
 

AN INTERACTIVE SWIFT PROGRAMMING 

LANGUAGE E-LEARNING PLATFORM FOR IOS 

APPLICATION DEVELOPMENT 

 

 

 

 

 

 

LYE BOON JET 

 

 

 

 

 

 

UNIVERSITI TUNKU ABDUL RAHMAN 

 

  



 

 

 

AN INTERACTIVE SWIFT PROGRAMMING LANGUAGE E-LEARNING 

PLATFORM FOR IOS APPLICATION DEVELOPMENT 

 

 

 

 

 

 

LYE BOON JET 

 

 

 

 

 

 

 

A project report submitted in partial fulfilment of the 

requirements for the award of Bachelor of Science 

(Honours) Software Engineering 

 

 

 

 

 

Lee Kong Chian Faculty of Engineering and Science 

Universiti Tunku Abdul Rahman 

 

 

September 2021 



i 

DECLARATION 

 

 

 

 

 

I hereby declare that this project report is based on my original work except for 

citations and quotations which have been duly acknowledged. I also declare that it 

has not been previously and concurrently submitted for any other degree or award at 

UTAR or other institutions. 

 

 

 

 

Signature :  

Name : LYE BOON JET 

ID No. : 17UEB01376 

Date : 15/9/2021 

 

 

  



ii 

APPROVAL FOR SUBMISSION 

 

 

 

 

 

I certify that this project report entitled “AN INTERACTIVE SWIFT 

PROGRAMMING LANGUAGE E-LEARNING PLATFORM FOR IOS 

APPLICATION DEVELOPMENT” was prepared by LYE BOON JET has met 

the required standard for submission in partial fulfilment of the requirements for the 

award of Bachelor of Science (Honours) Software Engineering at Universiti Tunku 

Abdul Rahman. 

 

 

 

Approved by, 

 

 

Signature :  

Supervisor : YONG YOKE LENG 

Date : 15/9/2021 

  



iii 

 

 

 

 

 

The copyright of this report belongs to the author under the terms of the 

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku 

Abdul Rahman. Due acknowledgement shall always be made of the use of any 

material contained in, or derived from, this report. 

 

 

© 2021, Lye Boon Jet. All right reserved. 

 

 

 

 

  



iv 

ACKNOWLEDGEMENTS 

 

 

 

 

 

I would like to express my gratitude to my research supervisor, Dr. Yong Yoke Leng 

for her invaluable advice, guidance and her enormous patience throughout the 

development of the research. She is always willing to sacrifice her precious time to 

help me overcome the barriers that I faced in this project. Without her, it will be hard 

for me to deliver the project on time. 

 

 I would also like to thank all volunteers for testing my implemented system. 

I appreciate their passions and their constructive feedback for this project, so that I 

am able to improve the work in the future. 

 

 Lastly, I would also like to express my gratitude to my loving parents and 

friends who had helped and given me encouragement to complete this project. 

 

 

  



v 

ABSTRACT 

 

Swift programming language is a famous programming language that is adopted by 

lots of developers to develop iOS, iPadOS, macOS, tvOS and watchOS applications 

as it is modern, fast and safe. However, Mac and iPad are usually required to learn 

Swift programming language and there’s no existing Swift programming language-

centric learning platform for learners. Therefore, this project is to develop an 

interactive Swift programming language e-learning platform for students. This 

platform can let students read materials, do exercises and graded quizzes, write codes 

in the embedded online code editors, view profiles, and chat with other online users. 

It also allows administrators to modify the course content, chat with students, as well 

as manage student’s accounts and view student performance. Evolutionary 

prototyping has been adopted as the software development methodology to 

implement systems in several iterations. Requirements were gathered by looking at 

literature reviews. 12 students and 1 lecturer from UECS3263 iOS Application 

Development course have been chosen to test the system which was hosted in the 

web hosting services. A system usability score of 84.43 had been obtained from the 

tester’s response. In short, all objectives were achieved and the platform was opened 

to all students who registered UECS3263 iOS Application Development in the May 

2021 trimester. 

 

 

 

  



vi 

TABLE OF CONTENTS 

 

 

 

DECLARATION i 

APPROVAL FOR SUBMISSION ii 

ACKNOWLEDGEMENTS iv 

ABSTRACT v 

TABLE OF CONTENTS vi 

LIST OF TABLES xi 

LIST OF FIGURES xiii 

LIST OF SYMBOLS / ABBREVIATIONS xx 

LIST OF APPENDICES xxi 

 

 

CHAPTER 

1 INTRODUCTION 1 

1.1 Introduction 1 

1.2 Problem Statement 3 

1.2.1 There’s only a limited number of e-learning 

platforms for learning Swift programming. 3 

1.2.2 Swift programming language requires specific 

devices to run natively. 4 

1.2.3 Some e-learning platforms for Swift 

programming are using outdated Swift versions. 6 

1.2.4 There are many online Swift compilers purely for 

the user to compile Swift code, without any 

tutorial and any peer mentoring. 6 

1.3 Project Objectives 6 

1.4 Project Solution 7 

1.5 Project Approach 7 

1.6 Project Scope 8 

1.6.1 Target Users 8 

1.6.2 Front-end modules covered 8 



vii 

1.6.3 Back-end modules covered 10 

1.6.4 Modules that not covered in this project 10 

1.6.5 Assumptions of this project 11 

1.7 Conclusion of the Chapter 11 

2 LITERATURE REVIEW 12 

2.1 Introduction 12 

2.2 Swift Programming Language 12 

2.2.1 Introduction of Swift Programming Language 12 

2.2.2 Comparison with Objective-C Programming 

Language 14 

2.2.3 Swift Programming Language in Education 17 

2.3 E-learning and Online Programming 18 

2.3.1 E-learning in Higher Education 18 

2.3.2 Online Programming 21 

2.3.3 Existing Online Programming Platform 22 

2.4 Methodology Research 25 

2.4.1 Waterfall Development 25 

2.4.2 Evolutionary Prototype Development 26 

2.4.3 Agile Development 28 

2.4.4 Comparison of Software Methodology 28 

2.5 Conclusion of the Chapter 29 

3 METHODOLOGY 31 

3.1 Chosen Software Development Methodology 31 

3.1.1 Requirements Gathering and Analysis 31 

3.1.2 System Design and Implementation 32 

3.1.3 Software Testing 33 

3.1.4 Software Deployment 33 

3.2 Web Hosting Services 33 

3.2.1 InfinityFree 34 

3.2.2 Hostinger 34 

3.2.3 Awardspace 34 

3.2.4 Comparison of Web Hosting Service 34 

3.3 Development and Prototyping Tools 36 

3.3.1 Programming Language 36 



viii 

3.3.2 Framework 36 

3.3.3 Server and Database System 37 

3.3.4 Integrated Development Environment 37 

3.3.5 Prototyping Tools 37 

3.3.6 Online Code Editor 37 

3.4 Project Plan 38 

3.4.1 Work Breakdown Structure and Gantt Chart 38 

3.5 Conclusion of the Chapter 38 

4 PROJECT SPECIFICATION 39 

4.1 Introduction 39 

4.2 Requirements Specifications 39 

4.2.1 Functional Requirements 39 

4.2.2 Non-functional Requirements 40 

4.2.3 Assumptions 40 

4.3 Use Case Diagram 40 

4.4 Use Case Description 41 

4.5 Preliminary User Interface Design 54 

4.6 Conclusion of the Chapter 64 

5 SYSTEM DESIGN 65 

5.1 System Architecture Design 65 

5.2 Designed UML Diagrams 66 

5.2.1 Class Diagram 66 

5.2.2 Activity Diagram 66 

5.3 Database Design 72 

5.3.1 Entity Relationship Diagram (ERD) 72 

5.3.2 Data Dictionary 72 

5.4 Implemented User Interface 80 

5.4.1 Introduction Screen 80 

5.4.2 Login Screen 81 

5.4.3 Reset Password Screen 82 

5.4.4 Onboarding Screen 83 

5.4.5 Home Screen and Navigation Bar 83 

5.4.6 Topic Lesson Screen 87 

5.4.7 Exercise Screen 94 



ix 

5.4.8 Graded Quiz Screen 97 

5.4.9 Profile Screen 102 

5.4.10 Code Playground Screen 106 

5.4.11 Chat Box Screen 107 

5.4.12 Register Student Screen 108 

5.4.13 Error Screen 108 

6 SYSTEM IMPLEMENTATION 111 

6.1 System Modules 111 

6.2 Student and Administrator Modules 114 

6.2.1 Login Module 114 

6.2.2 Logout Module 115 

6.2.3 Read Topic Lesson Modules 116 

6.2.4 Online Code Editor Modules 119 

6.2.5 Exercise Module 120 

6.2.6 Chat Box Module 122 

6.3 Student-only Modules 125 

6.3.1 Reset Password Module 125 

6.3.2 Graded Quiz Module 128 

6.3.3 Student Profile Module 131 

6.4 Administrator-only Modules 134 

6.4.1 Administrator Profile Module 134 

6.4.2 Register Student Module 136 

6.4.3 Modify Course Content Module 139 

7 SYSTEM TESTING 141 

7.1 Testing Types 141 

7.2 Unit Testing 141 

7.3 Integration Testing 142 

7.4 Usability Testing and UAT Testing 143 

7.4.1 UAT Testing Result 143 

7.4.2 Usability Testing Result 146 

8 CONCLUSION 150 

8.1 Conclusion 150 

8.2 Limitations 151 

8.3 Recommendations 151 



x 

REFERENCES 153 

APPENDICES 157 

 

 

 

 

  



xi 

LIST OF TABLES 

Table 2-1: Comparison of Swift Programming Language and Objective-C 

Programming Language (Karczewski, 2020; Altexsoft, 2018) 14 

Table 2-2: Comparison of 5 researched existing online programming platform 

  23 

Table 2-3: Comparison between three development methodologies (Dennis et 

al, 2015) 29 

Table 3-1: Comparison between Three Web Hosting Services 35 

Table 4-1: Use Case Description of Read Materials 41 

Table 4-2: Use Case Description of Edit Codes in Code Editor 42 

Table 4-3: Use Case Description of Do Non-Graded Exercise 43 

Table 4-4: Use Case Description of Take Graded Quizzes 44 

Table 4-5: Use Case Description of View Profile 45 

Table 4-6: Use Case Description of Chat in Chat Box 46 

Table 4-7: Use Case Description of Login the System 47 

Table 4-8: Use Case Descriprion of Reset Password 48 

Table 4-9: Use Case Descriprion of Logout the System 49 

Table 4-10: Use Case Descriprion of Manage Student Account 50 

Table 4-11: Use Case Descriprion of Modify Lesson Content 52 

Table 5-1: Data dictionary for the table “topictitles” 72 

Table 5-2: Data dictionary for the table “topicsections” 73 

Table 5-3: Data dictionary for the table “exercises” 74 

Table 5-4: Data dictionary for the table “quizzes” 75 

Table 5-5: Data dictionary for the table “quizhistories” 76 

Table 5-6: Data dictionary for the table “students” 78 

Table 5-7: Data dictionary for the table “admins” 78 



xii 

Table 5-8: Data dictionary for the table “chats” 79 

Table 6-1: System Module Table 111 

Table 7-1: Summarized unit testing results 141 

Table 7-2: Summarized integration test results 142 

Table 7-3: Summarized student UAT test results 143 

Table 7-4: Summarized administrator UAT test results 144 

Table 7-5: User Satisfaction Survey template 146 

Table 7-6: SUS result 148 

Table 7-7: Graded and Rating of SUS score (Usabilitest, n.d.) 148 

 

 

  



xiii 

LIST OF FIGURES 

Figure 1-1: List of available programming languages in BitDegree 3 

Figure 1-2: List of available programming languages in W3Schools 4 

Figure 1-3: Available platform for Swift Playground based on the Apple 

Official Website (Apple, n.d.) 4 

Figure 1-4: Minimum requirements for Xcode based on the Apple Developer 

Website (Apple, n.d.) 5 

Figure 1-5: Market Share of Worldwide Desktop Operating System, as on 

January 2021 (Statcounter, n.d.) 5 

Figure 1-6: Flow of evolutionary prototyping (Collegenote, n.d.) 8 

Figure 2-1: First example of Objective-C code and Swift code comparison 

(Hubbartt, 2017) 16 

Figure 2-2: Second example of Objective-C code and Swift code comparison 

(Fojtik, 2020) 17 

Figure 2-3: Flow of waterfall development (Dennis et al, 2015) 26 

Figure 2-4: Flow of evolutionary prototyping development (Dennis et al, 2015)

  27 

Figure 2-5: Flow of agile development (Dennis et al, 2015) 28 

Figure 4-1: Welcome Page 54 

Figure 4-2: Student Login Page 54 

Figure 4-3: Admin Login Page 55 

Figure 4-4: Change Password Page for First Time Login 55 

Figure 4-5: Reset Password First Page 56 

Figure 4-6: Reset Password Second Page 56 

Figure 4-7: Home Page 57 

Figure 4-8: Mega Menu and Navigation Bar 57 

Figure 4-9: Listing of Content (Eg: Lessons) 58 

Figure 4-10: Lesson Content Page 58 



xiv 

Figure 4-11: Exercise Page 59 

Figure 4-12: Graded Quiz Page 59 

Figure 4-13: Quiz Result Page after completing all Questions 60 

Figure 4-14: Code Editor Page 60 

Figure 4-15: Student Profile Page 61 

Figure 4-16: Chat Box Page 61 

Figure 4-17: Admin Profile 62 

Figure 4-18: Delete Student Account Modal View Page 62 

Figure 4-19: Register Student Page 63 

Figure 4-20: Lesson Content List with Add, Modify and Delete Buttons 63 

Figure 4-21: Course Content Editor 64 

Figure 5-1: Designed System Architecture 66 

Figure 5-2: Activity Diagram for Chat in Chat Box 67 

Figure 5-3: Activity Diagram for Do Non-Graded Exercises 67 

Figure 5-4: Activity Diagram for Edit Codes in Code Compiler 68 

Figure 5-5: Activity Diagram for Login the System 68 

Figure 5-6: Activity Diagram for Logout the System 69 

Figure 5-7: Activity Diagram for Manage Student Account 69 

Figure 5-8: Activity Diagram for Modify Lesson Content 69 

Figure 5-9: Activity Diagram for Read Materials 70 

Figure 5-10: Activity Diagram for Reset Password 70 

Figure 5-11: Activity Diagram for Take Graded Quizzes 71 

Figure 5-12: Activity Diagram for View Profile 71 

Figure 5-13: Entity Relationship Diagram 72 

Figure 5-14: Implemented Welcome Screen 80 



xv 

Figure 5-15: Implemented About Screen 81 

Figure 5-16: Student Login Screen 81 

Figure 5-17: Admin Login Screen 82 

Figure 5-18: Reset Password Screen 82 

Figure 5-19: Onboarding Screen 83 

Figure 5-20: Student Home Screen 84 

Figure 5-21: Student Navigation Bar for Lessons 84 

Figure 5-22: Student Navigation Bar for Exercises 85 

Figure 5-23: Student Navigation Bar for Graded Quizzes 85 

Figure 5-24: Student Navigation Bar for Other Functions 86 

Figure 5-25: Administrator Home Screen 86 

Figure 5-26: Administrator Navigator Bar 87 

Figure 5-27: Topic List Screen 88 

Figure 5-28: Topic Screen 88 

Figure 5-29: Sections in the Topic Screen 89 

Figure 5-30: Section with Opened Online Code Editor in the Topic Screen 89 

Figure 5-31: Admin Topic List Screen 90 

Figure 5-32: Admin Add Topic Modal Screen 90 

Figure 5-33: Admin Edit Topic Name Modal Screen 91 

Figure 5-34: Admin Delete Topic Name Modal Screen 91 

Figure 5-35: Upper Part of Admin Add Topic Section Modal Screen 92 

Figure 5-36: Bottom Part of Admin Add Topic Section Modal Screen 92 

Figure 5-37: Upper Part of Admin Edit Topic Section Modal Screen 93 

Figure 5-38: Bottom Part of Admin Edit Topic Section Modal Screen 93 

Figure 5-39: Delete Topic Section Screen 94 



xvi 

Figure 5-40: Exercise List Screen 95 

Figure 5-41: Student Exercise Screen 95 

Figure 5-42: Admin Exercise Screen 96 

Figure 5-43: Admin Add Exercise Question Modal Screen 96 

Figure 5-44: Admin Edit Exercise Question Modal Screen 97 

Figure 5-45: Admin Delete Exercise Question Modal Screen 97 

Figure 5-46: Graded Quiz List Screen 98 

Figure 5-47: Graded Quiz Preparing Screen 98 

Figure 5-48: First Question in Graded Quiz Screen 99 

Figure 5-49: Last Question in Graded Quiz Screen 99 

Figure 5-50: Graded Quiz Result Screen 100 

Figure 5-51: Admin Graded Quiz Screen 100 

Figure 5-52: Admin Add Graded Quiz Question Modal Screen 101 

Figure 5-53: Admin Edit Graded Quiz Question Modal Screen 101 

Figure 5-54: Admin Delete Graded Quiz Question Modal Screen 102 

Figure 5-55: Upper Part of Student Profile Screen 103 

Figure 5-56: Bottom Part of Student Profile Screen 103 

Figure 5-57: Admin Profile Screen 104 

Figure 5-58: Upper Part of Admin Profile Screen with Searched Student 104 

Figure 5-59: Bottom Part of Admin Profile Screen with Searched Student 105 

Figure 5-60: Admin Delete Student Modal Screen 105 

Figure 5-61: Admin Student List Screen 106 

Figure 5-62: Code Playground Screen 106 

Figure 5-63: Student Chat Box Screen 107 

Figure 5-64: Admin Chat Box Screen 107 



xvii 

Figure 5-65: Register Student Screen 108 

Figure 5-66: Error 404 Screen 109 

Figure 5-67: Error 403 Screen for New Student 109 

Figure 5-68: Error 403 Screen for Existing Student 110 

Figure 6-1: Code segment of the “LoginController” controller class 115 

Figure 6-2: Code segment of the “UserActivity” middleware class 115 

Figure 6-3: Code segment of the logout method from the “AuthenticatesUsers” 

trait  116 

Figure 6-4: Code segment of the related topic section data fetching method via 

Axios API 117 

Figure 6-5: Upper part code segment of mapping stored data into HTML 

components in render method 118 

Figure 6-6: Bottom part code segment of mapping stored data into HTML 

components in render method 119 

Figure 6-7: Code segment of handling embedded online code editor opening or 

closing 120 

Figure 6-8: Code segment of checking correct answer from a question 121 

Figure 6-9: Code segment of submitting answers from a question 122 

Figure 6-10: Code segment of converting MySQL date time format into 

readable format. 123 

Figure 6-11: Code segments of finding online user in “ChatController” 

controller class 124 

Figure 6-12: Code segments of mapping stored chat data into HTML elements 

  125 

Figure 6-13: Code segment of sending chats into database via Axios API 125 

Figure 6-14: Code segment of delete chat based on chat ID via Axios API 125 

Figure 6-15: Code segments of “ForgotPasswordController” controller class 

  126 

Figure 6-16: Code segments of validating password format and length 127 



xviii 

Figure 6-17: Code segments of updating student’s password via Axios API 

with PUT method 127 

Figure 6-18: Code segments of “updatePassword” method in 

“StudentController” controller class 128 

Figure 6-19: Code segment of starting the quiz 129 

Figure 6-20: Code segments of submitting the answers from the quiz 129 

Figure 6-21: Code segments of storing quiz history once the quiz is completed 

  130 

Figure 6-22: Code segments of calculating quiz result into percentage form130 

Figure 6-23: Code segments of showing each question answer after completing 

the quiz 131 

Figure 6-24: Code segment of loading student credentials based on student ID 

  132 

Figure 6-25: Code segment of mapping related quiz histories in reverse order 

  132 

Figure 6-26: Code segment of finding latest score from the same quizzes and 

calculating average performance 133 

Figure 6-27: Code segment of finding student data based on student ID 134 

Figure 6-28: Code segments of delete student modal view 135 

Figure 6-29: Code segments of deleting student via Axios API with DELETE 

method 135 

Figure 6-30: Code segments of “deleteStudent” method in “AdminController” 

controller class 136 

Figure 6-31: Code segment of loading existing students via Axios API with 

GET method and React lifecycle. 136 

Figure 6-32: Code segment of checking student Email format 137 

Figure 6-33: Code segment of checking duplication of credentials with 

existing students 137 

Figure 6-34: Code segment of adding new student via Axios API with POST 

method 138 

Figure 6-35: Code segment of “registerAStudent” method in 

“AdminController” controller class 138 



xix 

Figure 6-36: Code segment of add exercise question via Axios API with POST 

method 139 

Figure 6-37: Code segment of edit exercise question via Axios API with PUT 

method 140 

Figure 6-38: Code segment of delete exercise question via Axios API with 

DELETE method 140 

Figure 6-39: Code segment of “addExercise” method, “editExercise” method 

and “deleteExercise” method in “AdminController” class 

controller 140 

 

 

 

 

  



xx 

LIST OF SYMBOLS / ABBREVIATIONS 

 

MVC Model-View-Controller 

LLVM Low Level Virtual Machine 

ERD Entity Relationship Diagram 

UAT User Acceptance Testing 

WWDC Worldwide Developer Conferences 

UML Unified Modelling Language 

API Application Programming Interface 

SUS System Usability Scale 

 

 

 

 

  



xxi 

LIST OF APPENDICES 

 

APPENDIX A: Work Breakdown Structure 157 

APPENDIX B: Project Gantt Chart 160 

APPENDIX C: User Interface Flow Chart 163 

APPENDIX D: Use Case Diagram 165 

APPENDIX E: Designed Class Diagram 166 

APPENDIX F: Unit Test Cases 167 

APPENDIX G: Integration Test Cases 202 

APPENDIX H: Student UAT Test Cases 211 

APPENDIX I: Administrator UAT Test Cases 297 

APPENDIX J: User Satisfaction Survey Response 308 

 

 

 



1 

CHAPTER 1 

 

1 INTRODUCTION 

 

The purpose of this chapter is to provide a short but crucial briefing for this project. 

There are six sections in this introduction chapter. Section 1.1 is to brief about the 

overall background of this project. Section 1.2 is to provide the statement of 

problems in detail. Section 1.3 is to list out the detailed project objectives. Section 

1.4 is to explain the overall project solution to solve the stated problems. Section 1.5 

is to brief the approach to conduct this project. Section 1.6 is to list out the project 

scope with details, including front-end, back-end, users involved, and out-of-

coverage scopes. 

 

1.1 Introduction 

Ever since the mobile devices’ introduction in the 2000s, smartphones and tablets 

have become the most important electronic devices in our life. We use mobile 

devices for social media, entertainment, gaming, productivity, etc. Because of that, 

the applications for mobile devices increase rapidly to fulfil the demand of the users. 

It has also contributed to the influx of mobile app developers trying to cater to 

various apps’ market requests. 

 

Currently, the two main operating systems dominating the smartphone market 

are iOS and Android. According to Diffen (n.d.), iOS is an operating system 

developed by Apple, and it was officially announced on July 29, 2007. iOS is almost 

closed source with some open-source components, and it is only available within 

Apple devices, such as iPhone, iPad and iPod touch. Whereas Android is an 

operating system developed by Google and it was officially announced on September 

23, 2008. Android is an open-sourced mobile operating system and it is pre-installed 

by various smartphone vendors.  

 

Although Android has a larger market share than iOS, the application revenue 

in the iOS platform is always higher than that of the Android platform. According to 

Curry (2021), the revenue of the iOS App Store in the first, second, third, and fourth 

quarter of the year 2020 are $15.0 billion, $17.3 billion, $18.6 billion, and $21.4 



2 

billion respectively. On the other hand, the revenue of Android Google Play Store in 

the first, second, third, and fourth quarter of the year 2020 are $8.3 billion, $9.6 

billion, $10.3 billion and $10.4 billion respectively. The statistics listed encourage 

mobile app developers to explore and develop various applications in the iOS 

platform.  

 

To develop an iOS application, a developer may use Objective-C, Swift, or a 

combination of both. In recent years, the number of Swift developers has been 

increasing while Objective-C developers are decreasing. JetBrains (n.d.) had 

performed an analysis to determine the percentage of Swift and Objective-C 

developers. In the year 2019, there are 53% pure-Swift developers, 15% pure-

Objective-C developers and 31% hybrid developers who utilised both Swift and 

Objective-C at the same time. But in the year 2020, pure-Swift developers increased 

to 70%, whereas pure-Objective-C developers had fallen to 17%, and hybrid 

developers had decreased to 13%. Therefore, this statistic shows that the Swift 

programming language is slowly dominating for iOS app development. Hence, it is 

necessary to learn the Swift language for this domain. 

 

An online programming platform is a good choice for students to learn a new 

programming language or enhance a programming language. However, some 

students might face some barriers when using an online programming platform to 

learn the Swift programming language. For example, it is hard to find an online 

platform that only focuses on the Swift programming language. There is also no 

multi-user communication system to enable students to interact with one another to 

exchange ideas and help one another. Apart from that, they are also unable to express 

their feelings during or after learning the Swift programming language. Zhang et al. 

(2018) found out that communication and discussion of ideas are crucial to support 

online learning for students. 

 

Therefore, the project aims to develop an online Swift programming centric platform 

for students to ensure they can learn Swift programming with just a browser and 

Internet connection. Quizzes and exercises will be provided to train and evaluate 

their knowledge after they have completed each topic. Online code editor and 

compiler will also be provided to let students code their desired Swift code and show 



3 

their expected output. Finally, chat rooms will be available for students to share their 

solutions with other students, and support for students who face difficulties when 

learning. 

 

1.2 Problem Statement 

Before proposing a solution, one or more of the problems currently faced must be 

made clear. In this project, there are four main problems found via online research. 

These problems are: 

 

1.2.1 There’s only a limited number of e-learning platforms for learning 

Swift programming. 

Most of the available e-learning platforms for programming only focus on the most 

popular programming languages such as C++, Java, C#, and HTML. It is hard to find 

an online-programming platform that is Swift-centric. For example, refer to Figure 1-

1 and Figure 1-2, W3School, Edx, and BitDegree do not provide Swift Programming 

Language for students to learn. 

 

 

Figure 1-1: List of available programming languages in BitDegree 

 



4 

 

Figure 1-2: List of available programming languages in W3Schools 

 

1.2.2 Swift programming language requires specific devices to run natively. 

Swift programming is created and developed by Apple Inc. and it is used in Apple 

operating systems such as iOS, iPadOS and macOS. Therefore, the most convenient 

way to learn Swift programming is to use Swift Playground or Xcode. However, 

according to Figure 1-3 and Figure 1-4, Swift Playground is only available on iPad 

and Mac. In contrast, Xcode is only available on Mac, and not all students have these 

devices to learn Swift programming language. According to Figure 1-5, Statcounter 

(n.d.) shows that as of January 2021, Windows has 76.26% of the market share 

whereas macOS (formerly named OS X) has only 16.91% of the market share in the 

desktop operating system market. 

 

 

Figure 1-3: Available platform for Swift Playground based on the Apple Official 

Website (Apple, n.d.) 



5 

 

Figure 1-4: Minimum requirements for Xcode based on the Apple Developer 

Website (Apple, n.d.) 

 

 

Figure 1-5: Market Share of Worldwide Desktop Operating System, as on January 

2021 (Statcounter, n.d.) 

 



6 

1.2.3 Some e-learning platforms for Swift programming are using outdated 

Swift versions. 

As Swift language is continuously updated by having new features added or 

removing some features, and the overall syntax and structure might be changed 

during the update, some learned syntax is not available in the latest Swift language 

version. Although many online Swift compilers use the latest Swift version, some e-

learning programming platforms are still using the old version of Swift compiler. As 

of September 16, 2020, the latest Swift version is 5.3 (Swift, n.d.). However, 

TutorialsPoint uses Swift 4.0, and Sololearn uses Swift 4.2. 

 

1.2.4 There are many online Swift compilers purely for the user to compile 

Swift code, without any tutorial and any peer mentoring. 

Most of the online Swift compilers, such as IDEOne, TECHIE Delight, OnlineGDB 

and Paiza.io only provide the code editor and output display. It does not offer any 

step-by-step tutorials briefing or forums/chatbox systems for students to discuss, ask 

questions, or share opinions. The students are unable to learn programming 

languages well with zero concepts of it. 

 

1.3 Project Objectives 

The main objective of the project is to develop a web-based platform for UTAR 

students to learn Swift programming language and enhance their skills for 

preparation of iOS application development course. 

 

The four sub-objectives are: 

1. To analyze the existing online programming platform with the perspective 

of strengths and weaknesses. 

2. To research the characteristics of Swift Programming Language and 

compare it to its predecessor, Objective-C programming language.  

3. To design and implement the web application by adopting evolutionary 

prototyping method. 

4. To test and evaluate the web application functionalities by using unit 

testing, integration testing, usability testing and user acceptance testing. 

 



7 

1.4 Project Solution 

To achieve the project objectives and solve the problems stated in Section 1.2, a web 

application that supports the Swift programming language has been developed. The 

model-view-controller had been used as the web application architecture. Svirca 

(2020) states that model-view-controller can be divided into three vital parts: model, 

view and controller. The model-view-controller architecture is usually used to 

develop mobile and web applications nowadays. Model-view-controller provides 

some advantages for developing web applications, such as speeding up the process of 

development and creating multiple views components. 

 

In model-view-controller architecture, a model usually connects to a database to 

handle the data and its logics. A view usually acts as a front-end by generating user 

interface components for the user to view and interact. A controller acts as an 

interconnector to connect and communicate both view and the model by receiving 

requests (Svirca, 2020). 

 

For the web application framework, Laravel has been used to develop the 

online programming platform for Swift. This is because Laravel uses a model-view-

controller as the web application framework. It uses PHP as the programming 

language for development, so it is easy to use, fast, and elegant. Laravel can also be 

used to develop both front-end and back-end systems. Besides, WampServer and 

Awardspace had been used as the local server-side and global server-side 

respectively for this web application, and MySQL had been used as the database to 

store data. 

 

1.5 Project Approach 

In this project, the methodology that had been applied to develop the system was 

evolutionary prototyping. According to Figure 1-6, After the initial requirements had 

been gathered in the planning and analysis phase, a system prototype, which is also 

called a part of the system, had been designed to validate and provide comments. A 

loop from the design evolutionary prototyping methodology has been instrumental in 

collecting feedback from the user until the final prototype is deemed suitable. After 

that, the implementation phase had been reached to become a whole, workable and 

fully functioning system. 



8 

 

 

Figure 1-6: Flow of evolutionary prototyping (Collegenote, n.d.) 

 

1.6 Project Scope 

1.6.1 Target Users 

i. Students 

Students may read the materials, such as concepts and briefings of Swift 

programming language provided by the platform. Students may also take quizzes and 

exercises after they have completed each topic. For graded quizzes, the students will 

receive instant feedback once they have completed the quizzes. Students are also able 

to chat with other students via chat room. 

 

ii. Administrators 

The administrators may add new materials, update existing materials, or delete the 

old materials that are no longer used. Administrators may also manage the student 

accounts for this platform by registering or deleting the account, as well as using chat 

room to chat with other students. 

 

1.6.2 Front-end modules covered 

1.6.2.1 Login Function 

i. The user can login using Student ID and a randomly generated password 

(for the first time) and self-reset their password. 

ii. If the user login with their account for the first time, the user will be 

prompted to reset the password. 



9 

iii. The system would provide a reset password option if the user forgot 

his/her password. 

 

1.6.2.2 Lesson Lists 

i. The lesson consists of basic data types, conditional statements, loops, 

functions, classes, structures, etc. 

ii. Users can follow the brief tutorial and concepts of Swift programming 

language. 

iii. The user can take non-graded exercises as a practice, such as fill in the 

blanks with code segments. 

iv. Users can edit codes via code editor in each lesson. 

v. Users can take graded quizzes after completing each topic, such as 

multiple-choice questions. 

vi. Users can re-attempt each graded quiz with unlimited trials. 

vii. Users can view the results once the user completed the graded quizzes. 

 

1.6.2.3 Profile Function 

i. Basic statistics for overall performance. 

ii. Graded quiz attempt history. 

iii. Logout function. 

 

1.6.2.4 Chat Room 

i. The chat is in the form of a group-chat form with multiple users. 

ii. Each user in the chat room can be shown the name and the student ID or 

admin ID, with a bracket. 

 

1.6.2.5 Administrative Matters (Only available for administrator) 

i. Register a student’s account based on the list regarding the students who 

registered for the iOS Application Development course provided by the 

Faculty General Officer, with their student ID as username, and 

automatically generate a random password for the user. 

ii. Delete the student’s account if the student has graduated, terminated or 

withdrawn from the studies. 

iii. Modify the exercises, quizzes and tutorial briefings. 



10 

 

1.6.3 Back-end modules covered 

1.6.3.1 Accounts 

i. Account data is stored in the database. 

ii. Attributes for account are student ID, student name, quizzes attempting 

history, and awarded grade in each quiz. 

iii. Overall performance: Total score obtained from all topics divided by the 

maximum score from all topics, the only the latest attempt score will be 

obtained to calculate the overall performance. 

iv. User password has been encrypted for security purposes. 

 

1.6.3.2 Quizzes and Exercises 

i. Validate the answers filled in the blanks with case sensitivity. 

ii. Validate the answer chosen in multiple choice questions. 

iii. Store total marks earned in each graded quiz and its attempt. 

 

1.6.3.3 Code Editor and Compiler 

i. Pre-load defined codes in the pre-existing Swift compiler for each topic. 

 

1.6.3.4 Chat Box 

i. Store chats into the database and allows chat deletion, to reduce the server 

stress. 

 

1.6.4 Modules that not covered in this project 

Due to the limitation of time and technologies, the following items did not covered in 

the project: 

i. Storyboard features for iOS app UI layout, such as dragging UI 

components. 

ii. UIKit and SwiftUI tutorials and exercises, as current online Swift 

compilers are unable to import and compile UIKit and SwiftUI libraries. 

iii. Registration of accounts by users, as this module was handled by the 

system administrator. 

iv. Mail notification for reset password code and temporary password to 

students. 



11 

 

1.6.5 Assumptions of this project 

i. Swift materials used are based on Swift 5.3, but it is compatible with Swift 5, 

Swift 4.2 and Swift 4. 

ii. No time limit for each graded quiz. Therefore, students can ease themselves 

to take the quiz without any time restriction panics. 

iii. The administrator is the lecturer who handles the iOS Application 

Development course. 

 

1.7 Conclusion of the Chapter 

In conclusion, four problem statements have been defined for this project. One main 

objective with four sub-objectives is also defined to solve the stated problems. This 

project has been used as model-view-architecture to develop the web application and 

evolutionary prototyping has been adopted as the project approach. 

 

 

 

 



12 

CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

This chapter has three main sections which are Section 2.2, Section 2.3 and Section 

2.4. Section 2.2 discusses the background of Swift programming language, which has 

been used as a programming medium for this project, and how the interconnection 

between Swift programming language with education. Next, Section 2.3 describes e-

learning in higher education and the online programming platform, including the 

reviewing and comparison of existing online programming systems. Last, Section 2.4 

briefs about the researched methodologies and comparison of these software 

development methodologies. 

 

2.2 Swift Programming Language 

It is vital to explain why the Swift programming language had been used as a 

medium of online programming instead of other programming languages. Therefore, 

this section had discussed the overview briefing of Swift programming language with 

its characteristics, the comparison of its predecessor programming language, 

Objective-C. After that, the section also stated about the importance of Swift 

Programming Language in the education sector, to attract developers and students to 

learn this programming language. 

 

2.2.1 Introduction of Swift Programming Language 

Swift Programming Language is a powerful programming language that was 

announced and released by Apple in the WWDC 2014, and it is fully tailored to cope 

with Apple’s operating system platforms such as iOS, iPadOS, macOS, watchOS and 

tvOS (Apple, n.d.; Swift, n.d.). Apple Inc. claims that Swift Programming Language 

has some several major characteristics that attract developers to code it with fun and 

interactive, which are: 

i. Modern. Swift programming language provides a clean and concise 

syntax for developers so that they need not to memorize a lot of unwanted 

things for the particular language, and increase the readability and 

maintainability of the APIs. (Apple, n.d.; Chernova and Nazarov, 2020) 



13 

The most focused point is Swift programming language do not require 

any semicolons unless there are two expressions in the same line. Besides, 

Swift programming language also provides support for Unicode, 

especially emojis. It also supports tuples that store multiple values in a 

single variable at the same time, and return more than one value in a 

function. (Apple, n.d.) 

ii. High Performance. García et al (2015) and Apple (n.d.) mentioned that 

Swift programming language uses the same compiler that its predecessor 

programming language, Objective-C, which is called LLVM, or Low-

Level Virtual Machine, in full name. Which means LLVM can convert 

Swift programming language into native code of Apple Devices, such as 

iPhone, iPad, iPod touch and Mac and fully optimize them. 

iii. Safe. Swift programming language always puts their focus on letting 

developers type their codes safely by eliminating the whole classes of 

codes that are not safe, to ensure no serious bugs will occur when the 

software has been finally released to the customers. To do so, Swift 

programming language always check and ensure the variables or constant 

are initialized with values before it was used in other places, provide type 

inference which auto convert the variable’s data type to decrease 

unnecessary errors, and optionals that enables some necessary variables, 

constants or returned value to be null value to prevent massive runtime 

crashes during the execution. (Apple, n.d.) 

iv. Compatibility and Interoperability. Although there are lots of Swift-

only frameworks, APIs and libraries nowadays, developers still can adopt 

the Swift programming language into existing Objective-C projects for 

compatibility, as Swift programming language is allowed to use 

Objective-C APIs and libraries (García et al, 2015). Furthermore, 

developers need not to make any changes in their existing code that uses 

Swift 4 when they compile it with the latest compiler, such as the 

compiler for Swift 5, as Swift 5 provides fully backward compatibility for 

Swift 4. (Apple, n.d.) 

 



14 

In the late of 2015, Apple had made Swift programming language into an open-

source programming language by releasing the whole Swift programming language 

source code, vital libraries, bug reporter, debugger and package manager in both 

GitHub and Swift.org website (Apple, n.d.; Swift, n.d.). Which means everyone can 

contribute to the source code project not only to enhance and improve, but also 

express their feelings and experiences into it. As on March 3 2021, there are 856 

contributors, 324 branches and 1775 tags in the Swift programming language 

repository. 

 

2.2.2 Comparison with Objective-C Programming Language 

To attract developers to learn and adopt Swift programming language into their iOS 

application development project, it is vital to compare Swift programming language 

with its predecessor, Objective-C programming language. Table 2-1 shows the 

comparison of both programming languages based on some categories, and briefing 

of each category has been provided. 

 

Table 2-1: Comparison of Swift Programming Language and Objective-C 

Programming Language (Karczewski, 2020; Altexsoft, 2018) 

Category Swift Objective-C 

Performance High and fast Low and slow 

Safety High, as the existing of type-

inferences and optionals 

Low, as the existing of 

null pointers 

Syntax and Complexity Clean, short and simple Messy, long, and high 

usage of symbols 

Community Support Open-source with huge 

communities in GitHub 

Close-source and 

maintained over 30 years 

Maintainability Highly maintainable Low maintainability 

Available Platform Xcode and Swift Playground Xcode only 

 

2.2.2.1 Performance 

Apple claimed that Swift programming language is 2.6 times faster than its 

predecessor, Objective-C, as Objective-C uses runtime code compilation to execute 

the applications, which means extra indirection levels will be required to call an 



15 

object from other classes (Altexsoft, 2018). Karczewski (2020) also explained that 

Swift supports dynamic libraries which Objective-C does not support, to improve the 

performance of launching apps by using automatic reference counting to optimize the 

memory management. 

 

According to Singh and Kaur (2017), they performed an algorithm of 100 

times 100 matrices with 10 loops in different programming languages such as Swift, 

Objective-C, Java, and Python. They found out that Java and Swift only need 22 

seconds and 29 seconds respectively to complete the algorithm, but for Objective-C 

and Python, they consume 145 seconds and 310 seconds respectively to finish the 

algorithm. 

 

2.2.2.2 Safety 

The Objective-C programming language has some design that may cause serious 

bugs to occur when executing the application. For example, Objective-C uses 

pointers to allocate the memory (García et al, 2015). Pointers might expose the value 

to let some malicious programmer have high accessibility of that particular data from 

the memory (Altexsoft, 2018). 

 

In contrast, Swift programming language does not face the same issue as 

Objective-C, as it has removed the pointer to prevent any unprotected data from 

being exposed to others. Besides, type inferences and optionals were added into the 

Swift programming language to increase the security. 

 

2.2.2.3 Syntax and complexity 

One of many reasons that lots of developers criticize the Objective-C programming 

language is because of its messy syntax. Objective-C programming language not 

only requires lots of redundant symbols such as asterisks (@), sign (%) and 

semicolon (;), but also lots of lines, specialized string tokens and unwanted 

parentheses (Altexsoft, 2018). On the flip side, Swift programming language 

eliminates the use of asterisks and semicolon symbols, and makes the overall syntax 

become more English-like to make the whole code become shorter and readable. 

Figure 2-1 shows an algorithm in both Objective-C and Swift programming language. 

 



16 

 

Figure 2-1: First example of Objective-C code and Swift code comparison (Hubbartt, 

2017) 

 

García et al (2015) implemented the same code in both Swift and Objective-

C programming language with one main method and two override methods. They 

used XMLParser to choose an XML parser example for evaluating the code lines, 

words, reserved words and switch case numbers from both codes. They found out 

that in these three methods, although Swift programming language have similar 

number of code lines needed as Objective-C, but the overall number of characters 

and words are lesser than that of Objective-C. Besides, based on Figure 2-2, Fojtik 

(2020) compared two codes based on Objective-C and Swift that runs same 

algorithm, and justified that Swift programming language only use 76% of length to 

implement the code, compare to Objective-C. 

 



17 

 

Figure 2-2: Second example of Objective-C code and Swift code comparison (Fojtik, 

2020) 

 

2.2.2.4 Maintainability 

Swift programming language has high maintainability compare to Objective-C, as 

Swift only requires one file (.swift) to define a class, instead of two files which are 

header (.h) and implementation (.m) to declare one class in Objective-C 

programming language (García et al, 2015). This means that developers only need to 

focus one file instead of two files at the same time, and reduce the time needed to 

synchronize components in two files (Altexsoft, 2018). 

 

2.2.3 Swift Programming Language in Education 

Swift programming language is not only for development purposes, but also helps to 

ignite the curiosity and confidence to learn programming and problem-solving skills. 

Apple plays a vital role in educational sectors to make the whole programming 

learning environment to become more fun, easy, and interactive. To do so, Apple has 

provided a Swift Playground app for students to learn Swift programming language, 

and it is available in iPad and Mac, so students are able to download them via Apple 

App Store (Apple, n.d.). Fojtik (2020) states that through Swift Playground, students 

are able to control a game character by implementing the code segments into the 

blanks, so that the game character can walk, rotate and collect gems properly. 

 



18 

Furthermore, Swift programming language education helps students without 

any Swift fundamentals be able to develop some simple programs quickly and easily. 

Through Fojtik’s (2020) research, he surveyed 48 first year computer science 

undergraduate students in the University of Ostrava, and asked them to provide 

comments on code that using Swift programming language, and found out that 84% 

of the students are able to do so correctly, compare to Objective-C. He also used 

questionnaire to conduct another research and 35 students are involved, and 86% of 

the students stated that Swift language is simple after they have completed the Swift 

programming course. 

 

2.3 E-learning and Online Programming 

As everything is moving towards online, including the education sectors, therefore 

this section discussed the overview of E-learning in Higher Institution and the 

importance of the online programming platform in the e-learning domain. Besides, 5 

existing online programming platform systems were also evaluated and compared to 

have further information of how online programming platforms work. 

 

2.3.1 E-learning in Higher Education 

2.3.1.1 Definition of E-learning 

Although the term “E-learning” looks simple and easy to understand as 

“digitized teaching and learning”, there are still a lot of people, even though higher 

institutions are always confused about its true meaning. Nguyen et al (2019) 

categorized this term into four perspectives which are technology-driven, delivery-

system-oriented, communication oriented and educational-paradigm-oriented. 

 

In technology driven perspective, Nguyen et al (2019) defined E-learning as 

“the use of electronic means for various learning purposes”, which means teachers 

and students will use digital devices with internet connection, whether it is either 

wired or wireless, to access learning resources and meet together in a virtual meeting 

room that act as a virtual classroom. 

 

In a delivery-system-oriented perspective, E-learning is a type of learning 

that supplies education via electronic format and centers the accessibility and 

progress to obtain learning resources, rather than the final result itself (Nguyen et al, 



19 

2019). This represents that educators will deliver education and its systems to 

students through the connection of the internet, regardless of the places and time. 

 

In communication-oriented definitions, according to Nguyen et al (2019), it 

can be explained as a way that allows teachers and students to use electronic 

communication devices and systems to interact and exchange knowledge with each 

other via communication. This means that if the student is in doubt, he/she may use a 

built-in microphone to ask the teacher regarding his question, and the teacher may 

answer him/her via microphone too. 

 

In educational-paradigm-oriented perspective, Nguyen et al (2019) states that 

e-learning helps to improve the existing educational model, by applying new and 

various multimedia elements and Internet into it, to support the accessing of 

resources and services, and help students to build confidence and smooth the learning 

process. 

 

In short, e-learning not only optimizes the assessments and examinations 

conducting method, but also enhances the resources for e-learning. It also stimulates 

educators to innovate and improve the teaching and learning methods (Nguyen et al, 

2019). 

 

2.3.1.2 E-learning and COVID-19 

As COVID-19 pandemic had spread across the world since the Late 2019 to Early 

2020, there were lots of regional or country governments that started to announce 

long periods of lockdown to prevent any further spreading of the virus. Because of 

that, lots of higher educational institutions had closed their campuses for a period of 

time (Radha et al, 2020). However, to ensure the planned academic activities will 

keep going as usual, many higher educational institutions started to use e-learning as 

a platform for teaching and learning, to replace the conventional classroom which is 

face-to-face (Ali, 2020). 

 

E-learning is important for higher educational institutions because nowadays 

students can obtain massive amounts of information from the Internet easily, instead 

of just a book or printed materials provided by lecturers. In the research conducted 



20 

by Ali (2020), he found out that students in this era are inclined to have a strong 

connection with ICT technologies, as they have been exposed to ICT since they were 

born. According to Jesse (2015, cited in Ali, 2020), There are 99.8% of students can 

access to their smartphones to text, visit social media and numerous of mobile 

application that is able to download from the app store, rather than just talking 

physically, this shows that they have high acceptance degree towards the online 

learning. Radha et al (2020) also conducted a research to find out the trend and 

willingness of higher educational institution students to use e-learning platforms via 

Google Form questionnaire, and they found out that most of the students are 

interested in e-learning education and the use of the online platform is rising. In the 

questionnaire, 82.29% of students are willing to use e-learning platforms and 82.86% 

of students agree that their self-study skills have been improved while using e-

learning platforms. This shows that E-learning has become a trend and unpreventable 

choices in higher education sectors. 

 

2.3.1.3 E-learning Review 

To make the e-learning environment become more flexible, fun and interactive, it is 

important to review the possible factors that influence e-learning experience and 

satisfaction of a student, and the ICT adopted for teaching and learning. 

 

Nortvig et al (2018) separated the factors into three categories which are the 

design of course structure, roles and relations of an educator, and the identity of 

students and his/her learning community. According to Nortvig et al (2018), if an e-

learning course structure is designed well, it will not only provide positive 

interactions between internet-based and non-internet based academic activities, but 

also the students, teachers and the course content. In teacher roles and relations, e-

learning platform helps educators to build a strong teaching existence and build a 

positive online learning relationship (Nortvig et al, 2018). Whereas for student 

identity sectors, a good e-learning platform will provide appropriate spaces of both 

web-based and non-web-based form for students to participate in learning 

communities for supporting their learning experience and identity (Nortvig et al, 

2018). 

 



21 

For ICT adoption, Jayachithra (2020) mentioned that technology is 

becoming popular and crucial to transform the learning process by enhancing the 

educators-learners relationship and academic achievements as well as the access of 

educational curriculum, which conventional education is unable to do so.  These 

technologies included Wi-Fi, remote routers and collaboration tools. Jayachithra 

(2020) performed an experiment research by choosing 80 Year-2 undergraduate 

students, divided into e-learning groups and conventional groups, and conducted 

both pre-test and post-test for both groups. She found out that e-learning group 

students obtained higher post-test scores mean value (75.77) compared to 

conventional group (49.67). This shows that e-learning platforms help students to 

improve their academic performance and achieve academic milestones easily. 

 

 

2.3.2 Online Programming 

As e-learning platforms rise among the higher educational institutions due to the 

pandemic, undergraduate students that are studying computer science, information 

system or software engineering-related majors have to learn different kinds of 

programming languages and code them to become a workable program in their 

coursework and practical training. To let students improve their coding and 

development skills, online programming platforms exist for them, regardless of 

whether the students are novice, moderate or expert in programming. 

 

According to Gandraß et al (2020), online programming platforms can be 

divided into two which are introductory and professional. Introductory online 

programming platforms usually face users who lack or have only basic programming 

fundamentals; therefore, this platform usually only supports few or even one 

programming language, providing instant visual feedback to lower the barrier for 

beginners. In this platform, courses usually consist of only basic algorithms and 

control flow, such as loops and conditionals. In contrast, programming platforms are 

well-designed for potential software developers that have high ability to code the 

program well, and there are lots of companies using this type of online programming 

platform to identify, choose and hire them. Therefore, it usually does not provide 

visual feedback to the user. Task range in this platform type is too wide (from easy to 



22 

hard). Also, professional platforms usually provide competition to other users to gain 

motivation (Gandraß et al, 2020). 

 

2.3.3 Existing Online Programming Platform 

 

2.3.3.1 W3School 

W3School is the largest web online programming platform in the world that allows 

developers and learners to learn web application development. It is free and does not 

need an account to access the whole platform, although signup and login of account 

is provided. W3School consists of various web application programming languages 

such as HTML, CSS, JavaScript, PHP, SQL and XML, and basic programming 

languages such as Python, Java, C++, C# and R. In the course and tutorial, it supplies 

code examples, exercises, quizzes, and tutorial briefing. Once the user finishes the 

quizzes, it will show feedback to the user immediately. It also lets users interact with 

the platform by editing the code and showing the output. Forum is included in the 

platform for registered users to discuss and share opinions. 

 

2.3.3.2 Edabit 

Edabit is a free interactive online programming platform that enables users to try 

challenges for different programming languages. It provides C#, C++, Java, 

JavaScript, PHP, Python, Ruby and Swift programming languages. The user can 

choose any programming language and its difficulty, from “Very Easy” to “Expert”, 

and select their desired challenges to answer. Each challenge consists of a code 

editor with hidden and self-defined test codes, the test codes will check the codes that 

user typed is matched with the expected codes. However, there are some restrictions 

when using these online programming platforms. An account is required to check 

answers and find solutions from others, it also provides quizzes but only for Python 

and JavaScript programming languages. 

 

2.3.3.3 BitDegree Learn 

BitDegree Learn is a part of its superset online course platform, BitDegree, which 

mainly focuses on learning programming languages. It provides lots of famous 

programming language and web application language courses such as HTML, CSS, 

PHP, JavaScript, SQL, BootStrap, Solidity, JQuery, Git, C++, and Python. In each 



23 

programming language course, there are lots of tutorials regarding features, classes, 

functions etc. Users can view briefings, code samples in the course and experience 

coding via a prepared code editor and compiler. However, there are no quizzes and 

peer pressure on this platform. 

 

2.3.3.4 Solo Learn 

Solo Learn is also a free and interactive online programming platform that allows 

users to learn coding skills. It provides approximately 21 programming courses for 

users to choose and learn, including Swift 4 programming language. In the course, it 

has many categories from the basics to the advanced topics such as classes and 

functions. Users can learn while reading materials provided and try to do coding by 

themselves. It also provides interactive quizzes and exercises in the form of multiple-

choice questions and fill in the blanks for users who already have an account. Solo 

Learn also includes a code playground for users to type any code they want in the 

code editor, and they also can ask questions or answer questions in the provided 

forums. 

 

2.3.3.5 CodeAcademy 

CodeAcademy has two types of categories to learn computer science related 

knowledge which are “Languages” and “Subjects”. In the “Languages” category, 

CodeAcademy provides many well-known programming languages, including Swift 

programming language, whereas in the “Subjects” category, it covers web design and 

development, machine learning, game development, mobile development etc. Each 

programming language subject has one basic course that allows the user to look up 

materials, write codes in code editor and show output at the same time. However, to 

access intermediate or advanced courses, the user has to pay money for subscribing 

to a monthly or annually professional plan. Besides, CodeAcademy also provides 

peer pressure which are forums and chat, but it does not have a physical chat box on 

the platform. Instead, it will direct to a Discord link to invite users to join in, the 

users have to login or register a Discord account to do so. 

 

2.3.3.6 Comparison of Existing Online Programming Platform 

 

Table 2-2: Comparison of 5 researched existing online programming platform 



24 

E-learning 

platform 

W3School Edabit BitDegree 

Learn 

Solo 

Learn 

CodeAcadem

y 

Interactive Yes Yes Yes Yes Yes 

Free Yes Yes Yes Yes Yes, with 

plans that cost 

money 

Signup and 

login 

function 

Yes Yes Yes Yes Yes 

Account 

required to 

access the 

overall 

platform? 

No Yes, for 

checking 

answer 

and find 

solution 

No Yes, for 

quizzes 

Yes 

Available 

programmin

g languages 

and 

framework 

HTML, 

CSS, 

JavaScript, 

SQL, PHP, 

Python, 

Java, C++, 

C#, 

Bootstrap 

C#, C++, 

Java, 

JavaScript

, PHP, 

Python, 

Ruby, 

Swift 

HTML, 

CSS, PHP, 

JavaScript, 

SQL, 

Bootstrap, 

Solidity, 

JQuery, 

C++, 

Python 

Python, 

Java, C++, 

JavaScript

, C#, PHP, 

SQL, 

HTML, 

CSS, C, 

React + 

Redux, 

Angular + 

NestJS, 

Ruby, 

Swift, 

JQuery 

HTML, CSS, 

Python, 

JavaScript, 

Java, SQL, 

Bash/Shell, 

Ruby, C++, 

R, C#, PHP, 

Go, Swift, 

Kotlin 

Tutorial/Inst

ructions/Cou

rses 

included 

Yes Yes Yes Yes Yes 

Code Editor Yes Yes Yes Yes Yes 



25 

and Code 

Compiler 

Quizzes, 

exercises 

and instant 

feedback 

Yes JavaScript 

and 

Python 

only 

No Yes Yes 

Peer 

pressure 

function 

Yes, forum No No Yes, 

forum 

Yes, forum. 

For chat, a 

discord link 

will be 

provided 

 

Based on the compared existing online programming platform as shown as Table 2-2, 

Solo Learn is the most complete online programming platform from other compared 

online programming platform, as it is interactive and free, provide signup and login 

function, included Swift programming language, tutorial, code editor function, 

quizzes and instant feedback. It also supports peer pressure function. Although 

W3School is also almost complete, it lacks the Swift programming language in the 

platform. Therefore, some characteristics of the existing online programming 

platform had been included in this project, especially the peer pressure function. 

 

2.4 Methodology Research 

This section discussed three software development methodology, with its pros and 

cons. Then, discussed software development methodology were compared in a table 

form. A good software development methodology is vital in the software 

development lifecycle to reduce the unwanted cost and increase the efficiency to 

produce a high-quality software product. 

 

2.4.1 Waterfall Development 

Pressman (2001, cited in Chauhan et al, 2017) defined that the waterfall model is a 

traditional and sequential software development model that is proceed in linear form, 

the phases, which are planning, analysis, design, implementation, testing, and etc. 

flows straightly from start to end, like a waterfall. In the waterfall development 

model, each phase has to be finished and approved by the project sponsor before 



26 

proceeding into the next phase, so it is not possible to have any overlapping phases 

and it is suitable for requirement-cleared and small projects (Dennis et al, 2015; 

Sharma, 2016). Chauhan et al (2017) and Sharma (2016) also mentioned that the 

waterfall model allows the project manager to control and manage software project 

lifecycle, as documentation writing, review and user approval will be executed in 

each phase. However, although going back to the previous phase in the waterfall 

model is possible, it is very difficult to do so (Dennis et al, 2015). Besides, the 

waterfall model has been blamed due to the highly wastage of cost and time, and it 

might be unable to deliver the expected requirements properly (Chauhan et al, 2017). 

 

 

Figure 2-3: Flow of waterfall development (Dennis et al, 2015) 

 

2.4.2 Evolutionary Prototype Development 

Prototyping is vital in the software development life cycle, as it creates one or more 

concepts and ideas to create the whole software, and helps software stakeholders, 

especially end users to provide comments and feedbacks regarding the user design 

and flow back to the developers, to make improvement on the system before it 

become an actual product. (Kurcwald, 2019). 

 

Dennis et al (2015) and Jayasinghe (2020) explained that evolutionary 

prototyping, or breadboard prototyping is a methodology that builds a small portion 

of workable prototype and enhances it constantly once feedback is received, to 

become a fully workable software. After the planning phase is done, the analysis 



27 

phase, design phase, and implementation phase will be conducted at the same time 

and repeatedly as an iteration to produce a system prototype with few features, so 

that the user is able to test the system prototype and give comments on it to the 

developers. As the number of cycles increases, more improvement and new functions 

will be added into the software prototype, until the prototype becomes totally mature 

and almost satisfied by the user, then it will become a final product. 

 

According to Dennis et al (2015), this software methodology allows 

developers to produce an interactive system extremely fast for the user, to help them 

to refine actual requirements as soon as possible. Jayasinghe said that the 

evolutionary prototyping model helps to gain client satisfaction regarding the system 

prototype. Developers are also able to stop developing the system if they find out 

some serious issue after several iterations when producing the system prototype 

(Khalid, 2018). 

 

Nevertheless, there are some cons by using this methodology. Dennis et al (2015) 

state that evolutionary prototyping models are not suitable for huge and complex 

systems, as changes across the iterations may cause the initial concept and design to 

become poor. Khalid (2018) also mentioned that this methodology may lead to being 

unable to set a time frame for the software project, as the project itself becomes 

boundaryless. 

 

 

Figure 2-4: Flow of evolutionary prototyping development (Dennis et al, 2015) 

 



28 

2.4.3 Agile Development 

Anwer et al (2017) explained the meaning of agile development: 

 

“Provide an iterative and evolutionary development paradigm with more emphasis 

on changing requirements, customer satisfaction, and team collaboration.” 

 

This means that the developers who use this methodology will develop and 

deliver the software or systems very quickly, early, frequently and continuously to 

satisfy the customer, as it is programming centric. Agile development also enables 

the ability to change requirements in any phase, even though it is in the late phases of 

software development. This methodology also advocates simplicity, which means 

avoiding any unnecessary work during the software development lifecycle, and the 

importance of communication physically in the development team, to make the team 

members believe in each other (Dennis et al, 2015; Chauhan et al, 2017). 

 

However, Dennis et al (2015) stated that agile methodologies have some major 

problems, such as require co-location of development team as it is offshored or 

outsourced, high probability to devolve into prototyping development if the project is 

not managed properly, and low-quality assurance of the system due to no actual 

documentation for the software project. 

 

 

Figure 2-5: Flow of agile development (Dennis et al, 2015) 

 

2.4.4 Comparison of Software Methodology 

 



29 

Table 2-3: Comparison between three development methodologies (Dennis et al, 

2015) 

Criteria Waterfall Evolutionary 

Prototyping 

Agile 

Unclear user 

requirements 

Poor Excellent Excellent 

Unfamiliar 

technology 

Poor Poor Poor 

Complex systems Good Poor Poor 

Reliable systems Good Poor Good 

Short time schedule Poor Excellent Excellent 

Schedule visibility Poor Excellent Good 

 

Based on the compared development methodologiesas listed in Table 2-3, waterfall 

development methodology is suitable in systems that are complex and moderate-to-

high reliability, but not suited in short-period projects or projects with lots of unclear 

requirements and unfamiliar technology. Evolutionary prototyping development 

methodolody is good in short-period projects and projects with lots of requirements 

uncertainties due to the prototyping iterations, but it only works in simple systems. 

Agile development methodology is superb in systems with unclear requirements, 

high reliability and short time schedule, but it becomes not suitable when the system 

is complex, or unfamiliar technologies are adopted. 

 

2.5 Conclusion of the Chapter 

Due to high performance, more secure, cleaner and readable syntax, Swift 

programming language has started to become more popular and attractive for 

developers and students to learn and develop iOS apps. Lots of developers are also 

starting to make the transition of their iOS and macOS apps from pure Objective-C 

to hybrid or pure Swift programming language, and lots of universities and colleges 

start to offer iOS application development courses for students and the public. 

 

Also, as digital products start to “fuse” into our daily lifestyle, it is inevitable 

to make a transition from conventional methods into online and electronic methods, 



30 

including education sectors. E-learning has become a trend from now to conduct 

teaching and learning in higher education without the restriction of time and venue. 

Besides, there are lots of students choosing computer-science related as their 

undergraduate studies. Therefore, online programming platforms have started to be 

recommended by lots of lecturers for students to practice their coding skills anytime 

and anywhere, with just an Internet connection. 

 

For researched software development methodologies, evolutionary prototyping has 

been chosen in this project. This is because this methodology not only helps to save 

lots of time to complete the system development, as the prototype can be continually 

to be developed into a full system instead of discard it and redo a new full functional 

system, but also be able to collect sufficient feedbacks from the user once the user 

had experienced with the small portion of the system prototype. 

 

 



31 

CHAPTER 3 

 

3 METHODOLOGY 

 

The objective of this chapter is to provide an explanation regarding the methodology 

applied for this project. There are four sections in this methodology chapter. Section 

3.1 explained the chosen software development methodology for this project based 

on the research in the previous chapter. Section 3.2 is to discuss and compare the 

web hosting service. Section 3.3 is to discuss the tools that were adopted to develop 

the system, including programming languages, framework, database, server, 

prototyping tools, and online code editor and compiler. Section 3.4 is to provide the 

project plan, with attached work breakdown structure and Gantt chart. 

 

3.1 Chosen Software Development Methodology 

Based on the research of various software development methodology in the previous 

chapter, which is Section 2.4, evolutionary prototyping had been chosen to develop 

the system in this project. In evolutionary prototyping, it can be separated into 

different phases which are requirements gathering and analysis, system design with 

many iterations and implementation, testing, and deployment. During the 

evolutionary prototyping, workable prototypes which are considered as part of the 

system had been produced and evaluated by users to gain feedback and comments, so 

that the prototypes can be improved based on the collected feedback. 

 

3.1.1 Requirements Gathering and Analysis 

To gather requirements, literature review had been conducted by reviewing journals 

and conference papers. Therefore, no questionnaire or survey was conducted. After 

the requirements are collected, the analysis phase has been performed to filter out 

useful and important requirements, and they have been categorized into both 

functional and non-functional requirements. Based on the functional and non-

functional requirements, use case diagrams and use case descriptions had been 

designed. 

 



32 

3.1.2 System Design and Implementation 

In this phase, the whole system and its related documentation had been designed and 

implemented by producing workable system prototypes. This phase has three 

iterations of prototyping which can be categorized into first iteration, second iteration, 

and final iteration. 

 

3.1.2.1 First Iteration of Prototyping 

In the first iteration, the topic and lesson prototype, code editor prototype, graded 

quiz prototype and exercise prototype had been developed. Each topic prototype 

contains the briefing and tutorials for the particular topic, hard-coded code examples 

and the link towards the code editor with predefined codes. For the code editor 

prototype, Paiza.io had been used as the Swift compiler for users to edit codes and 

view outputs. Graded quiz prototype consisted of 10 multiple choice questions with 4 

options per question, the system recorded the answer selected by the user, and 

showed to them their result after attempting the graded quiz. Exercise prototype 

consisted of 7 fill-in-the-blanks non-graded questions for users to practice 

themselves. Due to the time restrictions, these prototypes had been designed by using 

basic HTML, CSS and JavaScript programming languages, without using any web 

application framework. 

 

After the prototypes were done, a mini UAT testing had been conducted for 

users to experience them to collect any constructive feedback for further 

enhancement of these prototypes. 

 

Besides, during this iteration, Axure RP had been used to design the overview 

user interface of the whole system without any interactions, to provide a clear 

concept of the system flow to the users. 

 

3.1.2.2 Second Iteration of Prototyping 

The second iteration had been on designing essential UML diagrams, such as class 

diagrams, activity diagrams, and entity relationship diagrams. Next, the group chat 

box system prototype, login prototype, user profile prototype and the user interface 

for the whole system based on the previous iteration design were fully developed by 



33 

using Laravel framework. Authentication and authorization of login were also 

developed in the login prototype. 

 

Similar to the previous iteration, a mini UAT testing had been performed for 

these implemented prototypes to gain feedback from the users for further 

improvements. 

 

3.1.2.3 Final Iteration of Prototyping 

The last iteration had been focused on administrative related modules of the system 

which are to register students accounts, manage students accounts, and make 

amendment of the topic content by using Laravel framework. After that, all 

prototypes that developed in these three iterations had been already integrated into a 

final and full functional system. 

 

3.1.3 Software Testing 

In this phase, four types of testing were conducted which are unit testing, integration 

testing, usability testing and UAT testing. Unit testing was performed to test each 

function or module, whereas integration testing was used to test the linkage between 

two or more functions when they are integrated. Later, usability testing was 

conducted to test the system to ensure it is able to let users use it easily. Lastly, UAT 

testing was conducted by inviting 10 to 15 students who registered for UECS3263 in 

the May 2021 trimester to use the final system. During the final UAT testing, 

feedback was collected to make a finalized enhancement. 

 

3.1.4 Software Deployment 

After the testing phase for the final system is done, the final system has been 

delivered to the user via web hosting services. Users may access the web URL to use 

the system. Final report and presentation slides were prepared to demonstrate the 

final system. 

 

3.2 Web Hosting Services 

It is meaningless if the developed web application can be used only in localhost 

instead of applicable in the world wide web. According to Website.com (n.d.), a Web 

Hosting Service allows individual developers or developers in the same organization 



34 

to upload a website with one or more web pages, even though a whole web 

application onto the web hosting service provider’s server, to let users around the 

world access the website. Mostly, it contains file transfer protocol (FTP) to upload 

necessary web app files into the server, one or more databases to store data, email 

account features to send email notification to users, and website manager to manage 

web domains. Therefore, a list of web hosting services are compared, and the most 

suitable web hosting service is chosen. 

 

3.2.1 InfinityFree 

InfinityFree is a free web hosting service provider sponsored by a web service 

provider named iFastnet. It provides unlimited storage size and speed to store web 

application files, and it provides up to 400 MySQL 5.6 databases with the support of 

PHP 5.4, 5.5, 5.6 and 7.4. However, it does not provide the InnoDB database engine 

as well as the PHP Mail function, unless the customer spends real money to upgrade 

into iFastnet premium service. 

 

3.2.2 Hostinger 

Hostinger is a paid web hosting service provider and website domain registrar. It 

provides three monthly paid web hosting plans which are “Single”, “Premium”, and 

“Business” that cost $ 1.39 USD, $ 2.59 USD, and $3.99 USD respectively. This 

monthly paid web hosting plan provides 30 GB, 100 GB, and 200 GB storage 

respectively. Except “Single”, other plans provide unlimited web bandwidth. 

Nevertheless, these three web hosting plans provide InnoDB database engine and 

PHP Mail function. 

 

3.2.3 Awardspace 

Awardspace is a web hosting service provider that provides both free and paid web 

hosting plans. Both plans provide a MySQL database with InnoDB database engine 

and one email account. However, Free plan users are unable to use email service 

although they have one, as the email service in free plan are only eligible in full 

domain websites, but free plan users are allowed to register at most 3 subdomains. 

 

3.2.4 Comparison of Web Hosting Service 

 



35 

Table 3-1: Comparison between Three Web Hosting Services 

Web Hosting 

Service 

InfinityFree Hostinger Awardspace 

Free Yes No Yes, with paid 

plans 

Database support Yes, without 

InnoDB support 

Yes, with InnoDB 

support 

Yes, with InnoDB 

support 

PHPMyAdmin Yes Yes Yes 

PHP Mail function No Yes Yes, but unable to 

use in subdomain 

for free users 

Email account No 1 for “Single”, 100 

for “Premium” and 

“Business” 

1 for free, 1000 for 

basic paid plan, 

unlimited for Pro 

Plus and Max Pack 

plan  

Storage Size Unlimited 30 GB for 

“Single”, 100 GB 

for “Premium”, 

200 GB for 

“Business” 

1 GB for free, 

unlimited for paid 

Bandwidth Size Unlimited 100 GB for 

“Single”, unlimited 

for “Premium” and 

“Business” 

5 GB for free, 

unlimited for paid 

Ad-Free Yes Yes Yes 

 

Based on the Table 3-1, Awardspace had been chosen as a web hosting service. 

Although it only provides 1 GB storage space and 5 GB bandwidth, it provides a free 

InnoDB database engine. In contrast, InfinityFree provides unlimited storage space 

and bandwidth but no free InnoDB database engine. 



36 

3.3 Development and Prototyping Tools 

It is necessary to have well-planed tools to execute the project well. In this section, 

planned programming languages, frameworks, server, database system, code editor 

and prototyping software had been listed out to build the system properly. 

 

3.3.1 Programming Language 

3.3.1.1 Web-based Programming Language 

Since this project was developing a web application, five crucial web-based 

programming languages have been used, which are HTML, CSS, JavaScript, PHP 

and SQL. 

 

HTML means “Hypertext Markup Language”, it sets the whole structure of 

the webpage, similar to a backbone of the web page. CSS means “Cascade Style 

Sheet” that decorate the webpage and become more vibrant and user-friendly with 

various colours, font sizes, and font types. JavaScript is a scripting language that is 

mostly used for client-side and some necessary interaction. In contrast, PHP is a 

server-side programming language that communicates with the server. Last but not 

least, SQL means Structured Query Language that is usually used in the database for 

creating tables, insert data, update data, retrieve data, and retrieve data. 

 

3.3.1.2 Swift Programming Language 

Swift programming language has been used to create code examples for briefing, 

exercises, quizzes, and code samples in the embedded code compiler. The version of 

the Swift programming language that has been used is Swift 5.3. 

 

3.3.2 Framework 

3.3.2.1 Laravel 

Laravel is a web application framework that uses model-view-controller architecture. 

PHP programming language is used to develop Laravel-based web applications. 

 

3.3.2.2 React 

React is an open-source web application framework that was created and developed 

by Facebook Inc. It is usually used to develop the front-end of the web application 



37 

with various UI components and interactions. React can be installed into the Laravel 

framework, and the programming language used for React is JavaScript. 

 

3.3.3 Server and Database System 

3.3.3.1 MySQL 

MySQL is a relational database management system that is popular for web 

developers to use. It is able to add, edit, view and delete data from the table or the 

table itself. Apart from that, it can also define relationships, primary keys and foreign 

keys. InnoDB was used as the database engine to store foreign key and constraint 

relationships. 

 

3.3.3.2 WampServer 

WampServer is a software that allows the local computer to become a localhost 

server for web applications. It provides MySQL and MariaDB databases, as well as 

the support of PHP environments. It only supports Microsoft Windows operating 

systems. 

 

3.3.4 Integrated Development Environment 

3.3.4.1 Visual Studio Code 

Visual Studio Code is a free, open-source and lightweight source-code editor that is 

developed by Microsoft. It is the default source code editor for Laravel framework 

and React framework. 

 

3.3.5 Prototyping Tools 

3.3.5.1 Axure RP 9 

Axure RP is a powerful prototyping tool to make either web or mobile prototypes. It 

can be done in either a low fidelity prototype with only the UI design, or a high-

fidelity prototype with interactions in it. Some prototypes were produced by using 

Axure RP due to the time limitations, especially the initial UI design. 

 

3.3.6 Online Code Editor 

3.3.6.1 Paiza.io 

Paiza.io is an online code compiler and code editor to let users do coding, run 

programs and watch output. It supports various types of programming languages 



38 

including Swift. It also supports web embedding to let users embed the projects into 

the web application. 

 

3.4 Project Plan 

A project should have a project plan to ensure each task is assigned well with the 

stipulated time, so that there is no wastage of time and resources during the execution 

of the project. 

 

3.4.1 Work Breakdown Structure and Gantt Chart 

The work breakdown structure and Gantt chart had been attached as in Appendix A 

and Appendix B respectively. 

 

3.5 Conclusion of the Chapter 

In short, every phase including iterations from the chosen software development 

methodology for this project had been defined. Three web hosting services were 

compared and the most suitable web hosting service was chosen to deploy the system. 

Besides, developing and prototyping tools which had been adopted for this project 

were listed out. Project plan has been designed and planned to ensure that the work is 

always on track. Last but not least, preliminary user interfaces were sketched and 

designed for further system implementation purposes. 

 



 

CHAPTER 4 

 

4 PROJECT SPECIFICATION 

 

The objective of this chapter is to provide details of specifications in this project. 

There are four sections in this project specification chapter. Section 4.1 is to explain 

the short description of requirements gathering. Section 4.2 is to list out all the 

requirements specifications, including functional requirements, non-functional 

requirements, and assumptions. Section 4.3 is to state out the use case diagram. 

Section 4.4 is to list out all use case descriptions based on the use case diagram. 

Section 4.5 is to provide preliminary user interface design for the following iterations. 

 

4.1 Introduction 

As stated in Chapter 3 Section 3.1.1, the requirements were gathered by conducting 

research on literature review and studies. Based on the research paper from Gandraß 

et al (2020), an online programming platform should consist of questions and 

problem solving, visual feedback, on-boarding function, guidelines, and peer-

pressure to gain motivation for students. For lecturer or admin, an online 

programming platform should provide a function for modification of course content 

and student progress tracing function for them. 

 

4.2 Requirements Specifications 

4.2.1 Functional Requirements 

1. The system should allow the user to login the system. 

2. The system should allow the user to reset password. 

3. The system should allow the user to logout. 

4. The system should allow the user to read and follow Swift programming 

materials. 

5. The system should allow the user to edit codes and produce output in the 

embedded code compiler. 

6. The system should provide non-graded exercises for users as a practice. 

7. The system should provide graded quizzes after the user completes each 

topic. 



 

8. The system should allow the user to retake the graded quizzes with unlimited 

trials. 

9. The system should allow the user to view the results once the user has 

completed the graded quizzes. 

10. The system should allow the user to view his/her basic statistics for overall 

performance. 

11. The system should allow the user to view his/her graded quiz attempt history. 

12. The system should provide a chat box for users to communicate with other 

users. 

13. The system should allow the administrator to register the user account. 

14. The system should allow the administrator to delete the user account. 

15. The system should allow the administrator to monitor the student’s progress. 

16. The system should allow the administrator to modify the exercises, quizzes 

and tutorial briefings. 

 

4.2.2 Non-functional Requirements 

1. The system should provide an interface to the user to reset password when the 

user login his/her account for the first time. 

2. The system should obtain the latest score of the user when the user attempts 

the same quizzes more than once. 

3. The system should allows the administrator to manually delete any chat data. 

4. The system should hash the password to prevent anyone except the user itself 

from retrieving the password. 

5. The system should display the online users in the chat box list. 

 

4.2.3 Assumptions 

1. No time limit for each graded quiz. Therefore, students can ease themselves 

to take the quiz without any time restriction panics. 

2. The administrator is the lecturer who handles the iOS Application 

Development course. 

 

4.3 Use Case Diagram 

The use case diagram had been attached as in Appendix D. 



 

 

4.4 Use Case Description 

 

Table 4-1: Use Case Description of Read Materials  

Use Case Name: READ MATERIALS ID: 1 Importance 

Level: High 

 

Primary Actor:  Student 

 

Use Case Type: Detail, Essential 

Stakeholders and Interests:   

1. Student – He/She will read the provided materials and briefings of Swift 

Programming Language in the platform. 

Brief Description: READ MATERIALS use case describe how the student uses 

the platform to read Swift Programming Language tutorial 

briefings and materials. 

 

Trigger: Students want to read Swift Programming Language tutorial briefings and 

materials before taking exercises, quizzes or code changing. 

 

Relationships: 

 Association: Student 

 Include:  N/A 

 Extend: N/A   

 Generalization: N/A   

Normal Flow of Events: 

1. The student wants to read Swift Programming Language tutorial briefings 

and materials before taking exercises, quizzes or code changing. 

2. The students will choose any one of the topics from the topic list. 

3. The students will read all the materials from that particular topic. 



 

Table 4-2: Use Case Description of Edit Codes in Code Editor 

Use Case Name: EDIT CODES IN CODE 

EDITOR 

ID: 2 Importance 

Level: High 

 

Primary Actor: Student 

 

Use Case Type: Detail, Essential 

Stakeholders and Interests:   

1. He/She will edit Swift codes in the provided Swift code editor and 

compiler in the platform. 

Brief Description: EDIT CODES IN CODE COMPILER use case describes how 

the student edits Swift codes in the provided Swift code 

editor and compiler in the platform. 

 

Trigger: Students want to edit Swift code during the reading materials of that 

topic, or edit their desired Swift code in the provided playground. 

 

Relationships: 

 Association: Student 

 Include:  N/A 

 Extend: Edit in The Topic, Edit in The Code Playground   

 Generalization:  N/A 

Normal Flow of Events: 

1. The student wants to edit Swift code during the reading materials of that 

topic, or edit their desired Swift code in the provided playground. 

2. The student will go to the online code editor from the topic. Continue to 

E2: Edit in The Topic. 

3. The student will go to the code playground. Continue to E3: Edit in The 

Code Playground. 

Alternate/Exceptional Flows: 

E2: Edit in the topic 

1. The student will modify codes that are pre-defined by the platform for that 

particular topic. 

2. The student will run the codes and view the output and the status (pass or 

fail). 

E3: Edit in the code playground 

1. The student will type their desired Swift codes. 



 

2. The student will run the codes and view the output. 

 

Table 4-3: Use Case Description of Do Non-Graded Exercise 

Use Case Name: DO NON-GRADED 

EXERCISES 

ID: 3 Importance 

Level: High 

 

Primary Actor: Student 

 

Use Case Type: Detail, Essential 

Stakeholders and Interests:   

1. Student – He/She will do non-graded exercises as a trial. 

Brief Description: DO NON-GRADED EXERCISES use case describes how the 

student does non-graded exercises provided by the platform 

as a practice. 

 

Trigger: The student wants to do non-graded exercises as a practice or enhance 

his/her own understanding of Swift Programming Language. 

 

Relationships: 

 Association: N/A 

 Include:  N/A 

 Extend: N/A  

 Generalization: N/A   

Normal Flow of Events: 

1. The student wants to do non-graded exercise as a practice or enhance 

his/her own understanding of Swift Programming Language. 

2. The student does non-graded exercise by filling in the blanks. 

3. The student checks the solution with the answer. 

 

 



 

Table 4-4: Use Case Description of Take Graded Quizzes 

Use Case Name: TAKE GRADED QUIZZES  ID: 4 Importance 

Level: High 

 

Primary Actor: Student 

 

Use Case Type: Detail, Essential 

Stakeholders and Interests:   

1. Student – He/She will take graded quizzes after completing a topic. 

Brief Description: TAKE GRADED QUIZZES use case describes how the student 

takes graded quizzes after he/she completes a topic. 

 

Trigger: Student wants to take graded quizzes after he/she completes a topic. 

 

Relationships: 

 Association: Student 

 Include:  N/A 

 Extend: Retake Graded Quizzes   

 Generalization:  N/A 

Normal Flow of Events: 

1. The student wants to take graded quizzes after he/she completes a topic. 

2. The student answers 10 multiple choice questions with 4 options per 

question. 

3. The system stores the student's selected answer for each question. 

4. After the student answers all the questions, the system displays the number 

of correct answers and its percentage. 

5. The student may re-attempt the same graded quiz. Continue to E5: Retake 

Graded Quizzes 

Alternate/Exceptional Flows: 

E5: Retake Graded Quizzes 

1. If the student wants to try the same graded quiz again, he/she may perform 

it with the normal flow of 1 to 4. 

 

 



 

Table 4-5: Use Case Description of View Profile 

Use Case Name: VIEW PROFILE ID: 5 Importance 

Level: High 

 

Primary Actor: Student 

 

Use Case Type: Detail, Essential 

Stakeholders and Interests:   

1. Student – He/She will view his/her own account profile. 

Brief Description: VIEW PROFILE use case describes how the student views 

his/her own account profile. 

 

Trigger: Student wants to view his/her own account profile. 

 

Relationships: 

 Association: Student 

 Include:  View Basic Statistics of Performance 

 Extend: View Quiz Attempt History   

 Generalization:  N/A 

Normal Flow of Events: 

1. The student goes to his/her user profile. 

2. The student can view his/her username and student ID. 

3. The student can view his/her performance statistics. Continue to S3: View 

Basic Statistics of Performance. 

4. The student can view his/her graded quiz attempt history. Continue to E4: 

View Quiz Attempt History. 

 

Sub Flows: 

S3: View Basic Statistics of Performance. 

3a. The student can view his/her percentage of total correct answers over the total 

answers of all graded quizzes. 

3b. The student can view his/her percentage of total correct answers over the total 

answers of each graded quiz. 

Alternate/Exceptional Flows: 

E4: View Quiz Attempt History. 

1. If the students attempted more than once for a graded quiz, he/she can view 



 

each attempt history for that particular quiz. 

 

Table 4-6: Use Case Description of Chat in Chat Box 

Use Case Name: CHAT IN CHAT BOX ID: 6 Importance 

Level: High 

 

Primary Actor: Student 

 

Use Case Type: Detail, Essential 

Stakeholders and Interests:   

1. Student – He/She will chat with other students in the chat group. 

Brief Description: CHAT IN CHAT BOX use case describes how a student chats 

with other students in the chat group, for discussion and 

expression of feelings. 

Trigger: The student wants to chat with other students in the chat box. 

 

Relationships: 

 Association: Students 

 Include:  N/A 

 Extend: N/A  

 Generalization: N/A   

Normal Flow of Events: 

1. The student wants to chat with other users in the chat box. 

2. The student types his text in the chat box. 

3. The student sends the chat in the chat box. 

4. The student views other user’s conversation in the same chat box, and the 

online users list. 

 

 

 



 

Table 4-7: Use Case Description of Login the System 

Use Case Name: LOGIN THE SYSTEM ID: 7 Importance 

Level: High 

 

Primary Actor: Student  

 

Use Case Type: Detail, Essential 

Stakeholders and Interests:  

1. Student – He/she will login to the system to utilize the functions provided 

by the platform. 

Brief Description: LOGIN THE SYSTEM use case will describe how the student 

login to the system to utilize the functions provided by the 

platform. 

 

Trigger: The student wants to login to the system to utilize the functions provided 

by the platform. 

 

Relationships: 

 Association: Student 

 Include:  N/A 

 Extend: Reset Password 

 Generalization:  N/A 

Normal Flow of Events: 

1. The student wants to login to the system to utilize the functions provided 

by the platform. 

2. The student input his/her student ID as the username. 

3. The student input his/her password (own reset password or random 

generated password provided by the administrator).  

4. The student login into the system. 

5. The student reset his/her password. Continue to E5: Reset Password 

Alternate/Exceptional Flows: 

E5: Reset Password 

1. If the student forgot his/her password, or the student is having his/her first-

time login, the student has to input his/her new password and confirmation 

password. 

2. The student accepts his/her reset password. 

 



 

Table 4-8: Use Case Descriprion of Reset Password 

Use Case Name: RESET PASSWORD ID: 7.1 Importance 

Level: High 

 

Primary Actor: Student  

 

Use Case Type: Detail, Essential 

Stakeholders and Interests:  

1. Student – He/she will reset his/her password when he/she forgot his/her 

password, or the student is having his/her first-time login 

Brief Description: RESET PASSWORD use case will describe how the student 

resets his/her password when he/she forgot his/her 

password, or the student is having his/her first-time login. 

 

Trigger: The student wants to reset his/her password when he/she forgot his/her 

password, or the student is having his/her first-time login. 

 

Relationships: 

 Association: Student 

 Include:  N/A 

 Extend: N/A 

 Generalization:  N/A 

Normal Flow of Events: 

1. The student wants to reset his/her password when he/she forgot his/her 

password, or the student is having his/her first-time login. 

2. The student input his/her new password and confirmed password. 

3. The student accepts his/her reset password. 

 

 



 

Table 4-9: Use Case Descriprion of Logout the System 

Use Case Name: LOGOUT THE SYSTEM ID: 8 Importance 

Level: High 

 

Primary Actor: Student 

 

Use Case Type: Detail, Essential 

Stakeholders and Interests:   

1. Student – He/she will logout the system after they use the platform. 

Brief Description: LOGOUT THE SYSTEM use case describes how the student 

logs out of the system after they use the platform. 

Trigger: The student wants to logout the system after they use the platform. 

 

Relationships: 

 Association: Student 

 Include:  N/A 

 Extend: N/A   

 Generalization:  N/A 

Normal Flow of Events: 

1. The student wants to logout the system after they use the platform. 

2. The student logs out of the system. 

 

 

 



 

Table 4-10: Use Case Descriprion of Manage Student Account 

Use Case Name: MANAGE STUDENT 

ACCOUNT 

ID: 9 Importance 

Level: High 

 

Primary Actor: Administrator 

 

Use Case Type: Detail, Essential 

Stakeholders and Interests:  

1. Administrator – He/She will manage all the existing student accounts. 

Brief Description: MANAGE STUDENT ACCOUNT use case describes how the 

administrator manages all the existing student accounts. 

 

Trigger: Administrator wants to manage all the existing student accounts. 

 

Relationships: 

 Association: Administrator 

 Include:  Monitor Student Progress 

 Extend: Delete Student Account, Register Student Account   

 Generalization:  N/A 

Normal Flow of Events: 

1. Administrator wants to manage all the existing student accounts. 

2. Administrator login with his/her administrator account. 

3. Administrators may monitor the student performance. Continue to S3: 

Monitor Student Progress. 

4. Administrators may delete an existing student account. Continue to E4: 

Delete Student Account. 

5. Administrators may register a new student account. Continue to E5: 

Register Student Account. 

Sub Flow: 

S3: Monitor Student Progress. 

3a. Administrator will search the student account by inputting the student ID. 

3b. Administrator will view the student’s total correct answer over the total answer 

of all graded quizzes. 

3c. Administrator will view the student’s total correct answer over the total answer 

of each graded quiz. 

3d. Administrator will view the student’s attempt history of the same graded quiz, 



 

if the student had tried more than once for the same graded quiz. 

Alternate/Exceptional Flows: 

E4: Delete Student Account 

1. If the student has graduated or withdrawn from the studies, the 

administrator will delete the student’s existing account. 

E5: Register Student Account 

1. If the student has registered the UECS3263 iOS Application Development 

subject, the administrator will get a student list from the Faculty General 

Officer of LKC FES. 

2. The administrator will key in the student ID and the student’s name 

manually. 

3. The system will auto generate a random password for the student account. 

4. The system will store the student account into the database. 



 

Table 4-11: Use Case Descriprion of Modify Lesson Content 

Use Case Name: MODIFY LESSON CONTENT ID: 10 Importance 

Level: High 

 

Primary Actor: Administrator 

 

Use Case Type: Detail, Essential 

Stakeholders and Interests:  

1. Administrator – He/She will modify the lesson content to the latest version 

based on the Swift Documentation. 

Brief Description: MODIFY LESSON CONTENT use case describes how the 

administrator modifies the lesson content to make sure the 

content fits the latest version of Swift Documentation if 

necessary. 

 

Trigger: Administrator wants to modify the lesson content. 

 

Relationships: 

 Association: Administrator 

 Include:  Add/Edit/Delete Exercises, Add/Edit/Delete Quizzes, 

Add/Edit/Delete Materials 

 Extend: N/A   

 Generalization:  N/A 

Normal Flow of Events: 

1. The administrator wants to modify the lesson content. 

2. The administrator can go to any of the topic materials for modification. 

Continue to S2: Add/Edit/Delete Materials. 

3. The administrator can go to any of the exercises for modification. Continue 

to S3: Add/Edit/Delete Exercises. 

4. The administrator can go to any of the graded quizzes for modification. 

Continue to S4: Add/Edit/Delete Quizzes. 

 

Sub Flow: 

S2: Add/Edit/Delete Materials 

2a. The administrator can add new topic materials, or; 

2b. The administrator can edit existing topic materials, or; 



 

2c. The administrator can delete existing topic materials. 

S3: Add/Edit/Delete Exercises 

3a. The administrator can add new exercises, or; 

3b. The administrator can edit existing exercises, or; 

3c. The administrator can delete existing exercises. 

 

S4: Add/Edit/Delete Quizzes 

4a. The administrator can add new quizzes, or; 

4b. The administrator can edit existing quizzes, or; 

4c. The administrator can delete existing quizzes. 

 

 



 

 

4.5 Preliminary User Interface Design 

During the first iteration of prototyping, all essential preliminary user interface 

designs had been done by using Axure RP 9 Prototyping software, as shown in 

Figure 4-1 to Figure 4-21. Flow of the initial user interface design had been attached 

as in Appendix C. 

 

 

Figure 4-1: Welcome Page 

 

 

Figure 4-2: Student Login Page 

 



 

 

Figure 4-3: Admin Login Page 

 

 

Figure 4-4: Change Password Page for First Time Login 

 



 

 

Figure 4-5: Reset Password First Page 

 

 

Figure 4-6: Reset Password Second Page 

 



 

 

Figure 4-7: Home Page 

 

 

Figure 4-8: Mega Menu and Navigation Bar 

 



 

 

Figure 4-9: Listing of Content (Eg: Lessons) 

 

 

Figure 4-10: Lesson Content Page 

 



 

 

Figure 4-11: Exercise Page 

 

 

Figure 4-12: Graded Quiz Page 

 



 

 

Figure 4-13: Quiz Result Page after completing all Questions 

 

 

Figure 4-14: Code Editor Page 

 



 

 

Figure 4-15: Student Profile Page 

 

 

Figure 4-16: Chat Box Page 

 

 



 

 

Figure 4-17: Admin Profile 

 

 

Figure 4-18: Delete Student Account Modal View Page 

 



 

 

Figure 4-19: Register Student Page 

 

 

Figure 4-20: Lesson Content List with Add, Modify and Delete Buttons 

 



 

 

Figure 4-21: Course Content Editor 

 

4.6 Conclusion of the Chapter 

In a nutshell, the method to gather requirements has been defined which is 

conducting literature review and finding requirements from research papers. 16 

functional requirements, 5 non-functional requirements and 2 assumptions are 

defined. A sse case diagram has been designed and 11 use case descriptions from the 

use case diagram are stated properly. Last but not least, preliminary user interfaces 

were sketched and designed for further system implementation purposes. 

 



65 

 

CHAPTER 5 

 

5 SYSTEM DESIGN 

 

The purpose of this chapter is to describe the overall web application system design. 

Section 5.1 is to describe the system architecture design of the web application. 

Section 5.2 is to provide the designed UML diagrams. Section 5.3 is to explain the 

database design and it’s database dictionary. Section 5.4 is to provide actual 

developed user interfaces. 

 

5.1 System Architecture Design 

Two types of software architecture design existed in the system, which are Model-

View-Controller (MVC) Architecture and Client-Server Architecture. 

 

As stated in Section 1.4, the system was fully developed with Laravel MVC 

architecture, in which the system can be split into three parts which are Model, View, 

and Controller. The model connects to the MySQL database that contains numerous 

tables and their columns, including primary key and foreign key. The view lets users 

view the data from the database and provide input that needs to be sent into the 

database. The controller is a medium to fetch data from modal to the view or handles 

requests from view to the modal. However, the front-end framework in the view is 

unable to get data from the database and send requests to the controller to handle 

them. Therefore, application programming interfaces (APIs) are used by calling them 

to connect the front-end framework with the controller. 

 

Besides, since the system had been deployed into the web hosting services, 

therefore Client-Server Architecture had also been used in the system. Sarangam 

(2020) stated that Client-Server Architecture is an architecture design that allows 

users from client-side to access the web resources from the server through the 

Internet. On the client-side, users use a browser from a device to access the Internet 

by entering a URL in the address bar. If the URL is existing, the server which 

connects to the Internet domain will fetch out all necessary resources to the client-



66 

 

side or receive necessary input from the client-side. Figure 5-1 shows the designed 

system architecture in the system. 

 

 

Figure 5-1: Designed System Architecture 

 

5.2 Designed UML Diagrams 

During the second iteration, all essential UML diagrams were designed. Class 

diagram and activity diagram had been provided. 

 

5.2.1 Class Diagram 

Class diagram was provided to show the relationship between model classes and the 

actions between controller class and model class. Designed class diagram had been 

attached as in Appendix E. 

 

5.2.2 Activity Diagram 

Figure 5-2 to Figure 5-12 shows the Activity Diagram based on each use case. 

 



67 

 

 

Figure 5-2: Activity Diagram for Chat in Chat Box 

 

 

Figure 5-3: Activity Diagram for Do Non-Graded Exercises 

 



68 

 

 

Figure 5-4: Activity Diagram for Edit Codes in Code Compiler 

 

 

Figure 5-5: Activity Diagram for Login the System 

 



69 

 

 

Figure 5-6: Activity Diagram for Logout the System 

 

 

Figure 5-7: Activity Diagram for Manage Student Account 

 

 

Figure 5-8: Activity Diagram for Modify Lesson Content 

 



70 

 

 

Figure 5-9: Activity Diagram for Read Materials 

 

 

Figure 5-10: Activity Diagram for Reset Password 

 



71 

 

 

Figure 5-11: Activity Diagram for Take Graded Quizzes 

 

 

Figure 5-12: Activity Diagram for View Profile 

 



72 

 

5.3 Database Design 

5.3.1 Entity Relationship Diagram (ERD) 

Eight tables were designed in the database. Each table had at least an one-to-many 

relationship with other table. Table “topictitles” represents the name of the topic 

which affects the exercises, quizzes and lesson sections related to the same topic. 

Table “topicsections” represents the section with briefing and code examples related 

to the same topic. Table “exercises” represents the information of exercise questions 

related to the same topic. Table “quizzes” represents the information of graded quiz 

questions related to the same topic. Table “quizhistories” represents the history of the 

quiz related to the respective topic and the student, once the student completed the 

quiz. Table “students” represents the information of the students. Table “admin” 

represents the information of the administrator. Table “chats” represents the 

information of the chat data related to the respective student or administrator. Figure 

5-13 shows the diagram of the designed entity relationship diagram. 

 

 

Figure 5-13: Entity Relationship Diagram 

 

5.3.2 Data Dictionary 

 

Table 5-1: Data dictionary for the table “topictitles” 



73 

 

Column 

Name 

Description Data 

Type 

Siz

e 

Primar

y Key? 

Foreig

n Key? 

FK 

reference

d table 

Nullabl

e 

topicID Unique 

identificatio

n for all 

topics 

Integer 11 Yes - - No 

topicNam

e 

Topic’s title 

name 

varcha

r 

255 - - - No 

 

Table 5-2: Data dictionary for the table “topicsections” 

Column 

Name 

Description Data 

Type 

Size Primar

y Key? 

Foreig

n Key? 

FK 

reference

d table 

Nullabl

e 

sectionID Unique 

identificatio

n for all 

sections 

Intege

r 

11 Yes - - No 

sectionNam

e 

Section 

name 

varcha

r 

255 - - - No 

editorLink Link for 

online code 

editor 

varcha

r 

255 - - - Yes 

sectionText

1 

Text for the 

first section 

paragraph 

text 6553

5 

- - - No 

sectionCode

1 

Code text 

for the first 

section 

paragraph 

text 6553

5 

- - - Yes 

sectionText

2 

Text for the 

second 

section 

text 6553

5 

- - - Yes 



74 

 

paragraph 

sectionCode

2 

Code text 

for the 

second 

section 

paragraph 

text 6553

5 

- - - Yes 

sectionText

3 

Text for the 

third 

section 

paragraph 

text 6553

5 

- - - Yes 

sectionCode

3 

Code text 

for the third 

section 

paragraph 

text 6553

5 

- - - Yes 

sectionText

4 

Text for the 

fourth 

section 

paragraph 

text 6553

5 

- - - Yes 

sectionCode

4 

Code text 

for the 

fourth 

section 

paragraph 

text 6553

5 

- - - Yes 

topicID Unique 

identificatio

n for all 

topics 

Intege

r 

11 - Yes topictitle

s 

No 

 

Table 5-3: Data dictionary for the table “exercises” 

Column 

Name 

Description Data 

Type 

Size Primar

y Key? 

Foreig

n Key? 

FK 

reference

d table 

Nullabl

e 

exerciseID Unique Intege 11 Yes - - No 



75 

 

identificatio

n for all 

exercises 

r 

exerciseTe

xt 

Text 

description 

for an 

exercise 

text 6553

5 

- - - No 

blank1 Pre-defined 

correct 

answer for 

the first 

blank 

varcha

r 

255 - - - No 

blank2 Pre-defined 

correct 

answer for 

the second 

blank 

varcha

r 

255 - - - Yes 

blank3 Pre-defined 

correct 

answer for 

the third 

blank 

varcha

r 

255 - - - Yes 

topicID Unique 

identificatio

n for all 

topics 

Intege

r 

11 - Yes topictitle

s 

No 

 

Table 5-4: Data dictionary for the table “quizzes” 

Column 

Name 

Description Data 

Type 

Size Primar

y Key? 

Foreig

n Key? 

FK 

reference

d table 

Nullabl

e 

quizID Unique 

identificatio

Integer 11 Yes - - No 



76 

 

n for all 

quizzes 

quizText Text 

description 

for a quiz 

text 6553

5 

- - - No 

option1 First option varcha

r 

255 - - - No 

option2 Second 

option 

varcha

r 

255 - - - No 

option3 Third option varcha

r 

255 - - - Yes 

option4 Fourth 

option 

varcha

r 

255 - - - Yes 

correctAn

s 

Option with 

correct 

answer 

enum ‘a’, 

‘b’, 

‘c’, 

‘d’ 

- - - No 

topicID Unique 

identificatio

n for all 

topics 

Integer 11 - Yes topictitles No 

 

Table 5-5: Data dictionary for the table “quizhistories” 

Column 

Name 

Description Data 

Type 

Siz

e 

Primar

y Key? 

Foreig

n Key? 

FK 

reference

d table 

Nullabl

e 

quizHistoryI

D 

Unique 

identificatio

n for all 

quiz 

histories 

Intege

r 

11 Yes - - No 

totalQues Total 

number of 

Intege

r 

11 - - - No 



77 

 

questions 

exist in the 

quiz 

numCorrect Total 

number of 

correct 

answers 

performed 

in the quiz 

Intege

r 

11 - - - No 

steps Total 

number of 

steps go to 

previous 

question 

and next 

question 

Intege

r 

11 - - - No 

timeTaken Time taken 

to complete 

all question 

within the 

same quiz 

Intege

r 

11 - - - No 

topicID Unique 

identificatio

n for all 

quizzes 

related to 

the 

respective 

topic 

Intege

r 

11 - Yes quizzes No 

studentID Unique 

identificatio

n for all 

students 

Intege

r 

11 - Yes students No 



78 

 

 

Table 5-6: Data dictionary for the table “students” 

Column 

Name 

Description Data 

Type 

Size Primar

y Key? 

Foreig

n 

Key? 

FK 

reference

d table 

Nullabl

e 

studentID Unique 

identificatio

n for all 

students 

Integer 11 Yes - - No 

studentName Student 

name 

varchar 255 - - - No 

email Student 

email 

varchar 255 - - - No 

tempPasswo

rd 

Student 

temporary 

password 

varchar 255 - - - Yes 

password Student 

password 

with 

encryption 

varchar 255 - - - No 

isOnboard Check 

whether is 

first time 

login to the 

system 

bool 1 - - - No 

last_seen Last login 

time 

datetim

e 

8 

byte

s 

- - - Yes 

 

Table 5-7: Data dictionary for the table “admins” 

Column 

Name 

Description Data 

Type 

Size Primar

y Key? 

Foreig

n Key? 

FK 

reference

d table 

Nullabl

e 



79 

 

adminID Unique 

identificatio

n for all 

administrato

rs 

Integer 11 Yes - - No 

adminNam

e 

Administrato

r name 

varchar 255 - - - No 

password Administrato

r password 

with 

encryption 

varchar 255 - - - No 

last_seen Last login 

time 

datetim

e 

8 

byte

s 

- - - Yes 

 

Table 5-8: Data dictionary for the table “chats” 

Column 

Name 

Description Data 

Type 

Size Primar

y Key? 

Foreig

n 

Key? 

FK 

reference

d table 

Nullabl

e 

chatID Unique 

identificati

on for all 

chats 

integer 11 Yes - - No 

chatText Text 

description 

of a chat 

text 6553

6 

- - - No 

chatDateTi

me 

Date and 

time when 

the chat 

sends 

datetim

e 

8 

bytes 

- - - No 

studentID Unique 

identificati

on for all 

Integer 11 - Yes students Yes 



80 

 

students 

adminID Unique 

identificati

on for all 

admins 

Integer 11 - Yes admins Yes 

 

5.4 Implemented User Interface 

All necessary user interfaces were successfully implemented based on the 

preliminary designed user interface as stated in Chapter 4 Section 4.5. During the 

prototype development iteration, some user interfaces were deleted or modified, and 

some new user interfaces were added. Figure 5-14 to Figure 5-68 shows all of the 

implemented user interface. 

 

5.4.1 Introduction Screen 

Introduction screen is the first screen when the user is starting to use the system. It 

contains a welcome page with “Student Login” button, “Admin Login” button, and 

“About” button. The “Student Login” button and “Admin Login” button will redirect 

the user to their respective login page, whereas the “About” button will redirect the 

user to the about system page to provide briefing for this platform. 

 

 

Figure 5-14: Implemented Welcome Screen 

 



81 

 

 

Figure 5-15: Implemented About Screen 

 

5.4.2 Login Screen 

There are two types of login screen which are student login screen and administrator 

login screen, as shown as Figure 5-16 and Figure 5-17. Each of the login screens 

require the user to key in his/her respective user ID and password. For the student 

login screen, a reset password button is also provided. 

 

 

Figure 5-16: Student Login Screen 

 



82 

 

 

Figure 5-17: Admin Login Screen 

 

5.4.3 Reset Password Screen 

Reset password screen is only applicable for student accounts which have completed 

the onboarding procedure. Students may key in their student Email, new password 

and confirmation password to reset their password. Figure 5-18 shows the reset 

password screen. 

 

 

Figure 5-18: Reset Password Screen 

 



83 

 

5.4.4 Onboarding Screen 

When a registered student login his/her account for the first time, they will be 

redirected to the onboarding page which requires the student to reset their password. 

After the student reset his/her account password, he/she will be redirected to the 

home screen. 

 

 

Figure 5-19: Onboarding Screen 

 

5.4.5 Home Screen and Navigation Bar 

There are two types of home screen which are student home screen and administrator 

home screen. Users who logged into the system will be redirected to their respective 

home screen. Each home screen contains the greeting text with the username, four 

big buttons, and a navigation bar. Students may proceed to learn a lesson, take an 

exercise or graded quiz, view their own profile, chat in a chat box, and code freely in 

the code playground. Administrators may proceed to register a new student, modify 

lesson contents, exercise questions or graded quiz questions, check a student’s 

performance, and chat in chat box. 

 

 



84 

 

 

Figure 5-20: Student Home Screen 

 

 

Figure 5-21: Student Navigation Bar for Lessons 

 



85 

 

 

Figure 5-22: Student Navigation Bar for Exercises 

 

 

Figure 5-23: Student Navigation Bar for Graded Quizzes 

 



86 

 

 

Figure 5-24: Student Navigation Bar for Other Functions 

 

 

Figure 5-25: Administrator Home Screen 

 



87 

 

 

Figure 5-26: Administrator Navigator Bar 

 

5.4.6 Topic Lesson Screen 

The topic lesson screen provides a list of topics for students to choose to learn the 

Swift programming language. Each topic contains a list of sections in the beginning 

of the screen, buttons for users to go to the next or previous topic, and a series of 

topic sections related to the same topic. Each topic section may contain explanations, 

code examples, and a button that opens Paiza.io online code editor to code. 

 

For the administrator, in addition to the prior screen, he/she may also add, 

edit, or delete a topic. The topic will affect all related topic sections, exercise 

questions and graded quiz sections. The administrator may also add, edit, or delete a 

topic section within the same topic. Each modification provides a modal screen to 

prevent any maloperation by the administrator. 

 



88 

 

 

Figure 5-27: Topic List Screen 

 

 

Figure 5-28: Topic Screen 

 



89 

 

 

Figure 5-29: Sections in the Topic Screen 

 

 

Figure 5-30: Section with Opened Online Code Editor in the Topic Screen 

 



90 

 

 

Figure 5-31: Admin Topic List Screen 

 

 

Figure 5-32: Admin Add Topic Modal Screen 

 



91 

 

 

Figure 5-33: Admin Edit Topic Name Modal Screen 

 

 

Figure 5-34: Admin Delete Topic Name Modal Screen 

 



92 

 

 

Figure 5-35: Upper Part of Admin Add Topic Section Modal Screen 

 

 

Figure 5-36: Bottom Part of Admin Add Topic Section Modal Screen 

 



93 

 

 

Figure 5-37: Upper Part of Admin Edit Topic Section Modal Screen 

 

 

Figure 5-38: Bottom Part of Admin Edit Topic Section Modal Screen 

 



94 

 

 

Figure 5-39: Delete Topic Section Screen 

 

5.4.7 Exercise Screen 

The exercise screen provides a list of exercises for students to practice their Swift 

programming language skills. Each exercise contains a minimum of 7 questions. 

Each question provides a check answer button, submit button, a question test, and at 

least one blank to fill in the answer. 

 

For the administrator, in addition to the prior screen, he/she may also add, 

edit, or delete an exercise question. Each modification provides a modal screen to 

prevent any maloperation by the administrator. 

 



95 

 

 

Figure 5-40: Exercise List Screen 

 

 

Figure 5-41: Student Exercise Screen 

 



96 

 

 

Figure 5-42: Admin Exercise Screen 

 

 

Figure 5-43: Admin Add Exercise Question Modal Screen 

 



97 

 

 

Figure 5-44: Admin Edit Exercise Question Modal Screen 

 

 

Figure 5-45: Admin Delete Exercise Question Modal Screen 

 

5.4.8 Graded Quiz Screen 

The graded quiz screen provides a list of graded quizzes for students to test their 

Swift coding performance after they completed a topic. Each graded quiz contains a 

minimum of 10 questions. Students must click the “Start” button to start the graded 

quizzes. Each question consists of a question text, two to four options, and back/next 

button. At the last question. A submit button is provided. Once the quiz is submitted, 



98 

 

the student is able to view the graded quiz result, and the correct answer in each 

question. 

 

For administrator, in addition to prior screen, he/she may also add, edit, or 

delete a graded question. Each modification provides a modal screen to prevent any 

maloperation by the administrator. 

 

 

Figure 5-46: Graded Quiz List Screen 

 

 

Figure 5-47: Graded Quiz Preparing Screen 



99 

 

 

 

Figure 5-48: First Question in Graded Quiz Screen 

 

 

Figure 5-49: Last Question in Graded Quiz Screen 

 



100 

 

 

Figure 5-50: Graded Quiz Result Screen 

 

 

Figure 5-51: Admin Graded Quiz Screen 

 



101 

 

 

Figure 5-52: Admin Add Graded Quiz Question Modal Screen 

 

 

Figure 5-53: Admin Edit Graded Quiz Question Modal Screen 

 



102 

 

 

Figure 5-54: Admin Delete Graded Quiz Question Modal Screen 

 

5.4.9 Profile Screen 

There are two types of profile screen which are student profile screen and 

administrator profile screen. In the student profile screen, the student can view 

his/her student’s name, student ID and student Email. The student may also view 

his/her average performance and quiz histories. Whereas in the administrator profile 

screen, the student can view his/her administrator’s name and administrator ID. The 

administrator may also view all student basic information such as ID, name, Email 

and temporary password. The administrator profile screen also provides a search 

function to search any registered student, in order to view the student’s average 

performance and quiz histories. 

 



103 

 

 

Figure 5-55: Upper Part of Student Profile Screen 

 

 

Figure 5-56: Bottom Part of Student Profile Screen 

 



104 

 

 

Figure 5-57: Admin Profile Screen 

 

 

Figure 5-58: Upper Part of Admin Profile Screen with Searched Student 

 



105 

 

 

Figure 5-59: Bottom Part of Admin Profile Screen with Searched Student 

 

 

Figure 5-60: Admin Delete Student Modal Screen 

 



106 

 

 

Figure 5-61: Admin Student List Screen 

 

5.4.10 Code Playground Screen 

Unlike the online code editor in the topic section, the online code editor in the code 

playground screen can let users to type and run their own Swift code as they want. 

 

 

Figure 5-62: Code Playground Screen 

 



107 

 

5.4.11 Chat Box Screen 

The chat box screen provides a group chat function for students and administrators to 

communicate with each other by sending chat texts. Students and administrators are 

also able to view a list of online users. For administrators, he/she may also delete any 

chat text sent by any users. 

 

 

Figure 5-63: Student Chat Box Screen 

 

 

Figure 5-64: Admin Chat Box Screen 

 



108 

 

5.4.12 Register Student Screen 

The register student screen is only available for administrators. The administrator 

may register a new student by key in the student ID, student name and student UTAR 

Email. 

 

 

Figure 5-65: Register Student Screen 

 

5.4.13 Error Screen 

If the user is trying to access a route that doesn’t exist, the user will be redirected to 

error 404 screen. Besides, if the student who is yet to complete the onboard sessions 

is trying to access other student routes such as home screen, the student will be 

redirected to error 403 screen and vice versa. 



109 

 

 

Figure 5-66: Error 404 Screen 

 

 

Figure 5-67: Error 403 Screen for New Student 



110 

 

 

Figure 5-68: Error 403 Screen for Existing Student 

 



111 

 

CHAPTER 6 

 

6 SYSTEM IMPLEMENTATION 

 

The purpose of this chapter is to explain the code implementation for each module 

within the system. Section 6.1 is to provide description for the modules with 

respective functional and/or non-functional requirements and its associated users. 

Section 6.2 is to provide illustration for the implemented student and admin modules 

with associated code segments. Section 6.3 is to provide illustration for the 

implemented student-specific modules with associated code segments. Section 6.4 is 

to provide illustration for the implemented administrator-specific modules with 

associated code segments. 

 

6.1 System Modules 

The implemented system can be divided into many system modules based on user 

type and respective requirements, as shown as Table 6-1. 

 

Table 6-1: System Module Table 

Modules Associated requirement(s) Associated user(s) 

Login The system should allow 

the user to login the 

system. 

Student and administrator 

Reset Password The system should allow 

the user to reset password. 

 

The system should provide 

an interface to the user to 

reset password when the 

user login his/her account 

for the first time. 

 

The system should hash 

the password to prevent 

Student 



112 

 

anyone except the user 

itself from retrieving the 

password. 

Logout The system should allow 

the user to logout. 

Student and administrator 

Read Topic Lessons The system should allow 

the user to read and follow 

Swift programming 

materials. 

Student and administrator 

Online Code Editor The system should allow 

the user to edit codes and 

produce output in the 

embedded code compiler. 

Student and administrator 

Exercise The system should provide 

non-graded exercises for 

users as a practice. 

Student and administrator 

Graded Quiz The system should provide 

graded quizzes after the 

user completes each topic. 

 

The system should allow 

the user to retake the 

graded quizzes with 

unlimited trials. 

 

The system should allow 

the user to view the results 

once the user has 

completed the graded 

quizzes. 

Student 

Student Profile The system should allow 

the user to view his/her 

basic statistics for overall 

Student 



113 

 

performance. 

 

The system should allow 

the user to view his/her 

graded quiz attempt 

history. 

 

The system should obtain 

the latest score of the user 

when the user attempts the 

same quizzes more than 

once. 

Administrator Profile The system should allow 

the administrator to 

monitor the student’s 

progress. 

 

The system should allow 

the administrator to delete 

the user account. 

Administrator 

Chat Box The system should provide 

a chat box for users to 

communicate with other 

users. 

 

The system should display 

the online users in the chat 

box. 

 

The system should only 

save the last 3 days of the 

conversation in the chat 

box. 

Student and administrator 



114 

 

Register Student The system should allow 

the administrator to 

register the user account. 

Administrator 

Modify Course Content The system should allow 

the administrator to 

modify the exercises, 

quizzes and tutorial 

briefings. 

Administrator 

 

6.2 Student and Administrator Modules 

6.2.1 Login Module 

Two types of logins in the login module were implemented for student and 

administrator respectively. Student login function was handled by Laravel’s default 

PHP trait which is “AuthenticatesUsers” and used by a controller class named 

“LoginController” whereas the admin login function was self-defined in the same 

controller class. In this section, only the “LoginController” controller class will be 

explained. 

 

In the “LoginController” class, there are two self-defined methods for 

administrators which are “showAdminLoginForm”, “adminLogin”, and one default 

method for all users which are “redirectTo”. The “showAdminLoginForm” returns 

the login blade view for administrators, similar to “showLoginForm” for students in 

the “AuthenticatesUsers” trait. Then, “adminLogin” method will validate the input 

from administrator login blade view, generate a session for administrator and redirect 

the administrator to the intended route, or throw an exception with a message in the 

same login view if the credential or validation is invalid. 

 

 Once the user has logged into the system, “UserActivity” middleware class 

will insert the cache of last login time into administrator or student database table, 

and update the cache every second, until the user has logged out from the system. 

Figure 6-1 and Figure 6-2 shows the code segments of  “LoginController” controller 

class and “UserActivity” middleware class respectively. 

 



115 

 

 

Figure 6-1: Code segment of the “LoginController” controller class 

 

 

Figure 6-2: Code segment of the “UserActivity” middleware class 

 

6.2.2 Logout Module 

The logout method from “AuthenticatesUsers” trait was slightly modified during the 

implementation. When the user sends a logout request, the method will pull out the 

cache of the last login time of the user based on their user type. Then, the user 

session will become invalidated status and the token is regenerated. After that, the 



116 

 

user will be redirected to the default system view which is the welcome view. Figure 

6-3 shows the code segment of the logout method. 

 

 

Figure 6-3: Code segment of the logout method from the “AuthenticatesUsers” trait 

 

6.2.3 Read Topic Lesson Modules 

In the “Topic” components from ReactJS framework, Axios API with GET method 

was used to fetch related topic sections data from database to the view. The fetched 

data are stored into many array-type component state objects in the “loadSectionList” 

method with React lifecycle, and mapped out all the stored data as HTML elements 

in the render method. Each fetch topic section data includes section name, up to four 

explanations, up to four code samples, and an optional online code editor link. Figure 

6-4 to Figure 6-5 shows the code segments for lesson modules. 

 



117 

 

 

Figure 6-4: Code segment of the related topic section data fetching method via Axios 

API 

 

 

 



118 

 

 

Figure 6-5: Upper part code segment of mapping stored data into HTML components 

in render method 

 



119 

 

 

Figure 6-6: Bottom part code segment of mapping stored data into HTML 

components in render method 

 

6.2.4 Online Code Editor Modules 

Some of the topic sections contain a link to open embedded Paiza.io online code 

editor. In default, the code editor open status for each topic section with code editor 

link is set into false. If the open code editor button is pressed, the code editor open 



120 

 

status will be set into true, and an iframe element with the editor link will be created 

and loaded. If the same open code editor button is pressed again, the code editor’s 

open status will become false, as well as the iframe element will be cleared. Figure 6-

7 shows the code segment for the online code editor module. 

 

 

Figure 6-7: Code segment of handling embedded online code editor opening or 

closing 

 

6.2.5 Exercise Module 

Similar to the Read Topic Lesson Module, model relationship, data fetching via API 

and array mapping are implemented to show all exercises content with the same topic 

in the view, such as question text and at least one answer template. Nevertheless, the 

“loadExerciseList” method also sets lots of boolean-value arrays to store each 

question button’s disable status, and a string-value array to store correct answers for 

the user to check. 

 

When the user clicks the check answer button, the submit button and input 

will be disabled. and the input value will be assigned to the correct answer based on 



121 

 

the selected question. When the user clicks the check answer button from the same 

question again, the system will enable the input field and submit button, and clear the 

input from the correct answer to blank. 

 

For answer submission, a method is called to check if each answer is correct 

or wrong. If any answer from the question is wrong, an error message will be 

generated to the user. If all answers are correct, the check answer button, submit 

button, and all input will be hidden and disabled, and a message will be generated to 

the user. Figure 6-8 and Figure 6-9 show code segments for exercise module. 

 

 

Figure 6-8: Code segment of checking correct answer from a question 

 



122 

 

 

Figure 6-9: Code segment of submitting answers from a question 

 

6.2.6 Chat Box Module 

Axios API with GET method fetched all chat data and stored it into an array in the 

React frontend. The stored array will be mapped to render each object into HTML 

elements in the render method. During the rendering, a method called “sliceDate” is 

called to convert the date and time format from MySQL format into readable 12-hour 

format. Besides, the chat header color will be different based on the user type. 

 



123 

 

 If the user sends a chat to the system, the “handleSubmit” will be called to 

pack the text, the converted date and time, and user ID together, and send the objects 

into the database via Axios API with POST method. 

 

 If the administrator clicks the delete chat button to delete any chat, a method 

will be called to send a chat ID to the controller via Axios API with DELETE 

method.  

 

 To show the user who is online, the “onlineStatus” method from 

“ChatController” will be triggered to search all the user’s cache by using a for loop. 

If the method detects the user has an online status cache, the user’s name will be 

added into an array and returned to the front end. Figure 6-10 to Figure 6-14 shows 

the code segments for the chat box module. 

 

 

Figure 6-10: Code segment of converting MySQL date time format into readable 

format. 

 



124 

 

 

Figure 6-11: Code segments of finding online user in “ChatController” controller 

class 

 

 



125 

 

Figure 6-12: Code segments of mapping stored chat data into HTML elements 

 

 

Figure 6-13: Code segment of sending chats into database via Axios API 

 

 

Figure 6-14: Code segment of delete chat based on chat ID via Axios API 

 

6.3 Student-only Modules 

6.3.1 Reset Password Module 

Two types of reset password functions were implemented which are normal reset 

password and onboarding reset password. The normal reset password function was 

handled by a controller class named “ForgotPasswordController”. Once the student 

clicks the forgot password button, the “showResetPasswordForm” method will return 

the reset password view to the student. Once the student fills in all necessary 

information in the view and clicks the reset button, this data will be passed into the 

“submitResetPasswordForm” method. This method will validate these data. Next, the 

student will be searched based on email to check the student’s onboarding status. If 

the student is a new student, the system will block the student from resetting the 

password, otherwise, the student will be redirected to the login page and the 

password will be updated.  

 



126 

 

The onboarding reset password function forces every student who is using the system 

for the first time to reset their password. Once the new student key in their new 

password and click the submit button, the system will check the password length and 

regular expression. If all of the validations are correct, the student password will be 

updated and hashed by using Axios API with PUT method. Figure 6-15 shows the 

code segment of normal reset password function whereas Figure 6-16 to Figure 6-18 

shows the code segment of onboarding reset password. 

 

 

Figure 6-15: Code segments of “ForgotPasswordController” controller class 

 



127 

 

 

Figure 6-16: Code segments of validating password format and length 

 

 

Figure 6-17: Code segments of updating student’s password via Axios API with PUT 

method 

 



128 

 

 

Figure 6-18: Code segments of “updatePassword” method in “StudentController” 

controller class 

 

6.3.2 Graded Quiz Module 

All quiz questions from the selected topic were fetched and stored into an array by 

using Axios API with GET method. However, all questions will be listed out one-by-

one based on the next or previous button, instead of listing out at once with array 

mapping. 

 

 Once the student clicks the start button to do the quiz question, the timer 

function will be started to calculate the time taken until the student clicks the submit 

button. When the submit button is triggered, a method will be called to check the 

total number of answers with the total number of questions. If there is any question 

with an empty answer, the system will pop out an alert to the student until the student 

completes all questions. After that, the method will calculate the number of correct 

answers from the student’s answer, and a quiz record will be stored into the database 

with total number of questions, number of correct answers made by student, time 

taken, steps count, related topic and related student. 

 

The system also calculates the marks that the student obtained from the quiz, and 

lists out all answers made by students. If the student answers the question correctly, 

the answer will be shown as green. Otherwise, the wrong answer made by the student 

will be shown as red and the correct answer will be shown as green. Figure 6-19 to 

Figure 6-23 shows the code segments for the graded quiz module. 

 



129 

 

 

Figure 6-19: Code segment of starting the quiz 

 

 

Figure 6-20: Code segments of submitting the answers from the quiz 



130 

 

 

 

 

Figure 6-21: Code segments of storing quiz history once the quiz is completed 

 

 

 

Figure 6-22: Code segments of calculating quiz result into percentage form 

 



131 

 

 

Figure 6-23: Code segments of showing each question answer after completing the 

quiz 

 

6.3.3 Student Profile Module 

When the student accesses the profile function, the student ID, student name and 

student email will be loaded to the student via Axios API with GET method. The 

quiz histories related to the student will also be loaded and stored into an array. 

Array reverse map is implemented to make the latest quiz record at the top position. 

For the student’s performance, if the student has more than one quiz record from the 

same quiz, the system will only fetch the score from the latest attempt. An average 

performance from all attempted quizzes will be calculated and shown to the student. 

Figure 6-24 to Figure 6-26 shows the code segments of the student profile module. 



132 

 

 

 

Figure 6-24: Code segment of loading student credentials based on student ID 

 

 

Figure 6-25: Code segment of mapping related quiz histories in reverse order 

 



133 

 

 

Figure 6-26: Code segment of finding latest score from the same quizzes and 

calculating average performance 

 

 

 

 



134 

 

6.4 Administrator-only Modules 

6.4.1 Administrator Profile Module 

The administrator profile is almost the same as the student profile, but the 

administrator provides a search function to search a student’s credential, quiz 

histories and overall performance. Axios API with GET method will be used to find 

a student from the database based on the input student ID. If the student ID doesn’t 

exist from the database, the API will catch an error and generate a pop-up alert to the 

administrator. Otherwise, all of the related student data will be fetched and stored 

into an array. 

 

 On the other hand, when the administrator wants to delete a searched 

student account by clicking the delete button, a modal view will be prompted to the 

administrator to confirm the action, in order to prevent any misoperation. If the 

administrator clicks the “Yes” button to confirm, the system will delete the student 

account, including all quiz histories and chats related to this student via Axios API 

with DELETE method. The modal view will automatically disappear. Figure 6-27 to 

Figure 6-30 shows the code segment of the administrator profile module. 

 

 

Figure 6-27: Code segment of finding student data based on student ID 

 



135 

 

 

Figure 6-28: Code segments of delete student modal view 

 

 

Figure 6-29: Code segments of deleting student via Axios API with DELETE 

method 

 

 



136 

 

Figure 6-30: Code segments of “deleteStudent” method in “AdminController” 

controller class 

 

6.4.2 Register Student Module 

In the initial state, all existing students from the database will be loaded via Axios 

API with GET method for further verification. When the administrator clicks the 

register button after filling in the new student credentials such as new student ID, 

new student name and new student email, two methods will be called to check the 

email format and the duplication of existing student accounts. When the input email 

follows the UTAR student email format (@1utar.my) and there’s no duplication of 

any credentials from existing students, a new student data will be added into the 

database with randomly generated and hashed password via Axios API with POST 

method. Otherwise error messages will be shown to the administrator. Figure 6-31 to 

Figure 6-35 shows the code segment of the register student module. 

 

 

Figure 6-31: Code segment of loading existing students via Axios API with GET 

method and React lifecycle. 

 



137 

 

 

Figure 6-32: Code segment of checking student Email format 

 

 

Figure 6-33: Code segment of checking duplication of credentials with existing 

students 



138 

 

 

 

Figure 6-34: Code segment of adding new student via Axios API with POST method 

 

 

Figure 6-35: Code segment of “registerAStudent” method in “AdminController” 

controller class 

 



139 

 

6.4.3 Modify Course Content Module 

Administrators may modify a topic name, topic section, exercise question or graded 

quiz question by performing adding, editing, or deleting methods. As the 

implementation of modifying course content is similar for topic section and quiz, 

therefore only implementation of modifying exercise questions will be explained as 

an example. 

 

 When the add question button is clicked, a modal view will appear to let the 

administrator fill in the question text, correct answers, and related topics. The add 

button will be disabled until all compulsory inputs are filled in. Once the button is 

clicked, the Axios API with POST method will store all requested input into the 

exercise database. The edit question is similar to the add question function, but the 

selected question’s current text, related topic, and correct answers will be loaded into 

the input field, and the method of Axios API will be the PUT method. For deleting 

an exercise question, a delete confirmation modal view will be shown to prevent 

misoperation. Once the delete action has been confirmed, the Axios API with 

DELETE method will delete the exercise question based on the given exercise ID. 

Figure 6-36 to Figure 6-40 shows the code segment of the modifying course content 

module. 

 

 

Figure 6-36: Code segment of add exercise question via Axios API with POST 

method 

 



140 

 

 

Figure 6-37: Code segment of edit exercise question via Axios API with PUT 

method 

 

 

Figure 6-38: Code segment of delete exercise question via Axios API with DELETE 

method 

 

 

Figure 6-39: Code segment of “addExercise” method, “editExercise” method and 

“deleteExercise” method in “AdminController” class controller 

  



141 

 

CHAPTER 7 

 

7 SYSTEM TESTING 

 

The purpose of this chapter is to provide explanation of the conducted system testing 

in this project. Section 7.1 is to give briefing on the types of conducted testing. 

Section 7.2 is to describe the conducted unit testing. Section 7.3 is to illustrate the 

conducted integration testing. Section 7.4 is to describe the conducted usability 

testing and UAT testing. 

 

7.1 Testing Types 

Four types of testing were conducted after implementing the project, which are unit 

testing, integration testing, usability testing, and user acceptance testing (UAT). In 

unit testing, each unit of the system component has been tested to guarantee that 

every system will perform well. In integration testing, communication between the 

system and the database were tested to make sure the database data will be modified 

when the system sends a request. In usability testing and UAT testing, end-users 

were tested to use the system to ensure that the system is easy to use, and the whole 

system works well when the system was hosted in the web hosting service.  

 

7.2 Unit Testing 

In the unit testing, 13 unit test modules with a total of 95 unit test cases were 

conducted. 94 out of 95 test cases are passed during the unit testing. Table 7-1 shows 

the summary of the unit testing results. All unit test cases had been attached as 

Appendix F. 

 

Table 7-1: Summarized unit testing results 

Unit Test Module 

ID 

Unit Test 

Module Name 

Number of unit test 

cases in the module 

Number of passed 

unit test cases in the 

module 

UT-TC-001 Introduction 4 4 

UT-TC-002 Login System  12 12 

UT-TC-003 Student 8 8 



142 

 

Onboarding 

UT-TC-004 Reset Password 7 7 

UT-TC-005 Lesson 5 5 

UT-TC-006 Exercise 6 6 

UT-TC-007 Graded Quizzes 11 11 

UT-TC-008 
Online Code 

Editor 
4 4 

UT-TC-009 Student Profile 9 9 

UT-TC-010 Online Chat Box 6 5 

UT-TC-011 Register Student 5 5 

UT-TC-012 Student Profile 5 5 

UT-TC-013 
Modifying 

Course Content 
13 13 

Total 95 94 

  

 The failed unit test case is the 72th unit test case from the online chat box 

test module, which is testing whether the system will automatically delete chat data 

that has existed more than 3 days. However, during the testing, this function can only 

be triggered by using the command line interface. 

 

7.3 Integration Testing 

In the integration testing, 6 integration test modules with a total of 19 integration test 

cases were executed. Axios API with POST method, PUT method and DELETE 

method between the system with the database are tested. All test cases are passed 

during the integration testing. Table 7-2 shows the summary of the integration test 

results. All integration test cases had been attached as in Appendix G. 

 

Table 7-2: Summarized integration test results 

Integration Test 

Module ID 

Integration Test 

Module Name 

Number of 

integration test 

cases in the module 

Number of passed 

integration test 

cases in the module 

IT-TC-001 Password Reset 2 2 



143 

 

and Onboarding 

System 

IT-TC-002 Graded Quizzes  1 1 

IT-TC-003 Chat Box 2 2 

IT-TC-004 Register Student 1 1 

IT-TC-005 Delete Student 1 1 

IT-TC-006 
Edit Course 

Content 
12 12 

Total 19 19 

 

7.4 Usability Testing and UAT Testing 

The system had been uploaded into the web hosting server after conducting unit 

testing and integration testing in the local server. 13 testers which consists of 12 

students and 1 lecturer from UECS3263 iOS Application Development were 

recruited to perform usability testing and UAT testing at the same time. During the 

testing, one-to-one meetings had been conducted in Microsoft Teams to provide 

briefings, test documents, accounts and a website link to the testers. Each tester 

followed the test scenarios and expected results stated in each test case, and filled in 

the status as pass or fail after executing each test case . Once the tester completed the 

testing, the tester submitted the completed test cases to the meeting chat, and a 

Google Form link had been given to fill in the User Satisfaction Survey. 

 

7.4.1 UAT Testing Result 

12 students had conducted 21 student-related test cases and 1 lecturer had conducted 

36 administrator-related test cases. For student-related testing, 11 students passed all 

test cases but 1 student failed 2 out of 21 test cases. For administrator-related testing, 

all test cases are passed. Table 7-3 and Table 7-4 shows the summarized test results 

conducted by students and administrator respectively. UAT test results conducted by 

students had been attached as in Appendix H, whereas test results conducted by the 

administrator had been attached as in Appendix I. 

 

Table 7-3: Summarized student UAT test results 

Test Case ID Test Case Type Number of Number of passed 



144 

 

executions test cases 

performed 

TC-LI-001 Login 12 12 

TC-RP-001 Reset Password 12 12 

TC-LI-002 Login 12 12 

TC-OB-001 Onboarding 12 12 

TC-OB-002 Onboarding 12 12 

TC-TL-001 Learn Lesson 12 12 

TC-TL-002 Learn Lesson 12 12 

TC-CP-001 Code Playground 12 11 

TC-CP-002 Code Playground 12 11 

TC-EE-001 Exercise 12 12 

TC-EE-002 Exercise 12 12 

TC-EE-003 Exercise 12 12 

TC-EE-004 Exercise 12 12 

TC-GQ-001 Graded Quizzes 12 12 

TC-GQ-002 Graded Quizzes 12 12 

TC-GQ-003 Graded Quizzes 12 12 

TC-GQ-004 Graded Quizzes 12 12 

TC-PF-001 Student Profile 12 12 

TC-CB-001 Chat Box 12 12 

TC-CB-002 Chat Box 12 12 

TC-CB-003 Chat Box 12 12 

TC-LO-001 Logout 12 12 

 

Table 7-4: Summarized administrator UAT test results 

Test Case ID Test Case Type 
Number of 

executions 

Number of passed 

test cases 

performed 

TC-LIA-001 Login 1 1 

TC-MTA-001 Add Topic 1 1 

TC-MTA-002 Edit Topic Name 1 1 



145 

 

TC-MTA-003 Delete Topic 1 1 

TC-TLA-001 Modify Lesson 1 1 

TC-TLA-002 View Lesson 1 1 

TC-TLA-003 
Add Lesson 

Section 

1 1 

TC-TLA-004 
Edit Lesson 

Section 

1 1 

TC-TLA-005 
Delete Lesson 

Section 

1 1 

TC-CPA-001 Code Playground 1 1 

TC-EEA-001 Exercises 1 1 

TC-EEA-002 Exercises 1 1 

TC-EEA-003 Exercises 1 1 

TC-EEA-004 Exercises 1 1 

TC-EEA-005 
Add Exercise 

Question 

1 1 

TC-EEA-006 
Edit Exercise 

Question 

1 1 

TC-EEA-007 
Delete Exercise 

Question 

1 1 

TC-GQA-001 Graded Quizzes 1 1 

TC-GQA-002 Graded Quizzes 1 1 

TC-GQA-005 Add Quiz Question 1 1 

TC-GQA-006 Edit Quiz Question 1 1 

TC-GQA-007 
Delete Quiz 

Question 

1 1 

TC-RSA-001 Register Student 1 1 

TC-RSA-002 Register Student 1 1 

TC-RSA-003 Register Student 1 1 

TC-RSA-004 Register Student 1 1 

TC-PFA-001 Admin Profile 1 1 

TC-PFA-002 Student List 1 1 



146 

 

TC-PFA-003 Search Student 1 1 

TC-PFA-004 Delete Student 1 1 

TC-PFA-005 Search Student 1 1 

TC-CBA-001 Chat Box 1 1 

TC-CBA-002 Chat Box 1 1 

TC-CBA-003 Chat Box 1 1 

TC-CBA-004 Chat Box 1 1 

TC-LOA-001 Logout 1 1 

 

The failed test cases that a student tester performed were code editor testing. When 

the tester opened code editor link from topic section or code playground page, the 

code editor is unable to load the codes, and an error “{{‘run’|i18n}} (Ctrl-Enter)” is 

shown. It has been confirmed that this issue may occur when the tester is using an 

incompatible browser, instead of the web hosting service or the web application itself. 

 

7.4.2 Usability Testing Result 

All questions in the User Satisfaction Survey were adopted from System Usability 

Scale (SUS), Brooke, J. (1986). There are two sections in this survey which are 

Section A and Section B. Section A consists of 10 rating questions, from the lowest 

rating (Strongly Disagree, 1 mark) to the high rating (Strongly Agree, 5 marks). The 

odd questions are positive questions whereas the even questions are negative 

questions, whereas Section B consists of 4 non-rating questions for respondents to 

write short answers. Table 7-5 shows the template of the User Satisfaction Survey. 

Each tester’s response had been attached as in Appendix J. 

 

Table 7-5: User Satisfaction Survey template 

 

No Question Strongly 

Disagree 

(1) 

2 3 4 Strongly 

Agree 

(5) 

1 I think that I would like to use 

this website/system for 

learning Swift Programming 

     



147 

 

Language and related matters. 

2 I found the website/system 

unnecessarily complex. 

     

3 I thought the website/system 

was easy to use. 

     

4 I think that I would need the 

support of a technical person to 

be able to use this 

website/system. 

     

5 I found this website/system 

was easily moved through 

without a lot of backtracking or 

data re-entry. 

     

6 I thought there was too much 

inconsistency in this 

website/system. 

     

7 I would imagine that most 

people would learn to use this 

website/system very quickly. 

     

8 I found the system/website 

very awkward to use. 

     

9 I felt very confident using the 

system/website. 

     

10 I needed to learn a lot of things 

before I could get going with 

this website/system. 

     

 

What did you like best about the site? 

 

What did you like least about the site? 

 

If you were to describe this site to a colleague in a sentence or two, what would you 



148 

 

say? 

 

Do you have any other final comments or questions? 

 

 

Table 7-6: SUS result 

Question Total score 

obtained from 13 

testers 

Maximum score 

can be obtained 

from 13 testers 

Average score 

1 45 52 3.46 

2 39 52 3.00 

3 46 52 3.54 

4 43 52 3.31 

5 44 52 3.38 

6 43 52 3.31 

7 46 52 3.54 

8 45 52 3.46 

9 43 52 3.31 

10 45 52 3.46 

Total Score 439 33.77 

SUS Score 84.43 

 

According to Brooke, J. (1986, cited in Smyk, 2020), the SUS score from each 

respondent can be calculated by adopting the formula below: 

1. Sum up all the odd question scores and minus 1. 

2. 5 minus the total score obtained from even questions. 

3. Add both calculated scores together and multiply by 2.5, the range of the SUS 

score should be between 0 to 100. 

 

Table 7-7: Graded and Rating of SUS score (Usabilitest, n.d.) 

SUS Score Grade Rating 

80.4 to 100 A Excellent 



149 

 

69 to 80.3 B Good 

68 C Average 

51 to 67 D Poor 

0 to 51 F Awful 

 

Based on the calculated SUS score from Table 7-6 and SUS score grade as shown as 

Table 7-7, the obtained SUS score from respondents is 84.43 with Grade A and 

Excellent Rating. This shows that the implemented system is user-friendly, 

consistent, and easy to use. 

 



150 

 

CHAPTER 8 

 

8 CONCLUSION 

 

The purpose of this chapter is to draw an ending for this project. Section 8.1 is to 

conclude performed works in this project. Section 8.2 is to list out limitations 

occurred in the project. Section 8.3 is to list out recommendations to overcome the 

listed limitations in the future. 

 

8.1 Conclusion 

All objectives stated in Chapter 1 Section 1.3 were successfully achieved in this 

project, which include: 

1. To analyze the existing online programming platform with the perspective 

of strengths and weaknesses. 

2. To research the characteristics of Swift Programming Language and 

compare it to its predecessor, Objective-C programming language.  

3. To design and implement the web application by adopting evolutionary 

prototyping methodology. 

4. To test and evaluate the web application functionalities by using unit 

testing, integration testing, usability testing and user acceptance testing. 

 

For the first achieved objective, 5 existing online programming platform were 

chosen to compare the features, pros and cons. For the second achieved objective, 

research papers and literature reviews were conducted to find out the Swift 

Programming Language and Objective-C programming language. For the third 

achieved objective, requirements are defined, UML diagrams and user interface are 

designed properly, and all stated requirements are implemented into the system. For 

the fourth achieved objectives, All test cases are passed in the integration testing and 

almost all test cases are passed in the unit testing and user acceptance testing. 

 

It’s confirmed that the implemented Swift Programming Language E-

Learning Platform for iOS Application Development is the best platform for students 

who are taking UECS3263 iOS Application Development, as this platform can be 



151 

 

used with a browser and no Mac or iPad is required to learn Swift Programming 

Language. Besides, the implemented system had become available to all iOS 

Application Development students until the end of the May 2021 trimester. 

 

8.2 Limitations 

Some limitations were faced during the implementation, testing and deployment of 

the system for this project, which include: 

1. Unable to implement mail notification of temporary password and six 

digit code verification for students, as the adopted web hosting service 

prohibits the use of mail function in subdomain websites. 

2. A non-functional requirement has to be changed due to the lack of 

crontab in the server, therefore deletion of chat with more than 3 days can 

be only done manually. 

3. Unable to upload profile image function, as file type input is unable to 

send to controller via Axios API. 

4. Unable to generate PDF file for student’s performance. 

5. Unable to make the chat data reload instantly. 

 

8.3 Recommendations 

Some recommendations and enhancement from Section 8.2 were listed for future 

work: 

1. Find a mail service provider that is fully compatible with the chosen web 

hosting service provider, without purchasing any domain from the web 

hosting service. 

2. Add cron jobs into the server to perform the chat deletion automatically. 

3. Encrypt the image file into Base64 data type before sending it to the 

controller via API. 

4. Design a PDF file template to store data into it. 

5. Find a free web hosting service with a high-performance server that 

supports InnoDB engine, and a huge number of concurrent connections 

for data reload every second. 



152 

 

6. Collaborate with data scientists to perform data predictions and machine 

learning by using quiz time taken and number of steps going the question 

backward and forward. 

7. Improve the user interface to fit with mobile web app layout. 

 

 

 

 



153 

 

REFERENCES 

 

Ali, W., 2020. Online and remote learning in higher education institutes: a necessity 

in light of COVID-19 pandemic. Higher Education Studies, 10(3), pp.16 – 25 

[online]. Available at <https://www.researchgate.net/publication/341460604> 

[Accessed: 7th March 2021] 

Altexsoft, 2018. Swift vs Objective-C: out with the old, in with the new [online]. 

Available at <https://www.altexsoft.com/blog/engineering/swift-vs-objective-c-out-

with-the-old-in-with-the-new/> [Accessed: 2nd March 2021] 

Apple, n.d., Xcode – Support – Apple Developer. [online] Available at: 

<https://developer.apple.com/support/xcode/> [Accessed: 10th February 2021] 

Apple, n.d., Swift. [online] Available at: <https://developer.apple.com/swift> 

[Accessed: 2nd March 2021] 

Apple, n.d., Swift Playgrounds. [online] Available at: 

<https://www.apple.com/swift/playgrounds/> [Accessed: 10th February 2021] 

Anwer, F., Aftab, S., Shah, S. S. M., Waheed, U., 2017. Comparative analysis of two 

popular agile process models: extreme programming and scrum. International 

Journal of Computer Science and Telecommunications, 8(2), pp.1 – 7 [online]. 

Available at: <https://www.researchgate.net/publication/316845761> [Accessed: 27th 

February 2021] 

Chauhan, D. B., Rana, A., Sharma, N. K., 2017. Impact of development methodology 

on cost & risk for development projects. 2017 6th International Conference on 

Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future 

Directions), pp.267 – 272 [online]. Available at: 

<https://ieeexplore.ieee.org/document/8342436> [Accessed: 27th February 2021] 

Chernova E.A., Nazarov A.D., 2020. Digital competencies of the future 

programmer: Swift. 2nd International Scientific and Practical Conference on Digital 

Economy (ISCDE 2020), pp 559 – 562 [online]. Available at: <https://www.atlantis-

press.com/proceedings/iscde-20/125947820> [Accessed: 2nd March 2021] 

Curry, D., 2021. App revenue data (2020). [online] Available at: 

<https://www.businessofapps.com/data/app-revenues/> [Accessed: 10th February 

2021] 

Dennis, A., Wixom, B. H., Tegarden, D., 2015. System analysis & design: An object-

oriented approach with UML. 5th edition. John Wiley and Sons [online]. Available 

at: <http://search.ebscohost.com.libezp2.utar.edu.my/> [Accessed: 27th February 

2021] 



154 

 

Differ, n.d., Android vs iOS: difference and comparison. [online] Available at: 

<https://www.diffen.com/difference/Android_vs_iOS> [Accessed: 10th February 

2021] 

Fojtik, R., 2020. Swift a new programming language for development and education. 

Digital Science 2019, pp.284 – 295 [online]. Available at: 

<https://www.researchgate.net/publication/338081271_Swift_a_New_Programming

_Language_for_Development_and_Education> [Accessed: 2nd March 2021] 

García, C. G., Espada, J. P., G-Bustelo, B. C. P., Lovelle, J. M. C., 2015. Swift vs. 

Objective-C: a new programming language. International Journal of Artificial 

Intelligence and Interactive Multimedia, 3(3), pp.74 – 81. Available at 

<https://documat.unirioja.es/servlet/articulo?codigo=5574309> [Accessed: 2nd March 

2021] 

Gandraß, N., Hinrichs, T., Schmolitzky, A., 2020. Towards an online programming 

platform complementing software engineering education. SEUH 2020, pp.27 – 35 

[online]. Available at <https://www.semanticscholar.org/paper/Towards-an-Online-

Programming-Platform-Software-Gandra%C3%9F-

Hinrichs/9c0bdfaf3cdc5c45b888999eb21ddf1239e62dce> [Accessed: 6th March 

2021] 

Hubbarrt, M., 2017. Beginning iOS 11 Programming with Swift [electronic print]. 

Available at <https://mhreviews.wordpress.com/2017/11/21/beginning-ios-11-

programming-with-swift/> [Accessed: 2nd March 2021] 

Jayasinghe, P., 2020. Throwaway prototyping vs evolutionary prototyping. Medium 

[online]. Available at: <https://medium.com/@pavithrajayasinghe9529/throwaway-

prototyping-vs-evolutionary-prototyping-8302be3baf33> [Accessed: 27th February 

2021] 

JetBrains, n.d., Swift & Objective-C 2019 – The state of developer ecosystem in 2019 

infographic. [online] Available at: <https://www.jetbrains.com/lp/devecosystem-

2019/swift-objc/> [Accessed: 10th February 2021] 

JetBrains, n.d., Swift & Objective-C – The state of developer ecosystem in 2020 

infographic. [online] Available at: <https://www.jetbrains.com/lp/devecosystem-

2020/swift-objc/> [Accessed: 10th February 2021] 

StarCounter, n.d., Desktop operating system market share worldwide [online]. 

Available at: <https://gs.statcounter.com/os-market-share/desktop/worldwide> 

[Accessed: 10th February 2021] 

Karczewski, D., 2020. Swift vs Objective-C: which should you pick for your next iOS 

mobile app? Ideamotive [online]. Available at < 

https://www.ideamotive.co/blog/swift-vs-objective-c-which-should-you-pick-for-

your-next-ios-mobile-app> [Accessed: 2nd March 2021] 



155 

 

Khalid, H., 2018. Difference between evolutionary prototyping and throw-away 

prototyping. Prototype Info [online]. Available at: 

<https://prototypeinfo.com/evolutionary-prototyping-and-throw-away-prototyping/> 

[Accessed: 27th February 2021] 

Kurcwald, K., 2019. App prototyping – why it is essential and how to do it? 

Monterail [online]. Available at: <https://www.monterail.com/blog/prototyping-in-

software-

development#:~:text=A%20prototype%20is%20an%20essential,on%20how%20to%

20improve%20it.> [Accessed: 27th February 2021] 

Nguyen, Q. L. H. T. T., Nguyen, P. T., Huynh, V. D. B., 2019. Roles of e-learning in 

higher education. Journal of Critical Reviews, 6(4), pp.7 – 13 [online]. Available at: 

<http://www.jcreview.com/fulltext/197-1576580263.pdf?1577175597> [Accessed: 

5th March 2021] 

Nortvig, A., Petersen, A. K., Balle, S. H., 2018. A literature review of the factors 

influencing e-learning and blended in relation to learning outcome, student 

satisfaction and engagement. Electronic Journal of e-Learning, 16(1), pp.46 – 55 

[online]. Available at <https://eric.ed.gov/?id=EJ1175336> [Accessed: 6th March 

2021] 

Radha, R., Mahalakshmi, K., Kumar, V. S., Saravanakumar, AR., 2020. E-learning 

during lockdown of covid-19 pandemic: a global perspective. International Journal 

of Control and Automation, 13(4), pp.1088 – 1099 [online]. Available at: 

<https://www.researchgate.net/publication/342378341> [Accessed: 6th March 2021] 

Sarangam, A., 2020. What Is Client Server Architecture? An Overview [online]. 

Available at: <https://www.jigsawacademy.com/blogs/cyber-security/what-is-client-

server-architecture/> [Accessed: 14th July 2021] 

Sharma, L., 2016. Waterfall model. ToolSQA [online]. Available at 

<https://www.toolsqa.com/software-testing/waterfall-model/> [Accessed: 27th 

February 2021] 

Singh, B., Kaur, R., 2017. Raising performance of iPhone using Swift language over 

other programming languages. International Journal of Advance Research, Ideas 

and Innovations in Technology, 3(6), pp.991 – 994 [online]. Available at 

<https://www.academia.edu/download/55483864/Raising_Performance_of_iPhone_

using_Swift_Language_over_Other_Programming_Languages.pdf> [Accessed: 2nd 

March 2021] 

Smyk, A., 2020. The System Usability Scale & How It’s Used in UX. Adobe Xd Ideas 

[online]. Available at <https://xd.adobe.com/ideas/process/user-testing/sus-system-

usability-scale-ux/> [Accessed: 27th July 2021] 



156 

 

Svirca, Z., 2020. Everything you need to know about MVC architecture. Towards 

Data Science. [online] Available at: <https://towardsdatascience.com/everything-

you-need-to-know-about-mvc-architecture-3c827930b4c1> [Accessed: 17th February 

2021] 

Collegenote, n.d., Software Engineering 2071 [online]. Available at 

<https://collegenote.pythonanywhere.com/pastpapers/4451/question/#gsc.tab=0> 

[Accessed: 10th February 2021] 

Swift, n.d., About Swift [online]. Available at <https://swift.org/about/> [Accessed: 

2nd March 2021] 

Swift, n.d., Document revision history [online]. Available at: 

<https://docs.swift.org/swift-book/RevisionHistory/RevisionHistory.html> 

[Accessed: 17th February 2021] 

Usabilitest, n.d., System Usability Scale (SUS) Plus [online]. Available at : 

<https://www.usabilitest.com/system-usability-scale> [Accessed: 27th July 2021] 

Website.com, n.d., What is Web Hosting? [online]. Available at 

<https://www.website.com/beginnerguide/webhosting/6/1/what-is-web-

hosting?.ws&source=SC> [Accessed: 13th July 2021] 

Zhang, P., Song, Y., Kang, B., Chen, W., 2018. Online programming platform based 

on crowdsourcing. The 13th International Conference on Computer Science & 

Education (ICCSE 2018), pp. 302-307 [online]. Available at 

<https://ieeexplore.ieee.org/document/8468735> [Accessed: 17th February 2021]



157 

 

APPENDICES 

 

APPENDIX A: Work Breakdown Structure 

 

Task 

1.0 Project Initiation 

   1.1 Define project background 

   1.2 define problem statement 

   1.3 Define project objective 

   1.4 Define project solution 

   1.5 Define project approach 

   1.6 Define project scope 

   1.7 Prepare preliminary report 

2.0 Literature Review 

   2.1 Lookup relevant literatures 

   2.2 Prepare literature matrix 

   2.3 Prepare Chapter 2 writing 

      2.3.1 Review on Swift programming language 

      2.3.2 Review on software development methodologies 

      2.3.3 Review on e-learning and online programming platform 

3.0 Methodology 

   3.1 Define project plan 

   3.2 Determine final software development methodology 

   3.3 Determine adopted developing tools 

4.0 Project Specification 

   4.1 Define requirements specification 

      4.1.1 Define functional requirements 

      4.1.2 Define non-functional requirements 

   4.2 Design use case diagram 

   4.3 Define use case description 

5.0 Prototype Design and Final Implementation 

   5.1 First iteration 



158 

 

      5.1.1 Develop initial system prototype 

         5.1.1.1 Develop code editor and topic content 

         5.1.1.2 Develop quizzes and exercises 

      5.1.2 Design basic user interface 

      5.1.3 UAT testing by users 

      5.1.4 Collect feedback from users 

      5.1.5 Improve prototype 

   5.2 Second iteration 

      5.2.1 Design UML Diagrams 

         5.2.1.1 Design Class Diagram 

         5.2.1.2 Design Sequence Diagram 

         5.2.1.3 Design Activity Diagram 

         5.2.1.4 Design ERD Diagram 

      5.2.2 Design second system prototype 

         5.2.2.1 Develop chat box system 

         5.2.2.2 Develop login function 

         5.2.2.3 Develop whole user interface 

      5.2.3 UAT testing by users 

      5.2.4 Collect Feedback from users 

      5.2.5 Improve prototype 

   5.3 Final iteration 

      5.3.1 Develop final system prototype 

         5.3.1.1 Develop administrative system 

         5.3.1.2 Integrate all prototype into final system 

6.0 Testing 

   6.1 Unit Testing 

   6.2 Integration Testing 

   6.3 UAT and Usability Testing for the final system 

      6.3.1 Collect feedback from the final system 

   6.4 Improve the final system 

7.0 Project Closure 

   7.1 Deploy the final system 



159 

 

   7.2 Finalize the final report and presentation slides 

 

 

 

 

 



160 

 

APPENDIX B: Project Gantt Chart 

 



161 

 



162 

 

 

 

 

 

 



163 

 

APPENDIX C: User Interface Flow Chart 

 



164 

 

 



165 

 

APPENDIX D: Use Case Diagram 

 

 



166 

 

APPENDIX E: Designed Class Diagram 

 

 



167 

 

APPENDIX F: Unit Test Cases 

Module: Introduction Test Module ID: UT-TC-001 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the introduction of the website is shown. 

Test 

case 

no. 

Test scenario Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

1 Load 

welcome 

screen 

1. Go to 

127.0.0.1:8000 

Command “php artisan 

serve” is executed, and 

Google Chrome 

browser is used. 

N/A Welcome screen is shown Pass 

2 Load student 

login screen 

1. Click “Student 

Login” button 

N/A N/A Login screen for student is 

shown 

Pass 

3 Load admin 

login screen 

1. Click “Admin 

Login” button 

N/A N/A Login screen for admin is 

shown 

Pass 

4 Load about 

screen 

1. Click “About” 

button 

N/A N/A About screen for admin is 

shown 

Pass 



168 

 

Module: Login System Test Module ID: UT-TC-002 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the login system for both student and admin are worked properly. 

Test 

case 

no. 

Test 

scenario 

Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

5 Student 

login into 

the system 

for the 

first time 

1. Key in Student ID and password 

2. Click “Login” button 

The registered 

student account 

should be a new user 

account. 

Student ID and 

temporary password 

Student will login into the 

system and redirect to the 

onboard screen. 

Pass 

6 Student 

login into 

the system 

1. Key in Student ID and password 

2. Click “Login” button 

The registered 

student account 

should be a current 

account. 

Student ID and self-

reset password 

Student will login into the 

system and redirect to the 

student home screen. 

Pass 

7 Student 

try to 

access 

1. type 

“http://127.0.0.1:8000/login” in the 

address bar 

The student must 

login into the system 

first 

N/A Student is redirected to 

the home page 

Pass 



169 

 

login page 

after login 

8 Student 

try to 

access 

admin-

related 

page after 

login 

1. type 

“http://127.0.0.1:8000/admin/home” 

in the address bar 

The student must 

login into the system 

first 

N/A Student is redirected to 

the home page 

Pass 

9 Student 

logout 

from the 

system 

1. Click “Logout” button on the 

navigation bar 

N/A N/A Student will logout from 

the system and redirect to 

the welcome home 

screen. 

Pass 

10 Student 

login into 

the system 

with 

invalid 

credentials 

1. Key in Student ID and invalid 

password 

2. Click “Login button” 

N/A Student ID with 

invalid password 

An error message is 

shown. 

Pass 



170 

 

11 User try to 

access 

pages that 

requires 

login 

1. type 

“http://127.0.0.1:8000/home” in the 

address bar 

The user should not 

login into the system 

N/A User redirected to the 

student login page. 

Pass 

12 User try to 

access 

admin-

related 

page 

before 

login 

1. type 

“http://127.0.0.1:8000/admin/home” 

in the address bar 

The user should not 

login into the system 

N/A User redirected to the 

admin login page. 

Pass 

13 Admin 

login into 

the system 

1. Key in Admin ID and password 

2. Click “Login” button 

N/A Admin ID with 

password 

Admin will login into the 

system and redirect to the 

admin home screen. 

Pass 

14 Admin 

logout 

from the 

system 

1. Click “Logout” button on the 

navigation bar 

N/A N/A Admin will logout from 

the system and redirect to 

the welcome home 

screen. 

 



171 

 

15 Admin try 

to access 

login page 

after login 

1. type 

“http://127.0.0.1:8000/login” in the 

address bar 

The admin must 

login into the system 

first 

N/A Student is redirected to 

the admin home page 

Pass 

16 Admin try 

to access 

student-

related 

page after 

login 

1. type “http://127.0.0.1:8000 

/home” in the address bar 

The admin must 

login into the system 

first 

N/A Admin is redirected to the 

admin home page 

Pass 



172 

 

Module: Student 

Onboarding 

Test Module ID: UT-TC-003 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the onboarding system for the first time student is worked properly. 

Test 

case 

no. 

Test 

scenario 

Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

17 Student 

reset 

password in 

the 

onboarding 

page 

1. Key in password and confirm 

password. 

The registered 

student account 

should be a new user 

account and login 

into the system. 

New password Student is redirected to 

the home screen. 

Pass 

18 Student 

reset 

password in 

the 

onboarding 

1. Key in password and confirm 

password with 7 characters. 

The registered 

student account 

should be a new user 

account and login 

into the system. 

123 as password 

 

An error message is 

shown. 

Pass 



173 

 

page with 

less than 8 

characters 

19 Student 

reset 

password in 

the 

onboarding 

page with 8 

numeric 

characters 

only 

1. Key in password and confirm 

password with 8 numeric 

characters only. 

The registered 

student account 

should be a new user 

account and login 

into the system. 

11111111 as 

password 

An error message is 

shown. 

Pass 

20 Student 

reset 

password in 

the 

onboarding 

page with 8 

letters only 

1. Key in password and confirm 

password with 8 numeric 

characters letters only. 

The registered 

student account 

should be a new user 

account and login 

into the system. 

aaaaaaaa as 

password 

An error message is 

shown. 

Pass 



174 

 

21 Student 

reset 

password in 

the 

onboarding 

page with 

different 

confirmation 

password 

1. Key in password and confirm 

password that is not match with 

the password 

The registered 

student account 

should be a new user 

account and login 

into the system. 

12345abc as 

confirmation 

password. Password 

should not be 

12345abc 

An error message is 

shown. 

Pass 

22 Student 

leave empty 

for both 

password 

and confirm 

password 

1. Leave blank for both password 

input and confirmation password 

input. 

The registered 

student account 

should be a new user 

account and login 

into the system. 

N/A An error message is 

shown. 

Pass 

 

 

23 Student 

before 

onboard try 

to access 

1. type 

“http://127.0.0.1:8000/home” in 

the address bar  

The registered 

student account 

should be a new user 

account and login 

N/A 403 error screen is 

shown. 

Pass 



175 

 

other web 

pages 

into the system. 

24 Student after 

onboard try 

to access 

onboarding 

page 

1. type 

“http://127.0.0.1:8000/onboard” 

in the address bar  

The registered 

student account 

should be a current 

account and login 

into the system. 

N/A 403 error screen is 

shown. 

Pass 



176 

 

Module: Reset 

Password 

Test Module ID: UT-TC-004 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the reset password function is worked properly 

Test 

case 

no. 

Test scenario Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

25 Student reset 

password 

before login 

1. Key in email, password and 

confirm password 

N/A Existing student 

email, new password 

and new 

confirmation 

password 

Student is redirected to 

login screen with reset 

successful message 

Pass 

26 Block new 

student to 

reset 

password 

before 

onboarding 

1. Key in email, password and 

confirm password 

The registered 

student account 

should be a new user 

account. 

New student email, 

new password and 

new confirmation 

password 

Student is redirect back 

to the same page and 

block message is shown 

Pass 



177 

 

27 Student key 

in email that 

is 

unregistered 

1. Key in unregistered email, 

password and confirm password  

N/A Unregistered student 

email, new password 

and confirmation 

password 

Student is redirect back 

to the same page and 

error message is shown 

Pass 

28 Student key 

in password 

that is 

different 

with 

confirmation 

password 

1. Key in registered email, 

password and confirm password 

that is different with password  

Password and 

confirm password 

should be different 

Existing student 

email, new 

password, and 

different 

confirmation 

password 

Student is redirect back 

to the same page and 

error message is shown 

Pass 

29 Student key 

in password 

with less 

than 8 

characters 

1. Key in password and confirm 

password with 7 characters. 

N/A 123 as password 

 

Student is redirect back 

to the same page and 

error message is shown 

Pass 

30 Student key 

in password 

with 8 

1. Key in password and confirm 

password with 8 numeric 

characters only. 

N/A 11111111 as 

password 

Student is redirect back 

to the same page and 

error message is shown 

Pass 



178 

 

numeric 

characters 

only 

31 Student key 

in password 

with 8 letters 

only 

1. Key in password and confirm 

password with 8 numeric 

characters letters only. 

N/A aaaaaaaa as 

password 

Student is redirect back 

to the same page and 

error message is shown 

Pass 



179 

 

Module: Lesson Test Module ID: UT-TC-005 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the lesson content is able to show students how to learn lessons. 

Test 

case 

no. 

Test scenario Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

32 Student enter 

Topic List 

1. On home page, click “Learn 

Lesson” button 

N/A N/A Topic List with a list of 

topics are shown. 

Pass 

33 Student 

choose a 

topic 

1. On topic list page, click 

“Topic 1” button 

N/A N/A Topic 1 with section 

contents are shown. 

Pass 

34 Student click 

section 

anchor link 

1. In the selected topic page, 

click any anchor link from the 

section list 

N/A N/A Webpage will jump into 

the selected section. 

Pass 

35 Student click 

next button 

for next topic 

1. In the selected topic page, 

click “Next button” 

N/A N/A The system will jump to 

the next topic. 

Pass 

36 Student click 1. In the selected topic page, N/A N/A The system will jump to Pass 



180 

 

back button 

for previous 

topic 

click “Back button” the previous topic. 



181 

 

Module: Exercise Test Module ID: UT-TC-006 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the exercise content is able to let students to practice their coding skills. 

Test 

case 

no. 

Test scenario Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

37 Student enter 

Exercise List 

1. On home page, click 

“Exercise” button 

N/A N/A Exercise List with a list 

of exercises are shown 

Pass 

38 Student 

choose an 

exercise 

1. On exercise list page, click 

“Exercise 1” button 

N/A N/A Exercise 1 with related 

questions are shown  

Pass 

39 Student 

check the 

answer 

1. On any question, click “Check 

Answer” button 

N/A N/A Blank is disabled and 

show the correct answer. 

The submit button is 

hidden. 

Pass 

40 Student stop 

checking the 

answer 

1. On the same question, click 

again the “Check Answer” 

button 

N/A N/A Blank is enabled and the 

correct answer is wiped. 

The submit button is 

Pass 



182 

 

shown. 

41 Student 

submit the 

correct 

answer 

1. On any question, key in the 

correct answer and click 

“Submit” button 

N/A Correct answer for 

the question 

Blank is disabled. The 

submit button and check 

answer button are hidden. 

Correct message is 

shown. 

Pass 

42 Student 

submit the 

wrong 

answer 

1. On any question, key in the 

wrong or blank answer and click 

“Submit” button 

N/A Wrong or blank 

answer for the 

question 

Wrong answer message 

is shown. 

Pass 



183 

 

Module: Graded 

Quizzes 

Test Module ID: UT-TC-007 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the quiz content is able to show, and able to show results once the student has completed the quiz. 

Test 

case 

no. 

Test scenario Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

43 Student enter 

Quiz List 

1. On home page, click 

“Quizzes” button 

N/A N/A Quiz List with a list of 

quizzes are shown 

Pass 

44 Student 

choose a quiz 

1. On quiz list page, click “Quiz 

1” button 

N/A N/A Quiz 1 with start screen 

is shown  

Pass 

45 Student start 

a quiz 

1. On the selected quiz page, 

click “Start” 

N/A N/A Question 1 is shown Pass 

46 Student go to 

next question 

1. On the question 1, click 

“Next” button 

N/A N/A Question 1 is jump to 

Question 2 

Pass 

47 Student go to 

previous 

question 

1. On the question 2, click 

“Back” button 

N/A N/A Question 2 is jump back 

to Question 1 

Pass 



184 

 

48 Student do 

not fully 

answer all 

questions 

1. On any 5 questions, choose an 

answer. 

2. On any remaining 5 questions, 

do not choose an answer 

3.On the last question, click 

“Submit” button 

N/A N/A An alert box will be 

shown. 

Pass 

49 Student leave 

empty for all 

questions. 

1. Do not choose an answer for 

each question. 

2. On the last question, click 

“Submit” button 

N/A N/A An alert box will be 

shown. 

Pass 

50 Student 

submit all 

answered 

questions 

1. Choose an answer for each 

question. 

N/A N/A Result screen is shown. Pass 

51 Result 

percentage 

calculation 

1. View number of correct 

answers over number of total 

questions. 

N/A N/A Result percentage is 

calculated correctly. 

Pass 

52 Student is 

able to view 

1. Answer all questions and 

clicked “Submit” button 

N/A N/A Correct answers and 

wrong answers for the 

Pass 



185 

 

their answer. quiz are shown. 

53 Student is 

able to retake 

the same 

quiz. 

1. Click “Retry” button N/A N/A The quiz screen will 

redirect back to the start 

quiz screen. 

Pass 



186 

 

Module: Online code 

Editor 

Test Module ID: UT-TC-008 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the online code editor is working well. 

Test 

case 

no. 

Test scenario Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

54 Load online 

code editor 

in lesson 

section 

1. Click the “Learn Lesson” 

button in home. 

2. Click the “Topic 1” button in 

the topic list. 

3. Proceed to any section with an 

online code editor. 

3. Click “Click to open the code 

editor for this section” button. 

N/A N/A Online code editor frame 

is loaded. Comments for 

each step are loaded. 

Pass 

55 Turn off 

online code 

editor in 

1. Click “Click to close the code 

editor for this section” button. 

The code editor 

frame should be 

opened before 

N/A Online code editor frame 

is off. 

Pass 



187 

 

lesson 

section 

56 Type codes 

and run 

codes in the 

online code 

editor. 

1. Type any Swift codes in the 

online code editor. 

2. Click “Run” button 

N/A N/A Output is shown Pass 

57 Load online 

code editor 

in code 

playground 

page 

1. Click “Code Playground” in 

Others > Code Playground in 

navigation bar 

N/A N/A Online code editor frame 

is loaded. 

Pass 



188 

 

Module: Student 

Profile 

Test Module ID: UT-TC-009 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the student profile is functioning well. 

Test 

case 

no. 

Test scenario Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

58 Student enter 

student 

profile 

1. Click “Profile” on the 

navigation bar 

N/A N/A Student file page is 

loaded. 

Student name, ID and 

email are displayed 

correctly. 

Pass 

59 Student 

check overall 

performance 

without any 

quiz history 

1.  View “Performance” section The student haven’t 

taken any quiz 

before 

N/A Average performance is 

0%, all score in each quiz 

are stated as N/A 

Pass 

60 Student 1. View “Quiz History” section The student haven’t N/A Message “You do not Pass 



189 

 

check quiz 

history list 

without any 

quiz history 

taken any quiz 

before 

have any quiz history 

right now” is shown. 

61 Student 

check overall 

performance 

with one quiz 

history 

1.  View “Performance” section The student has 

taken a quiz before 

N/A Average performance is 

calculated correctly, the 

score in taken quiz is 

shown, other untaken 

quiz remains N/A 

Pass 

62 Student 

check quiz 

history list 

with a quiz 

history 

1. View “Quiz History” section The student has 

taken a quiz before 

N/A Quiz history with quiz 

ID, from which quiz, 

total questions, correct 

answers, and percentage 

are shown 

Pass 

63 Student 

check overall 

performance 

with two 

quiz histories 

1.  View “Performance” section The student has 

taken two same 

quizzes before 

N/A Average performance is 

calculated correctly, the 

score in taken quiz is 

shown as the latest one, 

other untaken quiz 

Pass 



190 

 

from same 

quiz 

remains N/A 

64 Student 

check quiz 

history list 

with two 

quiz histories 

from the 

same quiz 

1. View “Quiz History” section The student has 

taken two same 

quizzes before 

N/A Quiz history with quiz 

ID, from the related quiz, 

total questions, correct 

answers, and percentage 

are shown. The latest 

quiz from the same quiz 

should be at the top. 

Pass 

65 Student 

check overall 

performance 

with two 

quiz histories 

from 

different quiz 

1.  View “Performance” section The student has 

taken at least two 

different quizzes 

before 

N/A Average performance is 

calculated correctly, the 

score in taken quiz is 

shown as the latest one, 

other untaken quiz 

remains N/A 

Pass 

66 Student 

check quiz 

history list 

1. View “Quiz History” section The student has 

taken at least two 

different quizzes 

N/A Quiz history with quiz 

ID, from the related quiz, 

total questions, correct 

Pass 



191 

 

with two 

quiz histories 

from 

different quiz 

before answers, and percentage 

are shown. The latest 

quiz should be at the top. 



192 

 

Module: Online Chat 

Box 

Test Module ID: UT-TC-010 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the online chat box system is working well. 

Test 

case 

no. 

Test scenario Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

67 User enter 

chat box 

1. Click Others > “Chat box” 

button in the navigation bar  

N/A N/A Chat box page is loaded. 

Name and ID is shown, 

online user list is shown 

Pass 

68 User check 

online list 

1. View “Online users” at the 

right side 

Two users are online 

at the same time, 

regardless of student 

or admin 

N/A At least two online users 

are existing. 

Pass 

69 User send a 

chat 

1. Type any text in the text area 

field. 

2. Click “Send” button 

N/A Any text Chat is sent successfully. 

Sent chat is shown. 

Pass 

70 User view 1. View the chat content box N/A N/A Other user’s name, time Pass 



193 

 

chat from 

other users 

sent and chat text is 

shown. 

71 Admin delete 

chat text 

1. Admin click “delete” button The user must be 

admin 

Any existing chat The selected chat is 

deleted. 

Pass 

72 Automatically 

delete chat 

that is more 

than 3 days 

1. View the chat content box N/A Chat which is more 

than 3 days 

Chat that is more than 3 

days should not be 

appeared in chat box 

Fail 



194 

 

Module: Register 

Student 

Test Module ID: UT-TC-011 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the register student function handles by admin is working well. 

Test 

case 

no. 

Test 

scenario 

Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

73 Admin enter 

register 

student page 

1. Click “Register Student” 

button in admin home screen 

N/A N/A Register student page is 

loaded 

Pass 

74 Admin 

register a 

student 

1. Key in Student ID, student 

name, and student email 

2. Click “Register” button 

N/A Any student that has 

not been registered 

Successful alert box is 

shown. Input field will be 

cleared. 

Pass 

75 Admin 

register a 

duplicate 

student 

1. Key in existing Student ID, 

student name, and student email 

2. Click “Register” button 

N/A Any student that has 

been registered 

Error message is shown. Pass 

76 Admin 1. Key in Student ID, student The student should Invalid email: Error message is shown. Pass 



195 

 

register a 

student with 

invalid email 

format 

name, and student email with 

invalid format 

2. Click “Register” button 

not be registered in 

the system 

aaa 

77 Admin 

register a 

student with 

invalid 

UTAR 

student 

email format 

1. Key in Student ID, student 

name, and student email with 

invalid UTAR student email 

format 

2. Click “Register” button 

The student should 

not be registered in 

the system 

Invalid email: 

aaa@bbb.com 

Error message is shown. Pass 



196 

 

Module: Student 

Profile 

Test Module ID: UT-TC-012 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the admin profile is functioning well. 

Test 

case 

no. 

Test scenario Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

78 Admin enter 

admin profile 

1. Click “Admin Profile” on the 

navigation bar 

N/A N/A Admin file page is 

loaded. 

Admin name and ID are 

displayed correctly. 

Search bar is shown. 

Pass 

79 Admin view 

student list 

1. Click “View student list” 

button 

N/A N/A Student list page is 

loaded. List of student 

ID, name, email and 

temporary password (if 

got) are shown. 

Pass 

80 Admin 1.  Key in registered student ID N/A N/A Student details (name, Pass 



197 

 

search a 

registered 

student 

in search bar. 

2. Click “Search” button 

ID, performance and 

history) are shown. 

81 Admin 

search an 

unregistered 

student 

1.  Key in unregistered student 

ID in search bar. 

2. Click “Search” button 

N/A N/A Error alert box is shown. Pass 

82 Delete 

registered 

student 

1. On the searched student, click 

“Delete” button 

2. Click “Yes” button 

N/A N/A Successful alert box is 

shown. 

Pass 



198 

 

Module: Modifying 

Course Content 

Test Module ID: UT-TC-013 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the course content modifications are worked properly. 

Test 

case 

no. 

Test scenario Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

83 Admin add a 

topic 

1. On topic list page, click “Add 

topic” button 

2. Key in a new topic name 

3. Click “Add” button 

N/A A new topic name A new topic, exercise 

and quiz are created at 

the same time. 

Pass 

84 Admin edit a 

topic name 

1. On topic list page, click “Edit” 

button beside the selected topic 

2. Key in a new topic name 

3. Click “Edit” button 

N/A A new topic name The name of the selected 

topic, exercise and quiz 

are changed at the same 

time. 

Pass 

85 Admin delete 

a topic 

1. On topic list page, click 

“Delete” button beside the 

selected topic 

N/A Any selected topic The selected topic, 

exercise and quiz are 

deleted at the same time. 

Pass 



199 

 

2. Click “Yes” button 

86 Admin add a 

new topic 

section 

1. Select a topic from the topic 

list 

2. Click “Add a new section” 

button 

3. Fill in necessary information. 

4. Click “Add” button 

N/A A new topic section A new topic section is 

created 

Pass 

87 Admin edit a 

topic section 

1. Click “Edit” button from any 

topic section from the same topic 

2. Edit any information 

3. Click “Edit” button 

N/A Any selected topic 

section 

The selected topic 

section is edited. 

Pass 

88 Admin delete 

a topic 

section 

1. Click “Delete” button from 

any topic section from the same  

2. Click “Delete” button 

N/A Any selected topic 

section 

The selected topic 

section is deleted. 

Pass 

89 Admin add a 

new exercise 

question 

1. Select an exercise from the 

exercise list 

2. Click “Add a new question” 

button 

3. Fill in necessary information. 

N/A A new exercise 

question 

A new exercise question 

is created 

Pass 



200 

 

4. Click “Add” button 

90 Admin edit 

an exercise 

question 

1. Click “Edit” button from any 

question from the same exercise 

2. Edit any information 

3. Click “Edit” button 

N/A Any selected 

exercise question 

The selected exercise 

question is edited. 

Pass 

91 Admin delete 

an exercise 

question 

1. Click “Delete” button from 

any question from the same 

exercise  

2. Click “Delete” button 

N/A Any selected 

exercise question 

The selected exercise 

question is deleted. 

Pass 

92 Admin add a 

new quiz 

question 

1. Select a quiz from the quiz list 

2. Click “Add a new question” 

button 

3. Fill in necessary information. 

4. Click “Add” button 

N/A A new quiz question A new quiz question is 

created 

Pass 

93 Admin edit a 

quiz question 

1. Click “Edit” button from any 

question from the same quiz 

2. Edit any information 

3. Click “Edit” button 

N/A Any selected quiz 

question 

The selected quiz 

question is edited. 

Pass 

94 Admin delete 1. Click “Delete” button from N/A Any selected quiz The selected quiz Pass 



201 

 

a quiz 

question 

any question from the same quiz  

2. Click “Delete” button 

question question is deleted. 

95 Admin add 

tab indent in 

code text 

section 

1. Click “Add” or “Delete” from 

any topic section/exercise 

question/quiz question 

2. In the section code or question 

text, press Tab key 

N/A Tab key An indent is added Pass 



202 

 

APPENDIX G: Integration Test Cases 

Module: Password reset and onboarding system Test Module ID: IT-TC-001 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the password, temporary password and onboarding status data is modified in the database through a web application. 

Test 

case 

no. 

Test 

scenario 

Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

1 Student 

change 

password 

in 

password 

reset page 

1. Key in email, password 

and confirm password in 

password reset page 

2. Click “reset” button 

N/A Existing student 

email, new password 

and new 

confirmation 

password 

 

Related student’s 

password is changed in 

database 

Pass 

2 Student 

change 

password 

in 

onboarding 

1. Key in Password and 

confirm password in 

onboarding page 

2. Click “reset” button 

The registered student 

account should be a new 

user account and login 

into the system. 

New password Related student’s 

password is changed, 

temporary password is 

set to null, and 

onboarding status is 

Pass 



203 

 

page changed to true in 

database 

 

Module: Graded quizzes Test Module ID: IT-TC-002 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the quiz history is added in the database through a web application. 

Test 

case 

no. 

Test 

scenario 

Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

3 Add a 

quiz 

history 

1. Select a quiz from quiz list 

2. Start the quiz 

3. Finish all questions 

4. Click “Submit button” 

Student should login into 

the system 

Any quiz 

 

A new quiz history 

record is added in the 

quiz history table 

Pass 

 



204 

 

Module: Chat box Test Module ID: IT-TC-003 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the chat data is modified in the database through a web application. 

Test 

case 

no. 

Test 

scenario 

Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

4 Add a 

chat text 

1. Type any text in the text 

area field. 

2. Click “Send” button 

User should login into the 

system 

Any text A new chat data is added 

in the chat table 

Pass 

5 Admin 

delete a 

chat text 

1. Admin click “delete” button The user must be admin Any existing chat Based on the chat ID, the 

chat is deleted in the chat 

table. 

Pass 



205 

 

Module: Register student Test Module ID: IT-TC-004 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test a new student is added to the database through a web application. 

Test 

case 

no. 

Test 

scenario 

Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

6 Add a 

new 

student 

1. Key in Student ID, student 

name, and student email 

2. Click “Register” button 

N/A Any student that has 

not been registered 

A new student is added 

in the student table. The 

added student’s 

temporary password is 

created, and the 

onboarding status is set 

to false 

Pass 



206 

 

Module: Delete student Test Module ID: IT-TC-005 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test an existing student is deleted from the database by the administrator through a web application. 

Test 

case 

no. 

Test 

scenario 

Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

7 Delete 

registered 

student 

1. On the searched student, 

click “Delete” button 

2. Click “Yes” button 

N/A N/A Deleted student is not 

exist anymore in the 

student table 

Pass 

 



207 

 

Module: Edit course content Test Module ID: IT-TC-006 

Created by: Lye Boon Jet Executed by: Lye Boon Jet 

Description 

To test the topic lesson, exercise and quiz are modified in the database by the administrator through a web application. 

Test 

case 

no. 

Test 

scenario 

Steps Prerequisite Test data Expected result Status 

(Pass/Fail) 

8 Admin 

add a 

topic 

1. On topic list page, click 

“Add topic” button 

2. Key in a new topic name 

3. Click “Add” button 

N/A A new topic name A new topic is added in 

the topic title table 

Pass 

9 Admin 

edit a 

topic 

name 

1. On topic list page, click 

“Edit” button beside the 

selected topic 

2. Key in a new topic name 

3. Click “Edit” button 

N/A A new topic name The name of the selected 

topic is updated in the 

topic title table 

Pass 

10 Admin 

delete a 

topic 

1. On topic list page, click 

“Delete” button beside the 

selected topic 

N/A Any selected topic The selected topic is 

deleted in the topic title 

table. Any related topic 

Pass 



208 

 

2. Click “Yes” button sections, exercise 

questions and quiz 

questions are also deleted 

in their respective tables. 

11 Admin 

add a new 

topic 

section 

1. Select a topic from the topic 

list 

2. Click “Add a new section” 

button 

3. Fill in necessary 

information. 

4. Click “Add” button 

N/A A new topic section A new section is created 

in the topic section table. 

Pass 

12 Admin 

edit a 

topic 

section 

1. Click “Edit” button from 

any topic section from the 

same topic 

2. Edit any information 

3. Click “Edit” button 

N/A Any selected topic 

section 

The selected topic 

section data is updated in 

the topic section table. 

Pass 

13 Admin 

delete a 

topic 

1. Click “Delete” button from 

any topic section from the 

same  

N/A Any selected topic 

section 

The selected topic 

section data is deleted in 

the topic section table. 

Pass 



209 

 

section 2. Click “Delete” button 

14 Admin 

add a new 

exercise 

question 

1. Select an exercise from the 

exercise list 

2. Click “Add a new question” 

button 

3. Fill in necessary 

information. 

4. Click “Add” button 

N/A A new exercise 

question 

A new exercise question 

is created in the exercise 

table. 

Pass 

15 Admin 

edit an 

exercise 

question 

1. Click “Edit” button from 

any question from the same 

exercise 

2. Edit any information 

3. Click “Edit” button 

N/A Any selected 

exercise question 

The selected exercise 

question data is edited in 

the exercise table. 

Pass 

16 Admin 

delete an 

exercise 

question 

1. Click “Delete” button from 

any question from the same 

exercise  

2. Click “Delete” button 

N/A Any selected 

exercise question 

The selected exercise 

question data is deleted 

in the exercise table. 

Pass 

17 Admin 

add a new 

1. Select a quiz from the quiz 

list 

N/A A new quiz question A new quiz question is 

created in the quiz table 

Pass 



210 

 

quiz 

question 

2. Click “Add a new question” 

button 

3. Fill in necessary 

information. 

4. Click “Add” button 

18 Admin 

edit a quiz 

question 

1. Click “Edit” button from 

any question from the same 

quiz 

2. Edit any information 

3. Click “Edit” button 

N/A Any selected quiz 

question 

The selected quiz 

question data is edited in 

the quiz table. 

Pass 

19 Admin 

delete a 

quiz 

question 

1. Click “Delete” button from 

any question from the same 

quiz  

2. Click “Delete” button 

N/A Any selected quiz 

question 

The selected quiz 

question data is deleted 

in the quiz table. 

Pass 



211 

 

APPENDIX H: Student UAT Test Cases 

UAT Testing 

UAT Test 

Case 
Tester Name: Lee Yan Tester Type: Student Testing Date:  23/7/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: 

Pass/Fail and 

Remarks 

TC-LI-

001 
Login 

TS: 

1. Student clicks the student login button. 

2. Student fills in the credentials and click login. 

ER: 

1. The student will be login and redirected into the 

home page. 

Prerequisites: Student should not 

be first time login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password. 

Pass 

TC-RP-

001 
Reset Password 

TS: 

1. Student clicks the student login button. 

2. Student clicks the reset password button. 

3. Student fills in the student email, new password 

and confirm password. 

4. Student clicks the reset password button. 

ER: 

1. Student will be redirect to student login page 

with the message: “Your password has been reset 

Prerequisites: N/A 

 

Test Data: 

Student own student email and 

new password 

Pass 



212 

 

successfully!” 

TC-LI-

002 
Login 

TS: 

1. Student clicks the student login button. 

2. Student fills in the new credentials and click 

login. 

ER: 

The student will be login and redirected into the home 

page. 

Prerequisites: 

Student should complete reset 

password before login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password 

Pass 

TC-OB-

001 
Onboarding 

TS: 

1. Student logins to the system for the first time. 

2. Student sets a new password with minimum 8 

characters with combination of letters and 

numeric characters. 

3. Student submits the new password. 

ER: 

1. The student will be redirected into the home 

page. 

Prerequisites: Student should be 

first time login. 

 

Test Data: 

Student own ID without UEB and 

temporary password. 

 

Pass 

TC-OB-

002 
Onboarding 

TS: 

1. Student clicks the back button once they 

complete the onboarding change password. 

ER: 

1. Error 403 will be displayed. 

Prerequisites: 

Student should complete 

onboarding procedure. 

 

Pass 



213 

 

Test Data: N/A 

 

 

TC-TL-

001 
Learn Lesson 

TS: 

1. Student clicks the “Learn Lesson” button. 

2. Student clicks any topic from the topic list. 

ER: 

1. Student is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TL-

002 
Learn Lesson 

TS: 

1. Student click the “Next” button once. 

2. Student click the “Back” button once. 

ER: 

1. When the “Next” button is clicked, it will be able 

to redirect to the next topic. 

2. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CP-

001 
Code Playground 

TS: 

1. Student clicks the “Click to open the code editor 

for this section!” 

2. Student types codes based on the instructions. 

3. Student runs the code. 

ER: 

Prerequisites: Student is in any 

lesson topic. 

 

Test Data: N/A 

Pass 



214 

 

1. Paiza.io online Swift compiler will be appeared. 

2. Code is able to be typed. 

3. Run button is worked and output is shown. 

TC-CP-

002 
Code Playground 

TS: 

1. Student go to navigation bar > others > code 

playground. 

2. Student types Swift code whatever they like. 

3. Student runs the code. 

ER: 

1. Paiza.io online Swift compiler will be appeared. 

2. Code is able to be typed. 

3. Run button is worked and output is shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

001 
Exercises 

TS: 

1. Student clicks the “Exercise” button. 

2. Student clicks any exercise from the exercise list. 

ER: 

1. Student is able to view all questions related to 

the selected exercise. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

002 
Exercises 

TS: 

1. Student clicks check answer button in a question. 

2. Student clicks check answer button again. 

ER: 

1. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

Prerequisites: Student must 

complete TC-EE-001 first. 

 

Test Data: N/A 

Pass 



215 

 

2. When check answer button is clicked for the 

second time, the submit button will be appeared, 

and blank for the question will be enabled and 

clear the correct answer. 

TC-EE-

003 
Exercises 

TS: 

1. Student fills in the blank with correct answer. 

2. Student clicks submit button. 

ER: 

1. Submit button and check answer button will be 

hidden, and blank for the question will be 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

004 
Exercises 

TS: 

1. Student fills in the blank with wrong answer. 

2. Student clicks submit button. 

ER: 

1. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

001 
Graded Quizzes 

TS: 

1. Student clicks the “Graded Quizzes” button. 

2. Student clicks any quiz from the quiz list. 

ER: 

1. Student is able to view “Click the button below 

to start the quiz”. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



216 

 

TC-GQ-

002 
Graded Quizzes 

TS: 

1. Students clicks the “Start” button. 

2. Student do all the questions. 

3. Student clicks submit button. 

ER: 

1. Student is able to view the quiz result. 

2. Student is able to check the correct answer in 

each question. 

Prerequisites: Student must 

complete TC-GQ-001 first. 

 

Test Data: N/A 

Pass 

TC-GQ-

003 
Graded Quizzes 

TS: 

1. Student clicks the “Start” button. 

2. Student skip some questions. 

3. Student clicks submit button. 

ER: 

1. Alert “You have some incomplete questions.” is 

shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

004 
Graded Quizzes 

TS: 

1. Student clicks “Retry” button. 

2. Student clicks the “Start” button. 

3. Student do all the questions. 

4. Student clicks submit button. 

ER: 

1. Student is able to retry the same quiz. 

Prerequisites: Student must reach 

the quiz result view. 

 

Test Data: N/A 

Pass 

TC-PF-

001 
Student Profile 

TS: 

1. Student clicks “Profile” on the navigation bar. 

ER: 

Prerequisites: Student must 

complete TC-GQ-002. 

 

Pass 



217 

 

1. Student can see his/her name, student ID and 

student email. 

2. Student can view the quiz history record. 

3. Student can view the performance. The 

performance should be the latest in each quiz. 

Test Data: N/A 

TC-CB-

001 
Chat Box 

TS: 

1. Student clicks “Chat Box” button. 

ER: 

1. Student can view the chat box interface, with 

his/her student ID and name. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

002 
Chat Box 

TS: 

1. Student view the online user list. 

ER: 

1. Student is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

003 
Chat Box 

TS: 

1. Student types some text and clicks “send” 

button. 

ER: 

1. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-LO-

001 
Logout 

TS: 

1. Student clicks the logout button. 

ER: 

1. Student will be redirected to welcome page. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



218 

 

2. Student is unable to access any web page that 

requires login. 



219 

 

UAT Testing 

UAT Test 

Case 
Tester Name: Justin Chia Yu Chern Tester Type: Student Testing Date: 23/07/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: 

Pass/Fail and 

Remarks 

TC-LI-

001 
Login 

TS: 

3. Student clicks the student login button. 

4. Student fills in the credentials and click login. 

ER: 

2. The student will be login and redirected into the 

home page. 

Prerequisites: Student should not 

be first time login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password. 

Pass 

TC-RP-

001 
Reset Password 

TS: 

5. Student clicks the student login button. 

6. Student clicks the reset password button. 

7. Student fills in the student email, new password 

and confirm password. 

8. Student clicks the reset password button. 

ER: 

2. Student will be redirect to student login page 

with the message: “Your password has been reset 

successfully!” 

Prerequisites: N/A 

 

Test Data: 

Student own student email and 

new password 

Pass 



220 

 

TC-LI-

002 
Login 

TS: 

3. Student clicks the student login button. 

4. Student fills in the new credentials and click 

login. 

ER: 

The student will be login and redirected into the home 

page. 

Prerequisites: 

Student should complete reset 

password before login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password 

Pass 

TC-OB-

001 
Onboarding 

TS: 

4. Student logins to the system for the first time. 

5. Student sets a new password with minimum 8 

characters with combination of letters and 

numeric characters. 

6. Student submits the new password. 

ER: 

2. The student will be redirected into the home 

page. 

Prerequisites: Student should be 

first time login. 

 

Test Data: 

Student own ID without UEB and 

temporary password. 

 

Pass 

TC-OB-

002 
Onboarding 

TS: 

2. Student clicks the back button once they 

complete the onboarding change password. 

ER: 

2. Error 403 will be displayed. 

Prerequisites: 

Student should complete 

onboarding procedure. 

 

Test Data: N/A 

Pass 



221 

 

 

 

TC-TL-

001 
Learn Lesson 

TS: 

3. Student clicks the “Learn Lesson” button. 

4. Student clicks any topic from the topic list. 

ER: 

2. Student is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TL-

002 
Learn Lesson 

TS: 

3. Student click the “Next” button once. 

4. Student click the “Back” button once. 

ER: 

3. When the “Next” button is clicked, it will be able 

to redirect to the next topic. 

4. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CP-

001 
Code Playground 

TS: 

4. Student clicks the “Click to open the code editor 

for this section!” 

5. Student types codes based on the instructions. 

6. Student runs the code. 

ER: 

4. Paiza.io online Swift compiler will be appeared. 

5. Code is able to be typed. 

Prerequisites: Student is in any 

lesson topic. 

 

Test Data: N/A 

Pass 



222 

 

6. Run button is worked and output is shown. 

TC-CP-

002 
Code Playground 

TS: 

4. Student go to navigation bar > others > code 

playground. 

5. Student types Swift code whatever they like. 

6. Student runs the code. 

ER: 

4. Paiza.io online Swift compiler will be appeared. 

5. Code is able to be typed. 

6. Run button is worked and output is shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

001 
Exercises 

TS: 

3. Student clicks the “Exercise” button. 

4. Student clicks any exercise from the exercise list. 

ER: 

2. Student is able to view all questions related to 

the selected exercise. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

002 
Exercises 

TS: 

3. Student clicks check answer button in a question. 

4. Student clicks check answer button again. 

ER: 

3. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

4. When check answer button is clicked for the 

second time, the submit button will be appeared, 

Prerequisites: Student must 

complete TC-EE-001 first. 

 

Test Data: N/A 

Pass 



223 

 

and blank for the question will be enabled and 

clear the correct answer. 

TC-EE-

003 
Exercises 

TS: 

3. Student fills in the blank with correct answer. 

4. Student clicks submit button. 

ER: 

2. Submit button and check answer button will be 

hidden, and blank for the question will be 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

004 
Exercises 

TS: 

3. Student fills in the blank with wrong answer. 

4. Student clicks submit button. 

ER: 

2. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

001 
Graded Quizzes 

TS: 

3. Student clicks the “Graded Quizzes” button. 

4. Student clicks any quiz from the quiz list. 

ER: 

2. Student is able to view “Click the button below 

to start the quiz”. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

002 
Graded Quizzes 

TS: 

4. Students clicks the “Start” button. 

Prerequisites: Student must 

complete TC-GQ-001 first. 
Pass 



224 

 

5. Student do all the questions. 

6. Student clicks submit button. 

ER: 

3. Student is able to view the quiz result. 

4. Student is able to check the correct answer in 

each question. 

 

Test Data: N/A 

TC-GQ-

003 
Graded Quizzes 

TS: 

4. Student clicks the “Start” button. 

5. Student skip some questions. 

6. Student clicks submit button. 

ER: 

2. Alert “You have some incomplete questions.” is 

shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

004 
Graded Quizzes 

TS: 

5. Student clicks “Retry” button. 

6. Student clicks the “Start” button. 

7. Student do all the questions. 

8. Student clicks submit button. 

ER: 

2. Student is able to retry the same quiz. 

Prerequisites: Student must reach 

the quiz result view. 

 

Test Data: N/A 

Pass 

TC-PF-

001 
Student Profile 

TS: 

2. Student clicks “Profile” on the navigation bar. 

ER: 

4. Student can see his/her name, student ID and 

student email. 

5. Student can view the quiz history record. 

Prerequisites: Student must 

complete TC-GQ-002. 

 

Test Data: N/A 

Pass 



225 

 

6. Student can view the performance. The 

performance should be the latest in each quiz. 

TC-CB-

001 
Chat Box 

TS: 

2. Student clicks “Chat Box” button. 

ER: 

2. Student can view the chat box interface, with 

his/her student ID and name. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

002 
Chat Box 

TS: 

2. Student view the online user list. 

ER: 

2. Student is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

003 
Chat Box 

TS: 

2. Student types some text and clicks “send” 

button. 

ER: 

2. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-LO-

001 
Logout 

TS: 

2. Student clicks the logout button. 

ER: 

3. Student will be redirected to welcome page. 

4. Student is unable to access any web page that 

requires login. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



226 

 

UAT Testing 

UAT Test 

Case 
Tester Name: Liaw Yoong Tung Tester Type: Student Testing Date: 23/07/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: Pass/Fail 

and Remarks 

TC-LI-

001 
Login 

TS: 

5. Student clicks the student login button. 

6. Student fills in the credentials and click login. 

ER: 

3. The student will be login and redirected into the 

home page. 

Prerequisites: Student should not 

be first time login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password. 

Pass 

TC-RP-

001 
Reset Password 

TS: 

9. Student clicks the student login button. 

10. Student clicks the reset password button. 

11. Student fills in the student email, new password 

and confirm password. 

12. Student clicks the reset password button. 

ER: 

3. Student will be redirect to student login page 

with the message: “Your password has been 

reset successfully!” 

Prerequisites: N/A 

 

Test Data: 

Student own student email and 

new password 

Pass 

TC-LI- Login TS: Prerequisites: Pass 



227 

 

002 5. Student clicks the student login button. 

6. Student fills in the new credentials and click 

login. 

ER: 

The student will be login and redirected into the home 

page. 

Student should complete reset 

password before login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password 

TC-OB-

001 
Onboarding 

TS: 

7. Student logins to the system for the first time. 

8. Student sets a new password with minimum 8 

characters with combination of letters and 

numeric characters. 

9. Student submits the new password. 

ER: 

3. The student will be redirected into the home 

page. 

Prerequisites: Student should be 

first time login. 

 

Test Data: 

Student own ID without UEB and 

temporary password. 

 

Pass 

TC-OB-

002 
Onboarding 

TS: 

3. Student clicks the back button once they 

complete the onboarding change password. 

ER: 

3. Error 403 will be displayed. 

Prerequisites: 

Student should complete 

onboarding procedure. 

 

Test Data: N/A 

 

Pass 



228 

 

 

TC-TL-

001 
Learn Lesson 

TS: 

5. Student clicks the “Learn Lesson” button. 

6. Student clicks any topic from the topic list. 

ER: 

3. Student is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TL-

002 
Learn Lesson 

TS: 

5. Student click the “Next” button once. 

6. Student click the “Back” button once. 

ER: 

5. When the “Next” button is clicked, it will be 

able to redirect to the next topic. 

6. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CP-

001 

Code 

Playground 

TS: 

7. Student clicks the “Click to open the code editor 

for this section!” 

8. Student types codes based on the instructions. 

9. Student runs the code. 

ER: 

7. Paiza.io online Swift compiler will be appeared. 

8. Code is able to be typed. 

9. Run button is worked and output is shown. 

Prerequisites: Student is in any 

lesson topic. 

 

Test Data: N/A 

Fail 

[“{{‘run’|i18n}} 

(Ctrl-Enter” 

occurs when 

loading 

playground] 



229 

 

TC-CP-

002 

Code 

Playground 

TS: 

7. Student go to navigation bar > others > code 

playground. 

8. Student types Swift code whatever they like. 

9. Student runs the code. 

ER: 

7. Paiza.io online Swift compiler will be appeared. 

8. Code is able to be typed. 

9. Run button is worked and output is shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Fail 

[“{{‘run’|i18n}} 

(Ctrl-Enter” 

occurs when 

loading 

playground] 

TC-EE-

001 
Exercises 

TS: 

5. Student clicks the “Exercise” button. 

6. Student clicks any exercise from the exercise 

list. 

ER: 

3. Student is able to view all questions related to 

the selected exercise. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

002 
Exercises 

TS: 

5. Student clicks check answer button in a question. 

6. Student clicks check answer button again. 

ER: 

5. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

6. When check answer button is clicked for the 

second time, the submit button will be appeared, 

Prerequisites: Student must 

complete TC-EE-001 first. 

 

Test Data: N/A 

Pass 



230 

 

and blank for the question will be enabled and 

clear the correct answer. 

TC-EE-

003 
Exercises 

TS: 

5. Student fills in the blank with correct answer. 

6. Student clicks submit button. 

ER: 

3. Submit button and check answer button will be 

hidden, and blank for the question will be 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

004 
Exercises 

TS: 

5. Student fills in the blank with wrong answer. 

6. Student clicks submit button. 

ER: 

3. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

001 
Graded Quizzes 

TS: 

5. Student clicks the “Graded Quizzes” button. 

6. Student clicks any quiz from the quiz list. 

ER: 

3. Student is able to view “Click the button below 

to start the quiz”. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

002 
Graded Quizzes 

TS: 

7. Students clicks the “Start” button. 

Prerequisites: Student must 

complete TC-GQ-001 first. 
Pass 



231 

 

8. Student do all the questions. 

9. Student clicks submit button. 

ER: 

5. Student is able to view the quiz result. 

6. Student is able to check the correct answer in 

each question. 

 

Test Data: N/A 

TC-GQ-

003 
Graded Quizzes 

TS: 

7. Student clicks the “Start” button. 

8. Student skip some questions. 

9. Student clicks submit button. 

ER: 

3. Alert “You have some incomplete questions.” is 

shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

004 
Graded Quizzes 

TS: 

9. Student clicks “Retry” button. 

10. Student clicks the “Start” button. 

11. Student do all the questions. 

12. Student clicks submit button. 

ER: 

3. Student is able to retry the same quiz. 

Prerequisites: Student must reach 

the quiz result view. 

 

Test Data: N/A 

Pass 

TC-PF-

001 
Student Profile 

TS: 

3. Student clicks “Profile” on the navigation bar. 

ER: 

7. Student can see his/her name, student ID and 

student email. 

8. Student can view the quiz history record. 

Prerequisites: Student must 

complete TC-GQ-002. 

 

Test Data: N/A 

Pass 



232 

 

9. Student can view the performance. The 

performance should be the latest in each quiz. 

TC-CB-

001 
Chat Box 

TS: 

3. Student clicks “Chat Box” button. 

ER: 

3. Student can view the chat box interface, with 

his/her student ID and name. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

002 
Chat Box 

TS: 

3. Student view the online user list. 

ER: 

3. Student is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

003 
Chat Box 

TS: 

3. Student types some text and clicks “send” 

button. 

ER: 

3. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-LO-

001 
Logout 

TS: 

3. Student clicks the logout button. 

ER: 

5. Student will be redirected to welcome page. 

6. Student is unable to access any web page that 

requires login. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



233 

 

UAT Testing 

UAT Test 

Case 
Tester Name: Low Chen Wan Tester Type: Student Testing Date: 23/07/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: 

Pass/Fail and 

Remarks 

TC-LI-

001 
Login 

TS: 

7. Student clicks the student login button. 

8. Student fills in the credentials and click login. 

ER: 

4. The student will be login and redirected into the 

home page. 

Prerequisites: Student should not 

be first time login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password. 

Pass 

TC-RP-

001 
Reset Password 

TS: 

13. Student clicks the student login button. 

14. Student clicks the reset password button. 

15. Student fills in the student email, new password 

and confirm password. 

16. Student clicks the reset password button. 

ER: 

4. Student will be redirect to student login page 

with the message: “Your password has been reset 

successfully!” 

Prerequisites: N/A 

 

Test Data: 

Student own student email and 

new password 

Pass 



234 

 

TC-LI-

002 
Login 

TS: 

7. Student clicks the student login button. 

8. Student fills in the new credentials and click 

login. 

ER: 

The student will be login and redirected into the home 

page. 

Prerequisites: 

Student should complete reset 

password before login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password 

Pass 

TC-OB-

001 
Onboarding 

TS: 

10. Student logins to the system for the first time. 

11. Student sets a new password with minimum 8 

characters with combination of letters and 

numeric characters. 

12. Student submits the new password. 

ER: 

4. The student will be redirected into the home 

page. 

Prerequisites: Student should be 

first time login. 

 

Test Data: 

Student own ID without UEB and 

temporary password. 

 

Pass 

TC-OB-

002 
Onboarding 

TS: 

4. Student clicks the back button once they 

complete the onboarding change password. 

ER: 

4. Error 403 will be displayed. 

Prerequisites: 

Student should complete 

onboarding procedure. 

 

Test Data: N/A 

Pass 



235 

 

 

 

TC-TL-

001 
Learn Lesson 

TS: 

7. Student clicks the “Learn Lesson” button. 

8. Student clicks any topic from the topic list. 

ER: 

4. Student is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TL-

002 
Learn Lesson 

TS: 

7. Student click the “Next” button once. 

8. Student click the “Back” button once. 

ER: 

7. When the “Next” button is clicked, it will be able 

to redirect to the next topic. 

8. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CP-

001 
Code Playground 

TS: 

10. Student clicks the “Click to open the code editor 

for this section!” 

11. Student types codes based on the instructions. 

12. Student runs the code. 

ER: 

10. Paiza.io online Swift compiler will be appeared. 

11. Code is able to be typed. 

Prerequisites: Student is in any 

lesson topic. 

 

Test Data: N/A 

Pass 



236 

 

12. Run button is worked and output is shown. 

TC-CP-

002 
Code Playground 

TS: 

10. Student go to navigation bar > others > code 

playground. 

11. Student types Swift code whatever they like. 

12. Student runs the code. 

ER: 

10. Paiza.io online Swift compiler will be appeared. 

11. Code is able to be typed. 

12. Run button is worked and output is shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

001 
Exercises 

TS: 

7. Student clicks the “Exercise” button. 

8. Student clicks any exercise from the exercise list. 

ER: 

4. Student is able to view all questions related to 

the selected exercise. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

002 
Exercises 

TS: 

7. Student clicks check answer button in a question. 

8. Student clicks check answer button again. 

ER: 

7. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

8. When check answer button is clicked for the 

second time, the submit button will be appeared, 

Prerequisites: Student must 

complete TC-EE-001 first. 

 

Test Data: N/A 

Pass 



237 

 

and blank for the question will be enabled and 

clear the correct answer. 

TC-EE-

003 
Exercises 

TS: 

7. Student fills in the blank with correct answer. 

8. Student clicks submit button. 

ER: 

4. Submit button and check answer button will be 

hidden, and blank for the question will be 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

004 
Exercises 

TS: 

7. Student fills in the blank with wrong answer. 

8. Student clicks submit button. 

ER: 

4. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

001 
Graded Quizzes 

TS: 

7. Student clicks the “Graded Quizzes” button. 

8. Student clicks any quiz from the quiz list. 

ER: 

4. Student is able to view “Click the button below 

to start the quiz”. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

002 
Graded Quizzes 

TS: 

10. Students clicks the “Start” button. 

Prerequisites: Student must 

complete TC-GQ-001 first. 
Pass 



238 

 

11. Student do all the questions. 

12. Student clicks submit button. 

ER: 

7. Student is able to view the quiz result. 

8. Student is able to check the correct answer in 

each question. 

 

Test Data: N/A 

TC-GQ-

003 
Graded Quizzes 

TS: 

10. Student clicks the “Start” button. 

11. Student skip some questions. 

12. Student clicks submit button. 

ER: 

4. Alert “You have some incomplete questions.” is 

shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

004 
Graded Quizzes 

TS: 

13. Student clicks “Retry” button. 

14. Student clicks the “Start” button. 

15. Student do all the questions. 

16. Student clicks submit button. 

ER: 

4. Student is able to retry the same quiz. 

Prerequisites: Student must reach 

the quiz result view. 

 

Test Data: N/A 

Pass 

TC-PF-

001 
Student Profile 

TS: 

4. Student clicks “Profile” on the navigation bar. 

ER: 

10. Student can see his/her name, student ID and 

student email. 

11. Student can view the quiz history record. 

Prerequisites: Student must 

complete TC-GQ-002. 

 

Test Data: N/A 

Pass 



239 

 

12. Student can view the performance. The 

performance should be the latest in each quiz. 

TC-CB-

001 
Chat Box 

TS: 

4. Student clicks “Chat Box” button. 

ER: 

4. Student can view the chat box interface, with 

his/her student ID and name. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

002 
Chat Box 

TS: 

4. Student view the online user list. 

ER: 

4. Student is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

003 
Chat Box 

TS: 

4. Student types some text and clicks “send” 

button. 

ER: 

4. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-LO-

001 
Logout 

TS: 

4. Student clicks the logout button. 

ER: 

7. Student will be redirected to welcome page. 

8. Student is unable to access any web page that 

requires login. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



240 

 

UAT Testing 

UAT Test 

Case 
Tester Name: Siew Liang Han Tester Type: Student Testing Date: 23/07/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: 

Pass/Fail and 

Remarks 

TC-LI-

001 
Login 

TS: 

9. Student clicks the student login button. 

10. Student fills in the credentials and click login. 

ER: 

5. The student will be login and redirected into the 

home page. 

Prerequisites: Student should not 

be first time login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password. 

Pass 

TC-RP-

001 
Reset Password 

TS: 

17. Student clicks the student login button. 

18. Student clicks the reset password button. 

19. Student fills in the student email, new password 

and confirm password. 

20. Student clicks the reset password button. 

ER: 

5. Student will be redirect to student login page 

with the message: “Your password has been reset 

successfully!” 

Prerequisites: N/A 

 

Test Data: 

Student own student email and 

new password 

Pass 



241 

 

TC-LI-

002 
Login 

TS: 

9. Student clicks the student login button. 

10. Student fills in the new credentials and click 

login. 

ER: 

The student will be login and redirected into the home 

page. 

Prerequisites: 

Student should complete reset 

password before login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password 

Pass 

TC-OB-

001 
Onboarding 

TS: 

13. Student logins to the system for the first time. 

14. Student sets a new password with minimum 8 

characters with combination of letters and 

numeric characters. 

15. Student submits the new password. 

ER: 

5. The student will be redirected into the home 

page. 

Prerequisites: Student should be 

first time login. 

 

Test Data: 

Student own ID without UEB and 

temporary password. 

 

Pass 

TC-OB-

002 
Onboarding 

TS: 

5. Student clicks the back button once they 

complete the onboarding change password. 

ER: 

5. Error 403 will be displayed. 

Prerequisites: 

Student should complete 

onboarding procedure. 

 

Test Data: N/A 

Pass 



242 

 

 

 

TC-TL-

001 
Learn Lesson 

TS: 

9. Student clicks the “Learn Lesson” button. 

10. Student clicks any topic from the topic list. 

ER: 

5. Student is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TL-

002 
Learn Lesson 

TS: 

9. Student click the “Next” button once. 

10. Student click the “Back” button once. 

ER: 

9. When the “Next” button is clicked, it will be able 

to redirect to the next topic. 

10. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CP-

001 
Code Playground 

TS: 

13. Student clicks the “Click to open the code editor 

for this section!” 

14. Student types codes based on the instructions. 

15. Student runs the code. 

ER: 

13. Paiza.io online Swift compiler will be appeared. 

14. Code is able to be typed. 

Prerequisites: Student is in any 

lesson topic. 

 

Test Data: N/A 

Pass 



243 

 

15. Run button is worked and output is shown. 

TC-CP-

002 
Code Playground 

TS: 

13. Student go to navigation bar > others > code 

playground. 

14. Student types Swift code whatever they like. 

15. Student runs the code. 

ER: 

13. Paiza.io online Swift compiler will be appeared. 

14. Code is able to be typed. 

15. Run button is worked and output is shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

001 
Exercises 

TS: 

9. Student clicks the “Exercise” button. 

10. Student clicks any exercise from the exercise list. 

ER: 

5. Student is able to view all questions related to 

the selected exercise. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

002 
Exercises 

TS: 

9. Student clicks check answer button in a question. 

10. Student clicks check answer button again. 

ER: 

9. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

10. When check answer button is clicked for the 

second time, the submit button will be appeared, 

Prerequisites: Student must 

complete TC-EE-001 first. 

 

Test Data: N/A 

Pass 



244 

 

and blank for the question will be enabled and 

clear the correct answer. 

TC-EE-

003 
Exercises 

TS: 

9. Student fills in the blank with correct answer. 

10. Student clicks submit button. 

ER: 

5. Submit button and check answer button will be 

hidden, and blank for the question will be 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

004 
Exercises 

TS: 

9. Student fills in the blank with wrong answer. 

10. Student clicks submit button. 

ER: 

5. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

001 
Graded Quizzes 

TS: 

9. Student clicks the “Graded Quizzes” button. 

10. Student clicks any quiz from the quiz list. 

ER: 

5. Student is able to view “Click the button below 

to start the quiz”. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

002 
Graded Quizzes 

TS: 

13. Students clicks the “Start” button. 

Prerequisites: Student must 

complete TC-GQ-001 first. 
Pass 



245 

 

14. Student do all the questions. 

15. Student clicks submit button. 

ER: 

9. Student is able to view the quiz result. 

10. Student is able to check the correct answer in 

each question. 

 

Test Data: N/A 

TC-GQ-

003 
Graded Quizzes 

TS: 

13. Student clicks the “Start” button. 

14. Student skip some questions. 

15. Student clicks submit button. 

ER: 

5. Alert “You have some incomplete questions.” is 

shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

004 
Graded Quizzes 

TS: 

17. Student clicks “Retry” button. 

18. Student clicks the “Start” button. 

19. Student do all the questions. 

20. Student clicks submit button. 

ER: 

5. Student is able to retry the same quiz. 

Prerequisites: Student must reach 

the quiz result view. 

 

Test Data: N/A 

Pass 

TC-PF-

001 
Student Profile 

TS: 

5. Student clicks “Profile” on the navigation bar. 

ER: 

13. Student can see his/her name, student ID and 

student email. 

14. Student can view the quiz history record. 

Prerequisites: Student must 

complete TC-GQ-002. 

 

Test Data: N/A 

Pass 



246 

 

15. Student can view the performance. The 

performance should be the latest in each quiz. 

TC-CB-

001 
Chat Box 

TS: 

5. Student clicks “Chat Box” button. 

ER: 

5. Student can view the chat box interface, with 

his/her student ID and name. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

002 
Chat Box 

TS: 

5. Student view the online user list. 

ER: 

5. Student is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

003 
Chat Box 

TS: 

5. Student types some text and clicks “send” 

button. 

ER: 

5. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-LO-

001 
Logout 

TS: 

5. Student clicks the logout button. 

ER: 

9. Student will be redirected to welcome page. 

10. Student is unable to access any web page that 

requires login. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

[Remarks: Still 

able to go back 

to Chat page 

by clicking 



247 

 

back button on 

the browser] 



248 

 

UAT Testing 

UAT Test 

Case 
Tester Name: Soh Yan Wei Tester Type: Student Testing Date: 24/07/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: 

Pass/Fail and 

Remarks 

TC-LI-

001 
Login 

TS: 

11. Student clicks the student login button. 

12. Student fills in the credentials and click login. 

ER: 

6. The student will be login and redirected into the 

home page. 

Prerequisites: Student should not 

be first time login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password. 

Pass 

TC-RP-

001 
Reset Password 

TS: 

21. Student clicks the student login button. 

22. Student clicks the reset password button. 

23. Student fills in the student email, new password 

and confirm password. 

24. Student clicks the reset password button. 

ER: 

6. Student will be redirect to student login page 

with the message: “Your password has been reset 

successfully!” 

Prerequisites: N/A 

 

Test Data: 

Student own student email and 

new password 

Pass 



249 

 

TC-LI-

002 
Login 

TS: 

11. Student clicks the student login button. 

12. Student fills in the new credentials and click 

login. 

ER: 

The student will be login and redirected into the home 

page. 

Prerequisites: 

Student should complete reset 

password before login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password 

Pass 

TC-OB-

001 
Onboarding 

TS: 

16. Student logins to the system for the first time. 

17. Student sets a new password with minimum 8 

characters with combination of letters and 

numeric characters. 

18. Student submits the new password. 

ER: 

6. The student will be redirected into the home 

page. 

Prerequisites: Student should be 

first time login. 

 

Test Data: 

Student own ID without UEB and 

temporary password. 

 

Pass 

TC-OB-

002 
Onboarding 

TS: 

6. Student clicks the back button once they 

complete the onboarding change password. 

ER: 

6. Error 403 will be displayed. 

Prerequisites: 

Student should complete 

onboarding procedure. 

 

Test Data: N/A 

Pass 



250 

 

 

 

TC-TL-

001 
Learn Lesson 

TS: 

11. Student clicks the “Learn Lesson” button. 

12. Student clicks any topic from the topic list. 

ER: 

6. Student is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TL-

002 
Learn Lesson 

TS: 

11. Student click the “Next” button once. 

12. Student click the “Back” button once. 

ER: 

11. When the “Next” button is clicked, it will be able 

to redirect to the next topic. 

12. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CP-

001 
Code Playground 

TS: 

16. Student clicks the “Click to open the code editor 

for this section!” 

17. Student types codes based on the instructions. 

18. Student runs the code. 

ER: 

16. Paiza.io online Swift compiler will be appeared. 

17. Code is able to be typed. 

Prerequisites: Student is in any 

lesson topic. 

 

Test Data: N/A 

Pass 



251 

 

18. Run button is worked and output is shown. 

TC-CP-

002 
Code Playground 

TS: 

16. Student go to navigation bar > others > code 

playground. 

17. Student types Swift code whatever they like. 

18. Student runs the code. 

ER: 

16. Paiza.io online Swift compiler will be appeared. 

17. Code is able to be typed. 

18. Run button is worked and output is shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

001 
Exercises 

TS: 

11. Student clicks the “Exercise” button. 

12. Student clicks any exercise from the exercise list. 

ER: 

6. Student is able to view all questions related to 

the selected exercise. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

002 
Exercises 

TS: 

11. Student clicks check answer button in a question. 

12. Student clicks check answer button again. 

ER: 

11. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

12. When check answer button is clicked for the 

second time, the submit button will be appeared, 

Prerequisites: Student must 

complete TC-EE-001 first. 

 

Test Data: N/A 

Pass 



252 

 

and blank for the question will be enabled and 

clear the correct answer. 

TC-EE-

003 
Exercises 

TS: 

11. Student fills in the blank with correct answer. 

12. Student clicks submit button. 

ER: 

6. Submit button and check answer button will be 

hidden, and blank for the question will be 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

004 
Exercises 

TS: 

11. Student fills in the blank with wrong answer. 

12. Student clicks submit button. 

ER: 

6. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

001 
Graded Quizzes 

TS: 

11. Student clicks the “Graded Quizzes” button. 

12. Student clicks any quiz from the quiz list. 

ER: 

6. Student is able to view “Click the button below 

to start the quiz”. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

002 
Graded Quizzes 

TS: 

16. Students clicks the “Start” button. 

Prerequisites: Student must 

complete TC-GQ-001 first. 
Pass 



253 

 

17. Student do all the questions. 

18. Student clicks submit button. 

ER: 

11. Student is able to view the quiz result. 

12. Student is able to check the correct answer in 

each question. 

 

Test Data: N/A 

TC-GQ-

003 
Graded Quizzes 

TS: 

16. Student clicks the “Start” button. 

17. Student skip some questions. 

18. Student clicks submit button. 

ER: 

6. Alert “You have some incomplete questions.” is 

shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

004 
Graded Quizzes 

TS: 

21. Student clicks “Retry” button. 

22. Student clicks the “Start” button. 

23. Student do all the questions. 

24. Student clicks submit button. 

ER: 

6. Student is able to retry the same quiz. 

Prerequisites: Student must reach 

the quiz result view. 

 

Test Data: N/A 

Pass 

TC-PF-

001 
Student Profile 

TS: 

6. Student clicks “Profile” on the navigation bar. 

ER: 

16. Student can see his/her name, student ID and 

student email. 

17. Student can view the quiz history record. 

Prerequisites: Student must 

complete TC-GQ-002. 

 

Test Data: N/A 

Pass 



254 

 

18. Student can view the performance. The 

performance should be the latest in each quiz. 

TC-CB-

001 
Chat Box 

TS: 

6. Student clicks “Chat Box” button. 

ER: 

6. Student can view the chat box interface, with 

his/her student ID and name. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

002 
Chat Box 

TS: 

6. Student view the online user list. 

ER: 

6. Student is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

003 
Chat Box 

TS: 

6. Student types some text and clicks “send” 

button. 

ER: 

6. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-LO-

001 
Logout 

TS: 

6. Student clicks the logout button. 

ER: 

11. Student will be redirected to welcome page. 

12. Student is unable to access any web page that 

requires login. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



255 

 

UAT Testing 

UAT Test 

Case 
Tester Name: Thian Qi Wee Tester Type: Student Testing Date: 24/07/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: 

Pass/Fail and 

Remarks 

TC-LI-

001 
Login 

TS: 

13. Student clicks the student login button. 

14. Student fills in the credentials and click login. 

ER: 

7. The student will be login and redirected into the 

home page. 

Prerequisites: Student should not 

be first time login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password. 

Pass 

TC-RP-

001 
Reset Password 

TS: 

25. Student clicks the student login button. 

26. Student clicks the reset password button. 

27. Student fills in the student email, new password 

and confirm password. 

28. Student clicks the reset password button. 

ER: 

7. Student will be redirect to student login page 

with the message: “Your password has been reset 

successfully!” 

Prerequisites: N/A 

 

Test Data: 

Student own student email and 

new password 

Pass 



256 

 

TC-LI-

002 
Login 

TS: 

13. Student clicks the student login button. 

14. Student fills in the new credentials and click 

login. 

ER: 

The student will be login and redirected into the home 

page. 

Prerequisites: 

Student should complete reset 

password before login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password 

Pass 

TC-OB-

001 
Onboarding 

TS: 

19. Student logins to the system for the first time. 

20. Student sets a new password with minimum 8 

characters with combination of letters and 

numeric characters. 

21. Student submits the new password. 

ER: 

7. The student will be redirected into the home 

page. 

Prerequisites: Student should be 

first time login. 

 

Test Data: 

Student own ID without UEB and 

temporary password. 

 

Pass 

TC-OB-

002 
Onboarding 

TS: 

7. Student clicks the back button once they 

complete the onboarding change password. 

ER: 

7. Error 403 will be displayed. 

Prerequisites: 

Student should complete 

onboarding procedure. 

 

Test Data: N/A 

Pass 



257 

 

 

 

TC-TL-

001 
Learn Lesson 

TS: 

13. Student clicks the “Learn Lesson” button. 

14. Student clicks any topic from the topic list. 

ER: 

7. Student is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TL-

002 
Learn Lesson 

TS: 

13. Student click the “Next” button once. 

14. Student click the “Back” button once. 

ER: 

13. When the “Next” button is clicked, it will be able 

to redirect to the next topic. 

14. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CP-

001 
Code Playground 

TS: 

19. Student clicks the “Click to open the code editor 

for this section!” 

20. Student types codes based on the instructions. 

21. Student runs the code. 

ER: 

19. Paiza.io online Swift compiler will be appeared. 

20. Code is able to be typed. 

Prerequisites: Student is in any 

lesson topic. 

 

Test Data: N/A 

Pass 



258 

 

21. Run button is worked and output is shown. 

TC-CP-

002 
Code Playground 

TS: 

19. Student go to navigation bar > others > code 

playground. 

20. Student types Swift code whatever they like. 

21. Student runs the code. 

ER: 

19. Paiza.io online Swift compiler will be appeared. 

20. Code is able to be typed. 

21. Run button is worked and output is shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

001 
Exercises 

TS: 

13. Student clicks the “Exercise” button. 

14. Student clicks any exercise from the exercise list. 

ER: 

7. Student is able to view all questions related to 

the selected exercise. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

002 
Exercises 

TS: 

13. Student clicks check answer button in a question. 

14. Student clicks check answer button again. 

ER: 

13. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

14. When check answer button is clicked for the 

second time, the submit button will be appeared, 

Prerequisites: Student must 

complete TC-EE-001 first. 

 

Test Data: N/A 

Pass 



259 

 

and blank for the question will be enabled and 

clear the correct answer. 

TC-EE-

003 
Exercises 

TS: 

13. Student fills in the blank with correct answer. 

14. Student clicks submit button. 

ER: 

7. Submit button and check answer button will be 

hidden, and blank for the question will be 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

004 
Exercises 

TS: 

13. Student fills in the blank with wrong answer. 

14. Student clicks submit button. 

ER: 

7. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

001 
Graded Quizzes 

TS: 

13. Student clicks the “Graded Quizzes” button. 

14. Student clicks any quiz from the quiz list. 

ER: 

7. Student is able to view “Click the button below 

to start the quiz”. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

002 
Graded Quizzes 

TS: 

19. Students clicks the “Start” button. 

Prerequisites: Student must 

complete TC-GQ-001 first. 
Pass 



260 

 

20. Student do all the questions. 

21. Student clicks submit button. 

ER: 

13. Student is able to view the quiz result. 

14. Student is able to check the correct answer in 

each question. 

 

Test Data: N/A 

TC-GQ-

003 
Graded Quizzes 

TS: 

19. Student clicks the “Start” button. 

20. Student skip some questions. 

21. Student clicks submit button. 

ER: 

7. Alert “You have some incomplete questions.” is 

shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

004 
Graded Quizzes 

TS: 

25. Student clicks “Retry” button. 

26. Student clicks the “Start” button. 

27. Student do all the questions. 

28. Student clicks submit button. 

ER: 

7. Student is able to retry the same quiz. 

Prerequisites: Student must reach 

the quiz result view. 

 

Test Data: N/A 

Pass 

TC-PF-

001 
Student Profile 

TS: 

7. Student clicks “Profile” on the navigation bar. 

ER: 

19. Student can see his/her name, student ID and 

student email. 

20. Student can view the quiz history record. 

Prerequisites: Student must 

complete TC-GQ-002. 

 

Test Data: N/A 

Pass 



261 

 

21. Student can view the performance. The 

performance should be the latest in each quiz. 

TC-CB-

001 
Chat Box 

TS: 

7. Student clicks “Chat Box” button. 

ER: 

7. Student can view the chat box interface, with 

his/her student ID and name. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

002 
Chat Box 

TS: 

7. Student view the online user list. 

ER: 

7. Student is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

003 
Chat Box 

TS: 

7. Student types some text and clicks “send” 

button. 

ER: 

7. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-LO-

001 
Logout 

TS: 

7. Student clicks the logout button. 

ER: 

13. Student will be redirected to welcome page. 

14. Student is unable to access any web page that 

requires login. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



262 

 

UAT Testing 

UAT Test 

Case 
Tester Name: Yeoh Chee Wei Tester Type: Student Testing Date: 23/07/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: 

Pass/Fail and 

Remarks 

TC-LI-

001 
Login 

TS: 

15. Student clicks the student login button. 

16. Student fills in the credentials and click login. 

ER: 

8. The student will be login and redirected into the 

home page. 

Prerequisites: Student should not 

be first time login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password. 

Pass 

TC-RP-

001 
Reset Password 

TS: 

29. Student clicks the student login button. 

30. Student clicks the reset password button. 

31. Student fills in the student email, new password 

and confirm password. 

32. Student clicks the reset password button. 

ER: 

8. Student will be redirect to student login page 

with the message: “Your password has been reset 

successfully!” 

Prerequisites: N/A 

 

Test Data: 

Student own student email and 

new password 

Pass 



263 

 

TC-LI-

002 
Login 

TS: 

15. Student clicks the student login button. 

16. Student fills in the new credentials and click 

login. 

ER: 

The student will be login and redirected into the home 

page. 

Prerequisites: 

Student should complete reset 

password before login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password 

Pass 

TC-OB-

001 
Onboarding 

TS: 

22. Student logins to the system for the first time. 

23. Student sets a new password with minimum 8 

characters with combination of letters and 

numeric characters. 

24. Student submits the new password. 

ER: 

8. The student will be redirected into the home 

page. 

Prerequisites: Student should be 

first time login. 

 

Test Data: 

Student own ID without UEB and 

temporary password. 

 

Pass 

TC-OB-

002 
Onboarding 

TS: 

8. Student clicks the back button once they 

complete the onboarding change password. 

ER: 

8. Error 403 will be displayed. 

Prerequisites: 

Student should complete 

onboarding procedure. 

 

Test Data: N/A 

Pass 



264 

 

 

 

TC-TL-

001 
Learn Lesson 

TS: 

15. Student clicks the “Learn Lesson” button. 

16. Student clicks any topic from the topic list. 

ER: 

8. Student is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TL-

002 
Learn Lesson 

TS: 

15. Student click the “Next” button once. 

16. Student click the “Back” button once. 

ER: 

15. When the “Next” button is clicked, it will be able 

to redirect to the next topic. 

16. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CP-

001 
Code Playground 

TS: 

22. Student clicks the “Click to open the code editor 

for this section!” 

23. Student types codes based on the instructions. 

24. Student runs the code. 

ER: 

22. Paiza.io online Swift compiler will be appeared. 

23. Code is able to be typed. 

Prerequisites: Student is in any 

lesson topic. 

 

Test Data: N/A 

Pass 



265 

 

24. Run button is worked and output is shown. 

TC-CP-

002 
Code Playground 

TS: 

22. Student go to navigation bar > others > code 

playground. 

23. Student types Swift code whatever they like. 

24. Student runs the code. 

ER: 

22. Paiza.io online Swift compiler will be appeared. 

23. Code is able to be typed. 

24. Run button is worked and output is shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

001 
Exercises 

TS: 

15. Student clicks the “Exercise” button. 

16. Student clicks any exercise from the exercise list. 

ER: 

8. Student is able to view all questions related to 

the selected exercise. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

002 
Exercises 

TS: 

15. Student clicks check answer button in a question. 

16. Student clicks check answer button again. 

ER: 

15. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

16. When check answer button is clicked for the 

second time, the submit button will be appeared, 

Prerequisites: Student must 

complete TC-EE-001 first. 

 

Test Data: N/A 

Pass 



266 

 

and blank for the question will be enabled and 

clear the correct answer. 

TC-EE-

003 
Exercises 

TS: 

15. Student fills in the blank with correct answer. 

16. Student clicks submit button. 

ER: 

8. Submit button and check answer button will be 

hidden, and blank for the question will be 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

004 
Exercises 

TS: 

15. Student fills in the blank with wrong answer. 

16. Student clicks submit button. 

ER: 

8. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

001 
Graded Quizzes 

TS: 

15. Student clicks the “Graded Quizzes” button. 

16. Student clicks any quiz from the quiz list. 

ER: 

8. Student is able to view “Click the button below 

to start the quiz”. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

002 
Graded Quizzes 

TS: 

22. Students clicks the “Start” button. 

Prerequisites: Student must 

complete TC-GQ-001 first. 
Pass 



267 

 

23. Student do all the questions. 

24. Student clicks submit button. 

ER: 

15. Student is able to view the quiz result. 

16. Student is able to check the correct answer in 

each question. 

 

Test Data: N/A 

TC-GQ-

003 
Graded Quizzes 

TS: 

22. Student clicks the “Start” button. 

23. Student skip some questions. 

24. Student clicks submit button. 

ER: 

8. Alert “You have some incomplete questions.” is 

shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

004 
Graded Quizzes 

TS: 

29. Student clicks “Retry” button. 

30. Student clicks the “Start” button. 

31. Student do all the questions. 

32. Student clicks submit button. 

ER: 

8. Student is able to retry the same quiz. 

Prerequisites: Student must reach 

the quiz result view. 

 

Test Data: N/A 

Pass 

TC-PF-

001 
Student Profile 

TS: 

8. Student clicks “Profile” on the navigation bar. 

ER: 

22. Student can see his/her name, student ID and 

student email. 

23. Student can view the quiz history record. 

Prerequisites: Student must 

complete TC-GQ-002. 

 

Test Data: N/A 

Pass 



268 

 

24. Student can view the performance. The 

performance should be the latest in each quiz. 

TC-CB-

001 
Chat Box 

TS: 

8. Student clicks “Chat Box” button. 

ER: 

8. Student can view the chat box interface, with 

his/her student ID and name. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

002 
Chat Box 

TS: 

8. Student view the online user list. 

ER: 

8. Student is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

003 
Chat Box 

TS: 

8. Student types some text and clicks “send” 

button. 

ER: 

8. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-LO-

001 
Logout 

TS: 

8. Student clicks the logout button. 

ER: 

15. Student will be redirected to welcome page. 

16. Student is unable to access any web page that 

requires login. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



269 

 

UAT Testing 

UAT Test 

Case 
Tester Name: Yong Yung Shen Tester Type: Student Testing Date: 23/07/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: 

Pass/Fail and 

Remarks 

TC-LI-

001 
Login 

TS: 

17. Student clicks the student login button. 

18. Student fills in the credentials and click login. 

ER: 

9. The student will be login and redirected into the 

home page. 

Prerequisites: Student should not 

be first time login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password. 

Pass 

TC-RP-

001 
Reset Password 

TS: 

33. Student clicks the student login button. 

34. Student clicks the reset password button. 

35. Student fills in the student email, new password 

and confirm password. 

36. Student clicks the reset password button. 

ER: 

9. Student will be redirect to student login page 

with the message: “Your password has been reset 

successfully!” 

Prerequisites: N/A 

 

Test Data: 

Student own student email and 

new password 

Pass 



270 

 

TC-LI-

002 
Login 

TS: 

17. Student clicks the student login button. 

18. Student fills in the new credentials and click 

login. 

ER: 

The student will be login and redirected into the home 

page. 

Prerequisites: 

Student should complete reset 

password before login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password 

Pass 

TC-OB-

001 
Onboarding 

TS: 

25. Student logins to the system for the first time. 

26. Student sets a new password with minimum 8 

characters with combination of letters and 

numeric characters. 

27. Student submits the new password. 

ER: 

9. The student will be redirected into the home 

page. 

Prerequisites: Student should be 

first time login. 

 

Test Data: 

Student own ID without UEB and 

temporary password. 

 

Pass 

TC-OB-

002 
Onboarding 

TS: 

9. Student clicks the back button once they 

complete the onboarding change password. 

ER: 

9. Error 403 will be displayed. 

Prerequisites: 

Student should complete 

onboarding procedure. 

 

Test Data: N/A 

Pass 



271 

 

 

 

TC-TL-

001 
Learn Lesson 

TS: 

17. Student clicks the “Learn Lesson” button. 

18. Student clicks any topic from the topic list. 

ER: 

9. Student is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TL-

002 
Learn Lesson 

TS: 

17. Student click the “Next” button once. 

18. Student click the “Back” button once. 

ER: 

17. When the “Next” button is clicked, it will be able 

to redirect to the next topic. 

18. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CP-

001 
Code Playground 

TS: 

25. Student clicks the “Click to open the code editor 

for this section!” 

26. Student types codes based on the instructions. 

27. Student runs the code. 

ER: 

25. Paiza.io online Swift compiler will be appeared. 

26. Code is able to be typed. 

Prerequisites: Student is in any 

lesson topic. 

 

Test Data: N/A 

Pass 



272 

 

27. Run button is worked and output is shown. 

TC-CP-

002 
Code Playground 

TS: 

25. Student go to navigation bar > others > code 

playground. 

26. Student types Swift code whatever they like. 

27. Student runs the code. 

ER: 

25. Paiza.io online Swift compiler will be appeared. 

26. Code is able to be typed. 

27. Run button is worked and output is shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

001 
Exercises 

TS: 

17. Student clicks the “Exercise” button. 

18. Student clicks any exercise from the exercise list. 

ER: 

9. Student is able to view all questions related to 

the selected exercise. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

002 
Exercises 

TS: 

17. Student clicks check answer button in a question. 

18. Student clicks check answer button again. 

ER: 

17. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

18. When check answer button is clicked for the 

second time, the submit button will be appeared, 

Prerequisites: Student must 

complete TC-EE-001 first. 

 

Test Data: N/A 

Pass 



273 

 

and blank for the question will be enabled and 

clear the correct answer. 

TC-EE-

003 
Exercises 

TS: 

17. Student fills in the blank with correct answer. 

18. Student clicks submit button. 

ER: 

9. Submit button and check answer button will be 

hidden, and blank for the question will be 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

004 
Exercises 

TS: 

17. Student fills in the blank with wrong answer. 

18. Student clicks submit button. 

ER: 

9. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

001 
Graded Quizzes 

TS: 

17. Student clicks the “Graded Quizzes” button. 

18. Student clicks any quiz from the quiz list. 

ER: 

9. Student is able to view “Click the button below 

to start the quiz”. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

002 
Graded Quizzes 

TS: 

25. Students clicks the “Start” button. 

Prerequisites: Student must 

complete TC-GQ-001 first. 
Pass 



274 

 

26. Student do all the questions. 

27. Student clicks submit button. 

ER: 

17. Student is able to view the quiz result. 

18. Student is able to check the correct answer in 

each question. 

 

Test Data: N/A 

TC-GQ-

003 
Graded Quizzes 

TS: 

25. Student clicks the “Start” button. 

26. Student skip some questions. 

27. Student clicks submit button. 

ER: 

9. Alert “You have some incomplete questions.” is 

shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

004 
Graded Quizzes 

TS: 

33. Student clicks “Retry” button. 

34. Student clicks the “Start” button. 

35. Student do all the questions. 

36. Student clicks submit button. 

ER: 

9. Student is able to retry the same quiz. 

Prerequisites: Student must reach 

the quiz result view. 

 

Test Data: N/A 

Pass 

TC-PF-

001 
Student Profile 

TS: 

9. Student clicks “Profile” on the navigation bar. 

ER: 

25. Student can see his/her name, student ID and 

student email. 

26. Student can view the quiz history record. 

Prerequisites: Student must 

complete TC-GQ-002. 

 

Test Data: N/A 

Pass 



275 

 

27. Student can view the performance. The 

performance should be the latest in each quiz. 

TC-CB-

001 
Chat Box 

TS: 

9. Student clicks “Chat Box” button. 

ER: 

9. Student can view the chat box interface, with 

his/her student ID and name. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

002 
Chat Box 

TS: 

9. Student view the online user list. 

ER: 

9. Student is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

003 
Chat Box 

TS: 

9. Student types some text and clicks “send” 

button. 

ER: 

9. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-LO-

001 
Logout 

TS: 

9. Student clicks the logout button. 

ER: 

17. Student will be redirected to welcome page. 

18. Student is unable to access any web page that 

requires login. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



276 

 

UAT Testing 

UAT Test 

Case 
Tester Name: Benjamin Leong E-Jenn Tester Type: Student Testing Date: 25/07/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: 

Pass/Fail and 

Remarks 

TC-LI-

001 
Login 

TS: 

19. Student clicks the student login button. 

20. Student fills in the credentials and click login. 

ER: 

10. The student will be login and redirected into the 

home page. 

Prerequisites: Student should not 

be first time login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password. 

Pass 

TC-RP-

001 
Reset Password 

TS: 

37. Student clicks the student login button. 

38. Student clicks the reset password button. 

39. Student fills in the student email, new password 

and confirm password. 

40. Student clicks the reset password button. 

ER: 

10. Student will be redirect to student login page 

with the message: “Your password has been reset 

successfully!” 

Prerequisites: N/A 

 

Test Data: 

Student own student email and 

new password 

Pass 



277 

 

TC-LI-

002 
Login 

TS: 

19. Student clicks the student login button. 

20. Student fills in the new credentials and click 

login. 

ER: 

The student will be login and redirected into the home 

page. 

Prerequisites: 

Student should complete reset 

password before login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password 

Pass 

TC-OB-

001 
Onboarding 

TS: 

28. Student logins to the system for the first time. 

29. Student sets a new password with minimum 8 

characters with combination of letters and 

numeric characters. 

30. Student submits the new password. 

ER: 

10. The student will be redirected into the home 

page. 

Prerequisites: Student should be 

first time login. 

 

Test Data: 

Student own ID without UEB and 

temporary password. 

 

Pass 

TC-OB-

002 
Onboarding 

TS: 

10. Student clicks the back button once they 

complete the onboarding change password. 

ER: 

10. Error 403 will be displayed. 

Prerequisites: 

Student should complete 

onboarding procedure. 

 

Test Data: N/A 

Pass 



278 

 

 

 

TC-TL-

001 
Learn Lesson 

TS: 

19. Student clicks the “Learn Lesson” button. 

20. Student clicks any topic from the topic list. 

ER: 

10. Student is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TL-

002 
Learn Lesson 

TS: 

19. Student click the “Next” button once. 

20. Student click the “Back” button once. 

ER: 

19. When the “Next” button is clicked, it will be able 

to redirect to the next topic. 

20. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CP-

001 
Code Playground 

TS: 

28. Student clicks the “Click to open the code editor 

for this section!” 

29. Student types codes based on the instructions. 

30. Student runs the code. 

ER: 

28. Paiza.io online Swift compiler will be appeared. 

29. Code is able to be typed. 

Prerequisites: Student is in any 

lesson topic. 

 

Test Data: N/A 

Pass 



279 

 

30. Run button is worked and output is shown. 

TC-CP-

002 
Code Playground 

TS: 

28. Student go to navigation bar > others > code 

playground. 

29. Student types Swift code whatever they like. 

30. Student runs the code. 

ER: 

28. Paiza.io online Swift compiler will be appeared. 

29. Code is able to be typed. 

30. Run button is worked and output is shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

001 
Exercises 

TS: 

19. Student clicks the “Exercise” button. 

20. Student clicks any exercise from the exercise list. 

ER: 

10. Student is able to view all questions related to 

the selected exercise. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

002 
Exercises 

TS: 

19. Student clicks check answer button in a question. 

20. Student clicks check answer button again. 

ER: 

19. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

20. When check answer button is clicked for the 

second time, the submit button will be appeared, 

Prerequisites: Student must 

complete TC-EE-001 first. 

 

Test Data: N/A 

Pass 



280 

 

and blank for the question will be enabled and 

clear the correct answer. 

TC-EE-

003 
Exercises 

TS: 

19. Student fills in the blank with correct answer. 

20. Student clicks submit button. 

ER: 

10. Submit button and check answer button will be 

hidden, and blank for the question will be 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

004 
Exercises 

TS: 

19. Student fills in the blank with wrong answer. 

20. Student clicks submit button. 

ER: 

10. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

001 
Graded Quizzes 

TS: 

19. Student clicks the “Graded Quizzes” button. 

20. Student clicks any quiz from the quiz list. 

ER: 

10. Student is able to view “Click the button below 

to start the quiz”. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

002 
Graded Quizzes 

TS: 

28. Students clicks the “Start” button. 

Prerequisites: Student must 

complete TC-GQ-001 first. 
Pass 



281 

 

29. Student do all the questions. 

30. Student clicks submit button. 

ER: 

19. Student is able to view the quiz result. 

20. Student is able to check the correct answer in 

each question. 

 

Test Data: N/A 

TC-GQ-

003 
Graded Quizzes 

TS: 

28. Student clicks the “Start” button. 

29. Student skip some questions. 

30. Student clicks submit button. 

ER: 

10. Alert “You have some incomplete questions.” is 

shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

004 
Graded Quizzes 

TS: 

37. Student clicks “Retry” button. 

38. Student clicks the “Start” button. 

39. Student do all the questions. 

40. Student clicks submit button. 

ER: 

10. Student is able to retry the same quiz. 

Prerequisites: Student must reach 

the quiz result view. 

 

Test Data: N/A 

Pass 

TC-PF-

001 
Student Profile 

TS: 

10. Student clicks “Profile” on the navigation bar. 

ER: 

28. Student can see his/her name, student ID and 

student email. 

29. Student can view the quiz history record. 

Prerequisites: Student must 

complete TC-GQ-002. 

 

Test Data: N/A 

Pass 



282 

 

30. Student can view the performance. The 

performance should be the latest in each quiz. 

TC-CB-

001 
Chat Box 

TS: 

10. Student clicks “Chat Box” button. 

ER: 

10. Student can view the chat box interface, with 

his/her student ID and name. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

002 
Chat Box 

TS: 

10. Student view the online user list. 

ER: 

10. Student is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

003 
Chat Box 

TS: 

10. Student types some text and clicks “send” 

button. 

ER: 

10. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-LO-

001 
Logout 

TS: 

10. Student clicks the logout button. 

ER: 

19. Student will be redirected to welcome page. 

20. Student is unable to access any web page that 

requires login. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



283 

 

UAT Testing 

UAT Test 

Case 
Tester Name: Chua Qing Wen Tester Type: Student Testing Date: 23/07/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: 

Pass/Fail and 

Remarks 

TC-LI-

001 
Login 

TS: 

21. Student clicks the student login button. 

22. Student fills in the credentials and click login. 

ER: 

11. The student will be login and redirected into the 

home page. 

Prerequisites: Student should not 

be first time login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password. 

Pass 

TC-RP-

001 
Reset Password 

TS: 

41. Student clicks the student login button. 

42. Student clicks the reset password button. 

43. Student fills in the student email, new password 

and confirm password. 

44. Student clicks the reset password button. 

ER: 

11. Student will be redirect to student login page 

with the message: “Your password has been reset 

successfully!” 

Prerequisites: N/A 

 

Test Data: 

Student own student email and 

new password 

Pass 



284 

 

TC-LI-

002 
Login 

TS: 

21. Student clicks the student login button. 

22. Student fills in the new credentials and click 

login. 

ER: 

The student will be login and redirected into the home 

page. 

Prerequisites: 

Student should complete reset 

password before login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password 

Pass 

TC-OB-

001 
Onboarding 

TS: 

31. Student logins to the system for the first time. 

32. Student sets a new password with minimum 8 

characters with combination of letters and 

numeric characters. 

33. Student submits the new password. 

ER: 

11. The student will be redirected into the home 

page. 

Prerequisites: Student should be 

first time login. 

 

Test Data: 

Student own ID without UEB and 

temporary password. 

 

Pass 

TC-OB-

002 
Onboarding 

TS: 

11. Student clicks the back button once they 

complete the onboarding change password. 

ER: 

11. Error 403 will be displayed. 

Prerequisites: 

Student should complete 

onboarding procedure. 

 

Test Data: N/A 

Pass 



285 

 

 

 

TC-TL-

001 
Learn Lesson 

TS: 

21. Student clicks the “Learn Lesson” button. 

22. Student clicks any topic from the topic list. 

ER: 

11. Student is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TL-

002 
Learn Lesson 

TS: 

21. Student click the “Next” button once. 

22. Student click the “Back” button once. 

ER: 

21. When the “Next” button is clicked, it will be able 

to redirect to the next topic. 

22. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CP-

001 
Code Playground 

TS: 

31. Student clicks the “Click to open the code editor 

for this section!” 

32. Student types codes based on the instructions. 

33. Student runs the code. 

ER: 

31. Paiza.io online Swift compiler will be appeared. 

32. Code is able to be typed. 

Prerequisites: Student is in any 

lesson topic. 

 

Test Data: N/A 

Pass 



286 

 

33. Run button is worked and output is shown. 

TC-CP-

002 
Code Playground 

TS: 

31. Student go to navigation bar > others > code 

playground. 

32. Student types Swift code whatever they like. 

33. Student runs the code. 

ER: 

31. Paiza.io online Swift compiler will be appeared. 

32. Code is able to be typed. 

33. Run button is worked and output is shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

001 
Exercises 

TS: 

21. Student clicks the “Exercise” button. 

22. Student clicks any exercise from the exercise list. 

ER: 

11. Student is able to view all questions related to 

the selected exercise. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

002 
Exercises 

TS: 

21. Student clicks check answer button in a question. 

22. Student clicks check answer button again. 

ER: 

21. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

22. When check answer button is clicked for the 

second time, the submit button will be appeared, 

Prerequisites: Student must 

complete TC-EE-001 first. 

 

Test Data: N/A 

Pass 



287 

 

and blank for the question will be enabled and 

clear the correct answer. 

TC-EE-

003 
Exercises 

TS: 

21. Student fills in the blank with correct answer. 

22. Student clicks submit button. 

ER: 

11. Submit button and check answer button will be 

hidden, and blank for the question will be 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

004 
Exercises 

TS: 

21. Student fills in the blank with wrong answer. 

22. Student clicks submit button. 

ER: 

11. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

001 
Graded Quizzes 

TS: 

21. Student clicks the “Graded Quizzes” button. 

22. Student clicks any quiz from the quiz list. 

ER: 

11. Student is able to view “Click the button below 

to start the quiz”. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

002 
Graded Quizzes 

TS: 

31. Students clicks the “Start” button. 

Prerequisites: Student must 

complete TC-GQ-001 first. 
Pass 



288 

 

32. Student do all the questions. 

33. Student clicks submit button. 

ER: 

21. Student is able to view the quiz result. 

22. Student is able to check the correct answer in 

each question. 

 

Test Data: N/A 

TC-GQ-

003 
Graded Quizzes 

TS: 

31. Student clicks the “Start” button. 

32. Student skip some questions. 

33. Student clicks submit button. 

ER: 

11. Alert “You have some incomplete questions.” is 

shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

004 
Graded Quizzes 

TS: 

41. Student clicks “Retry” button. 

42. Student clicks the “Start” button. 

43. Student do all the questions. 

44. Student clicks submit button. 

ER: 

11. Student is able to retry the same quiz. 

Prerequisites: Student must reach 

the quiz result view. 

 

Test Data: N/A 

Pass 

TC-PF-

001 
Student Profile 

TS: 

11. Student clicks “Profile” on the navigation bar. 

ER: 

31. Student can see his/her name, student ID and 

student email. 

32. Student can view the quiz history record. 

Prerequisites: Student must 

complete TC-GQ-002. 

 

Test Data: N/A 

Pass 



289 

 

33. Student can view the performance. The 

performance should be the latest in each quiz. 

TC-CB-

001 
Chat Box 

TS: 

11. Student clicks “Chat Box” button. 

ER: 

11. Student can view the chat box interface, with 

his/her student ID and name. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

002 
Chat Box 

TS: 

11. Student view the online user list. 

ER: 

11. Student is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

003 
Chat Box 

TS: 

11. Student types some text and clicks “send” 

button. 

ER: 

11. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-LO-

001 
Logout 

TS: 

11. Student clicks the logout button. 

ER: 

21. Student will be redirected to welcome page. 

22. Student is unable to access any web page that 

requires login. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



290 

 

UAT Testing 

UAT Test 

Case 
Tester Name: Wong Yuk Han Tester Type: Student Testing Date: 23/07/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: 

Pass/Fail and 

Remarks 

TC-LI-

001 
Login 

TS: 

23. Student clicks the student login button. 

24. Student fills in the credentials and click login. 

ER: 

12. The student will be login and redirected into the 

home page. 

Prerequisites: Student should not 

be first time login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password. 

Pass 

TC-RP-

001 
Reset Password 

TS: 

45. Student clicks the student login button. 

46. Student clicks the reset password button. 

47. Student fills in the student email, new password 

and confirm password. 

48. Student clicks the reset password button. 

ER: 

12. Student will be redirect to student login page 

with the message: “Your password has been reset 

successfully!” 

Prerequisites: N/A 

 

Test Data: 

Student own student email and 

new password 

Pass 



291 

 

TC-LI-

002 
Login 

TS: 

23. Student clicks the student login button. 

24. Student fills in the new credentials and click 

login. 

ER: 

The student will be login and redirected into the home 

page. 

Prerequisites: 

Student should complete reset 

password before login. 

 

Test Data: 

Student own ID without UEB and 

self-reset password 

Pass 

TC-OB-

001 
Onboarding 

TS: 

34. Student logins to the system for the first time. 

35. Student sets a new password with minimum 8 

characters with combination of letters and 

numeric characters. 

36. Student submits the new password. 

ER: 

12. The student will be redirected into the home 

page. 

Prerequisites: Student should be 

first time login. 

 

Test Data: 

Student own ID without UEB and 

temporary password. 

 

Pass 

TC-OB-

002 
Onboarding 

TS: 

12. Student clicks the back button once they 

complete the onboarding change password. 

ER: 

12. Error 403 will be displayed. 

Prerequisites: 

Student should complete 

onboarding procedure. 

 

Test Data: N/A 

Pass 



292 

 

 

 

TC-TL-

001 
Learn Lesson 

TS: 

23. Student clicks the “Learn Lesson” button. 

24. Student clicks any topic from the topic list. 

ER: 

12. Student is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TL-

002 
Learn Lesson 

TS: 

23. Student click the “Next” button once. 

24. Student click the “Back” button once. 

ER: 

23. When the “Next” button is clicked, it will be able 

to redirect to the next topic. 

24. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CP-

001 
Code Playground 

TS: 

34. Student clicks the “Click to open the code editor 

for this section!” 

35. Student types codes based on the instructions. 

36. Student runs the code. 

ER: 

34. Paiza.io online Swift compiler will be appeared. 

35. Code is able to be typed. 

Prerequisites: Student is in any 

lesson topic. 

 

Test Data: N/A 

Pass 



293 

 

36. Run button is worked and output is shown. 

TC-CP-

002 
Code Playground 

TS: 

34. Student go to navigation bar > others > code 

playground. 

35. Student types Swift code whatever they like. 

36. Student runs the code. 

ER: 

34. Paiza.io online Swift compiler will be appeared. 

35. Code is able to be typed. 

36. Run button is worked and output is shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

001 
Exercises 

TS: 

23. Student clicks the “Exercise” button. 

24. Student clicks any exercise from the exercise list. 

ER: 

12. Student is able to view all questions related to 

the selected exercise. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

002 
Exercises 

TS: 

23. Student clicks check answer button in a question. 

24. Student clicks check answer button again. 

ER: 

23. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

24. When check answer button is clicked for the 

second time, the submit button will be appeared, 

Prerequisites: Student must 

complete TC-EE-001 first. 

 

Test Data: N/A 

Pass 



294 

 

and blank for the question will be enabled and 

clear the correct answer. 

TC-EE-

003 
Exercises 

TS: 

23. Student fills in the blank with correct answer. 

24. Student clicks submit button. 

ER: 

12. Submit button and check answer button will be 

hidden, and blank for the question will be 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EE-

004 
Exercises 

TS: 

23. Student fills in the blank with wrong answer. 

24. Student clicks submit button. 

ER: 

12. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

001 
Graded Quizzes 

TS: 

23. Student clicks the “Graded Quizzes” button. 

24. Student clicks any quiz from the quiz list. 

ER: 

12. Student is able to view “Click the button below 

to start the quiz”. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

002 
Graded Quizzes 

TS: 

34. Students clicks the “Start” button. 

Prerequisites: Student must 

complete TC-GQ-001 first. 
Pass 



295 

 

35. Student do all the questions. 

36. Student clicks submit button. 

ER: 

23. Student is able to view the quiz result. 

24. Student is able to check the correct answer in 

each question. 

 

Test Data: N/A 

TC-GQ-

003 
Graded Quizzes 

TS: 

34. Student clicks the “Start” button. 

35. Student skip some questions. 

36. Student clicks submit button. 

ER: 

12. Alert “You have some incomplete questions.” is 

shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQ-

004 
Graded Quizzes 

TS: 

45. Student clicks “Retry” button. 

46. Student clicks the “Start” button. 

47. Student do all the questions. 

48. Student clicks submit button. 

ER: 

12. Student is able to retry the same quiz. 

Prerequisites: Student must reach 

the quiz result view. 

 

Test Data: N/A 

Pass 

TC-PF-

001 
Student Profile 

TS: 

12. Student clicks “Profile” on the navigation bar. 

ER: 

34. Student can see his/her name, student ID and 

student email. 

35. Student can view the quiz history record. 

Prerequisites: Student must 

complete TC-GQ-002. 

 

Test Data: N/A 

Pass 



296 

 

36. Student can view the performance. The 

performance should be the latest in each quiz. 

TC-CB-

001 
Chat Box 

TS: 

12. Student clicks “Chat Box” button. 

ER: 

12. Student can view the chat box interface, with 

his/her student ID and name. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

002 
Chat Box 

TS: 

12. Student view the online user list. 

ER: 

12. Student is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CB-

003 
Chat Box 

TS: 

12. Student types some text and clicks “send” 

button. 

ER: 

12. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-LO-

001 
Logout 

TS: 

12. Student clicks the logout button. 

ER: 

23. Student will be redirected to welcome page. 

24. Student is unable to access any web page that 

requires login. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



297 

 

APPENDIX I: Administrator UAT Test Cases 

UAT Testing 

UAT Test 

Case 
Tester Name: Yong Yoke Leng Tester Type: Admin Testing Date: 24/7/2021 

Test Case 

ID 
Test Case Type Test Scenario (TS) and Expected Result (ER) Prerequisites & Test Data 

Status: 

Pass/Fail and 

Remarks 

TC-LIA-

001 
Login 

TS: 

25. Admin clicks the admin login button. 

26. Admin fills in the credentials and click login. 

ER: 

13. The admin will be login and redirected into the 

admin home page. 

Prerequisites: N/A 

 

Test Data: 

Admin own ID and own password. 

Pass 

TC-MTA-

001 
Add Topic 

TS: 

1. Admin clicks the “Modify Topic” button. 

2. Admin clicks the add topic button. 

3. Admin fills in a new topic name. 

4. Admin clicks add button. 

ER: 

1. A new topic is created. 

Prerequisites: N/A 

 

Test Data: Any desired topic 

name. 

Pass 

TC-MTA-

002 
Edit Topic Name 

TS: 

1. Admin clicks the “Edit” button. 

2. Admin change the topic name. 

Prerequisites: N/A 

 
Pass 



298 

 

3. Admin clicks edit button. 

ER: 

1. The topic name is changed. 

Test Data: Any desired topic 

name. 

TC-MTA-

003 
Delete Topic 

TS: 

1. Admin clicks the “Delete” button. 

2. Admin clicks the “Yes” button. 

ER: 

1. The topic is deleted. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TLA-

001 
Modify Lesson 

TS: 

25. Admin clicks the “Learn Lesson” button. 

26. Admin clicks any topic from the topic list. 

ER: 

13. Admin is able to view all lesson sections related 

to the selected topic. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TLA-

002 
View Lesson 

TS: 

25. Admin clicks the “Next” button once. 

26. Admin clicks the “Back” button once. 

ER: 

25. When the “Next” button is clicked, it will be able 

to redirect to the next topic. 

26. When the “Back” button is clicked, it will be 

able to redirect back to the previous topic. 

*Do not click them continuously. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-TLA- Add Lesson 
TS: 

1. Admin clicks the “Add a new section” button. 

Prerequisites: N/A Pass 



299 

 

003 Section 2. Admin fills in the descriptions. 

3. Admin clicks “Add” button. 

ER: 

1. An indent is added when tab is pressed in code 

section text field. 

2. A new section is added. 

 

Test Data: Any information, but 

the topic should be same as the 

current topic. 

TC-TLA-

004 

Edit Lesson 

Section 

TS: 

1. Admin clicks the “Edit” button on any section. 

2. Admin changes the descriptions. 

3. Admin clicks “Edit” button. 

ER: 

1. An indent is added when tab is pressed in code 

section text field. 

2. The selected section is edited. 

Prerequisites: N/A 

 

Test Data: Any information, but 

the topic should be same as the 

current topic. 

Pass 

TC-TLA-

005 

Delete Lesson 

Section 

TS: 

1. Admin clicks the “Delete” button on any section. 

2. Admin clicks “Yes” button. 

ER: 

1. The selected section is deleted. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CPA-

001 
Code Playground 

TS: 

37. Admin clicks the “Click to open the code editor 

for this section!” 

38. Admin types codes based on the instructions. 

39. Admin runs the code. 

ER: 

37. Paiza.io online Swift compiler will be appeared. 

Prerequisites: Admin is in any 

lesson topic. 

 

Test Data: N/A 

Pass 



300 

 

38. Code is able to be typed. 

39. Run button is worked and output is shown. 

TC-EEA-

001 
Exercises 

TS: 

25. Admin clicks the “Exercise” button. 

26. Admin clicks any exercise from the exercise list. 

ER: 

13. Admin is able to view all questions related to the 

selected exercise, and admin-related buttons. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EEA-

002 
Exercises 

TS: 

25. Admin clicks check answer button in a question. 

26. Admin clicks check answer button again. 

ER: 

25. When check answer button is clicked for the first 

time, the submit button will be hidden, and blank 

for the question will be disabled and show the 

correct answer. 

26. When check answer button is clicked for the 

second time, the submit button will be appeared, 

and blank for the question will be enabled and 

clear the correct answer. 

Prerequisites: Admin must 

complete TC-EEA-001 first. 

 

Test Data: N/A 

Pass 

TC-EEA-

003 
Exercises 

TS: 

25. Admin fills in the blank with correct answer. 

26. Admin clicks submit button. 

ER: 

13. Submit button and check answer button will be 

hidden, and blank for the question will be 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



301 

 

disabled and show the correct answer. A 

message “All of your answers are correct!” will 

be shown. 

TC-EEA-

004 
Exercises 

TS: 

25. Admin fills in the blank with wrong answer. 

26. Admin clicks submit button. 

ER: 

13. A message “Wrong answer for some blank(s), 

please try again!” will be shown. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-EEA-

005 

Add Exercise 

Question 

TS: 

1. Admin clicks the “Add a new question” button. 

2. Admin fills in the descriptions. 

3. Admin clicks “Add” button. 

ER: 

1. An indent is added when tab is pressed in 

question text field. 

2. A new question is added. 

Prerequisites: N/A 

 

Test Data: Any information, but 

the topic should be same as the 

current topic. 

Pass 

TC-EEA-

006 

Edit Exercise 

Question 

TS: 

1. Admin clicks the “Edit” button on any question. 

2. Admin changes the descriptions. 

3. Admin clicks “Edit” button. 

ER: 

1. An indent is added when tab is pressed in 

question text field. 

2. The selected exercise is edited. 

Prerequisites: N/A 

 

Test Data: Any information, but 

the topic should be same as the 

current topic. 

Pass 

TC-EEA- Delete Exercise TS: Prerequisites: N/A Pass 



302 

 

007 Question 1. Admin clicks the “Delete” button on any 

question. 

2. Admin clicks “Yes” button. 

ER: 

1. The selected question is deleted. 

 

Test Data: N/A 

TC-GQA-

001 
Graded Quizzes 

TS: 

25. Admin clicks the “Graded Quizzes” button. 

26. Admin clicks any quiz from the quiz list. 

ER: 

13. Admin is able to view the quiz edit page. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQA-

002 
Graded Quizzes 

TS: 

1. Admin clicks on any question. 

ER: 

1. Question Text will be shown. 

2. Available options will be shown. 

3. Correct answer will be highlighted as green 

color. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-GQA-

005 

Add Quiz 

Question 

TS: 

1. Admin clicks the “Add a new question” button. 

2. Admin fills in the descriptions. 

3. Admin clicks “Add” button. 

ER: 

1. An indent is added when tab is pressed in 

question text field. 

2. A new question is added. 

Prerequisites: N/A 

 

Test Data: Any information, but 

the topic should be same as the 

current topic. 

Pass 



303 

 

TC-GQA-

006 

Edit Quiz 

Question 

TS: 

1. Admin clicks the “Edit” button on any question. 

2. Admin changes the descriptions. 

3. Admin clicks “Edit” button. 

ER: 

1. An indent is added when tab is pressed in 

question text field. 

2. The selected question is edited. 

Prerequisites: N/A 

 

Test Data: Any information, but 

the topic should be same as the 

current topic. 

Pass 

TC-GQA-

007 

Delete Quiz 

Question 

TS: 

1. Admin clicks the “Delete” button on any 

question. 

2. Admin clicks “Yes” button. 

ER: 

1. The selected question is deleted. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-RSA-

001 
Register Student 

TS: 

1. Admin clicks “Register Student” button. 

2. Admin fills in student ID, student name and 

student UTAR email. 

3. Admin clicks “register” button. 

ER: 

1. Student is successfully registered with alert 

message. 

Prerequisites: N/A 

 

Test Data: Any student hasn’t been 

registered, please refer to the 

student list. 

Pass 

TC-RSA-

002 
Register Student 

TS: 

1. Admin fills in the same student credential. 

2. Admin clicks “register” button. 

Prerequisites: Admin must finish 

TC-RSA-001 first. 

 

Pass 



304 

 

ER: 

1. A message “The student ID/name/UTAR email 

is already exist!” is shown. 

Test Data: Same test data as in 

TC-RSA-001. 

TC-RSA-

003 
Register Student 

TS: 

1. Admin use email that is not following the email 

format (xxx@yyy.zz) 

2. Admin clicks “register” button. 

ER: 

1. A message “This email format is invalid!” is 

shown. 

Prerequisites: N/A 

 

Test Data: Any student hasn’t been 

registered, but the email test data 

use “aaa” 

Pass 

TC-RSA-

004 
Register Student 

TS: 

1. Admin use email that is not following the UTAR 

student email format (xxx@1utar.my) 

2. Admin clicks “register” button. 

ER: 

1. A message “This email is not a UTAR student 

email” is shown. 

Prerequisites: N/A 

 

Test Data: Any student hasn’t been 

registered, but the email test data 

use “aaa@gmail.com” 

Pass 

TC-PFA-

001 
Admin Profile 

TS: 

13. Admin clicks “Admin Profile” on the navigation 

bar. 

ER: 

37. Admin can see his/her name, student ID and 

student email. 

38. Admin can see view student list button. 

39. Admin can see a search bar. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



305 

 

TC-PFA-

002 
Student List 

TS: 

1. Admin clicks “View student list” button in the 

admin profile page. 

ER: 

1. Admin can view all students with the credentials: 

Student ID, Student Name, Student Email, 

Temporary Password (If no then it will show 

N/A). 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-PFA-

003 
Search Student 

TS: 

1. Admin key in existing student ID and click 

search button in admin profile page. 

ER: 

1. Student Name, ID, average performance and 

quiz history will be appeared. 

Prerequisites: Student must be 

registered 

 

Test Data: Registered student ID, 

refer to the registered student list. 

Pass 

TC-PFA-

004 
Delete Student 

TS: 

1. Admin click “Delete” button. 

2. Admin click “Yes button”. 

ER: 

1. The student is deleted. 

Prerequisites: Student must be 

registered, and the admin must 

complete TC-PFA-003 first. 

 

Test Data: Registered student ID, 

refer to the registered student list. 

Pass 

TC-PFA- Search Student 
TS: 

1. Admin key in non-existing student ID and click 

Prerequisites: Student must not be Pass 



306 

 

005 search button in admin profile page. 

ER: 

1. An alert “The student ID you key in is not exist.” 

is appeared. 

registered 

 

Test Data: 1000000 

TC-CBA-

001 
Chat Box 

TS: 

13. Admin clicks “Chat Box” button. 

ER: 

13. Admin can view the chat box interface, with 

his/her admin ID and name, with bracket 

(Admin). 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CBA-

002 
Chat Box 

TS: 

13. Admin views the online user list. 

ER: 

13. Admin is able to see list of online users, 

including himself/herself. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 

TC-CBA-

003 
Chat Box 

TS: 

13. Admin types some text and clicks “send” button. 

ER: 

13. Chat text is appeared, as well as the name and 

datetime. 

Prerequisites: N/A 

 

Test Data: Any text 

Pass 

TC-CBA-

004 
Chat Box 

TS: 

1. Admin clicks “delete” button on any chat. 

ER: 

1. The selected chat is deleted. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



307 

 

TC-LOA-

001 
Logout 

TS: 

13. Admin clicks the logout button. 

ER: 

25. Admin will be redirected to welcome page. 

26. Admin is unable to access any web page that 

requires login. 

Prerequisites: N/A 

 

Test Data: N/A 

Pass 



308 

 

APPENDIX J: User Satisfaction Survey Response 

 



309 

 

 



310 

 

 



311 

 

 



312 

 

 



313 

 

 



314 

 

 



315 

 

 



316 

 



317 

 

 


