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ABSTRACT 

 

 

CONSTRUCTION NOISE PREDICTION USING  

STOCHASTIC DEEP LEARNING 

 

 

OOI WEI CHIEN 

 

 

 

 

 

 

Construction noise is an occupational noise that is potentially harmful, and it 

usually originates from earth-moving machines in construction sites. The 

impact of construction noise on the health and safety of construction workers is 

one of the main concerns in the industry. The adverse impacts arising from 

construction noise may jeopardize public welfare, particularly for those who 

live nearby the construction site. Therefore, this research aims to develop a 

reliable noise prediction model on the basis of stochastic modelling and deep 

learning technique. Stochastic modelling was applied in this study to manipulate 

the several major parameters such as the randomness of three different duty 

cycles, coverage angle of the noise receiver, and position of dynamic machinery 

in the construction site, to generate a set of randomized data as the input for the 

deep learning model. The deep learning model was trained with stochastic data 

to predict the noise levels emitted from the construction site. The programming 

algorithm of stochastic modelling was executed in MATLAB, whereas the deep 

learning model was established by using Python 3.6 programming language in 

Spyder. Ten case studies were conducted in this study to validate the predictive 

performance of the stochastic deep learning noise prediction model. The 

stochastic deep learning model showed high accuracy of prediction results with 

an average absolute difference of less than 1.2 dBA having the relative 

percentage error of less than 4 % among the case studies as compared to the 

measurement. The reliability of the results from the prediction model was high. 

In conclusion, the stochastic deep learning model was established and provided 

a promising outcome with satisfactory predictive performance. Lastly, the 



vii 

 

model is worthwhile to be further developed to fully exploit the potential of the 

stochastic deep learning noise prediction model in construction industries as a 

planning, managerial, and monitoring tool.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

 

1.1 General Introduction 

 

Acoustic noise is known as an undesirable sound or annoyance that causes 

irritation and discomfort to humans and wildlife. Noise pollution is a growing 

and ubiquitous environmental issue that is unnoticed in both developed and 

developing countries (Bhosale, 2017). Construction noise is claimed to be one 

of the major noise pollutions in the environment as studies proved that 

construction activities generate high levels of noise and cause disturbance to 

sensitive areas (Zolfagharian et al., 2012; Golmohammadi et al., 2013; Foo, 

2014; Darus et al., 2015; Zao et al., 2020). The fluctuation and continuity of 

construction-induced noise have mainly resulted from the different operation 

modes of machines and equipment that emits blaring noise during the stage 

when constructing the substructures, and eventually, this stage has become the 

noisiest stage of all (Ballesteros et al., 2010;  Haron et al., 2012; Lee et al., 2016; 

Zao et al., 2020).  

 

Social Security Organization Malaysia (2020) stated that the number of 

workers who suffered from noise-induced hearing loss has been increasing since 

2005. Besides, researchers proclaimed that there were 18 – 22 % of construction 

workers were exposed to the noise level of heavy machines that exceed 
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permissible noise limits (Johnson and Morata, 2010; Said et al., 2014; Li et al., 

2016; Mohd Bakhori et al., 2017). The prevalence of noise-induced hearing loss 

is corresponding to the exposure time, which justified workers who were 

exposed to blaring noise for more than 6 hours are more likely to suffer from 

hearing loss problems (Macca et al., 2016; Gan and Mannino, 2018). Moreover, 

noise exposure may cause minor to severe adverse effects depending on the 

exposure duration and noise level. These adverse effects can be categorized as 

physical, physiological, psychological and reduction in work efficiency 

(Passchier-Vermeer and Passchier, 2000; Foo, 2014; Geetha and Ambika, 

2015;). This illness cannot be identified immediately; however, sequelae may 

occur in a long-term period (Towers, 2001; Zolfagharian et al., 2012; Zao et al., 

2020). 

 

Consequently, industrialized countries over the world are obligated to 

comply with the noise regulation that has been enacted by the government. The 

basis of regulation and guidelines shares a similar purpose as in, to monitor, 

assess and control the severity of noise impacts on the employees and the 

environment. Occupational Safety and Health (Noise Exposure) Regulation 

(2019) Act 514 governs the regulations and standards regarding occupational 

noise in Malaysia. On the contrary, limits of ambient noise in the environment 

are regulated under the Guidelines for Environmental Noise Limits and Control 

(Department of Environment, 2019).  

 

With regards to the impact of occupational noise and environmental 

noise as discussed, many researchers developed probabilistic noise prediction 
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methods to predict excessive noise from construction activities (Lim et al., 2015; 

Darus et al., 2015; Haron et al., 2012; Haron et al., 2009; Haron et al., 2008). 

The outcome of the previous studies proved that noise prediction models are 

reliable and accurate as compared to the deterministic approach such as BS 5228 

– Part 1: 2009 (British Standard Institution, 2009). Hence, these noise prediction 

models are potentially useful to prevent and mitigate potential noise hazards in 

the workplace.  

 

However, the application of current prediction techniques is time-

consuming in computation and required laborious work to achieve a reassuring 

outcome. Therefore, the concept of artificial intelligence applied in acoustic 

noise prediction works to reduce the human effort when performing complex 

calculations. Artificial intelligence can be known as a broad field that consists 

of machine learning and deep learning. Machine learning can be defined as a 

type of program that acquires self-learning ability without an individual to 

command the software. Machine learning comprises four types of basic 

archetypes which are supervised, unsupervised, semi-supervised and 

reinforcement learning (Rafique and Velasco, 2018). Deep Learning is a subset 

of machine learning that consists of an input and output layer, and several 

hidden layers, each layer of the neural network serves a different purpose. The 

concept of the artificial neural network is adopted in different types of 

prediction models such as biological vision prediction, traffic noise prediction, 

traffic state prediction, sound levels prediction, and environmental noise 

prediction (Majaj and Pelli, 2018; Do et al., 2018; Navarro et al., 2020; Zhang 

et al., 2020). Hence, this study has predominately emphasized the incorporation 
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of stochastic modelling and artificial neural network in the construction noise 

prediction model. 

 

1.2 Importance of the Study 

 

The application of the noise prediction model in a workplace is a necessity to 

improve the current noise monitoring practice. The noise prediction model helps 

in providing insight for the users to prevent and eliminate potential hazardous 

noise at the workplace. Hence, it can be utilized as a powerful supervisory tool 

in every stage of construction. However, current noise prediction techniques are 

time-consuming and inefficient. Therefore, this study applied the concept of 

stochastic modelling along with deep learning to generate a more accurate, 

reliable, and promising outcome. 

 

This study contributed its novelties in noise prediction technology by 

applying both stochastic modelling and deep neural network. The model was 

expected to predict the sound pressure levels at a selected location within a 

construction site, by using several major parameters such as random movement 

of machinery, different duty cycles of machinery, coverage angle and aspect 

ratio of the determined sub-area in the construction site. The contribution of this 

study was to establish a stochastic deep learning noise prediction model that is 

capable to outperform the simple prediction chart technique in computational 

time and varieties of parameters. Stochastic modelling was applied to determine 

the random positions of the machinery (Haron et al., 2012), whereas Monte 

Carlo was adopted in the study to predict the noise level emitted from earth-
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moving machines depending on the variation of operation modes (Haron et al., 

2009). The output of stochastic modelling was utilized as the input data for the 

deep learning model. Then, the stochastic deep learning model was analysed 

based on given parameters to predict construction noise levels at a selected 

location. 

 

The target users of this technology are local authorities, consultants, 

contractors, noise practitioners and planners. Existing noise prediction methods 

applied the deterministic approach which required complex calculation and 

laborious processes. On that account, this model has the potential to be 

introduced to the construction industries as an improved version of the noise 

prediction model that is capable to enhance the effectiveness of noise 

monitoring and management. 

 

1.3 Problem Statement 

 

Construction noise is unpreventable when there is the presence of construction 

activities. Besides, most of the construction machinery induced loud noise 

during operation, which explained the majority of the construction workers are 

under exposure to loud noise due to the nature of the job scopes. Irreversible 

Noise-Induced Hearing Loss (NIHL) problems among construction workers 

often arise due to overexposure to loud noise (Mirza et al., 2018). According to 

Social Security Organization Malaysia (2018), the number of workers that 

suffered from NIHL had been increasing from 53 in 2005 to 540 in 2016. 

Moreover, the Department of Occupational Safety and Health Malaysia (2018) 
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stated that there were 2478 occupational hearing loss cases in the year 2017. 

Hence, effective noise management is one of the essential solutions to manage 

this issue. It is the obligation of the management to ensure the noise levels are 

maintained under an acceptable limit in the workplace, but the importance of 

noise management was neglected and often resulted from ineffective noise 

attenuation at construction sites. Other than ineffective noise management and 

planning, the ignorance of construction workers for not using personal 

protection equipment (PPE) and lack of personal safety concerns is a major 

factor that contributed to NIHL problems. Thus, the establishment of a planning 

and managerial tool is a necessity for the management to handle the noise 

exposure issues. The tool can be deployed during the early phase of construction 

works to foresee potential noise hazards and maintain noise levels below the 

permissible level during the construction phase. 

 

Previous studies proved that the application of stochastic modelling in 

construction noise prediction is feasible, reliable and able to provide acceptable 

performance. Several prediction methods adopted the concept of stochastic 

modellings such as the simple prediction charts method, Monte Carlo approach 

and probabilistic approach (Haron et al., 2008; Haron et al., 2009; Haron et al., 

2012). These prediction techniques were mainly applied in the sound pressure 

level prediction at a construction site. However, current stochastic modelling 

prediction techniques required a laborious process to predict noise levels at a 

chosen location. In particular, users have to refer to the simple prediction charts 

based on the aspect ratio of the site and angle away from the site centre to 

calculate the approximate sound pressure level at the specific location.  
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Although the current stochastic modelling technique can predict noise 

levels with the inclusion of randomness of machine movement and duty cycles 

of machinery from a workplace; however, this technique is inefficacious for 

complex and dynamic workplaces due to the time-consuming prediction process 

(Lim, 2017). Therefore, stochastic modelling can be further enhanced by 

considering additional parameters for better performance. The accuracy and 

reliability of the prediction model are the key elements to rendering efficient 

occupational noise monitoring. As a result, this study is conducted to develop a 

noise prediction model with the association of stochastic modelling and deep 

learning technique. 

 

1.4 Aim and Objectives 

 

This study aims to develop a reliable noise prediction model using the stochastic 

deep learning technique. To attain the outcome of this study, several objectives 

are required to be achieved: 

1. To establish the framework for the stochastic deep learning model. 

2. To develop the programming algorithms and coding for the stochastic 

deep learning models. 

3. To validate the accuracy and the reliability of the stochastic deep 

learning models by comparing the predicted results with actual 

measurements from the construction sites. 

 



8 

 

1.5 Scope of the Study 

 

This study comprised the development of a stochastic modelling framework and 

a deep learning framework. The output generated from the stochastic modelling 

was applied as the historical data or input for the stochastic deep learning model. 

Then, based on the given parameters the model will predict the noise level at 

any location within a construction site. The stochastic modelling programming 

algorithm was developed using MATLAB software, whereas the deep learning 

model was established in Spyder software using Python programming language. 

The performance of the stochastic deep learning model was evaluated with 

statistical measures.  

 

This study limited the scope of field works only to construction 

industries. The measurement of the case studies consisted of different types of 

works and conducted in Selangor, Malaysia. The sound level measurement was 

performed by using a calibrated Larson Davis sound level meter. Measurement 

tape and distometer were used to measure the distance between the noise 

receiver and the source, the distance of control points, as well as the site layouts. 

The intention of conducting the case studies was to obtain the actual 

measurement data at the control points and to validate the performance of the 

noise prediction model when it is applied in different construction activities. 

The measurement procedures were in accordance with British Standard 

International Organisation for Standardisation, BS ISO 6395:2008, BS 5228-

1:2009 and BS EN ISO 3744:2010 (British Standard Institution, 2008; British 

Standard Institution, 2009; British Standard Institution, 2010). Pearson’s 
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correlation coefficient and R-squared were adopted in this study to assess the 

model reliability. Contrarily, the model accuracy was assessed by using absolute 

difference and relative error. 

 

1.6 Report Structure 

 

This thesis comprises six main components which introduce the conceptual idea 

of this study, the background and literature review of this study, the procedures 

of fieldwork, the establishment of the conceptual framework and the 

programming algorithms of the stochastic deep learning model, the preliminary 

results, the comparison and justification of the actual measurement and the 

prediction, as well as conclusion and recommendation for this study. 

Concluding remarks are clearly presented at the end of the chapters. 

 

Chapter 1 (Introduction) covers the background of acoustic noise and 

artificial intelligence, the importance of the study, the existing problem 

statement, the objectives to be achieved to attain the aim, the scope coverage of 

the study and lastly the thesis structure. 

 

Chapter 2 (Literature Review) provides the types and characteristics of 

discrete acoustic noise, the hierarchy of controls for noise exposure, noise 

regulation and guidelines of current practice and the findings of previous 

literature on construction noise prediction and stochastic modelling. Besides, 

the fundamentals of artificial intelligence such as machine learning and deep 

learning, as well as comprehensive reviews on the feasibility of the noise 
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prediction model with the association of artificial neural networks are expressed 

in this chapter. Research gaps are determined from the preceding studies and 

form the foundation of the present study. 

 

Chapter 3 (Methodology) presents a meticulous illustration and 

explanation, of the planning, design and implementation of this study. This 

chapter includes the research framework, configuration of stochastic framework 

and deep learning framework, field measurement procedure and equipment and 

lastly the demonstration of formulation application from previous studies in 

construction noise prediction. 

 

Chapter 4 (Development of the Stochastic Deep Learning Model) 

contains the results from the development of the stochastic deep learning model. 

The results from stochastic modelling are discussed in this chapter. The deep 

learning model with different variations of hyperparameters is employed in 

construction noise prediction to determine the optimum hyperparameters and 

viability of this study. The findings from the preliminary tests are crucial to 

manifest the feasibility of applying artificial neural networks to construction 

noise prediction. 

 

Chapter 5 (Results and Discussion) presents the main results of this 

study. The preferential neural network configuration is determined by the 

hyperparameters that contribute to the highest accuracy and reliability during 

the noise prediction. Comparisons between the present study, previous studies 

and case studies are made and discussed concerning the hypothesis of this study. 
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Lastly, Chapter 6 (Conclusion and Recommendation) concludes the 

significant findings obtained from this study. The discussion of the current study 

on the limitation and the future research recommendation is also presented in 

this chapter. 
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

 

2.1 Introduction 

 

This chapter provides an intuition into the sound fundamentals, types of noise, 

methods of noise prediction, current noise monitoring techniques, rules and 

regulation of permissible noise in the current practice, fundamentals and 

applications of deep learning in noise prediction. 

 

2.2 Sound 

 

Sound is essential in human daily life as it helps a person to differentiate and 

learn from the sound sources to react. In addition, prehistoric human 

communicates with one another through the first mode of communication, voice. 

Sound is generated when there is a disturbance propagated through an elastic 

medium such as air and causes variation in pressure which can be detected by 

humans (Beranek and Mellow, 2012). Sound can be identified as pleasant and 

unpleasant sounds. Pleasant sounds can be related to music, whereas unpleasant 

sounds can be classified as noise (Hewitt, 2014).  
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2.3 Sound Power, Sound Intensity and Sound Pressure 

 

According to Murphy and King (2014), the pressure level of sound (LP), the 

intensity level of sound (LI) and the power level of sound (LW) shall all be 

measured in the units of decibels (dB) because it is more convenient, as the 

measurement is more closely to the nature of human hears the sound loudness 

(Everest and Pohlmann, 2015). The sound power level determination, sound 

intensity level calculation and the sound pressure level computational formula 

are expressed in Equations 2.1, 2.2 and 2.3 correspondingly. Sound power is 

present when a sound source produced an amount of acoustic energy within a 

timeframe. A quantum that determines the emission rate of the acoustic energy 

throughout a unit area in a certain direction is called the sound intensity. Sound 

pressure can be defined as the alteration of atmospheric pressure caused by a 

sound wave or vibration of an object (Crocker, 2007).  

 

 Sound power, 𝐿𝑊 = 10𝑙𝑜𝑔10 (
𝑊

𝑊𝑜
) (2.1) 

 

Where reference value for sound power,   

W = sound power of a source (Watt); 

Wo = 10-12 (Watt) 

 

 Sound Intensity, 𝐿𝐼 = 10𝑙𝑜𝑔10 (
𝐼

𝐼𝑜
) (2.2) 

 

Where reference value for sound intensity,  
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I = component of the sound intensity in a given direction (W/m2); 

Io = 10-12 (W/m2) 

 Sound pressure, 𝐿𝑃 = 10𝑙𝑜𝑔10 (
𝑝2

𝑝𝑜
2

) (2.3) 

 

Where reference value for sound pressure,  

ps = sound pressure being measure (Pa); 

pref = 2 x 10-5 (Pa) for airborne 

 

2.4 Sound Propagation 

 

A sound from a source transmits uniformly, spherically and omnidirectionally 

in an unbounded medium (Pierce, 2019). As the sound propagates farther from 

the source, the intensity of sound sources will reduce due to the inverse-square 

law. Figure 2.1 depicts that the surface area of the same acoustic energy from 

the sound source will increase radially outward when the radius increases 

(Everest and Pohlmann, 2015). This justifies the relationship between the 

intensity of sound and the square of the distance from the origin of the sound is 

inversely proportional. The sound intensity can be computed by using Equation 

2.4.  

 

 𝐼 =  
𝑊

4𝜋𝑟2
 (2.4) 

 

Where 

I = intensity of sound (W/m2); 
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W = sound source power (Watt); 

r = distance away from the source in radius (m) 

 

 

Figure 2.1: Propagation of sound wave (Everest and Pohlmann, 2015) 

 

2.5 Geometrical Divergence of Point Source 

 

It is crucial to identify the ambience of the sound source because the accuracy 

of the measurement can be significantly affected by the surroundings (Crocker, 

2007). For a free field without any reflection and obstacles, the sound pressure 

level can be computed by using Equation 2.5. However, construction machines 

are mostly mounted on a hard surface in the industry. Therefore, Equation 2.6 

is adopted to determine the sound pressure level (Lp) when the sound source is 

located on a rigid hard surface. Figure 2.2 exemplifies the propagation of sound 

when the source is mounted on the ground (Ning, 2017). 
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 𝐿𝑃 =  𝐿𝑊 − 20 log 𝑟 − 11 (2.5) 

Where  

Lw = sound power noise source (dBA); 

r = distance away from the sound source (m) 

 

 𝐿𝑃 =  𝐿𝑊 − 20 log 𝑟 − 8 (2.6) 

 

Where  

Lw = sound power noise source (dBA); 

r = distance away from the sound source (m) 

 

 

 

Figure 2.2: Point source above a rigid hard surface (Ning, 2017) 
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2.6 Human Hearing 

 

Hearing enables humans to identify and recognize the sound produced by living 

and non-living creatures in the world (Peterson, 1980). Besides, hearing is one 

of the essential components of effective communication. Sound is produced 

when an object vibrates and causes variation of pressure in a sound-transmitting 

medium such as air. The generated pressure wave is usually transmitted away 

from the vibrating object. Hence, the pressure wave will travel through the ear 

canal, and the eardrum of a listener will capture the sound transmitted by the 

vibrating object and the hearing process will be initiated as depicted in Figure 

2.3. The sound will be converted into vibration by the eardrum once it passed 

through the outer ear canal. The converted vibrations will propagate through the 

hammer, anvil and stirrup then into the cochlea. According to Crocker (2007), 

Figure 2.4 shows the maximum tolerability of sound for an auditory system is 

130 dBA, a sound pressure level that exceeds the threshold will cause pain to 

the listener. Murphy and King (2014) signified that the typical frequency ranges 

for human hearing are 20 Hz – 20, 000 Hz.  
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Figure 2.3: Auditory system anatomy (Dobie and Hemel, 2005) 

 

 

Figure 2.4: Tolerability of ear (Crocker, 2007) 

 

2.7 Noise 
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An undesirable sound that can bring negative impacts on humans and other 

walking creatures is defined as noise (Murphy and King, 2014). World Health 

Organization (2011) emphasized that noise should be identified as a 

consequential menace to humans. Noise pollution has been identified as one of 

the catastrophes that may jeopardize the welfare of humans and also the quality 

of life in cities all over the world (Hunashal and Patil, 2012). Additionally, 

World Health Organization (2011) proved that there is overwhelming evidence 

that noise exposure has adverse impacts on humans.  

 

Geetha and Ambika (2015) revealed that noise pollution from the 

construction industry resulted in severe negative impacts on humans and the 

environment. Noise exposure may lead to a different level of adverse effects 

depending on the exposure duration and volume. These adverse effects can be 

classified in the form of physical, physiological, psychological and also reduced 

work efficiency (Passchier-Vermeer and Passchier, 2000; Foo, 2014; Geetha 

and Ambika, 2015). For instance, noise-induced hearing loss is a common result 

of physical effects. Additionally, loud noise exposure will inflict an increase in 

blood pressure and inconsistency of heartbeat rhythms whereas psychological 

effects are sleep disturbance, disorders and irritability. Moreover, noise may 

affect social performance during work due to interference in communication. 

According to Gan and Mannino (2018), workers that suffered from bilateral 

high-frequency hearing impairment had a higher heart rate, a higher chance of 

getting diastolic blood pressure, and the prevalence of hypertension compared 

to individuals that were exposed under normal high-frequency hearing.  
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2.7.1 Types of Noise 

 

Noise can be categorized into steady, fluctuating, intermittent and impulsive 

noise. According to the Department of Environment Malaysia (2019), steady 

noise is defined as noise that remains constant and stagnant for a specific period. 

The continuous noise is comprised of steady-continuous noise and steady-

noncontinuous noise. Steady-continuous noise has minor changes, less than 3 

dBA in sound level within a specific time as depicted in Figure 2.5a. Steady-

noncontinuous noise has the same behaviour as steady-continuous noise except 

for the sound level varies upon the time frame as shown in Figure 2.5b. 

Fluctuating noise is a type of noise that has a variation of more than 3 dBA in 

sound level within a specific time. The sound level of fluctuating noise is 

unconstant and varies over the observation period as depicted in Figure 2.5c. 

For intermittent noise, the sound level has a sudden drop to ambient level 

several times over an observation period whereby the sound level over the 

observation is stable and consistent. The characteristic of intermittent noise is 

illustrated in Figure 2.5d. Lastly, impulsive noise occurs for a period that lasts 

for less than a second,  accompanied by a very short burst of loud noise as shown 

in Figure 2.5e. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

Figure 2.5: Types of noise (a) steady continuous noise; (b) steady non-

continuous noise; (c) fluctuating noise; (d) intermittent noise; (e) impulsive 

noise (Department of Environment, 2007) 

 

2.7.2 Occupational Noise Exposure 

 

Occupational safety and health is an awareness that concerns the safety, 

health, and welfare of individuals when they are engaged in employment (Lord 

Robens, 1972). A study mentioned that the main cause of employees suffering 

from the irreversible occupational noise-induced hearing loss was due to 

extensive exposure to blaring noise in a workplace (Mirza et al., 2018). In the 

United States, an estimation of 22 million workers is currently exposed to 

perilous occupational noise (Themann and Masterson, 2019). Moreover, 11.2 
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million workers in Canada are overexposed to occupational noise and one-third 

of the workers experienced acute effects of hearing loss (Feder et al., 2017). 

According to Social Security Organization Malaysia (2020), the number of 

workers that claimed noise-induced hearing loss compensation increased 

gradually every year as shown in Figure 2.6. Department of Occupational Safety 

and Health Malaysia (2019) stated that there were 2478 occupational hearing 

loss cases out of  6020 occupational disease and poisoning cases in the year 

2017.  

 

A study estimated prolonged occupational noise exposure accounts for 

16 % of hearing impairment in adults globally (Nelson et al., 2005). Besides, 

workers that were afflicted with hearing loss issues were mostly from economic 

sectors such as mining, manufacturing, and construction was proved to be the 

largest proportion among all the occupations (Fernández et al., 2009). A study 

has shown that construction workers were exposed to loud noise that exceeds 

the stipulated permissible noise level (Mohd Bakhori et al., 2017). Based on the 

findings, Johnson and Morata (2010) mentioned that 18 – 22 % of construction 

workers were under exposure to occupational noise above 85 dBA during 

working hours.  Cantley et al. (2014) discovered that aluminium workers are 

more likely to get injured when they were exposed to noise levels exceeding 88 

dBA. Moreover, a quantitative assessment revealed that the majority of heavy 

machine operators are under exposure to noise levels exceeding 85 dBA as 

depicted in Table 2.1 (Li et al., 2016). Heavy machines that generate noise levels 

exceeding 85 dBA may cause risks of overexposure among workers and 

operators. Gan and Mannino (2018) proved that the accumulated noise exposure 
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time will increase the chances of an individual having bilateral high-frequency 

hearing loss, which explained that workers that were exposed to a blaring noise 

for a long duration, are more likely to suffer from hearing impairment. Macca 

et al. (2015) reported that 41.6 % of welding workers suffered from tinnitus and 

sleep disorders after daily noise exposure of 6 hours. Based on a study, 45 % of 

workers from trade work were diagnosed with hearing problems; the following 

32 % of workers that suffer from hearing impairment came from the road work 

stage and 23 % were from the pavement construction stage (Said et. al., 2014).  

 

 

Figure 2.6: Noise-induced hearing loss compensation (Social Security 

Organization, 2018) 
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Table 2.1: The noise exposure level of heavy machines operators. (Li et al., 

2016) 

 

2.7.3 Construction Noise 

 

During the industrial revolution, heavy machines have been invented by the 

pioneers to reduce human effort in the construction industry (Haycraft, 2011). 

However, the application of heavy machines in the construction industry will 

cause setbacks such as inducing construction noise. The fluctuation and 

continuity of construction-induced noise will cause irritation and discomfort to 

humans (Zao et al., 2020).  

 

A study in Malaysia proclaimed that construction sites are one of the 

sources that create noise pollution in the surroundings (Zolfagharian et al., 

2012). Foo (2014) claimed that the construction industry was identified as the 

second most impactful source that contributed to noise pollution in the 

Construction Stage Construction Trades  Noise Levels (dBA) 

Earthwork 

Excavator Operator 80.5 

Sand Ejector Operator 87 

Pile Driver Operator 88.3 

Earthwork and 

Superstructure 

construction 

Steel Bender 85.6 

Steel Fixer 87 

Scaffolder 87.4 

Formwork Fixer 91.9 

Concreter 92.4 
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surroundings. In recent years, the effects of construction noise are no longer 

tolerable due to the increased consciousness of government and the public 

regarding environmental issues, and escalation in the growth of  “megaprojects” 

(Towers, 2001). From the perspective of the construction industry, the noise 

level is determined by the emitted sound level of construction machines, the 

number of machines operating simultaneously, the distance between the sound 

receiver and sound source, the presence of reflective objects between the 

receiver and source, as well as the machine acoustic power under different duty 

cycles (Carpenter, 1997; Haron and Yahya, 2009; Lim et al., 2015).  

 

Geetha and Ambika (2015) classified the types of potentially hazardous 

noise effects from construction activities as noise hazards and nuisance. Noise 

hazards will cause irreversible hearing loss and neural stress to the human body. 

Besides, noise nuisance will cause irritation, mental stress, and negatively affect 

the performance and concentration of construction workers. Furthermore, 

studies proved that high levels of noise exposure on construction sites are a 

significant matter and distress to labours; apart from affecting the construction 

workers, construction noise may affect the public as well (Haron et al., 2014; 

Darus et al., 2015; Bhosale, 2017). A study proved that the initial construction 

stage such as earthwork and substructure produced the highest noise levels 

compared to other stages (Ballesteros et al., 2010; Darus et al., 2015).   

 

The main sources of noise at a construction site consists of construction 

machines that emit high levels of noise such as heavy machine, pile driving 

machine and pneumatically driven device (Haron et al., 2008). On the other 
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hand, Lee et al. (2015) and Lee et al. (2016) revealed the sound power level of 

different types of construction equipment as shown in Table 2.2. Nonetheless, 

the responses of the people vary in accordance with the level of noise pollution; 

however, the prevalence of getting affected negatively by the construction noise 

is higher,  when the noise levels reach a certain extent (Darus et al., 2015). The 

impacts cannot be identified immediately; however, they will escalate in a long-

term period (Towers, 2001; Zolfagharian et al., 2012; Zao et al., 2020). 

 

Table 2.2: Noise emitted from construction machines (Lee et al., 2015; Lee 

et al., 2016) 

Peak LP in dBA Types of Machine 

100.9 Vibratory pile driver 

93.1 Hacking machine 

89.5 Excavator 

95.2 Bull Dozer 

87.3 Trench cutter 

99.8 Earth Gauger 

109.6 Breaker 
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2.8 Hierarchy of Controls for Noise Exposure 

 

Noise is a potential hazard that may cause negative effects on the health of the 

employees and also jeopardize the welfare of the public. Hence, construction 

noise that has been emitted from the activities shall be monitored and controlled 

by the noise creator. Therefore, noise monitoring is mandatory to supervise and 

control the hazard caused by noise.  

 

Department of Occupational Safety and Health (2019) has adopted a 

hierarchy of controls to develop the objectives that are more precise and 

systematic to assess the hazards in a workplace. A hierarchy of controls can be 

defined as the establishment of the sequence for the types of measures to be 

taken to control the encountered risks. The hierarchy of controls consists of 5 

major components as illustrated in Figure 2.7.  

 

 

Figure 2.7: Hierarchy of controls (Department of Occupational Safety 

and Health, 2019) 
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According to the Department of Occupational Safety and Health (2019), 

the most effective way to prevent an employee from suffering occupational 

noise is to remove the machinery and equipment from the workplace. Other than 

that, the employer should eliminate dangerous jobs and substances that will 

cause injury and fatality to the employees. Department of Occupational Safety 

and Health (2019) defined substitution is to replace a conventional material, 

machinery or process with a less harmful alternative. For instance, replacing the 

existing machine with a quieter machine. 

 

According to Canadian Centre for Occupational Health and Safety 

(2019), engineering controls are the methods or procedures adopted in the 

design of processes, plants or equipment to minimize exposure to hazards. For 

the construction industry, a noise barrier is one of the most effective solutions 

to prevent workers exposed to loud and blaring noise. Halim et al., (2015) 

mentioned that the concrete hollow blocks and concrete panels can reduce the 

noise level up to 5 - 10 dBA, which proved that it is feasible to use the noise 

barrier as one of the engineering controls. Suter (2010) stated that noise control 

is the most practical solution to lower the impact of noise-induced hearing loss, 

and it can reduce the risk of fatal accidents occurring. 

 

The concept of administrative controls is to alter the work practice of 

the employee that exceeds the permissible noise level, validate the management 

policies, supervise and monitor the working behaviour of employees (Morata, 

2016). Department of Occupational Safety and Health (2019) mentioned that 

safe work procedures must be carried out by the employer and employee as well.  
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Standardized safety practices have to be conducted and the employer is expected 

to ensure that the employee complies with the practices. Besides, work 

procedures must be assessed periodically and the procedures must be updated 

to the employee.   

 

According to the United States Department of Labor (2019), supervision 

and training are mandatory to be provided to supervisors on safety concepts and 

their responsibility. Other than that, proper and appropriate supervision is 

expected to be conducted by the supervisor to assist the employees to identify 

potential hazards and assessing work procedures. 

 

Moreover, the Department of Occupational Safety and Health (2019) 

stated PPE and clothing are adopted when extra protection is needed and the 

other control measures are not practically achievable. Fernández et al., (2009) 

mentioned that PPE for hearing protection must be chosen appropriately for 

different workplaces regarding attenuation spectrum and global attenuation. 

 

Proper training and instruction must be given to the employees to ensure 

they are capable of equipping PPE. It is the obligation of the employer to ensure 

the employees are equipped with PPE when exposed to potential hazards. 

Different specifications are applied for different types of PPE used to protect 

different body parts of an individual in terms of hearing, visual and respiratory. 

PPE has to be checked thoroughly to ensure it is functioning well. Otherwise, 

PPE may jeopardize the welfare of the worker by providing an illusion of 

protection.  
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2.9 Noise Regulation and Guidelines 

 

The noise regulation had been inaugurated by the government and adopted in 

industrialized countries over the world because the hearing health of 

construction workers emerged significantly over the past decades (Foo, 2014). 

Hence, all the regulations and guidelines share the same objective, which is 

mainly emphasized hearing loss and annoyance to the surroundings. Most of the 

industrialized countries had established noise regulatory limits correlated with 

hearing protection. However, only occupational noise sources and noise sources 

corresponding to public exposure can be supervised and regulated 

authoritatively. Although occupational safety is the priority, the existing noise 

regulations enforcement is relatively poor, particularly in the construction sector; 

and improvement is yet to be made in the future to strengthen the regulation in 

Malaysia (Suter, 2010; Foo, 2014). 

 

2.9.1 Occupational Regulation and Guidelines 

 

Regulations and standards regarding noise monitoring for employees in 

Malaysia are governed by Occupational Safety and Health Act (2019) under Act 

514. According to regulations, the daily noise exposure level of an individual 

shall not exceed 85 dBA for 8 hours. Besides that, employees are restricted to 

be exposed to noise levels that are beyond 115 dBA. Thereafter, employees shall 

not be exposed to impulsive noise levels exceeding 140 dBC at the workplace. 
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Under Occupational Safety and Health Act (2019), employee exposure 

monitoring shall be conducted by employers to detect any exposure to noise 

levels exceeding the permissible level for their employees. Department of 

Occupational Safety and Health Malaysia (DOSH) adopted the occupational 

exposure level to determine the allowable noise level that required noise 

monitoring and control. There are three types of noise monitoring such as initial 

employee exposure monitoring is to be conducted for a single or more employee 

representing a category with the same work or from the same workplace. For a 

positive initial employee exposure monitoring, where the noise exposure level 

exceeds the permissible level, then the monitoring period for employees of the 

same work or workplace is to be determined within six months; whereas if the 

initial employee exposure meeting does not show exposure level exceeding 

permissible level, noise monitoring is not required at the workplace, this is 

termed as negative initial employee exposure monitoring. 

 

Occupational Safety and Health Act (2019) indicated that additional 

monitoring shall be conducted in the event of any changes regarding work 

activities or employees. Besides, the employer shall announce the noise 

monitoring results to every employee upon the reception of the results. The 

noise measuring equipment approved by the Industrial Hygiene and 

Ergonomics Division shall be used during the noise exposure monitoring under 

the supervision of Noise Competent Person registered with DOSH. The 

monitoring report will be submitted to DOSH for further compliance validation 

and documentation. 
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Occupational noise regulation is mainly emphasized on the potential 

hazards relating to hearing loss problems. It is globally proven that exposure to 

the noise level of 85 to 90 dBA daily for 8 hours will result in sensorineural 

hearing loss in the majority of workers after 5 years of exposure and will suffer 

from significant loss of hearing after 20 years of exposure (Cowan, 2016).  

 

2.9.2 Guidelines for Environmental Noise Limits and Control 

 

In Malaysia, Guidelines for Environmental Noise Limits and Control enacted 

by the Department of Environment enacted served as technical guidance and 

cover the scope of providing recommendations on ambient noise standards to 

reduce the adverse impacts on the environment. The guidelines presented the 

noise limits in the environment for new projects and development to protect the 

public welfare from unpleasant noise (Department of Environment Malaysia, 

2019). Procedures to conduct the environmental noise measurements, 

assessment and mitigation are mentioned in the guidelines as well. 

 

The purpose of these guidelines is to provide an insight for the parties 

involved in the initial stage to propose the required precautionary measures and 

planning (Department of Environment, 2019). Besides, noise impact 

assessments, before and after Environmental Impact Assessment compliance 

verification are explained in the guideline. These guidelines are applied to 

quantify the noise disturbance throughout a given time and lastly serve as 

guidance in the mitigation of environmental noise. 
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According to the Department of Environment Malaysia (2019), the 

maximum permissible sound level for different land development is categorized 

into five receiving land use categories as presented in Table 2.3 3. Next, Table 

2.4 presented the recommended maximum allowable noise levels such as 

statistical percentile (L10), and maximum instantaneous sound pressure level 

(Lmax) for demolition activities, construction phases and maintenance purposes. 

According to the guidelines, measured values of (L10) and (Lmax) levels are 

applied to assess and quantify fluctuating and impulsive noise generated from 

piling activity and pneumatic tools. 

 

Table 2.3: Maximum allowable sound level (LAFeq) by for Different 

Category of Land Use for New Development and Planning (Department of 

Environment, 2019) 

Night time 

10.00 pm – 

7.00 am 

Day time 

7.00 am – 

10.00pm 

Category of Receiving Land Use 

50 dBA 55 dBA Low-Density Residential 

55 dBA 60 dBA Medium Density Residential 

60 dBA 65 dBA High Density Residential 

60 dBA 65 dBA Commercial Business Zones 

65 dBA 70 dBA Industrial Zones 
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Table 2.4: Maximum allowable sound levels (percentile L10 and Lmax) for 

Different Land Use in Demolition Work, Construction Activities and 

Maintenance Purposes (Department of Environment, 2019) 

Night  

10.00 pm - 

7.00am 

Evening 

7.00 pm – 

10.00 pm 

Day  

7.00 am - 

7.00 pm 

Category of 

Receiving 

Land Use  

Parameter 

of Noise 

80 dBA 80 dBA 80 dBA 

Designated 

Industrial 

Zones 

L10 

75 dBA 80 dBA 80 dBA 

Commercial, 

Mixed 

Development 

L10 

70 dBA 70 dBA 75 dBA 

Residential 

Sensitive 

Areas 

L10 

85 dBA 85 dBA 90 dBA Lmax 

 Existing 

LAFeq + 1.5 

dBA 

Existing 

LAFeq + 3 

dBA 

Existing 

LAFeq + 3 

dBA 

LAFeq 

 

2.9.2.1 Noise Measurement and Monitoring 

 

The necessity of conducting noise levels measurement is to serve the purpose 

of determining the current noise climate, evaluating the noise limits for noise 

sources and the development of projects that complies with the regulations. 
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Lastly, it is used to identify the environmental impact and potential hazards to 

the community.   

Department of Environment Malaysia (2019) explained that noise 

measurement shall include the ambient sound pressures level at the location of 

the noise receptor, or the coverage boundary of the noise source, and shall be 

undertaken without the presence of the noise source. Secondly, measurement of 

the noise levels at a noise receiver’s location shall be conducted in the presence 

of a noise source. Next, the determination of the contribution of each source to 

the surroundings shall be based on the sound pressure levels of each noise 

source during the assessment. 

 

In accordance with the Guidelines for Environmental Noise Limits and 

Control, noise assessment shall be performed in the areas that are noise-

sensitive, and the selected monitoring locations shall be located beyond the 

receiver's real property border (Department of Environment, 2019). Besides, the 

noise measurements are conducted at the height of 1.5 m to 4.0 m above ground 

level. However, alteration of noise monitoring locations at the site boundary is 

allowed when there are measurement difficulties due to constraints that may 

cause inaccurate results. 

 

Moreover, measured values of LAFeq, Lmax, L10 and L90 shall be recorded 

and kept along with the information of the measured periods. Besides, the 

methodology of noise measurement, instrumentation specification, system 

calibration data of the sound level meter, the position of the noise receiver 

regarding the site and details of sampling techniques, plans of the site, and site 
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activities during the monitoring periods shall be documented as well. Besides 

that, factors that may result in unreliable and inaccurate measurement, wind 

speed and direction, the presence of precipitation, weather conditions, relative 

humidity and temperature shall be diarized. 

 

2.10 Noise Prediction 

 

Acoustic noise caused by factories, construction sites, and traffic noise has been 

increasing over the past decades due to urbanization and transportation. This 

issue has to be managed appropriately to prevent the seriousness of noise 

pollution from getting intensified (Koi et al., 1993; Foo, 2014). Acoustic noise 

is considered during the tendering stage and construction phase to confirm the 

contractor complies with the permissible limit prescribed by the local authority 

(Haron et al., 2008). Noise prediction is usually conducted to assess the 

seriousness of adverse impacts arising from excessive noise on the surroundings. 

Consequently, there are many noise prediction methods available especially for 

traffic noise prediction (Wang et al., 2018; Al-Mosawe et al., 2018; 

Konbattulwar et al., 2016; Petrovici, 2015) but construction noise prediction 

methods are very limited and only a few can be found (Haron et al., 2008; Haron 

et al., 2009; Idris, 2012; Darus et al., 2015; Lim et al., 2015).  

 

2.11 Construction Noise Prediction 

 

Construction noise prediction is very essential in the planning phase of 

construction to ensure potential noise hazards can be monitored, controlled and 
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mitigation of noise may be made (Carpenter, 1997). Many techniques are being 

adopted in noise prediction such as BS 5228-1:2009, stochastic Monte Carlo 

approach, simple prediction chart technique and artificial neural network. 

(Haron et al., 2008; Haron and Yahya, 2009; Haron et al., 2012; Lim et al., 2015; 

Mansourkhaki et al., 2018). These noise prediction models can be utilized as a 

supervisory and planning tool in construction activities.  

 

Darus et al. (2015) compared the results of noise prediction methods 

from BS 5228-1: 2009 with the actual measurement and obtained a significant 

difference with the highest value of 5 dBA. The prediction included several 

factors such as the sound power machine, the distance between receiver and 

noise source, the operating facility, the reflected sound, the reduction due to 

noise absorption of earth and the presence of screening. Moreover, Jahya (2014) 

conducted a comparative study on a construction site on a larger scale and 

discovered that the random movement of machines resulted in an observable 

difference between the measurement and prediction results. 

 

Findings showed that the simple prediction chart technique is capable of 

providing reasonable and reliable outcomes and has absolute differences of 3 

dBA (Haron et al., 2012). Besides, Lim et al. (2015) developed a noise 

prediction stochastic framework that considered the earth-moving machines’ 

complexity and randomness along with the emitted noise levels; the outcome of 

this study showed reliable accuracy with the absolute differences of 2 dBA.  
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2.12 Stochastic Modelling 

 

A stochastic model is applied to predict a set of possible results based on the 

possibilities or likelihood within a given time (Taylor and Karlin, 1998). 

Stochastic modelling is found to be feasible, especially in the construction noise 

prediction based on previous studies (Haron et al., 2008; Lim et al., 2015; Lim, 

2017). Table 2.5 shows the findings of researchers that applied the concept of 

the stochastic process to their studies (Haron, 2008; Haron and Yahya, 2009; 

Haron et al., 2012; Lim et al., 2015).  

 

Table 2.5: Application of stochastic modelling in noise prediction 

Authors Application and Findings 

Lim et al. (2015) 

This study adopted a stochastic model in noise 

prediction and it shows a satisfactory outcome 

(Absolute differences not more than 2 dBA). 

Besides, noise mapping quality was enhanced by 

using the results from the prediction. 

Haron et al. (2012) 

The noise prediction was conducted using the 

simple chart method based on stochastic 

modelling, the charts can be used to manually 

approximate construction noise at the planning 

stage with plausible accuracy. 
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Table 2.5: Application of stochastic modelling in noise prediction (Cont’d) 

Authors Application and Findings 

Haron and Yahya (2009); 

Haron et al. (2008) 

Monte Carlo approach and probabilistic 

approach are applied on the basis of stochastic 

modelling to obtain the temporal noise level 

dispersion emitted from construction activities. 

The findings of this study revealed that either for 

a single noise source or multiple noise sources, 

this technique can be applied to predict the 

temporal distribution of the construction 

activities. 

 

2.12.1 Probabilistic Approach for Noise Modelling 

 

The application of the probabilistic approach in noise modelling was to obtain 

a set of quantitative data to evaluate the seriousness of noise issues from traffic 

noise (Nelson, 1973). The probabilistic approach can be used to determine the 

noise level that exceeded 10 % of the time measurement duration, L10 and 

ambient noise level, L90 with the collaboration of multiple Gaussian traffic noise 

distributions. The conditions between construction noise and traffic noise are 

relatively similar as each involves different noise sources, operating 

concurrently or non concurrently, operating under random locations, noise 

sources with different sound power and operating under different conditions 

(Haron et al., 2008).  
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Haron et al. (2008) extended the work of Nelson (1973) on traffic noise 

prediction and developed a new method for construction noise prediction. 

Several factors that may influence the noise variability in terms of the position 

of machines or equipment, sound power and duty cycle of the machine, the 

amount of equipment within a hypothetical subarea, and the possibility of 

different activities operating concurrently were considered in the model to 

enhance the prediction model accuracy. This technique is capable of predicting 

a set of noise levels during a working day period based on their probabilities of 

cumulative or temporal distribution. Moreover, the probabilistic approach is 

proved as a reliable technique to predict equivalent noise levels, as the 

comparison of the result between BS 5228-1:2009 and the probability approach 

has a slight difference of 1 dBA. 

 

2.12.2 Stochastic Monte Carlo Method 

 

Monte Carlo can be defined as the concept of using randomness to 

predict an estimation (Brandimarte, 2014). Monte Carlo is a random number 

generator and a method that generates a set of boundless independent random 

variables that are uniformly distributed (Kroese et al., 2011). In this modern 

world, the concept of Monte Carlo has already been adopted in most computer 

languages. The user is required to insert an initial number, namely the seed as 

input. Then, a series of independent uniform random variables in the range of 0 

to 1 will be simulated by the random number generator based on the input.  

 



41 

 

Carpenter (1997) was the first that introduced Monte Carlo in 

construction noise prediction. Gilchrist et al. (2003) deployed a model using the 

deterministic approach in corporate with the Monte Carlo technique. The model 

can forecast the frequency as well as the magnitude of noise levels emitted by 

equipment that is involved in construction activities within the site. 

Subsequently, Haron and Yahya (2009) obtained the temporal noise level 

distribution of the construction activities by using the Monte Carlo approach in 

the noise prediction model. 

 

2.12.3 Stochastic Simulation Framework 

 

Based on the studies of Haron and Yahya (2009) and Lim et al. (2015), the duty 

cycles and the random position of the machinery must be taken into 

consideration as the parameter of the noise prediction modelling. Lim et al. 

(2015) proclaimed that the duty cycles of the construction machinery are 

required to be categorized into several modes such as off, fully operating and 

idling to improve the noise prediction model reliability and accuracy. 

Subsequently, application of Monte Carlo theory is applied to generate a set of 

random output between these modes. Lim et al. (2015) stated randomness of 

activities and temporal distribution of noise levels were taken into account in 

the random walk approach. This technique can effectively forecast the strategic 

noise mapping from the moving workers and the dynamic machines within an 

area for noise exposure prediction. 
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2.12.4 Simple Prediction Charts Method 

 

In this study, simple prediction charts were developed using a stochastic 

approach with some alterations from previous researchers to estimate the level 

of noise arising from construction noise (Haron et al., 2008; Haron and Yahya, 

2009). This method was enhanced with the implication of three parameters to 

increase the accuracy of the prediction. The first parameter is the fluctuation in 

generated noise levels arising from the random position of an item of the 

machine within a confined area. Secondly, assuming the sound power level of 

the noise source as 120 dBA. Thirdly, the screening was excluded between the 

receiver and source during the simulation. 

 

The mean noise level for a sub-area is computed by averaging the total 

number of sound pressure levels obtained based on the random movement of 

the machine in the sub-area. The mean noise level can be calculated by using 

Equation 2.7. Next, Figure 2.8a illustrates the design layout of the site, and the 

site is assumed as an ideal rectangular area with depth (d), width (w), and a 

receiver is positioned out of the area with a random angle (θ) and distance 

between the site centre and noise source (r). The sound pressure level is 

enumerated under the assumption, that the acoustic energy radiated in the form 

of hemispherical when the source is mounted on a rigid hard surface and can be 

calculated by using Equation 2.8. The distance from the sound source is 

quantified by using Equation 2.9. Besides, the x and y coordinates of the receiver 

with different radii can be calculated by using Equations 2.10 and 2.11. The 

randomness of the machine working at a random position is defined by using 
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two random numbers Ni and Nj, with the coordinates of xi and yj in Equations 

2.12 and 2.13. 

 

  𝐿 = 10 𝑙𝑜𝑔10(
1

𝑁𝑇
 ∑ 𝐼(𝑖.𝑗)/10−12)

𝑖=𝑛,𝑗=𝑚

𝑖=1,𝑗=1

 (2.7) 

 

Where, 

NT = total number of samples collected; 

I = sound intensity generated from the machine (W/m2); 

L = mean noise level (dBA) 

 

 𝐿(𝑖,𝑗) = 10𝑙𝑜𝑔10 (
𝑊𝑎

2𝜋𝑅(𝑖,𝑗)
2 . 1012) (2.8) 

Where, 

Wa = acoustic power of the noise source which is equivalent to 1 Watt; 

R(i,j) = the distance between the receiver and the source position (xi, yj, zs); 

L(i, j) = sound pressure level at the selected location (dBA) 

 

 𝑅(𝑖,𝑗) = √(𝑥𝑖 − 𝑥𝑟)2 + (𝑦𝑗 − 𝑦𝑟)2 + (𝑧𝑖 − 𝑧𝑠)2  (2.9) 

 

 𝑥𝑟 = 𝑟 sin 𝜃 (2.10) 

 

 𝑦𝑟 = 𝑟 cos 𝜃 (2.11) 

 𝑥𝑖 = 𝑤(𝑁𝑖 − 0.5) (2.12) 
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 𝑦𝑗 = 𝑑(𝑁𝑗 − 0.5) (2.13) 

 

Where 

w = sub-area width (m); 

d = sub-area depth (m); 

xr = coordinate from horizontal axis of the receiver; 

yr = coordinate from the vertical axis of the receiver; 

xi = coordinate from horizontal axis of the randomized location of machine; 

yj = coordinate from the vertical axis of the randomized location of machine; 

Ni = random number (from zero to one) for randomized x coordinate; 

Nj = random number (from zero to one) for randomized y coordinate 

 

Haron et al. (2012) studied the characteristics of noise level distribution 

between construction sites with a site aspect ratio (width : depth) and distance 

to width ratio (r/w) of 50 m x 50 m site with receiver distance of 50 m, 100 m x 

100 m site with receiver distance of 100 m and 150 m x 150 m site with receiver 

distance of 150 m. The receiver was placed orthogonally to the site while the 

acoustic power of the source is 1 Watt during full-power operation. Based on 

the findings, Haron et al. (2012) proved that the noise level distribution for a 

construction site with the same r : w : d ratio is identical and hence the same 

standard deviation as shown in Figure 2.8b.  

 

With the same methodology but different variables, Haron et al. (2012) 

studied the relationship between the receiver coordinate and the noise level 

distribution on the square site. The dimensions of the sites in width and depth 
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were 50 m x 50 m and 100 m x 100 m. The sound power of the noise source is 

1 Watt when it is operating at full power. The distance between the centre of the 

site and the receiver was calculated by Equation 2.14. The noise level 

distribution based on different receiver distances is depicted in Figure 2.8c. The 

distribution of mean noise level and the standard deviation reduced 

systematically as the distance increased. The findings explained that the same 

noise level distribution is generated when the site has the same ratio of width : 

depth. Figure 2.8d illustrates the relationship between standard deviation and 

r:d or r:w. The results justified that all the sub-areas with a similar aspect ratio 

w : d of 1 : 1 will generate data sets that appear to be on the same curve in the 

graph. 

 

Haron et al. (2012) revealed the mean level variation curves are not 

directly normalised against the size of the site as well as in standard deviation. 

Figure 2.8e exemplifies the variation in mean levels for sites with the size of 50 

m x 50 m and 100 m x 100 m is close to the sound pressure level at the site 

centre when the receiver distance increase. This explained that the mean level 

is not dependent on the dimension of the site in w and d. However, the mean 

level deviation can be plotted against the distance to site width ratio (r/w ratio) 

as illustrated in Figure 2.8f. It was observed that the mean level deviation 

against the r/w ratio for 50 m x 50 m and 100 m x 100 m has an identical curve 

in the graph. The relationship between the mean level deviation and radius : 

width ratio along with the mean level at any distance for the site with a 

homogeneous aspect ratio (width : depth) can be conveyed in Equation 2.15. 
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   𝑟 =  𝑑1 + 1,2,4 … . , 2048 (2.14) 

 

Where, 

d1 = depth of the site (m); 

r = distance between the centre of site and receiver (m) 

 

 𝐿 = 𝐿𝑤 − 20𝑙𝑜𝑔10 (𝑟) − 8 +  ∆ 𝐿 (2.15) 

 

Where, 

L = mean level, sound pressure level correspond to the source at centre of site 

(dBA); 

Lw = sound power level (dBA); 

∆L = mean level deviation (dBA) 
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(a)  

 

(b) 

 

(c)  

 

(d) 

 

Figure 2.8: Effect of distance for square sites (50 m x 50 m; 100 m x 100 m) 

(a) site configuration with same r: w : d; (b) design layout of construction 

site and position of receiver; (c) effect of distance on noise level distribution 

on square site ( - - - - :100 m x 100 m; — : 50 m x 50 m); (d) standard 

deviation vs. distance normalised with w or d; (e) mean level variation; (f) 

deviation from tangent line (Haron et al., 2012) 
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(e)  

 

(f)  

 

Figure 2.8: Effect of distance for square sites (50 m x 50 m; 100 m x 100 m) 

(a) site configuration with same r: w : d; (b) design layout of construction 

site and position of receiver; (c) effect of distance on noise level distribution 

on square site ( - - - - :100 m x 100 m; — : 50 m x 50 m); (d) standard 

deviation vs. distance normalised with w or d; (e) mean level variation; (f) 

deviation from tangent line (Haron et al., 2012) (Cont’d) 

 

2.13 Reliability and Accuracy Assessment for Predicted Data 

 

The reliability of the deep learning model is assessed by the strength of 

association between the predicted data and actual measured data. The 

consistency of measurement can be defined as reliability. Several types of 

reliability measurement such as R-squared and Pearson correlation coefficient 

are applied in the predictive model (Lim et al., 2015; Lim, 2017). These 

techniques are used to validate the consistency between the predicted data and 

actual measured data.  
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R-squared shows the variations of the discrepancy between independent 

and dependent variables in a regression model (Weisberg, 2014). Figure 2.9 

illustrated the correlation between the predictor and response, along with the 

best fit line in the scatter plot. Each circle represents each data point and the 

vertical line indicates the difference from the best fit line. The association 

strength of the R-squared is clearly presented in Table 2.6 (Henseler, Ringle, 

and Sinkovics, 2009). 

 

 

Figure 2.9: Relationship of variables (Henseler, Ringle, and Sinkovics, 

2009) 

 

Pearson correlation coefficient was applied in this study as this 

technique was used by previous research in determining the reliability of noise 

prediction results (Lim, 2017). The strength of the association of Pearson’s 

Coefficient Value can be assessed by using Table 2.7 (Silver et al., 2013). The 

table consists of 5 categories of association strength which are very strong, 

moderate to strong, weak to moderate, weak and non-existent to very weak to 

comprehend the association of the data.  
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The deep learning model accuracy is assessed with several statistical 

measures such as absolute difference, mean absolute difference and root mean 

square deviation. The absolute difference is the amount of error in a statistical 

measure. It is the difference between the predicted and the actual value. The 

mean absolute difference is the average value of the difference between all 

observations in a sample set. Next, root mean square deviation is also applied 

in this study to assess the accuracy, it shows the positive or negative deviation 

of typical points that are away from the regression line (Freedman, Pisani and 

Purves, 2007).  

 

Table 2.6: Determination of association strength based on R2 (Henseler, 

Ringle, and Sinkovics, 2009) 

Strength of Association Range of Correlation Coefficient 

Strong Greater than 0.67 

Moderate 0.33 – 0.66 

Weak 0.19 – 0.32 

Non-existent to very weak 0.00 – 0.18 

 

Table 2.7: Determination of association strength based on correlation 

coefficient value (Silver et al., 2013) 

Correlation Coefficient Range   Association Strength 

0.00 to 0.20 Non-existent to very weak 

0.21 to 0.40 Weak 

0.41 to 0.60 Weak to moderate 
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0.61 to 0.80 Moderate to strong 

Greater than 0.80 Very strong 

 

 

 

 

2.14 Artificial Intelligence 

 

Artificial intelligence is the area that studies the response of machines 

that applies the concept of observation, perspicacity, and intention of a human 

under different simulations (Shubhendu and Vijay, 2013). In other words, the 

field of study that discusses the potentiality of machine learning to act like 

humans and the ability to respond to certain behaviours is called Artificial 

Intelligence. However, different researchers studied different approaches such 

as thinking humanly and rationally, acting humanly and rationally, applied to 

AI (Haugeland, 1985; Winston, 1992; Nilsson, 1998; Kurzweil, 1999;). 

Artificial Intelligence consists of machine learning and deep learning. Any 

process that conjoins intelligence into a system or machine to learn 

independently without involvement from a human is called machine learning 

(ML). The concept of deep learning (DL) is derived from the biological 

structure and function of the human brain and enhances the intelligence of 

machines. Figure 2.10 illustrates the relationship between Deep Learning, 

Machine Learning and Artificial Intelligence. (Moolayil, 2019).  
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Figure 2.10: Venn diagram of artificial intelligence, machine learning and 

deep learning (Moolayil, 2019) 

 

2.15 Machine Learning 

 

A type of computer program that acquires the capability of self-learning without 

an individual to program the software is called machine learning. In other words, 

machine learning learned from the experience and enhance future performance. 

Machine learning comprised four main types of basic paradigms which are 

supervised, unsupervised, semi-supervised and reinforcement learning as 

exemplified in Figure 2.11 (Rafique and Velasco, 2018). Supervised Learning 

uses a training data set that requires labelling the inputs and generating the 

outputs (Dasgupta and Nath, 2016). The function of Semi-supervised learning 

works like supervised and unsupervised machine learning by applying the 

combination of both labelled and unlabelled data to enhance the performance of 

prediction. Lastly, the basis of reinforcement learning is by using reward 

feedback when a different simulation is given. Reinforcement learning is the 
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algorithm that is trained to find the optimized action based on the environment 

by trial and error (Das and Behera, 2017).  

 

Moreover, supervised learning can be subdivided into regression and 

classification which the applications are housing price prediction and medical 

imaging to detect abnormalities respectively (Chollet, 2018). On the other hand, 

unsupervised learning can be ramified to clustering and association that both 

frequently used in the business sector. Clustering is in customer segmentation 

which is separating the customers into different groups based on their common 

traits or similarities. Association is employed to study the purchasing behaviour 

and patterns of the consumers, which is called market basket analysis 

(Kurniawan et al., 2018; Singh, 2021). Fan et al. (2014) adopted semi-

supervised learning in traffic lane detection, and the result is remarkable even 

in challenging conditions. Witten et al. (2017) mentioned that the application of 

semi-supervised learning will improve the accuracy of text and document 

classification. Wang et al. (2018) conducted a study that proved that the 

application of reinforcement learning enables the autonomous vehicle to 

perform an efficient driving policy for lane-change manoeuvres. Lastly, the 

application of the reinforcement learning classification technique will help the 

marketing sector in presenting the best-suited advertisement to the users based 

on their browsing data. 
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Figure 2.11: Classification of machine learning (Rafique and Velasco, 2018) 

 

2.16 Supervised Learning 

 

Supervised learning is a technique that required references from past data that 

are precisely categorized and explained in patterns and trends, to make a future 

prediction. The word ‘supervised’ means the date set where the targeted outputs 

are already known. The input dataset will be distributed into two components 

which are the training dataset and the test dataset. In other words, the algorithms 

will learn from the date set during the training and will predict a test data set. 

Supervised learning is targeted to develop a regressor or classifier that is able to 

determine the output value for unknown inputs from earlier on (Raschka and 

Mirjalili, 2017). 

 

2.16.1 Regression 

 

A regression model is a derivation of supervised learning and it is a 

problem of predicting a real value or quantity. A regression problem with 
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various input parameters is usually known as a multivariate regression problem 

(Campesato, 2020; Singh and Manure, 2020). A regression model predicts a 

quantity and hence, and the regression model’s performance is usually assessed 

by using the mean absolute and mean squared error. However, there are mainly 

two types of regression analysis techniques such as linear regression and 

polynomial regression (Singh and Manure, 2020). The application of these 

techniques depends on the quantity of the independent variables, the formation 

of the regression line, and the archetype of the target variable. The function of 

regression analysis techniques is distinct and each may be applied in 

constructing a regression model depending on the types and availability of data. 

 

The simplest type of regression in which the goal is to find the best 

fitting line that represents the relationship between the target and explanatory 

variable is known as simple linear regression (Raschka and Mirjalili, 2017; 

Campesato, 2020). However, the non-linearity between the input features and 

output will result in the data being under-fitted (Patel, 2019). The linear 

regression model equation with a single explanatory variable can be expressed 

in Equation 2.16 (Raschka and Mirjalili, 2017). A visualization of linear 

regression is depicted for a better insight in Figure 2.12.  

 

𝑦 = 𝑤0 + 𝑤1𝑥 (2.16) 

 

Where, 

y = target variable; 

x = explanatory variable; 
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w0 = y-axis intercept; 

w1 = weight coefficient of the explanatory variable or the slope of the best fit 

line 

 

 

Figure 2.12: Visualization of linear regression (Raschka and Mirjalili, 

2017) 

 

2.16.2 Classification 

 

Classification is a subset of supervised learning that utilizes a machine-

learning algorithm to assign discrete class labels to input samples from the data 

set (Campesato, 2020). The class labels are commonly in the form of string 

values. Logistic regression unlike linear regression is applied in classification 

problems and applied when the dependent variable is discrete. The logistic 

regression prediction is a class of probabilities or in the form of a binary state, 

and it is not used for real values or quantitative prediction. Nonetheless, the 

weakness of logistic regression is that it will fail to perform when the classes 



57 

 

are not linearly distinguishable (Patel, 2019). The performance of the 

classification model is usually assessed by the accuracy of prediction. Besides, 

several types of classification algorithms such as binary, multi-class, multi-label 

and imbalanced classification are widely used in the computer science industry 

(Brownlee, 2016).   

 

Binary classification is the classification task that contains two class labels 

such as normal state and abnormal state. For instance, this technique is 

popularly used in spam detection (Mallampti, 2018). Multi-class classification 

or multinomial consists of more than two class labels and the number of class 

labels on the same problems could be enormous. Multi-class classification is 

usually applied in face classification and plant species classification (Lee et al., 

2018; Khan et al., 2020). The comparison between binary and multi-class 

classification is illustrated in Figure 2.13. The classification tasks in which an 

object can be classified into more than two class labels are known as multi-label 

classification tasks. For a multi-label image classification example, multiple 

class labels will be assigned to different objects in an image (Singh, 2021). 

Lastly, an imbalanced classification occurs when the number of samples in the 

normal and abnormal classes is unequally distributed in which the majority of 

the samples in the training dataset are usually biassed toward the normal state, 

while the remaining samples are biassed toward the abnormal state (Goodfellow 

et al., 2016). This method is commonly used in medical diagnostic tests (Zhao 

et al., 2018).  
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(a)  

 

(b) 

 

Figure 2.13: Types of classification (a) binary classification; (b) multi-class 

classification (Singh, 2021) 

 

2.17 Unsupervised Learning 

 

In unsupervised learning, the model is conceptually different from supervised 

learning. (Raschka and Mirjalili, 2017). Unlike supervised learning, there are 

target outputs in regression or classification problems to show the algorithm the 

correct answer to possible inputs. On the contrary, the unsupervised learning 

algorithm attempts to discover and analyse the hidden pattern and applicable 

signals of the clusters with similar inputs without being specifically defined that 

these samples are in the same cluster whereas those in a different cluster 

(Marsland, 2015). The samples with different attributes and features will be 

assigned to a different group without a label. There are several types of 

unsupervised learning such as clustering and association.  

 

2.17.1 Clustering 
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Clustering in unsupervised learning is the task to separate the unlabelled data 

into several groups such that in the same group the data contained similar 

attributes and dissimilar compared to the data in other groups and it can be 

subdivided into k-means and hierarchy clustering (Goodfellow et al., 2016). To 

cluster efficiently, different groups have to be determined in a way that the 

samples within a category are close to each other but dissimilar from samples 

in the other groups. With the application of the k-means clustering algorithm, 

the user is allowed to specify the number of targeted clusters, then each sample 

will be assigned exactly to these clusters. In an attempt to optimize the 

clustering process, each sample will be assigned randomly to one of the clusters. 

Then, the cluster’s centre point and Euclidean distance between each sample 

will be minimized after the reassignment of the samples in other clusters.  As a 

result, the least summation within-cluster variation among all clusters will be 

selected as the optimum separation. Figure 2.14 depicts the organization of 

unlabelled data based on the given features x1 and x2 by using clustering 

(Raschka and Mirjalili, 2017).  

 

 

Figure 2.14: Visualization of clustering (Raschka and Mirjalili, 2017) 

 



60 

 

The user is not restricted to a limited clusters number when using 

hierarchical clustering. Agglomerative clustering is one of the hierarchical 

clustering that uses a tree-based clustering method and constructs a dendrogram 

(Firdaus and Uddin, 2015). Discrete samples in the dataset will start from the 

bottom of the dendrogram. Hierarchical clustering will join the samples with 

similarities together vertically towards the top (Vijaya et al., 2017). The samples 

that are more similar to each other will be clustered sooner whereas the less 

similar samples are joined together later. In the end, all the samples will 

converge and form a group at the uppermost of the dendrogram. Then, the 

dendrogram allows the user to determine of cluster similar to the basis of the k-

means clustering algorithm. 

 

2.17.2 Association 

 

The association rule is a technique to discover the relationship between two 

seemingly unrelated variables in a large dataset. This technique is often named 

market basket analysis which is an analysis mode conducted on consumer 

behaviour whilst shopping at a supermarket, and identifying the correlation and 

association among several items selected by the consumers in their shopping 

carts; in particular, the objective of market basket analysis is to determine the 

most frequently purchased items by the consumers (Kurniawan et al., 2018).  

 

2.18 Semi-supervised Learning 
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Another subset of machine learning which is semi-supervised learning applies 

the supervised and unsupervised learning techniques concurrently in the 

training and prediction. This technique is handy when the user is dealing with a 

mixed-type dataset that consists of unlabelled and labelled data (Singh, 2021). 

Machine learning learns the labelled data by reducing the error between labelled 

data along with the predicted data, and unlabelled data based on their closeness 

or similarities (Jo, 2021). The concept of semi-supervised learning is called 

pseudo-labelling which utilizes a small portion of the labelled information to 

train the model and then used the predicted output to label the other remaining 

data, lastly transforms all the unlabelled data into labelled data (Huang et al., 

2006). Semi-supervised learning can be easily trained on a larger size dataset, 

which is better at prediction. Besides, the benefit of using semi-supervised 

learning is that it is more time-efficient and reduces the unnecessary laborious 

effort in manually labelling the data (Goodfellow et al., 2016). The concept of 

semi-supervised learning is presented as a diagram in Figure 2.15. 
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Figure 2.15: Semi-supervised learning (Huang et al., 2006) 

 

2.19 Reinforcement Learning 

 

Machine learning consists of reinforcement learning that works differently from 

other machine learning in terms of data usage and prediction (Singh, 2021). In 

fact, supervised, unsupervised and semi-supervised learning required historical 

data to train the model and make predictions then compare with the correct value 

or label. However, the main idea of reinforcement learning is a measure of the 

performance of an action taken by a reward function (Raschka and Mirjalili, 

2017). Reinforcement learning is built on the basis of these essential elements 

such as autonomous agent, action, environment, state, and reward (Marsland, 

2015). The relationship of these individual elements can be depicted in Figure 

2.16. The autonomous agent is responsible in receiving information from the 

environment and observing the feedback that will obtain the maximum reward 

(Goodfellow et al., 2016; Chollet, 2018). Besides, an autonomous agent must 
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learn to execute the task by trial and error under circumstances without human 

guidance. Actions are the possible steps that the agent can choose in the task. 

The action performed by the agent will be determined by the environment 

whether it takes place in rewards or penalties. The state represents the current 

situation during the given scenario, the agent has to keep moving in the positive 

direction to obtain the maximized rewards. The most common application of 

reinforcement learning is in navigation systems, gaming, and recommender 

system (Singh, 2021).  

 

 

Figure 2.16: Illustration of reinforcement learning (Marsland, 2015) 

 

2.20 Deep Learning 

 

Deep learning is an algorithm that is set out to learn in multiple levels of 

representation and correspond to a structure of concepts to simplify the data set 

with high complexity (Benuwa et al., 2016; Li and Dong, 2014). Deep learning 

mainly uses an artificial neural network that responds to different levels of 

concepts, where the lower level defined the higher level. Nevertheless, deep 

learning is broad and consists mainly of three different types of neural work 
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essentially recurrent neural network, convolutional neural network and artificial 

neural network. 

 

2.21 Multilayer Perceptron 

 

The idea of a neural network was originated from a perceptron model developed 

in the 1950s (Rosenblatt, 1958). An artificial neural network (ANN) is an 

imitation of the human brain (Aggarwal, 2018). An artificial neural network is 

commonly named multilayer perceptron (MLP), consisting of input, hidden 

layer, and output layer. Besides, MLP has been commonly adopted in 

forecasting and predictive problems (Suhartono et al., 2019; Das and Roy, 2019). 

The shallow neural network is an artificial neural network that only comprises 

a single hidden layer. The nodes in each hidden layer represent a neuron and a 

nonlinear activation function is involved in these nodes (Campesato, 2020). The 

mechanisms of a shallow neural network are based on a simple feedforward 

propagation algorithm. The architecture of the multilayer perceptron is 

illustrated in Figure 2.17 (Do et al., 2018). Figure 2.18 shows the architecture 

of neural networks that consists of multiple hidden layers between the output 

layer and the input layer (Kim, 2017). The backpropagation algorithm will be 

applied to update the weights and bias. The state of the backpropagation neural 

network is always altering continuously until an equilibrium point is achieved. 

A new equilibrium point will be recalculated once there are new inputs in the 

ANN.  
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Figure 2.17: Architecture of multilayer perceptron (Do et al., 2018) 

 

 

Figure 2.18: Architecture of simple, shallow and deep neural network 

(Kim, 2017) 

 

2.22 Convolutional Neural Network 

 

Convolutional Neural Network (CNN) is a notable neural network that is 

designed for the purpose of solving problems in which the input data of the 

prediction model has a grid-like structure in one dimensional or two 

dimensional (Ketkar, 2017). CNN-based structures are omnipresent in the 

computer vision industry and are even widely applied in the commercial sector 

for image recognition, semantic segmentation, and object detection. For the case 
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of image recognition, each image that is used in the learning model is divided 

into dense topological division, then the division will be processed by filters to 

search for a specific regime (Zaccone and Karim, 2018).  

 

CNN consists of three discrete layers namely convolutional, pooling and 

fully connected layers (Singh and Manure, 2020). Figure 2.19 demonstrates the 

mechanisms of the convolutional neural network (Ketkar, 2017; Singh and 

Manure, 2020). The main function of the convolutional layer is to apply one or 

more filters to an input, the filter in the convolutional layer is named the 

convolutional kernels, and it is a matrix of integers, that is used on segments of 

the input image, wherein the size of the segment is of the filter; values from the 

segments and kernels will be multiplied and the results of each multiplication 

will be summed up to a single value, this process will be repeated by sliding 

horizontally then vertically across the entire image to create an output feature 

map. This process is executed by using an extracting window namely stride, 

which is the measure of movement between filter applications to the input image. 

Next, the convolutional layer output will be relocated to the pooling layer for 

dimensionality reduction, thus reducing the parameters and intricacy of the 

model. The max-pooling technique is conventionally adopted in the pooling 

layer, by selecting the maximum value from the generated output by using stride. 

Then the output from the pooling layer will propagate to the flattened and fully 

connected layer or hidden layer consecutively which is identical to an artificial 

neural network wherein the neurons are fully connected to the activation from 

the preceding layers (Ketkar, 2017; Singh and Manure, 2020).  
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Figure 2.19: Convolutional neural network (Ketkar, 2017; Singh and 

Manure, 2020) 

 

 

 

2.23 Recurrent Neural Network 

 

A recurrent neural network (RNN) is designed to solve sequential problems., 

wherein the input data for the predictions is in the structure of a sequence 

(Ketkar, 2017). Unlike multilayer perceptron neural networks, the neurons in 

the hidden layers may pass their signal laterally to other neurons forming a 

directed cycle, in addition, to propagating forward to the succeeding layer. 

Moreover, the output of the neural network could be used as an input vector for 

the next input vector. In other words, RNN processes the information 

gradationally while maintaining an internal model of the current process 

simultaneously, in which the newly updated information is based on the 

previous data (Chollet, 2018). As opposed to MLP and CNN, RNN is stateful 

as it has an internal state for its hidden neurons. As a result, RNN is more 

capable of processing input with high complexity sequences, which makes it 

more preferable for speech recognition and hand-writing recognition tasks. A 

visualization of RNN is depicted in Figure 2.20. 
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Figure 2.20 Recurrent neural network (Chollet, 2018) 

 

2.24 Input Layer 

 

A perceptron consists of input node (x), weighting (w), and bias (b). Then, the 

net-input function takes place to calculate a layer of net input by merging its 

weighted input s and biases as shown in Figure 2.17 (Skansi, 2018). Initially, 

the weights would all be random during the model training, then the model will 

learn to generate correct output after these weights are updated iteratively by 

using the feedforward method (Moolayil, 2019). The weighted sum can be 

mathematically expressed in Equation 2.17. 

 

 

Figure 2.21: Shallow neural network (Skansi, 2018) 
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 𝑧 = 𝛴𝑤𝑛𝑥𝑛 + 𝑏 (2.17) 

 

Where, 

wn = weighting (random number); 

xn = Input data; 

b = bias (constant to enhance the performance of prediction); 

z = logit or weighted sum,   

2.25 Activation Function 

 

Nonlinear functions that lie between the input and output layers in deep learning 

are named activation functions. Hence, the activation function is applied in the 

neural network to perform complex calculations in the hidden layers then the 

outcome will propagate to the output layer. Net input is computed by an 

activation function such as the sigmoid function, rectified linear unit function, 

tanh function, and softmax function (Aggarwal, 2018). The main purpose of the 

activation function is to control the threshold whenever a neuron is activated in 

a hidden layer, and govern the degree of the output signal. Simple step activation 

functions were previously applied on the condition that the totalled input was 

above a threshold, for instance, a value of 0.5 would generate a value of 1.0 

when it passes through the neuron, otherwise, the output would be 0. However, 

simple step activation functions cannot solve problems with non-linearity. As a 

consequence, nonlinear activation such as logistic function is applied that allows 

the network to merge the inputs with higher complexity, and render a higher 

capability in the functions for computation. A logistic function can be 
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subdivided into a sigmoid function, that outputs a value ranging from 0 to 1 with 

an s-shaped distribution. Nevertheless, the rectifier activation function has been 

proven to have better performance in neural networks (Brownlee, 2016). 

 

2.25.1 Linear Activation Function 

 

A linear function is basically an equation of a line, in which it will appear as a 

straight in when plotted, where the independent variable is equivalent to the 

dependent variable, preferably used in the output layer (Kim, 2017; Aggarwal, 

2018). The relationship of a linear function is depicted in Figure 2.22a and can 

be expressed in Equation 2.18. 

 

𝑜𝑢𝑡𝑝𝑢𝑡, 𝑦 =  𝑥 (2.18) 

Where 

y = target variables; 

x = explanatory variable 

 

2.25.2 Sigmoid Activation Function 

 

A sigmoid activation function is originally used in an artificial neural network 

as it is considered less complex (Lago et al., 2018). As illustrated in Figure 2.22b, 

the sigmoid activation function has a limit of 0 to 1, which is very useful in 

performing computations in the form of probabilities and it is the ideal choice 

for classification problems as the output layer (Charniak, 2018; Aggarwal, 2018; 
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Loy, 2019). The sigmoid activation function generates output with a smooth 

gradient which to prevent the fluctuation between output values. Moreover, the 

output of the prediction model will be clear and precise for binary classification 

tasks because the output is very close to 1 or 0. However, the sigmoid activation 

function has three major disadvantages which are the vanishing gradient 

problem, function output is not zero-centred and lastly, the computations are 

time-consuming due to exponential function (Campesato, 2020). The 

occurrence of the vanishing gradient problem is when the z value is either very 

high or low, then there will be almost no change to the prediction. As a result, 

as the loss reaches the first few layers, it has already decreased to the point that 

the weights did not change much. Updating and training the weights of the first 

few layers with such a slight loss propagated backwards are relatively difficult 

(Loy, 2019). This will lead to the neural network refusing from learning further 

or taking a longer duration to achieve an accurate prediction. The sigmoid 

activation function can be expressed in Equation 2.19. 

 

 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑓(𝑧) = 𝜎(𝑧) =  
1

1 +  𝑒−𝑧
 (2.19) 

 

Where 

z = logit or weighted sum;  

 

2.25.3 Hyperbolic Tangent Function (Tanh) 
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Tanh activation function has primarily been applied to natural language 

processing and speech recognition tasks. Similar to the sigmoid function, the 

tanh function has a drawback as it is not capable of solving the vanishing 

gradient problem. The difference between tanh and sigmoid is that the integers 

of tanh activation function ranged from a negative one to one (-1,1), whereas 

the sigmoid function ranged between zero to one (0,1). However, unlike 

sigmoid, the output of tanh is always zero-centred. Hence, tanh nonlinearity is 

preferable as compared to sigmoid nonlinearity in current practice (Campesato, 

2020). An illustration of the tanh activation function is presented in Figure 2.22c, 

it can be mathematically expressed in Equation 2.20. 

 

 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑓(𝑧) = 𝜎(𝑧) =  
𝑒2𝑧 − 1

𝑒2𝑥 + 1
 (2.20) 

 

Where 

z = logit or weighted sum;  

x = explanatory variable 

 

2.25.4 Rectified Linear Unit Function (ReLU) 

 

ReLU function is presently adopted because it helps the training process of the 

models by reducing vanishing gradient problems (Goulet, 2020). Furthermore, 

the ReLU function is being recommended as the default function in the 

feedforward neural network (Goodfellow et al., 2016). This is because 

whenever the ReLU function is applied to the output of a linear transformation 
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a nonlinear transformation will be produced. Although this function is very 

close to linear, but it is a piecewise-defined function with two sub-functions. On 

account, ReLU functions are almost linear, most of the features are preserved 

and make linear models much easier to be optimized with gradient-based 

methods. In short, output values that are greater than 0 will remain unchanged 

whereas output values that are less than 0 will be considered as 0 as shown in 

Equation 2.21. Besides, studies suggested that the ReLU function is preferable 

to be used in the hidden layers (Loy, 2019). Moreover, models with the ReLU 

function converge faster than other activation functions (Campesato, 2020).  

 

 𝑜𝑢𝑡𝑝𝑢𝑡, 𝑦 =  max (0, 𝑥) (2.21) 
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(a)  

 

(b) 

 

(c)  

 

(d)  

 

Figure 2.22: Activation functions (a) linear function (b) sigmoid; (c) tanh; 

(d) ReLU; (Aggarwal, , 2018) 
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2.26 Backpropagation 

 

Backpropagation is an algorithm in which the error from the output travels in 

reverse order from the output layer throughout the hidden layers until it 

propagates back to the input layer to update the weights depending on the loss 

or cost function. The significance of the back-propagation algorithm in an 

artificial neural network was that a systematic method was developed to signify 

the hidden nodes error (Kim, 2017). Then, the delta rule is used to calibrate and 

update the weights once the errors of hidden layers are identified.  

 

The delta of the output node is expressed identically as the delta rule of 

the Generalized Delta Rule in the back-propagation algorithm. The output node 

error will be computed by detecting the difference between the corrected 

outcome from the training data and the output from the output node as explained 

in Equations 2.22 and 2.24. In Figure 2.19, the back-propagation algorithm is 

applied as an initial process of training in the neural network. Delta can be 

calculated by using Equations 2.23 and 2.25. The error of the output node can 

be explained as the summation of the deltas that propagated to the hidden layer 

from the output layer as depicted in Figure 2.20. The process from the output 

layer to the hidden layer is mathematically expressed from Equations 2.22 to 

2.30. Next, the error calculation formulas from Equations 2.26 and 2.28 are 

combined to obtain the product by multiplying the delta vector with the 

transposed weight matrix using the product rule that allows the algorithm to 

execute more easily. Then, once all the deltas have been computed, Equations 

2.31 and 2.32 will be applied to adjust the weights of each layer.  
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 𝑒1 =  𝑑1 − 𝑦1 (2.22) 

 𝛿1 =  𝜙1(𝑣1)𝑒1 (2.23) 

 𝑒2 =  𝑑2 − 𝑦2 (2.24) 

 𝛿2 =  𝜙1(𝑣2)𝑒2 (2.25) 

 

Where 

en = error of the output node; 

dn = corrected output from training data; 

yn = output from the output node; 

δn = product of error and activation function derivative; 

vi = corresponding node weighted sum; 

ϕ = derivative of the output node activation function  

 

 

 𝑒1
(1)

=  𝑤11
(2)

𝛿1 +  𝑤21
(2)

𝛿2 (2.26) 

 𝛿1
(1)

=  𝜙1(𝑣1
(1)

)𝑒1
(1)

 (2.27) 

 𝑒2
(1)

=  𝑤12
(2)

𝛿1 +  𝑤22
(2)

𝛿2 (2.28) 

 𝛿2
(1)

=  𝜙1(𝑣2
(1)

)𝑒2
(1)

 (2.29) 

 [
𝑒1

(1)

𝑒2
(1)

] = [
𝑤11

(2)
𝑤21

(2)

𝑤12
(2)

𝑤22
(2)

] [
𝛿1

𝛿2
] (2.30) 

 𝛥𝑤𝑖𝑗 =  𝛼𝛿𝑖𝑥𝑗 (2.31) 
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 𝑤𝑖𝑗 ⃪ 𝑤𝑖𝑗 +  𝛥𝑤𝑖𝑗  (2.32) 

Where 

v(1) = the weight sums of the forwards signals at the node; 

e(1) = error of the hidden node; 

δ(1) = derivative product of error; 

xj = input signal for the corresponding weight; 

α = learning rate (ranging from 0 – 1); 

w = weighting  

 

 

Figure 2.23: Training the neural network using the back-propagation 

algorithm (Kim, 2017) 

 

 

Figure 2.24: Propagate backwards to hidden nodes and calculate the data 

(Kim, 2017) 
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Figure 2.25: Equation derivation to adjust the weight (Kim, 2017) 

 

 

Figure 2.26: Derive the equation again to adjust the weight (Kim, 2017) 

 

2.26.1 Learning Rate 

 

The learning rate is a decimal value that typically lies between 0.001 and 0.05, 

which will directly influence the magnitude of value that is gradually added to 

the current weight to train the model with these adjusted weights. The throttling 

effect might occur when the learning rate is either at a very high value or a very 

low value. As a supporting statement, a high value of learning rate can cause 

the learning curve to oscillate violently or the new approximation might exceed 

the optimal point; and a low learning rate represents slow convergence and 

resulting in the optimization process remaining at the local minimum instead of 

moving towards the global minimum as shown in Figure 2.27(a) and 2.27(b) 

(Ketkar, 2017; Chollet, 2018; Campesato, 2020; Kinsley and Kukiela, 2020). 
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The targeted learning rate adjustment can be achieved by allowing the learning 

rate to decay gradually, and eventually mitigate the problems mentioned 

(Aggarwal, 2018). 

 

(a) 

 

(b) 

 

Figure 2.27 Influence of learning rate (a) variation of learning rate; (b) 

illustration of local minimum and global minimum (Chollet, 2018; Kinsley 

and Kukiela, 2020) 

 

2.27 Loss Function and Cost Function 

 

The cost function is a statistical theory that utilized the optimization concept 

and average value of loss functions. The cost function aims to measure the 

neural network error. Besides, the loss function value is directly proportional to 

the neural network error. Loss function usually will be included in the layers as 

it helps the neural network to understand the learning direction and by adding a 

dropout layer that may prevent overfitting from happening (Srivasta et al., 2014). 

Overfitting occurs when the prediction trend in a data set is too complex. In 

other words, the model locates too much emphasis on particular weights.  
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2.28 Optimization Techniques 

 

Next, optimization of the model is a necessity to enhance its reliability of the 

model. There are several types of optimization algorithms such as Root Mean 

Square Propagation (RMSProp), stochastic gradient descent (SGD), gradient 

descent (GD), Adaptive Gradient Algorithm (Adagard), and Adaptive Moment 

Estimation (Adam) (Aggarwal, 2018). Hence, during the backpropagation 

process, these techniques will be employed to update the weights and the biases 

in the neural network. The most common optimization technique is SGD and it 

performs error calculation for each training data set accompanied by the weight 

calibration. When each data point is being adjusted by SGD, the neural network 

performance is distorted during the training process. In accordance with Loy 

(2019), the Adam optimizer was found to be the best optimization technique for 

deep neural networks, whereas the SGD optimizer is more suitable for shallow 

neural networks. 

 

2.28.1 Gradient Descent (GD) 

 

Vanilla gradient descent or batch gradient descent refers to the optimization 

algorithms that use the entire training set simultaneously in a large batch and 

this would be computationally expensive (Goodfellow et al., 2016). This 

optimization algorithm is applied to compute the differentiable function local 

minimum. However, GD tends to be trapped at in local optimum and slows 

down at the region with zero-gradient as shown in Figure 2.28 and can be 

mathematically expressed in Equations 2.33 and 2.34 (Aggarwal, 2018).  
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Stochastic gradient descent is an augmentation of the gradient descent 

algorithm and it refers to an optimizer that fits a single sample at a time (Kinsley 

and Kukiela, 2020). The scientific term stochastic is the synonym of 

randomness; in deep learning, SGD is mainly derived from the fact that each 

batch of data is randomly selected (Chollet, 2018). In practice, it is mandatory 

to gradually reduce the learning rate progressively. This is because the SGD 

gradient estimator causes disruption or noises that do not vanish even if the point 

is at the local minima (Goodfellow et al., 2016). 

 

Most optimization algorithms fall somewhere in between, employing 

more than one but not all of the training data. These were formerly known as 

minibatch or minibatch stochastic methods, but they are more commonly called 

stochastic methods. Larger batches tend to provide gradient with higher 

accuracy, but with less than linear returns. Due to high oscillation in the 

estimation of the gradient, training with minimal batch size and a low learning 

rate is a good option to maintain the stability of the model (Goodfellow et al., 

2016). 

 

𝑉𝑡−1 = −𝛼
𝜕𝐿

𝜕𝑊
  (2.33) 

𝑊𝑡 ⃪ 𝑊𝑡−1 +  𝑉𝑡−1   (2.34) 

Where 

Vt-1 = the product of learning rate and the loss function derivative in accordance 

with the weight from previous iteration; 

α = learning rate (ranging from 0 – 1); 
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Wt = weight of current iteration; 

Wt-1 = weight from previous iteration  

 

 

Figure 2.28 Illustration of gradient descent (Aggarwal, 2018) 

 

2.28.2 SGD with Momentum 

 

In order to solve the problem of GD, SGD with momentum is introduced. In the 

momentum-based descent, modifications were made in the vector of V with a 

smoothing parameter (Buduma, 2017). With the inclusion of a smoothing 

parameter namely friction or moment parameter, the learning process is 

accelerated, helping the process to gain a consistent velocity towards the 

optimal solution and dampen the irrelevant steps oscillation as shown in Figure 

2.29 (Aggarwal, 2018). Equations 2.35 and 2.36 expressed the concept of 

modification in SGD with momentum. 
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𝑉𝑡−1 = 𝛽𝑉𝑡−1 − 𝛼
𝜕𝐿

𝜕𝑊
  (2.35) 

𝑊𝑡 ⃪ 𝑊𝑡−1 +  𝑉𝑡−1   (2.36) 

Where 

β = momentum parameter or friction parameter 

 

(a) 

 

 

(b) 

 

Figure 2.29 Influence of momentum in the learning process (a) without 

momentum and causing violent oscillation; (b) with momentum shows that 

it takes less oscillation to reach the optimum point (Aggarwal, 2018) 

 

2.28.3 Adaptive Gradient Algorithm (AdaGrad) 

 

The AdaGrad algorithm adjusts the model parameters learning rates 

independently, and learning rates will be updated inversely correlated to the 

square root of every preceding squared values summation of the gradient (Duchi 

et al., 2011). The learning rate will decrease quickly if the loss of partial 

derivative of the parameters is high, whereas the parameters with a small loss 

of partial derivative tend to have a higher learning rate (Moolayil, 2019). 

AdaGrad is good at convex optimization but not non-convex optimization; this 



84 

 

is because convex optimization has only one minimum point while non-convex 

optimization has multiple local minima. The purpose of AdaGrad is to 

asymptote quickly in convex function; whereas in nonconvex function, the 

learning path may pass through several discrete structures and ultimately 

trapped a locally convex region (Goodfellow et al., 2016). The mathematical 

concept of the AdaGrad optimizer can be expressed in Equations 2.37 and 2.38. 

 

𝐴𝑖 = 𝐴𝑖−1 +  (
𝜕𝐿

𝜕𝑊𝑖
)2  (2.37) 

𝑊𝑖 ⃪ 𝑊𝑖−1 −  
𝛼

√𝐴𝑖+ 𝜀
(

𝜕𝐿

𝜕𝑊𝑖
)     (2.38) 

 

Where 

Ai = scaling factor (exponentially averaged value of ith parameter Wi); 

ε = 10−8 , to avoid ill-conditioning 

 

2.28.4 Root Mean Square Propagation (RMSprop) 

 

The design purpose of the RMSprop algorithm was to outperform the Adaptive 

Gradient algorithm (Adagrad) in non-convex function by altering the gradient 

aggregation into an exponentially weighted moving average (Hinton and 

Tieleman, 2012). AdaGrad reduces the learning rate based on the previously 

squared gradients, which may have resulted in an extremely low learning rate 

before reaching the convex structure. On the contrary, RMSProp employs an 

exponentially decaying average to remove historical data in order to converge 
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swiftly after discovering a convex bowl, as the initialization condition within 

the convex bowl is similar to the AdaGrad algorithm. Equations 2.39 and 2.40 

convey the standard form of RMSProp, with the introduction of a new 

hyperparameter ρ (decay factor), that governs the moving average length scale 

(Aggarwal, 2018). The uniqueness of RMSProp is the flexibility to employ 

momentum within the computational algorithm, and the historical gradients of 

RMSProp decay exponentially over time; however, in RMSProp second-order 

moment estimation, there are possibilities that high bias may occur early in the 

training due to its initialization (Kinsley and Kukiela, 2020). 

 

𝐴𝑖 = 𝜌𝐴𝑖−1 + (1 − 𝜌) (
𝜕𝐿

𝜕𝑊𝑖
)2  (2.39) 

 

𝑊𝑖 ⃪ 𝑊𝑖−1 −  
𝛼

√𝐴𝑖+ 𝜀
(

𝜕𝐿

𝜕𝑊𝑖
)     (2.40) 

 

Where 

ρ = decay factor (ranging from 0 – 1); 

 

2.28.5 Adaptive Moment Estimation (Adam) 

 

Adam is an alternative choice of adaptive learning rate optimization algorithm, 

which stands for Adaptive Moment Estimation, and is currently the most 

favourable and commonly used optimizer in deep learning (Kingma and Ba, 

2015). Similarly, Adagrad, RMSprop, and Adam employed an identical 

function in performing the normalization of signal-to-noise; it leverages the 
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incorporation between momentum and variance of the loss gradient to update 

the weight parameters resulting in a smooth learning curve and shorter learning 

process (Aggarwal, 2018; Moolayil, 2019). The momentum and bias corrections 

are included as an approximation of gradient first-order moment and second-

order moments respectively, to initialize the weight and bias as shown in 

Equations 2.41 - 2.44 (Goodfellow et al., 2016; Aggarwal, 2018; Kinsley and 

Kukiela, 2020). The adaptive learning rate was computed individually for each 

parameter by utilizing the Adam optimizer. Adam is substantially recognized as 

the best optimizer among the others, despite the learning rate having to be 

altered from the default value (Ketkar, 2017). 

 

𝐹𝑖 = 𝛽1𝐹𝑖−1 + (1 − 𝛽1) (
𝜕𝐿

𝜕𝑊𝑖
)    (2.41) 

𝐴𝑖 = 𝛽2𝐴𝑖−1 + (1 − 𝛽2) (
𝜕𝐿

𝜕𝑊𝑖
)2   (2.42) 

𝛼𝑡 = 𝛼(
√1 − 𝛽2

𝑡 

1 − 𝛽1
𝑡 ) (2.43) 

𝑊𝑖 =  𝑊𝑖−1 −  𝛼𝑡
𝐹𝑖

√𝐴𝑖+ 𝜀
    (2.44) 

 

Where 

β1 = decay factor, (default values of 0.9); 

β2 = decay factor, (default values of 0.999); 

Fi = estimates of the first moment (the mean) of the gradients; 

Ai = estimate of the gradient's second moment (the uncentered variance); 

αt = learning rate αt in the tth iteration 
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2.29 Dropout Rate 

 

The dropout rate is one of the hyperparameters in configuring a deep learning 

model, which is a decimal value between 0 and 1, the commonly used values 

are ranging from 0.2 to 0.5. For instance, if the configured dropout rate is 0.3, 

then only 70 % of randomly selected neurons will be trained during each step 

of the forward pass. A series of neurons will be selected on a stochastic basis 

each time when a new data point is processed in the neural network. However, 

the neurons still remain in the neural network, just that these neurons are ignored 

during the forward pass so that the neural network with be trained with less 

complexity (Campesato, 2020). The dropout layer is typically used when the 

dataset is too large, and some irrelevant correlation between the data may cause 

the neurons to convey false information to the succeeding neurons and hence 

affect the neural network performance. The dropout process can be expressed 

as an illustration in Figure 2.30 (Buduma, 2017). 

 

 

Figure 2.30 During each minibatch of training, dropout makes each 

neuron in the network inactive with a random probability (Buduma, 

2017) 
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2.30 Application of Deep Learning in Prediction Models 

 

Several works have adopted the concept of deep learning not only in acoustic 

noise prediction but also in other sectors (Olatunji, et al., 2019; Suhartono et al., 

2019; Lago et al., 2018; Mansourkhaki et al., 2018; Zulifqar et al., 2017; 

Aliabadi et al., 2015). Aliabadi et al. (2015) developed a model with the concept 

of ANN and advanced fuzzy techniques to predict the excessive noise in 

industrial embroidery, and the results were confirmed to be reliable. A study 

stated application of ANN in noise barrier optimization provided results that 

were in good agreement with the design of experiments, and it can be utilized 

in environmental acoustics and noise control (Zanin et al., 2018). Guo et al. 

(2019) applied several algorithms in Radial Basis Neural Network and 

discovered the optimum algorithms for ship cabin noise prediction. Navarro et 

al. (2020) developed a noise monitoring model with Long Short-Term Neural 

Network to forecast the near-time future value of environmental noise in a 

certain location specifically in sound pressure level (Lp) and loudness values. 

Moreover, Zhang et al. (2020) deployed a double-layered Long Short-Term 

Neural Network to forecast environmental noise with respect to large data 

volume and it outperformed the other existing classic techniques.  

 

Zulifqar et al. (2017) utilized multilayer perceptron to forecast drought in  

Pakistan and proved that the variation between the observed data and prediction 

was not high. A study stated that the performance of DNN was better than the 

long-short term memory (LSTM) model in electricity price forecasting (Lago et 

al., 2018). Olatunji, et al. (2019) applied multilayer perceptron with different 
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learning algorithms in heating value prediction of municipal solid waste. 

Suhartono et al. (2019) proclaimed that the deep neural network (DNN) 

outperformed the hybrid prediction model of Singular Spectrum Analysis and 

Deep Neural Network (SSA-DNN), and the statistical model with 

Autoregressive Integrated Moving Average with Explanatory Variable 

(ARIMAX) in forecasting monetary inflow and outflow. Genaro et al. (2010) 

proclaimed that the results of Multilayer Perceptron trained with 

Backpropagation Levenberg-Marquardt algorithm were a significant 

enhancement as compared to the existing urban noise predictive model. Arora 

et al. (2012) predicted the traffic noise along Agra-Firozabad Highway using 

ANN and discovered the optimum learning algorithms.  Aliabadi et al. (2013) 

presented a technique of industrial noise prediction by using multi-layered 

neural networks. Cirianni et al. (2015) proved that ANN can predict the 

continuous equivalent noise level induced by vehicle flow on the roads with a 

satisfactory outcome. Mansourkhaki et al. (2018) proved that MLP 

outperformed Radial Basis Function in traffic noise prediction.  

 

2.31 Concluding Remarks 

 

This chapter discusses occupational noise exposure, noise prediction, and deep 

learning techniques. To conclude, relevant literature reviews of studies related 

to the current study revealed the feasibility of the application of stochastic 

modelling in construction noise prediction (Haron et al., 2008; Haron and Yahya, 

2009; Haron et al., 2012, Lim et al, 2015). Among the various types of ANN, 

MLP has been commonly applied in traffic and urban noise forecasting and 
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predictive researches (Mansourkhaki et al., 2018; Arora et al., 2012; Cirianni et 

al., 2015; Genaro et al., 2010; Aliabadi et al., 2013). However, research related 

to construction noise prediction using MLP is still very limited. Besides, several 

research gaps were discovered in the current noise prediction method. For 

instance, the existing technique, simple prediction charts only cover 0, 15, 30, 

and 45 degrees of noise emission of machinery in a construction site, which did 

not achieve full coverage of 360 degrees. Moreover, simple prediction charts 

are more suitable to predict machine that operates at all time. Hence, the noise 

levels predicted by using simple prediction charts may be less accurate, as in 

the actual scenario machine operates with different duty cycles such as full 

power mode, idling mode, and off mode during construction activities. Besides, 

another research gap showed that it is time-consuming to use simple prediction 

charts in noise prediction at specific locations. In addition, it would be 

overwhelming when there are a large number of noise predictions to be 

conducted. In current practice, there is no application of the stochastic deep 

learning method in construction noise prediction. Hence, to fill the existing 

research gap, this study emphasizes the stochastic deep learning method to 

develop noise prediction models with high accuracy and reliability, to resolve 

the issues as mentioned. 
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CHAPTER 3 

 

3 METHODOLOGY  

 

 

3.1 Introduction 

 

The study was initiated by discovering the findings of previous research 

regarding stochastic modelling and multilayer perceptron by numerous 

researchers. Critical reviews and research gaps were identified from the 

outcome of previous studies. The modification of stochastic modelling along 

with the association of multilayer perceptron in construction noise prediction 

was the main focus of this study.  

 

This study aims to develop a reliable noise prediction model with high 

accuracy. To achieve the aim, a stochastic framework and deep learning 

framework were developed. Next, the programming algorithms for both 

stochastic and deep learning noise prediction models are devised. Furthermore, 

field measurement is conducted to gain the actual noise level during different 

construction activities. Lastly, the predicted data were compared with the actual 

data for reliability and accuracy assessment. A systematic methodology was 

constructed in this chapter to attain the aim and objectives as mentioned.  
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3.2 Research Framework 

 

The research methodology was generally divided into three stages as shown in 

Figure 3.1. The methodology comprised the establishment of the conceptual 

framework in the initial stage, followed by the development of programming 

and algorithms and coding, and lastly, the stage was for data analysis, data 

validation, and journal publication. 

 

 

Figure 3.1: Stages of the work plan 

 

3.3 Configuration of Stochastic Deep Learning Framework 

 

The first stage of this research was to search for information, materials and 

background studies that are relevant to construction noise prediction, stochastic 

modelling and deep learning. Conceptual ideas and fundamental theories were 

thoroughly explained in this stage. The stochastic deep learning model was 

developed with the association of stochastic modelling and multilayer 

Stage 3 

Data Analysis,  
Data 

Validation

Stage 2 
Development 

of 
Programming 
Algorithms 
and Coding

Stage  1
Establishment 
of Conceptual 

Framework
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perceptron or artificial neural network. The purpose of stochastic modelling was 

to generate training data and these data were utilized as the training data for the 

multilayer perceptron. Visualization of the conceptual stochastic modelling 

framework for the aspect ratio of 1: 1 is shown in Figure 3.2. The generated 

output will be used as the training data in the deep learning model to predict the 

noise levels as illustrated in Figure 3.3.  
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Figure 3.2: The framework of stochastic modelling for aspect ratio 1:1 
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Figure 3.3: The conceptual framework of the deep learning model 
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3.4 Development of Programming Algorithms and Coding 

 

In the second stage, the programming algorithms for stochastic modelling were 

developed in MATLAB to validate and compare the outcome of the previous 

studies and the current stochastic modelling. Stochastic modelling is found to 

be feasible, especially in construction noise prediction based on previous studies 

(Haron et al., 2008; Haron and Yahya, 2009; Haron et al., 2012). The application 

of stochastic modelling is to simulate the activities of the actual scenario at 

construction sites as a means to predict the sound pressure levels at different 

locations based on the predetermined randomized parameters. Hence, the 

concept is adopted in this study to generate the input data for ANN. 

 

The important variables in the prediction model, such as (1) sound 

properties of dynamic machinery; (2) random movement and position of 

dynamic machinery; (3) different sizes of working sub-area; (4) distance away 

from the sound level receiver; (5) coverage angle from the site centre; (6) 

operational duty cycles of dynamic machinery, were taken into an account in 

the simulation. The sound pressure level at the noise receiver will be generated 

depending on the parameters. Haron and Yahya (2009) revealed that it is 

mandatory to have large samples of up to 20, 000 to generate a smooth 

probability distribution curve. As a result, the number of iterations for both the 

nested loops was determined as 20, 000 steps. Hence, 20, 000 sound pressure 

levels were generated when the noise source was placed at the site centre 

whereas another 20, 000 sound pressure levels were generated when the noise 

source was moving randomly within the sub-area.  
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Then, the mean level deviation was obtained from the variation between 

the sound pressure levels' average value when the noise source was located at 

the site centre (SPL1) and the mean sound pressure levels when the noise source 

was moving randomly within the sub-area (SPL2). The standard deviations were 

generated based on the sound pressure levels when the noise source was 

movingly randomly in the sub-area. The generated output of the stochastic 

modelling consists of 100, 000 sets of mean level deviation and standard 

deviation with different values due to the randomized parameters during the 

simulation. The stochastic modelling generated seven sets of datasets with 100, 

000 stochastic data each based on different aspect ratios 1:1 (50 m x 50 m), 1:2 

(50 m x 100 m), 1:4 (50 m x 200 m), 1:8 (50 m x 400 m), 2:1 (100 m x 50 m), 

4:1 (200 m x 50 m) and 8:1 (400 m x 50 m). The dimensions of each aspect ratio 

were selected according to a study (Haron et al., 2008). The study stated that 

sites with different dimensions but the same aspect ratio provided the same 

curve of mean level deviation and standard deviation. The total execution time 

for each simulation was 19 hours with the hardware specifications of Central 

Processing Unit (CPU) Ryzen 3 3100 @ 3.9 GHz and random access memory 

(RAM) 16 GB @ 2666 MHz. Lastly, the output of the stochastic modelling 

comprised the coverage angle, r/w ratio, fully operating, idling and off duty 

modes, mean level deviation and standard deviation. The programming 

algorithm is shown in Figure 3.4. 

 

Almost any modern programming language can be adopted to develop 

an artificial neural network model; however, certain programming languages 

are specifically designed for the artificial intelligence field, making these 
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programming languages more engaging and favourable. Python was selected in 

this study because its main purpose is to emphasize the quality of software in 

which it is built to be user-friendly as in readable, maintainable, and applicable 

for future utilization compared to those traditional programming tools. Python 

is much easier to be understood by users due to its uniformity and simplicity. 

Python has a built-in and portable library called the standard library, that 

supports varieties of programming tasks. On top of that, the libraries of Python 

can be expanded by importing the libraries from a third-party application and 

prebuilt libraries. One of the libraries named NumPy has proven that its 

computation performance is better than the numeric programming system of 

MATLAB (Lutz, 2013). 

 

The programming algorithms of the stochastic deep learning model were 

programmed by using the simulated data as the input data for the model to learn 

the variation of mean level deviation and standard deviation based on the 

randomized parameters during the stimulation. Programming algorithms were 

established with Python 3.6 programming language by using Spyder Integrated 

Development Environment (IDE) in Anaconda. The training model was 

optimized by updating the loss function then the model was trained multiple 

times until the desired performance is attained.  
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Figure 3.4: The programming algorithm of stochastic modelling for 

aspect ratio 1:1 
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Figure 3.4: The programming algorithm of stochastic modelling for 

aspect ratio 1:1 (Cont’d) 
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Figure 3.4: The programming algorithm of stochastic modelling for 

aspect ratio 1:1 (Cont’d) 
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Figure 3.4: The programming algorithm of stochastic modelling for 

aspect ratio 1:1 (Cont’d) 

 

3.5 Model Configuration 

 

Seven deep learning models with the aspect ratio of 1:1, 1:2, 1:4, 1:8, 8:1, 4:1 

and 2:1 were established and each of the models was trained with 100, 000 data 

points from the stochastic model with the same aspect ratio. The configuration 

of the neural network is essential to develop a predictive model with satisfactory 

performance. Hence, hyperparameters such as the data split ratio, the number of 

hidden layers and neurons, activation function selection criteria, selection of 

optimizer, learning rate, epochs number and batch size were considered in the 

model training and optimization. The configured optimal hyperparameters will 

then be applied in the other models with different aspect ratios.  
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3.5.1 Data Split 

 

The occurrence of the overfitting problem often happens when the model 

performs exceedingly good during the training observation whereas the 

performance is exceptionally poor in the unknown observation; which explains 

the generalization of the model is ineffectual. The determination of the model's 

optimal hyperparameters is to find the well-adjusted ratio between the training, 

validation and testing set (Xu and Goodacre, 2018). The training set extracts the 

information and learns the pattern of the dataset; the validation set estimates the 

prediction error of the training set and tunes the model to achieve the optimal 

hyperparameters based on the lowest validation error which this process is 

called model selection (Hastie et al., 2009). Lastly, the test set is applied to 

evaluate the optimal model predictive performance and this set will only be 

applied once in the model. Harrington (2017) mentioned that the erroneous 

evaluation of the model can be obtained by separating the test and training set.  

 

3.5.2 The Architecture of the Neural Network 

 

The number of neurons was determined based on quinary which is a base 5 

numeral system. Initially, the model was started with one layer and 5 hidden 

neurons, but the result was unsatisfactory. As a consequence, the number of 

neurons was increased by adding 5 neurons in each of the 10 hidden layers 

respectively. Lan et al. (2010) applied the grid search method to determine the 

optimal neurons number using quinary in the previous research. The 

architecture of the neural network was selected based on a trial and error 
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approach as the optimal neural network for every problem was different. 

Moolayil (2019) mentioned that the neurons and hidden layers numbers shall be 

enlarged if the previous architecture failed to perform during the training and 

validation test.  

 

3.5.3 Activation Function 

 

The selected activation function in this study was the ReLU activation function 

because it is the most suitable activation function to be applied in the hidden 

layers and regression problems as well as solving the vanishing gradient 

problem (Loy, 2019; Goulet, 2020) whereas linear activation function was 

commonly adopted in the output layer; after all, it is more appropriate for the 

regression model in real number prediction (Kim, 2017; Aggarwal, 2018). 

 

3.5.4 Optimizer and Learning Rate 

 

Optimizer is mainly adopted to increase the neural network predictive 

performance. It was used to rationalize the neural network weights based on the 

loss function after each epoch. There are many types of available optimizers but 

only three types such as Adagrad, RMSProp and Adam were included in this 

study to find the most suitable optimizer for the model because studies revealed 

that Adagrad, RMSProp and Adam performed well in the neural network (Lydia 

and Sagayaraj, 2019; Soydaner, 2020).  
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3.5.5 Learning Rate 

 

The learning rate is an essential hyperparameter in training the model. Neither 

the learning rate can be too high nor too low; as a higher learning rate may lead 

to vigorous oscillation in the curve whereas extremely low learning resulted in 

a long convergence time (Zhao et al., 2019). Yang et al. (2019) mentioned that 

it is mandatory to apply an individual learning rate that is suitable for different 

variables in the model. Hence, three different values (10-2, 10-3, 10-4) of the 

learning rate were tested in this study.  

 

3.5.6 Batch Size 

 

The batch size is a hyperparameter that determines the data points 

numbers to be processed before updating the parameters of the internal model. 

The batch size is generally set in binary such as the numbers 32, 64, 128 

(Moolayil, 2019). The purpose of setting a batch size is to reduce high 

oscillation in the optimizations technique like the stochastic gradient descent 

method. Another better option is to provide a minibatch to reduce the number 

of iterations; this would allow the loss to be averaged across all the data points 

in a batch, and the weights will be updated at the end of the batch; A better result 

and smooth training process are more likely to be attained by adopting this 

approach (Brownlee, 2016).  
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3.5.7 Epoch 

 

The epoch is another hyperparameter that governs the number of iterations that 

the learning algorithms propagate back and forth from the entire training dataset. 

The number of epochs is relatively large so that the learning algorithm can 

effectively minimize the error of the model (Kim, 2017). The number of epochs 

determined in the preliminary test was 200. The dropout layer was not applied 

in this study because regularization contributes to a minimal reduction in 

generalization error for very large datasets. Therefore, it is ineffective to use 

dropout layers in a model with a larger dataset because the computational cost 

would be high (Goodfellow et al., 2016).  

 

3.5.8 Optimal Hyperparameters 

The approach of the grid search was applied in this study to find out the best 

hyperparameters for the model. All possible combinations for a predetermined 

set of hyperparameters values were tested by trials to find the optimal value in 

the grid search method (Moolayil, 2019). Lastly, in this study, the model for the 

1: 1 width to depth aspect ratio was tested with different variations of 

hyperparameters to find the optimal values using the grid search method as 

shown in Table 3.1. The process of training the model for the optimal set of 

hyperparameters is demonstrated in Figure 3.5. The optimal model architecture 

is depicted in Figure 3.6. 
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Table 3.1: Configuration of the noise prediction model for aspect ratio of 

1:1 

 

 

Hyperparameter Trial 1 Trial 2 Trial 3 

Data split 

(Training, 

Validation, Test) 

60 %, 20 %, 

20 % 

70 %, 15 %, 

15 % 

80 %, 10 %, 

10 % 

Number of 

neurons for each 

layer 

Increasing the depth of the neural network by adding 5 

hidden neurons to each of the hidden layers, when the 

model failed to perform each time 

Number of 

hidden layers 

10 

Number of 

inputs  

5 

Activation 

function in 

hidden layers 

ReLU activation function 

Number of 

outputs 

2 

Activation 

function in the 

output layer 

Linear activation function 

Number of 

epochs 

Start at 50, increase by 25 upon every failure 
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Table 3.1: Configuration of the noise prediction model for aspect ratio of 

1:1 (Cont’d) 

 

 

Learning rate 

i. 10-2 

ii. 10-3 

iii. 10-4 

10-4 10-4 

Batch size 

i. 32 

ii. 64 

iii. 128 

32 32 

Optimizer 

i. Adam 

ii. RMSProp 

iii. Adagrad 

Adam Adam 
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Figure 3.5: The process of finding the optimal set of hyperparameters for 

the model 
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Figure 3.6: The architecture of the optimal model for the aspect ratio of 1:1
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3.5.9 Performance Evaluation 

 

All the models with different hyperparameters were evaluated by using mean-

squared error, root mean squared error and mean absolute error, as the 

difference is closer to 0, the better the performance of the model. The R-squared 

coefficient was adopted in this study to determine the reliability of the model; 

the closer the coefficient closer to the value of 1, the more reliable the model is. 

Next, the mean absolute error can be expressed as the average absolute error 

between actual and predicted; and the mathematical equivalent is shown in 

Equation 3.1 (Moolayil, 2019). Application of mean squared error in loss 

function of regression aims to compute the square of the difference between the 

observed and predicted value (Aggarwal, 2018). Root mean squared error 

determines the error of squared between the observed value and prediction as 

expressed in Equation 3.2. The formula of mean squared error is mathematically 

explained in Equation 3.3.  

 

𝑀𝐴𝐸 =
1

𝑛
∑ 𝑦𝑖−ŷ𝑖

 𝑛
𝑖=1   (3.1) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑖=1   (3.2) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖−ŷ𝑖)

2𝑛
𝑖=1   (3.3) 

 

Where  

MAE = Mean absolute error; 

RMSE = Root mean squared error; 
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MSE = Mean squared error; 

ŷi = predicted value; 

yi = observed value 

n = number of output nodes 

 

3.6 Data Analysis, Data Validation and Publications 

 

The third stage involved data analysis, validation processes and publications. 

Ten case studies will be carried out at the construction sites. The prediction of 

the ten case studies will be conducted using the stochastic deep learning method. 

The procedures for conducting the site measurement of noise levels are 

explained in this section. The data will be collected on construction sites by 

using a sound level meter mounted on a tripod stand and distometer for distance 

measurement. According Department of Environment (2019), the sound level 

meter will be installed at an elevation ranging from 1.2 m to 1.5 m, and 3.5 m 

offset from the sound reflective structure. 

 

Data validation will be conducted by comparing the measured and 

predicted results at the different control points by using Pearson’s Correlation 

Coefficient. The absolute differences will be obtained to determine the accuracy 

of the prediction method. Discussions and conclusions were presented after the 

validation of the measurement and prediction. On the other hand, one journal 

article is accepted by the International Journal of Integrated Engineering, and 

two journal articles with Scopus indexed are under review in this study. A report 

will be prepared to record and justify all the findings of this study. 
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3.7 Field Measurement 

 

This research mainly focused on the construction activities related to 

infrastructure works. A total number of ten case studies with different 

parameters were carried out at residential projects in Selangor, Malaysia. All 

the noise level measurement procedures are following BS ISO 6395:2008, BS 

5228-1:2009, and BS ISO 3744:2010 (British Standard Institution, 2008; British 

Standard Institution, 2009; British Standard Institution, 2010). Hence, the 

background noise of the construction site, dynamic sound power level emission 

of machinery and noise control points measurement were recorded. The aspect 

ratio (width : depth) of the construction site will be examined in terms 1:1, 1: 2, 

1:4, 1:8, 2:1, 4:1, and 8:1 for the validation of the prediction. 

 

3.7.1 Noise Measurement Equipment 

 

3.7.1.1 Sound Level Meter 

 

SoundTrack LxT of Larson Davis (Type 1 sound level meter) was utilized to 

conduct all the noise level measurements. This device was developed to fulfil 

the needs of the industry to achieve higher accuracy in the machinery noise level 

measurement and occupational noise exposure assessment. The device 

complied with the requirement of the International Electrotechnical 

Commission (IEC) stipulated by the Department of Environment (2019) but the 

acceptable tolerance of error for class 1 is much lower and it covers a broader 

frequency range compared to class 2.  
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The SoundTrack LxT is mainly comprised of 3 components which are 

the microphone, preamplifier and device. The microphone was fixed on the top 

end of the preamplifier whereas the bottom end was assembled with the top part 

of the device as shown in Figure 3.7. The usage of mic foam is necessary during 

the outdoor measurement to avoid the noise of the wind effect. The sound 

calibrator with the reference sound of 94 dBA at 1 kHz was applied to fine-tune 

the sound level meter with the maximum difference of 0.5 dBA before 

conducting the measurement as shown in Figure 3.7 (British Standard 

Institution, 2010). The Guidelines for Environmental Noise Limits and Control 

mentioned that the sound level meter shall be positioned at an elevation of 1.2 

m - 1.5 m from the ground level and having an offsetting distance of 3.5 m from 

the reflective structure (Department of Environment Malaysia, 2019). 

 

 

Figure 3.7: Calibration of sound level meter 
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3.7.1.2 Distometer 

 

Distomer is used instead of measuring during the distance measurement as it is 

more convenient when measuring both short and long-distance. The model of 

distometer is SW-T100, a hand-held type laser distance meter manufactured by 

Sndway. The mechanism of this device uses a laser beam to measure the 

distance between the target and the datum. However, it does not perform well 

when there is a presence of strong light intensity in the surroundings. 

 

3.7.2 Software 

 

AutoCAD is a well-known software that has been adopted by construction 

industries and the users are mainly engineers and architects to produce precise 

dimensions in the design and construction drawings. Hence, it was utilized in 

this study to sketch the site layout of the case studies to provide better 

visualization. Not only that, distance and angle away from the site centre of the 

case studies were measured by using AutoCAD as well.  

 

3.7.3 Selection Criteria for Case Studies 

 

The case studies selected for this study mainly consisted of the construction 

activities of the drainage system, sewerage system, water distribution system, 

road construction, pile boring activities, site clearance and mountain hacking 

activity. The procedures of measurement are demonstrated in Figure 3.8, and 
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the theoretical configuration and the actual configuration of the sub-area is 

illustrated in Figure 3.9 and 3.10. 

 

Machinery such as excavator, road roller, back pusher, hacker, and pile 

boring machine was involved in these construction activities which is 

favourable for this study. The chosen locations are suburban areas located in 

Semenyih, Selangor, Malaysia which is ideal for this study because excessive 

noise such as traffic noise must be avoided during the noise level measurement. 

This is because the fluctuation of noise levels resulting from neighbouring noise 

may adversely affect the accuracy of the measurement to a certain extent. 

Besides, locations in the city area were avoided due to similar factors. 

 

The criteria to select the suitable locations for case studies were based 

on the construction activities and the operation duration for the activities. The 

information on the construction activities must be provided and confirmed by 

the machine operators and site engineer to ensure there are no interferences 

during the measurement. The measurement has to be conducted in the early 

phase of the construction activities so that the data obtained is sufficient and 

promising as it was recorded throughout the whole operation cycle. 

 

Upon the confirmation of the information provided by the personnel at 

the construction site, the coverage area of the machine during the particular 

activities was observed so that the boundary for the sub-area can be determined. 

Next, the accessibility to set up the instrument is another consideration due to 

space constraints because other machines might pass through the boundary of 
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the sub-area. The selected points must be free from obstacles and not disrupt the 

ongoing construction activities. However, personal safety is still the main 

concern as the process of measurement must be free from potential hazards, 

proper personal protective equipment must be equipped, keeping a safe distance 

from the machine and avoiding standing in the blind spot area of the machines.  

 

 

Figure 3.8: The procedures of measurement 
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Figure 3.9: Configuration of sub-area 

 

(a) 

 

(b) 

 

Figure 3.10: Site configuration (a) case study 1 drainage system; (b) case 

study 2 and 3 sewerage system; (c) case study 4 water distribution system; 

(d) case study 5 and 6 road construction; (e) case study 7 site clearance; (f) 

case study 8 mountain hacking; (g) case study 9 pile boring activity for pile 

with the diameter of 1.2 m; (h) pile boring activity for contiguous bored 

pile with the diameter of 750 mm 
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(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure 3.10: Site configuration (a) case study 1 drainage system; (b) case 

study 2 and 3 sewerage system; (c) case study 4 water distribution system; 

(d) case study 5 and 6 road construction; (e) case study 7 site clearance; 

(f) case study 8 mountain hacking; (g) case study 9 pile boring activity for 

pile with the diameter of 1.2 m; (h) pile boring activity for contiguous 

bored pile with the diameter of 750 mm (Cont’d) 
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3.7.3.1 Background Noise Level 

 

The definition of background noise can be expressed as the existing noise level 

in an ambient environment; background noise types consist of environmental 

noises such as traffic noise in an urban area, airborne sound, noise from 

structure-borne vibration and bio-acoustic noise from animals in nature (British 

Standard Institution, 2010). Therefore, the background noise level must be 

recorded before the commencement of any measurement as it can be used as the 

reference level of the noise measurement. Any type of momentary noise was 

avoided during the measurement of background noise to ensure the accuracy of 

the measurement. Hence, the measurement was conducted an hour before the 

commencement of any activities at the construction site. However, due to the 

size of the construction site, the background noise may vary based on different 

locations; consequently, the measurement was taken at the centre of the site for 

30 minutes as a means of recording the average background noise level in the 

construction site with the acoustic parameter of equivalent continuous noise 

level, LAFeq (Haron et al., 2008; Haron and Yahya 2009; Lim et al., 2015). 

 

3.7.3.2 Sound Pressure Level 

 

The sound pressure level is an assessment of the noise level when there is the 

presence of construction activities, using a noise level measuring instrument. 

The instrument was set up at the selected control point with an elevation of 1.2 

m to 1.5 m away from the ground and 3.5 m offset from a sound reflective 

structure. Control points were set on the outside of the sub-area to record the 
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sound pressure level following the previous study (Haron et al., 2008). Three 

control points were assigned for each case study with the presence of at least 

one earth-moving machine during the construction activities. The duration of 

the measurement for each control point was 30 minutes, using the short-term 

sampling stipulated by the Department of Environment (2019). The acoustic 

parameters considered were the maximum noise level (Lmax), minimum noise 

level (Lmin), sound pressure level exceeding 10 %, 50 % and 90 % of the time of 

measurement duration (L10, L50, L90) of the time of measurement duration and 

equivalent continuous noise level (LAFeq), for each case study. 

 

3.7.3.3 Sound Power Level 

 

Earth-moving machine sound power level is a crucial parameter in this study 

because it was meant to be applied in the noise prediction model. To conduct 

the sound power level measurement of the earth-moving machine, the basic 

length, l of the machine will be measured and the radius, r will be determined 

according to BS ISO 6395:2008 Appendix A. Each location of microphones 

was calculated by using a set of coordinate systems stated by the British 

Standard Institution (2010) as shown in Figure 3.11 and Table 3.2. The sound 

power level of the machine was obtained at 6 locations with different 

coordinates surrounding the machine. However, for points 5 and 6, it is difficult 

and impractical to set up the measurement at a very high level. Hence, each 

point was recorded for 30 seconds with a proposed coordinate system applied 

by the previous researchers as shown in Table 3.3 (Haron et al., 2008; Haron 

and Yahya 2009; Lim et al., 2015).  
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Figure 3.11 Configuration of sound power level measurement (British 

Standard Institution, 2010) 

 

Table 3.2: Coordinate system of microphone position (British Standard 

Institution, 2010) 

Microphone position z y/r x/r 

1 1.5 m 0.7 0.7 

2 1.5 m 0.7 -0.7 

3 1.5 m -0.7 -0.7 

4 1.5 m -0.7 0.7 

5 0.71 r 0.65 -0.27 

6 0.71 r -0.65 0.27 
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Table 3.3: Coordinate system of microphone position (Haron et al., 2008; 

Haron and Yahya 2009; Lim et al., 2015) 

Microphone position z y/r x/r 

1 1.5 m 0.7 0.7 

2 1.5 m 0.7 -0.7 

3 1.5 m -0.7 -0.7 

4 1.5 m -0.7 0.7 

5 1.5 m 0.65 -0.27 

6 1.5 m -0.65 0.27 

 

3.8 Data Analysis 

 

All the data obtained from the measurement can directly be applied in this study 

except for the sound power level, further calculations were required to be 

performed. The data were recorded and calculations were performed using the 

spreadsheet in Microsoft Excel. The analysis and calculations of data are 

explained in this section. 

 

3.8.1 Background Noise Level 

 

The background noise is the noise that originates from all sources apart from 

the noise generated by the machines during the measurement. The background 

noise is expressed in decibels (dBA); background noise correction, K1 is applied 

to the LAFeq of the six measurement points to calculate the sound power level. 
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The background noise correction factor, K1, is mathematically presented in 

Equation 3.4, determined by using Equations 3.5 and 3.6, as well as Table 3.4. 

 

 𝐾1 = −10𝑙𝑜𝑔(1 − 10−0.1𝛥𝐿𝑝) (3.4) 

 

 𝛥𝐿𝑝 = 𝐿𝑝(𝑆𝑇)
′̅̅ ̅̅ ̅̅ ̅̅ − 𝐿𝑝(𝐵)

̅̅ ̅̅ ̅̅ ̅ (3.5) 

 

Where 

𝐿𝑝(𝑆𝑇)
′̅̅ ̅̅ ̅̅ ̅̅ =  Averaged or mean equivalent continuous noise level from all the 

points surrounding the machine (dBA); 

 

𝐿𝑝(𝐵)
̅̅ ̅̅ ̅̅ ̅ =  Mean equivalent sound pressure level of the background noise, dBA 

(Taken as LAFeq from background noise measurement) 

 

𝛥𝐿𝑝 =  Difference between noise level from measurement point and 

background noise 

 

 

𝐿𝑝(𝑆𝑇)
′̅̅ ̅̅ ̅̅ ̅̅ = 10𝑙𝑜𝑔 [

1

𝑁
∑ 100.1𝐿𝑝(𝑆𝑇)

′
𝑁

𝑖=1

] (3.6) 

 

where 

𝐿𝑝(𝑆𝑇)
′ =  Equivalent continuous level of the background noise from all the 

points surrounding the machine (dBA); 

𝑁 = Total number of points surrounding the machine 
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Table 3.4: Determination of background noise correction factor (British 

Standard Institution, 2010) 

Condition of ΔLp Determination of K1 

ΔLp greater than 15 dBA K1 = 0 

ΔLp greater than 6 dBA but lesser than 

15 dBA 

Calculated using Equation 3.2 

ΔLp lesser than 6 dBA K1 = 1.3 dBA (ΔLp taken as 6 dBA) 

 

3.8.2 Sound Pressure Level 

 

The site measurement for the sound pressure level was to use the recorded data 

and used to validate the prediction from the model. Besides, the sound pressure 

levels at the construction sites were assessed by comparing with the permissible 

level stipulated by Occupational Safety and Health (Noise Exposure) 

Regulations (2019). 

 

3.8.3 Sound Power Level 

 

The sound power levels of the earth-moving machine are considered as one of 

the main parameters in this study as it is the source to generate noise during 

construction activities. The computation of the sound power level, Lw, of an 

earth-moving machine can be computed by using Equation 3.7 (British 

Standards Institution, 2010). The sound power level not only can be affected by 

the background noise but also by environmental factors such as ground 
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reflection, ground absorption, air humidity, variation of temperature and the 

altitude of the topography. Nevertheless, the environmental correction, K2 

contributes negligible impact on the measurement of sound power level (Haron 

et al., 2008; Lim, et al., 2015). According to British Standard Institution (2010), 

the environmental correction factor can be taken as 0 if the measurement was 

conducted outdoor. Consequently, the environmental factor will be taken as 0 

dBA in the calculation. 

 

 
𝐿𝑤 = 𝐿𝑝(𝑆𝑇)

′̅̅ ̅̅ ̅̅ ̅̅ + 10𝑙𝑜𝑔
𝑆

𝑆0
− 𝐾1 − 𝐾2 (3.7) 

 

Where 

𝐿𝑝(𝑆𝑇)
′̅̅ ̅̅ ̅̅ ̅̅ =  Averaged of mean equivalent continuous level from all the points 

surrounding the machine (dBA) 

𝑆 = Area that covers the sound radiation during the measurement (m2) (taken 

as 2πr2) 

𝑆0 = Referenced surface 1 (m2) 

𝐾1 = Background noise correction (dBA) 

𝐾2 = Environmental correction (dBA) 

 

3.8.4 Prediction of Sound Pressure Level using Simple Prediction 

Charts 

 

The prediction included several factors such as sound power of the machine, the 

aspect ratio of the site, the distance between receiver and noise source, variation 
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of angle from the site centre, full power operation of the machine and the 

reduction due to noise absorption of the earth (Haron et al., 2008).  

 

The first step to adopting the simple prediction charts in the noise 

prediction is to determine the overall size of the construction site and divide the 

site into various sub-areas, then the noise levels of the respective areas will be 

predicted and combined for the overall noise levels of the construction site. 

Moreover, multiple earth-moving machines that are operating for different 

construction activities can be clustered within a predetermined sub-area. The 

noise level at a receiver can be determined by following the procedures of (1) 

selecting the sound power level of the machine; (2) determining the width and 

depth of the sub-area; (3) identifying the angle away from the sub-area centre; 

(4) compute the distance between the earth-moving machine and the noise 

receiver, and the r/w ratio; (5) determine the standard deviation by referring the 

simple prediction charts (Haron et al., 2008); (6) determine the mean level 

deviation by referring the simple prediction charts (Haron et al., 2008); (7) 

Apply Equation 3.8 to compute the mean noise level. Lastly, combine the mean 

noise levels from each sub-areas by applying Equation 3.9 to obtain the 

equivalent mean noise levels and Equation 3.10 is used to compute the 

combined standard deviation.  

 

 𝐿 = 𝐿𝑤 − 20𝑙𝑜𝑔10 (𝑟) − 8 +  ∆ 𝐿 (3.8) 

 

Where 

L = sound pressure level correspond to the source at centre of site (dBA) 
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Lw = sound power level (dBA) 

r = distance between receiver and center of sub-area (m) 

∆L = mean level deviation (dBA). 

 
𝐿𝐴𝑒𝑞𝑛 = 10. 𝑙𝑜𝑔10 (10

𝐿𝑃1
10 + 10

𝐿𝑃2
10 + ⋯ 10

𝐿𝑃𝑛
10 ) 

(3.9) 

 

Where 

Lp1, Lp2,…Lpn is the mean noise level of each machine calculated by using 

Equation 1. 

 

 
𝜎 =  √𝜎1

2 + 𝜎2
2+ ⋯ +  𝜎𝑛

2  
(3.10) 

Where 

σ1, σ2,…, σn, is the noise level standard deviation for each machine. 

 

3.8.5 Data Validation between the Prediction and Measurement 

 

All the data are validated by using the methods mentioned in Chapter 2 Section 

2.9.  

 

3.8.5.1 Reliability Test 

 

The R-squared value for the predicted and measured data can be computed by 

using Microsoft Excel. Equation 3.11 explains the calculation of Pearson’s 

correlation coefficient. The determination of association strength of R-squared 
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and Pearson’s correlation coefficient was determined by using Tables 2.6 and 

2.7 correspondingly (Henseler et al., 2009; Silver et al., 2013).  

 

 

𝑟𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
∑(𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 −  �̅�)(𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 −  �̅�)

√∑(𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 −  𝑥)̅̅ ̅2 ∑(𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑦)̅̅ ̅2

 

 

(3.11) 

Where 

rcorrelation = Pearson’s correlation coefficient (dBA); 

Lprediction = Predicted sound pressure level at a control point (dBA); 

Lmeasurement = Measured sound pressure level at a control point (dBA); 

x̄ = mean of measured noise level at a control point (dBA); 

ȳ = mean of predicted noise level at a control point (dBA) 

 

3.8.5.2 Accuracy Test 

 

Accuracy can be defined as a statistical measure that determines the closeness 

of prediction to the measurement. Absolute difference was applied in this study 

to validate the results as this approach was previously adopted in a study (Lim 

et al., 2015). The absolute difference is to present the difference between the 

prediction and measurement.  This method can be expressed in Equation 3.12. 

Besides, the relative difference was adopted in this study to evaluate the changes 

in percentage between the measurement and prediction, and the mathematical 

formula is presented in Equation 3.13. 
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𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = |𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 − 𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛| (3.12) 

 

Where 

Lprediction = Predicted sound pressure level at a control point (dBA) 

Lmeasurement = Measured sound pressure level at a control point (dBA); 

 

3.9 Concluding Remarks 

This chapter covers the research framework of this study which was generally 

divided into three stages. Relevant information and study materials for 

construction noise prediction, stochastic modelling and deep learning were 

extensively studied in stage one. Followed by stage two, the programming 

algorithms for the stochastic deep learning model were developed based on the 

optimal hypermeters obtained from the trial models. The third stage which is 

the data analysis and validation consists of actual data measurement from the 

existing construction activities and the prediction of sound pressure levels from 

the stochastic deep learning model. Then, the measured values and the 

prediction were compared and validated by using the reliability and accuracy 

test. 

 

  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
|𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 − 𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|

𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
 𝑥 100 (3.13) 
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CHAPTER 4 

 

4 DEVELOPMENT OF STOCHASTIC DEEP LEARNING MODEL 

 

 

4.1 Introduction 

 

The preliminary results are demonstrated in this chapter, which is significantly 

important to determine the feasibility of the stochastic deep learning model in 

construction noise prediction, before conducting any further extensive 

development. Since the accuracy and reliability of stochastic modelling were 

proven to be promising by several previous studies as presented in Chapter 2, 

the deep learning model was trained with the output from the stochastic 

modelling to develop the optimum model for construction noise prediction. The 

variation of hyperparameters during the model configuration is used to 

determine the optimal results. 

 

This chapter is comprised of two sections, the stochastic modelling and 

the deep learning model. Firstly, the variation of mean level deviation, standard 

deviation and the distribution of the data of the stochastic modelling will be 

explained in Section 4.2. Followed by Section 4.3, the influence of different 

hyperparameters (data split ratio, architecture of the neural network, activation 

function, learning rate of the model, epochs numbers, batch size and the 

optimizer) on the predictive performance was discussed. 
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4.2 Stochastic Modelling 

 

4.2.1 Mean Level Deviation 

 

Figure 4.1 presents the output of stochastic modelling from different aspect 

ratios of 1:1 (50 m x 50 m), 1:2 (50 m x 100 m), 1:4 (50 m x 200 m), 1:8 (50 m 

x 400), 2:1 (100 m x 50 m), 4:1 (200 m x 50 m), and 8:1 (400 m x 50 m). The 

sound pressure levels within the sub-area were obtained, by assuming a noise 

receiver that is moving along the radius of a circle at different angles from the 

site centre. Contrary to the previous research, by collapsing the mean level 

deviation with r/w ratio, the variation of mean level deviation in all the aspect 

ratios showed a systematic trend due to the coverage angle of the receiver from 

the previous research ranging from 0°, 15°, 30° and 45°, whereas the coverage 

angle for this study was ranging from 0° to 360°. 

 

Figure 4.1 demonstrates the variation of the mean level deviation 

increases as the depth of the sub-areas for the aspect ratios (width : depth) of 

1:2, 1:4 and 1:8 increases. The relationship between the variation of the mean 

level deviation and the depth of the sub-area can be expressed as a directly 

proportional trend. On the other side, Figure 4.1 presents that the larger the 

width of the sub-areas for aspect ratios of 2:1, 4:1 and 8:1, the higher the 

variation of the mean level deviation. The mean level deviation was primarily 

affected by the r/w ratio in which the lower the value of the r/w ratio represents 

the position of the noise receiver was nearer to the boundary of the sub-area 

during the stochastic modelling simulation. When the noise receiver was 
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positioned at the edge of the sub-area, SPL1 was biased to the noise source 

owing to the short distance between the noise source and receiver; whereas 

SPL2 covered all the random points within the sub-area which explained the 

high value of the mean level deviation when finding the difference between 

SPL1 and SPL2.  

 

Besides, the mean level deviation was influenced by the duty cycles as 

well. For example, the sound pressure level at the noise receiver was minimal 

when the simulated random noise source was configured to operate in the idling 

mode or off mode. Conversely, when the noise source was set to operate at full 

power, the sound pressure level was higher as compared to the other modes. As 

a consequence, this explained that the variation of mean level deviation was 

governed by the distance between the noise receiver and noises source as well 

as the operation mode of the noise source. 

 

(a) 

 

(b) 

 

Figure 4.1: Graph of MLD (mean level deviation) vs. r/w ratio with 

different aspect ratios (a) 1:1; (b) 1:2; (c) 1:4; (d) 1:8; (e) 2:1; (f) 4:1; (g) 8:1 
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(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

 

Figure 4.1: Graph of MLD (mean level deviation) vs. r/w ratio with 

different aspect ratios (a) 1:1; (b) 1:2; (c) 1:4; (d) 1:8; (e) 2:1; (f) 4:1; (g) 8:1 

(Cont’d) 
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4.2.2 Standard Deviation 

 

Figure 4.2 shows the generated standard deviations using stochastic modelling 

that comprised of the different aspect ratios of 1:1, 1:2, 1:4, 1:8, 2:1, 4:1 and 

8:1. The standard deviation was used to explain the noise level distribution 

based on different parameters during the stochastic simulation.  

 

Despite there being changes in the r/w ratio for each aspect ratio but the 

standard deviation plotted against the r/w ratio still presents a systematic pattern. 

This indicates that the randomness of the duty cycles was evenly distributed 

during the simulation. Unlike the previous research, the overall variation of 

standard deviation for all the aspect ratios in this study was ranging from 0 dBA 

to 44 dBA, but for previous research, the standard deviation revolved from 0 

dBA to 5 dBA (Haron et al., 2012). This is due to the inclusion of different duty 

cycles in the simulation; when the majority of the noise sources operated with 

the combination of idling or off mode within a set (20, 000 steps). Consequently, 

the minimum and maximum sound pressure levels will have a large difference 

which eventually leads to a high standard deviation in that particular set. 

However, 0 dBA of standard deviations were obtained when the noise source 

was assumed to be completely off. 

 

The maximum standard deviation for aspect ratios 1:8 and 8:1 was 

lowered as compared to the other aspect ratios because of the inverse squared 

law. This can be explained by the reduction of sound intensity as it propagates 

farther away from the noise source. For instance, the noise receiver of each 
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aspect ratio was positioned at the border of the sub-area but the coverage area 

of aspect ratios 1:8 and 8:1 was much larger in scale and the distance between 

the noise receiver and noise source was much farther as compared to other 

aspect ratios. Moreover, the effect of the inverse square law influenced the 

maximum standard deviation as well, which gradually decreases with the 

increment of the r/w ratio. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.2: Graph of STD (standard deviation) vs. r/w ratio with different 

aspect ratios (a) 1:1; (b) 1:2; (c) 1:4; (d) 1:8; (e) 2:1; (f) 4:1; (g) 8:1 
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(e) 

 

(f) 

 

(g) 

 

 

Figure 4.2: Graph of STD (standard deviation) vs. r/w ratio with different 

aspect ratios (a) 1:1; (b) 1:2; (c) 1:4; (d) 1:8; (e) 2:1; (f) 4:1; (g) 8:1 (Cont’d) 

 

4.2.3 Distribution of the Data at Different Angles 

 

Figure 4.3 presents the correlation between the coverage angle and the mean 

level deviation from different aspect ratios. For the aspect ratio of 1:1, the data 

were distributed uniformly at every half quarter in the circular coverage area. 

However, as the depth of the sub-areas (1:2, 1:4, 1:8) was increasing, the 

majority of the data were distributed within the angles of 0° to 45°, 136° to 225° 

and 316° to 360°. This is because the coverage area of the long side of the sub-

area (depth) was larger than the short side (width).  
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Contrastingly, for the aspect ratio of 2:1, 4:1 and 8:1, a preponderance 

of data was observed within the angle of 46 ° to 135 ° and 226° to 315 ° because 

the orientation of the sub-areas was rotated. By interpreting the plotted graph, 

the data for every aspect ratio were distributed proportionally in the respective 

quadrants which indicates the noise receiver moved in a circular motion to cover 

all the directions of the sub-areas; this is important information to be considered 

when the data are being utilized as the input data for the deep learning model.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.3: Graph of MLD (mean level deviation) vs. angle with different 

aspect ratios (a) 1:1; (b) 1:2; (c) 1:4; (d) 1:8; (e) 2:1; (f) 4:1; (g) 8:1 
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(e) 

 

(f) 

 

(g) 

 

 

Figure 4.3: Graph of MLD (mean level deviation) vs. angle with different 

aspect ratios (a) 1:1; (b) 1:2; (c) 1:4; (d) 1:8; (e) 2:1; (f) 4:1; (g) 8:1 

(Cont’d) 

 

4.3 Configuration of Stochastic Deep Learning Model 

 

In this section, the hyperparameters such as data split ratio, the architecture of 

the neural network, activation function, number of epochs, the learning rate of 

the model, batch size and the optimizer on the predictive performance were 

tested with different variations. Mean absolute error was applied in the model 

training (loss), and mean squared error was used in model testing.  
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4.3.1 Data Split 

 

Figure 4.4 compares the results of the deep learning model based on different 

data split ratios (training: test: validation) of 60:20:20; 70:15:15; 80:10:10. 

Figures 4.4a, 4.4c and 4.4e represent the training and validation of the model, 

Figure 4.4b, 4.4d and 4.4f present the testing of the model for the data split ratios 

of 60:20:20, 70:15:15, and 80:10:10 correspondingly.  

 

The performance of the models was evaluated and the outcome is 

demonstrated in Table 4.1. The mean squared error of the model for data split 

ratio of 60:20:20, 70:15:15 and 80:10:10 was 0.0166, 0.0182 and 0.0409 

respectively. Next, the root means squared error of the models for the different 

data split was 0.1288, 0.1349 and 0.2023 sequentially. For the mean absolute 

error, the lowest value was 0.0775 for the data split ratio of 60:20:20, followed 

by 0.0776 and 0.1151 for the succeeding data split ratios. Moreover, the R-

squared coefficient of the three different data split ratios was 0.97, 0.57 and 0.64. 

 

Based on the observation, the data split ratio of 60:20:20 outperformed 

the others having the highest R-squared coefficient but the lowest mean squared 

error, mean absolute error, root mean squared error. This is because the closer 

the value of errors to 0, indicates the lower the error of the prediction. Besides, 

the results show that 97 % of the independent variables of data influenced the 

dependent variables which explain that the model was reliable. 
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The oscillation in training and testing of the data split ratio of 60:20:20 

stopped after the epochs of 150 as shown in Figures 4.4a and 4.4b whereas the 

other two remained unstable as illustrated in Figures 4.4c – 4.4f. This can be 

explained as the prediction being biased to the training because only a small 

portion of the data was used to validate and test the model. Although the 

recommended data split ratio was 80:10:10 (Chollet, 2017; Zaccone and Karim, 

2018; Loy, 2019), the optimal ratio for the model in this study was 60:20:20 

because the dataset was in large size of 100, 000 and the recommended ratio 

(80:10:10) is only suitable for small dataset. However, the split of 60:20:20 was 

an acceptable and reasonable choice (Nikhil, 2017).  

 

Table 4.1: Performance of model of different variations of 

hyperparameters 

No. Model name 

Mean 

Squared 

Error 

Root Mean 

Squared 

Error 

Mean 

Absolute 

Error 

R2 

1 

(60:20:20)1-(ReLU)2-

(10-4)3-(32)4-(Adam)5 

0.0166 0.1288 0.0775 0.9720 

2 

(70:15:15)-(ReLU)-(10-

4)-(32)-(Adam) 

0.0182 0.1349 0.0776 0.5709 

3 

(80:10:10)-(ReLU)-(10-

4)-(32)-(Adam) 

0.0409 0.2023 0.1151 0.6432 
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Table 4.1: Performance of model of different variations of 

hyperparameters (Cont’d) 

4 

(60:20:20)-(Sigmoid)-

(10-4)-(32)-(Adam) 

64.1116 8.007 4.5464 0.0357 

5 

(60:20:20)-(ReLU)-(10-

3)-(32)-(Adam) 

0.0199 0.1413 0.0852 0.4456 

6 

(60:20:20)-(ReLU)-(10-

2)-(32)-(Adam) 

62.7089 7.9189 4.5537 0.0315 

7 

(60:20:20)-(ReLU)-(10-

4)-(64)-(Adam) 

0.5564 0.7459 0.2336 0.5384 

8 

(60:20:20)-(ReLU)-(10-

4)-(128)-(Adam) 

1.7076 1.3067 0.5277 0.5211 

9 (60:20:20)-(ReLU)-(10-

4)-(32)-(RMSprop) 

0.0313 0.1769 0.0944 0.5943 

10 (60:20:20)-(ReLU)-(10-

4)-(32)-(Adagrad) 

44.664 6.6831 3.7223 0.1321 

Note: 

1 represents the data split in different percentages (training: validation: testing)  

2 Activation function 

3 Learning rate 

4 Bath size 

5 Optimizer 
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(a)  

 

(b) 

 

(c)  

 

(d) 

 

  

(e)  

 

(f) 

 

Figure 4.4: Training and testing of the model based on different data split 

ratios (a) 60:20:20 training; (b) 60:20:20 testing; (c) 70:15:15 training; (d) 

70:15:15 testing; (e) 80:10:10 training; (f) 80:10:10 testing 
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4.3.2 Number of Hidden Layers and Neurons 

 

The initial model architecture started with a single layer with 5 hidden neurons 

because there were 5 different types of input data. However, the initial model 

was unable to perform well in the prediction. Hence, the number of hidden 

neurons and layers was increased in order to achieve promising results. Hence, 

the model was able to perform with satisfactory results when the architecture of 

the neural network was increased to 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 in each 

of the 10 hidden layers respectively. Due to a large amount of data, a high 

number of hidden neurons and layers is required for the model to learn the 

pattern of the data and extract useful information to train the model (Goodfellow 

et al., 2016). 

 

4.3.3 Activation Function in Hidden Layers 

 

Figure 4.5 compares the training and testing of the model using the sigmoid and 

ReLU activation function. Based on Figures 4.5a and 4.5b, the mean absolute 

error of the model was reduced to 0 during the training as well as the testing; 

the curves converged at 0 after 150 epochs and this explained that the model 

can learn from the dataset; As for Figures 4.5c and 4.5d present that the curves 

were not able to converge at 0 and remained constant; the mean absolute error 

for the data validation stopped updating at 4.5 and the mean squared error was 

not reduced once it reached 60 during the testing of the model. 

 



145 

 

Table 4.1 demonstrates the model performance using the ReLU and 

sigmoid activation function. Model 1 had the lowest MSE of 0.0166, RMSE of 

0.1288, MAE of 0.0775 and R-squared of 0.67; whereas model 4 had MSE of 

64.116, RMSE of 8.007, MAE of 4.5464 and R-squared of 0.0357. This is due 

to the vanishing problem in which the gradient vanishes or size reduction, and 

any significant change could not be made since its value is minimal. Under the 

circumstance, the model was learning drastically slowly or unable to learn 

further. The results proved that the ReLU activation function was able to 

converge more quickly and it is more suitable to be applied in the model with a 

large dataset (Loy, 2019; Campesto, 2020). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.5: Comparison of testing and training of the model using different 

activation functions in the hidden layers (a) validation curve using ReLU; 
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(b) testing curve using ReLU; (c)validation curve using Sigmoid; (d) testing 

using Sigmoid 

 

4.3.4 Number of Epoch 

 

Figures 4.4a and 4.4b show the oscillation of the training and testing curve from 

0 epochs to 200 epochs. The number of epochs was initiated from 50 but the 

curves were oscillating and unable to converge at 0 which indicated that more 

training, validation and testing were required to learn from the prediction error 

of the model. Hence, the number of epochs was increased by 25 upon every 

unsatisfactory outcome. The maximum number of epochs was 200 for 

consistency of the results. As the epochs were configured as 200, both the 

training and validation loss keeps reducing and converging which shows the 

learning process was effective. Hence, the number of epochs of 200 was 

determined as the optimal value to configure the other models with different 

hyperparameters.  

 

4.3.5 Learning Rate 

 

The experimented learning rates in this study were 10-2, 10-3 and 10-4 using 

Adam optimizer. Figure 4.6 compares the training and the test of the models 

using different learning rates. Figures 4.6a and 4.6b illustrate the training and 

testing of the model using the learning rate of 10-4 and the fluctuation of the 

curve was mild as the loss function was updated optimally. As for Figures 4.6c 

and 4.6d, the learning rate was configured as 10-3 but both the testing and 
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validation curves were oscillating resulting in drastic change that leads to a 

disparate pattern. Next, the curves as depicted in Figures 4.6e and 4.6f were 

fluctuating intensively. 

 

For model 1, the initial mean absolute error of the model training was 4 

and after 200 epochs, the mean absolute error was reduced to 0; whereas the 

mean squared error of the testing data started from 50 and the error was then 

minimized to 0 as shown in Figures 4.6a and 4.6b. The initial high mean squared 

error in the testing set was because the testing split was only 20 % of the entire 

dataset. The mean absolute error in the model training fluctuated within the 

range of 0.3 and 3.5; whereas the mean squared error in the model testing 

oscillated from 0 to 40 at 200 epochs for model 5. For model 6, the changes of 

both the mean absolute and mean squared error was the highest in every 

comparison of different learning rate. This can be explained as a high learning 

rate leading to the new estimation exceeding the local or global minimal point 

and therefore the loss function was unable to be updated (Ketkar, 2017; Chollet, 

2018; Campesato, 2020; Kinsley and Kukiela, 2020). Overall, the experimental 

results indicated that the learning rate of 10-4 was more effective in the training, 

validation and testing of the model. 
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(a)  

 

(b) 

 

(c)  

 

(d)  

 

(e)  

 

(f) 

 

Figure 4.6: Comparison of different learning rates in training and testing 

of the model (a) lr of 10-4 on training; (b) lr of 10-4 on testing; (c) lr of 10-3 

on training; (d) lr of 10-3 on testing; (e) lr of 10-2 on training; (f) lr of 10-2 on 

testing 

Note: lr = learning rate 
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4.3.6 Batch Size 

 

The comparison of the difference between training and testing of the models by 

using the batch size of 32, 64 and 128 along with the Adam optimizer in 

different models are depicted in Figure 4.7. From the results in Table 4.1, model 

1 with a batch size of 32 had the best performance among the others. For a batch 

size of 64, The mean squared error for the batch size of 64 and 128 models were 

0.5564 and 1.7076 respectively; whereas the root mean squared error for both 

models 7 and 8 were 0.7459 and 1.3067. Next, the mean absolute error for both 

the model were 0.2336 and 0.5277; followed by the R-squared of 0.5384 and 

0.5211 correspondingly as presented in Table 4.1. The results showed that 

enlarging the batch size resulted in a higher error and lower R-squared during 

the training, validation and testing of the model. Montavon et al. (2012) 

mentioned that the batch size of 32 was able to generate a promising prediction 

and this statement was validated by the experimental results. Kandel and 

Castelli (2020) stated that choosing a small batch size (32) with a low learning 

rate was a good combination to develop a model with high performance. 
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(a)  

 

(b) 

 

(c)  

 

(d) 

 

(e)  

 

(f) 

 

Figure 4.7: Comparison of validation and testing of the model using 

different batch size (a) batch size 32 on validation; (b) batch size 32 on 

testing; (c) batch size 64 on validation; (d) batch size 64 on testing; (e) batch 

size 128 on validation; (f) batch size 128 on testing 
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4.3.7 Optimizer 

 

The selected optimizers used in models 1, 9 and 10 in this study were Adam, 

RMSProp and AdaGrad with the fixed learning rate of 10-4 correspondingly. 

Figure 4.8 depicts the plotted graphs representing the curves of validation and 

testing of the models by using different optimizers. The training and testing 

curve of model 1 were shown in Figures 4.8a and 4.8b; indicating that the 

training loss and testing started from the mean squared error of 70, mean 

absolute error of 4 then converged at 0 at the epochs of 200. Next, Figures 4.8c 

and 4.8 d show the curves of the validation and testing of model 9 with a mean 

squared error of 60 and a mean absolute error of 4.5. Initially, the curves 

fluctuated intensively to update the loss function; nevertheless, model 9 was 

able to converge to 0 at the 200th epoch. Following by model 10 using AdaGrad 

optimizer, although the learning, validation and testing errors were moving 

towards a smaller value, the process may take a longer duration and more epochs 

to be completed. 

 

As for model 9, the errors and R-squared were 0.0313, 0.1769, 0.0944 

and 0.5943 sequentially; whereas, for model 10, the values were 44.664, 6.6831, 

3.7223 and 0.1321 as shown in Table 4.1. As compared to models 9 and 10 

using AdaGrad and RMSProp optimizer respectively, model 1 had the lowest 

errors and highest R2. The performance of model 1 can be explained as the 

Adam optimizer leveraging the combination of the momentum and variance of 

the loss gradient to update the weight parameters leading to a shorter duration 

for the learning process and also a smooth learning curve (Aggarwal, 2018; 
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Moolayil, 2019). The high initial errors in model 9 were due to a high bias early 

in the training due to its initialization (Kinsley and Kukiela, 2020). As for model 

10, the purpose of AdaGrad was to converge quickly in a convex function, but 

apparently, it is a nonconvex function in this problem, and that leads to the 

learning path passing through several different structures and eventually being 

trapped in the local convex region (Goodfellow et al., 2016). 

 

(a)  

 

(b) 

 

(c)  

 

(d) 

 

Figure 4.8: Comparison of validation and testing of the model using 

different optimizers (a) Adam on validation; (b) Adam on testing; (c) 

RMSprop on validation; (d) RMSprop on testing; (e) Adagrad on 

validation; (f) Adagrad on testing 
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(e) 

 

(f) 

 

Figure 4.8: Comparison of validation and testing of the model using 

different optimizers (a) Adam on validation; (b) Adam on testing; (c) 

RMSprop on validation; (d) RMSprop on testing; (e) Adagrad on 

validation; (f) Adagrad on testing (Cont’d) 

 

4.4 Performance of Stochastic Deep Learning Models 

 

Therefore, the selected hyperparameters of the six remaining models with the 

aspect ratios of 1:2, 1:4, 1:8, 2:1, 4:1 and 8:1 were data split ratios of 60:20:20, 

10 hidden layers with 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 hidden neurons in 

each layer correspondingly, batch size of 32, ReLU activation function, 200 

epochs, Adam optimizer, learning rate value 10-4. The experimental 

hyperparameters were optimal for the six models except for the number of 

hidden neurons and layers; hence the models were re-configured with a 

dissimilar architecture. 

 

For the model with the aspect ratio of 1:2, ten hidden layers were 

configured with 50, 55, 60, 65, 70, 75, 80, 85, and 90 hidden neurons in each 

hidden layer respectively. On the other hand, the hidden layers for the model 
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with the aspect ratio of 1:4 were 10 with 55, 60, 65, 70, 75, 80, 85, 90, 95, and 

100 hidden neurons in each layer consequentially. Followed by the model with 

the aspect ratio of 1:8, the hidden neurons numbers in each hidden layer were 

60, 65, 70, 75, 80, 85, 90, 95, 100, and 105. Next, the hidden neurons and layers 

and numbers were identical for the models with the aspect ratio of 2:1, 4:1 and 

8:1. The hidden layers numbers were 11 and the numbers of hidden neurons 

were 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, and 100. The increment of hidden 

layers and hidden neurons was due to the complexity of the data distribution as 

presented in section 4.2.3. 

 

Table 4.2 shows the performance of the stochastic deep learning models 

that have been assessed using the MSE, RMSE, MAE and R-squared for the 

models ranging from 0.0114 to 0.0179, 0.1068 to 0.1339, 0.0619 to 0.0728 and 

0.9716 to 0.9977. The results of the models presented the accuracy and the 

reliability of the stochastic deep learning model indicating that the models were 

ready to be deployed for the construction noise prediction. 
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Table 4.2: Performance of the stochastic deep learning models 

Aspect 

ratio 

Model 

name 

Mean 

Squared 

Error 

Root Mean 

Squared 

Error 

Mean 

Absolute 

Error 

R2 

1:1 1-1 0.0166 0.1288 0.0775 0.9720 

1:2 1-2 0.0151 0.1229 0.0709 0.9716 

1:4 1-4 0.0179 0.1339 0.0728 0.9937 

1:8 1-8 0.0118 0.1087 0.0656 0.9977 

2:1 2-1 0.0114 0.1068 0.0619 0.9860 

4:1 4-1 0.0141 0.1189 0.0673 0.9882 

8:1 8-1 0.0149 0.1224 0.0752 0.9976 

 

4.5 Concluding Remarks 

 

Ten configurations of the experimental hyperparameters were developed to 

determine the effectiveness of different hyperparameters in enhancing the noise 

model predictive performance. The following findings are concluded from this 

preliminary study: 

 

i) The data split ratio of 60: 20: 20 was the optimum ratio to train the model, 

60 %, 20 % and 20 % of the data were applied in the training, validation 

and testing. The results implied that sufficient data were required for the 

validation and testing of the model to train the model effectively. 
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ii) The hidden layers and neurons numbers were increased to 10 layers and 

each layer consisted of 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 hidden 

neurons respectively. Broad (hidden layers number) and deep (hidden 

neurons number) were required because it was essential for the model to 

determine the attribute of the dataset and infer the information from the 

data and apply the information in the training. 

 

iii) The results showed that the ReLU activation function outperformed the 

Sigmoid activation function. This is because of the occurrence of a 

vanishing problem when the sigmoid activation function was applied in 

the model causing the model unable to learn further.  

 

iv) The training, validation and testing curves converged at 0 when they 

reached the 200th epoch; and it was chosen to configure all the models 

for the consistency of the results. 

 

v) The model was trained with the learning rates of 10-4, 10-3 and 10-2 using 

the Adam optimizer. The model with the learning rate value of 10-4 was 

chosen as the best model as it outperformed the others in terms of 

consistency of model during the training, validation and testing as well 

as the predictive performance. This can be explained as a high learning 

rate leading to the new estimation exceeding the local or global minimal 

point and therefore the loss function was unable to be updated. 
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vi) Configuration of the model using the batch size of 32 showed 

satisfactory results. The batch size of 64 and 128 were rejected because 

they resulted in a higher error during the training, validation and testing; 

the curves were unable to converge at 0 as well. 

 

vii) The best optimizer was Adam in the experimental results. The results 

indicated that the training, validation and testing curves had minimal 

fluctuation and converged at 0 more quickly than the other optimizers. 

This can be explained as the Adam optimizer utilising the association of 

the momentum and variance of the loss gradient to update the weight 

parameters producing a smooth learning curve and speeding up the 

learning process.  

 

viii) The outcome of the experimental model presents the association 

between stochastic modelling and artificial neural network is capable of 

predicting sound pressure level at a construction site with satisfactory 

performance as the highest absolute difference between DL prediction 

and actual value was 1.5 dBA. The highest standard deviation value was 

3.7 dBA due to the variation in duty cycle and coverage area of the 

machine. Moreover, the R-squared value was 1.0 in case study 1 

indicating the strong strength of association between the prediction and 

actual measurement. Therefore, the optimal hyperparameters were 

acceptable and applied in the configuration of the noise prediction model 

for the remaining 6 different aspect ratios (1:2, 1:4, 1:8, 2:1, 4:1, 8:1). 
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CHAPTER 5 

 

5 RESULTS AND DISCUSSION 

 

 

5.1 Introduction 

 

The preliminary results in the previous chapter indicated that the optimal 

hyperparameters used in the model with the aspect ratio of 1:1 were able to 

achieve satisfactory predictive performance. Hence, the optimal 

hyperparameters were applied in the configuration of the stochastic deep 

learning model with the aspect ratios of 1:2, 1:4, 1:8, 2:1, 4:1, and 8:1. 

 

In this chapter, extensive fieldwork was conducted at the construction 

sites with different activities to evaluate the stochastic deep learning model 

performance in construction noise prediction. Besides, discussion of the earth-

moving machine, the condition of the construction activity for each case study 

and the noise exposure level of the employees were presented as well. 

 

This section discusses the predicted noise levels using the simple 

prediction charts and deep learning model, as well as the actual noise levels of 

different case studies. The disparities between the predicted and actual results 

will be assessed by using absolute difference and relative error for accuracy, as 

the reliability of the models was based on the R-squared value and Pearson’s 

correlation coefficient.  



159 

 

5.2 Proposed Case Studies 

 

Fieldworks were carried out to validate the stochastic deep learning model's 

reliability and accuracy. The determination of the sound power level of 14 earth-

moving machines in the fieldwork was following British Standards Institution 

(2010). However, the types of construction activities were limited to the 

preliminary construction stage as this stage was the noisiest stage. Ten case 

studies namely CS1 to CS10 with respect to different site aspect ratios of (1:1, 

1:2, 1:4, 1:8, 2:1, 4:1, 8:1) and configuration (different distances and angles) 

were conducted in this study. CS1 was applied in the preliminary phase of this 

study to validate the experimental model with the aspect ratio of 1:1. The 

coverage angle of the control points for the simple prediction charts technique 

and stochastic deep learning model was different but the position of the control 

points was identical because the objective of this study was to cover the angles 

from 0° to 360° but the simple prediction charts only covered up to 0°, 15°, 

30°and 45°. 

 

5.2.1 Noise Emission Levels from Individual Machine 

 

The sound power level (Lw) of the machines for earthmoving machinery was 

determined by using  British Standards Institution (2008). The sound power 

level was the most important parameter as it was the main noise source; it was 

applied in the calculation to predict the equivalent continuous noise level (LAFeq) 

at a selected location. To perform the calculation of sound power level, 

determination of the basic length (l) of the earth-moving machine is required as 
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shown in Appendix A. The measurement radius of the machine was 16 m if the 

basic length of the machine was greater than 4.0 m, whereas if the basic length 

falls in the range of 1.5 m to 4.0 m, then the measurement radius will be 

determined as 10.0 m. Then, the coordinates of the six receiving points were 

calculated by using Table 3.3. The machine was requested to be operated at full 

power throughout the measurement duration of 30 seconds for each point per 

the British Standards Institution (2008). All the data were recorded by using a 

Larson Davis Type 1 sound level meter that conforms with the 

recommendations of the International Electrotechnical Commission (2002) 

stipulated by the Department of Environment (2019).  

 

The important information about the machines such as the machine 

manufacturer, machine model number, engine net power at corresponding 

revolution per minute was recorded and presented in Table 5.1 as stated in 

British Standards Institution (2008) and the information was verified by the 

personnel of the construction sites. Table 5.2 tabulated the input data of sound 

power level and the results of calculation for each machine's sound power level. 

All the machine emitted noise levels were recorded during the lunch break so 

that the irrelevant noise sources were excluded during the measurement. The 

machine emitted noise levels were applied in Equation 3.3 to calculate the 

𝐿𝑝(𝑆𝑇)
′  of the machines. Next, 𝛥𝐿𝑝  was computed by finding the difference 

between the 𝐿𝑝(𝑆𝑇)
′  and the mean equivalent background noise, 𝐿𝑝(𝐵)

̅̅ ̅̅ ̅̅ ̅. The 𝛥𝐿𝑝 

of all the machines are greater than 15 dBA, which indicated that the loudness 

of the background noise was insignificant to cause an impact on the 

determination of sound power level. Consequently, the background noise 
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correction factor, K1 for all the machines was determined as 0 by referring to 

Table 3.4.  

 

There were six crawler excavators with excavator buckets (CE1, 2, 3, 4, 

5, 6), three crawler excavators with rock breakers (CERB1, 2, 3), one back 

pusher (BP1), one road roller (RR1), and three rotary piling machines (PM1, 2, 

3) involved in ten case studies. The sound power level of the machines ranged 

between 101.4 dBA and 110.5 dBA. The crawler excavators with excavator 

bucket were involved in case studies 1, 2, 3, 4, 5, 6 and 7 while the back pusher 

and road roller were only used in case studies 5 and 6; as for case study 8, three 

crawler excavators with rock breakers were involved. Lastly, three rotary piling 

machines were operated during the activities in case studies 9 and 10 and 

generated the highest sound power level (110.5 dBA, 109.8 dBA and 109.2 dBA) 

among the case studies; this was due to the larger machine engine power (194 

kW – 302 kW) as compared to other machines (54 kW – 200 kW). Moreover, 

the rotary shaft of the rotary piling machine may induce additional noise. Lastly, 

the average age of all the machines ranged between 3 to 6 years.  
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Table 5.1: Construction activities and sound power level of the machines 

Case 

Study 

Types of 

Machines 

Brand of the 

Machine 

Model of 

Machine 

Engine 

Power (kW) 

Engine speed 

(RPM) 

1 

Crawler Excavator  

(CE1) 

Hitachi Zaxis 200LC 118 2000 

2, 3 

Crawler Excavator  

(CE2) 

Komatsu PC300 180 1900 

4 

Crawler Excavator 

(CE3) 

 (CE4) 

Komatsu PC300 180 1900 

Hitachi Zaxis 200LC 118 2000 

5, 6 

Crawler Excavator 

(CE5) 

Volvo EC250B 168 1600 

Back-Pusher  

(BP1) 

New Holland 5610 54 1900 

Road Roller  

(RR1) 

Caterpillar CS54B 98 1800 

7 

Crawler Excavator 

(CE6) 

Hitachi Zaxis 200LC 118 2000 

8 

Crawler excavator 

with rock breaker  

(CERB1) 

(CERB2) 

(CERB3) 

Doosan DX300LCA 147 1900 

Sumitomo SSH330 200 2000 

Kobelco SK250 137 2100 

9 

Rotary Piling 

Machine  

(PM1) 

(PM2) 

Sinovo TR400F 302 2300 

Sinovo TR400F 302 2300 

10 

Rotary Piling 

Machine  

(PM3) 

Bauer BG 25 194 220 
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Table 5.2: Input data for the sound power level of the earth-moving 

machine 

Machine 

l 

(m) 

Radius 

(m) 

LAFeq at Different Points (dBA) 𝐿𝑝(𝑆𝑇)
′  

(dBA) 

𝐿𝑝(𝐵)
̅̅ ̅̅ ̅̅  

(dBA) 

𝛥𝐿𝑝 

(dBA) 

Lw 

(dBA) 1 2 3 4 5 6 

CE1 4.2 16 75.4 75.5 75.8 75.1 76.7 76.5 75.9 54 21.9 107.9 

CE2 4.2 16 76.8 76.7 77.2 77.1 77.7 77.9 77.3 47 30.3 105.2 

CE3 4.2 16 72.8 73.1 72.7 72.9 75.8 76.0 74.5 47.1 27.4 106.2 

CE4 4.1 16 72.7 71.2 73.4 72.8 76.2 76.2 74.2 47.1 27.1 106.2 

CE5 4.6 16 71.7 73.4 72.5 72.7 74.5 74.9 73.4 51.1 22.3 101.4 

BP1 2.8 10 76.4 76.3 75.9 75.7 82.8 82.9 79.6 51.1 28.5 107.6 

RR1 2.8 10 75.9 76.3 76.1 76.3 76.7 76.7 76.3 51.1 25.2 104.3 

CE6 4.6 16 75.1 75.8 75.3 75.4 76.5 76.9 75.9 54.1 21.8 107.9 

CERB1 4.9 16 75.4 76.5 77.2 76.7 80.3 79.4 77.9 57.7 20.2 109.9 

CERB2 4.9 16 74.5 74.7 74.5 73.5 76.5 77.0 75.3 57.7 17.6 107.3 

CERB3 4.9 16 75.2 75.5 75.8 75.3 76.5 76.9 75.9 57.7 18.2 107.9 

PM1 5.1 16 75.9 76.6 76.5 76.2 78.9 78.6 77.3 61.8 15.5 109.2 

PM2 5.1 16 76.8 76.4 76.9 76.2 79.7 79.6 77.2 61.8 15.4 109.8 

PM3 4.4 16 78.3 78.2 77.5 77.7 79.3 79.8 78.5 61.8 16.7 110.5 

 

5.2.2 Construction Activity of the Case Studies 

 

The types of construction work and machines, site aspect ratio and the number 

of employees involved in different case studies are tabulated in Table 5.3. The 

activity of the crawler excavator (CE1) in case study 1 was to excavate trenches 

with a width of 2.0 m and relocate the precast concrete drain channel to the 

designated area. Followed by case studies 2 and 3, the crawler excavator (CE2) 

excavated the sewerage trench with a width of 1.5 m and installed the sanitary 

pipe at the trench. As for case study 4, two crawler excavators (CE3 and CE4) 

were operated to construct the water distribution system involving trench 

excavation, sheet piles installation, hoisting and placement of the water pipe. 
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Next, a crawler excavator with an excavator bucket (CE5) for minimal 

excavation, a back pusher (BP1) to push the crusher run on the path, and a road 

roller (RR1) to smoothen and compact the crusher run was operated in case 

study 5 and 6. Next, the activity of case study 7 was site clearance and one 

crawler excavator (CE6) was involved. The activity in case study 8 consisted of 

three crawler excavators with a rock breaker to break and extract the rocks on 

the mountain. Lastly, three piling machines (CERB1, 2 and 3) were operated in 

case studies 9 and 10 to bore the piling hole with the dimension of 1200 mm 

and 750 mm.  

Table 5.3: Description of the case studies 

Case 

Study 

Types of 

Construction 

Works 

w:d 

ratio 

Types of 

Machines 

Construction Activity 

No. of 

employees 

involved 

1 

Drainage 

System 

1:1 CE1 

Excavation of trench, hoisting 

and placing the precast drain 

4 

2, 3 

Sewerage 

System 

1:2, 

2:1 

CE2 

Excavation of trench and 

hoisting of sanitary sewer 

5 

4 

Water 

Distribution 

System 

4:1 CE2 

Hoisting water pipe 

6 
Excavating trench and 

installing sheet pile 

5, 6 

Road 

Construction 

1:8, 

8:1 

CE4 Minimal excavation 

3 
BP1 

Pushing the crusher run on the 

path 

RR1 

Rolling and compacting the 

crusher 
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Table 5.3: Description of the case studies (Cont’d) 

7 Site Clearance 4:1 CE 6 Removing debris 2 

8 

Rock 

Breaking 

2:1 

CERB1 

CERB2 

CERB3 

Rock breaking 

1 

1 

1 

9 Bored Pile 1:2 

PM1 

PM2  

Pile Boring 4 

10 Bored Pile 1:4 PM 3 Pile Boring 2 

 

5.3 Background Noise of Construction Site 

 

The background noise of each construction site was recorded before the 

commencement of any construction activities; the measurement was conducted at 

7.00 a.m and lasted for 30 minutes. The background noise of the construction sites 

was tabulated in Table 5.4. Based on the measurement, the highest background 

noise among all the case studies was 61.8 dBA from case studies 9 and 10 because 

the construction site was located right next to a highway and railway track. Case 

studies 9 and 10 were both conducted at the same construction site and hence, the 

background noise was identical. Followed by case study 8, the background noise 

was 57.7 dBA as the site was a confined area and surrounded by buildings which 

created a reflection noise effect. Case study 7 had a background noise of 54.1 

dBA because there were existing buildings located 30 m away from the sub-

area that may reflect the noise. Next, case study 1 had the background noise of 
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54.0 dBA because it was due to the traffic noise as the sub-area was located 20 

m away from the entrance of the construction site. Next, the background noise 

for both case studies 5 and 6 was 51.1 dBA due to the loud natural ambient noise 

of the animals and birds at the same construction site. For case study 4, the 

background noise is slightly lower than in the previous case studies because the 

construction activity was located in a residential area. Lastly, case studies 2 and 

3 had the lowest background noise of 47.0 dBA because the sub-area was an 

isolated area located 50 m away from other construction activities and the 

background noise of both case studies was taken at the same construction site. 

 

Table 5.4: Background noise of the construction sites 

Case 

Study 

Background 

Noise (dBA) 

Lmin (dBA) Lmax (dBA) L10 (dBA) L50 (dBA) L90 (dBA) 

1 54.0 32.7 80.0 52.0 41.1 37.3 

2 47.0 39.2 60.9 49.4 45.5 43.0 

3 47.0 39.2 60.9 49.4 45.5 43.0 

4 47.1 43.9 70.8 48.6 45.7 45.0 

5 51.1 40.2 74.6 53.1 49.9 44.7 

6 51.1 40.2 74.6 53.1 49.9 44.7 

7 54.1 43.2 77.6 56.1 52.9 47.7 

8 57.7 54.6 67 58.8 57.4 56.3 

9 61.8 56.4 78.6 61.8 59.4 58.1 

10 61.8 56.4 78.6 61.8 59.4 58.1 

 

5.4 Noise Emission Levels from Construction Activities 

 

Table 5.5 summarizes the equivalent continuous A-weighted sound pressure 

level (LAFeq), sound pressure level that exceeded 10 %, 50 % and 90 % 
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measurement duration (L10, L50, L90) of the time of measurement duration, root 

mean squared maximum sound level (Lmax), and root mean squared minimum 

sound pressure level (Lmin), for each case study.  

 

Based on the measurement, case study 8 had the highest equivalent 

continuous noise level of 86.9 dBA and a maximum sound level of 97.0 dBA 

among all the case studies. The main cause of the loud noise was due to the 

nature of the activity as it was breaking and extracting the rocks. On top of that, 

the noise levels were generated by three crawler excavators with rock breakers 

which broke the rock frequently and intensively during the activity and hence 

cause a high level of noise. Although, the operators were well-equipped with 

hearing protection equipment; however, they were exposed to noise levels that 

exceeded the permissible noise level stipulated by the Occupational Safety and 

Health Regulations (2019). Besides, exposure to loud noise may result in 

physiological issues such as high blood pressure and inconsistency of heartbeat 

rhythms of the operators (Geetha and Ambika, 2015).  

 

Followed by the second and third noisiest activity, case study 9 had the 

equivalent continuous noise level of 83.0 dBA among the three control points 

and 100.3 dBA for the maximum noise level whereas the equivalent continuous 

and maximum noise levels of case study 10 were 81.6 dBA and 98.7 dBA. The 

loud noises were mainly induced by the rotary shaft and the engine of the piling 

machine during the piling boring process. Besides, the high impact noise was 

generated when the operator rotated the bored pile bucket back and forth 

repeatedly to remove the core rock and soil. For case study 9, two piling 
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machine operators and 2 general workers were executing the construction 

activity; although they were under the exposure to high noise levels that were 

close to the permissible noise level (85 dBA/ 8 hours) they did not wear hearing 

protection equipment, as the operators mentioned that the hearing protection 

equipment was not provided. 

 

The noise levels of case studies 1, 2, 3 and 7 ranged between 69.3 dBA 

and 77.8 dBA, and a machine operator and two to five workers were involved 

in each case study. However, hearing protection devices were absent among the 

operators and workers as they mentioned that the noise levels were tolerable. 

Moreover, this phenomenon arose from a lack of personal safety concerns 

(Themann and Masterson, 2019) because they could not self-perceived the 

potential adverse effects of noise exposure. Although the obligation of the 

employer is stated by the Department of Occupational Safety and Health (2019), 

the hearing protection devices were not provided to the site personnel. For case 

study 4, the highest noise level of 79.8 dBA and a maximum noise level of 105.2 

dBA were among the three control points of the case study. This has resulted 

from the high impact noise caused by the excavator during the sheet pile 

installation. The operators were equipped with earmuffs whereas the other four 

workers which were the supervisor, pipe welder, traffic controller and the 

general worker did not equip themselves with hearing protection equipment. 

According to the observation, the working duration of the employees was 8 

hours per day. Prolonged exposure to high noise levels may result in workers 

suffering from noise-induced hearing loss problems (Johnson and  Morata, 2010; 

Macca et al., 2015; Gan and Mannino, 2018).  
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The lowest noise levels among all the case studies were found to be 69.3 

dBA for case studies 5 and 6. Besides that, the maximum sound level was only 

82.2 dBA. Although three machines such as an excavator, road roller and back 

pusher were operated during the road construction activity, there was no high 

impact noise being generated during the activity. The noise was mainly induced 

by the machine engines during the soil compaction, placement of crusher run 

and minimal excavation works. There were three operators equipped with 

hearing protection devices and general workers were not involved in this 

activity. The noise levels of this case study were below the permissible level of 

85 dBA (8 hours) indicating that the workplace was less harmful as compared 

to other case studies. 

 

Table 5.5: Summary of the sound pressure levels at the control points for 

the case studies 

Case 

Study 

Control 

Points 

LAFeq 

(dBA) 

Lmin 

(dBA) 

Lmax 

(dBA) 

L10  

(dBA) 

L50 

(dBA) 

L90 

(dBA) 

1 

1 75.5 59.5 101.0 78.1 71.1 63.8 

2 71.5 64.8 87.4 73.6 70.3 68.5 

3 70.1 56.3 96.8 74.0 65.3 62.7 

2 

1 75.4 66 94.1 76.7 74.1 71.2 

2 75.0 65 98.2 76.5 72.8 69.4 

3 69.9 61.7 87.0 71.9 68.3 64.5 

3 

1 75.6 66.2 91.2 78.4 73.2 71.2 

2 74.5 62.2 95.2 76.2 72.7 69.1 

3 69.3 59.1 90.9 71.4 66.9 67.0 

4 

1 79.8 65.8 103.2 78.9 77.2 68.9 

2 77.9 59.5 105.2 76.0 72.0 66.4 

3 75.2 62 99.5 75.3 71.3 66.0 
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Table 5.5: Summary of the sound pressure levels at the control points for 

the case studies (Cont’d) 

5 

1 73.2 61.1 94.7 78.1 74.3 69.3 

2 71.4 58.9 82.2 72.3 69.0 65.4 

3 69.3 62.9 87.7 70.9 68.6 66.5 

6 

1 70.4 63.2 91.3 75.3 71.5 66.8 

2 68.9 59.6 81.7 72.1 66.8 65.6 

3 66.8 63.2 85.3 68.1 65.4 61.3 

7 

1 77.8 65.9 94.9 81.3 75.3 67.5 

2 72.4 62.9 88.0 74.4 69.9 66.2 

3 72.2 68.6 86.1 72.1 71.6 71.1 

8 

1 86.9 69.6 97.0 92.3 88.7 82.5 

2 85.4 62.4 97.4 90.0 85.9 70.8 

3 82.9 65.5 94.9 89.0 82.8 68.4 

9 

1 79.9 66.9 95.5 82.5 77.7 75.1 

2 76.8 72.6 95.7 77.0 75.3 74.3 

3 83.0 71.9 100.3 82.2 78.9 74.8 

10 

1 81.6 66.3 98.7 87.8 83.4 81.5 

2 80.6 68.4 97.1 85.4 80.0 76.4 

3 76.0 71.5 94.9 82.3 77.5 74.4 

 

5.5 Construction Noise Prediction using Simple Prediction Charts 

 

The important parameters applied to predict the sound pressure level and 

standard deviation, such as the machine sound power level (Lw), width to depth 

ratio of the sub-area (w:d ratio), coverage angle (θ), the distance between the 

noise receiver and the site centre (r) were presented in Table 5.6. The first step 

of the simple prediction technique was to utilize the given parameters and obtain 

the standard deviation (σ) and mean level deviation (ΔL) from the simple 

prediction charts in Appendix B. Then, LW and ΔL were applied in Equation 3.5 
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to compute the control point sound pressure level (Lp). When the sub-area 

consisted of more than one earth-moving machine, the Lp and σ were combined 

using Equations 3.6 and 3.7 respectively. 

 

For CS1, CP1, 2 and 3 were selected to cover the angle of 29°, 34 ° and 

0 ° as exemplified in Figure 5.1. The distance between the site centre and control 

points was 13.87 m, 23.25 m and 27.61 m. The predicted LAFeq for CP1, 2 and 

3 was 77.1 dBA, 72.6 dBA and 71.1 dBA whereas the standard deviations were 

3.5 dBA, 2.3 dBA and 2.0 dBA. The selection of CP 1, 2 and 3 covering 0°, 34° 

and 44° for CS2 were located parallelly to the sub-area based on the variated 

distance of 8.00 m, 9.32 m and 19.87 m as depicted in Figure 5.2. The prediction 

of LAFeq for each control point was 78.1 dBA, 77.1 dBA and 71.1 dBA whereas 

the standard deviation was 4.0 dBA for the control points. 

 

The coverage angle of the control points in CS3 was 44°, 18°and 28°, at 

distances of 9.58 m, 12.85 m and 22.46 m; the condition of the sub-area was 

similar to CS2 as shown in Figures 5.2 and 5.3. At control point 1, 2 and 3, the 

predicted LAFeq was 77.6 dBA, 75.8 dBA, 70.3 dBA; the σ was 2.0 dBA, 5 dBA, 

3.8 dBA. For case study 4, the coverage angles of the control points were 38°, 

28° and 44° as depicted in Figure 5.4. Control points 1 and 2 were located near 

the centre of the site at distances of 10.19 m and 13.20 m whereas control point 

3 was placed at 17.52 m offset from the site centre., the sound pressure level 

and standard deviation of each control point were combined, providing the LAFeq 

of 78.4 dBA, 76.7 dBA and 76.2 respectively; σ of 6.0 dBA at control point 1, 

and 4.0 dBA for control point 2 and 3.  
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The control points (CP1, CP2, CP3) of CS5 were placed approximately 

12.0 m away from each other (20.49 m, 32.80 m and 44.36m), covering the 

angle of 44°, 27°, .and 18° as demonstrated in Figure 5.5. The combined sound 

pressure level for CP1, CP2 and CP3 were 76.1 dBA, 73.0 dBA and 70.8 

whereas the standard deviations were 7.0 dBA for CP1, 9.0 dBA for CP2 and 

CP3. Followed by case 6, the orientation of the site aspect ratio was rotated and 

the control points were set at different locations with coverage angles of  32°, 

19° and 45° and distances of 18.08 m, 29.41 m and 47.15 m respectively as 

illustrated in Figure 5.6. Similar to CS5, the sound pressure level and standard 

deviation at each control point were combined providing the LAFeq of 71.6 dBA, 

69.9 dBA and 68.3 dBA at CP1, CP2, CP3 consecutively; 8.0 dBA, 7.0 dBA 

and 8.0 dBA of the σ at each control point sequentially. 

 

Figure 5.7 shows that case study 7 consists of control 1 and 3 which 

covered 0° and the distance of 7.50 m and 18.64 m, whereas control point 2 

covered 39° at 17.89 m away from the site centre. CP1 of CS7 had the LAFeq of 

78.4 dBA, 74.1 dBA and 73.8 dBA at CP2 and CP3. As for the standard 

deviation, the values were 4.0 dBA, 3.0 dBA and 1.5 dBA at CP1, CP2 and CP3. 

Next, the interval length between the noise receiver and the site centre for the 

control points 1, 2, 3 in case study 8 was 9.86 m, 9.86 m and 15.00 m covering 

the angle of 30 ° at CP1 and 2, whereas CP3 covered the angle of 0° as illustrated 

in Figure 5.8. The combined sound pressure level at CP1 and CP2 were 83.7 

dBA, and at CP3 the sound pressure level was 81.0 dBA; whereas the standard 

deviations were 8.0 dBA for CP1, and 7.0 dBA for CP2 and CP3. 
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 As for case study 9, the control points were located at the places with a 

hard ground surface covering the angle of 10°, 0°, and 40° at the distance of 

19.61 m, 18.50 m and 11.63 m as shown in Figure 5.9. By combining the 

individual sound pressure level at each control point, the value of 77.9 dBA, 

78.4 dBA and 82.5 dBA were obtained for CP1, CP2 and CP3. As for the 

combined standard deviation, the values were 7.0 dBA for CP1 and 2 whereas 

CP3 had a 6.0 dBA standard deviation. Lastly, the coverage angles of the control 

points in case study 10 were 0°, 41° and 29°; the location of control points was 

located at 7.00 m, 8.70 m and 21.51 m away from the site centre as depicted in 

Figure 5.10. The sound pressure level and standard deviation of 83.0 dBA and 

4.5 dBA were obtained for CP1; LAFeq of 80.6 dBA and σ of 5.5 dBA at CP2; 

LAFeq of 76.8 dBA and σ of 1.0 dBA at CP3. 

 

Table 5.6: Noise prediction using simple prediction charts 

CS CP Lw  

w:d 

ratio 

θ r 

r/w 

ratio 

σ 

Combined 

σ 

ΔL Lp 

Combined 

Lp 

1 

CP1 107.9 1:1 29 13.87 0.694 3.5 3.5 0.08 77.1 77.1 

CP2   1:1 34 23.25 1.163 2.3 2.3 0.08 72.6 72.6 

CP3   1:1 0 27.61 1.381 2.0 2.0 0.07 71.1 71.1 

2 

CP1 105.2 2:1 0 8.00 0.400 4.0 4.0 -1.40 78.1 77.7 

CP2   2:1 34 9.32 0.466 4.0 4.0 -075 77.1 77.1 

CP3   2:1 44 19.87 0.994 4.0 4.0 -0.10 71.1 71.1 

3 

CP1 105.2 1:2 44 9.58 0.958 2.0 2.0 0.00 77.6 77.6 

CP2   1:2 18 12.85 1.285 5.0 5.0 0.80 75.8 75.8 

CP3   1:2 28 22.46 2.246 3.8 3.8 0.10 70.3 70.3 
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Table 5.6: Noise prediction using simple prediction charts (Cont’d) 

CS CP Lw  

w:d 

ratio 

θ  r 

r/w 

ratio 

σ 

Combined 

σ 

ΔL Lp 

Combined 

Lp 

4 

CP1 106.2 4:1 38 10.19 0.255 4.0 

6.0 

4.0 

4.0 

-2.60 75.4 

78.4 

76.7 

76.2 

CP2   4:1 28 13.20 0.330 2.8 -2.00 73.8 

CP3   4:1 44 17.52 1.752 3.0 -0.1 73.2 

CP1 106.1 4:1 38 10.19 0.255 4.0 -2.60 75.3 

CP2   4:1 28 13.20 0.330 2.8 -2.00 73.7 

CP3   4:1 44 17.52 1.752 3.0 -0.1 73.1 

5 

CP1 105.5 1:8 44 20.49 1.205 4.0 

7.0 

9.0 

9.0 

-0.50 70.8 

76.1 

73.0 

70.8 

CP2   1:8 27 32.80 1.929 5.0 0.50 67.7 

CP3   1:8 18 44.36 2.609 5.0 1.00 65.6 

CP1 107.6 1:8 44 20.49 1.205 4.0 -0.50 72.9 

CP2   1:8 27 32.80 1.929 5.0 0.50 69.8 

CP3   1:8 18 44.36 2.609 5.0 1.00 67.7 

CP1 104.3 1:8 44 20.49 1.205 4.0 -0.50 69.6 

CP2   1:8 27 32.80 1.929 5.0 0.50 66.5 

CP3   1:8 18 44.36 2.609 5.0 1.00 64.4 

6 

CP1 105.5 8:1 32 18.08 0.133 4.5 

8.0 

7.0 

8.0 

-6.00 66.4 

71.6 

69.9 

68.3 

CP2   8:1 19 29.41 0.216 4.3 -3.50 64.6 

CP3   8:1 45 47.15 0.347 4.5 -1.00 63.0 

CP1 107.6 8:1 32 18.08 0.133 4.5 -6.00 68.5 

CP2   8:1 19 29.41 0.216 4.3 -3.50 66.7 

CP3   8:1 45 47.15 0.347 4.5 -1.00 65.1 

CP1 104.3 8:1 32 18.08 0.133 4.5 -6.00 65.2 

CP2   8:1 19 29.41 0.216 4.3 -3.50 63.4 

CP3   8:1 45 47.15 0.347 4.3 -1.00 61.8 

7 

CP1 107.9 4:1 0 7.50 0.188 4.0 4.0 -4.00 78.4 78.4 

CP2   4:1 39 17.89 0.447 3.0 3.0 -0.80 74.1 74.1 

CP3   4:1 0 18.64 0.466 1.5 1.5 -0.70 73.8 73.8 
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Table 5.6: Noise prediction using simple prediction charts (Cont’d) 

CS CP Lw  

w:d 

ratio 

θ  r 

r/w 

ratio 

σ 

Combined 

σ 

ΔL Lp 

Combined 

Lp 

8 

CP1 109.9 2:1 30 9.86 0.329 4.5 

8 

7 

7 

-1.75 80.3 

83.7 

83.7 

81.0 

CP2   2:1 30 9.86 0.329 4.0 -1.75 80.3 

CP3   2:1 0 15.00 1.506 5.0 0.25 74.3 

CP1 107.3 2:1 30 9.86 0.329 4.0 -1.75 77.7 

CP2   2:1 30 9.86 0.329 4.5 -1.75 77.7 

CP3   2:1 0 15.00 1.506 5.0 0.25 71.7 

CP1 107.9 2:1 30 9.86 0.329 4.5 -1.75 78.3 

CP2   2:1 30 9.86 0.329 4.0 -1.75 78.3 

CP3   2:1 0 15.00 1.506 5.0 0.25 72.3 

9 

CP1 109.2 2:1 10 19.61 0.654 5.0 

7.0 

7.0 

6.0 

-0.75 74.6 

77.9 

78.4 

82.5 

CP2   1:2 0 18.50 1.233 5.0 -0.80 75.1 

CP3   2:1 40 11.63 0.388 4.5 -0.75 79.1 

CP1 109.8 2:1 10 19.61 0.654 5.0 -0.75 75.2 

CP2   1:2 0 18.50 1.233 5.0 -0.80 75.7 

CP3   2:1 40 11.63 0.388 4.5 -0.75 79.7 

10 

CP1 110.5 4:1 0 7.00 0.175 4.5 4.5 -4.00 81.6 83.0 

CP2   1:4 41 8.70 0.218 5.5 5.5 0.00 83.7 80.6 

CP3   4:1 29 21.51 2.151 1.0 1.0 -0.20 75.6 76.8 

Note: 

CS = Case study 

CP = Control point 

Lw = Sound power level of the earth-moving machine (dBA) 

w : d ratio = width to depth ratio of the sub-area 

θ = Angle (°) 

r = Distance between receiver and site centre (m) 

r/w ratio = Ratio of distance to the width of the sub-area 

σ = standard deviation (dBA) 



176 

 

Combined σ = Combined standard deviation where the number of the earth-

moving machine was more than 1 dBA (dBA) 

ΔL = Mean level deviation (dBA) 

Lp = The predicted sound pressure level (dBA) 

Combined Lp = The predicted sound pressure level where the number of the 

earth-moving machine was more than 1 dBA (dBA) 

 

 

Figure 5.1: Case study 1 for the simple prediction charts technique 
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Figure 5.2: Case study 2 for the simple prediction charts technique 
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Figure 5.3: Case study 3 for the simple prediction charts technique 

 

Figure 5.4: Case study 4 for the simple prediction charts technique 
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Figure 5.5: Case study 5 for the simple prediction charts technique 
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Figure 5.6: Case study 6 for the simple prediction charts technique 
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Figure 5.7: Case study 7 for the simple prediction charts technique 
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Figure 5.8: Case study 8 for the simple prediction charts technique 
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Figure 5.9: Case study 9 for the simple prediction charts technique 
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Figure 5.10: Case study 10 for the simple prediction charts technique 
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5.6 Construction Noise Prediction using Stochastic Deep Learning 

Model 

 

To dictate the sound pressure level (LAFeq) and the standard deviation (σ) at 

control points using the stochastic deep learning model, these parameters such 

as the number of machines in the sub-area, the machine sound power level (Lw), 

the distance between the noise receiver and the site centre (r), the width of the 

sub-area (w), coverage angle (θ), the probability of the machine duty cycle 

operating at full power, idling and off (Pon, Pidle, Poff) were presented in Table 

5.7. The application of the model started by loading the trained model (.h5 file 

format) into Spyder and the execution of the program. Once the execution 

begins, the user is required to enter the parameters as stated. Upon the 

identification of the parameters, the model will predict the LAFeq using Equation 

3.5 and σ of the control point, and if there is more than one earth-moving 

machine involved within the sub-area, then the LAFeq and σ of these control 

points (CP) will be combined using Equations 3.6 and 3.7 correspondingly.  

 

The prediction from the stochastic deep learning model was compared 

with the actual measurement. The determination of site aspect ratio and control 

points were determined based on the activities and movement of the earth-

moving machines. The operational duration for the earth-moving machines was 

recorded by using a stopwatch every 30 minutes. The proportion of the duty 

cycle was then converted to the probability values as Pon, Pidle and Poff having 

the maximum cumulative value of 1 as shown in Table 5.7. The duty cycle as 

presented in Table 5.7 was exemplified in case study 1 for clarification. 
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 For CS1, CP1, CP2 and CP3 were selected to cover the angle of 241°, 

304° and 90° as shown in Figure 5.11. This is because there were houses located 

on the left side of the sub-area, the chosen points were suitable for the 

measurement as the points were clear from the reflective structures and at least 

30 m away from other irrelevant noise sources. At control points 1 and 2, CE1 

operated at full power for 27 minutes, idled for 3 minutes and did not turn off 

during the observation providing the Pon of 0.9 and Pidle of 0.1 and Poff of 0.0. 

For control point 3, CE1 operated at full power throughout the observation 

providing Pon of 1.0. By utilizing the information, the predicted LAFeq for CP1, 

2 and 3 was 77.0 dBA, 72.6 dBA and 71.1 dBA whereas the standard deviations 

were 3.7 dBA, 3.7 dBA and 1.8 dBA.  

 

The selection of CP1, 2 and 3 covering 270°, 236° and 314° for CS2 

were located parallelly to the sub-area based on the variated distance of 8.00 m, 

9.32 m and 19.87 m. This is because the top side of the sub-area was not suitable 

for the measurement as it was occupied by the topsoil, sanitary pipes and rock 

pile as illustrated in Figure 5.12. The prediction of LAFeq for each control point 

was 77.7 dBA, 77.2 dBA and 71.3 dBA whereas the standard deviations were 

4.2 dBA, 4.6 dBA and 3.7 dBA.  

 

The objective of the configuration of each control point in CS3 was to 

cover the angle of three different quadrants of 134°, 72°and 242° at the distances 

of 9.58 m, 12.85 m and 22.46 m; the condition of the sub-area was similar to 

CS2 as demonstrated in Figure 5.12 and 5.13. At control point 1, 2 and 3, the 

predicted LAFeq was 77.6 dBA, 75.6 dBA, 70.2 dBA; the σ was 3.9 dBA, 3.4 
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dBA, 3.4 dBA. For case study 4, the coverage angles of the control points were 

128°, 242° and 46° as depicted in Figure 5.14. Control points 1 and 2 were 

located near the centre of the site at distances of 10.19 m and 13.20 m whereas 

control point 3 was placed at 17.52 m away from the site centre due to site 

constraints. Due to more than one machine involved, the sound pressure level 

and standard deviation of each control point were combined, providing the LAFeq 

of 78.8 dBA, 77.2 dBA and 75.4 respectively; σ of 7.0 dBA at control point 1, 

and 5.8 dBA for control point 2 and 3.  

 

The control points (CP1, CP2, CP3) of CS5 were placed approximately 

12.0 m away from each other (20.49 m, 32.80 m and 44.36m), covering the 

angle of 314°, 297°, .and 288°. The purpose was to measure the path covered 

by the machines throughout the observation duration as demonstrated in Figure 

5.15. The combined sound pressure level for CP1, CP2 and CP3 were 72.5 dBA, 

71.4 dBA and 70.7 whereas the standard deviations were 24.0 dBA for CP1 and 

CP2, 27.0 dBA for CP3. Followed by case 6, the orientation of the site aspect 

ratio was rotated and the control points were set at different locations with 

coverage angles of  302°, 289° and 315° and distances of 18.08 m, 29.41 m and 

47.15 m respectively. The control points were located near the site centre to 

cover the noise levels from the machines due to the long travelling path of the 

machines (136.0 m) as shown in Figure 5.16.  Similar to CS5, the sound pressure 

level and standard deviation at each control point were combined providing the 

LAFeq of 72.1 dBA, 69.8 dBA and 68.3 dBA at CP1, CP2, and CP3 sequentially; 

33.0 dBA, 28.0 dBA and 32.0 dBA of the σ at each control point consecutively. 
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Case study 7 consists of control 1 and 3 which covered 270° and the 

distance of 7.50 m and 18.64 m, whereas control point 2 covered 231° at 17.89 

m away from the site centre. Figure 5.17 shows that the position of control 

points 1, 2 and 3 was selected because it was cleared from obstacles and the 

location of the control points was able to cover the area where the machine 

moved. CP1 of CE7 had the LAFeq of 78.3 dBA, 74.3 dBA and 73.2 dBA at CP2 

and CP3. As for the standard deviation, the values were 3.3 dBA, 3.1 dBA and 

1.6 dBA at CP1, CP2 and CP3. Next, the distance between the noise receiver 

and the site centre for the control points 1, 2, 3 in case study 8 was 9.86 m, 9.86 

m and 15.00 m covering the angle of 240°, 300° and 270° correspondingly, due 

to the constraints of topography at the construction site as illustrated in Figure 

5.18. The combined sound pressure level at CP1, CP2 and CP3 were 84.0 dBA, 

83.2 dBA and 80.8 dBA whereas the standard deviations were 13.0 dBA, 9.3 

dBA and 6.5 dBA. 

 

 As for case study 9, due to the bad site condition, the soil was not 

suitable for setting up the instrument at a certain location. Hence, the control 

points were located at the places with a hard ground surface covering the angle 

of 260°, 180°, and 140° at the distance of 19.61 m, 18.50 m and 11.63 m as 

shown in Figure 5.19. By combining the individual sound pressure level at each 

control point, the value of 78.8 dBA, 77.1 dBA and 82.1 dBA were obtained for 

CP1, CP2 and CP3. As for the combined standard deviation, the values were 

11.0 dBA for each control point. Lastly, the coverage angles of the control 

points in case study 10 were 180°, 331° and 229°; the location of the control 

points was located at 7.00 m, 8.70 m and 21.51 m away from the site centre due 
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to accessibility constraints as topsoil pile and mud puddle were surrounding the 

sub-area as depicted in Figure 5.20. By using the given parameters, the sound 

pressure level and standard deviation of 81.7 dBA and 4.4 dBA were obtained 

for CP1; LAFeq of 81.4 dBA and σ of 4.6 dBA at CP2; LAFeq of 75.8 dBA and σ 

of 4.2 dBA at CP3. 

 

Table 5.7: Noise prediction using stochastic deep learning models 

CS CP Machine Lw  
w:d 

ratio 
θ r  

r/w 

ratio 
Pon Pidle Poff Lp σ 

1 

CP1 CE1 107.9 1:1 241 13.87 0.694 0.9 0.1 0.0 77.0 3.7 

CP2   1:1 304 23.25 1.163 0.9 0.1 0.0 72.6 3.7 

CP3   1:1 90 27.61 1.381 1.0 0.0 0.0 71.1 1.8 

2 

CP1 CE2 105.2 2:1 270 8.00 0.400 0.8 0.2 0.0 77.7 4.2 

CP2   2:1 236 9.32 0.466 0.9 0.1 0.0 77.2 4.6 

CP3   2:1 314 19.87 0.994 0.9 0.1 0.0 71.3 3.7 

3 

CP1 CE2 105.2 1:2 134 9.58 0.958 0.9 0.1 0.0 77.6 3.9 

CP2   1:2 72 12.85 1.285 0.9 0.1 0.0 75.6 3.4 

CP3   1:2 242 22.46 2.246 0.9 0.1 0.0 70.2 3.4 

4 

CP1 CE3 106.2 4:1 128 10.19 0.255 0.9 0.1 0.0 

78.8 

77.2 

75.4 

7.0 

5.8 

5.8 

CP2   4:1 242 13.20 0.330 0.9 0.1 0.0 

CP3   4:1 46 17.52 0.438 0.9 0.1 0.0 

 CP1 CE4 106.1 4:1 128 10.19 0.255 0.9 0.1 0.0 

 CP2   4:1 242 13.20 0.330 0.9 0.1 0.0 

 CP3   4:1 46 17.52 0.438 0.9 0.1 0.0 

5 

CP1 CE5 105.5 1:8 314 20.49 1.205 0.7 0.1 0.2 

72.5 

71.4 

70.7 

24.0 

24.0 

27.0 

CP2   1:8 297 32.80 1.929 0.8 0.1 0.1 

CP3   1:8 288 44.36 2.609 0.6 0.2 0.2 

 CP1 BP1 107.6 1:8 314 20.49 1.205 0.6 0.4 0.0 

 CP2   1:8 297 32.80 1.929 0.5 0.4 0.1 

 CP3   1:8 288 44.36 2.609 0.7 0.3 0 

 CP1 RR1 104.3 1:8 314 20.49 1.205 0.9 0.1 0 

 CP2   1:8 297 32.80 1.929 0.9 0.1 0 

 CP3   1:8 288 44.36 2.609 1.0 0 0 
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Table 5.7: Noise prediction using stochastic deep learning models (Cont’d) 

CS CP Machine Lw  
w:d 

ratio 
θ r  

r/w 

ratio 
Pon Pidle Poff Lp σ 

6 

CP1 CE5 105.5 8:1 302 18.08 0.133 0.7 0.1 0.2 

72.1 

69.8 

68.3 

33.0 

28.0 

32.0 

CP2   8:1 289 29.41 0.216 0.7 0.2 0.1 

CP3   8:1 315 47.15 0.347 0.5 0.3 0.2 

 CP1 BP1 107.6 8:1 302 18.08 0.133 0.5 0.4 0.1 

 CP2   8:1 289 29.41 0.216 0.5 0.5 0 

 CP3   8:1 315 47.15 0.347 0.7 0.2 0.1 

 CP1 RR1 104.3 8:1 302 18.08 0.133 0.8 0.2 0 

 CP2   8:1 289 29.41 0.216 0.8 0.1 0.1 

 CP3   8:1 315 47.15 0.347 0.9 0.1 0 

7 

CP1 CE6 107.9 4:1 270 7.50 0.188 1.0 0.0 0.0 78.3 3.3 

CP2   4:1 231 17.89 0.447 1.0 0.0 0.0 74.3 3.1 

CP3   4:1 270 18.64 0.466 1.0 0.0 0.0 73.2 1.6 

8 

CP1 CERB1 109.9 2:1 240 9.86 0.329 0.9 0.1 0.0 

84.0 

83.2 

80.8 

13.0 

9.3 

6.5 

CP2   2:1 300 9.86 0.329 0.9 0.1 0.0 

CP3   2:1 270 15.00 0.753 0.9 0.1 0.0 

 CP1 CERB2 107.3 2:1 240 9.86 0.329 0.8 0.2 0.0 

 CP2   2:1 300 9.86 0.329 0.9 0.1 0.0 

 CP3   2:1 270 15.00 0.753 0.9 0.1 0.1 

 CP1 CERB3 107.9 2:1 240 9.86 0.329 0.9 0.1 0.0 

 CP2   2:1 300 9.86 0.329 0.9 0.1 0.1 

 CP3   2:1 270 15.00 0.753 0.9 0.1 0.0 

9 

CP1 PM1 109.2 1:2 260 19.61 0.654 1.0 0.0 0.0 

78.8 

77.1 

82.1 

11.0 

11.0 

11.0 

CP2   1:2 180 18.50 0.617 0.9 0.1 0.0 

CP3   1:2 140 11.63 0.388 0.8 0.2 0.0 

 CP1 PM2 109.8 1:2 260 19.61 0.654 1.0 0.0 0.0 

 CP2   1:2 180 18.50 0.617 0.9 0.1 0.0 

 CP3   1:2 140 11.63 0.388 0.8 0.2 0.0 

10 

CP1 PM3 110.5 1:4 180 7.00 0.700 0.9 0.1 0.0 81.7 4.4 

CP2   1:4 331 8.70 0.870 0.9 0.1 0.0 81.4 4.6 

CP3   1:4 229 21.51 2.151 0.9 0.1 0.0 75.8 4.2 

Note: 

CS = Case Study 

CP = Control Point 

Lw = Sound power level of the earth-moving machine (dBA) 

θ = Angle (°) 

r = Distance between receiver and site centre (m) 
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Pon = Ratio of the time when machine operated at full power 

Pidle = Ratio of the time when the machine was idling 

Poff = Ratio of the time when the machine was turned off 

Lp= The predicted sound pressure level (dBA) 

σ = standard deviation (dBA) 

 

 

Figure 5.11: Case study 1 for stochastic deep learning model 
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Figure 5.12: Case study 2 for stochastic deep learning model 

 

 

Figure 5.13: Case study 3 for stochastic deep learning model 
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Figure 5.14: Case study 4 for stochastic deep learning model 

 



194 

 

 

Figure 5.15: Case study 5 for stochastic deep learning model 
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Figure 5.16: Case study 6 for stochastic deep learning model 
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Figure 5.17: Case study 7 for stochastic deep learning model 

 

 

Figure 5.18: Case study 8 for stochastic deep learning model 
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Figure 5.19: Case study 9 for stochastic deep learning model 
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Figure 5.20: Case study 10 for stochastic deep learning model 

 

 

 

 

 



199 

 

5.7 Comparison of Simple Prediction Charts Technique (SPC) and 

Stochastic Deep Learning (SDL) Model Prediction  

 

Table 5.8 shows the disparities of both predicted noise levels using the simple 

prediction chart and stochastic deep learning model of every control point for 

all the case studies. Besides, the accuracy of the prediction was tested by using 

the absolute difference and relative error. The reliability of the model was tested 

by using Pearson correlation and R-squared. Figure 5.21 presented the 

difference between the predictions from the simple prediction chart technique 

and the stochastic deep learning model. 

 

The highest disparity of the comparison was 3.6 dBA and the relative 

error of 4.7 % in case study 5 and the average absolute difference for all the 

control points was 0.5 dBA and the average relative percentage error was 0.01 %. 

Overall, case study 1 contributed the lowest average absolute difference of 0.03 

dBA and 0 % of relative error among the results whereas the average absolute 

difference of case study 5 was 1.8 dBA, the highest among all the case studies. 

Moreover, case study 1 has the highest value of Pearson correlation and R-

squared of 1.000 indicating a strong association between the simple prediction 

chart technique and the stochastic deep learning model. However, the lowest 

Pearson correlation and R-squared value were identified from case study 9 

having the value of 0.905 and 0.818. 

 

The disparities were directly influenced by the inclusion of the earth-

moving machine duty cycle. As mentioned earlier, the earth-moving machine 
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was assumed to operate at full power for the development of the simple 

prediction chart (Haron et al., 2008; Haron et al., 2009, Haron et al., 2012); but 

for the stochastic simulation in the current study, the earth-moving machine was 

assumed to have three different duty modes. Hence, the difference between the 

assumption resulted in the disparities between the stochastic deep learning 

model and the simple prediction chart technique. The relationship between the 

duty cycle and the disparities indicated that the higher the variation of duty 

cycles of the earth-moving machine, the higher the difference of prediction 

between the simple prediction charts technique and the stochastic deep learning 

model. 

 

Furthermore, the introduction of the coverage angle of 0° to 360° from 

the site centre resulted in disparities in the prediction as well. Unlike the 

stochastic deep learning model, the simple prediction charts only covered up to 

0°, 15°, 30° and 45°. As for the simple prediction charts, the angle equal to or 

less than 45 ° in the first quadrant can be symmetrically mirrored in the other 

quadrants (Q2, Q3, Q4) to determine the ΔL. For instance, the coverage angle 

of 45° in the simple prediction charts could be the coverage angle of 135°. 225° 

and 315° in the stochastic simulation. However, the sound pressure levels at 

these angles were different because of the inclusion of the different duty cycles 

of the earth-moving machine. In other words, if the earth-moving machine was 

simulated randomly to generate noise at full power mode in Q1, and produce 

noise at idling mode in Q3, then the sound pressure levels were not equivalent. 

Although the concept of the stochastic simulation in this study was derived from 
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the simple prediction charts, the outcome of prediction was different upon the 

inclusion of earth-moving machine duty cycles and complete coverage angle.  

 

 

Figure 5.21: Comparison of sound pressure level between the SPC 

technique and SDL model 
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Table 5.8: Comparison between the prediction of SPC technique and SDL 

model 

Case 

Study 

& 

aspect 

ratio 

Control 

Points 

SPC 

Predicted 

LAFeq 

(dBA) 

SDL 

Predicted 

LAFeq 

(dBA) 

Absolute 

Difference 

Relative 

Error 

Pearson 

Correlation 

R 

Squared 

CS1 

(1:1) 

CP1 77.1 77.0 0.1 0.1% 

1.000 1.000 CP2 72.6 72.6 0.0 0.0% 

CP3 71.1 71.1 0.0 0.0% 

CS2 

(2:1) 

CP1 77.7 77.7 0.4 0.5% 

0.998 0.996 CP2 77.1 77.2 0.1 0.1% 

CP3 71.1 71.3 0.2 0.3% 

CS3 

(1:2) 

CP1 77.6 77.5 0.0 0.0% 

1.000 0.999 CP2 75.8 75.6 0.2 0.3% 

CP3 70.3 70.2 0.1 0.1% 

CS4 

(4:1) 

CP1 78.4 78.8 0.4 0.5% 

0.943 0.889 CP2 76.7 77.2 0.5 0.7% 

CP3 76.2 75.4 0.8 1.0% 

CS5 

(1:8) 

CP1 76.1 72.5 3.6 4.7% 

1.000 0.999 CP2 73.0 71.4 1.6 2.2% 

CP3 70.8 70.7 0.1 0.1% 

CS6 

(8:1) 

CP1 71.6 72.1 0.5 0.7% 

0.995 0.989 CP2 69.9 69.8 0.1 0.1% 

CP3 68.3 68.3 0.0 0.0% 

CS7 

(4:1) 

CP1 78.4 78.3 0.1 0.1% 

0.989 0.978 CP2 74.1 74.3 0.2 0.3% 

CP3 73.8 73.2 0.6 0.8% 

CS8 

(2:1) 

CP1 83.7 84.0 0.3 0.4% 

0.971 0.942 CP2 83.7 83.2 0.5 0.6% 

CP3 81.0 80.8 0.2 0.2% 

CS9 

(1:2) 

CP1 77.9 78.8 0.9 1.2% 

0.905 0.818 CP2 78.4 77.1 1.3 1.7% 

CP3 82.5 82.1 0.4 0.5% 

CS10 

(1:4) 

CP1 83.0 81.7 1.3 1.6% 

0.979 0.958 CP2 81.4 81.4 0.0 0.0% 

CP3 76.8 75.8 1.0 1.3% 
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5.8 Comparison of the Prediction and Actual Measurement 

 

The comparison between the actual measurement and the prediction from both 

the simple prediction charts technique and stochastic deep learning model is 

presented in Figure 5.22; the absolute difference between all the case studies is 

exemplified in Figure 5.23. Table 5.9 shows the disparities in the predicted noise 

levels using the simple prediction chart and the actual measurement of every 

control point for all the case studies. Besides, the accuracy of the prediction was 

tested by using the absolute difference whereas the reliability of the model was 

tested by using R-squared. The highest disparity of the comparison was 3.2 dBA 

with a relative error of 3.8 % in case study 8. The average absolute difference 

for all the control points was 1.5 dBA and the average relative percentage error 

was 0.02 %. Overall, case study 1 contributed the lowest average absolute 

difference of 1.2 dBA among the results whereas the average absolute 

difference of case study 8 was 2.3 dBA, the highest among all the case studies. 

Moreover, case studies 1 and 2 had the highest value of R-squared of 1.000 

indicating a strong association between the simple prediction chart technique 

and the measurement. However, the lowest R-squared value was identified in 

case study 9 having the value of 0.660.  

 

The disparities were directly influenced by the inclusion of the earth-

moving machine duty cycle. As mentioned earlier, the earth-moving machine 

was assumed to operate at full power for the development of the simple 

prediction chart (Haron et al., 2008); but in the actual scenario, the earth-moving 

machine operated at different duty modes. Hence, this resulted in the disparities 
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between the prediction and the actual measurement. The relationship between 

the duty cycle and the disparities indicated that the higher the variation of duty 

cycles of the earth-moving machine, the higher the difference between the 

prediction and the actual measurement. On the other hand, the reliability of the 

prediction was directly affected by the duty cycles as well. The inclusion of duty 

cycles in the construction noise prediction was suggested by previous 

researchers to improve the accuracy of the prediction (Haron et al. 2012; Lim et 

al. 2015) 

 

Table 5.9 shows the absolute difference, relative error, Pearson 

correlation and R-squared of the predicted noise level using the stochastic deep 

learning model (SDL) and the actual noise level of every control point for all 

the case studies. Besides, the accuracy of the predicted results was tested by 

using the absolute difference and relative error; the reliability was tested by 

Pearson correlation and R-squared. The highest disparity of the comparison was 

2.9 dBA with a relative error of 3.3 % and one of the control points had 0.0 dBA 

of absolute difference. Overall, case study 4 contributed the lowest average 

absolute difference of 0.63 dBA among the results whereas the average absolute 

difference of case study 8 was 2.4 dBA, the highest among all the case studies. 

The average absolute difference for all the control points was 1.2 dBA and the 

average relative percentage error was 0.02 %.  
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Figure 5.22: Comparison of sound pressure level between the SPC technique, SDL and actual measurement 
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Figure 5.23:Absolute difference between the prediction and the actual measurement 
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Table 5.9: Comparison of the prediction and measurement 

Case 

Study & 

aspect 

ratio 

Control 

Points 

SPC 

Predicted 

LAFeq 

(dBA) 

SDL 

Predicted 

LAFeq 

(dBA) 

Measured 

LAFeq 

(dBA) 

SPC Predicted LAFeq vs. Measured LAFeq SDL Predicted LAFeq vs. Measured LAFeq 

Absolute 

Difference 

(dBA) 

Relative 

Error 

Pearson 

Correlation 

R 

Squared 

Absolute 

Difference 

(dBA) 

Relative 

Error 

Pearson 

Correlation 

R 

Squared 

CS1 

(1:1) 

CP1 77.1 77.0 75.5 1.6 2.1 % 

1.000 1.000 

1.5 2.0 % 

1.000 1.000 CP2 72.6 72.6 71.5 1.1 1.5 % 1.1 1.5 % 

CP3 71.1 71.1 70.1 1.0 1.4 % 1.0 1.4 % 

CS2 

(2:1) 

CP1 77.7 77.7 75.4 2.3 3.0 % 

1.000 1.000 

2.3 3.1 % 

1.000 1.000 CP2 77.1 77.2 75.0 2.1 2.7 % 2.2 2.9 % 

CP3 71.1 71.3 69.9 1.2 1.7 % 1.4 2.0 % 
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Table 5.9: Comparison of the prediction and measurement (Cont’d) 

Case 

Study & 

aspect 

ratio 

Control 

Points 

SPC 

Predicted 

LAFeq 

(dBA) 

SDL 

Predicted 

LAFeq 

(dBA) 

Measured 

LAFeq 

(dBA) 

SPC Predicted LAFeq vs. Measured LAFeq SDL Predicted LAFeq vs. Measured LAFeq 

Absolute 

Difference 

(dBA) 

Relative 

Error 

Pearson 

Correlation 

R 

Squared 

Absolute 

Difference 

(dBA) 

Relative 

Error 

Pearson 

Correlation 

R 

Squared 

CS3 

(1:2) 

CP1 77.6 77.5 75.6 2.0 2.6 % 

0.997 0.994 

2.0 2.5 % 

0.996 0.992 CP2 75.8 75.6 74.5 1.3 1.7 % 1.1 1.5 % 

CP3 70.3 70.2 69.3 1.0 1.4 % 0.9 1.3 % 

CS4 

(4:1) 

CP1 78.4 78.8 79.8 1.4 1.8 % 

0.919 0.845 

1.0 1.3 % 

0.998 0.996 CP2 76.7 77.2 77.9 1.2 1.6 % 0.7 0.9 % 

CP3 76.2 75.4 75.2 1.0 1.3 % 0.2 0.3 % 
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Table 5.9: Comparison of the prediction and measurement (Cont’d) 

Case 

Study & 

aspect 

ratio 

Control 

Points 

SPC 

Predicted 

LAFeq 

(dBA) 

SDL 

Predicted 

LAFeq 

(dBA) 

Measured 

LAFeq 

(dBA) 

SPC Predicted LAFeq vs. Measured LAFeq SDL Predicted LAFeq vs. Measured LAFeq 

Absolute 

Difference 

(dBA) 

Relative 

Error 

Pearson 

Correlation 

R 

Squared 

Absolute 

Difference 

(dBA) 

Relative 

Error 

Pearson 

Correlation 

R 

Squared 

CS5 

(1:8) 

CP1 76.1 72.5 73.2 2.9 3.8 % 

0.990 0.980 

0.7 1.0 % 

0.985 0.971 CP2 73.0 71.4 71.4 1.6 2.2 % 0.0 0.0 % 

CP3 70.8 70.7 69.3 1.5 2.1 % 1.4 2.0 % 

CS6 

(8:1) 

CP1 71.6 72.1 70.4 1.2 1.7 % 

0.994 0.987 

1.7 2.4 % 

0.977 0.954 CP2 69.9 69.8 68.9 1.0 1.4 % 0.9 1.3 % 

CP3 68.3 68.3 66.8 1.5 2.2 % 1.5 2.2 % 
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Table 5.9: Comparison of the prediction and measurement (Cont’d) 

Case 

Study & 

aspect 

ratio 

Control 

Points 

SPC 

Predicted 

LAFeq 

(dBA) 

SDL 

Predicted 

LAFeq 

(dBA) 

Measured 

LAFeq 

(dBA) 

SPC Predicted LAFeq vs. Measured LAFeq SDL Predicted LAFeq vs. Measured LAFeq 

Absolute 

Difference 

(dBA) 

Relative 

Error 

Pearson 

Correlation 

R 

Squared 

Absolute 

Difference 

(dBA) 

Relative 

Error 

Pearson 

Correlation 

R 

Squared 

CS7 

(4:1) 

CP1 78.4 78.3 77.8 0.6 0.8 % 

1.000 0.999 

0.5 0.6 % 

0.985 0.970 CP2 74.1 74.3 72.4 1.7 2.3 % 1.9 2.6 % 

CP3 73.8 73.2 72.2 1.9 2.2 % 1.0 1.4 % 

CS8 

(2:1) 

CP1 83.7 84.0 86.9 3.2 3.8 % 

0.929 0.862 

2.9 3.3 % 

0.991 0.981 CP2 83.7 83.2 85.4 1.7 2.0 % 2.2 2.6 % 

CP3 81.0 80.8 82.9 1.9 2.3 % 2.1 2.5 % 
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Table 5.9: Comparison of the prediction and measurement (Cont’d) 

Case 

Study & 

aspect 

ratio 

Control 

Points 

SPC 

Predicted 

LAFeq 

(dBA) 

SDL 

Predicted 

LAFeq 

(dBA) 

Measured 

LAFeq 

(dBA) 

SPC Predicted LAFeq vs. Measured LAFeq SDL Predicted LAFeq vs. Measured LAFeq 

Absolute 

Difference 

(dBA) 

Relative 

Error 

Pearson 

Correlation 

R 

Squared 

Absolute 

Difference 

(dBA) 

Relative 

Error 

Pearson 

Correlation 

R 

Squared 

CS9 

(1:2) 

CP1 77.9 78.8 79.9 2.0 2.6 % 

0.812 0.660 

1.1 1.4 % 

0.983 0.967 CP2 78.4 77.1 76.8 1.6 2.0 % 0.3 0.4 % 

CP3 82.5 82.1 83.0 0.5 0.6 % 0.9 1.1 % 

CS10 

(1:4) 

CP1 83.0 81.7 81.6 1.4 1.7 % 

0.997 0.993 

0.1 0.1 % 

0.992 0.985 CP2 81.4 81.4 80.6 0.8 1.0 % 0.8 1.0 % 

CP3 76.8 75.8 76.0 0.8 1.0 % 0.2 0.3 % 
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By interpreting the data, the SDL has high accuracy in each case study 

with the mean absolute difference ranging from 0.0 dBA to 2.9 dBA. The 

disparities between the actual measurement and prediction of the case studies 2, 

3, 5, 6 and 7 can be explained by the coverage area of the machine during the 

activities was insufficient because the simulation assumed the earth-moving 

machines to cover all the areas within the well-defined sub-area (Haron et al., 

2008). Besides, a study revealed that the accuracy of the prediction is directly 

affected by the coverage area of earth-moving machines (Lim et al., 2015). For 

case studies 1 and 4, the earth-moving machines covered almost every area 

within the sub-site and hence resulted in a low value of absolute difference but 

it has a low possibility that it will occur in a real case scenario.  

 

Additionally, the accuracy of the prediction was very dependent on the 

variation of duty cycles. Based on the observation, earth-moving machines that 

were being operated at all times resulted in a low absolute difference value 

between the comparison of predicted and measured noise levels. Even though 

three different duty cycles were covered in this study but the operation cycle of 

earth-moving machines tends to have more different duty cycles in reality (Lim 

et al., 2015). Hence, the predicted values from SDL were slightly higher than 

the actual noise levels overall if the earth-moving machine was a crawler 

excavator that was attached to excavating bucket. As for case studies 8, 9 and 

10, the majority of the predicted sound pressure levels at the control points were 

an averagely of 1.2 dBA lower than the actual measurement. This is because the 

impulsive noise was generated by the collision between the rock breaker and 
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the rock in case study 8. As for case studies 9 and 10, the impulsive noise was 

generated during the rock coring activities.  

 

Based on the data analysis, the range of the standard deviation for each 

of the case studies varied from 1.6 dBA to 33.0 dBA. The standard deviation in 

the SDL was to explain the noise level distribution within the sub-area and also 

the variation of sound pressure levels at a different operational duty cycle. The 

standard deviation of all the case studies is tabulated in Table 5.7. Case study 6 

had the highest average standard deviation of 31.0 dBA due to the width to depth 

ratio of 8:1 (136 m : 17 m). When a sub-area has a greater difference in ratio 

between the width and depth, the range between the maximum and minimum 

noise levels tends to be larger because of the inverse square law (Haron et al, 

2008). Additionally, when the earth-moving machine is involved more often in 

different duty cycles, the standard deviation will be higher as well. Nonetheless, 

the reason that caused case study 6 to have a high standard deviation value is 

due to the high variation of duty cycles and dynamic properties of three 

machines during the road construction activity. On the contrary, case study 7 

with an aspect ratio of 1:1 had the lowest average standard deviation of 2.7 dBA 

which the earth-moving machine operated at full power throughout the 

measurement having a smaller standard deviation value in the prediction. This 

explains the accuracy of the prediction highly relies on the operational duty 

cycle and the coverage area (Haron et al., 2008; Haron and Yahya, 2009; Haron 

et al., 2012; Lim et al., 2015). 
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The lowest R-squared value of 0.954 which indicated the SDL was 

highly reliable; the highest R-squared value lies between case studies 1, 2 and 4 

whereas case study 6 has the lowest R-squared value of 0.954 followed by case 

study 9 with the R-squared value of 0.967. In addition, the Pearson correlation 

value for case study 6 was the lowest among the case studies with a value of 

0.977. Case studies with the highest Pearson correlation value of 1.000 were 

CS1 and CS2. In summary, the stochastic deep learning model is capable of 

providing good reliability in noise level prediction with an R2 value ranging 

from 0.954 to 1.000 and the Pearson’s correlation ranging from 0.977 to 1.000 

indicating a strong association between the prediction and measurement 

(Henseler et al., 2009). 

 

5.9 Concluding Remark 

 

This chapter presents the results of fieldwork to investigate the stochastic deep 

learning model performance. Besides, the outcome of the model was compared 

to the simple prediction charts to determine the model performance based on 

the concept of stochastic modelling. Then, the stochastic deep learning model 

and the simple prediction chart technique were compared to the actual 

measurement to determine the performance of both the SPC technique and SDL 

models. The following conclusions can be drawn from this study: 

 

i) The disparities between the stochastic deep learning model and the 

simple prediction chart technique were directly influenced by the 

inclusion of the earth-moving machine duty cycle. As mentioned earlier, 
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the earth-moving machine was assumed to operate at full power for the 

development of the simple prediction chart; but for the stochastic 

simulation in the current study, the earth-moving machine was assumed 

to have three different duty modes. The relationship between the duty 

cycle and the disparities indicated that the higher the variation of duty 

cycles of the earth-moving machine, the higher the difference of 

prediction between the simple prediction charts technique and the 

stochastic deep learning model. 

 

ii) The difference in coverage angle from simple prediction chart technique 

and stochastic deep learning model resulted in the disparities between 

the prediction as well. The sound pressure levels at different coverage 

angles were different mainly because of the inclusion of the different 

duty cycles of the earth-moving machine at different random locations. 

 

iii) The coverage area of the earth-moving machines in the actual 

construction activities contributed to the disparities in the prediction for 

both simple prediction charts and deep learning models. In the 

simulation, the earth-moving machine was assumed to cover all the areas 

within the sub-site. However, the earth-moving machine was only able 

to cover certain areas with high intensity due to the type of work in the 

actual construction activities. 

 

iv) Although the overall absolute difference from the stochastic deep 

learning model was below 1.2 dBA with an average relative error of 
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0.01 %. Some case studies like pile boring activities contributed a higher 

absolute difference as well as relative error, compared to other case 

studies due to the impulsive noise generated from certain works which 

indicates that more parameters such as the generated noise types (steady-

continuous noise, steady non-continuous noise, intermittent noise, 

impulsive noise, fluctuating noise) can be included in the simulation. 
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CHAPTER 6 

 

6 CONCLUSION AND RECOMMENDATION 

 

 

6.1 Introduction 

 

Based on the objectives formulated in Chapter 1, conclusions are contemplated 

in this study. The explanation for each conclusion is explained with clarity in 

the following sections. The limitation and recommendations are covered in the 

following sections as well. 

 

6.2 Conclusion 

6.2.1 Feasibility of using Artificial Neural Network to Predict 

Construction Noise Levels 

 

In conclusion, this study validated the predicted and actual noise levels from 

different construction activities. Actual noise levels measurement was 

conducted following BS 5228-1:2009 and BS ISO 6395:2008. The predicted 

noise levels were computed correctly by using the simple prediction chart 

technique and the stochastic deep learning model. The prediction from the 

stochastic deep learning model was proven to be accurate and reliable. To 

support the statement, the highest absolute difference value and the relative 

error compared to the measurement was less than 3.0 dBA and smaller than 

4.0 %. Furthermore, the highest mean absolute difference values compared with 

the SPC and the measurement were 0.5 dBA and 1.2 dBA with an average 
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relative error of 0.01 %. Furthermore, the lowest R2 value and Pearson’s 

correlation coefficient among the case studies were 0.954 and 0.977 which 

indicates strong strength of association. Hence, the stochastic deep learning 

model has the potential to be adopted in the construction industry as a 

managerial and planning tool. 

 

The stochastic deep learning framework was developed with the 

association of stochastic modelling and the artificial neural network. The 

framework aims to clarify the execution of every step in the stochastic deep 

learning model. The programming algorithms for stochastic modelling were 

developed in MATLAB to validate and compare the outcome of the previous 

studies and the current stochastic modelling. The deep learning models were 

established in Python programming language using Spyder 3.6. Seven sets of 

stochastic data based on different aspect ratios were generated. The purpose of 

stochastic modelling was to generate input data as the training data for the seven 

deep learning models for different aspect ratios. The deep learning models were 

trained and assessed according to the stochastic data. The performance 

evaluation for each stochastic deep learning model was satisfactory. 

 

Ten case studies were successfully conducted in this study. The 

stochastic deep learning models predicted the construction noise based on 

different given parameters, and then the accuracy and reliability of the 

prediction were validated by using the actual measurement from construction 

sites. In conclusion, this study validated the predicted and actual noise levels 

from different construction activities. Actual noise levels measurement was 
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conducted following BS 5228-1:2009 and BS ISO 6395:2008. The predicted 

noise levels were computed correctly by using the stochastic deep learning 

model and the simple prediction chart method. The prediction from the 

stochastic deep learning model was proven to be accurate and reliable. To 

support the statement, the highest absolute difference value compared to the 

measurement was less than 3.0 dBA. Furthermore, the highest mean absolute 

difference values compared with the SPC and the measurement were 0.5 dBA 

and 1.2 dBA. The average relative error between the simple prediction chart 

technique and the stochastic deep learning model was 0.01 % whereas the 

relative error was 0.02 % by comparing the prediction from the stochastic deep 

learning model and the actual measurement. However, the lowest R2 value 

among the case studies was 0.954 which indicates strong strength of association. 

Hence, the stochastic deep learning model is environmental modelling that has 

the potential to be adopted in the construction industry managerial and planning 

tool. 

 

6.2.2 Limitation 

 

This study is bounded by several limitations which may have directly affected 

the accuracy of the deep learning model. These limitations were identified as 

factors that would potentially influence the outcome in future research: 

 

i. This study only covered steady-continuous noise. However, some 

construction machines such as breakers and pile boring machines 

will generate different types of noise that would affect the sound 

pressure level during the measurement. This may crucially affect the 
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absolute difference between the deep learning model and actual 

measurement. 

 

ii. The machine sound power level in the stochastic model was 

determined as 120 dBA during the data generation. In reality, the 

machine sound power level varies due to different construction 

activities.  

 

iii. The aspect ratio for case studies was limited to 1:1, 1:2, 1:4, 1:8, 8:1, 

4:1, and 2:1 only, which may constrain the flexibility of the 

fieldwork. This is because of the space limitation and inaccessibility 

of the construction site. 

 

iv. The case studies were mostly focused on infrastructure activity, the 

deep learning model accuracy and reliability were biased to 

infrastructure activities when the prediction is compared to the 

actual measurement.  

 

6.3 Recommendation 

 

Several study areas are recommended to be investigated to further improve the 

application of the stochastic deep learning model practically: 

 

i. Study the noise patterns of the machine during different stages of the 

construction activities, and include more operational modes during 
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the fieldwork and the prediction. Thus, it is worthwhile to further 

study the influence level based on different types of noise and 

operational modes that may affect the performance of the deep 

learning model. 

 

ii. The sound pressure level in the environment is mainly from the 

earth-moving machines during construction activities. Hence, 

including varieties of sound power levels during the data generation 

may significantly affect the performance of the stochastic deep 

learning model. 

 

iii. Study more aspect ratios so that the site configuration for each 

prediction will not only be limited to 7 aspect ratios as stated. 

Nonetheless, the user can configure the dimension of the sub-site 

depending on the accessibility and space in the harsh construction 

environment. 

 

iv. This study is feasible and has the potential to be applicable in all 

kinds of construction activities. With that being said, a comparison 

between varieties of case studies from different construction 

activities and the deep learning model would validate the accuracy 

and reliability of the model. 
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6 APPENDIX A 

 

 

APPENDIX A: Basic Length, l, of the machine 

 

 

Figure A.1: Crawler dozer (British Standard Institution, 2008). 

 

 

Figure A.2: Wheeled dozer (British Standard Institution, 2008). 

 

 

Figure A.3: Wheeled loader with an operating mass more than 4500 kg 

(British Standard Institution, 2008). 
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Figure A.4: Crawler loader with an operating mass less than or equal to 4500 

kg (British Standard Institution, 2008). 

 

 

Figure A.5: Crawler loader (British Standard Institution, 2008). 

 

 

Figure A.6: Skid steer loader (British Standard Institution, 2008). 
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Figure A.7: Wheeled backhoe loader (British Standard Institution, 2008). 

 

 

Figure A.8: Crawler backhoe loader (British Standard Institution, 2008). 

 

 

Figure A.9: Wheeled excavator (British Standard Institution, 2008). 
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Figure A.10: Crawler excavator (British Standard Institution, 2008). 

 

 

 a) b) 

Figure A.11: Compact excavator with an operating mass less than or equal to 

6000 kg (British Standard Institution, 2008). 

 

 

Figure A.12: Walking excavator (British Standard Institution, 2008). 
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Figure A.13: Wheeled rigid-frame dumper (British Standard Institution, 2008). 

 

 

Figure A.14: Articulated-frame dumper (British Standard Institution, 2008). 

 

 

Figure A.15: Crawler dumper (British Standard Institution, 2008). 

 

 

Figure A.16: Wheeled dumper with an operating mass less than or equal to 

4500 kg (British Standard Institution, 2008). 
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Figure A.17: Crawler dumper with an operating mass less than or equal to 

4500 kg (British Standard Institution, 2008). 

 

 

Figure A.18: Scraper with one engine (British Standard Institution, 2008). 

 

 

Figure A.19: Scraper with two engines (British Standard Institution, 2008). 

 

 

Figure A.20: Crawler scraper (British Standard Institution, 2008). 
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Figure A.21: Grader (British Standard Institution, 2008). 

 

 

Figure A.22: Pipelayer (British Standard Institution, 2008). 

 

 

Figure A.23: Wheeled ride-on trencher (British Standard Institution, 2008). 

 

 

Figure A.24: Crawler ride-on trencher (British Standard Institution, 2008). 
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Figure A.25: Walk-behind trencher (British Standard Institution, 2008). 

 

 

Figure A.26: Disk trencher (British Standard Institution, 2008). 

 

 

Figure A.27: Landfill compactor with loading equipment (British Standard 

Institution, 2008). 

 

 

Figure A.28: Landfill compactor with loading equipment (British Standard 

Institution, 2008). 
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 a) b) 

Figure A.29: Rollers (British Standard Institution, 2008). 
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6 APPENDIX B 

 

 

Appendix B 

 

Figure B.1 Simple Prediction Chart for mean level deviation 1:1 aspect ratio 

(Haron et al., 2012). 

 

 

Figure B.2 Simple Prediction Chart for mean level deviation 1:2 aspect ratio 

(Haron et al., 2012). 
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Figure B.3 Simple Prediction Chart for mean level deviation 1:4 aspect ratio 

(Haron et al., 2012). 

 

 

Figure B.4 Simple Prediction Chart for mean level deviation 1:8 aspect ratio 

(Haron et al., 2012). 
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Figure B.5 Simple Prediction Chart for mean level deviation 2:1 aspect ratio 

(Haron et al., 2012). 

 

 

Figure B.6 Simple Prediction Chart for mean level deviation 4:1 aspect ratio 

(Haron et al., 2012). 
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Figure B.7 Simple Prediction Chart for mean level deviation 8:1 aspect ratio 

(Haron et al., 2012). 

 

 

Figure B.8 Simple Prediction Chart for standard deviation 1:1 aspect ratio 

(Haron et al., 2012). 
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Figure B.9 Simple Prediction Chart for standard deviation 1:2 aspect ratio 

(Haron et al., 2012). 

 

 

Figure B.10 Simple Prediction Chart for standard deviation 1:4 aspect ratio 

(Haron et al., 2012). 
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Figure B.11 Simple Prediction Chart for standard deviation 1:8 aspect ratio 

(Haron et al., 2012). 

 

 

Figure B.12 Simple Prediction Chart for standard deviation 2:1 aspect ratio 

(Haron et al., 2012). 
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Figure B.13 Simple Prediction Chart for standard deviation 4:1 aspect ratio 

(Haron et al., 2012). 

 

 

Figure B.14 Simple Prediction Chart for standard deviation 4:1 aspect ratio 

(Haron et al., 2012). 

 


