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ABSTRACT

A SPECTRAL PROXIMAL METHOD FOR SPARSE OPTIMISATION
ON UNDERDETERMINED LINEAR SYSTEMS

Gillian Woo Yi Han

In this research, we will solve the l0-norm sparse optimisation problem.

This is a l0-norm problem with an underdetermined system as its

constraint. Using the Lagrangian method, this problem is transformed

into an unconstrained optimisation problem. However, it cannot be

solved by using the standard optimisation algorithm since l0-norm is

nonconvex and non-smooth. Hence, a new method, the spectral

proximal method (SPM) has been proposed and applied to the l0-norm

unconstrained optimisation problem. This method is a combination of

the proximal method and spectral gradient method. Based on previous

research, the performance of the spectral gradient method is better than

the other standard unconstrained optimisation methods due to the fact

that the approximation of the full rank Hessian matrix is replaced by a

diagonal matrix. Hence, the memory required O (n) storage instead of

O(n2) storage. Convergent analysis of this method is established. The

efficiency of the proposed method with the existing version of proximal

gradient methods as its benchmarks are compared using Python

software on simulated datasets and also large real-world MNIST

datasets. The results show that our proposed method is more robust and

stable for finding sparse solution of the linear system.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Optimisation

Optimisation is a science that determines the optimum solution to a

mathematically specified problem. It is a mathematical technique in

applied mathematics, such as linear programming or system analysis, to

maximize or minimize the value of a function of several variables

subject to a set of constraints. It entails establishing a problem’s

optimality criterion, determining methods and algorithms, studying the

methods’ structure, and also finding the solutions by computer

(Nocedal and Wright, 2006).

There are three fundamental components for optimisation problems.

The first component is an objective function that must be minimized or

maximized. The second component is a set of variables, which we refer

to as vectors, x are quantities whose values can be changed to optimize

the objective function value. The third fundamental component is a set

of constraints that restricts the values of the variables. Different

mathematical properties exist for optimisation problems. The

continuous variable problems require a different strategy from the

discrete or combinatorial variable problems.



The optimisation problem can be expressed mathematically as

follows:

min f (x),

subject to gi(x) ≤ bi, i = 1, 2, 3, . . . , m,
(1.1)

where x = (x(1), x(2), . . . , x(n)) is the problem variable. The objective

function is defined as f (x) : Rn → R, and gi(x) ≤ bi : R → R,

i = 1, 2, 3, . . . , m are the constraints. The constraints can be either equal

or unequal, and the constants b1, b2, b3, . . . , bm represent the boundaries

or limitations of the constraints. If there is no constraint, the

optimisation is called as unconstrained optimisation. The problem (1.1)

is solved if the optimum point, x∗ has the smallest objective function

value among all vectors that satisfy the constraints (Boyd et al., 2004a).

Modelling is the process of determining a problem’s objective

function, variables, and constraints. The most essential stage in

optimisation process is to construct an appropriate model. If the model

is overly simple, it may not useful in real-world situations. It may,

however, be costly to solve if it is too complex. To find the solution to

the model, an optimisation algorithm will be chosen after the model has

been created. There are a number of algorithms, so an appropriate

algorithm customised to a particular type of optimisation issue or

application must be chosen (Nocedal and Wright, 2006).

There are two important classes of optimisation, known as linear

programming and nonlinear programming. The problems in linear class

optimisation entail minimising or maximising a linear objective function

where the variables are real numbers and the variables must meet the

constraints, which are a set of linear equalities and inequalities.
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Nonlinear programming uses real numbers as variables, while the

objective function or some of the constraints are nonlinear functions.

Optimisation is useful in many areas, such as statistics, aerodynamics,

chemical engineering, and operational research (Niwattisaiwong and

Suriya, 2018; Fei-Yue et al., 2019; Johansson et al., 2017; Stojaković et al.,

2018; Yang et al., 2019; Huang and Li, 2012; Majozi et al., 2015; Agarana

et al., 2016; Teplická et al., 2020).

1.1.1 Types of Optimisation

Continuous and Discrete Optimisation

Some models require the variables to be integer values. Discrete

optimisation problems are models with discrete variables. Discrete

optimisation problems not only contain integer and binary variables,

but also more abstract variable objects like permutations of an ordered

set. The variable x from discrete optimisation problem is drawn from a

finite set, while the feasible set for the continuous optimisation problem

is generally uncountably infinite. Models with continuous variables are

continuous optimisation problems. Continuous optimisation problems

are typically easier to solve than the discrete optimisation problems

because the smoothness of the functions provides objective function and

constraint information at a point x as a deduction of function’s

behaviour at points in the neighborhood of x. Continuous optimisation

algorithms are frequently used to solve discrete optimisation problem

because many discrete optimisation algorithms generate a sequence of

continuous subproblems (Nocedal and Wright, 2006).

Constrained and Unconstrained Optimisation

An unconstrained optimisation problem arises directly in many

practical applications. Natural constraints on the variables are safe to

3



disregard since they have no effect on the solution or conflict with

algorithms. Unconstrained problems can also occur when constrained

optimisation problems are reformulated with a penalty component in

the objective function that discourages constraint violations (Nocedal

and Wright, 2006).

Constrained optimisation problems emerge from applications in

which the variables are constrained in some way. The constraints on the

variables may be simple limits, more general linear constraints, or

nonlinear inequalities that indicate complicated connections among the

variables. There are two types of constrained optimisation problems:

linear and nonlinear. The objective function and all the constraints of a

linear programming problem are linear functions of x. In disciplines of

management, financial and economic, this sort of problem is frequently

stated and addressed. A nonlinear programming problem is the

problem with one or more of its constraints or objectives are nonlinear.

They naturally appear in the physical sciences and engineering

(Nocedal and Wright, 2006).

Global and Local Optimisation

In nonlinear optimisation problems, many optimisation algorithms

seek only local solutions. A local minimum of a function is a point

where the objective function is less than or equal to the value at all other

possible nearby points, but may be larger than at a distant point. A

global solution minimum is a point where the value of the function is

less than or equal to the value at all possible points. For convex and

linear problems, the local minimum is also the global minimum. For

constrained and unconstrained nonlinear problems, the local minimum

found might not be the global solution (Nocedal and Wright, 2006).
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1.1.2 Gradient of a function

In n-dimensional space, a function’s gradient is defined as a vector:

g = � f =





∂ f /∂x(1)

∂ f /∂x(2)

...

∂ f /∂x(n)





. (1.2)

In optimisation theory, the direction of the gradient is crucial . It is

interpreted as the steepest ascent’s direction. This is because if the

gradient is non-zero, the function value grows fast as we go along the

gradient direction from whatever position. However, the gradient

direction is just a local property.

Due to this, the direction of steepest descent is represented by a

negative gradient vector. Gradient-based optimisation methods are the

method of finding search direction that directly or indirectly include a

gradient vector. In comparison with the methods that do not apply the

gradient vector in the search direction, gradient-based optimisation

methods are anticipated to move relatively faster to the minimum point

(Rao, 2009).

1.1.3 Hessian matrix

Let f : R J → R has continuous second partial derivatives. Then, H(x)

is the Hessian of f at point x. It is a symmetric matrix and is equal to

�2 f (x).

H(x) =
�

∂2 f (x)
∂x(i)∂x(j)

�
. (1.3)
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From Taylor’s theorem (Theorem 1.1), assume that f (x) has continuous

second partial derivatives. Then there are two points x and x∗ in Rn

giving

f (x) = f (x∗) +� f (x∗)T(x − x∗) +
1
2
(x − x∗)T H(z)(x − x∗), (1.4)

where z = θx∗ + (1 − θ)x, for some scalar θ with 0 ≤ θ ≤ 1.

� f (x∗) = 0 when f is twice differentiable and x∗ is the critical point.

The equation (1.4) gives

f (x) = f (x∗) +
1
2
(x − x∗)T H(z)(x − x∗). (1.5)

H(x) is positive definite in the neighbourhood of x∗ if H(x∗) is positive

definite. Thus, from (1.5) implies that f (x∗) ≤ f (x) in some nearby

neighbourhood of x∗, and therefore it is a local minimizer. Moreover, if

H(x) is positive definite and f (x∗) ≤ f (x) for every x with Ax = b, x∗ is

a global minimizer (Best, 2010).

If the Hessian matrix is positive definite, the point x∗ is a relative

minimum point. Similarly, if the Hessian matrix is negative definite, the

point x∗ is a relative maximum point (Rao, 2009).

1.1.4 Convexity

A fundamental concept in optimisation is convexity. When the

straight line segment joining any two points in S falls fully within S, the

set of S ∈ Rn is termed a convex set. When any x ∈ S, y ∈ S, and α ∈ [0,1]

have αx + (1 − α)y ∈ S, the "convex" term can be applied to the set

mathematically. When a function’s domain S is a convex set and if x ∈ S

6



and y ∈ S, the function f is convex and the following relation holds:

f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y), for all α ∈ [0,1]. (1.6)

Convex quadratic function f (x) = xT Hx, where H is a symmetric

positive semidefinite matrix, and convex linear function f (x) = cTx + α,

for any constant vector c ∈ Rn, are the examples of convex functions. If

the inequality, ≤ in (1.6) is substituted with <, the function f is strictly

convex. If f is a concave function, − f is a convex function.

If the objective function ϕ is convex and C is a convex set, an optimisation

problem in the form of

min
x

ϕ(x)

such that x ∈ C ,
(1.7)

is convex . A convex problem’s local minimum is necessarily a global

minimum. Conversely, nonconvex problems might consist of

sub-optimal local minima and they are recognized as the solutions for

the problem. However, we cannot identify whether there exists any

solution that will further minimize the objective function. As a

consequence, the initial point for the iterative optimisation algorithm

becomes pivotal in determining the quality of the solution (Antonello

et al., 2018).

Most of the nonconvex problems are affected by the initialization

issue. Random initialization utilising distributions generated by

evaluating the available data is one of the techniques used (Theodoridis,

2015). There is no general rule exists for initialization and it is usually

problem-dependent. To avoid this issue, many nonconvex optimisation

7



problems are approximated by convex relaxation. By replacing

nonconvex functions with convex functions that have the similar

properties, nonconvex functions are relaxed. One of the most often used

approaches is the l1-regularization (LASSO) and it will be discussed

further in Section 2.3.1.

1.1.5 Review of Minimizer

A global minimizer, x∗ is defined as the point where the function, f

attains least value or when f (x∗) ≤ f (x) for all x ∈ Rn. The optimum

solution for the function is a global minimizer, however, it usually takes

a lot of time and required many iterations to obtain the solution.

Therefore, most of the optimisation algorithms are focusing on finding

local minimizers.

A local minimizer is a point that obtains the lowest value in a

neighbourhood, N of x∗ such that f (x∗) ≤ f (x) for all x ∈ N . Weak

local minimizer is another name for this point. The strict local minimizer

is a point x∗that fulfils f (x∗) < f (x) in a neighbourhood N of x∗ for all

x ∈ N and x �= x∗. If the smooth function f is twice continuously

differentiable, the Hessian, �2 f (x∗) and the gradient, � f (x∗) can be

utilised to find the local minimizer x∗.

Theorem 1.1 (Taylor’s Theorem). Suppose that f : Rn → R is continuously

differentiable and d ∈ Rn. Then

f (x + d) = f (x) +� f (x + td)Td, (1.8)

8



for some t ∈ (0,1). Furthermore, if f is twice differentiable,

� f (x + d) = � f (x) +
� 1

0
�2 f (x + td)d dt, (1.9)

and (1.8) can be rewritten as

f (x + d) = f (x) +� f (x)Td +
1
2

dT�2 f (x + td)d, (1.10)

for some t ∈ (0,1).

Theorem (1.1) is the fundamental theorem in optimisation. Most of

the definitions and theorems in optimisation are derived based on

Theorem (1.1). Some of the useful conditions are listed below (Nocedal

and Wright, 2006).

Theorem 1.2 (First-Order Necessary Conditions). If f is a continuously

differentiable function in an open neighborhood of x∗ and x∗ is a local

minimizer, then its gradient � f (x∗) = 0.

If � f (x∗) = 0, x∗ is a stationary point. Theorem 1.2 shows that any

local minimizer is a stationary point.

Theorem 1.3 (Second-Order Necessary Conditions). If x∗ is a local

minimizer of function f and its Hessian �2 f is continuous in an open

neighborhood of x∗, then its gradient � f (x∗) = 0 and Hessian �2 f (x∗) is a

positive semidefinite matrix.

Theorem 1.4 (Second-Order Sufficient Conditions). Suppose that �2 f is

continuous in an open neighborhood of x∗, � f (x∗) = 0 and �2 f (x∗) is

9



positive definite. Then x∗ is a strict local minimizer of f .

Theorem 1.5. When f is convex, any local minimizer x∗ is a global minimizer.

In addition, if f is convex and differentiable, then any stationary point of f is a

global minimizer.

1.1.6 Overview Optimisation Algorithms

For solving unconstrained smooth optimisation problems, there are

many efficient algorithms that have been established. The majority of

optimisation algorithms are iterative. The iterative algorithms begin

with an estimate for the variable, x0. Starting from x0, the algorithm will

generate a sequence of improving approximate solutions, {xk}∞
k=1 until

it is terminated in m iterations when either there are no more progress

can be made or when the approximate solution has reached a sufficient

accuracy.

The following are characteristics of a good algorithm:

• Robustness. The algorithms should be able to solve most of the

problems in their class with a reasonable starting point value.

• Efficiency. The algorithms should not require excessive storage and

computational time.

• Accuracy. The algorithms should be able to discover a solution for an

optimisation problem with a specified precision without being

excessively sensitive to arithmetic rounding errors or data inaccuracies

that arise when using computer software to perform the algorithm.

These characteristics, however, may be incompatible. For instance, a

fast convergence rate method may need additional computer storage. A

robust method, on the other hand, could have the slowest rate of

10



convergence. Central concerns are the tradeoffs between each of the

characteristics. The mathematical theory of optimisation is the basis for

most algorithms (Nocedal and Wright, 2006).

1.1.7 Sensitivity Analysis

Condition Number

In the area of numerical analysis, the condition number is important.

The sensitivity of the output to errors or modifications of the input is

measured by the condition number. The error could be any uncertainty

or round-off error. If the condition number K(A) = 10k, it implies that

up to k decimal digits of precision may be lost (Cheney and Kincaid,

2012).

The forward problem is the computation of the output b given an

input x for the linear system Ax = b. When the forward problem has a

unique solution b that changes continuously depends on the input x, it

is a well-posed problem. However, to estimate the approximate

solution, x based on the output b, the inverse of the mapping A−1 needs

to be computed. In most cases, inverse problems are ill-posed. This

means that there is no assurance of a unique solution, which may or

may not exist at all.

The condition number of A in the linear system Ax = b can be

calculated as:

K([A]) =
|λmax(A)|
|λmin(A)| , (1.11)

where λmax(A) and λmin(A) are maximal and minimal (by moduli)

eigenvalues of a square matrix A respectively. In non-square matrix A, λ

11



is its singular value. A matrix with high condition number is known as

ill-conditioned while the matrix with low condition number is known to

be well-conditioned.

A small change or error in the input, b may cause a large change to

the output, x∗. It is known as ill-conditioning if the matrix A has a high

conditioned number. When the estimations of x are substantially

contaminated by noise or the model is inaccurate, the overfitting

problem occurs (Antonello et al., 2018). Moreover, if matrix A is a

singular matrix or when its determinant is 0, the solution does not exist.

The existence of the solution and the convergence of the iterative

optimisation procedure are affected by the condition number of the

matrix A in the linear system. The accuracy is defined by calculating the

error in the least square sense, �r� = �b − Ax�. If the value of K(A) is

near to 1, it indicates the matrix is well-conditioned. The iterative

process will converge and the approximate solution, x∗ will have good

accuracy. However, if the value of K(A) is far from 1, it is an

ill-conditioned matrix. The highly ill-conditioned matrix is not invertible

and causes divergence for the iterative process (Pyzara et al., 2011).

1.2 Background of the Study

There has been an increase interest in the general field of sparsity in

the past few years (Sharma et al., 2019; Li et al., 2020; Blanquero et al.,

2020). In the fields of compressive sensing, image processing, machine

learning, and statistics, sparse optimisation to underdetermined linear

systems has become a popular study topic (Deng et al., 2013; Le Thi

et al., 2015). An optimisation problem with zero-norm objective function

or constraints is known as a l0-norm sparse optimisation. l0-norm or

12



� . �0 denotes the zero-norm on Rn, which indicates the number of

nonzero elements in x. In optimisation problems, the l0-norm plays an

essential and critical role in modelling data sparsity and choosing

representative variables. The norm of a mathematical object is referred

to a quantity that measures the length or size of the vector in some sense

(Nocedal and Wright, 2006). In some literature, some people disagree

l0-norm as a proper norm because it does not satisfy the property of a

norm. �λx�0 = �x�0 is obtained for every x ∈ Rn and λ �= 0, indicating

that l0-norm is not being absolutely homogeneous and is not a norm

(Le Thi et al., 2015). However, in this project, we will adopt it as a norm

(Xu and Zhao, 2020).

In this research, we are motivated to propose an efficient, general

purpose algorithmic approach and efficient implementations for the

following nonconvex optimisation problem:

min �x�0

subject to Ax = b,
(1.12)

where Ax = b is underdetermined system. Since l0-norm is non-convex

and non-smooth, the standard techniques for handling the smooth

optimisation problem cannot solve it. We consider the constraint of

problem (1.12), Ax = b to be an underdetermined system. It is difficult

to solve and requires large computational time when the system

involves large dimensional dataset.

Since l0-norm is known to be intractable due to its nonconvexity and

discontinuity (Natarajan, 1995), l1-norm convex regularization is a

popular approach for replacing the l0-norm (Candes, 2008). Because of

its exact recovery property under certain conditions, the l1-relaxation is
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quite common (Candes and Tao, 2005). However, l1-regularizer does not

always provide the true relevant variables (Candes et al., 2008). It

penalizes the amplitude uniformly and thus, underestimates

high-amplitude components of x. Non-convex l0-norm regularization

provides greater advantages than convex l1-norm regularization in

many cases (Bao et al., 2016; Zhang et al., 2012; Sun and Tao, 2014a;

Trzasko and Manduca, 2008).

To this end, we propose an efficient algorithm to solve the l0-norm

sparse optimisation problem. In this project, the objective function,

l0-norm, and its constraint are minimized directly with the proposed

method. Some proximal gradient algorithms such as the Newton-type

method have been proposed previously (Antonello et al., 2018).

However, the proximal quasi-Newton is demanding in memory due to

the storage of the Hessian matrix. To fill in the gap, we propose a new

proximal gradient method, known as spectral proximal method (SPM).

SPM incorporates the spectral gradient method and proximal method.

Sim et al. (2019) showed that the spectral gradient method has a better

efficiency compared to the other standard optimisation methods. The

SPM method is anticipated to be well-performed in solving sparse

optimisation problems.

The objectives of this project are to:

• incorporate spectral gradient method and proximal method to solve

the sparse optimisation problems.

• establish the convergence properties of the proposed method.

• develop an executable code using Python software to test the

efficiency of the proposed method.
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1.3 Structure of the Thesis

This thesis is structured as follows. Chapter 2 describes the literature

review based on the existing research work. Some standard

optimisation methods for solving unconstrained smooth optimisation

problems and also the proximal method for solving non-smooth

problems are highlighted. Spectral gradient method proposed by Sim

et al. (2019) has been reviewed in order to incorporate with the proximal

algorithm based on the ideas from the existing proximal gradient

algorithms. The definition and some existing approaches of l0-norm

sparse optimisation are discussed.

In Chapter 3, a new proximal gradient method, the spectral proximal

method (SPM) is proposed to solve the l0-norm sparse optimisation

problems. The convergent analysis is established and the scope of the

experiments is listed. In Chapter 4, an executable programming code

has been developed using Python to test the efficiency of the method.

The performances between the spectral proximal method and some

existing proximal gradient methods are compared and discussed. The

simulated datasets and MNIST real-world dataset (LeCun et al., 1998)

are used in the numerical experiments. Chapter 5 concludes the finding

of the research and some possible future works are proposed.
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CHAPTER 2

LITERATURE REVIEW

2.1 Gradient-Based Optimisation Techniques

The unconstrained optimisation problem is as follows:

min
x∈Rn

f (x), (2.1)

where f is a twice continuously differentiable function and gradient is

denoted by � f (x). In this research, our interest is to solve large-scale

sparse optimisation problems. In this case, due to the large dimensions

of the datasets, the Hessian of f requires a large amount of storage or it

will not be available.

The updating formula of the gradient method requires search

direction, dk and step length, αk in every iteration. The updating formula

is given as follows:

xk+1 = xk + αkdk, (2.2)

Most gradient-based optimisation methods use the direction, dk such

that dT
k � fk < 0. This is because it ensures that the function value of f will

decrease. In most cases, the search direction is in the form of

dk = −A−1
k � fk, (2.3)
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where Ak is a non-singular symmetric matrix. Ak is the identity matrix, I

in steepest descent. Ak is the actual Hessian matrix �2 f (xk) in Newton’s

technique, but Ak is an approximation to the Hessian matrix in Quasi-

Newton methods. When Ak is positive definite, it ensures that

dT
k � fk = −� f T

k A−1
k � fk < 0. (2.4)

Hence, dk is the descent direction.

A tradeoff arises when determining the step length, αk. This is due to

the fact that we need a αk that can substantially reduce the function value

f , but does not require too much computational time. Differentiating the

following minimization problem yields the optimal step length, αk:

min
α>0

f (xk + αdk). (2.5)

Problem (2.5) is solved exactly but it requires many function evaluations

and gradient evaluations which will increase the computational time

especially in large dimensional problems. Instead, we can generate a

limited number of trial step lengths to determine the step length that is

closest to the minimum of Problem (2.5). This is known as inexact step

length. Practically, to reduce the cost, most of the optimisation problems

are solved by using inexact step length (Nocedal and Wright, 2006).

2.1.1 Inexact Step Length

Inexact step length guarantees an adequate reduction in function

value, f . The line search algorithm will attempt a few values of α

iteratively and stop when certain termination conditions are satisfied. A

simple condition could be imposed is f (xk + αkdk) < f (xk), which

requires f to be decreased. However, this inequality does not preserve
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the decreasing in function value, f in every iteration. Thus, the

iterations will fail to converge to the convex problem’s minimizer. To

overcome this, some conditions are given to assure that the function

value, f , decreases sufficiently.

The Wolfe Conditions

Wolfe conditions are first published by Philip Wolfe in 1969 (Wolfe,

1969, 1971). Inexact line search requires the αk to satisfy the

sufficient decrease condition. This inequality is written as

f (xk + αdk) ≤ f (xk) + c1α� f T
k dk, (2.6)

where constant c1 ∈ (0,1). This inequality is also called as Armijo

condition (Armijo, 1966). The right hand side is a linear function, and is

denoted by l(α) and the left hand side is denoted by φ(α). Although

c1� f T
k dk is a negative slope, but for small positive values of α, the

function l(·) is above the graph of φ because c1 ∈ (0,1). When

φ(α) ≤ l(α), α is considered acceptable.

The condition (2.6) is satisfied for all sufficiently small values of α.

Hence, curvature condition is introduced to rule out unacceptably short

steps. This condition requires αk to satisfy

� f (xk + αkdk)
Tdk ≥ c2� f T

k dk, (2.7)

where constant c2 ∈ (c1,1) and c1 is from (2.6). The left hand side is the

derivative φ�(αk).
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Condition (2.7) requires φ�(αk) ≥ φ�(0). This indicates that the f can

be reduced significantly by moving along the direction, dk if the slope

φ�(αk) is strongly negative. Moreover, the function f is expected not to

be reduced much in dk if φ�(αk) is only slightly negative. In this case, the

line search algorithm is terminated. Typically, when dk is obtained from

Newton or quasi-Newton method, c2 is chosen to be 0.9 and when dk is

chosen by nonlinear conjugate gradient method, c2 is 0.1 (Nocedal and

Wright, 2006).

The αk satisfies the Wolfe conditions if the sufficient decrease and

curvature conditions hold. The Wolfe condition is restated as

f (xk + αdk) ≤ f (xk) + c1α� f T
k dk, (2.8a)

� f (xk + αkdk)
Tdk ≥ c2� f T

k dk, (2.8b)

with 0 < c1 < c2 < 1.

Wolfe conditions can be satisfied by a step length that is not near to

the minimizer of φ. Hence, by modifying the curvature condition, the

φ�(αk) is restricted not to be too positive. This forces αk to lie in the

neighborhood of the critical point of φ. The step length, αk is thus

required to satisfy strong Wolfe conditions:

f (xk + αdk) ≤ f (xk) + c1α� f T
k dk, (2.9a)

|� f (xk + αkdk)
Tdk| ≤ c2|� f T

k dk|, (2.9b)

with 0 < c1 < c2 < 1.

Lemma 2.1. Suppose that f : Rn → R is continuously differentiable. Let dk be

a descent direction at xk, and assume that f is bounded below along ray
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{xk + αdk|α > 0}. Then if 0 < c1 < c2 < 1, there exist intervals of step lengths

satisfying the Wolfe conditions (2.8) and the strong wolfe conditions (2.9).

From Lemma (2.1), if the function f is smooth and bounded below,

then the step lengths that meet the Wolfe conditions exist. The proof

can be found in Nocedal and Wright (2006). Wolfe conditions are scale-

invariant and can be utilised in a broad range of line search methods,

especially in quasi-Newton methods (Nocedal and Wright, 2006).

The Goldstein Conditions

The Goldstein conditions, like Wolfe conditions, choose an appropriate

step length α that satistfies Armijo condition while not being too short.

The Goldstein conditions are as follows:

f (xk) + (1 − c)αk� f T
k dk ≤ f (xk + αkdk) ≤ f (xk) + cα� f T

k dk, (2.10)

with 0 < c < 1/2. The first inequalities is to control the step length from

below and the second inequalities is the condition from (2.6).

These conditions have a disadvantage, because they may exclude all

minimizers of φ by the first inequalities in (2.10). The convergence

theories for Wolfe conditions and Goldstein conditions are quite similar

(Nocedal and Wright, 2006).

Sufficient Decrease and Backtracking

It is not enough if we only apply the sufficient decrease condition in

(2.6) for the line search algorithm. Backtracking line search can dispense

condition (2.8b) by just using sufficient decrease condition to find an

appropriate step length.
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The following is the backtracking line search algorithm using the

Armijo condition:

Algorithm 1: Backtracking line search with Armijo condtion

(BTA)

1. Choose an initial step length, α > 0, τ ∈ (0,1) and c ∈ (0,1).

2. Check whether f (xk + αdk) ≤ f (xk) + cα� f T
k dk is satisfied.

3. If it is satisfied, terminate the algorithm and set αk = α. If not

satisfied, set α = τα, where τ ∈ [τlo,τhi], for some constants

0 < τlo < τhi < 1 and repeat Step 2.

In the next few sections, some common optimisation methods will be

discussed.

2.1.2 Steepest Descent Method

Steepest descent was proposed by Cauchy (1847). This method is the

simplest and oldest gradient method for solving large-scale

unconstrained optimisation. It approaches the minimum point by

moving iteratively in the steepest descent directions from an initial point

x0. In every iteration, the new search direction is orthogonal to the

previous (Rao, 2009; Nocedal and Wright, 2006).

The advantage of the steepest descent method is that it requires only

the first derivative of the function, −� f (xk). The algorithm can be

implemented easily and only a low storage, O(n) is required. However,

this method moves in a zig-zag-like path along the negative direction of

the gradient, −� fk towards the local minimum point. It is relatively

slow when close to the minimum because near the local minimization

the gradient is nearly zero. It requires to run numerous iterations

process which can take forever for a badly scaled system and causes
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slow convergence (Wang, 2008).

This method is critical for the advancement of optimisation theory,

but it is too slow for most real-world problems. In general, any methods

that have a descent direction (with −� fk, one that yields an angle that

is strictly smaller than 90◦) guarantee a decrease in function value f if

the step length is sufficiently small (Nocedal and Wright, 2006). Hence,

more sophisticated techniques like the conjugate gradient method and

quasi-Newton methods are often utilised (Poisel, 2012).

2.1.3 Conjugate Gradient Method

For solving systems of linear equations, Hestenes and Stiefel (1952)

developed the conjugate gradient method. It was established to enhance

the steepest descent method’s convergence properties. It is a conjugate

directions approach that use the negative gradient, −� f .

Definition 2.1 (Conjugate Directions). Let Q = [Q] be an n × n symmetric

matrix. A finite set [di], i = 1, 2, . . . , n is said to be Q-conjugate if

dT
i Qdj = 0, ∀i �= j, i = 1, 2, . . . , n, j = 1, 2, . . . , n. (2.11)

A special case of conjugate directions is called orthogonal directions. It is

obtained when Q is an identity matrix, I and satisfy (2.11).

Definition 2.2 (Quadratically Convergent Method). The minimization

method which the minimum point of a quadratic function in n variables can be

found in n steps if using exact arithmetic.

22



Any method that involves conjugate directions is quadratically

convergent. Because to this feature, the minimum point of a quadratic

function can be determined in at most n steps. Given that a quadratic

may approximate every general function pretty well when approaching

the optimum point and hence, the optimum point should be able to be

identified by any quadratically convergent technique within a limited

number of iterations. The method, however, may require more than n

steps of iterations for ill-conditioned quadratic problems. This is

because of the cumulative effect of rounding errors. Despite this

limitation, the conjugate gradient method outperforms the steepest

descent method (Rao, 2009). The conjugate gradient method, on the

other hand, is less efficient than Newton and quasi-Newton methods,

but it has the benefit of not requiring any Hessian matrices to be stored

(Nocedal and Wright, 2006).

2.1.4 Newton’s Method

Newton’s method is also called as the Newton-Raphson method in

numerical analysis. It was first created by Newton for the purpose of

solving nonlinear equations and improved by Raphson. A multivariate

function f (x) at x = xk in a quadratic approximation may be expressed

as follows using Taylor’s series expansion:

f ≈ fk +� f T
k (x − xk) +

1
2
(x − xk)

T Hk(x − xk), (2.12)

where Hk = H|xk is the Hessian matrix (second partial derivatives of f

evaluated at xk). By differentiating (2.12) and set � f = 0 for the minimum

of the function f :

� f = � fk + Hk(x − xk) = 0. (2.13)
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If Hk is nonsingular, (2.13) may be arranged in the following way to

provide an improved estimate, xk+1:

xk+1 = xk − H−1
k � fk. (2.14)

The iterative process given by (2.14) converges to the optimum solution

x∗ from any random point x0 that is close to the x∗, if H0 is nonsingular.

Newton’s method is a second-order method since it utilizes the objective

function’s second partial derivatives, Hk.

Newton’s method finds the minimum in one iteration for quadratic

functions. However, the Newton’s iterative technique may diverge or

converge to saddle points and maximum points for nonquadratic

functions. This problem can be addressed by rewriting (2.14) to

xk+1 = xk + α∗k dk = xk − α∗k H−1
k � fk, (2.15)

where α∗k represents the step length in the direction dk = −H−1
k � fk. This

modification brings many advantages as stated below:

• The minimum point can be found in lesser steps compared to (2.14).

• The minimum point can be obtained in all cases, whereas (2.14)

might not converge in all cases.

• Convergence to the saddle point or maximal point is typically

avoided using this method.

Although Newton’s method can be seen as a powerful minimization

method, it is not very applicable in practice, due to the following

reasons:

• It needs to store a n × n Hessian matrix, Hk.
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• Sometimes it is difficult and impossible to compute the Hessian

matrix, Hk.

• In every iteration, it needs an inversion of the Hessian matrix, Hk

and the evaluation of H−1
k � fk.

These reasons cause this method becomes not applicable to

large-dimensional optimisation problems (Rao, 2009).

2.1.5 Quasi-Newton Methods

The computation of the Hessian matrix of the function is the main

drawback of the Newton’s method. To overcome this, quasi-Newton

methods provide an alternative way to approximate the inverse of the

true Hessian matrix by an approximation, Bk. In every step, Bk is

updated by using only the gradient evaluation of the function (Nocedal

and Wright, 2006; Rao, 2009).

Taylor’s theorem (Equation 1.10) is modified by adding and removing

the term �2 f (x)d, and we obtain

� f (x + d) = � f (x) +�2 f (x)d +
� 1

0
[�2 f (x + td)−�2 f (x)]d dt. (2.16)

The final integral term can be written as o(�d�) because � f (.) is

continuous. By setting x = xk and d = xk+1 − xk, this leads to

� fk+1 = � fk +�2 fk(xk+1 − xk) + o(�xk+1 − xk�). (2.17)

When xk and xk+1 are the neighborhood of the solution x∗ and lie within

which �2 f is positive definite,

�2 fk(xk+1 − xk) ≈ � fk+1 −� fk. (2.18)
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The new Hessian approximation Ak+1 is required to satisfy the secant

equation:

Ak+1sk = yk, (2.19)

where

sk = xk+1 − xk, yk = � fk+1 −� fk, (2.20)

Equation (2.19) can be written as

sk = Bk+1yk, (2.21)

where Bk+1 = A−1
k+1 is the approximation of the inverse Hessian matrix,

H−1
k+1. Bk+1 must be symmetric and positive definite to fulfil this

equation.

The general formula for updating Bk+1 is

Bk+1 = Bk +�Bk, (2.22)

where �Bk are the difference between consecutive approximations Bk

and Bk+1, and in practice is generally in rank 1 or rank 2.

The rank 1 updating formula for Bk+1 is given as

Bk+1 = Bk +�Bk = Bk +
(sk − Bkyk)(sk − Bkyk)

T

(sk − Bkyk)Tyk
. (2.23)

This equation is Broyden formula (Broyden, 1967). The initial matrix of

B0 must be positive definite and symmetric. Equation (2.23) ensures that

Bk+1 remains symmetric if Bk is symmetric. However, the positive
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definiteness of the Bk+1 is not guaranteed eventhough Bk is positive

definite. Thus, the iterative minimization process might break down,

especially for non-quadratic functions (Rao, 2009).

The rank 2 updating formula can be obtained by choosing �Bk as the

total of two rank 1 updates, and is written as

Bk+1 = Bk +�Bk = Bk +
sksT

k
sT

k yk
− (Bkyk)(Bkyk)

T

(Bkyk)Tyk
. (2.24)

Since

xk+1 = xk + αkdk, (2.25)

where dk is the search direction. We can rewrite sk = xk+1 − xk as

sk = αkdk. (2.26)

Hence, from (2.24), Davidon-Fletcher-Powell (DFP) formula (Davidon,

1959; Fletcher and Powell, 1963) can be expressed as

Bk+1 = Bk +
sksT

k
sT

k yk
− (Bkyk)(Bkyk)

T

yT
k Bkyk

, (2.27)

and Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula (Broyden,

1970a,b; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) is expressed as

Bk+1 = Bk +

�
1 +

yT
k Bkyk

yT
k sk

�
sksT

k
sT

k yk
− (BkyksT

k ) + (BkyksT
k )

T

yT
k sk

. (2.28)

Formulas (2.27) and (2.28) are from Huang’s family of updates (Huang,

1970), which is a family of rank 2 updates. When the initial

approximation Bk is positive definite and symmetric, the Rank 2 formula

ensures that Bk+1 to be symmetry and positive definite matrix. It is more
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robust than the rank 1 update formula in minimizing general nonlinear

functions (Rao, 2009).

In DFP and BFGS methods, Bk remains positive definiteness if the

optimal step length α∗k are found accurately. However, if the α∗k are not

found accurately, the matrix Bk might become indefinite or even

singular. As a result, the alternative is to regularly reset Bk as the

identity matrix, I. According to numerical experience, the BFGS

technique is less impacted by inaccuracies in determining α∗ than the

DFP method (Rao, 2009), and it shows superlinear convergence around

x∗ (Broyden et al., 1973).

2.2 Spectral Gradient Method

Previous researchers have developed some standard tools such as

steepest descent (Cauchy, 1847), conjugate gradient (Fletcher and

Reeves, 1964; Hestenes and Stiefel, 1952; Polyak, 1969) and

quasi-Newton (DFP and BFGS) (Broyden, 1967; Davidon, 1959; Fletcher

and Powell, 1963) which are popular in solving unconstrained

optimisation problems. Steepest descent is simple but converges slowly

with a "zigzags" form towards the minimum point. The conjugate

gradient method is the most often used iterative approach for solving

sparse systems of linear equations but converges much slower than the

quasi-Newton method.

Quasi-newton methods use an approximation to the inverse of

Hessian, Bk in place of the true inverse of Hessian, H−1
k . The

approximation, Bk must be positive definite and consists of the

curvature information. In constructing this approximation, it requires an

O(n2) storage memory which is costly and impractical for large-scale
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optimisation problems.

A pioneering paper by Barzilai and Borwein (1988) proposed a

gradient method that the search direction, dk = −gk and the steplength,

αk is chosen with a nonstandard strategy which is given as

αk =
sT

k−1yk−1

yT
k−1yk−1

, (2.29)

or

αk =
sT

k−1sk−1

sT
k−1yk−1

. (2.30)

The Barzilai-Borwein (BB) technique requires just O(n) floating point

operations for each iteration, and no line searches are required. This

new steplength option needs less computing effort and substantially

accelerates the convergence of the gradient method for quadratics. For

minimizing general functions, BB method with nonmonotone line

search strategy proven to be more efficient than standard conjugate

gradient methods based on the numerical experiments showed in

Raydan (1997). Hence, the original BB method has been extended to

many variations.

The incorporation of the BB method with classical projected gradient

strategies (Bertsekas, 1976; Goldstein, 1964; Levitin and Polyak, 1966)

establised the spectral gradient method (Birgin et al., 2000, 2001, 2003,

2014). Sim et al. (2019) proposed an extension of the spectral gradient

method to approximate the eigenvalues of the actual Hessian matrix. In

the proposed spectral gradient method, the full rank matrix in the

quasi-Newton method is replaced by the diagonal matrix. Therefore, it

reduces the storage from O(n2) to O(n) and thus the computational
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time.

In their paper, the step length αk was chosen based on two line search

strategies, namely, monotone and non-monotone. The non-monotone

strategy was shown to be outperformed than monotone strategy.

Sufficient descent search directions, dk generated by the spectral

gradient algorithm are proved to be independent of the line search

methods under standard assumptions. This approach is well-suited to

dealing with large-scale problems.

2.3 Sparse Optimisation

Big Data refers to massive datasets which consist of very large

numbers of data samples or features. Large dimensional datasets are a

difficult challenge for optimisation and machine learning researchers to

solve in real-world applications. An underdetermined system is one in

which the number of features exceeds the number of observations.

Feature selection is involved to select the informative features and

remove the irrelevant or redundant ones according to certain criteria

(Zhao et al., 2010). This will reduce the computational complexity of the

decision model and avoid the model overfitting problem. Thus, it will

eventually improve the prediction accuracy, result interpretability, and

computational run-time required by the models.

There has been a rise in interest in the general area of sparsity in

recent years (Hastie et al., 2015; Wen et al., 2016; Narang et al., 2017; Gale

et al., 2019; Sharma et al., 2019; Li et al., 2020; Blanquero et al., 2020).

Finding sparse solutions to underdetermined linear systems has become

a hot subject in the fields of statistics, compressive sensing, image

processing, and machine learning in recent years (Deng et al., 2013;
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Le Thi et al., 2015). For instance, in regression analysis and principal

component analysis, a subset of informative variables is frequently

required (Arthanari and Dodge, 1981; Bertsimas et al., 2016; Zou et al.,

2006); Compressed sensing strives for a sparse representation of image

or signal data (e.g., (Bruckstein et al., 2009; Donoho, 2006a)); A limited

amount of invested assets in a portfolio is required for fund

management (e.g., (Brodie et al., 2009; Takeda et al., 2013)); In

bioinformatics, identifying relevant gene fragments is critical (e.g.,

(Shevade and Keerthi, 2003)).

Image and signal processing problems are generally stated as

Ax + � = b, (2.31)

where A stands for the non-linear or linear operator, x stands for the

observation data, while � stands for the observation error or noise. It is

difficult to solve problem (2.31) since it is frequently ill-posed and leads

to an unknown error. We must impose certain constraints on the

solution space, like the signals’ prior sparsity for solving this ill-posed

problem (Sun et al., 2020).

The model for a sparse optimisation problem is as follows:

min ϕ(x) = φ(x) + f (x), (2.32)

where f is a smooth function and φ is possibly a nonsmooth function to

recover sparse solutions of underdetermined linear systems. Smooth

function is differentiable and its gradient, � f is Lipschitz-continuous. A

sparsity-inducing regularization function, φ is involved to find the

sparse solution, x∗. It could be the nonsmooth function such as l0-norm
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or l1-norm. It is a nondifferentiable function, which prohibits the use of

standard optimisation algorithms like nonlinear conjugate gradient,

steepest descent, or quasi-Newton methods, which need the derivative

of the function (Nocedal and Wright, 2006).

2.3.1 Current Trends for Solving Sparse Optimisation

During the last two decades, sparse optimisation becomes an active

research topic. The original problem involves l0-norm to promote the

sparsity in the solution. The resulting optimisation problem is

considered to be difficult due to the discontinuity and nonconvexity of

the l0-norm (Natarajan, 1995). To address such a non-convex

optimisation issue, deterministic global optimisation methods (see, e.g.,

(Horst and Tuy, 2013)) can be used. However, except in small-scale

cases, thorough application is impracticable since ensuring global

optimality is typically prohibitively time-consuming. Local search

methods that rely on approximation or relaxation via tractable convex

optimisation are frequently used (Candes et al., 2006; Donoho, 2006b,c).

The nonconvex problem can be approximated by the convex function

that has similar properties.

Because l1-norm would be a tight convex relaxation of l0-norm, the

l1-norm convex approximation is a popular method to replace �x�0 with

the �x�1 = ∑n
i=1 |x(i)| (Candes, 2008). The Least Absolute Shrinkage and

Selection Operator (LASSO) is the l1 regularization technique

introduced by Tibshirani (1996) in the context of linear regression.

Under proper assumptions, it was shown in Gribonval and Nielsen

(2003) that the l0-regularizer problem over a polyhedral set may be

solved by getting the solution from the l1-regularizer problem. Because

of its precise recovery feature under certain conditions, the l1-relaxation
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has a huge following in compressed sensing (Candes and Tao, 2005).

When the operator A is a sensing matrix, the s-sparse signal x may be

retrieved using the l1 model if the operator A is assumed to have specific

properties, like the restricted isometry property (RIP) (Candes, 2008).

This l1 model has been widely utilised in a variety of applications,

including communications (Berger et al., 2010), radar systems (Patel

et al., 2010; Yang et al., 2012), magnetic resonant imaging (MRI) (Lustig

et al., 2007) and computed tomography(CT) (Chen et al., 2013).

However, the LASSO penalty is biased and inconsistent for variable

selection in certain cases (Zou, 2006). l1-regularizer can be a loose

relaxation of the l0-norm and does not always provide the true relevant

variables (Candes et al., 2008). Because l1-norm regularization penalizes

the amplitude uniformly, it has a tendency to underestimate

high-amplitude components of x, whereas l0-norm penalises all nonzero

entries equally. This might lead to failures in reconstruction with the

least measurements (Chartrand and Staneva, 2008; Candes et al., 2008),

resulting in unappealing blocky images (Sun and Tao, 2014a,b). This

indicates that convex relaxation may give worse results than the results

from the original nonconvex problem. The l1-norm is well-known for

not providing performance comparable to the l0-norm when sparsity is

encouraged. Improved approximations of the l0-norm and matrix rank

lead to better outcomes, according to several theoretical and practical

studies in compressive sensing and low-rank matrix recovery (Sun et al.,

2020).

Recently, researchers have investigated on the nonconvex continuous

approaches to replace l1-regularization. The non-convex l0-norm based

regularization outperforms the convex l1-norm in the areas of image
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restoration (Bao et al., 2016; Zhang et al., 2014; Dong and Zhang, 2013;

Zhang et al., 2013), bioluminescence (Zhang et al., 2012), CT (Sun and

Tao, 2014a,b), and MRI reconstruction (Trzasko et al., 2007; Trzasko and

Manduca, 2008). The l0-norm term is approximated by

sparsity-inducing penalty function which is the nonconvex continuous

function, such as lp-norm with p < 0 (Rao and Kreutz-Delgado, 1999)

and 0 < p < 1 (Fu, 1998), exponential concave function (Bradley and

Mangasarian, 1998), Logarithmic function (Weston et al., 2003),

Capped-l1 (Peleg and Meir, 2008), and Smoothly Clipped Absolute

Deviation (SCAD) (Fan and Li, 2001). Some algorithms have been

developed based on these approximations for solving sparse

optimisation problems. For instances, reweighted-l2 algorithms (Zou

and Li, 2008), reweighted-l1 algorithms (Candes et al., 2008), Two-stage

l1 (Zhang, 2009), Adaptive Lasso (Zou, 2006), Local Linear

Approximation (LLA) (Zou and Li, 2008), DCA algorithm (Difference of

Convex functions Algorithm) (Neumann et al., 2005; Collobert et al.,

2006; Le Thi et al., 2008; Gasso et al., 2009; Le Thi and Ouchani, 2009;

Chen et al., 2010; Le et al., 2013; Le Thi et al., 2013; Ong and An, 2013;

Le Thi and Nguyen, 2013; Guan and Gray, 2013), and Successive Linear

Approximation algorithm (SLA) (Bradley and Mangasarian, 1998).

Besides that, the nonconvex reformulation method involves

reformulating the l0-regularized issue into a continuous nonconvex

problem. The l0-norm sparse optimisation problem for feature selection

is recast as a linear program with equilibrium constraint (LPEC)

(Mangasarian, 1996) in Support Vector Machine (SVM). However, it is

not suitable for solving large-dimensional datasets. Meanwhile, the

l0-norm problem may be converted into an equivalent difference of two

convex functions using an exact penalty approach (Thiao et al., 2008;
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Dinh and Le Thi, 2014). The proximal gradient algorithm and the

difference of convex algorithm (DCA) (Tono et al., 2017; Gotoh et al.,

2018) are then used to solve the subproblems. This method is also used

to solve the Sparse Eigenvalue issue, where the constraint is the l0-norm

(Thiao and Tao, 2010). The problem is written as

max
�

xT Ax : xTx = 1,�x�0 ≤ k
�

, (2.33)

where A ∈ Rn×n and k is just a number.

Some approaches, including the iterative hard thresholding (IHT)

algorithm (Blumensath and Davies, 2008, 2009) and single best

replacement (SBR) algorithm (Soussen et al., 2011), directly tackle the

original l0-norm problem. Besides that, some further development for

the IHT such as proximal IHT (PIHT) (Lu, 2014), accelerated IHT (AIHT)

(Blumensath, 2012), accelerated proximal IHT (APIHT) (Zhang and

Zhang, 2017), and extrapolated proximal IHT (EPIHT) (Bao et al., 2016)

have been proposed. The l0-norm problem is not approximated by these

techniques. There are some reasons that caused nonconvex optimisation

becomes more and more popular:

• Convex relaxations may give unsatisfactory results or poorer

solutions than the original nonconvex problem.

• Convex relaxations might produce a larger optimisation problem

concerning the original nonconvex problem (Luo et al., 2010;

Candes et al., 2015; Ling and Strohmer, 2015). This may be

prohibitive in terms of computational power and memory storage.

• Sometimes, convex relaxations become impossible. For example,

nonlinear mapping in optimisation.
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Convex regularisation techniques are often simpler to solve, but the

l0-regularizer problem is difficult to solve. Nonconvex approximations

yield better sparsity than convex relaxations. However, they are difficult

to solve and cannot guarantee the local minimum obtained are global.

To obtain a "good" local minimum in nonconvex optimisation, the

problem needs to be initialized carefully.

Some issues in the existing approximation approaches have not yet

been studied (Le Thi et al., 2015). The key problems to investigate in a

large-scale problem are how to appropriately approximate the l0-norm in

the optimisation problem and which approach should be utilised to solve

the resultant problem. Researchers in optimisation and machine learning

are continually challenged to come up with new models and approaches

for sparse optimisation problems.

2.4 l0-Norm Sparse Optimisation

In our research, we will solve for l0-norm sparse optimisation

problems. The l0-norm is a key notion for modelling data sparsity, and it

is vital in optimisation issues where representative variables must be

chosen (Le Thi et al., 2015). It enables us to rebuild high-dimensional

data using only a few samples (Deng et al., 2013). An optimisation

problem incorporating the zero-norm in the objective function or

constraints is known as l0-norm sparse optimisation:

min�x�0 + f (x), (2.34)

where the loss function, f (x) is represented by the data fidelity term

associated with (2.31). For instance, f (x) can be the least-absolute (LA)

loss function, �A(x) − b�1 or the least square (LS) loss function,

36



�A(x)− b�2
2.

The norm of a mathematical object is referred to a quantity that measures

the length or size of the vector in some sense (Nocedal and Wright, 2006).

The zero-norm on Rn, often referred as the l0-norm or �.�0, is defined as

follows:

�x�0 := |{i = 1, ...,n : xi �= 0}|. (2.35)

It denotes the number of nonzero elements in the vector, x. In some

literature, some people disagree l0-norm as a proper norm because it

does not satisfy the property of a norm. One gets �λx�0 = �x�0 for every

x ∈ Rn and λ �= 0, indicating that it is not absolutely homogeneous and

hence, it is not a norm (Le Thi et al., 2015). However, in this research, we

will adopt it as a norm (Xu and Zhao, 2020).

In this research, we propose to solve sparse optimisation problems

involving l0-norm and its constraint by minimizing directly with the

proposed method, spectral proximal method (SPM). This method

incorporates the spectral gradient method and the proximal method.

This research idea is derived from the proximal gradient method.

2.5 Proximal Gradient Method

In the context of convex optimisation in Hilbert spaces, Martinet

(1970) proposed the proximal method as a regularization method.

Recently, the proximal algorithm was extended from convex

optimisation to non-convex optimisation (Hare and Sagastizábal, 2009).

Steepest descent method, conjugate gradient method, and Newton’s

method are standard tools for solving unconstrained smooth

37



minimization problems of modest size, while proximal algorithms can

be viewed as an analogous tool for handling non-smooth, constrained,

large-scale, or distributed problems. Closed-form solutions are common

for proximal mappings of the corresponding function. They can be

effectively computed at a low-cost (Antonello et al., 2018) and are

especially well-suited to large or high-dimensional dataset problems.

Classical techniques’ basis operations are low-level, consisting of linear

algebra operations and the computation of gradients and Hessians,

whereas proximal algorithms’ base operation is evaluating a function’s

proximal operator (Parikh and Boyd, 2014).

First-order methods are algorithms that depend only on the function

evaluation and the gradient evaluation. Due to large dimensional

dataset problems arising in compressive sensing, first-order methods

have become more popular for sparse recovery. Various gradient-based

algorithms have been proposed in the area of sparse recovery (Becker

et al., 2011; Figueiredo et al., 2007; Bioucas-Dias and Figueiredo, 2007;

Hale et al., 2008; Van Den Berg and Friedlander, 2009; Yin et al., 2008;

Figueiredo and Nowak, 2003; Wright et al., 2009; Fukushima and Mine,

1981). One of the most basic nontrivial proximal algorithms is the

proximal gradient method or generalised gradient technique (Polson

et al., 2015). Sometimes, it is also known as the forward-backward

splitting method (Combettes and Wajs, 2005; Fukushima and Mine,

1981; Yamamoto et al., 2012). This algorithm can solve nonsmooth

convex and nonconvex problems. A non-convex and non-smooth

function is a hard problem in optimisation, it usually solves with

tractable convex optimisation based on a regularization or relaxation.

However, sparse optimisation which involved convex relaxations

increase dimensionality (Luo et al., 2010) and may cause the problems to
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be computationally intractable. While proximal gradient methods treat

the original nonconvex problem directly. It is independent of the

smoothness and the convexity of the problem.

In problem (2.32), f is a smooth function, while φ is a possibly

nonsmooth function. φ is the term to encourage the sparsity, such as

l0-norm or l1-norm. The overall function ϕ can be minimized by the

proximal gradient step. The proximal operator is defined in Park et al.

(2020) as:

xk+1 = proxφ,Pk
(vk+1) := argmin

x∈Rn

�
φ(x) +

λ

2
�vk+1 − x�2

Pk

�
, (2.36)

where λ is a positive scalar, �z�2
P = zTPz for any z ∈ Rn, P ∈ Rn×n be

any positive definite matrix. The scaled proximal mapping of φ respect

to the metric P is represented as proxφ,Pk
.

Two basic steps, Gradient step (or forward) and Proximal operator step

(or backward) are involved iteratively until it finds the approximate

solution. The iterate xk is forced to move towards the minimum of f by

the gradient step and to be closer to the minimum of φ by the proximal

step. Alternation of these two steps will ultimately lead the sum of these

two functions to become minimum.

Various types of proximal gradient methods have been proposed.

Recently, proximal Newton method and proximal quasi-Newton

methods (Becker and Fadili, 2012; Lee et al., 2014; Karimi and Vavasis,

2017) become an active research topic due to these methods incorporate

more information about the function without compromising the

efficiency of the algorithms. The proximal operator step for the proximal
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quasi-Newton is defined as

xk+1 = proxφ,Pk
(vk+1) = proxφ,Pk

(xk − αk(Bk)� f (xk)). (2.37)

From the ideas of the proximal gradient method, we propose a new

method, known as spectral proximal method (SPM) for solving the

sparse optimisation problems. In the next section, the algorithm and the

convergence analysis of SPM will be discussed. Besides that, the scope

of the numerical experiments will also be given.
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CHAPTER 3

METHODOLOGY

3.1 Background Concept

The sparse optimisation problem (3.1) usually arises in the areas of

science and engineering. l0-norm sparse optimisation is an optimisation

problem with l0-norm in the objective or constraints. The focus of this

research is to develop an effective and general-purpose method for

tackling sparse optimisation problems.

The l0-norm sparse optimisation model in our problem can be written as:

min �x�0 (3.1a)

subject to Ax = b, (3.1b)

where the constraint (3.1b) is usually an underdetermined system. The

objective function, l0-norm is the sparsity inducing regularization

function. It denotes the number of nonzero components in x. Hence, the

solution x∗ should be sparse, which consists the minimum number of

nonzero components in the solution, x.

Some issues occurred when solving l0-norm sparse optimisation

since the l0-norm function is non-smooth and non-convex. The common
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optimisation methods for solving unconstrained smooth optimisation

problems, including gradient descent, nonlinear conjugate gradient, and

quasi-Newton methods, cannot be used (Nocedal and Wright, 2006).

The data fidelity function, Ax = b is solved by using a least square

method. Direct methods such as QR decomposition or Cholesky

factorization are infeasible to solve when involving large linear system.

Iterative techniques like steepest descent, quasi-Newton, and spectral

gradient approaches are effective for addressing optimisation problems

with high-dimensional data sets. However, the quasi-Newton method

which stores a full rank matrix with O(n2) storage requires a larger

computation time per iteration compared to the spectral gradient

method.

The l0-norm sparse optimisation problems can be solved by the ideas

discussed in section (2.5). Previously, the proximal quasi-Newton

method has been proposed by Chen and Fukushima (1999). However,

the proximal quasi-Newton is demanding in memory due to the storage

of the Hessian matrix. In the literature, no research has been done on the

spectral proximal method. To fill in the gap, spectral proximal method

(SPM) is proposed in this research by applying the spectral gradient

method and proximal mapping alternatively to solve the problems.

3.2 Derivation and Algorithm of Spectral Gradient Method

To derive an updating scheme for the approximation to the

eigenvalues of the Hessian matrix, Hk in the spectral gradient method,

for any positive definite matrix H, the log-determinant norm is given as:

φ(H) = tr(H)− ln(det(H)). (3.2)
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It is required to be minimized while satisfying the weak secant equation

which consists of the curvature information:

min tr(Hk)− ln(det(Hk)) (3.3a)

subject to sT
k Hksk = sT

k yk. (3.3b)

Let Hk = diag(H(1)
k , ..., H(n)

k ), sk = xk − xk−1, and yk = gk − gk−1. Then, the

minimization problem (3.3) becomes

min (
n

∑
i=1

H(i)
k )− ln(

n

∏
i=1

H(i)
k ) (3.4a)

subject to (
n

∑
i=1

(s(i)k )2H(i)
k )− sT

k yk = 0. (3.4b)

By Lagrangian method:

L(α,ω) = (
n

∑
i=1

H(i)
k )− ln(

n

∏
i=1

H(i)
k ) + ω[(

n

∑
i=1

(s(i)k )2H(i)
k )− sT

k yk], (3.5)

where the constraint (3.4b) is connected by a Lagrange multiplier, ω. The

partial derivations are set to zero after partially differentiating (3.5) with

regard to each H(i)
k , which yields:

H(i)
k =

1

1 + ω(s(i)k )2
, i = 1, 2, . . . , n. (3.6)

By substituting (3.6) into the constraint (3.3b) ,

F(ω) =
n

∑
i=1

(
(s(i)k )2

1 + ω(s(i)k )2
)− sT

k yk. (3.7)

Then, apply just one Newton-Raphson iteration with ω = 0. As a result,

the equation (3.7) has a unique positive solution when sT
k sk > sT

k yk and
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the Lagrange multiplier, ωk may be approximated by

ωk = ω − F(ω)

F�(ω)

=
sT

k sk − sT
k yk

∑n
i=1(s

(i)
k )4

.
(3.8)

When sT
k yk

sT
k sk

< 1, we have H(i)
k+1 > 0, for all i = 1, . . . , n since ω > 0. The

ratio sT
k yk

sT
k sk

is exactly the Oren-Luenberger scaling (see (Luenberger and

Ye, 1984)). Most quasi-Newton methods involve it to dampen the

steepest descent direction. Thus, to ensure positive definiteness, the

updating formula for Hk is as follows when these two events are

combined:

Hk =





diag(H(i)
k , ..., H(n)

k ), if sT
k sk > sT

k yk

sT
k yk

sT
k sk

I, otherwise,
(3.9)

where H(i)
k = 1

1+ωk(s
(i)
k )2

and ωk =
sT

k sk−sT
k yk

∑n
i=1(s

(i)
k )4

.

Spectral gradient method retains a low per-step computation cost O(n)

while better satisfying the secant condition.
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The algorithm is shown as below:

Algorithm 2: Spectral gradient method

1. Initialize parameters.

Set k = 0; given an initial guessing point x0, and a convergence

tolerance �. H−1
0 is an n × n identity matrix.

2. Compute the search direction dk as

dk = −H−1
k gk, (3.10)

where Hk for k ≥ 1 is defined by (3.9).

3. Compute the step length αk based on Algorithm 1 in the direction

dk and xk+1 = xk + αkdk.

4. Check stopping criterion.

If �gk+1� ≤ �, stop. Otherwise, set k = k + 1 and go to Step 2.

The step length αk can be computed by either monotone or

non-monotone line search strategy.

3.3 Spectral Proximal Method

In order to solve the l0-norm sparse optimisation problem, the

spectral gradient method and proximal method have been reviewed.

The constrained sparse optimisation problem (3.1) can be transformed

into the Lagrangian form and formulated as (2.32):

min�x�0 +
λ

2
�Ax − b�2

2. (3.11)

The function (3.11) is minimized in term of x to obtain an estimate or

optimal solution, x∗. �x�0 is a sparsity inducing regularization function

and λ
2 �Ax − b�2

2 is the data fidelity function. Instead of solving Ax = b
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directly, we considered to minimize the residue or error between the

model Ax and output b to find the least square solution. The l2-norm

regularization acts as the smoothing term.

The coefficient λ ≥ 0 is a scalar that needs to be tuned properly. It

balances the relative weight of the regularization function, �x�0, and the

data fidelity function, λ
2 �Ax − b�2

2. This prevents the data fidelity term

from being too small, resulting in overfitting. Besides that, if λ → 0, the

regularization term dominates the cost function, resulting in the most

sparse solution. In our numerical experiments, we set λ = 1.

The non-smooth function, l0-norm in the problem (3.11) can be

solved by using the proximal method. The solution to a non-convex and

non-smooth function can be found using this method (Hare and

Sagastizábal, 2009). It is well-suited and is very generally applicable for

problems with large or high-dimensional data sets (Parikh and Boyd,

2014). On the other hand, the residue can be solved by applying the

spectral gradient method. This method is proposed by Sim et al. (2019).

From the results shown, the spectral gradient method outperformed a

list of conjugate gradient methods since it needs less storage and less

computational time.

In this research, the proximal method is modified and integrated

with the spectral gradient method. These two methods are combined

and applied alternatively to solve the l0-norm sparse optimisation

problems. This proposed method is called spectral proximal method

(SPM). In this research, the step length, αk is obtained by using Armijo

condition in the backtracking line search strategy (see Algorithm 1).
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The SPM algorithm is as follows:

Algorithm 3: Spectral proximal method

1. Initialize parameters.

Set k = 0; give an initial guess for x0, set a convergence tolerance �,

and a sparsity control parameter µ > 0. H−1
0 is an n × n identity

matrix.

2. Gradient step.

Perform spectral gradient method (see Step 2 and Step 3 in

Algorithm 2) to obtain vk+1 = xk − αk(Hk)
−1� f (xk).

3. Proximal operator step.

Evaluate the proximal operator of �x�0 at the intermediate point

vk+1. From this step, we get xk+1 = proxφ,Pk
(vk+1), where

x(i)k+1 =





0, if |v(i)k+1| <
�

2µ

v(i)k+1, if |v(i)k+1| =
�

2µ

v(i)k+1, if |v(i)k+1| >
�

2µ.

(3.12)

This is in absolute form, we can also change |v(i)k+1| to without

absolute form, v(i)k+1.

4. Check stopping criterion.

If �gk+1� ≤ �, stop. Otherwise, set k = k + 1 and go to Step 2.

We will write the proposed method as follows in our research:

Spectral proximal method which its proximal method is checked with

|v(i)k+1|: Spectral proximal method with absolute;

Spectral proximal method which its proximal method is checked with

v(i)k+1: Spectral proximal method without absolute.
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The convergence properties of the proposed methods have been

established based on standard assumptions provided by Byrd and

Nocedal (1989). To compare the efficiency of the proposed method with

the existing methods, an executable code is developed using Python

software. The benchmarks of the comparison are in terms of the number

of iterations, the number of function calls, and the computational time.

3.4 Convergence Analysis

ϕ(x) = φ(x) + f (x) is the objective function for a sparse optimisation

problem. It is the product of a smooth function f and a nonsmooth

function φ with efficient proximal mapping. By using the proximal

gradient step, the function ϕ can be minimized. In Park et al. (2020), the

convergence of variable metric proximal gradient method (VM-PG) was

investigated.

For penalized non-quadratic problems, the convergence without line

search might not be ensured by VM-PG with diagonal metric in (3.9),

similar to many other BB techniques. As a result, in Algorithm 3, we

employ the line search technique and utilise Hk, which is specified in

(3.9), as an starting metric. In this research, Pk =
1
α Hk.

At xk, the proximal mapping of φ is written as:

proxφ,Pk
(xk − (Pk)

−1� f (xk)) =

argmin
x

�
φ(x) + f (xk) +� f (xk)

T(x − xk) +
1
2
�x − xk�2

Pk

�
,

(3.13)

since f is differentiable and its second order form may be estimated. In

this case, P = Diag(p) (Chouzenoux et al., 2014).
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Definition 3.1. if �� f (x)−� f (y)�2 ≤ L�x − y�2 holds for every x,y ∈ Rn,

then the differentiable function f : Rn → R is L-smooth. Moreover, if

�� f (x) − � f (y), x − y� ≥ m�x − y�2
2 holds for every x,y ∈ Rn, f is

m-strongly convex.

G stands for the matrix of the second derivatives of f . The algorithm

begins with x0 as the starting point. Byrd and Nocedal (1989) provides

the following assumptions, which we will use in our analysis:

Assumption 1. i. The objective function f is twice continuously differentiable.

ii. The level set U = {x ∈ Rn : f (x) ≤ f (x0)} is convex.

iii. There exist positive constants M1 and M2 such that

M1�z�2 ≤ zTG(x)z ≤ M2�z�2, (3.14)

for ∀z ∈ Rn and ∀z ∈ U. This indicates that there has a unique minimizer

x∗ ∈ U for the objective function f .

The smooth part, f will be solved by spectral gradient method. The

details of the proofing have been derived in Sim et al. (2019). In the

lemma below, it states the boundness of �Hk�, where H0 is considered to

represent the identity matrix, I.

Lemma 3.1. Let x0 be an initial point such that f meets Assumption 1 and

H0 = I, where I is the n × n identity matrix. The sequence {�Hk�} is then

bounded by certain positive constants c1 and c2 for Hk defined by (3.9).
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c1 = min
�

1
1 + n(1 − M1)

, M1

�
≤ H(i)

k+1 ≤ max{1, M2} = c2,∀k ≥ 0.

(3.15)

Since Pk =
1
α Hk in Algorithm 3 and hence, Pk > 0.

The convergence analysis for Algorithm 3 is then shown, relying on

the theorems presented in (Park et al., 2020). For sufficiently small

steplength, α < 1
L , the classic proximal gradient method is guaranteed to

converge when f is L-smooth. Even without knowledge of the

Lipschitz, many line searches with backtracking techniques can still

guarantee convergence (Boyd et al., 2004b; Beck and Teboulle, 2009).

The convergence analysis for the VM-PG algorithm is shown by

assuming Pk > 0 and f is L-smooth.

Theorem 3.2. ϕ(xk) converges to the optimal value ϕ∗ for VM-PG in

Algorithm 3, i.e., limk→∞ ϕ(xk) := ϕ∗.

Theorem 3.3. With monotonic line search, the VM-PG with diagonal metric in

Algorithm 3 satisfies,

min
k=1, ..., K

�GPk(xk)�2
(Pk)−1 ≤

2(ϕ(x0)− ϕ∗)
K

, (3.16)

where GPk(xk) ∈ � f (xk) + ∂φ(xk − (Pk)
(−1)� f (xk)) and GPk(xk) = 0 if 0 ∈

∂ϕ(xk).
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Moreover, if f is m-strongly convex, we have

�xk+1 − x∗�2
Pk
≤ (1 − m

p(max)
k

)�xk − x∗�2
Pk

, (3.17)

where p(max)
k = maxi p(i)k .

3.5 Scope of the Numerical Experiments

All the experiments in Chapter 4 are executed with an 8th

Generation Intel Core i7 processor and 12 GB RAM. The executable code

is developed using Python 3.7 software in order to compare the

efficiency of the proposed method, spectral proximal method (SPM)

with other types of proximal gradient methods: Proximal with steepest

descent method (PSD) and proximal with

Broyden-Fletcher-Goldfarb-Shann method (PBFGS).

We choose the initial point x0 ∈ Rn as a vector of ones with n

components. A is a m × n real matrix and b ∈ Rm. The coefficient λ is set

as 1. Tolerance, � is set to be 10−4 and algorithm is terminated when the

stopping criterion is met, �gk+1� ≤ �. We selected the value of the

stopping criterion as a compromise between the demand for fast

termination and the desire for an approximate solution. We also

established a limit on the amount of iterations. The algorithm is forced

to cease running when the number of iterations exceeds its upper limit,

and the method is regarded to have failed to converge. For establishing

an appropriate steplength, we exclusively utilised a backtracking line

search with the Armijo condition (BTA) method in this research. In BTA,

we used c = 0.1 and τlo = τhi = 0.5. The starting step length is set as 1.

51



In Section 4.1 and Section 4.2, the random matrices with dimension

7 × 10, 35 × 50, 70 × 100, 140 × 200 and 350 × 500 are generated. In

every dimension, the condition number is set from 1 to 20. After that, 5

different seeds are generated for each particular dimension and

condition number. In total, there are 500 random matrices are generated.

These experiments will be tested on two different settings of the actual

solution. Elements of the actual solution, x∗ in the first and second

problems are set within the interval of [0,1] and [−1,1] respectively.

Besides that, for both problems, 10% of the elements in x∗ are set to 0.

The backtracking line search with Armijo condition will be tested for

a maximum of 15 iterations in all methods. The maximum number of

iterations to run these experiments is set to be 5000. The parameter µ in

the proximal operator of l0-norm is set as 10−2, 10−4 and 10−6 for each of

the experiment. We assume that the efficiency’s value for the failure run

will be replaced by the maximum value from the particular efficiency

times 60 to show that the solver s has failed to reach the convergence

criterion on problem p.

In Section 4.1, the numerical results from 5 different seeds with the

same dimension and condition number’s random matrices are averaged

and illustrated using the profiles of Dolan and Moré (Dolan and Moré,

2002). Performance profile or profiling graph is defined to evaluate and

compare the performance measure mp,s > 0 of the set of optimisation

solvers s ∈ S on a set of problems p ∈ P . The performance measure is

obtained from each problem p and solver s. The number of iterations,

number of function calls, and the computational time in seconds are the

performance measures of interest. To obtain the performance ratio, we

compare the performance of running solver s on problem p with the
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performance from the best solver on the problem p, that is,

rp, s =
mp, s

min{mp, s : s ∈ S} . (3.18)

The overall assessment of the performance of the solver can be

defined as the cumulative probability of the problems with the

performance ratio rp,s within τ ∈ R. The performance profile of a solver

s is:

P(τ) =
1

np
size{p ∈ P : rp, s ≤ τ}. (3.19)

where np is the total number of problems. The function P(τ) is the

cumulative distribution for the performance ratio rp, s. It is better to use

solvers with high P(τ) values. The value of P(1) is the probability of the

particular solver will outperform the other solvers. The graphs for the

performance profiles are plotted with base-10 logarithm scaling on the

x-axis.

In Section 4.2, the relation between the efficiency and condition

number is investigated. We compared the performance of the proposed

method with the other methods on different condition numbers (from 1

to 20). This is to investigate how the condition number influences the

performance of these methods. The performance metric for each of the

efficiency is calculated, which is the probability of the particular method

having the best performance among 25 sets of data for each of the

condition numbers. The performance metric is the dependent variable

and the condition number is the independent variable. The relations are

illustrated in the graphs.
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Section 4.3 is the application example using MNIST real-world

datasets, which is on handwritten digits recognition (LeCun et al., 1998).

It is commonly used in image processing and also machine learning

fields (Platt, 1999). In our experiment, we used the least square (LR) loss,

�Ax − b�2
2 to estimate all labels (‘0’ - ‘9’) and k number of images are

randomly chosen from the training sets.

We compare our proposed method with other methods for these

highly ill-conditioned data sets. The efficiencies we compared are based

on the norm of gradient, residue, the cumulative computational time

needed in seconds, and the cumulative number of function calls. To

compare the number of function calls, the maximum number of

iterations for the BTA algorithm in all methods is unified to 50. The

maximum number of iterations is set at 10000 and µ is set at 10−6. Other

parameters remain the same as the previous experiments.

The results obtained are averaged among labels (’0’-’9’). To illustrate

the trend and the movement of the efficiency for every increased

iteration, the graphs are plotted with the number of iterations on the

x-axis and the efficiency on the y-axis with base-10 logarithm scaling.

Besides that, we also investigate the sparsity and the stability of the

sparsity by using different proximal gradient methods in the last part of

the next section.
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CHAPTER 4

NUMERICAL RESULTS AND DISCUSSIONS

The numerical experiments are conducted based on the scope of

numerical experiments described in Section 3.5. Simulated data in

Section 4.1 and Section 4.2 are generated from the random matrices with

condition numbers 1 until 20, while data in Section 4.3 comes from

real-life MNIST datasets. In this chapter, we will compare the efficiency

of the proposed method, SPM method with the PSD and the PBFGS

methods. The graphs are plotted to illustrate the comparisons between

the efficiency of these methods. Besides that, the sparsity of the solution

for every experiment is shown in the tables. Sparsity is calculated as the

percentage of zero elements contained in the approximate solution, x∗.

For all the experiments, we used the BTA algorithm as our line search

strategy.

4.1 Profiling and Benchmarking for Spectral Proximal Method

The profiling graphs of the proposed method and existing methods

are shown below:
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1. Test 1: when x∗ ∈ [0,1], and

(a) µ = 10−2

(a) Without absolute (b) With absolute

Figure 4.1: Profiling graph for number of iterations (test 1, µ = 10−2)

(a) Without absolute (b) With absolute

Figure 4.2: Profiling graph for number of function calls (test 1, µ = 10−2)

(a) Without absolute (b) With absolute

Figure 4.3: Profiling graph for computational time in seconds (test 1,
µ = 10−2)
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(b) µ = 10−4

(a) Without absolute (b) With absolute

Figure 4.4: Profiling graph for number of iterations (test 1, µ = 10−4)

(a) Without absolute (b) With absolute

Figure 4.5: Profiling graph for number of function calls (test 1, µ = 10−4)

(a) Without absolute (b) With absolute

Figure 4.6: Profiling graph for computational time in seconds (test 1,
µ = 10−4)
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(c) µ = 10−6

(a) Without absolute (b) With absolute

Figure 4.7: Profiling graph for number of iterations (test 1, µ = 10−6)

(a) Without absolute (b) With absolute

Figure 4.8: Profiling graph for number of function calls (test 1, µ = 10−6)

(a) Without absolute (b) With absolute

Figure 4.9: Profiling graph for computational time in seconds (test 1,
µ = 10−6)

58



In test 1, all components of the actual solution are within the interval

[0,1]. It is worth noticing that, in the case with absolute, the PBFGS

method gradually outperforms the SPM method when µ is getting

smaller. When the sparsity of the solution is increased by setting the

tuning parameter µ = 10−2, the results show that SPM method

outperforms the others. Tables below show the average sparsity of the

solution (%):

Table 4.1: Average sparsity of the solution (test 1, without absolute)

PBFGS PSD SPM

µ = 10−2 16.73 13.60 13.25

µ = 10−4 4.92 6.68 6.68

µ = 10−6 3.74 5.52 5.55

Table 4.2: Average sparsity of the solution (test 1, with absolute)

PBFGS PSD SPM

µ = 10−2 14.80 12.05 11.83

µ = 10−4 1.43 2.64 2.33

µ = 10−6 0.05 0.17 0.09

The results show that the sparsities of the solution from all three

methods are comparable. Overall, by considering the trade-off between

the efficiency of the method and the solution’s sparsity (%), SPM

method has better performance in obtaining a desirable sparse solution.
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2. Test 2: when x∗ ∈ [−1,1], and

(a) µ = 10−2

(a) With absolute

Figure 4.10: Profiling graph for number of iterations (test 2, µ = 10−2)

(a) With absolute

Figure 4.11: Profiling graph for number of function calls (test 2, µ =
10−2)

(a) With absolute

Figure 4.12: Profiling graph for computational time in seconds (test 2,
µ = 10−2)
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(b) µ = 10−4

(a) With absolute

Figure 4.13: Profiling graph for number of iterations (test 2, µ = 10−4)

(a) With absolute

Figure 4.14: Profiling graph for number of function calls (test 2, µ =
10−4)

(a) With absolute

Figure 4.15: Profiling graph for computational time in seconds (test 2,
µ = 10−4)
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(c) µ = 10−6

(a) With absolute

Figure 4.16: Profiling graph for number of iterations (test 2, µ = 10−6)

(a) With absolute

Figure 4.17: Profiling graph for number of function calls (test 2, µ =
10−6)

(a) With absolute

Figure 4.18: Profiling graph for computational time in seconds (test 2,
µ = 10−6)
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In test 2, all the components of the actual solution are within the

interval [−1,1]. There is no result produced for the cases without

absolute. This is because the proximal operator will change all the

negative solutions to 0 and hence, the sparsity is too high and algorithm

is unable to reach an approximate solution (the tolerance, � is

unachievable). While the results with absolute show that PBFGS has the

best performance among the three methods since PBFGS method uses

full rank matrix to approximate the Hessian matrix and hence, it

consists more curvature information. Furthermore, the efficiency of the

SPM method outperforms the PSD method because SPM method

approximates the Hessian matrix with a diagonal matrix and PSD

converges slowly in "zigzags" form towards the minimum point. To

fulfill the objective in this research, the sparsity (%) is highly prioritized.

Hence, table below shows the average sparsity of the solution (%):

Table 4.3: Average sparsity of the solution (test 2, with absolute)

PBFGS PSD SPM

µ = 10−2 17.06 18.34 17.99

µ = 10−4 2.74 5.33 5.06

µ = 10−6 0.35 0.91 0.64

From the Table 4.3, it can be concluded that the average sparsity of

the solution obtained by applying the PSD method and SPM method are

comparable and exceed the one obtained from the PBFGS method.

The performances of these methods are problem-dependent. Overall,

the profiling graphs show that the PSD method requires more iterations

than others. It moves in a zigzaging form whenever the point gets

nearer to the optimum solution. Hence, it takes more steps and has

slower convergence. Besides that, the SPM method uses the fewest
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function calls to get the desired solution. This is mainly due to the SPM

demands fewer function calls in the backtracking line search strategy to

get the optimum step size while the PBFGS method and PSD method

need more function calls to achieve similar outcomes.

PBFGS is well known as not favorable for large dimension problems.

Theoretically, the SPM method requires less computational time per

iteration compared to the PBFGS method. This is because the Hessian

matrix is estimated in the PBFGS method by a full rank matrix with

storage memory O(n2), whereas in the SPM method, the eigenvalues of

the Hessian matrix are approximated by a diagonal matrix with storage

memory O (n). Thus, the SPM method needs less computational time

per iteration due to the requirement of the storage is smaller.

In general, the PBFGS method and SPM method have better

efficiency. However, in terms of sparsity, the PSD method and SPM

method obtained more stable and desirable results. Overall, in

consideration of the efficiencies and the sparsity of the solutions, the

results show that our proposed algorithms are more applicable in

finding the sparse solution for a linear system.

4.2 Sensitivity Analysis on Condition Number

In this section, the same datasets from Section 4.1 are used and the

influences of condition number on the performance of different

variations of proximal gradient algorithms will be looked into. In order

to compare the performance metric on different condition numbers for

the proposed method with other proximal gradient methods, the results

for these comparisons are shown in the graphs below:
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1. Test 1: when x∗ ∈ [0,1], and

(a) µ = 10−2

(a) Without absolute (b) With absolute

Figure 4.19: Sensitivity analysis for number of iterations (test 1, µ =
10−2)

(a) Without absolute (b) With absolute

Figure 4.20: Sensitivity analysis for number of function calls (test 1,
µ = 10−2)

(a) Without absolute (b) With absolute

Figure 4.21: Sensitivity analysis for computational time in seconds (test
1, µ = 10−2)
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(b) µ = 10−4

(a) Without absolute (b) With absolute

Figure 4.22: Sensitivity analysis for number of iterations (test 1, µ =
10−4)

(a) Without absolute (b) With absolute

Figure 4.23: Sensitivity analysis for number of function calls (test 1,
µ = 10−4)

(a) Without absolute (b) With absolute

Figure 4.24: Sensitivity analysis for computational time in seconds (test
1, µ = 10−4)
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(c) µ = 10−6

(a) Without absolute (b) With absolute

Figure 4.25: Sensitivity analysis for number of iterations (test 1, µ =
10−6)

(a) Without absolute (b) With absolute

Figure 4.26: Sensitivity analysis for number of function calls (test 1,
µ = 10−6)

(a) Without absolute (b) With absolute

Figure 4.27: Sensitivity analysis for computational time in seconds (test
1, µ = 10−6)
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2. Test 2: when x∗ ∈ [−1,1], and

(a) µ = 10−2

(a) With absolute

Figure 4.28: Sensitivity analysis for number of iterations (test 2, µ =
10−2)

(a) With absolute

Figure 4.29: Sensitivity analysis for number of function calls (test 2,
µ = 10−2)

(a) With absolute

Figure 4.30: Sensitivity analysis for computational time in seconds (test
2, µ = 10−2)
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(b) µ = 10−4

(a) With absolute

Figure 4.31: Sensitivity analysis for number of iterations (test 2, µ =
10−4)

(a) With absolute

Figure 4.32: Sensitivity analysis for number of function calls (test 2,
µ = 10−4)

(a) With absolute

Figure 4.33: Sensitivity analysis for computational time in seconds (test
2, µ = 10−4)
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(c) µ = 10−6

(a) With absolute

Figure 4.34: Sensitivity analysis for number of iterations (test 2, µ =
10−6)

(a) With absolute

Figure 4.35: Sensitivity analysis for number of function calls (test 2,
µ = 10−6)

(a) With absolute

Figure 4.36: Sensitivity analysis for computational time in seconds (test
2, µ = 10−6)

From the figures shown, the performances of the SPM method and

PBFGS method are comparable when µ = 10−2. It is worth noting that
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figures from methods with absolute show that the SPM method

outperforms the others in solving well-conditioned problems. The SPM

method requires less time and fewer function calls in each iteration.

While the PBFGS method approximates a full rank Hessian matrix

which consists of more information requires fewer number of iterations

to reach the minimum point. Hence, the total computational time and

total function call required for the PBFGS method decline following the

decrease in the total number of iterations.

4.3 Applications

Finally, we evaluate the efficiency of the proposed method by

applying it to a real-life problem. In this section, we compare the

performance of the proposed method with existing methods on each

iteration using ill-conditioned MNIST datasets. The dimension of matrix

A is k × 784, where k is the number of image samples chosen in the

dataset. In this application, we not only apply the SPM method and

other proximal gradient methods to the underdetermined cases, but also

overdetermined cases. Therefore, k is chosen as 500, 1000, and 10000.

Figures below show the performance of these methods in the cases

with different k numbers of image samples. The norm of gradient,

residue, number of function calls, and total computational time in

seconds are all compared between these methods. Here, the residue

plotted is calculated as �Ax − b�2.
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1. When k = 500:

(a) Norm of gradient (b) Residue

(c) Number of function calls (d) Total times

Figure 4.37: Evolutions of the efficiencies with respect to the number
of iterations for k = 500 (MNIST)
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2. When k = 1000:

(a) Norm of gradient (b) Residue

(c) Number of function calls (d) Total times

Figure 4.38: Evolutions of the efficiencies with respect to the number
of iterations for k = 1000 (MNIST)
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3. When k = 10000:

(a) Norm of gradient (b) Residue

(c) Number of function calls (d) Total times

Figure 4.39: Evolutions of the efficiencies with respect to the number
of iterations for k = 10000 (MNIST)

From the figures shown, the PBFGS algorithm outperforms the other

proximal gradient algorithms. Although PBFGS requires a fewer

iterations and computational times than the SPM algorithm, the sparsity

of the solution is undesirable. In this research, our main focus is to

achieve high sparsity in the approximate solution, which necessitates a

low tolerance in order to obtain a satisfactory sparse solution.

Sparsity for each label is calculated as the percentage of zero elements

contained in the solution. We average them among labels (’0’-’9’). The

table below shows the average sparsity of the solution (%):
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Table 4.4: Average sparsity of the solution (MNIST)

PBFGS PSD SPM

k=500 3.13 31.96 56.14

k=1000 0.83 37.29 59.38

k=10000 2.27 66.31 62.80

Table 4.4 shows that the solutions of PSD and SPM have achieved a

desirable sparsity (in most of the cases, SPM has a better sparsity than

PSD). The performance of SPM and PSD in terms of convergence rate

and computational times is very similar for low accuracies of the

solution, as shown in the figures. However, PSD requires more function

calls in the backtracking line-search procedure than SPM. In fact, these

results are problem-dependent, the performance of the algorithms

should always be verified empirically in the specific application.

The stability for the sparsity of the solution is also important. To

verify the stability for the sparsity of these proximal gradient methods,

the figures below are plotted to indicate the sparsity for the solution, xk

at every kth iteration. The x-axis is the kth iteration number and the

y-axis represents the elements of the solution, xk at every kth iteration.

The black block indicates the nonzero element and the white block

indicates the zero element.
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Here, we only show the graphs from labels (’1’, ’5’ and ’9’) with k = 1000:

(a) Label ’1’ (b) Label ’5’ (c) Label ’9’

Figure 4.40: Sparsity of the solutions obtained from the PBFGS method
with respect to the number of iterations for k =1000 (MNIST)

(a) Label ’1’ (b) Label ’5’ (c) Label ’9’

Figure 4.41: Sparsity of the solutions obtained from the PSD method
with respect to the number of iterations for k =1000 (MNIST)

(a) Label ’1’ (b) Label ’5’ (c) Label ’9’

Figure 4.42: Sparsity of the solutions obtained from the SPM method
with respect to the number of iterations for k =1000 (MNIST)

From these figures, we can see that the sparsity of the SPM method

are the highest. In most cases, SPM is a robust method for sparse

optimisation because it can produce higher sparsity and there is less

random switching of the zero elements when the iterative optimisation

procedure performs.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

The l0-norm sparse optimisation involves minimizing l0-norm which

is non-convex and non-smooth. Spectral gradient method was proposed

by Sim et al. (2019). This method generally requires less storage, O(n),

and less CPU time. A new method called spectral proximal method

(SPM) was proposed in this research which incorporating the spectral

gradient method with the proximal method for solving a large-scale

sparse optimisation problem.

The numerical experiments conducted on the simulated datasets

showed that the efficiency for the methods was problem-dependent.

Although the PBFGS method performed better than SPM and PSD in

some problems, but the solutions were not sparse. The proposed

method, SPM showed that it has better efficiency than the PSD method

in finding the sparse solution for a linear system. Furthermore, the

solutions obtained from the SPM method were more stable and sparser.

In real-life applications, these methods have been tested on highly ill-

conditioned MNIST datasets. The results showed that the SPM method

was robust in finding the sparse solution for underdetermined and also

overdetermined linear system problems. Hence, we could conclude that
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this proposed method can be used to solve large-scale and ill-conditioned

problems.

5.2 Future Works

In this research, this method was only applied to least square

regression problems, however, it can also be considered in solving

logistic regression problems. Moreover, the algorithm of the methods

will be terminated when �gk+1� ≤ �, without concerning the sparsity of

the solution. As an alternative, the percentage of the sparsity of the

solution should also be considered as the stopping criterion. Further

improvement of this method might include integrating alternative

backtracking line search algorithms into the algorithm, which could

improve its efficiency even further. We can apply strong Wolfe condition

for monotone line search (Wolfe, 1969, 1971). Moreover, a non-monotone

line search strategy can also be applied onto the SPM method. From the

results shown in Sim et al. (2019), the spectral gradient method with

non-monotone line search is performed better than with monotone line

search.

Besides that, the tuning parameters λ and µ can be further

investigated. The coefficient λ ≥ 0 will give weight to the regularization

term. It balances the weight between the data fidelity term and the

regularization term in the sparse optimisation problem. It needs careful

tuning to avoid data fidelity term becomes too small and leads to

overfitting problem. Components of x∗ can avoid becoming excessively

large by minimizing the sparsity-inducing regularization term, �x�0,

and hence ensuring numerical stability (Antonello et al., 2018). It can be

tuned to a lower value if more weightage is required on the sparsity of

the solution. Conversely, λ can be tuned to a higher value when the
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problem is to emphasize the accuracy of the solution. The tuning

parameter µ for the proximal operator also can be tuned to other values

based on different kinds of problems. It controls the sparsity of the

solution.

This proposed method is useful for supervised learning. Most

investors in the actual world prefer to invest in a limited number of

stocks. It can generate a sparse and stable portfolio model in portfolio

optimisation. In a portfolio selection problem, the l0-norm functions as a

regularisation term for the objective function. This penalty encourages

sparse portfolios with only a few active positions (Dai and Wen, 2018).

Our proposed method can also be further applied to work on

machine learning, neural network, and image processing fields.

Currently, there is a trend in building deeper and larger neural

networks. The number of training parameters is of order of ten of

thousands and requires large memory storage. By applying SPM

method, it will be potentially reduced the memory cost in this kind of

deep neural networks. Hence, we are interesting to study the efficiency

of this method in the neural network. Besides that, for image processing,

inverse problems are involved. The number of pixels in the modern

camera is large, hence, the SPM method can be used to reduce the

memory cost in the sparse optimisation while the cost function tries to

minimize the difference between the inverse model and the image.
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APPENDIX A

RESEARCH DATA AND PYTHON CODE

For data reproducibility, we declare that our data for all the
experiments in Chapter 4 can be accessible through the following links.

• Section 4.1: Profiling and Benchmarking for Spectral Proximal
Method
https://drive.google.com/drive/folders/
1oXGJ-WjDZ-MnNJDfsW0_y2SH4QorkDx5?usp=sharing

• Section 4.2: Influences of Condition Number
https://drive.google.com/drive/folders/
1sPgro2mzEsSStMnm-bCr_vECwYZ-cux8?usp=sharing

• Section 4.3: Applications (MNIST)
https://drive.google.com/drive/folders/
1G4RxMOHg1hKXxS45iiI---bVJ62QPfRh?usp=sharing
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APPENDIX B

FIGURES FOR SPARSITY OF THE SOLUTIONS (MNIST)

Results of the sparsity of the solutions with respect to the number
of iterations for all labels in Section 4.3 are provided through the links
below.

• k = 500:
https://drive.google.com/drive/folders/
1tTIHi9a0hEOqGU5HfzEoEQNcXsjUDfYH?usp=sharing

• k = 1000:
https://drive.google.com/drive/folders/
1AyZR8VZm1GENjBDHvJqGEMJqOOeyacno?usp=sharing

• k = 10000:
https://drive.google.com/drive/folders/
1ECA0YML-FyYWRiAwK-Ru_OtWjBoc-L2r?usp=sharing
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