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ABSTRACT 

 

 

A MODEL DEVELOPMENT AND COMPARISON STUDY ON THE 

MICROWAVE REMOTE SENSING OF SNOW MEDIUM USING A 

COUPLED FINITE ELEMENT METHOD AND METHOD OF 

MOMENT, AND THE RELAXED HIERARCHICAL EQUIVALENT 

SOURCE ALGORITHM 

 

  

 

Hamsalekha a/p A Kumaresan 

 

 

 

 

Active microwave remote sensing is essential to analyze the condition of the 

earth’s terrain by investigating the return of microwaves from the mentioned 

environment. The forward model is crucial to compute the backscattering 

return of the earth terrain under investigation, allowing comparison with the 

satellite data as it can be utilized in the inverse model to retrieve other earth 

terrain parameters. Radiative transfer equation is applied in the active remote 

sensing to calculate the backscattering coefficient for the theoretical model of 

the earth topographies such as vegetation, soil, snow medium and other earth 

terrains. Computational Electromagnetics Method (CEM) is vital to construct 

a more detailed shape of the scatterers and offer a better knowledge of the 

interaction between microwave radiation and the medium by considering the 

coherent effect of the dense snow medium. In this study, the second-order 

radiative transfer equation is incorporated with the theoretical model of the 

snow medium. The investigation is done by integrating two computational 

techniques, which are the coupled Finite Element Method (FEM) and Method 

of Moment (MoM) and the Relaxed Hierarchical Equivalent Source Algorithm 

(RHESA). These CEM generated electric and magnetic fields will be 
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incorporated with the Dense Medium Phase Amplitude Correction Theory 

(DM-PACT). These theoretical models consist of six shapes of scatterers 

which characterize the ice particles in the snow medium. These mentioned 

shapes are sphere, cylinder, peanut, hexagonal column, droxtal and ellipsoid. 

These techniques are used to study the effect of the various incident angles, 

layer thickness and frequencies of the backscattering mechanism. In previous 

investigations, little work has been carried out on the second-order radiative 

transfer equation on various shapes of ice scatterers by incorporating DM-

PACT and Integral Equation Method (IEM) in snow medium. In this research, 

two different CEM techniques are incorporated into six different shapes of ice 

scatterers by incorporating DM-PACT and IEM, and the accuracy of the CEM 

techniques is studied. Through analysis, it is found that the discrepancy of the 

backscattering coefficient generated by coupled FEM/MoM with Mie 

theoretical result is higher than the discrepancy between RHESA and Mie 

theoretical result, especially at higher frequency and layer thickness of snow 

medium. The number of unknowns and the order of basis functions vary 

between these two CEM techniques, and these factors affect the accuracy of 

the results. The accuracy of the backscattering coefficient results generated by 

CEM techniques will be further justified by comparing them with the ground 

truth measurements. Through this research, a suitable CEM technique can be 

chosen for future investigation for other earth terrains such as soil, vegetation 

and different terrains. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background of the Research 

 

Microwave radiometry and radiative transfer are associated with each 

other to study the propagation of the wave in both homogeneous and 

inhomogeneous mediums. Each type of media has a different mechanism of 

wave propagation where the mechanism refers to emission, reflection, 

scattering and the list goes on (Mätzler, 2006) and this theory is widely 

implemented in remote sensing, astrophysics, climate modelling and other 

fields as well (Lessig and L.Castro, 2013). 

 

Microwave remote sensing has a great advantage in the field of remote 

sensing research. It has the capability to penetrate clouds, moistures, dry soils, 

and sand. There are two types of microwave remote sensing which are active 

and passive remote sensing. In active remote sensing, the radiation is provided 

by the active imagers. In passive remote sensing, the thermal emission is 

observed through the radiation of the natural light wave such as sunlight, 

infrared rays and other rays.  (Woodhouse, 2017). 
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In the recent development of microwave remote sensing, CEM plays a 

crucial role, especially in the theoretical modelling of the scatterers. In 

electromagnetics, Maxwell’s equation is the essential equation to solve many 

problems in remote sensors, optics and the list goes on. However, analytical 

Maxwell’s equation is only capable to solve simpler cases such as plane waves 

that are scattered from a sphere. As the geometrical structure of the scatterers 

become complicated, the equations become complex, and they require 

numerical approaches to compute the current and EM fields. 

 

To compute the current and EM fields of the scatterers from a specific 

earth terrain, a suitable scattering mechanism need to be identified. There are 

various scattering mechanisms in the wave propagation such as Rayleigh, 

Raman, and Mie scattering. Rayleigh scattering is also known as elastic 

scattering by the air molecules. In Rayleigh scattering, the size of the 

scatterers is smaller than the wavelength of the radiation, thus the scatterers 

will receive a uniform distribution of electromagnetic field (Piazza and 

Degiorgio, 2005). Unfortunately, the application of Rayleigh scattering theory 

does not take into account the coherent effect of the wave interaction among 

the scatterers. (Tsang et al., 2007).  

 

Mie scattering is an interaction of light with the scatterers where their 

dimension is comparable to the wavelength of the incident wave. This method 

has a greater advantage compared to the Rayleigh scattering as the coherent 

effect of the wave scattering is considered (Platt, Pfeilsticker and Vollmer, 

2007). Therefore, the Mie scattering approach is much more effective to be 
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used for the radiative transfer computation for dense mediums such as snow 

and sea ice medium.  

 

In the Mie computation, various scattering mechanisms need to be 

considered for the snow and sea ice medium. Examples of scattering 

mechanisms are surface scattering, volume scattering and both surface-volume 

scattering.  To compute the coherent effect of the scattered wave involving 

these mechanisms, various approximations and corrections were involved in 

the radiative transfer equation to calculate the coherent effect of the scatterers 

in the dense medium.  For example, QCA focuses on field theory, and it 

computes the effect of coherent scattering with the position of the scatterers 

(West, Gibbs, Tsang and Fung, 1994). 

 

There is another concept that considers the near field effect of the 

scatterers which is known as the DM-PACT where the amplitude and phase 

correction factors are multiplied with the Stokes matrix to compute the 

radiative transfer equation (Ewe and Chuah, 1998). The incorporation of such 

corrections was earlier done for Mie phase matrix computation for spherical 

scatterers in the dense snow and sea ice medium. However, various shapes 

are being developed for the snow scatterers as the Mie phase matrix 

computation is for spherical scatterers and cannot be merely implemented 

to represent scatterers of various shapes in the computation of the 

backscattering coefficient. Therefore, a suitable CEM technique is needed 

to incorporate the Stokes matrix of various shapes of scatterers with DM-
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PACT to take into account the effect of the scattering of the adjacent 

scatterers (Lum, Fu, Ewe and Jiang, 2017). 

 

Multiple types of CEM techniques were used to compute the 

radiative transfer equation for various shapes of scatterers. The CEM 

technique mainly consists of two different types of numerical computations 

which are integral equations (IE) and partial differential equation (PDE) 

(Chew et al., 1997). For example, through Method of Moment (MoM), the 

integral equation is discretized whereas the Finite Difference Time Domain 

(FDTD) and Finite Element Method (FEM) are used to discretize the 

differential equation. Each numerical approach has its own advantages and 

drawbacks, hence lots of research work were done to improvise the 

numerical approach by combining more than one numerical method in 

CEM to increase the computational speed and decrease memory 

requirement.  

 

For example, MoM is known as a unifying principle for a basic 

mathematical technique to reduce functional equations to matrix equations 

(Harrington, 2000). The Multilevel Matrix Decomposition Algorithm 

(MLMDA) disintegrates the MoM matrix into numerous blocks which 

describe the interaction between distant scatterers. (Song, Cai-Cheng Lu and 

Weng Cho Chew, 1997). MoM and MLMDA are CEM methods where it can 

be used to develop and solve Maxwell’s equation and Laplace’s equations. 

Due to the slow speed of MoM computation for large and complex problems, 

MLMDA and Multilevel Fast Multipole Algorithm (MLFMA) are used to 
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increase the speed of dense matrix equation calculation. It is because MLFMA 

decreases the complexity of the problem and memory requirement. 

 

FEM is a numerical approach to compute boundary value problems 

(BVP) as it divides the domain into smaller subdomains which are known as 

finite elements (Polycarpou, 2006). FEM approach is suitable for dielectric 

scatterers and is also used for simple geometrical structures of scatterers. 

However, FEM involves higher computational time to compute complex 

boundaries as it requires time-domain computation (Rylander, Ingelström and 

Bondeson, 2013). FEM approach for a 3-dimension structure confronts vector 

parasites where it may result in incorrect solutions (Sumithra and 

Thiripurasundari, 2017). 

 

Therefore, suitable CEM techniques which hybridize more than one 

numerical approach are needed to incorporate with the radiative transfer 

equations to increase the accuracy of the results and thus can be applied for 

various electromagnetic problems for numerous earth terrain. An appropriate 

hybridized numerical solution not only increases the precision of the result but 

can also reduce the memory requirement and increase the computational 

capacity. Furthermore, this approach has the tendency on handling more 

complex geometries. 
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1.2 Problem Statement 

 

Research on snow medium is crucial to study the impact of global warming on 

snowfall. For example, in Japan, snow cover is the main water reserve despite 

the massive snowfall which could lead to disaster. Unfortunately, due to the 

increase in the air temperature, the depth of the snow medium decreases 

drastically (Hara, Yoshikane, Kawase and Kimura, 2008). Thus, lots of 

information are required to carry the investigation on various aspect of snow 

medium to uncover the problem that we are facing today which is global 

warming. However, due to the low number of remote sensing results, there are 

some constraints to conduct the ecological studies on snow data (Niittynen and 

Luoto, 2017). Therefore, computational electromagnetics application on 

remote sensing is essential to create a forward model of radiative transfer 

equation to obtain the results of backscattering coefficient for snow and sea ice 

medium. These mentioned results are important to retrieve various snow 

parameters such as snow permittivity, snow water equivalent (SWE) and the 

list goes on. For example, SWE is important to determine the effect of the 

environmental temperature and moisture on the snow accumulation. (Durand, 

Molotch and Margulis, 2008).  It is because as the environmental temperature 

increases, the atmospheric moisture decreases, thus causes reduction in 

snowfall. (Hara, Yoshikane, Kawase and Kimura, 2008) 

  

However, a suitable theoretical model for snow medium is needed to 

study the interactions of the electromagnetic wave with the scatterer to obtain 

the accurate result of the backscattering coefficient. Two major aspects of the 
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theoretical model are considered in this research to create a good theoretical 

model for better accuracy of the backscattering coefficient data. The first 

aspect is the geometrical representation of the ice scatterer of snow medium. 

Conventionally, the scatterers of snow medium are assumed to be spherical. 

However, due to the development of remote sensing and computational 

electromagnetic research, different ice scatterers’ shapes are being explored in 

snow medium.  

  

The second aspect of the research is the type of computational 

electromagnetic technique that is being used to justify the accuracy of the data. 

In this research, two types of hybridized CEM method are applied to validate 

the precision of the backscattering coefficient result of snow medium. The two 

CEM techniques are coupled FEM/MoM and RHESA. The backscattering 

coefficient results of these two CEM techniques will be compared and 

analysed as each CEM technique has a different way of numerical approach 

and they may affect the accuracy of the result.  

 

1.3 Objective of the research  

 

The objectives of the research are: 

 

i. To investigate and configure suitable geometrical representation of the 

ice scatterers of snow medium. 
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ii. To develop a theoretical model based on RT theory with the coupled 

FEM and MoM techniques for both spherical and non-spherical shaped 

ice scatterers of snow medium.  

iii. To adapt RHESA in the developed RT theoretical model for improved 

physical model configuration and scattering analysis.  

iv. To validate the improved Radiative Transfer (RT) model by comparing 

backscattering coefficient results with the ground truth data of the 

satellite data.  

 

1.4 Outline of the Dissertation 

 

Chapter Two of the dissertation consists of a literature review and model 

development on second-order RT equation using CEM techniques. This 

literature review covers the concept of radiative transfer and its equations 

which consist of zeroth, first and second-order scattering. The model 

development is presented for both spherical and non-spherical-shaped 

scatterers. The formula of the geometrical representation of non-spherical 

shapes of ice scatterers is included in this chapter. Besides, some of the 

numerical approaches of CEM are explained in this chapter. 

 

In the third chapter of the dissertation, the formulation of the coupled 

FEM/MoM in the RT equation is focused on where concepts and equations of 

FEM and MoM are explained separately. Then, the advantages of coupled 

FEM/MoM are elaborated. Finally, the application of the coupled FEM/MoM 

in RT equations is described in this chapter. In the fourth chapter of the 



9 

 

dissertation, the formulation of RHESA in the RT equation will be explained. 

This chapter covers the EPA and DDM and further focuses on RHESA.  

 

In the fifth chapter, the backscattering coefficient of snow medium 

with various parameters is generated using two CEM techniques. These results 

are compared with each other and further compared with Mie theoretical 

results to study the accuracy of the CEM techniques and the suitability of 

shapes of the scatterers for snow medium. 

 

In Chapter Six, the comparison of the theoretical data with the ground 

truth measurement is presented to validate the accuracy of the theoretical 

results for different shapes of ice scatterers of snow medium. Finally, the 

research is concluded in Chapter Seven. Additionally, the limitations that were 

encountered in this research are described in the dissertation, along with some 

suggestions for the development of the study.  
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CHAPTER 2 

 

LITERATURE REVIEW AND MODEL DEVELOPMENT ON 

SECOND-ORDER RT EQUATION USING CEM TECHNIQUES 

 

2.1 RT Equation 

 

According to Subrahmanyan Chandrasekhar, the radiative transfer (RT) 

equation represents various radiation processes in a medium such as 

absorption, emission and as well as scattering process (Chandrasekhar, 1989).  

RT equation was applied in the study of the effect of the multiple scattering 

through a foggy atmosphere. Schuster defined the atmosphere as “foggy” as 

the molecules of a homogeneous material can scatter and spread to all bodies 

(Marzano, 2014; Schuster, 1905). Tsang explained that the wave propagation 

is different for a random and deterministic medium where the phase and 

amplitude need to be computed in respect of probability densities and 

statistical averages for the random medium (Ishimaru, 2005). Through the 

knowledge of the RT equation, it can be applied to various fields especially in 

active remote sensing for numerous earth terrain. A forward theoretical model 

is developed for countless earth terrain and the RT equation is used to 

compute the backscattering coefficient of the topography. The results of the 

backscattering coefficient of snow medium can be used to retrieve some 
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important parameters such as depth of the snow, density, SWE and other 

information (Zhu et al., 2018). 

A conventional RT theory was applied to compute the backscattering 

return for earth terrain by assuming that the scatterers are independent of each 

other. Shin et al. studied the scattering of spherical scatterers that are 

embedded in a homogeneous medium and layered by the homogeneous half-

space by implementing the Rayleigh scattering model in the second-order RT 

equation. The backscattering cross-sections per unit area were computed by 

using both numerical and iterative methods. 

 

A radiative wave equation was used to compute the backscattering 

return from the dense medium as the assumption of sparse medium is not 

applicable. Thus, the radiative wave equation was computed based on the 

QCA by incorporating it with coherent potential (CP) (Tsang and Ishimaru, 

1987). The reason QCA-CP is implemented in the radiative wave theory is 

that the energy is conserved better than in the conventional radiative transfer 

equation. Thus, the former can also be called dense medium radiative transfer 

(DMRT). There are several advantages of DMRT over the conventional sparse 

radiative transfer equation. The scattering by neighbouring particles is 

considered and the intensities of the multiple scattering are taken into account. 

Furthermore, the energy has conversed in this mentioned DMRT equation 

(Wen, Tsang, Winebrenner and Ishimaru, 1990). 

 

To improve the accuracy of the result, a phase matrix that comprises 

both phase and amplitude corrections were used to compute the scattering 
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coefficient of the scatterers embedded in the electrically dense medium. The 

phase correction is based on the antenna array concept where the total electric 

field of the electrically dense medium is equal to the sum of the scattered 

electric field of the scatterers with the incorporation of the array phase 

correction factor (Fung, Tsuatja, Bredow and Chuah, 1995). The phase 

correction factor was further developed for non-spherical scatterers such as 

ellipsoid and disk-shaped scatterers to calculate the backscattering coefficient 

of the vegetation medium. In this case, three types of corrections were 

considered to increase the accuracy of the result which are the amplitude, 

array phase and Fresnel correction (Ewe and Chuah, 2000). 

 

2.2 Second-Order RT Equation for Snow Medium 

 

The incorporation of mentioned corrections was done for Mie phase matrix 

computation for spherical scatterers in the dense snow and sea ice medium.   

 

Figure 2.1 Physical configuration of snow medium 
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𝜃𝑖 and 𝜃𝑠 represent the incident and scattered angles respectively. Z represents 

the vertical axis of the medium.  

The second-order radiative transfer equation is written as in equation 2.1. 

cos 𝜃
𝑑𝐼 ̅

𝑑𝑧
=  −𝜅̿𝑒 𝐼 ̅ + ∫ 𝑃̿𝐼 ̅ 𝑑Ω 

(2.1) 

 

where 𝐼 ̅is the Stokes matrix that represents the intensity of the wave, 𝑃̿ and 𝜅̿𝑒  

represents the phase and extinction matrix correspondingly (Ewe and Chuah, 

2000). 

The phase matrix, 𝑃̿ can be described as shown in equation 2.2. 

𝑃̿(𝜃, ∅; 𝜃′, ∅) = ⟨|Ψ|2⟩𝑛 ∙ 𝑆̿ = [
𝑃𝑣𝑣    𝑃𝑣ℎ

𝑃ℎ𝑣    𝑃ℎℎ
] 

(2.2) 

 

〈|Ψ|2〉𝑛 is an effective number density for the dense medium and 𝑆̿ is the 

Stokes matrix of a single scatterer. 𝑃𝑝𝑞 represents the phase matrix and the 

subscripts v and h denote vertical and horizontal polarizations. The phase 

matrix, 𝑃̿ links the Stokes parameters of incident and scattered rays in the 

random medium. The Stokes matrix, 𝑆̿ can be expressed as (Chuah, Tjuatja, 

Fung and Bredow, 1996). 𝜃 and ∅ are the polar and azimuth angles which are 

based on Gaussian quadrature points. 

 

𝑆̿ =
𝑑2𝜂

|𝐸𝑜|2
Re [

(𝐸𝑣
𝑠𝐻ℎ

𝑠∗
)
𝑣−𝑖𝑛𝑐

    (𝐸𝑣
𝑠𝐻ℎ

𝑠∗)ℎ−𝑖𝑛𝑐

−(𝐸ℎ
𝑠𝐻𝑣

𝑠∗
)
𝑣−𝑖𝑛𝑐

    − (𝐸ℎ
𝑠𝐻𝑣

∗∗
)
ℎ−𝑖𝑛𝑐

] 
 (2.3) 
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where 𝑑 is an expression for the average distance between the scatterers which 

can also be written as  

𝑑 = (
𝑣𝑜

𝑣𝑓
)

1
3

 

(2.4) 

 

 

𝑣𝑜 and 𝑣𝑓 are the volume of the scatterer and the volume fraction of the 

scatterers per unit volume respectively. The Stokes parameters of an 

elliptically polarized plane wave, 𝐸̅ = (𝐸𝑣𝑣 + 𝐸ℎℎ̂)𝑒−𝑗𝑘̅𝑟̅ can be expressed as 

four components of the Stokes vector.  

𝐼𝑣𝑑Ω =  
⟨|𝐸𝑣|

2⟩

𝜂
 

𝐼ℎ𝑑Ω =  
⟨|𝐸ℎ|2⟩

𝜂
 

𝑈𝑑Ω =
2

𝜂
Re(𝐸𝑣𝐸ℎ

∗⟩ 

𝑉𝑑Ω =  
2

𝜂
𝐼𝑚⟨𝐸𝑣𝐸ℎ

∗⟩ 

 

(2.5) 

 

where 𝐼𝑣 and 𝐼ℎ are specific intensity of vertical and horizontal polarization, 𝑈 

and 𝑉 are the relationships between the two polarizations respectively. 𝑑Ω and 

𝜂 are the differential solid angle where the wave travels through and intrinsic 

impedance of the medium respectively.  

 

From equation 2.1, the extinction coefficient, 𝐾̿𝑒 can be described as 

the addition of the scattering coefficient, 𝐾̿𝑠 and absorption coefficient, 𝐾̿𝑎. 

Thus, the mentioned formula can be described as the volume extinction 

coefficient which is written as shown in Equation 2.6. 
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𝐾̿𝑒 = 𝐾̿𝑠 + 𝐾̿𝑎 (2.6) 

 

The absorption coefficient, 𝐾̿𝑎 for p polarization, is also described as the 

absorption loss in an inhomogeneous medium where it can be described as in 

Equation 2.7 (Fung, 1994). 

𝐾̿𝑎𝑝 = 2𝑘𝑜|𝐼𝑚√𝜀𝑎𝑝| (2.7) 

 

where 𝜀𝑎𝑝 and 𝑘𝑜 are average relative permittivity of the medium and free-

space wavenumber respectively.  

 

The scattering coefficient, 𝐾̿𝑠 is the multiplication of the total scattered power 

of the scatterer with the number of the scatterers per unit volume, 𝑛𝑜.  

𝐾̿𝑠𝑝(𝜃𝑖 , 𝜙𝑖) = 𝑛𝑜 ∫  
2𝜋

0

∫  
𝜋

0

(𝑆𝑣𝑝 + 𝑆ℎ𝑝)sin 𝜃𝑠𝑑𝜃𝑠𝑑𝜙𝑠 
(2.8) 

  

Where 𝑝 and 𝑆 are the polarization and the component of the Stokes matrix 

respectively. For spherical scatterers, the scattered EM fields are computed 

analytically using the Mie scattering formulation. Consider a sphere with 

relative permittivity 𝜀𝑟 = 𝜀′ − 𝑗𝜀′′ where the incidence wave travelling in +𝑧̂ 

direction toward the sphere with radius a. The permeabilities of the sphere and 

background medium are set to µ.  
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Figure 2.2 Incident wave for the geometry of a single spherical scatterer 

 

As shown in Figure 2.2 the electric and magnetic fields are given by  

𝐸̅𝑖 = 𝑥̂𝐸𝑜𝑒
−𝑗𝑘𝑧   (2.9) 

𝐻̅𝑖 = 𝑦̂
𝐸𝑜

𝜂
𝑒−𝑗𝑘𝑧 

(2.10) 

where 𝑘 = 𝜔√𝜇𝜀  and 𝜂 = √𝜇/𝜀  .  The time dependence term, 𝑒𝑗𝜔𝑡 was used 

for the electric and magnetic field equations.  

 

The electric and magnetic fields from the sphere are described in Equations 

2.11 and 2.12. (Hulst, 1981) 

 

𝐸̅𝑠 = 𝐸𝑜 ∑  

∞

𝑛=1

(−𝑗)𝑛
(2𝑛 + 1)

𝑛(𝑛 + 1)
{−𝑏𝑛𝑚̅𝑜𝑙𝑛

(3)
− 𝑗𝑎𝑛𝑛̅𝑒𝑙𝑛

(3)
} 

(2.11) 

𝐻̅𝑠 =
𝐸𝑜

𝜂
∑  

∞

𝑛=1

(−𝑗)𝑛
(2𝑛 + 1)

𝑛(𝑛 + 1)
{𝑎𝑛𝑚̅𝑒𝑙𝑛

(3)
− 𝑗𝑏𝑛𝑛̅𝑜𝑙𝑛

(3)
} 

(2.12) 
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where 𝑎𝑛 and 𝑏𝑛 are the Mie coefficient that corresponds to the amplitudes 

that are produced by oscillations due to the excitation of the incident wave in 

the sphere (Fung, 1994; Hulst, 1981). 

 

𝑎𝑛 =
√𝜀𝑟𝐽𝑛

′ (𝑢)𝐽𝑛(𝑣) − 𝐽𝑛(𝑢)𝐽𝑛
′ (𝑣)

√𝜀𝑟[𝐻̂𝑛
(2)(𝑢)]

′

𝐽𝑛(𝑣) − 𝐻̂𝑛
(2)(𝑢)𝐽𝑛′ (𝑣)

 
(2.13) 

𝑏𝑛 =
√𝜀𝑟𝐽𝑛(𝑢)𝐽𝑛

′ (𝑣) − 𝐽𝑛(𝑢)𝐽𝑛(𝑣)

√𝜀𝑟[𝐻̂𝑛
(2)

(𝑢)]𝐽𝑛′ (𝑣) − [𝐻̂𝑛
(2)

(𝑢)]𝐽𝑛(𝑣)
 

(2.14) 

 

Where 𝑢 = 𝑘𝑎, 𝑣 = 𝑘√𝜀𝑟𝑎 = 𝑘𝑠𝑎. 𝐽𝑛(𝜑) and 𝐻̂𝑛
(2)

(𝜑) are the Ricatti-Bessel 

function and Ricatti-Hankel function of the second kind respectively. Prime 

symbol represents the differentiation to the argument. The o and e of the 

spherical vector wave function 𝑚̅𝑒𝑙𝑛
(3)

 and 𝑛̅𝑜𝑙𝑛
(3)

 represent the even and odd and 

can be stated as the Hankel function of sphere of the second kind ℎ𝑛
(2)

(𝑘𝑟) and 

Legendre polynomials 𝑃𝑛
𝐼(cos 𝜃). This is further expressed as (Fung, 1994): 

 

𝑚̅𝑜
(3)

𝑒𝑙𝑛 = ±𝜃
1

sin 𝜃
ℎ𝑛

(2)
(𝑘𝑟)𝑃𝑛

𝐼(cos 𝜃)sin𝜙
cos𝜙

− 𝜙̂ℎ𝑛
(2)

(𝑘𝑟)

∂

∂𝜃
{𝑃𝑛

𝐼(cos 𝜃)}cos𝜙
sin𝜙

 

 

(2.15) 

𝑛̅𝑜
(3)

𝑒𝑙𝑛 = 𝑟̂
𝑛(𝑛 + 1)

𝑘𝑟
ℎ𝑛

(2)
(𝑘𝑟)𝑃𝑛

𝐼(cos 𝜃)sin 𝜙

𝜃
1

𝑘𝑟

𝑑𝑦

𝑑(𝑘𝑟)
{𝑘𝑟ℎ𝑛

(2)
(𝑘𝑟)}

∂

∂𝜃
{𝑃𝑛

𝑙(cos 𝜃)}cos𝜙
sin𝜙

𝜙̂
1

𝑘𝑟 sin 𝜃

𝑑

𝑑(𝑘𝑟)
{𝑘𝑟ℎ𝑛

(2)(𝑘𝑟)}𝑃𝑛
𝑙(cos 𝜃)sin𝜙

cos𝜙

 

 

(2.16) 
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Where r is the range of the scattered fields are determined.  

 

The detailed transformation of the coordinate system of the scattered field 

components can be found in (Fung and Eom, 1985) and (Fung, 1994).  

 

The integrodifferential of Equation 2.1 is derived iteratively up to 

second order, where various sources of scattering are obtained. The bistatic 

scattering which correlates the scattering intensities to the incident intensities 

is shown in Equation 2.17. 

𝜎𝑝𝑞(𝜃𝑠, 𝜙𝑠′𝜃𝑖 , 𝜙𝑖) = 𝜎𝑝𝑞(0) + 𝜎𝑝𝑞(1) + 𝜎𝑝𝑞(2) (2.17) 

Where p and q represent the scattered and incident field polarizations 

respectively. As shown in Equation 2.17, the right-hand side bistatic scattering 

are arranged according to zeroth, first and second-order solutions where they 

are labelled by the number in the bracket. (𝜃𝑖 , 𝜙𝑖) and (𝜃𝑠, 𝜙𝑠) represent the 

incident and scattered directions respectively. 

 

The contribution of each term is given as (Fung,1994): 

𝜎𝑝𝑞(0) = 𝜎𝑝𝑞
𝑠 = 𝜎𝑝𝑞

𝑠𝑙 + 𝜎𝑝𝑞
𝑠2 (2.18) 

𝜎𝑝𝑞(𝐼) = 𝜎𝑝𝑞
𝑣𝑠(𝑚 → 𝑠2) + 𝜎𝑝𝑞

𝑣𝑠(𝑠2 → 𝑚) + 𝜎𝑝𝑞
𝑣 (𝑢𝑝, down) (2.19) 

𝜎𝑝𝑞(2) = 𝜎𝑝𝑞
𝑣 (𝑢𝑝, 𝑢𝑝, down ) + 𝜎𝑝𝑞

𝑣 (𝑢𝑝, down, down ) (2.20) 

 

Equation 2.18 represents the surface scattering terms, where s, s1 and s2 

represent the total scattering term, scattering from top surfaces and bottom 

surfaces respectively. Equation 2.19 is the 1st order scattering term where vs 

and v represent the volume-surface and volume scattering terms respectively. 
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(𝑚 → 𝑠2) implies the volume to bottom surface scattering term whereas 

surface to bottom scattering term. (up, down) represents the single volume 

scattering terms. Equation 2.20 represents the double volume scattering terms 

where (up, up, down) and (up, down, down) represent the scattering direction 

of the incident wave.  

 

2.2.1  Surface Scattering  

 

As explained in Equation 2.18, there are two contributions of scattering which 

represent the top and bottom surfaces.  

 

 

 

 

 

Figure 2.3    From left to right: Top and ground surface scattering  

 

Bistatic single-scattering coefficient for top and ground surfaces which are the 

zeroth-order solution is given as: 

𝜎𝑝𝑞
𝑠1(𝜃𝑠, 𝜙𝑠′ , 𝜃𝑖 , 𝜙𝑖) = 𝜎𝑝𝑞

𝑜1(𝜃𝑠, 𝜙𝑠 , 𝜃𝑖 , 𝜙𝑖) 

(2.21) 

𝜎𝑝𝑞
𝑠2(𝜃𝑠, 𝜙𝑠, 𝜃𝑖 , 𝜙𝑖) = cos 𝜃𝑠𝑇1𝑡𝑝(𝜃𝑠, 𝜃𝑡𝑠)𝑇𝑡1𝑞(𝜃𝑡𝑖, 𝜃𝑖)

sec 𝜃𝑡𝑠𝐿𝑝(𝜃𝑡𝑠)𝐿𝑞(𝜃𝑡𝑖)𝜎𝑝𝑞
𝑜2(𝜃𝑡𝑠, 𝜙𝑡𝑠 , 𝜃𝑡𝑖 , 𝜙𝑡𝑖)

 (2.22) 
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Where 𝜎𝑝𝑞
𝑜1 and 𝜎𝑝𝑞

𝑜2 are the top and bottom surfaces’ bistatic scattering 

coefficient, which is based on the integral equation method (IEM) rough 

surface model (Ewe, Chuah and Fung, 1998). For a randomly rough surface 

model, many surface parameters such as root mean square (RMS) surface 

slope, wave spectrum and other parameters need to be considered to compute 

the boundary scattering. The advantage of IEM over the Kirchhoff model 

(KM) and Small Perturbation Model (SPM) is that IEM can be used for the 

wavelength irrespective of any surface geometric scale (Liu, Li and Weng, 

1999). In contrast, SPM restricts the wavelength of the incident wave to be 

way much longer than the RMS height whereas the KM requires the incident 

wavelength to be shorter than the surface curvature radius (Liu and Li, 2002).  

 

𝜃𝑠 and 𝜃𝑖  are the scattered and incident polar angle in the air. 𝜃𝑡𝑠  and 𝜃𝑡𝑖  are 

scattered and incident polar angles in the random layer through Snell’s law. 

The T and L terms are labelled as the transmissivity and attenuation through 

the layer respectively. The attenuation through the random layer can be further 

elaborated as shown in Equation 2.23. 

𝐿𝑢(𝜃) = exp[−𝐾𝑒𝑢(𝜃)𝑑𝑙 sec 𝜃] 
(2.23) 

where 𝐾𝑒𝑢 and 𝑑𝑙 are the volume extinction coefficient and layer thickness 

respectively.  
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2.2.2  Surface-Volume Scattering  

 

Figure 2.4 illustrates the surface-volume scattering which comprises of the 

scattering from volume to the ground surface (Surface 2) and the scattering 

from the bottom surface (Surface 2) towards the volume. 

 

Figure 2.4 From left to right: Volume to surface 2 scattering and surface 2 to 

volume scattering  

 

The surface-volume scattering equations which consist first-order solution are 

further derived as shown in Equation 2.24 and 2.25: 

𝜎𝑝𝑞
𝑣𝑠(𝑚 → 𝑠2) =

cos 𝜃𝑠𝑇1𝑡𝑝(𝜃𝑠, 𝜃𝑡𝑠)𝑇𝑡1𝑞(𝜃𝑡𝑖, 𝜃𝑖)𝐿𝑝(𝜃𝑡𝑠)sec 𝜃𝑡𝑠

∫  
2𝜋

0

𝑑𝜙 ∫  

𝜋
2

0

sin 𝜃 sec 𝜃𝑑𝜃

∑  

𝑢=𝑣,ℎ

𝜎𝑝𝑢
𝑠2(𝜃𝑡𝑠 , 𝜙𝑡𝑠; 𝜋 − 𝜃, 𝜙)𝑃𝑢𝑞(𝜋 − 𝜃, 𝜙; 𝜋 − 𝜃𝑡𝑖 , 𝜙𝑡𝑖)

𝐿𝑢(𝜃) − 𝐿𝑞(𝜃𝑡𝑖)

𝐾𝑒𝑞(𝜃𝑡𝑖)sec 𝜃𝑡𝑖 − 𝐾𝑒𝑢(𝜃)sec 𝜃

 (2.24) 
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𝜎𝑝𝑞
𝑣𝑠(𝑠2 → 𝑚) =

cos 𝜃𝑠𝑇𝐼𝑡𝑝(𝜃𝑠, 𝜃𝑡𝑠)𝑇𝑡𝑙𝑞(𝜃𝑡𝑖 , 𝜃𝑖)𝐿𝑞(𝜃𝑡𝑖)sec 𝜃𝑡𝑠

∫  
2𝜋

0

𝑑𝜙 ∫  

𝜋
2

0

sin 𝜃 sec 𝜃𝑑𝜃

∑  

𝑢=𝑣,ℎ

𝑃𝑝𝑢(𝜃𝑡𝑠, 𝜙𝑡𝑠; 𝜃, 𝜙)𝜎𝑢𝑞
𝑠2(𝜃, 𝜙; 𝜋 − 𝜃𝑡𝑖 , 𝜙𝑡𝑖)

𝐿𝑝(𝜃𝑡𝑠) − 𝐿𝑢(𝜃)

𝐾𝑒𝑢(𝜃)sec 𝜃 − 𝐾𝑒𝑝(𝜃𝑡𝑠)sec 𝜃𝑡𝑠

 
(2.25) 

 

𝑃𝑢𝑞  and 𝜎𝑝𝑢
𝑠2  are the phase matrix of the ice scatterers of the snow medium and 

the scattering from the bottom surface respectively.  

 

2.2.3      Volume Scattering  

 

As shown in Figure 2.5, there are two order solutions in this volume scattering 

mechanism. The up, down, down, and up, up, down scattering are classified as 

second-order solutions whereas the direct volume scattering is classified as 

first-order solutions.  

Figure 2.5  From left to right: (Up, down down), (up, up, down) and direct 

volume scattering  

 



23 

 

The volume scattering mechanism is further derived as shown in Equation 

2.26 up to 2.28.  

𝜎𝑝𝑞
𝑣 (𝑢𝑝, down) =

4𝜋cos 𝜃𝑠𝑇𝐼𝑡𝑝(𝜃𝑠, 𝜃𝑡𝑠)𝑇𝑡1𝑞(𝜃𝑡𝑖 , 𝜃𝑖)sec 𝜃𝑡𝑠

𝑃𝑝𝑞(𝜃𝑡𝑠, 𝜙𝑡𝑠′ ; 𝜋 − 𝜃𝑡𝑖 , 𝜙𝑡𝑖)

1 − 𝐿𝑝(𝜃𝑡𝑠)𝐿𝑞(𝜃𝑡𝑖)

𝐾𝑒𝑝(𝜃𝑡𝑠)sec 𝜃𝑡𝑠 + 𝐾𝑒𝑞(𝜃𝑡𝑖)sec 𝜃𝑡𝑖

 (2.26) 

𝜎𝑝𝑞
𝑣 (𝑢𝑝, 𝑢𝑝, down) =

4𝜋cos 𝜃𝑠𝑇1𝑡𝑝(𝜃𝑠, 𝜃𝑡𝑠)𝑇𝑡𝑙𝑞(𝜃𝑡𝑖, 𝜃𝑖)sec 𝜃𝑡𝑠

∫  
2𝜋

0

𝑑𝜙 ∫  

𝜋
2

0

sin 𝜃 sec 𝜃𝑑𝜃

∑  

𝑢=𝑣,ℎ

{
𝑃𝑝𝑢(𝜃𝑡𝑠, 𝜙𝑡𝑠; 𝜃, 𝜙)𝑃𝑢𝑞(𝜃, 𝜙; 𝜋 − 𝜃𝑡𝑖 , 𝜙𝑡𝑖)

𝐾𝑒𝑞(𝜃𝑡𝑖)sec 𝜃𝑡𝑖 + 𝐾𝑒𝑢(𝜃)sec 𝜃

[
1 − 𝐿𝑝(𝜃𝑡𝑠)𝐿𝑞(𝜃𝑡𝑖)

𝐾𝑒𝑝(𝜃𝑡𝑠)sec 𝜃𝑡𝑠 + 𝐾𝑒𝑞(𝜃𝑡𝑖)sec 𝜃𝑡𝑖
+

𝐿𝑞(𝜃𝑡𝑖)[𝐿𝑢(𝜃) − 𝐿𝑝(𝜃𝑡𝑠)]

𝐾𝑒𝑢(𝜃)sec 𝜃 − 𝐾𝑒𝑝(𝜃𝑡𝑠)sec 𝜃𝑡𝑠
]}

 (2.27) 

𝜎𝑝𝑞
𝑣 (𝑢𝑝, 𝑑𝑜𝑤𝑛, down) =

4𝜋cos 𝜃𝑠𝑇𝐼𝑡𝑝(𝜃𝑠, 𝜃𝑡𝑠)𝑇𝑡1𝑞(𝜃𝑡𝑖 , 𝜃𝑖)sec 𝜃𝑡𝑠

∫  
2𝜋

0

𝑑𝜙 ∫  

𝜋
2

0

sin 𝜃 sec 𝜃𝑑𝜃

∑  

𝑢=𝑣,ℎ

{
𝑃𝑝𝑢(𝜃𝑡𝑠 , 𝜙𝑡𝑠; 𝜋 − 𝜃, 𝜙)𝑃𝑢𝑞(𝜋 − 𝜃, 𝜙; 𝜋 − 𝜃𝑡𝑖 , 𝜙𝑡𝑖)

𝐾𝑒𝑝(𝜃𝑡𝑠)sec 𝜃𝑡𝑠 + 𝐾𝑒𝑢(𝜃)sec 𝜃

[
1 − 𝐿𝑝(𝜃𝑡𝑠)𝐿𝑞(𝜃𝑡𝑖)

𝐾𝑒𝑝(𝜃𝑡𝑠)sec 𝜃𝑡𝑠 + 𝐾𝑒𝑞(𝜃𝑡𝑖)sec 𝜃𝑡𝑖
+

𝐿𝑝(𝜃𝑡𝑠)[𝐿𝑢(𝜃) − 𝐿𝑞(𝜃𝑡𝑖)]

𝐾𝑒𝑢(𝜃)sec 𝜃 − 𝐾𝑒𝑞(𝜃𝑡𝑖)sec 𝜃𝑡𝑖
]}

 (2.28) 

 

The (up, down, down) mechanism is where the incident wave is scattered 

towards the first scatterer and the transmitted wave of the first scatterer will be 

scattered downward to the second scatterer before being scattered to the 

Surface 1. Whereas, the (up, up, down) mechanism is where the incident wave 

is scattered towards the first scatterer and the transmitted wave of the first 

scatterer will be scattered upward to the second scatterer before being 

scattered to the Surface 1. Lastly, the (up, down) mechanism is the single 
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volume scattering term that involves only one scatterer where the incident ray 

is scattered upward on the way to the Surface 1 by the scatterer.  

 

2.3 Application of CEM Technique in RT Equation of Microwave 

Remote Sensing  

 

Initially, the second-order radiative transfer equation with the incorporation of 

DM-PACT and IEM were only done on spherical scatterers in the dense snow 

and sea ice medium. Using the spherical shaped ice scatterers to replace the 

non-spherical scatterers in snow medium was to reduce the computational time 

and complex equations (Grenfell and Warren, 1999). Still, the shapes of the 

ice scatterers affect the result of the backscattering coefficient of the snow 

medium. The scattering property of the ice scatterer of the snow medium is the 

major factor to compute the snow albedo. There is a need to investigate the 

scattering properties of non-spherical ice scatterers in order to obtain accurate 

results of snow albedo to calculate the backscattering coefficient of snow 

medium (Tanikawa et al., 2006).  

 

 Non-spherical scatterers are needed to be used to compute the second-

order radiative transfer equation for snow medium as they undergo 

complicated morphologies such as polycrystals and aggregates (Xie et al., 

2006).  Due to temperature change, snow on the ground confronts continuous 

condensation, sublimation and structural changes that lead to metamorphism 

(Pinzer and Schneebeli, 2009). However, it is difficult to derive equations for 
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the arbitrary shapes of these theoretical models to compute the backscattering 

coefficient as they involve lots of computational time. 

 

 There have been some research works done on the non-spherical 

scatterers to compute second-order radiative transfer equations for snow 

medium with multiple CEM. Therefore, CEM techniques are important to 

compute the backscattering coefficient and retrieve other parameters for the 

arbitrary shapes of the theoretical model of the earth terrain especially the 

snow and sea ice medium. Maxwell’s equation of the complex shapes of the 

theoretical models can be computed using various numerical approaches 

generated by the CEM techniques (Tsang, Ding, Huang and Xu, 2013). In 

previous research, there are various numerical approaches that were applied in 

the analysis of the backscattering coefficient of snow and sea ice medium.  

 

 Discrete Ordinates Radiative Transfer (DISORT) was used to compute 

the snow reflectance properties for five shapes of ice scatterers which are the 

hexagonal solids, hollow columns and plate, bullet rosettes and aggregates. In 

this mentioned investigation, the wavelength affects the bidirectional 

reflectance of the snow (Xie et al., 2006). 

 

 Xu implemented the FEM in the computation of the Total and 

Scattered-Field Decomposition (TSFD) for layered sea ice (Xu, Brekke, 

Doulgeris and Melandsø, 2018). A two-dimensional surface of the sea ice was 

constructed, and the total and scattered fields are formulated using the FEM 

technique. FEM is a numerical approach that is based on the partial 
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differential equation. TSFD is a method where the incident wave is imprinted 

to the connecting boundary which is located between the total and scattered 

field (Liu et al., 2010). This mentioned FEM theoretical model was 

investigated to study the scattering effect from the subsurface of the sea ice 

with the roughness of the ice-water interface and penetration depth. These 

results were compared with MoM and Small Perturbation Model (SPM). The 

accuracy of the FEM model is influenced by the mesh size of the subdomains. 

The mesh size needed to be smaller than 𝜆/5 to produce accurate data 

compared to other numerical approaches. 

 

 Besides, FDTD method was used to compute the scattering effect of 

the complex shapes of ice scatterer of cloud by another researcher. The shapes 

under investigation were hexagonal column and plate and also the stellar 

crystal. FDTD is capable to compute the scattering effect of the arbitrarily 

shaped particle and high frequencies were used to compute the polarimetric 

and extinction cross-section of the scatterers in the cloud (Tang and Aydin, 

1995). 

 

 In addition, there were several numerical approaches that were applied 

to compute the scattering effect of the snow and sea ice medium for the 

forward model of microwave remote sensings such as Discrete Dipole 

Approximation (DDA) (Draine and Flatau, 1994), conjugate gradient-fast 

Fourier Transform (CG-FFT) (Liao and Sassen, 1994) and Generalized 

Multiparticle Mie (GMM) (Xu, 1995). However, these CEM techniques 

involve high computational time and are limited to the small size of scatterers 
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and small frequencies. Therefore, more research works need to be done to 

resolve these issues and obtain high accuracy in the results generation. 

 

2.4 Model Development on Second-Order RT Equation using CEM 

Techniques 

 

In this study, six shapes of ice scatterers of snow medium which are sphere, 

peanut, ellipsoid, cylinder, hexagonal column and droxtal will be used to 

compute the second-order RT equation to calculate the backscattering 

coefficient of the snow medium.  

 

 Mie scattering formulation is used to compute the phase matrix of 

spherical shaped single scatterer where the electrical and magnetic field of the 

scatterer can be calculated as shown in Eq 2.9 to 2.16. The calculated EM field 

is further used in a single scatterer's Stokes matrix computation, as shown in 

Eq 2.3.  

  

 Once the horizontal and vertical components of the Stokes matrix for 

the single scatterer are calculated, the phase matrix for the dense snow 

medium is calculated by multiplying the effective number density with the 

Stokes matrix of the single scatterer as presented in Eq 2.2. The size of the 

scatterers in the snow medium is fixed to the same volume to reduce the 

computational memory. Through this mentioned computation, the 

backscattering coefficient of the snow medium is obtained, and the 

backscattering coefficient results are analyzed through graphical data to study 
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the scattering mechanism of the snow medium. The scattering mechanism 

from each contribution, such as surface, surface-volume and volume 

scattering, can be studied through graphical data analysis. Hence, the 

backscattering coefficient results are analyzed with various snow parameters 

such as different layer thickness, incident angles, frequencies and volume 

fraction of snow medium.  

  

 The model development of the second-order RT equation for 

arbitrarily shaped scatterers is different from that of the spherical scatterers 

that were computed using the Mie formulation. Coupled FEM/MoM from 

FEKO software and RHESA play a significant role in calculating the Stokes 

matrix of arbitrary shaped single scatterer by generating the horizontal and 

vertical components of EM far fields.  

  

 The orientation of non-spherical scatterers in snow medium is set to 

the z-axis to reduce the 16 nonzero elements of the scattering matrix to 4 

nonzero elements. It can be explained through the derivations of equations 

(Chan Fai, 2018). 

 

 The vertical and horizontal scattered electric field components can be 

computed by multiplying the scattering amplitude, 𝑆𝑝𝑞 with the vertical and 

horizontal incident field components respectively, 𝐸𝑣
𝑖  and 𝐸ℎ

𝑖  shown in Eq 

2.29. 
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[
𝐸𝑣

𝑠

𝐸ℎ
𝑠] =

𝑒𝑗𝑘𝑅

𝑅
[
𝑆𝑣𝑣 𝑆𝑣ℎ

𝑆ℎ𝑣 𝑆ℎℎ
] [

𝐸𝑣
𝑖

𝐸ℎ
𝑖 ] 

(2.29) 

 

𝑅 is the distance between the centre of the of the focused area to the 

observation point and is the wave number. 

Through the relation of Eq 2.29 with Eq 2.5, the stokes matrix, M can be 

obtained as shown in Appendix A. 

 

As the non-spherical shaped scatterers in this investigation are having 

rotational symmetry, the scattering matrix, M is further reduced to eight 

nonzero elements. It is because the angular scattering is not considered in the 

computation as they are fixed to z-axis. 

[

𝑆11 𝑆12 0 0
𝑆21 𝑆22 0 0
0 0 𝑆33 𝑆34

0 0 𝑆43 𝑆44

] 

(2.30) 

 

In the backscattering computation of snow medium, the scatterers are 

assumed to be isotropic where in each set of computation, the ice scatterers in 

the snow medium are considered to have the same shapes. Therefore, the 

phase matrix in Eq 4 is further reduced to 2 × 2 matrix to resembles the 

computation of the spherical scatterers in the snow medium.  
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 Table 2.1: List of shapes of ice scatterers and the dimension of the geometries 

Shapes The geometry of the shapes 

Dimension of the 

geometries 

Cylinder 

 

𝑉 = 𝜋𝑟2ℎ 

 

Peanut 

 

 

𝑎 = 𝑙 − 2𝑟 
𝑦 = 𝑎 

𝑦′ = −𝑎 

Note: y and y’ represent the 

coordinate of the upper and 

lower spheres of the peanut 

shape. The volume of the 

peanut shape will be 

computed using the CAD 

software after the geometric 

modelling. 
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Ellipsoid 

 

𝑉 =
4

3
 𝑎 ∙ 𝑏 ∙ 𝑐 

 

Hexagonal 

column 

 

𝑉 =  
3√3

2
𝑎2ℎ 

 

Droxtal 

 

 

𝐷 = 2𝑅
𝑎1 = 𝑅sin 𝜃1𝑎2 = 𝑅sin 𝜃2

𝐿1 = 𝑅cos 𝜃1𝐿2 = 𝑅cos 𝜃2

𝜃1 = 32.35∘𝜃2 = 71.81∘

 

 

𝑉 = [(𝐿1 + 2𝐿2 + ℎ)𝑎2
2

−ℎ𝑎1
2]√3

ℎ =
𝑎1(𝐿1 − 𝐿2)

𝑎2 − 𝑎1

 

 

 

 

 

 As shown in Table 2.1, these non-spherical shapes of the ice-scatterers 

are categorized as rotationally symmetric particles. The surface of the cylinder 
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is not as smooth as the spherical scatterers as they have rectangular edges 

where they may affect the scattering property (Mishchenko, Travis and 

Macke, 1996)  and thus affect the backscattering return of the snow medium. 

Furthermore, Lum designed a peanut-shaped ice scatterer which may result 

from the sintering and metamorphism process (Lum, Fu, Ewe and Jiang, 

2017). Besides, the aspect ratio of the ellipsoid may affect the backscattering 

coefficient results of the snow medium. Thus, it is important to set the aspect 

ratio of the ellipsoid by equating its volume with the volume of the spherical 

scatterer (Du, Shi and Rott, 2010). 

 

 For the hexagonal shape of the ice scatterer of snow medium, there are 

two types of ice crystals; hollow and solid columns. Hollow columns of 

hexagonal-shaped ice scatterer are produced in a substantially supersaturated 

condition. Whereas, the solid column is formed in an equilibrium state 

(Magono, 1962). In this investigation, a solid column is chosen as it matches 

the volume of the spherical scatterer. On the other hand, droxtal shapes can be 

found in the arctic ice fog where the edge of these scatterers was initially 

smoothened where the scatterers were considered to be nearly spherical. 

However, as many similar images are being captured in the cirrus 

microphysical investigation, it is later called a quasi-sphere and this shape was 

used in the RT equations for snow medium. Various faces and the sharpness of 

the droxtal’s edge makes the geometry of the droxtal more complex than the 

hexagonal column, thus affecting the backscattering coefficient of the snow 

medium (Yang et al., 2003).  However, this shape is utilized for the 

investigation of the backscattering coefficient of the snow medium. 
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 Therefore, these shapes are being used in this investigation to calculate 

the backscattering coefficient of snow medium and compare their results to 

validate the theoretical model of the snow ice scatterers by using the two 

different CEM techniques.  

 

 Far electric fields for single scatterer are calculated using FEKO 

software and RHESA computation separately and the array correction factor is 

incorporated into the far electric field to produce the coherent EM field of 

Stokes matrix as shown in Equations 2.2 and 2.3 in Chapter 2. The number of 

incident and scattered angles are set based on the contribution terms. For 

example, phase matrix computation for single scatterer, the number of 

scattered far electric field is set to 16 Gaussian quadrature, where the total 

number of far field is 256.  

 

 Although FEKO and RHESA approaches are different where the 

FEKO software focuses on FEM computation and RHESA focuses on MoM 

and EPA solution, both CEM techniques emphasise reducing the number of 

unknowns, thus reducing the computational memory and increasing the speed 

of the calculation of the backscattering coefficient for snow medium. The 

numerical approach of both CEM techniques will be further discussed in the 

next chapters. 
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Figure 3.1  The flow chart of theoretical modelling of the scattering from snow 

medium 

 

2.5 Summary  

 

A general literature review and an introduction to the RT equation are 

included in this chapter. The second-order RT-PACT model for spherical and 

non-spherical ice scatterers for snow medium is presented. The equations for 

zeroth, first and second-order and the application of IEM and PAC on the RT 
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equations are discussed. The model development of the CEM techniques on 

RT equations is also explained in this chapter.  

 The equations and geometrical representations of the five non-

spherical scatterers are also introduced. In addition, recent research efforts in 

applying CEM in RT equations for microwave remote sensing are also 

described. Chapter Five discusses the numerical approach of coupled 

FEM/MoM in detail.  
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CHAPTER 3 

 

DEVELOPMENT OF RT MODEL WITH COUPLED FEM/MOM 

 

3.1 FEM 

 

FEM is a differential equation solver, and it is being utilized in various fields 

such as electromagnetics, acoustics, fluid dynamics, structural mechanics and 

the list goes on (Rylander, Ingelström and Bondeson, 2013). FEM can be 

derived from two perspectives which are the variational analysis and the 

CHR(PDE) of Maxwell’s equations (Davidson, 2011). The role of FEM is to 

fragmentize the large region into simple geometries. Thus, the larger domain 

is discretized into small elements and the problem can be easily solved. 

(Baltzis, 2009) 

 

Augustyniak listed several advantages of FEM in the application of 

electromagnetic problems (Augustyniak and Usarek, 2016). For example, 

FEM simulation permits the generation of the results for various types of 

variables and criteria. Furthermore, FEM can easily measure and retrieve 

various electromagnetic parameters in solid geometry. Besides, it is 

timesaving to utilize FEM to measure the electric and magnetic field of the 

experimental specimen and it is also able to generate the contour plot of the 

field which is readily available in many commercial software. FEM is also 
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able to handle complex geometries such as the unstructured mesh. Commonly, 

the meshes consist of triangles and tetrahedra shapes. For three dimensional 

geometries, tetrahedral meshes are used for the curved objects. (Rylander, 

Ingelström and Bondeson, 2013). 

 

T.H Kwon (Tai, 2005) proposed the basic steps of the FEM as shown 

in the list below: 

 

1. The governing mathematical equation is initialized which is commonly 

dealt with in the form of a differential equation.  

2. A weak form of the integral equation is introduced which can be the 

variational approach or the weighted residual approach.  

3. The object under the experiment is discretised into the elements.  

4. An approximation of the field variable is presented over the 

segmentized element.  

 

Figure 3.1 The nodal value and the interpolation function of the field 

variable 

The equation is written as: 

𝜑(𝐱) = 𝑁1(𝐱)𝜑1 + 𝑁2(𝐱)𝜑2 + 𝑁3(𝐱)𝜑3 (3.1) 
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where 𝜑𝑖 and 𝑁𝑖 are the nodal values and the interpolation function 

respectively.  

5. The integral form of each element is computed, and the global matrix 

equation is gathered.  

6. The matrix equation is solved to obtain the unknowns and the final 

values are computed from the approximate solution.  

 

Briefly, FEM can be mathematically written as: 

𝑓 =  ∑𝑎𝑛ℎ𝑛

𝑁

𝑖=1

 

(3.2) 

where 𝑓 is an unknown functional that needs to be calculated and ℎ𝑛 and 𝑎𝑛  

are the basis functions and unknown coefficients respectively. 

 

The weighting function is written as: 

𝑊 = ∑ 𝑤𝑚

𝑀

𝑚=1

 

(3.3) 

 

where 𝑤𝑚 is knowns weight function.  

An inner product for the two-dimensional problem can be defined as  

⟨𝑎, 𝑏⟩ = ∬ 
𝑆

𝑎𝑏 𝑑𝑆 
(3.4) 

 

A linear system will be produced after an inner product of equation (3.1) is 

formed with equation (3.2).   
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⟨𝑤𝑚, 𝐿𝑎𝑛ℎ𝑛⟩ (3.5) 

where 𝐿 is known as the differential operator. 

 

The main benefit of the FEM method compared to other numerical 

approach is that it creates a sparse matrix with NFEM unknowns which needs 

lesser computational memory (George, 1976) and can generate a high amount 

of mesh. 

 

3.2 MoM 

 

MoM is an electromagnetic solver that handles surface and volume integral 

equations based on frequency domain. Unlike other numerical approaches, 

MoM discretizes the surface and volume of the scatterer, thus this mentioned 

numerical approach is utilised in the scattering and radiation problems 

(Gibson, 2015). Therefore, the MoM numerical approach replaces the 

radiating structure with the equivalent currents, hence it is referred to as the 

surface currents (Davidson, 2011).  

 

There are two types of numerical approaches in solving MoM in 

electromagnetic problems. They are referred to as the eigenvalue and 

deterministic problems. The former approach is a linear functional equation 

where the computation of the electromagnetic quantity is a direct method. The 

deterministic approach is the computation of the Eigen solution where the 



40 

 

nontrivial solution parameter is calculated first before determining the Eigen 

solutions (Ney, 1985). 

 

The determinist equation of Method of Moment (MoM) can be written 

as: (Harrington, 1987) 

𝐿{𝑓(𝑥)} = 𝑔(𝑥) (3.6) 

 

where 𝐿 is a linear operator, 𝑔(𝑥) is a known operator and 𝑓(𝑥) is the operator 

that needs to be determined. 

𝑓(𝑥) can be further calculated as the expansion the summation of N weighted 

basis functions’ series which can be described as 

𝑓 =  ∑ 𝑎𝑛𝑓𝑛

𝑁

𝑛=1

 

(3.7) 

 

Where 𝑎𝑛 is an unknown weighting function that needs to be calculated and 𝑓𝑛 

are the basis functions. 

 

The substitution of the equation (3.7) and weighting functions, 𝑤𝑚 lead 

to the equation: 

∑ 𝑎𝑛⟨𝑤𝑚, 𝐿(𝑓𝑛)⟩ =

𝑁

𝑛=1

⟨𝑤𝑚, 𝑔⟩ 
(3.8) 

 

This finalized equation can be written in the matrix form  

𝑍̅ ∙ 𝐼 = 𝑉 (3.9) 
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where 𝑍̅, 𝐼 and 𝑉 are known as the impedance matrix, vector of unknown 

coefficient and excitation vector respectively. (Fu, Jiang and Ewe, 2016). 

Equate equation (3.8) and (3.9) to become: 

𝑍̅ = 𝑍𝑚𝑛 = ⟨𝑤𝑚, 𝐿(𝑓𝑛)⟩ (3.10) 

and 

𝑉 = 𝑉𝑚 = ⟨𝑤𝑚, 𝑔⟩ (3.11) 

 

  

In the eigenvalue approach, the MoM technique implements the matrix 

eigenvalue equation to solve problems in electromagnetics. Although the 

eigenvalue approach uses the same procedure as the deterministic equation, 

the former method is more complicated and various iterative schemes needed 

to be implemented. The derivation of the eigenvalue approach can be referred 

to in (Ney, 1985). 

 

3.3 Comparison between FEM and MoM 

 

Although FEM and MoM approaches look similar in the basic numerical 

analysis level, different algorithms are implemented in their approach. FEM 

method is based on the differential operator whereas the MoM method is 

based on the integral equation where the former has lots of zero in the matrix 

entries. Thus, FEM is called the sparse matrix whereas the MoM is referred to 

as the dense matrix (Davidson, 2011). 
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The steps for applying FEM and MoM on electromagnetic problems 

(Bhobe, Holloway and Piket-May, 2001) are listed in Table 3.1 where the 

differences of the steps are summarized. 

 

Table 3.1: The steps of FEM and MoM applied in the electromagnetic 

problem.   

No. 

of 

steps 

Finite Element Method Method of Moment 

1 The domain of the scatterer is 

discretized into subdomains. 

The integral equation of the system 

is derived.  

2 The interpolation functions are 

selected. 

The discretization of the integral 

equation is converted into the 

matrix equation. 

3 The system of the equations is 

formulated. 

The matrix elements are evaluated.  

4 The solution of the equations is 

computed. 

The matrix equation is solved, and 

the parameter of interest is gained.  

 

 

3.4 Coupled FEM/MoM 

 

Commercial software such as FEKO has many advantages such as 

geometrical modelling, user-friendly interface to initialize the direction of 

the multiple numbers of plane waves and the scattered electric and 
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magnetic fields. There are also options to choose the numerical solution to 

compute the electric and magnetic fields such as FEM, MoM, Physical 

Optics (PO) and the list goes on depending on the size of the geometrical 

structures (Altair Engineering Inc, 2015). 

 

In this research, FEKO software is used to compute the electric field 

of the scatterers to compute the second-order backscattering coefficient of 

the snow ice medium for all spherical and non-spherical scatterers. In this 

software, coupled FEM/MoM numerical solution is chosen as the 

advantages of both FEM and MoM can be utilized in the computation of 

the scattered electric fields of the scatterers (Jakobus et al., 2008) 

 

The novelty of this study is to incorporate the coupled FEM/MoM with 

DM-PACT and IEM to investigate the backscattering coefficient of snow 

medium through second-order RT computation. In previous research, different 

CEM techniques were utilized in the computation of the scattering properties 

of the scatterers in snow medium. For example, droxtal and hexagonal shaped 

scatterers were not used in the investigation of snow medium, especially when 

comes to this mentioned CEM technique. 

 

The accuracy of the backscattering coefficients of snow medium using 

coupled FEM/MoM can be investigated and the suitability of this CEM 

technique can also be studied. In future, this investigation can aid for the 

scattering analysis of other earth terrains such as soil, vegetation and other 

terrains.  
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Figure 3.2 Various numerical approach applications based on the 

complexity and electrical size in FEKO software (Altair Engineering Inc, 

2015). 

 

 PDE of FEM has a major drawback where it is unable to effectively 

produce an unrestrained radiating structure.  It is crucial to create an absorbing 

outer surface boundary of the meshed area to create an unbounded geometry 

(Ali, Hubing and Dreniak, 1997). Thus, a boundary integral is needed to 

truncate the unbounded problem of the theoretical model of the scatterer (Ilic, 

Djordjevic, Ilic and Notaro, 2009).  

 

In FEKO software, FEM numerical approach is integrated with the 

MoM technique to enhance the efficiency of the computation. This hybrid 

technique is implemented in FEKO software to prevent termination problems 

due to the radiation state application in the open area (Sumithra and 

Thiripurasundari, 2017). 
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Figure 3.3   Illustration of the system that consists of the dielectric region and 

open region 

 

As shown in Figure 3.3, the system is disintegrated into two parts; 

FEM is employed to the dielectric locality whereas the MoM is utilized to the 

outer locality (Ilic, Djordjevic, Ilic and Notaro, 2009). FEKO software 

implements an outward-looking method where the MoM part is solved in the 

beginning and serves as the FEM part’s boundary condition (Jakobus et al., 

2008). Therefore, this technique can decrease the requirement of 

computational memory per process and decrease the run time by employing 

several parallel processes to distribute the capacity of the computation 

(Jakobus, Bingle, van Tonder and Marais, 2008). 

 

3.5 Formulation of Coupled FEM/MoM 

 

According to Silvester (Silvester and Ferrari, 1996) and Davidson, (Davidson, 

2011), the formulation of the coupled FEM/MoM starts with Maxwell’s curl 

equation. The phasor form of Maxwell’s curl equation is described as 

𝛻 × 𝑬 = −𝑗𝜔𝜇0𝜇𝑟𝑯 − 𝑲𝑖𝑛𝑡 (3.12) 
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𝛻 × 𝑯 = 𝑗𝜔𝜖0𝜖𝑟𝑬 + 𝑱𝑖𝑛𝑡 (3.13) 

 

Where 𝑲𝑖𝑛𝑡 and 𝑱𝑖𝑛𝑡 represent the sources of electric and magnetic fields 

respectively. 𝑬 and 𝑯 the total resultant field. 𝜖𝑟 and 𝜇𝑟 represent the relative 

permittivity and permeability respectively.  

 

 

Figure 3.4 The configuration of the radiation and scattering mechanism 

(Silvester and Ferrari, 1996) 

  

From Figure 3.4, consider the internal region as Ω whereas Ωext is the external 

region. The finite element discretization of the above equations will lead to the 

matrix equation of (Davidson, 2011): 

[𝐴]𝐸{𝑒} + [𝐵]𝐸{ℎ}𝑆 = {𝑐}𝐸 (3.14) 

 

The superscript 𝐸 represents the electric field as the main variable, whereas 

the matrices [𝐴] and [𝐵] represent the FEM matrix that resulted from the 

volume’s bilinear functional and surface’s Neumann boundary condition 
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respectively. Vector {𝑒} and {ℎ} are the unknown coefficients of the volume’s 

electric field and closure’s magnetic field respectively. Lastly, the vector {𝑐} 

represents the current sources towards the volume.  

 

This expression is further elaborated as: 

𝐴𝑖𝑗
𝐸 = &∫  

Ω

{𝜇𝑟
−1(∇ × 𝑁⃗⃗ 𝑖) ⋅ (∇ × 𝑁⃗⃗ 𝑗) − 𝑘2𝜖𝑟𝑁⃗⃗ 𝑖 ⋅ 𝑁⃗⃗ 𝑗}𝑑Ω, ∀𝑖 and 𝑗

= 1,… ,𝑁 

(3.15) 

𝐵𝑖𝑗
𝐸 = 𝑗𝑘𝜂∮

𝑆
𝑁⃗⃗ 𝑖 ⋅ (𝑁⃗⃗ 𝑗 × 𝑛̂)𝑑𝑆, ∀𝑖 = 1,… ,𝑁, 𝑗 = 1, … , 𝑁𝑆         (3.16) 

𝑐𝐸 = −∫  
Ω

𝑁⃗⃗ 𝑖 ⋅ {𝑗𝑘𝜂𝑱int + ∇ × (𝜇𝑟
−1𝐾⃗⃗ int)}𝑑Ω, ∀𝑖 = 1, … , 𝑁 

(3.17) 

 

where 𝑁⃗⃗ 𝑖 and 𝑁⃗⃗ 𝑗 represent the element shape functions where there are 𝑁 + 𝑁𝑆 

degrees of freedom. A supplementary control is needed to relate the surface 

magnetic fields with volumetric electric fields.  

 

The derivation of electric field integral equation (EFIE) and Magnetic 

Field Integral Equation (MFIE) with the boundary S in the MoM 

representation is given as: 

𝐸⃗ (𝑟 ) = 𝐸⃗ inc(𝑟 ) + ∮
𝑆
(∇ × 𝐺̿(𝑟 , 𝑟 ′) ⋅ {𝑛̂′ × 𝐸𝑆(𝑟 

′)}

−𝑗𝑘𝜂𝐺̿(𝑟 , 𝑟 ′) ⋅ {𝑛̂′ × 𝐻𝑆(𝑟 
′)})𝑑𝑆′

 (3.18) 

 

𝐻⃗⃗ (𝑟 ) = 𝐻⃗⃗ inc(𝑟 ) + ∮
𝑆
(∇ × 𝐺̿(𝑟 , 𝑟 ′) ⋅ {𝑛̂′ × 𝐻𝑆(𝑟 

′)}

+
𝑗𝑘

𝜂
𝐺̿(𝑟 , 𝑟 ′) ⋅ {𝑛̂′ × 𝐸𝑆(𝑟 

′)}) 𝑑𝑆′
 (3.19) 
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𝐺̿ and 𝑛̂′ represent the dyadic free space Green function and normal which is 

directed outward respectively. In a more compact equation, it can be written 

as: 

−𝐸⃗ + 𝐿𝑒1
𝑆 (𝐸⃗ 𝑠 × 𝑛̂′) + 𝐿𝑒2

𝑆 (𝐻⃗⃗ 𝑠 × 𝑛̂′) + 𝐸⃗ inc(𝑟 ) = 0 (3.20) 

 

The equation can be discretised in the form of the Galerkin procedure as 

shown in equation 3.21. 

[𝐵]𝑀{𝑒}𝑆 + [𝑃]𝐸{𝑒}𝑆 + [𝑄]𝐸{ℎ}𝑆 + {𝑦}𝐸 = 0 (3.21) 

 

[𝐵]𝑀 is the same as the [𝐵]𝐸 in equation 3.16 except the notation 𝑗𝑘𝑛 is 

replaced with −𝑗𝑘/𝑛. The other matrices are written as: 

𝑃𝑖𝑗
𝐸& = 𝑗

𝑘

𝜂
∮

𝑆
𝑁⃗⃗ 𝑖 ⋅ {𝐿𝑒1

𝑆 (𝑁⃗⃗ 𝑗 × 𝑛̂) × 𝑛̂}𝑑𝑆 
(3.22) 

𝑄𝑖𝑗
𝐸& = 𝑗

𝑘

𝜂
∮

𝑆
𝑁⃗⃗ 𝑖 ⋅ {𝐿𝑒2

𝑆 (𝑁⃗⃗ 𝑗 × 𝑛̂) × 𝑛̂}𝑑𝑆 
(3.23) 

𝑦𝑖
𝐸& = 𝑗

𝑘

𝜂
∮

𝑆
𝑁⃗⃗ 𝑖 ⋅ (𝐸⃗ inc × 𝑛̂)𝑑𝑆 

(3.24) 

 

Thus, the equation can be discretised to produce: 

[𝐵]𝐸{ℎ}𝑆 + [𝑃]𝑀{ℎ}𝑆 + [𝑄]𝑀{𝑒}𝑆 + {𝑦}𝑀 = 0 (3.25) 

 

Equations 3.21 and 3.22 are solved to eliminate {ℎ}𝑆 in terms of {𝑒}𝑆 and 

substituted into Equation 3.14. 
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3.6 Methodology of Coupled FEM/MoM in RT Equation 

 

The far electric field is computed from the above approach using FEKO 

software and the array correction factor is incorporated into the far electric 

field to create the near field effect of the Stokes matrix. The phase matrix for 

FEKO is described as: 

𝑃̿ = 〈|𝛹|2〉𝑛 ∙
1

|𝐸0| 
2 ∙ [

(𝐸𝑉
𝑠 × 𝐸𝑉

∗𝑠)𝑣−𝑖𝑛𝑐 (𝐸𝑉
𝑠 × 𝐸𝑉

∗𝑠)ℎ−𝑖𝑛𝑐

−(𝐸𝐻
𝑠 × 𝐸𝐻

∗𝑠)𝑣−𝑖𝑛𝑐 −(𝐸𝐻
𝑠 × 𝐸𝐻

∗𝑠)ℎ−𝑖𝑛𝑐
] 

(3.26) 

 

E𝑠 denotes the scattered electric respectively. H and V in the subscript of the 

electric field represent horizontal and vertical polarization respectively. 𝐸0 is 

the incident electric field’s amplitude. FEKO generated electric far-field’s unit 

is Volt (V). 

 

The FEKO simulation is utilized for the first and second-order 

scattering of snow medium. For zeroth-order surface scattering, the 

mechanism involves direct computation of the RT equation and does not 

require far-field scattering simulation from the FEKO software as there is no 

scatterer involved. 16 Gaussian quadrature points are used to calculate the 

phase matrix of the scattered angle.  
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Figure 3.5: Example of the far field simulation for phase matrix of spherical 

scatterer from FEKO software.  

 

In FEKO simulation, the geometries are constructed using CADFEKO 

and the far electric fields at various scattered angles are computed, compiled 

and applied in the Stokes matrix of RT equation for the calculation of the 

backscattering coefficient of snow medium as shown in Figure 3.5. 

 

After all the far electric fields of the scatterer are generated in FEKO 

software, these data are collected and employed in Stokes matrix of Radiative 

Transfer equation for the calculation of the backscattering coefficient for 

various parameters and will be compared with Mie scattering model and 

satellite data. The flow chart of the methodology is simplified as shown in 

Figure 3.6. 
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Figure 3.6 Flow chart of RT-Coupled FEM/MoM of the theoretical model of 

snow medium 
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3.7 Summary 

 

The formulation of FEM and MoM and the application of coupled FEM/MoM 

in the RT equation is discussed in this chapter. In the next chapter, the 

formulation of RHESA is presented where the formulation of EPA and 

spherical equivalence surface are explained in detail.  
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CHAPTER 4 

 

DEVELOPMENT OF RT MODEL WITH RHESA 

 

Dielectric objects are preferred to be modelled with the volume integral 

equation (VIE) for electromagnetic computation (Li, Zhuang and Chen, 2018). 

Unfortunately, as the electrical size of the scatterer increases, this mentioned 

technique produces a huge number of unknowns due to the discretization of 

the volume of the scatterer (Fu, Jiang and Ewe, 2016). Furthermore, Method 

of Moment (MoM) is difficult to be applied in the radiation and scattering 

computation for a larger volume of scatterers as it requires high computational 

memory and time.  

 

There are lots of development to compute the radiation for a larger size 

of scatterers and decrease the computational time such as Fast Multipole 

Algorithm (FMA) and Multilevel Fast Multipole Algorithm (MLFMA). For 

example, FMA is responsible for accelerating the matrix-vector computation 

in the integral equation of the EM problem. Unfortunately, the Green’s 

function’s convergence is high, particularly at low frequency. Thus, it 

undergoes a low-frequency breakdown as it could not obtain the evanescent 

waves (Xia et al., 2018).  
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4.1 Equivalent Principle Algorithm 

 

The Equivalent Principle Algorithm (EPA) is introduced to solve the large 

electrical sized three-dimensional scatterers. EPA is focused on Domain 

Decomposition Method (DDM) where it disintegrates the main domain into 

several subdomains. Hence, the convergence of the iterative solver is faster. 

(Tiryaki, 2010) The DDM of the EPA technique transfers the unknowns of the 

elements to the unknowns on the equivalent surface that surrounds the 

scatterers (Li and Chew, 2007). 

 

EPA is based on the Huygens’ Principle where fields within or out of a 

closed surface are decided by tangential factor of the fields on the exterior. 

 

Figure 4.1 Huygens’ principle: The tangential component of the field on 

the surface  

 

EPA computes the EM problems by isolating a complex and huge 

problem into numerous basic components of the bodies with arbitrary shapes 

and each part is confined with the equivalent surface (Tiryaki, 2010). In this 

research, the EPA method will be used to calculate the phase matrix which is 
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shown in equation 4.1. The EPA method consists of three major steps, outside-

in propagation, solving for the current on the object, and the inside-out 

propagation. 

 

Figure 4.2 The major three steps in equivalence principle operator: From 

left to right: Outside-in propagation, current solver and inside-out propagation 

 

In the first step which is known as the outside-in propagation, the 

equivalent sources on the equivalent surfaces will replace the original sources 

that produce incident electric and magnetic fields, Einc and Hinc. In the second 

step, the electric current on the object will be calculated using MoM and this 

step is known as the current solver. Finally, a null field will be produced inside 

the equivalence surface and an original scattered field will be produced 

outside of the equivalence surface (Li, 2007). The formulation of the EPA is 

discussed in the next subsection.  

 

4.1.1 Formulation of EPA  

 

The formulation of the EPA (Li, 2007) starts from the electrical and magnetic 

field formulation as shown in Equation 4.1. 



56 

 

𝑬(𝒓) = 𝛻 × ∮
𝑆
𝑑𝑆′𝑔(𝒓 − 𝒓′)𝒏̂(𝒓′) × 𝑬𝑆(𝒓

′)

−
1

𝑖𝜔𝜖
𝛻 × 𝛻 × ∮

𝑆
𝑑𝑆′𝑔(𝒓 − 𝒓′)𝒏̂(𝒓′) × 𝑯𝑆(𝒓

′)

= −𝛻 × ∮
𝑆
𝑑𝑆′𝑔(𝒓 − 𝒓′)𝑴𝑆(𝒓

′)

−
1

𝑖𝜔𝜖
𝛻 × 𝛻 × ∮

𝑆
𝑑𝑆′𝑔(𝒓 − 𝒓′)𝑱𝑆(𝒓

′)

= 𝐾𝐸𝑀
𝑆 (𝒓, 𝒓′)𝑴𝑆(𝒓

′) + 𝐿𝐸𝐽
𝑆 (𝒓, 𝒓′)𝑱𝑆(𝒓

′)

 

(4.1) 

 

The formula of the magnetic field is given as: 

𝐇(𝐫) = −𝐾𝐻𝐽
𝑆 (𝐫, 𝐫′)𝐉𝑆(𝐫

′) − 𝐿𝐻𝑀
𝑆 (𝐫, 𝐫′)𝐌𝑆(𝐫

′) (4.2) 

 

From Equation 4.1 and 4.2, 𝐌 = −𝐧̂ × 𝐄, 𝐉 = 𝐧̂ × 𝐇 and Green’s function in 

the surrounding medium is given as 𝑔(𝐫 − 𝐫′). 

 

The electric and magnetic field equations as shown in Equations 4.1 

and 4.2 are decomposed from the whole domain into subdomains with the 

equivalence currents on the subdomains’ surfaces. These Equations 4.1 and 

4.2 are derived using the domain decomposition method. As mentioned in the 

previous section, there are three steps. These three steps can be described in 

Equation 4.3 (Chan Fai, 2018). 

 

[

𝐉𝑠
sca

1

𝜂
𝐌𝑠

𝑠𝑐𝑎] = [
−𝑛̂′ × 𝐾

−
𝑙

𝜂
𝑛̂′ × 𝐿

] ⋅ [𝑍̅]−𝑙 ⋅ [−𝐿    − 𝜂𝐾] ⋅ [

𝐉𝑠
𝑖𝑛𝑐

1

𝜂
𝐌𝑠

𝑠𝑐𝑎] 

(4.3) 

[
−𝑛̂′ × 𝐾

−
𝑙

𝜂
𝑛̂′ × 𝐿] is the inside-out operator, [𝑍̅]−𝑙 is the current solver and 

[−𝐿    − 𝜂𝐾] is the outside-in operator. 
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Although EPA serves lots of advantages in the term of computational 

memory and run time, as the equivalent surface is too near (Tiryaki, 2010), the 

accuracy level is being reduced due to the representation of basis function and 

it causes difficulty in the numerical computation (Fu, Jiang and Ewe, 2016). 

 

4.2 Relaxed Hierarchical Equivalent Source Algorithm (RHESA) 

 

4.2.1 Spherical Equivalence Surface 

 

As shown in Figure 4.2, the equivalence surface (ES) is constructed in the 

cubical form, and it can cause the current discontinuities where it will lead to 

the singular equivalence current and causes the current breakage (Li, 2007). 

There are methods to eliminate this issue such as increasing the number of 

meshes of the scatterers (Fu, Jiang and Ma, 2015), applying a tap basis scheme 

(Li, 2007), or introducing tangential-EPA (Tiryaki, 2010). However, they 

require higher computational power.  

  

Therefore, a spherical form of equivalence surface is constructed as it 

is smooth and does not have any discontinuity, thus increasing the accuracy of 

the computation (Fu, Jiang and Ma, 2015). In this RHESA technique, the 

singularity of the integral operator is weakened by constructing spherical ES 

where they are constructed in the form of a hierarchical approach by 

introducing the parent and child group, where the ES does not have contact 

with the internal primary domain (Fu, Jiang and Ewe, 2016). It is 

demonstrated in Figure 4.3. 
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Figure 4.3 Demonstration of child and parent groups with spherical 

equivalence surfaces 

 

The domain under investigation is first segregated in the cubical form 

to produce the lowest oct-tree level without any intersection. Each cube which 

is labelled with the alphabet Gi is surrounded by a child level (lower level) 

sphere which is labelled ad 𝐸𝑆𝑖
𝐶  and enclosed with parent level (high level) 

sphere which is categorized as 𝐸𝑆𝑖
𝑃. (Fu, Jiang and Ewe, 2016; Fu, Jiang and 

Ewe, 2016). 

 

4.2.2 Formulation of RHESA 

 

From Chapter 3, the finalized equation of Equation 3.9 is solved using MoM 

and this formulation cannot be utilized for the high number of unknowns. 

Thus, the EPA technique will be further improved using Relaxed Hierarchical 

Equivalent Source Algorithm (RHESA) which uses integral formulations. 

RHESA is used to reduce the total number of unknowns by further dividing 

the bodies into two forms of groups which are categorized into two fields’ 
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interactions: near and far-field interactions (Fu, Jiang and Ewe, 2016). It can 

be illustrated as: 

𝒁̅ ∙ 𝑰 =  𝒁̅𝒏𝒆𝒂𝒓 ∙ 𝑰 + 𝒁̅𝒇𝒂𝒓 ∙ 𝑰 (4.4) 

From this equation, the near field is directly calculated using the Method of 

Moment. In contrast, the far-field can only be calculated using RHESA before 

using the Method of Moment. The RHESA method is a technique where the 

scatterers are divided into small classes to the smallest level of the oct-tree and 

an equivalent surface is used for the calculation of the scatterers. 

 

Figure 4.4 The three steps of RHESA’s far-field computation 

 

At the first step, the inside-out radiation is performed from the child 

level of the ESs to the parent level of the ESs at the source group. The incident 

EM fields are substituted with the equivalent sources of the source group 

based on the surface equivalent principle (Chan Fai, 2018). The inside-out 

radiation formulation (Fu, Jiang and Ewe, 2016) starts from the field equations 

on the ES which can be described in Equations 4.5 and 4.6. 

𝐄 = ℒ(𝐉𝑉) = ℒ(−𝑖𝜔𝜒𝐃)
 

(4.5) 



60 

 

𝐇 = 𝒦(𝐉𝑉) = 𝒦(−𝑖𝜔𝜒𝐃) (4.6) 

 

The electric, ℒ and magnetic, 𝒦 fields integral operators are: 

ℒ(𝐗)(𝐫) = 𝑖𝑘0𝜂 ∫  
𝑉

[ℐ +
∇∇

𝑘0
2 ] 𝐺0(𝐫, 𝐫

′) ⋅ 𝐗(𝐫′)d𝐫′ 
(4.7) 

𝒦(𝐗)(𝐫) = ∫ 
𝑉

∇𝐺0(𝐫, 𝐫
′) × 𝐗(𝐫′)d𝐫′ 

(4.8) 

Where 𝜂 and ℐ represent the background medium’s intrinsic impedance and 

identity operator respectively.  

 

The far-field that is radiated from the source group is computed by the 

ES of the source group for the observation group (Chan Fai, 2018). This 

process is called translation where it is computed using Stratton-Chu integral 

formulation (Stratton and Chu, 1939) which are described as:  

𝑬(𝒓) = ∫ 
𝑺

[𝒊𝒌𝟎𝜼𝟎𝑮𝟎(𝒓, 𝒓′)𝑱𝑺
𝒆𝒒(𝒓′) + 𝑴𝑺

𝒆𝒒(𝒓′) × 𝜵𝑮𝟎(𝒓, 𝒓′)

− 𝝆𝒆
𝒆𝒒(𝒓′)𝜵𝑮𝟎(𝒓, 𝒓′)]𝒅𝒓′ 

= 𝒞𝐸(𝐉𝑆
𝑒𝑞, 𝐌𝑆

𝑒𝑞 , 𝜌𝑒
𝑒𝑞) 

(4.9) 

 

𝑯(𝒓)& = ∫ 
𝑺

[𝒊𝒌𝟎/𝜼𝟎𝑮𝟎(𝒓, 𝒓′)𝑴𝑺
𝒆𝒒(𝒓′) − 𝑱𝑺

𝒆𝒒(𝒓′) × 𝜵𝑮𝟎(𝒓, 𝒓′)

− 𝝆𝒎
𝒆𝒒(𝒓′)𝜵𝑮𝟎(𝒓, 𝒓′)]𝒅𝒓′ 

= 𝒞𝐻(𝐉𝑆
𝑒𝑞,𝐌𝑆

𝑒𝑞 , 𝜌𝑚
𝑒𝑞) 

(4.10) 

 

The current and charge integral operators for the EM field are represented by 

𝒞𝐸 and 𝒞𝐻 respectively.  
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Finally, the outside-in radiation from the upper to the lower level is 

performed in the observation group. The radiated fields from the source group 

generate equivalent sources on the ES of the observation group, which 

generate electric and magnetic fields within the observation group (Fu, Jiang 

and Ewe, 2016). The electric field 𝐄𝐹 at the arbitrary position, 𝐫 can be 

described as:  

𝐄𝐹(𝐫) = ∑  

𝐺𝑠∈𝐹(𝐺𝑜)

∑  

𝐟𝑛∈𝐺𝑠

𝐼𝑛𝒞𝐸
0 {

𝛾𝑡
𝑜𝒞𝐸

𝑠[𝐬𝐸(𝐟𝑛)], −𝛾𝑡
𝑜𝒞𝐻

𝑠 [𝐒𝐻(𝐟𝑛)],

𝛾𝑛
𝑜𝒞𝐸

𝑠[𝐒𝐸(𝐟𝑛)]
} 

(4.11) 

 

𝐒𝐻 and 𝐒𝐸 are the electric and magnetic field’s equivalent sources 

respectively.  

 

The whole process is aimed to avoid the current singularity and to 

increase the optimization of numerical integration. In this technique, the tap 

basis functions are not needed as the relaxed spherical equivalent surface is 

applied, hence the accuracy of the results can be increased.  

 

4.2.3 Methodology of RHESA in RT Equation 

 

The far electric field that is generated from the RHESA technique is 

implemented in second-order radiative transfer equation and the array and 

phase correction factor is integrated in the second-order RT equation in order 

to generate the near field effect of the Stokes matrix. The phase matrix for the 

RHESA is described as: 

𝑃̿ = 〈|𝛹|2〉𝑛 ∙
𝑑2𝜂

|𝐸0| 
2 ∙ 𝑅𝑒 [

(𝐸𝑉
𝑠 × 𝐻𝐻

∗𝑠)𝑣−𝑖𝑛𝑐 (𝐸𝑉
𝑠 × 𝐻𝐻

∗𝑠)ℎ−𝑖𝑛𝑐

−(𝐸𝐻
𝑠 × 𝐻𝑉

∗𝑠)𝑣−𝑖𝑛𝑐 −(𝐸𝐻
𝑠 × 𝐻𝑉

∗𝑠)ℎ−𝑖𝑛𝑐
] 

(4.12) 
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E𝑠 and H𝑠 represent the scattered electric and magnetic far-fields 

respectively. V and H in the subscript of the EM field represent vertical and 

horizontal polarization correspondingly. 𝐸0 is the incident electric field’s 

amplitude. For RHESA simulation, the distance between the scatterer, d is 

included as the unit of RHESA simulated far-field is Volt per meter (V/m). 𝜂 

represents the intrinsic impedance. 

 

The methodology of the RT-RHESA is similar to the RT-Coupled 

FEM/MoM technique. In this RHESA technique, Gaussian quadrature points 

are employed to compute the phase matrix of the scattered angle. The flow 

chart of the methodology for RT-RHESA is demonstrated in Figure 4.6. 

 

The six shapes of ice scatterers of snow medium are structured using 

ANSYS APDL software and the mesh files are exported into RHESA 

simulation to compute the far EM field as shown in Figure 4.5. 

 

 

 

Figure 4.5: Mesh generation of the spherical scatterer from ANSYS APDL 

software for the generation of far electric and magnetic field from RHESA 

computation 
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 The generated far EM fields are inserted into the second-order RT 

equation which were written in the form of FORTRAN code to calculate the 

backscattering coefficient of the snow medium. The obtained results are 

compared with Mie theoretical solution and ground truth data to validate the 

accuracy of the results. 

 

In previous research, RHESA has only been tested for cylindrical and 

peanut ice scatterer shapes of snow medium. The research is further extended 

to utilize the RHESA for six shapes of ice scatterers of snow medium by 

implementing DM-PACT and IEM. Different CEM techniques and ice 

scatterer shapes have different effect on the backscattering coefficient of snow 

medium. The backscattering coefficient obtained from RHESA is compared 

with results generated from coupled FEM/MoM from FEKO software and Mie 

theoretical result to study the accuracy of the CEM techniques and to 

investigate the suitability of ice scatterers shapes of snow medium. 
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Figure 4.6 Flow chart of RT-RHESA theoretical model of snow medium  
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4.3 Summary 

 

The formulation of EPA and RHESA and the application of the RHESA 

technique into the second-order RT equation is discussed in this chapter. In the 

next chapter, the backscattering coefficient of snow medium generated by the 

coupled FEM/MoM and RHESA will be investigated to study the accuracy of 

these numerical techniques and to study the theoretical model of six shapes of 

ice scatterers of snow medium.  
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CHAPTER 5 

 

THEORETICAL ANALYSIS OF RT-COUPLED FEM/MOM AND 

RHESA 

 

5.1 Introduction  

 

In this chapter, the backscattering coefficient of spherical and non-spherical 

scatterers for various parameters are investigated to validate the accuracy of 

the theoretical model of non-spherical scatterers and identify the suitable ice 

scatterers’ shapes as they experience metamorphism. This investigation is 

done by generating the far electric and magnetic fields of the ice scatterer of 

snow medium through CADFEKO and RHESA. The generated far fields are 

incorporated with DM-PACT to compute the complete backscattering returns 

of both co and cross-polarization of snow medium. 

 

The backscattering returns of non-spherical scatterers are compared 

with the results of FEKO and RHESA generated spherical scatterers and Mie 

analytical results. The orientation of non-spherical scatterers is fixed to the z-

axis as these scatterers are symmetrical to the z-axis. This is done to reduce 

the computational memory and thus increase the speed of the computation. 

Furthermore, the tetrahedron edge length for the mesh is set to be comparable 

to wavelength to increase the accuracy of the result.  
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The parameters under investigation are various incident angles, layer 

thickness, frequencies, and volume fractions. The other parameters needed to 

investigate the backscattering coefficient of the snow medium are listed in 

Table 5.1 (Chan Fai, 2018) 

 

Table 5.1: Theoretical model parameter for snow medium 

Parameters Values used in the 

theoretical model 

Scatterers’ relative permittivity (3.15, 0.001) 

Top layer’s relative permittivity (1.0, 0.0) 

Bottom layer’s relative permittivity (6.0, 0.0) 

Background’s relative permittivity (1.0, 0.0) 

Correlation length, RMS height of top 

surface (cm) 

0.7, 0.12 

Correlation length, RMS height of bottom 

surface (cm) 

0.45, 0.06 

 

The radius of the spherical scatterer used in the FEKO and RHESA 

simulation is the same as the one used in the Mie scattering analysis which 

was 0.54mm. The volume of the non-spherical scatterers is set to be equivalent 

to the volume of the spherical scatterers.  

 

5.2 Effect of Various Incident Angles on Backscattering Coefficient in 

FEKO and RHESA simulation 

 

In Figure 5.1, the layer thickness of the snow medium is set to be 0.1m 

(Massom et al., 2001). and the volume fraction is set to be 20%. The volume 

fraction is computed based on the formula 𝒅 =  (
𝒗𝟎

𝒗𝒇
)

𝟏

𝟑
 where d represents the 

average distance between the scatterers, v0 and vf represent the volume of 
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scatterer and volume fraction respectively. The frequency is set to be 5.0 GHz 

and the backscattering results generated from both CEM techniques are 

compared with each other together with the Mie analytical results.  

 

As shown in Figures 5.1 (a), (b), (c) and (d), FEKO and RHESA 

simulated co-polarized backscattering coefficients for all shaped scatterers 

overlap with that of Mie analytical result. It is because at a long wavelength, 

the size of scatterers becomes smaller relatively, and they are treated almost 

the same as the Mie scatterer. In Figure 5.1 (e) and (f), VH polarized 

backscattering coefficient values for both Mie analytical results and both CEM 

simulated results are much lower compared with those of VV and HH as the 

multiple scattering effects are too small at this frequency.  

(a) 

 

(b) 

 
(c) 

 

(d) 
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(e) 

 

 

(f) 

 
 

Figure 5.1 Comparison of Mie theoretical result with FEKO and RHESA 

simulated results of six shapes of scatterers of snow medium at 0.1m layer 

thickness and 5.0 GHz frequency for (a, b) VV polarization, (c, d) HH 

polarization and (e, f) VH polarization for various incident angles.  

 

As shown in Figure 5.2, the layer thickness of the snow medium is 

further increased to 0.5m (Massom et al., 2001) to investigate the 

backscattering return for the layer with high thickness. The volume fraction 

remains the same which is 20%. For both VV and HH polarization, the results 

of six shapes of scatterers that are generated from both CEM techniques and 

Mie results are almost the same with some difference at high incident angles. 

For the VH backscattering coefficient, the values are still much lower than 

those of VV and HH.  
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(a) 

 

(b) 

 
 

(c) 

 

(d) 

 
(e) 

 

(f) 

 
 

Figure 5.2 Comparison of Mie theoretical result with FEKO and RHESA 

simulated results of six shapes of scatterers of snow medium at 0.5 m layer 
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thickness and 5.0 GHz frequency for (a, b) VV polarization, (c, d) HH 

polarization and (e, f) VH polarization for various incident angles.  

 

In the next two sets of results, the frequency is increased to 15.5GHz to 

investigate the effect of the frequency and layer thickness of the snow medium 

on the accuracy of the backscattering coefficient. The volume fraction remains 

the same which is 20%.  

 

As shown in Figure 5.3, the layer thickness of the snow medium is set 

to 0.1m. For VV and HH polarization of FEKO simulation in Figure 5.3 (a) 

and (c), as the incident angle increases, the differences between Mie analytical 

data and FEKO simulated results become greater. At higher incident angles, 

the backscattering coefficient of five non-spherical scatterers is closer to the 

backscattering coefficient of the spherical scatterer of FEKO simulation. 

Droxtal shape shares a similar trend to the backscattering coefficient of FEKO 

simulated spherical scatterer because the geometry of droxtal has a similar 

resemblance to spherical scatterer. The highest difference between Mie 

theoretical result and FEKO generated results are droxtal and spherical shaped 

ice scatterers VV backscattering coefficients generated from FEKO software, 

where the difference is 2.5dB. 

 

Unlike FEKO generated results, the RHESA generated backscattering 

coefficient for both spherical and non-spherical scatterer follow the trend of 

the Mie analytical result and the values are close to each other as presented in 

Figure 5.3 (b) and (d). The closest RHESA simulated backscattering 
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coefficient with Mie analytical result is droxtal for both co and cross-

polarization. The highest difference between Mie theoretical result and 

RHESA generated result is spherical shaped ice scatterers generated VV 

backscattering return from RHESA, where the difference is 0.25dB. It can be 

concluded that the difference between RHESA and Mie theoretical result is 

smaller than that of FEKO.  

 

In Figure 5.3 (e) and (f), FEKO and RHESA simulated data for 

spherical and non-spherical scatterers follow the trend of the Mie analytical 

result of VH polarization. However, FEKO generated results have a higher 

cross-polarized backscattering coefficient compared to Mie analytical result 

where cross-polarized backscattering returns are mainly caused by multiple 

surface scattering (Syahali et al., 2020). 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 
(e) 

 

(f) 

 
 

Figure 5.3 Comparison of Mie theoretical result with FEKO and RHESA 

simulated results of six shapes of scatterers of snow medium at 0.1 m layer 

thickness and 15.5 GHz frequency for (a, b) VV polarization, (c, d) HH 

polarization and (e, f) VH polarization for various incident angles.  

 

In Figure 5.4, the layer thickness of the snow medium is increased to 

0.5m and the frequency remains the same which is 15.5 GHz. Compared to the 

previous set of result in Figure 5.3, the difference between Mie analytical 

result and FEKO generated results become higher, especially for VV 

polarization in Figure 5.4 (a). The highest difference between Mie theoretical 

result and FEKO generated results are droxtal and spherical shaped ice 
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scatterers VV backscattering coefficient generated from FEKO software, 

where the difference is 5.3dB. Droxtal shape still shares a similar trend of the 

backscattering coefficient of FEKO simulated spherical scatterer due to the 

resemblance of its shape with spherical scatterer. The hexagonal column-

shaped scatterer from the FEKO simulation has the biggest backscattering 

coefficient difference when compared with the spherical scatterer generated 

from the FEKO simulation. The difference is caused by the internal and 

external reflection of the various order of the polygon-shaped scatterer (Xie et 

al., 2006).  

 

As shown in Figure 5.4 (b) and (d), the difference between RHESA 

generated results and the Mie theoretical results become slightly higher. 

However, the discrepancy between the theoretical result and RHESA 

generated results are lower than that comparison with FEKO generated results. 

The highest difference between Mie theoretical result and RHESA generated 

results is spherical shaped ice scatterers VV backscattering coefficient 

generated from RHESA, where the difference is 1.2 dB. 

 

For VV polarization of RHESA simulation in Figure 5.4 (b), spherical 

and non-spherical scatterers share the same trend with Mie theoretical result. 

However, for HH polarization in Figure 5.4 (d), only RHESA generated 

droxtal-shaped scatterers follow the trend of the backscattering coefficient of 

the Mie theoretical results. For VH polarization in Figure 5.4 (f), there are 

slight differences between Mie theoretical results with RHESA generated 

results except for droxtal and hexagonal columns. Droxtal shape has the 
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closest backscattering coefficient with Mie theoretical results for both co and 

cross-polarization from both CEM techniques as it has the closest geometrical 

resemblance of spherical shape. 

(a) 

 
 

(b) 

 
 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Figure 5.4 Comparison of Mie theoretical result with FEKO and RHESA 

simulated results of six shapes of scatterers of snow medium at 0.5 m layer 

thickness and 15.5 GHz frequency for (a, b) VV polarization, (c, d) HH 

polarization and (e, f) VH polarization for various incident angles.  

 

The cause of the difference in the result of FEKO generated 

backscattering coefficient and Mie analytical result may be caused by several 

factors. At high layer thickness, the number of scatterers in the snow medium 

is high as well. Thus, it causes higher volume and surface-volume interaction 

compared to the case with the thinner layer thickness as shown in Figure 5.3. 

Furthermore, as the incident angle increases, the Brewster angle effect is 

higher especially for VV polarization where it increases the effect of the 

multiple scattering. As shown in Figure 5.3 and 5.4 (a) and (b), the difference 

between FEKO and Mie generated results are higher for VV polarization 

compared to HH polarization. Besides, as the volume of the scatterers is low, 

the tapered incident wave cannot be applied to decrease the edge effect, 

especially at the higher incident angle and a higher incident angle which is 

closer to the glazing angle causes the deviation of the result for non-spherical 

scatterers (Xu, Brekke, Doulgeris and Melandsø, 2018).  

 

Coupled FEM/MoM in FEKO focuses on the hybridization of two 

conventional methods which are the Finite Element Method and Method of 

Moment which are categorized as the low order basis functions. Thus, field 

and current computation are calculated based on the low-order basis function. 
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Hence, it will produce a high number of unknowns and reduce the 

convergence rate of the solution (Notaros, 2008).   

 

5.3 Effect of Various Frequencies on Backscattering Coefficient in 

FEKO and RHESA simulation 

 

In Figure 5.5, the backscattering coefficient for various frequencies is 

investigated at 0.1m layer thickness of snow medium and 20-degree incident 

angle. The volume fraction is set to be 20%. As the frequency increases, there 

is a slight difference in the backscattering coefficient between each result 

generated from FEKO and RHESA simulation. It is because as the frequency 

increases, the wavelength decreases, and the value is similar to the length of 

the tetrahedral edge of the scatterers’ mesh. However, the discrepancies are 

too small, and they have the same increasing trend for both co and cross-

polarized backscattering coefficients. 

(a) 

 

(b) 
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(c) 

 

(d) 

 
 

(e) 

 

(f) 

 
Figure 5.5 Comparison of Mie theoretical result with FEKO and RHESA 

simulated results of six shapes of scatterers of snow medium at 0.1 m layer 

thickness and 20-degree incident angle for (a, b) VV polarization, (c, d) HH 

polarization and (e, f) VH polarization for various frequencies. 

 

5.4 Effect of Various Layer Thickness on Backscattering Coefficient in 

FEKO and RHESA simulation 

 

Figure 5.6 describes the comparison of FEKO generated results of non-

spherical scatterer for four values of the layer thickness of snow medium at 

15.5 GHz frequency and 20-degree incident angle. The snow medium’s layer 
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thicknesses that are used in this investigation are 0.1m, 0.5m, 2.15m and 

12.5m and the volume fraction is set to be 20%.  

(a) 

 

(b) 

 

(c) 

 

(d) 

 
(e) 

 

(f) 

  
 

 

Figure 5.6 Comparison of Mie theoretical result with FEKO and RHESA 

simulated results of six shapes of scatterers of snow medium at 15.5GHz 

frequency and 20-degree incident angle for (a, b) VV polarization, (c, d) HH 
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polarization and (e, f) VH polarization for various layer thickness of snow 

medium. 

 

As the layer thickness increases, the difference between FEKO 

generated spherical and non-spherical scatterers increases as well. The 

cylinder scatterer has the furthest difference in backscattering coefficient when 

compared with the spherical scatterer and Mie analytical solution followed by 

hexagonal column and ellipsoid at 12.5m layer thickness as shown in Figure 

5.6 (a) and (c). However, peanut and droxtal shaped scatterers that are 

generated by FEKO software have the closest backscattering coefficient with 

the spherical scatterer and Mie analytical solution at 12.5m layer thickness of 

snow medium. 

 

The difference between RHESA generated scatterers increases with 

Mie analytical solution, as the layer thickness increases. Hexagonal column 

scatterer followed by cylindrical scatterer has the furthest difference in the 

backscattering coefficient with both Mie analytical solution and RHESA 

generated spherical scatterer. Whereas the ice scatterer shape with 

backscattering coefficient closest to the Mie analytical solution and RHESA 

generated spherical scatterers are droxtal, peanut and ellipsoid as demonstrated 

in Figure 5.6 (b) and (d). The reason for the mentioned differences is due to 

the increase in the number of ice scatterers as the layer thickness increases, 

hence the scattering effect of these scatterers becomes more evident.  
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The differences in the cross-polarization backscattering return between 

spherical and non-spherical scatterers from both CEM techniques and Mie 

analytical results are too small. 

 

5.5 Effect of Various Volume Fraction on Backscattering Coefficient 

in FEKO and RHESA simulation 

 

Figures 5.7 describes the comparison of FEKO generated results of spherical 

and non-spherical scatterer for four values of volume fraction of snow medium 

at 15.5 GHz and 20-degree incident angle with Mie analytical solution.  The 

volume fractions of snow medium that are used in this investigation are 10%, 

20%, 30%, and 40% (K.Fung, 1994). The layer thickness is set to be 0.1m. 

 

As shown in Figure 5.7(a), (c), and (e), for all types of polarization, the 

trend of difference between Mie analytical result and FEKO generated results 

are the same for all the volume fractions. The closest shapes with FEKO 

generated spherical shape and Mie theoretical results for both co and cross-

polarization are droxtal and peanut. 

 

As shown in Figure 5.7 (b) and (d), the hexagonal column and cylinder 

ice scatterers of snow medium have higher differences of co-polarized 

backscattering return with RHESA generated spherical scatterer of snow 

medium and Mie theoretical results as the volume fraction increases. 

However, peanut and droxtal shaped ice scatterers maintain the trend of co-

polarized backscattering return with RHESA generated spherical scatterer and 
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Mie theoretical results whereas, for cases of scatterers of other shapes (such as 

hexagonal column and cylinder), the difference becomes more. For the cross-

polarized backscattering coefficient as shown in Figure 5.7 (f), all of the ice 

scatterers follow the trend with the Mie theoretical results. 

(a) 

 

(b) 

 
 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Figure 5.7 Comparison of Mie theoretical result with FEKO and RHESA 

simulated results of six shapes of scatterers of snow medium at 15.5GHz 

frequency and 20-degree incident angle for (a, b) VV polarization, (c, d) HH 

polarization and (e, f) VH polarization for various volume fraction of snow 

medium. 

 

5.6 Summary 

 

In this chapter, the investigation was done on the backscattering coefficient 

generated by six shapes of the ice scatterers of snow medium through coupled 

FEM/MoM and RHESA. The effect of layer thickness, incident angles, 

frequencies and volume fraction are studied using the second-order RT 

equation. As the frequency and layer thickness increase, the discrepancies 

between the Mie theoretical result and FEKO generated result are higher 

compared to RHESA generated result. It is because FEKO implements 

hybridization of two conventional CEM techniques, where they are based on 

the lower-order basis function. Thus, field and current computation are 

computed based on the low-order basis function. It will produce a high 

number of unknowns and reduce the convergence rate of the solution 

(Notaros, 2008). The discrepancies become more apparent when the layer 

thickness of the snow medium increases and the number of scatterers in the 

medium increases, thus increasing the interaction among the scatterers. Hence, 

the number of unknowns for the field computation increases. 
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On the other hand, RHESA computation is based on a high-order basis 

function, lowering the number of unknowns and preventing the current 

discontinuity due to the spherical equivalent surface, increasing the 

backscattering accuracy return. Due to these advantages, the discrepancy 

between RHESA generated results, and Mie theoretical results are low despite 

the increase of the layer thickness of snow medium and frequency.  

 

In the next chapter, these CEM-generated results are further compared 

with the ground truth measurement to validate the accuracy of the CEM-

generated results and compare the efficiency of the application of two CEM 

methods in the second-order RT equation for snow medium.  
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CHAPTER 6 

 

COMPARISON OF CEM THEORETICAL MODEL WITH GROUND 

TRUTH MEASUREMENT 

 

6.1 Introduction  

 

In this section, the CEM generated backscattering coefficients of snow 

medium are compared and evaluated with the ground truth data to examine the 

accuracy of the CEM techniques and also to justify the shape of the 

geometrical models that can represent the ice scatterers of the snow medium. 

In this research, there are three sets of frequencies that are investigated to 

compare the CEM generated backscattering return with the ground truth 

measurement. The three sets of frequencies are L, C and Ku Band.  

 

6.2 Comparison of CEM Techniques Generated Backscattering 

Coefficient of Snow Medium with CLPX Data at L-Band 

Frequency 

 

The first set of the investigation is found from the NASA Cold-Land Processes 

Field Experiment (CLPX) and the experiment was performed by the 

University of Michigan (Sarabandi, 2003). In this set of investigations, the 

ground truth measurement data was obtained from the Intensive Observation 

Period 3 (IOP 3) at Local Scale Observation Site (LSOS) where the location of 
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LSOS is a small investigation site (0.8 ha) which is situated at Fraser MSA (-

105.88 306 Lat, 39.90 172 Lon) (Marshall, Koh and Forster, 2004). 

 

As shown in Figure 6.1, the data is based on the IOP 3 obtained on 21st 

February 2003. The list of parameters can be referred to in Appendix B. The 

frequency used in this investigation is L Band which is 1.25 GHz. The 

spherical scatterers’ radius used was 0.54 mm (Chan Fai, 2018) where the 

volume of the arbitrary shapes of scatterers are set to be the same as the 

spherical scatterer’s volume. All the shapes of the scatterers simulated by 

FEKO and RHESA overlap with the Mie analytical result. Therefore, all six 

shaped scatterers have the same traits as spherical scatterers at L Band. When 

the theoretical data are compared with the CLPX data, the difference is biggest 

at the lowest incident angle which is 20 degrees. At 35 degrees incident angle. 

All Mie, FEKO and RHESA simulated VV-polarized backscattering 

coefficients are nearest with CLPX data with a better fit. It can be concluded 

that in the low frequency, both CEM techniques are suitable to be used in the 

backscattering coefficient computation for the snow medium.  

(a)  

 

(b) 
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Figure 6.1 Comparison of VV backscattering coefficient of six shapes of ice 

scatterers produced by CEM methods (a) coupled FEM/MoM and (b) RHESA 

with CLPX data dated 21/2/2003 at L-Band frequency 

 

6.3 Comparison of CEM Techniques Generated Backscattering 

Coefficient of Snow Medium with RADARSAT Data at C-Band 

Frequency 

 

The second set of ground truth measurements focuses on the ground truth data 

which was taken from ice shelf of Antarctica in Scott Base, Ross Island using 

the RADARSAT satellite at 5.3 GHz frequency (C-Band). The radius of the 

spherical scatterers was approximated to be 1.1mm (Chan Fai, 2018) and the 

rest of the shapes of ice scatterers are set to be the equivalent as that of the 

spherical scatterer. The list of parameters can be obtained from Appendix B. 

The ice shelf thickness was approximated to be around 250 m (Albert, Lee, 

Ewe and Chuah, 2012). 

 

Figure 6.2 demonstrates the comparison of CEM generated HH 

backscattering return with the RADARSAT DATA. As shown in Figure 6.2, 

at Site A, the closest CEM generated HH backscattering coefficient with the 

RADARSAT data is FEKO generated result for spherical scatterer. Except for 

FEKO generated result for the spherical scatterer, RHESA generated 

backscattering returns of non-spherical scatterers are nearer to the 

RADARSAT data compared to the FEKO generated results. At Site B and C, 

RHESA generated backscattering coefficients for all shapes of scatterers are 

closer to RADARSAT data compared to the FEKO generated results where 
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peanut is the closest followed by droxtal and ellipsoid. At Site I, the closest 

CEM generated result with the RADARSAT data is FEKO generated 

hexagonal column, cylinder and droxtal. However, at Site P, RHESA 

generated results are closer to the RADARSAT data compared to FEKO 

generated results where the RHESA generated peanut-shaped ice scatterer is 

the closest followed by the droxtal. Therefore, most of the arbitrarily shaped 

scatterers represent the ice scatterers. For FEKO generated backscattering 

coefficients, the spherical scatterer followed by hexagonal column mostly 

represents the ice scatterers for all the sites. For RHESA generated 

backscattering coefficients, spherical scatterers followed by peanut, droxtal 

and ellipsoid represent the ice scatterers for most of the sites.  

(a) 

 

(b)  

 

Figure 6.2 Comparison of HH backscattering coefficient of six shapes of 

ice scatterers produced by CEM methods (a) coupled FEM/MoM and (b) 

RHESA with RADARSAT data at C-Band frequency  
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6.4 Comparison of CEM Techniques Generated Backscattering 

Coefficient of Snow Medium with CLPX Data at Ku-Band 

Frequency 

 

In this section, the comparison of FEKO and RHESA generated backscattering 

coefficients are compared with the CLPX data at Ku- Band frequency which is 

15.5 GHz. The location is the same as explained in section 6.2. However, the 

CLPX data from three dates are used in this investigation to validate the 

accuracy of the CEM generated backscattering coefficients. The dates are 

21/3/2003, 23/3/2003 and 24/3/2003. The list of parameters of the snow 

medium under investigation can be referred to in Appendix B. 

  

Compared to the previous two sections, as the frequency increases, the 

differences between the FEKO created backscattering coefficient data for all 

shapes of scatterers and the CLPX data increases, especially for VV 

polarization. The HH backscattering coefficient of FEKO generated results are 

closer compared to the VV backscattering coefficient of FEKO generated 

results. However, the differences between the RHESA generated 

backscattering coefficient results for all shapes of scatterers and the CLPX 

data is lower compared to FEKO generated results. This statement can be 

referred from Figures 6.3, 6.4 and 6.5. 

  

There are a few reasons for the discrepancy of the coupled FEM/MoM 

of FEKO generated results when compared with the CLPX data. Compared to 

the previous subsections where the ground truth measurement was conducted 

in L and C Band, the frequency in this investigation is the highest which is 
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15.5 GHz. As described in Chapter 5, as the frequency and the layer thickness 

of snow medium increases, the accuracy of the coupled FEM/MoM decreases. 

The theoretical study that was done in the previous chapter is important to 

investigate the discrepancy in the results that happens between CEM generated 

backscattering coefficient and ground truth measurement in this chapter. When 

the frequency increases, the wavelength decreases, and the value is similar 

with the tetrahedral edge length of the scatterers’ mesh. Coupled FEM/MoM 

approach is based on hybridizing two conventional numerical methods. This 

numerical approach is based on a low-order basis function and causes an 

increment in the very high number of unknowns and the convergence rate of 

the solution will be low as well. (Notaros, 2008).  

 

Additionally, the VV polarized backscattering coefficient is less 

accurate compared to the HH backscattering return as the Brewster angle 

effect is higher at VV polarization where it increases the effect of the multiple 

scattering.   

  

Unlike coupled FEM/MoM which uses a low-order basis function, 

RHESA uses high order basis function where it enables sharper convergence 

of the solution (Notaros, 2008). As mentioned in Chapter 4, the spherical form 

of equivalence surface in RHESA does not cause any current singularity and 

increases the accuracy of the computation.  

  

Therefore, the closest shapes of ice scatterer of CEM generated 

backscattering coefficient with the CLPX data are RHESA generated 
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hexagonal column followed by cylinder, ellipsoid, droxtal and peanut. Thus, 

all the shapes are the potential shapes of the ice scatterers of snow medium. 

The parameter of the snow medium affects the possible shapes of the ice 

scatterers of the snow medium. For Ku Band, the most suitable CEM 

technique that can be used for the computation of the backscattering 

coefficient is RHESA compared to the coupled FEM/MoM generated by 

FEKO.  

Few conclusions can be drawn in Chapter 5 and 6. As the frequency 

and layer thickness of snow medium increases, RHESA is the most suitable 

method to be used in computation of backscattering coefficient. It is because 

as the frequency and layer thickness increases, the number of unknown 

increases in the coupled FEM/MoM, thus affecting the accuracy of the results. 

Besides, due to high accuracy of RHESA computation, this CEM techniques 

proved that all shapes of scatterers are suitable to be used as the ice scatterers 

of snow medium as shown in the comparison of the results with ground truth 

measurements. These shapes can be used in future researches for both forward 

and inverse model to retrieve the information on snow medium such as SWE, 

backscattering returns and other parameters. 

(a) 

 

(b)  
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(c)  

 

 

(d) 

 

Figure 6.3 Comparison of VV backscattering coefficient of six shapes of ice 

scatterers produced by CEM methods (a) coupled FEM/MoM and (b) RHESA 

and HH backscattering coefficient (c) coupled FEM/MoM and (d) RHESA 

with CLPX data dated 21/2/2003 at Ku-Band frequency 

 

(a)  

 

(b)  
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(c) 

 

 

(d)  

 

Figure 6.4 Comparison of VV backscattering coefficient of six shapes of ice 

scatterers produced by CEM methods (a) coupled FEM/MoM and (b) RHESA 

and HH backscattering coefficient (c) coupled FEM/MoM and (d) RHESA 

with CLPX data dated 23/2/2003 at Ku-Band frequency. 

 

(a) 

 

(b)  
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(c)  

 

(d) 

 

Figure 6.5 Comparison of VV backscattering coefficient of six shapes of ice 

scatterers produced by CEM methods (a) coupled FEM/MoM and (b) RHESA 

and HH backscattering coefficient (c) coupled FEM/MoM and (d) RHESA 

with CLPX data dated 24/2/2003 at Ku-Band frequency. 

 

6.5 Summary 

 

The second-order radiative transfer backscattering coefficients of snow 

medium produced by two CEM methods are compared with the ground truth 

data to examine the accuracy of the CEM techniques and to verify the possible 

shapes of the ice scatterers of the snow medium and ice shelf.  

  

For L and C Bands, both CEM techniques are suitable to be used for 

the calculation of the backscattering coefficient of the snow medium. 

However, for the Ku band, RHESA is more suitable compared to the coupled 

FEM/MoM by FEKO software as the RHESA computation focuses more on 

high order basis function where the number of unknowns is being reduced, 

thus increasing the accuracy of the backscattering return. Furthermore, all the 

shapes are the potential shapes of the ice scatterers of snow medium and ice 
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shelf where hexagonal column, cylinder and peanut have the closest 

backscattering coefficient with most of the ground truth measurements.  

 

As presented in Chapter 5, as the frequency and layer thickness of 

snow medium increase, the accuracy of FEKO generated backscattering 

coefficient decreases compared to that of RHESA. The discrepancies between 

FEKO generated backscattering coefficient with Mie theoretical result 

increase as the frequency and layer thickness of snow medium increase. These 

findings help to justify the discrepancies between the CEM generated results 

and ground truth measurements. It can be concluded that the best CEM 

technique that can be used for the investigation of backscattering coefficient 

for snow medium for all range of frequencies and layer thickness is RHESA. 

Coupled FEM/MoM is suitable to be used for smaller frequency and layer 

thickness of snow medium due to its high number of unknowns. Besides, from 

the analysis of the comparison between CEM generated results and ground 

truth measurement, all shapes of scatterers are suitable to be the ice scatterers 

of snow medium.  

 

In the next chapter, the study done in this dissertation will be 

concluded and summarized. 
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CHAPTER 7 

 

CONCLUSION 

 

 

7.1 Conclusion of the Research 

 

In this dissertation, a second-order radiative transfer equation was 

incorporated with two different computation methods which are the coupled 

FEM/MoM using FEKO software and RHESA to investigate the validation of 

the various shapes of scatterers’ model by computing the backscattering 

coefficient of snow medium and the results are evaluated with Mie theoretical 

results and ground truth measurements.  

  

The first and second chapter of the dissertation focus on the 

background of remote sensing and the application of the second-order 

radiative transfer equation on microwave remote sensing. As many shapes of 

the scatterers are being developed for various earth terrain, it is important to 

apply Computational Electromagnetics (CEM) in this radiative transfer 

equation to solve more complicated numerical computations of second-order 

RT equations. The problem statement and objective of the research are being 

highlighted in the first chapter of the dissertation. In the second chapter, the 

second-order RT equation for snow medium and the geometry of the non-

spherical shapes of the ice scatterer and their equations are presented. The 
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model development of second order RT equation using two CEM techniques 

are also described in this chapter. 

 

In Chapters 3 and 4 of the dissertation, the development of the RT-

coupled FEM/MoM and RHESA are presented respectively. In Chapter 4, the 

mathematical formulations of the Finite Element Method (FEM) and Method 

of Moment (MoM) are presented. The comparison between the FEM and 

MoM is also done to study the difference between these numerical approaches. 

The advantages and the mathematical formulation of the coupled FEM/MoM 

are also discussed. The application of the coupled FEM/MoM in the RT 

equation is also displayed in the form of the equations and methodology to 

understand the concept of RT-coupled FEM/MoM better.  

 

In Chapter 4, the formulation of the EPA is presented where the three 

major steps in the equivalence principle operator are focused in the form of an 

equation. Next, due to the high requirement of the computational memory, the 

EPA method is further developed in the form of RHESA where the spherical 

equivalence surface is introduced to prevent the current discontinuity and 

current singularity, thus increasing the accuracy of the results. The formulation 

and methodology of RT-RHESA are further demonstrated in this chapter.  

  

In Chapter 5 of the dissertation, the theoretical analysis of the RT-

coupled FEM/MoM and RT-RHESA are discussed where the backscattering 

coefficient of the spherical and non-spherical scatterers for various parameters 

are investigated to validate the accuracy of the theoretical model of the non-
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spherical scatterers. In the investigation, as the layer thickness of the snow 

medium and incident angle increase, the differences between the FEKO 

generated VV backscattering coefficient of all shapes of scatterers and Mie 

theoretical results become higher compared to that of RHESA. It is coupled 

FEM/MoM is a low basis function where it has higher number of unknowns 

compared to RHESA, thus reduces the accuracy of the results especially at 

higher incident angles. It is because, as the incident angle rises, the penetration 

depth rises as well, thus causing the wave attenuation.  

 

In most of the analysis, RHESA and FEKO simulated droxtal shaped 

scatterer of snow medium has the closest result with Mie theoretical result and 

FEKO generated spherical scatterer respectively because droxtal shaped 

scatterer has the closest resemblance with the spherical shaped scatterer. The 

RHESA produced backscattering coefficients for all shapes of ice scatterer 

produce stable results and the differences between RHESA generated results 

and Mie theoretical results are not too high where the differences are less than 

5 dB for all set of investigations.  

 

In chapter 6, the comparison of both CEM generated backscattering 

coefficients are compared with three sets of ground truth measurements with 

different frequency ranges. In the first set, NASA’s CLPX data of L-Band 

frequency is used to compare the ground truth measurement with the CEM 

generated backscattering coefficient. All the shapes of the scatterers simulated 

by FEKO and RHESA overlap with the Mie analytical results. In the second 

set, RADARSAT data of C-Band frequency is compared with the CEM 



99 

 

generated backscattering return. In some sites of investigation, FEKO 

generated results for all shapes of scatterers agree well with the ground truth 

measurement whereas, at other sites, RHESA generated backscattering return 

of non-spherical scatterers are closer to the RADARSAT data. In the final set 

of the investigation, the comparison was done with the CLPX data of Ku band 

frequency. As the frequency is the highest compared to the previous two sets, 

FEKO generated results have a higher discrepancy of the results compared to 

RHESA generated results. It is because the increase of the number of 

unknowns and low-order basis function numerical approach may cause the 

discrepancy of the results. However, RHESA generated backscattering 

coefficient for non-spherical ice scatterers agree well with the CLPX data 

where all five non-spherical scatterers can be the potential shapes of ice 

scatterers of the snow medium. Therefore, it can be concluded that RHESA 

computation is a more suitable CEM approach to be utilised for snow medium 

compared to coupled FEM/MoM of FEKO software especially for higher 

frequency and layer thickness of snow medium. 

 

7.2 Advantages and Limitations of the CEM Approaches 

 

Each computational method has a different way of numerical approach and a 

different number of unknowns. This results in different values of 

backscattering coefficient for each simulation and the closest non-spherical 

shape with spherical scatterer and Mie theoretical results also differ as well. 

For example, FEKO generated results show some discrepancies of the results 

with Mie analytical data when the layer thickness of snow medium and 
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frequency increase as well. There are a few factors that caused the mentioned 

discrepancies. As referred in the results in Chapter 6, the differences of FEKO 

generated backscattering coefficients with Mie theoretical results and ground 

truth measurements are higher than the differences of RHESA generated 

backscattering coefficients with Mie theoretical results and ground truth 

measurements especially when frequency increases. Different CEM technique 

has different way of the numerical approach.  

  

Coupled FEM/MoM in FEKO is based on the hybridization of two 

conventional methods which are the Finite Element Method and Method of 

Moment where these two methods are known as the low order basis functions. 

Low order basis function is a computation where the domains are on the order 

of 𝜆/10 in each segment where 𝜆 is the medium’s wavelength, thus the 

volume of the geometries is electrically too small. Hence, the computation of 

the field and currents are computed according to the low-order basis function. 

Unfortunately, it will lead to a high number of unknowns and the convergence 

rate of the solution will be low as well (Notaros, 2008). Furthermore, it is less 

flexible to compute the current of the curved and arbitrary shapes of the 

geometries due to the low order basis function (Ilic, Djordjevic, Ilic and 

Notaro, 2009). The discretization of the Finite Element is based on the edge-

based function whereas the MoM is based on the triangular elements related to 

the tetrahedron faces.  (Ali, Hubing and Dreniak, 1997). An equivalent surface 

current is applied at the boundaries to reduce the serious computational error 

where the fictitious line can be eliminated. The main motive of this hybrid 

technique is to prevent the termination issue due to the radiation state 
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application in the open area by applying an outward-looking approach. 

(Sumithra and Thiripurasundari, 2017). Unfortunately, the equivalent surface 

that encloses the scatterer is constructed in the cubical form where this non-

smooth surface may overlap with each other and can cause current singularity 

and it can cause difficulty in the numerical computation (Fu, Jiang and Ewe, 

2016). High frequency slows down the decay of the Green’s function and 

produces unwanted side lobes. In order to reduce the high-frequency noise, the 

magnitude of the side lobe needs to be reduced or the side lobes need to be 

moved to a further distance. In this case, a smooth equivalent surface is 

required to reduce the noise and thus increase the accuracy (Li, 2007). 

Furthermore, the outward-looking approach reverses two dense matrices and 

compute the high number of matrix multiplication which leads to an increase 

in the number of unknowns (Ji, Wang and Hubing, 2000).  

  

On the other hand, RHESA is based on the oct tree approach where 

spherical equivalent surface is constructed and applied to the hierarchical 

approach of the parent and the child group without contact with the internal 

primary domain. The spherical form of equivalence surface is constructed as it 

is smooth and does not have any discontinuity, thus increasing the accuracy of 

the computation (Fu, Jiang and Ma, 2015). 

 

As demonstrated in chapter 5, the FEKO results show a higher 

discrepancy with Mie analytical data compared to that of the RHESA 

generated results because FEKO uses a non-spherical equivalent surface 

where it can lead to current discontinuity at the edge of the mesh structure and 
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charge singularity. This issue becomes significant when the higher frequency 

is used where the wavelength becomes similar to the edge size of the 

scatterers’ mesh.  

  

The advantages and limitations of each CEM technique are 

summarized as shown in Tables 7.1 and 7.2. 

 

Table 7.1: Summary of the advantages and limitations of coupled FEM/MoM 

computation in FEKO software 

Advantages  Limitations 

A user-friendly interface where 

multiple incidents and scattered 

plane waves can be initialized in a 

single computation and reduce the 

run time. The geometrical modelling 

and result generation can be done in 

the CADFEKO itself. 

At the high layer thickness of snow 

medium and high frequency, the 

number of unknowns is higher than 

the RHESA computation due to the 

lower basis function approach, thus 

producing less accurate results. It is 

because the CEM approach is based 

on the conventional FEM method 

hybridised with conventional MoM. 

Thus, it is limited to a low range of 

layer thickness and low frequency.  

Produces accurate results at a lower 

layer thickness of snow medium and 

lower frequency due to the lower 

number of unknowns.  
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Table 7.2: Summary of the advantages and limitations of RHESA computation  

Advantages Limitations 

The oct tree approach that is used 

in the RHESA computation 

decreases the number of unknowns 

and increases the computational 

capacity, thus generating accurate 

results for the high layer thickness 

of snow medium as it is based on 

the high order basis function 

approach.  

The geometry needs to be constructed 

in ANSYS APDL where the number 

of mesh being used is limited and later 

need to be exported in the RHESA 

computation, thus the process takes a 

long time for more complicated earth 

terrain.  

The computation can be used for 

any range of frequencies without 

any frequency breakdown.  

 

 

 

7.3 Future Improvement 

 

To increase the accuracy of the backscattering coefficient for both CEM 

techniques, it is encouraged to use high Gaussian Quadrature points. However, 

more computational time and memory are required to simulate high Gaussian 

points for the incident and scattered waves. Besides, in order to reduce the 

number of unknowns in coupled FEM/MoM, other numerical approaches such 

as Multilevel Fast Multipole Method (MLFMM) can be hybridized in the 
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coupled FEM/MoM to reduce the number of unknowns and increase the 

accuracy of the results. However, it requires high computational processors 

and computational time. Furthermore, it is encouraged to study more 

complicated shapes such as aggregated shapes and non-symmetrical shapes of 

ice scatterers using these CEM methods to understand the metamorphism 

process of ice scatterers of snow medium. However, this requires more 

development in the RT equation and more computational memory to 

investigate this process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 

 

 

 

REFERENCES 

 

 

 

Albert, M., Lee, Y., Ewe, H. and Chuah, H., 2012. Multilayer Model 

Formulation and Analysis of Radar Backscattering from Sea Ice. Progress in 

Electromagnetics Research, 128, pp.267-290. 

Ali, M., Hubing, T. and Dreniak, J., 1997. A hybrid FEM/MOM technique for 

electromagnetic scattering and radiation from dielectric objects with attached 

wires. IEEE Transactions on Electromagnetic Compatibility, 39(4), pp.304-

314. 

Altair Engineering Inc, 2015. Numerical Methods in FEKO. USA: Altair 

Engineering, Inc, p.1. 

Augustyniak, M. and Usarek, Z., 2016. Finite Element Method Applied in 

Electromagnetic NDTE: A Review. Journal of Nondestructive Evaluation, 

35(3). 

Baltzis, K., 2009. The finite element method magnetics (FEMM) freeware 

package: May it serve as an educational tool in teaching 

electromagnetics?. Education and Information Technologies, 15(1), pp.19-36. 

Bhobe, A., Holloway, C. and Piket-May, M., 2001. Meander delay line 

challenge problem: a comparison using FDTD, FEM and MoM. 2001 IEEE 

EMC International Symposium. Symposium Record. International Symposium 

on Electromagnetic Compatibility (Cat. No.01CH37161). 



106 

 

Chan Fai, L., 2018. A Study of Microwave Remote Sensing of Natural Medium 

using Radiative Transfer Theory and Relaxed Hierarchical Equivalent Source 

Algorithm. Master of Engineering Science. Lee Kong Chain Faculty of 

Engineering and Science, Universiti Tunku Abdul Rahman. 

Chandrasekhar, S., 1989. Radiative transfer and negative ion of hydrogen. 

Chicago: The University of Chicago. 

Chew, W., Jin, J., Lu, C., Michielssen, E. and Song, J., 1997. Fast solution 

methods in electromagnetics. IEEE Transactions on Antennas and 

Propagation, 45(3), pp.533-543. 

Chuah, H., Tjuatja, S., Fung, A. and Bredow, J., 1996. A phase matrix for a 

dense discrete random medium: evaluation of volume scattering 

coefficient. IEEE Transactions on Geoscience and Remote Sensing, 34(5), 

pp.1137-1143. 

Davidson, D., 2011. Computational electromagnetics for RF and microwave 

engineering. Cambridge: Cambridge University Press. 

Draine, B. and Flatau, P., 1994. Discrete-Dipole Approximation for Scattering 

Calculations. Journal of the Optical Society of America A, 11(4), p.1491. 

Du, J., Shi, J. and Rott, H., 2010. Comparison between a multi-scattering and 

multi-layer snow scattering model and its parameterized snow backscattering 

model. Remote Sensing of Environment, 114(5), pp.1089-1098. 

Durand, M., Molotch, N. and Margulis, S., 2008. A Bayesian approach to 

snow water equivalent reconstruction. Journal of Geophysical Research, 

113(D20). 

Ewe, H. and Chuah, H., 1998. An analysis of the scattering of discrete 

scatterers in an electrically dense medium. IGARSS '98. Sensing and 



107 

 

Managing the Environment. 1998 IEEE International Geoscience and Remote 

Sensing. Symposium Proceedings. (Cat. No.98CH36174) 

Ewe, H. and Chuah, H., 2000. Electromagnetic scattering from an electrically 

dense vegetation medium. IEEE Transactions on Geoscience and Remote 

Sensing, 38(5), pp.2093-2105. 

Ewe, H., Chuah, H. and Fung, A., 1998. A Backscatter Model for a Dense 

Discrete Medium. Remote Sensing of Environment, 65(2), pp.195-203. 

Fu, X., Jiang, L. and Ewe, H., 2016. A novel relaxed hierarchical equivalent 

source algorithm (RHESA) for electromagnetic scattering analysis of 

dielectric objects. Journal of Electromagnetic Waves and Applications, 

30(12), pp.1631-1642. 

Fu, X., Jiang, L. and Ma, Z., 2015. Accuracy enhancement of the equivalence 

principle algorithm based on the meshless spherical surface. 2015 IEEE 

International Conference on Computational Electromagnetics. 

Fung, A. and Eom, H., 1985. A Study of Backscattering and Emission from 

Closely Packed Inhomogeneous Media. IEEE Transactions on Geoscience 

and Remote Sensing, GE-23(5), pp.761-767. 

Fung, A., Tsuatja, S., Bredow, J. and Chuah, H., 1995. Dense medium phase 

and amplitude correction theory for spatially and electrically dense 

media. 1995 International Geoscience and Remote Sensing Symposium, 

IGARSS '95. Quantitative Remote Sensing for Science and Applications. 

Fung, A.,1994. Microwave scattering and emission models and their 

applications. Boston: Artech House. 

George, A., 1976. Sparse Matrix Aspects of the Finite Element 

Method. Lecture Notes in Economics and Mathematical Systems, pp.3-22. 



108 

 

Gibson, W., 2015. Method of Moments in Electromagnetics. 2nd ed. Boca 

Raton: CRC PRESS. 

Grenfell, T. and Warren, S., 1999. Representation of a nonspherical ice 

particle by a collection of independent spheres for scattering and absorption of 

radiation. Journal of Geophysical Research: Atmospheres, 104(D24), 

pp.31697-31709. 

Hara, M., Yoshikane, T., Kawase, H. and Kimura, F., 2008. Estimation of the 

Impact of Global Warming on Snow Depth in Japan by the Pseudo-Global-

Warming Method. Hydrological Research Letters, 2, pp.61-64. 

Hara, M., Yoshikane, T., Kawase, H. and Kimura, F., 2008. Estimation of the 

Impact of Global Warming on Snow Depth in Japan by the Pseudo-Global-

Warming Method. Hydrological Research Letters, 2, pp.61-64. 

Harrington, R., 1987. The Method of Moments in Electromagnetics. Journal 

of Electromagnetic Waves and Applications, 1(3), pp.181-200. 

Harrington, R., 2000. Field Computation by Moment Methods. New York: 

Wiley-IEEE Press. 

Hong, G., 2007. Parameterization of scattering and absorption properties of 

nonspherical ice crystals at microwave frequencies. Journal of Geophysical 

Research, 112(D11). 

Hulst, H., 1981. Light Scattering by Small Particles. Dover Publications. 

Ilic, M., Djordjevic, M., Ilic, A. and Notaro, B., 2009. Higher Order Hybrid 

FEM-MoM Technique for Analysis of Antennas and Scatterers. IEEE 

Transactions on Antennas and Propagation, 57(5), pp.1452-1460. 

Ishimaru, A., 1978. Wave propagation and scattering in random media. 

Academic Press, NY. 



109 

 

Jakobus, U., Bingle, M., Schoeman, M., Van Tonder, J. and Illenseer, F., 

2008. Tailoring FEKO for microwave problems. IEEE Microwave Magazine, 

9(6), pp.76-85. 

Jakobus, U., Bingle, M., van Tonder, J. and Marais, J., 2008. Recent 

extensions in FEKO suite 5.4. 2008 8th International Symposium on Antennas, 

Propagation and EM Theory,. 

Ji, Y., Wang, H. and Hubing, T., 2000. A Novel Preconditioning Technique 

and Comparison of Three Formulations for Hybrid FEM/MoM 

Methods. Semantic Scholar. 

K.Fung, A., 1994. Microwave Scattering and Emission Models and Their 

Applications. 1st ed. Norwood, MA: Artech House, Inc, pp.382-394. 

Li, M. and Chew, W., 2007. Wave-Field Interaction with Complex Structures 

Using Equivalence Principle Algorithm. IEEE Transactions on Antennas and 

Propagation, 55(1), pp.130-138. 

Li, M., 2007. Studies on Applying The Equivalence Principle Algorithm on 

Multiscale Problems. Doctor of Philosophy in Electrical and Computer 

Engineering. University of Illinois at Urbana-Champaign. 

Li, M., Zhuang, T. and Chen, R., 2018. Volume Integral Equation Equivalence 

Principle Algorithm Domain Decomposition with Body of Revolution 

Equivalence Surface. IET Microwaves, Antennas & Propagation, 12(3), 

pp.375-379. 

Liao, L. and Sassen, K., 1994. Investigation of relationships between Ka-band 

radar reflectivity and ice and liquid water contents. Atmospheric Research, 

34(1-4), pp.231-248. 



110 

 

Liu, N. and Li, Z., 2002. Bi-spectrum scattering model for conducting 

randomly rough surface. Tsinghua Science and Technology, 7(3), pp.309-316. 

Liu, N., Li, Z. and Weng, H., 1999. A spectrum domain Kirchhoff scattering 

model for randomly rough surface. 1999 International Conference on 

Computational Electromagnetics and its Applications. Proceedings 

(ICCEA'99) (IEEE Cat. No.99EX374). 

Liu, Z., Ping, L., Sun, B., Sun, G. and He, X., 2010. Scattering of 3-D objects 

with a new total-and scattered-field decomposition technique for FEM. 2010 

Asia-Pacific International Symposium on Electromagnetic Compatibility. 

Lum, C., Fu, X., Ewe, H. and Jiang, L., 2017. A Study of Scattering from 

Snow Embedded with Non-Spherical Shapes of Scatterers with Relaxed 

Hierarchical Equivalent Source Algorithm (RHESA). Progress in 

Electromagnetics Research M, 61, pp.51-60. 

Magono, C., 1962. Meteorological Classification of Snow Crystals. Journal of 

the Japanese Society of Snow and Ice, 24(2), pp.33-37. 

Marshall, H., Koh, G. and Forster, R., 2004. Ground-based frequency-

modulated continuous wave radar measurements in wet and dry snowpacks, 

Colorado, USA: an analysis and summary of the 2002-03 NASA CLPX 

data. Hydrological Processes, 18(18), pp.3609-3622. 

Marzano, F., 2014. Radiative Transfer, Theory. Encyclopedia of Remote 

Sensing, pp.624-634. 

Massom, R., Eicken, H., Hass, C., Jeffries, M., Drinkwater, M., Sturm, M., 

Worby, A., Wu, X., Lytle, V., Ushio, S., Morris, K., Reid, P., Warren, S. and 

Allison, I., 2001. Snow on Antarctic Sea ice. Reviews of Geophysics, 39(3), 

pp.413-445. 



111 

 

Mätzler, C., 2006. Thermal Microwave Radiation. London: Institution of 

Electrical Engineers. 

Mishchenko, M., Travis, L. and Macke, A., 1996. Scattering of light by 

polydisperse, randomly oriented, finite circular cylinders. Applied Optics, 

35(24), p.4927. 

Ney, M., 1985. Method of Moments as Applied to Electromagnetic 

Problems. IEEE Transactions on Microwave Theory and Techniques, 33(10), 

pp.972-980. 

Niittynen, P. and Luoto, M., 2017. The importance of snow in species 

distribution models of arctic vegetation. Ecography, 41(6), pp.1024-1037. 

Notaros, B., 2008. Higher Order Frequency-Domain Computational 

Electromagnetics. IEEE Transactions on Antennas and Propagation, 56(8), 

pp.2251-2276. 

Piazza, R. and Degiorgio, V., 2005. Scattering, Rayleigh. Encyclopedia of 

Condensed Matter Physics, pp.234-242. 

Pinzer, B. and Schneebeli, M., 2009. Snow metamorphism under alternating 

temperature gradients: Morphology and recrystallization in surface 

snow. Geophysical Research Letters, 36(23). 

Platt, U., Pfeilsticker, K. and Vollmer, M., 2007. Radiation and Optics in the 

Atmosphere. Springer Handbook of Lasers and Optics, pp.1165-1203. 

Polycarpou, A., 2006. Introduction to the Finite Element Method in 

Electromagnetics. Synthesis Lectures on Computational Electromagnetics, 

1(1), pp.1-126. 

Rylander, T., Ingelström, P. and Bondeson, A., 2013. Computational 

Electromagnetics. New York, NY: Springer. 



112 

 

Sarabandi, K., 2003. CLPX-Ground: Ground-based L and Ku band 

polarimetric scatterometry, Version 1.. Boulder, Colorado, USA: NASA 

National Snow and Ice Data Center Distributed Active Archive Center. 

Schuster, A., 1905. Radiation Through a Foggy Atmosphere. The 

Astrophysical Journal, 21, p.1. 

Shin, R. and Kong, J., 1981. Radiative transfer theory for active remote 

sensing of a homogenous layer containing spherical scatterers. 

Silvester, P. and Ferrari, R., 1996. Finite elements for electrical engineers. 

New York: Cambridge University Press. 

Song, J., Lu, C. and Chew, W., 1997. Multilevel fast multipole algorithm for 

electromagnetic scattering by large complex objects. IEEE Transactions on 

Antennas and Propagation, 45(10), pp.1488-1493. 

Stratton, J. and Chu, L., 1939. Diffraction Theory of Electromagnetic 

Waves. Physical Review, 56(1), pp.99-107. 

Sumithra, P. and Thiripurasundari, D., 2017. Review on Computational 

Electromagnetics. Advanced Electromagnetics, 6(1), p.42. 

Syahali, S., Hong Tat, E., Vetharatnam, G., Jiang, L. and A Kumaresan, H., 

2020. Backscattering Analysis of Cylinder Shaped Scatterer in Vegetation 

Medium: Comparison Between Theories. Journal of Engineering Technology 

and Applied Physics, 2(1), pp.15-18. 

Tai, H., 2005. Introduction to Finite Element Method. South Korea: 

Department of Mechanical Engineering, Pohang University of Science and 

Technology, pp.5,6. 



113 

 

Tang, C. and Aydin, K., 1995. Scattering from ice crystals at 94 and 220 GHz 

millimeter wave frequencies. IEEE Transactions on Geoscience and Remote 

Sensing, 33(1), pp.93-99. 

Tanikawa, T., Aoki, T., Hori, M., Hachikubo, A., Abe, O. and Aniya, M., 

2006. Monte Carlo simulations of spectral albedo for artificial snowpacks 

composed of spherical and nonspherical particles. Applied Optics, 45(21), 

p.5310. 

Tiryaki, B., 2010. Solution of Electromagnetics Problems with the 

Equivalence Principle Algorithm. Master of Science. The Institute of 

Engineering and Science of Bilkent University. 

Tsang, L. and Ishimaru, A., 1987. Radiative Wave Equations for Vector 

Electromagnetic Propagation in Dense Nontenuous Media. Journal of 

Electromagnetic Waves and Applications, 1(1), pp.59-72. 

Tsang, L., Ding, K., Huang, S. and Xu, X., 2013. Electromagnetic 

Computation in Scattering of Electromagnetic Waves by Random Rough 

Surface and Dense Media in Microwave Remote Sensing of Land 

Surfaces. Proceedings of the IEEE, 101(2), pp.255-279. 

Tsang, L., Pan, J., Liang, D., Li, Z. and Cline, D., 2006. Modeling Active 

Microwave Remote Sensing of Snow using Dense Media Radiative Transfer 

(DMRT) Theory with Multiple Scattering Effects. 2006 IEEE International 

Symposium on Geoscience and Remote Sensing. 

Tsang, L., Pan, J., Liang, D., Li, Z., Cline, D. and Tan, Y., 2007. Modeling 

Active Microwave Remote Sensing of Snow Using Dense Media Radiative 

Transfer (DMRT) Theory with Multiple-Scattering Effects. IEEE 

Transactions on Geoscience and Remote Sensing, 45(4), pp.990-1004. 



114 

 

Van Atta, L. and Silver, S., 1962. Contributions to the Antenna Field during 

World War II. Proceedings of the IRE, 50(5), pp.692-697. 

Wen, B., Tsang, L., Winebrenner, D. and Ishimaru, A., 1990. Dense medium 

radiative transfer theory: comparison with experiment and application to 

microwave remote sensing and polarimetry. IEEE Transactions on Geoscience 

and Remote Sensing, 28(1), pp.46-59. 

West, R., Gibbs, D., Tsang, L. and Fung, A., 1994. Comparison of optical 

scattering experiments and the quasi-crystalline approximation for dense 

media. Journal of the Optical Society of America A, 11(6), p.1854. 

Woodhouse, I., 2017. Introduction to Microwave Remote Sensing. Boca 

Raton: Chapman and Hall/CRC. 

Xia, T., Meng, L., Liu, Q., Gan, H. and Chew, W., 2018. A Low-Frequency 

Stable Broadband Multilevel Fast Multipole Algorithm Using Plane Wave 

Multipole Hybridization. IEEE Transactions on Antennas and Propagation, 

66(11), pp.6137-6145. 

Xie, Y., Yang, P., Gao, B., Kattawar, G. and Mishchenko, M., 2006. Effect of 

ice crystal shape and effective size on snow bidirectional reflectance. Journal 

of Quantitative Spectroscopy and Radiative Transfer, 100(1-3), pp.457-469. 

Xu, X., Brekke, C., Doulgeris, A. and Melandsø, F., 2018. Numerical Analysis 

of Microwave Scattering from Layered Sea Ice Based on the Finite Element 

Method. Remote Sensing, 10(9), p.1332. 

Xu, Y., 1995. Electromagnetic scattering by an aggregate of spheres. Applied 

Optics, 34(21), p.4573. 



115 

 

Yang, P., Baum, B., Heymsfield, A., Hu, Y., Huang, H., Tsay, S. and 

Ackerman, S., 2003. Single-scattering properties of droxtals. Journal of 

Quantitative Spectroscopy and Radiative Transfer, 79-80, pp.1159-1169. 

Zhu, J., Tan, S., King, J., Derksen, C., Lemmetyinen, J. and Tsang, L., 2018. 

Forward and Inverse Radar Modeling of Terrestrial Snow Using SnowSAR 

Data. IEEE Transactions on Geoscience and Remote Sensing, 56(12), 

pp.7122-7132. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 

 

 

APPENDIX A 

 

 

The complete 4 × 4 phase matrix, 𝑃̿ is 

𝑃 = 4𝜋 < 𝑀 >/(𝐴cos 𝜃𝑠) 
  

𝜃𝑠 is the angle between the scattered path and the path normal to the radiated 

area 𝐴 and Stokes matrix, 𝑀 is derived as (Fung and Chen, 1994) 

[
 
 
 
 

|𝑆𝑣𝑣|
2 |𝑆𝑣ℎ|2 Re (𝑆𝑣𝑣𝑆𝑣ℎ

∗ ) −Im (𝑆𝑣𝑣𝑆𝑣ℎ
∗ )

|𝑆ℎ𝑣|
2 |𝑆ℎℎ|2 Re (𝑆ℎ𝑣𝑆ℎℎ

∗ ) −Im (𝑆ℎ𝑣𝑆ℎℎ
∗ )

2Re (𝑆𝑣𝑣𝑆ℎ𝑣
∗ ) 2Re (𝑆𝑣ℎ𝑆ℎℎ

∗ ) Re (𝑆𝑣𝑣𝑆ℎℎ
∗ + 𝑆𝑣ℎ𝑆ℎ𝑣

∗ ) −𝐼𝑚(𝑆𝑣𝑣𝑆ℎℎ
∗ − 𝑆𝑣ℎ𝑆ℎ𝑣

∗ )

2Im (𝑆𝑣𝑣𝑆ℎ𝑣
∗ ) 2Im (𝑆𝑣ℎ𝑆ℎℎ

∗ ) Im (𝑆𝑣𝑣𝑆ℎℎ
∗ + 𝑆𝑣ℎ𝑆ℎ𝑣

∗ ) Re (𝑆𝑣𝑣𝑆ℎℎ
∗ − 𝑆𝑣ℎ𝑆ℎ𝑣

∗ ) ]
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APPENDIX B 

List of parameters for Section 8.2: 

Parameters Values 

Layer thickness of snow medium (m) 0.62 

Scatterer’s volume fraction (%) 23 

Scatterers’ relative permittivity (3.15, 0.001) 

 

Top layer’s relative permittivity (1.0, 0.0) 

Background’s relative permittivity (1.0, 0.0) 

Bottom layer’s relative permittivity  (6.0, 0.0) 

Correlation length, RMS height of top surface 

(cm) 

6.0, 0.8 

Correlation length, RMS height of bottom 

surface (cm) 

6.0, 0.68 

 

List of parameters for Section 8.3: 

Parameters Site 

A B C I P 

Layer 

thickness of 

snow 

medium (m) 

250 250 250 250 250 

Scatterer’s 

volume 

fraction (%) 

32 32 32 32 32 

Scatterer’s 

relative 

permittivity 

(1.58, 

7.39E-05) 

(1.50, 

6.72E-05) 

(1.53, 

7.14E-05) 

(1.42, 

4.76E-05) 

(1.57, 

4.74E-
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05) 

Top layer’s 

relative 

permittivity 

(1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) 

Background’s 

relative 

permittivity 

(1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) 

Bottom 

layer’s 

relative 

permittivity 

(59.0, 

42.0) 

(59.0, 

42.0) 

(59.0, 

42.0) 

(59.0, 

42.0) 

(59.0, 

42.0) 

Correlation 

length, RMS 

height of top 

surface (cm) 

2.1, 0.39 3.17, 0.51 4.88, 0.13 34.00, 

0.14 

14.77, 

0.30 

Correlation 

length, RMS 

height of top 

surface (cm) 

4.70, 0.58 

 

4.70, 0.58 

 

4.70, 0.58 

 

4.70, 0.42 4.70, 

0.58 

 

List of parameters for Section 8.4:  

Parameters Dates 

 

21/2/2003 23/2/2003 24/2/2003 

Layer 

thickness of 

snow medium 

(m) 

0.62 0.99 1.08 

Scatterer’s 

volume 

fraction (%) 

23 23 23 

Scatterer’s 

relative 

permittivity  

(3.15, 0.001) 

 

(3.15, 0.001) 

 

(3.15, 0.001) 

 

Top layer’s 

relative 

permittivity 

(1.0, 0.0) (1.0, 0.0) (1.0, 0.0) 

Background’s 

relative 

permittivity 

(1.0, 0.0) (1.0, 0.0) (1.0, 0.0) 
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Bottom layer’s 

relative 

permittivity 

(6.0, 0.0) (6.0, 0.0) (6.0, 0.0) 

Correlation 

length, top 

surface RMS 

(cm) 

6.0, 0.8 10.0, 0.6 10.0, 0.6 

Correlation 

length, bottom 

surface RMS 

(cm) 

6.0, 0.68 10.0, 0.75 10.0, 0.75 
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