to determine a strong

relationship between them, except that both instructions use the same $rt.

However, determining the sw and mfc2 based on their $rt has a potential risk.

If there is an exception raised during the execution of the instruction pattern

illustrated (Table 3.38), the exception handler or interrupt service routine

(ISR) might have a sw instruction that has the matching $rt to preceding mfc2.

The Queue System might not be able to queue the correct sw if such case

arises. With swc2 however, Queue System will only need to detect swc2

instead. Total instructions required to store ciphertext is also reduced.

127

3.2.6 Overview of the Queue System

 In Section 3.2.4, analysis was performed on the typical software

pattern of IoT applications, where an overlapping data processing pattern is

proposed (Figure 3.44). This section discusses the Queue System proposed in

this research work to implement the overlapping pattern. The proposed

hardware solution is inspired by the Tomasulo Algorithm (Hennessy and

Patterson, 2011). The Tomasulo Algorithm is a common dynamic scheduling

technique found in Floating Point Units (FPU) to handle long computation

cycle of floating-point operations. In Tomasulo Algorithm, dynamic

scheduling is realized by reservation stations. The reservation stations

constantly monitor the status (busy or idle) of its respective functional units

(Eg: Floating-Point Adder, Floating-Point Multiplier), determining whether

the functional units are ready to execute an instruction. In cases where

functional units are busy, the reservation stations will hold any incoming

instructions until the functional units are idle again. The reservation stations

also have the ability to resolve data dependency issue between instructions.

 The Queue System proposed have similar function to the reservation

stations. It consists of two new hardware, namely the Coprocessor 2 Queue

(CP2Q) and Store Word Queue (SWQ). The CP2Q (Section 3.2.6.1) is

responsible to monitor the status of CP2 and scheduling of CP2 related

instruction. The SWQ (Section 3.2.6.2) is controlled by CP2Q, to schedule

store instructions that is awaiting output from CP2 due to its long encryption

clock cycle.

128

Forwarding Block

ID

I-Cache

To Control Unit

Register

File

CP2

CP0

CP2

Queue

StoreWord

Queue

ALB

Address

Decoder

UART

Controller

SPI

Controller

ADC

Controller

IF EX MEM WB

Data Cache

Stack RAM

Data RAM

IF
/I
D

 P
ip

e
lin

e
 R

e
g

is
te

r

ID
/E

X
 P

ip
e

lin
e

 R
e

g
is

te
r

E
X

/M
E

M
 P

ip
e

lin
e

 R
e

g
is

te
r

M
E

M
/W

B
 P

ip
e

lin
e

 R
e

g
is

te
r

Figure 3.48: RISC32 with CP2 and Queue System

 The Figure 3.48 shows the RISC32 with CP2 and Queue System. The

Queue System composes of CP2 Queue (CP2Q) and Store Word Queue

(SWQ). The CP2Q and SWQ work together with CP2 to queue and execute

the CP2 instructions in the pipeline. All queuing and re-insertion of CP2

instructions into the processor pipeline, is completely hidden from the

software. The user can write program with the pattern shown in Figure 3.49,

while the underlying hardware queue will reschedule the execution of the CP2

instructions as proposed at the end of Section 3.2.4 (Figure 3.44).

Encrypt N/16B CTR Value Acquire N Byte Send N ByteXOR N Byte

Figure 3.49: Serial processing pattern in CTR mode

129

Forwarding Block

ID

I-Cache

Control-path

Unit

Register

File

CP2

CP0

CP2

Queue

Store

Word

Queue

ALB

Address

Decoder

IF EX MEM WB

UART

Controller

SPI

Controller

ADC

Controller

Data Cache

Stack RAM

Data RAM

IF
/I
D

 P
ip

e
lin

e
 R

e
g

is
te

r

ID
/E

X
 P

ip
e

lin
e

 R
e

g
is

te
r

E
X

/M
E

M
 P

ip
e

lin
e

 R
e

g
is

te
r

M
E

M
/W

B
 P

ip
e

lin
e

 R
e

g
is

te
r

Figure 3.50: Logical view of Queue System execution when CP2 is busy

 The Figure 3.50 shows the Queue System execution when CP2 is busy.

Every decoded instruction at ID stage will go through CP2Q before

proceeding to EX stage. When CP2 is busy, the CP2 Queue (CP2Q) will

determine if current instruction at ID stage should be queued. This refers to

mtc2 and swc2. Any other instruction that is not related will bypass CP2Q and

proceed as usual. It should be noted as well, the Queue System will allow CP2

instruction to bypass for direct execution when CP2 is idle.

 When an mtc2 instruction is detected by CP2Q, the decoded mtc2

instruction is stored into CP2Q. CP2 register file address and decoded mtc2

control signal is stored into CP2Q Instruction RAM. Fetched operand for mtc2

is stored into the CP2Q Data RAM. In cases where data hazard occurred for

mtc2, the operand will be forwarded to the CP2Q by the Forwarding Block.

Otherwise, the operand comes directly from the Register File. When swc2 is

detected by the CP2Q, the decoded swc2 control signal and CP2 register file

address will be stored into the CP2Q Instruction RAM. With the detection of

130

swc2 in CP2Q, the address encoded with swc2 will be recorded in SWQ as

well. This action is triggered by CP2Q, where a control signal

(bcp2Q_swQ_sw_wr) will be generated by CP2Q at the next cycle and

transmitted to EX stage. This control signal will instruct SWQ to store the

calculated address by ALB into SWQ Address RAM.

Forwarding Block

ID

I-Cache

Control-path

Unit

Register

File

CP2

CP0

CP2

Queue
StoreWord

Queue

ALB

Address

Decoder

IF EX MEM WB

UART

Controller

SPI

Controller

ADC

Controller

Data Cache

Stack RAM

Data RAM

IF
/I
D

 P
ip

e
lin

e
 R

e
g

is
te

r

ID
/E

X
 P

ip
e

lin
e

 R
e

g
is

te
r

E
X

/M
E

M
 P

ip
e

lin
e

 R
e

g
is

te
r

M
E

M
/W

B
 P

ip
e

lin
e

 R
e

g
is

te
r

Figure 3.51: Logical view of Queue System execution when CP2 is ready

 Figure 3.51 shows the Queue System execution when CP2 is ready.

The illustrated execution only applies if CP2 instruction is previously queued

in the Queue System. If CP2 is idle and no unexecuted CP2 instruction were

present in the Queue System, the CP2 instructions (mtc2, mfc2, and swc2) are

allowed to bypass Queue System and executed by CP2 directly.

 When CP2Q detects that CP2 is ready (encryption completes), the

CP2Q will fetch decoded CP2 instruction (mtc2 or swc2 control signal) and

CP2 register file address from CP2Q Instruction RAM. In the case of mtc2,

operand is fetched from the CP2Q Data RAM as well. The information for

131

mtc2 instruction will be carried over to ID stage and executed by CP2 as

discussed in Section 3.2.2. In the case of swc2 fetched, the action to read

ciphertext from CP2 will be executed at ID stage, and updated into SWQ Data

RAM at EX stage. The SWQ will keep track of the number of words read

from CP2, until it accumulated 4 words (32-bit) from CP2, which is equivalent

to 128-bit ciphertext. These data from CP2 is stored into SWQ Data RAM.

When a complete ciphertext is being read, the address for previously queued

swc2 instructions will be fetched from SWQ Address RAM. Ciphertext

accumulated is also fetched from SWQ Data RAM again. These actions

(reading from SWQ Address and Data RAM) will trigger SWQ to generate a

stall signal (bswQ_pipe_stall), eventually stalls the IF and ID stage of RISC32

pipeline. At the same time, the stall signal also flushes the EX stage. These

series of actions are performed to allow swc2 instruction to be reinserted into

EX stage from SWQ. The ciphertext will then be stored into the desired

memory location at the MEM stage. The stall signal (bswQ_pipe_stall) will be

deactivated as soon as the 128-bit ciphertext is stored into the memory, where

it is hold for four clock cycle (equivalent to four swc2 instructions). From this

point onward, the pipeline will resume its operation from the instruction that

was previously stalled in ID stage.

132

3.2.6.1 Coprocessor 2 Queue (CP2Q) Design

 The Coprocessor 2 Queue (CP2Q) is responsible in keeping track of

the CP2 related instructions and the status of CP2. Based on the status signal

from RISC32 pipeline and CP2, the CP2Q determines whether to execute

detected CP2 related instructions. The Figure 3.52 shows the CP2Q Block Top

Level interface. Pin description for the CP2Q Block is provided at Table 3.39.

bcp2Q

bicp2Q_cp2_enc

bicp2Q_itl_id_flush_ex

bicp2Q_write_stall

bicp2Q_swQ_stall

bicp2Q_din[31:0]

bicp2Q_id_rt5[4:0]

bicp2Q_id_rd5[4:0]

bicp2Q_id_mtc2

bicp2Q_id_mfc2

bicp2Q_id_sw

bicp2Q_clk

bicp2Q_rst

bicp2Q_cp2_ready

bocp2Q_empty

bocp2Q_swQ_sw_wr

bocp2Q_swQ_data_wr

bocp2Q_q_stall

bocp2Q_id_swc2_path

bocp2Q_ex_swc2_path

bocp2Q_dout[31:0]

bocp2Q_cp2_addr[3:0]

bocp2Q_mtc2

[31:0]

[4:0]

[4:0]

[31:0]

[3:0]

Figure 3.52: Top-level Interface for CP2Q Block

133

Table 3.39: Pin Description for CP2Q Block Interface

Pin Name: bocp2Q_dout[31:0] Pin Direction: Output

Pin Size: 32 bits

Sourceà Destination: CP2Q Block à CP2 Block

Pin Function:

Output port for 32-bit data to be processed by CP2
Pin Name: bocp2Q_cp2_addr[3:0] Pin Direction: Output

Pin Size: 4 bits

Source à Destination: CP2Q Block à CP2 Block

Pin Function:

Output port for 4-bit CP2 register file address

Pin Name: bocp2Q_mtc2 Pin Direction: Output

Pin Size: 1 bit

Source à Destination: CP2Q Block à CP2 Block

Pin Function:

Output control signal for CP2 to perform mtc2 instructions

0: mtc2 instruction not requested

1: mtc2 instruction requested

Pin Name: bocp2Q_swQ_data_wr Pin Direction: Output

Pin Size: 1 bit

Source à Destination: CP2Q Block à SWQ Block

Pin Function:

Output control signal to SWQ to store CP2 output

0: Do not store CP2 ciphertext output

1: Store CP2 ciphertext output

Pin Name: bocp2Q_swQ_sw_wr Pin Direction: Output

Pin Size: 1 bit

Source à Destination: CP2Q Block à SWQ Block

Pin Function:

Output control signal to SWQ to store calculated address for swc2 instruction

0: Do not store address calculated by Arithmetic Logic Block

1: Store address calculated by Arithmetic Logic Block

Pin Name: bocp2Q_id_swc2_path Pin Direction: Output

Pin Size: 1 bit

Source à Destination: CP2Q Block à RISC32 Pipeline

Pin Function:

Output control signal to RISC32 pipeline ID stage to select read source as CP2 output

0: swc2 is queued by CP2Q. Do not select CP2 output as read source

1: swc2 bypassed CP2Q. Select CP2 output as read source

Pin Name: bocp2Q_ex_swc2_path Pin Direction: Output

Pin Size: 1 bit

Source à Destination: CP2Q Block à SWQ Block

Pin Function:

Output control signal to RISC32 pipeline EX stage to allow CP2 output from ID stage bypass

SWQ

0: swc2 is queued by CP2Q. SWQ wait for control signal from CP2Q

1: swc2 bypassed CP2Q. SWQ ignore control signal from CP2Q

Pin Name: bocp2Q_q_stall Pin Direction: Output

Pin Size: 1 bit

Source à Destination: CP2Q Block à Interlock Block

Pin Function:

Output control signal to Interlock Block to indicate currently CP2Q is full

0: CP2Q is not full. RISC32 pipeline can continue fetch new instruction

1: CP2Q is full. RISC32 pipeline should be stalled to prevent fetching of new instruction

134

Continued from Table 3.39

Pin Name: bocp2Q_empty Pin Direction: Output

Pin Size: 1 bit

Source à Destination: CP2Q Block à Programmable Interrupt Controller

Pin Function:

Output control signal to Programmable Interrupt Controller to indicate currently CP2Q is

empty

0: CP2Q is not empty

1: CP2Q is empty. Trigger CP0 if Queue System Interrupt is enabled

Pin Name: bicp2Q_cp2_ready Pin Direction: Input

Pin Size: 1 bit

Source à Destination: CP2 Block à CP2Q Block

Pin Function:

Input status signal to indicate current status of CP2

0: CP2 is busy. Do not dispatch instruction from CP2Q and queue incoming CP2 related

instructions

1: CP2 is idle. Dispatch instruction from CP2Q if queue is not empty

Pin Name: bicp2Q_cp2_enc Pin Direction: Input

Pin Size: 1 bit

Source à Destination: CP2 Block à CP2Q Block

Pin Function:

Input control signal to indicate if encryption command (0x2) is currently requested in CP2

0: No encryption requested. Dispatch instruction from CP2Q if queue is not empty

1: Encryption requested. Do not dispatch instruction from CP2Q and queue incoming CP2

related instructions

Pin Name: bicp2Q_swQ_stall Pin Direction: Input

Pin Size: 1 bit

Source à Destination: SWQ Block à CP2Q Block

Pin Function:

Input control signal to indicate if SWQ is performing swc2 reinserting into RISC32 pipeline

and CP2Q Block should be stalled

0: No swc2 reinserting by SWQ. CP2Q operate as usual

1: SWQ is reinserting swc2. Stall writing operation for CP2Q.

Pin Name: bicp2Q_din[31:0] Pin Direction: Input

Pin Size: 32 bits

Source à Destination: RISC32 Register File à CP2Q Block

Pin Function:

Input port for operand fetched by decoding mtc2 instructions

Pin Name: bicp2Q_id_rt5[4:0] Pin Direction: Input

Pin Size: 5 bits

Source à Destination: RISC32 Pipeline à CP2Q Block

Pin Function:

Input port for CP2 register file address for swc2 instruction

Pin Name: bicp2Q_id_rd5[4:0] Pin Direction: Input

Pin Size: 5 bits

Source à Destination: RISC32 Pipeline à CP2Q Block

Pin Function:

Input port for CP2 register file address for mtc2 or mfc2 instruction

Pin Name: bicp2Q_id_mtc2 Pin Direction: Input

Pin Size: 1 bit

Source à Destination: Control-path Unit à CP2Q Block

Pin Function:

Input control signal from Control-path Unit when mtc2 instruction is decoded

0: No mtc2 decoded by Control-path Unit

1: mtc2 decoded by Control-path Unit

135

Continued from Table 3.39

Pin Name: bicp2Q_id_mfc2 Pin Direction: Input

Pin Size: 1 bit

Source à Destination: Control-path Unit à CP2Q Block

Pin Function:

Input control signal from Control-path Unit when mfc2 or swc2 is decoded

0: No mfc2 or swc2 instruction decoded Control-path Unit

1: mfc2 or swc2 instruction decoded by Control-path Unit

Pin Name: bicp2Q_write_stall Pin Direction: Input

Pin Size: 1 bit

Source à Destination: RISC32 Pipeline à CP2Q Block

Pin Function:

Input status signal to prevent CP2Q Block to queue any incoming CP2 instructions when

instruction cache miss occurred

0: No global stall signal detected. CP2Q Block operates as usual

1: Global stall signal detected. Stall CP2Q Block from queueing any incoming instruction

Pin Name: bicp2Q_itl_id_flush_ex Pin Direction: Input

Pin Size: 1 bit

Source à Destination: Interlock block à CP2Q Block

Pin Function:

Input status signal to prevent CP2Q Block to queue any incoming CP2 instructions when load

use data hazard occurred

0: No load use hazard detected by Interlock Block. CP2Q operates as usual

1: Load use hazard detected by Interlock Block. Stall CP2Q Block from queueing any

incoming instructions
Pin Name: bicp2Q_rst Pin Direction: Input

Pin Size: 1 bit

Source à Destination: Global Reset à CP2Q Block

Pin Function:

Reset signal for CP2Q Block

Pin Name: bicp2Q_clk Pin Direction: Input

Pin Size: 1 bit

Source à Destination: Global Clock à CP2Q Block

Clock Source for CP2Q Block

136

bcp2Q

25'b1 [6:2] [1] [0]

1
032'b0

1
0

32'b0

1
0

1
032'b0

bcp2Q_data_ram

[0]

[1]

[2]

[1023]

[1022]

[31:0]

bcp2Q_instruction_ram

[0]

[1]

[2]

[1023]

[1022]

[31:0]

[31:0]

1
0

[31:0]

rd
wr

Write Address

Generator

Block

Read Address

Generator

Block

Queue Counter

Queue Address Generator

rd_addr_reg[9:0]

wr_addr_reg[9:0]

[5:2]

bcp2Q_swc2

q_empty

q_empty

bicp2Q_cp2_ready

bicp2Q_cp2_ready

q_empty_reg

[1]

[0]

bicp2Q_rst

bicp2Q_id_rt5[4:0]

bicp2Q_id_rd5[4:0]

bicp2Q_id_mfc2

bicp2Q_id_mtc2

bicp2Q_din[31:0]

bicp2Q_sw

bicp2Q_write_stall

bicp2Q_swQ_stall

bicp2Q_cp2_enc

bicp2Q_cp2_ready

bicp2Q_itl_id_flush_ex

[4:0]

[4:0]

swc2_reg_sel

bocp2Q_cp2_addr[3:0]

bocp2Q_dout[31:0]

bocp2Q_mtc2

bocp2Q_id_swc2_path

bocp2Q_ex_swc2_path

bocp2Q_empty

bocp2Q_swQ_data_wr

bocp2Q_swQ_sw_wr

rd

10

CP2Q

Control

Logic

Figure 3.53: Microarchitecture of CP2Q Block

137

 The Figure 3.53 illustrates the microarchitecture of CP2Q Block. The

main components in CP2Q Block are CP2Q Data RAM (bcp2Q_data_ram),

CP2Q Instruction RAM (bcp2Q_instruction_ram), Queue Address Generator

and CP2Q Control Logic.

 The CP2Q Instruction RAM stores CP2 instructions decoded form,

which is the mtc2 control signal, mfc2 control signal and CP2 register file

address. The CP2Q Data RAM stores operand for mtc2 instructions. Both

CP2Q Instruction RAM and Data RAM is implemented with Block RAM

technology available on Digilent Nexys 4 DDR Artix-7 FPGA Board, and has

a total of 1024 word locations. The number 1024 is estimated by calculating

the worst-case scenario of maximum unexecuted encryption task based on the

recommend range of N byte during software pattern analysis in Section 3.2.4.

With swc2 implemented, an encryption request consists of four mtc2 for

plaintext transfer, one mtc2 for encryption command transfer and four swc2

for ciphertext reading. By assuming the worst-case, the largest N = 1024B is

selected. The 1024B is arranged into a total of 64 encryption request (16B per

encryption). This is equivalent to a maximum of 576 CP2 instructions to be

expected for the encryption task. Since the Block RAM comes in the size of

32-bit x 512 and 32-bit x1024, the location of CP2Q Instruction RAM and

Data RAM is determined to be 1024 to meet the worst-case scenario.

 The Queue Address Generator is responsible to generate the read and

write addresses for both CP2Q Data RAM and Instruction RAM. It also keeps

track the number of instructions currently queued in the CP2Q Data RAM and

138

Instruction RAM. The CP2Q Control Logic assess the input status signals

from CP2, SWQ and RISC32 pipeline to generate control signals for read

write operation in CP2Q. All main components in CP2Q works together to

form a First-In-First-Out (FIFO) queue. This ensures the queued CP2

instruction to be executed In-Order with respect to their sequence in the user

program. It should be noted as well, the CP2Q Instruction RAM and Data

RAM has separate read port and write port. This allows the CP2Q to dispatch

older instruction from the head of the FIFO if the CP2 is ready, at the same

time, queue any incoming instruction by appending at the end of FIFO. Figure

3.54 shows the algorithm flowchart for CP2Q Control Logic.

START

Is SWQ

reinserting

swc2 into

pipeline?

Is Load Use

Data Hazard

Detected?

Is Global Stall

Detected?

Is CP2

instruction

detected?

Bypass CP2Q

Is CP2 busy?

Store CP2 instruction

and data into

respective queue

Is CP2Q

Empty?

Is swc2?

Activate SWQ on next

clock cycle to store

calculated memory

address

END

Yes

No

Yes

No

No

Yes

Yes No

Is CP2 busy?

Is CP2Q

Empty?

No

To WriteTo Read

No

Read oldest CP2

instruction and data

from respective

queue

Yes

Yes

No

No

No

Yes

Yes

Yes

Is CP2Q currently

reading older

instruction and data?

No Yes

Figure 3.54: Algorithm Flowchart for CP2Q Control Logic

139

3.2.6.2 Store Word Queue (SWQ) Design

 The Store Word Queue (SWQ) is responsible in storing address and

reading data for swc2 instruction that is previously queued in CP2Q. Based on

the control signals generated from CP2Q, the SWQ determines whether to

queue the swc2 instruction from RISC32 pipeline. The execution of queued

swc2 from SWQ is also controlled by CP2Q. Figure 3.55 shows the top-level

interface for SWQ Block. Pin description for top-level interface of SWQ

Block is listed in Table 3.40.

bswQ

biswQ_cp2_din[31:0]

boswQ_ex_addr[31:0]

biswQ_sw_addr[31:0]
boswQ_ex_sw

biswQ_rst

biswQ_clk

biswQ_addr_wr

biswQ_data_wr

boswQ_ex_dout[31:0]

boswQ_pipe_stall

boswQ_empty

[31:0]

[31:0]

[31:0]

[31:0]

Figure 3.55: Top-Level Interface for SWQ Block

Table 3.40: Pin Description for SWQ Block Interface

Pin Name: boswQ_ex_dout[31:0] Pin Direction: Output

Pin Size: 32 bits

Sourceà Destination: SWQ Block à RISC32 EX stage

Pin Function:

Output port for 32-bit data to be stored into specified memory location
Pin Name: boswQ_ex_addr[31:0]] Pin Direction: Output

Pin Size: 32 bits

Source à Destination: SWQ Block à Address Decoder à RISC32 EX Stage

Pin Function:

Output port for 32-bit address to store output data of CP2. It is also decoded by Address

Decoder to select between RISC32 Data RAM and integrated I/O module.

140

Continued from Table 3.40

Pin Name: boswQ_ex_sw Pin Direction: Output

Pin Size: 1 bit

Source à Destination: SWQ Block à Address Decoder

Pin Function:

Output control signal activated when reinserting swc2 instructions into RISC32 pipeline.

Required for Address Decoder to activate memory module at MEM stage for store data

operation

0: No swc2 instruction reinsertion.

1: swc2 instruction is reinserting into RISC32 pipeline
Pin Name: boswQ_pipe_stall Pin Direction: Output

Pin Size: 1 bit

Source à Destination: SWQ Block à RISC32 Pipeline

Pin Function:

Output status signal activated when reinserting swc2 instructions. This signal stalls the IF and

ID stage to prevent new instruction entering pipeline. The CP2Q is also stalled, to prevent any

execution of previously queued instructions. The EX stage is flushed, to allow swc2 to reuse

the existing sw transfer path.

0: No swc2 instruction reinsertion.

1: swc2 instruction is reinserting into RISC32 pipeline

Pin Name: boswQ_empty Pin Direction: Output

Pin Size: 1 bit

Source à Destination: SWQ Block à Programmable Interrupt Controller

Pin Function:

Output status signal to indicate SWQ is currently empty.

0: SWQ is not empty.

1: SWQ is empty. Trigger CP0 to raise exception if Queue System Interrupt is enabled

Pin Name: biswQ_cp2_din[31:0] Pin Direction: Input

Pin Size: 32 bits

Source à Destination: CP2 Block à SWQ Block

Pin Function:

Input port for ciphertext output from CP2 Block. To be stored into memory module

Pin Name: biswQ_data_wr Pin Direction: Input

Pin Size: 1 bit

Source à Destination: CP2Q Block à SWQ Block

Pin Function:

Input control signal to store current ciphertext output from CP2 Block.

0: Do not store output from CP2 Block

1: Store current output from CP2 Block

Pin Name: biswQ_sw_addr[31:0] Pin Direction: Input

Pin Size: 32 bits

Source à Destination: Arithmetic Logic Block à SWQ Block

Pin Function:

Input port for memory address of swc2 queued in CP2Q Block. To be used when swc2 is

reinserted back into RISC32 pipeline

Pin Name: biswQ_addr_wr Pin Direction: Input

Pin Size: 1 bit

Source à Destination: CP2Q Block à SWQ Block

Pin Function:

Input control signal to store calculated output from Arithmetic Logic Block as memory

address encoded with swc2 instruction

0: Do not store output from Arithmetic Logic Block

1: Store current output from Arithmetic Logic Block

141

Continued from Table 3.40

Pin Name: biswQ_rst Pin Direction: Input

Pin Size: 1 bit

Source à Destination: Global Reset à SWQ Block

Pin Function:

Reset Signal for SWQ Block

Pin Name: biswQ_clk Pin Direction: Input

Pin Size: 1 bit

Source à Destination: Global Clock à SWQ Block

Pin Function:

Clock Source for SWQ Block

142

bswQ

bswQ_data_ram

[0]

[1]

[2]

[31:0]

[3]

bswQ_address_ram

[0]

[1]

[2]

[1023]

[1022]

[31:0]

Data

Counter[2:0]
data_count_reg[1:0]

[31:0]

bswQ_data_rd

Write Address

Generator

Block

Read Address

Generator

Block

Queue Counter

Queue Address Generator

[31:0]

wr_addr_reg[9:0]

rd_addr_reg[9:0]

[31:0]

[31:0]

q_empty_reg

biswQ_rst

boswQ_empty

biswQ_sw_addr[31:0]

biswQ_cp2_din[31:0]

biswQ_data_wr

biswQ_addr_wr

boswQ_ex_dout[31:0]

boswQ_ex_addr[31:0]

boswQ_ex_sw

boswQ_pipe_stall

Figure 3.56: Microarchitecture of SWQ Block

143

 Figure 3.56 shows the microarchitecture for SWQ Block. The SWQ

Block contains four main components, which is the SWQ Address RAM,

SWQ Data RAM, Queue Address Generator and Data Counter. The SWQ

Address RAM stores the memory address of the swc2 instruction if it is

queued in CP2Q. The SWQ Address RAM is implemented using Block RAM

technology, and has a total location of 1024 in word size. The number of

locations corresponds to the size implemented for CP2Q Instruction RAM and

CP2Q Data RAM. The SWQ Data RAM stores the ciphertext output from

CP2. Unlike SWQ Address RAM, the SWQ Data RAM is implemented with

Distributed RAM technology, and only has four locations in total. Each of

these locations are in word size, and all four locations will be concatenated to

form 128-bit in total, which is the size of ciphertext from CP2. Since the

number of locations for SWQ Data RAM is limited, the SWQ has to stall

CP2Q when it has accumulated a complete ciphertext. This is to prevent

CP2Q from executing any previously queued swc2 and overwrite the SWQ

Data RAM. The Queue Address Generator for SWQ generates read and write

address for SWQ Address RAM. It also keeps track the number of address

currently queued. The Data Counter keeps track the number of data currently

accumulated in SWQ Data RAM. The Data Counter also serves as the read

and write address for SWQ Data RAM.

144

 The SWQ however, does not have Control Logic that is present in

CP2Q. This is because the main controls (biswQ_data_wr and

biswQ_addr_wr) for SWQ has been handled by the CP2Q Control Logic. The

internal operation of SWQ is presented as flowchart in the Figure 3.57.

START

END

Write ALB

computed

address into

address queue

Write CP2

output into data

queue

On next clock

cycle, flush EX

stage, stall IF

and ID stage

Read from

address queue

and data queue
Is address

write signal

from CP2Q?

Is data write

signal from

CP2Q?

Is 128-bit

data read

from CP2?Reinsert swc2

into EX stage

AddressData

Yes

Yes

No

Yes

No

Stall CP2Q

Figure 3.57: Internal Operation of SWQ

145

3.3 Summary

 This chapter has discussed the compiler development to realize the

RISC32 toolchain. The RISC32 toolchain is established around the LLVM

retargetable compiler. Currently, MIPS was one of the supported backend in

LLVM. While RISC32 was designed to be MIPS-ISA compatible, the

supported MIPS instruction set in LLVM is up to the latest MIPS generation,

which has much more instruction than RISC32 could support. As such, a

suitable sub-target, MIPS II in the MIPS Backend of LLVM has been selected,

to narrow down the instruction set available for code generation. However,

the RISC32 and MIPS II instruction set is not completely compatible. Special

transformation routine was discussed to convert the unsupported instructions

in MIPS II into RISC32 equivalent instructions. The CP2 intrinsic function

was also implemented, to allow compatible code generation that fits the usage

of integrated CP2 and Queue System in RISC32. Interrupt Service Routine

(ISR) programming feature was implemented to allow programming of

interrupt-based applications, which is commonly used to realize I/O

transactions between IoT sensor node and its surrounding IoT devices.

 This chapter has also discussed the CP2 integration into RISC32. The

CP2 integrated is an AES-128 Coprocessor. With the introduction of CP2, 2

new instructions, namely Move to Coprocessor 2 (mtc2) and Move from

Coprocessor 2 (mfc2) has been created to allow data transfer between the

RISC32 pipeline and CP2 register file. However, the CP2 requires 55 clock

cycle to perform encryption on its 16-byte/128-bit plaintext input. After

analysing the typical IoT pattern, a solution was derived to utilize the long

146

encryption clock cycle. This solution utilizes the Counter (CTR) AES

encryption mode and the idea of dynamic scheduling, to allow both Data

Acquisition and Data Processing task to execute in parallel. A Queue System

was proposed to realize the dynamic scheduling idea. Additionally, Store

Word from Coprocessor 2 (swc2) instruction was introduced to resolve the

potential data hazard faced by the Queue System.

147

CHAPTER 4

SYSTEM VERIFICATION

 The developed RISC32 integrated with CP2 and Queue System is

synthesized and implemented onto the Xilinx Artix-7 XC7A100T FPGA in

Digilent Nexys 4 DDR board using Xilinx Vivado HLx 2017.2 IDE. All C test

programs developed are compiled using the customized RISC32 Toolchain

developed in this work, which is based on LLVM version 5.0. The RISC32

Toolchain is installed on a host computer with Ubuntu 16.04 LTS Operating

System. The Figure 4.1 shows the RISC32 microarchitecture implemented

with CP2 and Queue System. Table 4.1 shows the FPGA resource

consumption for microarchitecture of RISC32 with CP2 and Queue System.

Resource overhead between each microarchitecture is calculated in Table 4.2.

Multiplier
Stage 2

I-Cache

ALU

CP0

Multiplier
Stage 1

Address
Decoder

D-Cache

Data and
Stack
RAM

SPI

UART

GPIO

Branch
predictor

IF ID EX MEM WB

Main Control Block

Arithmetic Logic
Control Block

Forwarding block

Interlock block

Boot
ROM

Branch
predictor

CP2CP2Q SWQ

Read Register File
Write

Register
File

ADC

IF
/I

D
 P

ip
el

in
e

R
eg

is
te

r

ID
/E

X
 P

ip
el

in
e

R
eg

is
te

r

EX
/M

EM
 P

ip
el

in
e

R
eg

is
te

r

M
EM

/W
B

 P
ip

el
in

e
R

eg
is

te
r

Figure 4.1: RISC32 Microarchitecture Components with CP2 and Queue

System

148

Table 4.1: FPGA Resource Usage for RISC32 with CP2 and Queue

System

FPGA Resources
Microarchitecture

RISC321 RISC32_CP2-NQ2 RISC32_CP2-Q3

LUT 6046 7573 7849

LUTRAM 311 311 343

FF 2574 4661 4745

BRAM 3.50 3.50 5.00

IO 49 49 50

BUFG 2 2 2

*Note:

1. Original RISC32 without CP2 and Queue System

2. RISC32 implemented with CP2 but without Queue System

3. RISC32 implemented with CP2 and Queue System

Table 4.2: FPGA Resource overhead comparison

FPGA Resources

Microarchitecture

RISC32 to

RISC32_CP2-NQ

RISC32 to

RISC32_CP2-Q

RISC32_CP2-NQ to

RISC32_CP2-Q

LUT 25.25% 29.82% 3.64%

LUTRAM 0.00% 10.29% 10.29%

FF 81.08% 84.34% 1.80%

BRAM 0.00% 42.86% 42.86%

IO 0.00% 2.04% 2.04%

BUFG 0.00% 0.00% 0.00%

*Resource overhead = ((improved implementation / existing implementation)- existing

implementation) * 100%

Table 4.3: Longest Timing Delay for Each Stage for Different RISC32

Microarchitecture

Microarchitecture
Pipeline Stage

IF ID EX MEM WB

RISC32 14.537ns 13.309ns 14.668ns 17.830ns 2.556ns

RISC32_CP2-NQ 14.287ns 14.347ns 14.486ns 17.945ns 2.763ns

RISC32_CP2-Q 13.986ns 15.655ns 16.436ns 18.541ns 2.936ns

 From the timing analysis result in Table 4.3, it could be seen in

RISC32_CP2-Q microarchitecture, the longest timing delay is now 18.541 ns.

However, this timing is still within the minimum clock period requirement of

RISC32, which is 20 ns. This shows that integrating the CP2 and Queue

System does not impose a huge effect on the overall RISC32 performance.

149

4.1 Functional Verification

4.1.1 RISC32 Toolchain Compilation Verification

 The RISC32 Toolchain was established using the retargetable LLVM

compiler. As the MIPS backend was currently implemented in LLVM, it could

be used for code compilation for RISC32. However, the MIPS backend

implemented supports more instructions than the existing RISC32 instruction

set has. As such among the legal sub-target supported by the MIPS backend,

MIPS II was selected as a base for RISC32 code compilation due to their high

similarity in instruction set. The following efforts was made on LLVM to use

the MIPS II for RISC32 code compilation:

1) Analysis and comparison between the instructions supported by MIPS

II and RISC32 instruction set. Discussion on action to be taken for

each instruction has been discussed in Chapter 3, Section 3.1.2.

2) Through the analysis, several instructions in MIPS II instruction set

which were not supported by the RISC32 are also implemented. The

affected instruction groups are Shift-by-Variable and Branch on

Conditional. The porting to support compilation for both instruction

groups in RISC32 was discussed and verified in Section 3.1.4 and

Section 3.1.5 of Chapter 3.

3) With the introduction of CP2 core to RISC32, new instructions (mtc2,

mfc2 and swc2) were implemented to support data transaction between

150

the RISC32 pipeline and CP2 Core. These instructions were

implemented by default in existing MIPS backend of LLVM.

However, to ensure a compatible routine to be compiled for the proper

usage of the CP2 core and Queue System, intrinsic functions were

implemented. Test programs were developed using these intrinsic

functions.

4) The Interrupt Service Routine (ISR) compilation is currently supported

in LLVM. However, the compiled ISR output does not conform to the

ISR convention of RISC32. Detailed discussion on the ISR

compilation for both LLVM and RISC32 can be found in Chapter 3,

Section 3.1.7.

 With all the implementations performed above, the LLVM is now

ready to generate compatible code to be executed on RISC32. All of the C

test programs in this Chapter 4 is compiled using this RISC32 Toolchain.

151

4.1.2 Coprocessor 2 (CP2) and Queue System Verification

 The CP2 core integrated into RISC32 IoT processor performs AES-

128 Encryption. A C test program was developed to perform encryption using

the CP2 core. The C test program was written using the CP2 intrinsic

functions as discussed in Chapter 3, Section 3.1.6. The test program is setup as

follows:

1) Initialize control register (UARTCR) of UART Controller with

baud rate of 9600.

2) Perform secret key expansion using CP2 key expansion intrinsic

function, __builtin_risc32_aes128_keyinit ().

3) Load 128-bit of input test vector plaintext into a 4 word 128-bit

array.

4) Perform AES-128 Encryption using CP2 encryption intrinsic

function, __builtin_risc32_aes128_enc ().

5) Prepare address for next 128-bit of input test vector plaintext.

6) Repeat Step 3 to 5 until all test vector is encrypted

7) Transmit all encrypted ciphertext through UART to host computer

8) Repeat from Step 3 until Step 7

The test program first sets up the UART control register, to allow the

transmission of the encrypted ciphertext. Detailed information of the RISC32

UART Controller can be found in the work by Kiat (2018). The test program

will then prepare the round keys, before starting encryption on the input test

152

vectors. The secret key and input vectors are shown in the Figure 4.2. The

encrypted value is then sent back to a host computer to verify their

correctness, which is compared against the test vector provided for AES-128

in the NIST SP800-38 (2007) document. The sample ciphertext output is

provided in Figure 4.2.

Figure 4.2: AES-128 Test Vector

Source: NIST SP800-38, 2007

 The same test program is used to test both the CP2 core encryption and

also the Queue System proposed. For CP2 core verification only, the CP2

encryption intrinsic function is compiled with 55 NOPS to wait for CP2 to

complete its encryption. The main purpose is to test the CP2 instructions

(mtc2, mfc2 and swc2). If these instructions can be carried out successfully,

the encryption should be performed successfully and yield the correct

ciphertext output as compared to Figure 4.2. As for Queue System, the CP2

153

encryption intrinsic function will be compiled without the 55 NOPS as

discussed in Chapter 3, Section 3.1.6. This will induce the Queue System to

queue up the CP2 instructions when the CP2 is busy. To verify the

functionality of the Queue System, the final ciphertext output stored into the

data memory of RISC32 will be checked if it matches the expected ciphertext

in Figure 4.2. If the output ciphertext is matched, this indicates the CP2Q and

SWQ of the Queue System had successfully rescheduled the execution of the

CP2 encryption task while the CP2 is busy. The Figure 4.3 shows the received

ciphertext through UART transmission. The ciphertext is read from the data

memory of RISC32.

Figure 4.3: Ciphertext received from UART on the host computer. Data is

displayed using RealTerm

154

4.2 Performance Analysis

 To evaluate the effectiveness of the proposed Queue System, three test

programs were developed. The evaluation metrics that are being assessed are

execution time and energy consumption of each test program. The test

combinations are shown in Table 4.4

Table 4.4: Test Combination for Performance Analysis

Test Program Hardware Architecture Test Case

tiny-AES-C (kokke, 2014) RISC32 T_C

Assembly AES RISC32 T_ASM

AES using CP2 instructions RISC32_CP2-NQ T_CP2-NQ

AES using CP2 instructions RISC32_CP2-Q T_CP2-Q

Encrypt N/16B CTR Value Acquire N Byte Send N ByteXOR N Byte

Figure 4.4: Test Program Software Pattern

 The test programs are developed with the software pattern shown in

Figure 4.4. Note that test program for T_C and T_ASM implements AES

encryption in software (C and assembly language). T_CP2-NQ is assessed on

RISC32 with CP2 core but without Queue System. T_CP2-Q is performed on

RISC32 with CP2 Core and incorporates proposed Queue System to overlap

data acquisition and AES encryption for better speed and energy performance.

Both T_CP2-NQ and T_CP2-Q executes the same software program, but they

achieved varied performance due to different hardware architecture.

155

4.2.1 Timing Performance

 The total execution clock cycle (C.C) count for each test case is shown

in Table 4.5. This is measured by executing the data processing part (Encrypt,

Data Acquisition and XOR) of the test program. The data sizes (N) used in the

experiment are 256 Byte, 512 Byte and 1024 Byte.

Table 4.5: Data Processing Execution Time (C.C) For Each Test Case

Test Case
Data Size (Byte)

256 512 1024

T_C 663674 1326346 2651690

T_ASM 355741 708989 1415485

T_CP2 2471 4935 9863

T_CP2-Q 1671 3335 6663

Figure 4.5: Speed-Up achieved in T_CP2-Q compared to other test cases

156

 The experimental results shown in Figure 4.5 are the speed-up ratio

achieved in T_CP2-Q against other test cases. The speed-up ratio refers to the

ratio of total clock cycle count between original implementation and improved

implementation. Note that result for T_CP2-Q shows that it is much faster

than the software implementation in T_C and T_ASM, with more than 200x

speed up. This is not surprising, as software implementation of AES is

fundamentally slower than hardware. In software AES, the 128-bit operation

has to be broken down to multiple serial 32-bit operation due to the maximum

data size supported in RISC32, which is 32-bit only. Furthermore, a single

substitution box in AES is a 256 Byte lookup-table. It is impractical to

implement multiple substitution box on limited memory of IoT sensor node.

Hence, common practice of software AES only implements a single

substitution box. Every substitution process of 32-bit operation have to be

further spilt down into 4 load store operation. Executing 4 parallel load store

instruction in software is not possible, as there is only single core in RISC32.

Also, there are no single load store instruction that supports parallel 4-byte

load store operation between random memory location in RISC32.

In the case of hardware implemented AES, more parallel operations

can be performed on a single transformation AES round. While the AES

operations are fundamentally performed on words (32-bit), the 128-bit

operation can be broken into four parallel 32-bit operation in the hardware.

Hence, the opportunity to perform parallel operations in hardware

implementation could achieve better performance compared to software

implementation. Comparing between hardware implementations

157

(RISC32_CP2-NQ vs RISC32_CP2-Q), a significant improvement (1.48x

speed up) is observed for all data sizes. This speed-up is achieved is because

there is no data dependency between data acquisition and encryption in CTR

mode. Hence, both tasks can be effectively overlapped. It can be concluded

that, the proposed Queue System in RISC32_CP2-Q of test case T_CP2-Q,

can reorder the execution sequence of CP2 instructions in the program, at the

same time effectively overlaps the encryption task with other processing task

(data acquisition and XOR), eventually achieve good speed performance

against RISC32_CP2-NQ in test case T_CP2-NQ.

158

4.2.2 Energy Consumption

 The energy measurement is obtained by monitoring the current drawn

during the execution of the data processing (Encrypt, Data Acquisition and

XOR) part of the test program. The current drawn measurement is derived

from the voltage difference across a 0.01 Ω shunt-resistor connected serially

between Digilent Nexys 4 Artix-7 FPGA Board and a 1.0V power supply. The

voltage difference across the shunt-resistor is amplified with instrumentation

amplifier, INA215 configured with 75 amplifier gain.

 For measurement purpose, the test program was written to

continuously loop the data processing activity (Encrypt, Data Acquisition and

XOR). To identify the starting and ending of the data processing activity, the

test program sets a GPIO output pin to HIGH upon starting the encryption

(T1). Upon completion of the encryption of final CTR value, the GPIO output

pin is toggle to LOW (T2) so that it can be set HIGH again upon the start of

new encryption. The region between the two rising-edges of the waveform

marks the region for data processing activity used to measure the energy

consumption. Both the amplified voltage difference and GPIO output pin are

monitored using Tektronix TBS1202B-EDU Oscilloscope at Channel 1

(voltage across 0.01 Ω shunt-resistor) and Channel 2 (GPIO trigger)

respectively. Figure 4.6 shows the screenshot from oscilloscope during the

measurement for T_CP2-Q with data size of 256 Byte. Voltage readings along

the two rising-edges are recorded to calculate the energy consumption for each

test case.

159

Figure 4.6: Screenshot during energy measurement for T_CP2-Q

 To obtain the current drawn at each time instance, the formula I = V /

R / 75 is being used, where R refers to the 0.01 Ω shunt-resistor and 75 is the

amplifier gain. With the current drawn (I) obtained, power is calculated using

P = V * I, where V refers to the power supply voltage (1.0V). Energy is then

calculated using the formula E = P * t, where t refers to the time interval

between two measurement data. Since the time is in discretized form,

 , where N is the total time points within the measurement

region. The energy consumption measured for each test case is shown in Table

4.6.

Table 4.6: Data Processing Energy Consumption (mJ) For Each Test

Case

Test Case
Data Size (Byte)

256 512 1024

T_C 0.9051mJ 1.7966mJ 3.5933mJ

T_ASM 0.5031mJ 0.9909mJ 2.0080mJ

T_CP2-NQ 0.0046mJ 0.0089mJ 0.0178mJ

T_CP2-Q 0.0037mJ 0.0073mJ 0.0145mJ

T1 T2

160

Figure 4.7: Energy reduction achieved in T_CP2-Q compared to other

test cases

 Figure 4.7 shows the energy reduction achieved in T_CP2-Q when

compare to other test cases. Note that result of T_CP2-Q shows ~99% energy

reduction against software implementation in test case T_C and T_ASM.

Although RISC32_CP2-Q used in T_CP2-Q does have additional hardware

consumption (resulting in more static power) as shown in Table 4.2, it also

reduces the data processing time significantly, eventually reduce the energy

consumption when compared to software implementation. Comparing both

hardware implementations (RISC32_CP2-NQ vs RISC32_CP2-Q), the

averaged energy reduction for all data size is ~19%. This shows that the

proposed Queue System (in RISC32_CP2-Q) not only has faster performance

than conventional hardware implementation without Queue System

(RISC32_CP2-NQ), but also better in terms of energy efficiency.

161

4.3 Summary

 In this chapter, the RISC32 Toolchain and RISC32 integrated with

CP2 and Queue System has been verified its functionality. The RISC32

Toolchain is able to transform unsupported instructions to RISC32 compatible

instruction sets. The Queue System proposed successfully rescheduled the

encryption task when CP2 is busy, to ensure encryption could be correctly

performed in an orderly fashion. The RISC32 integrated with CP2 and Queue

System was assessed for its performance in terms of execution time and

energy reduction by testing with a typical IoT software pattern. With the

Queue System, a 1.48x speed-up and ~19% of energy reduction was achieved.

This is an important achievement for IoT applications, which stresses on low

latency communication and energy efficiency.

162

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

 In this research work, a C compilation toolchain was developed to

support RISC32 (Kiat, 2018) IoT processor. This helps in reducing the code

development time, as the programmer no longer need to code in assembly

language. This also provides rapid development opportunity on RISC32 with

the enabling of standard libraries usage that is usually delivered in high-level

language. On top of that, a hardware AES core was integrated into the

RISC32, which provides confidentiality, allowing the data transmitted within

IoT network in encrypted form. A queue system was proposed to further

optimize the speed performance of data encryption.

 In summary, this dissertation has provided answers to the following

research challenges:

1) RISC32 is an IoT processor that lacks security feature. Cryptography

algorithms can be implemented in software, but could achieve better

performance if implemented as hardware. Since energy efficiency is an

important criterion in IoT processor, how should the cryptography core

integrated to achieve performance without significantly increasing the

energy consumption of IoT processor?

163

• The AES cryptography core was selected for this research

work. Dedicated-path integration technique was opted to ensure

the integrated AES core does not face performance cap that is

present in shared-path technique. Due to the energy constrain,

AES core with single-stage rolled architecture and smaller

hardware consumption was selected. As Counter Mode is being

used in encryption, only AES-128 encryption and round key

generation are implemented. The decryption circuit is not

required as most of the IoT applications do not requires sensor

node to decrypt data; it only sends data to the gateway device.

Most importantly, these decisions could further reduce the

hardware resource required for implementation, hence does not

introduce significant energy consumption to IoT sensor node.

2) The AES core encryption operation is expected to have data processing

latency. This data processing latency was due to the single-stage rolled

architecture. The data processing latency indicates that the processor

has to wait for the encryption to complete before proceeding to other

task, rendering significant idle time. Can this idle time be utilized to

perform other tasks, at the same time, improving the speed

performance of the overall program?

• The AES core is implemented as Coprocessor 2 (CP2) in RISC32.

The CP2 requires 55 clock cycles to perform one block of

encryption (128-bit). Considering the software pattern of a typical

164

IoT applications, RISC32 remains idle for at least 75% of the time

during the encryption with CP2. As such, a solution is proposed to

overlap the sensor data sampling and encryption task. Overlapping

of both tasks is only possible if Counter (CTR) encryption mode is

being used. Hence, Queue System is being proposed to realize this

overlapping mechanism, which is realized by the hardware. This

Queue System will queue the encryption task when CP2 is busy,

and re-execute the pending encryption task when the CP2 is ready.

This frees up the RISC32 pipeline from waiting the output from

CP2 for 55 clock cycle. At the same time, it allows the sensor data

sampling to execute while the CP2 performing encryption,

overlapping the encryption and data sampling, eventually reducing

the overall program execution time.

3) The retargetable compiler framework, LLVM was selected to develop

the RISC32 compilation toolchain. The LLVM currently supports code

generation for MIPS target machine. However, is the MIPS backend of

LLVM completely compatible for RISC32 code generation?

• The MIPS instruction set is an incremental instruction set, where

instructions from previous generation MIPS is inherited by the

newer MIPS instruction set. The current MIPS backend of LLVM

supports up to the latest generation MIPS instruction set. However,

the RISC32 only supports a subset of these implemented

instructions. By comparing the implemented instructions with

165

RISC32 instruction set, a suitable sub-target, MIPS II instruction

set was selected as a base for RISC32 code generation. However,

MIPS II is not completely compatible with RISC32 instruction set.

As such, transformation routine was derived to convert the

unsupported MIPS II instruction to RISC32 equivalent instructions.

To support the compilation for CP2 instructions of RISC32,

intrinsic functions were implemented, to generate compatible

software routine to ensure proper usage of the CP2 and Queue

System. The existing Interrupt Service Routine (ISR) programming

in LLVM was also modified to conform to RISC32 ISR

programming convention.

4) How was the performance of RISC32 with the Queue System and

compilation toolchain?

• The RISC32 integrated with CP2 and Queue System was

synthesized and implemented on the Xilinx Artix 7 FPGA Chip on

Digilent Nexys DDR4 Development board. Test programs were

developed in C language, compiled using the RISC32 toolchain

and successfully executed on the RISC32. The assessed

performance metrics is program execution speed and energy

consumption. The RISC32 with CP2 achieved at least 200x speed-

up in terms of program execution when compared to software

solution. With the introduction of Queue System to the existing

RISC32 with CP2, a further 1.48x speed-up was achieved. In terms

166

of energy consumption, a reduction of ~99% was shown when

comparing hardware solution to the software encryption. A further

~19% energy reduction was shown when RISC32 with CP2 was

introduced with Queue System. These result shows, by overlapping

the encryption and data sampling task, better performance can be

achieved in terms of execution speed at the expense of extra

hardware implementation. At the same time, the improved timing

performance achieves better energy efficiency. To sum up, these

achievements will further aid the RISC32 IoT processor to be

implemented as an energy efficient, yet secure IoT sensor node.

In summary, this research work had accomplished all the planned

objectives. This greatly improved the capability of RISC32 IoT processor,

since it can be programmed through C language, at the same time equipped

with AES core with Queue System to perform data encryption.

167

5.2 Future Work

 The established RISC32 toolchain supports code compilation using

high-level language (C). The next potential direction is to develop device

libraries for the existing I/O controllers (ADC, UART, SPI and GPIO

controller) in RISC32. These device libraries will be useful to interface with

the common I/O modules such as WiFi, ZigBee and Bluetooth Low Energy

(BLE) in IoT applications. With the toolchain, standard benchmarking suite

such as CoreMark and Dhrystone can also be compiled and benchmarked on

the RISC32 IoT processor. The benchmarking result obtained should be

compared with existing IoT processor on the market, to observe the further

improvement required on RISC32.

 While this research work has been focusing on energy reduction on the

RISC32 core alone, the energy consumption during I/O transmission was not

explored. The energy consumption pattern during I/O should be studied, as I/O

transaction is fundamentally slow. If high energy consumption was

contributed by slow I/O transaction, it is a concerning factor that relates to the

longevity of the energy source on IoT sensor nodes. Effective communication

protocols should be explored to reduce the energy consumption toll

contributed by slow I/O transaction to minimum.

 In recent years, light-weight cryptosystems have been actively

researched, to introduce low-power cryptography core design, and provide

decent security level. However, these light-weight cryptosystems are still

under review for NIST standardization (2019). As such, AES core still

168

remains as the widely recognized cryptography standards in the industry. In

future, with the standardization finalized, these light-weight cryptosystems

should be explored and considered as encryption core to be integrated into

RISC32.

169

LIST OF PUBLICATIONS

1. See, J.C., Lee, W.K., Mok, K.M. and Goh, H.G., 2018. Development of

LLVM compilation toolchain for IoT processor targeting wireless

measurement applications. In: 2017 IEEE International Conference on

Smart Instrumentation, Measurement and Applications, ICSIMA 2017.

pp.1–4.

2. See, J.C., Lee, W.K., Mok, K.M. and Goh, H.G., 2019. RISC32-E: FPGA-

based sensor node with queue system to support fast encryption in

industrial Internet of Things applications. [Currently under review.

Submitted to Wiley International Journal of Circuit Theory and

Applications.]

170

 BIBLIOGRAPHY

MIPS, 2016. MIPS32 ® Architecture For Programmers Volume II : The

MIPS32 ® Instruction Set. [online] Available at: <https://s3-eu-west-

1.amazonaws.com/downloads-mips/documents/MD00086-2B-MIPS32BIS-

AFP-6.06.pdf>.

NIST, 2019. Lightweight Cryptography | CSRC. [online] Available at:

<https://csrc.nist.gov/projects/lightweight-cryptography> [Accessed 20 Jul.

2019].

Alahakoon, D. and Yu, X., 2016. Smart Electricity Meter Data Intelligence for

Future Energy Systems: A Survey. IEEE Transactions on Industrial

Informatics, 12(1), pp.425–436.

Anwar, H., Daneshtalab, M., Ebrahimi, M., Plosila, J., Tenhunen, H.,

Dytckov, S. and Beltrame, G., 2014. Parameterized AES-based crypto

processor for FPGAs. In: Proceedings - 2014 17th Euromicro Conference on

Digital System Design, DSD 2014. pp.465–472.

Apple Inc, 2017. Xcode IDE. [online] Apple Developer. Available at:

<https://developer.apple.com/xcode/features/>.

ARM Limited, 2019. µVision IDE - Keil. [online] Available at:

<http://www2.keil.com/mdk5/uvision/>.

Arora, H., Gupta, A., Singhai, R. and Purwar, D., 2015. Design Space

Exploration of RISC Architectures using retargetability. 2015 International

Conference on VLSI Systems, Architecture, Technology and Applications

(VLSI-SATA), .

Bejo, A., Li, D., Isshiki, T. and Kunieda, H., 2014. A Method of Software

Development Tool and Hardware Generation for ASIP with a Co-processor

based on the Derivative ASIP Approach. Journal of Information Processing,

[online] 22(2), pp.131–141. Available at:

<http://ci.nii.ac.jp/naid/130003394456/en/>.

Bosscher, S., 2012. Modular GCC. [online] Available at:

<https://gcc.gnu.org/wiki/ModularGCC> [Accessed 11 Jul. 2017].

Campi, F., Cappelli, A., Guerrieri, R., Lodi, A., Toma, M., Rosa, A. La,

Lavagno, L., Passerone, C. and Canegallo, R., 2003. A reconfigurable

processor architecture and software development environment for embedded

systems. Proceedings International Parallel and Distributed Processing

Symposium, .

171

Diego, N., 2007. GCC Internals. Available at:

<www.airs.com/dnovillo/200711-GCC-Internals/200711-GCC-Internals-1-

condensed.pdf>.

Dworkin, M.J., 2007. NIST Special Publication 800-38: Recommendation for

Block Cipher Modes of Operation. [online] Available at:

<https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-

38d.pdf>.

FIPS, P., 2009. 197, Advanced Encryption Standard (AES), National Institute

of Standards and Technology, US Department of Commerce, November 2001.

Link in: http://csrc. nist. gov/publications/fips/fips197/fips-197. pdf.

Ghica, L. and Tapus, N., 2015. Optimized retargetable compiler for embedded

processors - GCC vs LLVM. 2015 IEEE International Conference on

Intelligent Computer Communication and Processing (ICCP), .

Gupta, A. and Pal, A., 2015, January. Accelerating SVM on ultra low power

ASIP for high throughput Streaming Applications. In 2015 28th International

Conference on VLSI Design (pp. 517-522). IEEE.

Hennessy, J.L. and Patterson, D.A., 2011. Computer Architecture: A

Quantitative Approach. Elsevier.

Hoang, V.-P., Dao, V.-L. and Pham, C.-K., 2017. Design of ultra-low power

AES encryption cores with silicon demonstration in SOTB CMOS process.

Electronics Letters, [online] 53(23), pp.1512–1514. Available at:

<http://digital-library.theiet.org/content/journals/10.1049/el.2017.2151>.

Humayed, A., Lin, J., Li, F. and Luo, B., 2017. Cyber-Physical Systems

Security - A Survey. IEEE Internet of Things Journal, 4(6), pp.1802–1831.

ISO/IEC-18033-3, 2005. Information technology - Security techniques -

Encryption algorithms-Part 3: Block ciphers. INTERNATIONAL STANDARD

ISO / IEC.

Johann, S.F., Moreira, M.T., Calazans, N.L. V and Hessel, F.P., 2016. The

HF-RISC processor: Performance assessment. LASCAS 2016 - 7th IEEE Latin

American Symposium on Circuits and Systems, R9 IEEE CASS Flagship

Conference, pp.95–98.

Kassem, R., Briday, M., Béchennec, J.-L., Savaton, G. and Trinquet, Y., 2012.

Harmless, a hardware architecture description language dedicated to real-time

embedded system simulation. Journal of Systems Architecture, [online] 58(8),

pp.318–337. Available at:

<http://www.sciencedirect.com/science/article/pii/S1383762112000410>.

172

Kiat, W.P., 2018. The design of an fpga-based processor with reconfigurable

processor execution structure for Internet of Things (IoT) applications. Master

Dissertation, Universiti Tunku Abdul Rahman (UTAR).

Kiat, W.P., Mok, K.M., Lee, W.K., Goh, H.G. and Andonovic, I., 2017. A

comprehensive analysis on data hazard for RISC32 5-stage pipeline processor.

In: 2017 31st International Conference on Advanced Information Networking

and Applications Workshops (WAINA). [online] pp.154–159. Available at:

<http://ieeexplore.ieee.org/document/7929670/>.

kokke, 2014. tiny-AES-C. [online] Available at:

<https://github.com/kokke/tiny-AES-c>.

Kolek, J., Jovanović, Z., Šljivić, N. and Narančić, D., 2013. Adding

microMIPS backend to the LLVM compiler infrastructure. 2013 21st

Telecommunications Forum Telfor (TELFOR) .

Lattner, C., n.d. The Architecture of Open Source Applications:LLVM. The

Architecture of Open Source Applications. Available at:

<http://www.aosabook.org/en/llvm.html>.

LLVM, P., 2013. The LLVM Compiler Infrastructure. [online] Available at:

<http://llvm.org>.

Lopez Trescastro, J., Vassev, E., Hellstrom, D. and Cederman, D., 2015. An

LLVM Backend for LEON Processors. In: DASIA 2015-DAta Systems in

Aerospace.

Lu, M., Fan, A., Xu, J. and Shan, W., 2018. A Compact, Lightweight and

Low-Cost 8-Bit Datapath AES Circuit for IoT Applications in 28nm CMOS.

Proceedings - 17th IEEE International Conference on Trust, Security and

Privacy in Computing and Communications and 12th IEEE International

Conference on Big Data Science and Engineering, Trustcom/BigDataSE 2018,

pp.1464–1469.

Microsoft, 2019. Visual Studio IDE, Code Editor, VSTS, & App Center -

Visual Studio. [online] Available at: <https://visualstudio.microsoft.com/>.

Price, C., 1995. MIPS IV Instruction Set. Memory. [online] Available at:

<http://www.weblearn.hs-bremen.de/risse/RST/docs/MIPS/mips-isa.pdf>.

Rescorla, E., 2018. The Transport Layer Security (TLS) Protocol Version 1.3.

Soliman, M.I. and Abozaid, G.Y., 2011. FPGA implementation and

performance evaluation of a high throughput crypto coprocessor. Journal of

Parallel and Distributed Computing, [online] 71(8), pp.1075–1084. Available

at: <http://dx.doi.org/10.1016/j.jpdc.2011.04.006>.

Strömbergson, J., 2014. secworks/aes. [online] Available at:

<https://github.com/secworks/aes>.

173

Sýkora, J., n.d. LLVM-Based C Compiler for the PicoBlaze Processor.

Taglietti, L., Filho, J.O.C., Casarotto, D.C., Furtado, O.J. V and Santos, L.C.

V, 2005. Automatic ADL-Based Assembler Generation for ASIP

Programming Support. Embedded Computer Systems: Architectures,

Modeling, and Simulation, pp.262–268.

Tomić, I. and McCann, J.A., 2017. A Survey of Potential Security Issues in

Existing Wireless Sensor Network Protocols. IEEE Internet of Things Journal,

4(6), pp.1910–1923.

Tomiyama, H., Halambi, A., Grun, P., Dutt, N. and Nicolau, A., 1999.

Architecture description languages for systems-on-chip design. In: Asia

Pacific Conference on Chip Design Language.

Valerio, P., 2016. Is the IoT a Tech Bubble for Cities?: With more cities

joining the smart city revolution and investing in sensors and other IoT

devices, the risk of a new tech bubble is rising. IEEE Consumer Electronics

Magazine, 5(1), pp.61–62.

Vilela, G., Correa, E. and Kreutz, M., 2012. A LLVM based development

environment for embedded systems software targeting the RISCO processor.

Brazilian Symposium on Computing System Engineering, SBESC, pp.77–82.

Wang, W., Han, J., Xie, Z., Huang, S. and Zeng, X., 2016. Cryptographic

coprocessor design for iot sensor nodes. In: ISOCC 2016 - International SoC

Design Conference: Smart SoC for Intelligent Things. pp.37–38.

Wang, Y. and Ha, Y., 2016. High throughput and resource efficient AES

encryption/decryption for SANs. Proceedings - IEEE International

Symposium on Circuits and Systems, 2016-July, pp.1166–1169.

Witte, E.M., Chattopadhyay, A., Schliebusch, O., Kammler, D., Leupers, R.,

Ascheid, G. and Meyr, H., 2005. Applying resource sharing algorithms to

ADL-driven automatic ASIP Implementation. Proceedings - IEEE

International Conference on Computer Design: VLSI in Computers and

Processors, 2005, pp.193–199.

Xu, L. Da, He, W. and Li, S., 2014. Internet of things in industries: A survey.

IEEE Transactions on Industrial Informatics, 10(4), pp.2233–2243.

Yang, L., Ni, X., Tan, Y. and Liu, H., 2013. ADL and High Performance

Processor Design. [online] pp.67–74. Available at:

<http://link.springer.com/10.1007/978-3-642-35898-2%7B_%7D8>.

Yuan, Y., Yang, Y., Wu, L. and Zhang, X., 2018. A High Performance

Encryption System Based on AES Algorithm with Novel Hardware

Implementation. 2018 IEEE International Conference on Electron Devices

and Solid State Circuits, EDSSC 2018, pp.1–2.

