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ABSTRACT 

 

 

SOLVING MULTI-OBJECTIVE DYNAMIC VEHICLE ROUTING 

PROBLEM WITH TIME WINDOWS USING MULTI-OBJECTIVE 

ALGORITHM 

 

 

Khoo Thau Soon 

 

 

Logistics plays a very important role in the business economy. It is over 

a trillion of dollars in revenue annually and increase exponentially over the 

years One of the current trends is to solve the last mile is to optimize the delivery 

routes. One of the best ways to optimize the delivery routes is to study and 

implement the multi-objective dynamic vehicle routing problem with time 

windows because it resembles the online delivery services that are ubiquitous 

and propagate over the year, especially during the COVID-19 pandemic.  

 

During the past decade, there is an increasing trend of published papers 

dealing with dynamic vehicle routing problems with time windows (DVRPTW) 

but not on multi-objective dynamic vehicle routing problems with time 

windows (MODVRPTW). Therefore, it brings a significant contribution if this 

study can be carried out because it represents the daily real-life problem in 

transportation. To solve this problem, it needs to be modelled and an algorithm 

is needed to be developed and tested to ascertain its efficiency and effectiveness.  

 

It is difficult and challenging to develop an algorithm that can produce 

consistent near-optimal solutions even after many runs, average near-optimal 

solutions that have the least difference in magnitude, broader Pareto set, and 
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achieve near-optimal solutions but highly sought after if it is commercially 

viable. Our algorithm uses non-fitness evolutionary distributed parallelized 

adaptive large neighbourhood search (NEDPALNS).  The non-fitness 

evolutionary distributed (NED) takes advantage of the exploitation of the search 

space and the parallelized adaptive large neighbourhood search (PALNS) makes 

full use of the exploration and exploitation of its inner strength. These 

combinations achieve near-optimal solutions consistently. We compare our 

results using hypothetical datasets and real datasets. Our results are competitive 

and outperform other published algorithms and best-known solutions in both 

static and dynamic environments.  
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CHAPTER 1  
 

INTRODUCTION 

 

1.1. Background 

 

According to transport intelligence (TI), the global logistics industry is 

worth about 5.275 trillion euros in 2020 (Intelligence, 2021). The forecast 

period for recovery from the Covid-19 pandemic remains healthy at a compound 

annual growth rate (CAGR) of 4.7% from 2020 to 2024. This shows that growth 

and prospects in 2021 are expected to look vibrant and stronger as the logistics 

market is projected to recover from contractions in 2020 (Intelligence, 2021). 

Logistics costs are defined as the total of all expenditures incurred to make 

goods and services available to the end consumer. If logistics cost is to be 

broken down into different costs composition, the transportation cost has the 

highest share of the cost as they are accounted for nearly half of the logistic cost 

(Rodrigue, 2020) while the second-highest cost inventory carrying cost is only 

one-fifth of the total costs. The study of transportation cost is important because 

transportation remains one of the largest industries in the world and a key 

element in the logistic chain. Transportation connects supply chain components 

in visible and communicable ways.  

 

One of the current trends in transportation is to harness artificial 

intelligence (AI) to provide efficient transport of goods across roads, seas, and 

air (HTEC, no date). AI transforms the traditional ways of achieving efficient 
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paths to automatically design the superfluous and better optimal solution. One 

of the best options to apply AI is to learn and experiment with the vehicle 

routing problem (VRP) using AI. 

 

VRP is a combinatorial optimization that addresses the optimal number 

of routes for a given fleet of vehicles to traverse and deliver goods to a given 

set of customers. VRP first appeared in a paper in 1959 by authors named 

George Dantzig and John Ramser (G.B. Dantzig, 1959). VRP is widely studied 

by both academic and non-academic researchers to mimic real-life scenarios. 

These studies do not end in just similar features VRP instead, more complex 

features have been added. The new features trend has increased exponentially 

over the year. These features could include adding time windows, time-

dependent travel times, pick-up, and delivery, among others. With these 

complex features, the VRP has evolved into other variants. Among other 

variants, the vehicle routing problem with time windows (VRPTW) receives 

most academic spotlights even to this day. VRPTW has used different model 

parts of supply chain design and operation such as school bus routing, waste 

collection, food delivery service, goods distribution, urban newspaper 

distribution among others (Kallehauge and Solomon, 2005).  It is also widely 

studied by academics and non-academics and has appeared in many quality 

journals. 

 

In VRPTW, the main objective is to achieve the least total travelled 

distance within the given constraints. However, human nature has complex 

desires. They may have two or more desires to be fulfilled. These could be 

achieved both with the least number of vehicles and the least total travelled 
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distance. These desires are called the multi-objective problem. This problem 

can appear in many disciplines, such as manufacturing, distribution, production, 

and economy, among others. In a multi-objective vehicle routing problem with 

time windows (MOVRPTW), there are two or more objective functions to be 

solved. These objectives are both the least total travelled distance and the least 

number of vehicles. There could be more than one feasible solution in the 

MOVRPTW. These feasible solutions are the non-dominating solution. This 

means that none of the solutions is dominating other solutions.  Hence, these 

non-dominating solutions are the Pareto optimal set. The MOVRPTW objective 

is to achieve optimal in the broader Pareto set.  

 

 

MOVRPTW could use static and deterministic information to calculate 

its objectives. This means that the information on the customers is known in 

advance and can be used for planning the routes. However, in the real-life 

scenario, not all customer information such as time to serve the customers, 

customer location, customer demand, among others, are known before the route 

planning starts. Therefore, the decision to plan the routes and serve these 

customers cannot be carried out simply. This type of problem is called a multi-

objective dynamic vehicle routing problem with time windows 

(MODVRPTW). During the past decade, there was an increasing trend of 

published papers on dynamic vehicle routing problems with time windows 

(DVRPTW). However, in MODVRPTW, to the best of our knowledge, it is 

rarely studied. Even if it is, it is not frequent and may appear in a different form 

(Ghannadpour et al., 2014). Therefore, MODVRPTW contributes significantly 
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if the study can be conducted, as it represents the real-life problem in 

transportation activity that we face daily. 

 

To solve this problem, the problem needs to be modelled and an 

algorithm is needed to be developed and tested to ascertain its efficacy and 

effectiveness. Some algorithms may produce consistent near-optimal solutions 

even after many runs, but do not support a broader Pareto set (Ursani et al., 

2011; Xu et al., 2015; Zhang, Yang, and Weng, 2018). Other algorithms may 

generate consistent near-optimal solutions even after many runs but the Pareto 

set may not have the least difference in magnitude (Ghoseiri and Farid, 2010; 

Qi et al., 2015a; Dong et al., 2018). Some algorithms generate consistent near-

optimal solutions after many runs but do not show average optimal solutions 

with the least difference in magnitude (Ropke and Pisinger, 2006; Sartori, 2016; 

Curtois et al., 2018). It is hard to find an algorithm that can produce consistent 

near-optimal solutions even after many runs, average near-optimal solutions 

with the least difference in magnitude, broader Pareto set, and achieve near-

optimal solutions. In addition, it is a challenge to develop an algorithm that 

achieves all this. Hence, such an algorithm is highly sought after and 

commercially beneficial if it can be developed and put into production. 

 

 

1.2. Research Objectives 

 

The objectives of this research are as follows:  
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• To develop a multi-objective algorithm with a distributed parallelized 

adaptive rebuilding capability that uses cyclic and non-cyclic 

optimization strategies 

• To be able to support hypothetical and real datasets that consistently 

generated near-optimal solutions and to achieve an optimized Pareto set. 

• To evaluate the performance of the proposed algorithm against the 

recently published results and best-known solutions  

 

1.3. Research Methodology 

 

This research aims to develop, test, analyse, and evaluate an algorithm that can 

achieve the following: -  

• Produce consistent near-optimal solution even after many runs. 

• Achieve the least difference in magnitude in average near-optimal 

solutions. 

• Generate a broader Pareto set. 

• Demonstrate outstanding solutions in another VRP variant. 

 

Our research methodology has six steps. They are listed as follows: 
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Step 1: Literature review 

Review and identify the VRPTW, MOVRPTW, DVRPTW, and 

MODVRPTW challenges, strength, weaknesses, and their state-of-the-art 

algorithms that are thoroughly investigated. This includes the extraction of the 

general concept and principle, as well as the usage of terminology.  

 

Step 2: Problem formulation and solution 

Formulate and modelling VRPTW, MOVRPTW, DVRPTW, and  

MODVRPTW problem using the Unified Modelling Language (UML) and 

coding. This also includes identifying the dataset that is used for testing.  

 

Step 3: Agile development 

Establishing proposed algorithm features and prioritizing them into 

backlog items. Break down the backlog items into workable items that can be 

completed within a few days. Plan sprint backlog task and finalize the sprint 

iteration. Perform requirement gathering, analysis, design, code, test, and user 

acceptance in each of the sprint tasks. Perform a daily stand-up meeting to 

evaluate whether it is behind schedule, plan for the next task and identify issues 

and take corrective action if needed. 

 

Step 4: Deploy to production 

Establish and gather computing resources. Set up the production 

environment. Break the computation using the entire dataset into granular 

enough to be deployed to production. Automate the software deployment 

process. 
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Step 5: Collecting data tabulate results and statistical analysis 

Collect data from computing resources. Extract data, tabulate and 

organize results into Excel sheet and perform statistical analysis using mean, 

standard, deviation, and average. 

 

Step 6: Evaluate, analyse and present findings 

Compare and contrast performance against the published algorithm and 

the best-known solutions. Categorize and present findings based on a metric. 

Figure 1.1 illustrates the research methodology steps. 

 

 

Figure 1.1: Research methodology steps 
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1.4. Research Scope 

 

The scope of this research is to develop and design a multi-objective 

algorithm that consistently generates optimal solutions with the least difference 

in magnitude, broader Pareto set, and least difference in average optimal 

solutions in an online or offline environment. The algorithm is designed and 

developed based on a distributed architecture that provides seamless execution 

of the rebuilding algorithm asynchronously and addresses MODVRPTW. The 

experiments are conducted using static and dynamic datasets to determine the 

effectiveness of the algorithm in an online and offline environment. The results 

are compared with the published algorithms, the best known solutions using 

quantitative metrics to ascertain performance.  

 

1.5. Thesis Organization 

 

The content of the thesis is organized as follows:  

 

Chapter 2 explains the variants of VRP and its differences. It also 

distinguishes the different types of evolutionary algorithms and the rebuilding 

algorithm used in solving the variants of VRP. It dives deep into one of the 

popular VRP variants in which it highlights the Pareto set, the classification of 

multi-objective evolutionary algorithms, types of multi-objective evolutionary 

algorithms, and the options available in the multi-objective qualitative 

assessment. 
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Chapter 3 explains the general definition of DVRPTW. The DVRPTW 

system characteristics and optimization strategies are used in developing the 

proposed algorithm. It elaborates on the proposed algorithm and describes its 

architecture, representation in microservices, and process flow. It explains each 

function of the proposed algorithm and its characteristics, its purposes, and what 

NEDPALNS is made of. 

 

Chapter 4 focuses on two types of datasets to evaluate the proposed 

algorithm. These datasets are based on the degree of dynamism to achieve 

different results at different dynamism. It also focuses on the proposed 

algorithm parameter settings to achieve near-optimal solutions and the testing 

environment in which it operates.  The comparison and assessment of the results 

using the different degrees of dynamism. Qualitative and quantitative metrics 

are used for the comparison of the results. 

 

Chapter 5 concludes the key findings of the research and its implications. 

The limitations and opportunities for future enhancement of the proposed 

algorithm are explained.  
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Published 

(2021) 
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(B): Springer SCOPUS 

Published 

(2019) 

5 Thau Soon Khoo and Babrdel Bonab Mohammad, 

“Solving Multi-objective Pickup and Delivery with 

Time Windows using Mediocre Evolutionary 

Distributed Microservices Re-optimization 

Algorithm” 

(J): Applied Soft 

Computing 

Final review 

(2022) 

6 Thau Soon Khoo and Babrdel Bonab Mohammad, 

“Solving Multi-objective Vehicle Routing Problem 

with Time Windows using MOVRPTW dataset using  

a Non-fitness Evolutionary and Adaptive Local 

Neighbourhood Search Algorithm. 

(J): Expert 

Systems and 

Applications 

Under review 

(2022) 

7 Thau Soon Khoo and Babrdel Bonab Mohammad, 

“Solving Dynamic Vehicle Routing Problem with 

Time Windows: A Non-Fitness and Unified 

Approach” 

(J): Transportation 

Research, Part E: 

Logistics and 

Transportation 

Review 

Under review 

(2022) 

8 Thau Soon Khoo and Babrdel Bonab Mohammad, 

“A Non-fitness Parallel Adaptive Approach for 

Solving Multi-objective Dynamic Vehicle Routing 

problem with Time Windows” 

(J): Omega Under review 

(2022) 

9 Thau Soon Khoo and Babrdel Bonab Mohammad, 

“Solving Dynamic Vehicle routing problem with 

Time Windows using Real Dataset using Non-Elitist 

(J): IEEE 
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Under review 

(2022) 

https://edas.info/showPaper.php?m=1570771962
https://edas.info/showPaper.php?m=1570771962
https://edas.info/showPaper.php?m=1570771962
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Evolutionary Parallel Adaptive Local Neighbourhood 

Search Algorithm.” 

Evolutionary 

Computation  

10 Thau Soon Khoo and Babrdel Bonab Mohammad, 

“Solving Multi-Objective Dynamic Vehicle routing 

problem with Time Windows using MOVRPTW 

Dataset using non-elitist Adaptive Genetic Local 

Neighbourhood Search Algorithm.” 

(J): IEEE 

Transactions on 

Cybernetics 

Under review 

(2022) 

 

 

1.7. Summary 

 

This chapter explains the motivation behind the research, the reasons for 

performing this research, the methodological approach to conduct the research, 

the specific research area to be conducted, the organization of thesis content into 

chapters, and the publications deriving from this research. 
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CHAPTER 2  

 

LITERATURE REVIEW 

 

2.1. Introduction 

 

This chapter presents and reviews the popular variants of VRP that are 

related to this research. It explains the underlying problems and constraints 

associated with each variant that led to the ultimate variant, namely the 

MODVRPTW. The popular algorithms, the definition of problems, and 

constraints are explained in each variant. The evolutionary algorithm and local 

neighbourhood search algorithm are seemingly popular among the variants are 

explained in length. It also explains the characterizations, techniques, and 

algorithms used in multi-objective optimization such as the Pareto optimality, 

multi-objective evolutionary solutions, multi-objective evolutionary 

algorithms, and quality indicator to assess the multi-objective algorithm.  

 

2.2. Taxonomy of Vehicle Routing Problems 

 

Vehicle Routing Problem (VRP) is an NP-hard problem (Yu et al., 

2017). This means the solution cannot be obtained within a reasonable time 

using exact solutions if an instance used has a large customer size. Therefore, it 

is important to study the method of solving this large-scale customer size to 

obtain a near-optimal solution. VRP has many variants. Each of these variants 

has its problems. Figure 2.1 shows the VRP variants and their relationships.  
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Figure 2.1: VRP variants 

 

In this figure, the Capacitated VRP aims to achieve near-optimal routes 

if the total demand of customers does not exceed the vehicle capacity. In 

VRPTW, the near-optimal routes are calculated within depot availability time 

and customer availability time (customer time windows). In MOVRPTW, the 

objective is to achieve two or more objective functions such as both the least 

number of vehicles and the least total travelled distance. In DVRPTW, the 

objective is like VRPTW except for the problem that some customer 

information is not available during the planning time instead it is only available 

during execution time. 
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In MODVRPTW, this problem is similar to MOVRPTW but of dynamic 

nature. Each of these variants is explained in detail in the following sections. 

Several types of algorithms can be used to obtain solutions. They are brute-

force, heuristic, and metaheuristic. However, it takes a longer time to derive 

solutions using brute force if it is using a large-scale dataset. Therefore, brute 

force is best used for small-scale problems. A suitable type of algorithm is to 

use the heuristic or metaheuristic that will attain the solution within a reasonable 

time, and most solutions obtained are near-optimal.  

 

 

2.2.1 Capacitated Vehicle Routing Problem 

 

CVRP is one of the popular VRP variants (Altabeeb et al., 2021) and is 

extensively studied (Yu et al., 2017). It operates on static customer information, 

which means that all data about customer information are known during the 

planning time. It aims to determine the least routing cost using the homogenous 

vehicle.  The following defines the CVRP model (Yu et al., 2017):  

 

• Directed graph (G) is (V, A) where vertices set is V = {0, . . ., N} and 

arcs set is A = {(i, j)}. 

• There is a list of customers denoted as V = {1, . . ., N} where 1 … N 

represent customers and 0 represents a depot.  

• There is a fleet of vehicles (K) and each vehicle has a capacity (Q). The 

demand of customer i is qi, where the demand is between 0 < qi < Q.  
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• There is a cost matrix C = cij, in which cij is the travel cost between 

customer i and customer j. 

 

The objective function is to minimize the total travelled distance by the 

vehicles. Euclidean distance (2.1) is used to calculate the distance between 

customer i(vi) to customer j(vj): 

 

𝑑𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2    (2.1) 

 

There are some hard constraints listed as follows: 

 

• The customer can only be serviced by one vehicle. 

• The total demand of all customers on a given route must not exceed 

the loading capacity (Q) of the vehicle. 

• There is only one depot. All vehicles begin and end at that depot. 

Earlier work on the VRP was based on exact algorithms. However, the 

scale and complexity of VRP have increased over the year due to the dynamic 

economic climate and competition. This has led to an evolution in the adoption 

of algorithms. Table 2.1 categorizes two types of algorithms (Talbi, 2007) that 

are used to approach VRP, and the assessment of each algorithm is shown in 

Table 2.1.  
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Table 2.1: Assessment of the Usage of Algorithms on VRP 

 
Category Algorithm Assessment 

Exact 

algorithm 

Branch and X method (P. Augerat, J.M. Belenguer, E. Benavent, A. Corber´an, D. Naddef, 1995) 
- Time-consuming to find a moderately optimal solution for a 

   small-scale customer size. 

Dynamic programming (Kok, Hans, Schutten, & Zijm, 2010) 
- Take up more memory, suitable for reasonable size problem. 

- Unnecessary memory utilization. 

Set partitioning formulation (Baldacci, Mingozzi, & Roberti, 2012) - Use an exponential number of variables. 

Integer programming algorithm (Andres Figliozzi, 2012) - Time-consuming to calculate and complex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mixed-integer linear programming (Çetinkaya, Karaoglan, & Gökçen, 2013; Urbanucci, 2018) - Risk of the high dimensionality of the problem. 

Traditional 

heuristic 

Saving heuristic (Solomon, 1987b; Wang & Zhou, 2016) 
- Fast computation but hard to generate the high-quality 

 solution. 

Sweep algorithm (Garcia-Najera & Bullinaria, 2011; Panagiotis P. Repoussis, 

Tarantilis, & Ioannou, 2009) 
- Small-scale dataset. 

Greedy algorithm (Kirci, 2016; Suárez & Anticona, 2010) 
- Straightforward and efficient.  

- No guarantee can solve the problem. 

Metaheuristics 

Ant algorithm (Y. H. Huang, Blazquez, Huang, Paredes-Belmar, & Latorre-

Nuñez, 2019) 

- Not efficient dealing with large scale. 

- Improper selection of parameters may lead to a non- 

  optimal solution. 

Artificial immune algorithm (Hassen, Tounsi, & Bachouch, 2019; Shukla & 

Jharkharia, 2013) 

- Higher convergence rate. 

- Hard to obtain the global optimal solution. 

Bee colony (Szeto, Wu, & Ho, 2011; Yazdani & Meybodi, 2014) 
-Slow convergence speed and Improper exploitation ability in 

solving a complicated problem. 

Cultural algorithm (Farrokhi-Asl & Tavakkoli-Moghaddam,2016; Xue, 2020) - Large dimensionality of data premature convergence. 

Coevolutionary algorithm (Farrokhi-Asl & Tavakkoli-Moghaddam, 2016; Xue, 

2020) 

- CEA pathologies can cause the ability to find good   

   solutions 
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Heuristic 

Algorithm 

Co-variance matrix adoption evolution strategy (Nand,  

Sharma, & Chaudhary, 2021; Vidal, Crainic, Gendreau, Lahrichi, & Rei, 2012) 

- Not performing under low-dimensional functions, separable 

  functions with or without negligible 

- Dependencies between design variables among others 

Differential evolution (Krömer, Abraham, Snasel, Berhan, &  

Kitaw, 2013; Mingyong & Erbao, 2010) 

-  Convergence is unstable in the last period. 

-  Easily trap into local optimal. 

Evolutionary programming (Bräysy, Dullaert, & Gendreau, 2004; Nagata, 2007) 
-  Difficult parameter tunning. 

-  No guarantee of convergence.  

Evolution strategies (Mester, Bräysy, & Dullaert, 2007; P P Repoussis, 

Tarantilis, Bräysy, & Ioannou, 2010) 
- Convergence into bad local optimal. 

Genetic algorithm (Baker & Ayechew, 2003; Nazif & Lee, 2012) 

- Tendency to converge into local optimal. 

- Terminating criteria is not clear if the best individual only 

   compares to other individuals. 

Great deluge (Dueck, 1993; Saputra, Muklason, & Rozaliya, 2020) 
-  Speed of convergence. 

-  A problem-based parameter setting. 

Guided local search (Kilby, Prosser, & Shaw, 1999; Tarantilis, Zachariadis, & 

Kiranoudis, 2008) 
-  Not easy to decide on a feature to penalize. 

Genetic programming (Gulić & Ja obović, 2013; Liu, Mei, Zhang, & Zhang, 

2020) 

-  No guarantee of finding an exact or acceptable solution. 

-  Prematurely converge upon a local optimum. 

-  Performance depends on problem complexity. 

Greedy adaptive search  

Procedure (Parreño, Alvarez-Valdes, Oliveira, & Tamarit, 2010; Tchapnga-

Takoudjou, Deschamps, & Dupas, 2012) 

-  Time consuming 

-  Converging to local optima by limiting search space. 

Iterated local search (Merz and Huhse, 2008) 

-  Slow convergence  

-  Easily trap in a local 

optimum 

Neural network algorithm (Merz and Huhse, 2008) 
- Slow convergence 

- Easily fall into local optimum 

Particle swarm optimization (Merz and Huhse, 2008) - Premature convergence 

Simulated annealing (Merz and Huhse, 2008) 
- Poor solution when the problem is large. 

- Tuneable parameters must be carefully chosen. 

Tabu search (Merz and Huhse, 2008) - Time consuming and depend on the initial solution. 
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Variable neighbourhood search (Merz and Huhse, 2008) - Lack of memory 
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2.2.2 Vehicle Routing Problem with Time Windows 

 

VRPTW is an important variant of VRP and extensively studies 

combinatorial optimization problems (Qi et al., 2015a).  VRPTW follows the 

similar objective and constraint of VRP but includes some of the following 

(Zhang, Yang, and Weng, 2018): 

 

• The time window constraints denote a predefined time interval for the 

customers. This is also known as customer availability time. The 

customer availability time has the customer's earliest availability time 

and the latest availability time. If the vehicle arrives before the time 

window, it will have to wait until the customer's earliest availability time 

is reached. The customer will not be able to serve if the vehicle arrives 

after the customer's latest availability time.  

• There is also an allocated service time to service the customer. 

 

 

 

 

2.2.3 Pickup and Delivery with Time Windows 

 

 

Another generalization of VRPTW is the PDPTW (Baldacci et al., 2010) 

which consists of pickup and delivery activities. The objective is to achieve the 

least number of vehicles used and the least total travelled distance. Each route 

has a set of pickups (P = {p1 ... pn}) with the corresponding deliveries (D = 

{d1...dn}) at the respective customers locations (V = {v0...vn}). Each pickup must 

precede each delivery on the same route and execute within the vehicle capacity 
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and each activity has the given time windows or customer availability time 

(e1...en, l1...ln). There is a service duration (S = {s1...sn}) attached to each pickup 

and delivery activity. However, there are no pickup and delivery activities at the 

depot (v0). The following define the model (Holborn, Thompson, and Lewis, 

2012):  

 

• Each vehicle must start at a depot and must perform at least one pickup 

and delivery before returning to the depot. 

• Each pickup must have the corresponding delivery activity. 

• All vehicles have a similar capacity (Q), and each vehicle must not 

exceed its capacity. 

• Each vehicle must wait if they arrive early at the customer location, and 

they must not service if it arrives beyond the customer's latest 

availability time.  

• There is only one depot. All vehicles begin and end at that depot. 

• Within each route, the delivery cannot take place if the pickup is not 

initiated. 

 

2.2.4 Multi-objective Vehicle Routing Problem with Time Windows 

 

Another increasing research trend on the VRP variant is the 

MOVRPTW. The trend is due to extend of the single-objective into multi-

objective (Baños et al., 2013). In MOVRPTW, the objective is to attain the least 

number of vehicles used and the least total travelled distance.  
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2.2.5 Dynamic Vehicle Routing Problem with Time Windows 

 

DVRPTW is an extension of VRPTW. To the best of our knowledge, 

the research in this area is quite limited. However, DVRPTW is regarded as a 

practical and important (Necula, Breaban, and Raschip, 2017) problem to be 

solved. DVRPTW includes a dynamic nature of the problem in which some of 

the customer information was never revealed during the planning period. The 

information of these customers was only updated on an ongoing basis during 

the execution time.  This simulates the real-life scenario of the problem. 

DVRPTW encompasses all constraints established in VRPTW plus the dynamic 

nature of the customer's appearance. DVRPTW is sometimes referred to as 

online or real-time VRP. 

 

2.2.5.1 General Definition 

 

The first reference to the dynamic vehicle routing problem equivalent 

first appeared in a single-vehicle dial-a-ride problem (DARP) by Wilson and 

Colvin (Wilson and Colvin, 1977). DARP is based on pickup and delivery 

requests between the origin of the location and the destination. The aim is to 

achieve a minimum distance cost and accommodate as many customers as 

possible under a set of constraints. A typical example of DARP is the door-to-

door transportation of elderly or disabled people. Over the years, the 

technological advances, and the industrial revolutions (IR) 4.0 have caused data 

to be grown immensely, smartphone and mobile devices have become a daily 

necessity, tracking, and online ordering has become a norm, and tracking in real-
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time manner to stay competitive. This means that dynamic or real-time requests 

are ubiquitous in the delivery and pickup orders, and there are important 

problems to be solved.  

 

In contrast to static routing, dynamic routing involves new challenges 

such as deciding the worthiness of the given route plan which can increase the 

complexity of the decisions. In some instances, such as courier service, the 

delivery company may reject customer requests as it may increase the cost of 

delivery or affect its service guarantee.  Also, it must be able to decide whether 

to divert a moving vehicle to a nearby request for additional revenue, which 

requires rapid support and online information received from the service provider 

regarding the position of the vehicle. Dynamic routing may differ in its objective 

function compared to static routing which only focuses on minimizing travelling 

distance, the number of used vehicles, or both. It can emphasize service level, 

throughput (maximization of customer requests), maximization of revenue, 

minimizing the delay between the request arrival and its services, among other 

objectives. Also, dynamic routing may not compromise decision quality (delay 

in accepting or rejecting the customer request decision) for servicing customers.  

 

A typical DVRPTW can be illustrated in Figure 2.2 in which the vehicle, 

static, and dynamic order changes states during the planning, execution, and 

completion stage in the DVRPTW. At the planning stage, an instance of the 

DVRPTW consists of a central depot, 12 static customers requested before the 

journey starts. The plain house represents static customer order, the black house 

represents dynamic customer order, and the blurred house represents rejected 
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customer order as shown in Figure 3.1(a). In this stage, a set of static customers 

were known in advance before the journey starts.  

 

During the execution stage (time = t1), the routes are planned, and 3 

vehicles are assigned to deliver these orders to a set of static customers. In 

Figure 3.1(b), the three dynamic orders (black houses) are received 

intermittently during an interval time (time = t1) while the vehicles are en route 

to serve other customers as shown in orange dotted lines. However, two 

dynamic requests (orders from customers 14 and 15) were rejected due to 

requests coming in too late for the vehicles to accommodate their requests (not 

connected by any lines) and one dynamic customer request (customer 13) can 

be accommodated due to it appearing before the vehicle passes the customer  

 

 
 

Figure 2.2: Dynamic Vehicle Routing Problem with Time Windows 
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location, which may seem economical from the distance standpoint.  After the 

journey, all vehicles return to the depot, 13 customers are served and 2 customer 

requests are rejected, as shown in Figure 3.1(c). 

 

2.2.5.2 Mathematical formulation 

 

DVRPTW is defined as a complete graph G = (V, E) where V represents 

a set of vertices that consists of a depot node v0 and customer nodes (v1...vn. E = 

{(i, j): i, j V, i j represents a set of arcs, each representing the known travel cost 

(tij) between node i and j (Chen et al., 2018). Static customers are customers' 

information explicitly available before planning or execution. It is denoted as 

Vs. For dynamic customers Vd, the customers' information is available during 

execution. Therefore V = Vs ∪ Vd = {v1, v2, . . ., vn} represents all customers. 

Each customer vi ∈ V’  s represented as a vector vi = (xi, yi, qi, si, ei, li, Ti, bi) is 

denoted as the location of customer vi (xi, yi), customer demand (qi), customer 

service time (si), earliest availability time (ei), latest availability time (li), request 

service time (Ti) and begin service time (bi).  For static customers, the service 

time is represented as Ti = 0. A vehicle must wait if it arrives early at the 

customer vi before the ei. Each arc (i, j) ∈ E is associated with a cost of travel 

distance (dij) or travel time (tij). A customer can only be served once by a vehicle 

k on a single route. The aggregate demands on that route must be less than or 

equal to the vehicle loading capacity (Qk . The binar  variable ℇijk = 1 if arc (i, 

j) is travelled by vehicle k, and 0 otherwise. Another binary variable Xk = 1, if 

vehicle k is used and 0 otherwise. The DVRPTW model is listed as follows: 
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Minimize ∑ ∑ 𝑑𝑖𝑗 .𝑘∈𝐾(𝑖,𝑗)∈𝐸  ℇijk + γ . ∑ 𝑋𝑘. 𝑔𝑘𝑘∈𝐾  (2.2) 

Where 𝑔𝑘 is the fixed cost of vehicle k but subject to: 

∑ 𝜀𝑖𝑗𝑘𝑖∈𝑉  = ∑ 𝜀𝑖𝑗𝑘 𝑗 ∈ 𝑉′, 𝑘 ∈ 𝐾𝑖∈𝑉   (2.3) 

∑ ∑ 𝜀𝑖𝑗𝑘𝑗∈𝑉𝑘∈𝐾  = 1 𝑖 ∈ 𝑉′ (2.4) 

∑ 𝜀0𝑗𝑘𝑗∈𝑉 = ∑ 𝜀𝑖0𝑘𝑖∈𝑉 = 1 𝑘 ∈ 𝐾 (2.5) 

∑ ∑ 𝑞𝑖𝜀𝑖𝑗𝑘 ≤𝑖∈𝑉𝑖∈𝑉′ 𝑄𝑘𝑘 ∈ 𝐾 (2.6) 

ai = bi- + si + ti,i-1 𝑖 ∈ 𝑉′ (2.7) 

bi = max { ai, ei } (2.8) 

ei ≤ bi ≤ li  (2.9) 

ℇijk, Xk ∈ {0,1} (2.10) 

 

The objective function (2.2) is to minimize the total travelled distance and the 

number of vehicles where γ is a coefficient.  onstraint (2.3) is a flow 

conservation constraint. The in-degree of each customer should be equal to the 

out-degree, which is at most one. Constraint (2.4) represents that each customer 

must be visited by only one vehicle. Constraint (2.5) ensures that each route 

starts and ends at the central depot. Constraint (2.6) represents the capacity of 

the vehicle. Constraints (2.7), (2.8), and (2.9) represent time windows. Lastly, 

constraint (2.10) imposes restrictions on the decision variables.  

 

2.2.6 Multi-objective Dynamic Vehicle Routing Problem with Time 

Windows 

 

MODVRPTW is the multi-objective form of DVRPTW. This means 

their optimal solution has several objectives that it wants to accomplish. 
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Generally, it could be reducing the number of used vehicles, total travelled 

distance, and rejection rates. To our knowledge, there are only a handful of 

studies on this problem. Despite that, the study of MODVRPTW may appear in 

different forms such as (Tang and Hu, 2005; Ghannadpour et al., 2014; 

Kaiwartya, Kumar, D. K. Lobiyal, et al., 2015).  

 

2.2.7 Information Characteristics 

 

The information available to real-world applications can be defined into 

two important dimensions that are the evolution and quality of information 

(Psaraftis, 1980a). The evolution of information concerns about information 

might experience sudden change during the execution of the routes such as the 

arrival of new customer requests, whereas the quality of information refers to 

uncertain data availability such as the rough estimate of the real demand of that 

customer. The nature of vehicle routing can exist in two fashions either static or 

dynamic. For example, VRP with stochastic demand (VRPSD) can be viewed 

in both fashions. Hence, this dimension of the real-world application can be  

further explained in Table 2.2.  

 

Table 2.2: Taxonomy of vehicle routing problem (Pillac et al., 2013) 

 

 Information quality 

Deterministic 

information 

Stochastic 

information 

Information 

evolution 

Information is 

known 

beforehand 

Static and 

deterministic 

Static and 

stochastic 

Information 

changes over 

time 

Dynamic and 

deterministic 

Dynamic and 

stochastic 
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Statically, it is seen as a set of predetermined routes that may change 

slightly during execution (Bertsimas and Simchi-Levi, 1996; Gendreau, Laporte 

and Séguin, 1996), and dynamically, the vehicle routes are constructed in an 

ongoing fashion based on the state when the vehicle is in an idle state. 

 

In static and deterministic problems, all customer information is known 

in advance, and vehicle routes do not change during execution. These problems 

have been extensively studied (Kritikos and Ioannou, 2010; Schneider, 2016; 

Utama et al., 2020).   

 

In static and stochastic problems, the information is partly unknown, 

which is the random variables, and the realization is known during the execution 

of the routes. In addition, the routes are known in advance and a small change 

is allowed subsequently such as skipping a customer and a trip back to the depot. 

In this problem, the three most studied areas are the stochastic customer 

(Bertsimas, 1988; Waters, 1989), stochastic times (Laporte, Louveaux and 

Mercure, 1992; Kenyon and Morton, 2003; Verweij et al., 2003), and stochastic 

demands(Dror, Laporte and Trudeau, 1989; Secomandi, 2000; Gendreau, 

Laporte and Potvin, 2002; Christiansen and Lysgaard, 2007; Mendoza, 

Medaglia and Velasco, 2009; Secomandi and Margot, 2009; Mendoza et al., 

2011).  

 

In dynamic and stochastic problems, part or all of the information may 

not be known in advance and dynamically revealed during routes executions. In 

dynamic and deterministic problems, not all information is known in advance 
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but is revealed during route execution. In this thesis, we focus on this problem 

together with multi-objectives, and often, this problem may refer to as online, 

dynamic, or real-time in other works of literature. This dynamic information 

provides stochastic knowledge and vehicle routes can be re-planned 

continuously. 

 

The level of dynamism of the problem can be categorized into two 

dimensions. They are the frequency of changes and the urgency of customer 

requests. The frequency of changes is a new information availability rate, and 

the urgency of customer requests is the interval time between an appearance of 

a new customer and its expected service time. There are many metrics used to 

measure the dynamism of a problem, such as a ratio between the number of 

dynamic customers (nd) and the total number of customers (ntotal) (Lund, 

Madsen, and Rygaard, 1996), the disclosure date, and the time windows of the 

dynamic customers (Larsen, 2000). 

 

2.3. Evolutionary Algorithm  

 

An evolutionary algorithm (EA) is a stochastic population 

metaheuristic. It has been applied to many real and complex problems such as 

multi-objective, highly constrained problems, and multimodal, among others. 

EA is one of the most studied population metaheuristics and has been 

successfully implemented in many areas such as combinatorial optimization, 

engineering design, data mining, machine learning, artificial intelligence, 
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among others. Because of this reason, they are considered evolutionary 

computation (EC). 

 

There are different schools of evolutionary algorithms accumulated over 

the past 40 years. The four most common are a genetic algorithm (GA), 

evolution strategies (ES), evolutionary programming (EP), and genetic 

programming (GP). Other models include an estimation of distribution 

algorithms (EDA), differential evolution (DE), coevolutionary algorithms 

(CEA), and cultural algorithms (CA). EC represents the evolution of species. 

Figure 2.3 represents a typical evolution in EC.  

 

 

Figure 2.3: An Evolution(generation) in Evolutionary Algorithms 

 

Initially, the individuals in the population are generated randomly. Each 

individual in the population represents and encodes a solution to the problem. 

Each fitness value is calculated and associated with the individual. Two 

individuals are chosen based on the selection paradigm and perform a crossover 

to generate offspring. These offspring are mutated into new individuals which 

replace the underperformed individuals in the population. These steps continue 
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until the termination criteria are met. The surviving and most optimal individual 

after the generation steps is selected as output. 

 

2.3.1 Genetic Algorithms 
 

 

Genetic algorithms (GA) were developed by J. Holland in 1970 

(Holland, 1992). GA consists of four common steps as shown in Figure 2.4.  

 

 
 

Figure 2.4: Genetic Algorithm  

 

They are selection, crossover, mutation, and replacement. In the selection step, 

GA uses probabilistic selection to proportionately select individuals for 

crossover. There are a variety of selection methods that the selected individuals 

can use to select parents. These parents are subsequently crossover to generate 

offspring which is mutated into new individuals to be output in the population. 
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GA use crossover and mutation operator to modify the individual to promote 

diversity.  

 

2.3.2 Evolution Strategies 

 

Evolution strategies (ES) were developed by Rechenberg and Schewefel 

in 1964 at the Technical University of Berlin (Rechenberg, 1965; Vent, 1975) 

as shown in Figure 2.5.  

 

 
 

Figure 2.5: Evolution Strategies Algorithm  

 

ES begins with the initialization of individuals in the population. Individuals are 

selected as a parent. The cycle iterates when offspring are generated from the 

selected parents and the offspring replace the individual in the population. ES 

uses mutation, recombination, and selection operators and is applied iteratively 

until a termination criterion is met. The selection operator is based on fitness 
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ranking. Recombination can be discrete (uniform crossover) or intermediary 

(arithmetic crossover). The crossover is rarely used. An individual (solution) in 

the ES consists of floating decision variables and uses some other parameters 

for search guidance.  

 

2.3.3 Evolutionary Programming 

 

Evolutionary programming (EP) was introduced by Lawrence J. Fogel 

in 1960 while serving the National Science Foundation (NSF) (Lawrence J. 

Fogel, Alvin J. Owens, 1966) using Finite State Machine (FSM) at the early 

stage. The basic EP flow chart is shown in Figure 2.6. It uses a stochastic 

optimization strategy and focuses on the relationship between the parents and 

offspring. It is different from the genetic algorithm, EP simulates the evolution 

of species, unlike GA, which simulates genes. EP linking the species in its 

evolutionary steps. This means EP embraces evolution behaviour between 

parents and offspring, or good offspring can survive and not consider parents. 

EP uses the fitness value to select the offspring to compare. Compared to GA 

which uses the fitness value to select a parent. It is an approach that iteratively 

generates an appropriate solution using a fitness function in a stationary or non-

stationary environment.  
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Figure 2.6: Evolutionary Programming Algorithm  

 

 

2.3.4 Genetic Programming 

 

Genetic programming (GP) is the work of John Koza (student of John 

Holland, founder of GA) which nicely coincides with his ongoing research on 

GA. First, it begins with generating the initial population as shown in Figure 

2.7. Next, the fitness value is calculated and associated with each individual.  

The population contains individuals. Each individual is probabilistically 

selected from the population based on the fitness value. In this selection, the 
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performing individual is highly likely to be selected over the worst-performing 

individuals. 

 

 
 

Figure 2.7: Genetic Programming Algorithm  

 

However, the performing individual is not necessarily selected, and the 

worst-performing individual is not necessarily avoided. Next, the selected 

individuals perform crossover to generate offspring. These offspring replace the 

individuals in the population if the offspring result is better. This process iterates 

until the terminating criteria are met (number of generations). Finally, it outputs 

the best individual.  
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2.3.5 Other Evolutionary Algorithms 

 

Estimation of Distribution Algorithms (EDA) is an evolutionary 

algorithm that uses a pool of individuals to perform beam searches (Mühlenbein 

and Paaß, 1996). EDA performs an evolutionary mechanism using estimation 

and simulation of the joint probability distribution. Initially, a population of 

individuals is generated. EDA consists of 3 main steps that are executed 

iteratively. Each iteration represents a generation.  The first step is to select a 

subset of the best individuals. The second step is to learn the selected 

individuals, and the final step is to generate new individuals using the 

distribution model. In this manner, the population performance improves as 

more iterations are executed. The iterations are terminated after terminating 

criteria are met (several generations are reached or when the overall population 

performance does not improve).  The basic EP flowchart is shown in Figure 2.8.  

 

 
 

Figure 2.8: Estimation of Distribution Algorithm 
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Differential Evolution (DE) was discovered by Storn and Price (Storn, 

1996; Storn and Price, 1997). It is a multi-faceted research area and appear in 

many application areas such as engineering, logistic, industrial engineering, 

among others. Figure 2.9 shows that the DE algorithm starts by initializing the 

population and the fitness of each individual is evaluated. This mutation process 

adds a weighted difference between the population vectors to produce a mutated 

vector. Next, the crossover mixes the mutated vector with the parameters of the 

target vector to produce the trial vector, which purportedly has better diversity. 

A selection process replaces the target vector with the trial vector, its offspring.  

 

 
 

Figure 2.9: Differential Evolution 
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These iterations continue until the termination process is met. At each 

iteration, the DE first performs the mutations on the population to generate 

new solutions candidates.  

 

2.3.6 Local Neighbourhood Search Algorithm  

 

The Local Neighbourhood Search (LNS) algorithm is based on the 

concept of ruin and recreate (R&R) principle as formulated by Shrimpf et al 

(Schrimpf et al., 2000a). Some other algorithms which have similar approaches 

are iterated local search (Stützle, 2006), large-step Markov chains (Martin, Otto, 

and Felten, 1991), variable neighbourhood search (Hansen, Mladenović and 

Pérez, 2010), and chained local optimization (Bouhmala, 2019). The basic 

principle is based on the removal part of an existing solution and repairs of the 

ruined solution. If these steps are performed repeatedly, high-quality solutions 

can be achieved. This way the generated solution escapes from a local optimum 

and find better solutions. Two ways to escape the local optimal is through 

exploration and exploitation. Exploration occurs when part of the solution is 

removed, and exploitation occurs when the ruined solution is repaired. This 

metaheuristic algorithm uses several ruin methods. In this thesis, we propose 

four ruin strategies and two recreate strategies (best insertion and regret 

insertion).  The ruin strategies include critical procedure, related procedure, 

radial procedure, and random procedure. The recreate strategies contain best 

insertion procedure and regret insertion procedure. 
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2.4. Multi-objective Optimization  

 

In the real world, many optimization problems have two or more 

objective functions. This is a common problem where the decision-maker (DM) 

or stakeholders want to strive for the best deal or find out whether it satisfies the 

requirements stated in a standard or recommended practice. However, there are 

cases where the objectives have contradicted each other. In this scenario, we are 

dealing with a set of trade-offs. This set of trade-offs is called a Pareto front. 

When the solutions are on the Pareto front, this means no other solutions in the  

search spaces are better than the solutions at the Pareto front. Many studies are 

being conducted on multi-objective optimization problems (MOP), particularly 

vehicle routing problems (Afsar Afsar, & Palacios, 2021; Huang, Li, Zhu & 

Qin, 2021; Kyriakakis, Marinaki, & Marinakis, 2021).  

 

 In mathematical terms, a general minimization of MOP (2.11) can be 

written as (Castro-Gutierrez, 2012) : 

 

Minimize y = f(x) = (f1(𝑥̅), f2(𝑥̅), . . . . , fn(𝑥̅))  (2.11) 

subject to:  

𝑥̅ =  

[
 
 
 
 
 
𝑥1

𝑥2

.

.

.
𝑥𝑛]

 
 
 
 
 

 ∈ X    (2.12) 

 

where x1 is the first decision variable, n is the number of decision variables,  𝑥̅   
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(2.12) is the vector of decision variables, X is the feasible set and Rm is the 

decision space; 𝑥̅ ∈ X ⊂ Rm. 

 

𝑦̅ =  

[
 
 
 
 
 
𝑦1

𝑦2

.

.

.
𝑦𝑚]

 
 
 
 
 

 ∈ Y    (2.13) 

 

 

The objective vector is denoted by 𝑦̅ (2.13).  y1 is the first objective function 

and m is the number of objective functions. Y = f(X) is the objective feasible 

region and Rk is the objective space; 𝑦̅ ∈ Y ⊂ Rk. Therefore, in MOP, there is a 

multi-dimensional space for the objective functions and the decision variable 

space for the solution vector. This translates to every solution in the decision 

variable space, there is a point in the objective function space. Figure 2.10 

shows the mapping of a decision space onto an objective function. 

 

 
 

Figure 2.10: Mapping a decision space onto an objective function (Sheikh 

et al., 2021). 
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Definition If there exists a solution 𝑥̅^ ∈ X that minimizes all objective functions 

simultaneously, 𝑥̅^ is an ideal vector. This means a feasible solution (𝑥̅^ ∈ X) is 

an ideal solution (2.14) if there is no other 𝑥̅ ∈ X and i ∈ {1,2, . . ., n} such that: 

 

fi(𝑥̅) < fi(𝑥̅^)    (2.14) 

 

2.4.1 Pareto Optimality 

 

There is no unique solution but a set of solutions in the MOP. The set of 

solutions is found using the Pareto optimality concept (Ehrgott, 2005).  The 

MOP global minimum (or maximum) problem is formally defined as follows:  

 

Definition Given two decision vectors 𝑥̅1, 𝑥̅2 ∈ X, 𝑥̅1 dominates 𝑥̅2 (𝑥̅1 ≺ 𝑥̅2).  

∀i ∈ {1, 2, . . . , n} : f1(𝑥̅1  ≤ f1(𝑥̅2)   (2.15) 

∃j ∈ {1, 2, . . . , n} : f1(𝑥̅1  ≤ f1(𝑥̅2)   (2.16) 

 

Definition Given two decision vectors 𝑥̅1, 𝑥̅2 ∈ X, 𝑥̅1 is said to cover 𝑥̅2 (𝑥̅1 ≼ 

𝑥̅2) if 𝑥̅1 ≺ 𝑥̅2 or f(𝑥̅1) = f(𝑥̅2).  

 

Definition A vector of decision variables 𝑥̅^ ∈ X is non-dominated if there is 

no other 𝑥̅ ∈ X, such that 𝑥̅ = 𝑥̅^ 

 

Definition The Pareto optimal set P^ is described as P^ = {𝑥̅ ∈ X : 𝑥̅ is Pareto 

optimal } 
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Definition The Pareto front PF^ is defined as PF^ = {𝑦̅ = f(𝑥̅) ∈ Y : 𝑥̅ ∈ P^} 

 

The main goal of MOP is to obtain the Pareto front (PF). The Pareto 

front consists of many points from a theoretical point of view. In practice, there 

is a limited number of usable approximate solutions. It is important to find 

solutions that are closer to the Pareto front and are uniformly spread. The 

closeness of approximate solutions to the Pareto front explains the high 

convergence of that solutions and this means the approximate solutions are 

closer to the Pareto front. The uniformly spread approximate solutions mean 

that the approximate solutions have a good exploration of the search space and 

there are no regions left unexplored.  

 

2.4.2 Multi-objective Evolutionary Algorithm Solution Techniques 

 

There are several ways to classify multi-objective problems. One way is 

to classify the techniques into three main approaches proposed by Adulbhan P 

and MT Tabucanon (Adulbhan P, 1980). Their approaches include the 

conversion of secondary objectives into constraints, the development of a single 

combined objective function, and treating all objectives as constraints. Another 

technique is to classify it into four approaches which are proposed by Hwang et 

al (Hwang, Paidy, Yoon, & Masud, 1980). Their classification is divided into 

four approaches: (1) no articulation of the preference data of the decision maker, 

(2) a priori articulation of the preference data, (3) progressive articulation of the 

preference data, and (4) a posteriori articulation of the preference data. 
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In multi-objective evolutionary algorithm (MOEA) approaches, it is 

classified into three main techniques as shown in Table 2.3 (Coello, Lamont, 

and Veldhuizen, 2006). They are as follows: 

 

Priori techniques (Before the search): These techniques require decision-

makers to define the relative importance of the MOP objective before any 

search.  

 

Typically, this technique involves assigning weights to the aggregated 

sum of the objectives. The problem with this method is the poor objective 

prioritization.  This happens when the decision ma er’s weight is greater than 

necessary, resulting in a more acceptable solution being missed. A priori 

techniques are divided into 3 main approaches which are listed as follows: 

 

• Lexicographic ordering: The objectives are ranked in importance 

order. This means that the most important objective function is 

minimized first to get the optimum solution than other objectives with 

regards to the order of importance. If the order of importance is known, 

the objective function will be randomly selected. The weakness of this 

technique is that they prefer certain objectives due to the randomness in 

the process. This causes an undesirable population to converge to a 

particular part of the Pareto front rather than completely delineate it. 

However, this technique is simple to use and computationally efficient. 
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• Linear aggregating function: This linear fitness combination is a 

scalarizing approach and is easy to use. However, this approach does not 

find all Pareto front points of interest. These non-supported points are 

not supported in this approach which is not appear on the convex hull of 

the Pareto front. Another scalarizing approach is the weighted 

Tchebycheff model which supports the non-convex hull. Linear 

aggregating functions are easy to understand, implement, and 

computationally efficient for an easy problem domain, and the relative 

worth of each objective is known, quantifiable, and available in a short 

time of searching. The disadvantages are that if the Pareto front is non-

convex, the portion of the front will not be found. However, the linear 

aggregating function is less common than other approaches namely the 

Pareto-based approach. 

 

Non-linear aggregating functions:  This approach can operate using 

either multiplicative approaches or target vector approaches. In the 

multiplicative approach, it is not popular due to the overhead in 

determining utility function and various conditions under which the 

objective functions must meet (Keeney and Raiffa, 1993). Simply put, 

the additional overhead does not warrant quality solutions. Target vector 

approaches are more popular than multiplicative approaches. It is even 

more useful if the decision-maker can specify the goals it wanted. 

Multiplicative approaches are simple, efficient, and maybe troublesome 

if the definition of a good nonlinear aggregation function is difficult 

compared to defining a linear aggregation function. In target-vector 
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approaches, it is computationally intensive, may lead to additional 

problems (generate misleading selection pressure) and limit their 

applicability if goals are chosen in the feasible domain. Despite the 

drawbacks, the non-linear aggregating function can give good 

approximations of the Pareto optimal set. 

 

A priori techniques do not desire general use unless the problems are multi-

objective combinatorial optimization problems. 

 

Progressive Techniques (During the search): these techniques require the 

decision-maker to direct the search. This approach uses the algorithm to prompt 

the user with questions to decide the search space. The drawbacks are the 

procedure lies in the decision-maker requirement time. These techniques are 

affordable if the execution time is not long.  

 

Posteriori techniques (After the search): These techniques perform a regular 

number of solutions collections in the solution space. Based on the set of 

solutions, the decision maker will select the preferred ones. The main problem 

with these techniques is the solutions are difficult to find and computationally 

intensive.  Posterior techniques are divided into five main approaches which are 

listed as follows: 

 

- Independent Sampling Techniques: This sampling has reduced 

effectiveness. It uses some fitness combination techniques in which 

the weights assigned to each objective varied over several MOEA 
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runs. These techniques are easy to use and efficient. However, the 

usefulness is quite limited, as the arbitrary weight combinations 

prevent the discovery of some solutions. 

 

- Criterion Selection Techniques: Vector Evaluated Genetic 

Algorithm (VEGA) (Schaffer, 1985) is an example of a criterion 

selection technique. The vector is defined as a vector of k objective 

functions. These techniques select a fraction of each succeeding 

population which is based on separate objective performance, and 

each fraction of the specific objectives is randomly chosen at each 

generation. Each objective function tends to converge closer to a 

local optimum. This concept is based on the k number of objectives, 

the number of subpopulations (k) of each population size (M) over 

the number of objectives (k) is generated. Each sub-population 

dedicates k objective functions for fitness assignment. The mating 

pool is generated using the proportionate selection operator. The 

sub-populations are shuffled to obtain a new population of size M 

which is executed by crossover and mutation operators 

subsequently. These techniques are simple to use and easy to 

implement. However, it is not able to generate a concave part of the 

Pareto front.  

 

- Aggregation Selection Techniques: These techniques use a variant 

of other techniques to solve the MOP. These can be weighted sums 

(Ishibuchi and Murata, 1998), objective combinations (Loughlin and 
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Ranjithan, 1997), hybrid search approaches (Deb, 2001), among 

others. It uses different weights on different generations for each 

function evaluation. The weights may be assigned randomly, or the 

specified solutions may be evaluated, and even individuals may 

encode as genes so that the genetic operator acts upon them. The 

advantage of using these techniques is the ability to generate a set of 

solutions in a single run. The disadvantage is that certain Pareto front 

may be missed out if the technique of weighted sum is used and incur 

significant overhead if it uses both objective or constraints with 

hybrid search methods.  

 

- ∈-Constraint Techniques: This technique is a primary objective 

function selection and binds other objective functions with a 

separate allowable ∈-constraint. The ∈-constraint change to generate 

another point on the Pareto front to find elements in the Pareto 

optimal set. This technique is easy to implement but computationally 

intensive.  

 

- Pareto Sampling Techniques: This technique uses population to 

generate several elements of the Pareto optimal set in a single 

stochastic computational run. It is more effective and robust than 

other techniques, but it has a scalability issue.  
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Table 2.3: MOEA Approaches (Coello, Lamont and Veldhuizen, 2006) 

 

 Techniques Approaches 

Multi-objective Evolutionary 

Algorithm Approaches 

Priori Techniques 

Lexicographic 

Linear fitness combination 

Nonlinear fitness 

combination 

Progressive 

Techniques 
Progressive techniques 

Posteriori 

Techniques 

Independent sampling 

Criterion selection 

Aggregation selection 

Pareto-based selection 

Pareto rank and niche-based 

selection 

Pareto deme-based selection 

Pareto elitist-based 

selection 

Hybrid selection 

 

 

2.4.3 MOEA Techniques 

 

The first evolutionary algorithm for solving multi-objective 

optimization was dated in the late 1960s by Rosenberg (Rosenberg, 1970). 

However, the actual implementation of the multi-objective evolutionary 

algorithm (MOEA) is performed by David Schaffer which is mainly for solving 

machine learning problems (Schaffer, 1985). 

 

Multi-Objective Genetic Algorithm (MOGA) was proposed by Carlos M. 

 onseca and Peter J.  leming using a variation of Goldberg’s technique 

(Goldberg, 1989) that ranks certain individuals according to the number of 

individuals in the current population in which it is dominated. This algorithm is 

efficient and easy to implement, but sometimes it does not provide a diverse set 

of solutions. Also, their blocked fitness assignment type has a high likelihood 
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to produce large selection pressure, which causes premature convergence 

(Goldberg and Deb, 1991).  

 

Nondominated Sorting Genetic Algorithm (NSGA  is another Goldberg’s 

ranking procedure variation that is proposed by N. Srinivas and Kalyanmoy Deb 

(Srinivas and Deb, 1994). NGSA is based on several layers of classifications in 

individuals. The population is ranked based on nondominated and these 

nondominated individuals are grouped into one category. The classified 

individuals are shared with dummy fitness values to maintain the diversity of 

the population. This group of classified individuals is then ignored and another 

layer of nondominated individuals in the population is being processed. These 

steps continue until all individuals in the population are classified. The NGSA 

technique uses a stochastic proportionate selection of the remainder. The 

individual in the first front will get more copies since they have the maximum 

fitness value, which allows for a better search of the Pareto front regions and 

results in convergence. NGSA is a highly inefficient algorithm because the 

classified individuals rapidly converge and are computationally intensive during 

the fitness sharing mechanism.  

 

Niched-Pareto Genetic Algorithm (NPGA) is an MOEA tournament selection 

based on Pareto dominance proposed by Jeffrey Horn and his coworkers (Horn, 

Nafpliotis, and Goldberg, 1994). In NPGA, the two individuals are randomly 

chosen against a subset of the entire population. If one of the individuals is 

dominated and the other is not the non-dominated individual wins. If there is a 

tie, the fitness sharing will decide the tournament.  
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Pareto Archived Evolution Strategy (PAES) is proposed by Joshua D. 

Knowles and David W. Corne (Knowles and Corne, 2000). PAES has an 

evolution strategy that combines a historical archive that records some 

previously found non-dominated solutions. This archive is used as a reference 

set and is compared to each mutated individual. This method is used to keep 

diversity. This algorithm is less computationally intensive than traditional 

niching methods. Each solution is placed on a grid location based on objectives 

values. This algorithm is adaptive, and no extra parameters are required except 

for the number of divisions of the objective space.  

 

Strength Pareto Evolutionary Algorithm (SPEA) was introduced by Eckart 

Zitzler and Lothar Thiele (Knowles and Corne, 2000). The algorithm uses an 

external archive (non-dominated solutions) and is copied to an external non-

dominated set at each generation. A strength value is calculated for each 

individual in the external set. In this algorithm, the fitness of each member of 

the current population is calculated according to the strengths of all the non-

dominated external solutions that dominate it. 

 

Multiobjective Messy Genetic Algorithm (MOMGA) was introduced by 

David A. Van Veldhuizen and Gary B. Lamont (Van Veldhuizen and Lamont, 

2000) by extending the messy GA (Deb, 1991) to solve MOP. MOMGA 

consists of the initialization phase, the primordial phase, and the juxtaposition 

phase. In the initialization phase, MOMGA uses a deterministic process to 

produce the building blocks of a certain building size, which is known as 

partially enumerative initialization. In the primordial phase, it performs 
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tournament selection on the population and minimizes the size of the population 

if required. Finally, in the juxtaposition phase, it uses a cut and splice 

recombination operator by building up the population in the messy GA. 

 

Pareto envelope-based selection algorithm (PESA) is proposed by Corne et 

al. (Corne, Knowles, and Oates, 2000). It consists of a small internal population 

and a large external population. During execution, it uses a hyper-grid division 

of phenotype space to maintain selection diversity. Selection diversity uses the 

crowding measure to enable solutions by using an archive of solutions that 

evaluate non-dominated vectors into the external population. 

 

Micro-genetic Algorithm (micro-GA) is proposed by Carlos A. Coello Coello 

& Gregorio Toscano Pulido (C. A. C. C. Coello and Pulido, 2001; C. A. Coello 

and Pulido, 2001; Coello and Pulido, 2005). They introduced two memories that 

will be used in micro-GA. The first memory is the population memory which is 

served as a source of diversity and the second memory is the external memory 

which is to archives members of the Pareto optimal set. In population memory, 

it is divided into two parts which are replaceable and non-replaceable memories. 

Initially, micro-GA starts with the generation of a random population. This 

population inputs into the replaceable and non-replaceable portions of the 

population memory. At the beginning of each cycle, the initial population is 

taken from all population memory to achieve greater diversity. During each 

cycle, the micro-GA performs conventional genetic operators. After each cycle 

is completed, two non-dominated vectors from the final population are chosen 

and compared against the external memory. It replaces the population memory 
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with the vectors. Finally, the replaceable part of population memory will have 

more non-dominated vectors. Some vectors from the population memory will 

be used in the initial population to start another new cycle. 

 

Multi-objective Struggle GA (MOSGA) is introduced by Krus et al. 

(Andersson and Krus, 2001a, 2001b). MOSGA combines Pareto based ranking 

scheme with a struggle crowding genetic algorithm (Grueninger and Wallace, 

1996).  These algorithms have a similar pattern to the MOSGA as the two 

parents are chosen at random from the population. Also, it performs the normal 

crossover and mutation to create offspring. The offspring competes against the 

individuals in the population and replaces the individuals if it has a better 

ranking. This ranking method is like ranking used in MOGA. 

 

Orthogonal Multi-Objective Evolutionary Algorithm (OMOEA) begins by 

defining a single niche in the decision space x (Ding et al., 2003; Zeng et al., 

2005). This niche recursively split into a group of sub-niches until a 

terminating criterion is met.  

 

General Multi-objective Evolutionary Algorithm (GENMOP) is designed 

at the US Air Force Institute of Technology (AFIT). It uses several operators 

when performing evolutionary operators (EVOPs) repeatedly to produce better 

solutions.  
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2.4.4 Quality Indicator 

 

The MOP goal is to obtain the Pareto optimal front. Many multi-

objective optimization problems are difficult to solve, and the results of these 

optimization problems approximate the Pareto front. The evaluation of 

approximation quality is also a MOP. There are many popular measures to 

compare the performance of MOEAs. This measurement is called Quality 

Indicators (QI), and the term 'performance metric' is referred to as a quantifiable 

difference between approximation sets. There are many QIs for measuring the 

approximation set quality (H Ishibuchi, Masuda, Tanigaki, & Nojima, 2015; M. 

Li, Yang, & Liu, 2014; E Zitzler, Thiele, Laumanns, Fonseca, & Da Fonseca, 

2003). However, each QI is designed to take one or more optimization goals. 

This means that there is no single QI that can measure all approximation goals 

reliably and the results show the inconsistencies in various approximation sets 

assessments. The following explains some of the prevalence used QI techniques 

(Cheng, Zhan, and Shu, 2016; Cremene et al., 2016) : 

 

• Generational Distance (GD) measures the distance from the 

nondominated solution to the Pareto front (Veldhuizen and Veldhuizen, 

1999) as shown in Figure 2.11.  The di = minj || f(xi) – PFtrue(xj)|| 

represents the distance between the non-dominated solution f(xi) and the 

Pareto front (PFtrue(xj)) in the objective space. GD measures the 

closeness of the solutions to the Pareto front. If the GD value is zero, 

this means all the nondominated solutions are placed exactly on the 

Pareto front. Algorithms with low GD values have better performance 



 

53 

 

than algorithms with high GD values. GD emphasizes on convergence 

when evaluating the quality of the Pareto fronts. 

 

G  = 
√∑ di

2n
i=1

n
 (2.17) 

 

• Inverted generational distance plus (IGD +) is weakly Pareto 

compliant compared to IGD where 𝑑𝑖
+= max {𝑎𝑖 – 𝑧𝑖,0} represents the 

modified distance from 𝑧𝑖 to the closest solution in A with the 

corresponding value 𝑎𝑖. It calculates the distance from each reference 

point to the dominated region by a solution set. IGD+ incorporates 

Pareto dominance between a reference point and a solution in their 

distance calculation.  

 

 G 
+(A) = 

1

⌈Z⌉
 (∑ di

+2
|Z|

i=1

)

1

2

 (2.18) 

 

• Spacing (S) was introduced by Schott (Schott, 1995). It measures the 

extent to which the uniformity of the nondominated solution is 

distributed as shown in Figure 2.11. It is formulated as follows:  

 

S = √
1

𝑛
∑ (𝑑𝑖 − 𝑑̅𝑛

𝑖=1 )2 (2.19) 
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The 𝑑̅ is the average value of di.  The n is the number of individuals in 

the non-dominated solution. The algorithm that has a small spacing 

value dictates better performance than other algorithms with large 

spacing values. 

 

• Maximum Pareto Front Error (MPFE) is introduced by Van 

Veldhuizen (Veldhuizen and Veldhuizen, 1999) to measure the distance 

between the Pareto set and non-dominated solutions obtained by a given 

algorithm as shown in Figure 2.11.  

 

 
 

Figure 2.11: GD, Spacing, and MPFE (Yu, Lu, and Yu, 2018) 

 

The algorithm that has a low MPFE value is better performance than 

 algorithms that have high MPFE value.  

  

  

  

Nondominated solutions

Real Pareto front
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MPFE = max di (2.20) 

 

The di(minj || f(xi) – PFtrue(xj)||)  is the distance between the non-dominated 

solution f(xi) and the Pareto front (PFtrue(xj)) in the objective space. 

 

• Inverted generational distance (IGD) (Hisao Ishibuchi et al., 2015) 

inverts generational distance as shown in Figure 2.12. An IGD of 

distance from 𝑃𝐹𝑡𝑟𝑢𝑒 to 𝑃𝐴 is defined as follows:  

 

 G (PA,P true)= 
∑ d(v,PA)v∈P true

|P true|
  (2.21) 

 

where PA is the non-dominated solution set output from the algorithm.  

 

 
 

Figure 2.12: IGD  (Yu, Lu, and Yu, 2018) 
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PFtrue is the Pareto front, 𝑑(𝑣, 𝑃𝐴) is the minimum distance calculated 

using the Euclidean formula between v and the points in 𝑃𝐴. IGD focuses 

on convergence and diversity when evaluating the quality of Pareto 

fronts. 

 

• Hypervolume (HV) or (S-metric) was originally proposed by Zitzler 

and Thiele (Zitzler and Thiele, 1998) to calculate the area dominated by 

a set of solutions for a reference point as shown in Figure 2.13.  

 

 
 

Figure 2.13: Hypervolume  (Yu, Lu and Yu, 2018) 

 

• A hypervolume is defined as follows: 

 

Nondominated solutions

Real Pareto front
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HV = volume(⋃ 𝑣𝑖
|𝑃𝐴|
𝑖=1 ) (2.22) 

 

 

The algorithm proposed that has a larger value in HV than other 

algorithms dictate better performance. Every single QI has advantages and 

disadvantages. The evaluation of the quality of approximation sets is a MOP 

and there is no single QI that reliably assesses all aspects at once. Table 2.4 

summarizes the characteristics of the selected indicator.  

 

Table 2.4: Quality indicators and their properties (Ravber, Mernik, and 

Črepinše , 201   

Quality 

Indicator 
Unary Convergence Uniformity Spread 

Requires 

reference 

set 

Pareto 

Compliant 

GD √ √   √  

HV √ √ √ √  √ 

IGD √ √ √ √ √  

IGD+ √ √ √ √ √ √ 

Spacing √  √    

MPFE √ √   √  

 

 

2.5 Literature Review 

 

 

 

The following summarizes some of DVRPTW and MODVPTW 

previous works on authors and their contributions, proposed algorithms, 

objectives, and datasets used. Table 2.5 shows the previous works of the 

published journals.
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Table 2.5: Previous works 

Author (Title –Year) Contributions Algorithm Objectives Dataset 

Feng Wang, Fan shu Liao, Yixuan 

Li, Xu Chen (An ensemble 

learning based multi-objective 

evolutionary algorithm for the 

dynamic vehicle routing problem 

with time windows - 2021)  

1) A framework of the population is re-

initialized to respond to environmental 

changes effectively. 
 

2) Propose an ensemble learning based 

dynamic handling method. It can combine 

different reaction strategies to adapt to 

different cases, which improves the overall 

performance. 
 

3) Design a new population-based prediction 

strategy 

Ensemble Learning 

Dynamic multi-objective 

optimization evolutionary 

algorithm 

Minimizing the total travel costs and 

the fixed costs of used vehicles  

Hypothetical 

Hao Tang and Mingwei Hu 

(Solution Framework and 

Computational Experiments - 

2005) 

 

1) An efficient chained local search heuristic 

is embedded in this solution framework. 

2) Throughput maximization  

3) Improvement only on waiting and travel 

time objectives  

 

Solution Framework and 

Computational 

Experiments 

 

Minimizing the total travel costs and 

the fixed costs of used vehicles  

 

Hypothetical 

S.F. Ghannadpou, S. Noori , R. 

Tavakkoli-Moghaddam, K. 

Ghoseiri (solving strategy based on 

the genetic algorithm (GA) and 

three basic modules - 2014)  

 

1) A genetic algorithm (GA) solving strategy 

with its management module, strategy 

module, and optimization module. 

2) A management module for acknowledging 

information on vehicles and customer 

every time. 

3) The strategy module organized the 

information reported by the management 

module and constructed an efficient 

Solving strategy based on 

the genetic algorithm 

(GA) and 3 basic modules 

 

Minimizing the total travel costs, 

number of used vehicles, the total 

waiting time of vehicles, and 

maximizing total satisfaction rates of 

customers 

 

Hypothetical 
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structure for solving in the subsequent 

module 

 

Omprakash Kaiwartya, Sushil 

Kumarand Ahmed Nazar Hassan 

(A time seed based solution using 

particle swarm optimization TS-

PSO - 2015) 

1) A small granularities DVRP problems  

2) A time horizon of each small granularities 

DVRP is divided into time seeds  

3) Each time seed is solved using PSO 

 

A time seed based 

solution using particle 

swarm optimization 

(TS-PSO) 

 

Maximizing the number of vehicles,  

expected reachability time, profit, 

and satisfaction level 

 

Hypothetical 

Shifeng Chena, Rong Chena, Gai-

Ge Wang, Jian Gaoa, Arun Kumar 

Sangaiah 

(An adaptive large neighborhood 

search heuristic for dynamic 

vehicle routing problems- 2018) 

 

1) Ad hoc destroy/repair heuristics and a 

periodic perturbation procedure. 

2) An efficient feasibility check for customer 

insertion 

3) Problem is broken down into a series of 

static VRPs to detect new customer 

requests during in a time slice. 

 

Adaptive Large 

Neighborhood Search 

(ALNS) 

 

Minimizing the total 

travelled distance 

 

Hypothetical 

Lianxi Hong. (An improved LNS 

algorithm for real-time vehicle 

routing problem with time 

windows – 2012) 

 

1) Use remove–reinsert process in the LNS, 

the latest request nodes are regarded as a 

part of the removed nodes; these nodes can 

be inserted into current solution during 

reinsertion process; 

 

An improved LNS 

algorithm for real-time 

vehicle routing problems 

with time windows (LNS) 

 

Minimizing the total 

travelled distance 

 

Hypothetical 

Jesica de Armas, Belén Melián-

Batista(Variable Neighborhood 

Search for a Dynamic Rich Vehicle 

Routing Problem with time 

windows- 2015)  

 

1) Use VNS to solve problem. 

2) Tackle and change the following constraint 

1) Change to fixed heterogeneous 

fleet of vehicles 

2) Manage customers that cannot be 

served during planning horizon 

3) Lengthen drivers work shifts  

Variable Neighborhood 

Search(VNS) 

 

Minimizing the total travel costs and 

the fixed costs of used vehicles  

 

Hypothetical 

and 

unpublished 

real data 
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4) Postponement of remaining 

customers maximization. 
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2.6. Summary 

 

The vehicle routing problem is an important optimization research areas 

to be studied. This problem can get complex, challenging, and difficult when 

more constraints are added, and this led to different variants of vehicle routing 

problems. Some variants are based on static information and the others are based 

on dynamic or online information. The static information-based variants 

processes are more straightforward, but the dynamic information-based variants 

processes are more complex and time-consuming to solve and develop.  

 

There are many algorithms proposed in these studies. The EA and LNS 

algorithms are among the popular algorithms used to solve vehicle routing 

problems. These algorithms are even more popular when used in multi-objective 

optimization problems. In the multi-objective optimization problem, the 

techniques used for assessing the performance of the algorithms are based on 

the wideness of the Pareto sets and area coverage based on Pareto sets and 

reference points. Such techniques as GD, IGD among others are commonly used 

for performance appraisal.  
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CHAPTER 3 

 

PROPOSED ALGORITHM 

 

3.1. Introduction 

 

The proposed algorithm consists of two main parts. The first part is the 

non-fitness evolutionary algorithm (NEA). The second part is the parallelized 

adaptive large neighbourhood search algorithm (PALNS). The PALNS in the 

proposed algorithm is designed and deployed as microservices. Microservice is 

a service-oriented architecture that emphasizes software components that can 

act independently, which makes them loosely coupled and potentially 

distributed. Hence, we name our proposed algorithm as a non-fitness 

evolutionary distributed parallelized adaptive large neighbourhood search 

(NEDPALNS) algorithm. NEDPALNS is designed and operated differently, as 

well as independently as a separate business process, service, or entity. Separate 

entities in NEDPALNS scale, work cohesively and update without interrupting 

other entities in the wide functionality of the application. In this section, we 

explain the representation of microservices in the PALNS algorithm, the flow 

of the NEDPALNS process, and the details of the functions. The NEDPALNS 

algorithm has three main functions. First, it initializes the solutions in the 

population. Second, it performs the non-fitness evolutionary step, and lastly, it 

runs perpetually the distributed PALNS until termination criteria are met.  
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3.2. NEDPALNS 

 

The following section explains the proposed architecture, framework, 

system characteristics, and activity sequence interaction among other features 

characteristics. It also explains how the solution is constructed and represented 

in NEDPALNS, as well as the lifecycle of NEDPALNS. Each NEDPALNS 

functionality is explained in the following section. 

 

3.2.1 Architecture 

 

Figure 3.1 shows the NEDPALNS architecture is divided into two parts. 

The first part is the non-fitness evolutionary algorithm (population initialization, 

non-fitness selection, solutions intercross, solutions mutation, and interim 

optimization) and the second part is perpetual optimization which is designed 

and deployed as a microservice. The microservices can be deployed over 

different varieties of host types. The host types can be logical or physical. The 

physical host type is the bare metal that contains plain computing resources such 

as a server or any commodity hardware. The logical host type can appear as 

virtualization, containerization, and on the cloud. The purpose of having such 

an architectural design is to allow the NEDPALNS to scale, ease of integration, 

and automatic deployment, support multi-tenancy, and ease of latest 

technologies adoption among other benefits. The non-fitness evolutionary 

algorithm seamlessly executes the microservice located at different host types.  
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Figure 3.1: NEDPALNS Architecture 

 

3.2.2 Optimization Strategy 

 

The DVRPTW solution must remain optimal and practical if new 

information is revealed over time. This means that exact algorithms may not 

seem appropriate for this type of random appearance of new information, which 

can cause a “curse of dimensionalit ” and dampen the support of large instances 

(Powell, 2007). Therefore, a metaheuristic algorithm (Gendreau and Potvin, 

1998; Ghiani et al., 2003; Ichoua, Gendreau and Potvin, 2007; Zeimpekis et al., 

2007; Jaillet and Wagner, 2008) is a way forward to rapidly generate a new 

solution given a dynamic problem state. There are many optimization 

approaches to DVRPTW. In NEDPALNS, we use two optimization approaches. 

The first one is interim optimization (Psaraftis, 1980b; Kilby, Prosser and Shaw, 

1998; Yang, Jaillet and Mahmassani, 2004; Montemanni et al., 2005; Chen and 

Xu, 2006; Rizzoli et al., 2007) and the second one is the perpetual optimization 
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(Barceló, Grzybowska, & Pardo, 2007; R. W. Bent & is Van Hentenryck, 2004; 

Cheung, Choy, Li, Shi, & Tang, 2008; Gendreau, Guertin, Potvin, & Taillard, 

1999; Haghani & Jung, 2005; Ichoua, Gendreau, & Potvin, 2000).  

 

3.2.2.1 Interim Optimization 

 

Initially, the route, the customer, and the constraints are initialized, 

associated, and optimized into the initial solution as shown in Figure 3.2. An 

event will be triggered once there is a new customer arrival, route changes, or 

customer state changes at time tt+1 which triggers the interim optimization to 

generate an interim solution that otherwise will be idling waiting for an update 

event.  

 

The interim optimization is particularly designed for static routing. 

However, there is a lag when the update is returned to the decision-maker and 

computational power sitting idling during waiting time. Despite this 

shortcoming, this optimization approach has already been used in many types 

of research, especially VRP variants. 
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Figure 3.2: Interim optimization 

 

 

3.2.2.2 Perpetual Optimization 

 

Figure 3.3 shows that perpetual optimization consists of optimization 

and strategy handlers are part of the DVRPTW core engine, which runs 

perpetually in the background. The optimization handler performs interim 

optimization while storing the interim solutions in the adaptive memory. These 

interim solutions are aggregated from the adaptive memory, and the strategy 

handler strategically outputs the interim solution from the aggregated interim 

solutions in the adaptive memory. Perpetual optimization operations run forever 
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while maximizing the utilization of computing power. The parallelized running 

threads appear at the interim optimization on the left side of this diagram to 

ensure more near-optimal interim solutions are unfolded. Each thread generates 

near-optimal interim solutions from all incoming customer arrivals and is cross-

checked against all interim solutions (routing strategies or routing plans) in the 

adaptive memory to decide the viability of the solution before the solution is 

discarded. 

 

 
 

Figure 3.3: Perpetual Optimization 

 

 

If the solution is unique and has a better result, it will be inserted into 

adaptive memory. Interim solutions in adaptive memory are updated at intervals 

(left side of the diagram) whenever a vehicle completes servicing the customer  
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service to ensure that the current state of vehicles and customers is coherent 

with all solutions in adaptive memory. 

 

3.2.3 System Characteristics 

 

NEDPALNS is developed to support event triggers and parallelism that 

existed in the DVRPTW environment. This means that in event triggers, 

NEDPALNS must withstand and handle fast-changing events such as the 

customer serving event to the customer served event, customer arrival, customer 

rejection, and strategy selection, among other events. 

 

In parallelism features, NEDPALNS performs multitasking to produce 

fast decisions periodically and continuously update optimized strategies. It 

decides the next course of action such as the next customer to be served or 

rejected. These parallelism features in NDEPALNS are designed and executed 

in a distributed computing environment.  

 

 In this thesis, NEDPALNS are evaluated against two datasets in 

MODVPRTW. The first dataset that is regularly used to benchmark against 

other algorithms is the Solomon dataset and dynamic dataset (Chen et al., 2018). 

The detail of the dynamic dataset is explained in detail in the dynamism dataset 

under the dataset’s subsection in chapter 4. The second dataset that is gaining 

popularity that uses real-life coordinates and real distance is the MOVRPTW 

dataset (Castro-Gutierrez, Landa-Silva, and Pérez, 2011) and the dynamic 
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dataset (Chen et al., 2018). The details of both the Solomon dataset and dynamic 

dataset are explained in a subsequent chapter. 

 

3.2.4 Activity Sequence Interaction 

 

Figures 3.4(a) - 3.4(c) represent the sequence of calls in a DVRPTW 

system and a set of activities to be performed. These figures represent the flow 

of messages from one activity to another activity and the state of customers  

 

 
(a) 

 

Figure 3.4: Activity sequence with a timeline of the DVRPTW  
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during time intervals. First, the vehicle, customers, and constraints are 

initialized, which is then processed in the creation and optimization strategy, 

and these vehicles are set in a ready mode at zero time (t0) as shown in Figure 

3.4(a).   

 

The first customer (customer 4) is selected from the optimized strategy 

for execution. This customer starts and ends by updating the creation and 

optimization strategy. The next customer (customer 1) is selected for execution 

after obtaining the result of the creation and optimization strategy. At t1 time, a 

new customer request (customer 13) is obtained and updated in the creation and 

optimization strategy. The executing customer (customer 1) finishes and 

updates the creation and optimization of the strategy. The earlier new customer 

(customer 13) is accepted into the strategy creation and optimization after being 

processed and selected for the next execution. These steps continue until the 

vehicle returns to the depot.  

 

In Figure 3.4(b), at time zero (t0), the vehicle, customers, and constraints 

are initialized and processed in the creation and optimization strategy before the 

vehicles are set in a ready mode. The customer accepted earlier (customer 14) 

in the creation and optimization strategy after being processed is rejected for the 

next execution. These steps continue with the other customers (customer 8) until 

the vehicle return to the depot. Similarly, in figure 3.4(c), the vehicle, 

customers, and constraints are initialized which is then processed in the creation 

and optimization strategy, and the vehicles are set in a ready mode at time zero 

(t0). The first customer (customer 5) is selected from the creation and optimized 
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strategy. This customer starts and ends by updating the creation and 

optimization strategy. The next customer (customer 6) is selected for execution 

after obtaining the result from the creation and optimization strategy. Once the 

customer (customer 6) is served, the next customer (customer 7) is selected for 

execution. 

 

 
 

(b) 

Figure 3.4: Activity sequence with a timeline of the DVRPTW 
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at t1 time. The executing customer (customer 7) finishes and updates the creation 

and optimization strategy. The first customer (customer 12) is selected from the 

optimized strategy for execution. This customer starts and ends by updating the 

creation and optimization strategy. The next customer (customer 11) is selected 

for execution after obtaining the result of the creation and optimization strategy. 

Once the customer (customer 11) is served, the next customer (customer 10) is 

selected for execution. 

 

 
 

(c)  

Figure 3.4: Activity Sequence with a Timeline of the DVRPTW  
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After the customer has started to serve, a new customer request 

(customer 15) is obtained and updated in the creation and optimization strategy 

at t1 time. The executing customer (customer 10) finishes and updates the 

creation and optimization strategy. The earlier new customer (customer 15) is 

accepted into the creation and optimization strategy after being processed and 

rejected for the next execution. This process continues with the other customer 

until the vehicle returns to the depot.  

 

Dynamism can appear in a variant of forms such as demand for goods 

(Attanasio et al., 2004; Hvattum, Løkketangen and Laporte, 2006; Goel and 

Gruhn, 2008), demand for services (Beaudry, Laporte, Melo 

& Nickel, 2010; Larsen, Madsen, & Solomon, 2004; Thomas, 2007), travel time 

(Lorini, Potvin and Zufferey, 2011; Tagmouti, Gendreau and Potvin, 2011; 

Güner, Murat and Chinnam, 2012), service time, demands a set of known 

customers (Novoa and Storer, 2009; Secomandi and Margot, 2009) and vehicle 

availability (Li, Mirchandani, and Borenstein, 2009; Mu et al., 2011). 

 

3.2.5 Framework 

 

NEDPALNS framework is divided into 2 lifecycles which are the 

evolutionary lifecycle and generation lifecycle as shown in Figure 3.5. The 

evolutionary lifecycle consists of a set of procedures (population initialization, 

non-fitness selection, solutions intercross, and solutions morph) that are 

executed in sequence. The evolutionary lifecycle comprises the generation 

procedures (population initialization, solutions intercross, and solutions morph) 
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and a re-optimization procedure (PALNS).  The generation lifecycle performs 

two types of optimizations. The first type is non-cyclic optimization in which 

each generation procedure executes the remote PALNS one time and returns the 

generated solution. The second type is cyclic optimization, which executes  

remote PALNS successively until a termination condition is met.  

 

 

Figure 3.5: NEDPALNS Framework 
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solution and to repair the solution. Four removal procedures and two repair 

procedures are proposed in this thesis. During the execution of PALNS, each 

removal procedure and repair procedure is selected randomly to remove existing 

customers from the solutions and repair the deleted customers into a new 

solution. 

 

 

Figure 3.6: Microservice Representation 
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to another population list. These steps continue until the population list is filled 

up.  

 

The interim solutions in the population list are sorted, compared against 

the best solution, and replaced if it has a better result. The best interim solution 

is selected for further refinement in the re-optimization procedure which runs 

continuously until the termination criteria are met.  

 

The generation lifecycle consists of non-cyclic optimization and cyclic 

optimization. This division of generation lifecycles into non-cyclic optimization 

and cyclic optimization escapes local optimal and promotes global optimal. In 

the re-optimization cycle, only the best solution result from the evolutionary 

cycle is completely explored and intensely improved. In this way, the optimized 

solution is produced. In the generation cycle, evolutionary procedures execute 

the distributed adaptive local neighbourhood search algorithm (DALNS) using 

synchronous communication. This synchronous communication is performed 

either using hypertext transfer protocol (HTTP) or representational state transfer 

(REST) services.  HTTP is an application layer protocol for transmitting data. 

Typically, it enables web browsers to interact with web servers apart from from 

application communication. REST is an architecture style for developing web 

services. It is used for exchanging data in a defined format for interoperability 

purposes.  
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3.2.6 Solution Representation 

 

Figure 3.7 shows how customers in DVRPTW are represented and 

encoded as an individual or chromosome that contains the number of routes 

with the associated customers and the total travelled distance. The terms 

chromosome or individual are used interchangeably for representing solution 

and they often refer to the same thing.  

 

 
 

Figure 3.7: Solution Representation 
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The solution in DVRPTW can be an interim solution or a final solution. 

In the interim solution, it served customers and unserved customers. Each 

customer is tagged with an identification that represents a digit. Customer 

(gene) order on a chromosome is crucial for the formation of the routes, 

distance calculation, and rejection rates reduction, among other characteristics. 

 

3.2.7 Generation Lifecycle 

 

Algorithm 1 shows the outline of the generation lifecycle of the 

NEDPALNS algorithm. It consists of two types of optimizations. The first type 

of optimization is non-cyclic optimization is performed when there is a new 

customer arrives (lines 3-6). 

 

Algorithm 1 Main 

Input S: solution 

Output BS : best solution 

1. begin 

2.     //Non-cyclic optimization 

3.     P ← population_Initialization(S) 

4.     BS ← updateBestSolution(P) // Update the best 

solution 

5.     P ← evolutionaryStep(P) 

6.     updateBestSolution(P) 

7.     //Cyclic optimization 

8.     while terminating criteria not met 

9.         P`← palns(P) 

10.  end while 

11.  BS ← updateBestSolution(P) 

12. end  

13. return BS 

 

 

Once the non-cyclic optimization is completed, the interim solution is 

passed to the cyclic optimization for further execution until the termination 
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criteria are met (lines 8 – 10). Finally, the near-optimal interim solution or 

strategy is returned.  

 

3.2.8 Population Initialization 

 

During population initialization (line 3) as shown in Algorithm 2, the 

unserved customers of the initial solution are randomly shuffled and sent to 

remote PALNS for execution. A new interim solution is generated and stored in 

the population (line 4). These steps continue until it reaches the maximum 

number of interim solutions allowable in the population size.  

 

Algorithm 2 Initialization 

Input IS : Initial Solution, PS: Population size 

Output P : Population 

1. begin 

2.    for j ← 1 to PS do //PS - population size 

3.      /* Pj – j
th individual (interim solution) in the population */ 

4.      Pj ← palns(shuffle(IS.getUnservedCustomers)) 

5.    end for 

6. end 

7. return P 

 

 

3.2.9 Non-fitness Evolutionary Algorithm 

 

The non-fitness evolutionary algorithm run within the evolutionary 

lifecycle consists of 3 main steps. The first step is to randomly select two parents 

from the population. The second step is to intercross the parents to generate 

offspring. Lastly, this offspring is morphed into new interim solutions. The 

following section explains the evolutionary lifecycle and its operators in detail.  
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3.2.9.1 Evolutionary Lifecycle 

 

 The evolutionary lifecycle has three main steps as shown in Algorithm 

3 which are a randomly non-fitness selection, solutions intercross, and solutions 

morphing. First, in the selection process, two interim solutions are randomly 

selected from the population (lines 4-7). These two interim solutions (parents) 

with the unserved customers are intercrossed to generate offspring. These 

offspring are intercrossed and added to the new population. These steps are 

repeated until the new population size (lines 3 – 12) is met.  

 

Algorithm 3 Generation Step 

Input S: Initial Interim solution, P: Population, N: Population size  

Output P : Interim solutions 

1: begin 

2: P` ← P, i =0; 

3: while (P’.size() < 2 * P.size()) do 

4:     s` ← random[0..1] // A non- fitness value is randomly selected 

5:     loc1 ← s’ * P.s z () 

6:     s` ← random[0..1] // A non- fitness value is randomly selected 

7:     loc2 ← s’ * P.s z  

8:     P`i ← solutionsIntercross(Ploc1,Ploc2)  

9:     i ← i +1 

10:  P`i+1 ← solutionsIntercross (Ploc2, Ploc1) 

11:   i ← i +1 

12: end while 

13: P` ← solutionsMorph(P`) //morphing function 

14: P` ← sortPopulationAscending(P`) // sorted based on the least 

total travelled distance  

15: for i ← 1 to N do 

16:    P i ← P`i 

17: end for 

18:  

19: updateBestSolution(P) //Replace best solution from P 

20: end 

21: return P 

 

 

The solutions in the new population are morphed (line 13) into new 

solutions and sorted based on the least total travelled distance. Next, the interim 
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solution in the new population replaces the original population (lines 15 - 17). 

This indicates that the original population only contains the best interim 

solutions. Lastly, the best interim solution is updated if the interim solution in 

the population has a better result (line 19).  

 

3.2.9.2 Solutions Intercross 

 

Algorithm 4 uses the order crossover (OX) algorithm suggested by 

Goldberg (Goldberg and Holland, 1988). Four parameters are passed to this 

procedure. They are the first parent, second parent, first cutoff point second 

cutoff point. First, the customers are copied to the temporary area (slots of the 

array) depending on the second cut-off point of the first parent. If the second 

cut-off point of the first parent is similar to the last slot of the first parent (lines 

4– 7), the entire first parent fills the array slots, else customers appear in the 

second cut-off point until the last slot of the first parent fills the array slots (lines 

9 – 13). Next, the customers appear in the first slot of the first parent, and the 

second cut-off point fills the remaining slots in the array (lines 14 – 17).   

 

To initiate the intercross of the first parent and the second parent, 

customers appear at the first cut-off point, and the second cut-off point is 

copied from the second parent (lines 19 – 25). These copied customers fill the 

similar cutoff points in the second parent to the first offspring (lines 26 – 28).  

Figure 3.8 illustrates the solutions intercross.  
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Algorithm 4 Solutions_intercross  

 Input Parent1: first parent, Parent2: second parent, 

Cutoff_point1: first cutoff point, Cutoff_point2: second cutoff 

point 

 Output offspring : offspring  

1: begin 

2: index ← cutoff_point2+ 1 

3: index2 ← 0 

4: if (index == parent1.unserved_customers.length()) then 

5:    for   ←   to parent1.unserved_customers.length() do 

6:       arraySlotsi = parent1.unserved_customers i 

7:    end for 

8: else 

9:    for index ← cutoff_point2 + 1 to  

10:        parent1.unserved_customers.length do 

11:       arraySlotsindex2 ← parent1.unserved_customers index 

12:       index2 ← index2 + 1 

13:    end for 

14:    for index ← 0 to cutoff_point2 do 

15:       arraySlotsindex2 ← parent1.unserved_customers index 

16:       index2 ← index2 + 1 

17:    end for 

18: end if 

19: for index ← cutoff_point1 to cutoff_point2 do 

20:    for index ← 0 to arraySlots.length() do 

21:       if (arraySlotsindex == parent2.unserved_customersindex) then 

22:           remove(arraySlotsindex) 

23:       end if 

24:    end for 

25: end for 

26: for index ← cutoff_point1 to cutoff_point2 do 

27:    offspringindex ← parent2.unserved_customers index 

28: end for 

29: index2 ← 0 

30: for y ← cutoff_point2 + 1 to offspring.length() do 

31:    if (y == offspring.length()) 

32:       break 

33:    end if 

34:    offspringy ← arraySlotsindex2 

35:    index2 ← index2 + 1 

36: end for 

37: for z ←0 to cutoff_point1 do 

38:    if (z == offspring.length())  

39:       exit for loop 

40:    end if  

41:    offspringz ← arraySlotsindex2 

42:    index2 ← index2 + 1 

43: end for 

44: offspring ← palns(offspring) 

45: Update_best_solution(P) 

46: end 

47: return offspring 
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The customers who appear at the first cutoff point and second cutoff 

point in the second parent are removed from the array slots (lines 20 - 25). The 

customers in the array slots fill the remaining empty slots in the first offspring 

(lines 37 – 42).  All these steps are illustrated in Figure 3.8. The offspring are 

passed to remote PALNS for execution to generate a new interim solution (line 

44).  

 

 
 

Figure 3.8: Solutions Intercross 
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Figure 3.9: Solution Mutation 

 

the morph ratio (line 3). If the ratio of the morph is set higher, the solution in 

the population has a high chance of being selected for morph, and extensive 

areas are explored in the search space, but the population may suffer from 

converging to optimum solutions. Two randomly generated positions in the 

unserved customer list are generated (lines 5 – 6). 

 

If the generated positions have the same location, it will generate two 
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Algorithm 5 MorphPopulation 

Input P : Population, MR : Morph Ratio 

Output P` : Population 

1: begin 

2: for i ← 0 to P.length do 

3:    if (random[0..1].1 < MR) then 

4:        Customer_list ← Pi.get_unserved_customers 

5:        Index1 ← random [0.. Pop.length].1 

6:        Index2 ← random [0.. Pop.length].1 

7:        while (Index1 == Index2) do 

8:           Index1 ← random [0.. Pop.length].1 

9:           Index2 ← random [0.. Pop.length].1 

10:        end while 

11:     Pi` ← Swap_customer_position(Customer_list, index1, 

12:  index2) 

13:     Pi`← palns(Pi`) 

14:   end if 

15: end for 

16: end 

17: return P` 

 

 

3.2.10 Distributed and Parallelized Adaptive Large Neighbourhood 

Search 

 

The adaptive large neighbourhood search (ALNS) is originated by 

Pisinger and Ropke (Pisinger and Ropke, 2007). It is an enhanced large 

neighbourhood search (LNS) (Shaw, 1998). LNS performs two main tasks. The 

first task is to remove customers from the existing current solution, and the 

second task is to repair the solutions by reinserting customers back into the 

solution. There are a variety of repair operators and removal operators that LNS 

possess. The combination of repair operators and removal operators allows LNS 

to achieve a better result. The difference between ALNS and LNS is the adaptive 

layer that is added on top of LNS. The adaptive layer allows the freedom to 

randomly select removal and repair operators but must be based on past 

performance.  
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Algorithm 6 presents the overview of ALNS. Initially, the initial 

solution S is used for processing. It iterates N times by executing the removal 

and repair operators (lines 5 – 16).  

 

Algorithm 6 Adaptive Large Neighborhood Search (ALNS) 

algorithm 

 Input S: Solution, E: evaluation function, I+: insert operator, 

I-:removal operator, N: number of iterations 

 Output S*: solution (best solution) 

1: begin 

2: S*←  S // 

3: S𝜋 ←  S 

4: for i ← 1 to N do 

5:      i ← getRemovalOperator(I+) //select removal operator 

6: r ← getInsertionOperator(I-) //select insert operator 

7:    S#← r(d(S𝜋)) 

8:  if S# is an acceptable solution 

9:   S𝜋 ← S# 

10:  end if 

11:  if z(S#) < z(S*)  

12:    S*←  S# 

13:  end if 

14:  removalAndInsertOperatorUpdate(d, r, S`) //update d and r 

operator score 

15: end for 

16: end 

17: return S*  

 

 

These removal and repair operators are selected heuristically using a roulette 

wheel algorithm that reflects their previous performance (lines 5 -6). The new 

interim solution can only be selected as a current solution by the simulation 

annealing criterion (line 9). 
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3.2.10.1 Parallelized procedure 

 

We adopted the parallel version of ALNS which is proposed by Victor 

Pillac (Pillac, Gueret, and Medaglia, 2013) for fast optimization that efficiently 

spread out the computational efforts among the processors. Algorithm 7 outlines 

the PALNS. In this algorithm, a pool S of promising solutions (M) is optimized 

in T subprocesses.  n each “master” iteration, a subset of T promising solutions 

is randomly selected and distributed among the subprocesses. Each subprocess 

executes IP ALNS iterations by removing and repairing the current solution Sp 

(lines 4 – 16). Each subprocess in the final solution is added to the pool (line 

15) and filtrated to ensure the pool never exceeds the N solutions boundary (line 

17). PALNS stops after performing TM master iterations. This is equivalent to 

IP * TM ALNS iterations with no synchronization needed between subprocesses 

thus avoiding deadlocks. The following section explains the removal and repair 

operators in detail.  

 

Algorithm 7 Parallel Adaptive Large Neighborhood Search 

(PALNS) algorithm 

Input S: Solutions, E: evaluation function, I+: insert operator, 

I-:removal operator, M: maximum pool size (solutions), T: 

number of subprocesses, TM: number of master iterations, IP: 

number of parallel iterations 

Output S*: solution (best solution) 

1: begin 

2: for i ← 1 to TM do 

3:    S` ← getSolutionSubset(S, T) // Get PS solutions subset 

4:    parallel forall S𝜋 in S`do 

5:       Sp ← S𝜋 //subprocess current solution 

6:    for IP iterations do 

7:  i ← getRemovalOperator(I+) //select removal operator 

8:  r ← get nsertionOperator(I-) //select insert operator 

9:  S#← r(d(Sp)) 

10:     if S# is an acceptable solution 

11:        Sp ← S# 

12:     end if 
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13:     removalAndInsertOperatorUpdate(d, r, S#) //update d 

and r operator score 

14:    end for 

15:    S ← S ∪ { Sp } 

16:    end forall 

17: S ← retain(S, M  

18: end for 

19: end 

20: return S* = argminS
𝜋∈S {E(S𝜋)} 

 

 

3.2.10.2 Distributed Procedure 

 

NEDPALNS is executed in a distributed computing environment. The 

PALNS in NEDPALNS is organized as a microservice that is represented as a 

container for the PALNS algorithm.  The PALNS consists of multiple ALNS 

running concurrently and collaboratively to produce a near-optimal solution. 

Each ALNS consists of a removal and repair procedure. In ALNS, random 

removal, related removal, and critical removal are to be used in the removal 

procedure whereas, in the repair procedure, best insertion, regret-1, regret-2, 

and regret-3 are suggested. Each removal and repair procedure is randomly 

selected during execution to derive a new solution.  

 

3.2.10.3 Adaptive Procedure  

 

This procedure uses a selection roulette to select the removal and repair 

operators in each iteration. The operator θ ∈ 𝑅 where R- is the removal operator 

and R+ is the repair operator and selection is based on probability p0. The 

probabilities are initialized with the value 
1

|𝑅|
 and updated at each iteration.  

Thus, the formula is stated as follows:  
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p0 = (1 – p) p0 + p
𝑠θ

∑ 𝑠θθ∈R
   (3.1) 

 

where p [0,1] is the reaction factor that shows how quickly the probabilities are 

adjusted, and 𝑠θ is operator score in the last l iterations. The scores 𝑠θ are 

initialized in each iteration. The update on the new solution depends on the last 

iteration so that a score of σ1 is granted for a best new solution, σ2 for an 

improving solution, σ3 for a non-improving but an accepted solution, and σ4 for 

a rejected solution. 

 

3.2.10.4 Removal Procedure 

 

We suggested that four removal procedures be used in this NEDPALNS 

algorithm.  They are random, related, radial, and critical procedures that were 

originally proposed by Pisinger and Ropke (Pisinger and Ropke, 2007). 

 

3.2.10.4.1 Random Operator 

 

This operator uses a random selection of the current solution where f is 

the random fraction ([0…1] .  t selects customers at random and removes them 

from the current solution and it has the search diversifying effect. 
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3.2.10.4.2 Related Operator 

 

This operator removes a set of customers that are related to certain 

characteristics. In DVRPTW, we measure how related are the two customers. 

The relatedness rij of customer i and customer j measure the intensity of the 

relationship between two customers. It randomly removes a seed customer i(U 

= {i}) and enumerative choose a customer i and deletes the most related 

customer j* where U is the unserved customer. If the relatedness value (rij) is 

lower, the more related the customer i and customer j. Therefore, j* = 

argminj∈R{rij}. In this operator, we proposed a-priori relatedness as originally 

proposed by Victor Pillac (Pillac, Gueret, and Medaglia, 2013) which is based 

on distance and time windows between customer i and customer j. Hence, the 

formula is listed as follows:  

 

𝑟𝑖𝑗
𝑠  =(1 + 

𝑐𝑖𝑗

𝑀𝑐
)
𝜃𝑑

 (1 + 
|𝑏𝑖−𝑏𝑗|

𝑀𝑡
)
𝜃𝑡

   (3.2) 

 

Where cij is the distance between customer i and customer j, bi and bj are the ends of 

the time windows of customer i and customer j, Mc, and Mt are scaling constants, 𝜃𝑑   

and 𝜃𝑡  are respective weight on the geographic distance between the two customers, 

and due dates differences. 
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3.2.10.4.3 Critical Operator  

 

The critical procedure removes customer i that has the least cost. 

Therefore, the formula for this operator is stated as follows:  

 

i* = arg𝑚𝑎𝑥𝑖 ∈𝑅 {ci-1, i+1 – ci-1,i –  ,i+1}  (3.3) 

 

where i - 1 and i + 1 are the predecessor and successor of i 

 

3.2.10.4.4 Radial Operator  

 

This operator selects a random customer from the customer N. Select a 

random customer c with c ≤ [f · N ], where f is the fraction rate between 0 and 

1. Remove customer c from the route. Retrieve the neighbourhood list based on 

customer c.  The neighbourhood list is calculated using Euclidean distance. 

Remove the customers in the neighbourhood list from the routes.  

 

3.2.10.5 Repair Procedure 

 

We suggest using four operators in the repair procedure. They are the 

regret operators which consist of regret-1, regret-2, regret-3, and the best 

insertion operator. The details of each are explained in the following section. 
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3.2.10.5.1 Regret Operators 

 

The repair procedure is based on regret-i heuristics. The three regret 

levels are used in these repair operators, namely regret-1, regret-2, and regret-3 

heuristics (Potvin and Rousseau, 1993). Each unserved customer is iterated and 

inserted when the insertion value has the least regret value. The regret-I is the 

desired measurement of how to insert customer i in the current iteration when 

there is no viable best insertion.  

The regret-i heuristic is defined as follows: 

 

𝑟𝑖
𝑞
 = ∑ (∆𝑧𝑖

ℎ𝑞
ℎ=2 - ∆𝑧𝑖

1) (3.4) 

 

Where ∆𝑧𝑖
ℎ i is the cost of the qth best insertion of customer i ∈ U. Note 

that selecting the customer can be accomplished with the ∆𝑧𝑖
1 value, and 

therefore regret-1 is equivalent to the original best insertion heuristic. 

 

3.2.10.5.2 Best Operator 

 

The best insertion strategy (Schrimpf et al., 2000a) uses a randomly 

generated customer from the removed customer list to perform the best 

insertion. Each customer is assessed on each vehicle, and minimum cost 

insertion determines the route. However, a new vehicle and a new route will be 

allocated if the customer cannot be added to the route. 
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3.3. Summary 

 

The DVRPTW is different from the VRPTW in that in the latter 

information is known beforehand, while in the former information is known 

over time. This makes DVRPTW interesting to be solved because of its close 

resemblance to the dial-a-ride problem, and food delivery among others. Also, 

they are ubiquitous in pickup and delivery orders. DVRPTW cannot be solved 

like the conventional VRPTW because it has to optimize repeatedly to improve 

the result. There are many optimization strategies available. Among the 

common ones is interim optimization which performs when there is new arrival 

of customer request, while perpetual optimization is the continuous 

optimization giving the state of the existing customers' information. Both work 

hand in hand and simultaneously to improve the results. The proposed algorithm 

is based on two core algorithms. The first algorithm is the evolutionary 

algorithm but modified to target non-fitness solutions. The second algorithm is 

the distributed and parallel-run adaptive local neighbourhood search algorithm. 

This algorithm has two lifecycles, the generation lifecycle, and the evolutionary 

lifecycle. The evolutionary lifecycle performs a non-cyclic optimization while 

the generation lifecycle performs the non-cyclic and cyclic optimization. The 

non-fitness evolutionary algorithm targets the less performing solutions that 

have a higher chance to be selected for intercross and morph. This process 

continues until the termination criteria are met. The result derived from each 

genetic operator is executed against the distributed parallelized adaptive local 

neighbourhood search algorithm. The design of this entire process is to escape 

local optima while promoting global optima. In the PALNS, it performs the 
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removal and repair process. In the removal process, few removal operators are 

suggested such as critical, random, radial, and related while in the repair 

process, the repair operators are the best insertion and regret operators. 

  



 

95 

 

CHAPTER 4 
 

 

RESULTS 

 

 

4.1. Introduction 

 

This chapter presents the test types and dataset types that are used in the 

MODVRPTW experiments. It also lists parameters and their values set in 

NEDPALNS. The results from these experiments are compared against the 

published algorithms, and best known solutions among others using different 

metrics. These results will give an insight into the performance of NEDPALNS 

and its effectiveness. 

 

4.2. Types of Testing 

 

There are two types of tests used to carry out these experiments. The 

first type of test is a static test. This static test is to test information that is 

available during planning in MODVRPTW and uses a hypothetical type of 

dataset. The reason why the static test is performed on MODVRPTW is to 

showcase the competency of NEDPALNS when the degree of dynamism is 

zero. The hypothetical type of dataset used is the Solomon dataset (Solomon, 

1987). 
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The second type of test is the dynamic test, which uses two types of 

datasets. The first type of dataset is hypothetical, and the second type of dataset 

is a real type. In the hypothetical type, the Lackner dataset (Lackner, 2004) is 

used.  The Lackner dataset combines the Solomon dataset (Solomon, 1987) and 

the dynamic dataset. This dynamic test is used to test both the information 

available during the planning and during execution. In real type, the 

MOVRPTW (Castro-Gutierrez, Landa-Silva, and Pérez, 2011) dataset 

combined with the dynamic dataset is used for the dynamic test. The details of 

each dataset are explained in the following section.  

 

4.3. Datasets 

 

Table 4.1 summarizes the datasets used in the hypothetical dataset and 

the real dataset. The static test uses the hypothetical type of dataset for testing 

while the dynamic testing uses a hypothetical type of dataset and the real type 

of dataset for testing.  

 

In the static test, the testing is performed on the static information of the 

MODVRPTW. This test uses the hypothetical type of dataset which is the 

Solomon dataset. The reason why the Solomon dataset is used is the availability 

of the existing published algorithms which also used the Solomon dataset which 

is conveniently used to gauge NEDPALNS performance.  

 

The dynamic test is performed on the dynamic information of the 

MODVRPTW. This dynamic information combines two parts of information. 
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The first part of information consists of the static information which is available 

during the planning and the second part of information consists of dynamic 

information which is available during execution. The dynamic test uses two 

types of datasets. The first type of dataset is the hypothetical type of dataset 

which uses both the Solomon dataset and dynamic dataset. This is different from 

static testing, which only uses the Solomon dataset in the hypothetical type of 

dataset. The second type of dataset is the real dataset. 

 

Table 4.1 Dataset Types 

 

Type of  

Dataset 
Type of 

Information 

Dataset 

Solomon  MODVRPTW Dynamic 

Hypothetical 
Static √   

Dynamic √  √ 

Real Dynamic  √ √ 

 

The following section explains each dataset file structure in detail. 

 

4.3.1 Solomon Dataset 

 

These types of datasets are originated from Solomon in 1987. Every 

instance contains 100 nodes, which are distributed on the Euclidean plane. 

These datasets are divided into six instance types, namely R1, R2, C1, C2, RC1, 

and RC2 instance types. There are 56 instances in each category. Each category 

has a different type of customer distribution, service time, and time windows.  
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4.3.1.1 File Structure 

 

All dataset files in the Solomon dataset have a similar structure. Figure 4.1 

shows the internal structure of one of Solomon’s data files, which is the C101 

instance. The C101 instance only has 25 vehicles available that are ready to 

serve customers, and each unit of the vehicle has a loading capacity of 200 units.  

The identification of the depot is always zero. That is equivalent to zero 

customer identification. The depot is located at coordinate x, which is 40, and 

coordinate y, which is 50. It has no unit of demand, no service time, and is 

available between 0 and 1236. 

 

 
 

Figure 4.1: Typical Structure of Solomon Datafile (Solomon, 1987) 

 

In this data file, the first customer is located at the coordinate x, which 

is 45, and the coordinate y, which is 68. It has 10 demand units that are ready to 

be loaded into the service vehicle. This first customer can only be served 

between the time units of 912 and 967, and the serving time is 90 units.  

 

 nstance name

Number of vehicle available

 apacit  for each vehicle

 epot

   oordinate

   oordinate
 ustomer demand

 ustomer availabilit  start time

 ustomer availabilit  end time

 ustomer service time1st customer

2nd customer
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The second customer is located at the coordinate x, which is 45, and the 

coordinate y, which is 68. It has 30 units of demand that are ready to be loaded 

in the serving vehicle.  This first customer can only be served between the time 

units of 825 and 870, and the serving time is 90 units. 

 

4.3.1.2 Characteristics of Geographical Distribution 

 

In the customers' geographical distribution, there are 3 types of datasets. 

The first type is the cluster type whereby the customers are grouped in clusters 

and there are 17 instances in this type. The second type is the random type, and 

the customers are randomly distributed which has 23 instances. Lastly, the 

combination of random and cluster-type distribution of customers. This final 

combination has customers distributed randomly and clustered in groups and it 

has 16 instances. The C1 and C2 types belong to cluster types of customers 

distribution as shown in Figures 4.2 and Figure 4.3. In the C1 type, we can 

observe the 10 customers.  
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Figure 4.2: C1 Type (Solomon, 1987) 

 

 

Figure 4.3: C2 Type (Solomon, 1987) 
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that clustered together. However, in the C2 type, cluster formation is not clear, 

and some customers are hard to differentiate if they are clustered together.   

Customers in both C1 type and C2 type spread across the range of 0 to 100 in 

the x coordinate and 0 to 90 in the y coordinate. This means the best solution 

can be obtained from this cluster.  

 

 In the R1 and R2 types, customers are randomly distributed as shown in 

Figures 4.4 and Figure 4.5. Both R1 and R2 types have a similar customer 

geographical distribution but different time window and their customers are 

distributed within the range of 0 to 70 in x coordinate and 0 to 80 in y coordinate. 

Finally, the RC1 and RC2 types have customers randomly distributed in a 

cluster, as shown in Figures 4.6 and 4.7. Both RC1 and RC2 types have their 

customers distributed within the range of 0 to 100 in x coordinate and 0 to 90 in 

y coordinate. 
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Figure 4.4: R1 Type (Solomon, 1987) 

 

 
 

Figure 4.5: R2 Type (Solomon, 1987) 
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Figure 4.6: RC1 Type (Solomon, 1987) 

 

 
 

Figure 4.7: RC2 Type (Solomon, 1987) 
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4.3.1.3 Characteristics of Time Windows 

 

The Solomon datasets contain two types of time windows. The first type has a 

narrow time window, and the second type has a broader time window. Instance 

type C1, R1, and RC1 have narrow time windows compared to instance type 

C2, R2, and RC2, which has a broader time window. In the narrow time 

windows, the C1 type has a time window ranging from 0 to 1300 while the R1 

and RC1 have time windows ranging from 0 to 250. In the broader time window, 

the C2 type has time windows ranging from 0 to 3400 and the R2 and RC2 types 

have a time window ranging from 0 to 1000. The narrow time windows have 

less feasible solutions and longer waiting times than the broader time windows. 

 n Solomon’s dataset, there are 3 t pes of time windows. Instances in Solomon’s 

dataset can be narrow time windows, broader time windows, and a combination 

of the narrow time window and broader time windows.  

 

In service time, it is categorized into two types. The first type of service 

time has 90 units, and the second type has 10 units. The C and RC types have 

90 units, and the R type has 10 units. The demand unit that appears in discrete 

values is in a multiple of 10 and has a minimum value of 10 and a maximum 

value of 40. The demand units vary accordingly to the instances. 
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4.3.2 MOVRPTW Dataset 

 

Various datasets are used to evaluate the performance of VRPTW 

(Ahmmed et al., 2008; Kaiwartya, Kumar, D K Lobiyal, et al., 2015; Saint-

Guillain, Deville and Solnon, 2015; Jacobsen-Grocott et al., 2017). Realistically 

speaking, the VRPTW datasets used for performance evaluation are not real-

life if we calculate their travel distance, travel time, time windows, demand, and 

service time. This is due to the orograph1 of the location, customer activities, 

and urban or rural areas among others. Therefore, a real-life dataset is needed 

to address this problem.  

 

The MOVRPTW (Castro-Gutierrez, Landa-Silva and Pérez, 2011) 

dataset is a new set of MOVRPTW benchmarking. It obtains real data from a 

distribution company in Tenerife, Spain whose core business is to provide food 

products delivery which serves around 150 customers per day which is 

equivalent to around 1000 customers per week. The travel distance and travel 

time between the customers are based on the Google Maps database. This means 

that the travel distance and travel time matrices are unique and non-

symmetrical, which provides a true representation of travel distance and travel 

time. Hence, the travelling time in urban areas is bound to be more time-

consuming than the travelling time in rural areas. Also, the travel distance and 

travel time are different, and this is not the case in Solomon datasets. Therefore, 

different scenarios can be formed by having differences in travel distance and 

 
1 https://www.thefreedictionary.com/Orograph 
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travel time, time windows, and demand specifications, and this reflects the real 

information provided by the company.  

 

4.3.2.1 File Structure 

 

Currently, MOVRPTW datasets only contain 3 customer sizes. They are 

50, 150, and 250 customers, as shown in Figure 4.8. Each customer size has 15 

different sets of datasets. Each set has three associated files. They are the 

distance matrix, time matrix, and specification files.  

 

 
 

Figure 4.8: Structure of MOVRPTW Files (Castro-Gutierrez, Landa-Silva 

and Pérez, 2011) 

 

First, the distance matrix contains the distance information between 

different customers. Second, the time matrix represents the travel time 

information between different customers, and third, the specification file 

contains information on fleet maximum size, vehicle capacity, customer 

location, customer time windows (availability time), demand unit, ready time, 

service time, and customer identification. The specification file has a similar 

 0 customers

100 customers

2 0 customers

 istance Matri   ile

Specification  ile

Time Matri   ile
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structure to the Solomon instances. Figure 4.9 shows the internal MOVRPTW 

specification file.  

 

 
 

Figure 4.9: Structure of MOVRPTW specification file (Castro-Gutierrez, 

Landa-Silva and Pérez, 2011) 

 

In the distance matrix, the structure of the file is represented in two 

dimensions. Figure 4.10 shows the distance matrix is derived from the 

specification file and the distance matrix file.  In this table, one can observe that 

the distance from customer 661 to the depot (0) is not symmetrical with the 

distance from the depot(0) to customer 661. The distance from customer 661 to 

the depot (0) is 15.7 and the distance from the depot(0) to customer 661 is 15.4. 

Similarly, in the time matrix file, the structure of the file is represented in two 

dimensions. Figure 4.11 shows that the time matrix is derived from the 

specification file and the time matrix file.  In this table, the distance from 

customer 661 to the depot (0) is not symmetrical with the distance from the 

depot (0) to customer 661. The time to travel from customer 661 to the depot(0) 

is 1020 and the distance from the depot(0) to customer 661 is 960. 
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 ustomer availabilit  start time
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Figure 4.10: Structure of MOVRPTW distance matrix file (Castro-

Gutierrez, Landa-Silva and Pérez, 2011) 

 

4.3.2.2 Characteristics of Geographical Distribution 

 

Unlike Solomon datasets, which have three types of geographical 

distribution of customers, such as clustering, randomly distributed, and a 

combination of clusters and randomly distributed. The MOVRPTW type of 

customer distribution only has customers randomly distributed and clustered.  

 ustomer

 ustomer

Specification file

 istance matri  in table representation

 istance matri  file
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Figure 4.11: Structure of MOVRPTW time matrix file (Castro-Gutierrez, 

Landa-Silva and Pérez, 2011) 

 

In the Solomon dataset, there are four different types of the geographical 

distribution of customers such as C1XX, C2XX, RXXX, and RCXXX. 

However, in the MOVRPTW dataset, there are two types of layout. These two 

layouts are generated using two random seeds which are 0 and 10 in a custom 

dataset generator (Ghoseiri and Farid, 2010) as shown in Figures 4.12 and 

Figure 4.13. 

 

 ustomer

 ustomer

Specification file

Time matri  in table representation

Time matri  file
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Figure 4.12: Customers distribution using seed 0 (Castro-Gutierrez et al. 

2011) 

 

In MOVRPTW, there are three unique features for the location of 

customers. Firstly, there are two clusters located at the capital (upper right 

corner) and touristic areas (lower left corner). These two areas have different 

travel distances and travel times which is due to congestion and speed limits. 

Secondly, The customers are distributed unevenly within the latitudes of 28 and 

28.6 and longitudes of -16.9 and -16.2. The depot is located at latitude and 

longitude of -16.78 and 28.07 instead of central.  
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Figure 4.13: Customers distribution using seed 10 (Castro-Gutierrez, 

Landa-Silva, and Pérez, 2011) 

 

Thirdly, the travel distance is obtained using the Google Maps database. 

This mimics the real road distance. The distance is not symmetrical between 

customers and depends on factors such as average transit vehicle speeds. These 

scenarios present a real-life assessment in multi-objective algorithms.  

 

4.3.2.3 Characteristics of Time Windows 

 

The time windows specify the availability time of the customers, and in 

the MOVRPTW dataset, their window specifications are crafted to follow the 

real scenario of commercial activities, as shown in Figure 4.14. There are 5 

different time window profiles and 3 types of customers with different time 
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windows.  The three types of customers are the early type of customers, midday 

type of customers, and late type of customers. The early type of customer 

 

 

 

 

Figure 4.14: Time Windows Profiles (Castro-Gutierrez, Landa-Silva, and 

Pérez, 2011) 

0 1   32    

0  0 120 1 0 2 0 300 3 0  20   0

Hours

Minutes

Profile 1

TW1

0 1   32    

0  0 120 1 0 2 0 300 3 0  20   0

Minutes

Profile 2

TW2 TW3 TW 

1 0 320

Hours

0 1   32    

0  0 120 1 0 2 0 300 3 0  20   0

Hours

Minutes

Profile  

TW TW TW10

100 2 0

Hours

0 1   32    

0  0 120 1 0 2 0 300 3 0  20   0

Minutes

Profile 3

TW TW TW 

130 30 

1  
3 0

   Minutes    Minutes

1 0

 0 Minutes

3 0

 0 Minutes



 

113 

 

is the customers to be served in the morning. The midday type of customers are 

the customers to be served at midday and the latest type of customers are the 

customers to be served at the latest. To allocate the time range for each type of 

customer, the total operating hour of the depot is divided into 3 parts of time 

windows to reflect the 3 types of customers. The total operating hours of a depot 

is 8 hours (480 minutes), if it is divided into 3 parts, each type of customer will 

have 160 minutes availability times. This means that the early customer is 

available in the range of 0 to 160 minutes, the midday customer is available in 

the range of 160 minutes to 320 minutes, and the latest type of customer is 

available in the range of 320 minutes to 480 minutes.   

 

In this profile, the customers are available for 8 hours. There is no 

customer unavailability gap in this profile. The first-time windows profiles 

allow the customers to be always available for 8 hours (480 minutes).  

 

In the second profile, the time windows are divided into 3 parts. The first 

part of the time window is the early type of customer which can be served from 

0 to 160 minutes. The second part is the midday customer, which can be served 

within the range of 160 to 320 minutes, and the final part is the latest customer, 

who can be served within the range of 320 to 480 minutes. This means that the 

length of the time windows is 160 minutes. 

 

In the third profile, the customer unavailability gap is introduced and set 

to 45 minutes between each type of customer, and the time windows length is 

130 minutes. The early type of customers is available between 0 to 130 minutes. 
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For the midday type of customers, it is available between the range of 175 

minutes to 305 minutes, and the latest type of customer is available between the 

range of 350 minutes to 480 minutes.  In this profile, the time window length is 

130 minutes. 

 

In the fourth profile, the customer unavailability gap is set to 90 minutes 

between each type of customer. The early type of customers is available 

between 0 to 100 minutes. For the midday type of customers, it is available 

between the range of 190 minutes to 290 minutes, and the latest type of 

customers is available between the range of 380 minutes to 480 minutes.  This 

profile has 100 minutes time windows length.  

 

There are 10 types of time windows if we add all the time window types 

from profile 1 to profile 4. The fifth profile contains the time windows from 

profiles 1, 2, 3, and 4. The purpose of having these types of time windows is to 

cover a wider range and realistic scenarios. 

 

In the travel times calculations, these figures are obtained from the 

Google Maps database. Travel times between customers are not the same and 

are subject to traffic and speed limits. Therefore, the first customer's travel times 

to the second customer are not the same as the other way round. 
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4.3.2.4 Formation of Dataset 

 

The dataset is formed based on the following combinations: 

• Number of Customers: MOVRPTW uses 100 customers.  

• Time windows: Time windows 1 (TW1) is assigned to types of instances 

in profile 1. Time windows 2, 3, and 4 are randomly selected and applied 

to types of instances in profile 2. Time windows 4, 5, and 6 are randomly 

selected and applied to types of instances in profile 3. Time windows 7, 

8, and 9 are randomly selected and applied to types of instances in 

profile 4, and time windows 1 to 10 are randomly selected and apply 

types of instances in profile 5.  

• Customer Demand: The customer demand is not based on real data. It is 

randomly selected based on three demand values which are 10, 20, and 

30, and the three types of slack margin which are 60, 20, and 5. The 

three types of slack margin reflect a high slack margin (60), a normal 

low slack margin (20), and a very tight slack margin (5). 

• Service times: These service times are based on real data provided by 

the distribution company and are assigned based on several factors, such 

as customer activity, location, and time of day. There are three service 

times, 10 minutes, 20 minutes, and 30 minutes. The three service times 

are randomly selected.  

• Seeds: Seeds are randomly selected from two sets of seeds. The first 

seed is 0,0,0,0 and the second is 10,7,5,1. 
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A total of 30 MOVRPTW instances are generated (1 size * 5 types of time 

windows profiles * 3 deltas and 2 groups of seeds). 

 

4.3.3 Dynamism Dataset 

 

We use two types of datasets to evaluate the performance of 

NEDPALNS against other algorithms. One is the Solomon dataset, and the other 

is the MOVRPTW dataset. Both datasets do not have dynamism features. To 

qualify for the dynamism scenario, we associate the Lackner (Lackner, 2004) 

dynamic test datasets with the Solomon dataset and the MOVRPTW dataset. 

Lackner dataset has five types of dynamic degrees, which are 90%, 70%, 50%, 

30%, and 10%. This means that if the instance degree of dynamism (DoD) is 

10%, 10% of the customers in the instance are dynamic and the remaining are 

static customers.  However, if the instance DoD is 90%, this means 90% of the 

customers in the instance are dynamic and the remaining are static customers.  

Hence, the degree of dynamism is measured as follows: 

 

DoD (Dynamic of demand) = 
𝑁𝑑

𝑁𝑑+ 𝑁𝑠 
 * 100% (4.1) 

 

where 𝑁𝑑 is the dynamic customer demand and 𝑁𝑠 is the static customer 

demand.  
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4.3.3.1 File Structure 

 

In the Solomon dataset, the dynamic instance (R101) with a 10% degree 

of dynamism is shown in Figure 4.15. The static requests have the customers 

associated with -1 and the dynamic requests have the customers associated with 

ready times accordingly. Customer 1 is released at time 94. The dynamic 

instance R101 is named R101_rd_10.txt. This means the R101 instance has 10% 

dynamic requests (10 customers have information available during execution) 

or dynamic information and 90% static requests (90 customers have information 

available during planning) or static information. If we combine the instances 

with the five degrees of dynamism, the total instances are 280 instances.  

 

For MOVRPTW datasets, there are no dynamic instances. To support 

dynamism, we develop a program to read all customers from the instance and 

randomly select the customers based on the degree of dynamism. For example, 

if the instance contains 50 customers and the degree of dynamism is 10%, 5 

customers are randomly selected, and each customer is assigned a random time 

based on the customer availability time. For example, if customer 661 is chosen 

as a dynamic request, the program will refer to the instance file and check the 

customer availability time. If the customer availability time is between 0 and 

28800, the dynamic time will be randomly generated between the customer 

availability time. In this case, the generated dynamic time is 12,800 units.  



 

118 

 

 
  

Figure 4.15: Solomon instance R101 dynamic data file (Lackner, 2004) 

 

Figure 4.16 shows the MOVRPTW instance (test50-0-0-0-

0.d0.tw0Spec.txt) and the corresponding generated dynamic instance (test50-0-

0-0-0.d0.tw0Specs_rd_10.txt). This data file (test50-0-0-0-

0.d0.tw0Specs_rd_10.txt) contains 50 customers using profile 1 with 10% 

dynamic requests.  The dynamic dataset used for testing NEDPALNS can be 

found at https://github.com/tskhoo/MODVRPTW. 

  

  namic requests

Static requests

https://github.com/tskhoo/MODVRPTW
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Figure 4.16: MOVRPTW Dynamic Datafile  

(Test50-0-0-0-0.d0.tw0Spec_rd_10.txt)  
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4.4. Parameter settings 

 

These experiments are carried out at the University of Tunku Abdul 

Rahman’s Apple iMac lab, Investment and Trading Strategies Lab, and 

Numerical and High-Performance Computing Lab. NEDPALNS algorithm is 

developed in Java programming and capable of running on any operating system 

(i.e., Mac OS, Linux, and Windows). The parameters set in the NEDPALNS 

algorithm are listed in Table 4.2. The parameter values are randomly set high in 

value are the generation parameter, the number of runs parameter, size of the 

population, generation, destroy, and repair iteration. This high value is to enable 

a thorough execution. In the mutation ratio, this value is set low to reduce the 

chance of exploring more search space.  

 

Table 4.2: Parameters Setting 

 
Parameter Value 

Population size 750 

Mutation ratio 0.1 

Number of runs or independent runs 10 

Number of threads 8 

Number of parallel iterations 100 

Maximum promising solution pool size 40 

Penalization for unserved customers 0.10 

Minimum proportion of customers to be 

removed 

0.10 

Maximum proportion of customers to be 

removed 

0.40 

Reference objective degradation 0.05 

Initial probability of accepting a degrading 

solution 

0.5 

Fraction of the initial temperature to be 

reached at the end 

0.002 

Reaction factor 0.40 

Score for new best solution 1.00 

Score for improving solution 0.25 

Score for non-improving accepted solution 0.40 

Score for rejected solution 0.00 

Operator probability (w_) update frequency 100 

Reference points – Static dataset (1.5,1.5) 

Reference points – Dynamic dataset (1.5,1.5,1.5) 
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4.5. Results 

 

To compare our results with the published papers related to our study, 

we adopt the quantitative and qualitative metrics for comparations and what to 

compare. 

 

In the MODVRPTW static assessment, each instance is run 30 times 

using the Solomon dataset. In the MODVRPTW dynamic assessment, we 

perform two assessments. The first assessment is based on a hypothetical type 

of dataset which uses the Solomon dataset with the dynamic dataset.  The 

second assessment is based on the real type of dataset which uses the 

MODVRPTW dataset with the dynamic dataset. In the second assessment, each 

instance runs 10 times. 

 

 The results are assessed based on qualitative and quantitative.  In the 

quantitative assessment, the metrics used are the average, the best, and the worst 

result of the total travelled distance, the number of vehicles, insertion rates, and 

rejection rates, as well as counting the highest number of non-dominated 

solutions.  

 

In qualitative metrics, we use hypervolume (Zitzler and Thiele, 1998) to 

assess the performance. The hypervolume result is a single element indicator 

metric and is rigorous monotonic with Pareto dominance.  First, an 

approximation set A is obtained and a given reference point is used to calculate 
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the hypervolume. A higher hypervolume value indicates better convergence and 

diversity in minimum multi-objective optimization problem context, 

 

Second, we normalized the objective values to a range of 0–1 to obtain 

the hypervolume values. This is because to a large extent, objective values may 

differ. We perform the normalization based on 2 criteria. The first criterion is 

the static dataset that focuses on static information in MOVRPTW, and the 

reference points are set at (1,5, 1.5). The second criterion is the dynamic data 

set that focuses on the dynamic information in MODVRPTW, and the reference 

points are set at (1.5,1.5,1.5).  

 

4.5.1 Comparisons with Published Algorithms Using the Static Dataset 

(Solomon Dataset) 

 

In these comparisons, we use the static dataset (Solomon dataset) to 

compare the published algorithms. The published algorithms are the multi-

objective evolutionary algorithm based on decomposition (MOEA/D) (Qi et al., 

2015a), multi-objective goal programming, and genetic algorithm (MOGPGA) 

(Ghoseiri and Farid, 2010), multi-objective evolutionary algorithm (MOEA) 

(Najera, 2010). We also compare the best-known solutions (BKS) and the BKS 

by minimum average results after 30 independent runs. The “NumNs” is the 

number of non-dominated solutions. The “N A” is no result from the comparing 

algorithm. The “NV” is the number of used vehicles, and the “T ” is the total 

travelled distance. Both “NV” and “T ” are e tracted from the 30 independent 

runs and the lowest number is extracted. In this section, the customer size used 
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for testing is 100 customers. Our analysis is assessed based on the quantities of 

the non-dominated solutions in instance types C1, C2, R1, R2, RC1, and RC2. 

The “MNV” is the average number of used vehicles after 30 independent runs.  

The “MT ” is the average total travelled distance after 30 independent runs. 

These metrics measure the best results on average after 30 independent runs. 

The %MNV and %MTD represent the different values from the comparing 

algorithm in percentages on the respective average number of vehicles and 

average total travelled distance. 

 

 In Appendix A1, NEDPALNS slightly underperforms other published 

algorithms.  The difference results in instance C109 (829.71) compares to other 

published algorithms (828.94), which is insignificant (0.008%). 

 

The results in Appendix A2 show that NEDPALNS (8) has similar non-

dominated solutions to other published algorithms (8) except for MOGPGA 

which only has 6 non-dominated results.  Appendix A3 – A6 show NEDPALNS 

(R1 – 20,  R2 – 27, RC1 – 14, and RC2 – 21) outperform other published 

algorithms in instance type R1 (M-MOEA/D – 2, MOGPGA – 5, MOEA – 6), 

R2 (M-MOEA/D – 7, MOGPGA – 2, MOEA – 1), RC1 (M-MOEA/D – 2, 

MOGPGA – 4, MOEA – 1) and RC2 (M-MOEA/D – 8, MOGPGA – 1, MOEA 

– 3) with the highest number of non-dominated solutions. These results show 

that NEDPALNS has better diversity and convergence results than other 

published algorithms in the instance type R1, R2, RC1, and RC2 on 100 

customers. 
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Table 4.3 shows the hypervolume comparisons in which NEDPALNS 

(44 instances) has better results than the M-MOEA/D (27 instances), 

MOGPGA (16 instances), and MOEA (19 instances). NEDPALNS results 

accounted for 78.6% of the total instances has better hypervolume than other 

published algorithms. This indicates that NEDPALNS has significant 

hypervolume performance, better convergence, and a wide diversity than other 

published algorithms. Table 4.4 shows the comparison of the least average 

result with other published solutions. The “Min TD” represents the lowest 

average of the total travelled distance after 30 independent runs. In these 

comparisons, the results are not available in M-MOEA/D and MOEA. 

NEDPALNS outperforms MOGPGA results by 35 instances, which accounted 

for 62.5% of the total instances.  The remaining 21 instances (37.5%) show 

non-dominated solutions like MOGPGA. This shows that NEDPALNS has 

more than 50% instances with better least average results against the 

MOGPGA. 

 

TABLE 4.3: A comprehensive comparison of the obtained non-

dominated solutions using hypervolume indicator 

Inst-

ance 

M-

MOEA/D 

(Qi et al., 

2015) 

MOGPGA 

(Ghoseiri 

 & Farid, 

2010) 

MOEA 

(Najera, 

2010) 

NED- 

PALNS 

Inst- 

ance 

M-

MOEA/D 

(Qi et al., 

2015) 

MOGPGA 

(Ghoseiri 

 & Farid, 

2010) 

MOEA 

(Najera, 

2010) 

NED- 

PALNS 

C101 0.2505 0.2505 0.2505 0.2505 C201 0.25 0.25 0.25 0.25 

C102 0.2505 0.2505 0.2505 0.2505 C202 0.25 0.25 0.25 0.25 

C103 0.251 0.251 0.251 0.251 C203 0.2503 0.2503 0.2503 0.2503 

C104 0.253 0.253 0.253 0.253 C204 0.2508 0.2429 0.2508 0.2508 

C105 0.2505 0.2505 0.2505 0.2505 C205 0.2523 0.2523 0.2523 0.2523 

C106 0.2505 0.2505 0.2505 0.2505 C206 0.2526 0.2523 0.2526 0.2526 

C107 0.2505 0.2505 0.2505 0.2505 C207 0.2528 0.25 0.2528 0.2528 

C108 0.2505 0.2505 0.2505 0.2505 C208 0.2527 0.2527 0.2527 0.2527 

C109 0.2505 0.2505 0.2505 0.25      
Average 0.2508 0.2508 0.2508 0.2508 Average 0.2514 0.2501 0.2514 0.2514 
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R101 0.2854 0.2827 0.286 0.286 R201 0.5442 0.4564 0.5433 0.5473 

R102 0.4034 0.3647 0.4033 0.4035 R202 0.6288 0.6082 0.6302 0.6377 

R103 0.6557 0.5962 0.6543 0.6557 R203 0.8651 0.7955 0.8573 0.8701 

R104 0.9083 0.9191 0.9127 0.9175 R204 0.9759 0.8707 0.9707 0.9807 

R105 0.5468 0.5055 0.5485 0.5504 R205 0.8207 0.6952 0.8109 0.8155 

R106 0.6791 0.6311 0.683 0.6841 R206 0.8724 0.839 0.8637 0.8708 

R107 0.8507 0.7969 0.8519 0.8589 R207 0.9304 0.8638 0.9242 0.9374 

R108 0.9243 0.9204 0.9732 0.9864 R208 1.1676 0.9557 1.1624 1.1526 

R109 0.7299 0.7021 0.7303 0.7318 R209 0.884 0.6568 0.7355 0.8782 

R110 0.7983 0.7293 0.8081 0.8173 R210 0.8483 0.8401 0.8385 0.8456 

R111 0.8167 0.7951 0.8237 0.8697 R211 0.9598 0.7006 0.9474 0.9677 

R112 0.9148 0.852 0.9151 0.9287      
Average 0.7094 0.6746 0.7158 0.7242 Average 0.8634 0.7529 0.844 0.864 

          

RC101 0.3482 0.3015 0.3238 0.3574 RC201 0.6258 0.5386 0.6154 0.5795 

RC102 0.4499 0.4029 0.4517 0.4593 RC202 0.7621 0.5781 0.7578 0.767 

RC103 0.6296 0.5569 0.6281 0.6357 RC203 0.9776 0.8286 0.8829 0.9016 

RC104 0.7423 0.6727 0.743 0.7474 RC204 1.1093 1.0189 1.1062 1.1113 

RC105 0.3934 0.333 0.3966 0.3969 RC205 0.6988 0.5484 0.6854 0.6481 

RC106 0.5264 0.4751 0.5359 0.5375 RC206 0.8603 0.7066 0.8666 0.8061 

RC107 0.6471 0.652 0.6565 0.6576 RC207 0.9412 0.8197 0.9275 0.8695 

RC108 0.7441 0.6822 0.7524 0.755 RC208 1.0954 1.0213 1.1123 1.1144 

Average 0.5601 0.5095 0.561 0.5684 Average 0.8838 0.7575 0.8693 0.8497 

 

 

TABLE 4.4: Comparison of the least average result with other published 

algorithms  

 Instance 

Min TD 

M-MOEA/D 

(Qi et al., 

2015b) 

MOGPGA  

(Ghoseiri and Farid, 2010) 

MOEA  

(Najera, 

2010) 

NEDPALNS 

MNV MTD MNV MTD %MNV %MTD MNV MTD MNV MTD 

C101 N/A N/A         10 828.94 0.00 0.00 N/A N/A 10 828.94 

C102 N/A N/A 10 839.41 0.00 0.01 N/A N/A 10 828.94 

C103 N/A N/A 10 849.17 0.00 0.02 N/A N/A 10 828.06 

C104 N/A N/A 10 845.56 0.00 0.02 N/A N/A 10 824.78 

C105 N/A N/A 10 828.94 0.00 0.00 N/A N/A 10 828.94 

C106 N/A N/A 10 828.94 0.00 0.00 N/A N/A 10 828.94 

C107 N/A N/A 10 828.94 0.00 0.00 N/A N/A 10 828.94 

C108 N/A N/A 10 839.16 0.00 0.01 N/A N/A 10 828.94 

C109 N/A N/A 10 828.94 0.00 0.00 N/A N/A 10 828.94 

Average   10 835.33 0.00 0.01   10 828.38 
             

C201 N/A N/A 3 591.56 0.00 0.00 N/A N/A 3 591.56 

C202 N/A N/A 3 593.24 0.00 0.00 N/A N/A 3 591.56 

C203 N/A N/A 3 614.15 0.00 0.04 N/A N/A 3 591.17 

C204 N/A N/A 3 603.94 0.00 0.02 N/A N/A 3 590.6 

C205 N/A N/A 3 590.74 0.00 0.00 N/A N/A 3 588.88 

C206 N/A N/A 3 592.42 0.00 0.01 N/A N/A 3 588.49 

C207 N/A N/A 3 593.24 0.00 0.01 N/A N/A 3 588.29 

C208 N/A N/A 3 597.7 0.00 0.02 N/A N/A 3 588.32 

Average   3 597.12 0.00 0.01   3 589.86 
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R101 N/A N/A 19.4 1673.9 -0.03 0.02 N/A N/A 20 1642.88 

R102 N/A N/A 18.7 1510.6 0.04 0.02 N/A N/A 18 1473 

R103 N/A N/A 14.3 1291.1 0.02 0.06 N/A N/A 14 1213.81 

R104 N/A N/A 11.2 1043.3 0.02 0.06 N/A N/A 10.93 977.05 

R105 N/A N/A 15.6 1409.6 0.04 0.03 N/A N/A 15 1360.78 

R106 N/A N/A 14 1315.9 0.07 0.06 N/A N/A 13 1239.37 

R107 N/A N/A 11.8 1134.8 0.07 0.05 N/A N/A 11 1073.04 

R108 N/A N/A 10.3 1014.3 0.03 0.07 N/A N/A 10.03 946.26 

R109 N/A N/A 13 1220.1 0.00 0.06 N/A N/A 13 1151.84 

R110 N/A N/A 12.2 1160.7 0.02 0.07 N/A N/A 12 1074.81 

R111 N/A N/A 11.9 1149.1 -0.01 0.08 N/A N/A 12 1053.5 

R112 N/A N/A 10.5 1051.7 0.05 0.09 N/A N/A 10 962.02 

Average   13.58 1247.93 0.02 0.05   13.25 1180.7 
               

R201 N/A N/A 4 1358.7 -1.00 0.16 N/A N/A 8 1147.8 

R202 N/A N/A 4 1173.1 -0.50 0.12 N/A N/A 6 1035.66 

R203 N/A N/A 4.8 1022.3 -0.25 0.14 N/A N/A 6 874.87 

R204 N/A N/A 5.4 839.82 0.07 0.12 N/A N/A 5 735.8 

R205 N/A N/A 3.4 1188.5 -0.47 0.20 N/A N/A 5 954.32 

R206 N/A N/A 3 1004 -0.66 0.12 N/A N/A 4.97 880.73 

R207 N/A N/A 3 907.9 -0.33 0.12 N/A N/A 4 797.99 

R208 N/A N/A 3 778.25 -0.29 0.09 N/A N/A 3.86 706.69 

R209 N/A N/A 4 1009.9 -0.25 0.15 N/A N/A 5 860.13 

R210 N/A N/A 3.2 1020.3 -0.88 0.11 N/A N/A 6 905.21 

R211 N/A N/A 3.6 1191 -0.10 0.36 N/A N/A 3.97 759.78 

Average   3.76 1044.89 -0.40 0.16   5.25 878.09 

               

RC101 N/A N/A 15.3 1693.2 0.02 0.04 N/A N/A 15 1623.59 

RC102 N/A N/A 14.5 1521 0.02 0.04 N/A N/A 14.21 1466.02 

RC103 N/A N/A 12.2 1357.4 0.08 0.06 N/A N/A 11.17 1273.58 

RC104 N/A N/A 11 1213.5 0.09 0.06 N/A N/A 10 1136.4 

RC105 N/A N/A 15.9 1610.5 -0.01 0.06 N/A N/A 16 1518.58 

RC106 N/A N/A 13.5 1437.1 0.04 0.04 N/A N/A 13 1376.99 

RC107 N/A N/A 12.2 1287.9 0.02 0.06 N/A N/A 12 1216.78 

RC108 N/A N/A 11.3 1197.9 0.03 0.06 N/A N/A 11 1121.21 

Average   13.24 1414.81 0.03 0.05   12.8 1341.64 

               

RC201 N/A N/A 4 1457 -1.25 0.13 N/A N/A 9 1266.15 

RC202 N/A N/A 4 1381.9 -0.98 0.21 N/A N/A 7.93 1095.87 

RC203 N/A N/A 4.9 1196.7 -0.02 0.23 N/A N/A 5 926.82 

RC204 N/A N/A 3 926.74 -0.31 0.15 N/A N/A 3.93 787.74 

RC205 N/A N/A 4 1411.3 -0.75 0.18 N/A N/A 7 1157.55 

RC206 N/A N/A 4 1195.5 -0.72 0.12 N/A N/A 6.86 1057.54 

RC207 N/A N/A 4 1070.3 -0.50 0.09 N/A N/A 6 971.05 

RC208 N/A N/A 3.7 905.07 -0.08 0.14 N/A N/A 4 779.22 

Average     3.95 1193.06 -0.57 0.16     6.22 1005.24 

           

Total Sum   8.14 1064.77 -0.06 0.08   8.62 978.16 

Total Average   455.8 59626.87 -0.06 0.08   482.86  54776.69 

Count     0         35 

 

 

Table 4.5 shows the comparison against the best-known solutions. The 

“Ref” indicates the reference used for the best-known solution in that instance. 



 

127 

 

The “Min NV” represents the least number of used vehicles, and the “Min T ” 

represents the least total travelled distance. The solution appears in bold font, 

indicating that NEDPALNS has a similar or better result than the best-known 

solution. The “*” shown ne t to the result indicates that NEDPALNS has a 

better result than the best-known solution (BKS).  

 

 n the “Min NV” comparison, NEDPALNS achieve 18 instances better 

than the BKS. This represents 32% of the total instances that have results like 

the BKS. However, in the comparison of “Min TD”, NEDPALNS has 42 

instances or 75% of the total instances that have similar or better results than 

BKS. Of which, there are 8 instances in which NEDPALNS outperforms BKS. 

 

TABLE 4.5: Compare with the best-known solutions (Min NV) 

 

Instance 

Min NV 

Best-known Solution (BKS) NEDPALNS 

NV TD Ref NV TD %NV %TD 

C101 10 828.94 (Rochat and Taillard, 1995) 10 828.94 0.00 0.00 

C102 10 828.94 (Rochat and Taillard, 1995) 10 828.94 0.00 0.00 

C103 10 828.06 (Rochat and Taillard, 1995) 10 828.07 0.00 0.00 

C104 10 824.78 (Rochat and Taillard, 1995) 10 824.78 0.00 0.00 

C105 10 828.94 (Rochat and Taillard, 1995) 10 828.94 0.00 0.00 

C106 10 828.94 (Rochat and Taillard, 1995) 10 828.94 0.00 0.00 

C107 10 828.94 (Rochat and Taillard, 1995) 10 828.94 0.00 0.00 

C108 10 828.94 (Rochat and Taillard, 1995) 10 828.94 0.00 0.00 

C109 10 828.94 (Rochat and Taillard, 1995) 10 828.94 0.00 0.00 

        

C201 3 591.56 (Rochat and Taillard, 1995) 3 591.56 0.00 0.00 

C202 3 591.56 (Rochat and Taillard, 1995) 3 591.56 0.00 0.00 

C203 3 591.17 (Rochat and Taillard, 1995) 3 591.17 0.00 0.00 

C204 3 590.6 (Rochat and Taillard, 1995) 3 590.6 0.00 0.00 

C205 3 588.88 (Rochat and Taillard, 1995) 3 588.88 0.00 0.00 

C206 3 588.49 (Rochat and Taillard, 1995) 3 588.49 0.00 0.00 

C207 3 588.29 (Rochat and Taillard, 1995) 3 588.29 0.00 0.00 

C208 3 588.32 (Rochat and Taillard, 1995) 3 588.32 0.00 0.00 

        

R101 18 1613.59 (Tan, Chew and Lee, 2006)  19 1650.8 0.06 0.02 

R102 17 1486.12 (Rochat and Taillard, 1995) 17 1494.15 0.00 0.01 

R103 13 1292.68 (Li and Lim, 2003)  13 1351.98 0.00 0.05 

R104 9 1007.24 (Mester, 2002) 10 981.23 0.11 -0.03 

R105 14 1377.11 (Rochat and Taillard, 1995) 14 1377.33 0.00 0.00 

R106 12 1251.98 (Mester, 2002) 12 1263.98 0.00 0.01 
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R107 10 1104.66 (Shaw, 1997)  10 1131.67 0.00 0.02 

R108 9 960.88 (Berger, Barkaoui and Bräysy, 2003)  9 978.33 0.00 0.02 

R109 11 1194.73 (Homberger and Hermann, 1999)  12 1153.02 0.09 -0.03 

R110 10 1118.59 (Mester, 2002)  11 1078.8 0.10 -0.04 

R111 10 1096.72 (Rousseau, Gendreau and Pesant, 2002)  10 1123.37 0.00 0.02 

R112 9 982.14 
(Gambardella, Taillard and Agazzi, 

1999) 
10 958.03 0.11 -0.02 

        

R201 4 1252.37 (Homberger and Hermann, 1999) 4 1331.25 0.00 0.06 

R202 3 1191.7 (Rousseau, Gendreau and Pesant, 2002)  4 1079.39 0.33 -0.09 

R203 3 939.54 (Mester, 2002)  3 972.58 0.00 0.04 

R204 2 825.52 (Bent and Hentenryck, 2004) 3 751.06 0.50 -0.09 

R205 3 994.42 (Rousseau, Gendreau and Pesant, 2002)  3 1064.71 0.00 0.07 

R206 3 906.14 (Schrimpf et al., 2000b) 3 942.08 0.00 0.04 

R207 2 837.2 (Bouthilliera and Crainic, 2005)  3 811.51 0.50 -0.03 

R208 2 726.75 (Mester, 2002)  2 864.3 0.00 0.19 

R209 3 909.16 (Homberger, 2000)  3 1002.82 0.00 0.10 

R210 3 938.58 (Ghoseiri and Farid, 2010) 3 1038.78 0.00 0.11 

R211 2 892.71 (Bent and Hentenryck, 2004)  3 770.19 0.50 -0.14 

        

RC101 14 1696.94 (Taillard et al., 1997)  14 1708.05 0.00 0.01 

RC102 12 1554.75 (Taillard et al., 1997) 13 1477.54 0.08 -0.05 

RC103 11 1261.67 (Taillard et al., 1997)  11 1261.67 0.00 0.00 

RC104 10 1135.48 (Cordeau, Laporte and Mercier, 2001)  10 1135.52 0.00 0.00 

RC105 13 1629.44 (Berger, Barkaoui and Bräysy, 2003)  14 1540.18 0.08 -0.05 

RC106 11 1424.73 (Berger, Barkaoui and Bräysy, 2003)  12 1379.08 0.09 -0.03 

RC107 11 1222.1 (Ghoseiri and Farid, 2010) 11 1232.26 0.00 0.01 

RC108 10 1139.82 (Taillard et al., 1997)  10 1147.2 0.00 0.01 

        

RC201 4 1406.91 (Mester, 2002)  5 1321.93 0.25 -0.06 

RC202 3 1365.65 
(Repoussis, Tarantilis and Ioannou, 

2009)  4 1214.17 
0.33 

-0.11 

RC203 3 1049.62 (Czech and Czarnas, 2002)  4 947.95 0.33 -0.10 

RC204 3 798.41 (Mester, 2002)  3 798.46 0.00 0.00 

RC205 4 1297.19 (Mester, 2002)  5 1247.85 0.25 -0.04 

RC206 3 1146.32 (Homberger, 2000) 4 1087.93 0.33 -0.05 

RC207 3 1061.14 (Bent and Hentenryck, 2004)  4 996.94 0.33 -0.06 

RC208 3 828.14 (Ibaraki et al., 2005)  3 829 0.00 0.00 

Count  18 

 

 

TABLE 4.5: Compare with the best-known solutions (Min TD) 

(continued) 

Instance 

Min TD 

Best-known Solution (BKS) NEDPALNS 

NV TD Ref NV TD %NV %TD 

C101 10 828.94 (Rochat & Taillard, 1995) 10 828.94 0 0 

C102 10 828.94 (Rochat & Taillard, 1995) 10 828.94 0 0 

C103 10 828.06 (Rochat & Taillard, 1995) 10 828.07 0 0 

C104 10 824.78 (Rochat & Taillard, 1995) 10 824.78 0 0 

C105 10 828.94 (Rochat & Taillard, 1995) 10 828.94 0 0 

C106 10 828.94 (Rochat & Taillard, 1995) 10 828.94 0 0 

C107 10 828.94 (Rochat & Taillard, 1995) 10 828.94 0 0 

C108 10 828.94 (Rochat & Taillard, 1995) 10 828.94 0 0 
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C109 10 828.94 (Rochat & Taillard, 1995) 10 828.94 0 0 

C201 3 591.56 (Rochat & Taillard, 1995) 3 591.56 0 0 

C202 3 591.56 (Rochat & Taillard, 1995) 3 591.56 0 0 

C203 3 591.17 (Rochat & Taillard, 1995) 3 591.17 0 0 

C204 3 590.6 (Rochat & Taillard, 1995) 3 590.6 0 0 

C205 3 588.88 (Rochat & Taillard, 1995) 3 588.88 0 0 

C206 3 588.49 (Rochat & Taillard, 1995) 3 588.49 0 0 

C207 3 588.29 (Rochat & Taillard, 1995) 3 588.29 0 0 

C208 3 588.32 (Rochat & Taillard, 1995) 3 588.32 0 0 

R101 18 1613.59 (Tan et al., 2006)  20 1642.88 0.11 0.02 

R102 18 1454.68 (Tan et al., 2006)  18 1472.82 0 0.01 

R103 14 1213.62 (Rochat & Taillard, 1995) 14 1213.62 0 0 

R104 10 974.24 (Tan et al., 2006)  11 976.61 0.1 0 

R105 15 1360.78 (Soonchul Jung & Moon, 2002)  15 1360.78 0 0 

R106 13 1240.47 (Soonchul Jung & Moon, 2002) 13 1239.37* 0 0 

R107 11 1073.34 (Soonchul Jung & Moon, 2002)  11 1072.12* 0 0 

R108 10 947.55 (Soonchul Jung & Moon, 2002)  10 938.2* 0 -0.01 

R109 13 1151.84 (Soonchul Jung & Moon, 2002) 13 1151.84 0 0 

R110 12 1072.41 (Soonchul Jung & Moon, 2002) 12 1072.41 0 0 

R111 12 1053.5 (Soonchul Jung & Moon, 2002)  12 1053.5 0 0 

R112 10 953.63 (Rochat & Taillard, 1995) 10 958.03 0 0 

R201 9 1144.48 (Alvarenga, Mateus, & de Tomi, 2007) 8 1147.8 -0.11 0 

R202 8 1034.35 (Soonchul Jung & Moon, 2002)  6 1034.97 -0.25 0 

R203 6 874.87 (Soonchul Jung & Moon, 2002) 6 874.87 0 0 

R204 4 736.52 (Soonchul Jung & Moon, 2002)  5 735.8* 0.25 0 

R205 5 954.16 (Ombuki et al., 2006) 5 954.16 0 0 

R206 5 879.89 (Soonchul Jung & Moon, 2002) 5 884.85 0 0.01 

R207 4 799.86 (Soonchul Jung & Moon, 2002) 4 797.99* 0 0 

R208 4 705.45 (Soonchul Jung & Moon, 2002)  4 705.33* 0 0 

R209 5 859.39 (Soonchul Jung & Moon, 2002)  5 860.11 0 0 

R210 5 910.7 (Soonchul Jung & Moon, 2002) 6 905.21 0.2 -0.01 

R211 4 755.96 (Soonchul Jung & Moon, 2002)  4 753.15* 0 0 

        

RC101 15 1623.58 (Rochat & Taillard, 1995) 15 1623.58 0 0 

RC102 14 1461.23 (Soon chul Jung & Moon, 2015)  14 1461.23 0 0 

RC103 11 1261.67 (Taillard et al., 1997)  11 1261.67 0 0 

RC104 10 1135.48 (Cordeau et al., 2001) 10 1135.52 0 0 

RC105 16 1518.58 (Soonchul Jung & Moon, 2002) 16 1518.58 0 0 

RC106 13 1371.69 (Tan et al., 2006) 13 1376.99 0 0 

RC107 12 1212.83 (Soonchul Jung & Moon, 2002) 12 1212.83 0 0 

RC108 11 1117.53 (Soonchul Jung & Moon, 2002)  11 1118.07 0 0 

        

RC201 6 1134.91 (Tan et al., 2006)  9 1265.56 0.5 0.12 

RC202 8 1095.64 (Soonchul Jung & Moon, 2002)  8 1095.64 0 0 

RC203 5 928.51 (Soonchul Jung & Moon, 2002)  5 926.82* 0 0 

RC204 4 786.38 (Soonchul Jung & Moon, 2002) 4 788.66 0 0 

RC205 7 1157.55 (Soonchul Jung & Moon, 2002) 7 1157.55 0 0 

RC206 7 1054.61 (Soonchul Jung & Moon, 2002) 7 1054.61 0 0 

RC207 6 966.08 (Soonchul Jung & Moon, 2002)  6 969.8 0 0 

RC208 4 779.31 (Soonchul Jung & Moon, 2002)  4 778.93 0 0 

Count    42 

 

 

Table 4.6 shows the least average number of used vehicles and the least 

total travelled distance compared to the BKS. The “min MNV” refers to the 
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average of the 30 least number of the used vehicle while the “min MT ” refers 

to the average of the 30 least total travelled distance. The “min MNV” in BKS 

results is not made available. However, in the comparison of the least average 

total travelled distance (min MTD) comparison, NEDPALNS achieves 52 

instances that have similar or better results than BKS. This is equivalent to 93% 

of the total instances. Of the 52 instances, 35 instances (62.5%) have results 

better than the BKS. This shows that NEDPALNS has achieved significant 

results in the least average total travelled distance compared to BKS.  

 

TABLE 4.6: Comparison with the least average best-known solution 

Instance  

Min MNV 

Best-known Solution NEDPALNS 

MNV MTD Ref MNV MTD %MNV %MTD 

C101 N/A N/A (Rochat & Taillard, 1995) 10 828.94 N/A N/A 

C102 N/A N/A (Rochat & Taillard, 1995) 10 828.94 N/A N/A 

C103 N/A N/A (Rochat & Taillard, 1995) 10 828.06 N/A N/A 

C104 N/A N/A (Rochat & Taillard, 1995) 10 824.78 N/A N/A 

C105 N/A N/A (Rochat & Taillard, 1995) 10 828.94 N/A N/A 

C106 N/A N/A (Rochat & Taillard, 1995) 10 828.94 N/A N/A 

C107 N/A N/A (Rochat & Taillard, 1995) 10 828.94 N/A N/A 

C108 N/A N/A (Rochat & Taillard, 1995) 10 828.94 N/A N/A 

C109 N/A N/A (Rochat & Taillard, 1995) 10 828.94 N/A N/A 

Average    10 828.38   

 

C201 N/A N/A (Rochat & Taillard, 1995) 3 591.56 N/A N/A 

C202 N/A N/A (Rochat & Taillard, 1995) 3 591.56 N/A N/A 

C203 N/A N/A (Rochat & Taillard, 1995) 3 591.17 N/A N/A 

C204 N/A N/A (Rochat & Taillard, 1995) 3 590.6 N/A N/A 

C205 N/A N/A (Rochat & Taillard, 1995) 3 588.88 N/A N/A 

C206 N/A N/A (Rochat & Taillard, 1995) 3 588.49 N/A N/A 

C207 N/A N/A (Rochat & Taillard, 1995) 3 588.29 N/A N/A 

C208 N/A N/A (Rochat & Taillard, 1995) 3 588.32 N/A N/A 

Average    3 589.86  
 

        

R101 N/A N/A (Tan et al., 2006) 19 1650.86 N/A N/A 

R102 N/A N/A (Rochat & Taillard, 1995) 17 1494.15 N/A N/A 

R103 N/A N/A (Li & Lim, 2003) 13.03 1479.93 N/A N/A 

R104 N/A N/A (Mester, 2002) 10 981.23 N/A N/A 

R105 N/A N/A (Rochat & Taillard, 1995) 14 1378.57 N/A N/A 

R106 N/A N/A (Mester, 2002) 12.03 1266.98 N/A N/A 

R107 N/A N/A (Shaw, 1997) 10 1190.96 N/A N/A 

R108 N/A N/A (Berger et al., 2003) 9.07 991.51 N/A N/A 

R109 N/A N/A (Homberger & Hermann, 1999) 12 1153.74 N/A N/A 

R110 N/A N/A (Mester, 2002) 11 1082.56 N/A N/A 

R111 N/A N/A (Rousseau et al., 2002) 11 1060.33 N/A N/A 
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R112 N/A N/A (Gambardella et al., 1999) 10 962.32 N/A N/A 

Average    12.34 1224.43   

        

R201 N/A N/A (Homberger & Hermann, 1999) 4.52 1282.66 N/A N/A 

R202 N/A N/A (Rousseau et al., 2002) 4 1081.54 N/A N/A 

R203 N/A N/A (Mester, 2002) 3.14 997.8 N/A N/A 

R204 N/A N/A (Bent & Hentenryck, 2004) 3 756.89 N/A N/A 

R205 N/A N/A (Rousseau et al., 2002) 3 1161.32 N/A N/A 

R206 N/A N/A (Schrimpf et al., 2000) 3 943.09 N/A N/A 

R207 N/A N/A (Bouthilliera & Crainic, 2005) 3 813.25 N/A N/A 

R208 N/A N/A (Mester, 2002) 2.59 777.1 N/A N/A 

R209 N/A N/A (Homberger, 2000) 3.17 1036.05 N/A N/A 

R210 N/A N/A (Ghoseiri & Farid, 2010) 4 920.3 N/A N/A 

R211 N/A N/A (Bent & Hentenryck, 2004) 3 779.73 N/A N/A 

Average    3.31 959.07   

        

RC101 N/A N/A (Taillard et al., 1997) 14.03 1710.52 N/A N/A 

RC102 N/A N/A (Taillard et al., 1997) 13 1497.8 N/A N/A 

RC103 N/A N/A (Taillard et al., 1997) 11 1290.94 N/A N/A 

RC104 N/A N/A (Cordeau et al., 2001) 10 1136.4 N/A N/A 

RC105 N/A N/A (Berger et al., 2003) 14 1541.59 N/A N/A 

RC106 N/A N/A (Berger et al., 2003) 12 1385.56 N/A N/A 

RC107 N/A N/A (Ghoseiri & Farid, 2010) 11 1236.08 N/A N/A 

RC108 N/A N/A (Taillard et al., 1997) 10 1151.65 N/A N/A 

Average    11.88 1368.82   

        

RC201 N/A N/A (Mester, 2002) 5 1324.15 N/A N/A 

RC202 N/A N/A (Repoussis et al., 2009) 4.1 1255.07 N/A N/A 

RC203 N/A N/A (Czech & Czarnas, 2002) 4 947.95 N/A N/A 

RC204 N/A N/A (Mester, 2002) 3 798.46 N/A N/A 

RC205 N/A N/A (Mester, 2002) 5 1269.78 N/A N/A 

RC206 N/A N/A (Homberger, 2000) 4 1105.29 N/A N/A 

RC207 N/A N/A (Bent & Hentenryck, 2004) 4 1000.29 N/A N/A 

RC208 N/A N/A (Ibaraki et al., 2005) 3 834.16 N/A N/A 

Average    4.01 1066.89   

Total 

Sum 
      466.22 61873.38     

Total 

Average 
      7.6 1016.12     

Count        

 

 

TABLE 4.6: Compare the least average with the best-known solutions 

(continued) 

Instance 

Min MTD 

Best-known  

Solution 
NEDPALNS 

MNV MTD Ref MNV MTD %MNV %MTD 

C101 10 828.94 (Soonchul Jung & Moon, 2002) 10 828.94 0 0 

C102 10 828.94 (Soonchul Jung & Moon, 2002) 10 828.94 0 0 

C103 10 828.06 (Soonchul Jung & Moon, 2002) 10 828.06 0 0 

C104 10 824.96 (Soonchul Jung & Moon, 2002) 10 824.78 0 -0.02 

C105 10 828.94 (Soonchul Jung & Moon, 2002) 10 828.94 0 0 

C106 10 828.94 (Soonchul Jung & Moon, 2002) 10 828.94 0 0 

C107 10 828.94 (Soonchul Jung & Moon, 2002) 10 828.94 0 0 
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C108 10 828.94 (Soonchul Jung & Moon, 2002) 10 828.94 0 0 

C109 10 828.94 (Soonchul Jung & Moon, 2002) 10 828.94 0 0 

Average 10 828.4  10 828.38 0 0 

 

C201 3 591.56 (Soonchul Jung & Moon, 2002) 3 591.56 0 0 

C202 3 591.56 (Soonchul Jung & Moon, 2002) 3 591.56 0 0 

C203 3 591.17 (Soonchul Jung & Moon, 2002) 3 591.17 0 0 

C204 3 591.18 (Soonchul Jung & Moon, 2002) 3 590.6 0 -0.1 

C205 3 588.88 (Soonchul Jung & Moon, 2002) 3 588.88 0 0 

C206 3 588.49 (Soonchul Jung & Moon, 2002) 3 588.49 0 0 

C207 3 588.29 (Soonchul Jung & Moon, 2002) 3 588.29 0 0 

C208 3 588.32 (Soonchul Jung & Moon, 2002) 3 588.32 0 0 

Average 3 589.93  3 589.86 0 -0.01 

        

R101 20 1643.53 (Soonchul Jung & Moon, 2002) 20.00 1642.88* 0 -0.04 

R102 18.5 1479.19 (Soonchul Jung & Moon, 2002) 18.00 1473* -2.7 -0.42 

R103 14.81 1222.29 (Soonchul Jung & Moon, 2002) 14.00 1213.81* -5.47 -0.69 

R104 11.7 1001.44 (Soonchul Jung & Moon, 2002) 10.93 977.05* -6.57 -2.44 

R105 15.91 1371.52 (Soonchul Jung & Moon, 2002) 15.00 1360.78* -5.72 -0.78 

R106 13.59 1252.44 (Soonchul Jung & Moon, 2002) 13.00 1239.37* -4.34 -1.04 

R107 11.73 1083.1 (Soonchul Jung & Moon, 2002) 11.00 1073.04* -6.22 -0.93 

R108 10.74 959.65 (Soonchul Jung & Moon, 2002) 10.03 946.26* -6.57 -1.4 

R109 12.97 1157.27 (Soonchul Jung & Moon, 2002) 13.00 1151.84 0.23 -0.47 

R110 12 1082.72 (Soonchul Jung & Moon, 2002) 12.00 1074.81* 0 -0.73 

R111 12 1063.21 (Soonchul Jung & Moon, 2002) 12.00 1053.5* 0 -0.91 

R112 10.77 971.89 (Soonchul Jung & Moon, 2002) 10.00 962.02* -7.15 -1.02 

Average 13.73 1190.69  13.25 1180.7 -3.71 -0.91 

        

R201 8.29 1153.04 (Soonchul Jung & Moon, 2002) 8.00 1147.8* -3.5 -0.45 

R202 7.4 1038.4 (Soonchul Jung & Moon, 2002) 6.00 1035.66* -18.92 -0.26 

R203 6 875.87 (Soonchul Jung & Moon, 2002) 6.00 874.87* 0 -0.11 

R204 4.46 741.41 (Soonchul Jung & Moon, 2002) 5.00 735.8* 12.11 -0.76 

R205 6.05 964.69 (Ombuki et al., 2006) 5.00 954.32* -17.36 -1.07 

R206 5.33 892.55 (Soonchul Jung & Moon, 2002) 4.97 880.73* -6.84 -1.32 

R207 4.66 814.05 (Soonchul Jung & Moon, 2002) 4.00 797.99* -14.16 -1.97 

R208 3.5 714.37 (Soonchul Jung & Moon, 2002) 3.86 706.69 10.34 -1.07 

R209 5.26 867.52 (Soonchul Jung & Moon, 2002) 5.00 860.13* -4.94 -0.85 

R210 6.1 918.37 (Soonchul Jung & Moon, 2002) 6.00 905.21* -1.64 -1.43 

R211 4.7 765.64 (Soonchul Jung & Moon, 2002) 3.97 759.78* -15.63 -0.76 

Average 5.61 885.99  5.25 878.09 -5.5 -0.91 

 
    

   

RC101 16.46 1658.34 (Soonchul Jung & Moon, 2002) 15.00 1623.59* -8.87 -2.1 

RC102 14.65 1480.82 (Soonchul Jung & Moon, 2002) 14.21 1466.02* -3.02 -1 

RC103 12.11 1313.73 (Soonchul Jung & Moon, 2002) 11.17 1273.58* -7.74 -3.06 

RC104 10.56 1154.26 (Soonchul Jung & Moon, 2002) 10.00 1136.4* -5.3 -1.55 

RC105 15.96 1540.66 (Soonchul Jung & Moon, 2002) 16.00 1518.58 0.25 -1.43 

RC106 13.39 1397.45 (Soonchul Jung & Moon, 2002) 13.00 1376.99* -2.91 -1.46 

RC107 12.03 1227.81 (Soonchul Jung & Moon, 2002) 12.00 1216.78* -0.25 -0.9 

RC108 11 1135.81 (Soonchul Jung & Moon, 2002) 11.00 1121.21* 0 -1.29 

Average 13.27 1363.61  12.80 1341.64 -3.48 -1.6 

        

RC201 9 1269.94 (Soonchul Jung & Moon, 2002) 9.00 1266.15* 0 -0.3 

RC202 7.84 1101.03 (Soonchul Jung & Moon, 2002) 7.93 1095.87* 1.16 -0.47 

RC203 5.29 943.81 (Soonchul Jung & Moon, 2002) 5.00 926.82* -5.48 -1.8 

RC204 4.05 799.19 (Soonchul Jung & Moon, 2002) 3.93 787.74* -2.94 -1.43 

RC205 7.8 1164.43 (Soonchul Jung & Moon, 2002) 7.00 1157.55* -10.26 -0.59 

RC206 6.39 1067.49 (Soonchul Jung & Moon, 2002) 6.86 1057.54 7.39 -0.93 

RC207 6.07 975.24 (Soonchul Jung & Moon, 2002) 6.00 971.05* -1.15 -0.43 

RC208 4.98 791.35 (Soonchul Jung & Moon, 2002) 4.00 779.22* -19.68 -1.53 

Average 6.43 1014.06  6.22 1005.24 -3.87 -0.94 
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Total Sum 543.7       60089.2  482.86 54776.69 -3.05 -0.82 

Total Average 8.89 986.26   8.62 978.16 -3.04 -0.82 

Count 52     

 

 

4.5.2 Comparison with other Published Algorithms (Dynamic dataset 

and Solomon dataset) 

 

In this comparison, the algorithms published used are the adaptive local 

neighbourhood algorithm (ALNS) (S. Chen et al., 2018), the improved local 

neighbourhood algorithm (ILNS) (Hong, 2012), and the general variable 

neighbourhood search algorithm (GVNS) (de Armas & Melián-Batista, 2015).  

These comparisons compare the least number of vehicles used (VN), the least 

total travelled distance (TD), and the least rejection ratio (RR). The insertion 

time is provided for information purposes and not for comparison with other 

published algorithms since different hardware is used for recording the results. 

 

Table 4.7 shows the comparison with other published algorithms. In this 

table, the columns from the left to right represent the instance type, degree of 

vehicles dynamism, the number of used vehicles (VN), the total travelled 

distance (TD), the insertion time (IT), and the rejection ratio (RR). To obtain 

the result, each instance belonging to the customer size and specific degree of 

dynamism is executed 10 times and the best result is obtained.  These steps are 

repeated with the other instances for that customer size and specific DoD. The 

“Average <<DoD type>> based on all instance t pes” is the average result for 

all instance types for that specific DoD. The “Average <<instance type>>” 

based on all DoD is the average result for all DoD of that specific type of 
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instance.   The “Overall Average” is the average result of all “Average 

<<instance type>>” based on all DoD. The bold font indicates the best result.  

 

In the average C1 instance type based on all DoDs, NEDPALNS (NV - 

10.89, TD - 964.90, and RR - 0.02) has achieved a non-dominated solution 

compared to ALNS (VN - 10.44, TD - 1077.80 and RR - 0.11), ILNS (VN - 

10.71, TD - 986.10 and RR - 0.24) and GVNS (VN - 11.02, TD - 962.80, RR - 

0.00). This result indicates that the NEDPALNS result is competitive with other 

published algorithms in instance type C1. 

 

  In the average C2 instance type based on all DoDs,  NEDPALNS has a 

non-dominated solution in the least average of best NV (3.13), best TD 

(618.01), and best RR (0) in 10% DoD and best NV (3.38), best TD (607.04), 

and best RR (0.5) in 50% DoD compared to ILNS in 10% DoD (best NV - 3, 

best TD - 594.67 and best RR - 0) and 50% DoD (best NV - 3.13, best TD - 

604.98 and best RR - 0). However, NEDPALNS (best NV - 3.20, best TD - 

614.83 and best RR - 0.35) in the C2 instance type has an overall average result 

best VN and best TD than ALNS (best NV - 3.35, best TD - 650.79 and best RR 

- 0.00), ILNS (best NV - 3.23, best TD - 624.87 and best RR - 0.00) and GVNS 

(best NV - 3.28, best TD - 641.16 and best RR - 0.00). This shows that 

NEDPALNS has the best NV and the best TD on the least average in the C2 

instance type compared to other published algorithms.  

 

NEDPALNS has the least average of best RR in R1 (0.04), R2 (0.00), 

RC1 (0.00) and RC2 (0.00) compared to ALNS (R1 – 2.20, R2 – 0.00, RC1 – 
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1.15 and RC2 – 0.00), ILNS (R1 – 1.10, R2 – 0.05, RC1 – 1.50 and RC2 – 0.10) 

and GVNS (R1 – 2.18, R2 – 0.00, RC1 – 1.45 and RC2 – 0.00). In general, 

NEDPALNS (0.07) still has the least overall average of the best RR compared 

to other published algorithms (ALNS – 0.58, ILNS – 0.50, and GVNS – 0.61). 

This shows that overall, NEDPALNS can accommodate more customer 

requests compared to other published algorithms on all DoDs. 

 

If we compare the average for a specific DoD in all the instances, 

NEDPALNS consistently achieve the least average of best RR in 10% DoD 

(0.00), 30% DoD (0.06), 50% DoD (0.08), 70% DoD (0.16) and 90% DoD – 

0.04) compared to ALNS (10% DoD – 0.16, 30% DoD – 0.37, 50% DoD – 0.61, 

70% DoD – 0.78 and 90% DoD – 0.96) ,  ILNS (10% DoD – 0.27, 30% DoD – 

0.38, 50% DoD – 0.40, 70% DoD – 0.66 and 90% DoD – 0.80) and GVNS (10% 

DoD – 0.17, 30% DoD – 0.43, 50% DoD – 0.61, 70% DoD – 0.87 and 90% 

DoD – 0.95). This means that NEDPALNS can still achieve the least average 

of best RR based on specific DoDs for all instance types.  

 

Nevertheless, NEDPALNS has the overall least average of best RR 

(0.07) compared to other published algorithms (ALNS – 0.58, ILNS – 0.50, and 

GVNS – 0.61).
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. Table 4.7: Comparison with other published algorithms on the least average of best VN, best TD, and best RR 

 

Instance 

Type  

Degree of 

Dynamic 

NEDPALNS 

ALNS 

 (Chen et al., 2018) 

ILNS 

 (Hong, 2012) 

GVNS  

(de Armas and Melián-Batista, 2015) 

VN TD IT  RR VN TD IT  RR VN TD IT  RR VN TD IT  RR 

C1 

90 10.89 995.78 18.56 0 10.44 974.41 9.96 0.11 10.78 1039.77 6.6 0.22 10.67 963.33 7.81 0 

70 11 995.21 19.56 0.11 10.33 1088.38 12.45 0.11 10.78 1031.68 10.79 0.22 11.33 1009.47 7.67 0 

50 11 979.88 20.22 0 10.44 1096.58 17.37 0.11 10.89 1001.18 19.01 0.22 11 992.97 6.22 0 

30 10.89 948.63 21.78 0 10.56 1126.84 23.62 0.11 10.56 962.08 28.03 0.33 11.56 949.95 9.13 0 

10 10.67 905.01 28.89 0 10.44 1102.8 30.89 0.11 10.56 895.77 15.4 0.22 10.56 898.3 13.74 0 

Average 10.89 964.90 21.80 0.02 10.44 1077.80 18.86 0.11 10.71 986.10 15.97 0.24 11.02 962.80 8.91 0.00 

  

C2 

90 3.25 626.91 19.88 0.13 3.38 668.45 11.86 0 3.25 636.79 6.12 0 3.38 668.99 16.67 0 

70 3.13 616.56 20.38 0.75 3.25 652.63 13.32 0 3.13 636.47 10.01 0 3.38 672.95 14.03 0 

50 3.38 607.04 20.88 0.5 3.25 650.7 18.49 0 3.13 604.98 16.8 0 3.13 623.1 20.25 0 

30 3.13 605.65 22.88 0.38 3.63 658.09 24.22 0 3.63 651.42 29.87 0 3.25 624.81 34.82 0 

10 3.13 618.01 41.88 0 3.25 624.06 40.25 0 3 594.67 59.7 0 3.25 615.93 80.78 0 

Average 3.20 614.83 25.18 0.35 3.35 650.79 21.63 0.00 3.23 624.87 24.50 0.00 3.28 641.16 33.31 0.00 

                         

R1 

90 15.25 1422.29 23.67 0.08 13.67 1270.2 8.61 3.92 14.25 1335.94 17.43 2.33 14.67 1250.38 14.5 3.83 

70 14.2 1350.94 22.6 0.1 13.42 1298.86 11.31 2.83 14.33 1331.34 21.73 1.75 14.75 1267.78 10.95 3.08 

50 14.92 1390.38 22.42 0 13.58 1313.35 15.22 2.17 14.08 1295.81 28.27 0.67 14.58 1267.47 11.84 1.92 

30 15.08 1385.09 23.83 0 13.33 1310.23 21.99 1.5 13.92 1286.63 46.59 0.58 14.25 1256.04 15.7 1.58 

10 15.17 1394.08 33.42 0 13.33 1309.1 34.19 0.58 13.5 1257.08 67.99 0.17 14.17 1250.16 15.29 0.5 

Average 14.92 1388.56 25.19 0.04 13.47 1300.35 18.26 2.20 14.02 1301.36 36.40 1.10 14.48 1258.37 13.66 2.18 

 

R2 

90 4.27 1075.17 16.64 0 3.45 1076.77 21.82 0 3.55 1047.82 13.2 0.09 4 1086.78 16.47 0 

70 4.27 1048.81 17.73 0 3.36 1088.97 29.25 0 3.64 1032.04 20.15 0.09 4.36 1078.03 12.74 0 

50 4.09 1035.87 18.45 0 3.45 1086.09 39.3 0 3.82 1016.52 30.03 0 4.55 1071.83 11.96 0 

30 4.55 1017.73 21 0 3.45 1087.52 59.93 0 4.91 985.59 57.07 0 4.73 1035.6 10.18 0 

10 4.27 1004.02 35.45 0 5.09 1080.5 75.21 0 6.36 950 68.58 0.09 5.27 1000 9.48 0 

Average 4.29 1036.32 21.85 0.00 3.76 1083.97 45.10 0.00 4.46 1006.39 37.81 0.05 4.58 1054.45 12.17 0.00 
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RC1 

90 14.88 1600.39 22.75 0 13.63 1501.76 5.04 1.75 14 1513.94 17.31 2 14.63 1470.45 15.39 1.88 

70 14.75 1591.19 22.13 0 13.13 1510.21 6.65 1.75 13.88 1511.29 25.32 1.88 14.88 1489.28 13.43 2.13 

50 15 1575.78 22 0 13.63 1520.47 8.92 1.38 13.63 1514.72 48.78 1.38 14.5 1484.01 13.72 1.75 

30 15.13 1622.91 22.88 0 13 1484.89 12.71 0.63 13.88 1492.22 45.26 1.13 14.38 1471 16.51 1 

10 15.38 1617.36 32.38 0 12.88 1473.69 16.94 0.25 13.38 1436.23 83.52 1.13 13.5 1417.07 23.01 0.5 

Average 15.03 1601.53 24.43 0.00 13.25 1498.20 10.05 1.15 13.75 1493.68 44.04 1.50 14.38 1466.36 16.41 1.45 

                          

RC2 

90 5 1270.18 17.38 0 3.88 1264.94 11.31 0 4 1257.19 11.34 0.13 4.63 1275.93 28.05 0 

70 5.25 1183.63 18.13 0 3.88 1261.81 14.74 0 3.88 1239.46 19.26 0 5.13 1234.36 16.07 0 

50 5.13 1165.78 19.38 0 3.88 1260.66 20.67 0 4.25 1190.54 27.84 0.13 5.88 1200.26 11.46 0 

30 5.38 1172.01 21.75 0 3.88 1238.82 30.76 0 5.38 1166.04 41.51 0.25 5.88 1172.33 11.68 0 

10 5.38 1165.31 34.63 0 5.75 1253.11 42.89 0 6.75 1103.3 55.55 0 6.13 1153.43 13.27 0 

Average  5.23 1191.38 22.25 0.00 4.25 1255.87 24.07 0.00 4.85 1191.31 31.10 0.10 5.53 1207.26 16.11 0.00 

                          

Average (10% DoD in 

C1, C2, R1, R2, RC1 and RC2  

instance type) 

9.00 1117.30 34.44 0.00 8.46 1140.54 40.06 0.16 8.93 1039.51 58.46 0.27 8.81 1055.82 25.93 0.17 

Average (30% DoD in 

C1, C2, R1, R2, RC1 and RC2  

instance type) 

9.03 1125.34 22.35 0.06 7.98 1151.07 28.87 0.37 8.71 1090.66 41.39 0.38 9.01 1084.96 16.34 0.43 

Average (50% DoD in 

C1, C2, R1, R2, RC1 and RC2  

instance type) 

8.92 1125.79 20.56 0.08 8.04 1154.64 20.00 0.61 8.30 1103.96 28.46 0.40 8.94 1106.61 12.58 0.61 

Average (70% DoD in 

C1, C2, R1, R2, RC1 and RC2  

instance type) 

8.77 1131.06 20.09 0.16 7.90 1150.14 14.62 0.78 8.27 1130.38 17.88 0.66 8.97 1125.31 12.48 0.87 

Average (10% DoD in 

C1, C2, R1, R2, RC1 and RC2  

instance type) 

8.92 1165.12 19.81 0.04 8.08 1126.09 11.43 0.96 8.31 1138.58 12.00 0.80 8.66 1119.31 16.48 0.95 

                 

Average (C1 instance type 10.89 964.9 21.8 0.02 10.44 1077.8 18.86 0.11 10.71 986.1 15.97 0.24 11.02 962.8 8.91 0 
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in 10%, 30%, 50% 

70% and 90% DoD) 

Average (C2 customers 

in 10%, 30%, 50% 

70% and 90% DoD) 

3.2 614.83 25.18 0.35 3.35 650.79 21.63 0 3.23 624.87 24.5 0 3.28 641.16 33.31 0 

Average (R1 customers 

in 10%, 30%, 50% 

70% and 90% DoD) 

14.92 1388.56 25.19 0.04 13.47 1300.35 18.26 2.2 14.02 1301.36 36.4 1.1 14.48 1258.37 13.66 2.18 

Average (R2 customers 

in 10%, 30%, 50% 

70% and 90% DoD) 

4.29 1036.32 21.85 0 3.76 1083.97 45.1 0 4.46 1006.39 37.81 0.05 4.58 1054.45 12.17 0 

Average (RC1 customers 

in 10%, 30%, 50% 

70% and 90% DoD) 

15.03 1601.53 24.43 0 13.25 1498.2 10.05 1.15 13.75 1493.68 44.04 1.5 14.38 1466.36 16.41 1.45 

Average (RC2 customers 

in 10%, 30%, 50% 

70% and 90% DoD) 

5.23 1191.38 22.25 0 4.25 1255.87 24.07 0 4.85 1191.31 31.1 0.1 5.53 1207.26 16.11 0 

Overall Average 8.93 1132.92 23.45 0.07 8.09 1144.50 23.00 0.58 8.50 1100.62 31.64 0.50 8.88 1098.40 16.76 0.61 
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Table 4.8 shows the best, worst, and average the least average rejection 

rates, the least average number of used vehicles, and the least average total 

travelled distance against ALNS. 

 

 In the type of C1 instance, NEDPALNS has the least average rejection 

rates (best - 0.02, and average - 0.02) and total travelled distance (best - 963.2, 

worst - 1212.98, average - 1064.98  than ALNS’s least average rejection rates 

(best - 0.11, and average - 0.11) and total travelled distance (best - 1077.8, worst 

- 1348.22, average - 1227.96).  This result shows that NEDPALNS has the least 

average results in RR and TD than ALNS in the narrow type of clustered 

customer distribution. 

 

However, for instance, type C2, NEDPALNS (best - 789.02, worst - 

1056.7 and average - 882.82) has the least average total travelled distance than 

ALNS (best - 864.29, worst - 1083.85 and average - 987.73). This shows that 

NEDPALNS has a better result in the least total travelled distance than ALNS 

in the wider type of clustered customer distribution. 

 

In R1 and RC1 instance types. NEDPALNS (R1 best - 0.05, R1 worst - 

0.23 and R1 average - 0.05, RC1 best - 0, RC1 worst - 0.37, and RC1 average 

RR – 0) has the least average rejection rates than ALNS (R1 best - 2.2, R1 worst 

- 1.91, R1 average - 2.05, RC1 best - 1.15, RC1 worst - 0.98 and RC1 average 

- 1.03). This result indicates NEDPALNS has the least average rejection rates 

than ALNS in the narrow type of random customer distribution and narrow type 

of random and clustered customer distribution regardless of DoD. 
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In the R2 instance type, NEDPALNS has the least average total travelled 

distance (best - 999.36 and worst - 1090.22) than ALNS (best– 1028.23 and 

worst - 118.74). However, in the RC2 instance type, NEDPALNS 

underperforms ALNS in the least rejection rates, least number of used vehicles, 

and least total travelled distance. This means NEDPALNS is susceptible to a 

wider type of random and clustered customer distribution. Nevertheless, on 

overall average, NEDPALNS (best– 0.06, worst– 0.25, and average– 0.06) still 

has the least rejection rates than ALNS (best– 0.68, worst - 0.6, and average– 

0.63). 

 

If we compare all instance types on their specific DoD, NEDPALNS has 

the least average rejection rates in 10% DoD (best– 0, worst– 0.04 and average 

– 0.00), 30% DoD (best– 0.06, worst– 0.19, and average – 0.06), 50% DoD 

(best– 0.08, worst– 0.30 and average – 0.08), 70% DoD (best– 0.16, worst– 

0.33, and average – 0.16) and 90% DoD (best– 0.05, worst– 0.48, and average 

– 0.05) than ALNS in 10% DoD (best– 0.16, worst– 0.16 and average– 0.16), 

30% DoD (best - 0.37, worst - 0.35, and average - 0.38), 50% DoD (best - 0.61, 

worst - 0.49, and average - 0.51), 70% DoD (best - 0.78, worst - 0.64, and 

average - 0.74) and 90% (best - 0.96, worst - 0.87, and average - 0.87) 

respectively.



 

141 

 

Table 4.8: Comparison with ALNS on the least average of best, the least average of worst, and the least average of  

average (VN, TD, and RR) 

Instance  
Degree of 

Dynamic  

 Average rejection 

rates 

 (NEDPALNS) 

Average rejection  

rates  

(ALNS)  

(S. Chen et al., 2018) 

Average 

number of used 

vehicles 

  

(NEDPALNS) 

Average number of used 

vehicles 

(ALNS) 

(S. Chen et al., 2018) 

Average total travelled 

Distance 

 (NEDPALNS) 

Average total travelled 

 distance  

(ALNS) 

(S. Chen et al., 2018) 

Best Worst Average Best Worst Average Best Worst Avg. Best Worst Average Best Worst Average Best Worst Average 

C1 

90 0 0.37 0 0.11 0.11 0.11 10.89 12.22 11.44 10.44 11.22 10.56 995.78 1213.9 1099.01 974.41 1182.01 1105.24 

70 0.11 0.11 0.11 0.11 0.11 0.11 11 12.22 11.46 10.33 11.56 10.76 986.69 1224.97 1087.79 1088.38 1322.81 1207.47 

50 0 0.1 0 0.11 0.11 0.11 11 12.44 11.53 10.44 11.56 10.82 979.88 1206.54 1075.67 1096.58 1390.96 1262.96 

30 0 0.02 0 0.11 0.11 0.11 10.89 12.22 11.36 10.56 11.44 10.99 948.63 1240.2 1048.04 1126.84 1436.46 1294.45 

10 0 0.01 0 0.11 0.11 0.11 10.67 12.11 11.29 10.44 11.67 11.12 905.01 1179.27 1014.4 1102.8 1408.86 1269.66 

Average 0.02 0.12 0.02 0.11 0.11 0.11 10.89 12.24 11.42 10.44 11.49 10.85 963.2 1212.98 1064.98 1077.8 1348.22 1227.96 

                   

C2 

90 0.13 1.41 0.13 0 0 0 3.25 4.25 3.71 3.38 4.63 3.79 626.91 953.44 748.48 668.45 815.11 742.73 

70 0.75 1.15 0.75 0 0 0 3.13 4.13 3.51 3.25 4.5 3.7 616.56 884.51 696.19 652.63 837.39 745.04 

50 0.5 0.78 0.5 0 0 0 3.38 4.13 3.59 3.25 4.75 3.76 607.04 820.43 654.2 650.7 809.99 761.64 

30 0.38 0.89 0.38 0 0 0 3.13 4.25 3.51 3.63 4.38 3.69 605.65 842.68 681.56 658.09 834.73 741.69 

10 0 0.1 0 0 0 0 3.13 4 3.54 3.25 3.75 3.38 618.01 1001.04 722.85 624.06 800.13 746.43 

Average 0.19 0.49 0.19 0.06 0.06 0.06 7.04 8.2 7.5 6.9 7.95 7.26 789.02 1056.7 882.82 864.29 1083.85 987.73 

                   

R1 

90 0.17 0.55 0.17 3.92 3.58 3.65 14.83 16.67 15.8 13.67 15.58 14.41 1394.91 1523.86 1446.27 1270.2 1387.89 1333.11 

70 0.1 0.27 0.1 2.83 2.33 2.79 14.2 16.3 15.23 13.42 14.83 13.95 1350.94 1505.17 1422.41 1298.86 1386.23 1345.85 

50 0 0.21 0 2.17 1.83 1.88 14.92 17 15.75 13.58 14.83 14.04 1390.38 1538.54 1452.01 1313.35 1421.24 1383.66 

30 0 0.06 0 1.5 1.25 1.4 15.08 17.17 15.89 13.33 14.58 13.56 1385.09 1529.58 1451.25 1310.23 1413.81 1366.6 

10 0 0.06 0 0.58 0.58 0.54 15.17 17.5 16.38 13.33 14.33 13.78 1394.08 1543.52 1465.08 1309.1 1418.95 1369.74 

Average 0.05 0.23 0.05 2.2 1.91 2.05 14.84 16.93 15.81 13.47 14.83 13.95 1383.08 1528.13 1447.4 1300.35 1405.62 1359.79 

                   

R2 90 0 0 0 0 0 0 4.27 5.45 4.66 3.45 4.64 3.67 1075.17 1298.21 1164.19 1076.77 1145.14 1133.29 
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70 0 0 0 0 0 0 4.27 5.55 4.84 3.36 4.36 3.55 1048.81 1305.56 1162.15 1088.97 1155.53 1138.44 

50 0 0.09 0 0 0 0 4.09 5.36 4.76 3.45 4.73 3.69 1035.87 1304.39 1150.88 1086.09 1201.51 1146.93 

30 0 0 0 0 0 0 4.55 5.55 4.98 3.45 4 3.35 1017.73 1308.96 1132.54 1087.52 1182.04 1142.1 

10 0 0 0 0 0 0 4.27 5.64 4.9 5.09 5.5 5.31 1004.02 1314.36 1129.51 1080.5 1193.41 1137.68 

Average 0 0.01 0 0 0 0 8.3 9.71 8.91 7.76 8.84 8.09 999.36 1236.96 1090.22 1028.23 1187.21 1118.74 

                   

RC1 

90 0 0.56 0 1.75 1.5 1.48 15 16.88 15.81 13.63 15.25 14.38 1604.29 1788.05 1689.05 1501.76 1651.64 1578.27 

70 0 0.44 0 1.75 1.38 1.53 14.75 16.38 15.63 13.13 14.63 14.1 1591.19 1777.13 1673.54 1510.21 1643.41 1585.8 

50 0 0.64 0 1.38 1 1.04 15 16.88 15.73 13.63 14.75 13.89 1575.78 1805.74 1675.96 1520.47 1650.57 1586.02 

30 0 0.15 0 0.63 0.75 0.78 15.13 17.13 16.06 13 14.25 13.56 1622.91 1826.36 1714.22 1484.89 1620.66 1564.33 

10 0 0.06 0 0.25 0.25 0.31 15.38 17.13 16.18 12.88 14 13.28 1617.36 1815.3 1699.38 1473.69 1610.58 1539.29 

Average 0 0.37 0 1.15 0.98 1.03 15.05 16.88 15.88 13.25 14.58 13.84 1602.31 1802.51 1690.43 1498.2 1635.37 1570.74 

RC2 

90 0 0 0 0 0 0 5 6.25 5.56 3.88 4.63 3.96 1270.17 1568.79 1414.31 1264.94 1353.99 1327.66 

70 0 0 0 0 0 0 5.25 6.5 5.73 3.88 5 4 1183.62 1539.01 1334.11 1261.81 1400.27 1339.28 

50 0 0 0 0 0 0 5.13 6.5 5.88 3.88 5 4.08 1165.78 1466.81 1323.53 1260.66 1387.33 1347.17 

30 0 0 0 0 0 0 5.38 6.63 5.96 3.88 4.63 3.96 1172.01 1503.48 1318.3 1238.82 1372.79 1342.04 

10 0 0 0 0 0 0 5.38 6.63 5.85 5.75 6.5 5.86 1165.31 1465.5 1294.71 1253.11 1355.36 1328.66 

Average 0 0 0 0 0 0 5.23 6.5 5.8 4.25 5.15 4.37 1191.38 1508.72 1336.99 1255.87 1373.95 1336.96 

                   

Average (10% DoD 

on C1,C2,R1,R2,RC1 and 

 RC2 instance type 

0 0.04 0.00 0.16 0.16 0.16 9.00 10.50 9.69 8.46 9.29 8.79 1117.30 1386.50 1220.99 1140.54 1297.88 1231.91 

Average (30% DoD 

on C1,C2,R1,R2,RC1 and 

 RC2 instance type 

0.06 0.19 0.06 0.37 0.35 0.38 9.03 10.49 9.63 7.98 8.88 8.19 1125.34 1375.21 1224.32 1151.07 1310.08 1241.87 

Average (50% DoD 

on C1,C2,R1,R2,RC1 and 

 RC2 instance type 

0.08 0.30 0.08 0.61 0.49 0.51 8.92 10.39 9.54 8.04 9.27 8.38 1125.79 1357.08 1222.04 1154.64 1310.27 1248.06 

Average (70% DoD 

on C1,C2,R1,R2,RC1 and 

 RC2 instance type 

0.16 0.33 0.16 0.78 0.64 0.74 8.77 10.18 9.40 7.90 9.15 8.34 1129.64 1372.73 1229.37 1150.14 1290.94 1226.98 

Average (90% DoD 0.05 0.48 0.05 0.96 0.87 0.87 8.87 10.29 9.50 8.08 9.33 8.46 1161.21 1391.04 1260.22 1126.09 1255.96 1203.38 
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 on C1,C2,R1,R2,RC1 and 

 RC2 instance type) 

                   

Average (C1 instance type 

on 10%, 30%, 50% 

70% and 90% DoD) 

0.02 0.12 0.02 0.11 0.11 0.11 10.89 12.24 11.42 10.44 11.49 10.85 963.2 1212.98 1064.98 1077.8 1348.22 1227.96 

Average (C2 instance type 

on 10%, 30%, 50% 

70% and 90% DoD) 

0.19 0.49 0.19 0.06 0.06 0.06 7.04 8.2 7.5 6.9 7.95 7.26 789.02 1056.7 882.82 864.29 1083.85 987.73 

Average (R1 instance type 

on 10%, 30%, 50% 

70% and 90% DoD) 

0.05 0.23 0.05 2.2 1.91 2.05 14.84 16.93 15.81 13.47 14.83 13.95 1383.08 1528.13 1447.4 1300.35 1405.62 1359.79 

Average (R2 instance type 

on 10%, 30%, 50% 

70% and 90% DoD) 

0 0.01 0 0 0 0 8.3 9.71 8.91 7.76 8.84 8.09 999.36 1236.96 1090.22 1028.23 1187.21 1118.74 

Average (RC1 instance type 

on 10%, 30%, 50% 

70% and 90% DoD) 

0 0.37 0 1.15 0.98 1.03 15.05 16.88 15.88 13.25 14.58 13.84 1602.31 1802.51 1690.43 1498.2 1635.37 1570.74 

Average (RC2 instance type 

on 10%, 30%, 50% 

70% and 90% DoD) 

0 0 0 0 0 0 5.23 6.5 5.8 4.25 5.15 4.37 1191.38 1508.72 1336.99 1255.87 1373.95 1336.96 

Overall Average 0.04 0.20 0.04 0.59 0.51 0.54 10.23 11.74 10.89 9.35 10.47 9.73 1154.73 1391.00 1252.14 1170.79 1339.04 1266.99 
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Overall, NEDPALNS has the best (0.04), worst (0.20) and average (0.04) on the 

least average rejection rates and the best (1154.73) and average (1252.14) on 

the least average total travelled distance than ALNS’s least average re ection 

rates (best – 0.59, worst – 0.51 and average – 0.54) and the least average of total 

travelled distance (best – 1170.79 and average - 1266.99). 

 

Appendix A7 – A12 show a comparison between NEDPALNS and 

ALNS hypervolume and the number of non-dominated solutions based on all 

instance types on 10% DoD. NEDPALNS has better hypervolume (C1 – 0.4530, 

C2 – 0.4635, R1 – 0.4710, R1 – 0.4170, R2 – 0.5563, RC1 – 0.4097 and RC2 – 

0.5369) and number of dominated solutions (C1 – 11, C2 – 11, R1 – 19, R2 – 

18, RC1 – 10 and RC2 – 12) than ALNS hypervolume  (C1 – 0.4029, C2 - 

0.4080, R1 – 0.3991, R2 – 0.4810, RC1 – 0.4067 and RC2 – 0.4748) and number 

of dominated solutions (C1 – 11, C2 - 8, R1 –15, R2 – 15, RC1 – 9 and RC2 – 

10).  

 

In general, in all instance types using 10% DoD, NEDPALNS has a 

better overall count (81) and an overall hypervolume average (0.4727) than 

ALNS’s overall count (68) and an overall hypervolume average (0.4288). This 

indicates NEDPALNS has better convergence and diversity in all instances  

types using 10% DoD than ALNS. 

 

Appendix A13-A18 show a comparison between NEDPALNS and 

ALNS hypervolume based on all instance types using 30% DoD. NEDPALNS 

has better hypervolume (C1 – 0.4176, C2 – 0.4427, R1 – 0.3817, R1 – 0.4464, 
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R2 – 0.5051, RC1 – 0.4376 and RC2 – 0.4959) than ALNS (C1 – 0.4065, C2 - 

0.3817, R1 – 0.4160, R2 – 0.5090, RC1 – 0.4195 and RC2 – 0.4937).  

 

Overall, in all instance types using 30% DoD, NEDPALNS has an 

overall hypervolume average (0.4576) than ALNS (0.4377). This indicates 

NEDPALNS has better convergence and diversity in all instance types using 

30% DoD. 

 

In all the instance types using 50% DoD as shown in Appendix A19-

A24, NEDPALNS hypervolume in C1(0.4565), R1(0.4451), R2(0.6215), 

RC1(0.4451), and RC2(0.5745) outperform ALNS hypervolume in C1(0.4357), 

R1(0.4376), R2(0.5393), RC1(0.4129) and RC2(0.5104). Overall average, 

NEDPALNS hypervolume (0.4948) and the number of non-dominated 

solutions (90) outperform the overall average in ALNS hypervolume (0.4642) 

and the number of non-dominated solutions (85). This shows that NEDPALNS 

has better convergence and diversity in all instance types using 50% DoD. 

 

Appendix A25-A30 shows the 70% DoD benchmark. NEDPALNS 

hypervolume in instance type C1 (0.4061), C2 (0.4670), R1 (0.4500), R2 

(0.5398), RC1 (0.4715), and RC2 (0.5802) has better results than ALNS 

hypervolume in instance type C1 (0.3948), C2 (0.4229), R1 (0.4200), R2 

(0.4963), RC1 (0.4153) and RC2 (0.5198).  The overall average in NEDPALNS 

hypervolume (0.4858) and the number of non-dominated solutions (89) 

outperform the overall average in ALNS’s h pervolume (0.      and the 
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number of non-dominated solutions (81). This shows that NEDPALNS has 

better convergence and diversity based on all instance types using 70% DoD. 

 

In 90% DoD as shown in Appendix A31-A36, the hypervolume of 

NEDPALNS in instance type C1 (0.5060), C2 (0.4952), R1 (0.4213), R2 

(0.4570) and RC1 (0.4578), as well as in the number of non-dominated solutions 

in instance type C1 (16), C2 (14), R1 (25) and RC2 (13) outperform the 

hypervolume of ALNS in instance type C1( 0.4379), C2 (0.4881), R1(0.4052),  

R2(0.4341) and RC1(0.4234) and the number of non-dominated solutions in C1 

(13)), C2 (11) and R1(18) and RC2(12). The overall average based on all 

instance types using 90% DoD show NEDPALNS (0.4725) and the number of 

non-dominated solutions (97) is better than the overall average in ALNS’s 

hypervolume (0.4534) and the number of non-dominated solutions (87). This 

shows that NEDPALNS has better convergence and diversity based on all 

instance types using 90% DoD.  

 

In summary, NEDPALNS has better convergence and diversity than 

ALNS in all instance types (C1, C2, R1, R2, RC1, and RC2) and all DoDs (10%, 

30%, 50%, 70%, and 90%).  
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4.5.3 Comparison with ALNS algorithm (MOVRPTW and Dynamic 

dataset) 

 

In this comparison, we evaluate NEDPALNS performances against 

ALNS using MOVRPTW and a dynamic dataset that is used for solving 

MODVRPTW.  ALNS is compared based on 50, 150, and 250 customers. Each 

customer size is run against each type of DoD. In this comparison, we use 5 

categories of DoD which are 10%, 30%, 50%, 70%, and 90%. Each of the 

instances is executed 10 times. The VN, TD, IT, and RR have a similar 

definition in Section 4.2.2 and, therefore, it requires no further introduction.  In 

Table 4.9, these comparisons are based on the number of vehicles used, the total 

travelled distance, and the rejection ratio.  

 

Compared to 50 customers, NEDPALNS has the least average in the 

best NV, the best TD, and the best RR in 30% DoD (NV – 8.2, TD - 1097.3 and 

RR - 0.6) and 50% DoD (NV – 8, TD - 1205.7 and RR - 0.6) than ALNS in 30% 

DoD (NV – 8.47, TD – 1080.24, RR – 0.2) and 50% DoD (NV – 8, TD – 

1222.15, RR – 0.67). This shows that NEDPALNS has the least average of best 

NV, best TD, and best RR compared to ALNS.  

 

In 10% DoD, NEDPALNS has the least average of the best VN (8.4) 

and the least average of the best RR (0.07) than ALNS (VN - 8.47 and RR - 

0.2). In 70% DoD, NEDPALNS has the least average of the best VN (7.6) and 

the least average of the best TD (1178.65) than ALNS (best VN – 7.67 and best 
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TD – 1243.09). Except for 90% DoD where NEDPALNS only has the least 

average of best TD (1260.87) than ALNS (best TD – 1284.42). 

 

On average, NEDPALNS has the least average of best NV - 7.99, best 

TD - 1166.924, and best RR -1.44 than ALNS (best NV - 7.99, best TD - 

1189.79, and best RR -1.44). This shows that on average, NEDPALNS 

outperforms ALNS with the least average of best VN, best TD, and best RR in 

the 50 customers comparison. 

 

In the 150 customers comparison, NEDPALNS has least average results 

in 10% DoD (best NV- 13.47, best TD - 1881.28 and best RR - 0.6), 30% DoD 

(best NV – 13, best TD – 2062 and best RR - 2.8) and 90% DoD (best NV - 

14.13, best TD - 2497.33 and best RR – 5.53) than ALNS in 10% DoD (best 

NV - 13.47, best TD - 1888.82 and best RR - 0.67), 30% DoD (best NV - 13.07, 

best TD - 2029.92 and best RR - 2.6) and 90% DoD (best NV - 14.13, best TD 

- 2586.38 and best RR – 5.73) respectively. These results show that 

NEDPALNS has the least average result of the best VN, the best TD, and the 

best RR in 10% DoD, 30% DoD, and 90% DoD.  
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Table 4.9: Comparison with ALNS the least average of best VN, best TD, 

and best RR 

Customer 

Size 

Degree of 

Dynamic 

Proposed Algorithm ALNS (2018) 

VN TD IT  RR VN TD IT  RR 

50 

90 7.73 1260.87 21.47 3.13 7.47 1284.42 20.4 3 

70 7.6 1178.65 19.53 2.8 7.67 1243.09 18.93 2.67 

50 8 1205.73 19.13 0.6 8 1222.15 18.27 0.67 

30 8.2 1097.3 18.53 0.6 8.33 1119.07 18.87 0.67 

10 8.4 1092.07 25.67 0.07 8.47 1080.24 22.33 0.2 

Average 7.99 1166.924 20.866 1.44 7.99 1189.794 19.76 1.44 

          

150 

90 14.13 2497.33 38.07 5.53 14.13 2586.38 29.6 5.73 

70 12.73 2356.25 34.2 4.93 13.07 2405.95 28.73 4.73 

50 12.8 2207.25 27.2 3.13 12.73 2261.93 29.6 2.93 

30 13 2062 40.4 2.8 13.07 2029.92 33.73 2.6 

10 13.47 1881.28 82.4 0.6 13.47 1888.82 66 0.67 

Average 13.23 2200.82 44.45 3.4 13.29 2234.6 37.53 3.33 

          

250 

90 20.33 3505.72 58.47 8.47 20.67 3542.19 51 6.4 

70 18.8 3246.42 54.6 7.47 19.07 3408.25 47.93 6.53 

50 17.93 3127.12 54.87 7.73 18 3171.79 49.87 7 

30 18.73 2884.07 59.87 3.67 19.07 3044.41 65.47 3.27 

10 19.8 2809.05 134.4 0.8 19.53 2742.8 192.93 1 

Average 19.12 3114.48 72.44 5.63 19.27 3181.89 81.44 4.84 

          

Average (50 customers 

on 10%, 30%, 50% 

70% and 90% DoD) 

7.99 1166.92 20.87 1.44 7.99 1189.8 19.76 1.44 

Average (150 customers 

on 10%, 30%, 50% 

70% and 90% DoD) 

13.23 2200.82 44.45 3.4 13.29 2234.6 37.53 3.33 

Average (250 customers 

on 10%, 30%, 50% 

70% and 90% DoD) 

19.12 3114.48 72.44 5.63 19.27 3181.9 81.44 4.84 

         

Average (10% DoD 

on 50, 150 & 250  

 customers) 

13.89 1927.47 80.82 0.49 13.82 1904 93.75 0.62 

Average (30% DoD 

on 50, 150 & 250  

 customers) 

13.31 2014.46 39.6 2.36 13.49 2064.5 39.36 2.18 

Average (50% DoD 

on 50, 150 & 250  

 customers) 

12.91 2180.03 33.73 3.82 12.91 2218.6 32.58 3.53 

Average (70% DoD 

on 50, 150 & 250  

 customers) 

13.04 2260.44 36.11 5.07 13.27 2352.4 31.86 4.64 

Average (90% DoD 

on 50, 150 & 250  

 customers) 

14.06 2421.31 39.34 5.71 14.09 2471 33.67 5.04 

Overall 

Average 
13.45 2160.74 45.92 3.49 13.52 2202.1 46.24 3.2 

 



 

150 

 

However, in 70% DoD, NEDPALNS (best NV – 12.73 and best TD – 

2356.25) only has the least average of best NV and least average of best TD 

compared to ALNS (best NV – 13.07 and best TD - 2405.95).  In 50% DoD, 

NEDPALNS has the least average of best TD (2207.25) than ALNS (best TD - 

2261.93). Despite the ALNS challenging results, NEDPALNS still has the 

overall average result better in the best NV (13.23) and best TD (2200.82) than 

the ALNS (best TD – 13.29 and best TD – 2234.6). This indicates the overall 

average in NEDPALNS is better than ALNS in the best NV and best TD in the 

150 customers comparison. 

 

Finally, in the 250 customers, NEDPALNS has the least average of best 

NV and the least average of best TD in 10% DoD (best NV - 19.8 and best TD 

- 2809.05), 30% DoD: (best NV - 18.73 and best TD - 2884.07), 50% DoD (best 

NV - 17.93 and best TD - 3127.12), 70% DoD (best NV - 18.8 and best TD - 

3246.42) and 90% DoD (best NV - 20.33 and best TD - 3505.72)  than 10% 

DoD (best NV - 19.53 and best TD - 2742.8), 30% DoD ( best NV - 19.07 and 

best TD - 3044.41, 50% DoD (best NV - 18 and best TD - 3171.79), 70% DoD 

(best NV - 19.07 and best TD - 3408.25) and 90% DoD (best NV - 20.67 and 

best TD - 3542.19) in ALNS. 

 

Overall, NEDPALNS has the best average result with the overall least 

NV average (19.12) and overall least TD average (3114.48) compared to ALNS 

(NV - 19.27 and TD -3181.89). This shows that despite the competitive result, 

in the 250 customers, NEDPALNS has the best result in the least average VN 

and the least average TD. 
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 If we compare the average result for specific DoD on all customer sizes 

(50, 150, 250 customers), NEDPALNS has the best average results in 30% DoD 

(NV - 13.31, TD - 2014.46), 50% DoD (NV - 12.91, TD - 2180.03), 70% DoD 

(NV - 13.04, TD - 2260.44) and 90% (NV - 14.06, TD - 2421.31) based on all 

customer sizes than ALNS in 30% DoD (NV - 13.49, TD - 2064.5), 50% DoD 

(NV - 12.91, TD - 2218.6), 70% DoD (NV - 13.27, TD - 2352.4) and 90% (NV 

- 14.09, TD - 2471). Except for 10% DoD on all customer sizes, NEDPALNS 

has better average result in RR (0.49) than ALNS (RR – 0.62).  This means that 

NEDPALNS has best average in the least NV and TD in the 30% DoD, 50% 

DoD, 70% DoD and 90% DoD than ALNS. In the 10% DoD on all customer 

size, NEDPALNS only has better average rejection rates than ALNS. Overall, 

NEDPALNS has the overall average in NV (13.45) and TD (2160.74) 

outperform the ALNS (NV - 13.52 and TD - 2202.1). 

   

Table 4.10 shows the comparison with ALNS in terms of the best, worst, 

and average results. NEDPALNS has a better result in the least average vehicle 

number and the least average total travelled distance than ALNS in 50 

customers (best NV - 7.99, worst NV - 8.65, average NV - 8.24, best TD – 

1166.92, worst TD - 1535.35 and average TD – 1325.71), 150 customers (best 

NV - 13.23, worst NV - 15.28, average NV - 14.10, best TD – 2200.82, worst 

TD - 2783.70 and average TD – 2439.65) and 250 customers (best NV - 19.12, 

average NV - 20.59, best TD – 3114.48, worst TD - 4026.90 and average TD – 

3518.49) than ALNS’s 50 customers (best NV - 7.99, worst TD - 8.92, average 

NV - 8.35, best TD – 1189.79, worst TD - 1577.31 and average TD – 1357.00), 
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150 customers (best NV - 13.29, worst TD - 15.65, average NV - 14.34, best 

TD – 2234.60, worst TD - 2937.21  and average TD –  2546.00) and 250 

customers (NV - 19.27, average NV - 20.69, best TD – 3181.89, worst TD - 

4086.83  and average TD – 3569.25).  

 

If we compare each DoD on all the customer's sizes (50, 150 and 250 

customers), NEDPALNS has the least average NV and least average TD in 10% 

DoD (best NV - 11.77, worst TD - 13.22, average NV - 12.35, worst TD - 

2584.56 and average TD – 2205.91), 30% DoD (best NV - 13.31, worst TD - 

14.56, average NV - 13.82, best TD – 2014.46, worst TD - 2585.06  and average 

TD – 2258.56), 50% DoD (best NV - 12.91, worst TD - 14.53, average NV - 

13.55, best TD – 2180.03, worst TD - 2777.28  and average TD – 2436.55), 

70% DoD (best NV - 13.04, worst TD - 15.62, average NV - 14.18, best TD – 

2260.44, worst TD -  2923.07 and average TD – 2549) and 90% DoD (best NV 

- 14.06, worst TD - 16.98, average NV - 15.49, best TD – 2421.31, worst TD - 

3039.94 and average TD – 2689.73)  than ALNS in 10% DoD (best NV - 11.82, 

worst TD - 13.29, average NV - 12.41, worst TD - 2630.47  and average TD – 

2216.67), 30% DoD (best NV - 13.49, worst TD - 14.93, average NV - 14.02, 

best TD – 2064.47, worst TD - 2686.1 and average TD – 2319.64), 50% DoD 

(worst TD - 15.04, average NV - 13.75, best TD – 2218.62, worst TD - 2866.43  

and average TD – 2490.74), 70% DoD (best NV - 13.27, worst TD - 15.78, 

average NV - 14.47, best TD – 2352.43, worst TD - 3022 and average TD – 

2658.67) and 90% DoD (best NV - 14.09, worst TD - 17.36, average NV - 15.68, 

best TD – 2471, worst TD - 3130.54  and average TD – 2768.01).  
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In short, NEDPALNS still have the least overall average in NV (best - 

13.45, worst - 15.46, average - 14.31) and TD (best - 2160.74, worst - 2781.98, 

average - 2427.95) than ALNS (best NV - 13.52, worst NV - 15.66, average NV 

- 14.46, best TD – 2202.09, worst TD - 2867.12 and average TD – 2490.75). 
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Table 4.10: Comparison with ALNS (best, worst and average) 

Customer 

Size 

  

Degree of 

Dynamism 

  

 Average 

 Ratio of refuse 

 (NEDPALNS) 

Average Ratio  

of refuse 

 (ALNS) 2018 

Average 

vehicle number  

(NEDPALNS) 

Average 

vehicle number 

 (ALNS) 

Average 

total travelled distance 

 (NEDPALNS) 

Average 

total travelled distance 

 (ALNS) 

Best Worst Avg Best Worst Avg Best Worst Avg. Best Worst Avg Best Worst Avg Best Worst Avg 

50 

90 3.13 4.6 4.15 3 4.67 3.91 7.73 8.13 7.86 7.47 8.67 7.99 1260.87 1595.28 1416.59 1284.42 1595.96 1432.7 

70 2.8 4.33 3.85 2.67 4.07 3.55 7.6 8.27 7.86 7.67 8.67 8.11 1178.65 1536.72 1346.98 1243.09 1629.85 1406.21 

50 0.6 1.87 1.53 0.67 1.87 1.46 8 8.6 8.22 8 8.73 8.29 1205.73 1587.89 1359.43 1222.15 1599.4 1385.73 

30 0.6 1.27 1.07 0.67 1.27 1.07 8.2 9 8.63 8.33 9.27 8.67 1097.3 1430.11 1236.55 1119.07 1512.45 1294.23 

10 0.07 0.33 0.24 0.2 0.33 0.28 8.4 9.27 8.65 8.47 9.27 8.71 1092.07 1526.74 1268.99 1080.24 1548.87 1266.15 

Average 1.44 2.48 2.17 1.44 2.44 2.05 7.99 8.65 8.24 7.99 8.92 8.35 1166.92 1535.35 1325.71 1189.79 1577.31 1357.00 
                                

150 

90 5.53 10.53 8.19 5.73 10.8 8.99 14.13 16.67 15.36 14.13 17.2 15.64 2497.33 3035.45 2713.89 2586.38 3302.8 2893.01 

70 4.93 10.2 8.11 4.73 10.27 8.02 12.73 15.73 14.08 13.07 16.07 14.54 2356.25 3097.55 2637.23 2405.95 3104.42 2744.83 

50 3.13 5.93 4.84 2.93 5.8 4.71 12.8 15.07 13.59 12.73 15.87 13.99 2207.25 2796.42 2460.26 2261.93 3012.65 2581.9 

30 2.8 4.13 3.67 2.6 4.27 3.68 13 14 13.39 13.07 14.2 13.45 2062 2588.19 2272.71 2029.92 2641.87 2295.56 

10 0.6 1.4 1.1 0.67 1.47 1.18 13.47 14.93 14.09 13.47 14.93 14.07 1881.28 2400.87 2114.16 1888.82 2624.33 2214.68 

Average 3.40 6.44 5.18 3.33 6.52 5.32 13.23 15.28 14.10 13.29 15.65 14.34 2200.82 2783.70 2439.65 2234.60 2937.21 2546.00 
                                      

250 

90 8.47 17.4 13.09 6.4 16.93 12.88 20.33 26.13 23.25 20.67 26.2 23.4 3505.72 4489.1 3938.71 3542.19 4492.85 3978.33 

70 7.47 13.8 11.19 6.53 13.4 10.58 18.8 22.87 20.59 19.07 22.6 20.76 3246.42 4134.93 3662.78 3408.25 4331.72 3824.98 

50 7.73 12.07 10.44 7 11.87 10.15 17.93 19.93 18.85 18 20.53 18.97 3127.12 3947.53 3489.97 3171.79 3987.23 3504.6 

30 3.67 6.13 5.37 3.27 6 5.08 18.73 20.67 19.43 19.07 21.33 19.95 2884.07 3736.89 3266.42 3044.41 3904.15 3369.13 

10 0.8 2.27 1.68 1 2.33 1.79 19.8 22.6 20.82 19.53 21.4 20.35 2809.05 3826.06 3234.57 2742.8 3718.21 3169.19 

Average 5.63 10.33 8.35 4.84 10.11 8.10 19.12 22.44 20.59 19.27 22.41 20.69 3114.48 4026.90 3518.49 3181.89 4086.83 3569.25 
                          

Average (50 customers 

on 10%, 30%, 50%, 70% and 90% DoD) 
1.44 2.48 2.17 1.44 2.44 2.05 7.99 8.65 8.24 7.99 8.92 8.35 1166.92 1535.35 1325.71 1189.79 1577.31 1357.00 

Average (150 customers 

on 10%, 30%, 50%, 70% and 90% DoD) 
3.40 6.44 5.18 3.33 6.52 5.32 13.23 15.28 14.10 13.29 15.65 14.34 2200.82 2783.70 2439.65 2234.60 2937.21 2546.00 
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Average (250 customers 

on 10%, 30%, 50%, 70% and 90% DoD) 
5.63 10.33 8.35 4.84 10.11 8.10 19.12 22.44 20.59 19.27 22.41 20.69 3114.48 4026.90 3518.49 3181.89 4086.83 3569.25 

  

Average (10% DoD 

on 50, 150 and 250  

 customers) 

0.49 1.33 1.01 0.62 1.38 1.08 11.77 13.22 12.35 11.82 13.29 12.41 1927.47 2584.56 2205.91 1903.95 2630.47 2216.67 

Average (30% DoD 

on 50, 150 and 250  

 customers) 

2.36 3.84 3.37 2.18 3.85 3.28 13.31 14.56 13.82 13.49 14.93 14.02 2014.46 2585.06 2258.56 2064.47 2686.16 2319.64 

Average (50% DoD 

on 50, 150 and 250  

 customers) 

3.82 6.62 5.6 3.53 6.51 5.44 12.91 14.53 13.55 12.91 15.04 13.75 2180.03 2777.28 2436.55 2218.62 2866.43 2490.74 

Average (70% DoD 

on 50, 150 and 250  

 customers) 

5.07 9.44 7.72 4.64 9.25 7.38 13.04 15.62 14.18 13.27 15.78 14.47 2260.44 2923.07 2549 2352.43 3022 2658.67 

Average (90% DoD 

on 50, 150 and 250  

 customers) 

5.71 10.84 8.48 5.04 10.8 8.59 14.06 16.98 15.49 14.09 17.36 15.68 2421.31 3039.94 2689.73 2471 3130.54 2768.01 

                          

Overall Average 3.49 6.42 5.23 3.2 6.36 5.16 13.45 15.46 14.31 13.52 15.66 14.46 2160.74 2781.98 2427.95 2202.09 2867.12 2490.75 
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Appendix A37-A41 shows that the hypervolume of NEDPALNS in 10% 

DoD (0.4325), 30% DoD (0.3858), 50% DoD (0.4231) and 70% DoD (0.3343) 

outperform ALNS in 10% DoD (0.4279), 30% DoD (0.3756), 50% DoD 

(0.4102), 70% DoD (0.3258). Although the NEDPALNS hypervolume in 90% 

DoD (0.3277) is underperformed than ALNS (0.3387). Overall, of the 50 

customers, NEDPALNS (0.3807) has an overall average hypervolume better 

than ALNS (0.3756). These results indicate NEDPALNS has better diversity 

and convergence than ALNS in the 50 customers. 

 

Appendix A42-A46 show the hypervolume of NEDPALNS in 50% 

DoD (0.4157), 70% DoD (0.4231) and 90% DoD (0.4256) outperform ALNS 

in 50% DoD (0.3988), 70% DoD (0.4126) and 90% DoD (0.4194) in the 150 

customers. However, NEDPALNS has a better hypervolume average (0.4035) 

than ALNS (0.4009) in the 150 customers. These results indicate NEDPALNS 

has better diversity and convergence than ALNS in the 150 customers. 

 

In the 250 customers comparisons, NEDPALNS has better performance 

in 10% DoD (0.4300), DoD 50% (0.4376) and 70% DoD (0.4694) compared to 

ALNS in 10% DoD (0.4209), 50% DoD (0.3737) and 70% DoD (0.4584) as 

shown in Appendix A47-A51. The overall result in the 250 customers, 

NEDPALNS (0.4383) has a better hypervolume result than ALNS (0.4315). 

This indicates NEDPALNS has overall better convergence and diversity than 

ALNS in the 250 customers. 
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In conclusion, NEDPALNS (0.4075) has an overall hypervolume 

average better than ALNS (0.4027) for all customers (50, 150, and 250 

customers). 

 

4.6 Measurements 

 

We conduct three types of measurements. The first type of measurement 

uses hypothetical VRPTW and MOVRPTW datasets (i.e., the Solomon dataset) 

to assess NEDPALNS performance.  In the second type of measurement, we 

evaluate NEDPALNS performance using a hypothetical MODVRPTW dataset 

(i.e., Solomon dataset and dynamic dataset), and in the final type of 

measurement, we use a real MODVRPTW dataset (i.e., MODVRPTW) dataset 

and dynamic dataset) to assess NEDPALNS performance.  

 

4.6.1 First Measurements 

 

In VRPTW, we measure single objective results on speed, optimal 

solutions, and average optimal solutions.  
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4.6.1.1 Speed and Optimal Solution (Total Travelled Distance) 

 

In speed, the least response time is 0.21 seconds after 30 runs, and the 

average least response time after 30 runs is 85.81 seconds. If we compare 

N  PALNS’s optimal solution (total travelled distance) against the published 

algorithms as shown in Figure 4.17.  

 

 
 

Figure 4.17: Compare with other published algorithms on optimal 

solutions 

 

NEDPALNS has 42 results that outperform the other published algorithms. This 

is equivalent to 75% of NEDPALNS results being better than other published 

algorithms.  
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If we compare with the best-known solutions, 71% of our results are 

equal to the best-known solutions. This is shown in Figure 4.18. 

 

 
 

Figure 4.18: Compare the best-known solutions with optimal solutions 

 

This shows that NEDPALNS are quite efficient in the least response 

time after 30 runs and the least average response time on the 30 runs. When 

comparing the optimal solution in the least total travelled distance, NEDPALNS 

outperforms other published algorithms and is competitive with the best-known 

solution.  
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4.6.1.2 Average Optimal Solution  

 

In the average optimal solution (30 runs) comparisons, NEDPALNS has 

the least standard deviation compared to other published algorithms as shown 

in Figure 4.19. NEDPALNS has a better optimal solution compared to published 

algorithms and is competitive with the best-known solutions.  

 

 
 

Figure 4.19: Compare with other published algorithms on average optimal 

solutions standard deviation 

 

In the average optimal solution against the published algorithms, 

NEDPALNS outperforms other published algorithm results by 86% as shown 

in Figure 4.20. 
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Figure 4.20: Compare with other published algorithms on average 

optimal solutions 

 

In the average optimal solution against the best-known solutions, 

NEDPALNS outperforms the best-known solutions by 50% as shown in Figure 

4.21. 

 

 
 

Figure 4.21: Compare the best-known solutions on average optimal 

solutions 
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 In this average optimal solutions comparison, the optimal solutions 

generated by NEPALNS are quite consistent. It outperforms other published 

algorithms and is competitive with the best-known solutions.  

 

4.6.1.3 Pareto Set  

 

In hypervolume comparison with other published algorithms’ 

hypervolume, NEDPALNS outperforms other published algorithms in R1, R2, 

RC1, and RC2 instance types as shown in Figure 4.21. In the non-dominated 

solutions size comparison,  

 

 
 

Figure 4.22: Compare with other published algorithms on hypervolume 

 

NEDPALNS has a better non-dominated solutions size than other published 
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algorithms which is also in R1, R2, RC1, and RC2 instance types. These results 

show that NEDPALNS has better Pareto efficiency than other published 

algorithms particularly in the R1, R2, RC1, and RC2 instance types.  

 

 
 

Figure 4.23: Compare with other published algorithms on Pareto Set non-

dominance solutions size 
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4.6.1.4 Optimal Solution (Number of Used Vehicles and Total Travelled 

Distance) 

 

If we compare optimal solutions on both the number of used vehicles 

and total travelled distance, 63% of the results in NEDPALNS are better than 

other published algorithms as shown in Figure 4.24. 

 

 

Figure 4.24: Compare with other Published Algorithms Optimal Solutions 

(Number of Used Vehicles and Total Travelled Distance) 

 

In the optimal solution compared with the best-known solutions on the least 

number of used vehicles, 33% of the results in NEDPALNS are equalled to the 

best-known solutions results which are shown in Figure 4.25. 
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Figure 4.25: Compare the Best-Known Solution’s Optimal Solutions on 

the Least Number of Used Vehicles 

 

In the comparison with the best- nown solutions’ optimal solutions on 

the least total travelled distance, 75% of results in NEDPALNS are equalled to 

the best-known solutions.  

 
 

Figure 4.26: Compare the Best-Known Solution's Optimal Solutions on 

the Least Total Travelled Distance 

 

These results show that NEDPALNS has a better optimal solution 

(both the number of used vehicles and total travelled distance) than other 

published algorithms and is competitive with the best-known solutions.  
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4.6.1.5 Average optimal solutions (Number of Used Vehicles and Total 

Travelled Distance) 

 

Figure 4.27 shows that NEDPALNS has better average optimal 

solutions than other published algorithms in C1, C2, R1, and RC1 instance 

types. If we compare with the average optimal solutions in the best-known 

solutions, 93% of the results in NEDPALNS outperform the best-known 

solutions as shown in Figure 4.28.  

 

 
 

Figure 4.27: Compare Average Optimal Solutions with the other 

Published Algorithms 
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Figure 4.28: Compare Average Optimal Solutions with the Best-Known 

Solution 

 

These results show that NEDPALNS generally has better optimal 

solutions on average than other published algorithms and the best-known 

solutions. 
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4.6.2 Second Measurements 

 

In this measurement, firstly, we compare optimal solutions against other 

published algorithms in the least average of the best number of vehicles, least 

average of best total travelled distance and least average of best rejection rates. 

Secondly, we compare against ALNS on the least average of best, worst, and an 

average number of vehicles, total travelled distance, and rejection rates. Lastly, 

the comparison with ALNS Pareto set.  

 

4.6.2.1 Optimal Solution (the least average of best VN, best TD, and best 

RR) 

 

NEDPALNS has the least average of best rejection rates if compare 

with other published algorithms which are shown in Figure 4.28. This result  

 

 

Figure 4.28: Compare Optimal Solution with other Published Algorithms 

(the least average of the best number of vehicles, best total travelled 

distance, and best rejection rates) 
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shows that NEDPALNS can accept more customers than other published 

algorithms. 

 

4.6.2.2 Optimal Solution (the least average of best, worst, and average on 

VN, TD, and RR) 

 

Also, if compare with ALNS, NEDPALNS has the least average of best, 

worst, average on rejection as shown in Figure 4.29. These results imply that 

NEDPALNS can accept more customers even if the result of the least rejection 

rates is the best, worst, or average.  

 

 
 

Figure 4.29: Compare optimal solution with ALNS on the least average of 

best, worst, and average on Number of Vehicles, Total Travelled Distance, 

and Rejection Rates 
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4.6.2.3 Pareto set 

 

In this Pareto set comparison, NEDPALNS outperforms ALNS in the 

10% DoD, 30% DoD, 50% DoD, 70% DoD and 90% DoD regarding Pareto set 

as shown in Figure 4.30. These results show that NEDPALNS are Pareto 

efficient that ALNS in all the participating DoDs. 

 

 

 
 

Figure 4.30: Compare Pareto set with ALNS on all Degree of Dynamisms 

 

4.6.3 Third Measurements 

 

In this last measurement, we compare optimal solutions against other 

published algorithms in the least average of the best number of vehicles, least 

average of best total travelled distance and least average of best rejection rates. 

The least average of best, worst, and average number of vehicles, total travelled 

distance, and rejection rates and with the ALNS Pareto set.  
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4.6.3.1 Optimal Solution (the least average of best VN, best TD, and best 

RR) 

 

NEDPALNS has the least average of the best number of used vehicles 

and best total travelled distance if compare with other published algorithms 

which are shown in Figure 4.31. This result shows that NEDPALNS has the 

least average of the best number of used vehicles and best total travelled 

distance than other published algorithms.  

 
 

Figure 4.31: Compare Optimal Solution with other Published Algorithms 

(the least average of the best number of vehicles, best total travelled 

distance, and best rejection rates) 

 

4.6.3.2 Optimal Solution (the least average of best, worst, and average on 

VN, TD, and RR) 

 

If compare optimal solution on the least average of best, worst, 

and average on the number of used vehicles, total travelled distance 

and rejection ratio with ALNS, NEDPALNS has the least average of 

best, worst, average on the number of used vehicles and total travelled 
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distance as shown in Figure 4.32. These results imply that NEDPALNS 

has the least number of used vehicles and total travelled distance even 

the result of the number of used vehicles and total travelled distance is 

at its best, worst, or average state. 

 

 
 

Figure 4.32: Compare optimal solution with ALNS on the least average of 

best, worst, and average on Number of Vehicles, Total Travelled Distance, 

and Rejection Rates 

 

4.6.3.3 Pareto set 

 

In this Pareto set comparison, NEDPALNS outperforms ALNS in the 

50 customers, 150 customers and 250 customers regarding Pareto set as shown 

in Figure 4.30. These results show that NEDPALNS are Pareto efficient that 

ALNS in all the participating customer sizes. 
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Figure 4.33: Compare Pareto set with ALNS on all Degree of Dynamisms 

 

4.6. Summary 

 

Comprehensive experiments are carried out on the MODVRPTW using 

three types of datasets. The first dataset uses the Solomon dataset to test the 

static information of MODVRPTW. The second dataset uses the Solomon and 

dynamic dataset to solve MODVRPTW and the third dataset uses the 

MOVRPTW and dynamic dataset to solve the MODVRPTW. The difference 

between the first, second, and third datasets is that the first and second datasets 

are hypothetical, and the third is the real dataset. In hypothetical data, we test 

with 100 customers, whereas in a real dataset, the customer size used for testing 

is 50, 150, and 250. These experiments are carried out to determine whether 

NEDPALNS can perform effectively using hypothetical datasets but also real 

datasets. 

 

In the static testing using hypothetical datasets, the NEDPALNS results 

are compared with other published algorithms and the BKS. NEDPALNS 
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demonstrated superior results in hypervolume against the other published 

algorithms, the least minimum of TD against other published algorithms, the 

least minimum of average TD against other published algorithms as well as the 

least minimum NV and the minimum TD against the BKS. These results 

indicated that NEDPALNS has the most optimized NV and TD, better diversity, 

and convergence than other published algorithms. These results also indicate 

that NEDPALNS results are highly reliable and optimized compared to BKS.  

 

In the dynamic testing using a hypothetical dataset, NEDPALNS results 

have the least average of best RR, the least average of worst RR, and the least 

average of average RR based on all DODs and all instance types against other 

published algorithms. NEDPALNS also demonstrated better hypervolume 

versus ALNS. These results show that NEDPALNS can accommodate more 

customers and overall has better diversity and convergence. 

 

In dynamic testing using a real dataset, NEDPALNS has the least 

average NV (best, worst, and average), the least average TD (best, worst, and 

average), and a better hypervolume compared to ALNS. These results show that 

NEDPALNS has the least average NV, the least average TD, and better 

diversity and convergence compared to ALNS in dynamic testing using real 

datasets. Overall, the performance of NEDPALNS outweighs that of other 

published algorithms and the BKS in static testing that uses hypothetical 

datasets and in dynamic testing that uses both hypothetical datasets and real 

datasets.  
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

 

5.1. Conclusions 

 

Logistics play a vital role in the process of planning and executing the 

transportation of goods from the original destination to the final destination. 

Globally, logistics revenue is worth trillions of dollars. During the Covid-19 

pandemic, many businesses have closed, but the logistics business remains 

resilient and versatile.  

 

One of the key trends in shaping the future of logistics is to apply 

artificial intelligence. These works include developing an efficient and effective 

dynamic multi-objective algorithm. The development of a dynamic multi-

objective algorithm is important because it has a close resemblance to the 

ubiquitous service rendered such as dial-a-ride, Grab services, food delivery 

services, courier services, and taxi services among others. The development of 

an optimized algorithm is a complex, challenging, and time-consuming task 

because many constraints need to be fulfilled and the result of the algorithm 

may not be as optimized as other established algorithms. Hence, an algorithm 

that can optimize better results than other algorithms is highly sought after.  
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To the best of our knowledge, there have been numerous studies being 

conducted on the VRPTW but there are limited studies on the DVRPTW let 

alone MODVRPTW. Therefore, it is important and beneficial economically and 

commercially to study and research MODVRPTW.  

 

1. To develop a multi-objective algorithm with a distributed parallelized 

adaptive rebuilding capability that uses cyclic and non-cyclic 

optimization strategies. 

We proposed a non-fitness evolutionary distributed parallelized adaptive  

large neighbourhood search (NEDPALNS) algorithm to solve  

MODVRPTW. The NEDPALNS is based on two popular algorithms. This  

first algorithm is the evolutionary algorithm. The classical evolutionary  

algorithm is based on four core steps, namely fitness calculation, selection,  

crossover, and mutation. In NEDPALNS, we reorder the classical fitness- 

oriented solution for the selection process. This means that we will not be 

 based on the fittest candidate for selection, instead of on those least fit  

candidates. The second algorithm is based on the local neighbourhood  

search algorithm. The main task of this algorithm is to rebuild the solution.  

The rebuilding procedure removes part of a solution and repairs the ruined  

solution.  There are many removal and repair procedures. Some of the  

popular removal procedures namely random procedure, radial procedure,  

related procedure, and critical procedure among others are used in this  

development. Other repair procedures are the best insertion and variants of  

regret insertion are proposed. The purpose of choosing an evolutionary 

algorithm is because it is a population-based metaheuristic that can  



 

177 

 

perform exploration of the search, which widens the chances of selecting 

more interim solutions. On the other hand, the PALNS, single population  

metaheuristic allows performing exploration and exploitation of search at  

the same time. Thus, this combination of both algorithms enables the  

generation of the best solutions through non-cyclic and cyclic optimization.  

NEDPALNS is designed in part based on microservice architecture.  

This means that part of the NEDPALNS module can be executed remotely.  

In our design, the PALNS is designed in a granular manner. This means that  

the PALNS is capable of being distributed logically (virtualization,  

containerization, and on the cloud) or run on bare metal (commodity  

hardware). 

 

The process flow of the NEDPALNS is divided into two lifecycles. One 

is the evolutionary lifecycle, and the other is the generation lifecycle.  

The evolutionary lifecycle performs a set of procedures in sequence,  

namely non-fitness selection, population initialization, solutions intercross, 

 and solutions morph. The generation lifecycle comprises the evolutionary  

lifecycle and a re-optimization cycle.  NEDPALNS operates two types of  

optimizations which are noncyclic optimization and cyclic optimization.  

Non-cyclic optimization performs one-time optimization. Cyclic  

optimization performs perpetual optimization until a termination condition  

is met. This process flow enables the chosen solutions to escape local optima  

while searching for global optima. The gist of this process flow is to select  

the top-performing interim solution from the interim solution pool. The  

interim solution in the population is sorted and the best interim solution is  
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selected for further refinement in the re-optimization procedure which runs  

perpetually until the termination criteria are met. 

 

2. The objectives of this thesis are defined in Chapter 1 and its outcomes 

are listed as follows: To be able to support hypothetical and real 

datasets that consistently generated near-optimal solutions and to 

achieve an optimized Pareto set. 

To verify whether our proposed algorithm works, we perform three 

types of tests. The first type of test performs a static test that uses a 

hypothetical dataset that consists of the Solomon dataset. The second type 

of test performs a dynamic test that uses a hypothetical dataset that consists 

of Solomon and dynamic dataset, and the third type which also perform  

the dynamic test but uses the real dataset which consists of MOVRPTW 

 and dynamic dataset. The first type of test is tested on static information  

and the second and third type of test is tested on dynamic information.  

 

In the static test, we used 100 customers in the Solomon datasets and the 

customers are distributed in the Euclidean plane. These datasets are divided  

into six instance types namely R1, R2, C1, C2, RC1, and RC2 instance 

types. There are 56 instances. Each instance type has a different type of 

customer distribution, service time, and time windows. 

  

In the dynamic test, we use the real data from a distribution company in 

Tenerife, Spain, whose core business is to provide food products delivery 

that serves around 150 customers per day or 1000 customers per week. The 
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Google Maps database is used to measure the travel distance and travel time 

between the customers. This type of measurement is a unique and non-

symmetrical and realistic representation of travel distance and travel time. 

Hence, the travel time in urban areas is more time-consuming than the 

travel time in rural areas.  

 

We performed three types of comparisons to determine NEDPALNS 

hypervolume performance. First, the first comparison uses the Solomon 

dataset. The comparison against other algorithms is listed as follows:  

 

- The overall average in hypervolume comparison against other 

published algorithms 

This result is calculated based on the overall average in 

hypervolume in all the degrees of dynamism and instance types. 

N  PALNS’s overall average in h pervolume is 0.  21 while MO A, 

MOGPGA, and M-MOEA/D achieve 0.5326, 0.5865, and 0.5848 

respectively. Although MOGPGA and M-MOEA/D have better overall 

hypervolume results than NEDPALNS in instance type RC2, 

NEDPALNS outperforms MOGPGA and M-MOEA/D in most of the 

instance types such as C1, C2, R1, R2, and RC1 instance types.  

 

The second comparison uses Solomon and dynamic datasets. 

- The hypervolume overall average comparison against the ALNS  

These results are calculated based on the overall hypervolume average  
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in all degrees of dynamism and all instance types. NEDPALNS  

achieves 0.4767 in the overall hypervolume average, while ALNS has  

0.4458. NEDPALNS outperforms ALNS on the overall hypervolume 

 average in all degrees of dynamism. This shows that NEDPALNS has  

better diversity and convergence in the hypervolume overall average. 

 

Thirdly, we compare the MOVRPTW and dynamic dataset. The  

comparisons are listed as follows:  

 

- The overall average in hypervolume comparison against the ALNS  

This result is calculated based on the overall average in hypervolume.  

NEDPALNS achieves 0.4075 in the overall hypervolume average, while  

ALNS achieves 0.4027. NEDPALNS outperforms ALNS on the overall  

hypervolume average in all degrees of dynamism. This shows that  

NEDPALNS has better diversity and convergence in the hypervolume 

 overall average. 

 

3. To evaluate the performance of the proposed algorithm against the 

recently published results and best-known solutions.  

We perform three types of comparisons to ascertain NEDPALNS 

performance. First, we test using a Solomon dataset. The comparison 

against other algorithms is listed as follows:  

 

- The least number of used vehicles and the least total travelled distance 

in other published algorithms by instance type.  
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NEDPALNS has the least number of used vehicles and the least total 

 travelled distance in instance types R1, R2, RC1, and RC2. 

 

- The least number of used vehicles with the best-known solutions.  

NEDPALNS has 18 results similar to the best-known solutions 

in the least number of used vehicles. This is equivalent to 32% of the 

total instances used for comparison. This shows that NEDPALNS has 

good records of the best results in the least number of used vehicles with 

the best known solutions. 

 

- The least total travelled distance with the best-known solutions.  

NEDPALNS has 42 results similar to the best-known solutions 

which are equivalent to 75% of the total instances used for comparison. 

This shows that NEDPALNS has great achievement in the least number 

of used vehicles with the best-known solutions.  

 

- The least average total travelled distance with the best-known solutions 

NEDPALNS has 52 instances that have similar or better results 

than the best-known solutions. This is equivalent to 93% of the 56 

instances used for comparison, while the remaining 4 instances are non-

dominating solutions. This shows that NEDPALNS achieved significant 

results in the least total travelled distance with the best-known solutions.  

 

Second, we compare the Solomon and dynamic dataset. The comparison is 

listed as follows:  
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- The overall average of the least rejection rates.  

NEDPALNS has lower rejection rates in the overall average of 

the least rejection rates. This shows that NEDPALNS can accommodate 

more customer requests. 

 

- The least average on the number of used vehicles and the least average 

on total travelled distance. 

Overall, NEDPALNS recorded the least average number of used 

vehicles and the least average total travelled distance. 

 

Third, we compare the MOVRPTW and dynamic dataset. The comparisons 

are listed as follows:  

 

- The overall average on the least number of used vehicles and the least 

total travelled distance. 

NEDPALNS outperforms ALNS in the overall average of the 

least number of used vehicles and the least number of total travelled 

distance.  

 

- The overall average of the best, worst, and average on the least average 

number of used vehicles and the least average total travelled distance. 

NEDPALNS has better results an overall average of the best, 

worst, and average on the least average number of used vehicles and the 

least average total travelled distance. 
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 In summary, NEDPALNS outperform other published algorithms using 

static test using hypothetical datasets and dynamic test using hypothetical 

datasets and real datasets although, in some instances, NEDPALNS is 

underperforming. overall, NEDPALNS shows better least average rejection 

rates using Solomon datasets, least average of the best, worst and average 

rejection rates using Solomon and dynamic datasets, and the least average of the  

best, worst, and the average number of used vehicles and total travelled distance 

using MOVRPTW and dynamic datasets.  
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5.2. Limitations and Opportunities for Future Improvement 

 

So far, NEDPALNS is testing on MODVRPTW. There are opportunities 

and limitations that NEDPALNS can showcase. They are listed as follows: 

 

First, there are many unique and interesting variants of VRP that can be 

tested. Some can be dynamic vehicle routing problems with pickup and 

delivery, multi-time windows dynamic vehicle routing problems among others. 

 

Second, the customer size used for testing in these experiments is small 

to medium. This experiment can be extended to 10,000 customers or even 

millions of customers. With this experiment, we can measure the threshold limit 

of how much distributed computing should have and whether it can be 

supported and maintained in an enterprise organization that supports a huge 

customer size. 

 

Third, the current trend in artificial intelligence is to apply the algorithm 

in drones to deliver food or packages to customers. The experiment can be 

carried out to gauge the effectiveness and efficiency of the NEDPALNS should 

it be implemented in the drones.  
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APPENDICES 

 

Appendix A: List of Tables for Comparisons with other Algorithms 

Appendix A1: Comparison with other published algorithms based on 

instance type C1 

Instance 

M-MOEA/D 

(Qi et al., 2015a) 

MOGPGA 

(Ghoseiri and Farid, 2010)  

MOEA   

(Najera, 2010) 
NEDPALNS 

NV TD NV TD NV NV TD NV 

C101 10 828.94 10 828.94 10 828.94 10 828.94 

C102 10 828.94 10 828.94 10 828.94 10 828.94 

C103 10 828.06 10 828.06 10 828.06 10 828.06 

C104 10 824.78 10 824.78 10 824.78 10 824.78 

C105 10 828.94 10 828.94 10 828.94 10 828.94 

C106 10 828.94 10 828.94 10 828.94 10 828.94 

C107 10 828.94 10 828.94 10 828.94 10 828.94 

C108 10 828.94 10 828.94 10 828.94 10 828.94 

C109 10 828.94 10 828.94 10 828.94 10 829.71 

Num Ns 9 9 9 8 

 

 

Appendix A2: Comparison with other published algorithms based on 

instance type C2 

Instance 

M-MOEA/D 

(Qi et al., 2015a) 

MOGPGA 

(Ghoseiri and Farid, 2010)  

MOEA   

(Najera, 2010) 
NEDPALNS 

NV TD NV TD NV NV TD NV 

C201 3 591.56 3 591.56 3 591.56 3 591.56 

C202 3 591.56 3 591.56 3 591.56 3 591.56 

C203 3 591.17 3 591.17 3 591.17 3 591.17 

C204 3 590.6 3 599.96 3 590.6 3 590.6 

C205 3 588.88 3 588.88 3 588.88 3 588.88 

C206 3 588.49 3 588.88 3 588.49 3 588.49 

C207 3 588.29 3 591.56 3 588.29 3 588.29 

C208 3 588.32 3 588.32 3 588.32 3 588.32 

Num Ns 8 6 8 8 

 

 

Appendix A3: Comparison with other published algorithms based on 

instance type R1 

Instance 

M-MOEA/D 

(Qi et al., 2015a) 

MOGPGA 

(Ghoseiri and Farid, 2010)  

MOEA   

(Najera, 2010) 
NEDPALNS 

NV TD NV TD NV TD NV TD 

R101 
19 1652.17 19 1677 19 1650.8 19 1650.8 

20 1644.7 20 1651.1 20 1642.88 20 1642.88 

R102 

17 1486.12 N/A N/A 17 1486.12 17 1494.15 

18 1473.73 18 1511.8 18 1474.19 18 1472.81 

N/A N/A 19 1494.7 N/A N/A N/A N/A 

R103 13 1354.22 N/A N/A 13 1308.28 13 1351.98 



 

200 

 

14 1213.62 14 1287 14 1219.37 14 1213.62 

N/A N/A 15 1264.2 N/A N/A N/A N/A 

R104 
10 999.31 10 974.24 10 990.79 10 981.23 

11 991.91 N/A N/A 11 984.56 11 976.61 

R105 

14 1410.64 N/A N/A 14 1377.11 14 1377.33 

15 1366.58 15 1424.6 15 1364.91 15 1360.78 

N/A N/A 16 1382.5 N/A N/A N/A N/A 

R106 
12 1265.99 N/A N/A 12 1261.52 12 1263.98 

13 1249.22 13 1270.3 13 1241.65 13 1239.37 

R107 
10 1139.47 N/A N/A 10 1154.38 10 1131.69 

11 1086.22 11 1108.8 11 1083.3 11 1072.12 

R108 
N/A N/A N/A N/A 9 984.75 9 978.33 

10 965.52 10 971.91 10 960.03 10 938.2 

R109 

12 1157.44 12 1212.3 12 1157.76 12 1153.02 

13 1155.38 N/A N/A 13 1154.61 13 1151.84 

N/A N/A 14 1206.7 N/A N/A N/A N/A 

R110 
11 1110.68 N/A N/A 11 1094.75 11 1078.8 

12 1106.03 12 1156.5 12 1088.61 12 1072.41 

R111 

N/A N/A N/A N/A N/A N/A 10 1123.36 

11 1073.82 11 1111.9 11 1061.37 11 1054.23 

N/A N/A N/A N/A N/A N/A 12 1053.50 

R112 
10 981.43 N/A N/A 10 980.83 10 958.03 

N/A N/A 11 1011.5 N/A N/A 11 967.32 

Num Ns 2 5 6 20 

 

Appendix A4: Comparison with other published algorithms based on 

instance type R2 

Instance 

M-MOEA/D  

(Qi, Hou, Li, Huang, 

 & Li, 2015b) 

MOGPGA  

(Ghoseiri and Farid, 2010)  

MOEA 

(Najera, 2010)  NEDPALNS 

NV TD NV TD NV TD NV TD 

R201 

4 1253.23 4 1351.4 4 1254.77 4 1331.25 

5 1196.5 N/A N/A 5 1194.07 5 1194.07 

6 1185.79 N/A N/A N/A N/A 6 1170.25 

N/A N/A N/A N/A N/A N/A 7 1152.96 

N/A N/A N/A N/A N/A N/A 8 1147.80 

R202 

4 1081.82 4 1091.22 4 1087.29 4 1079.39 

5 1049.72 N/A N/A 5 1050.41 5 1041.1 

N/A N/A N/A N/A N/A N/A 6 1034.97 

R203 

3 955.7 3 1041 3 950.9 3 972.58 

4 904.46 N/A N/A 4 912.24 4 897.02 

5 889.36 5 995.8 5 905.34 5 880.82 

N/A N/A 6 978.5 N/A N/A 6 874.87 

R204 

3 753.32 3 1130.1 3 752.83 3 751.06 

4 745.96 4 927.7 N/A N/A 4 737.06 

5 743.29 5 831.8 N/A N/A 5 735.8 

N/A N/A 6 826.2 N/A N/A N/A N/A 

R205 

3 1017.96 3 1422.3 3 1040.29 3 1064.71 

4 960.33 4 1087.8 4 968.09 4 959.74 

5 954.48 N/A N/A N/A N/A 5 954.16 

R206 

3 915.49 3 940.12 3 930.58 3 942.08 

4 887.9 N/A N/A 4 899.83 4 887.7 

N/A N/A N/A N/A N/A N/A 5 884.85 

R207 
3 813.47 3 904.9 3 818.97 3 811.51 

4 809.51 N/A N/A N/A N/A 4 797.99 



 

201 

 

R208 

2 728.63 N/A N/A 2 736.9 2 864.3 

3 711.59 3 774.18 3 712.98 3 706.74 

N/A N/A N/A N/A N/A N/A 4 705.33 

R209 

3 918.82 N/A N/A N/A N/A 3 1002.82 

4 867.47 4 1008 4 878.05 4 862.67 

N/A N/A N/A N/A N/A N/A 5 860.11 

R210 

3 952.91 3 938.58 3 961.36 3 1038.78 

4 928.35 N/A N/A 4 936.68 4 920.3 

5 920.06 N/A N/A N/A N/A 5 909.66 

N/A N/A N/A N/A N/A N/A 6 905.21 

R211 
3 774.68 3 1310.4 3 785.97 3 777.08 

4 767.1 4 1101.5 N/A N/A 4 753.15 

NumNs 7 2 1 27 

 

 

Appendix A5: Comparison with other published algorithms based on 

instance type RC1 

Instance 

M-MOEA/D  

(Qi et al., 2015b) 

MOGPGA  

(Ghoseiri and Farid, 2010)  

MOEA 

(Najera, 2010)  
NEDPALNS 

NV TD NV TD NV TD TD NV 

RC101 

14 1758.17 N/A N/A N/A N/A 14 1705.40 

15 1646.81 15 1690.6 15 1625.26 15 1623.58 

16 1646.65 N/A N/A N/A N/A N/A N/A 

RC102 

13 1509.18 N/A N/A 13 1501.11 13 1477.54 

14 1484.89 14 1509.4 14 1480.26 14 1461.23 

15 1484.48 15 1493.2 N/A N/A N/A N/A 

RC103 11 1274.85 N/A N/A 11 1278.19 11 1261.67 
 N/A N/A 12 1331.8 N/A N/A N/A N/A 

RC104 10 1145.79 N/A N/A 10 1144.39 10 1135.52 
 N/A N/A 11 1177.2 N/A N/A N/A N/A 

RC105 

14 1548.43 N/A N/A 14 1540.18 14 1540.18 

15 1528.61 15 1611.5 15 1519.44 15 1519.27 

N/A N/A 16 1589.4 N/A N/A 16 1518.58 

RC106 

12 1447.84 N/A N/A 12 1395.7 12 1379.08 

13 1399.17 13 1437.6 13 1379.68 13 1376.99 

N/A N/A 14 1425.3 N/A N/A N/A N/A 

RC107 
11 1254.67 11 1222.1 11 1234.49 11 1232.2 

12 1235.54 N/A N/A 12 1215.06 12 1212.83 

RC108 
10 1183.85 N/A N/A 10 1158.22 10 1147.2 

11 1138.95 11 1156.5 11 1122.98 11 1118.07 

NumNs 2 4 1 14 

 

Appendix A6: Comparison with other published algorithms based on 

instance type RC2 

Instance 

M-MOEA/D 

(Qi et al., 2015b) 

MOGPGA  

(Ghoseiri and Farid, 2010) 

MOEA  

(Najera, 2010) 
NEDPALNS 

NV TD NV TD NV TD NV TD 

RC201 

4 1421.88 4 1423.7 4 1438.43 N/A N/A 

5 1316.61 N/A N/A 5 1329.26 5 1321.93 

6 1297.47 N/A N/A 6 1316.25 6 1284.12 

7 1289.94 N/A N/A 7 1299.58 7 1269.94 

N/A N/A N/A N/A N/A N/A 8 1266.38 
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N/A N/A N/A N/A N/A N/A 9 1265.56 

RC202 

4 1161.29 4 1369.8 4 1165.57 4 1214.17 

5 1118.66 N/A N/A 5 1120.15 5 1118.66 

N/A N/A N/A N/A N/A N/A 6 1110.4 

N/A N/A N/A N/A N/A N/A 7 1098.86 

N/A N/A N/A N/A N/A N/A 8 1095.64 

RC203 

3 1097.4 N/A N/A N/A N/A N/A N/A 

4 944.5 4 1060 4 954.51 4 947.95 

5 940.55 N/A N/A N/A N/A 5 926.82 

N/A N/A 6 1020.1 N/A N/A N/A N/A 

RC204 
3 801.9 3 901.46 3 802.71 3 798.46 

4 792.98 N/A N/A 4 792.84 4 786.38 

RC205 

4 1327.09 4 1410.3 4 1318.71 N/A N/A 

5 1245.94 N/A N/A 5 1259 5 1247.85 

6 1187.48 N/A N/A 6 1214.49 6 1177.58 

N/A N/A N/A N/A 7 1205.06 7 1157.55 

RC206 

3 1200.92 N/A N/A 3 1191.62 N/A N/A 

4 1092.7 4 1194.8 4 1085.82 4 1087.93 

5 1089.14 N/A N/A 5 1077.48 5 1063.53 

N/A N/A N/A N/A N/A N/A 6 1056.21 

N/A N/A N/A N/A N/A N/A 7 1054.61 

RC207 

3 1107.71 N/A N/A 3 1133.27 N/A N/A 

4 1000.98 4 1040.6 4 1001.73 4 996.94 

5 987.88 N/A N/A 5 1001.51 5 970.78 

N/A N/A N/A N/A N/A N/A 6 969.8 

RC208 
3 841.37 3 898.5 3 844.96 3 829 

4 807.83 N/A N/A 4 780.07 4 778.93 

NumNs 8 1 3 21 NumNs 8 1 3 

 

Appendix A7: Comparison with ALNS hypervolume based on C1 

instance type and 10% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

C101 
11 904.9 0 

0.4486 11 906.2 0 0.4375 
12 893 0 

C102 12 969.2 0 0.5253 
12 1085.3 0 

0.4879 
13 1005.4 0 

C103 10 853.9 0 0.3788 10 858.3 0 0.3750 

C104 
10 1057.3 0 

0.5811 
11 1047 0 

0.4504 
11 959.3 0 12 1040.9 0 

C105 10 827.3 0 0.3756 10 828 0 0.3750 

C106 11 872.5 0 0.4459 11 963.6 0 0.3750 

C107 10 827.3 0 0.3753 10 827.6 0 0.3750 

C108 11 1005.5 0 0.4988 12 1081.3 0 0.3750 

C109 11 937.1 0 0.4472 11 1036.9 0 0.3750 

Count 11   11   

Average       0.4530       0.4029 
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Appendix A8: Comparison with ALNS hypervolume based on C2 

instance type and 10% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

C201 
3 589 1 

0.4928 4 679.9 0 0.3750 
4 672.9 0 

C202 3 
632.1 0 

0.3763 3 632.1 0 0.3750 
628.9 1 

C203 4 645.5 0 0.3750 3 610.1 0 0.6242 

C204 3 624.6 0 0.7693 4 765.3 0 0.3750 

C205 3 586.4 0 0.3764 3 587.5 0 0.3750 

C206 3 586 0 0.3750 3 586 0 0.3750 

C207 
3 694.7 0 

0.5629 4 680.9 0 0.3899 
4 694.3 0 

C208 3 589.4 0 0.3802 3 593.5 0 0.3750 

Count 11   8   

Average       0.4635       0.4080 

 

Appendix A9: Comparison with ALNS hypervolume based on the R1 

instance type and 10% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

R101 

23 1988.6 0 

0.4415 

24 1944 0 

0.4368 
25 

1962.3 2 

25 

1926.4 0 

1986.5 0 
1902.5 1 

1957.1 3 

R102 
19 1733.5 0 

0.4544 20 1715.7 0 0.4191 
21 1715 0 

R103 16 1396.2 0 0.4445 17 1439.8 0 0.3750 

R104 12 1141 0 0.3750 12 1095.1 0 0.4052 

R105 
17 1631.7 0 

0.4345 
17 1614.4 0 

0.4440 
18 1592.9 0 18 1574.1 0 

R106 
14 1420.7 0 

0.4263 15 1408.2 0 0.3816 
15 1418.2 0 

R107 14 1310.4 0 0.4250 15 1289.1 0 0.3872 

R108 12 1102.5 0 0.3750 12 1080.1 0 0.3902 

R109 15 1357.6 0 0.4455 16 1396.7 0 0.3750 

R110 
14 1315.1 0 

0.4273 14 1317.1 0 0.4250 
15 1313.4 0 

R111 14 1279.4 0 0.3750 14 1279.3 0 0.3751 

R112 12 1145.2 0 0.3804 12 1153.5 0 0.3750 

Count 19   15   

Average       0.4170       0.3991 
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Appendix A10:            w  h A NS’  h    v  u   b         h     

instance type and 10% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

R201 
5 1447.8 0 

0.5913 6 1390.9 0 0.5200 
7 1443.9 0 

R202 
5 1253.2 0 

0.6469 
5 1330.2 0 

0.5502 
6 1095.3 0 6 1241.2 0 

R203 5 950.7 0 0.3905 5 970.7 0 0.3750 

R204 
4 859.5 0 

0.6887 
4 960.4 0 

0.5940 
5 791.1 0 5 872 0 

R205 5 1129.9 0 0.3750 5 1093.2 0 0.3994 

R206 
4 1006.2 0 

0.5986 
4 1077.6 0 

0.5592 
5 1000.4 0 5 1028.5 0 

R207 4 855.3 0 0.4271 4 919.1 0 0.3750 

R208 
3 774.5 0 

0.7055 
3 885.8 0 

0.5807 
4 772.5 0 4 864.3 0 

R209 
4 1188.7 0 

0.6345 5 1253.2 0 0.3750 
5 1096 0 

R210 
4 1116.2 0 

0.5692 4 1049.9 0 0.5874 
5 1050.4 0 

R211 4 858.7 0 0.4916 4 1016.8 0 0.3750 

Count 18   15   

Average       0.5563       0.4810 

 

Appendix A11:            w  h A NS’  h    v  u   b         h      

instance type and 10% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

RC101 18 1869.9 0 0.4402 19 1929.7 0 0.3750 

RC102 17 1748.2 0 0.3750 16 1609.1 0 0.4858 

RC103 14 1538.9 0 0.3819 14 1553.1 0 0.3750 

RC104 

12 1476.3 0 

0.5303 14 

1522.6 0 

0.3760 
13 

1457.5 0 
1516.7 1 

1413.6 1 

RC105 18 1833.9 0 0.3750 18 1766.2 0 0.4027 

RC106 16 1619.4 0 0.3750 16 1610.2 0 0.3793 

RC107 14 1499.5 0 0.4250 15 1468.7 0 0.3904 

RC108 14 1415.5 0 0.3750 13 1348.3 0 0.4693 

Count 10   9   

Average       0.4097       0.4067 
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Appendix A12:            w  h A NS’  h    v  u   b         h      

instance type and 10% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

RC201 7 1463 0 0.6454 
7 1802.5 0 

0.5772 
8 1541.8 0 

RC202 
6 1363.9 0 

0.5699 6 1354.9 0 0.4885 
7 1204.4 0 

RC203 5 1059.5 0 0.4802 5 1232.3 0 0.3750 

RC204 
4 988.8 0 

0.6100 4 996 0 0.5250 
5 886 0 

RC205 
7 1338.8 0 

0.5604 
6 1474.5 0 

0.5829 
8 1328.3 0 7 1442.4 0 

RC206 
5 1294.9 0 

0.6065 5 1447.5 0 0.5000 
6 1292.9 0 

RC207 5 1185.2 0 0.4360 5 1290.1 0 0.3750 

RC208 4 903.3 0 0.3868 4 917.8 0 0.3750 

Count 12   10   

Average       0.5369       0.4748 

Overall 

Count 
81   68   

Overall 

Average 
      0.4727       0.4288 

 

Appendix A13: Comparison with ALNS hypervolume based on the C1 

instance type and 30% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

C101 11 903.4 0 0.3756 11 
904.1 0 

0.3857 
865.5 1 

C102 11 949 0 0.5801 
11 1133.7 0 

0.5068 
12 1028.9 0 

C103 11 1007.6 0 0.3750 11 952.4 0 0.4161 

C104 10 981.4 0 0.4585 10 1104.3 0 0.3750 

C105 11 947.6 0 0.3833 11 958.2 0 0.3750 

C106 11 946 0 0.3762 11 947.5 0 0.3750 

C107 11 858.6 0 0.3750 10 827.6 0 0.4752 

C108 11 941.7 0 0.4017 11 976.4 0 0.3750 

C109 11 1002.4 0 0.4330 11 1086.4 0 0.3750 

Count 9   11   

Average       0.4176       0.4065 
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Appendix A14:            w  h A NS’  h    v  u   b         h     

instance type and 30% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

C201 
3 586.5 3 

0.4898 3 
586.5 3 

0.3987 
4 681.5 0 589 2 

C202 3 
587 5 

0.2263 3 
590.1 3 

0.2256 
590.1 3 589.1 4 

C203 3 627.1 0 0.8267 
4 706.5 0 

0.5543 
5 678.9 0 

C204 4 693.1 0 0.3833 4 700.9 0 0.3750 

C205 3 586.4 0 0.4801 3 682 0 0.3750 

C206 3 586 0 0.3750 3 586 0 0.3750 

C207 3 592 0 0.3808 3 596.6 0 0.3750 

C208 3 587.1 0 0.3793 3 590.5 0 0.3750 

Count 10   11   

Average       0.4427       0.3817 

 

Appendix A15:            w  h A NS’  h    v  u   b         h     

instance type and 30% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

R101 

22 1971.3 0 

0.4793 

22 1923.9 0 

0.4953 
23 1939 0 

24 1910.5 0 

25 1904 0 

R102 19 1708 0 0.4791 
20 1772.6 0 

0.4184 
21 1754.5 0 

R103 16 1347 0 0.5549 
16 1398.4 1 

0.4246 
18 1505.7 0 

R104 13 1261 0 0.4477 13 1203.7 0 0.4675 

R105 
14 1228.8 0 

0.3902 17 1593.9 0 0.3750 
17 1561.5 0 

R106 15 1423.3 0 0.3750 15 1387.5 0 0.3939 

R107 
13 1311.7 0 

0.4677 
13 1345.7 0 

0.4628 
14 1280.4 0 14 1284.3 0 

R108 12 1087.6 0 0.4453 12 1200.1 0 0.3750 

R109 
14 1391.6 0 

0.4417 15 1390.9 0 0.3754 
15 1360.6 0 

R110 14 1286 0 0.4334 14 1299.2 0 0.4450 

     15 1264.5 0  

R111 14 1267.5 0 0.3750 14 1251.5 0 0.3845 

R112 12 1131.3 0 0.4671 13 1178.1 0 0.3750 

Count 16  18 

Average    0.4464 0.4160 
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Appendix A16:            w  h A NS’  h    v  u   b         h     

instance type and 30% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

R201 6 1398.2 0 0.3881 5 1423.1 0 0.5000 

R202 
5 1423.8 0 

0.6165 
5 1287.7 0 

0.6372 
6 1202.6 0 6 1208.7 0 

R203 5 956.8 0 0.3814 5 965 0 0.3750 

R204 
4 832.7 0 

0.7989 
4 1118 0 

0.6219 
5 823.8 0 5 973.5 0 

R205 5 1101.7 0 0.3800 4 1109.1 0 0.5250 

R206 4 1041.9 0 0.4031 4 1082.4 0 0.3750 

R207 4 907.5 0 0.4398 4 993.3 0 0.3750 

R208 3 790.4 0 0.7516 
3 950.1 0 

0.6652 
4 820 0 

R209 5 1047 0 0.4700 
4 1198.7 0 

0.5923 
5 1091.1 0 

R210 5 1036 0 0.4731 
5 1139.9 0 

0.5578 
4 1192.1 0 

R211 4 889.1 0 0.4537 4 993.3 0 0.3750 

Count 13   16   

Average       0.5051       0.5090 

 

Appendix A17:            w  h A NS’  h    v  u   b         h      

instance type and 30% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

RC101 
19 2003.9 0 

0.4203 19 1925.6 0 0.4447 
20 1983.1 0 

RC102 16 1686.2 0 0.4132 16 1776.6 0 0.3750 

RC103 

14 1592.5 0 

0.4462 14 1571.3 0 0.4363 15 1557.6 0 

14 1535.2 1 

RC104 13 1495.3 0 0.3750 13 1422.5 0 0.4115 

RC105 
17 1985.5 0 

0.4672 18 1814.6 0 0.4396 
18 1851.8 0 

RC106 15 1598.6 0 0.3750 15 1574.3 0 0.3864 

RC107 14 1448 0 0.5344 
15 1557.3 0 

0.4318 
16 1536.6 0 

RC108 13 1385 0 0.4698 
14 1451.4 0 

0.4303 
13 1454.8 0 

Count 12   10   

Average       0.4376       0.4195 
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Appendix A18:            w  h A NS’  h    v  u   b         h      

instance type and 30% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

RC201 
7 1913.1 0 

0.6492 
7 1519.9 0 

0.6922 
8 1452.8 0 8 1441.3 0 

RC202 
6 1623 0 

0.6288 6 1351.4 0 0.6435 
7 1305.7 0 

RC203 5 1044.1 0 0.3858 5 1059.4 0 0.3750 

RC204 4 881.7 0 0.4691 4 1008.2 0 0.3750 

RC205 7 1239 0 0.4585 
6 1394.2 0 

0.4948 
7 1370.6 0 

RC206 5 1344.5 0 0.3750 5 1252.9 0 0.4261 

RC207 5 1194 0 0.5476 
5 1253.6 0 

0.5682 
6 1139.6 0 

RC208 4 914.5 0 0.4533 4 1021.1 0 0.3750 

Count 10   11   

Average       0.4959       0.4937 

Overall 

 Count 
70 

  
77 

  

Overall 

Average 
      0.4576       0.4377 

 

Appendix A19:            w  h A NS’  h    v  u   b         h     

instance type and 50% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

C101 11 
968 0 

0.3959 11 
961.7 0 

0.3853 
887.1 1 940.8 1 

C102 12 1043.5 0 0.3976 11 1075.9 0 0.4375 

C103 12 1077.8 0 0.3750 10 1035.8 0 0.5390 

C104 
10 1094.2 0 

0.5249 
10 1159.9 0 

0.4569 
11 1045.5 0 11 1138.7 0 

C105 10 873.3 0 0.5383 11 978.3 0 0.3750 

C106 11 945 0 0.3767 11 947.2 0 0.3750 

C107 
11 1044.8 0 

0.4524 11 937.8 0 0.5271 
12 1024 0 

C108 11 930.3 0 0.4506 11 1034.6 0 0.3750 

C109 
11 1002 0 

0.5968 
11 1214.9 0 

0.4510 
12 992.4 0 12 1193.1 0 

Count 12   11   

Average       0.4565       0.4357 
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Appendix A20: Comparison with ALNS hypervolume based on C2 

instance type and 50% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

C201 
3 586.5 3 

0.3739 
3 586.6 2 

0.7897 
5 876.4 0 3 586.5 3 

C202 

4 604 5 

0.5110 

4 613.7 1 

0.5507 
4 613.7 1 4 610.5 2 

4 600.4 6 4 824 0 

4 605.3 2 4 604 4 

C203 
3 639.7 0 

0.5686 4 637.1 0 0.3780 
4 634.5 0 

C204 4 645.9 0 0.3787 4 649.1 0 0.3750 

C205 4 623.4 0 0.3858 4 632.5 0 0.3750 

C206 3 586 0 0.4267 3 629.4 0 0.3750 

C207 3 592 0 0.3808 3 596.6 0 0.3750 

C208 3 587.6 0 0.3848 3 595.4 0 0.3750 

Count 13   12   

Average       0.4263       0.4492 

 

 

Appendix A21:            w  h A NS’  h    v  u   b         h     

instance type and 50% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

R101 

21 1868.2 2 

0.4405 

22 1966.8 0 

0.4442 22 1959.5 0 22 1851.8 1 

23 1952 0 23 1929 0 

R102 
16 1431.5 0 

0.4791 
15 1365.2 2 

0.4184 
20 1766.7 1 19 1762.7 0 

R103 

15 1383.8 2 

0.3954 

21 1720.5 0 

0.5013 
15 1391.2 1 18 1546.1 0 

16 1377.2 1 
16 1455.7 1 

23 1925.2 1 

R104 
13 1256.2 0 

0.4508 13 1159.2 0 0.4948 
14 1219 0 

R105 17 1561.6 0 0.3750 17 1542.3 0 0.3843 

R106 14 1405 0 0.4498 
15 1428.7 0 

0.4345 
14 1447 0 

R107 13 1274.8 0 0.4349 14 1284.3 0 0.3750 

R108 
12 1185.2 0 

0.4411 12 1169.1 0 0.4444 
13 1171.9 0 

R109 15 1365.8 0 0.3750 14 1334 0 0.4448 

R110 14 1282.1 0 0.4226 14 1368.9 0 0.3750 

R111 
13 1450.4 0 

0.5888 
14 1358.5 0 

0.4861 
14 1256.3 0 15 1344.5 0 

R112 12 1136 0 0.4837 12 1207.3 0 0.4554 
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13 1170.7 0 

Count 21   20   

Average       0.4451       0.4376 

 

Appendix A22:            w  h A NS’  h    v  u   b         h     

instance type and 50% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

R201 
5 1470.6 0 

0.5630 5 1496.4 0 0.5000 
6 1379.4 0 

R202 
5 1255.4 0 

0.6083 5 1383.7 0 0.5000  
6 1226.7 0 

R203 5 1023.4 0 
0.6492 

5 1115.9 0 
0.5586 

R203 4 1046.5 0 4 1168.2 0 

R204 4 831.5 0 0.7368 
4 1041.6 0 

0.6105 
5 922.8 0 

R205 
4 1253.6 0 

0.5883 4 1266.3 0 0.5250 
5 1164.5 0 

R206 4 992.9 0 0.6877  
4 1174.9 0 

0.6044 
5 1050.5 0 

R207 4 921.8 0 0.4432 4 1014 0 0.3750 

R208 3 884.2 0 0.6795 3 910.8 0 0.6457 

 4 782 0  4 809.8 0  

R209 5 1066.5 0 0.6890 4 1312.8 0 0.5597 

 4 1210.9 0  5 1252 0  

R210 5 1124.5 0 0.4027 5 1167.7 0 0.3750 

R211 3 881.4 0 0.7890 4 933.9 0 0.6778 

     3 1103.6 0  

Count 17  17 

Average       0.6215       0.5393 

 

Appendix A23:            w  h A NS’  h    v  u   b         h      

instance type and 50% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

RC101 
18 

1890.6 1 

0.4683 

17 
1918.8 0 

0.5076 
2022.2 0 1900.9 1 

1858 3 
19 1896.3 4 

19 1986 0 

RC102 

16 1642.4 1 

0.4501 17 1711.1 0 0.4124 17 1777.7 0 

16 1800.8 0 

RC103 

14 1519.2 1 

0.4366 14 

1565.6 0 

0.4428 14 1461.1 2 
1520.5 1 

15 1568.4 0 
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RC104 13 1443 0 0.4491 
13 1478.7 0 

0.4324 
14 1471.2 0 

RC105 17 1772.3 0 0.4324 17 1752.6 0 0.3833 

RC106 15 1580 0 0.4231 15 1688.3 0 0.3750 

RC107 14 1443.9 0 0.4662 15 1517.4 0 0.3750 

RC108 13 1405.3 0 0.4352 14 1416.3 0 0.3750 

Count 13   12   

Average       0.4451       0.4129 

 

 

Appendix A24:            w  h A NS’  h    v  u   b         h      

instance type and 50% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

RC201 
6 1794.4 0 

0.7902 
6 1956.3 0 

0.7769 
8 1443.2 0 7 1509 0 

RC202 
6 1412.9 0 

0.5309 6 1296.3 0 0.5617 
7 1321.1 0 

RC203 5 1038 0 0.4223 5 1107.8 0 0.3750 

RC204 4 858.5 0 0.3943 4 881.2 0 0.3750 

 

RC205 
6 1543 0 

0.5604 
6 1588.1 0 

0.4960 
7 1435.3 0 7 1558.7 0 

RC206 
5 1436.4 0 

0.7032 
5 1530.3 0 

0.5505 
6 1146.9 0 6 1427.3 0 

RC207 
5 1218.1 0 

0.6818 
5 1419.2 0 

0.5728 
6 1142.3 0 6 1281.4 0 

RC208 4 940.9 0 0.5126 4 1152.3 0 0.3750 

Count 13   12   

Average       0.5745       0.5104 

Overall 

Count 
90   85   

Overall  

Average 
      0.4948       0.4642 

 

Appendix A25: Comparison with ALNS Hypervolume based on the C1 

instance type and 70% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

C101 11 906.1 1 0.1250 11 905.9 1 0.1251 

C102 
12 1200.7 0 

0.4577 11 1088.2 0 0.5823 
13 1160.6 0 

C103 

11 1093.2 0 

0.5020 11 1007.2 0 0.5675 12 1084.4 0 

13 1077.6 0 
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C104 
10 994.8 0 

0.5048 11 1042.3 0 0.3750 
11 965.3 0 

C105 11 902.4 0 0.4346 11 980.3 0 0.3750 

C106 11 1005.9 0 0.3882 11 1023.9 0 0.3750 

C107 11 929.2 0 0.4211 11 990 0 0.3750 

C108 11 964 0 0.3750 11 928.1 0 0.4029 

C109 11 969.1 0 0.4468 11 1071.7 0 0.3750 

Count 13   9   

Average       0.4061       0.3948 

 

 

Appendix A26:            w  h A NS’  h    v  u   b         h     

instance type and 70% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

C201 3 

591.7 5 

0.3493 
3 

591.7 5 

0.6466 
591.6 6 

598.3 3 

4 738.2 0 

C202 
3 

580.3 7 

0.7156 4 

604 4 

0.4838 

586.5 5 

613.7 1 
587.1 3 

771.3 2 

4 613.7 1 

C203 3 643.8 0 0.6422 4 692.9 0 0.3750 

C204 4 751.2 0 0.4162 4 794.9 0 0.3750 

 

C205 
3 593.2 5 

0.4835 4 672.7 0 0.3750 
4 670.4 0 

C206 3 
586 0 

0.3776 3 587.1 0 0.3750 
583.1 1 

C207 3 
602.7 0 

0.3762 3 601.7 0 0.3762 
599.9 1 

C208 3 589.4 0 0.3750 3 588.2 0 0.3765 

Count 16   11   

Average       0.4670       0.4229 

 

Appendix A27: Comparison with ALNS Hypervolume based on the R1 

instance type and 70% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

R101 
21 

1826.3 2 

0.5052 22 1875.5 0 0.4742 
1867.4 1 

1957.7 0 

24 1949.1 0 

R102 

19 1757.5 0 

0.4637 19 

1636.1 2 

0.4622 20 1742.5 0 
1683.4 1 

21 1778 0 

R103 16 1394 1 0.1622 
15 1516.1 1 

0.4255 
16 1435.9 1 
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17 1497.1 0 

R104 12 1160.7 0 
 

0.4622 
13 1201.6 0 0.3750 

R105 16 1510.5 0 0.3851 16 1531.1 0 0.3750 

R106 
14 1455.5 0 

0.5190 
15 1518.7 0 

0.4400 
15 1395 5 16 1482 0 

R107 13 
1274.7 0 

0.4353 14 1268.8 0 0.3785 
1244.6 2 

R108 
11 1154.6 0 

0.4666 
11 1191.7 0 

0.4547 
12 1151.6 0 12 1164.4 0 

R109 14 1349 0 0.6304 
16 1534.8 0 

0.4302 
17 1512.1 0 

R110 
14 1407.6 0 

0.4882 15 1370.7 0 0.3947 
15 1289 0 

R111 
13 1328.2 0 

0.4600 14 1276.3 0 0.4043 
14 1272.5 0 

R112 12 1138.1 0 0.4629 13 1179.3 0 0.3750 

Count  22    18   

Average       0.4500       0.4200 
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Appendix A28:            w  h A NS’  h    v  u   b         h     

instance type and 70% DoD 

 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

R201 5 1416.7 0 0.4023 5 1470.2 0 0.375 

R202 5 1173 0 0.574 5 1266.4 0 0.5457 

R202 5 1173 0 0.574 
5 1266.4 0 

0.5457 
6 1189.3 0 

R203 5 1038 0 0.669 

4 1248.7 0 

0.7627 5 1089.7 0 

6 1072.4 0 
 

        

R204 
4 852.4 0 

0.6079 4 925.1 0 0.525 
5 851.9 0 

R205 
4 1268.3 0 

0.626 4 1357.7 0 0.525 
5 1210.6 0 

R206 
4 1093.1 0 

0.6088 4 1179.5 0 0.525 
5 1082.3 0 

R207 4 940 0 0.4342 4 1020.5 0 0.375 

R208 4 806.3 0 0.4154 
3 852.2 0 

0.4154 
4 826 0 

R209 4 1049.1 0 0.4285 4 1129.7 0 0.375 

R210 5 1062.7 0 0.4744 5 1225 0 0.375 

R211 
3 1076.5 0 

0.6972 
3 1094.5 0 

0.6608 
4 906.9 0 4 951.1 0 

Count   15       16     

Average       0.5398       0.4963 

 

 

Appendix A29:            w  h A NS’  h    v  u   b         h      

instance type and 70% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

RC101 17 

1761 3 

0.5524 

17 1823.9 4 

0.4938 
1803 0 

18 

1727.8 4 

1778.2 3 

1871.1 1 

19 1999 0 

RC102 
15 1627.3 1 

0.4089 16 1717.2 0 0.3750 
16 1705 0 

RC103 13 1489.7 0 0.4778 14 1580.4 0 0.3750 

RC104 13 1478.1 0 0.4429 14 1503.2 0 0.3750 

RC105 17 1805 0 0.5205 
18 1948.2 0 

0.4547 
19 1843.7 0 

RC106 15 1637.2 0 0.4252 15 1585.5 0 0.4485 
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16 1630 0 

RC107 14 1501.6 0 0.4720 15 1589.5 0 0.3750 

RC108 14 1436 0 0.4722 
14 1520.9 0 

0.4252 
15 1520.4 0 

Count   11       14     

Average       0.4715       0.4153 
 
 

Appendix A30:            w  h A NS’  h    v  u   b         h      

instance type and 70% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

RC201 
7 1522.4 0 

0.5752 
7 1619.4 0 

0.4704 
8 1413.7 0 8 1615.9 0 

RC202 

5 1552.3 0 

0.7404 

5 1526.4 0 

0.6134 6 1500.6 0 
6 1519.3 0 

7 1254.3 0 

RC203 5 1117 0 0.6117 
5 1257.4 0 

0.5134 
6 1235 0 

RC204 4 909.8 0 0.4346 3 988.3 0 0.5625 

RC205 7 1352 0 0.5176 
6 1669.3 0 

0.5463 
7 1526.4 0 

RC206 
5 1361.5 0 

0.5481 5 1298.8 0 0.5461  6 1274.1 0 

RC207 5 1231 0 0.4412 5 1350.1 0 0.3750 

RC208 4 917.3 0 0.7724 
4 1200.1 0 

0.5312 
5 1190.2 0 

Count   12       13     

Average       0.5802       0.5198 

Overall 

Count 
89   81   

Overall  

Average 
      0.4858       0.4449 

 

 

 

Appendix A31:            w  h A NS’  h    v  u   b         h     

instance type and 90% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

C101 
11 

891.7 4 

 

0.5724 
12 1043.9 0 0.4526 

907.7 3 

983.9 2 

986.2 1 

12 1164.3 0 

C102 12 1022.9 0 0.3750 11 975.2 0 0.4783 
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C103 11 1045 0 0.5340 
11 1174.9 0 

0.5122 
12 1057.9 0 

C104 
10 1029.9 0 

0.5917 
11 1109.4 0 

0.5182 
11 1004.5 0 12 990.1 0 

C105 11 
967.3 0 

0.4032 11 
994.1 0 

0.3781 
935.4 4 987.9 2 

C106 
11 1104.2 1 

0.5617 13 1248.1 0 0.3750 
12 1096.1 0 

C107 11 928.4 0 0.4198 11 987.4 0 0.3750 

C108 11 983.3 0 0.5453 
11 1121.5 0 

0.4764 
12 1063.3 0 

C109 10 1054.4 0 0.6168 12 1193.8 0 0.3750 

Count   16       13     

Average       0.5060       0.4379 

 

Appendix A32:            w  h A NS’  h    v  u   b         h     

instance type and 90% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

C201 
3 

591.1 8 

0.4783 4 

605.5 1 

0.3990 588.5 9 
608.4 0 

4 625.7 0 

C202 
3 

572.8 8 

0.9751 

4 
614.1 1 

0.8342 
583.8 4 897.6 0 

583.8 5 
5 823 0 

4 645.7 1 

C203 4 685.5 0 0.4149 4 724 0 0.3750 

C204 4 686.3 0 0.4036 4 713.5 0 0.3750 

C205 
3 654.3 7 

0.5003 3 638.3 0 0.7739 
4 786 0 

C206 3 607.5 0 0.3750 3 600.9 0 0.3831 

C207 3 620.8 0 0.3750 3 608.6 0 0.3897 

C208 3 599.6 0 0.4398 3 656.3 0 0.3750 

Count    14       11     

Average       0.4952       0.4881 

 

Appendix A33:            w  h A NS’  h    v  u   b         h     

instance type and 90% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

R101 23 

1937.2 2 

0.3277 

22 1850.2 4 

0.3512 
1967 1 23 

1908.2 3 

1991.5 1 

1939 2 

R102 20 1767 0 0.3777 
19 1773.8 0 

0.4173 
20 1739.7 1 

R103 
15 1444.5 1 

0.3098 
15 1386.3 2 

0.3087 
17 1438.8 2 16 1433.2 1 

R104 12 1198.9 0 0.4904 13 1202.7 0 0.4286 
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14 1190.5 0 

R105 

15 1508 0 

0.4273 15 1478 0 0.4387 16 1492 6 

16 1499.7 0 

R106 
14 1478.7 0 

0.4606 15 1400.5 0 0.4147 
15 1408.5 0 

R107 

12 1228.4 2 

0.4866 13 1275.7 0 0.4425 13 
1211.9 1 

1296.8 0 

14 1292.4 0 

R108 
12 1152.4 0 

0.4341 12 1114.9 0 0.4609 
13 1150.3 0 

R109 

14 1358.4 2 

0.4556 15 1427.2 0 0.3750 14 1419.4 0 

15 1380 0 

R110 15 1334.7 0 0.3850 15 1352.8 0 0.3750 

R111 
13 1286.2 0 

0.5160 
14 1323.1 0 

0.4752 
14 1264.3 0 13 1410.9 0 

R112 13 1184.9 0 0.3846 13 1200.2 0 0.3750 

Count   25       18     

Average       0.4213       0.4052 

 

Appendix A34:            w  h A NS’  h    v  u   b         h     

instance type and 90% DoD 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

R201 5 1388.4 0 0.4060 5 1448.3 0 0.3750 

R202 
5 1293.4 0 

0.5259 
5 1292.6 0 

0.5309 
6 1248.8 0 6 1240.3 0 

R203 5 1073 0 0.5272 
5 1103 0 

0.5186 
6 1075.6 0 

R204 
4 835.2 3 

0.3920 4 872.7 0 0.3947 
4 896.2 0 

R205 4 1185.7 0 0.4331 4 1285.3 0 0.3750 

R206 
4 1101.1 0 

0.5292 4 1074.1 0 0.5507 
5 1094.9 0 

R207 4 925.2 0 0.4491 4 1026.6 0 0.3750 

 

R208 
3 918.5 0 

0.6391 4 899.2 0 0.3908 
4 824.7 0 

R209 4 1163.4 0 0.3750 4 1004.1 0 0.4777 

R210 5 1163 0 0.3750 5 1120.4 0 0.4025 

R211 4 924.6 0 0.3750 4 912.8 0 0.3846 

Count   15       15     

Average       0.4570       0.4341 

 

Appendix A35:            w  h A NS’  h    v  u   b         h      

instance type and 90% DoD 
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Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

RC101 17 
1835.6 2 

0.4243 18 
1860.1 0 

0.3818 
1846.9 0 1809.7 2 

RC102 16 

1704.8 0   
17 

1709.4 2 

0.4403 
1694 2 0.5344 

1776.7 1 

18 
1747.4 1 

1855.2 0 

RC103 
14 

1508.6 1 

0.4570 

14 1599.6 0 

0.4809 1672.5 0 
15 1557.5 

0 

15 1658.3 0   

RC104 13 1343 0 0.6220 
14 1588.9 0 

0.4582 
15 1518.6 0 

RC105 

18 
1876.1 2 

0.4385 

17 1957.8 3 

0.4195 
1849.8 3 

18 
1733.6 4 

19 1891 0 
1878.7 2 

19 1810.3 1 

RC106 14 1655.9 0 0.3750 14 1595.6 0 0.4023 

RC107 14 1474.4 0 0.3766 14 1477.5 0 0.3750 

RC108 14 1473 0 0.4348 
14 1489.7 0   

15 1480.9 0 0.4294 

Count   14       18     

Average       0.4578       0.4234 

 

Appendix A36:            w  h A NS’  h    v  u   b         h      

instance type and 90% DoD 

 

Instance 
Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

RC201 

7 1533.5 0 

0.6433 

7 1520.5 0 

0.7678 
6 1694 0 

5 1884.2 0 

6 1587.1 0 

RC202 
5 1637.3 0 

0.6024 
5 1544.5 0 

0.6063 
6 1413.8 0 6 1436.2 0 

RC203 5 1162.6 0 0.375 5 1106.7 0 0.4111 

RC204 4 995.5 0 0.375 4 951.2 0 0.4084 

RC205 
6 1489.8 0 

0.5783 
6 1627.6 0 

0.6068 
7 1458.2 0 7 1357 0 

RC206 
5 1318 0 

0.5186 5 1247.4 0 0.5536 
6 1285.4 0 

RC207 
5 1326.2 0 

0.5138 5 1302.8 0 0.5176 
6 1301.8 0 

RC208 4 1010.6 0 0.375 4 1000.6 0 0.3824 

Count   13       12     

Average       0.4977       0.5317 

Overall 

Count 
  97       87     
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Overall 

Average 
      0.4725       0.4534 

 

 

Appendix A37:            w  h A NS’  h    v  u   b         h     

customers and 10% DoD 

Customer 

Size 
DoD Instance NV TD RR HV NV TD RR HV 

50 10 

test50-0-0-0-0.d0.tw0 3 585.4 0 0.3750 3 563.6 0 0.4029 

test50-0-0-0-0.d0.tw1 5 830 0 0.3784 5 833.8 0 0.3750 

test50-0-0-0-0.d0.tw2 6 847.9 0 0.4500 6 903.7 0 0.3750 

test50-0-0-0-0.d0.tw3 7 1001 0 0.3750 7 939.5 0 0.4211 

test50-0-0-0-0.d0.tw4 
4 841.6 0 

0.5998 
4 793.6 0 

0.6375 
5 757.7 0 5 734.6 0 

test50-0-0-0-0.d1.tw0 5 740.2 0 0.3750 5 693.7 0 0.4221 

test50-0-0-0-0.d1.tw1 
6 830.9 0 

0.7100 5 1083.7 0 0.5000 
5 931.6 0 

test50-0-0-0-0.d1.tw2 6 957.7 0 0.3750 6 941.6 0 0.3876 

test50-0-0-0-0.d1.tw3 7 1033 0 0.3806 7 1040.8 1 0.3750 

test50-0-0-0-0.d1.tw4 
5 843 0 

0.5415 
   

0.5512 
6 796.4 0 5 799.8 0 

test50-0-0-0-0.d2.tw0 15 1567.9 0 0.3750 15 1457.9 0 0.4276 

test50-0-0-0-0.d2.tw1 

15 1673.8 0 

0.4038 15 1468.8 0 0.4669 15 1598.5 1 

14 1631.3 1 

test50-0-0-0-0.d2.tw2 15 1732.7 0 0.3750 15 1559.5 0 0.4500 

test50-0-0-0-0.d2.tw3 
15 1641.4 0 

0.4472 15 1579.9 0 0.4535 
16 1585.9 0 

test50-0-0-0-0.d2.tw4 

15 1515.9 2 

0.3268 
15 1602.7 2 

0.1736 16 1615.3 1 

14 1692.7 2 14 1708.2 2 

Count   23       17     

Average       0.4325       0.4279 

 

 

Appendix A38:            w  h A NS’  h    v  u   b         h     

customers and 30% DoD 

Customer  

Size 
DoD Instance NV TD RR HV NV TD RR HV 

50 30 

test50-0-0-0-0.d0.tw0 
3 562 0 

0.5439 
3 709.4 0 

0.4287 
3 525 1 3 557.1 1 

test50-0-0-0-0.d0.tw1 

5 730 4 

0.3482 5 697.5 4 0.2499 5 929.8 3 

6 631.1 4 

test50-0-0-0-0.d0.tw2 
6 1216.1 0 

0.5110 
6 1216.1 0 

0.5684 
5 872 1 5 872 1 

test50-0-0-0-0.d0.tw3 

7 1060.2 1 

0.5480 

8 987.3 1 

0.5374 8 1230.7 0 8 1246.7 0 

4 729.7 1 9 1208.2 0 

test50-0-0-0-0.d0.tw4 4 708.9 2 0.3822 4 717.6 1 0.3616 
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5 686.8 1 

test50-0-0-0-0.d1.tw0 5 827.2 0 0.4424 5 908.9 0 0.3750 

test50-0-0-0-0.d1.tw1 
6 907.2 1 

0.1808 
5 855.4 1 

0.5333 
5 918.2 1 5 950.2 0 

test50-0-0-0-0.d1.tw2 
5 936.2 1 

0.4821 5 1005.4 1 0.2123 
6 1165 0 

test50-0-0-0-0.d1.tw3 
7 1300.2 0 

0.4212 
7 1340.4 1 

0.2829 
7 1173.1 2 7 1163.9 2 

test50-0-0-0-0.d1.tw4 
6 862.5 0 

0.5959 5 959.6 0 0.5296 
5 988.9 0 

test50-0-0-0-0.d2.tw0 15 1540.4 2 0.1361 15 1612.1 2 0.1250 

test50-0-0-0-0.d2.tw1 14 1607.4 1 0.1410 14 1717.2 1 0.1250 

test50-0-0-0-0.d2.tw2 
14 1648.7 0 

0.4386 15 1557 0 0.4167 
15 1618.9 0 

test50-0-0-0-0.d2.tw3 15 1565.8 1 0.1566 
15 1568.7 1 

0.4062 
15 1792.7 0 

test50-0-0-0-0.d2.tw4 
15 1645.7 0 

0.4583 
15 1602.2 0 

0.4825 
14 1722.1 0 14 1631.9 0 

Count   28       23     

Average       0.3858       0.3756 

 

Appendix A39:            w  h A NS’  h    v  u   b         h     

customers and 50% DoD 

Customer  

Size 
DoD  Instance NV TD RR HV NV TD RR HV 

50 50 

test50-0-0-0-0.d0.tw0 3 620.9 0 0.3750 3 546.4 0 0.4650 

test50-0-0-0-0.d0.tw1 

5 1172.6 0 

0.6499 

4 1000.9 2 

0.5304 4 1000.3 2 
5 1432.1 0 

5 1007.7 1 

test50-0-0-0-0.d0.tw2 

6 1138.3 0 

0.5630 

5 953.6 2 

0.5970 5 1154.5 1 5 1024 1 

5 1045.2 2 6 1248.5 0 

test50-0-0-0-0.d0.tw3 
7 1152 2 

0.2877 7 1227.1 2 0.1489 
7 1356.7 1 

test50-0-0-0-0.d0.tw4 
4 857.3 4 

0.4076 
4 857 4 

0.3824 
5 912 1 4 944.3 2 

test50-0-0-0-0.d1.tw0 
5 929.3 1 

0.4259 
5 983.6 0 

0.5049 
5 1166.6 0 5 926.6 1 

test50-0-0-0-0.d1.tw1 
5 1131.8 0 

0.4025 
5 1031.1 1 

0.4029 
5 1090.7 1 5 1160.6 0 

test50-0-0-0-0.d1.tw2 

5 903.6 4 

0.5855 

6 939.5 2 

0.5139 
5 904 2 5 1199.5 3 

6 957 1 
5 968.8 4 

6 1060.1 1 

test50-0-0-0-0.d1.tw3 
6 1124.1 5 

0.2192 
6 1151 5 

0.2543 
6 1176.3 4 6 1303.8 3 

test50-0-0-0-0.d1.tw4 5 973.8 0 0.3755 5 974.4 0 0.3750 

test50-0-0-0-0.d2.tw0 15 1897.1 0 0.4493 15 2105.8 0 0.3750 

test50-0-0-0-0.d2.tw1 14 1661.9 0 0.3750 14 1661.1 0 0.3754 

test50-0-0-0-0.d2.tw2 
15 1836.3 0 

0.4424 15 1655.1 0 0.5051 
16 1786.1 0 

test50-0-0-0-0.d2.tw3 
13 1396.3 2 

0.3573 
13 1413.9 3 

0.3259 
13 1307.4 5 13 1594.4 2 

test50-0-0-0-0.d2.tw4 
14 1829.6 1 

0.4314 15 1928.1 0 0.3974 
15 1736.3 1 
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15 1877.5 0 14 1888.8 1 

Count  30    27   

Average       0.4231       0.4102 

 

Appendix A40:            w  h A NS’  h    v  u   b         h     

customers and 70% DoD 

Customer  

Size 
DoD Instance NV TD RR HV NV TD RR HV 

50 70 

test50-0-0-0-0.d0.tw0 

3 763.3 2 

0.6439 

4 971.7 0 

0.5197 3 934.2 1 
3 924.6 2 

4 1050.2 0 

test50-0-0-0-0.d0.tw1 

5 929.5 3 

0.3974 

4 1231.4 1 

0.5817 4 956.7 3 4 1008.2 2 

4 904 4 5 923 4 

test50-0-0-0-0.d0.tw2 4 930.2 5 0.1992 
4 999.4 5 

0.1848 
5 960.1 5 

test50-0-0-0-0.d0.tw3 

5 1153.1 6 

0.2364 

5 1010.5 7 

0.2150 5 1070.2 7 
5 918 8 

5 948.2 8 

test50-0-0-0-0.d0.tw4 

3 1172.6 4 

0.6193 

4 892 4 

0.5453 
4 1022.6 1 4 966 2 

4 722.9 6 3 1196.8 6 

4 764.6 5 4 1036.1 1 

test50-0-0-0-0.d1.tw0 
4 783.1 5 

0.5782 
5 1007.7 2 

0.4193 
4 1017.6 2 5 1216.1 1 

test50-0-0-0-0.d1.tw1 
6 1157.3 0 

0.5261 5 1189 0 0.5000 
5 1160.1 0 

test50-0-0-0-0.d1.tw2 

6 1141.2 3 

0.4398 

6 1279.3 1 

0.4798 
6 1388.9 0 

6 1130.6 2 

6 1429.9 0 

test50-0-0-0-0.d1.tw3 5 949.5 6 0.2314 
5 944.1 6 

0.2746 
6 1178.2 5 

test50-0-0-0-0.d1.tw4 
5 971.4 5 

0.2495 
5 1330.7 3 

0.2868 
5 1238.2 4 5 1001.7 5 

test50-0-0-0-0.d2.tw0 14 1893.3 2 0.1250 14 1884.3 2 0.1262 

test50-0-0-0-0.d2.tw1 

15 1842.7 3 

0.1676 

14 2045.8 3 

0.3513 
14 1975.8 3 

15 1820.6 3 

15 1951.1 1 

test50-0-0-0-0.d2.tw2 
15 1751.7 3 

0.1592 
15 1708 3 

0.1514 
16 1621.4 3 16 1681.6 3 

test50-0-0-0-0.d2.tw3 
13 1665.2 3 

0.2875 13 1651.9 7 0.1270 
13 1534.4 7 

test50-0-0-0-0.d2.tw4 14 1516.8 4 0.1542 14 1717.2 4 0.1250 

Count   31       31     

Average       0.3343       0.3258 
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Appendix A41:            w  h A NS’  h    v  u   b         h     

customers and 90% DoD 

Customer  

Size 
DoD  Instance NV TD RR HV NV TD RR HV 

50 90 

test50-0-0-0-0.d0.tw0 3 721.7 4 

0.8268 

3 793.4 5 

0.7179 
test50-0-0-0-0.d0.tw0 3 986.5 0 3 1086.4 2 

test50-0-0-0-0.d0.tw0 3 748.1 3 
4 953.9 0 

3 841.4 3 

test50-0-0-0-0.d0.tw1 4 1018.2 3 
0.6014 

4 1226.8 2 
0.7021 

test50-0-0-0-0.d0.tw1 4 1216.1 2 7 1518.3 0 

test50-0-0-0-0.d0.tw2 3 870.9 9 
0.1572 

3 870.9 9 
0.1534 

test50-0-0-0-0.d0.tw2 3 845.7 10 3 859.1 10 

test50-0-0-0-0.d0.tw3 5 1107.5 6 
0.2664 3 870.9 9 0.3211 

test50-0-0-0-0.d0.tw3 5 897.1 8 

test50-0-0-0-0.d0.tw4 4 826.3 4 
0.2592 

4 811.2 2 
0.2782 

test50-0-0-0-0.d0.tw4 4 857.7 2 4 807.3 4 

test50-0-0-0-0.d1.tw0 5 1078.8 0 0.4948 
5 1283.8 0 

0.3863 
5 1225.8 3 

test50-0-0-0-0.d1.tw1 5 1005.4 5 

0.7869 

5 1211.1 4 

0.6516 
test50-0-0-0-0.d1.tw1 4 1073.4 1 

6 918.7 7 

6 961.6 1 

4 1295.6 7 

6 961.6 2 

test50-0-0-0-0.d1.tw2 6 1206.3 3 
0.2566 

6 1429.7 1 
0.3259 

test50-0-0-0-0.d1.tw2 6 1351 2 6 1234 3 

test50-0-0-0-0.d1.tw3 5 1043.6 6 0.1299 5 1064.3 6 0.1250 

test50-0-0-0-0.d1.tw4 5 1314.7 3 0.1250 
5 1110.5 1 

0.4066 
5 982.5 3 

test50-0-0-0-0.d2.tw0 13 1844.4 0 0.3750 13 1843.3 0 0.3754 

test50-0-0-0-0.d2.tw1 15 1983.6 4 0.1281 15 2008.8 4 0.1250 

test50-0-0-0-0.d2.tw2 16 1825.7 2 0.1760 
16 2111.1 2 

0.1606 
15 2294 2 

test50-0-0-0-0.d2.tw3 15 1701.2 5 0.1578 
15 1726.8 5 

0.1712 
14 1957.7 5 

test50-0-0-0-0.d2.tw4 13 1828.3 5 
0.1740 13 1593.5 5 0.1796 

test50-0-0-0-0.d2.tw4 14 1600.4 5 

Count   24   30   

Average       0.3277       0.3387 

Overall Count     136     128     

Overall Average       0.3807       0.3756 
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Appendix A42:            w  h A NS’  h    v  u   b         h      

customers and 10% DoD 

Customer  

Size 
DoD Inst NV TD RR HV NV TD RR HV 

150 10 

test150-0-0-0-0.d0.tw0 7 920.9 2 0.2825 
7 961.6 2 

0.2608 
8 960.2 3 

test150-0-0-0-0.d0.tw1 
10 1535.9 1 

0.4825 
11 2014.1 0 

0.3938 
11 1955.3 0 11 1862.6 1 

test150-0-0-0-0.d0.tw2 

12 2039.1 1 

0.5109 

13 2319.7 0 

0.3967 13 2026.6 0 
12 2300 1 

13 1866.8 1 

test150-0-0-0-0.d0.tw3 17 2128.3 0 0.3763 
17 2070 0 

0.4409 
16 2132 0 

test150-0-0-0-0.d0.tw4 

12 1665.2 1 

0.5983 

12 1850.3 0 

0.6390 

11 1724.5 2 12 1662.2 2 

12 2083.7 0 13 1605.6 1 

11 1831.8 1 
11 1886.9 1 

11 1806.6 2 

test150-0-0-0-0.d1.tw0 7 965 1 0.4276 

7 1062.8 2 

0.3450 8 1059.3 2 

7 1182.9 1 

test150-0-0-0-0.d1.tw1 10 1621.1 1 0.2213 

10 1702.9 1 

0.5162 11 1611 1 

10 2159 0 

test150-0-0-0-0.d1.tw2 
13 1833.3 1 

0.1692 
13 1745 1 

0.1829 
12 2037 1 12 1884.8 1 

test150-0-0-0-0.d1.tw3 

16 2010.1 2 

0.4880 16 2226.2 1 0.3239 16 2418.9 0 

17 2209.4 1 

test150-0-0-0-0.d1.tw4 
12 2004.6 1 

0.3263 
11 1941.8 2 

0.2050 
11 1623.4 2 12 1540.3 2 

test150-0-0-0-0.d2.tw0 
18 2403.1 0 

0.4607 18 2459.3 0 0.4145 
19 2313.5 0 

test150-0-0-0-0.d2.tw1 18 2503.5 0 0.5245 
19 2161.4 0 

0.6029 
18 2886.7 0 

test150-0-0-0-0.d2.tw2 

17 2500.9 3 

0.3449 

17 2232.3 3 

0.3215 
17 2451.7 4 

18 2029.8 4 18 2897.8 2 

18 2373.5 3 

test150-0-0-0-0.d2.tw3 
20 2511.9 0 

0.5404 
18 2296.5 0 

0.6360 
18 2856.2 0 19 2263.2 0 

test150-0-0-0-0.d2.tw4 18 2346.8 1 0.2126 

19 2965.3 0 

0.5256 18 2438.4 1 

20 2685 0 

Count   30       34     

Average       0.3977       0.4137 

 

Appendix A43:            w  h A NS’  h    v  u   b         h      

customers and 30% DoD 

Customer  

Size 
DoD  Instance NV TD RR HV NV TD RR HV 

150 30 test150-0-0-0-0.d0.tw0 8 1408.8 0 0.4464 7 1117.6 1 0.2208 
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7 1281.2 1 

8 1214.6 1 

test150-0-0-0-0.d0.tw1 

10 2245.2 0 

0.5481 

10 1923.5 1 

0.5557 
11 1946.9 0 10 2078.8 0 

10 2235.9 1 
10 1877.9 2 

10 1992.8 2 

test150-0-0-0-0.d0.tw2 

11 1875.6 6 

0.2306 

11 1721.3 6 

0.2949 
11 1896.4 5 

11 2327.3 4 

11 1728.7 5 

test150-0-0-0-0.d0.tw3 15 2138.9 4 0.1313 15 2194.6 4 0.1250 

test150-0-0-0-0.d0.tw4 12 1809.4 2 0.2685 
12 2115 2 

0.2339 
12 1899.1 3 

test150-0-0-0-0.d1.tw0 

7 1180.3 1 

0.6122 

7 1146.5 1 

0.5797 8 1221.7 0 8 1464.3 0 

8 1144.9 1 7 1115.9 2 

test150-0-0-0-0.d1.tw1 

9 1798.3 6 

0.3647 9 1715.2 4 0.3599 

10 1787.8 6 

10 1933.1 5 

10 1993.7 3 

9 2198.6 5 

test150-0-0-0-0.d1.tw2 

13 1648.1 2 

0.5804 

13 2105.9 0 

0.6177 

12 2094.8 1 12 1917.6 2 

13 2675.6 0 

13 1983.9 1 

13 1913 2 

12 2382.2 1 

test150-0-0-0-0.d1.tw3 
13 1980.7 10 

0.2113 
14 1994.3 8 

0.2542 
13 2302.4 9 13 1915.8 10 

test150-0-0-0-0.d1.tw4 

11 2108.3 4 

0.2779 

11 2056.7 6 

0.3615 
12 2078.6 5 

12 1918.6 3 

13 1913.8 4 

test150-0-0-0-0.d2.tw0 
18 2569 1 

0.2961 
17 2823.5 2 

0.2758 
18 2557.3 2 18 2756.4 1 

test150-0-0-0-0.d2.tw1 

18 2667.5 0 

0.5165 

18 2544.5 2 

0.4587 18 2622.5 3 
18 3184.2 0 

17 2915.2 3 

test150-0-0-0-0.d2.tw2 

18 2900.8 1 

0.5050 

19 2846.6 1 

0.4503 
19 2697.4 0 

19 2984.1 0 

20 2838.2 0 

test150-0-0-0-0.d2.tw3 18 2917.1 7 0.1382 

18 2493.8 7 

0.2644 18 2679.7 6 

19 2731.2 5 

test150-0-0-0-0.d2.tw4 

18 2657.1 7 

0.2040 

17 2568.1 8 

0.2068 
17 2510.2 8 

18 2431.7 8 

18 2817.5 7 

Count  36    37   

Average    0.3554    0.3599 

 

Appendix A44:            w  h A NS’  h    v  u   b         h      

customers and 50% DoD 
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Customer  

Size 
DoD Instance NV TD RR HV NV TD RR HV 

150 50 

test150-0-0-0-0.d0.tw0 

7 1324.2 2 

0.5787 

8 1297.1 0 

0.5601 7 1354.5 0 7 1507 1 

7 1302 3 7 1320.1 3 

test150-0-0-0-0.d0.tw1 10 2403.6 1 

0.5265 

10 2438.7 2 

0.4545 
test150-0-0-0-0.d0.tw1 9 2127.6 3 

9 2394.2 3 

10 3399 1 

10 2365.6 3 

test150-0-0-0-0.d0.tw2 11 1917.3 6 0.3155 

13 1922.2 7 

0.3381 
10 2238.2 8 

13 2060.4 5 

11 2015.7 8 

test150-0-0-0-0.d0.tw3 13 2118.5 11 0.2627 

15 2155.7 9 

0.2846 14 2387.4 12 

14 2684.9 11 

test150-0-0-0-0.d0.tw4 

12 2033.1 4 

0.5508 

12 2340.8 1 

0.5954 

12 2127 2 13 2034.2 3 

11 2052.9 4 11 1917.4 4 

12 1818.9 5 
13 2278 2 

15 1908.2 3 

test150-0-0-0-0.d1.tw0 

8 1392.3 1 

0.3822 

7 1296.4 2 

0.4780 7 1320.5 2 
8 1329.5 0 

7 1268.9 3 

test150-0-0-0-0.d1.tw1 

9 2098.7 6 

0.3994 

9 2074.4 6 

0.2302 10 2214.9 1 9 2136.2 5 

9 2119.4 4 10 2006.7 6 

 test150-0-0-0-0.d1.tw2  

10 2112.2 8 

0.3303 

12 2321.2 4 

0.4064 
11 2197.8 7 14 2124.8 7 

11 2205.9 6 
11 2276.9 6 

10 2131.1 8 

test150-0-0-0-0.d1.tw3 

15 2377.2 4 

0.3790 

16 2587.7 4 

0.3567 
15 2755.1 3 

15 3275.6 3 

15 2330 5 

15 2920.5 4 

test150-0-0-0-0.d1.tw4 

11 1984.1 5 

0.3739 

12 1840.1 7 

0.3218 
10 1966 7 11 1949.5 6 

11 1901 6 
11 1890.1 7 

10 2295.8 8 

test150-0-0-0-0.d2.tw0 

17 2518.1 3 

0.5043 

18 2816.8 0 

0.4700 
18 3111.4 0 

17 2879.2 3 17 2658.9 2 

17 2497.3 4 

test150-0-0-0-0.d2.tw1 

17 3253.8 5 

0.4256 

17 3187.4 5 

0.4398 

18 3169.6 3 18 3055.4 3 

19 2862.8 2 19 3503.6 1 

18 3223.4 2 
19 3085.7 2 

18 3086.8 5 

test150-0-0-0-0.d2.tw2 

19 2862.8 2 

0.4516 

18 3174.4 6 

0.2763 18 2895.4 6 20 3366.8 4 

19 3481.6 4 19 3275.3 5 

test150-0-0-0-0.d2.tw3 

19 3030.4 5 

0.3393 

19 3203.5 5 

0.3719 

21 2950 6 23 3382.7 3 

21 2981.4 5 20 2932.8 5 

20 3158.5 4 
20 2863.9 6 

19 3198.7 6 

test150-0-0-0-0.d2.tw4 

20 2919.5 3 

 

0.3146 

18 2762.4 6 

0.3983 
19 3194.1 5 

19 3099.8 5 19 2893.6 6 

20 2897.3 5 
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Count  46    51   

Average    0.4157    0.3988 

 

Appendix A45:            w  h A NS’  h    v  u   b         h      

customers and 70% DoD 

Customer  

Size 
DoD Inst NV TD RR HV NV TD RR HV 

150 70 

test150-0-0-0-0.d0.tw0 

7 1660.2 3 

0.5716 

7 1660.2 3 

0.5716 

7 1731.6 1 7 1731.6 1 

7 1597.4 6 7 1597.4 6 

8 1554.7 1 8 1554.7 1 

8 1544.9 3 8 1544.9 3 

7 1789.7 0 7 1789.7 0 

test150-0-0-0-0.d0.tw1 

9 2372.9 5 

0.4195 

10 2484.6 3 

0.3916 
10 2619.1 2 9 2252.4 7 

10 2259.4 6 
9 2687.6 3 

9 2256.4 7 

test150-0-0-0-0.d0.tw2 

13 2323.2 8 

0.3124 

14 2389.8 8 

0.3734 
16 2553.6 7 15 2161.1 7 

15 2712.3 7 
13 2401.4 8 

18 2822.2 6 

test150-0-0-0-0.d0.tw3 

14 2371.2 10 

0.3210 

15 2948.3 10 

0.2607 

13 2979.4 12 16 2620.3 11 

14 2256.6 12 

14 2570.9 12 

15 2757 11 

16 2465.3 12 

test150-0-0-0-0.d0.tw4 

12 2198.3 8 

0.3431 

11 2048.1 11 

0.3785 
10 2639.1 11 12 2346.5 6 

11 2760.3 8 
12 2199.3 7 

12 2080.4 9 

test150-0-0-0-0.d1.tw0 

7 1488.3 0 

0.5888 

7 1448.1 7 

0.5016 
7 1233.2 8 7 1385.1 8 

7 1321.9 7 
7 1591.4 2 

8 1593.5 0 

test150-0-0-0-0.d1.tw1 

8 2180.2 8 

0.6247 

10 2641.6 4 

0.5846 

11 2894.4 3 11 2589 7 

9 2249.7 7 12 2745.7 2 

11 2538.2 5 
14 2361 8 

13 2563.9 4 

test150-0-0-0-0.d1.tw2 

13 2182.2 12 

0.3271 

14 2182.3 6 

0.3896 
14 2285.4 9 12 2177.7 12 

11 2620.2 10 
13 2214.3 10 

12 2294.6 12 

test150-0-0-0-0.d1.tw3 

20 2648.3 13 

0.2083 

19 2932.6 12 

0.2261 21 2559.2 13 20 2766.4 13 

19 2825.1 14 18 2744.1 14 

test150-0-0-0-0.d1.tw4 

12 2647.7 2 

0.5883 

12 2653 11 

0.4708 

11 2677.6 4 11 2417 12 

12 2642.9 14 

11 2686.8 9 

13 3197.1 7 

10 2409.3 14 

test150-0-0-0-0.d2.tw0 

18 3097.4 3 

0.6015 

17 2900.6 9 

0.5507 
17 2901.9 4 18 3506 5 

17 2680.1 6 20 3116.2 1 

20 3213 1 17 2998.3 6 
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18 2916.8 8 

18 2719.4 9 

test150-0-0-0-0.d2.tw1 

19 3336 3 

0.4833 

18 3688.1 6 

0.5858 
17 3005.6 8 

19 3417.1 5 

17 2946.9 8 

21 3728.5 0 

19 3845.6 1 

test150-0-0-0-0.d2.tw2 

18 2912.2 5 

0.2477 

19 3348.7 5 

0.1972 
18 2724.6 6 

19 3116.8 6 

18 3340.3 6 

test150-0-0-0-0.d2.tw3 

18 3119.6 12 

0.1552 

18 2846.9 12 

0.2110 
18 3171.3 11 

18 3230.8 10 

17 3150 12 

test150-0-0-0-0.d2.tw4 15 2554.6 3 

0.5541 

20 2910.2 9 

0.4961 

test150-0-0-0-0.d2.tw4 13 2684.7 5 19 3070 8 

test150-0-0-0-0.d2.tw4 19 2936.3 0 

16 3117.7 11 

19 3140.3 7 

21 3623.2 3 

20 3159.1 6 

Count  50    64   

Average    0.4231    0.4126 
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Appendix A46: Comparison with ALNS Hypervolume based on the 150 

customers and 90% DoD 

Customer 
DoD Instance NV TD RR HV NV TD RR HV 

Size 

150 90 

test150-0-0-0-0.d0.tw0 

7 1710.1 4 

0.7059 

8 2212.5 0 

0.6253 
7 1737.4 0 7 1512.8 4 

8 1698.1 0 7 2269.5 3 

7 1676.6 5 8 1923.8 1 

test150-0-0-0-0.d0.tw1 

17 2863.5 2 

0.4381 

14 2680.4 4 

0.5754 16 3005 6 13 2702.6 5 

14 3349.3 5 16 3180.7 1 

test150-0-0-0-0.d0.tw2 

22 3260.8 3 

0.4048 

19 2647.5 10 

0.3798 

22 2732.5 9 22 2747.4 7 

22 2693.9 11 21 3486.8 8 

22 2979.6 8 
22 2747.4 9 

22 2726.3 10 

test150-0-0-0-0.d0.tw3 

18 2788.7 12 

0.2313 

19 2723.9 13 

0.2503 
19 3340.1 11 

17 3039.9 13 

18 2952.5 12 

19 3165 11 

test150-0-0-0-0.d0.tw4 

13 2428.7 10 

0.4481 

12 2435.9 15 

0.393 

13 2056.4 17 9 2808.5 15 

10 2168.9 15 11 2764.8 11 

11 2533 12 
10 2620.1 13 

11 2657.3 12 

test150-0-0-0-0.d1.tw0 

8 1479.8 0 

0.8154 

7 1672.5 2 

0.8317 
7 1698.5 3 

8 1389.5 2 

10 1753 0 

7 1963.4 0 

8 1770 0 

test150-0-0-0-0.d1.tw1 11 2236.3 0 0.5694 

11 2197.2 2 

0.4963 11 2097.5 5 

14 2308.9 1 

test150-0-0-0-0.d1.tw2 

16 2706.7 4 

0.4062 

16 2706.7 4 

0.4062 18 2621.3 5 18 2621.3 5 

19 3180.1 2 19 3180.1 2 

test150-0-0-0-0.d1.tw3 

16 2653.6 10 

0.2631 

15 3121.5 7 

0.3054 16 2902.5 8 14 3139.7 9 

15 2972.1 11 13 2917 11 

test150-0-0-0-0.d1.tw4 

9 2467 17 

0.2407 

9 2674.9 14 

0.2799 10 2658.3 13 10 2267.4 13 

9 2586.2 15 9 2375.8 16 

test150-0-0-0-0.d2.tw0 

16 2653.6 10 

0.3738 

16 2747.1 11 

0.4225 

16 2902.5 8 16 2997.5 10 

15 2972.1 11 

16 2643.5 13 

17 2725.7 8 

17 3402.7 4 

test150-0-0-0-0.d2.tw1 

15 3889.2 5 

0.4993 

17 4001.4 6 

0.4496 

16 3815.1 7 19 3850.1 4 

18 3760.1 6 22 4110.6 2 

19 3850.1 4 18 3698.3 7 

22 4110.6 2 

17 3814.8 7 18 3698.3 7 

17 3814.8 7 

test150-0-0-0-0.d2.tw2 20 3066 8 0.2585 

20 3389.7 10 

0.2693 21 3262.5 10 

21 3713 6 
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test150-0-0-0-0.d2.tw3 

22 2849.3 15 

0.2722 

20 2848.5 15 

0.2511 21 3176.1 14 23 3369.3 13 

22 3180.9 11 19 3284.9 15 

test150-0-0-0-0.d2.tw4 

16 3117.7 11 

0.458 

19 3993.1 12 

0.3552 
18 3698.3 7 

19 3629.7 13 

19 3187.4 14 

20 3049.7 12 

20 3274.5 8 

Count  46    58   

Average    0.4256    0.4194 

Overall Count  208    244   

Overall Average    0.4035    0.4009 

 

 

Appendix A47:            w  h A NS’  h    v  u   b         h      

customers and 10% DoD 

 
Customer 

Size 
DoD 

Proposed Algorithm ALNS (2018) 

Instance NV TD RR HV NV TD RR HV 

250 10 

test250-0-0-0-0.d0.tw0 11 1521.3 0 0.5170 
12 1433.6 1 

0.3425 
11 1673.4 2 

test250-0-0-0-0.d0.tw1 

18 2876.8 1 

0.4452 

17 2589.3 1 

0.3758 19 2735.8 0 19 2447.9 2 

19 2653.6 2 18 2585.5 1 

test250-0-0-0-0.d0.tw2 

20 2598.3 4 

0.3492 

20 2586.5 5 

0.3305 
20 3175 3 

22 3233 3 

20 2832.3 4 

test250-0-0-0-0.d0.tw3 

27 3911.8 3 

0.5162 

28 3652.1 1 

0.5368 
31 3454.9 1 29 3261 2 

30 3788.6 1 
30 3267.7 1 

27 4513 1 

test250-0-0-0-0.d0.tw4 

20 2826.9 2 

0.4249 

17 2746.1 2 

0.6032 19 2932.1 3 19 3989 1 

19 2836.9 4 18 2684.5 3 

test250-0-0-0-0.d1.tw0 11 1613.3 0 0.4375 

12 1555 0 

0.4740 11 1519.7 1 

11 1583.9 0 

test250-0-0-0-0.d1.tw1 

17 2570.8 1 

0.4946 

18 2453.1 0 

0.5163 17 2936.4 0 
17 2520 1 

18 2682 0 

test250-0-0-0-0.d1.tw2 

21 3315.7 3 

0.3792 

22 2877.5 3 

0.2174 22 3650.1 1 20 3570.4 3 

23 2959.8 3 21 3351.8 3 

test250-0-0-0-0.d1.tw3 

27 3809.2 4 

0.5178 

27 3829.7 4 

0.5244 28 4215.1 1 27 4626.8 3 

31 3629.9 2 28 3780.2 1 

test250-0-0-0-0.d1.tw4 

18 3139 1 

0.4650 

17 2855.8 1 

0.6111 
19 2815.8 1 18 2590 1 

20 2731.9 1 
19 2961.4 0 

21 3330.6 0 

test250-0-0-0-0.d2.tw0 
19 2949.5 1 

0.5661 
19 3979.7 0 

0.3950 
19 2973.9 0 19 3662 1 

test250-0-0-0-0.d2.tw1 20 3080.7 1 0.1508 
21 2829.1 1 

0.1689 
20 3244.8 1 

test250-0-0-0-0.d2.tw2 

22 3287 3 

0.3181 

20 2845.3 3 

0.5701 23 3264.1 3 21 3591.2 1 

20 3113.1 4 21 3027.5 2 
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25 3042.3 4 21 2761.5 4 

test250-0-0-0-0.d2.tw3 28 3524.7 0 0.4009 29 3363.9 0 0.4092 

test250-0-0-0-0.d2.tw4 
21 2977.9 2 

0.4670 
20 3221.1 2 

0.2382 
23 3914.7 0 21 2891.5 2 

Count 37 39 

Average 0.4300 0.4209 

 

Appendix A48:            w  h A NS’  h    v  u   b         h      

customers and 30% DoD 

Customer 

Size 
DoD Instance 

Proposed Algorithm ALNS 

NV TD RR HV NV TD RR HV 

250 30 

test250-0-0-0-0.d0.tw0 11 1739.7 0 0.5994 

11 1957.3 0 

0.6282 12 1818.5 0 

13 1619 0 

test250-0-0-0-0.d0.tw1 

17 2792.1 4 

0.2249 

17 2874.7 0 

0.4463 16 2909.9 4 
16 2752.4 4 

17 3052.7 3 

test250-0-0-0-0.d0.tw2 

20 3160.8 8 

0.3653 

20 2940.9 9 

0.3653 19 2854.9 9 22 2925.8 6 

21 2896.5 6 21 3698.6 5 

test250-0-0-0-0.d0.tw3 
25 3599.2 9 

0.1792 25 3958.2 9 0.1500 
25 3567.7 10 

test250-0-0-0-0.d0.tw4 

17 3131.5 5 

0.4056 

19 2848.1 3 

0.3200 

18 3059.4 4 19 2824.1 6 

18 2687.3 5 

18 3069.7 4 18 3060.3 2 

19 2791.7 4 

test250-0-0-0-0.d1.tw0 

11 1762.9 1 

0.4217 

12 1836.9 1 

0.4927 11 1689 2 13 1806 0 

12 1566.6 2 14 1754.4 1 

test250-0-0-0-0.d1.tw1 

16 2808.8 5 

0.2832 

16 2882.8 5 

0.3205 
16 3145.9 3 

17 2800.8 5 

17 3157.8 2 

test250-0-0-0-0.d1.tw2 

20 3330.2 7 

0.5315 

23 3154.3 5 

0.6223 

21 3394.2 6 20 3723.1 5 

21 4006.7 4 24 3208.9 1 

23 4286.3 2 23 3901.6 2 

22 3614.2 3 23 3349.9 4 

22 3228.7 5 

23 3508.9 3 

21 3398 5 

22 3847.7 4 

test250-0-0-0-0.d1.tw3 
26 3987.9 6 

0.1984 
26 3618.4 6 

0.1543 
26 3605.2 7 27 3610 6 

test250-0-0-0-0.d1.tw4 

17 3227.4 6 

0.4183 

18 3025.2 2 

0.5182 

18 3358.7 3 18 2966.7 6 

19 2809.6 6 17 3098 6 

18 3099.9 6 
17 3025.1 7 

19 3674.1 1 

test250-0-0-0-0.d2.tw0 

19 2886.7 10 

0.5635 

18 4017.1 7 

0.2936 

18 3148.5 5 18 3716.8 8 

18 3132.7 9 

18 4179.3 6 18 3663.9 4 

19 3517.7 1 

test250-0-0-0-0.d2.tw1 
19 3595.6 5 

0.4433 
19 4812.6 4 

0.4080 
20 3262.7 4 22 3997.1 3 
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21 3,415.80 3 

20 3496 4 

20 3494.1 5 

19 3751.8 5 

21 3287.8 4 23 3506.9 4 

22 3373.5 2 25 3151.8 4 

23 3143.5 4 
24 3417 2 

21 3582.9 3 

test250-0-0-0-0.d2.tw3 

25 3334.4 9 

0.2050 

25 3559.1 9 

0.2575 
25 3925.1 8 

26 3542.2 8 

26 3642.7 6 

test250-0-0-0-0.d2.tw4 
20 2973.2 7 

0.2272 
21 3395.5 6 

0.2407 
21 3613.1 6 20 3688.7 5 

Count 47 49 

Average 0.3619 0.3895 

 

Appendix A49:            w  h A NS’  h    v  u   b         h      

customers and 50% DoD 

Customer 

Size 

DoD 

 
Instance 

Proposed Algorithm ALNS(2018) 

NV TD RR HV NV TD RR HV 

250 50 

test250-0-0-0-0.d0.tw0 11 1929.3 7 

0.5053 

11 1894.1 10 

0.5703 

test250-0-0-0-0.d0.tw0 12 2101 3 12 1919.9 2 

test250-0-0-0-0.d0.tw0 12 2119.1 1 

12 1876.6 9 

11 1935.2 9 

11 1951.4 2 

13 1691.3 13 

13 1768.8 6 

test250-0-0-0-0.d0.tw1 14 2799.5 13 

0.364 

14 3057 13 

0.5483 
test250-0-0-0-0.d0.tw1 15 3085.1 12 

15 2757.3 13 

20 3847.2 8 

15 2882.3 12 

16 2634.5 13 

17 2935.7 9 

21 3402.6 7 

test250-0-0-0-0.d0.tw2 

21 3292.3 5 

0.5222 

22 4003.3 1 

0.5944 

22 4173.6 3 19 3309.7 8 

19 3302.7 9 21 3072.6 7 

24 3622.1 4 20 3518.5 7 

22 3847 4 20 3262.3 9 

test250-0-0-0-0.d0.tw3 

23 3915.5 14 

0.238 

24 4475.8 12 

0.2414 
24 4046 13 24 3789.4 14 

24 3849.1 14 
23 3905.1 14 

24 4958 12 

test250-0-0-0-0.d0.tw4 

18 3282 9 

0.284 

19 3361.4 8 

0.2937 18 2911.5 11 18 3212.9 9 

17 3792.2 9 17 3273 10 

11 1929.5 2 

0.4748 

11 2095 2 

0.5061 
12 2118 0 

12 2033 0 

12 1975.9 2 

11 2275.4 1 

test250-0-0-0-0.d1.tw1 15 2918.6 9 

0.2676 

15 2801 10 

0.3658 
test250-0-0-0-0.d1.tw1 15 2793.9 10 

16 3503.1 5 

16 3167.3 7 

15 2742.6 11 

16 3044.3 9 

test250-0-0-0-0.d1.tw2 18 3438.8 12 0.2819 18 3375.7 12 0.289 
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20 3624 7 20 3626.8 7 

20 3384.4 9 19 3340.5 10 

test250-0-0-0-0.d1.tw3 23 3937.6 14 0.1354 
24 3645.2 12 

0.1964 
23 3678.2 14 

test250-0-0-0-0.d1.tw4 

19 3235.2 9 

0.3475 

17 3328.2 10 

0.2438 

17 3084.4 11 17 3306.6 13 

17 2907.2 13 

18 3242.9 12 
18 3441.7 7 

19 2985.8 12 

19 3245.7 8 

test250-0-0-0-0.d2.tw0 

18 3176.2 11 

0.5291 

18 3605.6 8 

0.3961 

17 2741.5 17 18 3577 11 

18 3207.5 7 19 3620.8 4 

19 3788.7 2 19 3752.8 3 

18 3103.2 12 
18 3773.6 7 

18 2736.9 16 

test250-0-0-0-0.d2.tw1 

19 3788.2 13 

0.3285 

19 3326.5 13 

0.3822 20 3496.2 11 20 3588.1 11 

22 4191.4 8 20 4036.4 8 

test250-0-0-0-0.d2.tw2 

21 3507.4 15 

0.2405 

21 3694 15 

0.3565 

22 3640 14 

20 4242.2 15 
20 3672.2 15 

22 3780.3 13 

22 3493.5 15 

test250-0-0-0-0.d2.tw3 

23 3928.2 15 

0.1887 

23 3858.4 15 

0.2154 
24 4310.5 14 

24 4053.7 14 

24 4265.1 13 

25 4071.3 13 

test250-0-0-0-0.d2.tw4 

24 3907.7 5 

0.3572 

22 3773.2 10 

0.4151 

22 3517.7 9 24 4024.5 4 

25 3748.1 5 23 3960.4 5 

23 3889.1 8 25 3842.9 2 
   23 3946.2 8 

Count 60 61 

Average 0.4376 0.3737 

 

Appendix A50:            w  h A NS’  h    v  u   b         h      

customers and 70% DoD 

Customer 

Size 
DoD Instance 

Proposed Algorithm ALNS (2018) 

NV TD RR HV NV TD RR HV 

250 70 

test250-0-0-0-0.d0.tw0 

12 2153.7 0 

0.8499 

14 1844 2 

0.7852 

13 1890.1 5 12 1993.5 4 

11 2188.9 0 11 2100.3 4 

11 2157.5 3 12 2915.2 0 

11 2140 6 11 1902.5 6 

test250-0-0-0-0.d0.tw1 

16 3351.2 12 

0.4312 

16 3697.8 12 

0.4598 

16 3389 11 16 3416.4 13 

18 3386.8 9 17 4111.5 5 

14 4175.9 13 17 3458 9 

19 3508.7 8 

18 3723.3 6 

15 3633.4 12 

15 3999.8 9 

test250-0-0-0-0.d0.tw2 

27 4185.9 7 

0.5389 

18 3527.5 16 

0.6184 17 3695.8 16 21 3766.4 9 

22 3484.6 12 23 4295.7 5 



 

233 

 

22 3428.5 13 23 3632.8 8 

20 3911.5 12 22 3431.2 10 

24 3312.8 13 22 3914 6 

27 3665.4 8 

25 3763.6 7 

21 3346 14 

21 3655.9 13 

test250-0-0-0-0.d0.tw3 

27 3755.5 17 

0.2953 

28 4340 15 

0.2718 

25 4095 18 28 3998.1 17 

27 4195.5 13 26 4226.6 18 

28 4071 16 

29 4414.6 12 

29 4118.8 16 

28 4343.1 13 

test250-0-0-0-0.d0.tw4 

18 3415.9 11 

0.4214 

19 3700.1 9 

0.4378 

17 3459.2 10 18 3740.5 11 

18 4005.6 7 20 3940.5 7 

18 3690.8 9 20 4086.7 5 

19 3218.8 11 

19 3760.8 8 

18 3936.8 10 

20 4747.4 4 

test250-0-0-0-0.d1.tw0 

11 2072.1 2 

0.6011 

11 2040.3 10 

0.5882 

11 2044.6 13 11 2376.2 3 

12 2370.3 0 

13 2348 0 

12 2031.6 9 

11 2262.5 9 

12 2152.9 1 

test250-0-0-0-0.d1.tw1 

18 3721.8 1 

0.7803 

19 3276.2 3 

0.6608 

18 3312.8 4 18 3579.5 5 

21 3156.9 2 20 3588.8 2 

24 3867.5 0 17 4137.2 4 

17 3492.4 7 16 3619.8 6 

test250-0-0-0-0.d1.tw2 23 3855.2 6 

0.4452 

21 3940.7 7 

0.4039 
test250-0-0-0-0.d1.tw2 21 3324.8 9 21 3761.2 10 

test250-0-0-0-0.d1.tw2 19 3805.9 8 

27 3901.1 9 

28 4018.8 4 

test250-0-0-0-0.d1.tw3 

27 3723 16 

0.2703 

24 3844.7 16 

0.2872 29 4585.1 12 28 4034.7 13 

26 4569.6 15 27 4056.3 14 

test250-0-0-0-0.d1.tw4 

17 3714.7 14 

0.4218 

18 3528.9 9 

0.4316 

18 3069.1 9 16 3220.7 12 

18 3602.1 8 19 3471.2 10 

19 4030.1 7 

19 3779.9 6 18 2930.3 10 

test250-0-0-0-0.d2.tw0 

18 3266.3 5 

0.6603 

18 2832.9 12 

0.6488 

18 3045.7 7 18 3930.1 10 

18 2792.2 10 19 3028 3 

20 3364.5 0 

18 4147.6 7 

19 3950.8 0 

test250-0-0-0-0.d2.tw1 

24 4329 5 

0.4788 

21 5531.2 9 

0.3402 

21 3781.3 11 21 4377.7 10 

21 3977.8 10 22 4471.8 9 

21 4339.10 8 

20 5499.1 11 

22 5231.3 8 

test250-0-0-0-0.d2.tw2 

24 4014.3 12 

0.3307 

24 4332.1 10 

0.3672 

25 4288 11 25 3560.8 14 

23 4539.8 13 26 4304.4 11 

25 3898.5 13 23 3942.2 15 

26 3749.4 15 
25 3983 13 

28 4200.5 11 

test250-0-0-0-0.d2.tw3 24 3882 21 
0.2700 

26 3823.2 19 
0.2752 

test250-0-0-0-0.d2.tw3 23 4086.4 24 25 4012.8 20 
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test250-0-0-0-0.d2.tw3 23 4096.9 22 
27 4531.2 18 

test250-0-0-0-0.d2.tw3 24 3736.6 22 

test250-0-0-0-0.d2.tw4 

23 3928.8 16 

0.2465 

24 4612.5 14 

0.2993 

24 4029.8 15 24 4637.5 11 

26 3944.7 15 

23 4442.6 16 

25 4090.1 17 

25 4203 14 

24 4536 15 

Count 68 78 

Average 0.4694 0.4584 

 

Appendix A51:            w  h A NS’  h    v  u   b         h      

customers and 90% DoD 

Customer 

Size 
DoD Instance 

Proposed Algorithm ALNS(2018) 

NV TD RR HV NV TD RR HV 

250 90 

test250-0-0-0-0.d0.tw0 

11 2124.3 9 

0.7115 

11 2164.4 4 

0.7804 

12 2867.3 0 12 2842.8 0 

12 2491 5 11 1896.9 12 

13 2139.7 6 14 2521.9 1 

13 2648.9 0 13 2068.7 10 

test250-0-0-0-0.d0.tw1 

19 4030.5 10 

0.6072 

23 3593 12 

0.6196 

16 3336 12 21 3774.7 13 

20 3927.8 8 22 3923 9 

14 3763 14 23 4985.6 1 

18 4104.8 8 
21 4020.2 8 

16 4097.2 13 

test250-0-0-0-0.d0.tw2 

27 3889.2 15 

0.4781 

24 4077.7 11 

 

0.4421 

25 4023.8 14 26 4073.6 16 

25 4196.1 9 23 4536.9 9 

25 4695 5 27 4512 9 

22 4098.5 11 
27 4530.8 8 

26 4674.4 5 

test250-0-0-0-0.d0.tw3 

33 4867.6 19 

0.3038 

34 4425.5 20 

0.3528 

34 4071.5 22 31 4374.3 23 

34 4314.4 17 

33 4786.6 22 

34 4707.4 18 

35 4697.4 16 

36 5138.3 12 

test250-0-0-0-0.d0.tw4 

18 3713 14 

0.5864 

18 4224.5 14 

0.6097 

17 3787 18 18 4310.2 13 

21 3738.8 12 17 3730.6 18 

19 3940.3 12 18 3804.5 17 

24 4688.2 11 24 4681.4 4 

17 3983.5 16 19 3916.3 15 

25 4943 6 
19 4019.9 14 

17 4504.8 14 

test250-0-0-0-0.d1.tw0 

11 1937.2 2 

0.6903 

12 2067.9 4 

0.6362 

10 2235.5 18 11 2130 14 

12 2254.4 0 13 2253.9 1 

12 1933.4 14 

11 1887.2 16 

11 2164 5 

14 2054 0 

test250-0-0-0-0.d1.tw1 

17 3806.6 6 

0.5282 

22 3715.9 2 

0.5623 24 3562.3 5 22 3867.9 2 

20 4308.8 4 20 3973.2 3 
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19 4147.9 5 
21 4221.3 1 

19 3467.7 6 

test250-0-0-0-0.d1.tw2 27 4239.1 14 

0.3344 

25 4666.4 8 

0.4679 
test250-0-0-0-0.d1.tw2 29 4678.2 10 

28 4913.7 5 

26 4229.7 18 

26 4145.7 19 

27 4061 18 

27 4330 15 

test250-0-0-0-0.d1.tw3 

32 4489 17 

0.2555 

30 4556.5 17 

0.2600 

30 4479.9 19 33 4643.4 15 

31 4103.1 20 36 4593.4 16 

30 4447.8 20 

36 4466.4 18 33 4425.4 19 

34 4367.6 19 

test250-0-0-0-0.d1.tw4 

16 3600.7 16 

0.3907 

15 3440.3 18 

0.4493 

17 3384.4 18 15 3436.8 20 

15 3392.4 23 21 3893.6 12 

15 3864.2 21 21 3845.6 17 

16 3359.5 20 16 3113.6 21 

test250-0-0-0-0.d2.tw0 

18 3014.9 7 

0.3908 

18 3034 9 

0.3900 

17 2714.5 20 18 3146.3 7 

18 2854.1 8 18 3232.1 5 

18 2710.1 13 
18 2888.2 12 

18 2696.8 14 

test250-0-0-0-0.d2.tw1 

25 4168.8 2 

0.9336 

36 5671.9 1 

0.8243 

23 3921.1 6 35 6006 0 

33 4804.7 0 

26 4425.4 2 

24 4436.6 5 

27 4319.5 4 

test250-0-0-0-0.d2.tw2 

26 3745 17 

0.4314 

22 4130.7 16 

0.3745 

26 4340.1 12 26 4389.6 12 

27 3831.7 16 25 3879.9 19 

28 4091.8 15 25 4100 18 

21 4112.7 16 

25 4204.3 14 
28 3706.1 16 

25 4502.9 13 

19 4056 20 

test250-0-0-0-0.d2.tw3 

29 4086.4 27 

0.2681 

25 4100 18 

0.3775 
32 4005.4 22 30 3743.2 27 

26 4226.4 27 
30 4068.9 25 

30 4519 24 

test250-0-0-0-0.d2.tw4 31 4423 9 

0.4778 

23 3829.1 15 

0.5025 

test250-0-0-0-0.d2.tw4 24 3911.7 16 30 4409.4 6 

test250-0-0-0-0.d2.tw4 31 4260.1 10 

23 4080.1 13 
test250-0-0-0-0.d2.tw4 26 4550.1 11 

test250-0-0-0-0.d2.tw4 27 4433.5 12 

test250-0-0-0-0.d2.tw4 31 4846.1 5 

Count 71 78 

Average 0.4925 0.5148 

 

Average 10 DoD (50,150,250 customers) 0.4201 0.4208 

Average 30 DoD (50,150,250 customers) 0.3677 0.3750 

Average 50 DoD (50,150,250 customers) 0.3809 0.3756 

Average 70 DoD (50,150,250 customers) 0.4089 0.3989 

Average 90 DoD (50,150,250 customers) 0.4153 0.4243 

   

Average 50 customers (10%,30%, 

50%,70% & 90% DoD) 

0.3807 0.3756 

Average 150 customers (10%,30%, 

50%,70% & 90% DoD) 

0.4035 0.4009 



 

236 

 

Average 250 customers (10%,30%, 

50%,70% & 90% DoD) 

0.4383 0.4315 

   

Overall Average (50, 150 & 250 customers) 0.4075 0.4027 

 

 


