
 

 

 

 

 

CONSTRUCTION SITE OBJECT DETECTION API COMPARATIVE 

STUDY 

 

 

 

 

 

 

 

WONG YEW CHIEN 

 

 

 

 

 

 

 

A project report submitted in partial fulfilment of the 

requirements for the award of Bachelor of Engineering 

(Hons.) Civil Engineering 

 

 

 

 

 

Lee Kong Chian Faculty of Engineering and Science 

Universiti Tunku Abdul Rahman 

 

 

April 2022 



ii 

 

DECLARATION 

 

 

 

 

 

I hereby declare that this project report is based on my original work except for 

citations and quotations which have been duly acknowledged.  I also declare that it has 

not been previously and concurrently submitted for any other degree or award at 

UTAR or other institutions. 

 

 

 

 

Signature :  

Name : WONG YEW CHIEN 

ID No. : 1706345 

Date : 5/5/2022 

 

  



iii 

 

APPROVAL FOR SUBMISSION 

 

 

 

 

 

I certify that this project report entitled “CONSTRUCTION SITE OBJECT 

DETECTION API COMPARATIVE STUDY” was prepared by WONG YEW 

CHIEN has met the required standard for submission in partial fulfilment of the 

requirements for the award of Bachelor of Engineering (Hons.) Civil Engineering at 

Universiti Tunku Abdul Rahman. 

 

 

 

Approved by, 

 

 

Signature :  

Supervisor : DR. LING LLOYD 

Date : 5/5/2022 

 

 

 

Signature :  

Co-Supervisor : DR. YONG YOKE LENG 

Date : 5/5/2022 

 

 

  

 



iv 

 

 

 

 

 

 

 

 

 

 

 

The copyright of this report belongs to the author under the terms of the 

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku 

Abdul Rahman. Due acknowledgement shall always be made of the use of any material 

contained in, or derived from, this report. 

 

 

© 2022, WONG YEW CHIEN. All right reserved. 

  



v 

 

ACKNOWLEDGEMENTS 

 

 

 

 

 

I would like to express my gratitude to everyone who has encouraged and helped me 

to complete this project, especially my brother Wong Yew Lee. Special thanks to my 

research supervisors, Dr. Ling Lloyd and Dr. Yong Yoke Leng for their invaluable and 

paramount care, advice, guidance, and patience throughout the development of the 

research. 

 

Could not have done it without you all. 

 

 

  



vi 

 

ABSTRACT 

 

Application of object detection in the construction industry has been extensive, albeit 

not rich. There is a huge potential in the implementation of object detection. In this 

project, three object detection models – YOLOv3, Detectron2, and EfficienDet are 

coded with Python on Google Colab. A modified image dataset that contains 100 

images of construction object were prepared. The object classes were person, helmet, 

vest, and slogan. The image dataset was pre-processed on Roboflow, before being fed 

into the model. Two out of three models produced meaningful results, whereas one 

required more data in order to produce results with acceptable level of accuracy. The 

more data hungry model was dissected and analysed. YOLOv4 model took 1 hour 30 

minutes and 4 seconds to train, Detectron2 took 2 hours 42 minutes and 4 seconds, and 

EfficientDet took 28 minutes and 38 seconds. The longer training time corresponds to 

a lesser average detection time. YOLOv4 took 4143 milliseconds to detect an image, 

Detectron2 took 742 milliseconds, and EfficientDet took 305 milliseconds. 

EfficientDet were the fastest because it does not need to be accurate. The results also 

suggested that some object detectors were better to detect specific objects. For instance, 

YOLOv4 can detect hat and slogan better than Detectron2, whereas the latter model 

can detect person and vest better. Therefore, it is recommended that different object 

detectors are used depending on the objective of the detection. Among the three object 

detectors, the highest achieved accuracy for person, hat, slogan, and vest is 94.44%, 

78.00%, 81.25%, and 60.00% respectively. All three models successfully detect small 

and large sized objects. YOLOv4 and Detectron2 were suitable to be applied in the 

field, but not the EfficientDet model. Surprisingly, the model was able to detect objects 

that were unannotated in the pre-processing phase. This indicated that the model 

received enough data on some classes to make predictions by itself. Despite that, more 

data should be provided in order to produce a more robust object detector. This also 

means that a better hardware should be acquired to provide better computational power. 

In this study, the deployment phase was not included, due to the limitation of resources. 

However, this report shows the necessary steps needed in order to code a working 

object detector to detect custom image data. In the future, it is recommended that more 

object classes were to be detected, and the model should move into deployment phase 

to study its real time accuracy. 

  



vii 

 

TABLE OF CONTENTS 

 

 

 

DECLARATION ii 

APPROVAL FOR SUBMISSION iii 

ACKNOWLEDGEMENTS v 

ABSTRACT vi 

TABLE OF CONTENTS vii 

LIST OF TABLES x 

LIST OF FIGURES xi 

LIST OF APPENDICES xii 

 

 

CHAPTER 

1 INTRODUCTION 1 

1.1 General Introduction 1 

1.2 Importance of the Study 2 

1.3 Problem Statement 3 

1.4 Aims and Objectives 3 

1.5 Scope and Limitation of the Study 3 

1.6 Contribution of the Study 4 

1.7 Outline of the Report 4 

2 LITERATURE REVIEW 5 

2.1 Introduction 5 

2.2 Computer vision in Construction Industry 5 

2.3 Image data set 6 

2.4 Performance comparison for various object detector 7 

2.5 Summary 8 

3 METHODOLOGY AND WORK PLAN 9 



viii 

 

3.1 Introduction 9 

3.2 Overview of the Work Plan 9 

3.3 Reviewing of coding platform and parameters 10 

3.4 Image gathering 11 

3.5 Image pre-processing 11 

3.6 Coding 13 

3.6.1 Downloading and install model dependencies 13 

3.6.2 Importing processed images 14 

3.6.3 Determining the upper limit of training parameters

 14 

3.6.4 Training the model 14 

3.6.5 Saving and using the trained model weights 15 

3.6.6 Test image inference 15 

3.6.7 Result and analysis 16 

3.7 Summary 17 

4 RESULTS AND DISCUSSIONS 18 

4.1 Introduction 18 

4.2 Image dataset health check 18 

4.2.1 Images and annotations health 18 

4.2.2 Class balance check 18 

4.2.3 Image size and aspect ratio check 19 

4.2.4 Annotations heatmap 19 

4.3 Results 20 

4.4 EfficientDet 20 

4.5 Training time and average detection time 21 

4.6 The need for more data? 21 

4.7 Accuracy for person 22 

4.8 Accuracy for hat 22 

4.9 Accuracy for slogan 22 

4.10 Accuracy for vest 22 

4.11 Input image resolution 23 

4.12 Overlapping of detected objects 23 



ix 

 

4.13 Detection success for object and suitability of the model to be 

applied 23 

4.14 Model predicting unannotated objects 23 

4.15 Summary 24 

5 CONCLUSIONS AND RECOMMENDATIONS 25 

5.1 Conclusions 25 

5.2 Recommendations for future work 25 

REFERENCES 26 

APPENDICES 28 

 

 

 

 

 

 

 

 

 

  



x 

 

LIST OF TABLES 

 

Table 2.1: Construction object image datasets 6 

Table 2.2: SODA and other construction object image datasets 7 

Table 4.1: Results from three objects detectors, YOLOv4, 

Detectron2, and EfficientDet 20 

 

 

 

 

 

 

 

 

  



xi 

 

LIST OF FIGURES 

 

Figure 2.1: mAP of YOLO (v3, v4) for SODA 8 

Figure 3.1: Work plan observed in this project 10 

Figure 3.2: Image and their corresponding labels 12 

Figure 3.3: Cells in Google Colab 13 

Figure 3.4: Examples of images that the model recognizes 15 
 

 

 

 

  



xii 

 

LIST OF APPENDICES 

 

APPENDIX A: YOLOv4.ipynb 28 

APPENDIX B: Detectron2.ipynb 31 

Appendix C: EfficientDet.ipynb 36 

Appendix D: Ground truth images 41 

Appendix E: Image dataset health check 46 

Appendix F: YOLOv4 results 52 

Appendix G: Detectron2 results 57 

Appendix H: EfficientDet results 62 

Appendix I: YOLOv4 Ground truth-Prediction Table 67 

Appendix J: Detectron2 Ground truth-Prediction Table 70 

Appendix K: Average detection time 73 

 

 

 



1 

 

CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 General Introduction 

A construction project, be it for landed homes, high rise residentials, commercial lots, 

infrastructures, and etcetera, is a highly structured venture that requires extreme 

coordination to achieve maximum productivity. A high efficiency translates to savings 

in cost, time, and manpower. 

 Therefore, the adoption of artificial intelligence (AI) is inevitable as we attempt 

more complex and ambitious projects. In recent years, a surge in the adoption of AI is 

observed in the construction industry. AI is a hypernym, and it refers to the simulation 

of computer to imitate the human brain, in order to perform cognitive function like 

learning, recognition, and problem solving.  

One subset of AI is machine learning (ML), and it is the learning of data by 

statistical techniques without being explicitly programmed to do so. Computer vision 

falls under the ML. Object detection, as it names suggests, uses computer  vision 

technique to detect specific objects with an acceptable accuracy. In general, there are 

three elements that are vital in object detection – the Application Programming 

Interface (API) or model, the algorithm or sometimes called architecture which is the 

detection method, and the image dataset. All the three elements are distinct, but they 

are interdependent. In the absence of one element, the whole object detection would 

not work. When an image library containing images or videos are fed into the detection 

model, the algorithm runs and starts to localize meaningful objects from an image. The 

more data i.e., more images the model is exposed to, the more trained it is in detecting 

the object. 

AI implementation is plentiful in other industries such as transportation, 

healthcare, e-commerce, and etcetera. However, it is the opposite in the construction 

industry. This is because construction projects rely heavily on previous proven 

methods rather that new innovative methods that sometimes lack track record of 

industry success. Construction engineers would not risk security over the vague 

promise of newer technologies. As of such, there was very little studies and works 

done regarding AI in construction. 



2 

 

However, the potential of AI is very promising. Innovation like object 

detection with ML can be very beneficial in large construction sites to ease surveillance 

and safety management activities. Object detection synergises very well with current 

implemented technologies like BIM and the use of drones, therefore brining 

implementation cost to a minimum.  

There is an abundance of open source code for object detection models on the 

Internet. Some tools and hardware are also provided online for free. In this project, the 

author aims provides a basis of comparison to gauge the performance of three object 

detector that are based on three distinct architectures. 

 

1.2 Importance of the Study 

As mentioned in the previous subtopic, studies and works done regarding AI 

implementation in construction sites are rare. It is prudent to understand and take part 

in the development of AI application in construction, therefore this study aims to 

provide support and encouragement to future civil engineering graduands to pursue 

programming and computer science skills. Much work is to be done in this field. 

 Computing power is an important component of object detection. Computing 

power comes from the capacity of graphics processing unit (GPU) of a computer. As 

training the model requires huge computing power, the capability of GPU will 

determine whether the model can be successfully trained or not. On top of that, having 

more computing power means more accurate and less training time for the model. 

However, not every individual or organization can commit to purchasing and investing 

in GPUs that are especially hard to come by in this COVID-19 pandemic time. 

Thankfully, plenty resources and hardware are available for free online. In this study, 

we want to know the limitations of our free hardware to detect construction site objects. 

 To the best knowledge of the author, there are no model publicly and readily 

available to detect construction site objects. This is because image datasets that 

contains construction site objects explicitly are not much. Thus, this study explores the 

necessary steps to be undergone in order to develop a fully working model from scratch, 

which can successfully detect objects at a construction site. The author also hopes that 

basing off this project, improvements can be made to enhance the model. 

 



3 

 

1.3 Problem Statement 

The adoption of technology in the construction industry has always been slow. This is 

because the industry has been deeply rooted in a conservative corporate culture and 

are traditionally linear in its nature (Lee, 2018). On top of that, the complexity and 

elevated risk of the industry has solidified the companies’ dependence on traditional, 

proven, and safe method of construction. The priority of the client to ensure the 

completion of project on time and within budget has also created a construction culture 

where consultants and contractors often neglect innovation. A radical and fresh change 

is therefore hard to implement. Despite the rigid nature of construction towards huge 

change, smaller changes have been embraced. Current practice of implementing 

robotics, AI, and Internet of Things (IoT) have reduced construction costs by up to 20% 

(Patil, 2019). Therefore, the problems that are associated with this study can be 

summarized as follows: 

i. Lack of construction site specific object detector. 

ii. The absence of comparison done on construction site object detection 

models, despite the large availability of open-source codes. 

iii. Unwillingness of stakeholders to adopt new technologies in construction 

industry 

 

1.4 Aims and Objectives 

The aim of this study is to conduct a comparative study of three different object 

detector. The aim of the research is based on the objectives listed below: 

i. To develop and program models to detect construction site objects. 

ii. To quantify the ability of object detection in terms of speed, accuracy, and 

computing resources needed. 

 

1.5 Scope and Limitation of the Study 

Due to time and resources constraints, the scope of this study will only be limited to 

the quantitative comparison of the models. The deployment beyond the programming 

phase, e.g., application, testing, and study of the models in a real site were not done in 

this study. To adhere to COVID-19 movement restrictions and construction site 

privacy policies, all images were web mined online. 

 



4 

 

1.6 Contribution of the Study 

The limitations of resources faced by this study can be used as a benchmark. Future 

studies should consider a step-up allocation to their resources, i.e., coding literacy, 

image dataset, hardware, computing power, and etcetera, if there are plans to produce 

an improved result. As there are less work done available associated to the coding and 

training of object detector for construction site objects, this study provides codes and 

scripts of the models which can be modified heavily. The code to the models are also 

general and extensive in nature, therefore it can be transformed to detect other objects, 

even those outside construction sites. 

 

1.7 Outline of the Report 

In this report, the remaining part are structured as follows: Chapter 1 introduces the 

topic, scope and limitations, contributions and importance of the study. Chapter 2 deals 

with the review of similar works in scientific literatures. Chapter 3 outlines the 

methodology and work plan to complete this project while Chapter 4 presents and 

discusses the obtained results. Chapter 5 closes and summarizes the whole report, with 

recommendations for future work. 

 

  



5 

 

CHAPTER 2 

 

2 LITERATURE REVIEW 

 

2.1 Introduction 

In this chapter, publications on deep learning and computer vision in construction, 

object detection architectures, image data set, and comparisons of a few object 

detectors are reviewed. 

 

2.2 Computer vision in Construction Industry 

Computer vision have been extensively used and researched in the construction 

industry. It is a fairly new research topic. In a study published by Rad et al. (2020), 

Deep learning topic represents 37.04% of the publications in the Automation in 

Construction journal with an average published year of 2016. It also represents 14.81% 

of the publications in the Advanced Engineering Informatics journal with an average 

published year of 2013.   

 Kolar et al. (2018) has noted that computer vision techniques like histogram of 

oriented gradients, histogram of HSV (hue, saturation, value) colours input for k-

nearest neighbors (KNN) classifier, histogram of optical flow, motion boundary 

histogram, many more were used to detect construction workers, site machinery and 

construction site’s progress. This was way before computer vision-based object 

detectors. 

 With the advancement of both hardware and software, a new approach for 

object detectors which extracts large number of image features and uses that feature 

for image classification, were then adopted. Convolutional neural network (CNN) – 

often regarded as the most powerful technology to process and solve computer vision 

related problems, was one of the examples (Kolar et al., 2018). One benefit of CNN 

algorithm is that they have self-learning ability from a given dataset. Pairing CNN with 

visual sensors like surveillance camera, unmanned air vehicles, and etcetera can play 

a huge role in the management of construction site. Zhu et al. (2017) in his publication, 

has examined workforce, detected equipment, and tracked construction sites with 

video processing technology. 

 Xiao et al. (2019) has successfully built a model that detects truck and 

excavators using YOLOv3. The author noted that deep learning methods have huge 



6 

 

potential in construction automation, as it will help us to understand the situation at 

site. Effective visualization is also one important area as construction sites are often 

disorderly and misinformation will impact real-time decision making. 

 Deep learning methods can also be used to detect defects in building. In a study 

published by Perez et al. (2019), normal building and its defects such as mould, 

detoriation, and stain were detected using the VGG-16 network pre-trained on 

ImageNet. In this study, transfer learning is used.  

 

2.3 Image data set 

Deep learning algorithms are data hungry (Duan et al., 2022). According to Duan et 

al. (2022), construction is a unique process that brings challenge to the gathering and 

labelling of the images. And thus, well-annotated construction images are hardly seen 

in larger and more famous datasets. Existing construction site image datasets are just 

too small and incomplete, with fewer classes. On top of that, the way how construction 

is structured and carried out also makes it hard for the untrained eye to correctly 

identify and annotate images taken at sites. Therefore, there is a need to build a public 

image dataset in construction research. (Xiao et al., 2019).  

 There are two types of image datasets in computer vision, general and domain 

dataset. General datasets are used by the public, which contains natural and everyday 

life objects. Domain dataset on the other hand, contains categories of specific fields. 

Table 2.1 shows various the various types of general datasets. All these datasets are 

constantly being renewed and updated, allowing excellent object detection models to 

be coded in the future.  

 

Table 2.1: Construction object image datasets 

Dataset Images count Classes 

Mnist 70,000 NIL 

PASCAL VOC 11,000 20 

Microsoft COCO 160,000 91 

ImageNet 14 million 20,000 

 



7 

 

 Aerial images also provide a good set of data for machine learning. Datasets 

like the TAS, SZTAKI-INRIA, NWPU VHR-10, VisDrone, SpaceNet MVOI, DIOR, 

iSAID, and DOTA are mostly aerial images. The total image ranges from 800 – 20,000 

images (Ding et al., 2021). It can be useful to build object detectors for satellites and 

drone applications in overcoming problems related to congested and densely packed 

objects. 

Despite the large image datasets available, most of it lacks proper categories 

within the context of construction. Therefore, in recent years, many construction 

objects image datasets were established. Tajudeen et al. (2014) has created an image 

dataset of five construction machineries – excavators, loader, bulldozers, and backhoe 

diggers. In total, there are a few thousand images of the machineries with different 

views. Kolar et al. (2018) has created a training dataset of 4,000 images for guardrails. 

 In a study to construct an object detector from development to deployment by 

Arabi et al. (2019), the author used the AIM image dataset, which are originally from 

ImageNet. Paired with image crawling, a total of 3,271 images of loader, excavator, 

dump truck, concrete mix truck, roller and grader were created. In another study by 

Xiao et al. (2019), 5,000 images were collected. 

In 2022, Duan et al. has created the Site Object Detection dAtaset (SODA) 

which contains 19,846 images and 286,201 objects. By far, it is the largest construction 

object image dataset. Table 2.2 shows the comparison of SODA with other 

construction object image dataset. 

 

Table 2.2: SODA and other construction object image datasets 

Dataset Images counts Objects Classes Size 

SODA 19,846 286,201 15 1920 × 1080 

MOCS 41,668 222,861 13 1200 × __ 

ACID 10,000 15,767 10 608 × 608 

CHV 1,330 9,209 - 608 × 608 

 

2.4 Performance comparison for various object detector 

A slight change in object detection algorithm can affect the results produced. In a study 

conducted by Duan et al. (2022), the author tested the SODA dataset with YOLOv3 

and YOLOv4 algorithm. The mean average precision (mAP) for YOLOv3 and 

YOLOv4 are 71.22% and 81.46% respectively. This shows that the v4 version is more 



8 

 

accurate than the v3 version. Figure xx shows the average precision and the mAP of 

all the 15 classes in the SODA dataset. 

 

 

Figure 2.1: mAP of YOLO (v3, v4) for SODA 

 

 In a publication by Intellica.AI (2019), the author coded and compared between 

three models – YOLOv3, Faster R-CNN and SSD to detect a specific logo. Input 

images of size 840 × 840 were used. The training time for YOLOv3, Faster R-CNN 

and SSD were 10 hours, 18 hours, and 14 hours respectively. During the analysis, it 

was found that the accuracy is 100% for YOLOv3, 86.67% for Faster R-CNN, and 

none for SSD. This is because the loss value for SSD is too large compared to the other 

two models. Despite training the SSD model for three times the iteration of the other 

two, it still failed (Intellica.AI, 2019). 

 Nath et al. (2020) has concluded that between YOLOv2 and v3, the latter has 

a better accuracy in detecting a combined Pictor-2 dataset. Pictor-2 is a dataset that 

contains mainly construction site objects. In the study, YOLOv3 scores a mAP of 

77.3%. The author concluded that the model’s performance is able to match state-of-

the art models, illustrating its consistency in detecting common construction objects. 

 

2.5 Summary 

In essence, while the application of object detection is extensive in construction 

industry, it is fairly new. The availability of large public image dataset was scarce, up 

until recently. Comparisons of object detectors is crucial to understand its strength and 

limitation. 

  



9 

 

CHAPTER 3 

 

3 METHODOLOGY AND WORK PLAN 

 

3.1 Introduction 

This chapter explains the methodology and work plan taken to obtain desired results. 

Every step of the stage is detailed in sections below. 

 

3.2 Overview of the Work Plan 

Figure 3.1 shows the work plan for this project. The first step was to review all the 

necessary requirements for the work to start. It also means to review the coding 

platform and all the important parameters to be used as grounds for comparison. Then 

the next step was gathering images and pre-process them. Image dataset is perhaps the 

most important step of the study. The quality of the images gathered will affect the 

overall accuracy. Once the images were processed, coding works can begin. The first 

step in coding was to download and install model dependencies. This step ensures the 

correct environment are set up. Subsequently, images were imported into the notebook 

and all the necessary organization are done. The model was then trained. If the model 

fails, the upper limit of training parameters was tuned to ensure smooth running within 

the capability of the hardware. A model is considered to be successfully trained once 

it reaches the defined epoch or iterations from the previous steps. The weighs which is 

akin to the brain of the model were exported and saved for future use. Test images 

were then fed to the model to obtain desired results. Once all three object detectors had 

inferred and output the images, the test images were downloaded and saved locally (in 

the workstation). Analysis was done on the results without the use of code. If there are 

no results as a consequence of model incompetence, it needs to be retrained.  



10 

 

 

Figure 3.1: Work plan observed in this project 

 

3.3 Reviewing of coding platform and parameters 

Python will be used as it is a common programming language used in object detection. 

Google Colab platform was used because it provides free access to hardware online. 

As it is a free version, a Tesla P100 is provided. Initially, Jupyter Notebook was also 

considered but was not used in the end as the Tesla P100 is more powerful GPU. 



11 

 

 Three object detection models were selected – YOLOv4, Detectron2, and 

EfficientDet. The coding of these models is relatively easy, hence the reason why it is 

picked for this project. 

 To sufficiently quantify the ability of the object detector, various aspect has to 

be considered. The main parameters in this project are the accuracy, speed, and overall 

resources consumption. 10 detailed grounds for comparison are listed below: 

i. Training time 

ii. Average detection time (s/img) 

iii. The need for more data 

iv. Accuracy of detected objects 

v. Input image resolution 

vi. Overlapping of detected objects 

vii. Frequency of overlapping 

viii. Detection success for small objects 

ix. Detection success for large objects 

x. Suitability of the model to be applied 

 

3.4 Image gathering 

Initially, the plan was to web mine images from the Internet by taking screenshots from 

Google Earth Pro, drone imageries from various sources, and other relevant images. 

But in late February, we stumbled upon Site Object Detection dAtaset (SODA) 

and has decided to use that dataset due to its complete annotation and large database. 

The image gathering process took more than 48 hours of continuous downloading. In 

total, we gathered 19,846 images with a size of 24.5GB. 

 

3.5 Image pre-processing 

Image pre-processing involves the curation, compression, and labelling of the gathered 

images. As we do not have enough computing power to feed the model with 19,846 

images, 100 images were chosen at random for this project. This 100 image dataset is 

named as Construction objects v2. 

To hasten the pre-processing phase, an annotation website called Roboflow is 

used. Roboflow allows seamless pre-processing of the images including labelling, 

exposure and brightness settings, rotation, and many more processes. Construction 



12 

 

objects v2 dataset were uploaded into the website and the following steps were taken 

– annotate or labelling, train-test split, auto-orient and resize, and augmentations. 

 Image annotating or labelling is where designated boxes are placed around 

objects intended to be detected, which are then named accordingly. This process 

creates a separate .txt file which contains the labels and coordinates of the bounding 

boxes. Again, to save on resources, the number of classes to be detected is reduced. 

The initial SODA dataset contains 15 classes. In this project, it is reduced to 4 classes, 

namely person, vest, helmet, and slogan. The process is done by removing unwanted 

labels from already annotated images, on the Roboflow website. Figure 3.2 shows an 

example of the image and their labels for this project. 

 

 

Figure 3.2: Image and their corresponding labels 

 

The image size is standardized by compressing all 100 images to 416 × 416 

sized pictures. This step also helps to cut down the training time for the model. It is 

then split into train and test data randomly with a 9:1 ratio. Train data are images that 

are fed into the to-be-trained model, while test data are images used to measure the 

accuracy of the model later on. Two augmentation process were then applied. The first 

process rotates the train images between -15° and +15° degrees and the second process 

brightens it by -15% and +15%. This process diversifies the train data from 70 images 

to 230 images of various orientation and brightness. The final dataset contains 240 

images with a train-test ratio of 23:1.  



13 

 

 

3.6 Coding 

The coding was done on Google Colab with Python. Appendix A, B, and C are codes 

to the YOLOv4, Detectron2, and EfficientDet model. All three models are coded from 

scratch, and no one is identical to the other. However, all three models have similar 

checkpoints or milestones of achievement which are vital to their next steps. Another 

benefit of using Google Colab is that the codes can be broken down into cells and 

executed individually. Progress is saved by the cells. Meaning, if there are changes to 

any part of the entire code, there is no need to run the code from the top in order to 

observe the changes. Figure 3.3 shows cells on Google Colab for YOLOv4 model. The 

first cell (in black) contains the first line of the code. It was executed, and its memory 

saved in the first cell. The output is in grey. The subsequent codes can be added onto 

the next cells. Therefore, if any changes were to be made into the second cell, the 

progress of the first cell will not be discarded.  

 

 

Figure 3.3: Cells in Google Colab 

 

3.6.1 Downloading and install model dependencies 

Commands like !git clone, !pip install, import,  and !gdown of the Python language 

were used. Some model requires the cloning of an entire repository, hence the use 

of !git clone command. !pip install installs a certain file for the model to work. import 

brings in a certain requirements once a repository is cloned while !gdown downloads 



14 

 

files from a shared Google drive. The correct installation and setting up of environment 

is essential for the object detector to work. 

 

3.6.2 Importing processed images 

As our images have already been processed on Roboflow, we can then import it to our 

program. On the Roboflow website, the image can be exported in specific formats 

required by our object detectors, in the form of a link. The link can be pasted on our 

Colab notebook. A few simple commands unzips the link, and creates a directory on 

our notebook, which we can then proceed to the next step. In some object detectors 

like the YOLOv4, additional line of codes like the !mkdir and %cp command are 

needed to create and organize new directories for our images. 

 

3.6.3 Determining the upper limit of training parameters 

Different models have different parameters to be adjusted. For instance, you can 

change the batch size, batch subdivisions number, learning rate, and epoch on the 

YOLOv4 models, the max iterations, steps, and evaluation period for the Detectron2 

model, and the learning rate and value interval for EfficientDet model. The values here 

can be tweaked and changed in order to obtain the best fit. If the model is not accurate 

enough, parameters like epoch and iterations can be stepped up. Conversely, if the 

model is overfitted, the value should be stepped down. 

 

3.6.4 Training the model 

Running the code kick starts the training process. In this stage, there is not much to do 

but to allow the model to read and recognize the images. The model recognizes the 

object by comparing the labelled image with the .txt file. As a human, imagine looking 

at a picture while holding the image description side by side. This is the exact process 

that the computer is going through. Figure 3.4 shows some of the images that the model 

recognizes during training. As observed, some of the pictures are not in upright 

position – they are rotated slightly due to the augmentations done during image pre-

processing phase. 

 



15 

 

 

Figure 3.4: Examples of images that the model recognizes 

 

The training time can take up to a few hours, therefore the workstation has to 

be turned on throughout the training. Maximum computing power are used here, 

therefore bottlenecks happened frequently. In the event of bottlenecks or model 

running out of memory, training parameters needs to be changed to a lower value.  

 

3.6.5 Saving and using the trained model weights 

During this stage, the model is said to have contained trained weights. Weights are 

important as it is akin to the brain of the model. If the weights were not saved, the 

whole training must be repeated again. Saving the trained weights can be done by 

mounting user’s Google drive and exporting it. At the next round of inference, the 

weights can be loaded externally without needing to retrain the whole object detector. 

 

3.6.6 Test image inference 

The test images are then fed through the model for inference. Test images are images 

that the model have not seen before, it is a fresh set of images used to determine the 

accuracy of the object detector. The test images were labelled from 1 to 10. The model 

will take some time to infer the images before outputting images with bounding boxes 

and its prediction e.g., person, vest, helmet, or slogan. Appendix D shows all the 

annotated test images. 

 



16 

 

3.6.7 Result and analysis 

The images were labelled 1 – 10, according to their original, clean, annotated version. 

This step is to ensure correct comparison with their ground truths, and the carrying out 

of meaningful analysis.  The quality of the detection was then observed and analyzed. 

The 10 grounds for comparison, as mentioned in subsection 3.3 are used here. Most of 

the criteria is qualitative, expect for the average detection time and accuracy of test 

data which has to involve some calculations. All calculations were done manually on 

Microsoft Excel. Appendix F, G, and H are the results produced by YOLOv4, 

Detectron2, and EfficientDet. 

 

3.6.7.1 Average detection time 

Average detection time was calculated by taking the sum of time required to detect all 

images divided by the number of images. It is expressed in image per milliseconds. 

For Detectron2, as we could implement the Tensorboard function to the code, the 

average detection time was shown in the model itself, therefore eliminating the need 

to calculate separately. Appendix K shows the detection time and their average 

detection time taken. 

 

3.6.7.2 Accuracy of test data 

The accuracy of the test data prediction was defined as the ability of the model to 

correctly predict the test images. Since the test images were labelled, the annotations 

or bounding boxes are the ground truth. Appendix D shows the ground truths. 

To calculate the accuracy, firstly all the number of ground truths in the images 

were noted down and compiled into a table. Total number of ground truths are 

calculated. Then, the downloaded test images from the models were analysed one by 

one, by comparing it to the ground truth version. A correct prediction i.e., correct 

prediction of Person yields one point. The percentage of the accumulation of correct 

predictions over total correct and wrong predictions (number of ground truth) gives 

the accuracy of the model. The equation is expressed as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑜𝑛𝑠 + 𝑊𝑟𝑜𝑛𝑔 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100% 

 



17 

 

 Appendix I and J are the ground truth-predictions table for YOLOv4 and 

Detecrtron2. 

 

3.7 Summary 

An overview of the work plan is observed in this chapter. Detailed and specific steps 

were reported in each subsection. In this project, Python were used as the main 

programming language and the whole model is coded on Google Colab. A modified 

SODA image dataset was used, and 10 test images were used to acquire the desired 

results. The results for all three object detectors are presented and discussed in the next 

chapter.   



18 

 

CHAPTER 4 

 

4 RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

In this project, three working object detectors were used on 10 test images. In this 

chapter, 10 criteria that were used as grounds for comparison were presented and 

discussed. They are the training time, average detection time (ms/img), the need for 

more data, accuracy of detected objects, input image resolution, overlapping of 

detected objects, frequency of overlapping, detection success for small objects, 

detection success for large objects, and suitability of the model to be applied. The 

image dataset health check will also be discussed to allow a better understanding on 

the overview of the image dataset 

 

4.2 Image dataset health check 

The image dataset health check function that is readily available on the Roboflow 

website provides extra information that is useful for our decision making. In this 

subsection, we will analyse some of the statistics. 

 

4.2.1 Images and annotations health 

Figure E-1 of Appendix E shows the images and annotations health. Our uploaded 

dataset contains 100 images with 0 missing annotations and 0 null examples. A null 

example is when an image contains no annotations. Meaning, all the images are 

annotated and have their annotations file ready. In total, there are 1,239 annotations 

across 4 classes. On average, 1 image contains 12.4 annotations. The average picture 

size before it was resized is 2.07 megapixel. Smallest picture size is 0.11 megapixel, 

while the largest picture size is 12.73 megapixel. 

 

4.2.2 Class balance check 

Having a good class balance is important because we want our model to learn evenly. 

The class balance of the image dataset is generally healthy. From figure E-2 of 

Appendix E, we can see that there are 457 person, 388 helmet, 219 vests, and 175 

slogan annotations. In total, they make up the 1,239 annotations. Person and helmet 



19 

 

are well represented, except for vest and slogan which are underrepresented. To 

overcome this, more images should be added until the class balance evens out. 

 

4.2.3 Image size and aspect ratio check 

Figure E-3 of Appendix E shows the aspect ratio distribution. The images in our dataset 

are more wide than square. Wide images constitute 92% of our image dataset, while 

square and tall images constitute 1% and 7% respectively. Moving on to the dimension 

insights, as shown in Figure E-4 of Appendix E, 63% of the images are jumbo size – 

they have a size of more than 1024 × 1024. 27% are large images, and 10% are medium 

images. Size information matters because it helps in resizing decisions. The median 

size acts as the maximum permissible limit for image size. Resizing is crucial because 

some models can only detect a certain image size. 

Figure E-5 of Appendix E depicts the distribution of image sizes. The x-axis is 

the width, and the y-axis is the height. A directly proportional line passes through the 

origin. Any point that lies on this line is a square image. If the height is significantly 

larger than the width, it is a tall image. Conversely, if the width is significantly larger 

than the height, it is a wide image. Images that are too wide or too tall can affect our 

resizing process and subsequently our results. This is because the image will tend to 

overstretch along the shorter dimension, disfiguring our to-be-detected objects. In our 

dataset, there are no image that are too wide or too tall. 

The median image size is 1920 × 1080, which is deemed as wide. Thus, 1920 

× 1080 is the largest resizing limit. Any resized images with sizes below the median 

image size is acceptable. 416 × 416 size is chosen. 

 

4.2.4 Annotations heatmap 

Figure E-6 to Figure E-9 of Appendix E depicts the annotation heatmaps for all the 

classes. Heatmaps helps to visualizes where the objects in the images, without having 

to search through individual annotations. This is vital as we do not want the object to 

be cropped out during resizing and the heatmaps tells us exactly where our objects are 

according to the classes. As shown in Figure E-6 of Appendix E, Slogans are 

distributed throughout the images, as it can be in hanged mid-air or placed on the 

ground. Person heatmap, as shown in Figure E-7 of Appendix E were concentrated 

from the lower part up until around two third of the image. Helmet heatmap is 

generally centred with an emphasis at the top of the image, as shown in Figure E-8 of 



20 

 

Appendix E, as some workers are working while crouching or sitting. Vest on the other 

hand is centred but focused on the lower part, which is still logical. Some vests were 

detected at the upper left hand corner, due to some workers working on elevated 

heights. Figure E-9 of Appendix E shows the heatmap for vests. 

 

4.3 Results 

Table 4.1 shows the results obtained from three object detectors, YOLOv4, Detectron2, 

and Efficient Det. 

 

Table 4.1: Results from three objects detectors, YOLOv4, Detectron2, and 

EfficientDet 

 YOLOv4 Detectron2 EfficientDet 

Training time 1h 30m 4s 2h 42m 28s 28m 38s 

Average detection time (ms/img) 4143 742 305 

Need more data? NO NO YES 

Accuracy of test data  

Person 75.93% 94.44% - 

Hat 78.00% 74.00% - 

Slogan 81.25% 0.00% - 

Vest 30.00% 60.00% - 

Input image resolution 416 × 416 416 × 416 416 × 416 

Overlapping YES NONE YES 

Frequency of overlap LESS - OFTEN 

Detection success for small sized 

objects 

YES YES YES 

Detection success for large-sized 

objects 

YES YES YES 

Can this model be applied yet? YES YES NO 

 

4.4 EfficientDet 

The epoch or training duration for EfficientDet were initially set at 100 epochs. 

However, the computing power of the Tesla P100D were insufficient to reach that 

amount. Therefore, the epochs were brought down. Trial and error epoch values of 80, 



21 

 

65, 50, 45, 35, 20, and 15 were used. It is found that the epoch limit bottlenecks at 17. 

Therefore, 15 epochs were set as the upper limiting factor. Despite the training success 

of the model, it produces results that are not quite favourable. Appendix H shows the 

results for EfficientDet. As observed from Figures H-1 to H-10 of Appendix H, there 

were multiple overlapped predictions which are not ideal for analysis. There were also 

plenty wrong predictions.  

Despite being inaccurate, the model can still work, provided that a better 

hardware was used. This allows for higher epochs and thus a more accurate object 

detector. Another workaround is to provide more datasets for the object detector to 

learn. This step can be done even at lower epochs. 

 

4.5 Training time and average detection time 

The training times for YOLOv4, Detectron2, and EfficientDet were 1 hour 30 minutes 

4 seconds, 2 hours 42 minutes 28 seconds, and 28 minutes and 38 seconds, respectively. 

Detectron2 took the longest time, whereas EfficientDet took the quickest time. The 

reason EfficientDet took the least time is because it was trained at a lower epoch i.e., 

15 epochs. 

 In most object detectors, longer training time translated to faster average 

detection time. Detectron2 who took the longest time to train, detected objects with an 

average time of 742 milliseconds per image. YOLOv4 trailed with the ability to detect 

at 4143 milliseconds per image. Despite having the least training time, EfficientDet 

took only 305 milliseconds to detect images. This is faster than Detectron2 and 

YOLOv4. One possible explanation is that EfficientDet does not predict images with 

the same accuracy as the other object detectors. It is fast because it does not need to be 

accurate. 

 

4.6 The need for more data? 

Fundamentally, more data means a more accurate object detector. For this project, 

EfficientDet requires more images not because for fine tuning, but to raise its 

prediction accuracy to a more acceptable level. While an increase in dataset could 

definitely benefit the other two object detectors, it also means more work to annotate 

and label the images.  

 



22 

 

4.7 Accuracy for person 

Accuracy is perhaps the most important criteria for object detectors. It is also the 

easiest benchmark to comprehend. A person is perhaps the most commonly detected 

objects. In this project, the accuracy for person is 75.93% for YOLOv4 and 94.44% 

for Detectron2. Detectron2 has a higher accuracy for person due to its detection 

algorithm and typical use case. Therefore, if the goal for the object detector at sites is 

to detect person, Detectron2 is more recommended.  

  

4.8 Accuracy for hat 

Hat or safety helmet is an important PPE to have at construction sites. The detection 

for hat can ensure all safety measures are being observed at sites. The accuracy for hat 

detection in this project is 78% and 74% for YOLOv4 and Detectron2. In the case for 

hat, YOLOv4 leads as the best object detector. The colour and condition of the hats 

does not affect the accuracy for object detection, therefore a possible reason for a low 

accuracy on hat detection is the occlusion and orientation of the object. 

 

4.9 Accuracy for slogan 

Slogan refers to the safety warnings at over sites. Safety warnings are essential to 

prevent mishaps. Essentially, detecting slogans has more to do with detecting words 

and sentences rather than objects. Technically, words placed in a sentence big enough 

at sites can constitute as slogan according to the object detectors. In this experiment, 

the accuracy for slogan is 81.25% for YOLOv4. Detectron2 has a 0% accuracy, 

meaning it does not predict correctly any of the ground truth. This can be attributed to 

the fact that slogan is underrepresented as indicated in Figure E-2. More images that 

contain slogan should be added to existing dataset.  

 

4.10 Accuracy for vest 

Vest could be the hardest to detect as it may be mistaken as clothing on a worker. The 

colour of the vest sometimes became monochromic with the body of the worker which 

furthers decrease the accuracy of the object detector. Our model detectors detected 30% 

accuracy for YOLOv4, and 60% for Detectron2. Again, the low accuracy may be due 

to the underrepresenting of vest in the image dataset. 

 However, it should be noted that vest could always be underrepresented with 

respect to the other classes because at sites, safety vest is not necessary unless one is 



23 

 

working at high altitude or foggy workspace. Workers can always wear safety helmets 

but not necessarily safety vests. Therefore, to truly overcome the underrepresenting of 

vest, images of only worker with vests but without helmet are needed. This is not 

possible as it is commonly known that safety helmets are a must at construction sites. 

The only workaround is to add more images until the model can detect vests at higher 

accuracy. 

 

4.11 Input image resolution 

The input image resolution was standardized at 416 × 416 size. Initially, this is a 

prerequisite for  YOLOv4 to work. However, it was made consistent across all three 

models so that it can produce a meaningful analysis. An image dataset with varying 

image sizes can consume more resources in terms of computing power. The same goes 

to image resolution of larger size for the input. 

   

4.12 Overlapping of detected objects 

Overlapping is a common but unfavourable occurrence where a model predicts the 

same object more than once. Figure F-10 of Appendix F and Figure H-10 of Appendix 

H are some examples of overlapping. The occlusion, orientation, and brightness of an 

object in relation to the background can also cause overlapping. 

Both the YOLOv4 and EfficientDet model has overlapped predictions. 

Detectron2, however, does not. The overlapping frequency for the YOLOv4 is less 

compared to the overlapping frequency of EfficientDet. 

 

4.13 Detection success for object and suitability of the model to be applied 

All three models successfully detect large and small objects. Therefore, during pre-

processing phase, the bounding boxes can be of any sizes for these models. The 

YOLOv4 and Detectron2 model are suitable to be deployed for real life application, 

provided that more enhancements are made. On the other hand, EfficientDet are not 

suitable as the accuracy are still unknown. 

 

4.14 Model predicting unannotated objects 

To our surprise, the object detector has learned enough on certain classes to make 

predictions that are outside the labelled ground truth. For instance, by comparing 

Figure D-4 and G-4, some predictions made were not actually part of the annotations. 



24 

 

Some predictions are correct, but not all. The most common unannotated prediction 

that is correct are the person class. This is perhaps due to the fact that the human shape 

is easily distinguishable whereas objects like slogan are not. 

 

4.15 Summary 

We concluded that the three object detectors work. EfficientDet could not produce 

significant results as it needs more computing power and images. In terms of training 

time, Detectron2 took the longest, followed by YOLOv4, and EfficientDet. Longer 

training time means faster detection time. This is evident in Detectron2 that took an 

average of 742 milliseconds to detect. YOLOv4 took an average of 4143 milliseconds. 

EfficientDet took only 305 milliseconds, far surpassing the other model. However, it 

is fast because it does not need to be accurate. In terms of accuracy, Detectron2 is more 

accurate than YOLOv4 in detecting person and vest. YOLOv4 is more accurate than 

Detectron2 in detecting hat and slogan. Thus, an object detector must be chosen 

according to the objective of the detection. 

  



 

 

CHAPTER 5 

 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In conclusion, three object detectors – YOLOv4, Detectron2, and EfficientDet were 

successfully coded. The training time was 1 hour 30 minutes and 4 milliseconds for 

YOLOv4, 2 hour 42 minutes and 28 milliseconds for Detectron2, and 28 minutes and 

38 milliseconds for EfficientDet. Despite working, EfficientDet still requires more 

data in order to achieve acceptable accuracy. The EfficientDet model in this project 

were not able to produce meaningful results. More images are required. The accuracy 

for person, helmet, slogan, and vest, are 75.93%, 78.00%, 30.00%, and 81.25% for 

YOLOv4, and 94.44%, 74.00%, 60.00%, and 0% for Detecron2. The fastest average 

detection time is EfficientDet with 0.279 milliseconds, followed by Detecron2 with 

742 milliseconds, and YOLOv4 at 3.74seconds. 

 

5.2 Recommendations for future work 

Computing power and robust image dataset is key to achieve a decent object detector. 

Therefore, a better hardware is recommended. A better allows longer, faster and more 

accurate training phase. The image dataset used in this project can also be expanded 

with two methods. The first method is to utilize the entire SODA dataset with the 

augmentations described in Chapter 2. The second method is to collect and compile 

more images, on top of the existing image dataset. 

 More objects should also be detected. In this project, only person, helmet, 

slogan, and vest are detected. In the future, objects like scaffold, electric box, bricks, 

machineries, and etcetera should be detected to produce a more comprehensive and 

complete object detector. Post development, the model should move into deployment 

phase e.g., real time detection at sites to test its reliability. Compatibility and 

cohesiveness with visual input device like mobile phones, drones, and video camera 

may be tested in the future. 

 It is also recommended that future Civil Engineering students to have better 

comprehension with Python coding ability. This will allow for more complex and 

steadfast model to tackle more challenging and demanding object detection problems.  



 

 

REFERENCES 

 

Ansari Rad, S., & Arashpour, M., 2020. A Critical Review of Machine Vision 

Applications in Construction. Proceedings of the 37th International Symposium on 

Automation and Robotics in Construction (ISARC). 

Arabi, S., Arya, H., & Anuj, S., 2019. A deep learning-based solution for construction 

equipment detection: from development to deployment [online] Available at: 

https://arxiv.org/abs/1904.09021 [Accessed 12 July 2021] 

Benedek, C., Descombes, X., & Zerubia, J., 2012. Building Development Monitoring 

in Multitemporal Remotely Sensed Image Pairs with Stochastic Birth-Death 

Dynamics. [online] Available at: https://hal.inria.fr/hal-00730552 [Accessed 12 July 

2021] 

Brilakis, I., Park, M. W., & Jog, G., 2011. Automated vision tracking of project related 

entities. Advanced Engineering Informatics, 25(4), 713–724. 

IntellicaAI., Comparative Study of Custom Object Detection Algorithms., 2021. 

[online] Available at: https://intellica-ai.medium.com/a-comparative-study-of-

custom-object-detection-algorithms-9e7ddf6e765e [Accessed 19 July 2021] 

Chen, S., Zhan, R., & Zhang, J., 2018. Geospatial Object Detection in Remote Sensing 

Imagery Based on Multiscale Single-Shot Detector with Activated Semantics. Remote 

Sensing, 10(6), 820. MDPI AG. [online] Available at: 

http://dx.doi.org/10.3390/rs10060820 [Accessed 21 July 2021] 

DOTA. (n.d.). A Large-Scale Benchmark and Challenges for Object Detection in 

Aerial Images. [online] Available at: https://captain-

whu.github.io/DOTA/dataset.html [Accessed 5 September 2021] 

Duan, R., Deng, H., Tian, M., Deng, Y., & Lin J., 2022. SODA: Site Object Detection 

dAtaset for Deep Learning in Construction. [online] Available at: 

https://arxiv.org/abs/2202.09554 [Accessed 6 April 2022] 

Heitz, G., & Koller, D., 2008. Learning Spatial Context: Using Stuff to Find Things. 

Lecture Notes in Computer Science, 30–43. [online] Available at: 

https://doi.org/10.1007/978-3-540-88682-2_4 [Accessed 7 April 2022] 

Kolar, Z., Chen, H., & Luo, X., 2018. Transfer learning and deep convolutional neural 

networks for safety guardrail detection in 2D images. Automation in Construction, 89, 

58–70. 

Lee, P., 2018. The Future of Construction - Embracing Technology and Innovation. 

Lexology. [online] Available at: 

https://www.lexology.com/library/detail.aspx?g=146ad57e-cc21-45c3-8c97-

0696bab98d77 [Accessed 2 January 2022] 

 



 

 

Li, K., Wan. G., Cheng, G., Meng, L., Han, J., 2019. Object Detection in Optical 

Remote Sensing Images: A Survey and A New Benchmark [online] Available at: 

https://arxiv.org/abs/1909.00133 [Accessed 5 February 2022] 

Nath, N. D., & Behzadan, A. H., 2020. Deep Convolutional Networks for Construction 

Object Detection Under Different Visual Conditions. Frontiers in Built Environment, 

6.  

Patil, G., 2019. Applications of Artificial Intelligence in Construction Management. 

6th National Conference On Technology & Innovation: Disrupting Businesses, 

Transforming Market. 

Perez, H., Tah, J. H. M., & Mosavi, A., 2019. Deep Learning for Detecting Building 

Defects Using Convolutional Neural Networks. Sensors, 19(16), 3556.  

Tajeen, H., & Zhu, Z., 2014. Image dataset development for measuring construction 

equipment recognition performance. Automation in Construction, 48, 1–10. 

Zamir, S. W. (2019, May 30). iSAID: A Large-scale Dataset for Instance Segmentation 

in Aerial Images. [online] Available at: https://arxiv.org/abs/1905.12886 [Accessed 14 

March 2022] 

Zhu, P., 2018. Vision Meets Drones: A Challenge. [online] Available at: 

https://arxiv.org/abs/1804.07437 [Accessed 13 March 2022] 

Zhu, Z., Ren, X., & Chen, Z., 2017. Integrated detection and tracking of workforce 

and equipment from construction jobsite videos. Automation in Construction, 81, 161–

171. 

 



 

 

APPENDICES 

 

APPENDIX A: YOLOv4.ipynb 

 

# Install YOLOv4 Dependencies 

!git clone https://github.com/roboflow-ai/pytorch-YOLOv4.git 

----- 

%cd /content/pytorch-YOLOv4 

!pip install -r requirements.txt 

# This restarts the runtime--ignore any error messages 

import os 

os.kill(os.getpid(), 9) 

----- 

# downloading the yolov4 weights that have already been converted

 to PyTorch 

!pip install --upgrade --no-cache-dir gdown 

!gdown https://drive.google.com/uc?id=1li3dsDc9EuLwbN-

9rZ408gWs6cD1-Yhf 

----- 

#Import and Register Custom YOLOv4 Data 

%cd /content/ 

# This cell exports the dataset to Colab via the link provided 

!curl -

L "https://app.roboflow.com/ds/uCXMgffbyX?key=qhQQA1miJR" > robof

low.zip; unzip roboflow.zip; rm roboflow.zip 

----- 

%cp train/_annotations.txt train/train.txt 

%cp train/_annotations.txt train.txt 

%mkdir data 

%cp valid/_annotations.txt data/val.txt 

%cp valid/*.jpg train/ 

----- 

def file_len(fname): 

  with open(fname) as f: 

    for i, l in enumerate(f): 

      pass 

  return i + 1 

https://github.com/roboflow-ai/pytorch-YOLOv4.git


 

 

----- 

num_classes = file_len('train/_classes.txt') 

 

# Printing the number of classes to be detected 

print(num_classes) 

----- 

#Train Custom YOLOv4 Detector 

# Start training 

#-b batch size (keeping this low (2-

4) for training to work properly) 

#-

s number of subdivisions in the batch, this was more relevant for

 the darknet framework 

#-l learning rate 

#-g direct training to the GPU device 

#pretrained invoke the pretrained weights that we downloaded abov

e 

#classes - number of classes 

#dir - where the training data is 

#epoch - how long to train for 

!python ./pytorch-YOLOv4/train.py -b 2 -s 1 -l 0.001 -g 0 -

pretrained ./yolov4.conv.137.pth -classes {num_classes} -

dir ./train -epochs 50 

----- 

# Looking at the weights that our model has saved during training 

!ls checkpoints 

----- 

#Inference with YOLOv4 Saved Weights 

# Choose random test image 

import os 

test_images = [f for f in os.listdir('test') if f.endswith('.jpg'

)] 

import random 

img_path = "test/" + random.choice(test_images); 

----- 

%%time 

# The epoch can be changed here for inference 



 

 

!python /content/pytorch-

YOLOv4/models.py {num_classes} checkpoints/Yolov4_epoch50.pth {im

g_path} test/_classes.txt 

----- 

#visualize inference 

from IPython.display import Image 

Image('predictions.jpg') 

  



 

 

APPENDIX B: Detectron2.ipynb 

 

#Install Detectron2 Dependencies 

# install dependencies: (use cu101 because colab has CUDA 10.1) 

!pip install -U torch==1.5 torchvision==0.6 -

f https://download.pytorch.org/whl/cu101/torch_stable.html  

!pip install cython pyyaml==5.1 

!pip install -

U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=Py

thonAPI' 

import torch, torchvision 

print(torch.__version__, torch.cuda.is_available()) 

!gcc --version 

# opencv is pre-installed on colab 

----- 

# install detectron2: 

!pip install detectron2==0.1.3 -f  

https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.5/i

ndex.html 

----- 

# You may need to restart your runtime prior to this, to let your

 installation take effect 

# Some basic setup: 

# Setup detectron2 logger 

import detectron2 

from detectron2.utils.logger import setup_logger 

setup_logger() 

 

# import some common libraries 

import numpy as np 

import cv2 

import random 

from google.colab.patches import cv2_imshow 

 

# import some common detectron2 utilities 

from detectron2 import model_zoo 

from detectron2.engine import DefaultPredictor 

from detectron2.config import get_cfg 

https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.5/index.html
https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.5/index.html


 

 

from detectron2.utils.visualizer import Visualizer 

from detectron2.data import MetadataCatalog 

from detectron2.data.catalog import DatasetCatalog 

----- 

#Import and Register Custom Detectron2 Dat

a 

!curl -

L "https://app.roboflow.com/ds/76cWf3eZy2?key=5f10P94N1N" > robof

low.zip; unzip roboflow.zip; rm roboflow.zip 

----- 

from detectron2.data.datasets import register_coco_instances 

register_coco_instances("my_dataset_train", {}, "/content/train/_

annotations.coco.json", "/content/train") 

register_coco_instances("my_dataset_val", {}, "/content/valid/_an

notations.coco.json", "/content/valid") 

register_coco_instances("my_dataset_test", {}, "/content/test/_an

notations.coco.json", "/content/test") 

----- 

#visualize training data 

my_dataset_train_metadata = MetadataCatalog.get("my_dataset_train

") 

dataset_dicts = DatasetCatalog.get("my_dataset_train") 

 

import random 

from detectron2.utils.visualizer import Visualizer 

 

for d in random.sample(dataset_dicts, 3): 

    img = cv2.imread(d["file_name"]) 

    visualizer = Visualizer(img[:, :, ::-

1], metadata=my_dataset_train_metadata, scale=0.5) 

    vis = visualizer.draw_dataset_dict(d) 

    cv2_imshow(vis.get_image()[:, :, ::-1]) 

----- 

#Train Custom Detectron2 Detector 

#Importing our own Trainer Module here to use the COCO validation

 evaluation during training. Otherwise no validation eval occurs. 

 



 

 

from detectron2.engine import DefaultTrainer 

from detectron2.evaluation import COCOEvaluator 

 

class CocoTrainer(DefaultTrainer): 

 

  @classmethod 

  def build_evaluator(cls, cfg, dataset_name, output_folder=None)

: 

 

    if output_folder is None: 

        os.makedirs("coco_eval", exist_ok=True) 

        output_folder = "coco_eval" 

 

    return COCOEvaluator(dataset_name, cfg, False, output_folder) 

----- 

#from .detectron2.tools.train_net import Trainer 

#from detectron2.engine import DefaultTrainer 

# select from modelzoo here: https://github.com/facebookresearch/

detectron2/blob/master/MODEL_ZOO.md#coco-object-detection-

baselines 

 

from detectron2.config import get_cfg 

#from detectron2.evaluation.coco_evaluation import COCOEvaluator 

import os 

 

cfg = get_cfg() 

cfg.merge_from_file(model_zoo.get_config_file("COCO-

Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml")) 

cfg.DATASETS.TRAIN = ("my_dataset_train",) 

cfg.DATASETS.TEST = ("my_dataset_val",) 

 

cfg.DATALOADER.NUM_WORKERS = 4 

cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-

Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml")  # Let training i

nitialize from model zoo 

cfg.SOLVER.IMS_PER_BATCH = 4 

cfg.SOLVER.BASE_LR = 0.001 

 



 

 

cfg.SOLVER.WARMUP_ITERS = 1000 

cfg.SOLVER.MAX_ITER = 1500 #adjust up if val mAP is still rising,

 adjust down if overfit 

cfg.SOLVER.STEPS = (1000, 1500) 

cfg.SOLVER.GAMMA = 0.05 

cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 64 

cfg.MODEL.ROI_HEADS.NUM_CLASSES = 4 # number of classes + 1 

 

cfg.TEST.EVAL_PERIOD = 500 

 

os.makedirs(cfg.OUTPUT_DIR, exist_ok=True) 

trainer = CocoTrainer(cfg) 

trainer.resume_or_load(resume=False) 

trainer.train() 

----- 

# Look at training curves in tensorboard: 

%reload_ext tensorboard 

%tensorboard --logdir output 

----- 

#test evaluation 

from detectron2.data import DatasetCatalog, MetadataCatalog, buil

d_detection_test_loader 

from detectron2.evaluation import COCOEvaluator, inference_on_dat

aset 

 

cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth

") 

cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.85 

predictor = DefaultPredictor(cfg) 

evaluator = COCOEvaluator("my_dataset_test", cfg, False, output_d

ir="./output/") 

val_loader = build_detection_test_loader(cfg, "my_dataset_test") 

inference_on_dataset(trainer.model, val_loader, evaluator) 

----- 

#Inference with Detectron2 Saved Weights 

%ls ./output/ 

----- 



 

 

cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth

") 

cfg.DATASETS.TEST = ("my_dataset_test", ) 

cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7   # set the testing t

hreshold for this model 

predictor = DefaultPredictor(cfg) 

test_metadata = MetadataCatalog.get("my_dataset_test") 

----- 

from detectron2.utils.visualizer import ColorMode 

import glob 

 

for imageName in glob.glob('/content/test/*jpg'): 

  im = cv2.imread(imageName) 

  outputs = predictor(im) 

  v = Visualizer(im[:, :, ::-1], 

                metadata=test_metadata,  

                scale=0.8 

                 ) 

  out = v.draw_instance_predictions(outputs["instances"].to("cpu"

)) 

  cv2_imshow(out.get_image()[:, :, ::-1]) 

 

  



 

 

Appendix C: EfficientDet.ipynb 

  

#Set up EfficientDet Dependencies 

! git clone https://github.com/roboflow-

ai/Monk_Object_Detection.git 

----- 

#Set up library requirements 

! cd Monk_Object_Detection/3_mxrcnn/installation && cat requireme

nts_colab.txt | xargs -n 1 -L 1 pip install 

----- 

#fixed version of tqdm output for Colab 

!pip install --

force https://github.com/chengs/tqdm/archive/colab.zip 

#IGNORE restart runtime warning 

!pip install efficientnet_pytorch 

!pip install tensorboardX 

----- 

#Import Custom EfficientDet Data 

#Outputing dataset in Coco Json format 

!curl -

L "https://app.roboflow.com/ds/76cWf3eZy2?key=5f10P94N1N" > robof

low.zip; unzip roboflow.zip; rm roboflow.zip 

----- 

%ls 

----- 

#jpg images and some coco json annotations 

%ls train 

----- 

!mkdir construction_objects 

!mkdir construction_objects/annotations 

!mkdir construction_objects/Annotations 

!mkdir construction_objects/Images 

----- 

%cp train/_annotations.coco.json construction_objects/annotations

/instances_Images.json 

%cp train/*.jpg construction_objects/Images/ 

----- 



 

 

#Train Custom EfficientDet Detector 

import os 

import sys 

sys.path.append("Monk_Object_Detection/4_efficientdet/lib/"); 

----- 

from train_detector import Detector 

----- 

gtf = Detector(); 

----- 

#directs the model towards file structure 

root_dir = "./"; 

coco_dir = "construction_objects"; 

img_dir = "./"; 

set_dir = "Images"; 

----- 

gtf.Train_Dataset(root_dir, coco_dir, img_dir, set_dir, batch_siz

e=8, image_size=512, use_gpu=True) 

----- 

gtf.Model(); 

----- 

gtf.Set_Hyperparams(lr=0.0001, val_interval=1, es_min_delta=0.0, 

es_patience=0) 

----- 

%%time 

gtf.Train(num_epochs=15, model_output_dir="trained/"); 

----- 

#Inference with Detectron2 Saved Weights 

import os 

import sys 

sys.path.append("Monk_Object_Detection/4_efficientdet/lib/"); 

----- 

from infer_detector import Infer 

----- 

gtf = Infer(); 

----- 

#trained model weights are in here in onxx format 

gtf.Model(model_dir="trained/") 

----- 



 

 

#extract class list from our annotations 

import json 

with open('train/_annotations.coco.json') as json_file: 

    data = json.load(json_file) 

class_list = [] 

for category in data['categories']: 

  class_list.append(category['name']) 

----- 

class_list 

----- 

%%time 

test_images = [f for f in os.listdir('test') if f.endswith('.jpg'

)] 

import random 

img_path = "test/" + random.choice(test_images); 

duration, scores, labels, boxes = gtf.Predict(img_path, class_lis

t, vis_threshold=0.2); 

----- 

from IPython.display import Image 

Image(filename='output.jpg') 

----- 

#Export Trained Weights 

#export trained model and mount Google Drive 

from google.colab import drive 

drive.mount('/content/drive') 

----- 

%mkdir trained_export 

%cp ./trained/signatrix_efficientdet_coco.onnx ./trained_export/s

ignatrix_efficientdet_coco_$(date +%F-%H:%M).onnx 

%cp ./trained/signatrix_efficientdet_coco.pth ./trained_export/si

gnatrix_efficientdet_coco_$(date +%F-%H:%M).pth 

%mv ./trained_export/* /content/drive/My\ Drive/ 

----- 

#Reloading Trained Weights after Export 

#export trained model 

from google.colab import drive 

drive.mount('/content/drive') 

----- 



 

 

#our fork of the Tessellate-Imaging image detection library 

#!rm -rf Monk_Object_Detection 

! git clone https://github.com/roboflow-

ai/Monk_Object_Detection.git 

----- 

#Set up library requirments 

! cd Monk_Object_Detection/3_mxrcnn/installation && cat requireme

nts_colab.txt | xargs -n 1 -L 1 pip install 

 

#fixed version of tqdm output for Colab 

!pip install --

force https://github.com/chengs/tqdm/archive/colab.zip 

!pip install efficientnet_pytorch 

!pip install tensorboardX 

#IGNORE restart runtime warning 

----- 

#recover trained weights 

!mkdir '/trained' 

!cp '/content/drive/MyDrive/signatrix_efficientdet_coco_2022-03-

31-08:14.onnx' '/trained/signatrix_efficientdet_coco.onnx' 

!cp '/content/drive/MyDrive/signatrix_efficientdet_coco_2022-03-

31-08:14.pth' '/trained/signatrix_efficientdet_coco.pth' 

----- 

import os 

import sys 

sys.path.append("Monk_Object_Detection/4_efficientdet/lib/"); 

----- 

from infer_detector import Infer 

gtf = Infer(); 

----- 

#trained model weights are in here in onxx format 

gtf.Model(model_dir="/trained") 

----- 

#download some test data 

!curl -

L "https://app.roboflow.com/ds/76cWf3eZy2?key=5f10P94N1N" | jar -

x 

----- 

from google.colab import drive 



 

 

drive.mount('/content/drive') 

----- 

!ls test 

----- 

#extract class list from our annotations 

import json 

with open('train/_annotations.coco.json') as json_file: 

    data = json.load(json_file) 

class_list = [] 

for category in data['categories']: 

  class_list.append(category['name']) 

----- 

class_list 

----- 

%%time 

img_path = "/content/test/zl303_jpg.rf.1587c25920f08f4ff394d8b5ca

ce1b2f.jpg"; 

duration, scores, labels, boxes = gtf.Predict(img_path, class_lis

t, vis_threshold=0.2); 

----- 

!ls test 

----- 

from IPython.display import Image 

Image(filename='output.jpg')  

  



 

 

Appendix D: Ground truth images 

 

 

Figure D-1: Image 1 

 

 

Figure D-2: Image 2  



 

 

 

Figure D-3: Image 3 

 

 

Figure D-4: Image 4 

 



 

 

 

Figure D-5: Image 5 

 

 

Figure D-6: Image 6 

 



 

 

 

Figure D-7: Image 7 

 

 

Figure D-8: Image 8 



 

 

 

Figure D-9: Image 9 

 

 

Figure D-10: Image 10 

  



 

 

Appendix E: Image dataset health check 

 

 

Figure E-1: Images and annotations health 

 

 

Figure E-2: Class balances 

 

 

Figure E-3: Aspect ratio distribution 

 

 

Figure E-4: Image size count 

 



 

 

 

Figure E-5: Distribution of image size 

 

 

Figure E-6: Annotation heat map for slogan 



 

 

 

Figure E-7: Annotation heat map for person 

 

 

Figure E-8: Annotation heat map for helmet 



 

 

 

Figure E-9: Annotation heart map for vest 

 

 

Figure E-10: Count histogram for slogan 



 

 

 

Figure E-11: Count histogram for person 

 

 

Figure E-12: Count histogram for helmet 

 



 

 

 

Figure E-13: Count histogram for vest 

  



 

 

Appendix F: YOLOv4 results 

 

 

Figure F-1: YOLOv4 results 1 

 

 

Figure F-2: YOLOv4 results 2 

 

 



 

 

 

Figure F-3: YOLOv4 results 3 

 

 

Figure F-4: YOLOv4 results 4 



 

 

 

Figure F-5: YOLOv4 results 5 

 

 

Figure F-6: YOLOv4 results 6 



 

 

 

Figure F-7: YOLOv4 results 7 

 

 

Figure F-8: YOLOv4 results 8 



 

 

 

Figure F-9: YOLOv4 results 9 

 

 

Figure F-10: YOLOv4 results 10 



 

 

Appendix G: Detectron2 results 

 

 

Figure G-1: Detectron2 results 1 

 

 

Figure G-2: Detectron2 results 2 



 

 

 

Figure G-3: Detectron2 results 3 

 

 

Figure G-4: Detectron2 results 4 



 

 

 

Figure G-5: Detectron2 results 5 

 

 

Figure G-6: Detectron2 results 6 



 

 

 

Figure G-7: Detectron2 results 7 

 

 

Figure G-8: Detectron2 results 8 



 

 

 

Figure G-9: Detectron2 results 9 

 

 

Figure G-10: Detectron2 results 10 



 

 

Appendix H: EfficientDet results 

 

 

Figure H-1: EfficientDet Results 1 

 

 

Figure H-2: EfficientDet Results 2 



 

 

 

Figure H-3: EfficientDet Results 3 

 

 

Figure H-4: EfficientDet Results 4 



 

 

 

Figure H-5: EfficientDet Results 5 

 

 

Figure H-6: EfficientDet Results 6 



 

 

 

Figure H-7: EfficientDet Results 7 

 

 

Figure H-8:  EfficientDet Results 8 



 

 

 

Figure H-9: EfficientDet Results 9 

 

 

Figure H-10: EfficientDet Results 10 



 

 

 Appendix I: YOLOv4 Ground truth-Prediction Table 

 

 

Table I-1: Person Ground truth-Prediction Table 

Image Ground Truth Total Prediction

a 1

b 1

c 1

d 0

e 0

a 1

b 1

c 1

d 1

e 1

a 1

b 1

c 1

d 1

e 0

f 0

g 0

a 1

b 1

c 1

d 1

e 1

f 1

g 1

h 1

i 0

j 0

k 0

l 0

a 1

b 1

c 1

d 1

e 1

f 1

g 1

h 0

i 0

a 1

b 1

c 1

d 1

e 1

f 1

a 1

b 1

c 1

d 1

e 1

f 1

g 1

h 1

i 0

10 a 1 0

Grand total 54 41

Accuracy 75.93%

7 9

8 6

9 9

3 7

2 5

6 12

PERSON

1 5



 

 

 

Table I-2: Helmet Ground truth-Prediction Table 



 

 

 

Table I-3: Vest Ground truth-Prediction Table 

 

 

Table I-4: Slogan Ground truth-Prediction Table 

 

  

Image Ground Truth Total Prediction

a 1

b 1

c 1

d 1

a 1

b 1

c 1

d 0

e 0

a 1

b 1

c 1

d 1

e 1

f 1

g 0

Grand Total 16 13

Accuracy 81.25%

3 7

VEST

1 4

2 5

Image Ground Truth Total Prediction

1 a 1 0

a 1

b 1

c 1

a 0

b 0

c 0

d 0

a 0

b 0

Grand total 10 3

Accuracy 30.00%

25

SLOGAN

3 3

4 4



 

 

Appendix J: Detectron2 Ground truth-Prediction Table 

 

 

Table J-1: Person Ground truth-Prediction Table 

Image Ground Truth Total Prediction

a 1

b 1

c 1

d 1

e 1

a 1

b 1

c 1

d 1

e 1

a 1

b 1

c 1

d 1

e 1

f 1

g 1

a 1

b 1

c 1

d 1

e 1

f 1

g 1

h 1

i 1

j 1

k 1

l 1

a 1

b 1

c 1

d 1

e 1

f 1

g 1

h 0

i 0

a 1

b 1

c 1

d 1

e 1

f 1

a 1

b 1

c 1

d 1

e 1

f 1

g 1

h 1

i 0

10 a 1 1

Grand total 54 51

Accuracy 94.44%

2 5

1 5

7 9

3 7

PERSON

8 6

9 9

6 12



 

 

 

Table J-2: Helmet Ground truth-Prediction Table 

Image Ground Truth Total Prediction

a 1

b 1

c 1

d 1

e 1

a 1

b 1

c 1

d 1

e 1

a 1

b 1

c 1

d 0

e 0

f 0

a 1

b 1

c 1

d 1

e 1

f 1

g 0

h 0

i 0

j 0

a 1

b 1

c 1

d 1

e 1

f 0

g 0

h 0

i 0

a 1

b 1

c 1

d 1

e 1

f 1

a 1

b 1

c 1

d 1

e 1

f 1

g 0

h 0

10 a 1 1

Grand total 50 37

Accuracy 74.00%

5

2

1

7 9

3

6

6

10

HELMET

8 6

9 8

5



 

 

 

Table J-3: Vest Ground truth-Prediction Table 

 

 

Table J-4: Slogan Ground truth-Prediction Table 

  

Image Ground Truth Total Prediction

a 0

b 0

c 0

d 0

a 0

b 0

c 0

d 0

e 0

a 0

b 0

c 0

d 0

e 0

f 0

g 0

Grand Total 16 0

Accuracy 0.00%

1

2 5

4

3 7

VEST

Image Ground Truth Total Prediction

1 a 1 1

a 1

b 1

c 1

a 1

b 1

c 0

d 0

a 0

b 0

Grand total 10 6

Accuracy 60.00%

3 3

4 4

2

SLOGAN

5



 

 

Appendix K: Average detection time 

 

 

Table K-1: Average detection time for YOLOv4 

 

 

Table K-2: Average detection time for EfficientDet 


