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ABSTRACT 
 
 

DEVELOPMENT OF ANALYTICAL SOLUTION FOR THERMO-
MECHANICAL STRESSES OF MULTILAYERED PRESSURE 

VESSEL BASED ON RECURSIVE ALGORITHM 
 
 

Sim Lih Chi 
 
 
 
 
 
 

Multilayered pressure vessel is commonly used under harsh conditions, 

particularly in high pressure and high temperature environment. Thus, the 

evaluation of the stresses induced within the multilayered pressure vessel’s wall 

is crucial to ensure safe operation. Recent studies showed that analytical 

solution based on recursive algorithm can be used to obtain thermo-mechanical 

stresses of multilayered structure efficiently. However, there is no study has 

been conducted for the derivation of analytical solutions for multilayered 

spherical pressure vessel and cylindrical pressure vessel under generalized 

plane strain condition. Hence, the present work aimed to derive the analytical 

solution by using recursive algorithm for multilayered cylindrical and spherical 

pressure vessels which are subjected to thermo-mechanical loading. Firstly, the 

analytical solution for temperature distribution across the multilayered vessel 

wall was derived. Next, the analytical solutions for radial, tangential and axial 

stresses distribution across the multilayered vessel wall were derived. After that, 

verification was carried out on the proposed analytical solutions by using two 

finite element analysis models reported in literatures. The simulated results 

were in good agreement with the output from the proposed analytical solutions. 

In addition, the validated analytical solutions were demonstrated as the 
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alternative method to analyze the stresses of functionally graded material 

(FGM) cylindrical and spherical pressure vessel under thermo-mechanical 

loading. In general, the stresses results obtained based on present proposed 

analytical solutions were compared with the FGM exact solution reported in 

literatures and the overall percentage of difference is less than 1%. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1. Background of Study 

 

Pressure vessel is a common equipment used in different industries for 

storing and transporting energy because more energy can be stored through 

compression of fluid (Mukherjee, 2019). It plays an important role in power 

production industry where higher operating pressure and temperature brings 

better thermal efficiency (Ohji and Haraguchi, 2017). Other than that, pressure 

vessel can be built for lethal services where it is used to contain corrosive or 

poisonous fluid (ASME, 2017). Owing to the hazardous operating nature of 

pressure vessel, prevention of pressure vessel’s failure has been a major area of 

study since early days and it has been a growing concern (Lancaster, 1973). 

 

One of the main strategies to run pressure vessel under harsh conditions 

is to construct cladded or coated pressure vessel, composite pressure vessel or 

functionally graded material (FGM) pressure vessel. These pressure vessels 

with multilayered design provides better resistance to high temperature, high 

pressure, corrosive and erosive environment with lower weight. Therefore, 

pressure vessel with multilayered design is often used in industries with extreme 

operating conditions such as cryogenic services, compressed gas services, 

aerospace industry, marine industry and power generation industry (El-Galy et 



2 
 

al., 2019; Mahamood and Akinlabi, 2017). In general, these pressure vessels are 

in cylindrical and spherical shapes. The spherical shape structure can evenly 

distribute the stresses due to its uniform profile. Therefore, the spherical shape 

structure can be made thinner as compared to cylindrical shape. Moreover, it 

has low surface area-to-volume ratio which is beneficial for storage application 

because it minimizes heat transfer to the surrounding as compared to other 

pressure vessel profiles. However, the fabrication of spherical pressure vessel is 

costly and difficult. Thus, cylindrical shape pressure vessel is the alternative 

option that provides combination of acceptable performance, economical and 

flexible construction (Megyesy and Buthod, 2008; Toudehdehghan and Hong, 

2019). 

 

1.2. Importance of Study 

 

Multilayered pressure vessel is designed to work in harsh conditions 

where failure of the vessel during operation can cause great financial loss and 

put human lives at stake (Spence and Nash, 2004). So, it is important to evaluate 

the structural integrity of multilayered pressure vessel where an essential part 

of evaluating the structural integrity is to obtain the stresses induced within the 

wall of multilayered pressure vessel.  

 

The analysis of multilayered pressure vessel’s structure can be done 

through analytical and numerical method. However, when the number of layer 

of vessel’s wall to be analyzed increases, obtaining the solution through 

analytical mean is more efficient. It is straight-forward and required minimal 
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computing effort as compared to using numerical tools (Chen and Ding, 2001). 

Furthermore, the analytical equations formed the fundamental mathematical 

model that describes a physical phenomenon. Based on the analytical equations, 

design codes and numerical tools are developed as the straightforward and 

practical alternatives to design and analyze a structure. Therefore, exploring 

analytical solution not only helps in understanding a physical phenomenon, it 

also provides more insight into the relevant design codes and numerical tools. 

 

Due to the complex structure and running conditions of multilayered 

pressure vessel, the mathematical derivation involved in obtaining the stresses 

and displacements induced is complicated (Wang et al., 2012). There are 

researchers that explored different methodologies to realize the analysis of 

multilayered pressure vessel through analytical mean. From the literature survey, 

Shi et al. (2007) and Yeo et al. (2017) claimed that analytical solution derived 

based on recursive algorithm is simple, convenient and computationally 

efficient. Thus, proposing the analytical solution based on recursive algorithm 

to obtain the stresses induced within the wall of multilayered pressure vessel 

seems to be promising and feasible.  

 

1.3. Problem Statement 

 

Many researchers have explored the methodology to evaluate the 

performance of composite vessels and pipes under extreme environment based 

on analytical method. Recently, some researchers have introduced an efficient 

recursive algorithm to solve the thermo-mechanical problem of multilayered 
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hollow cylinder. The method was first reported by Shi et al. (2007) and later 

Yeo et al. (2017) modified the recursive algorithm to solve the thermo-

mechanical problem of multilayered hollow cylinder. However, the solution 

proposed by Yeo et al. (2017) only applicable for plane strain condition where 

the axial strain has been ignored. Unlike tube and pipe, cylindrical pressure 

vessel comes with closed ends and the thermo-mechanical stress-strain of a 

multilayered pressure vessel will be affected by the axial strain developed due 

to the closed end design of the vessel (Wang et al., 2012). Besides that, no 

literature has reported the thermo-elastic formulation of multilayered spherical 

pressure vessel. Thus, the focus of the project is on the derivation of analytical 

solutions for determining the stresses distribution of multilayered cylindrical 

pressure vessel with closed ends and spherical pressure vessel that are subject 

to thermal and pressure loading.  

 

1.4. Aim and Objectives 

 

The aim of this research is to develop an analytical solution to solve the 

stresses of multilayered cylindrical and spherical pressure vessel under thermo-

mechanical loading based on recursive algorithm. Listed below are the 

objectives to be achieved in this project: 

1) To derive the analytical solution based on recursive algorithm for 

multilayered hollow cylindrical and spherical pressure vessels under 

steady state thermo-mechanical loading. 

2) To compare results obtained by using the proposed analytical solutions 

with the finite element results. 
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3) To evaluate the proposed analytical solutions to approximate the 

solution for the thermo-mechanical problem of cylindrical and spherical 

pressure vessel made of functionally graded material (FGM). 

 

1.5. Scope of Dissertation 

 

This project focus on developing an analytical solution to identify 

stresses within the hollow cylindrical and spherical multilayered pressure vessel 

under steady state thermo-mechanical loadings. The assumptions, boundary 

conditions and interface conditions are first defined. Subsequently, a novel 

recursive algorithm is introduced to formulate the analytical solutions to solve 

the multilayered cylindrical and spherical pressure vessel problems. Next, the 

derived analytical solutions are validated through comparison with the results 

obtained from finite element analysis based on models reported in literatures. 

Lastly, the validated analytical solutions are demonstrated as an alternative 

solution to examine the stresses of FGM cylindrical and spherical pressure 

vessel reported in literatures.  

 

1.6. Outline of Dissertation 

 

Firstly, Chapter 1 shows the background of study, importance of study 

and problem statement followed by the aim and objectives of the current 

research. Based on these introductory content of the research, the relevant 

literatures are discussed and reviewed.  
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Next, Chapter 2 presents the literature survey on the background of 

pressure vessel, multilayered pressure vessel, analysis of pressure vessel’s 

design and theories involved in deriving the analytical equations.  

 

Chapter 3 describes the derivation of the proposed analytical solutions. 

It starts with defining the assumptions, notations, boundary conditions and 

interface conditions, followed by the derivation of analytical solution for 

temperature and stresses distribution for multilayered cylindrical pressure 

vessel. Finally, the derivation of analytical solution for temperature and stresses 

distribution for multilayered spherical pressure vessel are proposed. 

 

Subsequently, the validation of the derived analytical solutions is carried 

out in Chapter 4. Two models adopted from literatures are constructed and the 

results generated by using the proposed analytical solutions and finite element 

analysis are compared and verified. The validated analytical solutions are used 

as the alternative solution to approximate the analytical solutions for FGM 

pressure vessels and the results are compared with the findings reported in 

literatures.  

 

Finally, all findings are summarized in Chapter 5 along with the 

recommendation for future study.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1. Pressure vessel 

 

In general, any closed structure that contains pressure substantially 

different from ambient pressure is known as ‘pressure vessel’. It can come in 

different shapes such as cylindrical, spherical and conical. However, the 

common shapes of pressure vessel structure employed are sphere and cylinder. 

Spherical shape is favorable because it enables even stress distribution on both 

internal and external surface due to its uniform profile. It allows a thinner 

structure as compared to cylindrical shape. Other than that, spherical shape has 

a high volume-to-surface area ratio that minimizes heat transfer to surrounding. 

This is important when the pressure vessel is used to store fluid at temperature 

different from ambient. However, fabrication of spherical pressure vessel can 

be costly and difficult. Therefore, cylindrical pressure vessel became the more 

common option due to the ease of fabrication and flexibility (Toudehdehghan 

and Hong, 2019; Arslan et al., 2021). As compared to spherical shape, 

cylindrical shape gives better geometrical flexibility because both length and 

diameter can be altered to set the volume of the cylindrical pressure vessel. On 

top of that, cylindrical pressure vessel comes with different end design to form 

the enclosure. Designer can balance between performance and cost to decide 

using which type of end design. In ascending order of the ability to resist 
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pressure, the main types of design for cylindrical pressure vessel closed end are 

flat, torispherical, semi ellipsoidal and hemispherical (Lawate and Deshmukh, 

2015; Thattil and Pany, 2017; ASME, 2017). Figure 2.1 and 2.2 illustrate a 

cylindrical and spherical pressure vessel.  

 

 

Figure 2.1: Plan and elevation view of a horizontal pressure vessel (Parisher and 

Rhea, 2012) 
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Figure 2.2: Elevation view of a spherical pressure vessel (Arabzadeh et al., 

2018) 

 

There is a wide range of material selection that can be used to construct 

pressure vessel, for example metal alloys, engineering composites, engineering 

polymers, ceramics and so on. Metal alloys such as carbon steels, low alloy 

steels and stainless steels are commonly used to construct pressure vessel 

because of the material’s ductility and toughness that help in resisting sudden 

rupture (Chattopadhyay, 2008). The vessel’s wall thickness will increase with 

higher operating temperature and pressure. When the operating environment 

gets more challenging, increasing wall thickness of single layer or solid wall 

vessel became impractical and is no longer economically feasible (Khurmi and 

Gupta, 2005). 

 



10 
 

2.2. Analysis of Pressure Vessel’s Design 

 

Pressurized equipment contained high density energy and hence any 

failure of it can be a catastrophic event. The incident shown in Figure 2.3 is the 

boiler explosion on SS Sultana, it is one of the most infamous accident where it 

has caused the loss of 1238 lives in year 1865. Other than that, there are a lot of 

documented incidents that have led to the initial development of design rule to 

govern and regulate the construction of pressure vessel (Spence and Nash, 2004). 

It is observable that the established design rule such as design codes, standards 

and acts has helped to reduce the number of failure cases since the passing of 

factory act in different countries during 1800s (Vakkilainen, 2017). These codes 

and standards are developed from theoretical knowledge, experimental results, 

numerical study and industry’s practical experience. It is the compilation of 

existing knowledge that is used to ensure reliable construction of pressure vessel. 

It covers different aspects in the realization of pressure vessel construction. 

Taking ASME BPVC Section VIII for example, it provides prohibition and 

recommended practice for the design, fabrication and inspection of unfired 

pressure vessel (ASME, 2017). Still, there are parts that are not spelled out in 

pressure vessel design code due to the wide range of design parameters that can 

be manipulated such as uncommon shape, material, joint, operating conditions 

and so on. The verification of these new scenarios needs to be done through 

either analytical, numerical or experimental mean (ASME, 2017). For instance, 

Li et al. (2020) conducted the experiment to study the bursting of small-sized 

pressure vessel containing high pressure carbon dioxide for vessel explosion 

type named ‘boiling liquid expanding vapor explosion’. By attaching small 
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spherical steel balls as prefabricated fragments on to the V-shaped grooves and 

X-shaped grooves of the pressure vessel, the bursting data can be collected 

through the dispersion and distribution of these prefabricated fragments. Other 

than that, Zhang et al. (2018b) studied the effect of cold-stretching on buckling 

behavior of cylindrical vessel under external pressure by using experimental and 

numerical simulation method. Sample vessels were fabricated by using different 

out-of-roundness ratio under both cold-stretching and without cold-stretching 

conditions. The vessels were scanned by using 3D laser scanner to convert into 

FEM model and the generated results from experiment and numerical 

simulation agreed with each other. On the other hand, Abdalla and Casagrande 

(2020) derived a novel analytical solution based on augmented Lagrangian 

formalism and Euler-Lagrange equation for the optimization problem of 

thickness distribution of axisymmetric pressure vessel.     

 

 

Figure 2.3: SS Sultana’s boiler explosion (Spence and Nash, 2004) 

 

Generally, the loadings on pressure vessel can be categorized into two 

types which are pressure loadings and applied forces (Bergman and Calif, 1955). 
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Among these loadings, pressure and thermal are the common and dominant 

loadings. ASME (2017) has been determining the wall thickness of pressure 

vessel based on limiting the structure’s hoop stress to a certain proportion of 

material’s yield strength, ultimate strength or creep rate. It is known as 

‘allowable stress’ of the material at elevated temperature (Braun, 1969; ASME, 

2017). On top of the steady state thermo-mechanical loading, users need to 

select the appropriate analytical procedures if there are other significant stresses 

induced due to special loadings such as wind or seismic loading, geometrical 

profile that will cause localized stresses and so on. In general cases, the effect 

of other minor factors are accounted by the safety factor in material strength and 

the set of design rules (Moss, 2004).  

 

2.3. Multilayered Pressure Vessel and Other Multilayered Engineering 

Applications 

 

Witolla et al. (2016) highlighted that one of the key features for the 

future of pressure vessel is the development of new material used in fabricating 

pressure vessel. Generally, factors that influence material selection of pressure 

vessel are material’s strength, resistance to corrosion, fracture toughness, 

workability, availability and economical consideration (Toudehdehghan and 

Hong, 2019). With the advancement of fabrication technology, a good strategy 

to run pressure vessel under challenging environment is to construct 

multilayered pressure vessel such as coated or cladded, composite and 

functionally graded material (FGM) pressure vessel.  
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Solid wall vessel can be cladded or coated so that it can have different 

internal and/or external surfaces designed to resist pressure, temperature and 

chemical attack (Zhang et al., 2012; Wang et al., 2015). This case can be 

analyzed as a multilayered scenario. For example, Reinders et al. (2019) 

constructed a thermally insulated tank containing a compressed liquefied gas as 

a multilayered model and described the tank thermal model to predict pressure 

and temperature behavior of the tank when it is exposed to heat.  

 

Composite pressure vessel offers better performance with lighter weight 

as compared to conventional metal alloys vessel (Rao et al., 2012; Nikbakht et 

al., 2018). This is because individual materials can be combined in a vast range 

of combinations to enable us to make better use of the materials’ virtues while 

minimizing the materials’ deficiencies (Harris, 1999). These materials are 

known as composite material and it is an extension to conventional material 

such as plastics, ceramics and metals. It is a multiphase material made from two 

or more constituents that gives unique properties (Mukherjee, 2019). This is 

also the reason that composite pressure vessel has better flexibility because it 

has wider range of parameters that can affect its structural behavior as compared 

to isotropic material. Composite pressure vessel can be viewed as a multilayered 

structure where the wall of the vessel is constructed by bonding different layers 

of laminates (Zhang et al., 2012; Mahdy et al., 2013; Wang et al., 2012). The 

application of composite pressure vessel are vessel that is used for gaseous 

hydrogen storage (Nebe et al., 2021) and vessel that is used to contain high 

pressure fluid in aerospace’s propulsion system (Alam et al., 2020).  
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Next, FGM is an advanced type of composite material where the 

material properties were tailored to vary gradually with space. It helps to 

eliminate the sharp transition of material properties at interface of multilayered 

construction that can cause delamination due to discontinuity stress which is a 

common problem when using composite material for structural purpose (Bhavar 

et al., 2017; Toudehdehghan and Hong, 2019; Zhang et al., 2012). In addition, 

FGM pressure vessel can have different types of material properties variation 

function such as linear function, exponential function, power-law function and 

sigmoid function which can be optimized to suit to different operating scenarios 

(Nikbakht et al., 2019; Gupta and Talha, 2015). As per what reported by 

Mahamood and Akinlabi (2017) and El-Galy et al. (2019), some examples of 

application of FGM are in defense, armory, aerospace and automobile fields. 

Although FGM’s technology is yet to be used in industrial scale, FGM has a 

promising future in application with harsh working environment such as 

pressure vessel, heat exchanger, heat component, rocket heat shield and so on. 

 

Other than cylindrical pressure vessel, there are other multilayered 

hollow cylindrical structure that is common in engineering applications. For 

example, Figure 2.4 shows an underground gas well wall that is formed by 

layers of casing and cement. Zhang et al. (2017) studied the interaction between 

casing-cement sheath-surrounding rocks of underground gas well where it is 

taken as a multilayered cylindrical model. They analyzed the cement sheath 

integrity based on elastoplastic theory because failure of cement sheath due to 

varying pressure and temperature has been a major problem. Other than that, 

insulated pipe, coated pipe or composite pipe problems are often considered by 
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researchers as multilayered long cylinder scenario (Fraldi et al., 2016; Yeo et 

al., 2017). 

 

 

Figure 2.4: Illustration of underground gas well as multilayered hollow cylinder 

scenario 

 

2.4. Analytical Works to Obtain Temperature Distribution and Stresses 

of Multilayered Pressure Vessel  

 

The emergence of composite and FGM material has attracted the interest 

of researchers to investigate structures made of these materials. Among these 

literatures, researchers studied and presented different analytical methods used 

to analyze cylindrical and spherical composite and FGM pressure vessel under 

varies operating conditions. Ghajar and Cengel (2014) gave a good overall 

representation of mathematical modeling of physical problems in Figure 2.5. 

Researchers have been considering different variables, assumptions, solution 
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technique, initial and boundary conditions in their works.  

 

 

Figure 2.5: Mathematical modeling of physical problem (Ghajar and Cengel, 

2014) 

 

There is a vast amount of publications that have demonstrated the 

analysis of composite and FGM cylindrical pressure vessel through analytical 

mean. For example, Zimmerman and Lutz (1999) presented an exact solution 

for the problem of uniformly heated FGM cylinder where the elastic modulus 

and thermal expansion coefficient of the cylinder vary linearly with radius. 

Zhang et al. (2012) obtained the analytical solution of thermo-mechanical 

stresses in a multilayered composite cylindrical pressure vessel with the 

inclusion of closed-end effect. Nejad et al. (2016) has shown that for cylindrical 

pressure vessel fabricated by exponentially varying material, the governing 

differential equation is a second order homogenous differential equation that 

can be solved by using hypergeometric function. Recently, Benslimane et al. 

(2021) presented an analytical solution that can be used to obtain the mechanical 
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displacements and stresses in a thick-walled FGM cylindrical pressure vessel 

under axisymmetric mechanical loading within uniform magnetic field. A 

general expression of elastic modulus and magnetic permeability variation is 

used where it can be applicable to homogenous, power-law and exponentially 

varying material properties in radial direction. They derived and solved the 

second-order Navier’s equation with the inclusion of Lorentz force resulted 

from the magnetic field to determine the displacements and stresses. Similarly, 

considerable amount of literatures was published that studied the structural 

performance of spherical composite and FGM pressure vessel. For example, 

Chen and Lin (2008) presented the analytical solution for cylindrical and 

spherical FGM under pressure loading where the material’s elastic modulus was 

taken as an exponential function in radial direction. Also, Bayat et al. (2012) 

derived the analytical solution to solve thermo-mechanical problem of FGM 

hollow sphere where the material’s elastic modulus, thermal expansion 

coefficient and thermal conductivity are expressed as power law functions in 

radial direction. Under the framework of small displacement and Von Mises 

yield criterion, Akış (2017) obtained the analytical solution to predict the 

yielding of two-layer composite spherical pressure vessel under either internal 

or external pressure. The recent work by Delouei et al. (2020) has given the 

analytical solution to solve two dimensional steady state heat transfer problem 

in a FGM hollow sphere. The conductivity coefficient was treated to be different 

in both radial and peripheral directions. Along with general internal and external 

thermal boundary conditions, the derived solutions were in the form of Bessel 

and Legendre functions.    
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 Researchers have been working on multilayered structure since 1950-an 

(Habip, 1965). Out of all the analytical solutions published to solve multilayered 

problem, Shi et al. (2007), Vedeld and Sollund (2014) and Yeo et al. (2017) 

reported that recursive algorithm is simple and efficient to be applied in solving 

multilayered structure problem. Shi et al. (2007) proposed a simple recursive 

algorithm to solve for the radial and tangential stresses distribution across 

multilayered hollow cylindrical wall loaded with uniform inner and outer 

pressure. On top of the work by Shi et al. (2007), Vedeld and Sollund (2014) 

considered axial loading and thermal stresses across a multilayered hollow 

cylinder, but the temperature distribution was assumed to be uniform across the 

multilayered hollow cylinder. Yeo et al. (2017) extended the analytical solutions 

reported by Shi et al. (2007) and Vedeld and Sollund (2014). They proposed an 

analytical solution for multilayered hollow cylinder under thermo-mechanical 

loading where heat conduction across the cylindrical wall has been considered 

with radial temperature variation. Yet, the analytical solution proposed by Yeo 

et al. (2017) was under plane strain assumption which is suitable to describe the 

cross section of a long cylinder far from any closed end where the axial strain 

is insignificant. For cylindrical pressure vessel, the axial strain is significant due 

to the mechanical loading on the closed end and the thermal loading on the 

overall structure (Wang et al., 2012). Also, the analytical solution to solve 

thermo-mechanical problem of multilayered spherical pressure vessel has not 

been presented in any literature.  
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2.5. Heat Conduction Equations in Cylindrical and Spherical 

Coordinate 

 

Energy can exist in different forms. When there is spatial temperature 

difference, there is a driving force to transfer energy from higher temperature 

system to lower temperature system. This form of energy transfer is termed as 

‘heat’ and an example phenomenon is the cooling of a cup of hot tea to ambient 

temperature. Heat energy originated from the internal energy of molecules 

where the part associated with the kinetic energy of molecules is known as 

sensible heat and the intermolecular forces between molecules that determine 

the phase of the system is known as latent heat. Like what shown in Figure 2.6, 

there are three ways of heat transfer which are conduction, convection and 

radiation (Bergman et al., 2011; Ghajar and Cengel, 2014).  

 

 

Figure 2.6: Conduction, convection and radiation heat transfer (Bergman et al., 

2011) 

 

Conduction is the transfer of energy from high energy particles to low 

energy particles through interactions between the particles. In solid, conduction 

occurs due to the combined effect of molecules’ lattice vibration and energy 
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transport by free electrons. Fourier’s law of heat conduction is the fundamental 

experimental law of heat transfer which was published by Joseph Fourier in year 

1822. It stated that the one directional rate of heat transfer per unit area through 

a plane layer is proportional to the temperature difference across the layer, yet 

inversely proportional to the layer’s thickness. Mathematically, it is expressed 

as Eq. (2.1) where �" is the conduction heat flux rate, � is the layer’s thermal 

conductivity,  
��

��
 is the temperature gradient across the layer and the negative 

sign indicates that the heat flow is in the opposing direction of the temperature 

gradient (Bergman et al., 2011; Ghajar and Cengel, 2014).   

 

�" = −�
��

��
 

(2.1) 

 

On top of the Fourier’s law of heat conduction, the general heat 

conduction governing equation needs to be derived based on the principle of 

conservation of energy applied to a differential control volume in order to 

identify the temperature field for a solid subjected to thermal loading (Bergman 

et al., 2011).   

 



21 
 

 

Figure 2.7: Rectangular differential control volume for heat conduction analysis 

(Bergman et al., 2011) 

 

Figure 2.7 shows a three dimensional rectangular differential control 

volumes where there are energy conduction terms E��  and E��� , energy 

generation term ��  and energy storage term ��� . Applying the principle of 

conservation of energy 

 

E�� + �� − E��� = ��� (2.2) 

 

for  

 

q� = ��
"���� = −�����

��

��
 

(2.3) 

q� = ��
"���� = −�����

��

��
 

(2.4) 

q� = ��
"���� = −�����

��

��
 

(2.5) 
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Thus, the governing equation in Cartesian coordinate can be written as  

 

�

��
��

��

��
� +

�

��
��

��

��
� +

�

��
��

��

��
� + � =  ��

��

��
 

(2.6) 

 

where �, �, �, �, �, �, �, � and � are length of control volume, width of the 

control volume, height of the control volume, temperature, thermal conductivity, 

energy generated per unit volume, density, specific heat capacity and time 

respectively (Bergman et al., 2011).  

 

Figure 2.8 shows the convention of rectangular, cylindrical and 

spherical coordinate. Since this research work studied about cylindrical and 

spherical pressure vessel, it is convenient to express the governing equation in 

terms of cylindrical and spherical coordinate. By using similar approach, the 

principle of conservation of energy is applied to differential volume taken in 

terms of cylindrical and spherical coordinate, Eq. (2.7) is the heat conduction 

governing equation written in cylindrical coordinate while Eq. (2.8) is in 

spherical coordinate (Bergman et al., 2011). 
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(2.8) 

 

where �, ∅ and � are radius, azimuthal angle and polar angle.  
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Figure 2.8: Rectangular, cylindrical and spherical coordinates (Ghajar and 

Cengel, 2014)  

 

2.6. Thermoelasticity 

 

The primary function of engineering structure is to support or transfer 

external load. Stresses developed when the structure is loaded. For a force ∆� 

acting on surface ∆�, the stress, σ can be defined as what shown in Eq. (2.9) 

and it can be resolved into normal and shear components (Boresi and Schmidt, 

2009).  

 

σ = lim
∆�→�

∆�

∆�
 

(2.9) 

 

In order to identify the load-stress relations, three conditions need to be 

derived that are the equations of equilibrium, the compatibility or continuity 

conditions and the constitutive relations. For a loaded structure that has zero 

acceleration, the differential equations of motion of a deformable body 

described the equilibrium state of the body. Other than that, the geometrical 
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compatibility or continuity conditions need to be complied and these are 

represented by strain compatibility equations and strain-displacement relations. 

Lastly, the constitutive equation gives the material response when it is loaded. 

It is the material’s stress-strain relations and thus the load-stress relations can be 

identified (Boresi and Schmidt, 2009).   

 

As shown in Figure 2.9 is a rectangular deformable body where the 

differential equations of motion of the deformable body can be obtained through 

summation of forces and moments.  

 

 

Figure 2.9: Stresses components with body force in rectangular coordinate 

(Boresi and Schmidt, 2009) 

 

For �� , ��  and ��  being the body forces per unit volume in the 

respective directions, ���, ��� and ��� being normal stresses in the respective 

directions, ��� , ��� , ��� , ��� , ���  and  ���  being shear stresses in the 

respective directions, the different equations of motion are 
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Stresses aroused due to deformation of a deformable body, the 

deformation needs to be identified to apply the theory of elasticity. Under small-

displacement theory, the strain-displacement relations are (Boresi and Schmidt, 

2009) 
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where ���, ��� and ��� are normal strains in respective directions, ���, ��� and 

��� are shear strains in respective directions, ��, �� and �� are displacements 

in respective directions. As shown below, the strain compatibility equations of 
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small-displacement theory can be obtained by elimination of the displacement 

components (Boresi and Schmidt, 2009).  

 

�����

���
+

�����

���
= 2

�����

����
 

(2.19) 

�����

���
+

�����

���
= 2

�����

����
 

(2.20) 

�����

���
+

�����

���
= 2

�����

����
 

(2.21) 

�����

����
+

�����

���
=

�����

����
+

�����

����
 

(2.22) 

�����

����
+

�����

���
=

�����

����
+

�����

����
 

(2.23) 

�����

����
+

�����

���
=

�����

����
+

�����

����
 

(2.24) 

 

Subsequently, the stress-strain relations need to be obtained. By using 

principle of conservation of energy, the work done by the stress can be related 

to the change in internal energy that is expressed in terms of strains. For small 

displacement linear elastic isotropic material, the stresses can be written in 

terms of the sum of principal strains which is an invariant and the strains in the 

same direction as the stresses. Therefore, the expression of Eq. (2.26) to Eq. 

(2.37) is generally applicable for any orthogonal curvilinear spatial coordinates 

(Boresi and Schmidt, 2009).   

 

When an isotropic elastic continuum is exposed to thermal loading, it 

has a field of temperature distribution. When the unconstrained isotropic elastic 
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continuum is experiencing a uniform small increase in temperature, it is 

observed that all line elements in the volume undergo equal expansions and the 

line elements maintain their initial directions (Boresi and Schmidt, 2009; 

Hetnarski and Eslami, 2009).  

 

�� = �∆ (2.25) 

 

where � is the thermal expansion coefficient and ∆ is the temperature difference 

measured against the material reference temperature. 

 

The thermal effect is included in the stress-strain relations where 
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and  
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where  � and  � are elastic modulus and Poisson’s ratio. The material properties 

are determined experimentally.  

 

Relative to rectangular coordinate, Boresi and Schmidt (2009) gave the 

general differential equations of equilibrium and strain-displacement relations 

of small displacement theory in any orthogonal curvilinear spatial coordinates 

where �� , ��  and ��  are metric coefficients that are different for different 

coordinate systems.  
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2.6.1. Thermoelasticity in Cylindrical Coordinate  

 

 Figure 3.2 illustrates the section view of a cylindrical pressure vessel. 

As referring to Eq. (2.38) to Eq. (2.46), � = �, � = ∅, � = �, �� = 1, �� = � 

and �� = 1  for cylindrical coordinate. Thus, the equations in cylindrical 

coordinate are (Boresi and Schmidt, 2009) 
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In a large class of engineering problems, the system can sometimes be 

simplified to plane stress, plane strain and generalized plane strain. However, 

these simplifications should be carried out with thorough consideration and 

evaluation to prevent inaccuracy in analysis since there is not a generally 

accepted criterion to determine what should be considered as plane stress, plane 

strain and generalized plane strain scenario (Mijuca, 2006; Kotousov and Wang, 

2002). 

 

2.6.2. Plane Stress, Plane Strain and Generalized Plane Strain 

Assumptions 

 

‘Plane stress’ means that a loaded structure has negligible stress across a 

particular plane. Ideally, it should be applied to plate with vanishing thickness 

(Kotousov and Wang, 2002; Boresi and Schmidt, 2009). In actual case, it is 

commonly applied to very thin member where the generated axial stress is 

insignificant (Babuška and Szabó, 2006). For cylinder stress analysis, the 

definition of plane stress scenario is such that ��� = ��� = ��� = 0. 

 

 When a loaded structure has great length-to-section area ratio and 

shearing traction is negligible, it can be approximated as a case of plane strain 

(Wu and Li, 1990; Babuška and Szabó, 2006). In the context of analysis of 

cylinder, the condition for plane strain is such that ��� = ��� = ��� = 0. 

 

There are different definitions of generalized plane strain (Babuška and 

Szabó, 2006; Cheng et al., 1995). For this research work, the axial strain is taken 
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to be constant (Rencis and Huang, 1992; Zhang et al., 2012). All cross section 

of the multilayered cylindrical wall is expected to experience uniform axial 

displacement where ��� =constant. For pressure vessel, ���  can be obtained 

through summation of forces due the internal pressure, external pressure and 

axial stress induced within material. Also, thermal strain due temperature 

increment need to be included.  

 

2.6.3. Thermoelasticity in Spherical Coordinate 

 

Figure 3.3 depicts the section view of a spherical pressure vessel. The 

coordinate system and metric coefficients in Eq. (2.38) to Eq. (2.46) are such 

that � = � , � = � , � = ∅ , �� = 1 , �� = �  and �� = � sin �  for spherical 

coordinate. Thus, the equations in spherical coordinate are (Boresi and Schmidt, 

2009) 
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(2.62) 

��∅ =
1

2
�

1

� sin �

���

�∅
+

��∅

��
−

�∅

�
� 

(2.63) 

��∅ =
1

2
�
1

�
�

��∅

��
− �∅ cot �� +

1

� sin �

���

�∅
� 

(2.64) 

 

2.7. Recursive Algorithm 

 

Recursive algorithm is related to an importance mathematical concept 

called ‘induction’. It is used to obtain a parameter through function that has the 

parameter itself in its domain (Ferreira and Martins, 2009). It is also a common 

method used in computer-based application due to the computer strength in 

performing looping and counting function (Insa and Silva, 2015; Blass, 2016). 

Therefore, it has been applied regularly in solving engineering problems. Apart 

from the application of recursive algorithm demonstrated by Shi et al. (2007), 
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Vedeld and Sollund (2014) and Yeo et al. (2017), Zhang et al. (2018a) 

formulated a semi-analytical solution to obtain the three dimensional 

temperature field for multilayer system under unit point heat flux. The equations 

are derived by using thermal conduction equation in terms of frequency domain 

where the formed matrix of equations are solved recursively. Other than that, 

Naik et al. (2018) developed a novel finite difference based thermodynamic 

model for analyzing the variations of air and desiccant properties along the rates 

of water evaporation and condensation in dehumidifier and regenerator. The 

developed model is solved by using a proposed recursive algorithm.  

 

2.8. Finite Element Method 

 

The term ‘Finite Element Method’ (FEM) was used since year 1960. The 

popularity of using FEM for engineering analysis has increased ever since due 

to advancement of computer technology and its application. It is a numerical 

technique developed to solve differential equation or problem that can be 

formulated as functional minimized. By having finite set of equations, boundary 

and initial conditions, a system is described and defined (Knowles, 1984). The 

formulation of the finite element equations is based on variational principle 

where the difference between the approximated solution and the real solution is 

kept to minimal. For problem involves differential equation, the common 

method used is Galerkin method where the finite element equations formulation 

is based on residual minimization. It is crucial for user to understand the 

problem to be analyzed and FEM as a computational tool in order to perform an 

appropriate analysis. There are different types of element that can be grouped 
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into three general categories: line element (1D), planar element (2D) and solid 

element (3D). The validation of the proposed analytical solution in this work 

was done by using ANSYS FEM package. In the simulation performed, 

PLANE77 is a 2-D 8-Node thermal solid element that was used for the steady 

state thermal analysis. After that, the elements are converted to PLANE183. It 

is a 2-D 8-Node structural solid element that was used for the following thermal 

stress analysis (ANSYS, 2009). After creating a geometrical model, the general 

steps to use FEM are as below (Perumal and Mon, 2011): 

1. Discretization of the model 

2. Determining shape functions 

3. Deriving the element equations 

4. Assembling element equations to form the global equation 

5. Solving the global equation 

6. Results interpretation 

FEM has been a popular method used in validating analytical solutions 

for engineering problems. Maleki et al. (2010) developed a theoretical model 

constructed using Variable Material Properties method for the case of residual 

stress analysis of autofrettaged spherical pressure vessel. They compared their 

results with FEM analysis results to evaluate the proposed theoretical model. 

Similarly, the exact solution of elastic analysis for functionally graded material 

cylindrical pressure vessel has been developed by Nejad et al. (2016). The exact 

solution can be used to identify radial and tangential stresses for cylindrical 

pressure vessel with exponentially varying material properties under plane 

strain condition. The developed exact solution was validated through 

comparison with FEM results.   
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2.9. Summary 

 

The common shapes of pressure vessel are cylindrical and spherical 

(Toudehdehghan and Hong, 2019) and the common material used to construct 

pressure vessel are metal alloys (Chattopadhyay, 2008). The thickness of 

vessel's wall increases with higher operating temperature and pressure. 

Therefore, when the pressure vessel needs to work under extreme temperature 

and pressure for better thermal efficiency (Ohji and Haraguchi, 2017), 

fabricating single layer metal alloy pressure vessel is no longer practical and not 

economically feasible (Khurmi and Gupta, 2005). As the fabrication technology 

advances, the opportunity to deal with this challenge lies in constructing 

pressure vessel made of new material including pressure vessel with 

multilayered design such as coated or cladded, composite and FGM pressure 

vessel (Witolla et al., 2016).  

 

Failure of pressure vessel can be a catastrophic event because it contains 

high density energy (Spence and Nash, 2004). Thus, assessing structural 

integrity of pressure vessel has been a subject of study since early days 

(Lancaster, 1973). Industry players have been designing and analyzing pressure 

vessel based on codes and standards. These codes and standards are the 

compilation of mankind's existing knowledge. When analyzing design that is 

not clearly spelled out in codes and standards such as the case of multilayered 

pressure vessel, analytical method and numerical method are commonly used to 

verify the design. As the number of layer increases, analyzing the multilayered 

vessel wall through analytical mean is more efficient as compared to numerical 
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mean (Chen and Ding, 2001). Among published literatures that have presented 

different analytical methods used to analyze multilayered structure, Shi et al. 

(2007), Vedeld and Sollund (2014) and Yeo et al. (2017) reported that analytical 

solution based on recursive algorithm is simple and efficient in solving thermo-

mechanical problem of multilayered structure. The recent work by Yeo et al. 

(2017) derived the analytical solution based on recursive algorithm to obtain 

stresses and displacement of multilayered cylinder under plane strain 

assumption. It is not suitable to be applied in solving multilayered cylindrical 

pressure vessel problem because the axial strain induced by the closed end of 

cylindrical pressure vessel is significant (Wang et al., 2012). Also, there is no 

any literature that has presented the analytical solution to solve thermo-

mechanical problem of multilayered spherical pressure vessel. 
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CHAPTER 3 

 

METHODOLOGY 

 

 

3.1. Introduction 

 

The derivation of the proposed analytical solutions is outlined in Figure 

3.1. First of all, the key assumptions, geometrical illustration, material 

properties, notations, boundary conditions and interface conditions that applied 

throughout the derivation for both cases of multilayered cylindrical and 

spherical pressure vessels are stated in Section 3.2 to Section 3.4. Subsequently, 

the analytical solution to obtain the temperature distribution across the vessel’s 

wall for cylindrical multilayered pressure vessel is derived in Section 3.5. 

Section 3.6 presents the derivation of analytical solution that uses the obtained 

temperature distribution to identify radial, tangential and axial stresses across 

the vessel’s wall. Next, a computational procedure that summarizes the 

sequence of unknowns and terms being computed is given in Section 3.7. 

Similarly, the derivation of analytical solution and computational procedure for 

spherical multilayered pressure vessel are expressed in Section 3.8 to Section 

3.10. 
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Figure 3.1: Sequence of the derivation of the proposed analytical solutions 

 

3.2. Key Assumptions 

 

The key assumptions applied throughout the derivation of the analytical 

solution are presented below: 

1. The material properties across a same layer is homogenous. 

2. The thermal and mechanical loadings on the vessel’s wall are uniform 

and in steady state. 

3. The heat transfer and stresses induced across the vessel’s wall are 

axisymmetric.  

4. Changes of dimension due to stress has negligible effect on heat transfer. 

5. All layers are perfectly bonded. 

6. The stress-strain relations for pressure vessel are derived based on small 

displacement condition. 

7. The cylindrical pressure vessel wall’s section experienced uniform axial 
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strain and taken to be under generalized plane strain condition.  

 

3.3. Geometry, Material Properties and Loadings 

 

Figure 3.2 and Figure 3.3 show the cross section view of a multilayered 

cylindrical and spherical pressure vessels respectively. The multilayered 

structure has n-number of layers where it is subjected to internal and external 

pressure and temperature loading. ���� and ����� is the pressure and temperature 

at inner surface, �� while ���� and ����� is the pressure and temperature on the 

outer surface, ��. For any �-th layer, the outer radius is ��  while the material 

properties for � -th layer such as elastic modulus, Poisson’s ratio,  thermal 

expansion coefficient and thermal conductivity are �� , �� , ��  and �� 

respectively as depicted in Figure 3.2 and Figure 3.3.  

 

 

Figure 3.2: Section view of a multilayered cylindrical pressure vessel that is 



41 
 

subjected to temperature and pressure loading on inner and outer surface. 

 

 

Figure 3.3: Section view of a multilayered spherical pressure vessel that is 

subjected to temperature and pressure loading on inner and outer surface. 

 

3.4. Boundary and Interface Conditions 

 

The boundary conditions on the inner surface are given as 

 

��(��) = ��� = ���� (3.1) 

���,�(��) = −�� = −���� (3.2) 

 

where ��(��) represents the temperature of inner surface of first layer which is 

the temperature at radius ��  written as ��� . ���,�(��) denotes the compressive 

radial stress on the inner surface of first layer which is the pressure on radius �� 
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written as −��. For the outer surface, the boundary conditions are given as 

 

��(��) = ��� = ���� (3.3) 

���,�(��) = −�� = −���� (3.4) 

 

where ��(��) represents the temperature of outer surface of nth layer which is 

the temperature at radius ��  written as ��� . ���,�(��) denotes the compressive 

radial stress on the outer surface of nth layer which is the pressure on radius �� 

written as −��.  

 

At each interface layer, the continuity equations are such that 

 

��(��) = ����(��) (3.5) 

�"
�
(��) = �"

���
(��) (3.6) 

���,�(��) = ���,���(��) (3.7) 

��,�(��) = ��,���(��) (3.8) 

 

3.5. Heat Conduction for Multilayered Cylindrical Pressure Vessel 

 

In this case, there is no energy generation within the structure and the 

heat transfer scenario can be simplified to one-dimensional steady state problem. 

Therefore, Eq. (2.7) can be reduced to 

 

�

��
��

���(�)

��
� = 0 

(3.9) 
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Integrating Eq. (3.9), 

 

��(�) = �� + �� ln � (3.10) 

 

The heat flux equation can be written as 

 

��
"(�) = −��

���(�)

��
 

 

��
"(�) = −��

��

�
 

(3.11) 

 

In order to get the temperature distribution across any layer � , the 

integration constants �� and �� need to be identified by using the boundary and 

interface conditions. By substituting Eq. (3.10) into Eq. (3.5) 

 

�� + �� ln �� = ���� + ���� ln �� (3.12) 

 

Similarly, by using Eq. (3.6) and Eq. (3.11) 

 

−�� �
��

��
� = −���� �

����

��
� 

(3.13) 

 

Rewriting Eq. (3.13) and Eq. (3.12) 

 

���� = �� + �� ln �� �1 −
��

����
� 

(3.14) 
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���� = �� �
��

����
� 

(3.15) 

 

Writing inner and outer interface temperatures of two adjacent layers 

 

�� + �� ln ���� = ����� (3.16) 

���� + ���� ln ���� = ����� (3.17) 

 

Hence, by substituting Eq. (3.14) and Eq. (3.15) into Eq. (3.16) and Eq. 

(3.17), �� and �� can be 

 

�� =
������� − �������

�� − ��
 

(3.18) 

�� =
��(����� − �����)

ln ����(�� − ��)
 

(3.19) 

 

where 

 

�� = ������ (3.20) 

�� = ���� −
��

����

(���� − 1) 
(3.21) 

�� =
ln ����

ln ��
 

(3.22) 

 

The temperature at outer radius of layer � is 

 

��(��) =  �� + �� ln �� = ��� (3.23) 
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Putting Eq. (3.18) and Eq. (3.19) into Eq. (3.23) to obtain the 

relationship between temperatures at adjacent layers 

 

����� =
�����(���� − ��) + �����(�� − ��)

��(�� − 1)
 

(3.24) 

 

Hence, for any layer �, constant ��  and ��  can be written in terms of 

inner and outer temperatures of the layer by using Eq. (3.18) and Eq. (3.19) 

 

�� =
����� − �����

�� − 1
 

(3.25) 

�� =
��(����� − ���)

ln ���� (�� − 1)
 

(3.26) 

 

To determine �� and ��, it is necessary to write ��� in terms of defined 

boundary values ��� and ���. Introducing two simple recurrence relations 

 

���� =
����(���� − ��) + ����(�� − ��)

��(�� − 1)
 

(3.27) 

���� =
����(���� − ��) + ����(�� − ��)

��(�� − 1)
 

(3.28) 

 

where � = 1,2,3 … (� − 1)  

 

Next, temperature  ��� can be related to recurrence coefficients � and � 

as 
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��� = ����� + ����� (3.29) 

 

For the relation Eq. (3.29) to be valid, initial values of 

 

�� = 0, �� = 1, �� = 1, �� = 0     (3.30) 

 

When � = � , ���  can be found through Eq. (3.31) and subsequently 

temperature � at all layer interfaces through Eq. (3.32) 

 

��� =
��� − �����

��
 

(3.31) 

��� =
��

��
��� + ��� −

��

��
��� ��� 

(3.32) 

 

By using temperature � at all layer interfaces, constants �� and �� can be 

identified. Hence, the temperature at each radius point can be found by using 

Eq. (3.10).   

 

3.6. Stress-Strain Relations for Multilayered Cylindrical Pressure 

Vessel 

 

The axisymmetric multilayered hollow cylinder section shown in Figure 

3.2 has varying temperature in radial direction with ∆�= �� − �� for �� being 

the material initial temperature. Under small displacement and generalized 

plane strain conditions, the strain-displacement relations are (Boresi and 

Schmidt, 2009) 
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���,� =
���,�

��
 

(3.33) 

�∅∅,� =
��,�

�
 (3.34) 

���,� =
���

��
= �� = �������� 

(3.35) 

��∅,� = ���,� = �∅�,� = 0 (3.36) 

 ���,� =
��

(����)(�����)
[(1 − ��)���,� + ��(�∅∅,� +

���,�) − (1 + ��)��∆�] 

(3.37) 

�∅∅,� =
��

(1 + ��)(1 − 2��)
[(1 − ��)�∅∅,� + ��(���,� + ���,�)

− (1 + ��)��∆�] 

(3.38) 

���,� =
��

(����)(�����)
[����∅∅,� + ���,�� + (1 −

��)���,� − (1 + ��)��∆�]  

(3.39) 

 

The body force components ��, �� and �� can be neglected and the load 

case is uniform and axisymmetric. Therefore, the non-trivial Eq. (2.47) can be 

reduced to 

 

����,�

��
+

���,� − �∅∅,�

�
= 0 

(3.40) 

 

Using Eq. (3.33), Eq. (3.34), Eq. (3.35), Eq. (3.37) and Eq. (3.38), the 

equilibrium Eq. (3.40) can be written in terms of radial displacement  

 

�

��
�
1

�

����,���

��
� =

1 + ��

1 − ��
��

�∆�

��
 

(3.41) 
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Integrating Eq. (3.41) to get radial displacement equation, 

 

��,�(�) = ����� + ��

(�� + ��)

�
 

(3.42) 

 

where �� =
��

��
, �� =

��

��
 for �� and �� are the integration constants and 

 

�� = −
����

1 − ��
� ∆�

�

����

��� 
(3.43) 

�� =
(1 + ��)(1 − 2��)

��
 

(3.44) 

�� = −
(1 + ��)

��
 

(3.45) 

 

By substituting Eq. (3.33), Eq. (3.34), Eq. (3.35) and Eq. (3.42) in Eq. 

(3.37), Eq. (3.38) and Eq. (3.39), the equations for stresses have been written in 

terms of �� and �� 

 

���,�(�) = �� +
�� + ��

��
+ �� 

(3.46) 

�∅∅,�(�) = �� −
�� + ��

��
+ �� −

����∆�

(1 − ��)
 

(3.47) 

���,�
(�) = 2���� +

��

(1 + ��)(1 − 2��)
(1 − ��)���

−
����∆�

(1 − ��)
 

(3.48) 

 

where  
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�� = ����� ��⁄  (3.49) 

 

Therefore, by identifying �� and ��, the stresses and radial displacement 

throughout the multilayered cylindrical wall can be determined. By using Eq. 

(3.7) and Eq. (3.8) 

 

�� +
�� + ��

��
� + �� =  ���� +

���� + ����
�

��
� + ���� 

(3.50) 

������ + ��

(�� + ��)

��
=  ���������� + ����

(���� + ����
� )

��
 

(3.51) 

 

 

where the thermal stress term ����
� = ����(��) = −

��������

������
∫ ∆�

��

��
��� = 0 

 

Rearranging Eq. (3.50) and Eq. (3.51), ���� and ���� can be written in 

terms of �� and �� 

 

���� = (�� + ��) �
�� − ����

���� − ����
� + ����

� �
�� − ����

���� − ����
�

+ ������
� �

���� − ��

���� − ����
� 

(3.52) 

���� = �
�� + ��

��
� � �

���� − ��

���� − ����
� + �� �

���� − ��

���� − ����
�

+ ���� �
�� − ����

���� − ����
� 

(3.53) 

 

Radial stresses at the inner and outer surface of two adjacent layers have 

been represented as the contact pressure 
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���,�(����) =  −���� => �� +
�� + ��

�

����
� + �� =  −���� 

(3.54) 

���,���(����) =  −���� => ���� +
���� + ����

����
� + ����

=  −���� 

(3.55) 

 

for ��
� = ��(����) = −

����

����
∫ ∆�

����

����
��� = 0 

 

Substituting Eq. (3.54) and Eq. (3.55) into Eq. (3.52) and Eq. (3.53) 

yields 

 

��

= ����
� �

������ − ����(���� − ����) + ��(�� + �������� − ����) − ��������(���� − 1)

�� − ��
�

−
���� + ����������(���� − ����)

�� − ��
 

(3.56) 

�� =
−������ + ����(���� − ����) − ��(�� + �������� − ����) + ��������(���� − 1)

�� − ��

+
���� + ����������(���� − ����)

����
� (�� − ��)

 

(3.57) 

 

where  

 

�� = ������(�� − ����) + (���� − ��)�� (3.58) 

�� = ���� − �� + (�� − ����)���� (3.59) 

���� =
��

�

����
�  

(3.60) 
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At the outer surface of layer �, the radial stress or contact pressure is 

 

���,�(��) =  −�� => �� +
�� + ��

��
� + �� = −�� 

(3.61) 

 

Substituting Eq. (3.56) and Eq. (3.57) into Eq. (3.61), the relation 

between contact pressures at adjacent layer is found 

 

����

=
����(�� − ����) − ��(�� − ��)

(1 − ��)(���� − ����)

−
��������(���� − ����)(1 − ��) + �� �

��
��

� − ���

��
�(1 − ��)(�� − ��)

−
(1 − ����)(�� − ����)���

(���� − ����)
 

(3.62) 

 

Next, substituting Eq. (3.62) into Eq. (3.56) and Eq. (3.57) gives 

constant �� and �� for layer � in terms of its own inner and outer surface contact 

pressures 

 

�� =
����

�

1 − ��
��� − ���� +

��

��
�� 

(3.63) 

�� =
1

1 − ��
������� − �� −

��

��
�� − �� 

(3.64) 

 

To solve ��  and �� , the constants need to be related to the known 

boundary values of �� and ��. Two recurrence relations have been proposed 
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���� =
����(�� − ����) − ��(�� − ��)

(1 − ��)(���� − ����)
 

(3.65) 

����

=
����(�� − ����) − ��(�� − ��)

(1 − ��)(���� − ����)

−
��������(���� − ����)(1 − ��) + �� �

��
��

� − ���

����
�(1 − ��)(�� − ��)

−
(1 − ����)(�� − ����)���

��(���� − ����)
 

(3.66) 

 

where � = 1,2,3 … (� − 1) 

 

Introducing �� in terms of recurrence coefficient �� and ��,  

 

�� = ���� + ���� (3.67) 

 

For Eq. (3.67) to be valid, initial values of �� and �� are 

 

�� = 0, �� = 1, �� = 1, �� = 0    (3.68) 

 

For � = �,  

 

�� =
�� − ����

��
 

(3.69) 
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Thus, �� at all interfaces can be found through 

 

�� =
��

��
�� + ��� −

��

��
��� �� 

(3.70) 

 

However, ��� need to be identified to obtain the recurrence coefficient 

�� and ��. Eq. (3.66) has been separated into two terms to isolate the unknown 

��� 

 

�� = �� + ����� (3.71) 

 

for �� and �� to be  

 

����

=
����(�� − ����) − ��(�� − ��)

(1 − ��)(���� − ����)

−
��������(���� − ����)(1 − ��) + �� �

��
��

� − ���

����
�(1 − ��)(�� − ��)

 

(3.72) 

���� =
����(�� − ����) − ��(�� − ��)

(1 − ��)(���� − ����)

−
(1 − ����)(�� − ����)

��(���� − ����)
 

(3.73) 

 

Using initial value 

 

�� = 1, �� = 0, �� = 0, �� = 1     (3.74) 
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Therefore, Eq. (3.70) can be modified into 

 

�� =
��

��
�� + ��� −

��

��
��� �� + ��� −

��

��
��� ����� 

(3.75) 

 

For the generalized plane strain case that can describe the scenario of a 

loaded closed end cylindrical pressure vessel, using Eq. (3.48) and Eq. (3.64) 

the ��� is such that 

 

����(���
�) + � � ���,�

��

����

[2��]��

�

���

= ����(���
�) 

(3.76) 

��� =
��

��
 (3.77) 

 

where 

 

�� =
����(���

�) − ����(���
�)

2�

− � �
2��

1 − ��
�������

� − ��
�

�

���

−
��

��
�� �

��
� − ����

�

2
� +

������

(1 − ��)
�
��

� − ����
�

2
�

−
������

(1 − ��)
�
��

� − ����
�

2
�

−
������

(1 − ��)
�
��

� ln ��

2
−

��
�

4

− �
����

� ln ����

2
−

����
�

4
��� 

(3.78) 
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�� = � �
2��

1 − ��

(������ − ��)

�

���

+
��

(1 + ��)(1 − 2��)
(1 − ��)

−
2��

�

��
� �

��
� − ����

�

2
� 

 

(3.79) 

for 

 

��
� =

��

��
�� + ��� −

��

��
��� �� 

(3.80) 

�� = ��� −
��

��
��� �� 

(3.81) 

 

Hence, �� at all interfaces can be identified. �� and �� can thus be found 

to get the stress distribution equation for all points.    

 

3.7. Computational Procedure for Multilayered Cylindrical Pressure 

Vessel 

 

The process of obtaining the temperature and stresses distribution across 

the multilayered cylindrical pressure vessel has been articulated in Section 3.5 

and Section 3.6. The computational procedure can be written as below. 

1) Determine the sequences of {��}, {��} and {��} following Eq. (3.20) to 

Eq. (3.22). 

2) Compute the sequences {��} and {��} by using Eq. (3.27) and Eq. (3.28) 

with initial values from Eq. (3.30). 
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3) Identify sequences of {���} by using Eq. (3.32). 

4) Calculate sequences of {��} and  {��} by using Eq. (3.25) and Eq. (3.26). 

5) Hence, temperature distribution can be obtained through Eq. (3.10). 

Sequences {∆�} is thus known. 

6) Establish the sequences of {��}, {��} and {��} following Eq. (3.43), Eq. 

(3.44) and Eq. (3.45). 

7) Determine the sequences of {��} , {��}  and {��}  by working out Eq. 

(3.58) to Eq. (3.60). 

8) Compute the sequences of {��}, {��} and {��} by using Eq. (3.65), Eq. 

(3.72) and Eq. (3.73) with initial values from Eq. (3.68) and Eq. (3.74). 

9) Work the sequences of {��
�} and  {��} by using Eq. (3.80) and Eq. (3.81). 

10) Identify �� and �� by using Eq. (3.78) and Eq. (3.79). 

11) Calculate ��� following Eq. (3.77). 

12) Compute {��} in Eq. (3.75) and {��} in Eq. (3.49).  

13) After that, {��} and  {��} can be obtained from Eq. (3.63) and Eq. (3.64). 

Lastly, stresses in Eq. (3.46) to Eq. (3.48) can be computed by using {��} 

and {��}. 

 

Figure 3.4 illustrates a computational procedure flow chart that shows 

the sequence of parameters being computed when the developed analytical 

solution is used to obtain stresses across the multilayered cylindrical vessel wall.  
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Figure 3.4: Flow chart of parameters being computed for multilayered 

cylindrical pressure vessel 

 

3.8. Heat Conduction for Multilayered Spherical Pressure Vessel 

 

Similar to the cylindrical pressure vessel, it is assumed that no energy 

generation within the pressure vessel’s structure and the heat transfer scenario 

can be simplified to one-dimensional steady state problem. With reference to 

Eq. (2.8), the reduced equation is   

 

�

��
���

���(�)

��
� = 0 

(3.82) 

 

Integrating Eq. (3.82), 
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��(�) = �� −
��

�
 

(3.83) 

 

The heat flux for spherical structure can be written as 

 

��
"(�) = −�

���(�)

��
 

 

��
"(�) = −�

��

��
 

(3.84) 

 

In order to get the temperature distribution across any layer � , the 

integration constants �� and �� need to be identified by using the boundary and 

interface conditions. By substituting Eq. (3.83) into Eq. (3.5)  

 

�� −
��

��
= ���� −

����

��
 

(3.85) 

 

Similarly, by using Eq. (3.6) and Eq. (3.84), 

 

�� �
��

��
�

� = ���� �
����

��
�

� 
(3.86) 

 

 

Rewriting Eq. (3.85) and (3.86)  

 

���� = �� +
���� − ��

��
 

(3.87) 
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���� = �� �
��

����
� 

(3.88) 

 

Writing inner and outer interface temperatures of two adjacent layers 

 

�� +
��

����
= ����� 

(3.89) 

���� +
����

����
= ����� 

(3.90) 

 

Hence, by substituting Eq. (3.87) and Eq. (3.88) into Eq. (3.89) and Eq. 

(3.90), �� and �� can be 

 

�� =
������� + �������

�� + ��
 

(3.91) 

�� =
����� − �����

�� + ��
 

(3.92) 

 

where 

 

�� =
1

��
�

��

����
− 1� −

1

����
�

��

����
� 

(3.93) 

�� =
1

����
 

(3.94) 

The temperature at outer radius of layer � is 

 

��(��) = �� −
��

��
= ��� 

(3.95) 
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Putting Eq. (3.91) and Eq. (3.92) into Eq. (3.95) to obtain the 

relationship between temperatures at adjacent layers 

 

����� =
���(�� + ��) − �����(�� + ����)

(�� − ����)
 

(3.96) 

 

Therefore, for any layer �, constant �� and �� can be written in terms of 

inner and outer temperatures of the layer by using Eq. (3.91) and Eq. (3.92) 

 

�� =
����� − ���������

(�� − ����)
 

(3.97) 

�� =
��� − �����

�� − ����
 

(3.98) 

 

To determine �� and ��, it is necessary to write ��� in terms of defined 

boundary values ��� and ���. Introducing two simple recurrence relations 

 

���� =
��(�� + ��) − ����(�� + ����)

(�� − ����)
 

(3.99) 

���� =
��(�� + ��) − ����(�� + ����)

(�� − ����)
 

(3.100) 

 

where � = 1,2,3 … (� − 1)  

 

Next, temperature  ��� can be related to recurrence coefficients � and � 

as 
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��� = ����� + ����� (3.101) 

 

For the relation Eq. (3.101) to be valid, initial values need to be 

 

�� = 0, �� = 1, �� = 1, �� = 0     (3.102) 

 

When � = � , ���  can be found through Eq. (3.103) and subsequently 

temperature � at all layer interfaces through Eq. (3.104) 

 

��� =
��� − �����

��
 

(3.103) 

��� =
��

��
��� + ��� −

��

��
��� ��� 

(3.104) 

 

By using temperature � at all layer interfaces, constants �� and �� can be 

identified. Hence, the temperature at each radius point can be found by using 

Eq. (3.83).   

 

3.9. Stress-Strain Relations for Multilayered Spherical Pressure Vessel 

 

The axisymmetric multilayered hollow sphere section shown in Figure 

3.3 has varying temperature in radial direction with ∆�= �� − �� for �� being 

the material initial temperature. Under small displacement assumption, the 

strain-displacement relations are (Boresi and Schmidt, 2009) 
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���,� =
���,�

��
 

(3.105) 

�∅∅,� =
��,�

�
 (3.106) 

���,� = �∅∅,� (3.107) 

���,� = ��∅,� = 0 (3.108) 

���,� =
��

(1 − 2��)(�� + 1)
�(1 − ��)���,� + 2���∅∅,�

− ��∆�(�� + 1)� 

(3.109) 

�∅∅,� =
��

(1 − 2��)(�� + 1)
������,� + �∅∅,� − ��∆�(�� + 1)� 

(3.110) 

���,� = �∅∅,� (3.111) 

 

The body force components ��, �� and �� can be neglected and the load 

case is uniform and axisymmetric. Therefore, Eq. (2.56) to Eq. (2.58) can be 

reduced to variation in only radial direction 

 

����,�

��
+

2����,� − �∅∅,��

�
= 0 

(3.112) 

 

Using Eq. (3.105), Eq. (3.106), Eq. (3.109) and Eq. (3.110), the 

equilibrium Eq. (3.112) can be written in terms of radial displacement  

 

�

��
�

1

��

�(��,��
�)

��
� =

(1 + ��)

(1 − ��)
��

�∆�

��
 

(3.113) 

 

Integrating Eq. (3.113) to get radial displacement equation, 
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��,� = β�C�� + λ�

��

��
+

1

��

 λ�

��
I� 

(3.114) 

 

where �� =
��

��
, �� =

��

��
 for �� and �� are the integration constants 

 

�� = � ∆�

�

����

���� 
(3.115) 

�� =
(1 − 2��)

��
 

(3.116) 

�� = −
(1 + ��)

2��
 

(3.117) 

�� = −
(1 − ��)

2����
 

(3.118) 

 

By substituting Eq. (3.114), Eq. (3.105) and Eq. (3.106) into Eq. (3.109) 

and Eq. (3.110), the equations for stresses have been written in terms of �� and 

�� 

 

���,� = C� +
��

��
+

I�

����
 

(3.119) 

�∅∅,� = C� −
��

2��
−

I�

2����
+

∆�

2��
 

(3.120) 

 

Therefore, by identifying �� and ��, the stresses and radial displacement 

throughout the multilayered spherical wall can be determined. By using Eq. 

(3.7) and Eq. (3.8) 
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C� +
��

��
�

+
I�

����
�

= C��� +
����

��
�

+
I���

�

����
 

(3.121) 

β�C��� + λ�

��

��
�

+
λ�

����
�

I�

= β���C����� + λ���

����

��
�

+
λ���

������
�

I���
�  

(3.122) 

 

 

The thermal stress term I���
� = I���(��) = ∫ ∆��

���
��

��
= 0 

 

Rearranging Eq. (3.121) and Eq. (3.122), ���� and ���� can be written 

in terms of �� and �� 

 

���� = �
β� − β���

λ��� − β���
� C���

� + �
λ� − β���

λ��� − β���
� ��

+ �
λ� − β���

��(λ��� − β���)
� I� 

(3.123) 

C��� = �
λ��� − β�

λ��� − β���
� C� + �

λ��� − λ�

(λ��� − β���)��
�

� ��

+ �
λ��� − λ�

��(λ��� − β���)��
�

� I� 

(3.124) 

 

Radial stresses at the inner and outer surface of two adjacent layers have 

been represented as the contact pressure 

 

���,�(����) =  −���� => C� +
��

����
�

+
I�

�

������
�

=  −���� 
(3.125) 
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���,���(����) =  −���� => C��� +
����

����
�

+
I���

��������
�

=  −���� 

(3.126) 

 

for ��
� = ��(����) = ∫ ∆��

���
����

����
= 0 

 

Substituting Eq. (3.125) and Eq. (3.126) into Eq. (3.123) and Eq. (3.124) 

yields 

 

�� = ��
��� �

������ − (λ��� − β���)����

(�� − ��)
� −

��I�

��(�� − ��)

−
(λ��� − β���)���� ��I���

����(�� − ��)
 

(3.127) 

C� =  
(λ��� − β���)���� − ������

(�� − ��)
+

��I�

��(�� − ��)����
�

+
(λ��� − β���)I���

����(�� − ��)����
�
 

(3.128) 

 

where     

 

�� = γ�γ���(λ� − β���) + γ�(λ��� − λ�) (3.129) 

�� = ( λ��� − β�) + γ���(β� − β���) (3.130) 

���� =
��

�

����
�
 

(3.131) 

 

At the outer surface of layer �, the radial stress or contact pressure is 
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���,�(��) =  −�� => C� +
��

��
�

+
I�

����
�

= −�� 
(3.132) 

 

Substituting Eq. (3.127) and Eq. (3.128) into Eq. (3.132), the relation 

between contact pressures at adjacent layers is found 

 

���� =
(�� − ����)

(λ��� − β���)(1 − ��)
����

−
(�� − ��)

(λ��� − β���)(1 − ��)
�� −

I���

��������
�

−
(�� − ����)

(λ��� − β���)(1 − ��)������
�

I� 

(3.133) 

 

Next, substituting Eq. (3.133) into Eq. (3.127) and Eq. (3.128) gives 

constant �� and �� for layer � in terms of its own inner and outer surface contact 

pressures 

 

�� = ��
��� �

�� − ����

(1 − ��)
+

1

(1 − ��)����
�

I�� 
(3.134) 

�� =
������ − ��

(1 − ��)
−

1

��(1 − ��)��
�

I� 
(3.135) 

 

To solve ��  and �� , the constants need to be related to the known 

boundary values of �� and ��. Two recurrence relations have been proposed 
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c��� =
(�� − ����)

(λ��� − β���)(1 − ��)
����

−
(�� − ��)

(λ��� − β���)(1 − ��)
�� 

(3.136) 

d��� =
(�� − ����)

(λ��� − β���)(1 − ��)
����

−
(�� − ��)

(λ��� − β���)(1 − ��)
�� −

I���

����������
�

−
(�� − ����)

(λ��� − β���)(1 − ��)��������
�

I� 

(3.137) 

 

where � = 1,2,3 … (� − 1) 

 

Introducing �� in terms of recurrence coefficient �� and ��,  

 

�� = ���� + ���� (3.138) 

 

For Eq. (3.138) to be valid, initial values of �� and �� are 

 

�� = 0, �� = 1, �� = 1, �� = 0    (3.139) 

 

for � = �,  

 

�� =
�� − ����

��
 

(3.140) 

 

Thus, �� at all interfaces can be found through 
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�� =
��

��
�� + ��� −

��

��
��� �� 

(3.141) 

 

Hence, �� at all interfaces can be identified. �� and �� can thus be found 

to get the stress distribution equation for all points.    

 

3.10. Computational Procedure for Multilayered Spherical Pressure 

Vessel 

 

Based on the derivation presented in Section 3.8 and Section 3.9, the 

thermo-mechanical stresses in spherical pressure vessel can be estimated based 

on the computational procedure stated below. 

1) Work out the sequences of {��} and {��} following Eq. (3.93) and Eq. 

(3.94). 

2) Compute the sequences {��}  and {��}  by using Eq. (3.99) and Eq. 

(3.100) with initial values from Eq. (3.102). 

3) Identify sequences of {���} by using Eq. (3.104). 

4) Calculate sequences of {��} and  {��} by using Eq. (3.97) and Eq. (3.98). 

5) Hence, temperature distribution can be obtained through Eq. (3.83). 

Sequences {∆�} is thus known. 

6) Establish the sequences of {��} , {��} , {��}  and {��}  following Eq. 

(3.115) to Eq. (3.118).  

7) Determine the sequences of {��} , {��}  and {��}  by working out Eq. 

(3.129) to Eq. (3.131). 

8) Compute the sequences of {��} and {��} by using Eq. (3.136) and Eq. 

(3.137) with initial values from Eq. (3.139). 
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9) Compute {��} in Eq. (3.141). 

10) After that, {��} and  {��} can be obtained from Eq. (3.134) and Eq. 

(3.135). 

11) Lastly, stresses in Eq. (3.119) and Eq. (3.120) can be computed by using 

{��} and {��}. 

 

Figure 3.5 illustrates a computational procedure flow chart that shows 

the sequence of parameters being computed when the developed analytical 

solution is used to obtain stresses across the multilayered spherical vessel wall.  

 

 

Figure 3.5: Flow chart of parameters being computed for multilayered spherical 

pressure vessel 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

4.1. Verification of Algorithm 

 

The proposed analytical solutions to solve cylindrical and spherical 

multilayered pressure vessel problem are validated through comparison 

between results obtained by using the proposed recursive algorithm and ANSYS 

finite element method (FEM) simulation. The material and environment 

reference temperature was set to be 0 ℃ . The simulation ran under two-

dimensional, axisymmetric and steady state settings. The simulation started 

with heat analysis by using PLANE77 elements. After that, the obtained 

temperature distribution was transferred to structural module to simulate the 

thermal stress induced. Then, the structural simulation proceeded by using 

PLANE183 mechanical element to compute the stresses results.    

 

4.1.1. Verification of Algorithm for Cylindrical Pressure Vessel 

 

A six-layered cylindrical composite pressure vessel FEM model was 

adopted from the work of Zhang et al. (2012). The model was constructed and 

meshed into a total 54211 elements. The interfaces of adjacent layers were 

bonded to ensure mesh connectivity. The geometrical and material properties 

are shown in Table 4.1. The pressure and temperature applied at the inner 
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surface of the cylindrical composite pressure vessel are 200 °C and 22 MPa. 

The pressure and temperature applied at the outer surface of the cylindrical 

composite pressure vessel are 190 °C and 0.1 MPa.  

 

Table 4.1: Geometry and material properties of cylindrical FEM model 

Layers Inner 
Radius, � 

Outer 
Radius, � 

�, �� � �, ����°��� �, °��� 

1 0.50 0.51 1.90 × 10�� 0.28 18.4 1.87 × 10�� 
2 0.51 0.52 1.94 × 10�� 0.28 25.4 1.74 × 10�� 
3 0.52 0.53 1.98 × 10�� 0.28 32.4 1.61 × 10�� 
4 0.53 0.54 2.02 × 10�� 0.28 39.4 1.48 × 10�� 
5 0.54 0.55 2.06 × 10�� 0.28 46.4 1.35 × 10�� 
6 0.55 0.58 2.10 × 10�� 0.3 53.4 1.22 × 10�� 

 

Figure 4.1 shows that the temperature distribution computed by using 

FEM and the proposed analytical solution agreed well with each other. The 

temperature profile experienced a gradual decline from internal boundary value 

to external boundary value across the vessel’s wall.  

 

 

Figure 4.1: Temperature distribution across cylindrical vessel’s wall 
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Figure 4.2 shows that the radial stresses computed by using proposed 

analytical solution and FEM are in good agreement. Inner and outer surfaces of 

the pressure vessel are not constrained in radial direction and thus the radial 

stress induced due to temperature change is zero at inner and outer surfaces. The 

vessel’s wall experienced compressive stress because it is exposed to higher 

pressure and temperature at the inner surface.  

 

Figure 4.3 and Figure 4.4 shows the tangential stress and axial stress 

across the vessel’s wall. In general, the results produced from the proposed 

analytical solution are showing good agreement with FEM results. Similar to 

the work of Zhang et al. (2012) and Vedeld and Sollund (2014), the overall 

tangential and axial stresses exhibited discontinuity pattern at interface of 

different layers. In this case, the vessel experienced tensile mechanical stress in 

both tangential and axial direction because the vessel’s structure is holding on 

to each other to contain the higher internal pressure. The thermal stress has 

contributed to the discontinuity of the overall stress. Typically, if the structure 

has smooth transition of material’s thermal properties across different layers, it 

may help to reduce stresses discontinuity across the vessel’s wall (Bhavar et al., 

2017). The tangential and axial stresses due to mechanical loading recorded to 

be a consistent tensile stress across the vessel’s wall while the tangential and 

axial stresses due to thermal loading shown a stepwise discontinuous stress from 

compression at inner surface to tension at outer surface of the vessel. Similarly, 

the stepwise discontinuous pattern is also observed from the overall tangential 

and axial stresses which is due to both mechanical and thermal loading.  
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Figure 4.2: Radial stress across cylindrical vessel’s wall 

 

 

Figure 4.3: Tangential stress across cylindrical vessel’s wall 
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Figure 4.4: Axial stress across cylindrical vessel’s wall 

 

Figure 4.5 shows that the derived algorithm can also be used to predict 

stress response under plane strain assumption. Figure 4.5 exhibits the 

comparison of Von Mises stress for vessel described above under generalized 

plane strain and plane strain assumption. Von Mises yield criterion has been 

commonly used in predicting yielding of ductile metal (Boresi and Schmidt, 

2009). It shows that Von Mises stress computed varies significantly when axial 

strain is taken into consideration. Therefore, axial strain plays an important role 

in evaluating the structural integrity of a pressure vessel.  
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Figure 4.5: Comparison of the effect of generalized plane strain and plane strain 

assumptions to the Von Mises stress across cylindrical vessel’s wall  
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A five-layered spherical composite pressure vessel FEM model was 

constructed with reference to the work of Bayat et al. (2012). The model was 

meshed and generated total number of 71853 elements. The interfaces of 

adjacent layers were bonded to ensure mesh connectivity. The geometrical and 

material properties are shown in Table 4.2. The pressure and temperature 

applied at the inner surface of the cylindrical composite pressure vessel are 

300 °C and 80 MPa. The pressure and temperature applied at the outer surface 

of the cylindrical composite pressure vessel are 25 °C and 0.1 MPa. 
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Table 4.2: Geometry and material properties of spherical FEM model 

Layers Inner 
Radius, � 

Outer 
Radius, � 

�, �� � �, ����°��� �, °��� 

1 0.04 0.044 2.21 × 10�� 0.3 55.2 1.324 × 10�� 
2 0.044 0.048 2.65 × 10�� 0.3 66.2 1.588 × 10�� 
3 0.048 0.052 3.13 × 10�� 0.3 78.2 1.876 × 10�� 
4 0.052 0.056 3.65 × 10�� 0.3 91.2 2.188 × 10�� 
5 0.056 0.06 4.21 × 10�� 0.3 105.2 2.524 × 10�� 

 

Figure 4.6 shows that the temperature distribution computed by using 

FEM and the proposed analytical solution matched perfectly with each other. 

The temperature profile experienced a gradual decline from internal boundary 

value to external boundary value.  

 

 

Figure 4.6: Temperature distribution across spherical vessel’s wall 
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Figure 4.7: Radial stress across spherical vessel’s wall 
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Figure 4.8: Tangential stress across spherical vessel’s wall 

 

4.2. Alternative Solution to Solve FGM Problem 

 

Functionally graded material (FGM) is an improved composite material 

that can eliminate stress discontinuity in layered construction (Toudehdehghan 

and Hong, 2019). Theoretically, functional graded material properties vary 

continuously from one surface to other. In this section, both FGM cylindrical 

and spherical structure was approximated by partitioning the structure into 200 

layers. The 200 layers’ model is solved by using recursive algorithm and the 

results are compared with published analytical solution in literature. 

 

4.2.1. Alternative Solution to Solve Cylindrical FGM Problem 

 

Wang et al. (2015) published a work that gave analytical solution for 

steel cylindrical pressure vessel where the inner surface is coated by power law 

graded material. The model was used as a benchmark to investigate the 
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feasibility of the recursive algorithm as an approximation to analytical solution 

of FGM cylindrical structure under thermomechanical loading. The inner radius 

of FGM coating is 0.8 m, the outer radius of FGM coating is 0.808 m and outer 

radius of steel layer is 0.824 m. The material properties are shown in Table 4.3. 

The internal pressure and temperature are 10 MPa and 120 °C. The external 

pressure and temperature are 0 Pa and 20 °C. The percentage of differences 

between results generated by the proposed analytical solution and Wang et al. 

(2015)’s work are rounded up to 4 decimal places and can be calculated based 

on Ω� = �
�������

�����
� × 100% where � can be 

���
����

� ,  
���

����
�  and 

���
����

� . 

 

Table 4.3: Material properties of the cylindrical FGM model 

Properties Inner radius of FGM Outer radius of FGM Outer radius of steel layer 
�, �� 2.10 × 10�� 1.90 × 10�� 1.90 × 10�� 

�, °��� 19.5 17.25 17.25 
�, ����°��� 10.03 45.2 45.2 

� 0.3 0.3 0.3 

 

As shown in Table 4.4, the highest percentage of difference recorded is 

at axial stress for point approaching the outer layer of the FGM coating or inner 

layer of the steel body which is 0.2059%. Generally, the percentage of 

difference recorded for all is less than 1%. Therefore, it justified the reliability 

of using the proposed recursive algorithm to estimate the stress response of 

FGM cylindrical pressure vessel.  
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Table 4.4: Result comparison of proposed analytical solution with FGM 

analytical solution reported in Wang et al. (2015)’s work 

�
���  ���

����
�  

���

����
�  

���
����

�  

 Wang Present 
work* 

Ω (%) Wang Present 
work* 

Ω (%) Wang  Present 
work* 

Ω (%) 

1 -1 -1 
 

0 -2.3824 
 

-2.3865 
 

0.1735 -21.3091 -21.3077 0.0065 

1.0025 -0.9839 -0.9843 0.0413 11.7647 11.7510 0.1165 -6.7061 -6.6954 0.1594 

1.005 -0.9399 -0.9407 0.0750 20.8824 20.8830 0.0031 2.9307 2.9368 0.2059 

1.0075 -0.8781 -0.8787 0.0671 26.6471 26.6796 0.1223 9.2568 9.2465 0.1110 

1.01 -0.8053 -0.8056 0.0397 30.2353 30.2707 0.1172 13.3361 13.3299 0.0467 

1.02 -0.4502 -0.4501 0.0219 40.7059 40.7055 0.0009 24.1554 24.1252 0.1250 

1.03 0 0 0 51 50.9397 0.1183 34.8564 34.8091 0.1357 

*Present work based on proposed analytical solution with 201 layers 

 

4.2.2. Alternative Solution to Solve Spherical FGM Problem 

 

In this section, a power-law graded FGM model with the power law 

index � = 1 from Bayat et al. (2012)’s work was chosen as the benchmarking 

results to investigate the feasibility of the recursive algorithm as an 

approximation to analytical solution of FGM spherical structure under thermo-

mechanical loading. The inner and outer radius of the sphere is 0.04 m and 0.06 

m respectively, the inner surface elastic modulus and thermal expansion 

coefficient are ��� = 200 ���  and ��� = 1.2 × 10�� ℃�� . The power law 

index is � = 1. The internal pressure and temperature are 80 MPa and 300 °C 

respectively while the external pressure and temperature are 0 Pa and 25 °C 

respectively. The percentage of differences between results generated by the 

proposed analytical solution and Bayat et al. (2012)’s work are rounded up to 4 

decimal places and can be calculated based on Ω� = �
��������

������
� × 100% where 
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� can be � ����
� ,  

���
����

�  and 
���

����
� . 

 

As can be seen from Table 4.5, the only observable percentage 

difference is stress in tangential direction and it is generally less than 1% where 

the highest percentage difference computed was at the inner surface of FGM 

spherical vessel which is 0.6491%.  

 

Table 4.5: Result comparison of proposed analytical solution with FGM 

analytical solution reported in Bayat et al. (2012)’s work 

�
���  �

����
�  

���
����

�  
���

����
�  

 Bayat  Present 
work* 

Ω (%) Bayat  Present 
work* 

Ω (%) Bayat  Present 
work* 

Ω (%) 

1 1 1 0 -1 -1 0 0.1383 0.1374 0.6491 

1.0875 0.7452 0.7452 0 -0.8077 -0.8077 0 0.3492 0.3497 0.1433 

1.1875 0.5201 0.5201 0 -0.6010 -0.6010 0 0.5955 0.5956 0.0166 

1.2875 0.3454 0.3454 0 -0.4034 -0.4034 0 0.8472 0.8469 0.0325 

1.3875 0.2071 0.2071 0 -0.2116 -0.2116 0 1.1045 1.1039 0.0552 

1.5 0.0833 0.0833 0 0 0 0 1.4008 1.3999 0.0688 

*Present work based on proposed analytical solution with 200 layers 
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CHAPTER 5 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1. Conclusion 

 

The derivation of the analytical solutions based on recursive algorithm 

to obtain temperature and stresses distribution for multilayered hollow 

cylindrical and spherical pressure vessel under steady state thermo-mechanical 

loading have been described in detail. The proposed analytical solutions were 

verified through comparison with results obtained by using finite element 

method (FEM) software ANSYS. Firstly, the two-dimensional FEM models 

adopted from published literatures are constructed. Next, the steady state 

thermal analysis was conducted followed by structural stress analysis. Generally, 

the results agreed well to each other. Similar to findings by other researchers, it 

can be observed that the overall tangential and axial stresses induced within the 

cylindrical vessel wall recorded a stepwise discontinuous pattern. In this case, 

it can be seen that tangential and axial stresses discontinuity at layers’ interfaces 

were attributed to the thermal loading on the vessel. Also, a study was conducted 

and concluded that the consideration of axial strain has significant effect on Von 

Mises stress of the cylindrical vessel wall.  

 

After that, the validated proposed analytical solutions were used as the 

alternative solutions to solve cylindrical and spherical functionally graded 
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material (FGM) problem. In the study, two published FGM models were 

extracted from literatures and the FGM wall layers were approximated as 200 

layers wall. Overall, the computed results have shown less than 1% difference 

as compared to the published analytical results.  

 

5.2. Recommendation for Future Studies 

 

The assumptions applied throughout the derivation of the analytical 

solution has limited the application of the analytical solution. Therefore, future 

studies can be focused on these assumptions to improve the generality of the 

derived analytical solution. For example, pressure vessel can be subjected to 

fluctuating load when steam demand of a power plant varies. Thus, recursive 

algorithm should also be used to derive the analytical solution for multilayered 

structure under non-steady state thermo-mechanical loading.  
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