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ABSTRACT 

 

 

Programmable Spatially Variant Single-Pixel Imaging Based on 

Compressive Sensing 

 

 

 Shin Zhen Yong  

 

 

Single-pixel imaging techniques made imaging easier in conditions that 

are unfavourable to the conventional digital cameras such as the invisible 

wavelengths. According to Nyquist-Shannon theorem, it requires that the 

number of measurements must be no less than the number of image pixels for 

an error-free image recovery. However, acquiring more measurements in 

practice increases the cost and operating time which hinder the practicality of 

single-pixel imaging. Single-pixel imaging system based on compressive 

sensing (CS) makes it possible to simultaneously compress and acquire image 

data, thus recovers images from measurements less than the requirement stated 

by Nyquist-Shannon theorem. In general, the image quality is proportional to 

the number of measurements which contributes to the acquisition and 

computational time accordingly. Hence, the essential goal of efficient single-

pixel imaging is to maintain a high recovered image quality while reducing the 

number of measurements and processing time.  

In the conventional uniform resolution (UR) single-pixel imaging, all 

image pixels have the same size and are equally weighted. Therefore, a high 

pixel-to-pixel fidelity image recovery requires many measurements. However, 

high pixel-to-pixel fidelity recovery is not always needed in most visual tasks. 

This thesis proposes a programmable spatially variant resolution (SVR) 

technique in single-pixel imaging based on CS. In the proposed method, image 
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pixels are differently sized and formed higher and lower resolution regions. 

Since lower resolution regions require less measurements for recovery, most of 

the measurements are spent in the recovery of the higher resolution regions. 

Thus, SVR single-pixel imaging is able to maintain higher image quality with 

significantly fewer measurements. Since recovering large images requires 

longer time and more computational resources, block-based CS technique is 

proposed to reduce the computational cost by dividing them into small image 

blocks. Each image block is recovered in the same way as recovering individual 

images. In this project, a design of SVR sensing patterns is proposed and applied 

to the block-based CS which can reduce the complexity and time needed for the 

result computation. 

Recently, many convolutional neural networks (CNN) were proposed as 

the CS image recovery algorithms. Conventionally, the network inputs of an 

CNN are images and the network outputs are the predictions of the labels of the 

images. In the framework where CNNs are applied as the CS image recovery 

algorithms, the network inputs would be the CS measurements and the network 

outputs would be the recovered images. The iterative nature of the conventional 

CS image recovery algorithms increases the computational resources needed 

and the time for image recovery. In comparison, CNNs are non-iterative. Many 

studies had shown that CNNs improve the recovered image quality and reduce 

the time cost for image recovery drastically. In this project, a CNN called 

ReconNet is adapted as the CS image recovery algorithm. 

The results of this project show that the proposed SVR sensing patterns 

are able to improve the image quality and time efficiency for small number of 

measurements as compared to the conventional UR sensing patterns. The 
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improvements can be seen in both the conventional CS approach as well as the 

block-based CS approach. In addition, SVR sensing patterns are able to retain 

the image quality better as the number of measurements gets smaller. 

Furthermore, the results have also shown that compared to the other 

conventional CS image recovery algorithms, ReconNet significantly reduces 

the time needed for image recovery while maintaining a high image quality for 

small numbers of measurements. 

Hence, the proposed SVR approach is more suitable in situations where 

high-fidelity pixel-to-pixel recovery is not the priority and most importantly far 

fewer measurements are required for a comparable image quality. Moreover, 

ReconNet outperforms the conventional CS image recovery algorithms. This 

shows that the proposed SVR approach with ReconNet is more suitable than the 

conventional approaches for practical cases. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Human beings have always been visual animals. The ability of visual 

perception has given human beings a great number of advantages that are crucial 

for their survival. Given the importance of the visual abilities, it is no wonder 

that human beings have been developing many imaging technologies such as 

microscopes or telescopes which can extend their visual reach. Even to this day, 

imaging technologies are still playing an important role in the daily lives and 

have helped in making lots of discoveries that are beyond imagination in the 

past. 

Single-pixel imaging serves as an important alternative to the 

conventional cameras but there are still unresolved problems and limitations. 

Image quality, acquisition, and computational time remain the key concerns. 

Naturally, one of the objectives of single-pixel imaging with compressed 

sensing (CS) is to maintain a high image quality for the recovered image while 

reducing the number of measurements as much as possible. In the single-pixel 

imaging with CS scheme, images of the target scenes under view are acquired 

and subsequently recovered via a set of sensing patterns. Randomly generated 

sensing matrices have always been the typical choices in CS image acquisition 

and recovery processes because of their high probability to possess the 

restricting properties imposed by CS (Baraniuk et al., 2008; Candes, 2008; 

Donoho, 2006; Baraniuk, 2007). In the past decade, deterministic sensing 
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matrices have been heavily studied and applied because they are more 

convenient to be stored and implemented in practical situations than the 

randomly generated sensing matrices (DeVore, 2007).  

Furthermore, in many of the typical visual tasks not every single detail 

of the target scene under view is being equally important to the viewers. As a 

matter of fact, most of the time the viewers are only interested in being able to 

recognize the object of interests in the target scene under view. However, in the 

conventional uniform resolution (UR) approach, all pixels of the sensing 

patterns have the same size and they are carrying the same weight in the image 

recovery process. Hence, if one wishes to improve the image resolution of the 

object of interests, the image resolution of the entire image has to be increased. 

As a result, this further increases the number of measurements for a higher 

resolution image recovery. The CS measurements become quite wasteful if the 

majority of them are only used to recover the fine details of regions of the target 

scene that the viewers have no interests in. For example, in many cases the 

viewers have no interests in the image backgrounds. Thus, the high-fidelity 

pixel-to-pixel recovery of the image background is actually not useful to the 

viewers in this case. In such situations, it would be beneficial to adaptively focus 

on the region of interest and acquire CS measurements for the recovery of the 

objects of interests only. As such, a design of sensing patterns to obtain image 

information by utilizing spatially variant resolution (SVR) technique is needed 

to optimize the balance between the image quality and the number of 

measurements. 

CS image recovery is typically a computational demanding process. For 

instance, the recovery of a normal grayscale image of size 256 ×  256 could 
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take up to half an hour or even freeze a typical laptop computer. Therefore, the 

development of block-based CS (Gan, 2007) approaches is crucial for one to 

reduce the computational resource expenses needed to recover one large image 

by dividing the image into many small image blocks.  To reduce the expenses 

of computational resources and image recovery time, a block-based CS 

approach based on the proposed SVR technique is needed. 

Conventionally, iterative algorithms have always been the common 

choices in the CS image recovery process (Meenakshi, 2015; Vujović et al., 

2014; Abo-Zahhad et al., 2015). However, such iterative CS image recovery 

algorithms suffer from being computational resources expensive and always not 

the most efficient method in practical situations. Many studies have shown that 

CNN have been successfully adapted and applied to a great number of other 

computer vision tasks such as object classification and facial recognition. 

Recently, a plethora of CNN were adapted as the image recovery algorithms in 

CS for their quick image recovery and require less computational resources 

(Adler et al., 2016; Bo et al., 2017; Kulkarni et al., 2016; Lu and Bo, 2019; 

Metzler et al., 2017; Mousavi et al., 2015; Yao, H. et al., 2019; Zhang and 

Ghanem, 2018). Therefore, efficient reconstruction by adapting deep learning 

framework in the proposed SVR approach is desirable to suit the needs of 

practical application.  

 

1.2 Problem Statement 

In modern days, conventional consumer-grade digital cameras rely on 

charge-coupled device (CCD) and complementary metal-oxide-semiconductor 

(CMOS) technologies. The developments of CCD and CMOS technologies 
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have drastically matured the imaging technologies in the last few decades. For 

this reason, today’s consumer-grade digital cameras in megapixel range have 

become low-cost and easier to acquire than they were in the past. Figure 1.1 

shows the examples of CCD and CMOS image sensors. However, some 

imaging conditions such as wavelengths that are in the invisible zones of the 

light spectrum and situations where photons are scarce remain challenging for 

the consumer-grade digital cameras. These unusual conditions are inhibiting the 

conventional consumer-grade digital cameras from being more practical in a 

broader wavelength spectrum. For example, an infrared camera is costing as 

much as one hundred times the price of a typical consumer-grade digital camera 

for the same resolution range. Not to mention, the architectures of digital 

cameras operating in invisible zones of the light spectrum often become more 

complex, bulky, and burdensome. With the objectives of designing an imaging 

system with a simpler architecture and require lower cost, the single-pixel 

imaging systems were proposed (Duarte et al., 2008; Edgar et al., 2019). The 

development of single-pixel imaging techniques allows one to acquire and 

recover images in a broader wavelength spectrum and in conditions that are 

unfavorable to conventional consumer-grade digital cameras.  
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Figure 1.1: (a) A CCD in a wire-bonded package used for ultraviolet 

imaging (source: https://commons/wikimedia.org/w/index.php?curid=). 

(b) A CMOS image sensor (source: By Filya1 - Own work, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=6304562). 

 

Traditionally, image sampling process is governed by the well-known 

Nyquist-Shannon theorem (Baraniuk, 2007; Candès, 2006; Cohen et al., 2009; 

Donoho, 2006; Duarte et al., 2008). According to Nyquist-Shannon theorem, 

one is required to sample a signal at a sampling rate two times the signal’s 

highest frequency (also known as the Nyquist rate) in order to permit a 

successful error-free signal recovery. Nyquist-Shannon theorem governs almost 

all signal sampling approaches including audio and visual electronics, medical 

imaging devices, radio receivers, and more. In terms of two-dimensional 

images, one would need to acquire at least as many measurements as the number 

of image pixels in order to successfully recover the images without introducing 

errors (Duarte et al., 2008). However, in many practical cases, both the financial 

cost as well as the time cost for the image acquisition process increase when the 

number of measurements is increased. For instance, if one is to acquire more 

measurements in magnetic resonance imaging (MRI), the patient will have to 

stay in the scanners for a longer timeframe, which could be a big inconvenience 

and potentially making the patient feels uncomfortable. These undesirable 
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factors are stalling single-pixel imaging technologies from being applied more 

widely in practical cases. In such situations, an image sensing approach that 

allows one to accurately recover an image from only a small number of image 

data is desirable. Fortunately, based on compressed sensing (CS) mathematical 

theories and algorithms, one can compress and acquire images at the same time, 

and subsequently recover the images from less measurements than that required 

by the Nyquist-Shannon theorem without introducing errors (Candès, 2006; 

Cohen et al., 2009; Candès, 2006). The loss of image information does not affect 

the CS image recovery process. 

In single-pixel imaging with CS scheme, images of the target scenes 

under view are acquired and subsequently recovered via a set of sensing 

patterns. The sensing matrices used in CS are restricted to some conditions 

imposed by CS such as the restricted isometry property (RIP) (Baraniuk, 2007; 

Baraniuk et al., 2008; Candès, 2006; Donoho, 2006). Conventionally, randomly 

generated sensing matrices such as Gaussian sensing matrices with normal 

distribution, binary sensing matrices with Bernoulli distribution, or Fourier 

sensing matrices have always been the typical choices in CS image acquisition 

and recovery processes because of their surprisingly high probability to possess 

the restricting properties imposed by CS (Candès, 2008; Candès, 2006; Donoho, 

2006). However, randomly generated sensing matrices are not always the best 

choices in practical cases because they are more difficult to be stored and 

implemented in many practical cases. In recent years, sensing matrices that are 

not randomly generated or simply known as deterministic sensing matrices 

(DeVore, 2007) have been gaining interests, studied extensively and applied 

because they are more convenient to be stored and implemented in practical 
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situations than randomly generated sensing matrices. The primary objective is 

to design a deterministic sensing matrix that possess the restricting properties 

imposed by CS. Due to the deterministic nature, the required computational 

complexity of generating a deterministic sensing matrix is much lower than that 

of generating a randomly generated sensing matrix. In the past, the Hadamard 

sensing matrix had been studied extensively and applied as a deterministic 

sensing matrix in single-pixel imaging with CS (Sun et al., 2017; Zhang et al., 

2017). Recently, chaotic pattern array (CPA) was proposed as one of the 

deterministic sensing matrices (Gan et al., 2019). The motivations of applying 

CPA as the sensing matrices are its properties that make it much easier to be 

stored and implemented than the other existing deterministic sensing matrices. 

 

1.3 Aims and Objectives  

This project aims to propose a programmable single-pixel imaging 

technique based on CS to improve the overall performance in terms of image 

quality and efficiency. 

Based on the problems stated above, three objectives of this project are: 

1. To propose a programmable imaging framework with SVR single-pixel 

imaging based on CS. 

2. To improve the performance of single-pixel imaging by applying SVR 

approach to block-based CS. 

3. To improve the performance of SVR block-based approach using ReconNet 

deep learning framework.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Single-Pixel Imaging 

2.1.1 Motivations and Development of Single-Pixel Imaging 

As much as the conventional consumer-grade cameras have improved, 

their practicalities are still very limiting in situations where the wavelengths are 

in the invisible light spectrum and the photons are scarce. Motivated to develop 

cameras that can operate in invisible wavelength light spectrum and scarce 

photon conditions with low financial costs and simpler architecture, single-pixel 

imaging systems were developed. Single-pixel imaging systems make imaging 

easier for a light spectrum broader than that of the conventional imaging 

methods. Since the introduction of single-pixel imaging, it has found many 

applications including multispectral imaging, hyperspectral imaging, infrared 

imaging, terahertz imaging, 3D imaging, holography, and more (Duarte et al., 

2008; Edgar et al., 2019). 

 

2.1.2 Principles and Architecture of Single-Pixel Imaging System 

In a typical single-pixel imaging system, the sensing patterns can be 

projected onto the target scenes (referred to as the front modulation model) or 

passively modulate the reflections of the target scenes via the sensing patterns 

(referred to as the back modulation model). Figure 2.1 shows the setups of such 

two models. 
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Figure 2.1: The general setups of two single pixel imaging systems: (a) the 

front modulation model, (b) the back modulation model (Shi et al., 2015). 

 

In Figure 2.1, it can be seen that some of the main components of a 

single-pixel imaging system are lenses, a digital micro-mirror device (DMD), 

and a single-pixel detector. DMD is a device that has a two-dimensional array 

of bacterium sized and electrostatically actuated micro-mirrors. Each micro-

mirror in the two-dimensional array is suspended on an individual static random 

access memory (SRAM) cell. The DMD can be programed such that it orients 

its micro-mirrors independently to reflect the incoming light from the light 

source towards one of two directions (+10° and −10° from horizontal). When 

a micro-mirror is oriented so that it reflects the incoming light towards the 
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single-pixel detector, the position of this micro-mirror represents the entry 

values 1 in the sensing patterns. On the other hand, if a micro-mirror is oriented 

such that it reflects light away from the single-pixel detector, the position of this 

micro-mirror represents the entry values 0 in the sensing patterns. By switching 

the orientations of the micro-mirrors, different sensing patterns can be generated 

via the DMD. To generate values between 0 and 1, the micro-mirrors can be 

dithered back and forth during the image acquisition process. In order to 

generate bipolar sensing patterns that consist of positive and negative values 

such as + 1 and - 1, micro-mirrors in the positive values positions can be first 

all switched to “on”, keep the micro-mirrors in the negative values positions to 

“off”, and acquire the measurements. In the next step, all the micro-mirrors in 

negative values positions can be switched to "on", keep the micro-mirrors in the 

positive values positions to “off”, and acquire the measurements. Finally, 

subtract the measurements acquired in the second step from the measurements 

acquired in the first step. The results are the actual measurements needed. Figure 

2.2 shows the schematic of two mirrors from a Texas Instruments DMD.  

 

 

Figure 2.2: The Schematic of two mirrors from a Texas Instruments digital 

micromirror device (DMD) (source: http://www.optique-

ingenieur.org/en/courses/OPI_ang_M09_C02/co/Contenu_31.html). 
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As it can be seen in Figure 2.1, a lens is used to expand the sensing 

patterns in order to cover the entire target scene under view. Then, another lens 

will be used to collect the reflected light from the target scene under view into 

the single-pixel detector. The single-pixel detector records the light intensity of 

the target scenes after they have been modulated with the sensing patterns and 

convert them into electrical voltage. Different from the conventional imaging 

system architecture, the single-pixel imaging systems have a modular design. 

Thus, the components of a single-pixel imaging system can be adaptively 

swapped out according to the objectives of the tasks. For example, some 

common choices of single-pixel detector include a photomultiplier tube or an 

avalanche photodiode for scarce photons imaging, a sandwich of multiple 

photodiodes with high sensitivity to different wavelengths for multimodal 

image sensing, a spectrometer for hyperspectral imaging, and so on (Duarte et 

al., 2008; Edgar et al., 2019). Further, the quantum efficiency of a single-pixel 

detector is higher than that of CCD and CMOS, and the fill factor of a DMD is 

capable of reaching up to 90% while that of CCD and CMOS is only 

approximately 50%. Such properties allow a single-pixel detector to receive 

about at least half the number of image pixels times more photons than CCD 

and CMOS. Hence, a single-pixel detector is capable of reducing the image 

distortion from dark noises and read-out noises. 

Single-pixel imaging system design have successfully reduced the size, 

complexity and cost that would be required by conventional imaging systems. 

In addition, single-pixel imaging systems have also been successfully applied 

to areas other than two-dimensional imaging such as three-dimensional imaging 

and video imaging (Duarte et al., 2008; Edgar et al., 2019). The modular design 
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of single-pixel imaging systems also made it possible to vary the computational 

power by swapping out the digital computers used in the image recovery 

process. Hence, with more powerful digital cameras it will be possible to access 

higher computational power. In single-pixel imaging approach, there exist 

several image reconstruction methods that can recover the original images from 

the image data acquired. Some of the conventional image acquisition and image 

recovery approaches for single-pixel imaging are basis scan, adaptive basis 

scan, and CS with 𝑙0- and 𝑙1-minimization (Edgar et al., 2019). Each of these 

approaches has its own advantages and disadvantages. Table 2.1 shows the 

characteristics of each of the approach. This project is focusing solely on single-

pixel imaging with CS approach. 

 

Table 2.1: Characteristics of the images acquisition and reconstruction 

approaches in single-pixel imaging (Edgar et al., 2019). 

 

2.2 Compressed Sensing (CS) 

2.2.1 Conventional Image Compression Techniques 

As imaging technologies have been continuously improved, the number 

of images that needs to store today has reached astronomical values. Moreover, 

the exponentially increasing resolution of the images also increases the size of 

Approach 

 

Sensing 

patterns 

 

Image reconstruction methods 

 

Number of 

measurements 

needed 

 

Basis scan 

 

Basis 

 

Inverse transform 

 

Large 

 

Adaptive basis 

scan 

 

Basis 

 

Inverse transform 

 

Small 

 

CS 

 

Sensing matrix 

 

𝑙0- or 𝑙1-minimization 

 

Small 

 



13 

 

the digital image files. For instance, a typical image in raw format captured by 

a consumer-grade digital single-lens reflex (DSLR) camera has a file size that 

is ranging from 20 to 40 MB. Meanwhile, the typical storage space of a hard 

disk drive ranges from 500 GB to 4 TB. So, there exists a tremendous number 

of large digital image files and very limited storage space. 

In order to alleviate the burden of storing such an enormous number of 

large digital image files, modern transform coders such as JPEG (Joint 

Photographic Experts Group) are applied to reduce the image file size by 

compressing the images. An image is compressed by only keeping the small 

amount of significant data of the image and discarding the majority of the image 

data. Counterintuitively, even though the amount of significant data of an image 

that is left is very minimal, the changes in the overall image quality of the image 

are barely noticeable after the image compression. The reason image 

compression is possible is that many of the normal images are sparse (which 

means that there are only a few nonzero coefficients) or compressible (which 

means that there are only a few large coefficients) when they are represented by 

some fixed bases (Baraniuk, 2007; Candès, 2006; Donoho, 2006). For example, 

many images are sparse in the well-known Fourier transform, wavelet 

transform, Hadamard transform, discrete cosine transform (DCT), and more 

(Baraniuk, 2007; Cohen et al., 2009; Donoho, 2006; Zhang et al., 2017). In fact, 

the famous JPEG transform coder relies on the fact that the amount of non-zero 

wavelet coefficients and DCT coefficients of many normal images are typically 

very minimal. Figure 2.3 shows a standard image “peppers” in its spatial 

domain, the same image in its DCT, and the recovered image from the small 

amount of non-zero DCT coefficients after most of the DCT coefficients have 
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been discarded. It can be seen from Figure 2.3(b) that after setting most DCT 

coefficients to zero, there is only a small number of DCT coefficients which are 

non-zero (the white spots, which cover only less than 10 % of the entire image), 

and that in Figure 2.3 (c) the changes in the image recovered after discarding 

most of the DCT coefficients are visually barely noticeable. Hence, the image 

has a sparse representation in DCT, and it can be recovered from the small 

amount of non-zero DCT coefficients. 

 

 

Figure 2.3: (a) A standard image “peppers” in its spatial domain, (b) the 

same image in its DCT, and (c) the recovered image from the small amount 

of non-zero DCT coefficients after most of the DCT coefficients have been 

discarded. It can be seen from (b) that there is only a small number of DCT 

coefficients which are non-zero (the white spots, which cover only less than 

10 % of the entire image), and that in (c) it can be seen that the changes in 

the image recovered after discarding most of the DCT coefficients are 

barely noticeable. 

 

In terms of mathematics, an N-pixels image of size √𝑁 × √𝑁 can be 

vectorized as a column vector 𝒙 = (𝑥1  … 𝑥𝑁)𝑇 of size 𝑁 × 1, where 𝑥𝑛 is the 

n-th pixel of the image. In order to compress the image x, it is required that x is 
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sparse when it is represented in some sparsifying basis. Hence, the image 𝒙 can 

be first represented in terms of a sparsifying basis 𝜑, 

𝒙 = 𝜑𝜶 = ∑ 𝛼𝑛𝜑𝑛

𝑁

𝑛=1

, (2.1) 

where 𝜶 is the transform coefficient vector, 𝛼𝑛 are the transform coefficients 

and 𝜑𝑛 ∈ ℝ𝑁 are the basis vectors. The image x is sparse if there exist a 

sparsifying basis matrix 𝜑 such that cardinality of the support of the transform 

coefficient vector |𝑠𝑢𝑝𝑝(𝛼)| ≤ 𝐾 < 𝑁, where the support of the transform 

coefficient vector 𝛼, 𝑠𝑢𝑝𝑝(𝛼) = {𝑛: 𝛼𝑛 ≠ 0} is a set of indices for which the 

transform coefficients are not zero; and |𝑠𝑢𝑝𝑝(𝛼)| is the number of elements of 

𝑠𝑢𝑝𝑝(𝛼). Next, the values and locations of only the 𝐾 significant transform 

coefficients will be stored and the rest of the 𝑁 −  𝐾 transform coefficients will 

be discarded.  

However, in practical cases, the image compressing approach that was 

described above is not efficient for a number of reasons. To begin with, the 

encoder has to calculate all of the N transform coefficients {𝛼𝑛}𝑛=1
𝑁  even though 

just a small number 𝐾 of them are needed to be stored eventually. Hence most 

computational resources spent in the image acquisition process were spent for 

nothing. Moreover, the encoder also runs into the overhead of encoding the 

locations and values of the 𝐾 significant transform coefficients (Baraniuk, 2007; 

Candès, 2006; Cohen et al., 2009; Donoho, 2006). 
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2.2.2 The Mathematics Behind CS 

In the traditional approaches of signal sampling, Nyquist-Shannon’s 

theorem demands that the sampling rate must be at the Nyquist rate or no less 

than twice the maximum frequency of the signal. For some types of signals such 

as images which are not bandlimited, the sampling rate would be determined by 

the temporal or spatial resolution instead. In terms of two-dimensional images, 

this means that no less CS measurements than the number of image pixels are 

needed to be acquired, failing to do so would results in introducing errors in the 

image recovery process.  

Recall that it had been mentioned in Section 2.1.1 that the conventional 

image compression approaches are not efficient. Such inefficiency could be 

solved if there exists an image acquisition protocol that is able to directly 

acquire only the significant image data in the image acquisition process. The 

mathematics of CS have shown that such image acquisition protocol is 

achievable. Many studies had proven that CS had been successfully applied to 

single-pixel imaging (Duarte et al., 2008; Edgar et al., 2019). Hence, the hassle 

of acquiring all of the image data only to discard most of them at the end can be 

mitigated by CS. Instead, CS directly compress and acquire the CS 

measurements of the image x at the same time in the image acquisition process 

(Baraniuk, 2007; Candès, 2006; Cohen et al., 2009; Donoho, 2006). 

In terms of mathematics, the CS measurements of the image x can be 

acquired with a sensing matrix 𝜙 ∈  ℝ𝑀×𝑁 , 𝑀 <  𝑁, 

𝒚 =  (

𝑦1

⋮
𝑦𝑀

)  =  𝜙𝒙 ∈  ℝ𝑀, (2.2) 
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where y is the measurement vector of size 1 × 𝑀. Each entry of the 

measurement vector 𝑦𝑚 is the m-th CS measurement. If the image x is 

represented by a sparsifying basis 𝜑 such that 𝒙 =  𝜑𝛼, then Equation (2.2) 

becomes 

𝒚 =  𝜙𝜑𝛼 =  Θ𝛼, (2.3) 

where Θ =  𝜙𝜑. Figure 2.4 shows an illustration of Equation (2.3). 

 

 

Figure 2.4: An illustration of Equation (2.2) (Baraniuk, 2007). 

 

In practical cases, the CS measurements {𝑦𝑚}𝑚=1
𝑀  can be acquired by 

modulating the target scene with the projections of a set of sensing patterns via 

a single-pixel imaging system. Each sensing pattern is formed by reshaping each 

row of the sensing matrix 𝜙 into a square matrix of size √𝑁 × √𝑁. When the 

m-th sensing pattern is projected onto the target scene, the overall light intensity 

will be recorded by the single-pixel detector as the m-th measurement 𝑦𝑚. 

From Figure 2.4, it can be seen that after the image acquisition via the 

sensing matrix 𝜙, there is a loss of image information or dimensional reduction 

for the measurement vector 𝒚 is of size 1 × 𝑀 and the image 𝒙 is of size 1 × 𝑁, 

where 𝑁 > 𝑀. Despite that, recovering  𝒙  from 𝒚 is possible via CS. Many 

studies had proven that CS is possible for image sampling framework provided 

that the images are sparse and the sensing matrix 𝜙 fulfills the restricting 
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properties imposed by CS (Baraniuk, 2007; Candès, 2006; Cohen et al., 2009; 

Donoho, 2006). In addition, CS possesses several properties that make it 

desirable. First, the CS measurements acquisition process is non-adaptive as the 

same sensing matrix 𝜙 can be used on many different images 𝒙. Hence the 

knowledge of the images 𝒙 are not needed prior to the image acquisition 

process. Second, a small number of CS measurements can be thrown away 

without causing adverse effects to the image recovering process. This property 

makes it possible to acquire a better recovery as more measurements are 

acquired. Finally, only the computational complexity of CS in the image 

recovery process is needed to be concerned, which typically has more ample 

and powerful computational resources than the image acquisition process. Aside 

from signal or image data acquisition, CS also found other applications such as 

data compression, channel coding, and inverse problems (Baraniuk, 2007; 

Candès, 2006; Cohen et al., 2009; Donoho, 2006). 

 

2.2.3 Block-Based Approach of CS 

Despite all the advantages CS possesses, the image processing process 

of large images could still be very computational resources expensive. The 

successful recovery of large images could require a long period of image 

recovery time for a typical digital computer. In order to reduce the 

computational resources needed to recover large images, a new approach of CS 

called block-based CS was proposed recently (Gan, 2007). In block-based CS 

approach, a large image is divided into multiple smaller 𝐵 × 𝐵, 𝐵 < √𝑁 image 

blocks. Each image block is regarded as an individual image of its own and the 

CS measurements of each image block are acquired accordingly as 
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𝒚𝑖 = 𝜙𝐵𝒙𝑖 , (2.4) 

where 𝒚𝑖 is the measurement vector of the i-th image block, 𝜙𝐵 is an 𝑀 × 𝐵2,

𝐵2 < 𝑁 sensing matrix, and 𝒙𝑖 is the i-th image block. Hence, instead of 

spending more computational resources for the recovery of the entire image, 

multiple smaller regions of the original image which cost less computational 

resources can be recovered via block-based CS. Moreover, only a smaller 

𝑀 × 𝐵2 sensing matrix 𝜙𝐵 instead of the full 𝑀 × 𝑁 sensing matrix 𝜙 is needed 

to be stored. This makes both storing and implementing the sensing matrix in 

practice much easier. Such approach makes CS much more efficient in many 

practical cases. 

 

2.3 Sensing Matrices in CS 

2.3.1 The Properties of Sensing Matrices in CS 

The properties of the sensing matrices 𝜙 are one of the most intensely 

studied aspects of CS (Baraniuk t al., 2008; Candes, 2008; DeVore, 2007; Gan 

et al., 2019; Lu et al., 2017; Sun et al., 2017). CS requires that the sensing matrix 

𝜙 fulfills some restricting conditions. To be specific, the sensing matrix 𝜙 is 

required to possess the RIP of order 𝐾. 

Definition 2.1.  For each integer 𝐾 = 1,2, …, let 𝛿𝐾 ≥ 0 be the isometry 

constant of 𝜙 such that  

(1 − 𝛿𝐾) ‖𝒙′‖2
2 ≤ ‖𝜙𝒙′‖2

2 ≤ (1 + 𝛿𝐾)𝒙′
2
2

 (2.5) 

holds for all 𝐾-sparse vectors 𝒙′ ∈ 𝛴𝐾. 𝜙 has RIP of order 𝐾 provided that the 

isometry constant 𝛿𝐾 is not too close to 1 (Baraniuk et al., 2008; Candes, 2008).  
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The isometry constant 𝛿𝐾 tells one how much the length of a 𝐾-sparse vector 

can be changed. It can be related to the kernel of 𝜙. Suppose 𝛿𝐾 < 1, this means 

that the kernel of 𝜙 does not contain any 𝐾-sparse vectors. Assume 𝒙′ is 𝐾-

sparse and 𝜙𝒙 = 𝟎, this means that ‖𝜙𝒙‖2
2 = 0 and 𝛿𝐾 ≥ 1, a contradiction.  

Definition 2.2.  Let 𝜙 ∈ ℝ𝑀×𝑁 be some sensing matrix and there is an integer 

𝐾 ≤ min{𝑀, 𝑁}. Then the maximum and minimum 𝐾-sparse singular values 

𝜎𝑚𝑖𝑛
𝐾  and 𝜎𝑚𝑎𝑥

𝐾  are 

𝜎𝑚𝑖𝑛
𝐾 = min

𝒙′

‖𝜙𝒙′‖2

‖𝒙′‖2
 (2.6) 

and 

𝜎𝑚𝑎𝑥
𝐾 = max

𝒙′

‖𝜙𝒙′‖2

‖𝒙′‖2
, (2.7) 

where 𝒙′ is 𝐾-sparse. The maximum and minimum 𝐾-sparse eigenvalues 𝜆min
𝐾  

and 𝜆𝑚𝑎𝑥
𝐾  are given by 

𝜆𝑚𝑖𝑛
𝐾 = min

𝒙′

‖𝒙′𝑇𝜙𝑇𝜙𝒙′‖2

‖𝒙′𝑻𝒙′‖2
= |𝜎𝑚𝑖𝑛

𝐾 |
2

 (2.8) 

and 

𝜆𝑚𝑎𝑥
𝐾 = max

𝒙′

‖𝒙′𝑇𝜙𝑇𝜙𝒙′‖2

‖𝒙′𝑻𝒙′‖2
= |𝜎𝑚𝑎𝑥

𝐾 |2  (2.9) 

The relationship between the isometry constant 𝛿𝐾 and the sparse eigenvalues 

can be shown as 

𝛿𝐾 = max{1 − 𝜆𝑚𝑖𝑛
𝐾 , 𝜆𝑚𝑎𝑥

𝐾 − 1}. (2.10) 

In addition to RIP, a weaker condition called the null space property 

(NSP) demands that ℕ(𝜙)  ∩ Σ2𝐾  =  {𝟎}, which means that the zero vector 0 

is the only 2𝐾-sparse vector in the null space of the sensing matrix 𝜙.  
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Definition 2.3.  A given 𝜙 ∈ ℝ𝑀×𝑁 possesses NSP of order 𝐾 for 𝛾 > 0 

provided 

‖𝒏Λ‖1 ≤ 𝛾‖𝒏ΛC‖
1

, (2.11) 

for all index sets Λ for which |Λ| ≤ 𝐾, for all 𝒏 in the kernel of 𝜙. 

NSP guarantees the uniqueness of the solution 𝒙′ to Equation (2.2). 

Without NSP, it is always possible to find some other 2𝐾-sparse vectors 𝒉 =

𝒙′′ − 𝒙′ ∈ Σ2𝐾 such that 𝜙𝒉 = 𝜙(𝒙′′ − 𝒙′) = 𝟎 and 𝜙𝒙′′ = 𝜙𝒙′. Thus, one 

would not be able to distinguish between any two potential solutions 𝒙′ and 𝒙′′ 

for some given measurement vector 𝒚. One way to determine if the sensing 

matrix 𝜙 possesses NSP is to make sure that the spark of the sensing matrix 𝜙 

is 𝑠𝑝𝑎𝑟𝑘(𝜙) > 2𝐾, where 𝑠𝑝𝑎𝑟𝑘(𝜙) is the minimum number of the columns 

or rows of 𝜙 that are linearly dependent (Baraniuk, 2007; Baraniuk et al., 2008; 

Candes, 2008; Candès, 2006; Donoho, 2006). But to determine whether the 

sensing matrix 𝜙 satisfies the RIP and NSP or not is normally a complex and 

difficult task. Instead, the sensing matrix 𝜙 can simply fulfills a simpler 

condition known as mutual coherence. 

Definition 2.4. Given some sensing matrix 𝜙 ∈ ℝ𝑀×𝑁, the mutual coherence of 

𝜙 is defined as 

𝜇(𝜙) = max
1≤𝑖≠𝑗≤𝑁

 
|𝜙(: , 𝑖)𝑇 𝜙(: , 𝑗)|

∥ 𝜙(: , 𝑖) ∥2 ∥ 𝜙(: , 𝑗) ∥2
 , (2.12) 

where 𝜙(: , 𝑖) is the i-th column of the sensing matrix 𝜙.  

The goal is to make sure that the sensing matrix 𝜙 has a minimum 

mutual coherence 𝜇(𝜙). Interestingly, Candѐs and Tao had discovered that if 

the rows of the sensing matrix 𝜙 are randomly chosen independently and 

identically distributed Gaussian vectors, then it has a surprisingly high 
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probability of satisfying the RIP condition (Candes et al., 2006; Candès et al., 

2006; Candes and Tao, 2006). 

 

2.3.2 Proof of The Restricted Isometry Property 

Existing studies had attempted to give the acceptable conditions for 

random 𝜙 to possess the RIP (Baraniuk et al., 2008).  

Suppose (Ω, 𝜌) is some probability space and 𝑟 is some random variable 

of Ω. Then for some integers 𝑀 and N, a random 𝜙 ∈ ℝ𝑀×𝑁 can be generated 

by selecting the entries 𝜙𝑖𝑗 as the independent realizations of 𝑟, giving a random 

𝜙(𝜔), where 𝜔 ∈ Ω𝑀𝑁. 

Lemma 2.1. Assume that the random matrix 𝜙(𝜔) satisfies 

𝑷[|‖𝜙(𝜔)𝒙‖2
2 − ‖𝒙‖2

2| ≥ 𝜀‖𝒙‖2
2] ≤ 2𝑒−𝑀𝑐0(𝜀), 0 < 𝜀, (2.13) 

for all 𝒙 ∈ ℝ𝑁, where 𝑷 is the induced probability and 𝑐0(𝜀) > 0 is some 

constant depending solely on 𝜀. Let 𝐾 < 𝑁, then for any set of indices 𝛤 such 

that |𝛤| = 𝐾 < 𝑁 and any 0 < 𝛿 < 1, 

1 − 𝛿 ≤
‖𝜙(𝜔)𝒙‖2

‖𝒙‖2
≤ 1 + 𝛿, (2.14) 

for all 𝒙 ∈ ℝ𝑁 with support 𝛤, with probability at least 

1 − 2 (
12

𝛿
)

𝐾

𝑒
−𝑀𝑐0(

𝛿
2

)
. (2.15) 

Proof. As the random matrix 𝜙 is linear, it is only needed to consider the cases 

in which ‖𝒙‖2 = 1. Suppose ΣΓ ⊂ ℝ𝑁 is the set of vectors with a support Γ. Fix 

𝛿 and let Ξ ⊂ ΣΓ be some 𝛿/4 covering set of unit vectors for the unit vectors 

in ΣΓ, that is, for all 𝒙 ∈ ΣΓ where ‖𝒙‖2 = 1, 

min
𝒗∈Ξ

‖𝒙 − 𝒗‖2 ≤
𝛿

4
, (2.16) 
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and ‖𝒗‖2 = 1 for all 𝒗 ∈ Ξ. It had been shown that such a set Ξ exists with a 

size at most (
12

𝛿
)

𝐾

 (Baraniuk et al., 2008). By the application of the union 

bound, each point in the set Ξ obeys Equation (2.13) for 𝜀 = 𝛿/2 with 

probability 

(
12

𝛿
)

𝐾

2𝑒−𝑀𝑐0
𝛿
2

 . (2.17) 

Rearranging the terms in Equation (2.11), 

1 −
𝛿

2
≤

‖𝜙𝒗‖2

‖𝒗‖2
≤ 1 +

𝛿

2
, (2.18) 

with probability exceeds 

1 − 2 (
12

𝛿
)

𝐾

𝑒−𝑀𝑐0
𝛿
2, (2.19) 

for all 𝒗 ∈ Ξ. Let 𝛼 be the smallest number such that ‖𝜙𝒙‖2 ≤ (1 + 𝛼)‖𝒙‖2 for 

all 𝒙 ∈ ΣΓ, it can be shown that 𝛼 ≤ 𝛿. Since Ξ is a 𝛿/4 covering set for the unit 

vectors in ΣΓ, for any unit vector 𝒙 ∈ ΣΓ there are some 𝒗 ∈ Ξ such that 

‖𝒙 − 𝒗‖2 ≤ 𝛿/4. Hence, for all 𝒙 ∈ ΣΓ with ‖𝒙‖2 = 1, let 𝒗𝑥 be some vector 

such that ‖𝒙 − 𝒗𝑥‖2 ≤ 𝛿/4. Then 

‖𝜙𝒙‖2 ≤ ‖𝜙𝒗𝑥‖2 + ‖𝜙(𝒙 − 𝒗𝑥)‖2 ≤ 1 +
𝛿

2
+ (1 + 𝛼)

𝛿

4
. (2.20) 

As 𝛼 is the smallest number such that ‖𝜙𝒙‖2 ≤ (1 + 𝛼)‖𝒙‖2 for all 𝒙 ∈ ΣΓ, it 

must be true that 

𝛼 ≤
𝛿

2
+ (1 + 𝛼)

𝛿

4
, (2.21) 

which implies that 

𝛼 ≤
3𝛿

4 − 𝛿
≤ 𝛿. (2.22) 

Hence, it proves that 
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‖𝜙(𝜔)𝒙‖2

‖𝒙‖2
≤ 1 + 𝛿 (2.23) 

for all 𝒙 ∈ ΣΓ. In order to show the lower inequality, observe that 

‖𝒙‖2 ≥ ‖𝜙𝒗𝑥‖2 − ‖𝜙(𝒙 − 𝒗𝑥)‖2 ≥ 1 −
𝛿

2
− (1 + 𝛿)

𝛿

4
≥ 1 − 𝛿, (2.24) 

and the proof is complete.  

Theorem 2.1. Given 𝑀, 𝑁, and 0 < 𝛿 < 1. Let 𝜙 satisfies Lemma 2.1. Then 

there are some constants 𝑐1, 𝑐2 > 0 depending solely on 𝛿 such that the RIP is 

valid for 𝜙(𝜔) with 𝛿 and any 𝐾 ≤
𝑐1𝑁

𝑙𝑜𝑔(𝑁/𝐾)
 with probability at least 1 − 𝑒𝑐2𝑀. 

Proof. From Lemma 2.1 it has been shown that for any index set Γ of size 𝐾, 

𝜙(𝜔) fails to satisfy the concentration inequality with probability at most 

2 (
12

𝛿
)

𝐾

𝑒
−𝑀𝑐0(

𝛿
2

)
. (2.25) 

Since there are (
𝑁
𝐾

) ≤ (
𝑒𝑁

𝐾
)

𝐾

 such index sets, Equation (2.18) fails to hold with 

probability at most 

2 (
𝑒𝑁

𝐾
)

𝐾

(
12

𝛿
)

𝐾

𝑒
−𝑀𝑐0(

𝛿
2

)
= 2𝑒

−𝑀𝑐0(
𝛿
2

)+𝐾 log(
𝑒𝑁
𝐾

)+𝐾 log(
12
𝛿

)
. (2.26) 

Hence, if 𝐾 ≤
𝑐1𝑀

log
𝑁

𝐾

 for each fixed 𝑐1 > 0, the exponent in Equation (2.26) is less 

than 𝑐2𝑀 provided that 

𝑐2 ≤
𝑐0𝛿

2
− 𝑐1 (1 +

1 + log (
12
𝛿

)

log (
𝑁
𝐾)

) . (2.27) 

Therefore 𝑐1 > 0 can always be chosen sufficiently small to ensure that 𝑐2 > 0. 

Therefore, with probability 1 − 𝑒−𝑀𝑐2, 𝜙(𝜔) will satisfy the concentration 

inequality of Equation (2.18) for each 𝐾-sparse 𝒙. 



25 

 

 Theorem 2.1 states that if some random sensing matrix obeys the 

concentration inequality of Lemma 2.1, it will possess RIP of order 𝐾 with high 

probability. 

 

2.3.3 Random and Deterministic Sensing Matrices 

As it had been mentioned in Section 2.3.1 and subsequently shown in 

Section 2.3.2, randomly generated sensing matrices 𝜙 such as Gaussian sensing 

matrices with normal distribution, binary sensing matrices with Bernoulli 

distribution, or Fourier sensing matrices have a surprisingly higher chance of 

fulfilling the restricting properties imposed by CS. Thus, randomly generated 

sensing matrices 𝜙 have always been the common choices in CS for image 

acquisition and image recovery. However, randomly generated sensing matrices 

are not always hardware-friendly for they are more difficult to be stored and 

implemented in practical cases.  

In the past few years, deterministic sensing matrices were proposed with 

the objectives of designing more hardware-friendly sensing matrices and 

making CS more applicable in practical cases. Some of the common choices of 

deterministic sensing matrices are randomly ordered Hadamard sensing 

matrices, Russian order Hadamard sensing matrices, and origami sensing 

matrices (DeVore, 2007; Yu and Liu, 2019; Zhang et al., 2017; Sun et al., 2017). 

It has been shown that the applications of deterministic sensing matrices have 

successfully reduced the required image acquisition and image recovery times, 

with minimal image quality trade-offs.  

Recently, CPA has been proposed as one of the deterministic sensing 

matrices (Gan et al., 2019). Unlike most other deterministic sensing matrices, 
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CPA has a deterministic yet highly asymmetrical nature. Further, it is easier to 

store and implement CPA sensing matrices because all CPA sensing matrices 

can be simply generated from a seed value. Hence, the storing and 

implementation of CPA is much more convenient, which makes it a more 

suitable choice than the other deterministic sensing matrices for practical 

applications. 

 

2.4 Image Recovery Algorithms of CS 

2.4.1 Conventional Image Recovery Algorithms 

According to linear algebra, because 𝑀 <  𝑁, there are more unknowns 

than the number of equations in Equation (2.2). Hence, for some given 

measurement vector y there will be an infinite number of solutions 𝒙′ subjected 

to 𝒚 =  𝜙𝒙′, and it is impossible for us to find a unique solution to Equation 

(2.2). However, recall that since CS only requires that the image x is sparse in 

some sparsifying basis 𝜑, so it is not needed to consider all of the potential 

solutions 𝒙′ to Equation (2.2). Instead, only the set of sparse solutions Σ𝐾  =

 {𝒙′: ‖𝒙′‖0  ≤  𝐾} is needed to be considered, where ‖𝒙′‖0 is the 𝑙0-norm of x’ 

defined as  

‖𝒙′‖0  =  |𝑠𝑢𝑝𝑝(𝒙′)|  ≤  𝐾 ≪  𝑁. (2.28) 

More generally, the 𝑙𝑝-norm of x’ is defined as  

‖𝒙′‖𝑝  =  ( ∑  |𝑥′𝑛|𝑝

𝑁

𝑛=1

 )

1
𝑝

, 1 ≤  𝑝. (2.29) 

However, in many cases the solution x’ is not exactly sparse. So alternatively, 

it is more desirable when x’ is compressible. This means that 𝒙′ contains only a 



27 

 

small number of 𝐾 <  𝑁 large transform coefficients and the remaining 𝑁 −

 𝐾 transform coefficients are very small or approximately zero. 

Conventionally, Equation (2.2) can be solved by using the 𝑙2-

minimization  

�̂�𝑙2
 =  𝑎𝑟𝑔𝑚𝑖𝑛‖𝒙′‖2  𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝜙𝒙′  =  𝒚. (2.30) 

Equation (2.30) has a closed form solution given by �̂�𝑙2
= (𝜙𝜙𝑇)−1𝜙𝑇𝒚. 

Unfortunately, such solution is almost never sparse. Therefore, alternatively, 𝑙0-

minimization can be used to find a unique and sparse solution to Equation (2.2), 

�̂�𝑙0
 =  𝑎𝑟𝑔𝑚𝑖𝑛‖𝒙′‖0  𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝜙𝒙′  =  𝒚. (2.31) 

However, the problem with this approach is that solving Equation (2.31) is 

extremely computationally difficult due to 𝑙0-norm being discrete and non-

convex (also known as NP-hard). Alternatively, instead of solving Equation 

(2.2) with 𝑙0-norm, the  𝑙0-norm in Equation (2.31) can be replaced with 𝑙1-

norm then find the sparse 𝒙′ with 𝑙1-minimization (also known as basis pursuit) 

(Abo-Zahhad et al., 2015; Baraniuk, 2007; Candès, 2006; Donoho, 2006) 

�̂�𝑙1
 =  𝑎𝑟𝑔𝑚𝑖𝑛‖𝒙′‖1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝜙𝒙′  =  𝒚. (2.32) 

Equation (2.32) can be solved by applying convex optimization method or 

iterative greedy algorithms (Abo-Zahhad et al., 2015; Rani et al., 2018). Candѐs 

and Tao had discovered that if given an potential K-sparse solution 𝒙′ ∈ Σ𝐾, and 

there exists some positive constant 𝐶 > 0 such that there is an upper bound to 

the number of measurements 𝑀 ≤ 𝐶𝐾 𝑙𝑜𝑔(𝑁/𝐾), then the solutions to 

Equation (2.32) will be �̂�𝑙1
 =  𝒙. This means that the recovery of the image  �̂�𝑙1

 

is exact with overwhelming probability as long as the measurement vector 𝒚 is 

noiseless. In addition, in their studies, Donoho and Tanner discovered that the 

number of measurements M for Equation (2.32) can be determined for the exact 
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recovery of any given sparse image 𝒙 ∈  ℝ𝑁  ∩  Σ𝐾 (Donoho and Tanner, 

2005). 

There exists a plethora of conventional CS image recovery algorithms 

that had been proven to be able to successfully recover two-dimensional images 

from the acquired CS measurements (Abo-Zahhad et al., 2015; Candes and 

Romberg, 2005; Eftekhari et al., 2009; Vujović et al., 2014; Meenakshi, 2015; 

Li et al., 2009). 

 

2.4.2 Convolutional Neural Networks (CNN) 

The conventional CS image recovery algorithms in general have an 

iterative nature and require larger time cost for image recovery. In order to find 

an approach for which the image quality can be improved and the time cost for 

image recovery can be decreased, CNN have been proposed as the alternative 

CS image recovery algorithms.  

A typical CNN consists of convolutional layers, pooling layers, and 

fully-connected layers. The convolutional layers map an image to its feature 

maps by applying kernels. Essentially, the kernels move across the image and 

perform element-wise multiplication with the patches of the image that they are 

covering. Then, the entries of the products of the element-wise multiplication 

will be summed and be an entry of the feature maps. Typically, the sizes of the 

kernels are 1 × 1, 3 × 3, 5 × 5, or 7 × 7. The pooling layers down-sample its 

inputs by outputting the maximum value in each of the patch of the inputs and 

discard all the other values with a filter usually of size 2 × 2. The fully-

connected layers take in 1D arrays and map them to another 1D arrays with 

smaller, greater, or the same dimension (Albawi et al., 2017).  
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Typically, a CNN takes images as inputs and return the recovered 

images as outputs. Since the goal of the image recovery process in CS is to 

recover the images from their compressed form, the conventional architecture 

of CNN is required to be modified. For CS image recovery tasks, the CNN first 

needs to take the CS measurements as inputs and produce initial estimates of 

the images before the convolution process. A simple approach is to add a fully-

connected layer before the typical convolution layers. The fully-connected layer 

maps the lower dimension inputs to higher dimension vectors, followed by 

reshaping the higher dimension vectors to 2D arrays.  

In the past, CNN have been successfully applied on plenty of computer 

visual tasks such as object classification, face recognition, and more (Sainath et 

al., 2013; Yamashita et al., 2018; Acharya et al., 2017; Lawrence et al., 1997). 

Unlike in conventional CNN approach where the images are the network inputs 

and the labels are the network outputs, in CNN for CS image recovery the CS 

measurements are the inputs and the recovered images are the outputs. There 

exist several proposed structures of CNN for CS image recovery purposes. 

Compared to the conventional CS image recovery algorithms, many results of 

the studies have shown that CNN are able to improve the image quality with 

significantly low time costs for image recovery compared to the other 

conventional CS image recovery algorithms (Adler et al., 2016; Bo et al., 2017; 

Kulkarni et al., 2016; Lu and Bo, 2019; Metzler et al., 2017; Zhang and Ghanem, 

2018).  
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Introduction 

Figure 3.1 (a) shows a typical single-pixel imaging setup and process while 

Figure 3.1 (b) shows the workflow of the complete CS measurements 

acquisition and image recovery process. In the CS measurements acquisition 

process, a set of sensing patterns is projected onto the target scene via a DMD. 

Then, the single-pixel detector measures the light reflected off the target scene 

and saves the values as CS measurements. After the measurements acquisition 

process, the sensing matrix and CS measurements are used to recover the 

original images with a CS image recovery algorithm. Typically, the CS image 

recovery algorithm solves an 𝑙1 or TV-minimization problem to recover the 

images. 

 This chapter is organized as the following: Section 3.2 describes the 

simulations of single-pixel data acquisition based on CS. Section 3.3 diccusses 

the design of programmable SVR sensing patterns. Section 3.4 explains the 

block-based framework of CS with SVR sensing matrices. Application of 

ReconNet as the CS image recovery algorithm is discussed in Section 3.5. 

Finally, Section 3.6 describes the metrics used to evaluate the performance of 

image recovered.  
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Figure 3.1: (a) Single-pixel imaging setup and process. (b) The general 

workflow of the complete CS measurements acquisition and image 

recovery processes. 

 

3.2 Single-Pixel Data Acquisition Based on CS 

3.2.1 CS Measurements Acquisition Process in the Simulation 

For the numerical experiments, a total of six standard images of size 

512 × 512 (courtesy of the Signal and Image Processing Institute at the 

University of Southern California) are selected in this project for testing.  

In this project, the single-pixel imaging with CS process is simulated on a laptop 

computer with 32 GHz Intel Core-i5-7200U and 4GM RAM. In the simulations, 

the CS measurements are acquired according the following steps as illustrated 

in Figure 3.2. 

i. A sensing matrix is generated, and each row of the sensing matrix is 

reshaped into a set of sensing patterns.  

ii. Each of the sensing pattern are resized as the same size of the testing 

images.  
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iii. The image pixels that are in the 0 positions of the sensing patterns are 

set to zero and the average values of the image pixels are calculated and 

saved as the CS measurements.  

 

 

Figure 3.2: The workflow of the CS measurements acquisition process in 

the simulations. The entries 0 and 1 are represented by white and black 

pixels, respectively. 

 

3.2.2 Choices of Sensing Matrices 

 In this project, three types of sensing matrices are chosen for 

comparison. The first sensing matrix is the randomly generated binary sensing 

matrix with Bernoulli distribution (RBP). RBP contains only the entries 0 and 

1. The entries are abiding by the Bernoulli distribution defined as 

𝑃(𝑛)  =  {
 1 −  𝑝, 𝑛 =  0
 𝑝, 𝑛 =  1

 , (3.1) 

where P is the probability density function, p is the probability, and n is the 

event. In this project p is set as 0.5.  

The second sensing matrix chosen for comparison is the deterministic 

Hadamard sensing matrix. The lowest order Hadamard matrix is defined as 
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𝐻2  =  (
1 1
1 −1

) , 

and the n-th order Hadamard matrix is defined as 

𝐻2𝑛 =  (
𝐻2𝑛−1 𝐻2𝑛−1

𝐻2𝑛−1 −𝐻2𝑛−1
).  (3.2) 

It is worth mentioning that the originally ordered rows Hadamard sensing matrix 

does not satisfy the restricting properties of CS. Hence, the rows of the 

Hadamard sensing matrix are needed to be randomly re-ordered before 

reshaping them into sensing patterns.  

The third sensing matrix chosen for comparison is the chaotic pattern 

array (CPA) sensing matrix. In terms of mathematics, CPA is based a special 

case of the logistic chaotic system defined as 

𝑧𝑘+1  =  4𝑧𝑘 (1 −  𝑧𝑘), 𝑘 =  0, 1, 2, … , (3.3) 

where 𝑧𝑘  ∈  (0, 1) and 𝑧0 is a seed. With a threshold function defined as 

𝑇(𝑧𝑘)  =  {
+1, 0.5 ≤  𝑧𝑘  <  1
−1, 0 <  𝑧𝑘  <  0.5

 , (3.4) 

and its complementary function 

�̅�(𝑧𝑘)  =  1 −  𝑇(𝑧𝑘) , (3.5)

an CPA sensing matrix can be acquired as 

𝜙 =  (

𝑇(𝑧0) ⋯ 𝑇(𝑧𝑁−1)
⋮ ⋱ ⋮

𝑇(𝑧(𝑀−1)×𝑁) ⋯ 𝑇(𝑧(𝑀×𝑁)−1)
) . (3.6) 

Based on Equation (3.3 – 3.6), it can be seen that only a seed value 𝑧0 is needed 

to generate an CPA sensing matrix. Therefore, unlike randomly generated and 

other deterministic sensing matrices for which the entire matrix needs to be 

saved, only the values of 𝑧0 is needed to be saved for the implementation of 

different CPA sensing matrices. In addition, CPA sensing matrices also possess 

a desirable property of being highly asymmetrical even though they are actually 
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deterministic. In their works, Gan et al. had proven that CPA sensing matrices 

fulfill the RIP condition (Gan et al., 2019). Figure 3.3 shows five different CPA 

sensing matrices of size 20 × 50 each generated from different values of seed 

𝑧0 ∈ {0.19, 0.13, 0.59, 0.79 0.99}. It can be seen that for each of the value of 

seed 𝑧0, a completely different CPA sensing matrix can be acquired, and that 

each CPA sensing matrix is highly asymmetrical despite being deterministic. 

Furthermore, the time cost required to generate a CPA sensing matrix is very 

short. This is true because of several properties of CPA. Firstly, the bipolar 

sequences (+1 and −1) that are used to generate a CPA sensing matrix is 

generated by a quadratic iterative equation with a hard threshold equation. 

Hence, complex calculations are not required in the process. Secondly, the 

generation of CPA sensing matrices only require the values of seed 𝑧0 and some 

simple row-by-row arrangements, so its implementations are relatively simpler 

and faster. Such properties make CPA sensing matrices the more desirable 

choices compared to other randomly generated and deterministic sensing 

matrices in single-pixel imaging settings.  In addition, the properties of CPA 

sensing matrices also make them suitable for image encryption and decryption 

with single-pixel imaging.  

 

 

Figure 3.3: Five CPA sensing matrices of size 20×50 generated with 𝒛𝟎= (a) 

0.19 (b) 0.39 (c) 0.59 (d) 0.79 (e) 0.99. The white squares represent the 

entries +1 while the black squares represent the entries -1. 
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 The sensing patterns used in the CS measurements acquisition process 

can be obtained by reshaping each row of the sensing matrix of size 𝑀 × 𝑁 into 

a set of M square patterns of size √𝑁 ×  √𝑁.  

Recently, a design of spatially-variant resolution (SVR) sensing patterns 

was proposed for single-pixel imaging with CS (Phillips et al., 2017; Shin et al., 

2019). Inspired by the animal visual systems, in SVR sensing patterns 

approaches the target scenes under view are divided into higher and lower 

resolution regions. Because the lower resolution regions require a smaller 

number of CS measurements for recovery, most CS measurements that were 

acquired in the image acquisition process are going to be used in the recovery 

of the higher resolution regions. Therefore, the number of CS measurements 

needed to maintain a high image quality in SVR sensing patterns approaches 

are less than that required by the conventional UR sensing patterns approaches. 

The SVR single-pixel imaging approaches are more desirable in situations 

where a loyal pixel-to-pixel image recovery requires a large number of CS 

measurements, is computational resources expensive and not useful for the 

visual tasks. 

 

3.2.3 CS Measurements Acquisition Process for Bipolar Sensing Matrices 

 Because HMP and CPA sensing matrices are bipolar sensing matrices 

(they only contain entries -1 and +1), the CS measurements acquisition process 

is needed to be modified. In the cases of bipolar sensing matrices, the sensing 

matrices are needed to be separated into two sets of complementary sensing 

matrices 𝜙+  =  
1

2
 (𝟏 +  𝜙) and 𝜙− = 𝟏 − 𝜙+. Then, the rows of 𝜙+ and 𝜙− 
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are reshaped into two sets of complementary sensing patterns and alternatively 

projected onto the testing images. Since there are two sets of complementary 

sensing patterns, there will be two sets of measurement vectors 𝒚+ and 𝒚−. The 

actual CS measurements are acquired as 𝒚 =  
1

2
(𝒚+ − 𝒚−). In this case the 

sensing matrix becomes �̂� =
1

2
(𝜙+ − 𝜙−). Hence, Equation (2.2) becomes 

1

2
(𝒚+ − 𝒚−) =

1

2
(𝜙+ − 𝜙−)𝒙. (3.7) 

 

3.3 Design of Programmable SVR Sensing Matrices 

In conventional single-pixel imaging, the sensing patterns used in the 

image acquisition process have an UR grid. In an UR grid, all of the image 

pixels have the same size. In recent years, a different design of sensing patterns 

with SVR grid was proposed (Phillips et al., 2017; Shin et al., 2019; Shin et al., 

2021).  

The SVR sensing patterns were inspired by the animal vision systems. 

In an animal vision system, a vision field is divided into a higher resolution 

region and a lower resolution region. The fovea of an animal eye defines the 

higher resolution region and the peripheral vision defines the lower resolution 

region. Such vision systems are adaptive since the fovea is constantly being 

redirected to the objects of interest. SVR vision systems restrict the information 

needed to be processed by prioritizing the objects of interest with the fovea and 

limiting the information of the rest of the vision field such as the background 

with the peripheral vision. Similarly, in an SVR sensing pattern there is a higher 

resolution region consisting smaller image pixels surrounded by a lower 

resolution region consisting larger image pixels.  
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In the cases of UR sensing matrices, all image pixels of the recovered 

images are equally weighted. Hence, in order to achieve a high-fidelity pixel-

to-pixel image recovery, the required number of CS measurements is typically 

large. However, in many visual tasks a high-fidelity pixel-to-pixel image 

recovery is not always necessary or useful. This is because most of the time, a 

basic recognition of the objects of interests is more important than the 

recognition of the backgrounds or the peripheral regions in a visual task. Since 

the lower resolution regions of the images require a smaller number of CS 

measurements for recovery, SVR sensing matrices are able to lower the number 

of CS measurements and spend most of the acquired CS measurements 

recovering the object of interests. Therefore, SVR sensing matrices are more 

favorable in situations where the number of CS measurements is limited, the 

objects of interest is prioritized, and a high-fidelity pixel-to-pixel image 

recovery is not useful.  

In order to form an SVR sensing matrix 𝜙𝑆𝑉𝑅, a binary transformation 

matrix 𝜏 of size 𝑁 × 𝑁 with only entries 0 and 1 can be designed and applied. 

In each of the j-th column of 𝜏, the entries 1 map one entry of a row of an UR 

sensing matrix to several entries of a row of the SVR sensing matrix. The 

positions of the entries 1 in 𝜏 indicate the positions of an SVR grid which the 

regular sized pixels of the UR sensing pattern will be mapped on. Thus, an SVR 

sensing matrix can be formed via matrix multiplication  

𝜙𝑆𝑉𝑅
𝑇  = 𝜏𝜙𝑈𝑅 

𝑇 , (3.8) 

where 𝜙𝑆𝑉𝑅
𝑇  and 𝜙𝑈𝑅

𝑇  are the transpose of 𝜙𝑆𝑉𝑅 and 𝜙𝑈𝑅, respectively. Each row 

of 𝜙𝑆𝑉𝑅  can be reshaped as an SVR sensing pattern. To avoid potential 

confusions, the differently sized SVR image pixels are referred to as cells. The 
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total number, position, size, and shape of the cells in an SVR sensing pattern is 

configurable and determined by the designs of the binary transformation matrix 

𝜏. Figure 3.4 shows the workflow of creating a set of UR and SVR sensing 

patterns. Figure 3.5 shows examples of an UR CPA sensing pattern and an SVR 

CPA sensing pattern. The SVR sensing pattern shown here was formed by 

mapping the UR sensing pattern onto an SVR grid. The UR sensing pattern is 

made up of 1024 regular sized pixels and the SVR sensing pattern is made up 

of 363 cells. Both patterns are of the size 32 ×  32. 

 

 

Figure 3.4: The workflow of creating a set of (a) UR and (b) SVR sensing 

patterns. The entries 0 and 1 are represented by black and white pixels, 

respectively. 
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Figure 3.5: Examples of an UR CPA sensing pattern and an SVR CPA 

sensing pattern. The SVR sensing pattern shown here was formed by 

mapping the UR sensing pattern onto an SVR grid via the transformation 

matrix 𝝉. The UR sensing pattern is made up of 1024 regular sized pixels 

and the SVR sensing pattern is made up of 363 cells. Both patterns are of 

the same size 32 × 32. 

 

3.4 Block-Based Framework with SVR Sensing Matrices 

Since the recovery of large images can be very computational expensive, 

block-based approach was proposed to CS. In block-based approach, the images 

are divided into smaller image blocks. Each image block is treated as an 

individual image. 

Assume that the image is divided into 𝑩 × 𝑩 image blocks, in terms of 

block-based CS, Equation (2.2) becomes 

𝑦𝑖 = 𝜙𝐵𝑥𝑖 , (3.9) 

where 𝑦𝑖 is the measurement vector of the i-th image block, 𝜙𝐵 is a sensing 

matrix of size 𝑀 × 𝐵2, and 𝑥𝑖 is the i-th image block.  

Figure 3.6 shows the workflow of single-pixel imaging with CS via (a) 

UR and (b) SVR block-based approaches in this project. In the simulations, an 

image is first divided into multiple image blocks. Then, a set of UR or SVR 

sensing patterns are projected onto each image block. The average of the pixel 



40 

 

values of each image block is saved as the CS measurements. Finally, TVAL3 

is used to recover the image blocks from their CS measurements.  

 

 

Figure 3.6: The workflow of single-pixel imaging with CS via (a) UR and 

(b) SVR block-based approaches in this project. 

 

3.5 Application of ReconNet as the CS Image Recovery Algorithm 

In this project, a CNN called ReconNet (Kulkarni et al., 2016) is adapted 

for the proposed SVR block-based CS approach. The network is trained with 

the CIFAR-10 image dataset. Before the network training process, a set of CS 

measurements of the CIFAR-10 dataset (Abouelnaga et al., 2016) is acquired 

via SVR CPA sensing matrices. Then, the CS measurements are used as the 

training and testing sets in the network training process.  

Figure 3.7 shows the network structure of ReconNet. The first layer of 

ReconNet is a fully-connected layer, followed by several convolutional layers. 

All convolutional layers use ReLU after the convolution. The fully-connected 

layer takes block CS measurements 𝑦𝑖 = 𝜙𝐵𝑥𝑖 as inputs and outputs a feature 
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map. The first and fourth convolutional layer use 11 × 11 kernels and produce 

64 feature maps. The second and fifth convolutional layer use 1 × 1 kernels and 

produce 32 feature maps. The third and last convolutional layers use 7 × 7 

kernels and produce one feature map. The feature map produced by the last 

covolutional layer is also the recovered image block �̂�𝑖. Zero padding was used 

in order to maintain the feature map size constant in all layers.  

 

 

Figure 3.7: The network structure of ReconNet (Kulkarni et al., 2016). 

 

In the network training process of this project, the number of epochs is 

set as 5000 and the batch size is set as 128. The mean squared error (MSE) is 

chosen as the loss function and adadelta as the optimizer. Early stopping is used 

with patience set as 100 and validation loss as the loss monitor. All network 

trainings were done on the Universiti Tunku Abdul Rahman research server 

with a Dual Socket Xeon Silver 4112 (Total 8 cores, 16 threads), total 64 GB of 

memory, and a Nvidia Quadro P4000 (GP104GL) graphic card. The operating 

system is Linux Ubuntu 18.04 LTS Server. 

 

3.6 Performance Evaluations 

In order to quantify the image quality of the recovered images, the image 

quality is measured with peak signal-to-noise ratio (PSNR) in dB, root mean 
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square error (RMSE), and structural similarity index measure (SSIM). 

Furthermore, the different image block sizes, SVR sensing matrices, the 

traditional CS image recovery algorithms and CNN are compared and 

determined their efficiency based on the time cost they required for image 

recovery. 

In terms of mathematics, PSNR is defined as  

𝑃𝑆𝑁𝑅 =  20 ∙  log10(𝑀𝐴𝑋𝐼)  −  10 ∙  log10(𝑀𝑆𝐸) (3.10) 

where 𝑀𝐴𝑋𝐼 is the maximum pixel value of the image, and MSE is the mean 

square error defined as 

𝑀𝑆𝐸 =  
1

𝑁
 ∑(𝒙𝑖  −  𝒙′

𝑖)
2 

𝑁

𝑖=1

(3.11) 

where N is the number of image pixels, 𝒙𝑖 and 𝒙′𝑖 are the i-th image pixel of the 

original and recovered image, respectively. RMSE is simply the square root of 

Equation (3.11),  

𝑅𝑀𝑆𝐸 =   √𝑀𝑆𝐸  =  √
1

𝑁
 ∑(𝒙𝑖  −  𝒙′

𝑖)2 

𝑁

𝑖=1

, (3.12) 

and SSIM is defined as 

𝑆𝑆𝐼𝑀 =  
(2 𝜇𝑥 𝜇𝑥′  + 𝐶1)(2 𝜎𝑥𝑥′  + 𝐶2)

(𝜇𝑥
2  +  𝜇𝑥′

2  +  𝐶1)(𝜎𝑥
2  + 𝜎𝑥′

2  + 𝐶2)
, (3.13) 

where 𝜇𝑥 is the mean of 𝑥, 𝜇𝑥′ is the means of 𝑥′, 𝜎𝑥 is the variance of 𝑥, 𝜎𝑥′   

is the variance of 𝑥′, 𝜎𝑥𝑥′  is the covariance of 𝑥 and 𝑥′. 𝐶1  =  (𝑘1 𝐿)2,  𝐶2  =

 (𝑘2 𝐿)2 are the two variables to stabilize the division with weak denominator, 

where L is the dynamic range of the pixel values and 𝑘1  =   0.01,  𝑘2  =  0.03 

by default. Aside from image quality, the time cost for image recovery has also 

been factored in to determine the time efficiency. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Programmable Spatially Variant Resolution (SVR) Single-Pixel 

Imaging 

4.1.1 Evaluation of CPA Sensing Matrices 

As different values of 𝑧0 generate different SVR CPA sensing matrices, 

it is worth to examine the effects of different values of 𝑧0 on the image quality. 

In the numerical experiments, five values 𝑧0 ∈ {0.19, 0.39, 0.59, 0.79, 0.99} 

were used to generate different SVR CPA sensing matrices. Table 4.1 – 4.4 

show the values of PSNR (in dB), RMSE, SSIM, and the time cost for image 

recovery (in seconds) of each individual image recovered via SVR CPA sensing 

matrices generated with 𝑧0 ∈ {0.19, 0.39, 0.59, 0.79, 0.99} from 𝑆𝑅 ∈

{0.5, 0.25, 0.1, 0.04}. Figure 4.1 – 4.4 show the mean values of PSNR (in dB), 

RMSE, SSIM, and time cost for image recovery (in seconds) of image recovered 

via SVR CPA sensing matrices generated with 𝑧0 ∈

{0.19, 0.39, 0.59, 0.79, 0.99} from 𝑆𝑅 ∈ {0.5, 0.25, 0.1, 0.04}, where SR is 

defined as 𝑆𝑅 = 𝑀/𝑁. All images were recovered through total variant 

minimization by augmented Lagrangian and alternating direction algorithms 

(TVAL3) (Li et al., 2009). The codes available on the authors’ website were 

used in this project and all parameters were kept at their default values. 
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Table 4.1: The values of PSNR (in dB) of each individual image recovered 

via SVR CPA sensing matrices generated with 𝒛𝟎 ∈

{𝟎. 𝟏𝟗, 𝟎. 𝟑𝟗, 𝟎. 𝟓𝟗, 𝟎. 𝟕𝟗, 𝟎. 𝟗𝟗} from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. The 

highest value in each setting is in bold.  

Images 𝑧0 

PSNR (dB) 

SR = 0.5 0.25 0.1 0.04 

baboon 

0.19 15.8798 16.0411 16.3944 16.6952 

0.39 16.2450 16.0198 16.5775 15.7225 

0.59 16.4609 16.2603 16.1966 15.4533 

0.79 16.3019 16.5064 17.1577 16.1278 

0.99 16.4004 16.7214 15.2307 16.0004 

Barbara 

0.19 16.6165 16.6197 16.7248 15.5099 

0.39 17.2300 17.1489 17.1071 15.7228 

0.59 17.1845 17.1168 17.0018 15.6508 

0.79 17.1493 17.0860 17.0491 16.2029 

0.99 17.1695 17.0216 16.7595 16.1175 

cat 

0.19 16.0710 16.0981 16.4391 16.4838 

0.39 16.4396 16.4022 16.6342 17.2483 

0.59 16.4557 17.4567 16.7351 17.3195 

0.79 17.5484 17.2274 16.7652 17.4728 

0.99 16.5199 16.2836 16.8680 17.3455 

fruits 

0.19 15.6206 15.4313 15.0414 13.9411 

0.39 15.9243 15.8085 15.5567 14.3976 

0.59 15.9267 15.8130 15.5282 14.4380 

0.79 16.0852 15.7437 15.4632 13.6610 

0.99 16.0942 15.8811 15.2647 14.3030 

Lenna 

0.19 17.3097 17.3927 17.1252 16.2220 

0.39 17.8719 17.8982 18.1877 17.0640 

0.59 17.9832 18.0147 17.9783 16.2966 

0.79 18.1500 18.2047 17.6708 16.7358 

0.99 18.0044 18.1144 18.0806 16.3854 

peppers 

0.19 16.1234 16.0247 15.9437 14.6426 

0.39 16.3409 16.4322 17.2350 14.0624 

0.59 16.3036 16.1318 16.5171 16.1648 
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0.79 18.0241 16.7225 16.0872 15.9762 

0.99 16.3457 16.7115 16.0474 16.0037 

airplane 

0.19 17.5973 17.3666 16.4229 15.8513 

0.39 17.8679 17.9425 18.3390 15.0162 

0.59 17.6889 17.6233 17.7353 15.4903 

0.79 17.8879 18.0681 18.7311 16.6123 

0.99 17.9333 17.7780 17.0706 14.9369 

cameraman 

0.19 17.5280 17.4943 14.1790 14.3927 

0.39 19.7297 17.1167 17.2133 13.9136 

0.59 19.9100 18.8815 14.7577 16.5714 

0.79 19.5632 16.3292 15.9325 15.4482 

0.99 18.5027 17.7246 16.0187 13.1784 

Zelda 

0.19 13.2272 13.3127 14.3337 15.3757 

0.39 12.9585 12.8286 12.5640 12.0770 

0.59 13.1521 12.9372 13.9567 15.1492 

0.79 12.9012 12.9985 12.4059 13.0650 

0.99 12.9674 12.9457 12.8337 12.9483 

Goldhill 

0.19 19.8609 19.8413 19.6447 17.7451 

0.39 19.8472 19.6488 19.6661 16.9829 

0.59 19.8542 20.0305 19.8762 18.1514 

0.79 19.8873 19.9546 19.4622 19.7406 

0.99 19.8007 19.8568 19.4804 17.1019 

Mean 

0.19 16.5835 16.5622 16.2249 15.6859 

0.39 17.0455 16.7246 16.9081 15.2207 

0.59 17.0920 17.0266 16.6283 16.0685 

0.79 17.3499 16.8841 16.6725 16.1043 

0.99 16.9738 16.9039 16.3654 15.4321 
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Table 4.2: The values of RMSE of each individual image recovered via SVR 

CPA sensing matrices generated with 𝒛𝟎 ∈ {𝟎. 𝟏𝟗, 𝟎. 𝟑𝟗, 𝟎. 𝟓𝟗, 𝟎. 𝟕𝟗, 𝟎. 𝟗𝟗} 

from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. The lowest value in each setting is in 

bold. 

Images 𝑧0 
RMSE 

SR = 0.5 0.25 0.1 0.04 

baboon 

0.19 0.1607 0.1577 0.1515 0.1463 

0.39 0.1541 0.1581 0.1483 0.1636 

0.59 0.1503 0.1538 0.1549 0.1688 

0.79 0.1531 0.1495 0.1387 0.1562 

0.99 0.1513 0.1459 0.1732 0.1585 

Barbara 

0.19 0.1476 0.1476 0.1458 0.1677 

0.39 0.1376 0.1389 0.1395 0.1636 

0.59 0.1383 0.1394 0.1412 0.1650 

0.79 0.1388 0.1399 0.1405 0.1548 

0.99 0.1385 0.1409 0.1452 0.1564 

cat 

0.19 0.1572 0.1567 0.1507 0.1499 

0.39 0.1507 0.1513 0.1473 0.1373 

0.59 0.1504 0.1340 0.1456 0.1362 

0.79 0.1326 0.1376 0.1451 0.1338 

0.99 0.1493 0.1534 0.1434 0.1357 

fruits 

0.19 0.1656 0.1692 0.1770 0.2009 

0.39 0.1599 0.1620 0.1668 0.1906 

0.59 0.1598 0.1619 0.1673 0.1897 

0.79 0.1569 0.1632 0.1686 0.2075 

0.99 0.1568 0.1607 0.1725 0.1927 

Lenna 

0.19 0.1363 0.1350 0.1392 0.1545 

0.39 0.1278 0.1274 0.1232 0.1402 

0.59 0.1261 0.1257 0.1262 0.1532 

0.79 0.1237 0.1230 0.1308 0.1456 

0.99 0.1258 0.1242 0.1247 0.1516 

peppers 

0.19 0.1563 0.1580 0.1595 0.1853 

0.39 0.1524 0.1508 0.1375 0.1981 

0.59 0.1530 0.1561 0.1493 0.1555 
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0.79 0.1255 0.1458 0.1569 0.1589 

0.99 0.1523 0.1460 0.1576 0.1584 

airplane 

0.19 0.1319 0.1354 0.1510 0.1612 

0.39 0.1278 0.1267 0.1211 0.1775 

0.59 0.1305 0.1315 0.1298 0.1681 

0.79 0.1275 0.1249 0.1157 0.1477 

0.99 0.1269 0.1292 0.1401 0.1791 

cameraman 

0.19 0.1329 0.1334 0.1955 0.1907 

0.39 0.1032 0.1394 0.1378 0.2015 

0.59 0.1010 0.1137 0.1829 0.1484 

0.79 0.1052 0.1526 0.1597 0.1689 

0.99 0.1188 0.1299 0.1581 0.2193 

Zelda 

0.19 0.2181 0.2160 0.1920 0.1703 

0.39 0.2249 0.2283 0.2354 0.2490 

0.59 0.2200 0.2255 0.2005 0.1748 

0.79 0.2264 0.2239 0.2397 0.2222 

0.99 0.2247 0.2253 0.2282 0.2252 

Goldhill 

0.19 0.1016 0.1018 0.1042 0.1296 

0.39 0.1018 0.1041 0.1039 0.1415 

0.59 0.1017 0.0996 0.1014 0.1237 

0.79 0.1013 0.1005 0.1064 0.1030 

0.99 0.1023 0.1017 0.1062 0.1396 

Mean 

0.19 0.1508 0.1511 0.1566 0.1656 

0.39 0.1440 0.1487 0.1461 0.1763 

0.59 0.1431 0.1441 0.1499 0.1583 

0.79 0.1391 0.1461 0.1502 0.1599 

0.99 0.1447 0.1457 0.1549 0.1717 
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Table 4.3: The values of SSIM of each individual image recovered via SVR 

CPA sensing matrices generated with 𝒛𝟎 ∈ {𝟎. 𝟏𝟗, 𝟎. 𝟑𝟗, 𝟎. 𝟓𝟗, 𝟎. 𝟕𝟗, 𝟎. 𝟗𝟗} 

from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. The highest value in each setting is in 

bold. 

Images 𝑧0 
SSIM 

SR = 0.5 0.25 0.1 0.04 

baboon 

0.19 0.4215 0.4073 0.3663 0.2735 

0.39 0.4402 0.4323 0.3851 0.2851 

0.59 0.4418 0.4306 0.3851 0.2861 

0.79 0.4434 0.4292 0.3917 0.2784 

0.99 0.4401 0.4337 0.3531 0.2869 

Barbara 

0.19 0.4581 0.4478 0.4059 0.2782 

0.39 0.5062 0.4968 0.4562 0.3091 

0.59 0.5059 0.4979 0.4666 0.2964 

0.79 0.5066 0.4999 0.4654 0.2970 

0.99 0.5058 0.4985 0.4572 0.3132 

cat 

0.19 0.4926 0.4730 0.4237 0.3372 

0.39 0.5834 0.5631 0.5047 0.3813 

0.59 0.5873 0.5744 0.5091 0.4036 

0.79 0.5905 0.5727 0.5081 0.3854 

0.99 0.5847 0.5667 0.4954 0.3898 

fruits 

0.19 0.4788 0.4646 0.3995 0.2399 

0.39 0.5047 0.4869 0.4282 0.2819 

0.59 0.5024 0.4823 0.4291 0.2729 

0.79 0.4997 0.4903 0.4294 0.2465 

0.99 0.4998 0.4745 0.4271 0.2640 

Lenna 

0.19 0.5107 0.5062 0.4762 0.3473 

0.39 0.5970 0.5870 0.5632 0.4229 

0.59 0.6002 0.5969 0.5550 0.3982 

0.79 0.6063 0.5981 0.5512 0.4173 

0.99 0.6014 0.5949 0.5656 0.3942 

peppers 

0.19 0.5675 0.5579 0.5022 0.3471 

0.39 0.5713 0.5629 0.5251 0.3519 

0.59 0.5702 0.5585 0.5128 0.3788 
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0.79 0.5794 0.5643 0.5141 0.3969 

0.99 0.5706 0.5650 0.5094 0.3536 

airplane 

0.19 0.5951 0.5756 0.4909 0.3689 

0.39 0.6255 0.5989 0.5246 0.3522 

0.59 0.6275 0.6080 0.5316 0.3811 

0.79 0.6289 0.6132 0.5214 0.3918 

0.99 0.6279 0.6062 0.5281 0.3648 

cameraman 

0.19 0.5610 0.5560 0.4886 0.3681 

0.39 0.6497 0.6274 0.5735 0.4198 

0.59 0.6649 0.6385 0.5506 0.4249 

0.79 0.6528 0.6344 0.5624 0.4244 

0.99 0.6529 0.6349 0.5748 0.4271 

Zelda 

0.19 0.5162 0.5083 0.4732 0.3469 

0.39 0.5548 0.5499 0.5012 0.3362 

0.59 0.5585 0.5480 0.5117 0.3449 

0.79 0.5542 0.5489 0.4990 0.3435 

0.99 0.5555 0.5487 0.5040 0.3596 

Goldhill 

0.19 0.5380 0.5227 0.4728 0.3669 

0.39 0.5391 0.5223 0.4810 0.3584 

0.59 0.5405 0.5294 0.4644 0.3577 

0.79 0.5404 0.5285 0.4682 0.3811 

0.99 0.5406 0.5315 0.4685 0.3450 

Mean 

0.19 0.5139 0.5019 0.4499 0.3274 

0.39 0.5572 0.5427 0.4943 0.3499 

0.59 0.5599 0.5465 0.4916 0.3545 

0.79 0.5602 0.5480 0.4911 0.3562 

0.99 0.5580 0.5454 0.4883 0.3498 
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Table 4.4: Time cost for image recovery (in seconds) of each individual 

image recovered via SVR CPA sensing matrices generated with 𝒛𝟎 ∈

{𝟎. 𝟏𝟗, 𝟎. 𝟑𝟗, 𝟎. 𝟓𝟗, 𝟎. 𝟕𝟗, 𝟎. 𝟗𝟗} from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. The 

lowest time cost in each setting is in bold. 

Images 𝑧0 
Time cost for image recovery (s) 

SR = 0.5 0.25 0.1 0.04 

baboon 

0.19 1.78 1.05 0.58 0.45 

0.39 2.42 1.05 0.75 0.47 

0.59 2.06 1.06 0.69 0.44 

0.79 2.11 1.31 0.64 0.47 

0.99 2.03 1.25 0.33 0.44 

Barbara 

0.19 1.86 0.98 0.64 0.55 

0.39 2.20 1.45 0.73 0.52 

0.59 2.27 1.19 0.75 0.59 

0.79 2.33 1.33 0.80 0.47 

0.99 2.23 1.16 0.72 0.53 

cat 

0.19 1.80 1.19 0.64 0.52 

0.39 2.08 1.42 0.84 0.50 

0.59 2.02 0.95 0.66 0.47 

0.79 2.20 1.30 0.66 0.55 

0.99 2.13 1.38 0.59 0.50 

fruits 

0.19 1.80 1.11 0.69 0.56 

0.39 2.28 1.42 0.72 0.47 

0.59 2.28 1.06 0.83 0.48 

0.79 2.30 1.13 0.78 0.52 

0.99 2.33 1.03 0.73 0.53 

Lenna 

0.19 1.86 0.89 0.58 0.48 

0.39 2.19 1.11 0.75 0.52 

0.59 2.13 1.11 0.78 0.61 

0.79 1.95 1.30 0.63 0.52 

0.99 2.13 1.14 0.97 0.52 

peppers 

0.19 1.83 1.14 0.59 0.56 

0.39 2.11 1.16 0.66 0.55 

0.59 2.06 1.17 0.75 0.53 
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0.79 2.20 1.11 0.63 0.48 

0.99 2.08 1.02 0.67 0.58 

airplane 

0.19 1.73 0.88 0.52 0.44 

0.39 1.81 0.89 0.58 0.38 

0.59 1.66 1.02 0.56 0.38 

0.79 1.80 0.94 0.72 0.36 

0.99 1.89 0.97 0.63 0.45 

cameraman 

0.19 1.86 1.25 0.61 0.48 

0.39 2.11 1.17 0.63 0.39 

0.59 2.00 1.13 0.80 0.50 

0.79 2.19 1.11 0.66 0.45 

0.99 2.00 1.06 0.72 0.52 

Zelda 

0.19 2.28 1.09 0.69 0.45 

0.39 1.86 0.97 0.69 0.53 

0.59 1.88 1.00 0.72 0.44 

0.79 1.73 1.16 0.66 0.55 

0.99 1.97 1.13 0.66 0.50 

Goldhill 

0.19 2.05 1.03 0.61 0.52 

0.39 1.66 1.00 0.67 0.48 

0.59 1.81 0.97 0.64 0.50 

0.79 1.83 1.06 0.63 0.52 

0.99 1.78 0.97 0.72 0.47 

Mean 

0.19 1.88 1.06 0.61 0.50 

0.39 2.07 1.16 0.70 0.48 

0.59 2.02 1.07 0.72 0.49 

0.79 2.06 1.17 0.68 0.49 

0.99 2.06 1.11 0.67 0.50 
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Figure 4.1: The mean values of PSNR (in dB) of image recovered via SVR 

CPA sensing matrices generated with 𝒛𝟎 ∈ {𝟎. 𝟏𝟗, 𝟎. 𝟑𝟗, 𝟎. 𝟓𝟗, 𝟎. 𝟕𝟗, 𝟎. 𝟗𝟗} 

from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 

 

 

Figure 4.2: The mean values of RMSE of image recovered via SVR CPA 

sensing matrices generated with 𝒛𝟎 ∈ {𝟎. 𝟏𝟗, 𝟎. 𝟑𝟗, 𝟎. 𝟓𝟗, 𝟎. 𝟕𝟗, 𝟎. 𝟗𝟗} from 

𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 
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Figure 4.3: The mean values of SSIM of image recovered via SVR CPA 

sensing matrices generated with 𝒛𝟎 ∈ {𝟎. 𝟏𝟗, 𝟎. 𝟑𝟗, 𝟎. 𝟓𝟗, 𝟎. 𝟕𝟗, 𝟎. 𝟗𝟗} from 

𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 

 

 

Figure 4.4: The mean time cost for image recovery (in seconds) of image 

recovered via SVR CPA sensing matrices generated with 𝒛𝟎 ∈

{𝟎. 𝟏𝟗, 𝟎. 𝟑𝟗, 𝟎. 𝟓𝟗, 𝟎. 𝟕𝟗, 𝟎. 𝟗𝟗} from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 
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Figure 4.5: (Starting from left to right) The original image of “cat”, resized 

to 𝟔𝟒 × 𝟔𝟒, and the images recovered via SVR CPA sensing matrices 

generated by 𝒛𝟎 ∈ {𝟎. 𝟏𝟗, 𝟎. 𝟑𝟗, 𝟎. 𝟓𝟗, 𝟎. 𝟕𝟗, 𝟎. 𝟗𝟗} from 𝑺𝑹 = 𝟎. 𝟓. 

 

From the results shown in Table 4.1 – 4.4 and Figure 4.1 – 4.4, it can be 

seen that the mean values of PSNR (in dB), RMSE, SSIM, and time cost for 

image recovery (in seconds) of images recovered via SVR CPA sensing 

matrices generated with 𝑧0 ∈ {0.19, 0.39, 0.59, 0.79, 0.99} from 𝑆𝑅 ∈

{0.5, 0.25, 0.1, 0.04} do not differ drastically for different values of 𝑧0. In 

addition, Figure 4.5 shows that the image details of images recovered via SVR 

CPA sensing matrices generated by 𝑧0 ∈ {0.19, 0.39, 0.59, 0.79, 0.99} from 

𝑆𝑅 = 0.5 do not make noticeable differences for different values of 𝑧0. Hence, 

it is acceptable to select any value of 𝑧0 for the generation of SVR CPA sensing 

matrices. Specifically, this project uses 𝑧0 = 0.19 to generate the SVR CPA 

sensing matrices. 

 

4.1.2  Comparison of Various SVR Sensing Matrices 

In this section, the performance of different SVR sensing matrices were 

compared extensively. The sensing matrices chosen for comparison are SVR 

RBP. HMP, and SVR sensing matrix. Table 4.5 – 4.8 show the values of PSNR 

(in dB), RMSE, SSIM, and time cost for image recovery (in seconds) of each 
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individual image recovered via SVR RBP, HMP, and CPA sensing matrices. 

Figure 4.6 – 4.9 show the mean values of PSNR (in dB), RMSE, SSIM, and 

time cost for image recovery (in seconds) of the images recovered via SVR 

RBP, HMP, and CPA sensing matrices. 

 

Table 4.5: The values of PSNR (in dB) of each individual image recovered 

via SVR RBP, HMP, and CPA sensing matrices. The highest value in each 

setting is in bold. 

Images Sensing matrices 
PSNR (dB) 

SR = 0.5 0.25 0.1 0.04 

baboon 

RBP 15.2765 15.1805 14.8149 13.6834 

HMP 16.4932 16.8487 17.3453 15.5875 

CPA 15.8798 16.0411 16.3944 16.6952 

Barbara 

RBP 16.1633 15.9937 15.4689 15.1489 

HMP 17.5654 16.8602 16.4583 14.9381 

CPA 16.6165 16.6197 16.7248 15.5099 

cat 

RBP 15.6788 15.9398 15.5935 15.2511 

HMP 18.3728 16.8735 17.1940 13.4215 

CPA 16.0710 16.0981 16.4391 16.4838 

fruits 

RBP 14.6076 14.4842 13.2702 12.8509 

HMP 15.5036 15.5314 15.0953 12.4651 

CPA 15.6206 15.4313 15.0414 13.9411 

Lenna 

RBP 16.7298 16.2832 15.9699 14.4754 

HMP 19.2254 18.9017 17.2400 16.4930 

CPA 17.3097 17.3927 17.1252 16.2220 

peppers 

RBP 15.3167 16.9184 15.0797 15.0339 

HMP 16.6354 16.3577 15.8392 16.2259 

CPA 16.1234 16.0247 15.9437 14.6426 

airplane 

RBP 15.7174 15.4976 15.9087 15.4772 

HMP 18.1867 16.8344 17.4982 15.5117 

CPA 17.5973 17.3666 16.4229 15.8513 

cameraman RBP 13.4797 14.0262 11.8637 13.8225 
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HMP 15.5045 14.8719 15.0279 12.2226 

CPA 17.5280 17.4943 14.1790 14.3927 

Zelda 

RBP 11.9627 11.7226 12.3820 13.0845 

HMP 14.2635 13.0302 13.4685 15.1228 

CPA 13.2272 13.3127 14.3337 15.3757 

Goldhill 

RBP 17.3198 17.4608 16.5779 15.7688 

HMP 19.0623 17.6219 17.8692 16.7405 

CPA 19.8609 19.8413 19.6447 17.7451 

Mean 

RBP 15.2252 15.3507 14.6929 14.4597 

HMP 17.0813 16.3731 16.3036 14.8729 

CPA 16.5835 16.5622 16.2249 15.6859 

 

Table 4.6: The values of RMSE of each individual image recovered via SVR 

RBP. HMP, and CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 

The lowest value in each setting is in bold. 

Images Sensing matrices 
RMSE 

SR = 0.5 0.25 0.1 0.04 

baboon 

RBP 0.1723 0.1742 0.1817 0.2069 

HMP 0.1497 0.1437 0.1357 0.1662 

CPA 0.1607 0.1577 0.1515 0.1463 

Barbara 

RBP 0.1555 0.1586 0.1685 0.1748 

HMP 0.1324 0.1435 0.1503 0.1791 

CPA 0.1476 0.1476 0.1458 0.1677 

cat 

RBP 0.1645 0.1596 0.1661 0.1728 

HMP 0.1206 0.1433 0.1381 0.2133 

CPA 0.1572 0.1567 0.1507 0.1499 

fruits 

RBP 0.1860 0.1887 0.2170 0.2277 

HMP 0.1678 0.1673 0.1759 0.2381 

CPA 0.1656 0.1692 0.1770 0.2009 

Lenna 

RBP 0.1457 0.1534 0.1590 0.1889 

HMP 0.1093 0.1135 0.1374 0.1497 

CPA 0.1363 0.1350 0.1392 0.1545 

peppers 
RBP 0.1715 0.1426 0.1762 0.1771 

HMP 0.1473 0.1521 0.1615 0.1544 
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CPA 0.1563 0.1580 0.1595 0.1853 

airplane 

RBP 0.1637 0.1679 0.1602 0.1683 

HMP 0.1232 0.1440 0.1334 0.1677 

CPA 0.1319 0.1354 0.1510 0.1612 

cameraman 

RBP 0.2118 0.1989 0.2552 0.2387 

HMP 0.1678 0.1805 0.1773 0.2012 

CPA 0.1329 0.1334 0.1955 0.1907 

Zelda 

RBP 0.2523 0.2593 0.2404 0.2217 

HMP 0.1936 0.2231 0.2121 0.1753 

CPA 0.2181 0.2160 0.1920 0.1703 

Goldhill 

RBP 0.1361 0.1340 0.1483 0.1628 

HMP 0.1114 0.1315 0.1278 0.1455 

CPA 0.1016 0.1018 0.1042 0.1296 

Mean 

RBP 0.1759 0.1737 0.1872 0.1940 

HMP 0.1423 0.1542 0.1550 0.1791 

CPA 0.1508 0.1511 0.1566 0.1656 

 

Table 4.7: The values of SSIM of each individual image recovered via SVR 

RBP. HMP, and CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 

The highest value in each setting is in bold. 

Images Sensing matrices 
SSIM 

SR = 0.5 0.25 0.1 0.04 

baboon 

RBP 0.2937 0.3016 0.2450 0.2237 

HMP 0.3974 0.4007 0.3531 0.2511 

CPA 0.4215 0.4073 0.3663 0.2735 

Barbara 

RBP 0.3457 0.3197 0.2663 0.2120 

HMP 0.4877 0.4511 0.3865 0.3097 

CPA 0.4581 0.4478 0.4059 0.2782 

cat 

RBP 0.3603 0.3461 0.3310 0.2664 

HMP 0.4491 0.4649 0.3766 0.2457 

CPA 0.4926 0.4730 0.4237 0.3372 

fruits 

RBP 0.3339 0.3171 0.2849 0.1744 

HMP 0.4646 0.4565 0.3777 0.2165 

CPA 0.4788 0.4646 0.3995 0.2399 
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Lenna 

RBP 0.3919 0.3379 0.3143 0.2444 

HMP 0.5590 0.5330 0.4507 0.3702 

CPA 0.5107 0.5062 0.4762 0.3473 

peppers 

RBP 0.4439 0.4285 0.3705 0.3166 

HMP 0.5831 0.5608 0.4979 0.3915 

CPA 0.5675 0.5579 0.5022 0.3471 

airplane 

RBP 0.4581 0.4471 0.4094 0.3762 

HMP 0.5713 0.5271 0.4728 0.3543 

CPA 0.5951 0.5756 0.4909 0.3689 

cameraman 

RBP 0.4234 0.4126 0.4113 0.3836 

HMP 0.5510 0.5223 0.4391 0.3374 

CPA 0.5610 0.5560 0.4886 0.3681 

Zelda 

RBP 0.4235 0.4037 0.3466 0.2773 

HMP 0.5917 0.5533 0.4958 0.3767 

CPA 0.5162 0.5083 0.4732 0.3469 

Goldhill 

RBP 0.3174 0.2959 0.2523 0.2131 

HMP 0.4592 0.4149 0.3788 0.2864 

CPA 0.5380 0.5227 0.4728 0.3669 

Mean 

RBP 0.3792 0.3610 0.3232 0.2688 

HMP 0.5114 0.4885 0.4229 0.3140 

CPA 0.5139 0.5019 0.4499 0.3274 

 

Table 4.8: The time cost for image recovery (in seconds) of each individual 

image recovered via SVR RBP. HMP, and CPA sensing matrices from 

𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}.. The lowest time cost in each setting is in 

bold. 

Images Sensing matrices 
Time cost for image recovery (s) 

SR = 0.5 0.25 0.1 0.04 

baboon 

RBP 1.55 0.92 0.55 0.30 

HMP 1.47 0.69 0.28 0.69 

CPA 1.78 1.05 0.58 0.45 

Barbara 
RBP 1.63 1.03 0.61 0.41 

HMP 0.72 1.00 0.69 0.39 
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CPA 1.86 0.98 0.64 0.55 

cat 

RBP 1.89 1.30 0.78 0.50 

HMP 0.63 0.91 0.53 0.78 

CPA 1.80 1.19 0.64 0.52 

fruits 

RBP 2.41 1.36 0.91 0.47 

HMP 1.67 1.03 0.78 0.55 

CPA 1.80 1.11 0.69 0.56 

Lenna 

RBP 1.84 0.94 0.66 0.36 

HMP 0.64 0.41 0.81 0.48 

CPA 1.86 0.89 0.58 0.48 

peppers 

RBP 1.95 1.09 0.61 0.47 

HMP 1.92 0.36 0.59 0.59 

CPA 1.83 1.14 0.59 0.56 

airplane 

RBP 1.48 0.94 0.45 0.28 

HMP 0.69 0.92 0.56 0.69 

CPA 1.73 0.88 0.52 0.44 

cameraman 

RBP 2.06 1.20 0.72 0.41 

HMP 1.64 1.02 0.77 0.53 

CPA 1.86 1.25 0.61 0.48 

Zelda 

RBP 1.95 1.20 0.66 0.38 

HMP 0.73 0.86 0.89 0.66 

CPA 2.28 1.09 0.69 0.45 

Goldhill 

RBP 2.03 1.09 0.64 0.39 

HMP 1.41 1.23 0.77 0.59 

CPA 2.05 1.03 0.61 0.52 

Mean 

RBP 1.88 1.11 0.66 0.40 

HMP 1.15 0.84 0.67 0.60 

CPA 1.88 1.06 0.61 0.50 
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Figure 4.6: The mean values of PSNR (in dB) of images recovered via SVR 

RBP, HMP, and CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 

 

 

Figure 4.7: The mean values of RMSE of images recovered via SVR RBP, 

HMP, and CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 
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Figure 4.8: The mean values of SSIM of images recovered via SVR RBP, 

HMP, and CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 

 

 

Figure 4.9: The mean time cost for image recovery (in seconds) of images 

recovered via SVR RBP, HMP, and CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓,

𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 
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Figure 4.10: (First row) The original images of size 𝟔𝟒 × 𝟔𝟒. (Second row) 

Images recovered via SVR RBP sensing matrix from SR = 0.5 with their 

respective SSIM. (Third row) Images recovered via SVR HMP sensing 

matrix from SR = 0.5 with their respective SSIM. (Fourth row) Images 

recovered via SVR CPA sensing matrix from SR = 0.5 with their respective 

SSIM. 

 

According to the results shown in Table 4.5 – 4.8 and Figure 4.6 – 4.9, 

the values of the mean PSNR of images recovered via SVR CPA and HMP 

sensing matrices are comparable and higher than SVR RBP sensing matrices 

for most of the values of 𝑆𝑅 tested. The values of the mean RMSE of images 

recovered via SVR CPA and HMP sensing matrices are comparable and lower 

than SVR RBP sensing matrices for most of the values of 𝑆𝑅 tested. The mean 
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SSIM of images recovered via SVR CPA is in general slightly higher than that 

of images recovered via SVR HMP sensing matrices and significantly higher 

than that of images recovered via SVR RBP sensing matrices for all values of 

𝑆𝑅 tested. In addition, the mean times cost for image recovery of images 

recovered via SVR HMP sensing matrices is in general greatly lower than that 

of images recovered via SVR RBP and CPA sensing matrices for 𝑆𝑅 =

0.5, 0.25, and 0.1. 

Although the values of the mean of PSNR, RMSE, and SSIM indicate 

that SVR CPA and HMP sensing matrices give a comparable image quality, 

Figure 4.10 shows that visually the image details in the fovea of images 

recovered via SVR CPA sensing matrices are much clearer than that of images 

recovered via SVR HMP sensing matrices. Therefore, for the trade-off of time 

cost for image recovery, CPA is more suitable for SVR approach than RBP and 

HMP. 

 

4.1.3 Comparison of UR and SVR CPA Sensing Matrices 

To begin with, the image quality of the images recovered via UR and 

SVR sensing matrices are compared extensively. For this experiment, all of the 

testing images were resized to 64 × 64 to accommodate the limited 

computational resources. Figure 4.11 shows the workflow of single-pixel 

imaging with CS via UR and SVR approaches in this project. Figure 4.12 shows 

a demonstration of how the fovea can be programmed to prioritize different 

regions of the images. For the sake of convenience, this project makes use of 

the built-in function imtranslate to swift the positions of the fovea in the images. 

Table 4.9 – 4.12 show the values of PSNR (in dB), RMSE, SSIM, and time cost 
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for image recovery (in seconds) for images recovered via UR and SVR CPA 

sensing matrices from 𝑆𝑅 ∈ {0.5, 0.25, 0.1, 0.04}. Figure 4.13 – 4.16 show the 

mean values of PSNR (in dB), RMSE, SSIM, and time cost for image recovery 

(in seconds) for images recovered via SVR CPA sensing matrices from 𝑆𝑅 ∈

{0.5, 0.25, 0.1, 0.04}.  

 

 

Figure 4.11: Workflow of single-pixel imaging with CS via (a) UR and (b) 

SVR approaches in this project. 
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Figure 4.12: (From left to right) A demonstration of programming the 

fovea to prioritize different regions of “cat”. Notice that except for the 

fovea, the rest of the regions of the image is in low-resolution. 

 

Table 4.9: The values of PSNR (in dB) of each individual image recovered 

via UR and SVR CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 

The highest value in each setting are in bold. 

Images Resolution 
PSNR (dB) 

SR = 0.5 0.25 0.1 0.04 

baboon 
UR 20.3870 17.9723 15.1414 15.2254 

SVR 15.8798 16.0411 16.3944 16.6952 

Barbara 
UR 20.7637 18.5377 14.9195 15.0081 

SVR 16.6165 16.6197 16.7248 15.5099 

cat 
UR 21.3825 20.2748 17.2828 16.4901 

SVR 16.0710 16.0981 16.4391 16.4838 

fruits 
UR 17.9164 16.2035 13.2548 10.9012 

SVR 15.6206 15.4313 15.0414 13.9411 

Lenna 
UR 23.5226 21.3353 18.3045 16.2273 

SVR 17.3097 17.3927 17.1252 16.2220 

peppers 
UR 22.5987 21.1266 17.6074 15.3072 

SVR 16.1234 16.0247 15.9437 14.6426 

airplane 
UR 25.9761 21.6107 12.7297 16.0656 

SVR 17.5973 17.3666 16.4229 15.8513 

cameraman 
UR 28.9251 22.5000 16.8575 13.2955 

SVR 17.5280 17.4943 14.1790 14.3927 

Zelda 
UR 18.6116 15.8081 18.2846 16.4490 

SVR 13.2272 13.3127 14.3337 15.3757 

Goldhill UR 24.6363 21.6251 18.6856 17.1611 
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SVR 19.8609 19.8413 19.6447 17.7451 

Mean 
UR 22.4720 19.6994 16.3068 15.2130 

SVR 16.5835 16.5622 16.2249 15.6859 

 

Table 4.10: The values of RMSE of each individual image recovered via UR 

and SVR CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒} The 

lowest value in each setting is in bold. 

Images Resolution 
RMSE 

SR = 0.5 0.25 0.1 0.04 

baboon 
UR 0.0956 0.1263 0.1750 0.1733 

SVR 0.1607 0.1577 0.1515 0.1463 

Barbara 
UR 0.0916 0.1183 0.1795 0.1777 

SVR 0.1476 0.1476 0.1458 0.1677 

cat 
UR 0.0853 0.0961 0.1367 0.1498 

SVR 0.1572 0.1567 0.1507 0.1499 

fruits 
UR 0.1271 0.1548 0.2174 0.2851 

SVR 0.1656 0.1692 0.1770 0.2009 

Lenna 
UR 0.0667 0.0858 0.1216 0.1544 

SVR 0.1363 0.1350 0.1392 0.1545 

peppers 
UR 0.0741 0.0878 0.1317 0.1716 

SVR 0.1563 0.1580 0.1595 0.1853 

airplane 
UR 0.0503 0.0831 0.2309 0.1573 

SVR 0.1319 0.1354 0.1510 0.1612 

cameraman 
UR 0.0358 0.0750 0.1436 0.2164 

SVR 0.1329 0.1334 0.1955 0.1907 

Zelda 
UR 0.1173 0.1620 0.1218 0.1505 

SVR 0.2181 0.2160 0.1920 0.1703 

Goldhill 
UR 0.0586 0.0829 0.1163 0.1387 

SVR 0.1016 0.1018 0.1042 0.1296 

Mean 
UR 0.0802 0.1072 0.1575 0.1775 

SVR 0.1508 0.1511 0.1566 0.1656 
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Table 4.11: The values of SSIM of each individual image recovered via UR 

and SVR CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. The 

highest value in each setting are in bold. 

Images Resolution 
SSIM 

SR = 0.5 0.25 0.1 0.04 

baboon 
UR 0.6312 0.4327 0.2553 0.1836 

SVR 0.4215 0.4073 0.3663 0.2735 

Barbara 
UR 0.7701 0.6045 0.2980 0.2373 

SVR 0.4581 0.4478 0.4059 0.2782 

cat 
UR 0.7306 0.5629 0.3801 0.2655 

SVR 0.4926 0.4730 0.4237 0.3372 

fruits 
UR 0.7665 0.5716 0.3096 0.1610 

SVR 0.4788 0.4646 0.3995 0.2399 

Lenna 
UR 0.8492 0.5975 0.4584 0.2700 

SVR 0.5107 0.5062 0.4762 0.3473 

peppers 
UR 0.8630 0.7097 0.4677 0.2639 

SVR 0.5675 0.5579 0.5022 0.3471 

airplane 
UR 0.8307 0.6553 0.4153 0.3312 

SVR 0.5951 0.5756 0.4909 0.3689 

cameraman 
UR 0.8705 0.6879 0.4344 0.3532 

SVR 0.5610 0.5560 0.4886 0.3681 

Zelda 
UR 0.7998 0.6579 0.4722 0.2771 

SVR 0.5162 0.5083 0.4732 0.3469 

Goldhill 
UR 0.7665 0.5881 0.3974 0.2624 

SVR 0.5380 0.5227 0.4728 0.3669 

Mean 
UR 0.7878 0.6068 0.3888 0.2605 

SVR 0.5139 0.5019 0.4499 0.3274 
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Table 4.12: The time cost for image recovery of each individual image 

recovered via UR and SVR CPA sensing matrices from 𝑺𝑹 ∈

{𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. The lowest time cost in each setting is in bold. 

Images Resolution 
Time cost for image recovery (s) 

SR = 0.5 0.25 0.1 0.04 

baboon 
UR 2.20 1.33 0.80 0.70 

SVR 1.78 1.05 0.58 0.45 

Barbara 
UR 2.05 1.19 0.75 0.48 

SVR 1.86 0.98 0.64 0.55 

cat 
UR 1.97 1.23 0.73 0.63 

SVR 1.80 1.19 0.64 0.52 

fruits 
UR 2.17 1.34 0.97 0.63 

SVR 1.80 1.11 0.69 0.56 

Lenna 
UR 2.08 1.59 0.83 0.66 

SVR 1.86 0.89 0.58 0.48 

peppers 
UR 1.95 1.31 1.03 0.56 

SVR 1.83 1.14 0.59 0.56 

airplane 
UR 2.48 1.47 0.86 0.56 

SVR 1.73 0.88 0.52 0.44 

cameraman 
UR 2.06 1.30 1.05 0.63 

SVR 1.86 1.25 0.61 0.48 

Zelda 
UR 2.09 1.31 0.88 0.66 

SVR 2.28 1.09 0.69 0.45 

Goldhill 
UR 2.02 1.27 0.78 0.64 

SVR 2.05 1.03 0.61 0.52 

Mean 
UR 2.11 1.33 0.87 0.61 

SVR 1.88 1.06 0.61 0.50 
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Figure 4.13: The mean values of PSNR (in dB) of images recovered via UR 

and SVR CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 

 

 

Figure 4.14: The mean values of RMSE of images recovered via UR and 

SVR CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 
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Figure 4.15: The mean values of SSIM of images recovered via UR and 

SVR CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 

 

 

Figure 4.16: The mean time cost for image recovery (in seconds) of images 

recovered via UR and SVR CPA sensing matrices from 𝑺𝑹 ∈

{𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}. 
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Figure 4.17: (First row) The original images of size 𝟔𝟒 × 𝟔𝟒. (Second row) 

Images recovered via UR CPA sensing matrix from SR = 0.5 with their 

SSIM. (Third row) Images recovered via SVR CPA sensing matrix from 

SR = 0.5 with their respective values of SSIM. 
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Figure 4.18: “baboon” and “Barbara” recovered via UR and SVR CPA 

sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟓, 𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒}, shown with their 

respective values of SSIM. 

 

According to the results shown in Table 4.9 – 4.12 and Figure 4.13 – 

4.16, it can be seen that in general for images recovered via SVR CPA sensing 

matrices, the values of mean PSNR are higher for 𝑆𝑅 = 0.04, the values of 

mean RMSE are lower for 𝑆𝑅 = 0.04, and the values of mean SSIM are higher 

for 𝑆𝑅 = 0.1 and 0.04. In addition, in general the time cost needed for image 

recovery of images recovered via SVR CPA sensing matrices are lower than 

that of images recovered via UR CPA sensing matrices throughout the range of 

𝑆𝑅 tested in the numerical experiments.  
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Figure 4.17 shows the original images resized down to 64 × 64, the 

images recovered via UR CPA sensing matrix from SR = 0.5 with their 

respective values of SSIM, and the images recovered via SVR CPA sensing 

matrix from SR = 0.5 with their respective values of SSIM. It shows that for the 

same SR, even though the values of SSIM of images recovered via UR CPA 

sensing matrices are higher than that of images recovered via SVR CPA sensing 

matrices, the SR required is high and not desirable for practical cases. In 

addition, Figure 4.18 shows “baboon” and “Barbara” recovered via UR and 

SVR CPA sensing matrices from 𝑆𝑅 ∈ {0.5, 0.25, 0.1, 0.04}, with their 

respective values of SSIM. It shows that as the SR gets lower, the quality of 

image recovered via UR CPA sensing matrices degrades much faster and more 

than the quality of image recovered via SVR CPA sensing matrices. 

The results indicate that for lower values of 𝑆𝑅, SVR CPA sensing 

matrices are able to improve the image quality. Therefore, SVR CPA sensing 

matrices are more suitable than UR CPA sensing matrices in situations where 

the numbers of measurements are small. Moreover, SVR CPA sensing matrices 

are also able to improve the time efficiency. Hence, SVR CPA sensing matrices 

are more favorable in practical cases since the time cost needed for image 

recovery is lower. 

 

4.2 Block-Based SVR Single-Pixel Imaging with CS 

4.2.1 Analysis on The Effects of Image Block Size 

Intuitively, larger image block sizes require longer image processing time but 

there are fewer image blocks to be processed. On the other hand, smaller image 
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block sizes require shorter image processing time but there are more image 

blocks to be processed. Hence it is worthwhile to examine the influences of the 

size of image blocks has on the image quality of the recovered images. 

Naturally, the objective is to find an image block size that gives a higher image 

quality and requires less time cost for image recovery. For the numerical 

experiments, images were divided into several image block sizes 𝐵 ∈  {64, 32,

16}. Same as in Section 4.1, the image blocks were recovered via TVAL3. Table 

4.13 – 4.16 show the mean PSNR (in dB), RMSE, SSIM, and time cost for 

image recovery (in seconds) of the images formed from the image blocks with 

image block sizes 𝐵 ∈  {64, 32, 16} recovered via SVR CPA sensing 

matrices. Figure 4.19 – 4.22 show the values of mean PSNR, RMSE, SSIM, and 

time cost for image recovery (in seconds) of the images with image block size 

𝐵 ∈  {64, 32, 16} recovered via SVR CPA sensing matrices. Figure 4.23 

shows the ground truth of the testing images "baboon", "Barbara", "cat", 

"fruits", "Lena", "peppers”, and the images formed from the recovered image 

blocks of size 16 × 16, 32 × 32, and 64 × 64.  
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Table 4.13: The values of PSNR (in dB) of each individual image with image 

block size 𝑩 ∈  {𝟔𝟒, 𝟑𝟐, 𝟏𝟔} recovered via SVR CPA sensing matrices 

from 𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, with and without applying BM3D. The 

highest value in each setting is in bold. 

Images B 

PSNR (dB) 

SR = 0.25 0.1 0.04 0.01 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

baboon 

64 18.2932 18.3568 20.6034 20.5720 18.1854 18.2502 18.1620 18.2269 

32 19.5647 19.1810 20.2633 20.1073 18.7481 18.8346 18.0761 18.2049 

16 18.8960 18.9547 17.7074 17.7349 19.3862 19.4357 13.7662 13.8424 

Barbara 

64 22.3329 22.4072 22.5115 22.6380 20.9105 21.0210 17.3444 17.4102 

32 15.7049 15.6334 16.9564 16.9383 21.1707 21.4387 18.1065 18.2605 

16 22.1686 22.3509 21.9790 22.2458 21.2242 21.6538 13.0603 13.1149 

cat 

64 19.0830 19.1376 19.1806 19.2432 21.3312 21.4770 19.4626 19.5755 

32 24.7117 24.4886 19.8213 19.7884 21.0090 21.1093 19.2642 19.4370 

16 19.5150 19.5977 22.8847 23.0284 21.9585 22.2526 12.1828 12.2039 

fruits 

64 23.6031 23.9278 23.0660 23.3430 20.8091 21.0138 15.2255 15.2739 

32 24.8748 24.9569 23.0326 23.2481 13.5098 13.4948 15.2710 15.3585 

16 23.1318 23.4847 22.8203 23.1868 15.3606 15.4073 10.0039 10.0196 

Lenna 

64 24.0907 24.4325 24.5612 24.9359 23.5503 23.8604 20.1212 20.2930 

32 25.0091 25.4457 23.5334 23.7916 23.0167 23.3666 20.0128 20.2447 

16 23.7610 24.2089 26.2523 26.9587 23.4572 24.1270 10.3892 10.4001 

peppers 

64 23.4226 23.6607 21.7691 21.9414 22.8360 23.1352 19.4874 19.6501 

32 22.4378 22.6201 22.0704 22.3131 24.0443 24.5079 19.1013 19.3142 

16 23.3282 23.6956 24.2038 24.7105 22.0382 22.5707 9.4925 9.5000 

airplane 

64 22.7929 23.0479 24.7174 25.0069 21.4798 21.6010 15.2340 15.2624 

32 21.0784 21.2475 24.3869 24.6355 21.8945 22.0825 12.1560 12.1749 

16 22.1018 22.3923 22.4417 22.7423 22.5449 22.9411 8.5876 8.5981 

cameraman 

64 22.7777 22.9708 22.1233 22.3349 21.3581 21.5975 17.2186 17.3436 

32 23.6710 23.8155 22.4618 22.6705 20.2102 20.3751 16.5566 16.6426 

16 22.5082 22.7939 22.1487 22.4109 20.0316 20.2916 10.8002 10.8098 

Zelda 
64 15.7277 15.7677 15.7782 15.8170 16.0613 16.1144 15.5395 15.6069 

32 15.7000 15.7433 15.4379 15.4819 15.7146 15.7761 17.9931 18.1382 
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16 16.4336 16.5067 16.0100 16.0869 15.0869 15.1864 16.2196 16.3247 

Goldhill 

64 24.5843 24.6350 24.2822 24.3547 24.0841 24.2317 17.1520 17.1720 

32 25.0871 25.0962 24.6382 24.7779 24.9298 25.1073 20.4776 20.6218 

16 24.8331 25.0245 24.6934 24.9229 24.0491 24.5184 12.3862 12.4118 

Mean 

64 21.6708 21.8344 21.8593 22.0187 21.0606 21.2302 17.4947 17.5815 

32 21.7839 21.8228 21.2602 21.3753 20.4248 20.6093 17.7015 17.8397 

16 21.6677 21.9010 22.1141 22.4028 20.5137 20.8385 11.6889 11.7225 

 

 

Table 4.14: The values of RMSE of each individual image with image block 

size 𝑩 ∈  {𝟔𝟒, 𝟑𝟐, 𝟏𝟔} recovered via SVR CPA sensing matrices from 

𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, with and without applying BM3D. The 

lowest value in each setting is in bold. 

Images B 

RMSE 

SR = 0.25 0.1 0.04 0.01 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

baboon 

64 0.1217 0.1208 0.0933 0.0936 0.1232 0.1223 0.1236 0.1226 

32 0.1051 0.1099 0.0970 0.0988 0.1155 0.1144 0.1248 0.1230 

16 0.1136 0.1128 0.1302 0.1298 0.1073 0.1067 0.2050 0.2032 

Barbara 

64 0.0764 0.0758 0.0749 0.0738 0.0900 0.0889 0.1358 0.1347 

32 0.1640 0.1653 0.1420 0.1423 0.0874 0.0847 0.1244 0.1222 

16 0.0779 0.0763 0.0796 0.0772 0.0869 0.0827 0.2223 0.2209 

cat 

64 0.1111 0.1104 0.1143 0.1091 0.0858 0.0844 0.1064 0.1050 

32 0.0581 0.0596 0.1021 0.1025 0.0890 0.0880 0.1088 0.1067 

16 0.1057 0.1047 0.0717 0.0706 0.0798 0.0772 0.2460 0.2454 

fruits 

64 0.0660 0.0636 0.0703 0.0681 0.0911 0.0890 0.1733 0.1723 

32 0.0571 0.0565 0.0705 0.0688 0.2111 0.2115 0.1724 0.1706 

16 0.0697 0.0670 0.0723 0.0693 0.1706 0.1697 0.3161 0.3155 

Lenna 

64 0.0624 0.0600 0.0591 0.0567 0.0664 0.0641 0.0986 0.0967 

32 0.0562 0.0534 0.0666 0.0646 0.0707 0.0679 0.0999 0.0972 

16 0.0649 0.0616 0.0487 0.0449 0.0672 0.0622 0.3024 0.3020 

peppers 64 0.0674 0.0656 0.0816 0.0800 0.0721 0.0697 0.1061 0.1041 
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32 0.0755 0.0740 0.0788 0.0766 0.0628 0.0595 0.1109 0.1082 

16 0.0682 0.0653 0.0616 0.0581 0.0791 0.0744 0.3353 0.3350 

airplane 

64 0.0725 0.0704 0.0581 0.0562 0.0843 0.0832 0.1731 0.1725 

32 0.0883 0.0866 0.0603 0.0586 0.0804 0.0787 0.2467 0.2462 

16 0.0785 0.0759 0.0755 0.0729 0.0746 0.0713 0.3721 0.3716 

cameraman 

64 0.0726 0.0710 0.0783 0.0764 0.0855 0.0832 0.1377 0.1358 

32 0.0655 0.0645 0.0753 0.0735 0.0976 0.0958 0.1487 0.1472 

16 0.0749 0.0725 0.0781 0.0758 0.0996 0.0967 0.2884 0.2881 

Zelda 

64 0.1635 0.1628 0.1626 0.1619 0.1574 0.1564 0.1671 0.1658 

32 0.1641 0.1632 0.1691 0.1682 0.1638 0.1626 0.1260 0.1239 

16 0.1508 0.1495 0.1583 0.1569 0.1761 0.1741 0.1545 0.1527 

Goldhill 

64 0.0590 0.0586 0.0611 0.0606 0.0625 0.0614 0.1388 0.1385 

32 0.0557 0.0556 0.0586 0.0577 0.0567 0.0555 0.0946 0.0931 

16 0.0573 0.0561 0.0583 0.0567 0.0627 0.0594 0.2403 0.2396 

Mean 

64 0.0873 0.0859 0.0854 0.0836 0.0918 0.0903 0.1360 0.1348 

32 0.0890 0.0889 0.0920 0.0912 0.1035 0.1019 0.1357 0.1338 

16 0.0861 0.0842 0.0834 0.0812 0.1004 0.0974 0.2682 0.2674 

 

Table 4.15: The values of SSIM of each individual image with image block 

size 𝑩 ∈  {𝟔𝟒, 𝟑𝟐, 𝟏𝟔} recovered via SVR CPA sensing matrices from 

𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, with and without applying BM3D. The 

highest value in each setting is in bold.  

Images B 

SSIM 

SR = 0.25 0.1 0.04 0.01 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

baboon 

64 0.5231 0.4737 0.4693 0.4225 0.3696 0.3549 0.2534 0.2537 

32 0.5405 0.4272 0.4526 0.3874 0.3585 0.3403 0.2500 0.2558 

16 0.5157 0.4670 0.4605 0.4223 0.3470 0.3286 0.1931 0.1977 

Barbara 

64 0.6460 0.6342 0.6292 0.6287 0.5703 0.5871 0.4261 0.4457 

32 0.6363 0.5931 0.6052 0.5911 0.5584 0.5850 0.3985 0.4268 

16 0.6242 0.6301 0.5955 0.6170 0.5107 0.5536 0.2851 0.3034 

cat 
64 0.6996 0.6811 0.6691 0.6625 0.5983 0.6123 0.4636 0.4831 

32 0.7340 0.6918 0.6577 0.6371 0.5860 0.5954 0.4639 0.4899 
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16 0.6951 0.6835 0.6706 0.6656 0.5832 0.6004 0.3766 0.3972 

fruits 

64 0.7557 0.7426 0.7224 0.7168 0.6019 0.6247 0.3888 0.4122 

32 0.7981 0.7734 0.7150 0.7142 0.5195 0.5259 0.3649 0.3942 

16 0.7365 0.7401 0.7062 0.7179 0.5245 0.5481 0.2521 0.2669 

Lenna 

64 0.7974 0.7978 0.7814 0.7881 0.7199 0.7468 0.5454 0.5764 

32 0.8157 0.8166 0.7883 0.7955 0.7067 0.7377 0.5435 0.5829 

16 0.7653 0.7876 0.7665 0.7905 0.6623 0.7106 0.3630 0.3787 

peppers 

64 0.7936 0.7950 0.7758 0.7834 0.7108 0.7419 0.5214 0.5538 

32 0.8022 0.8046 0.7683 0.7860 0.6990 0.7335 0.5120 0.5503 

16 0.7609 0.7880 0.7431 0.7788 0.6368 0.6924 0.3240 0.3397 

airplane 

64 0.8158 0.8138 0.7915 0.7953 0.7095 0.7305 0.5636 0.5849 

32 0.8299 0.8282 0.7895 0.7936 0.7009 0.7254 0.5385 0.5624 

16 0.7942 0.8089 0.7741 0.7940 0.6929 0.7236 0.4161 0.4408 

cameraman 

64 0.7398 0.7295 0.7225 0.7216 0.6393 0.6659 0.4395 0.4696 

32 0.7804 0.7559 0.7280 0.7230 0.6500 0.6615 0.4954 0.5178 

16 0.7347 0.7269 0.7262 0.7227 0.6242 0.6389 0.3911 0.4080 

Zelda 

64 0.7976 0.8086 0.7903 0.8028 0.7349 0.7654 0.5733 0.6087 

32 0.8045 0.8191 0.7687 0.7924 0.7120 0.7541 0.5717 0.6179 

16 0.7567 0.8056 0.7276 0.7875 0.6187 0.7025 0.4308 0.4634 

Goldhill 

64 0.6960 0.6704 0.6711 0.6540 0.5908 0.5955 0.4498 0.4577 

32 0.7298 0.6931 0.6730 0.6582 0.5849 0.5891 0.4425 0.4614 

16 0.6845 0.6721 0.6572 0.6557 0.5618 0.5846 0.3301 0.3465 

Mean 

64 0.7265 0.7147 0.7023 0.6976 0.6245 0.6425 0.4625 0.4846 

32 0.7471 0.7203 0.6946 0.6879 0.6076 0.6248 0.4581 0.4859 

16 0.7068 0.7110 0.6828 0.6952 0.5762 0.6083 0.3362 0.3542 

 

Table 4.16: The time cost for image recovery (in seconds) of each individual 

image with image block size 𝑩 ∈  {𝟔𝟒, 𝟑𝟐, 𝟏𝟔} recovered via SVR CPA 

sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, without applying 

BM3D. The lowest time cost in each setting is in bold.  

Images B 

Time cost for image recovery (s) 

SR = 0.25 0.1 0.04 0.01 
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baboon 

64 59.77 37.81 28.23 17.75 

32 24.42 17.56 16.30 18.00 

16 38.75 37.22 38.66 65.91 

Barbara 

64 70.11 38.14 31.94 19.45 

32 24.77 19.47 18.06 19.02 

16 36.52 38.84 41.89 58.05 

cat 

64 55.27 34.22 28.63 20.06 

32 22.27 15.75 16.09 20.13 

16 36.84 37.25 44.17 64.16 

fruits 

64 68.63 42.38 33.92 19.42 

32 26.17 19.50 19.00 20.14 

16 43.69 44.08 44.94 58.70 

Lenna 

64 62.00 36.36 29.63 18.02 

32 25.11 16.73 16.48 18.38 

16 35.98 38.34 39.08 64.31 

peppers 

64 62.91 38.06 30.45 19.31 

32 22.02 16.38 16.69 17.92 

16 36.55 37.36 40.30 63.38 

airplane 

64 51.50 31.00 27.14 17.58 

32 19.69 14.53 15.28 17.14 

16 32.58 33.67 37.47 58.53 

cameraman 

64 14.16 9.70 8.17 5.05 

32 5.64 4.25 4.28 4.78 

16 9.08 9.39 9.94 15.00 

Zelda 

64 56.61 35.44 28.19 18.00 

32 22.77 16.59 16.70 18.72 

16 37.45 37.56 39.66 58.92 

Goldhill 

64 57.98 36.05 28.89 17.66 

32 22.66 16.39 16.08 17.41 

16 37.39 36.72 38.48 58.22 

Mean 

64 55.89 33.92 27.52 17.23 

32 21.55 15.72 15.50 17.16 

16 34.48 35.04 37.46 56.52 
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Figure 4.19: The values of mean PSNR of the images with image block size 

𝑩 ∈  {𝟔𝟒, 𝟑𝟐, 𝟏𝟔} recovered via SVR CPA sensing matrices. 

 

 

Figure 4.20: The values of mean RMSE of the images with image block size 

𝑩 ∈  {𝟔𝟒, 𝟑𝟐, 𝟏𝟔} recovered via SVR CPA sensing matrices. 
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Figure 4.21: The values of mean SSIM of the images with image block size 

𝑩 ∈  {𝟔𝟒, 𝟑𝟐, 𝟏𝟔} recovered via SVR CPA sensing matrices. 

 

 

Figure 4.22: The mean time cost for image recovery of images with image 

block size 𝑩 ∈  {𝟔𝟒, 𝟑𝟐, 𝟏𝟔} recovered via SVR CPA sensing matrices. 
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Figure 4.23: (First row) The ground truth of our testing images. From left 

to right, "baboon", "Barbara", "cat", "fruits", "Lena", and "peppers. All 

images are of size 𝟓𝟏𝟐 × 𝟓𝟏𝟐. (Second row) The images formed from the 

image blocks of size 𝟏𝟔 × 𝟏𝟔 recovered via SVR CPA sensing matrices 

from SR = 0.1. (Third row) The images formed from the image blocks of 

size 𝟑𝟐 × 𝟑𝟐 recovered via SVR CPA sensing matrices from SR = 0.1. 

(Fourth row) The images formed from the image blocks of size 𝟔𝟒 × 𝟔𝟒 

recovered via SVR CPA sensing matrices from SR = 0.1. 

 

The results in Table 4.13 – 4.16 and Figure 4.19 – 4.22 show that the 

images with image blocks size 𝐵 ∈ {64, 32, 16} recovered via SVR CPA 

sensing matrices have comparable values of mean PSNR, RMSE, and SSIM 

except for 𝑆𝑅 = 0.01, where the image quality of images with image block size 

𝐵 = 16 is lower than that of images with image block size 𝐵 ∈ {64,32}. The 
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mean time cost for image recovery of images with image block size 𝐵 = 32 is 

significantly lower than that of images with image block size 𝐵 ∈ {64,16}. The 

results indicate that 𝐵 =  32 is the optimum image block size since for a 

comparable image quality it gives the lowest time cost for image blocks 

recovery compared to the other image block size tested in the numerical 

experiments. All the following simulations use block size of 32 × 32. 

 

4.2.2 Comparison of SVR RBP, HMP, And CPA Sensing Matrices for 

Block-Based CS 

This section compares the performance of different types of SVR 

sensing matrices extensively. Same as in Section 4.1.2, the SVR sensing 

matrices of choice are RBP, HMP, and CPA. Table 4.17 – 4.20 show the values 

of PSNR (in dB), RMSE, SSIM, and time cost for image recovery (in seconds) 

of the images recovered via SVR RBP, HMP, and CPA sensing matrices from 

𝑆𝑅 ∈ {0.25, 0.1, 0.04, 0.01}, with and without applying BM3D, for block-based 

approach. Figure 4.24 – 4.27 show the values of mean PSNR (in dB), RMSE, 

SSIM, and time cost for image recovery (in seconds) of the images recovered 

via SVR RBP, HMP, and CPA sensing matrices from 𝑆𝑅 ∈

{0.25, 0.1, 0.04, 0.01}, without applying BM3D, for block-based approach.  
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Table 4.17: The values of PSNR (in dB) of each individual image recovered 

via SVR RBP, HMP, and CPA sensing matrices from 𝑺𝑹 ∈

{𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, with and without applying BM3D, for block-based 

approach. The highest value in each setting is in bold. 

Images 
Sensing 

matrices 

PSNR (dB) 

SR = 0.25 0.1 0.04 0.01 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

baboon 

RBP 19.0872 19.0024 15.8973 15.9099 18.2712 18.3607 18.2632 18.3518 

HMP 19.0847 18.9629 20.6255 20.4590 18.6228 18.6482 15.5140 15.5646 

CPA 20.4220 19.9904 20.2632 20.1072 18.7481 18.8346 18.0764 18.2051 

Barbara 

RBP 21.6125 21.7863 21.5531 21.7733 21.3936 21.6207 18.3192 18.4768 

HMP 22.4482 22.5339 21.6956 21.8276 20.8773 21.0961 18.3581 18.4807 

CPA 17.5522 17.4628 16.9564 16.9383 21.1707 21.4387 18.1059 18.2600 

cat 

RBP 20.1823 20.2446 18.6508 18.7359 19.8964 20.0473 18.2296 18.3614 

HMP 19.7860 19.8223 20.6790 20.7542 21.6741 21.7894 17.9339 18.0236 

CPA 24.8930 24.6888 19.8230 19.7902 21.0106 21.1109 19.2643 19.4372 

fruits 

RBP 20.3792 20.3716 21.5871 21.7613 19.6798 19.8567 16.3398 16.4764 

HMP 22.9440 23.0033 21.5288 21.6052 16.8108 16.8243 14.5016 14.5304 

CPA 24.6767 24.7337 23.0320 23.2473 13.5095 13.4945 15.2705 15.3579 

Lena 

RBP 24.1152 24.5284 24.0763 24.5035 22.3963 22.7099 15.1139 15.1520 

HMP 24.0158 24.3612 25.1573 25.4833 22.4075 22.6140 19.6083 19.7314 

CPA 25.9046 26.3758 23.5326 23.7905 23.0157 23.3656 20.0064 20.2385 

peppers 

RBP 23.0686 23.3160 22.4083 22.4083 23.0105 23.3938 19.1625 19.3792 

HMP 23.7145 24.0167 24.1683 24.4752 22.1089 22.4375 18.5627 18.6917 

CPA 22.6749 22.8633 22.0697 22.3122 24.0429 24.5062 19.1021 19.3151 

airplane 

RBP 24.2650 24.3708 21.8861 22.0300 20.0518 20.1551 13.3376 13.3658 

HMP 24.6723 24.9537 24.1583 24.2713 21.9590 22.1399 16.7606 16.8068 

CPA 21.0784 21.2475 24.3869 24.6355 21.8945 22.0825 12.3712 12.3916 

cameraman 

RBP 22.4970 22.6400 21.6421 21.7930 20.2299 20.3877 17.2281 17.3372 

HMP 21.9928 22.0350 21.1531 21.3195 19.4120 19.5485 16.8380 16.9003 

CPA 23.6710 23.8155 22.4618 22.6705 20.2102 20.3751 16.5566 16.6425 

Zelda 
RBP 15.9718 16.0262 15.8320 15.8914 15.0838 15.1505 20.3510 20.5610 

HMP 17.2224 17.2857 17.4898 17.5534 16.2020 16.2807 13.8630 13.9131 
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CPA 15.7000 15.7433 15.4379 15.4819 15.7146 15.7761 17.9938 18.1390 

Goldhill 

RBP 23.9280 24.0374 23.6677 23.8317 23.2590 23.5463 20.9866 21.1793 

HMP 24.5715 24.6218 23.8798 23.9234 23.2285 23.3981 20.6787 20.8052 

CPA 25.0871 25.0962 24.6382 24.7779 24.9298 25.1070 20.4780 20.6224 

Mean 

RBP 21.5107 21.6324 20.7201 20.8638 20.3272 20.5229 17.7331 17.8641 

HMP 22.0452 22.1597 22.0535 22.1672 20.3303 20.4777 17.2619 17.3448 

CPA 22.1660 22.2017 21.2602 21.3752 20.4247 20.6091 17.7225 17.8609 

 

Table 4.18: The values of RMSE of each individual image recovered via 

SVR RBP, HMP, and CPA sensing matrices from 𝑺𝑹 ∈

{𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, with and without applying BM3D, for block-based 

approach. The lowest value in each setting is in bold. 

Images 
Sensing 

matrices 

RMSE 

SR = 0.25 0.1 0.04 0.01 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

baboon 

RBP 0.1111 0.1122 0.1604 0.1601 0.1220 0.1208 0.1221 0.1209 

HMP 0.1111 0.1127 0.0931 0.0949 0.1172 0.1172 0.1676 0.1666 

CPA 0.0953 0.1001 0.0970 0.0988 0.1155 0.1144 0.1248 0.1230 

Barbara 

RBP 0.0831 0.0814 0.0836 0.0815 0.0852 0.0830 0.1213 0.1192 

HMP 0.0754 0.0747 0.0823 0.0810 0.0904 0.0881 0.1208 0.1191 

CPA 0.1326 0.1339 0.1420 0.1423 0.0874 0.0847 0.1244 0.1222 

cat 

RBP 0.0979 0.0972 0.1168 0.1157 0.1012 0.0995 0.1226 0.1208 

HMP 0.1025 0.1021 0.0925 0.0917 0.0825 0.0814 0.1269 0.1256 

CPA 0.0569 0.0583 0.1021 0.1024 0.0890 0.0880 0.1088 0.1067 

fruits 

RBP 0.0957 0.0958 0.0833 0.0816 0.1038 0.1017 0.1524 0.1500 

HMP 0.0713 0.0708 0.0839 0.0831 0.1444 0.1441 0.1883 0.1877 

CPA 0.0584 0.0580 0.0705 0.0688 0.2111 0.2115 0.1724 0.1706 

Lena 

RBP 0.0623 0.0594 0.0625 0.0595 0.0759 0.0732 0.1755 0.1747 

HMP 0.0630 0.0605 0.0552 0.0532 0.0758 0.0740 0.1046 0.1031 

CPA 0.0507 0.0480 0.0666 0.0646 0.0707 0.0679 0.0999 0.0973 

peppers 

RBP 0.0702 0.0683 0.0758 0.0734 0.0707 0.0677 0.1101 0.1074 

HMP 0.0652 0.0630 0.0619 0.0597 0.0784 0.0755 0.1180 0.1163 

CPA 0.0735 0.0719 0.0788 0.0766 0.0628 0.0595 0.1109 0.1082 
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airplane 

RBP 0.0612 0.0605 0.0805 0.0792 0.0994 0.0982 0.2153 0.2146 

HMP 0.0584 0.0565 0.0620 0.0612 0.0798 0.0782 0.1452 0.1444 

CPA 0.0883 0.0866 0.0603 0.0586 0.0804 0.0787 0.2407 0.2401 

cameraman 

RBP 0.0750 0.0738 0.0828 0.0813 0.0974 0.0956 0.1376 0.1359 

HMP 0.0795 0.0791 0.0876 0.0859 0.1070 0.1053 0.1439 0.1429 

CPA 0.0655 0.0644 0.0753 0.0735 0.0976 0.0958 0.1487 0.1472 

Zelda 

RBP 0.1590 0.1580 0.1616 0.1605 0.1761 0.1748 0.0960 0.0937 

HMP 0.1377 0.1367 0.1335 0.1325 0.1548 0.1534 0.2027 0.2015 

CPA 0.1641 0.1632 0.1691 0.1682 0.1638 0.1626 0.1260 0.1239 

Goldhill 

RBP 0.0636 0.0628 0.0656 0.0643 0.0687 0.0665 0.0893 0.0873 

HMP 0.0591 0.0587 0.0640 0.0637 0.0690 0.0676 0.0925 0.0911 

CPA 0.0557 0.0556 0.0586 0.0577 0.0567 0.0555 0.0946 0.0931 

Mean 

RBP 0.0879 0.0869 0.0973 0.0957 0.1000 0.0981 0.1342 0.1325 

HMP 0.0823 0.0815 0.0816 0.0807 0.0999 0.0985 0.1411 0.1398 

CPA 0.0841 0.0840 0.0920 0.0912 0.1035 0.1019 0.1351 0.1332 

 

Table 4.19: The values of SSIM of each individual image recovered via SVR 

RBP, HMP, and CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, 

with and without applying BM3D, for block-based approach. The highest 

value in each setting is in bold. 

Images 
Sensing 

matrices 

SSIM 

SR = 0.25 0.1 0.04 0.01 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

baboon 

RBP 0.4150 0.3735 0.3692 0.3455 0.3348 0.3251 0.2520 0.2530 

HMP 0.5149 0.4396 0.4426 0.3834 0.3400 0.3189 0.2463 0.2442 

CPA 0.5392 0.4302 0.4525 0.3873 0.3584 0.3402 0.2500 0.2557 

Barbara 

RBP 0.5952 0.6066 0.5733 0.5926 0.5373 0.5633 0.3941 0.4168 

HMP 0.6356 0.6273 0.5867 0.5935 0.4985 0.5303 0.3877 0.4148 

CPA 0.6657 0.6819 0.6395 0.6572 0.5643 0.5951 0.4075 0.4318 

cat 

RBP 0.6568 0.6486 0.6155 0.6190 0.5784 0.5913 0.4817 0.4817 

HMP 0.6905 0.6709 0.6433 0.6383 0.5685 0.5799 0.4832 0.4989 

CPA 0.7344 0.6931 0.6579 0.6374 0.5862 0.5956 0.4641 0.4901 

fruits RBP 0.6882 0.6804 0.6353 0.6477 0.5458 0.5756 0.3669 0.3908 
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HMP 0.7381 0.7240 0.6639 0.6647 0.5127 0.5349 0.3709 0.3931 

CPA 0.7972 0.7713 0.7149 0.7141 0.5194 0.5258 0.3648 0.3941 

Lena 

RBP 0.7566 0.7714 0.7289 0.7486 0.6916 0.7201 0.5451 0.5660 

HMP 0.7650 0.7780 0.7320 0.7495 0.6351 0.6709 0.5382 0.5698 

CPA 0.8228 0.8208 0.7878 0.7878 0.7062 0.7372 0.5430 0.5823 

peppers 

RBP 0.7496 0.7679 0.7186 0.7439 0.6734 0.7084 0.5151 0.5454 

HMP 0.7642 0.7807 0.7241 0.7493 0.6134 0.6612 0.4966 0.5346 

CPA 0.8038 0.8046 0.7679 0.7854 0.6986 0.7330 0.5116 0.5497 

airplane 

RBP 0.7688 0.7698 0.7351 0.7450 0.6882 0.7038 0.5743 0.5924 

HMP 0.7911 0.7918 0.7504 0.7583 0.6582 0.6843 0.5795 0.6015 

CPA 0.8299 0.8282 0.7895 0.7936 0.7009 0.7254 0.5399 0.5642 

cameraman 

RBP 0.7190 0.7159 0.6914 0.6931 0.6323 0.6445 0.5141 0.5325 

HMP 0.7416 0.7254 0.6933 0.6943 0.5959 0.6148 0.4969 0.5155 

CPA 0.7804 0.7559 0.7280 0.7230 0.6500 0.6615 0.4953 0.5177 

Zelda 

RBP 0.7464 0.7816 0.7189 0.7636 0.6575 0.7112 0.5874 0.6310 

HMP 0.7835 0.8085 0.7557 0.7878 0.6530 0.7100 0.5233 0.5712 

CPA 0.8045 0.8191 0.7687 0.7924 0.7120 0.7541 0.5717 0.6179 

Goldhill 

RBP 0.6408 0.6345 0.6049 0.6084 0.5512 0.5694 0.4450 0.4619 

HMP 0.6877 0.6574 0.6406 0.6217 0.5489 0.5564 0.4408 0.4569 

CPA 0.7298 0.6931 0.6730 0.6582 0.5849 0.5891 0.4425 0.4613 

Mean 

RBP 0.6737 0.6750 0.6391 0.6507 0.5890 0.6113 0.4676 0.4872 

HMP 0.7112 0.7004 0.6633 0.6641 0.5624 0.5862 0.4563 0.4800 

CPA 0.7508 0.7298 0.6980 0.6936 0.6081 0.6257 0.4590 0.4865 

 

Table 4.20: The time cost for image recovery of each individual image 

recovered via RBP, HMP, and CPA SVR sensing matrices from 𝑺𝑹 ∈

{𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, without applying BM3D, for block-based 

approach. The lowest time cost in each setting are in bold.  

Images Sensing matrices 
Time cost for recovery (s) 

SR = 0.25 0.1 0.04 0.01 

baboon 

RBP 23.33 16.39 20.16 14.05 

HMP 17.28 15.72 18.77 13.86 

CPA 27.27 23.14 16.72 24.23 
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Barbara 

RBP 30.27 22.36 17.39 14.53 

HMP 44.91 22.36 29.14 31.80 

CPA 29.36 18.17 22.95 19.19 

cat 

RBP 34.72 25.95 15.33 13.73 

HMP 27.53 27.42 24.80 20.58 

CPA 26.47 18.36 24.05 19.09 

fruits 

RBP 37.92 24.13 25.97 18.17 

HMP 40.30 32.81 29.31 26.33 

CPA 32.61 25.02 27.28 23.11 

Lena 

RBP 32.77 27.38 19.86 15.20 

HMP 29.86 21.33 19.89 28.86 

CPA 24.44 17.16 20.94 24.98 

peppers 

RBP 36.09 18.98 16.16 15.09 

HMP 33.38 30.25 22.95 33.63 

CPA 24.22 17.38 18.59 19.22 

airplane 

RBP 22.34 13.47 12.73 12.55 

HMP 16.20 12.97 11.42 8.88 

CPA 21.45 15.28 16.34 18.41 

cameraman 

RBP 6.13 4.58 4.20 4.03 

HMP 6.17 4.08 3.72 3.02 

CPA 6.17 5.02 4.94 5.05 

Zelda 

RBP 25.28 18.30 16.92 14.95 

HMP 21.23 14.83 13.55 12.25 

CPA 24.92 17.97 17.86 20.09 

Goldhill 

RBP 28.30 16.59 14.58 12.78 

HMP 18.16 13.33 11.28 9.38 

CPA 26.53 17.66 16.67 18.61 

Mean 

RBP 27.71 18.81 16.33 13.51 

HMP 25.50 19.51 18.48 18.86 

CPA 24.34 17.51 18.63 19.20 
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Figure 4.24: Mean values of PSNR (in dB) of image recovered via SVR 

RBP, HMP, and CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, 

without applying BM3D, for block-based approach. 

 

 

Figure 4.25: Mean values of RMSE of image recovered via SVR RBP, 

HMP, and CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, 

without applying BM3D, for block-based approach. 
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Figure 4.26: Mean values of SSIM of image recovered via SVR RBP, HMP, 

and CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, without 

applying BM3D, for block-based approach. 

 

 

Figure 4.27: Mean time cost for image recovery of image recovered via SVR 

RBP, HMP, and CPA sensing matrices from 𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, 

without applying BM3D, for block-based approach. 
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Figure 4.28: (Start from left, first column) The original images of 

“baboon”, “Barbara”, and “cat”. (Second to fourth columns) “baboon”, 

“Barbara”, and “cat” recovered via SVR RBP, HMP, CPA sensing 

matrices from 𝑺𝑹 =  𝟎. 𝟏, without applying BM3D, for block-based 

approach with block size 𝟑𝟐 × 𝟑𝟐. All images are shown with their 

respective values of SSIM. 

 

Based on the results in Table 4.17 – 4.20 and Figure 4.24 – 4.27, it can 

be seen that overall, the values of mean PSNR (in dB) of images recovered via 

SVR RBP, HMP, and CPA sensing matrices from all values of 𝑆𝑅 tested 

without applying BM3D are comparable to each other. The values of mean 

RMSE for images recovered via SVR RBP, HMP, and CPA sensing matrices 

from all values of 𝑆𝑅 are comparable except for 𝑆𝑅 = 0.1, where the value of 

mean RMSE for SVR HMP is the lowest. The value of mean SSIM is the highest 

for images recovered via SVR CPA sensing matrices from all values of 𝑆𝑅 
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tested. The mean time cost for image recovery (in seconds) is the lowest for 

images recovered from SVR RBP sensing matrices from 𝑆𝑅 = 0.04 and 0.01, 

and it is the lowest for images recovered from SVR CPA sensing matrices from 

𝑆𝑅 = 0.25 and 0.1.  

In addition, Figure 4.28 shows that the image details of images 

recovered via SVR CPA sensing matrices are clearer than that of images 

recovered via SVR RBP and HMP sensing matrices for the same value of 𝑆𝑅. 

Hence, SVR CPA sensing matrices are able to improve the image quality better 

than SVR RBP and HMP sensing matrices. The results shown indicate that CPA 

sensing matrices is the more suitable choice for SVR block-based approach. 

 

4.2.3 Comparison of UR and SVR CPA Sensing Matrices for Block-Based 

CS 

In this section, the image quality of the images recovered via UR and SVR CPA 

sensing matrices for block-based approach was examined extensively. After the 

initial images are recovered, BM3D was applied as the image denoising 

algorithm to remove the edges of the image blocks and noises in the recovered 

images. Table 4.21 – 4.24 show the values of PSNR (in dB), RMSE, SSIM, and 

time cost for image recovery (in seconds) of images recovered via UR and SVR 

CPA sensing matrices, with and without applying BM3D. Figure 4.29 – 4.32 

show the values of mean PSNR (in dB), RMSE, SSIM, and time cost for image 

recovery (in seconds) of images recovered via UR and SVR CPA sensing 

matrices, without applying BM3D. Furthermore, Figure 4.33 shows images 

recovered via UR and SVR CPA sensing matrices from SR = 0.1. To 

demonstrate the effects to the images after applying BM3D, Figure 4.34 shows 
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"peppers" recovered via SVR CPA sensing matrices from SR = 0.1, with and 

without applying BM3D.  

 

Table 4.21: The values of PSNR (in dB) of each individual image recovered 

via UR and SVR CPA sensing matrices, with and without applying BM3D. 

The highest values in each setting is in bold.  

Images Resolution 

PSNR (dB) 

SR = 0.25 0.1 0.04 0.01 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

baboon 
UR 19.2277 18.9105 15.0720 15.0384 10.3273 10.3202 16.4542 16.5416 

SVR 20.4220 19.9904 20.2632 20.1072 18.7481 18.8346 18.0764 18.2051 

Barbara 
UR 14.7951 14.7306 12.3561 12.3480 13.7316 13.7610 13.3730 13.3967 

SVR 17.5522 17.4628 16.9564 16.9383 21.1707 21.4387 18.1059 18.2600 

cat 
UR 21.1374 20.9926 18.5780 18.6153 17.7565 17.8509 14.0824 14.1041 

SVR 24.8930 24.6888 19.8230 19.7902 21.0106 21.1109 19.2643 19.4372 

fruits 
UR 25.6012 25.0283 16.4229 16.3722 11.9250 11.9195 14.2310 14.2904 

SVR 24.6767 24.7337 23.0320 23.2473 13.5095 13.4945 15.2705 15.3579 

Lenna 
UR 23.7990 23.8931 25.9695 26.4026 17.1269 17.1839 14.8475 14.8742 

SVR 25.9046 26.3758 23.5326 23.7905 23.0157 23.3656 20.0064 20.2385 

peppers 
UR 23.5520 23.6406 24.4502 24.7912 19.0870 19.2490 14.2613 14.2979 

SVR 22.6749 22.8633 22.0697 22.3122 24.0429 24.5062 19.1021 19.3151 

airplane 
UR 22.6684 22.5251 18.3832 18.4344 17.7384 17.8389 16.2317 16.2996 

SVR 21.0784 21.2475 24.3869 24.6355 21.8945 22.0825 12.3712 12.3916 

cameraman 
UR 23.1393 22.9367 17.2761 17.2868 11.1045 11.0969 14.5616 14.6494 

SVR 23.6710 23.8155 22.4618 22.6705 20.2102 20.3751 16.5566 16.6425 

Zelda 
UR 17.6781 17.7252 16.7689 16.8608 14.5918 14.6870 14.7046 14.7719 

SVR 15.7000 15.7433 15.4379 15.4819 15.7146 15.7761 17.9938 18.1390 

Goldhill 
UR 28.7532 28.1005 24.8909 25.0467 19.6741 19.7531 18.8188 18.8799 

SVR 25.0871 25.0962 24.6382 24.7779 24.9298 25.1070 20.4780 20.6224 

Mean 
UR 22.0351 21.8483 19.0168 19.1196 15.3063 15.3660 15.1566 15.2106 

SVR 22.1660 22.2017 21.2602 21.3752 20.4247 20.6091 17.7225 17.8609 
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Table 4.22: The values of RMSE of each individual image recovered via UR 

and SVR CPA sensing matrices, with and without applying BM3D. The 

lowest values in each setting is in bold. 

Images Resolution 

RMSE 

SR = 0.25 0.1 0.04 0.01 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

baboon 
UR 0.1093 0.1134 0.1764 0.1770 0.3045 0.3048 0.1504 0.1489 

SVR 0.0953 0.1001 0.0970 0.0988 0.1155 0.1144 0.1248 0.1230 

Barbara 
UR 0.1821 0.1834 0.2411 0.2413 0.2058 0.2051 0.2145 0.2139 

SVR 0.1326 0.1339 0.1420 0.1423 0.0874 0.0847 0.1244 0.1222 

cat 
UR 0.0877 0.0892 0.1178 0.1173 0.1295 0.1281 0.1976 0.1971 

SVR 0.0569 0.0583 0.1021 0.1024 0.0890 0.0880 0.1088 0.1067 

fruits 
UR 0.0525 0.0561 0.1510 0.1518 0.2534 0.2535 0.1943 0.1930 

SVR 0.0584 0.0580 0.0705 0.0688 0.2111 0.2115 0.1724 0.1706 

Lenna 
UR 0.0646 0.0639 0.0503 0.0478 0.1392 0.1383 0.1810 0.1804 

SVR 0.0507 0.0480 0.0666 0.0646 0.0707 0.0679 0.0999 0.0973 

peppers 
UR 0.0664 0.0658 0.0599 0.0576 0.1111 0.1090 0.1936 0.1928 

SVR 0.0735 0.0719 0.0788 0.0766 0.0628 0.0595 0.1109 0.1082 

airplane 
UR 0.0735 0.0748 0.1205 0.1198 0.1297 0.1282 0.1543 0.1531 

SVR 0.0883 0.0866 0.0603 0.0586 0.0804 0.0787 0.2407 0.2401 

cameraman 
UR 0.0697 0.0713 0.1368 0.1367 0.2785 0.2787 0.1870 0.1852 

SVR 0.0655 0.0644 0.0753 0.0735 0.0976 0.0958 0.1487 0.1472 

Zelda 
UR 0.1306 0.1299 0.1451 0.1435 0.1864 0.1844 0.1840 0.1826 

SVR 0.1641 0.1632 0.1691 0.1682 0.1638 0.1626 0.1260 0.1239 

Goldhill 
UR 0.0365 0.0394 0.0569 0.0559 0.1038 0.1029 0.1146 0.1138 

SVR 0.0557 0.0556 0.0586 0.0577 0.0567 0.0555 0.0946 0.0931 

Mean 
UR 0.0873 0.0887 0.1256 0.1249 0.1842 0.1833 0.1771 0.1761 

SVR 0.0841 0.0840 0.0920 0.0912 0.1035 0.1019 0.1351 0.1332 
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Table 4.23: The values of SSIM of each individual image recovered via UR 

and SVR CPA sensing matrices, with and without applying BM3D. The 

highest values in each setting is in bold. 

Images Resolution 

SSIM 

SR = 0.25 0.1 0.04 0.01 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

baboon 
UR 0.5751 0.4371 0.3766 0.3202 0.2182 0.2019 0.2286 0.2321 

SVR 0.5392 0.4302 0.4525 0.3873 0.3584 0.3402 0.2500 0.2557 

Barbara 
UR 0.6344 0.5811 0.4867 0.4779 0.4456 0.4640 0.3541 0.3762 

SVR 0.6610 0.6203 0.6052 0.5911 0.5584 0.5850 0.3984 0.4267 

cat 
UR 0.7326 0.6818 0.6058 0.6020 0.5149 0.5307 0.4316 0.4460 

SVR 0.7344 0.6931 0.6579 0.6374 0.5862 0.5956 0.4641 0.4901 

fruits 
UR 0.8136 0.7837 0.6152 0.6154 0.4140 0.4284 0.3288 0.3571 

SVR 0.7972 0.7713 0.7149 0.7141 0.5194 0.5258 0.3648 0.3941 

Lenna 
UR 0.8436 0.8368 0.7499 0.7717 0.6145 0.6417 0.5101 0.5368 

SVR 0.8228 0.8208 0.7878 0.7878 0.7062 0.7372 0.5430 0.5823 

peppers 
UR 0.8281 0.8287 0.7340 0.7675 0.5886 0.6324 0.4598 0.4915 

SVR 0.8038 0.8046 0.7679 0.7854 0.6986 0.7330 0.5116 0.5497 

airplane 
UR 0.8725 0.8473 0.7403 0.7586 0.6055 0.6401 0.4923 0.5232 

SVR 0.8299 0.8282 0.7895 0.7936 0.7009 0.7254 0.5399 0.5642 

cameraman 
UR 0.8149 0.7796 0.6626 0.6663 0.4764 0.4855 0.4119 0.4403 

SVR 0.7804 0.7559 0.7280 0.7230 0.6500 0.6615 0.4953 0.5177 

Zelda 
UR 0.8243 0.8393 0.7281 0.7771 0.5763 0.6403 0.4896 0.5308 

SVR 0.8045 0.8191 0.7687 0.7924 0.7120 0.7541 0.5717 0.6179 

Goldhill 
UR 0.7734 0.7106 0.6316 0.6220 0.5056 0.5159 0.4117 0.4251 

SVR 0.7298 0.6931 0.6730 0.6582 0.5849 0.5891 0.4425 0.4613 

Mean 
UR 0.7712 0.7326 0.6331 0.6379 0.4960 0.5181 0.4119 0.4359 

SVR 0.7503 0.7237 0.6945 0.6870 0.6075 0.6247 0.4581 0.4860 
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Table 4.24: The time cost for image recovery (in seconds) of images 

recovered via UR and SVR CPA sensing matrices, with and without 

applying BM3D. The lowest time cost in each setting is in bold. 

Images Resolution 

Time cost for recovery (s) 

SR = 0.25 0.1 0.04 0.01 

baboon 
UR 31.31 23.53 21.45 24.73 

SVR 27.27 23.14 16.72 24.23 

Barbara 
UR 34.61 25.14 24.13 24.73 

SVR 29.36 18.17 22.95 19.19 

cat 
UR 28.97 21.20 20.72 35.06 

SVR 26.47 18.36 24.05 19.09 

fruits 
UR 33.61 22.84 27.98 24.45 

SVR 32.61 25.02 27.28 23.11 

Lenna 
UR 24.58 23.66 28.66 23.97 

SVR 24.44 17.16 20.94 24.98 

peppers 
UR 25.33 21.27 22.81 23.61 

SVR 24.22 17.38 18.59 19.22 

airplane 
UR 24.38 18.08 23.47 23.67 

SVR 21.45 15.28 16.34 18.41 

cameraman 
UR 7.00 5.23 5.81 6.28 

SVR 6.17 5.02 4.94 5.05 

Zelda 
UR 26.08 19.70 21.56 24.08 

SVR 24.92 17.97 17.86 20.09 

Goldhill 
UR 28.25 19.69 20.84 22.78 

SVR 26.53 17.66 16.67 18.61 

Mean 
UR 26.41 20.03 21.74 23.34 

SVR 24.34 17.51 18.63 19.20 
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Figure 4.29: The values of mean PSNR (in dB) of images recovered via UR 

and SVR CPA sensing matrices, without applying BM3D. 

 

 

Figure 4.30: The values of mean RMSE of images recovered via UR and 

SVR CPA sensing matrices, without applying BM3D. 
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Figure 4.31: The values of mean SSIM of images recovered via UR and 

SVR CPA sensing matrices, without applying BM3D. 

 

 

Figure 4.32: The mean time cost for image recovery of images recovered 

via UR and SVR CPA sensing matrices, without applying BM3D. 
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Figure 4.33: (From top to bottom row) The original images “baboon”, 

“Barbara”, and “cat” and their images recovered via UR and SVR CPA 

sensing matrices from SR = 0.1. 
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Figure 4.34: (Left) "peppers" recovered via SVR CPA sensing matrices 

from 𝑺𝑹 = 𝟎. 𝟎𝟒, without applying BM3D. (Right) "peppers" recovered 

via SVR CPA sensing matrices from 𝑺𝑹 = 𝟎. 𝟎𝟒, after applying BM3D. It 

can be seen that the images became less noisy and the value of SSIM 

increased after BM3D is applied. 

 

The results shown in Table 4.21 – 4.24 and Figure 4.29 – 4.32 show that 

the values of the mean PSNR of images recovered via SVR CPA sensing 

matrices are higher than that recovered via UR CPA sensing matrices for all SR 

tested, with and without applying BM3D. The values of the mean RMSE of 

images recovered via SVR CPA sensing matrices are lower than that recovered 

via UR CPA sensing matrices for all SR tested, with and without applying 

BM3D. The mean SSIM of images recovered via SVR CPA sensing matrices 

are higher than that recovered via UR sensing matrices for all SR tested except 

for 𝑆𝑅 =  0.25, with and without applying BM3D. Further, the mean time cost 

for image recovery for SVR CPA sensing matrices is lower than that of UR CPA 

sensing matrices for all 𝑆𝑅 tested.  

From Figure 4.33, it can be observed that the image details of images 

recovered via SVR CPA sensing matrices are much finer than that recovered 
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via UR CPA sensing matrices for the same value of 𝑆𝑅. Hence, for the same 

number of measurements, images recovered via SVR CPA sensing matrices 

have a better image quality than images recovered via UR CPA sensing 

matrices. This is especially true for smaller numbers of measurements. This 

indicates that SVR CPA sensing matrices are able to improve the image quality 

and time efficiency. Hence, it is more superior than UR CPA sensing matrices 

for block-based approach. Moreover, from Figure 4.34 it can be observed that 

after applying BM3D, the edges of the image blocks became less prominent and 

the noise of the image has reduced. 

 

4.3 Block-Based Single-Pixel Imaging with ReconNet 

4.3.1 The Network Training Results of ReconNet 

Figure 4.35 shows the training and test loss of the network training for 

each value of 𝑆𝑅. The network training time for each value of 𝑆𝑅 ranges from 

approximately half a day to one and a half day, with larger value of 𝑆𝑅 requiring 

longer training time. 
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Figure 4.35: The training and test loss of the network training for each 

value of 𝑺𝑹. 

 

4.3.2 Comparison of ReconNet And Other CS Image Recovery 

Algorithms 

In this section the performance and efficiency of ReconNet and other CS 

image recovery algorithms were studied extensively. The conventional CS 

image recovery algorithms chosen for comparison are TVAL3, SL0, and l1-

magic (Li et al., 2009; Eftekhari et al., 2009; Candes and Romberg, 2005). Table 

4.25 – 4.28 show the values of PSNR (in dB), RMSE, SSIM, and time cost for 

image recovery (in seconds) of each individual image recovered via SVR CPA 

sensing matrices from 𝑆𝑅 ∈ {0.25, 0.1, 0.04, 0.01} through ReconNet, TVAL3, 

SL0, and l1-magic, with and without applying BM3D, for block-based 

approach. Figure 4.36 – 4.39 show the values of mean PSNR (in dB), RMSE, 

SSIM, and time cost for image recovery (in seconds) of images recovered via 
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SVR CPA sensing matrices through ReconNet, TVAL3, SL0, and l1-magic, 

from 𝑆𝑅 ∈ {0.25, 0.1, 0.04, 0.01}, without applying BM3D, for block-based 

approach. 

 

Table 4.25: The values of PSNR (in dB) of each individual image recovered 

via SVR CPA sensing matrices, through ReconNet, TVAL3, SL0, and l1-

magic, from 𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, with and without applying 

BM3D, for block-based approach. The highest values in each setting is in 

bold. 

Images Algorithms 

PSNR (dB) 

SR = 0.25 0.1 0.04 0.01 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

baboon 

TVAL3 20.4220 19.9904 20.2632 20.1072 18.7481 18.8346 18.0764 18.2051 

ReconNet 19.6273 19.6948 18.6977 18.7890 17.4561 17.5457 17.5049 17.6129 

SL0 16.8515 17.2373 14.8272 15.7705 14.5413 15.6458 13.5628 14.7284 

l1-magic 16.9264 17.2983 15.6816 16.1727 11.1220 11.2060 13.2778 14.4523 

Barbara 

TVAL3 17.5522 17.4628 16.9564 16.9383 21.1707 21.4387 18.1059 18.2600 

ReconNet 23.0787 23.3695 22.8419 23.1476 21.9148 22.1712 19.0900 19.2493 

SL0 15.1350 15.3306 13.1806 13.6234 12.9571 13.5055 12.2572 12.8800 

l1-magic 15.3219 15.5814 13.8566 14.0134 11.7020 11.7778 12.1939 12.8424 

cat 

TVAL3 24.8930 24.6888 19.8230 19.7902 21.0106 21.1109 19.2643 19.4372 

ReconNet 21.4459 21.5121 19.8152 19.8906 18.9134 18.9999 19.6171 19.7744 

SL0 14.9837 15.3813 13.2356 13.8592 12.7937 13.4546 12.0050 12.6763 

l1-magic 15.0574 15.4709 13.1521 13.7694 10.2228 10.2914 11.8889 12.5701 

fruits 

TVAL3 24.6767 24.7337 23.0320 23.2473 13.5095 13.4945 15.2705 15.3579 

ReconNet 25.7607 25.7661 24.1399 24.2225 21.3264 21.4665 16.8745 16.9767 

SL0 12.8982 12.9792 11.4976 11.7520 11.1338 11.4438 10.4234 10.7757 

l1-magic 12.5133 12.5198 11.5673 11.6195 10.0655 10.0827 10.4271 10.7875 

Lenna 

TVAL3 25.9046 26.3758 23.5326 23.7905 23.0157 23.3656 20.0064 20.2385 

ReconNet 26.9912 27.3906 26.3149 26.6250 24.8326 25.1774 20.8344 21.0331 

SL0 16.1312 16.5047 14.5372 15.3092 14.1194 14.9724 13.1829 14.0676 
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l1-magic 16.4366 16.9341 14.7880 15.0332 12.6036 12.7034 13.0610 13.9759 

peppers 

TVAL3 22.6749 22.8633 22.0697 22.3122 24.0429 24.5062 19.1021 19.3151 

ReconNet 24.8274 25.0282 24.4515 24.6467 23.9509 24.2569 19.9969 20.1823 

SL0 15.6068 16.0817 13.3505 13.9593 13.1731 13.8565 12.2001 12.9199 

l1-magic 15.6731 16.1435 13.8513 14.1519 10.7703 10.8478 12.1826 12.9439 

airplane 

TVAL3 21.0784 21.2475 24.3869 24.6355 21.8945 22.0825 12.3712 12.3916 

ReconNet 21.1710 21.2199 21.3022 21.3485 20.5118 20.6564 15.0838 15.1318 

SL0 12.0226 12.3253 12.5947 13.4551 11.5269 12.2625 11.2958 12.1152 

l1-magic 12.6779 13.1064 11.5887 11.8009 6.9720 7.0100 11.2016 12.0041 

cameraman 

TVAL3 23.6710 23.8155 22.4618 22.6705 20.2102 20.3751 16.5566 16.6425 

ReconNet 19.2982 19.3275 19.4737 19.5335 19.4217 19.5623 15.4981 15.5981 

SL0 14.4747 14.8675 12.3408 12.8919 12.0466 12.6537 11.1873 11.7910 

l1-magic 14.5885 15.0099 12.5341 12.8048 11.0959 11.1549 11.0320 11.6445 

Zelda 

TVAL3 15.7000 15.7433 15.4379 15.4819 15.7146 15.7761 17.9938 18.1390 

ReconNet 17.7725 17.8961 17.2276 17.3380 18.6442 18.8944 15.9636 16.1102 

SL0 15.4041 15.8396 12.2143 12.6456 12.6411 13.2439 11.5390 12.1186 

l1-magic 15.3855 15.8308 11.9769 12.4210 12.8502 13.4910 11.2409 11.8553 

Goldhill 

TVAL3 25.0871 25.0962 24.6382 24.7779 24.9298 25.1070 20.4780 20.6224 

ReconNet 27.0661 27.4428 24.7380 24.8612 23.0977 23.4619 17.5335 17.7035 

SL0 16.0259 16.2637 13.8833 14.3233 13.7995 14.3404 12.8220 13.3784 

l1-magic 15.6583 15.7417 14.4608 14.6023 12.0590 12.1310 12.7963 13.3684 

Mean 

TVAL3 22.1660 22.2017 21.2602 21.3752 20.4247 20.6091 17.7225 17.8609 

ReconNet 22.7039 22.8648 21.9003 22.0403 21.0070 21.2193 17.7997 17.9372 

SL0 14.9534 15.2811 13.1662 13.7590 12.8732 13.5379 12.0475 12.7451 

l1-magic 15.0239 15.3637 13.3457 13.6389 10.9463 11.0696 11.9302 12.6444 
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Table 4.26: The values of RMSE of each individual image recovered via 

SVR CPA sensing matrices, through ReconNet, TVAL3, SL0, and l1-

magic, from 𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, with and without applying 

BM3D, for block-based approach. The lowest value in each setting is in 

bold. 

Images Algorithms 

RMSE 

SR = 0.25 0.1 0.04 0.01 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

baboon 

TVAL3 0.0953 0.1001 0.0970 0.0988 0.1155 0.1144 0.1248 0.1230 

ReconNet 0.1044 0.1036 0.1162 0.1150 0.1340 0.1327 0.1333 0.1316 

SL0 0.1437 0.1374 0.1814 0.1627 0.1875 0.1875 0.2098 0.1835 

l1-magic 0.1425 0.1365 0.1644 0.1554 0.2779 0.2752 0.2168 0.1894 

Barbara 

TVAL3 0.1326 0.1339 0.1420 0.1423 0.0874 0.0847 0.1244 0.1222 

ReconNet 0.0702 0.0702 0.0721 0.0696 0.0802 0.0779 0.1110 0.1090 

SL0 0.1751 0.1712 0.2193 0.2084 0.2250 0.2112 0.2439 0.2270 

l1-magic 0.1714 0.1663 0.2028 0.1992 0.2600 0.2577 0.2456 0.2280 

cat 

TVAL3 0.0569 0.0583 0.1021 0.1024 0.0890 0.0880 0.1088 0.1067 

ReconNet 0.0847 0.0840 0.1022 0.1013 0.1133 0.1122 0.1045 0.1026 

SL0 0.1782 0.1702 0.2179 0.2028 0.2293 0.2125 0.2510 0.2324 

l1-magic 0.1767 0.1684 0.2200 0.2049 0.3082 0.3058 0.2544 0.2352 

fruits 

TVAL3 0.0584 0.0580 0.0705 0.0688 0.2111 0.2115 0.1724 0.1706 

ReconNet 0.0515 0.0515 0.0621 0.0615 0.0858 0.0845 0.1433 0.1416 

SL0 0.2265 0.2244 0.2661 0.2585 0.2775 0.2678 0.3012 0.2892 

l1-magic 0.2368 0.2366 0.2640 0.2624 0.3139 0.3132 0.3011 0.2888 

Lenna 

TVAL3 0.0507 0.0480 0.0666 0.0646 0.0707 0.0679 0.0999 0.0973 

ReconNet 0.0447 0.0427 0.0483 0.0466 0.0573 0.0551 0.0908 0.0888 

SL0 0.1561 0.1495 0.1876 0.1716 0.1968 0.1784 0.2192 0.1980 

l1-magic 0.1507 0.1423 0.1822 0.1772 0.2343 0.2316 0.2223 0.2001 

peppers 

TVAL3 0.0735 0.0719 0.0788 0.0766 0.0628 0.0595 0.1109 0.1082 

ReconNet 0.0574 0.0561 0.0599 0.0586 0.0635 0.0613 0.1000 0.0979 

SL0 0.1658 0.1570 0.2150 0.2005 0.2195 0.2028 0.2455 0.2259 

l1-magic 0.1646 0.1559 0.2030 0.1961 0.2894 0.2868 0.2460 0.2253 

airplane TVAL3 0.0883 0.0866 0.0603 0.0586 0.0804 0.0787 0.2407 0.2401 
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ReconNet 0.0874 0.0869 0.0861 0.0856 0.0943 0.0927 0.1761 0.1751 

SL0 0.2505 0.2420 0.2346 0.2124 0.2653 0.2437 0.2724 0.2479 

l1-magic 0.2323 0.2211 0.2634 0.2570 0.4481 0.4462 0.2754 0.2511 

cameraman 

TVAL3 0.0655 0.0644 0.0753 0.0735 0.0976 0.0958 0.1487 0.1472 

ReconNet 0.1084 0.1081 0.1062 0.1055 0.1069 0.1052 0.1679 0.1660 

SL0 0.1889 0.1806 0.2415 0.2267 0.2498 0.2330 0.2758 0.2573 

l1-magic 0.1865 0.1776 0.2362 0.2290 0.2787 0.2769 0.2808 0.2617 

Zelda 

TVAL3 0.1641 0.1632 0.1691 0.1682 0.1638 0.1626 0.1260 0.1239 

ReconNet 0.1292 0.1274 0.1376 0.1359 0.1169 0.1136 0.1592 0.1565 

SL0 0.1697 0.1614 0.2451 0.2332 0.2333 0.2177 0.2649 0.2478 

l1-magic 0.1701 0.1616 0.2519 0.2393 0.2278 0.2116 0.2741 0.2554 

Goldhill 

TVAL3 0.0557 0.0556 0.0586 0.0577 0.0567 0.0555 0.0946 0.0931 

ReconNet 0.0443 0.0424 0.0580 0.0571 0.0700 0.0671 0.1328 0.1303 

SL0 0.1580 0.1537 0.2022 0.1922 0.2042 0.1919 0.2285 0.2143 

l1-magic 0.1648 0.1633 0.1892 0.1862 0.2495 0.2474 0.2292 0.2146 

Mean 

TVAL3 0.0841 0.0840 0.0920 0.0912 0.1035 0.1019 0.1351 0.1332 

ReconNet 0.0782 0.0773 0.0849 0.0837 0.0922 0.0902 0.1319 0.1300 

SL0 0.1813 0.1747 0.2211 0.2069 0.2288 0.2146 0.2512 0.2323 

l1-magic 0.1796 0.1730 0.2177 0.2107 0.2888 0.2852 0.2546 0.2350 

 

Table 4.27: The values of SSIM of each individual image recovered via SVR 

CPA sensing matrices, through ReconNet, TVAL3, SL0, and l1-magic, 

from 𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, with and without applying BM3D, for 

block-based approach. The highest value in each setting is in bold. 

Images Algorithms 

SSIM 

SR = 0.25 0.1 0.04 0.01 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

w/o 

BM3D 

w/ 

BM3D 

baboon 

TVAL3 0.5392 0.4302 0.4525 0.3873 0.3584 0.3402 0.2500 0.2557 

ReconNet 0.5625 0.5246 0.4757 0.4488 0.3637 0.3580 0.2415 0.2415 

SL0 0.2743 0.2714 0.1456 0.2201 0.0983 0.1732 0.0617 0.1249 

l1-magic 0.2793 0.2731 0.1673 0.2312 0.1391 0.1917 0.0559 0.1075 

Barbara 
TVAL3 0.6657 0.6819 0.6395 0.6572 0.5643 0.5951 0.4075 0.4318 

ReconNet 0.6522 0.6875 0.6181 0.6585 0.5492 0.5942 0.3939 0.4239 
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SL0 0.3575 0.4400 0.2004 0.3589 0.1434 0.2982 0.0988 0.2349 

l1-magic 0.3589 0.4478 0.2632 0.3797 0.2524 0.3609 0.0915 0.2188 

cat 

TVAL3 0.7344 0.6931 0.6579 0.6374 0.5862 0.5956 0.4641 0.4901 

ReconNet 0.6961 0.7093 0.6615 0.6711 0.5919 0.6130 0.4190 0.4467 

SL0 0.3475 0.5011 0.1761 0.3467 0.1219 0.2518 0.0819 0.1891 

l1-magic 0.3517 0.5017 0.1748 0.3423 0.2133 0.3634 0.0753 0.1681 

fruits 

TVAL3 0.7972 0.7713 0.7149 0.7141 0.5194 0.5258 0.3648 0.3941 

ReconNet 0.8003 0.8012 0.7316 0.7415 0.5923 0.6180 0.3472 0.3680 

SL0 0.3445 0.4084 0.1959 0.3134 0.1416 0.2507 0.0944 0.1920 

l1-magic 0.3400 0.3865 0.2409 0.3335 0.2457 0.3091 0.0908 0.1855 

Lenna 

TVAL3 0.8228 0.8208 0.7878 0.7878 0.7062 0.7372 0.5430 0.5823 

ReconNet 0.8110 0.8416 0.7895 0.8153 0.7110 0.7483 0.5454 0.5789 

SL0 0.4328 0.6198 0.2259 0.4904 0.1593 0.3911 0.1064 0.2952 

l1-magic 0.4309 0.6274 0.3305 0.5511 0.3226 0.5178 0.0970 0.2612 

peppers 

TVAL3 0.8038 0.8046 0.7679 0.7854 0.6986 0.7330 0.5116 0.5497 

ReconNet 0.7906 0.8208 0.7713 0.7992 0.6918 0.7345 0.5073 0.5421 

SL0 0.4001 0.5941 0.2134 0.4565 0.1554 0.3713 0.1034 0.2768 

l1-magic 0.4060 0.5960 0.2797 0.5083 0.2853 0.4548 0.0947 0.2484 

airplane 

TVAL3 0.8299 0.8282 0.7895 0.7936 0.7009 0.7254 0.5399 0.5642 

ReconNet 0.7695 0.8290 0.7318 0.7910 0.6338 0.7039 0.5210 0.5689 

SL0 0.3656 0.6012 0.1663 0.3889 0.1043 0.2398 0.0646 0.1555 

l1-magic 0.3642 0.6103 0.2539 0.5293 0.2016 0.3975 0.0607 0.1364 

cameraman 

TVAL3 0.7804 0.7559 0.7280 0.7230 0.6500 0.6615 0.4953 0.5177 

ReconNet 0.6721 0.7169 0.6355 0.6855 0.5293 0.5937 0.3576 0.3958 

SL0 0.3312 0.5066 0.1603 0.3231 0.1103 0.2239 0.0759 0.1581 

l1-magic 0.3329 0.5080 0.2046 0.4028 0.2259 0.3904 0.0683 0.1282 

Zelda 

TVAL3 0.8045 0.8191 0.7687 0.7924 0.7120 0.7541 0.5717 0.6179 

ReconNet 0.6959 0.8036 0.6786 0.7795 0.5792 0.6852 0.3686 0.4099 

SL0 0.4226 0.6387 0.2184 0.4780 0.1548 0.3781 0.1052 0.2844 

l1-magic 0.4267 0.6430 0.2111 0.4627 0.1548 0.3765 0.0869 0.2219 

Goldhill 

TVAL3 0.7298 0.6931 0.6730 0.6582 0.5849 0.5891 0.4425 0.4613 

ReconNet 0.6850 0.7058 0.6247 0.6436 0.5135 0.5586 0.3315 0.3564 

SL0 0.3916 0.4652 0.2344 0.3922 0.1763 0.3365 0.1255 0.2799 

l1-magic 0.4027 0.4497 0.3064 0.4148 0.2830 0.3821 0.1191 0.2696 

Mean TVAL3 0.7508 0.7298 0.6980 0.6936 0.6081 0.6257 0.4590 0.4865 
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ReconNet 0.7135 0.7440 0.6718 0.7034 0.5756 0.6207 0.4033 0.4332 

SL0 0.3668 0.5046 0.1937 0.3768 0.1366 0.2915 0.0918 0.2191 

l1-magic 0.3693 0.5043 0.2432 0.4156 0.2324 0.3744 0.0840 0.1946 

 

Table 4.28: The time cost for image recovery (in seconds) for each 

individual image recovered via SVR CPA sensing matrices through 

ReconNet, TVAL3, SL0, and l1-magic, from 𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, 

without applying BM3D, for block-based approach. The lowest time cost in 

each setting is in bold. 

Images Algorithms 
Time cost for image recovery (s) 

SR = 0.25 0.1 0.04 0.01 

baboon 

TVAL3 27.27 23.14 16.72 24.23 

ReconNet 0.27 0.27 0.30 0.32 

SL0 21.13 5.48 2.50 0.88 

l1-magic 133.36 90.59 77.81 78.22 

Barbara 

TVAL3 29.36 18.17 22.95 19.19 

ReconNet 0.30 0.33 0.33 0.31 

SL0 20.95 5.33 2.50 0.89 

l1-magic 142.19 98.23 83.78 77.88 

cat 

TVAL3 26.47 18.36 24.05 19.09 

ReconNet 0.31 0.32 0.29 0.38 

SL0 20.53 5.28 2.59 0.91 

l1-magic 148.53 96.41 87.67 82.23 

fruits 

TVAL3 32.61 25.02 27.28 23.11 

ReconNet 0.34 0.32 0.28 0.31 

SL0 21.81 5.09 2.50 0.91 

l1-magic 150.16 99.00 84.41 71.45 

Lenna 

TVAL3 24.44 17.16 20.94 24.98 

ReconNet 0.28 0.32 0.27 0.31 

SL0 20.45 5.63 2.77 0.88 

l1-magic 142.70 95.53 84.80 80.23 

peppers 
TVAL3 24.22 17.38 18.59 19.22 

ReconNet 0.30 0.32 0.31 0.31 



109 

 

SL0 20.36 5.69 2.59 0.86 

l1-magic 147.94 101.19 84.36 82.20 

airplane 

TVAL3 21.45 15.28 16.34 18.41 

ReconNet 0.39 0.41 0.28 0.33 

SL0 23.52 5.95 2.94 0.89 

l1-magic 169.78 116.27 104.34 92.20 

cameraman 

TVAL3 6.17 5.02 4.94 5.05 

ReconNet 0.17 0.15 0.15 0.13 

SL0 5.33 1.41 0.67 0.22 

l1-magic 48.09 23.59 19.88 18.64 

Zelda 

TVAL3 24.92 17.97 17.86 20.09 

ReconNet 0.31 0.26 0.28 0.27 

SL0 27.64 5.08 2.64 0.88 

l1-magic 155.27 113.67 93.50 71.58 

Goldhill 

TVAL3 26.53 17.66 16.67 18.61 

ReconNet 0.29 0.27 0.26 0.25 

SL0 30.91 5.33 2.52 0.88 

l1-magic 168.78 94.73 85.08 70.45 

Mean 

TVAL3 24.34 17.51 18.63 19.20 

ReconNet 0.30 0.30 0.28 0.29 

SL0 21.26 5.03 2.42 0.82 

l1-magic 140.68 92.92 80.56 72.51 
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Figure 4.36: The values of mean PSNR (in dB) of images recovered via SVR 

CPA sensing matrices through ReconNet, TVAL3, SL0, and l1-magic, from 

𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, without applying BM3D, for block-based 

approach. 

 

 

Figure 4.37: The values of mean RMSE of images recovered via SVR CPA 

sensing matrices through ReconNet, TVAL3, SL0, and l1-magic, from 

𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, without applying BM3D, for block-based 

approach. 
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Figure 4.38: The values of mean SSIM of images recovered via SVR CPA 

sensing matrices through ReconNet, TVAL3, SL0, and l1-magic, from 

𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, without applying BM3D, for block-based 

approach. 

 

 

Figure 4.39: The mean time cost for image recovery of images recovered 

via SVR CPA sensing matrices through ReconNet, TVAL3, SL0, and l1-

magic, from 𝑺𝑹 ∈ {𝟎. 𝟐𝟓, 𝟎. 𝟏, 𝟎. 𝟎𝟒, 𝟎. 𝟎𝟏}, without applying BM3D, for 

block-based approach. 
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Figure 4.40: (From top to bottom row) The original images “baboon”, 

“Barbara”, and “cat” and their images recovered via SVR CPA sensing 

matrices through ReconNet, TVAL3, SL0, and l1-magic from 𝑺𝑹 =  𝟎. 𝟏, 

without applying BM3D, for block-based approach. All images are shown 

with their respective values of SSIM.  

 

From the results, it can be seen that the value of the mean PSNR (in dB) 

is the highest for images recovered via SVR CPA sensing matrices through 

ReconNet for 𝑆𝑅 ∈ {0.25, 0.1, 0.04, 0.01}. The mean value of RMSE is the 

lowest for images recovered via SVR CPA sensing matrices through ReconNet 

for 𝑆𝑅 ∈ {0.25, 0.1, 0.04, 0.01}. The mean values of SSIM for images 

recovered via SVR CPA sensing matrices through ReconNet and TVAL3 are 

the highest and comparable for 𝑆𝑅 ∈ {0.25, 0.1, 0.04, 0.01}. The mean time cost 

for image recovery (in seconds) is the shortest for images recovered via SVR 
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CPA sensing matrices through ReconNet for 𝑆𝑅 ∈ {0.25, 0.1, 0.04, 0.01}. 

Visually, Figure 4.40 shows that for the same value of 𝑆𝑅, the image details of 

images recovered via SVR CPA sensing matrices through ReconNet are clearer 

than that of images recovered through TVAL3, SL0, and l1-magic.  

The results indicate that ReconNet is able to improve the image quality. 

Furthermore, the mean time cost for image recovery for needed for ReconNet 

is significantly less than the conventional CS image recovery algorithms. Since 

the objectives of this project are to keep the number of measurements as low as 

possible while maintaining a higher image quality, the results show that 

ReconNet is a more favorable choice for CS image recovery algorithms than the 

conventional CS image recovery algorithms. 

 

4.4 Image Encryption Scheme with CS Via CPA Sensing Matrices 

 Aside from imaging applications, single-pixel imaging can also be 

applied in image encryption and decryption. In image encryption, the sensing 

matrices act as the encryption keys. Then, the same sensing matrices can be used 

later for image decryption. Since conventionally single-pixel imaging utilizes 

randomly generated sensing matrices, the random nature of the keys makes it 

nearly impossible for the eavesdroppers to obtain information pertaining the 

keys. However, storing the randomly generated sensing matrices are more 

difficult as one has to save the entire sensing matrices. 

This section demonstrates the image encryption and decryption scheme 

by applying SVR CPA sensing matrices. In the scenario of image encryption 

with CPA sensing matrices, the seeds 𝑧0 that are used to generate CPA sensing 

matrices are acting as the keys which are used in the encryption and decryption 
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processes. For demonstration, 𝑧0  =  0.19 was chosen as the right key. Five 

SVR CPA sensing matrices were generated with 𝑧0  ∈  {0.19, 0.39, 0.59,

0.79, 0.99}. Then, the CS measurements of “peppers” were obtained with the 

SVR CPA sensing matrix generated with 𝑧0  =  0.19. Finally, the image was 

recovered from the CS measurements of “peppers” via different keys 𝑧0, 

through TVAL3. Figure 4.41 shows the recovered images via SVR CPA sensing 

matrices generated with different keys 𝑧0. From Figure 4.41, it can be seen that 

except for the right key 𝑧0  =  0.19, all other keys failed to recover the original 

image. Therefore, the secrecy of the right key guarantees the safety of the image. 

CPA is more suitable for image encryption scheme than the other sensing 

matrices as only the values of the keys are needed to be stored, instead of the 

entire sensing matrices. 

 

 

Figure 4.41: “peppers” recovered via SVR CPA sensing matrices generated 

with 𝒛𝟎 = (a) 0.19 (b) 0.39 (c) 0.59 (d) 0.79 (e) 0.99. It can be seen that except 

for the right key 𝒛𝟎  =  𝟎. 𝟏𝟗, all other keys failed to recover the original 

image. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORKS 

 

5.1 Conclusion 

The development of single-pixel imaging has provided a much simpler 

and lower cost imaging system architecture, as well as a mean to acquire images 

in wavelengths at the invisible light spectrum and conditions in which photons 

are scarce. Furthermore, compressed sensing (CS) makes it possible to 

compress and acquire the significant image data at the same time in the image 

acquisition process.  

This project proposes a design of programmable SVR sensing patterns 

used in the CS image acquisition and recovery process. In the numerical 

experiments, the performance of different spatially-variant resolution (SVR) 

sensing matrices were evaluated. The results show that SVR chaotic patterns 

array (CPA) sensing matrices is able to give better image quality than SVR 

random binary patterns (RBP) and Hadamard patterns (HMP) sensing matrices. 

Furthermore, the results show that SVR CPA sensing matrices are able to give 

better image quality at lower sampling rate. Accordingly, the performance of 

proposed SVR method is compared to the conventional uniform resolution (UR) 

sensing patterns. The results show that the mean time cost required for image 

recovery using SVR CPA sensing matrices is consistently lower than UR CPA 

sensing matrices. In conclusion, CPA is more suitable than RBP and HMP for 

the proposed SVR approach. Furthermore, SVR sensing patterns are more 

favorable than the conventional UR sensing patterns in CS for situations where 
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the numbers of measurements are small, yet they are able to give a better image 

quality. The improved efficiency also indicates the potential of SVR sensing 

patterns in practical cases as compared to UR sensing patterns.  

 In order to further increase the computational efficiency in the image 

recovery process of large images, the proposed SVR sensing patterns is applied 

to block-based CS approach. In the numerical experiments, the performance of 

block-based CS approach using various sensing matrices were analyzed. Similar 

to the findings earlier, the results indicate that the quality of images recovered 

via SVR CPA sensing matrices is better than SVR RBP and HMP sensing 

matrices. Moreover, the results show that the quality of images recovered via 

SVR CPA sensing matrices is higher than UR CPA sensing matrices when the 

number of measurements is small. The time cost required for image recovery 

using SVR CPA sensing matrices is also lower than UR CPA sensing matrices. 

Therefore, in agreement with the results earlier, CPA is more suitable for the 

proposed SVR approach than RBP and HMP. Furthermore, SVR CPA sensing 

matrices are able to improve the image quality and time efficiency in block-

based CS approach.   

There exists plenty of conventional iterative CS image recovery 

algorithms. However, iterative CS image recovery algorithms are typically time 

consuming. Recently, convolutional neural networks (CNN) such as ReconNet 

has been applied for image recovery tasks as non-iterative CS image recovery 

algorithms. In this project, the performance of ReconNet was compared to the 

conventional CS image recovery algorithms. The results show that with 

ReconNet, the recovered images have a comparable image quality to that of 

TVAL3. However, ReconNet reduces the image recovery time significantly as 
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compared to TVAL3. Hence, it can be concluded that ReconNet is more time-

efficient with minimal image quality trade-off and it is more suitable for 

practical cases than TVAL3. 

In conclusion, the proposed SVR approach in this project is more 

favorable for basic visual tasks and most importantly it requires less 

measurement. The results also demonstrated that CNN outperforms the 

conventional CS image recovery algorithms which is particularly suitable for 

practical cases. 

 

5.2 Recommendations for Future Works 

 This project has shown that the proposed methods are able to improve 

the image quality and time efficiency. For future works, it is good to focus on 

the development of practical application based on the proposed methods. The 

practicality of the proposed method can be studied from different perspectives 

involving the external factors and further improvement can be considered. 

Next, it is also worthwhile to look into the investigation and fine tuning 

of the CNN network parameters for possible result improvement in CS image 

recovery. Due to time constraint, extensive evaluation of the network 

parameters was not performed for this project. The fine tuning of the network 

parameters could potentially improve the quality of the recovered images.  

Furthermore, it is possible to expand the study into other deep learning 

models (WDLReconNet, CombNet, DR2-Net, and more) and provide an 

extensive comparison. A study of the effectiveness of the proposed methods 

using various deep learning models is interesting and could potentially yields 

fruitful results.  
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