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ABSTRACT 

DEVELOPMENT OF DEEP REINFORCEMENT LEARNING BASED 

RESOURCE ALLOCATION TECHNIQUES IN CLOUD RADIO 

ACCESS NETWORK 

 Amjad  Iqbal  

Next-generation networks are envisioned to support dynamic and agile network 

management to maximize the users’ quality of service (QoS). Cloud radio 

access network (CRAN) emerges as a promising candidate since the limited 

network resources can be virtualized and shared among distributed remote radio 

heads (RRHs). Conventional approaches formulate resource allocation as an 

optimization problem and solve it with instantaneous environment knowledge 

without considering the consequences of actions. A step towards long-term 

network performance optimization is the use of deep reinforcement learning 

(DRL), which can learn the best policy via interaction with the environment. 

This thesis proposes three DRL-based resource allocation algorithms that 

optimize the CRAN performance in terms of energy efficiency (EE), spectral 

efficiency (SE), and total power consumption. The first proposed algorithm 

aims to optimize the EE by controlling the on/off status of RRH via a deep Q 

network (DQN) and subsequently solving a power optimization problem. To 

capture the spatio-temporal channel state information (CSI), the second 

proposed algorithm adopts machine learning with anchor graph hashing 

techniques to extract generalized features before feeding them into the DQN. 

The goal here is to optimize the long-term tradeoff between EE and SE. In the 

last proposed scheme, additional EE savings are facilitated by designing and 
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integrating a convolutional neural network (CNN), which can better learn the 

feature of environment states. Simulation results show that all proposed DRL 

algorithms outperform 20-25% compared to existing techniques while 

achieving faster convergence. All performance benchmarking was carried out 

based on 100 testing episodes after properly training the DRL agent with 1000 

episodes. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 BACKGROUND 

The past few decades have seen rapid progress in mobile communication 

technologies, that is, from being able to make analog voice calls for a limited 

number of users in the first generation (1G) to provides high data rates to 

millions of devices in the fourth generation (4G). The emerging fifth-generation 

(5G) of wireless communications originates with even more promising features, 

including a high data rate (10 Gigabits per second (Gbps)), lower latency (less 

than one millisecond (ms)), and 10-100 times higher number of connected 

devices for the purpose of Internet of Things (IoT) application (Tullberg et al., 

2016). According to the Cisco annual report 2020, mobile subscriptions are 

expected to grow to 5.7 billion (71 % of the total population) by 2023 from 5.1 

billion (66% of the total population) in 2018. As shown in Figure 1.1, the total 

number of internet users is expected to reach 5.3 billion by 2023 as opposed to 

3.9 billion in 2018, which indicates a 6% annual growth (Cisco, 2020). 

Figure 1.1: Global internet user growth (Cisco, 2020) 
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Obviously, as the number of users and service requirements grow, the number 

of access points (APs) and base stations (BSs) will increase, leading to several 

challenges regarding interference complexity management, cost inflation 

(capital expenditures (CAPEX) and operating expenses (OPEX)), and 

deployment strategy (Rony et al., 2017). Furthermore, designing and upgrading 

the 5G network in a multi-environment is more complex and challenging 

(Hassani, Haidine and Jebbar, 2020). As a result, Mobile Network Operators 

(MNOs) are under high pressure to design and adopt a new and cost-effective 

Radio Access Network (RAN). 

A BS is physically connected to a fixed number of antennas in a typical RAN, 

limiting the potential performance gain due to spatial correlation (Chih-Lin et 

al., 2018). Cloud-RAN, commonly known as CRAN, is a new approach to 

addressing the challenges faced by MNOs and reducing their CAPEX and 

OPEX costs (Checko et al., 2016). In the CRAN philosophy, baseband 

processing is shifted away from the physical location of BS into a “virtual BS 

pool.” A CRAN is basically comprised of two main components, a baseband 

unit (BBU) and remote radio heads (RRHs). The BBU handles the signal 

processing function, whereas the RRHs handle the radio signal transmission to 

the user equipment (UEs). Fronthaul links perform the interconnection between 

RRHs and BBU. Furthermore, the traffic processing is accomplished via the 

backhaul connection between the BBU and the core network. As the CRAN is 

adopted from the cloud computing concept where resources are shared in a 

centralized manner and allocated on demand (Checko et al., 2016). The 

difference between typical RAN and CRAN is shown in Figure 1.2. The 
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baseband resources can be employed more efficiently in the CRAN application 

based on the whole network. In addition, this concept allows the processing 

power in the BBU pool to be adapted to the network’s instantaneous load.  

1.2 MOTIVATION 

The main motivation of this thesis is to manage the complex resource allocation 

(RA) optimization for next-generation wireless networks efficiently and 

intelligently. Generally, it is assumed that information about the environment, 

such as power consumption and wireless channels, is completely known. In 

practice, however, the wireless channel gains change in a fading environment, 

and when the BS configuration is dynamically updated, the wireless channel 

gain can be uncertain. Accordingly, the BS cannot always know the exact 

channel gain. Machine learning (ML) is an emerging tool that has the potential 

to manage the network’s resources in such a way that network efficiency, 

Figure 1.2: Architecture of a Radio Access Network 

Core network Core network 

(a) Typical RAN 

Fronthaul link 

RRH 

BBU 

Backhaul link 

UE 

(b) CRAN 
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reliability, and robustness goals are achieved while meeting the quality of 

service (QoS) demand (Gressling, 2020). The main advantage of ML is to 

manage the network resources in an agile and flexible way, which provides the 

network with more autonomy and reduces the amount of computational and 

time expenses needed to perform manual configuration and maintenance. ML 

can also provide real-time analysis and dynamic control, which reduces human 

intervention. In fact, ML-enabled 5G and beyond networks offer several 

advantages over previous generations of wireless networks due to the 

opportunities that arise from learning the environment’s parameters under 

varying channel behavior. Despite these advancements, some challenges still 

need to be addressed, such as RA, computational complexity, adaptability to 

network dynamics, etc. 

A family of ML algorithms called reinforcement learning (RL) (Sutton and 

Barto, 2018) can learn from experience and solve problems in which finding 

analytical solutions would be difficult or impractical. RL follows the trial-and-

error process to learn the environmental behavior. The training process of the 

RL algorithm is different from supervisor learning (Michael W. Berry, 2020), 

as previously acquired data is not required. Also, the RL algorithm is different 

from unsupervised learning (Michael W. Berry, 2020), as some knowledge from 

the engineer is required. The engineer’s knowledge is conveyed to the algorithm 

through a reward function, which measures the RL algorithm’s action quality. 

Therefore, the RL algorithm needs to learn the process and its behavior to 

achieve high rewards during the training process. Furthermore, the channel 

gains change and power control techniques for the upcoming wireless network 

generation are expected to address a plethora of dynamic situations. Analytical 
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models, which generally require full knowledge about their environment, can 

be inconvenient for displaying complex situations. ML algorithms, such as RL, 

can excel in such situations and aid in reaching satisfactory solutions. 

The fields of Artificial Intelligence (AI) and ML have been greatly influenced 

by advances in Deep Learning (DL) during the past few years (Ian Goodfellow, 

Yoshua Bengio, 2016). DL uses Neural Networks (NN) with multiple hidden 

layers. These hidden layers allow the NN to represent more complex functions. 

RL methods leveraging DL have been invented recently, giving birth to Deep 

Reinforcement Learning (DRL) (Sutton and Barto, 2018). Given the present 

opportunities and the benefits of DRL, this thesis proposes and investigates 

DRL-based techniques to balance the power consumption, Energy Efficiency 

(EE), and the joint tradeoff between EE and Spectral Efficiency (SE) while 

maintaining the user’s QoS requirements in a downlink CRAN framework. 

This thesis focuses on investigating three DRL algorithms that serve as the core 

for the proposed RA frameworks. The aim is to compare different RL paradigms 

and application strategies and see how they work when applied to the RA 

problem. Furthermore, this thesis evaluates the behavior of RL algorithms and 

their actions in specific controlled scenarios. 

1.3 PROBLEM STATEMENTS 

This thesis aims to address the near-optimal RA problem in terms of power 

minimization, maximizing energy efficiency, and satisfying users’ QoS 

requirements in downlink CRAN by using different DRL algorithms. This is 

motivated by the existence of several constraints for designing a centralized RA 

strategy, such as: 
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• User data rate demand and QoS requirements  

• Beamforming weights  

• RRH transmission power limitation  

Wireless communication network relies heavily on a concept called channel 

state information (CSI) (C. Luo et al., 2020) (Li et al., 2016). As its name 

implies, CSI represents the characteristics of a radio channel. Specifically, CSI 

describes how path loss, scattering, diffraction, fading, shadowing, etc., are 

combined when a signal propagates from a transmitter to its receiver. Therefore, 

it is important to obtain accurate CSI to guarantee the performance of radio links 

in wireless communication systems. In addition, CSI can be used to identify 

whether a radio link is in good or bad condition. 

A majority of wireless network problems define the states of users with hand-

crafted characteristics and do not take into consideration the relationship 

between the RRHs and the users (H. Li et al., 2018) and (Xiao et al., 2020). The 

features may be extracted artificially, and the learning agent may be forced to 

make sub-optimal decisions. The main drawback of such works is that the users 

report their information to the respective RRHs, increasing the burden on 

signaling overhead as feedback. If such information is present between the users 

and RRHs, then RRHs are responsible for recording all the valid information. 

The users do not need to provide any such information for signaling. Such a 

process reduces the signaling burden in the network. 

Secondly, most of the works focus only on maximizing SE or EE. They do not 

consider the joint summation between these two metrics (Vu et al., 2017) and 

(Tan et al., 2018) because these two metrics are usually used to contradict each 
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other. Furthermore, these two metrics cannot be added directly due to different 

units. To optimize the long-term tradeoff between SE and EE is targeted in this 

approach. This is achieved by adopting the weighted sum of the system EE and 

SE, where a tunable parameter is used to adjust the priority among EE and SE. 

Besides that, most existing works use a Deep Neural Network (DNN) to train 

the neural network, which significantly increases the training parameters (H. Li 

et al., 2018) and (Luong et al., 2021). This motivates using a Convolutional 

Neural Network (CNN) to extract the input features. The extracted feature of 

CNN is then fed to the input of the DRL agent. This means that the CNN phase 

is responsible for extracting the input information. In contrast, the DRL phase 

finds the optimal policy to turn on/off RRHs based on the user demand. This 

will speed up the algorithm learning process and achieve better network 

performance. 

In this thesis, the relationship between users and RRHs is explicitly considered 

at the input of the network state, and generalized features are extracted by 

adopting ML techniques. Therefore, this thesis considers the DRL approach to 

optimize the RA problem over a long operational period. Furthermore, the 

advanced version of the DRL algorithms is used to find the optimal control 

policy to dynamically turn on/off the RRHs based on the user demands to save 

more power. The two main advantages of using DRL are: 

1) The agents can be trained through each learning stage to determine the 

on/off status of RRHs at each time slot 𝑡. This ensures the RRH 

switching decision to not rely on physical RA customization for the 

delay, rate, and jitter optimization.  
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2) The agent can survey the entire network by considering every possible 

state to ensure that the users’ QoS requirements are met. 

1.4 THESIS OBJECTIVES  

The utmost objective of this thesis is to maximize the long-term RA 

performance by adjusting the per RRH transmit power and user data rate. RA 

performance has been extensively investigated in terms of power control and 

EE since the invention of radio communication. In summary, the RA 

performance can be achieved using mathematical and heuristic approaches for 

short-term goals without considering any future consequences. Furthermore, the 

latest introduction of ML surpasses human-level performance, especially using 

DRL approaches. Therefore, the main objectives of this thesis can be 

summarized as: 

1) To optimize the EE subject to the constraints on per-RRH transmission 

power and user data rates. 

2) To optimize the long-term tradeoff between EE and SE while 

considering the spatio-temporal CSI. 

3) To further optimize EE by learning the feature of environment states via 

a CNN. 

1.5 CONTRIBUTIONS  

The key contributions of this thesis are summarized as follows: 

1) An energy-efficient resource allocation scheme based on a Double 

deep Q-network in CRANs. 
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A Double deep Q-network based algorithm is proposed first to minimize 

total power consumption and satisfy the user QoS demand. The 

proposed solution is then compared with the DQN algorithm (Xu et al., 

2017) and the traditional approach (Dai and Yu, 2016). Furthermore, the 

proposed solution is extended for EE by adding CSI at the input of the 

network state and solving with the function approximation method. In 

the end, three different scenarios are considered to verify the 

infeasibility issue that may arise due to insufficient active RRHs. 

2) A deep reinforcement learning-based resource allocation for joint 

energy efficiency and spectral efficiency in CRANs. 

An approach based on DRL has been proposed to achieve a long-term 

tradeoff between EE and SE. The multiple objective optimization 

problems (MOOP) that EE and SE have jointly optimized are 

transformed into a single objective optimization problem (SOOP) by 

dynamically weighing EE and SE. The same metric unit for EE and SE 

in a weighted summation is ensured first. Therefore, a tunable parameter 

is used to adjust the EE and SE priority. Furthermore, the CSI is 

explicitly considered at the input of the network state. However, the CSI 

is updated continuously at each time step 𝑡, making the network 

exploration difficult in practice. Therefore, the anchor graph hashing 

(AGH) method is applied to limit the CSI and then map AGH to a hash 

code where the hash code can easily match to the DRL input. 

3) Resource management in CRAN using convolutional neural 

networks-based deep Q-networks (CNN-DQN). 
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A CNN-based deep Q-network (CNN-DQN) is proposed to balance 

energy consumption and guarantee the user quality of service (QoS) 

demand in a downlink CRAN. The CSI characteristic has been assumed 

at the input of the network state in the previous two approaches, where 

function approximation and AGH approach are used to solve its 

dynamic nature. However, CSI is updated continuously at each time step 

𝑡 and takes the continuous values. This creates the convergence 

problem; therefore, the CSI is discretized by using the CNN framework 

in this approach. Furthermore, the RA performance is optimized 

specifically by the CNN-based DQN method, where a CNN is 

responsible for carrying out the CSI feature extraction process. In 

contrast, the DQN phase is responsible for turning on/off the RRHs. 

Finally, the proposed solution is compared with DQN and a traditional 

approach. 

1.6 THESIS ORGANIZATION 

The rest of the thesis is structured into six chapters as follows: 

 • Chapter 2 provides a critical overview of the RA schemes found in the 

literature. The majority of the proposed solutions in the literature can be 

categorized into either: i) addressing the C-RAN power minimization problem 

with a limit on the total transmission power; ii) focusing on the EE with users’ 

QoS requirements subject to per RRHs transmit power and users’ target rate 

constraint, or iii) proposing solutions to jointly optimize the EE-SE. This kind 

of strategies can be based on the following criteria: i) static or ii) dynamic 

approaches. It is worth noting that most related solutions are based on model-
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based approaches, which require accurate information in advance before solving 

the RA problem. In other words, these approaches usually find restrictions for 

large-scale networks. They are only applicable for low user data rates and QoS 

requirements, which are impractical for the future 5G and beyond networks. In 

order to address such limitations, different DRL algorithms are studied in this 

thesis. A concise overview of the RL, including the basic probabilistic 

formalism of the Markov decision process (MDP), is explained. Furthermore, 

the value-based and policy-based methods are also discussed to solve the 

required RA problem.  

• Chapter 3 presents a Double DQN-based RA framework that optimizes the 

long-term RA performance in terms of power minimization and EE 

maximization while taking into account the transmission power selection at 

each RRH and user rates. The CSI is added at the input of the network state and 

then uses the function approximation approach to solve the optimization 

problem. The starting point of this approach is the traditional approach, where 

the reward function is achieved from the immediate action while ignoring its 

effect to the future. In order to consider the future action consequence, a DQN 

approach is proposed using the past learning experiences and considering the 

future effects based on the current action decision. However, the action 

overestimation problem gives a lower probability limit to estimating the 

maximum Q-value. Therefore, in this approach, a Double DQN is presented that 

separates the selected action from the target Q-value generation leading to a 

higher value of energy savings at the CRAN. 

• Chapter 4 presents a Dueling DQN-based RA scheme intended to maximize 

the long-term tradeoff between EE-SE and satisfy the users’ QoS requirements. 
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The MOOP is first solved for EE and SE and then converted into a SOOP. 

However, EE and SE have different units and are thus inappropriate to directly 

add EE and SE. Therefore, the same metric unit is ensured in the weighted 

summation of EE and SE. A tunable parameter is used to adjust the priority of 

EE and SE. The AGH method is set up to limit the CSI generalized features 

before feeding them into the input of DRL. The Dueling DQN method is then 

configured to learn the near-optimal control strategy to turn on/off the RRHs to 

maximize the joint EE-SE performance and satisfy the users’ QoS requirements. 

The improved EE-SE performance is examined with the Dueling DQN based- 

AGH method. Finally, the proposed Dueling DQN based-AGH method is 

evaluated by comparing it with the Dueling DQN without CSI generalization, 

Q-learning, and myopic approach. 

• Chapter 5 presents the CNN-based DQN (CNN-DQN) approach in the 

downlink CRAN to simultaneously balance the EE performance and satisfy the 

users’ QoS demand. In this method, the CNN approach is combined with DQN, 

where the CNN phase is responsible for extracting the input state information 

containing the CSI feature. The extracted feature of CNN is then fed to DQN, 

which is responsible for finding the optimal policy for turning on/off the RRHs 

based on the user demand. 

• Chapter 6 concludes this thesis and presents some of the possible directions 

for future research work.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

Massive connectivity between heterogeneous users, including vehicles, 

humans, and machines, are expected in the next generation of wireless 

communication systems, resulting in diverse QoS requirements. Furthermore, 

the network dynamics, traffic variation, and user mobility mandate efficient 

utilization of network resources. A network resource is a process of allocating 

resources, like power and spectrum, to the wireless network, commonly known 

as resource allocation (RA), in order to provide high-quality QoS to wireless 

communication networks. This thesis considers RA functionalities concerned 

with power allocation, user QoS satisfaction, and EE applied to the 5G and 

beyond wireless networks. This chapter presents the state of the artwork related 

to solving wireless networks’ RA problems. Specifically, chapter 2 focuses on 

two methods, i.e., the traditional and machine learning-based methods. The 

starting point is to provide an overview of the traditional methods that have been 

widely used to solve the RA problem in a typical wireless network. Afterwards, 

the machine learning-based methods, including RL and DRL, are presented. 

The various algorithms adopted by the wireless network to solve the RA 

problem are summarized in Table 2.1. 

Table 2.1: Research work summary for RA in wireless network 

Method Ref. Constraints  Objective Approach 

used 
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(Chai et al., 

2021) 

Average 

transmission 

rate, 

subcarriers, 

total transmit 

power 

Maximize EE 

performance 

Mathematical     

  Approach 

(Luo, Chen 

and Tang, 

2018) 

Maximum 

transmit power, 

fronthaul 

capacity limit, 

and total 

transmission 

rate 

Jointly 

optimize the 

system power 

consumption 

and delay 

performance 

while 

guaranteeing 

user QoS and 

fronthaul 

capacity. 

Mathematical     

  Approach 

(Wang, 

Zhou and 

Mao, 2016) 

Maximum 

Transmit 

power, QoS 

constraint, 

queue stability, 

fronthaul 

capacity limit 

Maximize the 

EE 

optimization 

problem. 

Mathematical     

  Approach 

(Peng et 

al., 2016) 

Minimum data 

rate, maximum 

transmit power 

Improve the EE 

performance in 

a downlink 

heterogeneous 

Mathematical     

  Approach 
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CRAN (H-

CRAN). 

(Huang et 

al., 2020) 

Transmission 

rate, maximum 

transmission 

power 

Maximize the 

EE RA problem 

in fog 

computing 

under the 

transmission 

power 

constraints. 

Mathematical     

  Approach 

(Chughtai 

et al., 

2018) 

Transmit 

power, energy 

causality, QoS 

Maximize EE 

performance. 

Programming   

 Approach 

(AlQerm 

and 

Shihada, 

2018) 

User 

association, 

transmit power, 

QoS 

requirements,   

To maximize 

EE and mitigate 

interference 

while 

maintaining 

users’ QoS 

requirements. 

Programming   

 Approach 

(Tham et 

al., 2017) 

Transmit 

power, data 

rates 

Maximize EE 

in a downlink 

multiuser 

distributed 

antenna system 

(DAS).   

Programming   

 Approach 

(Tang et 

al., 2014) 

QoS 

requirements, 

Joint tradeoff 

performance of 

Programming   
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maximum 

transmit power 

EE-SE as a 

resource 

efficiency (RE). 

 Approach 

(Farhadi 

Zavleh and 

Bakhshi, 

2021) 

User’s 

association, 

fronthaul 

capacity, QoS 

requirements, 

transmit power 

To maximize 

the total sum 

rate. 

Programming   

 Approach 

(Ari et al., 

2019) 

Transmit 

power, 

fronthaul 

capacity,  

To reduce 

overall network 

cost while 

maintaining 

user QoS and 

QoE.  

Heuristic  

Approach 

(Aqeeli, 

Moubayed 

and Shami, 

2018) 

QoS 

requirements, 

Transmit 

power, 

To minimize 

the power 

consumption. 

Heuristic  

Approach 

(Lin and 

Liu, 2019) 

Maximum 

power, 

fronthaul 

capacity 

To maximize 

system 

throughput. 

Heuristic  

Approach 

(Zeng et 

al., 2018) 

Maximum 

power, data 

rate, bandwidth 

To minimize 

the network 

power 

consumption. 

Heuristic  

Approach 
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(Dinh et 

al., 2021) 

Maximum 

transmit power, 

fronthaul 

capacity 

To maximize 

the EE 

performance. 

Heuristic  

Approach 

M
ac

h
in

e 
L

ea
rn

in
g

-b
as

ed
 M

et
h

o
d

s 

   

(Sun, 

Boateng, 

Huang, et 

al., 2019) 

Maximum 

transmit power, 

interference 

threshold 

To balance 

energy 

consumption 

and satisfy user 

QoS demand.  

Q-learning 

(Sun, 

Boateng, 

Ayepah-

Mensah, et 

al., 2019) 

Maximum 

transmit power, 

throughput  

To maximize 

EE and 

maintain QoS 

requirements. 

Q-learning 

(Khan et 

al., 2020) 

Maximum 

transmit power, 

minimum level 

of SE 

To improve 

joint energy and 

spectral 

efficiency. 

Q-learning 

(Peesapati 

et al., 

2021) 

Average UE 

rate, a sum of 

encoding and 

decoding 

power 

consumption of 

the BS 

To reduce the 

energy 

consumption of 

a BS under 

variable input 

traffic demand 

Q-learning 

(Xu et al., 

2017) 

Transmit 

power, user 

demand 

To achieve a 

significant 

amount of 

DQN 
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power savings 

while meeting 

user demands 

simultaneously  

(Y. Luo et 

al., 2020) 

User demand, 

transmit power 

To save the 

dynamic power 

consumption. 

DQN 

(Hsieh, 

Chan and 

Chien, 

2021) 

Transmit 

power, 

backhaul 

capacity, user 

rates 

To enhance EE 

while satisfying 

the user QoS. 

DQN 

(Tasnim 

Rodoshi, 

Kim and 

Choi, 

2020) 

Maximum 

BBU capacity, 

user demands 

To minimize 

resource waste 

and unsatisfied 

user demands 

by allocating 

resources 

optimally. 

DQN 

(Zhang et 

al., 2020) 

Transmit 

power, data 

rate 

To improve the 

system 

performance in 

terms of 

energy-saving 

and QoS 

guarantee. 

Double DQN 

(Zhao et 

al., 2020) 

Transmit 

power, delay 

To maximize 

the total system 

Double DQN 
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capacity while 

guaranteeing 

strict 

transmission 

delay and 

reliability. 

(Li, Xu and 

Li, 2021) 

Transmit 

power, data 

rate, delay, 

maximum 

computational 

resources 

To minimize 

the energy 

consumption 

and latency  

Double DQN 

(Yuan et 

al., 2021) 

Maximum total 

power, user’s 

interference 

temperature 

Jointly 

optimizes 

cognitive users' 

spectrum 

efficiency and 

quality of 

experience 

through the 

cognitive user’s 

channel 

selection and 

power control. 

Double DQN 

(Sun, 

Ayepah-

Mensah, 

Transmit 

power, user 

data rate 

To minimize 

power 

consumption 

and guarantee 

QoS 

Dueling DQN 
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Xu, et al., 

2020) 

satisfaction by 

using CNN-

based relational 

dueling DQN. 

(Liu et al., 

2019) 

Throughput, 

RB association, 

finite amount 

of UE. 

Joint 

optimization of 

EE and SE of 

the network. 

Dueling DQN 

(Sun, 

Ayepah-

Mensah, 

Budkevich, 

et al., 

2020) 

The user data 

rate, maximum 

power 

To minimize 

total energy 

consumption. 

Dueling DQN 

(Gholipoor 

et al., 

2021) 

Transmit 

power, data 

rate, server 

time, CPU 

cycle, storage 

size, delay,  

To maximize 

EE and 

guarantee E2E 

QoS. 

Actor-critic 

(Wei et al., 

2018) 

Maximum 

power, data 

rate 

Maximizing EE 

of the overall 

network. 

Actor-critic 

(Li et al., 

2021) 

Beamforming 

vector, transmit 

power 

Maximize the 

long-term EE. 

DDPG 

(Zhang, 

Zhu and 

QoS 

requirement, 

To maximize 

the EE in the 

DDPG 
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Wang, 

2021) 

association 

relationships 

between UEs 

and BSs  

long term for 

D2D. 

(Meng et 

al., 2020) 

Maximum 

power, QoS 

requirements 

To maximize 

the sum-rate 

DDPG 

 

2.1 TRADITIONAL OPTIMIZATION METHODS 

One of the significant challenges of the future wireless networks (5G and 

beyond) is successfully managing power consumption, maximizing EE, and 

satisfying the user’s QoS requirements due to the increasing popularity of 

smartphone applications. Thus, many scholars have expressed their interest in 

proposing a lasting solution to the aforementioned problems. The traditional 

methods (Chughtai et al., 2018), (Labana and Hamouda, 2020) and (Zhang et 

al., 2019) effectively optimize the RA problem from the short-term perspective. 

The traditional methods are primarily used to achieve the objective function at 

each time slot. For example, excessive switching between RRHs in adjacent 

time slots may increase network deployment costs. The traditional methods 

generally include the mathematical, programming, and heuristic approaches to 

solve the required objective function. Some of the related work based on the 

traditional methods are summarized as: 

An energy-efficient based RA algorithm for multi-radio access technology 

(RAT) networks is presented in (Chai et al., 2021), allowing the UEs to transmit 

data over multiple radio interfaces in order to leverage the complementary 
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advantages of the different RATs. The RA is modelled as a stochastic EE 

maximization problem. Furthermore, the virtual queue is established for each 

UE to offer more flexibility for RA over time-varying channel fading. The 

Lyapunov optimization approach is adopted to convert the non-concave EE 

maximization problem into a Mixed-Integer Nonlinear Optimization (MINO) 

problem. The MINO problem is then solved by using Lagrange dual methods to 

develop an energy efficient-based dynamic joint subcarrier and power 

allocation algorithm that does not rely on prior knowledge of CSI. Finally, the 

simulation performance is derived to maximize the EE and satisfy the time 

average QoS constraints.  

In (Luo, Chen and Tang, 2018), the authors provide a modified BS power 

consumption model based on the well-known EARTH model to make the power 

consumption model more compatible with CRAN. The BS sleeping strategy is 

proposed based on the Lyapunov method to reduce power consumption 

significantly. The problem formulation is based on two factors, i.e., the number 

of handovers and the delay. However, these factors affect QoS and power 

consumption. Therefore, these factors need to be considered and resolved 

together for CRAN. 

In (Wang, Zhou and Mao, 2016), an energy-efficient joint resource scheduling 

scheme based on BBU computation and RRH resources is proposed in CRAN. 

A weighted minimum mean square error (WMMSE) approach is used to obtain 

the energy-efficient beamforming vectors under per-UE QoS requirements and 

fronthaul capacity constraints. The derived theoretical results show that 

simulation results prove the tradeoff between EE and delay. 
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An energy-efficient based RA in queue-aware multimedia heterogeneous 

CRAN (H-CRAN) is studied in (Peng et al., 2016), where CRAN maintains a 

queue for each RRH and user. However, the RA problem has not examined the 

delay requirement, which is an important QoS parameter for delay-sensitive 

applications. 

In (Huang et al., 2020), the RA problem in fog computing networks is examined 

based on the fog nodes mechanism to balance network load under transmission 

rate performance constraints. A fog node reporting a nonzero computation 

capability becomes the candidate of the fog node. Furthermore, Lyapunov 

optimization for each time slot is used to maximize the network EE 

performance.  

The problem explained in (Chai et al., 2021), (Luo, Chen and Tang, 2018), 

(Wang, Zhou and Mao, 2016), (Peng et al., 2016), and (Huang et al., 2020) 

belongs to the classical mathematical method, where a Lyapunov optimization 

algorithm is used to solve the RA problem. The primary advantage of this 

method is that it can obtain a closed-form expression for its objective function 

in each time slot. However, this method explicitly relies on exact objective 

functional expressions that are difficult to abstract from many real-world 

optimization scenarios. Moreover, such methods cannot be guaranteed in a 

highly dimensional scenario.  

The second approach to the traditional method is the programming method, 

which has been widely used to solve various RA problems in wireless networks.  

In (Chughtai et al., 2018), the EE problem is explored for H-CRAN. The 

optimization problem for EE is solved by mixed-integer nonlinear 
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programming. Based on the simulation results, higher EE is achieved with low 

complexity and lower grid power consumption.  

The work in (AlQerm and Shihada, 2018) proposes the online RA model for H-

CRAN to maximize the EE while maintaining the user QoS requirements. The 

proposed method reduces the convergence time and overcomes the curse of 

dimensionality since resources are allocated based on the number of UEs with 

high QoS constraints. Thus, it is unfair to those with low QoS constraints. 

Therefore, finding a mechanism to solve this tradeoff problem is essential.  

In (Tham et al., 2017), the energy-efficient power allocation scheme is proposed 

for a downlink distributed antenna system with the objective of maximizing the 

EE on per antenna transmit power and data rate constraints. The authors convert 

the nonlinear fractional EE problem to a single variable nonlinear equation by 

Charnes cooper transformation, which is then solved via Karush-Kuhn-Tucker 

to achieve optimal power. The authors further proposed full power mode 

operation to deliver higher SE at the rate of losing EE.  

In (Tang et al., 2014), the tradeoff between EE-SE is proposed for Orthogonal 

Frequency Division Multiple Access (OFDMA) cellular networks via different 

transmission bandwidth requirements. The proposed algorithm simultaneously 

optimizes the EE and SE performance and balances the power consumption and 

occupied bandwidth. Furthermore, the authors propose a suboptimal algorithm 

based on a uniform power allocation scheme to reduce the complexity.  

In (Farhadi Zavleh and Bakhshi, 2021), the joint user association and power 

allocation for a sparse code multiple access are investigated in CRAN. The 

objective is to accomplish the maximum sum rate under the constraints of total 
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RRHs available power, user association, fronthaul capacity, user power, and 

QoS requirements for each user. The RA problem is solved by considering the 

successive convex approximation method.  

The literature discussed in (Chughtai et al., 2018), (AlQerm and Shihada, 2018), 

(Tham et al., 2017), (Tang et al., 2014), and (Farhadi Zavleh and Bakhshi, 2021) 

solves the RA problem based on the programming method, which can be helpful 

to solve a sequence of the optimization problem. However, this approach relies 

on the iteration function, where the objective function is recalculated at the 

beginning of each iteration. Thus, this method requires a high calculation cost 

to realize real-time decision-making problems. Furthermore, this method also 

relies on the accurate predictions of wireless networks, which are difficult to 

achieve in real scenarios. 

The third category of the traditional approach is generally called as a heuristic 

method, which is mainly used to solve the non-convex optimization problem 

and achieve a local optimum solution with a certain probability.  

The work in (Ari et al., 2019) presents an efficient RA scheme for 5G in CRAN 

called Bee-Ant-CRAN. This work aims to minimize the overall network cost 

and maintain the user QoS and QoE requirements. The RA optimization 

problem is then decomposed into two stages, i.e., UE-RRH association and 

BBU-RRH mapping. The UE-RRH association is performed using a swarm 

intelligent-based approach, while an ameliorated ant colony optimization 

algorithm is used to accomplish the BBU-RRH mapping.  

An optimal computational RA between RRHs and UE is studied in (Aqeeli, 

Moubayed and Shami, 2018). The formulated problem relies on the physical 
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RA to determine the necessary computational resources for the users. The RA 

problem is formulated by utilizing the decomposition model. Furthermore, the 

decomposition model is solved by using the heuristic solution to achieve 

optimal performance with less power consumption for CRAN. 

In (Lin and Liu, 2019), maximizing the network throughput via jointly 

optimizing scheduling, power allocation, subcarrier assignment, and user 

association in a user-centric OFDM-based CRAN is considered. In this work, a 

Lagrange duality approach is proposed to solve the RA problem and a heuristic 

method that reduces its network complexity. However, it still requires high 

computational complexity to reach high-quality QoS solutions. 

A green CRAN architecture using distributed renewable resources and a 

traditional power grid is proposed in (Zeng et al., 2018). To reduce non-

renewable energy consumption, the author presents a heuristic method to 

optimize the number of active RRHs at any given time with a given set of QoS 

constraints. 

Similarly, the EE performance in fog RAN (FRAN) is formulated in (Dinh et 

al., 2021). Augmented Lagrangian (AL) and heuristic methods are formulated 

to solve the RA problem in FRAN. AL explicitly determines the local edge 

processing of FRAN, whereas the computational complexity is alleviated by the 

heuristic method.  

The work explained in (Ari et al., 2019), (Aqeeli, Moubayed and Shami, 2018), 

(Lin and Liu, 2019), (Zeng et al., 2018), and (Dinh et al., 2021) solves the RA 

problem based on the heuristic method. The heuristic method is beneficial for 

solving big data problems and complex situations. However, such approaches 
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are not fastened and cannot be rigorously proven by mathematics. 

2.2 CRITICAL ANALYSIS ON TRADITIONAL METHODS 

Wireless networks of the future (5G and beyond) must be able to accommodate 

the rapid growth of mobile data traffic and a growing number of mobile users 

to utilize various applications and services efficiently. Over time, the networks 

become more dense, heterogeneous, decentralized, and ad hoc and various 

network entities are incorporated into them. Due to this, different objectives 

must be met in terms of service, including high throughput and low latency, and 

the appropriate allocation of resources must be determined. However, 

considering the uncertainty, increasing complexity, and data dimension of the 

future wireless networks (5G and beyond), the traditional methods discussed in 

the above section require accurate, complete and perfect knowledge of the 

systems in advance. Such information is always inefficient or even inapplicable 

when solving the decision-making and control problems. 

Furthermore, it is vital to determine the optimized decisions for the future 

wireless network entities with different objectives, such as minimizing energy 

consumption, maximizing data rates, and reducing network latency. Moreover, 

it is challenging for the traditional approaches to achieving optimal resource 

management and service management in mobile networks, such as time-varying 

wireless channels, which have a wide range of service requirements. Machine 

learning-based methods have proven to be a highly useful tool for real-time, 

dynamic decision-making problems in such time-varying and unpredictable 

network environments.  

2.3 MACHINE LEARNING-BASED OPTIMIZATION METHODS 
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Data have grown enormously across many fields in the past two decades, 

resulting in the big data challenge, which has led to a need for intelligent data 

analysis schemes. Several ML methods have been developed, such as DL, to 

deal with the big data problem. ML method is generally known as the learn-

based method, where historical data is provided as an input to predict the future 

value. Recently, ML methods have been used for wireless networks. 

Supervised learning (SL), unsupervised learning (UL), and reinforcement 

learning (RL) are three of the main categories of ML. These three categories 

differ in how the algorithm is trained (Kubat, 2017). In SL, a set of labelled data 

is provided at the input with their corresponding output. SL algorithms are well-

suited to the application with already known data, such as feature extraction and 

classification tasks. A variety of wireless communication problems have been 

tackled with features extraction and classification, such as weighted throughput 

maximization (Eisen et al., 2019), EE (Zappone, Technologies and Labs, 2018), 

and device-to-device (D2D) throughput maximization (Kim et al., 2020). SL 

methods require large amounts of labelled data, which has limited its 

applicability for power allocation, as the optimal power values are usually not 

known in advance. The second category of ML is UL, where the goal of UL is 

to find the inherent structure from the unlabelled data, and this method is 

convenient for solving clustering tasks. Similarly, UL has also been applied to 

solve several wireless communication problems, such as power control 

(Nikbakht, Jonsson and Lozano, 2021), maximizing the sum rate (Hou et al., 

2021) and EE (Chang et al., 2018). However, the agent in the UL algorithm 

requires a large amount of unclassified data to produce intended target values. 

Therefore, such methods usually require a huge amount of data to find the 
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similarities and differences between data points. The third category of ML is 

generally called RL. In RL, the agent’s goal is to predict the optimal action that 

it should take to achieve the highest reward by using feedback from the 

environment. As such, the agent uses feedback from the environment to 

improve its performance in a specific task. RL is unsupervised, but its learning 

process differs from other UL techniques. RL tries to determine the best actions 

based on the optimal policy instead of learning the data structure. 

This thesis mainly focuses on the RL-based approach to solving the RA problem 

in wireless networks. Recently RL has shown tremendous improvements in 

optimizing the RA problems in the wireless network from a long-term 

perspective. Therefore, the overview of RL is presented first for better 

readability before discussing different algorithms to solve the RA problems.  

2.4 OVERVIEW OF REINFORCEMENT LEARNING 

RL refers to the process of learning that occurs when a decision-maker (i.e., an 

agent) interacts with their environment. Specifically, an RL agent interacts with 

its environment, executes an action decision, and receives feedback (reward). 

An agent observes its environment as a state. The state of a domain should 

efficiently retain relevant information about the environment, including 

immediate and past observations. A state signal satisfying this condition is said 

to possess Markov property. Thus, the RL problem is formulated as the Markov 

Decision Process (MDP). The MDP generally has four-elements tuples, i.e., 

(state, action, reward, and transition probabilities). Typically, at each iteration 

ꞇ, the agent obtains some observation of the environmental state 𝑠ꞇ ∈ 𝔖, where 

𝔖 indicates the set of possible states and then executes an action 𝑎ꞇ ∈  𝔄(𝑠ꞇ); 
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𝔄(𝑠ꞇ) specifies the set of possible actions for the state 𝑠ꞇ. The agent receives a 

reward value 𝑅ꞇ in response to executing the action. Finally, the agent moves to 

the next state with a certain probability known as transition probability 

𝑝𝑟(𝑠ꞇ+1|𝑠, 𝑎) = 𝑃{(𝑠ꞇ+1|𝑠ꞇ = 𝑠, 𝑎ꞇ = 𝑎)}. The basic illustration of MDP is 

depicted in Figure 2.1, and the ultimate objective of the RL agent is to find the 

optimal policy 𝜋∗ that maximizes the total expected reward, as follows: 

where 𝜋(𝑠) represents the policy of a state for optimal action. 𝜇 ∈ (0, 1) denotes 

the discount factor and shows the importance of immediate and future rewards. 

The lower value of 𝜇 indicates the immediate reward, while a value close to 1 

specifies the future reward. Two main methods are used to solve the RL 

problem, i.e., the value-based and policy-based methods (Kai Arulkumaran and 

Miles Brundage, 2017).  

2.4.1 Value-Based Method 

In the value-based method, the RL agent learns the value of state and action to 

choose the best action in a particular state. The value-based method is further 

split into two different functions, i.e., the state-value function 𝑉𝜋(𝑠) and the 

state-action value function 𝑄𝜋(𝑠, 𝑎). The state-value function can achieve the 

expected return when starting from a state 𝑠𝑡ℎ and acting on our policy as: 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜋(𝑠)

𝔼[𝑅ꞇ + 𝜇𝑅ꞇ+1 + 𝜇
2𝑅ꞇ+2 +⋯|𝑠ꞇ = 𝑠, 𝑎ꞇ = 𝑎] (2.1) 
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Figure 2.1: MDP illustration 
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The optimal policy for the corresponding state-value function can be defined as: 

𝑉∗(𝑠ꞇ) = max
𝜋
𝑉𝜋(𝑠ꞇ) , 𝑠 ∈ 𝔖 (2.3) 

Similarly, the state-action value function is the expected return starting with the 

state 𝑠𝑡ℎ, then taking action 𝑎𝑡ℎ followed by a certain policy. 

whereas 𝑄𝜋(𝑠, 𝑎) represents the state-action-value (also known as the quality-

value or Q-value) of policy 𝜋. The optimal Q-values can be defined as: 

𝑄∗(𝑠, 𝑎) = max
𝜋
𝑄𝜋(𝑠, 𝑎) (2.5) 

Temporal difference methods (Sutton and Barto, 2012), such as Q-learning and 

State-Action-Reward-State-Action (SARSA), are used to estimate the optimal 

state-action value function. In Q-learning, the agent policy can be approximated 

using the following update rule: 

𝑄ꞇ(𝑠ꞇ, 𝑎ꞇ) ← 𝑄ꞇ(𝑠ꞇ, 𝑎ꞇ) + 𝛾 [𝑅ꞇ+1 + 𝜇max
𝑎ꞇ+1

𝑄ꞇ+1(𝑠ꞇ+1, 𝑎ꞇ+1) − 𝑄ꞇ(𝑠ꞇ, 𝑎ꞇ)] (2.6) 

where 𝛾 and max
𝑎ꞇ+1

𝑄ꞇ+1(𝑠ꞇ+1, 𝑎ꞇ+1) indicates the learning rate and approximate 

Q-value of the successor state under the best action, respectively. In the same 

fashion, the SARSA updated the agent policy as: 

𝑄ꞇ(𝑠ꞇ, 𝑎ꞇ) ← 𝑄ꞇ(𝑠ꞇ, 𝑎ꞇ) + 𝛾[𝑅ꞇ+1 + 𝜇𝑄ꞇ+1(𝑠ꞇ+1, 𝑎ꞇ+1) − 𝑄ꞇ(𝑠ꞇ, 𝑎ꞇ)] (2.7) 

A fascinating fact about RL agents is that the design of their state and action 

functions can significantly influence their outcomes. Furthermore, all the state 

and action values are stored in the form of a lookup table. For each iteration, the 

lookup table needs to be updated. This process works well when dealing with 

low-dimensional Q-value function problems. However, when dealing with large 

𝑉𝜋(𝑠ꞇ) = 𝔼𝜋[𝑅ꞇ + 𝜇𝑅ꞇ+1 + 𝜇
2𝑅ꞇ+2 +⋯|𝑠ꞇ = 𝑠] (2.2) 

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[𝑅ꞇ + 𝜇𝑅ꞇ+1 + 𝜇
2𝑅ꞇ+2 +⋯|𝑠ꞇ = 𝑠, 𝑎ꞇ = 𝑎] (2.4) 
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Q-value function problems, this method becomes unstable because the RL agent 

cannot abstract all the valid information from the lookup table in a reasonable 

 time. Figure 2.2 presents an intangible overview of the lookup table methods 

of RL.  

2.4.1.1 RL Algorithm 

A Q-learning algorithm is a promising approach for solving many RA 

optimization problems in wireless communication systems. One widely used 

model-free RL algorithm is Q-learning for computing optimal policies that 

maximize long-term rewards. A reward function is introduced to map a state-

action pair to the expected cumulative reward (Q-value) in order to estimate and 

determine the optimal actions in response to different system states. Some of 

the work based on Q-learning is explained as follows: 

In (Sun, Boateng, Ayepah-Mensah, et al., 2019), an autonomous cell activation 

framework is proposed to balance wireless networks’ energy consumption and 

QoS satisfaction. Furthermore, an Anchor Graph Hashing (AGH) method is 
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introduced to discretize the state space value. A similar problem is studied in 

(Sun, Boateng, Huang, et al., 2019), where the fractional power and bandwidth 

adoption method are formulated to solve the RA problem for energy 

consumption and QoS requirements. In both cases, the reward function is 

related to energy consumption with a minimum number of active RRHs. 

However, the relationship between RRHs and UEs at the network state is not 

explicitly described. 

 The work in (Khan et al., 2020) presents joint Energy-Spectral Efficiency 

(ESE) approach in a multi-hop D2D communication. Improved system 

performance for ESE is obtained by using Q-learning. However, since EE and 

SE do not have the same units, it is unclear how the combined utility function 

should be processed.   

2.4.1.2 Deep Learning 

Recent advances in wireless networks have attempted to replicate the human 

brain’s neural structure by using Neural Networks (NNs). In particular, NNs 

consist of three main layers: input layers, hidden layers, and output layers, as 

shown in Figure 2.3. Each layer contains two different artificial processing: 
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weighted neurons and activation functions. The weighted neurons perform a 

mathematical function on information received from the input, whereas the 

activation function introduces non-linearity to the NNs. Softmax, ReLU, Tanh, 

and Sigmoid are some of the activation functions (Sutton and Barto, 2018). A 

set of neurons are located in the input layers and perform preprocessing on the 

input feature vector 𝑖. Moreover, a weighted connection of neurons is connected 

from a specific layer to the preceding layer. Finally, the NN is composed of the 

output layer 𝑜 of neurons that create and interpret the outcomes. The weights 

are adjusted according to inputs and the dataset’s expected outputs (inputs and 

labels). 

2.4.1.3 From RL to DRL  

The agent must maintain a set of state-action pairs for each Q-value function to 

maintain and update Q-value functions. However, the future generation of 

wireless networks will probably be large, decentralized, and heterogeneous, and 

thus the number of possible system state values will increase exponentially. 

Moreover, there can be hidden system states or unlimited possible system states 

due to the vast diversity and uncertainty in system components and environment 

parameters. As a result, calculating and maintaining all Q-value functions 

becomes practically impossible, and this is called the curse of dimensionality.  

The DRL model addresses this issue by combining RL and deep learning (DL) 

techniques. The DRL model uses a deep neural network (DNN) to approximate 

the Q-values functions. DRL parameters (state and reward) can be assigned 

based on different 5G system objectives, such as power consumption, state of 

RRHs, user demand, channel gains or throughput maximization, etc. The DQN  
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operates similarly to the Q-value function except for the addition of neuron and 

replay memory. All input states are transferred to different NN layers, each with 

different weight factors 휃 and  휃′. Finally, DQN generates the Q-value outputs 

with respect to possible actions. Furthermore, an experience replay memory is 

also used, where the network training is done by sampling a small batch of tuples 

from the replay buffer as 𝑒 = {𝑠, 𝑎, 𝑅, 𝑠′}, where 𝑠, 𝑎, 𝑅, 𝑠′ indicates the possible 

sets of state, action, reward and next state values, respectively. These samples 

are then used to refine the Q-value estimation at each iteration. A conceptual 

DRL architecture is shown in Figure 2.4. The goal of DQN is to seek and find 

the best possible weight factors from historical data, including historical Q-

values, actions, and state transitions. The complexity of calculating the Q-values 

and actions is linear for a DQN based on a multilayer perceptron as the 

underlying NN. 

Moreover, the number of inputs is determined only by all the types of states. 

With each input, several values can be transferred into different network states 
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without changing the structure of the DQN, even when the number of all values 

reaches infinity. Thus, DRL significantly reduces the issues of future 

communication systems in terms of network complexity. 

Furthermore, DRL can also be used for resource management and network 

optimization when resource capacities, such as those in edge and cloud services, 

are abundant. In (Xu et al., 2017), the DRL approach is applied in CRAN for 

power saving while maintaining user QoS demand in highly dynamic cases. The 

DQN-based algorithm is used to solve the RA problem. Moreover, user demand 

and state of RRHs are considered at the input of the network state, where the 

action is restricted to the active set of RRHs. The proposed framework results 

are compared with two baseline approaches. The DRL-based framework saves 

18% more power than the baseline approaches while maintaining the user QoS 

requirement. In (Y. Luo et al., 2020), a Gradient Boosting Decision Tree 

(GBDT)-based DQN-framework is proposed to solve the dynamic RA problem 

in CRAN. The GBDT is first utilized for regression tasks to approximate 

second-order cone programming (SOCP) problems derived from beamforming 

design, which generally consumes a high level of computing resources. After 

that, a DQN-based algorithm is generated to find the robust policy that controls 

the RRHs switching and saves power over the long-term operation. Like (Xu et 

al., 2017), the same state features, action values, and rewards function are 

considered by (Y. Luo et al., 2020).  

In (Y. Luo et al., 2020), joint power allocation and user association are 

considered in Heterogeneous CRAN (H-CRAN). This work considers the 

hybrid action, continuous action for power allocation, and discrete action for 

device association. The hybrid action is solved by using novel parameterized 
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DQN (P-DQN) instead of quantizing the continuous power value. Additionally, 

the only user data rate is considered at the input of the network state. In contrast, 

the action is based on power allocation and user association with maximizing 

the overall EE as a reward function. Finally, P-DQN is compared with 

conventional DQN and the traditional approach.  

The work in (Tasnim Rodoshi, Kim and Choi, 2020) presents a dynamically 

allocated resource solution based on DQN-algorithm that dynamically allocates 

resources to each virtual machine within a BBU pool in a CRAN. The DQN 

agent learns the variations in load across RRHs and allocates resources 

accordingly to the virtual machine. The proposed method can meet the users’ 

demands while minimizing resource waste and unsatisfied requirements based 

on simulation results. The performance of the proposed algorithm has been 

evaluated using a real-world cellular dataset. 

2.4.1.4 DOUBLE DQN 

DQN uses the same 𝑚𝑎𝑥 approximator to select and evaluate an action for the 

Q-values functions, which leads to an overestimation problem and degrades the 

system performance. In order to avoid the overestimation problem, Double 

DQN is proposed by (Hado van Hasselt, Arthur Guez, 2016). In Double DQN, 

two Q-networks are integrated to select and evaluate the action. In Double 

DQN, the one Q-network is used to determine the greedy policy of the main 

network for each update, whereas the second network is used to discover the 

value for the target network. Thus, Double DQN avoids the Q-value from 

overestimation and improves the objective function compared to DQN. The 

difference between DQN and Double DQN is illustrated in Figure 2.5. 
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The work in (Zhang et al., 2020) proposes a Double DQN-based BS sleeping 

algorithm to optimize the system EE and guarantee the users’ QoS 

requirements. Real-world traffic data is collected from commercial RAN for a 

period of seven days. Furthermore, the state space is defined as BS arrive traffic 

data, whereas action space is based on BS on/off switching. The simulation 

results show that Double DQN outperforms energy-saving and QoS 

requirements as compared to the conventional DQN algorithm. 

In (Yuan et al., 2021), a Double DQN algorithm is proposed to optimize the SE 

and QoE jointly by managing the power control and channel selection in a 

cognitive radio network. Moreover, the SINR value of the primary users is 

selected at the input of the network state, whereas the channel selection and 

power allocation for secondary users are allocated at the action space. Both the 

state space and action space take the discrete value of the primary and secondary 

users. Furthermore, simulation experiments are conducted to verify the stability 

and effectiveness of the Double DQN algorithm in the cognitive radio network, 
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and the performance is compared with Q-learning and DQN.  

A distributed DRL-based framework is introduced to acquire the optimal user 

association and RA strategy in a heterogeneous downlink network (Zhao et al., 

2020).  A multi-agent RL approach is proposed, which co-links UEs to BSs and 

allocates channels to UEs based on the Double DQN strategy. Optimization of 

the strategy ensures that UE’s QoS requirements are guaranteed while 

maximizing the long-term rewards function. 

2.4.1.5 Dueling DQN 

Double DQN uses two separate networks to alleviate the overestimation 

problem. However, achieving fast convergence is still challenging due to large 

network parameters. In order to further improve the objective function and 

achieve higher convergence speed (Wang et al., 2016) propose Dueling DQN. 

The idea behind Dueling DQN is that it is not always necessary to consider the 

value of each action. For some states, selecting an action has little or no 

impact. Therefore, selecting the state that strongly influences a particular action 

is necessary. Thus, the state-action Q-value (𝑠, 𝑎) can be disintegrated into 

two parts, i.e., value function 𝑉(𝑠) and advantage function 𝐴(𝑎). The value 

function specifies how good it is to be in a given state, whereas the advantage 

function indicates the relative importance of a specific action compared with 

other actions. The 𝑉(𝑠) and 𝐴(𝑎) are then combined into a single Q-value 

function at the final layer. This result may lead to a more accurate policy 

evaluation in the wireless communication networks.  

The work in (Sun, Ayepah-Mensah, Xu, et al., 2020) proposes a Dueling DQN 

algorithm to minimize energy consumption and guarantee users’ QoS 
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requirements. The proposed problem is divided into three parts. Firstly, a two-

layer convolutional neural network (CNN) is formulated to capture the raw 

observation of the environmental input. Secondly, Dueling DQN based 

framework is developed to turn on/off the RRHs. Finally, the RA problem is 

formulated based on the users and delay constraints. Moreover, the user 

transmission rate is considered at the input of the network state, and RRHs 

on/off switching decision is assumed for the action space. Similar work can also 

be found in (Sun, Ayepah-Mensah, Budkevich, et al., 2020), where the 

objective function is only to minimize the energy consumption using the 

function approximation method. Furthermore, users’ data rate and on/off RRHs 

state are considered at the network input state while the action is performed 

based on the RRHs on/off switch. The authors do not describe the relationship 

between RRHs and users at the network input state in both works. A joint 

tradeoff between EE and SE in a 5G ultra-dense network is proposed in (Liu et 

al., 2019). A Dueling DQN is developed to deal with the large state space 

explosion which is caused by the densification of the network. The traditional 

methods make it difficult to solve the large state space problem for MDP. The 

joint optimization problem of EE and SE for a multi-objective optimization 

problem (MOOP) is converted to a single-objective optimization problem 

(SOOP). Since EE and SE do not have the same units, the process is not clearly 

explained about the combined utility function.  

The literature explained in Q-learning, DQN, Double DQN, and Dueling DQN 

is based on the value-based method.  In the value-based method, the Q-value 

function is improved at each trajectory iteration sampled from the same 

environment until the Q-value function converges.  
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2.4.2 Policy-based Method  

RL also uses the policy-based method by redefining the policy at each iteration 

and computing the Q-value function according to the new policy until the policy 

converges. The policy-based method optimizes the objective function directly 

while remaining stable under the function approximation. In (Gholipoor et al., 

2021), a joint radio and core RA framework is proposed for Network Function 

Virtualization (NFV)-enabled networks with the goal of maximizing the EE by 

guaranteeing the end-to-end (E2E) QoS requirements for different service types. 

The optimization problem is formulated based on the policy-based optimization 

problem in which power and spectrum resources are allocated in the radio part. 

Thus, the joint optimization problem is formulated as an MDP by considering 

the time-varying characteristics of the resources and wireless channels. Hence, 

a soft actor-critic DRL algorithm (SAC-DRL) based on a maximum entropy 

framework is used to solve the proposed MDP problem. According to 

simulation results, the proposed joint approach using the SAC-DRL algorithm 

reduced energy consumption significantly compared to the case in which NFV-

RA and Radio-RA problems are optimized separately. However, such a process 

leads to an increase in system complexity. In (Wei et al., 2018), a model-free 

RL framework is formulated to solve the energy efficient-oriented user 

scheduling and RA problems. In this work, the authors consider the channel 

state condition and transmission power are continuous variables. The actor-

critic algorithm is used to learn the near-optimal stochastic policy. The actor 

part generates continuous actions based on parameterized stochastic policy, 

while the critic part evaluates the policy effectiveness and criticizes the action 

taken by the actor. Simulation results are presented to illustrate how the 



 

42 
 

proposed algorithm can improve the network’s EE when harvesting more 

system energy. The work in (Li et al., 2021) examines the DRL for 

beamforming in cell-free networks based on the closed-form of SINR per user 

and long-term EE function of MMSE and successive interference cancellation 

channel estimation. The DDPG-based algorithm is used to perform a centralized 

beamforming design for the long-term EE maximum problem with continuous 

state and action space. It shows that the DDPG-based algorithms are concurrent 

and can reduce the exponential computational complexity to a polynomial. In 

(Xu et al., 2020), the RA issue is examined in vehicular communications using 

DDPG, where each vehicle-to-vehicle (V2V) communication acts as an agent 

and shares the frequency spectrum assigned to vehicle-to-infrastructure (V2I) 

communications using NOMA technology. A DDPG-based power allocation 

scheme for V2V is proposed in (Nguyen et al., 2019), which strives to maximize 

EE without compromising the QoS for the V2V pairs.  

As with MDP, policy-based methods have some disadvantages; they generally 

take longer to become convergent and evaluating policies can be time-

consuming. Another disadvantage is that they tend to converge to local maxima 

rather than global maxima. Therefore, the policy-based method is beyond the 

scope of this thesis. The policy-based methods are generally used with the 

continuous state and action values, which requires a considerable amount of 

memory usage and computation consumption. Therefore, this thesis considers 

the Q-value function's discrete state and action values.  

2.5 SUMMARY OF CHAPTER 

This chapter presents the current state of the art work on solving the RA problem 

in wireless communication networks. Traditional optimization methods, 
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whether mathematical approach, programming approach, or heuristic approach, 

usually require lots of iterations to satisfy the required performance and lead to 

considerable computational power and delay complexity from an in-depth 

perspective. Secondly, the traditional optimization methods rely on the exact 

objective function, which means accurate information must be provided before 

solving the optimization problem, which is challenging to achieve in a highly 

dynamic scenario. Moreover, the complexity of the upcoming wireless 

communication networks is increasing exponentially. Therefore, it is very 

challenging for the traditional methods to find a robust policy with stable 

convergence results. The machine learning-based methods, especially RL and 

DRL, use a reward function to evaluate the decision behavior. RL method does 

not require the exact object function to solve the optimization problem. As RL 

makes the decision based on the current state and thus makes the online and 

real-time decision. Furthermore, RL is a decision-making method that provides 

more robust convergence results. The RL-extension, i.e., Q-learning, DQN, 

Double DQN, and Dueling DQN, solve the utility function following the value-

based method, are briefly discussed. Finally, a policy-based RL algorithm 

(DDPG and actor-critic) is explained. This thesis considers the discrete state-

action pairs (value-based algorithms) to update the Q-value function, where the 

optimal policy can be implicitly derived directly from the value function. In 

contrast, the policy-based method (DDPG and actor-critic) solve the continuous 

DRL problem, where the policy changes with each iteration to update the Q-

value function. The policy-based method is used to solve the more complex 

problem as many hidden layers are required to configure the neural network. It 

leads to an increment of the computational time and degrades the system 
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capacity.  
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CHAPTER 3 

 

DOUBLE DQN BASED RESOURCE ALLOCATION IN CLOUD 

RADIO ACCESS NETWORK 

 

In this chapter, the proposed model-free reinforcement learning (RL) is 

presented in order to optimize resource allocation (RA) problems in a cloud 

radio access network (CRAN). The RA problem is formulated as a Markov 

decision process (MDP) to reap the accumulative reward function. In particular, 

the power minimization and energy efficiency (EE) problem is addressed by 

using a double deep Q-network (Double DQN) algorithm. A simulation was 

carried out to illustrate the proposed scheme’s effectiveness in terms of power 

minimization and EE, with its results presented at the end of this chapter. 

3.1 INTRODUCTION 

The unprecedented demand for data traffic has prompted the 

telecommunications industry to adopt new technology, i.e., fifth-generation 

(5G). In order to meet the requirements of massively growing data traffic 

demand, CRAN has become a key enabling technique. However, it is still 

necessary to improve RA in CRANs over the long operational period. These 

RA are commonly associated with EE (Mesodiakaki et al., 2014), transmission 

power (Ali et al., 2017), and throughput (Dhif-Allah et al., 2018). However, 

these studies do not address the time-correlated scenario in which actions taken 

at time slot 𝑡 can alter the future utility distribution. For example, it has been 

shown that the energy switching costs of RRHs can be quite high (Yu et al., 

2016). Furthermore, these works have formulated the RA problem as a 
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conventional model-based optimization problem. 

Markov decision process (MDP) can be formulated to model the sequential 

decision-making RA problem of the model-free RL framework. As opposed to 

the model-based approach, the model-free approach maximizes the EE while 

simultaneously satisfying and meeting the users’ QoS demands for the whole 

operational period in a highly dynamic scenario. The model-free RL framework 

has two advantages. Firstly, they are capable of generating (sub)-optimal control 

actions based on feedback received from the environment. Secondly, they can 

maximize the network utility over long-term operations to make dynamic 

systems run more efficiently. A model-free RL algorithm called Q-learning has 

been used to solve the CRAN-RA problem. A Q-learning algorithm based on 

the base station on/off policy is proposed in (Miozzo et al., 2015) in order to 

minimize the total power consumption while satisfying the user’s data traffic 

demands. All the state-action pairs are stored in a lookup table in Q-learning, 

which works fine for a limited state-action pair problem. However, a significant 

problem with Q-learning is that it is not scalable when multiple actions follow 

many states (Karunakaran, Worrall and Nebot, 2020).  

Q-value function approximation via deep learning (DL) is a step forward from 

Q-learning known as deep Q-network (DQN), which is introduced to solve the 

limited state-action pair problem. The work in (H. Li et al., 2018) proposes a 

dynamic RA problem using the DQN algorithm for self-powered ultra-dense 

networks to improve the EE performance. A tradeoff problem between spectral 

efficiency (SE) and EE based on the DQN algorithm is presented in (Liu et al., 

2019). Similar approaches can be found in (J. Li et al., 2018) (Ye, Li and Juang, 

2019), where the environment scenarios are either mobile edge computing 
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(MEC) or vehicle-to-vehicle (V2V). However, DQN algorithms work with the 

same network parameters to update the target Q-value; they may overestimate 

the Q-value function. Therefore, in this chapter, the Double DQN framework is 

adopted to solve the overestimation Q-value problem, which incorporates two 

Q-networks for selecting and evaluating the actions. The proposed Double DQN 

based algorithm is energy efficient and provides better network performance to 

the Q-value function as compared to the conventional DQN. 

The rest of this chapter is unfolded as follows. Section 3.2 describes the system 

model, while Section 3.3 presents a Double DQN based RA problem. Finally, 

Section 3.4 presents simulation details and results. This chapter is summarized 

in Section 3.5. A list of the key mathematical notations used in this chapter is 

defined in Table 3.1.  

Table 3.1: List of Key Notations 

Notation Description 

𝒯 Time-period 

𝐷𝑢 Data rate demands 

ℛ Set of RRHs 

𝒰 Set of UEs 

ℬ BBU 

𝑃𝐿 Path loss 

𝑑𝑟,𝑢 Distance between the RRH and UE. 

ℎ𝑟,𝑢 Channel gain between the RRH and UE. 

𝜑𝑟,𝑢 Antenna gain between RRH and UE 
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𝜍𝑟,𝑢 
Shadowing coefficient between RRH and UE 

𝔶𝑟,𝑢 Small-scale fading between RRH and UE 

𝛾𝑢 Signal-to-interference-plus-noise ratio 

𝑤𝑟,𝑢 Beamforming weight between RRH and UE. 

𝜎2 Background noise 

B Transmission bandwidth 

𝛤𝑚 Capacity gap 

𝑝𝑟,𝑎𝑐𝑡𝑖𝑣𝑒 Active power 

𝑝𝑟,𝑡𝑟𝑎𝑛𝑠 Transmit power 

𝑝𝑟,𝑠𝑤𝑖𝑡𝑐ℎ Transition power 

 𝑝𝑟,𝑠𝑙𝑒𝑒𝑝 Sleep power 

ℳ Set of active mode RRHs 

𝒩 Set of sleep mode RRHs 

𝒮 Set of transition mode RRHs 

휂 
Power amplifier efficiency 

𝑆 Set of possible states, 

𝐴 Set of possible action 

𝐺 Reward 

𝑃𝑟  Transition probability 

𝜇 Discount factor 

𝜋 Policy 
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𝛼 Learning rate 

휃 The main network weighted factor 

휃′ Target network weighted factor 

𝑒𝑡 Experience replay 

𝐷𝑡  Mini-batch samples 

3.2 SYSTEM MODEL 

This chapter discusses a downlink CRAN, as shown in Figure 3.1, which 

consists of remote radio heads (RRHs) and a baseband unit (BBU). The BBU 

handles the digital signal processing (DSP), while RRHs transfer the data from 

the radio receiver to the end users’ equipment (UE), respectively. This work 

assumes that the BBU acts as an RL agent, which is continuously interacting 

with the unknown environment, selecting the appropriate action from the inputs 

of RRHs and UEs. Furthermore, a time-period 𝒯 is considered that is uniformly 

divided into time slot 𝑡, denoted as 𝒯= {1,2,…,𝑇}. Each UE’s position changes 

randomly and reports its data rate demands 𝐷𝑢 ∈ [𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥] and channel 

state information (CSI) to the BBU during a given time-period 𝒯. The BBU 

pool is aware of the data rate requirements of all UEs. In cases where such 

information is not available, the service provider will transmit such information 

to the BBU cloud. The RL agents then send switch decisions to RRHs and 

monitor the UEs mobility and its effect on switching. Finally, RL agents 

calculate the accumulative reward by aggregating the user satisfaction and 

power saving of all RRHs. The proposed model is simplified by assuming that 

all RRHs and UEs are equipped with a single antenna. However, such a model 
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can be generalized in the case of multiple antennas (Dai and Yu, 2016). 

3.2.1 Network Model 

As shown in Figure 3.1, a set of RRHs, a set of UEs, and a single BBU is 

considered and can be expressed as ℛ={1,2,…,𝑅}, 𝒰={1,2,…,𝑈}, and ℬ, 

respectively. According to (Y. Luo et al., 2020), the path loss of the system 

model is defined as: 

𝑃𝐿(𝑑𝑟,𝑢) = 148.1+37.6 log2𝑑𝑟,𝑢 dB (3.1) 

such that 𝑑𝑟,𝑢 indicates the distance between RRH 𝑟 and UE 𝑢. Furthermore, 

the channel fading model definition is taken from (Shi, Zhang and Letaief, 

2015) as: 

ℎ𝑟,𝑢=10
−𝑃𝐿(𝑑𝑟,𝑢)

20
⁄
√𝜑𝑟,𝑢 𝜍𝑟,𝑢 𝔶𝑟,𝑢 (3.2) 

whereas 𝜑𝑟,𝑢 , 𝜍𝑟,𝑢 and 𝔶𝑟,𝑢 corresponds to the antenna gain, shadowing 

coefficient, and small-scale fading between RRH and UE, respectively. The 

rayleigh channel fading model is considered in this work; where 𝔶𝑟,𝑢 is the 

 BBU/Agent 

RRH 1 RRH 𝑅 

RRH 2 

UE 𝑢 

Action State and 

Reward 

Figure 3.1: DRL Based CRAN scheme 
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independent and identically distributed (i.i.d) complex Gaussian random 

variable that captures the small-scale fading effects associated with a radio link 

between RRH and UE. As stated in (Dai and Yu, 2016), the RRHs 𝑟 cooperate 

to serve UEs 𝑢 jointly by beamforming. Thus, the signal-to-interference-plus-

noise ratio (SINR) of the UE 𝑢 at time slot 𝑡, 𝛾𝑢(𝑡) can be expressed 

mathematically as follows: 

𝛾𝑢(𝑡) =
|ℎ𝑢
𝐻(𝑡)𝑤𝑢(𝑡)|

2

∑ |ℎ𝑣
𝐻(𝑡)𝑤𝑢(𝑡)|

2 + 𝜎2
𝑣≠𝑢

 (3.3) 

Where ℎ𝑢(𝑡), (. )
𝐻 and 𝑤𝑢(𝑡) specify the channel gain, conjugate transpose of 

channel gain and beamforming weight between RRH 𝑟 and UE 𝑢 at time slot 𝑡, 

respectively, and each element of the channel gain and beamforming weight from 

RRH 𝑟 to UE 𝑢 can be written as ℎ𝑢(𝑡) = [ℎ1𝑢, ℎ2𝑢, … , ℎ𝑅𝑢]
𝑇 and 𝑤𝑢(𝑡) =

[𝑤1𝑢, 𝑤2𝑢, … , 𝑤R𝑢]
𝑇. 𝜎2 denotes the noise. According to Shannon capacity, the 

user data rate at time slot 𝑡, can be given as: 

𝐶𝑢(𝑡) = 𝐵log
2
(1+

𝛾𝑢(𝑡)

𝛤𝑚
) (3.4) 

𝐵 represents the channel bandwidth, and 𝛤𝑚 denotes the SINR gap, depending on 

a few practical factors, for example, modulation. 

3.2.2 Power Consumption Model 

Based on (Auer et al., 2012), the relationship between transmit power and 

receive power is basically linear. Thus, the linear power model can be applied 

to each RRH as: 

𝑝𝑟 =

{
 

 
1

휂
𝑝𝑟,𝑡𝑟𝑎𝑛𝑠 + 𝑝𝑟,𝑎𝑐𝑡𝑖𝑣𝑒      ;  𝑟 ∈ ℳ

 𝑝𝑟,𝑠𝑙𝑒𝑒𝑝                                          ;  𝑟 ∈ 𝒩

𝑝𝑟,𝑠𝑤𝑖𝑡𝑐ℎ                                      ;  𝑟 ∈ 𝒮

 (3.5) 
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such that 𝑝𝑟,𝑎𝑐𝑡𝑖𝑣𝑒 is the active RRH power, 𝑝𝑟,𝑡𝑟𝑎𝑛𝑠 is the transmission power 

and can be expressed as 𝑝𝑟,𝑡𝑟𝑎𝑛𝑠=∑ ∑  |𝑤𝑟,𝑢|
2

u∈𝒰𝑟∈ℳ , 휂 indicates the power 

amplifier drain efficiency and is assumed as a constant value, 𝑝𝑟,𝑠𝑤𝑖𝑡𝑐ℎ is the 

RRH switching power and  𝑝𝑟,𝑠𝑙𝑒𝑒𝑝 is the RRH sleep power of RRH 𝑟. Whereas 

ℳ, 𝒩 and 𝒮 represent the sets of active, sleep, and mode-transition RRHs, 

respectively. Thus, at time slot 𝑡, the total power 𝑝𝑡𝑜𝑡𝑎𝑙  of all RRHs is updated 

as follows:  

𝑝𝑡𝑜𝑡𝑎𝑙(𝑡) =∑ ∑
1

휂
|𝑤𝑟,𝑢(𝑡)|

2
+

𝑢∈𝒰𝑡𝑟∈ℳ𝑡

∑ 𝑝𝑟,𝑎𝑐𝑡𝑖𝑣𝑒
𝑟∈ℳ𝑡

+∑ 𝑝𝑟,𝑠𝑙𝑒𝑒𝑝+
𝑟∈𝒩𝑡

 

∑ 𝑝𝑟,𝑠𝑤𝑖𝑡𝑐ℎ
𝑟∈𝒮𝑡

 

(3.6) 

3.2.3 Definition of Spectral Efficiency and Energy Efficiency in CRAN 

SE and EE are the two primary considerations for designing any efficient wireless 

communication system. The SE is defined as the ratio of throughput 𝐶𝑢 to total 

available bandwidth 𝐵 and can be represented as bits per Hertz. Mathematically, 

the SE is expressed as: 

𝑆𝐸(𝑡)=
∑ 𝐶𝑢(𝑡)
𝑈
𝑢=1

𝐵
 (3.7) 

In the same way, EE represents bits of transmitted information per joule and can 

be defined as the ratio of throughput 𝐶𝑢 to total power consumption 𝑝𝑡𝑜𝑡𝑎𝑙(𝑡) at 

time slot 𝑡. Mathematically, EE is given as: 

𝐸𝐸(𝑡) =
∑ 𝐶𝑢(𝑡)
𝑈
𝑢=1

𝐵 × 𝑝𝑡𝑜𝑡𝑎𝑙(𝑡)
 (3.8) 

In particular, when the transmission power distribution is uncontrolled, the EE 

will not be as high even with the high data rate. Therefore, an appropriate power 
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distribution scheme must be designed to obtain a higher EE. 

3.2.4 Problem Formulation  

EE is an essential component of the design of future wireless communication 

networks. Therefore, EE is regarded as a network utility function in this chapter. 

This chapter aims to maximize the long-term benefits of EE under certain 

constraints, including per-RRH transmission power and user data rate. The EE 

optimization can be accomplished by selecting a set of active RRHs during the 

time slot 𝑡 and choosing the transmit power levels of the RRHs. Too much 

on/off switching of RRHs should be avoided in order to avoid a switching 

penalty 𝑝𝑟, switch. Let denote the overall beamforming weights by a matrix 

𝑤 with [𝑤]𝑟,𝑢 = 𝑤𝑟,𝑢. Thus, the EE problem can be formulated as follows: 

 

max    ∑𝐸𝐸(𝑡)

𝑇

𝑡=1

 (3.9) 

subject to  𝐶𝑢(𝑡) ≥ 𝐷𝑢(𝑡), ∀𝑢 ∈ 𝒰, ∀𝑡 ∈ 𝒯 (3.9.1) 

 ∑|𝑤𝑟,𝑢(𝑡)|
2
≤ 𝑃𝑟,

𝑢∈𝒰𝑡

 ∀𝑟 ∈ ℳ𝑡, ∀𝑡 ∈ 𝒯 (3.9.2) 

Constraint (3.9.1) stipulates that users’ data rates must be greater than or equal 

to each UEs’ target data rate. Constraint (3.9.2) specifies the maximum amount 

of power transmitted by the RRHs. Due to the interdependence between on/off 

switching decisions in adjacent time intervals, problem (3.9) cannot be solved 

directly. Additionally, the network traffic demands fluctuate both in the 

temporal and spatial domains. Using RL can effectively solve such a problem 

and motivate the design of subsequent solutions. 
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3.3 DOUBLE DQN BASED RESOURCE ALLOCATION 

OPTIMIZATION 

In this section, a DRL-based algorithm is applied to solve the Equation (3.9) 

problem. Since the cumulative reward is to maximize the long-term EE 

performance based on RRH’s actions in the CRAN is inevitably influenced (Liu 

et al., 2021). It must be taken into account that the network environment state is 

time-variant. It is also assumed that the current state of the environment and 

actions influence the total rewards. For the optimization problem, a Markov 

decision process (MDP) is then formulated, which consists of a tuple of 

(𝑆, 𝐴, 𝐺, 𝑆′), where 𝑆 and 𝐴 denote the sets of possible states and actions, 

respectively (Zhang, Zhang and Qiu, 2020). The RL agent observes the current 

state 𝑠𝑡 ∈ 𝑆 and chooses an action 𝑎𝑡 ∈ 𝐴 at time slot 𝑡. Based on the chosen 

action, a reward is generated from the environment 𝐺(𝑠𝑡, 𝑎𝑡), and the agent 

moves to the next state with a certain probability known as transition probability 

𝑃𝑟(𝑆
′|𝑠𝑡, 𝑎𝑡). The basic elements of RL used in this chapter are presented first. 

After that, RL algorithm is proposed to solve the optimization problem. 

3.3.1 Basic RL Elements 

The essential elements of RL are defined first for the proposed model. 

➢ State Space 

At the time slot 𝑡, the RL agent should have the knowledge of all the UE data 

rate demand 𝐷𝑢(𝑡), the status of all RRHs 𝑣𝑟(𝑡), and CSI 𝑔𝑟,𝑢(𝑡). 

Mathematically, the state space is defined as: 

𝑠(𝑡) = [𝐷𝑢(𝑡), 𝑣𝑟(𝑡), 𝑔𝑅,𝑈(𝑡)   ]
𝑇

 (3.10) 
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𝑣𝑟(𝑡) indicates a binary value of RRH 𝑟, such that 𝑣𝑟(𝑡)=1, means that RRH 𝑟 

is on; otherwise, 𝑣𝑟(𝑡) = 0, and 𝑔𝑅,𝑈(𝑡) implies the CSI between RRH 𝑟 and 

UEs 𝑢, which is updated dynamically with the UEs' random movement. 

➢ Action Space 

The action space is based on the RRHs on/off switching decision at time slot 𝑡. 

The action space can be expressed as 𝑎𝑟(𝑡) ∈ {0,1}. However, the RL agent 

must decide action based on the active set of RRH after successfully exploring 

the environment state. Note that the action can impact the next state 𝑠′ in the 

next time slot 𝑡 based on the active set of RRH. 

➢ Reward 

In this chapter, the reward is based on EE improvement, which can be 

determined as follows: 

Several iterative methods can be used to solve MDP problems, including 

dynamic programming (DP) and Q-learning (Geramifard et al., 2013). 

However, DP requires accurate information about the environment as well as 

the reward function. As the CRAN for the 5G network environment is highly 

dynamic, this is incredibly very challenging for DP to have this kind of 

information in advance. Therefore, Q-learning is utilized to maximize the total 

accumulated expected value without directly modelling the CRAN 

environment. 

3.3.2 Double DQN Based Strategy  

Note that the RL agent aims to find the optimal policy 𝜋∗: 𝑆 → 𝐴 to maximize 

𝐺(𝑡)  =  𝐸𝐸(𝑡)  =  
∑ 𝐶𝑢(𝑡)
𝑈
𝑢=1

𝐵 × 𝑝𝑡𝑜𝑡𝑎𝑙(𝑡)
 

  

(3.11) 
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the long-term accumulative reward function. Instead of sending its optimal 

policy, the RL agent iteratively sends the required user demand to its associated 

RRHs. Thus, the RL agent tries to learn its optimal policy 𝜋∗: 𝑆 → 𝐴 based on 

the state space elements. In this way, a global channel state is obtained between 

the RRHs and the UEs. The RL agent then needs to determine the optimal policy 

to achieve the maximum cumulative discounted reward with the QoS 

constraints (Fan and Li, 2017). According to (Sutton and Barto, 2018), the 

cumulative discounted reward value is defined as: 

𝑉∗(𝑠) = 𝔼 [∑𝜇 𝐺(𝑠(𝑡), 𝑎(𝑡))|𝑠′=𝑠 ,   𝑎′=𝑎

∞

𝑡=0

] (3.12) 

where 𝔼(𝑖) indicates the expectation of 𝑖, and 𝜇 denotes the discount factor. The 

𝑠′ and 𝑎′ signifies the next state and action.  To solve MDP, Q-learning is one 

of the popular RL methods. In Q-learning, Bellman’s Equation can be used to 

determine the optimal Q-value function 𝑄∗(𝑠, 𝑎), which can be expressed as: 

𝑄∗(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝜇∑𝑃𝑠′𝑠(𝑎)max
𝑎′

𝑄∗(𝑠′, 𝑎′)

𝑠′

 (3.13) 

where 𝑄(𝑠, 𝑎) and 𝑃𝑠′𝑠(𝑎) are the expected value of 𝐺(𝑠, 𝑎) and transition 

probability, respectively. Thus, the optimal policy 𝜋∗(𝑠) for the 𝑄∗(𝑠, 𝑎) can be 

evaluated as: 

𝜋∗(𝑠) = max
𝑎′

𝑄∗(𝑠, 𝑎) (3.15) 

It is always challenging to acquire the exact transition probability. However, Q-

learning allows obtaining the optimal strategy based on the information 

available (𝑠, 𝑎, 𝐺, 𝑠′) in a recursive manner. The Q-learning update equation is 

shown as follows: 
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𝑄(𝑠, 𝑎) = (1− 𝛼) 𝑄(𝑠, 𝑎) + 𝛼 [𝐺(𝑡) + 𝜇max
𝑎′

𝑄(𝑠′, 𝑎′)] (3.16) 

where 𝛼 denotes the learning rate that influences the 𝑄(𝑠, 𝑎)-value updating 

speed. 

It is difficult to determine the optimal policy when the state-action spaces 

become very large. The deep neural network (DNN) algorithm has been 

introduced recently to solve the sizeable state-action space problem. Deep Q-

network (DQN) is a well-known method. In the DQN, the optimal policy and 

values functions can be approximated by using a DNN which is composed of 

multiple layers. Each layer has several neurons or nodes. Each neuron receives 

the weighted linear combination of the previous layers as input, and then a non-

linear activation function is applied to generate the target value (output). A 

neural network from DNN can be considered a deep graph with many 

processing layers. A neural network function approximator is used as the main 

network with weights 휃. Furthermore, a target network with weights 휃′ is used 

to stabilize the overall network performance. At each time step 𝑡, the weight 휃 

is updated to minimize the loss function as: 

𝐿(휃) = 𝔼[(𝑦𝑡 − 𝑄(𝑠, 𝑎; 휃))
2
] (3.17) 

where, 

𝑦𝑡 = 𝐺(𝑡) + 𝜇 max
𝑎′

𝑄(𝑠′, 𝑎′; 휃′) (3.18) 

An 𝜖-greedy policy is used to select the action from the main network 

𝑄(𝑠, 𝑎; 휃). The target network is a duplicate copy of the online network and has 

fixed weights for all the iterations. In contrast, the weights in the online network 

are continuously modified. In the DQN, an experience replay strategy is used to 

overcome the instability learning process. During the training stage, mini-
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batches of experiences are randomly selected from the replay memory 𝐷, 

instead of using only the current experience (𝑠, 𝑎, 𝐺, 𝑠′). With the experience 

replay strategy, the correlation between training examples is reduced, which 

prevents the optimal policy from being driven to a local minimum. Q-learning 

and DQN methods use the same 𝑚𝑎𝑥 operator to select and evaluate actions. 

The Q-values function may be overestimated by using the same estimator. Thus, 

the use of Double DQN (Hado van Hasselt, Arthur Guez, 2016) mitigates the 

overestimation problem by replacing the target DQN 𝑦𝑡 with the following 

target Double DQN: 

𝑦𝑡 = 𝐺(𝑡) + 𝜇 𝑄 (𝑠′, 𝑎𝑟𝑔max
𝑎′

𝑄(𝑠′, 𝑎′; 휃); 휃′) (3.19) 

At time step 𝑡, the main networks are used to determine the 𝜖 −greedy policy, 

whereas target networks determine its value. The 𝜖 −greedy policy is a random 

policy that promotes exploration rather than action that is determined by the 

maximum of the next state’s Q-value. The detailed procedure used for the 

Double DQN is explained in Table 3.2, Algorithm 3.1.  

Table 3.2: Algorithm 3.1 Double DQN based Resource Allocation 

1: Set 𝑡=1 

 Initialize Experience memory ND and soft update with 𝜏. 

 Initialize the main network with a random weight and biases as 휃 

 Initialize the target network as a copy of primary network weights and biases as 휃′ 

2: for each episode, do: 

3:  Initialize Equation (3.10) for state 𝑠(𝑡) 

4:    for each time slot, do: 

5:      Select an action 𝑎𝑡 based on the ϵ−greedy policy 

6:      Obtain immediate reward 𝐺(𝑡) and observe the next state s′ 
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3.4 TRANSMIT POWER ALLOCATION  

The DQN and Double DQN models determine the RRH selection at each time 

slot 𝑡. Given the set of active RRHs ℳ𝑡, the Equation (3.6) can be 

simplified to a slot-by-slot optimization problem as: 

7:      Solve (3.20) and obtain optimal beamforming solution 

8:      Store experience (𝑠𝑡 , 𝑎𝑡 , 𝐺(𝑡), 𝑠𝑡
′) into ND 

9:      R   9:      Randomly sample some mini-batches (𝑠𝑡 , 𝑎𝑡 , 𝐺(𝑡), 𝑠𝑡
′) from ND  

10:    Calculate the target Q-value in the target deep network 

11:    If DRL=DQN set the target 

         𝑦𝑡  =  𝐺(𝑡) + 𝜇 𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′; 휃𝑡
′) 

12:    If DRL=Double DQN set the target 

         𝑦𝑡 =  𝐺(𝑡) + 𝜇𝑄 (𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′; 휃(𝑡)); 휃′(𝑡)) 

13:    Train the main network to minimize loss function 𝐿(휃) of Equation (3.17) 

 𝐿(휃)  =  𝔼[(𝑦𝑡 − 𝑄(𝑠𝑡 , 𝑎𝑡; 휃))
2] 

 

14:   Perform gradient descent step on the target network of Equation (3.18) 

        (𝑦𝑡 −  𝑄(𝑠𝑡 , 𝑎𝑡; 휃(𝑡))) 

15:   Update target deep networks after some steps as 

        휃′(𝑡)  =  𝜏휃(𝑡) + (1 − 𝜏)휃′(𝑡) 

16:   𝑡 =  𝑡 + 1 

17:  end for: 

18: end for 

 min
𝐰𝑡 

∑ ∑|𝑤𝑟,𝑢(𝑡)|
2
  

𝑢∈𝒰𝑡∀𝑟∈ℳ𝑡

 (3.20) 

subject to     𝛾𝑢(𝑡) ≥ 𝑆𝐼𝑁𝑅𝑢(𝑡), ∀𝑢 ∈ 𝒰𝑡 (3.20.1) 

 ∑|𝑤𝑟,𝑢(𝑡)|
2
≤  𝑝𝑟,𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡,

𝑢∈𝒰𝑡

 ∀r ∈ ℳ𝑡 (3.20.2) 
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According to constraint (3.20.1), the demand of user 𝑢 is guaranteed and 

𝑆𝐼𝑁𝑅𝑢(𝑡) = 𝛤𝑚(2
𝐷𝑢(𝑡) 𝐵⁄ -1). Problem (3.20) belongs to a convex optimization 

problem since it can be transformed into a second-order cone optimization 

problem (SOCP) (Wiesel, Eldar, and Shamai, 2006). Such a problem can be 

solved efficiently via a conventional algorithm (Soma et al., 1998). A standard 

interior-point method can be used to solve SOCP for Equation (3.20), e.g., see 

(Ben-Tal, A. and Nemirovski, 2001, Chapter 6). Thus, the worst-case 

computational complexity of the proposed Double DQN algorithm is 

𝒪(𝑅3.5𝑈3.5𝐸 + 𝒟 + |휃|), where 𝐸 represents the episodes require to converge 

Algorithm 3.1. 𝒟 and |휃| denotes the number of experience samples in the 

replay buffer and cardinal of weights, respectively. Even though the proposed 

Double DQN algorithm achieves the best network performance in comparison 

to the conventional DQN. However, its computational complexity is higher than 

other discussed algorithms. In some instances, insufficient active RRHs can lead 

to an infeasible solution. In such cases, the targeted value is set 𝐺(𝑡) = 0, which 

will make the agent more aggressive in turning on the RRH in subsequent time 

slot 𝑡.  

3.5 RESULTS AND DISCUSSIONS  

This section investigates the performance of the proposed Double DQN-based 

RA problem in a CRAN and compares its results with conventional DQN and 

traditional approaches. The traditional approach is assumed as Full Coordinate 

Association (FA), where all RRHs are turned on, and users can be assigned to 

associate with multiple RRHs. The RA performance is evaluated based on 100 

testing episodes after the RL agent has been trained for 1000 training episodes. 
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Two scenarios are considered to reach the optimal power-saving versus the user 

data rate requirements. In order to comply with the fair comparison of the 

network performance requirement, the same network configuration is 

maintained as (Dai and Yu, 2016), tabulated in Table 3.3. The selected 

parameters for Table 3.3 gives the optimal network configuration performance. 

Furthermore, dynamic channel gain with dynamic UE demand is considered for 

long-term RA optimization, whereas the UE demand is uniformly distributed in 

the interval of [10-70] Mbps. After each decision epoch, the UEs’ data rate 

demands and channel gain changes. Note that the total average power 

consumption is calculated for a 7-minute time slot interval (a 7-minute time slot 

interval is enough for the RL agent to determine the total average power 

consumption for the given number of episodes). For each decision epoch, a 

minimum of five seconds is considered.  

Table 3.3: Simulation Setting Parameters 

Parameter Value 

Noise power 𝜎2 -102 dBm 

Bandwidth  𝐵 10 MHz 

Active power 𝑝𝑟,active 6.8 W 

Transmit power 𝑝𝑟,transmit 1 W 

Sleep power 𝑝𝑟,sleep 4.3 W 

Transition power 𝑝𝑟,switch 3 W 

Antenna Gain 𝜑𝑟,𝑢 9 dBi 

Shadowing coefficient 𝜍𝑟,𝑢 8 dB 

Capacity gap 𝛤𝑚 1 
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3.5.1 Power Consumption versus User demand  

In order to verify the effectiveness of the proposed Double DQN algorithm 

performance for the average power saving versus user demands, two scenarios 

are mainly considered, i.e., 1) 𝑈=2, 𝑅=5, and 2) 𝑈=4, 𝑅=12. As shown in Figure 

3.2, the occupied resources from the given set of RRHs to the UE are 

dynamically changing with each time slot 𝑡, with static user demand. However, 

one can see from Figure 3.2 that the power consumption increases 

monotonically as the volume of data traffic increases. This is because more 

transmission power is required to satisfy the users’ QoS requirements. The DQN 

approach saves 10.39% more power than the FA approach, while the proposed 

Double DQN approach saves 13.43% more power than the DQN approach. In 

Figure 3.2, it can also be seen that the DRL approach consistently outperforms 

Small scale fading 𝔶𝑟,𝑢 𝒞𝒩(0,1) 

Power amplifier efficiency 휂 25 % 

Epsilon-greedy policy 휀 0.05 

Figure 3.2: Average power consumption versus user demand 
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the FA method. In addition, the Double DQN has superior performance at all 

points over the DQN, thereby saving 7%-20% more power. However, due to 

the resource constraints and the increasing user interface data rates, all three 

methods cannot satisfy the power demand beyond 60Mbps. The instability 

problem can be alleviated by increasing the number of RRHs to 12 and the 

number of  UEs to 4, as shown in Figure 3.2. The proposed Double DQN based 

approach can save more power at all points of user demands. When the DQN 

approach is used with the 10Mbps user demand, it can save 7% more power 

than the FA approach. At the same point, the proposed Double DQN can save 

8.35% more power than the DQN. A similar performance can be seen for the 

user demand of 70Mbps. On 70Mbps, the proposed Double DQN approach 

saves 10.49% and 14.55% more power than DQN and FA approaches, 

respectively.  Furthermore, it can be seen from Figure 3.2 that power increases 

linearly with increasing user demand for all three methods. However, one can 

conclude that the proposed Double DQN method is more efficient in power-

saving than the DQN and the FA for the upcoming wireless communication 

networks (5G and beyond).  

After this, the long-term performance of the proposed Double DQN algorithm 

is evaluated in a highly dynamic scenario. The number of RRHs and the number 

of UEs are set to 12 and 4, respectively. The selected values of RRHs and UEs 

completely fulfil the users’ QoS demands. The user demand is uniformly 

distributed between 10 Mbps and 70 Mbps. Furthermore, the RL agent is fixed 

to 5 seconds to calculate the average power consumption for each decision 

epoch. The UE demand may be unchanged during an epoch but might vary in 

the next decision epoch. Note that the DRL transition power has been included 
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 in the simulation. Finally, the average power consumption is calculated over a 

relatively long time interval of 7 minutes. It can be observed from Figure 3.3 

that the power consumption fluctuates with the change in the user demand. 

Thus, it can be examined that the proposed Double DQN consistently 

outperforms both DQN and FA in power savings and satisfying users’ QoS 

demand. The above performance demonstrates the effectiveness of the proposed 

Double DQN algorithm in a highly dynamic situation.  

3.5.2 Energy Efficiency versus User Demand 

The performance of energy efficiency versus growing user demand is shown in 

Figure 3.4. In this case, the increasing user demand will result in a linear 

increase in energy efficiency. The algorithm proposed by the Double DQN has 

achieved a superior performance to the DQN and FA schemes (Dai and Yu, 

2016). Figure 3.4 shows that the energy efficiency performance with DRL is 

superior to the FA approach. This comes from the fact that DRL considers past 

learning experiences instead of making the decision based on the instantaneous 

network state, which leads the FA approach to lower network performance. It 

Figure 3.3: Average power consumption versus time slot 𝒕 
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can also be observed that the proposed Double DQN algorithm outperforms the 

DQN (Xu et al., 2017) by about 7-18% at every point of increasing data rate 

demands. This is because the DQN uses just one Q-value estimator to select and 

evaluate the action for the Q-value function. In contrast, the proposed Double 

DQN uses two separate estimators for the Q-value function. The two 

independent estimators will help the Double DQN agent to select the unbiased 

Q-value. However, the performance of energy efficiency of all three approaches 

is monotonically increasing with the user demand. In contrast, when the user 

data demand approaches 60Mbps, all three methods become unstable with no 

further increment of energy efficiency. This is because the proposed scheme 

aims to maximize the energy efficiency performance based on the user data rates 

which is defined as the logarithmic function in Equation (3.4). The optimal 

energy efficiency increases with the increasing user demand since a larger 

number of active RRHs are required to achieve optimal energy efficiency at 

every point of user demands. The problem of instability occurs, when the user 

demands approaches to 60Mbps for all three methods. This is because, a large 

transmission power is required to satisfy the users’ QoS demand. In order to 

Figure 3.4: EE versus user demand 
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avoid the instability problem, the number of RRHs and the number of UEs are 

increased to 12 and 4, respectively, as shown in Figure 3.4. Notably, the energy 

efficiency performance with the Double DQN algorithm outperforms other 

algorithms. The Double DQN uses two Q-networks to turn on/off RRH of given 

users’ demands, which results in 6-16% higher energy efficiency than other 

approaches. From Figure 3.4, it can be concluded that increasing 𝑅 and 𝑈 affect 

EE in a complex way. As a result, adjusting these parameters is necessary to 

provide higher energy efficiency. 

3.5.3 Energy Efficiency versus Power Consumption  

The energy efficiency performance is plotted against the obtained average 

power consumption for 𝑅 = 5 and 𝑈 = 2 in Figure 3.5. The energy efficiency 

performance is linearly increasing with average power consumption. However, 

energy efficiency becomes constant when the power consumption reaches the 

highest value, i.e., the threshold value 𝑃𝑚𝑎𝑥. In other words, the total power 

consumption 𝑝𝑡𝑜𝑡𝑎𝑙(𝑡) should be greater than the threshold value 𝑃𝑚𝑎𝑥. It can 

be seen from Figure 3.5 that the proposed Double DQN algorithm consistently 

outperforms the DQN and FA approach. The Double DQN consumes the power  

Figure 3.5: EE versus average power consumption for 𝑹=5, 𝑼=2 
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of 42W to achieve the energy efficiency of 2.81 Mbits Joule⁄ , whereas the DQN 

consumes the power of more than 47W to achieve an energy efficiency of 

2.521 Mbits Joule⁄ . It means that the proposed Double DQN algorithm is 10%-

15% more energy-efficient than the DQN. A similar approach can be found in 

Figure 3.6 for 𝑅=12 and 𝑈=4. At the start, the energy efficiency increases 

slightly with increased power over a short period, as shown in Figure 3.6. After 

the EE reaches a maximum value, it declines for all three approaches. This is 

because all three methods attempt to maximize the user data rate, which results 

in higher transmit power consumption and, ultimately, lower energy efficiency. 

Thanks to the Double DQN that paves a maximum energy efficiency of 1.62 

Mbits Joule⁄  with a value of power consumption of 84.92W, whereas the DQN 

and FA approaches can obtain the energy efficiency of 1.579 Mbits Joule⁄  and 

1.512 Mbits Joule⁄  with 89.21W and 94.982W power consumption, 

respectively. These performances show that the proposed Double DQN based 

algorithm saves more power and achieves higher energy efficiency than the 

DQN and FA schemes. 

Figure 3.6: EE versus average power consumption for 𝑹=12, 𝑼=4 
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3.6 SUMMARY 

This chapter examines a Double DQN based RA framework in a CRAN that 

maximizes the total EE under the constraints associated with transmission 

power selection by RRHs and user rates. The traditional approach known as the 

FA approach is modelled first, which relies on immediate actions with no regard 

for their effects in the future. Next, a DQN scheme is proposed based on past 

learning experiences and considering future effects. The DQN uses only one 

estimator to select and evaluate the action for the Q-value function, which 

generates the over-optimistic Q-value. Thus, it decreases the probability limit 

to estimating the maximum Q-value function. Finally, a Double DQN algorithm 

is proposed that separates the selected actions from the corresponding target Q-

value generation. The proposed Double DQN algorithm leads to higher power-

saving and maximizes the EE while satisfying the user QoS requirements in the 

CRAN. 
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CHAPTER 4 

 

DUELING DEEP Q- LEARNING-BASED JOINT RESOURCE 

ALLOCATION IN CLOUD RADIO ACCESS NETWORK 

 

SE and EE are vital performance evaluation metrics for designing any wireless 

communications system. However, these metrics always contradict each other 

and can be linked through their tradeoff. The EE and SE tradeoff in the cloud 

radio access network (CRAN) has been accurately approximated in the past but 

only for the static network state. This chapter investigates a deep reinforcement 

learning (DRL)-based framework to maximize the long-term tradeoff between 

EE and SE. Specifically, machine learning (ML) techniques are used to extract 

generalized features of spatio-temporal channel state information (CSI) before 

feeding them into the input of DRL. A simulation study and its results are 

presented at the end of the chapter to compare the performance of the proposed 

scheme in different scenarios. 

4.1 INTRODUCTION 

As smartphone usage has increased rapidly in recent years, there is an 

expectation that the total mobile data traffic will grow to 77 exabytes (EB) per 

month by 2022 (Cisco, 2020). Conventional network architectures may not be 

able to cope with such an extreme amount of data traffic and satisfy the users’ 

quality of service (QoS) requirements. This is due to the high interference with 

the reuse of the same radio resources by multiple base stations (BSs). 

The CRAN is a promising solution among the available networking solutions 

since shared network resources can be virtualized and controlled among 
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distributed remote radio heads (RRHs) (Checko et al., 2015). The main purpose 

of CRAN is to decouple the remote radio head (RRH) and baseband units (BBU) 

functionality from the BS. A BBU performs all baseband signal processing, 

while RRHs handle modulation and amplification. However, due to the non-

uniformities in the space and time of the devices being used, it is more 

challenging to manage CRAN resources (Wang et al., 2015). Thus, allocating 

resources adaptively in the CRAN should be discussed in more detail.  

The resource allocation (RA) problem in heterogeneous network scenarios 

(HetNet) and CRAN scenarios has been studied from various perspectives to 

understand their effects on network performance and user experience. In (Ali et 

al., 2017), a CRAN’s overall throughput maximization problem is investigated. 

In (Ahmad et al., 2020), the depreciation of a weighted transmit power subject 

to fronthaul capacity and minimum QoS constraints are discussed. The EE 

optimization problem in HetNet is studied in (Wu, Zeng and Xia, 2017). To 

balance the joint SE and EE is discussed in (Coskun and Ayanoglu, 2017) and 

(Xu, Li and Yang, 2018). These studies, however, considered network 

performance and user requirements only in a fixed state and benefited from 

short-term rewards. For example, continuously switching off and on RRHs in 

adjacent time slots can increase deployment costs. Such behaviors which seek 

immediate benefits are called “myopic.” 

The model-free reinforcement learning (RL) framework improves the 

performance over the long term in wireless networks. RL can determine the 

optimal policy by interacting with the unknown environment (Wei et al., 2018), 

(Asheralieva, 2017). Q-learning is a well-known and widely used model-free 

RL algorithm. Using Q-learning in (Shams, Bacci and Luise, 2015), the user’s 
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data traffic demand is satisfied while minimizing the power consumption. 

However, due to the sizeable state-action space in practical problems, Q-

learning convergence time is prolonged, and it is not easy to find the optimal 

solution. Deep Q networks (DQNs) combine the process of RL with a kind of 

neural network called a deep neural network to approximate the state-action 

value functions; this alleviates the limitations of Q-learning.  

As a result of CRAN RA schemes that exploit the benefits of DRL, it has been 

utilized into three basic categories, namely, sum-power minimization (Zhang et 

al., 2020), the sum of network performance (Gao et al., 2019), and quality-of-

service (QoS) requirement (Chen et al., 2021). Several QoS constraints are used 

to achieve CRAN optimization objectives, such as RRH switching costs, 

transmission delay, cache management, transmission power, transmission rate, 

and BBU allocation. These solutions improve network performance beyond the 

limits of conventional approaches due to the well-formulated state space, action 

space, and reward functions in every class above. However, the definitions of 

state space are associated with traffic profiles, not with multiuser diversity. 

CRANs can collect continuous CSI from RRHs as a 3-dimensional (3D) matrix 

and exploit various cooperative diversity gains in the CRANs. However, 

directly employing CSI as the DRL input will slow down the state-space 

exploration, especially in large-scale networks. Therefore, limiting the CSI 

before invoking it to the DRL framework is necessary to improve network 

efficiency. This chapter first models the RA problem as a Markov Decision 

Process (MDP) to optimize the long-term tradeoff between EE and SE to 

improve network efficiency. The Anchor Graph Hashing (AGH) (Liu et al., 

2011) is then employed to convert the CSI matrix into binary hash code and 
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concatenate it with the other elements of DRL, i.e., RRHs features and QoS 

requirements, leading to one-row feature vectors. Finally, the one-row feature 

vector is fed into the proposed DRL framework.  

The rest of this chapter is divided into four sections. Section 4.2 describes the 

CRAN model and problem formulation. In Section 4.3, a DRL-based solution 

is proposed for the long-term RA decision. In Section 4.4, simulation details and 

results are discussed. Section 4.5 wrap up the chapter. A list of the key 

mathematical notations used in this chapter is defined in Table 4.1.  

Table 4.1: List of Key Notations 

Notations Description  

𝒥 Set of RRHs  

𝒰 Set of UEs 

𝕋 Time-period 

𝐷𝑢 Data rate demand 

𝑃𝐿 Path loss 

𝑑𝑗,𝑢 Distance between RRHs and UEs 

𝜑𝑗,𝑢 Antenna gain  

𝔶𝑗,𝑢 Shadowing coefficient 

𝜍𝑗,𝑢 Small-scale fading 

δ𝑢(𝑡) Signal-to-interference-plus-noise ratio 

ℎ𝑢 Channel gain 

𝑤𝑢 Beamforming weight 
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𝐵 Bandwidth  

ℐ𝑚 Capacity gap 

𝑝𝑗,𝑡𝑟𝑎𝑛𝑠 Transmission power 

휂 Power amplifier 

𝑝𝑗,𝑎𝑐𝑡 Active power 

𝑝𝑗,𝑠𝑙𝑝 Sleep power 

𝑝𝑗,𝑡𝑝 Transition power 

𝛼 Tunable parameter 

𝐿 Extracted CSI samples 

𝑛 Anchors  

𝑏𝑑 Threshold distance 

𝑚 Number of iterations 

𝑠𝑡 State-Space 

𝑎𝑡 Action-space 

𝐾(𝑡) Reward 

𝓇 Learning rate 

𝜇 Discount factor 

𝒟𝑡 Experience Replay Memory 

𝜗 Value function parameters 

𝛽 Advantage function parameters 
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4.2 SYSTEM MODEL 

In this chapter, a typical downlink CRAN is considered, which comprises a set 

of UEs 𝒰={1,2,…,𝑈}, a set of RRHs 𝒥={1,2,…, 𝐽} and a single BBU. The 

dynamic RA is considered in this work, as shown in Figure 4.1, where at each 

time slot 𝑡, the current states of RRHs and the user data rate demands from the 

networks is obtained. Since all RRHs are connected to the centralized BBU 

pool. The DRL agent can share and process all information efficiently. 

Additionally, a time-period 𝕋={1,2,…𝑇} is uniformly divided into multiple 

time slots 𝑡. Each UE has a specific data rate demand 𝐷𝑢 ∈ [𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥]. Each 

UE, regardless of its position, reports its CSI to the BBU during time slot 𝑡. To 

simplify the proposed model, all RRHs and UEs are equipped with a single 

antenna, which can be extended to multi-antenna cases using the technique (Dai 

and Yu, 2016). According to (Dai and Yu, 2016), the channel fading model is 

defined as: 

such that 𝑃𝐿(𝑑𝑗,𝑢) = 148.1 + 37.6 log
2
𝑑𝑗,𝑢 dB denotes the path loss and 𝑑𝑗,𝑢 

represents the distance between RRHs and UEs, whereas 𝜑𝑗,𝑢, 𝔶𝑗,𝑢 and 𝜍𝑗,𝑢 

indicates the antenna gain, shadowing coefficient, and small-scale fading 

between RRHs and UEs. The rayleigh channel fading model is considered in 

this work; where 𝔶
𝑗,𝑢

 is the independent and identically distributed (i.i.d) 

complex Gaussian random variable that captures the small-scale fading effects 

associated with a radio link between RRH and UE. Then the corresponding 

signal-to-interference-plus-noise ratio (SINR) at the receiver of UE 𝑢 at time 

slot 𝑡, δ𝑢(𝑡) can be written as: 

ℎ𝑗,𝑢(𝑡) =10
−𝑃𝐿(𝑑𝑗,𝑢)

20
⁄
√𝜑𝑗,𝑢 𝜍𝑗,𝑢 𝔶𝑗,𝑢 (4.1) 
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such that ℎ𝑢(𝑡)=[ℎ1𝑢, ℎ2𝑢, … , ℎ𝐽𝑢]
𝑇
means the channel gain vector and each 

element of ℎ𝑗𝑢 represents the channel gain from RRH 𝑗 to UE 𝑢  at time slot 𝑡. 

Similarly, 𝑤𝑢(𝑡)=[𝑤1𝑢, 𝑤2𝑢, …𝑤𝐽𝑢]
𝑇
indicates the weighted vector, and each 

element of 𝑤𝑗𝑢 showing the beamforming weight from RRH 𝑗 to UE 𝑢  at time 

slot 𝑡, whereas 𝜎2 denotes the background noise. According to Shannon 

capacity, the data rate of UE 𝑢 at time slot 𝑡 can be determined as: 

𝐶𝑢(𝑡) = 𝐵 log
2
(1+

𝛿𝑢(𝑡)

ℐ𝑚
) , 𝑢 ∈ 𝒰 (4.3) 

whereas 𝐵 is the channel bandwidth and ℐ𝑚 is the signal-to-noise ratio (SNR) 

capacity gap.  

4.2.1 Power Consumption Model 

According to (Auer et al., 2012), the relationship between the BSs transmitting 

power and consumption power is approximately linear. Thus, in this chapter, 

𝛿𝑢(𝑡) =
|ℎ𝑢
𝐻(𝑡)𝑤𝑢(𝑡)|

2

∑ |ℎ𝑣
𝐻(𝑡)𝑤𝑢(𝑡)|

2 + 𝜎2
𝑣≠𝑢

 , 𝑢 ∈ 𝒰 (4.2) 

Figure 4.1: Deep reinforcement learning based CRAN model architecture 

 

𝛿𝑢(𝑡) =
|ℎ𝑢
𝐻(𝑡)𝑤𝑢(𝑡)|

2

∑ |ℎ𝑣
𝐻(𝑡)𝑤𝑢(𝑡)|

2 + 𝜎2
𝑣≠𝑢

 , 𝑢 ∈ 𝒰 (4.2) 

 Figure 4.2: Deep reinforcement learning based CRAN model architecture 
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the linear power model is applied to each RRH using the following equations: 

where 𝑝𝑗,𝑡𝑟𝑎𝑛𝑠(𝑡)=∑ ∑ |𝑤𝑗,𝑢|
2

𝑢∈𝒰𝑗∈𝔸 is the transmission power of RRH 𝑗 and 휂 

is the power amplifier drain efficiency and assumed as a constant. 𝑝𝑗,𝑎𝑐𝑡(𝑡) and 

𝑝𝑗,𝑠𝑙𝑝(𝑡) indicates the active power and sleep power of RRH 𝑗, respectively. In 

contrast, 𝔸 and 𝕊 denote the active and sleep modes of RRH 𝑗, respectively. 

Thus, one has 𝔸 𝖴 𝕊= 𝒥. 

Furthermore, the power consumed by RRHs in changing their states is also 

considered and known as transition power 𝒮. A set of transition powers 𝒮 can 

be defined as 𝑝𝑗,𝑡𝑝 (𝑡) for RRH at the current time slot 𝑡, and hence the total 

power 𝑃𝑡𝑜𝑡𝑎𝑙(𝑡) of all RRHs can be expressed as:   

𝑃𝑡𝑜𝑡𝑎𝑙(𝑡) =∑∑ |
1

휂
𝑤𝑗,𝑢|

2

+∑𝑝𝑗,𝑎𝑐𝑡(𝑡)

𝑗∈𝔸𝑢∈𝒰𝑗∈𝔸

  +∑𝑝𝑗,𝑠𝑙𝑝(𝑡) +∑𝑝𝑗,𝑡𝑝(𝑡)

𝑗∈𝒮𝑗∈𝕊

 (4.5) 

4.2.2 Problem Formulation  

According to (Vu et al., 2018), EE (bits/joule) is defined as the ratio between 

the sum of throughput  𝐶𝑢(𝑡) and total power consumption 𝑃𝑡𝑜𝑡𝑎𝑙(𝑡), and can 

be expressed as: 

𝐸𝐸(𝑡) =
∑ 𝐶𝑢(𝑡)
𝑈
𝑢=1

𝑃𝑡𝑜𝑡𝑎𝑙(𝑡)
 (4.6) 

In the same manner, the SE (bits/s/Hz) is defined as the ratio between the sum 

of throughput 𝐶𝑢(𝑡) and available bandwidth 𝐵, and can be mathematically 

expressed as follows: 

𝑝𝑗(𝑡)={

1

휂
𝑝𝑗,𝑡𝑟𝑎𝑛𝑠(𝑡) + 𝑝𝑗,𝑎𝑐𝑡(𝑡)      ; 𝑗 ∈ 𝔸

𝑝𝑗,𝑠𝑙𝑝(𝑡)                                ; 𝑗 ∈ 𝕊
 (4.4) 
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𝑆𝐸(𝑡) =
∑ 𝐶𝑢(𝑡)
𝑈
𝑢=1

𝐵
 (4.7) 

This chapter aims to maximize both EE and SE while satisfying the minimum 

requirements of users. As stated earlier, the problems of maximizing EE and SE 

of the network usually contradict each other. Multiple objective optimization 

problems (MOOP) are used to optimize EE and SE simultaneously. The MOOP 

problems are generally solved by combining the objectives function under a 

single objective optimization problem (SOOP). In that way, the weighted 

summation method is utilized to combine the EE and SE metrics. However, EE 

(𝑏𝑖𝑡s 𝐽𝑜𝑢𝑙𝑒⁄ ) and SE(𝑏𝑖𝑡 s 𝐻𝑧⁄⁄ ) have different units, so these two metrics are 

combined in a weighted summation method to ensure that the metric units are 

the same for the joint optimization problem. Thus, 𝐵 𝑝𝑗,𝑡𝑟𝑎𝑛𝑠(𝑡)⁄  is multiplied 

with 𝑆𝐸(𝑡) to ensure that the metric units are the same in weighted summation 

(Coskun and Ayanoglu, 2017). To further tune the objective function, a unitless 

parameter 𝛼 ∈ (0,1] is introduced which helps to decide whether to optimize 

the network for EE or SE, depending on the network condition. For example, 

increasing SE is more valuable than EE during peak hours to satisfy the 

increasing demand of more users. Meanwhile, optimizing network EE is 

essential to reduce energy consumption during off-peak hours. The joint 

optimization problem between EE and SE can be expressed mathematically as: 

                               max ∑ [(1-𝛼)𝐸𝐸(𝑡)  + 𝛼
𝐵

𝑝𝑗,𝑡𝑟𝑎𝑛𝑠(𝑡)
𝑆𝐸(𝑡)]𝑇

𝑡=1  (4.8) 

                             subject to   𝐵 log2 (1 +
𝛿𝑢(𝑡)

ℐ𝑚
) ≥ 𝐷𝑢(𝑡), ∀𝑢 ∈ 𝒰, ∀ 𝑡 ∈ 𝕋 (4.8.1) 

                        ∑ |𝑤𝑗,𝑢(𝑡)|
2
≤ 𝑃𝑗𝑢∈𝒰 ,     ∀𝑡 ∈ 𝕋, ∀𝑗 ∈ 𝒥  (4.8.2) 
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Constraints (4.8.1) specify that the UE’s data rate requirements must exceed or 

be equal to the UE’s target data rate, whereas constraint (4.8.2) limits the 

transmission power per RRH. 

4.3 PROPOSED SOLUTION BASED ON DEEP REINFORCEMENT 

LEARNING 

This chapter presents a joint optimization problem of EE and SE in the CRAN 

with the proposed dueling deep Q-network (D2QN) (Wang et al., 2016) 

algorithm based on the per RRH activation power. Most of the existing works 

consider discrete state-space or use function approximation methods to achieve 

its objective function. However, such approaches do not capture the dynamic 

environment. This chapter adds a relational matrix to the state-space model, 

which expresses the spatial-temporal relationship between RRHs and UEs in a 

mobile environment. Meanwhile, the random user movement at each time slot 

𝑡 increases the state space exponentially, making it impossible for the RL agent 

to extract all the information in a reasonable amount of time. In order to reduce 

the state space, the anchor graph hashing (AGH) method is investigated and 

then map the AGH to hash codes. The obtained hash codes specify the discrete 

characteristic of state space and can easily fit the input of other elements of 

DRL. 

4.3.1 Anchor Graph Hashing  

The concept of hashing is widely used in big data applications as a method of 

approximate nearest neighbour search due to its low storage cost and speed of 

retrieval. The objective of hashing is to turn data points into binary-code points 

from the original space and retain the original space’s similarity 
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(neighbourhood structure) (Jiang and Li, 2015). In this sub-section, the feature 

of channel gain is extracted by the AGH method. Firstly, the channel gain is 

defined as 𝐻 ∈ 𝑅|𝐽|×|𝑈| and can be expressed mathematically as: 

𝐻 = [ℎ1(𝑡) ℎ2(𝑡) ℎ𝑈(𝑡)] (4.9) 

Equation (4.9) belongs to the two-dimensional matrix and cannot directly feed 

to the input of the other one-dimensional DRL elements. Therefore, the two-

dimensional matrix of 𝐻 is first converted into a one-row vector as a single 

sample 𝑍 ∈ 𝑅|𝐿|, where 𝐿 specifies the extracted channel gain sample elements 

𝑧. However, the extracted CSI samples are constantly updated at each time 

slot 𝑡, which is challenging for the DRL agent to explore the network space in 

practice. Therefore, the AGH method limits the extracted channel 

gain sample and maps AGH to hash code. The hash code specifies discrete 

characteristics and can easily be matched to other elements in the network state. 

The AGH uses a small number of anchors 𝑛 to tie the whole extracted channel 

gain sample 𝑧. 

4.3.2 Discretization of State Space 

The AGH approximates the data structure of a small set of anchor points 𝑛 by 

the neighbours 𝑧. In a dynamic environment, it may be challenging to maintain 

anchor points 𝑛, as the sample of 𝑧 is updated continuously at each time step 𝑡. 

The K-means clustering algorithm is used to avoid this problem with the 

training sample 𝑧. Based on anchor nodes |𝑁|, the sample points |𝐿| are 

partitioned into |𝑁| clusters. The anchor nodes |𝑁| is considered in continuous 

state-space as �̅�𝑛={1,2, … |𝑁|}, and partition the state-space by the sample 

points |𝐿| as  �̃�𝑙={1,2, … |𝐿|} . Thus, the state-space for the cluster centroid can 
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be calculated as follows: 

�̅� = 𝑚𝑖𝑛 {𝑎𝑟𝑔min
𝑛
|�̃�𝑙 − 𝑧�̅�| .} (4.10) 

The proposed structure of CSI discretization based on AGH to hash codes is 

shown in Figure 4.2. In Equation (4.10), �̃�𝑙 represents the training sample of �̃�𝑙 

in the discrete state-space, while 𝑧�̅� denotes the anchor nodes of �̅�𝑛 in the 

continuous state-space. Equation (4.10) can be transformed into a suitable 

cluster centroid distribution. Therefore, the predefined elements of K-means 

clustering are initialized, such as the cluster centroids |𝑁|, the distance between 

the previous centroid and the current centroid as a threshold distance 𝑏𝑑, and 

the maximum number of iterations ℳ. Once these elements are initialized, the 

distances of Equation (4.10) are then calculated with each cluster centroid 𝑧�̅�. 

If the distance is greater than a threshold distance 𝑏𝑑 and the number of current 

centroids 𝑧�̅� elements are less than |𝑁|; a new cluster centroid is added to the 

�̃�𝑙. The process is repeated until 𝑚 = ℳ and the distance of �̅� reaches the 

threshold distance 𝑏𝑑. Consequently, the extracted channel gain |𝐿| training 

samples are clustered using K-means to attain |𝑁|(|𝑁| ≪ |𝐿|) cluster centroids 

with anchor 𝑛 as: 

�̃� = {�̃�𝑛 ∈ ℝ
(|𝑈|×|𝐽|)}

𝑛=1

|𝑁|
 (4.11) 

The K-means approach speeds up clustering and improves the training 

efficiency. The identified anchor graph in the clusters is then mapped to a hash 

code by AGH. This hash code is then fed as the input of the DRL agent. Finally, 

the joint objective function is optimized using a DRL-based algorithm. The 

process of K-means clustering is described in Table 4.2 Algorithm 4.1. 
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4.3.3 Exploration and Exploitation based on Reinforcement Learning 

The process of RL is based on the three central elements, i.e., the state space 

1 0 1 1 0 1 

Table 4.2 Algorithm 4.1 K-Means based clustering for the discretization of channel gain 

Input: CSI extracted sample 

Output: hash code  

1: Initialize: |𝑁|, 𝑏𝑑, ℳ 

2: Calculate Eq. (4.10) for continuous state-space distance �̅� 

3: Randomly choose a 𝑧�̅� from �̅� as the first centroid �̃�0 

4: while 𝑙 < |𝐿|   

5:    Find the continuous state-space �̅� 

6:    Compute the continuous state-space distance between 𝑧�̅�with each centroid �̃�𝑛 

7:      if |�̃�𝑙 − 𝑧�̅�| > 𝑏𝑑 and 𝑛 > |𝑁| then 

8:        Add a new cluster centroid �̃�𝑛+1 at the location of 𝑧�̅� 

9:      else 

10:       �̃�𝑛 is the cluster centroid of 𝑧�̅� from Equation (4.11)  

11:       Adjust the �̃�𝑙 location till 𝑚=ℳ 

12:    end if 

13: end while 

14: Execute the AGH on each centroid �̃�𝑛 
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 (𝑠𝑡), the action space (𝑎𝑡), and the reward function (𝐾(𝑠𝑡, 𝑎𝑡)). These three 

elements are defined in this chapter as follows:  

• State-space: At time slot 𝑡, the agent needs to know about all data 

rate demands 𝐷𝑈(𝑡), on/off status of RRHs 𝑣𝐽(𝑡), and constructed hash 

code. The state-space can be represented mathematically as: 

              𝑠𝑡=[𝐷1(𝑡), 𝐷2(𝑡),… , 𝐷𝑈(𝑡), 𝑣1(𝑡), 𝑣2(𝑡),… , 𝑣𝐽(𝑡), ℎ𝑎𝑠ℎ 𝑐𝑜𝑑𝑒(𝑡)]
𝑇

 (4.12) 

      The hash code derived by Equation (4.11) depends on the number of 

centroids and the length of the hash bits 𝑟𝑏 in the channel gain. Thus, a 

generalized hash function 𝐻𝑘(𝑧̅) is used for clustering new channel gain 

samples with the closest AGH. 

• Action-space: At each time slot 𝑡, the action space specifies the on/off 

switching decision of RRHs. Whereas the action on any RRHs can be 

denoted as, 𝑎𝐽(𝑡)∈ {0,1}, 𝑎𝐽(𝑡 )=0 indicates that RRH is OFF and 𝑎𝐽(𝑡)=1 

specify that RRH is ON. The action space is obtained based on the 

exploration and exploitation of the environment, and the action selection 

function can be represented as follows: 

𝑎𝑡 = [𝑎1(𝑡), 𝑎2(𝑡),… , 𝑎𝐽(𝑡)]
𝑇

 (4.13) 

• Reward Function: The reward function comes from the objective of 

Equation (4.8) that an agent obtains from the environment after performing 

an action at time slot 𝑡 in a particular state. The reward function in this 

chapter is based on maximizing the joint EE-SE summation at time slot 𝑡. 

Therefore, the reward function can be calculated as: 
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𝐾(𝑡) = [(1-𝛼)𝐸𝐸(𝑡)  + 𝛼
𝐵

𝑝𝑗,𝑡𝑟𝑎𝑛𝑠(𝑡)
𝑆𝐸(𝑡)] (4.14) 

A Markov decision process (MDP) is typically used to formulate the RL 

problem. The objective of the MDP is to identify the policy that can map a given 

state to a given action while maximizing the expected rewards. In order to solve 

the MDP, Q-learning is a widely used RL approach. In Q-learning, the RL agent 

chooses an action from a particular state and observes its feedback. The Q-value 

can be derived using the Bellman equation (O’Donoghue et al., 2018) as: 

Q∗(𝑠𝑡 , 𝑎𝑡) = Q(𝑠𝑡 , 𝑎𝑡) + 𝓇[𝐾(𝑡) + 𝜇max
𝑎′

Q(s′, 𝑎′) − Q(s𝑡, 𝑎𝑡)] (4.15) 

In this case, 𝓇 and 𝜇 stand for the learning rate and discount factor, respectively. 

At time slot 𝑡, the agent should choose an action with the highest Q-value. The 

results of Q-learning are accumulated in the form of a table known as a Q-table, 

which is suitable for limited state-action pairings. Putting all Q-values into a 

computed Q-table will increase data size and becomes very challenging for the 

RL agent to extract all the state-action values in a reasonable time. In order to 

overcome this issue, a deep neural network (DNN) is implemented with Q-

learning. DQN is a well-known method that represents the state-action space 

𝑄(𝑠𝑡, 𝑎𝑡) ≈ 𝑄
∗(𝑠𝑡, 𝑎𝑡: 휃) using a function approximation method instead of 

calculating all the Q-values into a Q-table. 휃 represent the weights and biases 

of the online neural network. A DQN can also evaluate network performance 

using the target Q-network 𝑄(𝑠𝑡, 𝑎𝑡; 휃
′), as shown in Figure 4.3a. More 

specifically, the online Q-network can be trained at each time step 𝑡 to minimize 

the loss function 𝐿(휃) to produce the actual value as: 

𝐿(휃) = [(𝑦𝑡 −𝑄(𝑠𝑡 , 𝑎𝑡; 휃))
2
] (4.16) 
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whereas the target value 𝑦𝑡 can be represented as:  

𝑦𝑡 = 𝐾(𝑡) + 𝜇𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′; 휃′) (4.17) 

The action can be picked from the online network by bypassing the online 

network parameter with the greedy policy ‘휀.’ The target network is then copied 

from the online network in some earlier iteration, reducing the correlation 

among the training samples (Mnih et al., 2015). Experience replay further 

strengthens learning stability by storing the transition experiences 𝑒𝑡 =

(𝑠𝑡, 𝑎𝑡, 𝐾(𝑡), 𝑠
′) into a finite-sized dataset 𝒟𝑡 = {𝑒1, 𝑒2, … , 𝑒𝑡}, which is 

randomly sampled by the RL agent to train the neural network. The same 𝑚𝑎𝑥 

operator function is used to select and evaluate the action for the Q-value in 

Equation (4.15) and (4.17), causing an overestimation problem for the agent. 

Therefore, D2QN (Wang et al., 2016) is proposed in highly dynamic scenarios 

to avoid this issue. The main motivation for using D2QN is to accurately 

determine which RRHs should be assigned to UEs based on the user’s data rate 

demands. According to (Wang et al., 2016), D2QN ensures higher performance 
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than conventional DQN methods. As shown in Figure 4.4b, the proposed D2QN 

approach entails two streams of layers, i.e., state value layer 𝑉(𝑠𝑡) and state-

dependent action value layer 𝐴(𝑠𝑡, 𝑎𝑡). These two layers represents the relative 

advantages of action for a better result and can be combined as follows: 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑉(𝑠𝑡; 휃, 𝜗) + 𝐴(𝑠𝑡 , 𝑎𝑡; 휃, 𝛽) (4.18) 

The value layer 𝑉(𝑠; 휃, 𝜗) is the scalar function that selects the best action from 

the given set of RRHs. The advantage layer 𝐴(𝑠𝑡, 𝑎𝑡; 휃, 𝛽) is the vector of 

|𝐴|-dimensional values for the selected action. 𝜗 and 𝛽 stand for the value 

function and advantage function parameters. The problem of unidentifiability 

in (Wang et al., 2016) can be addressed by replacing Equation (4.18) as follows: 

       𝑄(𝑠𝑡 , 𝑎𝑡; 휃, 𝜗, 𝛽) = 𝑉(𝑠𝑡; 휃, 𝜗)   + (𝐴(𝑠𝑡 , 𝑎𝑡; 휃, 𝛽) −
1

|𝐴|
∑𝐴(s𝑡 , 𝑎

′; 휃, 𝛽)

𝑎′

) (4.19) 

Moreover, the advantage layer helps to improve the network stability by 

reducing the Q-value range and eliminating the excess degrees of freedom when 

the state is unchanged. 

4.3.4 Power Allocation 

 As mentioned in Equation (4.5), the active power, sleep power, and transition 

power are composed of constant values, which can be calculated very easily. 

Therefore, to minimize the total power consumption 𝑃𝑡𝑜𝑡𝑎𝑙(𝑡), the selection of 

transmission power is accounted for each time slot 𝑡. Thus, Equation (4.5) can 

be reduced to a slot-by-slot optimization problem as: 

       min
           {𝑤𝑗,𝑢}

𝑝𝑡𝑟𝑎𝑛s(𝑡) (4.20) 

subject to  𝜕𝑢(𝑡) ≥ 𝜌𝑢,     𝑢 ∈ 𝒰 (4.20.1) 

∑ |𝑤𝑗,𝑢(𝑡)|
2 ≤ 𝑃𝐽 , 𝑗 ∈ 𝔸

𝑢∈𝒰

 (4.20.2) 
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𝑃𝐽 indicate maximum allowable RRH’s transmit power. 𝜌𝑢 = ℐ𝑚(2
𝐷𝑢 𝐵⁄

-1); 

Constraints (4.20.1) denote that all user demands must be guaranteed, and 

constraints (4.20.2) indicate the RRH’s transmit power limitations. In Equation 

(4.20), a convex optimization problem is derived, which can be modified to a 

second-order cone optimization problem (SOCP) (Wiesel, Eldar, and Shamai, 

2006). The optimal solution for Equation (4.20) can be achieved using (Soma 

et al., 1998). The optimization problem may have no feasible solution at the 

start of the learning process because there are not enough active RRHs to meet 

user demands. In this case, the agent becomes more aggressive in turning on 

more RRHs to satisfy the user demands. A summary of the optimal 

hyperparameters performance of the D2QN used in this work is shown on Table 

4.3, whereas the detailed D2QN pseudocode is presented in Table 4.4 Algorithm 

4. 2. Like chapter 3, the computational complexity for Equation (4.20), can be 

derived from, e.g., see (Ben-Tal, A. and Nemirovski, 2001, Chapter 6). Thus, 

the worst-case computational complexity of the proposed D2QN algorithm is 

𝒪(𝐽3.5𝑈3.5𝐸 + 𝐻𝑧 + 𝒟 + |휃|), where 𝐸 represents the number of episodes 

required to converge Algorithm 4.2. 𝐻𝑧, 𝒟 and |휃| denotes the extracted CSI 

hash code, the number of experience samples in the replay buffer and the 

cardinal of weights, respectively. The proposed D2QN algorithm achieves the 

best network performance results compared to the nature DQN. However, the 

computational complexity of the proposed D2QN algorithm is higher than the 

DQN. 

Table 4.3: Selection of hyperparameters values for D2QN 

Hyperparameters value 

Learning rate 𝓇 10-3 
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Epoch 10 

Training and testing episodes 1000 and 10 

Activation function ReLU 

Optimizer RMSProp (Zoph and Le, 2017) 

Number of hidden layers 3 

Number of neurons per layer (32,32,64) 

Mini-batch size 512 

Discount factor 𝜇 0.995 

Experience memory 𝒩𝒟  10000 

Table 4.4: Algorithm 4.2 D2QN Based Resource Allocation 

1: Initialize Experience memory with a capacity 𝒩𝒟  

2: Initialize the online network and target network with weights and biases 휃 and 휃′ 

3: for each decision epoch 𝑡, do: 

4:    Received the initial observation of the state 𝑠𝑡 

5:    Determine the hash code using the general hash function 𝐻𝑘(𝑧̅). 

6:    Find the nearest anchor (𝑧∗�̃�) to (𝑧̅) with respect to the Hamming distance. 

7:    Feed the generated hash code to the state-space 

8:   for each time slot, do:       

9:    Select a random action with a probability P 

10: else: 

11:   Select an action 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄(𝑠𝑡 , 𝑎𝑡; 휃) 

12:   Obtain a set of RRH 𝒥  

13:   Obtain the beamforming solution for a given action 𝑎𝑡     

14:   Calculate the reward and next state 

15:   Store (s𝑡 , 𝑎𝑡 , 𝐾(𝑡), s
′) into the experience replay buffer  

16:   Set  the mini-batch sample from the Replay buffer 
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4.4 RESULTS AND DISCUSSIONS 

This section explicitly presents the simulation and performance results of the 

proposed D2QN algorithm. Mainly, three key performance metrics are used to 

evaluate the effectiveness of the proposed algorithm: i) convergence 

performance of the proposed algorithm, ii) considering the hash bits 𝑟𝑏 and 

anchor node 𝑛 effectiveness iii) performance of joint EE-SE with the 

satisfaction of UEs. To make a fair comparison for the proposed network 

performance, Table 4.5 summarizes the simulation parameters setting of the 

proposed work (Dai and Yu, 2016). In this chapter, the user demand is 

considered in the range of 10 Mbps to 60 Mbps. The proposed algorithm’s 

performance is compared with Q-learning (Sun, Boateng, Ayepah-Mensah, et 

al., 2019), without considering CSI generalization and myopic approach. At 

first, the RL agent was trained for 1000 training episodes to make it aware of 

the environment. Then, the performances are plotted for 100 testing episodes in 

the simulation environment with TensorFlow 1.14.0 and python 3.7.5. 

Table 4.5: Simulation Parameters Setting 

17:   Calculate the Q-value for the D2QN 

18:   Calculate the target Q-value 𝑄(𝑠𝑡 , 𝑎𝑡 ; 𝜗, 𝛽 ) 

19:   Update the main Q-network to minimize the loss function 

20:   Observe the reward  𝐾(𝑠𝑡 , 𝑎𝑡) and next state 𝑠′ 

21:   end for: 

22: end for 

Symbol Parameter Value 

𝑝𝑗,𝑎𝑐𝑡 Active power  6.8 W 
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4.4.1 Convergence Performance  

The weighted EE-SE convergence performance can be seen in Figure 4.4, and 

it can be observed that both DQN and D2QN have the same weighted EE-SE 

performance at the start of learning. The term “Proposed solution” will be used 

hereafter instead of the Proposed solution (D2QN CSI_Feature_Extractor). 

With the increasing number of episodes, the Proposed solution yields better 

weighted EE-SE performance than the DQN, as demonstrated in Figure 4.4. The 

DQN algorithm makes a slow adaptive control switching decision because the 

learning agent requires massive efforts to learn the optimal CSI feature for data 

exploration to approximate the Q-value function. In other words, the DQN 

𝑝𝑗,𝑠𝑙𝑝 Sleep power  4.3 W 

𝑝𝑗,𝑡𝑟𝑎𝑛𝑠 Transmit power  1 W 

𝑝𝑗,𝑡𝑝 Transition power  3 W 

𝐵 Bandwidth   10 MHz 

𝜍𝑗,𝑢 Shadowing coefficient  8 dB 

휂 Power amplifier efficiency  25 % 

𝜎2 Noise power  -102 dBm 

𝑃𝐿(𝑑𝑗,𝑢) Pathloss with a distance of (𝑘𝑚) 148.1+37.6 log
2
𝑑𝑗,𝑢𝑑𝐵 

ℐ𝑚 Capacity gap  1 

𝔶𝑗,𝑢 Small scale fading  𝒞𝒩(0,1) 

𝜑𝑗,𝑢 Antenna Gain  9 dBi 

𝐿 Training sample 50000 

𝑛 anchors 10 

𝑍 Nearest number of anchors to matrix 2 

𝑟𝑏 Length of hash bits 9 
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algorithm is not able to extract the optimal CSI feature due to a lack of data 

exploration. Therefore, the DQN starts convergence after reaching 800 

episodes. Conversely, after every few episodes, the proposed D2QN algorithm 

takes greedy actions to determine the optimal CSI features to approximate the 

Q-value function. However, once the number of episodes approaches 725, the 

Proposed solution starts the convergence performance regarding the weighted 

EE-SE, as illustrated in Figure 4.4. It can be concluded from Figure 4.4 that the 

Proposed solution achieves faster convergence and improves the learning 

performance than the DQN. 

4.4.2 Hash Bits and Anchors Effectiveness 

The joint EE-SE performance against the growing user demand is plotted in 

Figure 4.5 for different anchor 𝑛 values within the Hamming radius of 2. The 

joint EE-SE performance decreases significantly with increasing anchor 𝑛 

value, as shown in Figure 4.5. The larger the cluster radius, the wider the state- 

725 
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space becomes for Equation (4.12). It means that the agent has to exert more 

effort to handle such an enormous state space. From Figure 4.5, one can see that 

when 𝑛 =  10, it provides 8-14% better EE-SE performance than 𝑛 = 25. On 

the other hand, for 𝑛 = 25, the joint EE-SE performance is 10-15% better than 

for 𝑛 = 50. The impact of hash bits 𝑟𝑏 on the average EE-SE performance 

against the user demands, is shown in Figure 4.6. From Figure 4.6, one can 

observe that larger values of 𝑛 are associated with higher power consumption 

Figure 4.6: Effect of hash bits 𝒓𝒃 value on EE-SE performance against user demand 
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due to the lengthening of the hash code for Equation (4.12). This means that the 

larger value of 𝑛 has a direct relationship to increasing the values of 𝑟𝑏. The 

performance of the average EE-SE is linearly increasing with 𝑟𝑏. This is due to 

the smaller difference between the data sample 𝑧 and 𝑛. The learning agent 

requires less effort to extract the required CSI feature. It is important to note 

that the value of 𝑟𝑏 must be less than the value of 𝑛. It can be concluded from 

Figure 4.5 and Figure 4.6 that the inaccurate values of 𝑟𝑏 and 𝑛 will decrease 

the joint EE-SE performance. Therefore, it is important to find the optimal 

values of 𝑟𝑏 and 𝑛 to improve the network performance. In this chapter, these 

two values are considered as 𝑟𝑏 = 9 and 𝑛 = 10. 

4.4.3 Joint Performance of Weighted EE-SE 

The predicted values of 𝑛 and 𝑟𝑏 are then used to optimize the joint EE-SE 

performance. In this section, two scenarios are analyzed to examine the 

performance of joint EE-SE, i.e., 1) 𝐽 = 4, 𝑈 = 2 and 2) 𝐽 = 12 , 𝑈 = 4. The 

proposed solution is compared with Q-Learning (Sun, Boateng, Ayepah-

Mensah, et al., 2019) without CSI generalization and myopic approach (Dai and 

Yu, 2016). In the myopic approach, the main focus is on the immediate reward 

value taken from the action and ignores its impact on future values. As a result, 

a channel is always selected in which the maximum immediate reward value is 

obtained.  The myopic approach has no performance guarantee, especially if a 

channel becomes correlated. In order to maximize the long-term performance 

of the EE-SE, Q-learning is first considered. As shown in Figure 4.7, the 

performance of Q-learning is superior to the myopic approach. This is because 

Q-learning attempts to maximize the network’s performance by using past 
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learning experiences. However, such method becomes unstable, especially 

when the value of CSI is changing continuously in the state space. The D2QN 

method is then used to approximate the value of state-space and name it without 

a CSI Feature Extractor so that the agent tries to maximize its expected future 

reward. Ideally, the RL agent will achieve the optimal solution for a large state-

space value. However, due to the continuous state-space explosion, the 

dimensionality problem occurs. The performance of joint EE-SE degrades if the 

state-space is not discretized, as shown in Figure 4.7. This motivates the need 

for to a D2QN based solution with extracted CSI generalization by using AGH 

approach. The Proposed solution outperforms the other three approaches as 

shown in Figure 4.7. However, no matter which method is utilized, the joint 

performance of EE-SE increases linearly as the user demand increases. Figure 

4.7 shows that the Proposed solution achieves 6-10% better performance at each 

step increasing user demand. However, once the user demand exceeds 40Mbps, 

each of the four approaches becomes unsustainable. The reason is that all these 

approaches require more transmission power, which results in higher joint EE- 

Figure 4.7: joint EE-SE performance vs user demand for 𝑱 = 4 , 𝑼 = 2 
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SE performance. In order to avoid this issue, the number of RRHs and users are 

increased to 𝐽 = 12 and UEs 𝑈 = 4, as shown in Figure 4.8. Even with the 

increasing number of users and RRHs, the Proposed solution still achieves 

better performance by 5% -12% than other approaches. This improvement 

demonstrates that the CSI generalization is more effective than the baseline 

approaches in terms of system performance. 

Lastly, the performance of the average EE-SE for varying values of 𝛼 is 

presented in Figure 4.9. The performance of the average EE-SE decreases for 

all four approaches as the value of 𝛼 increases. This is because the difference 

between EE-SE will be lessened as the 𝛼 value increases. Compared to the 

D2QN without a CSI Feature Extractor, Q-Learning, and myopic approaches,  

the Proposed solution achieves 4.7%, 5.3%, and 6.4% better performance, 

respectively, by assuming 𝛼 = 0. Similar results are observed when 𝛼 = 1; the 

average EE-SE performance drops to 2.85%. Despite this drop, the Proposed 

Figure 4.8: joint EE-SE performance vs user demand for 𝑱 = 12 , 𝑼 = 4 

 

Figure 4.9: Tuning parameter effects on Average EE-SE performanceFigure 4.8: joint 

EE-SE performance vs user demand for 𝑱 = 12 , 𝑼 = 4 
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solution still outperforms the D2QN without CSI Feature Extractor, Q-

Learning, and myopic approaches. This is because the average EE-SE 

performance reflects the fact that the total power of RRH increases as the 𝛼 

value increases  

4.5 SUMMARY 

In this chapter, the RA scheme based on the D2QN is proposed in order to 

maximize the joint tradeoff between EE-SE and satisfies the user’s QoS 

requirements in CRAN. In particular, the machine learning technique based on 

AGH is used to limit the dynamic feature of CSI and then feed to the input of 

DRL. The near-optimal control strategy is used for turning on and off RRHs to 

maximize the joint EE-SE performance and meet the QoS requirement for users 

using a D2QN-based approach. Lastly, the D2QN-based AGH method is 

examined to improve the EE-SE performance by comparing without the CSI 

Feature Extractor, Q-learning (Sun, Boateng, Ayepah-Mensah, et al., 2019), and 

myopic approach (Dai and Yu, 2016). It is shown that the proposed D2QN-

Figure 4.9: Tuning parameter effects on Average EE-SE performance 

 

Figure 5.1: CRAN resource allocation under DRL frameworkFigure 4.9: 

Tuning parameter effects on Average EE-SE performance 
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based AGH method improves the performance of joint EE-SE. Furthermore, 

based on simulation results, the proposed solution is more effective than 

baseline approaches to improve network performance, learning performance, 

and convergence speed. 
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CHAPTER 5 

 

RESOURCE MANAGEMENT FOR CLOUD RAN USING 

CONVOLUTIONAL NEURAL NETWORKS BASED ON DEEP Q-

NETWORK 

 

In this chapter, the convolutional neural networks-based deep Q-networks 

(CNN-DQN) is introduced in order to balance the energy consumption and 

ensure the user’s quality of service (QoS) demand in downlink cloud radio 

access networks (CRAN). After formulating the Markov decision process 

(MDP) for maintaining energy efficiency (EE), a three-layer CNN is proposed 

to represent the environment features as input state spaces. Deep Q-network 

(DQN) is then implemented to dynamically control the status of RRHs based on 

the user’s QoS demand and energy consumption in the CRAN. Finally, the 

resource allocation (RA) problem is solved based on transmitted power and user 

demand constraints to fulfil the QoS demands and maximize EE. This chapter 

is concluded with a simulation study, demonstrating how the proposed scheme 

performs in terms of EE, power savings, and user satisfaction. 

5.1 INTRODUCTION 

As the number of mobile subscribers has grown exponentially over the past two 

decades, user data traffic has also grown exponentially. Cisco 2020 predicts that 

mobile subscribers will reach 5.7 billion by 2023 and that data traffic will reach 

110 exabytes (EB) (Cisco, 2020). Therefore, it is necessary to install a large 

number of base stations (BSs) within the coverage area in order to fulfill the 
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above requirements but installing more BSs will increase infrastructure costs 

and energy consumption. About 60-75% of the total energy consumption in the 

cellular network is consumed by the BSs (O et al., 2017). Therefore, when the 

number of users is low, the BSs need to be dynamically turned off to ensure low 

energy consumption. 

Currently, the capacity of the existing radio access network (RAN) is limited by 

the remote resource management among BSs. Network densification is one way 

to increase the existing RAN framework’s capacity. As a consequence of such 

processes, capital and operational costs are increased (CAPEX and OPEX), and 

existing RAN frameworks cannot support the ever-increasing user demands and 

mobile subscribers (Yadav and Dobre, 2018). 

Using cloud radio access networks (CRANs) is a promising technology to 

address all of the above difficulties and provide fast, reliable, and scalable real-

time communication for next-generation networks (Checko et al., 2015). The 

main idea behind CRANs is to separate the BS functionality into distributed 

low-cost, low-power remote radio heads (RRHs) and a centralized baseband 

unit (BBU). The RRHs are responsible for transceiving the radio signal, and the 

BBU leads to the signal processing functions. As a result of centralized 

processing, the CRAN assigns radio resource knowledge to RRHs based on user 

demand and mobility. Although the CRAN has very significant implications for 

the upcoming wireless network era, adaptively solving the RA problem remains 

a topic of research. 

The RA problem in the CRAN has been studied extensively from several 

perspectives, such as EE (Tham et al., 2017), throughput (Ali et al., 2017), and 
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transmission power (Dhif-Allah et al., 2018). However, most of these studies 

follow the traditional model-based approach with a static network environment. 

This approach becomes impractical, especially if the network state is affected 

by user mobility at each time step 𝑡. Therefore, this chapter investigates a 

model-free approach to solving the RA problem throughout the entire 

operational period in real-time. 

Reinforcement learning (RL) is a model-free machine-learning (ML) approach 

in which the learning agent interacts continuously with an unknown 

environment to apply its knowledge to a complex decision-making problem 

(Sutton and Barto, 2018). The learning agents select the actions from each state 

and then use the available data to train the model to make decisions at each time 

step 𝑡. Deep learning (DL) has been successfully applied in many fields 

recently, i.e., speech recognition, natural language processing, image 

processing, and computer vision (CV). DL has also been utilized in wireless 

communication to learn the sequential control task to aid the RL algorithm 

(Cheng et al., 2017). Convolutional neural networks (CNN) advance the DL 

method that can extract more complex dynamic features in mobility scenarios 

(Lecun, Bengio, and Hinton, 2015). Many existing works define the state of the 

wireless network as the user demand and RRHs without considering their 

relationship with each other (Xu et al., 2017) and (Zhao et al., 2019). A major 

disadvantage of these works is the requirement that users report their 

information to their respective RRHs, thereby increasing the overhead 

associated with signaling. If such information exists between the users and 

RRHs, then RRHs should store all valid information. Thus, users need not 

provide any such information for signaling. This process reduces the signaling 
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burden in the network. Furthermore, the works discussed in (Xu et al., 2017) 

and (Zhao et al., 2019) exploit fully connected layers to train neural networks 

(NNs) as opposed to convolutional layers, thereby substantially increasing 

training parameters (Lee, Kim and Cho, 2018). The above drawback provides a 

reason for considering the relationship between RRHs and users as raw 

observations and proposing a three-layer CNN-based deep Q-Network (CNN-

DQN) to capture the random state features in the environment. Furthermore, 

this chapter combines the CNN and DQN schemes for extracting information 

from users and RRHs in the input of the network state. According to this study, 

the CNN phase is responsible for feature extraction, while the DQN phase is 

responsible for dynamically turning on and off the RRHs. 

The rest of the chapter is structured as follows. Section 5.2 illustrates the system 

model and the power consumption function. Section 5.3 describes the proposed 

method along with the 3-layer CNN phase. Section 5.4 presents simulation 

details and results, followed by a conclusion in Section 5.5. In Table 5.1, a list 

of the mathematic notations that are used in this chapter is presented. 

Table 5.1: List of Key Notations 

Notations Description  

ℛ Set of RRHs  

𝒰 Set of UEs 

𝕋 Time-period 

𝐷𝑢 Data rate demand 

𝑃𝐿 Path loss 
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𝑑𝑗,𝑢 Distance between RRHs and UEs 

휁𝑟,𝑢  Antenna gain  

𝜌𝑟,𝑢  Shadowing coefficient 

𝜔𝑟,𝑢 Small-scale fading 

𝜕𝑢 Signal-to-interference-plus-noise ratio 

ℎ𝑢 Channel gain 

𝑤𝑢 Beamforming weight 

𝑊 Bandwidth  

𝒥𝑚 Capacity gap 

𝐶𝑢 Data rate 

𝛿2 Noise power 

𝑝𝑟,𝑇 Transmission power 

𝜏 Power amplifier 

𝑝𝑟,𝐴 Active power 

𝑝𝑟,𝑆  Sleep power 

𝑝𝑟,𝒢 Transition power 

𝒮 Set of sleep mode of RRHs 

𝒜  Set of an active mode of RRHs 

𝑁 MDP tuple 

𝑆 Discrete state-space 

𝐴 Discrete action space 
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𝑃(𝑠′, 𝑘|𝑠, 𝑎) Transition probability 

𝐾(𝑠, 𝑎) Reward 

𝑉𝜋(s) State value function 

𝜇 Discount factor 

𝒟𝑡 Experience Replay Memory 

𝜋 Policy 

𝛾 Learning rate 

𝑀 Input matrix 

𝑂 Convolutional output filter  

𝔩 Input-size 

𝕂 Kernel-size 

ℙ Padding  

𝕊 Stride  

β Dropout probability  

𝒟 Experience replay 

 

5.2 SYSTEM MODEL 

Like previous chapters, the downlink CRAN is considered in this chapter which 

is composed of a single BBU, set of RRHs and set of UEs and denoted as ℛ =

{1,2,…𝑅}, and 𝒰 = {1,2,…𝑈}, respectively as shown in Figure 5.1. A time 

period 𝕋 = {1,2,…𝑇} is also assumed in this chapter. The UEs change their 

position randomly and report their user data rate demand 𝐷𝑢 ∈ [𝐷𝑚𝑖𝑛,𝐷𝑚𝑎𝑥] and 
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channel state information (CSI) to the BBU pool. The BBU pool is assumed to 

serve as the RL agent. Each RRH and the UE are equipped with a single antenna 

without loss of generality. Furthermore, it is also assumed that users can access 

all the RRHs and that the RRHs are connected to the centralized BBU pool. As 

a result, all the information is processed in a centralized manner. The path loss 

is then determined based on (Dai and Yu, 2016): 

where the distance between RRHs and users is represented by 𝑑𝑟,𝑢. The channel 

fading model is considered from the previous work (Shi, Zhang, and Letaief, 

2015): 

The 휁𝑟,𝑢 , 𝜔𝑟,𝑢 and 𝜌𝑟,𝑢 denotes the antenna gain, small-scale fading, and 

shadowing coefficient, respectively. The rayleigh channel fading model is 

considered in this work; where 𝜔𝑟,𝑢 is the independent and identically 

𝑃𝐿(𝑑𝑟,𝑢) = 148.1+ 37.6 log
2
𝑑𝑟,𝑢 𝑑𝐵 (5.1) 

ℎ𝑟,𝑢(𝑡) = 10−𝑃𝐿(𝑑𝑟,𝑢) 20⁄
√휁𝑟,𝑢 𝜌𝑟,𝑢 𝜔𝑟,𝑢 (5.2) 

Figure 5.1: CRAN resource allocation under DRL framework 
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distributed (i.i.d) complex Gaussian random variable that captures the small-

scale fading effects associated with a radio link between RRH and UE. The 

signal-to-interference plus noise (SINR) 𝜕𝑢 received by the users 𝑢 at time 𝑡 can 

be expressed as follows: 

whereas 𝛿2 indicates the background noise. ℎ𝑢(𝑡) and 𝑤𝑢(𝑡) represents the 

channel gain and beamforming weight between RRHs and users at time 𝑡 and 

can be expressed as ℎ𝑢(𝑡) = [ℎ1,𝑢(𝑡), ℎ2,𝑢(𝑡),⋯ℎ𝑅,𝑢(𝑡)]
𝑇
and 𝑤𝑢(𝑡) =

[𝑤1,𝑢(𝑡), 𝑤2,𝑢(𝑡)⋯𝑤𝑅,𝑢(𝑡)]
𝑇
, respectively. Finally, the data rate achieved by 

the user at time 𝑡 is given as: 

𝐶𝑢(𝑡) = 𝑊 𝑙𝑜𝑔2 (1 +
𝜕𝑢(𝑡)

𝒥𝑚
) , 𝑢 ∈ 𝒰 (5.4) 

The 𝑊 and 𝒥𝑚 specifications describe the channel bandwidth and SNR gap, 

respectively. The 𝒥𝑚 depends on the modulation scheme. In this chapter, 𝒥𝑚 is 

assumed to be 1. 

5.2.1 Power Consumption Model 

According to (Auer et al., 2012), the relationship between BS power 

consumption and transmit power can be approximated linearly. Therefore, for 

each RRH, a linear power model is applied as: 

𝑝𝑟 = {

1

𝜏
𝑝𝑟,𝑇 + 𝑝𝑟,𝐴                     ; 𝑟 ∈ 𝒜

𝑝𝑟,𝑆                                        ; 𝑟 ∈ 𝒮
 (5.5) 

𝜏 indicates the drain efficiency of the power amplifier. 𝑝𝑟,𝑇 =

∑ ∑ |𝑤𝑟,𝑢|
2

𝑢∈𝒰𝑟∈𝒜 signifies the RRHs 𝑟 transmit power; 𝑝𝑟,𝐴 is the power 

𝜕𝑢(𝑡) =
|ℎ𝑢
𝐻(𝑡)𝑤𝑢(𝑡)|

2

𝛿2 +∑ |ℎ𝑣
𝐻(𝑡)𝑤𝑢(𝑡)|

2
𝑣≠𝑢

, 𝑢 ∈ 𝒰 (5.3) 
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consumption of active RRH 𝑟 without transmitting signals. When no 

transmission is necessary, the RRHs 𝑟 can be set to sleep mode as 𝑝𝑟,𝑠. 𝒮 and 𝒜 

represent sleep and active modes of RRHs, respectively. Thus, one has 𝒜 𝑈 𝒮 =

ℛ.  

Furthermore, most of the works, e.g. (Shi, Zhang and Letaief, 2015), (Dai and 

Yu, 2016), and (Gerasimenko et al., 2015), have ignored the transition power to 

calculate the total power consumption, which is a change mode power of the 

RRH states. Transition power is essential to be considered in the power 

minimization framework, as shown in (Xu, Lin and Zhong, 2014) and (Xu et 

al., 2015). Therefore, in this chapter, the transition power is also considered, 

denoted as 𝑝𝑟,𝒢. 𝒢 stands for the set of transition mode of RRH. Therefore, the 

total power consumption 𝑃𝑡𝑜𝑡𝑎𝑙(𝑡) of all RRHs at time slot 𝑡 can be expressed 

mathematically as: 

𝑃𝑡𝑜𝑡𝑎𝑙(𝑡) = ∑ 𝑝𝑟,𝐴 +∑𝑝𝑟,𝑆
𝑟∈𝒮

+∑ ∑
1

𝜏
|𝑤𝑟,𝑢|

2
+∑𝑝𝑟,𝒢
𝑟∈𝒢𝑢∈𝒰𝑟∈𝒜𝑟∈𝒜

 

 

(5.6) 

5.2.2 Problem Formulation 

This chapter adjusts the transmission power per RRH and the user data rate to 

maximize the EE. The EE is defined as the ratio between the sum of throughput 

and total power consumption at time slot 𝑡. Therefore, the EE is treated as an 

objective function. The EE can be expressed mathematically as: 

𝐸𝐸(𝑡) =
∑ 𝐶𝑢(𝑡)
𝑈
𝑢=1

𝑃𝑡𝑜𝑡𝑎𝑙(𝑡)
 (5.7) 

Furthermore, the EE optimization problem is formulated as: 
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𝑚𝑎𝑥∑𝐸𝐸(𝑡)

𝑇

𝑡=1

 (5.8) 

subject to  𝐷𝑢(𝑡) ≤ 𝑊 log2 (1 +
𝜕𝑢(𝑡)

𝒥𝑚
) , ∀𝑢 ∈ 𝒰, 𝑡 ∈ 𝕋 (5.8.1) 

∑|wr,u|
2
≤ 𝑃r,               ∀𝑟 ∈ 𝒜,

u∈𝒰

 𝑡 ∈ 𝕋 (5.8.2) 

Constraint (5.8.1) states that each user’s target data rate must be less than or 

equal to the achievable data rate. In contrast, constraint (5.8.2) indicates that the 

user’s transmit power must not exceed the maximum transmit power. 

5.3 CONVOLUTIONAL NEURAL NETWORK-BASED RESOURCE 

ALLOCATION OPTIMIZATION 

This section is divided into the three-sub sections. First, the basics of RL are 

explained to understand the flow of the mechanism. Secondly, the network state 

feature is extracted by the CNN before feeding to the input of the DRL agent. 

Finally, the power allocation optimization problem is formulated. 

5.3.1 Basic of Reinforcement Learning Components 

RL is a powerful artificial intelligence (AI) technique in which an agent 

interacts solely with an unknown environment to monitor the current state and 

map the situation to maximize the reward value. RL generally follows the 

Markov decision process (MDP) framework to model the complex decision-

making problem. The MDP is represented as a tuple of 𝑁 = (𝑆, 𝐴, 𝐾(𝑠, 𝑎),

𝑃(𝑠′, 𝑘|𝑠, 𝑎)). The state and action space are represented by 𝑆 and 𝐴, 

respectively. The reward function is designated by 𝐾(𝑠, 𝑎). Similarly, the agent 

moves from the current state 𝑠 ∈ 𝑆 to the next state 𝑠′ ∈ 𝑆 to execute a  
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cumulative reward with a certain probability known as transition probability 

𝑃(𝑠′, 𝑘|𝑠, 𝑎). As shown in Figure 5.2, the agent observes the current state of the 

network at each time step 𝑡 and executes an action. After executing the action, 

the feedback is obtained in the form of a scalar reward from the environment. 

The objective of the agent is to find the near-optimal control policy 𝑎 = 𝜋∗(𝑠) 

that maximizes the reward function value over time. In order to calculate the 

average cumulative reward function, the state value function 𝑉𝜋(s) =

𝔼𝜋{∑ 𝜇𝑖𝑘𝑡+𝑖+1|𝑠𝑡 = 𝑠∞
𝑖=0 } is introduced. The state value function 𝑉𝜋(s) uses the 

recursive relationship based on the Bellman equation as follows:  

𝑉𝜋(𝑠) =∑𝜋(𝑎|𝑠)∑ 𝑃(𝑠′, 𝑘|𝑠, 𝑎)[𝐾 + 𝜇𝑉𝜋(𝑠
′)]

𝑠′,𝑘
𝑎

 (5.9) 

where 𝜇 denotes the importance of future rewards versus current rewards and is 

known as the discount factor. According to (Mnih et al., 2015), dynamic 

programming and Q-learning are the two approaches to solving the MDP 

framework. Dynamic programming is the most commonly used method in the 

model-based approach since the state transition probability is already known. 

However, in a complex environment, i.e., 5G and beyond, the state transition 

probability will change at each time step 𝑡. Therefore, the dynamic 
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programming approach cannot be used to resolve the complex decision-making 

problem. To conclude the MDP framework, an unknown state transition 

probability is considered in this chapter. The unknown state transition 

probability is solved using the model-free Q-learning approach. 

5.3.2 Q-Learning Approach 

This sub-section describes how Q-learning can solve unknown state transition 

problems based on the temporal difference method. To learn about Q-learning, 

first, the concept of the Q-value function is examined, known as the state-action 

value function and represented as 𝑄(𝑠, 𝑎) = 𝔼𝜋{∑ 𝜇𝑖𝐾𝑡+𝑖+1|𝑠𝑡=𝑠, 𝑎𝑡=𝑎
∞
𝑖 }. The 

numerical representation of the optimal Q-function is expressed as 𝑄∗(𝑠, 𝑎) =

𝑚𝑎𝑥𝜋 𝑄(𝑠, 𝑎). The Bellman equation can be used for getting the optimal Q-

function and can be expressed mathematically as: 

𝑄∗(𝑠, 𝑎) =∑𝑃(𝑠′, 𝐾|𝑠, 𝑎) [𝐾 + 𝜇max
𝑎′

𝑄∗(𝑠′, 𝑎′)]

𝑠′,𝐾

 (5.10) 

The action selection in Q-learning relies on ϵ-greedy exploration, where the 

agent chooses the random action with a probability of 𝜖 and the greedy action 

with a probability of 1 − 𝜖. Initially, the Q-value is initialized with the state and 

action values. It is then updated iteratively as the action selection is evolved as:  

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛾 [𝐾 + μ max
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (5.11) 

where 𝛾 is the configurable hyperparameters known as learning rates and 

specifically used in the training of neural networks. The 𝛾 is usually in the range 

of 0.0 and 1.0. From Equation (5.11), it is clear that the state and action values 

are stored in the form of Q-tables, which work well for a limited state-action 

dimension. However, it can be a problem for Q-learning to keep all the state-



 

109 
 

action values in the lookup table in a complex network (5G and beyond) since 

the state-action value increases exponentially. 

5.3.3 Deep Q-Network Learning 

To avoid the dimensionality problem, a linear function approximation method 

is proposed to approximate the Q-value function. However, such a method 

cannot estimate the Q-value function accurately. DRL then solves this problem 

with a neural network called a deep neural network (DNN). The main idea of 

DNN is to approximate the Q-value function using a non-linear function. Deep 

Q-network (DQN) is a widely used DRL algorithm proposed for various 

applications. A separate target network and an experience replay 𝒟 function are 

added to the dataset in the DQN, which helps reduce the correlations between 

data and makes the system more stable (Fan et al., 2019). In the DQN, the 

learning agent collects all the information and then applies this information to 

train the policy (offline) in its background. Thus, the DQN makes all the 

decisions efficiently and timely based on the already learned policy. In the 

DQN, the state-action value function 𝑄(𝑠, 𝑎) can be expressed as 𝐾 +

𝜇𝑄∗(s′, 𝑎′). The loss function is then calculated as: 

𝐿(휃) = 𝔼 [(𝑦𝑡𝑎𝑟𝑔𝑒𝑡 −𝑄(𝑠, 𝑎; 휃))
2
] (5.12) 

where  

𝑦𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐾 + 𝜇max
𝑎′
(𝑠′, 𝑎′; 휃′) (5.13) 

휃 and 휃′ indicate the weights of the evaluated and target networks, respectively. 

Then, these weights are optimized by using the stochastic gradient descent 

algorithm (Bottou, 2012). 
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5.3.4 Convolutional Neural Network-Based Proposed Scheme 

In the presence of random user movements at each time step 𝑡, the state space 

dimension exponentially grows. The explosive growth of the state space makes 

it difficult for the DQN agent to render all the information in a reasonable time. 

Therefore, this chapter proposes a relational CNN-DQN algorithm, which 

breaks the state space dimensionality issue and results in the optimal control 

policy on the RRHs on/off switching. Three hidden convolutional layers are 

proposed based on the dynamic network state-space feature. Each hidden layer 

contains 32,32, and 64 convolution filters with a 𝑀 ×𝑀 input matrix, 

respectively. For each convolutional filter, Xavier's normal initializer is used to 

initialize the coefficient of channel gain (H. Ide and T. Kurita, 2017). The output 

of the convolution filter is calculated as follows: 

where 𝑂 is the output of the convolutional filter and 𝔩, 𝕂, ℙ, and 𝕊 are the input 

matrix size, kernel (filter size), padding, and stride, respectively. For simplicity, 

the kernel size of all hidden layers is assumed to be 2×2, and the padding value 

and stride value are 0 and 1, respectively. Moreover, the activation function is 

used as a rectified linear unit (ReLU) for all hidden layers. The proposed CNN 

comprises a convolutional layer, max-pooling layers, flatten layers, and fully 

connected layers, as shown in Figure 5.3. The environment state-space features 

are extracted from the convolutional layers. The pooling layers are used to down 

sample the extracted features. Finally, a max filter is applied to output the 

maximum value of a particular region. The output of the last max-pooling layer 

is dropped out with a probability of β = 0.25. The last max-pooling layer is 

𝑂 =
𝔩 − 𝕂 + 2ℙ

𝕊
+ 1 (5.14) 



 

111 
 

flattened into a one-dimensional vector, which is then connected to 100×1 of 

 fully connected (FC) neural networks (NN). Accordingly, the extracted state 

feature of CNN is fed into DQN to perform the on/off RRHs switch decision. 

The training process is then performed by the DQN algorithm, as shown in 5.3. 

In this chapter, the state space 𝑠(𝑡), the action space 𝑎(𝑡), and the reward 

function 𝐾(𝑡) are defined as follows: 

• State-space: 

During each time step 𝑡, the state features are captured, which contains user 

demand 𝐷𝑢(𝑡), the RRHs on/off state 𝑣𝑟(𝑡) and relational matrix between RRHs 

𝑟 and users 𝑢 denoting as 𝐻 ∈ 𝑅𝑈×𝑅. The relational matrix can be expressed 

mathematically as: 

𝐻(𝑡) = [
ℎ11 ⋯ ℎ1𝑟
⋮ ⋱ ⋮
ℎ𝑢1 ⋯ ℎ𝑈𝑅

] (5.15) 

Figure 5.3: Proposed CNN based DQN Framework 

 

Figure 5.3: Proposed CNN based DQN Framework 
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The ℎ𝑈𝑅 represents the coefficient of channel gain between RRHs 𝑅 and users 

𝑈. Finally, these three features are concatenated, i.e., user demand, state of 

RRHs, and channel gain, into a single vector. Thus, the state-space becomes as: 

𝑠(𝑡) = [𝐷𝑢(𝑡), 𝑣𝑟(𝑡), 𝐻(𝑡)]
𝑇 (5.16) 

• Action space: 

The action is defined based on the on/off state of RRHs at each time slot 𝑡. The 

action space can be expressed as 𝑎𝑟(𝑡) ∈ {0,1}. However, the RL agent is only 

allowed to choose the action based on the active set of RRHs 𝒜 in this work. 

• Reward Function: 

According to the proposed framework model, the reward function 𝐾(𝑡) 

describes whether to punish or encourage the RL agent based on their behavior. 

The reward function is actually the objective function defined in Equation (5.7) 

that shows the improvement in EE and can be written as follows: 

𝐾(𝑡) = 𝐸𝐸(𝑡) =
∑ 𝐶𝑢(𝑡)
𝑈
𝑢=1

𝑃𝑡𝑜𝑡𝑎𝑙(𝑡)
 (5.17) 

5.3.5 Resource Allocation Optimization 

Referring to Equation (5.6), three kinds of power are considered, i.e., state 

power, transition power, and transmit power. The state power and transition 

power are based on the current state and action and can be easily calculated. To 

minimize the total power consumption of Equation (5.6), it is necessary to 

minimize the transmit power at each time step 𝑡. The transmit power relies on 

allocating beamforming weights in the active set of RRHs 𝒜. Thus, the 

optimization problem is expressed as: 
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min
𝑤𝑟,𝑢

𝑝𝑟,𝑇 (5.18) 

subject to 𝑆𝐼𝑁𝑅𝑢(𝑡) ≤ 𝐶𝑢(𝑡) ∀𝑢 ∈ 𝒰 (5.18.1) 

∑|𝑤𝑟,𝑢|
2
≤ 𝑃𝑟,𝑡  ,

𝑢∈𝒰

 ∀ 𝑟 ∈ 𝒜 (5.18.2) 

The objective is to obtain a minimum total transmitting power based on the state 

of RRHs, and the user demands. Here user demand represents the requested 

transmission rate for each user. The variables 𝑤𝑟,𝑢 are distributed weights 

corresponding to beamforming power. Furthermore, the 𝑆𝐼𝑁𝑅𝑢(𝑡) =

𝒥𝑚(2
𝐷𝑢
𝑊 − 1); whereas 𝑃𝑟,𝑡 represents the constraint of maximum RRHs 

transmit power. Also, constraint (5.18.1) assures that all user’s demands will be 

met, while constraint (5.18.2) limits the transmission power in each RRH. The 

problem explained in (5.18) belongs to the convex optimization problem and 

can be modified to become the second-order cone optimization problem 

(Wiesel, Eldar and Shamai, 2006). An iterative approach can be used to solve 

this problem (Soma et al., 1998). There may be no feasible solutions at the start 

for the beamforming optimization, which means that more RRHs would need 

to be activated to meet the user demands. Thus, the RL agent would get negative 

rewards and would be out of the training loop. The detailed process is 

summarized in Table 5.2 Algorithm 5.1. 

Table 5.2: Algorithm 5.1 CNN-Based DQN Framework 

1: Initialize the experience memory 𝒟 with the capacity 

2: Initialize the weights and biases for the main and target network (휃 and 휃′) 

3:for each episode, do: 

4: Observe the initial state 𝑠(𝑡) 

5: Extract the state feature ∅(𝑡) using CNN 

6: Feed the extracted feature to the DRL agent 
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5.3.6 Computational Complexity 

The computational complexity of the proposed CNN-DQN algorithm is derived 

from Equation (5.18). Since Equation (5.18) can be modified to second-order 

cone programming (SOCP), which can be solved in polynomial time by a 

standard interior-point method, e.g.,  (Ben-Tal, A. and Nemirovski, 2001). The 

total number of variables of Equation (5.18) is 𝑅 + 𝑈, and a total number of 

constraints is 2𝑅 +  2𝑈 +  1. Thus, the worst-case computational complexity 

per-episode is 𝒪(𝑅𝑈)3.5. Therefore, the overall computational complexity of 

7: for each time slot 𝑡 do: 

8:  Choose a probability ƿ 

9:  if 𝜺 ≥ ƿ then: 

10:  Select a random action 𝑎(𝑡) 

11: else 

12: Select a greedy action 𝑎(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄∗(∅(𝑡), 𝑎(𝑡); 휃) 

13: end if 

14: Solve Equation (5.18) to obtain the optimal beamforming solution based on an active set    

     of RRHs 𝒜. 

15: Calculate reward 𝐾(𝑡) and successor state 𝑠(𝑡 + 1) 

16: Store the transition of (𝑠(𝑡), 𝑎(𝑡), 𝐾(𝑡), 𝑠(𝑡 + 1) into 𝒟  

17: Randomly sample mini-batch transition (𝑠(𝑡), 𝑎(𝑡), 𝐾(𝑡), 𝑠(𝑡 + 1) from 𝒟 

18: Extract the next-state feature ∅′ using CNN 

19: Set target 

𝑦(𝑡) = {
𝐾(𝑡),                      𝑖𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 

𝐾(𝑡) + 𝜇𝑚𝑎𝑥𝑄(∅′, 𝑎′; 휃′), 𝑒𝑙𝑠𝑒𝑤𝑖𝑠𝑒
} 

 

20: Train the network to minimize the loss function of Equation (5.12)   

21: Perform the stochastic descent step on (𝑦(𝑡) − 𝑄(∅(𝑡), 𝑎(𝑡); 휃)) 

22: end for: 

23:end for 
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Algorithm 5.1 is 𝒪(𝑅3.5 𝑈3.5 𝐾 + 𝛹.Ω + 𝒟 +|𝐺𝜃|), where 𝐾 is the number of 

episodes required to converge Algorithm 5.1. (𝛹. Ω), 𝒟 and 𝐺𝜃 specify the size 

of extracted channel gain, the number of experience samples from the replay 

buffer, and the number of hidden layers, respectively. Similarly, the 

computational complexity of (Xu et al., 2017) is 𝒪(𝑅3.5 𝑈3.5 𝐾 + 𝒟 +|𝐺𝜃|). The 

computational complexity of the proposed algorithm is much higher than that 

in (Xu et al., 2017) since the proposed algorithm limits the size of the channel 

gain feature at the input of the network state. However, the signalling overhead 

of our proposed algorithm is much less than that in (Xu et al., 2017) because 

users do not have to exchange their information to the respective RRHs. RRHs 

record all the information between RRHs and users. That reduces the signalling 

burden of the network. 

Table 5.3: Simulation Parameters 

 

Parameters  Symbol Value  

Transition power  𝑝𝑟,𝒢 3 W 

Transmit power 𝑝𝑟,𝑇 1 W 

Sleep power 𝑝𝑟,𝑆 4.3 W 

Active power 𝑝𝑟,𝐴 6.8 W 

Bandwidth  𝑊 10 MHz 

Noise power δ2 -102 dBm 

Power amplifier efficiency  τ 25 % 

SNR gap 𝒥m 1 

Antenna Gain ζ𝑟,𝑢  9 dBi 

Shadowing coefficient ρ𝑟,𝑢  8 dB 

Small scale fading ω𝑟,𝑢 𝒞𝒩(0,1) 
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5.4 RESULTS AND DISCUSSIONS 

This section analyzes the simulation setting and demonstrates the performance 

of the proposed CNN-DQN approach. The proposed approach is compared with 

the conventional DQN and the traditional approach. In order to simplify the 

traditional approach, the traditional approach is assumed to be a full coordinate 

association and denoted as FA. As for FA, the discount factor value is 

considered as 𝜇 = 0, in which the DRL agent only learns the action that 

produces an immediate power consumption value and user QoS satisfaction. 

The user demand is fixed within a range of [10-60] Mbps with a step size of 10 

Mbps. Additionally, two scenarios are examined to verify the effectiveness of 

increasing the number of RRHs when RL agents cannot satisfy the user’s QoS 

demand. First, 1000 training episodes are considered to teach the DRL agent to 

recognize the behavior of the environment. Finally, the results are generated 

based on 100 testing episodes. To compare the proposed solution network 

performance with the FA approach (Dai and Yu, 2016), the optimal simulation 

parameters used in this work can be found in Table 5.3. 

5.4.1 Effect of Hyperparameter 

Learning rate (𝛾) is a crucial performance hyperparameter used in ML. This 

hyperparameter determines how to tune the neural network to achieve optimal 

performance. Therefore, a suitable value for 𝛾 must be selected. The larger the 

value of 𝛾, the greater the chance there is to over-fit the model, but a higher 

value of 𝛾 increases the learning speed of the neural network. When the 𝛾 is 

small, it is easier to prevent the model from over-fitting. However, it requires 

tremendous computing power to train the neural network. 
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For epoch 𝑖, the 𝛾 is given by: 

𝛾 =
𝛾𝑖𝑛𝑖𝑡

1+ 𝑖 × 𝑑
,   1 ≤ 𝑖 ≤ 100 (5.19) 

The 𝑑 and 𝛾𝑖𝑛𝑖𝑡 represent the positive integer and initial learning rate, 

respectively, which are used to control the decaying speed. In this chapter, the 

positive integer value is assumed as 𝑑 ∈ {0.1,0.2,0. 3,…1.0}. Figure 5.4 shows 

that when 𝑑 = 0, 𝛾 becomes constant for all the epoch values. However, as the 

𝑑 increases, the 𝛾 decreases sharply. In order to avoid the neural network from 

overfitting, these values are considered as 𝛾 = 0.001 = 10
-3

and 𝑑 = 1. 

5.4.2 Power Allocation  

In this section, the proposed CNN-DQN approach is demonstrated for 

computing power consumption performance on different values of the user 

demands. The proposed approach is then compared with the conventional DQN 

and FA, as shown in Figure 5.5. At first, the 𝑅 = 6 and 𝑈 = 4 are considered. 

Figure 5.5 shows that power consumption increases exponentially with all three 

approaches as the user demand increases. The proposed CNN-DQN approach 

can reduce power consumption by 5-10% at all the user demand points. 

Figure 5.4: Effect of learning rate on the different decaying values with epoch 
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Moreover, the proposed CNN-DQN approach and the DQN-based approach 

consistently outperform the FA-based approach. The reason comes from the 

learning of the environment. So, at each time step 𝑡, the learning agent takes the 

best possible action from the action space. The FA approach randomly chooses 

the action from the current action space and does not learn anything from the 

environment. However, all three approaches become infeasible to satisfy the 

user QoS demand after reaching 50Mbps. There are not enough active RRHs 

available to meet user QoS requirements. In order to avoid this problem, the 

number of RRHs is increased to 𝑅 = 8 with 𝑈 = 4, as shown in Figure 5.6. As 

a result, the infeasibility issue is solved, and the proposed CNN-DQN approach 

can significantly reduce power consumption and satisfy the user’s QoS 

requirement, as shown in Figure 5.6. However, the increased RRHs will 

increase the power consumption of the system. Figure 5.6 illustrates that when 

the user demand is 50Mbps, the power consumed by the proposed CNN-DQN 

solution is 48.73W for 𝑅 = 6, while at the same point, the power consumption 

Figure 5.5: Comparison of the proposed algorithm with other algorithms for power saving 

on different user demand, 𝑹 = 6, 𝑼 = 4 
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is 55W for 𝑅 = 8. 

5.4.3 Energy Efficiency Maximization  

The EE performance is plotted against different user demands for 𝑅 = 6, 𝑈 =

4, as shown in Figure 5.7. The EE is linearly increasing with the increasing user 

demand. As shown in Figure 5.7, the DRL approach outperforms the FA 

Figure 5.6:  Comparison of the proposed algorithm with other algorithms for power 

saving on different user demand, 𝑹 = 8, 𝑼 = 4  

Figure 5.7: Comparison of proposed algorithm with other algorithms for energy 

efficiency maximization on different user demands 𝑹 = 6, 𝑼 = 4 
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approach. The FA approaches primarily focus on EE performance within the 

immediate network state, making decisions exclusively for the current action 

space. DQN-based approaches are designed to improve EE performance at each 

point of the user demand compared with the FA approaches. However, the 

DQN-based approach contains a large number of state-action pairs, which 

reduces the system performance and increases computational complexity. 

However, it still achieves 4%− 8 % better performance over the FA-based 

approach. Figure 5.7 shows that the proposed CNN-DQN approach reduces the 

training parameters and outperforms the other two approaches for increasing 

user demand. The proposed CNN-DQN approach achieves 5%− 12 % better 

performance than the other approaches. However, all three approaches diminish 

their performance as the user data rate grows beyond 50Mbps due to resource 

bottlenecks. In order to avoid the bottleneck problem, more RRHs should 

always be turned on when accommodating higher user demands, so the number 

of RRHs should be increased to 𝑅 = 8 with the same user 𝑈 = 4, as shown in 

Figure 5.8: Comparison of proposed algorithm with other algorithms for energy efficiency 

maximization on different user demands 𝑹 = 8, 𝑼 = 4 
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Figure 5.8. However, the proposed CNN-DQN approach is still more efficient 

at all points of user demands, such as when the user demand is 60Mbps, the 

proposed CNN-DQN approach improves the EE by up to 8% more than the 

DQN. These performances are evidence of using a CNN-DQN approach for a 

high mobility scenario. 

5.4.4 Relationships Between Energy Efficiency versus Power Consumption 

Figure 5.9 shows the EE performance versus the power consumption for 𝑅 = 6 

and 𝑈 = 4. From Figure 5.9, it can be seen that at the start, EE is slightly 

increased over a small increase in power for all the approaches. However, the 

EE starts to decline without further increasing after reaching to maximum value 

for all three approaches. This is due to the requirement that high transmit power 

is required to meet the users’ QoS demands. From Figure 5.9, one can observe 

that the proposed CNN-DQN approach achieves a maximum EE of 

4.10 Mbits J⁄  with a power consumption of 48.73 W. Similarly, DQN and FA 

can achieve 3.92 Mbits J⁄  with a power consumption of 51.95 W and 

Figure 5.9: Comparison of proposed solution for Energy Efficiency maximization with 

power consumption for 𝑹=6 and 𝑼=4 
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3.61 Mbit J⁄  with a power consumption of 54.07W, respectively. A similar trend 

has been applied to Figure 5.10 by increasing the number RRHs 𝑅 = 8 with the 

same number of users as 𝑈 = 4. As shown in Figure 5.10, the proposed CNN-

DQN approach can achieve the EE of 3.95 Mbit J⁄ , with a power consumption 

of 61.15 W, while the DQN-based and FA-based approaches can achieve the EE 

of 3.70 Mbits J⁄  and 3.55 Mbits J⁄  with a power consumption of 63W and 65W,  

respectively. These figures show the proposed method's effectiveness in 

achieving more EE with less power consumption. 

5.4.5 Transmit Power Selection 

Figure 5.11 shows the average EE performance of different transmission power 

levels. This figure shows that the proposed CNN-DQN approach consistently 

outperforms the DQN and FA. In the beginning, the transmission power of 

RRHs is very low; thus, all three approaches achieve roughly the same average 

EE performance. As the transmission power is increased, the overall EE 

Figure 5.10: Comparison of proposed solution for Energy Efficiency maximization with 

power consumption for 𝑹=8 and 𝑼=4 

 

Figure 5.11: Average Energy Efficiency performance vs Transmit powerFigure 5.10: 

Comparison of proposed solution for Energy Efficiency maximization with power 

consumption for 𝑹=8 and 𝑼=4 
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performance increases linearly. A higher value of average EE can be achieved 

 with the proposed CNN-DQN approach on different transmit power levels, 

which shows how effective the proposed CNN-DQN approach is for various 

transmit power levels. 

5.5 SUMMARY 

This chapter combines the CNN approach with the DQN to balance the EE 

performance and simultaneously satisfy the user QoS demand in the downlink 

CRAN. The CNN phase is responsible for extracting the input channel state 

information. As a result, the extracted feature of CNN is fed to the input of 

DQN, which turns on/off RRHs in response to user demands. The RA scheme 

is then formulated as a convex optimization for balancing the performance of 

EE and meeting the user’s QoS requirement. Finally, comprehensive simulation 

results for different scenarios demonstrate that the proposed CNN-DQN results 

in the best balances in terms of EE performance while meeting the user 

Figure 5.11: Average Energy Efficiency performance vs Transmit power 

 

Figure 5.11: Average Energy Efficiency performance vs Transmit power 
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requirements in the varying scenario.  
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORKS 

 

6.1 CONCLUSIONS 

5G and beyond networks are expected to face unprecedented challenges related 

to heterogeneity in terms of deployments, environments, and mobility scenarios. 

Cloud radio access network (CRAN) emerges as a promising candidate, which 

can meet these requirements by deploying low-cost, intelligent, and multiple 

distributed antennas called remote radio heads (RRHs). However, achieving the 

optimal resource allocation (RA) in terms of power minimization, maximizing 

EE and SE in CRANs using the conventional approach becomes infeasible for 

a large and complicated state, especially when the network performance 

changes with environmental changes. 

Inspired by the success of DRL in solving complicated control problems, this 

thesis proposes three DRL-based RA algorithms that optimize the CRAN 

performance in terms of EE, SE, and total power consumption. The details of 

this thesis’s main contribution are summarized as follows: 

Firstly, a Double DQN-based RA framework in CRAN is proposed and 

presented in chapter 3, which maximizes the total EE within the constraints of 

per RRH transmission power selection and user rates. The channel state 

information (CSI) is considered at the input of the network state, which is 

updated continuously at each time step 𝑡, and generates a state space too large. 

Hence, the tabular methods (Q-learning) and conventional DQN methods 
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become insufficient and unsuitable to limit state space size. In order to address 

this shortcoming, a new approach based on the features of each state is adopted, 

known as function approximation. The aim of this approach is to use these 

features to generalize the CSI value estimation at the input of the network state 

with similar features. These estimated features are then passed on to Double 

DQN to find the optimal control policy in order to turn on/off the RRHs based 

on the user demand. Simulation results indicate that the proposed Double DQN 

based RA method saves 22% more power as compared with the conventional 

approach and improves EE’s performance by 20% with a minimum requirement 

of user data rates. 

Secondly, a Dueling DQN-based (D2QN) RA scheme is proposed and 

presented in chapter 4 in order to optimize the long-term tradeoff between EE-

SE and satisfy the user QoS requirements in CRANs. Specifically, ML 

techniques known as Anchor Graph Hashing (AGH) is implemented to 

discretise the CSI generalized features before feeding them into the DRL input. 

In addition, the D2QN method is configured to learn the near-optimal switching 

strategy to turn on/off RRHs in order to maximize EE-SE performance under 

the varying channel gain while satisfying the user QoS requirements. Finally, 

the proposed D2QN based AGH method is compared with D2QN without CSI 

generalization, Q-learning, and myopic approach. The improved EE-SE 

performance is compared with the AGH-based D2QN method based on the 

simulation results. 

Thirdly, a convolutional neural network (CNN)-based deep Q-network (CNN-

DQN) approach is proposed in downlink CRANs and presented in chapter 5, 

which balances the EE performance and satisfies the user QoS demand. First, 
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the CNN approach is combined with DQN, where the CNN phase is responsible 

for extracting the input state information, which contains the CSI, user’s 

demand and features of RRHs. The extracted feature of CNN is then fed to the 

input of DQN, which dynamically performs the switching decision of the RRHs 

based on the energy consumption of user demand. Then, the RA optimization 

scheme is formulated based on the user constraints and transmit power to 

balance the performance of EE and satisfy the user QoS requirements. The 

performance of the proposed CNN-DQN approach is compared with the 

traditional approach (Dai and Yu, 2016) and DQN approach (Xu et al., 2017). 

The proposed CNN-DQN approach shows better EE performance and satisfies 

the users’ QoS requirements in a different scenario.   

In general, the network performance is determined after successfully compiling 

the simulation for 1000 training episodes and 100 testing episodes in the 

simulation environment with 16 GB RAM, intel core i3-7100 (3.90GHz), 

TensorFlow 1.14.0, and python 3.7.5. 

With efficient optimization and adaptive schemes, the proposed DRL-based 

work can demonstrate better adaptability than the existing solution explained in 

the literature. The simulation results show the effectiveness of the proposed 

DRL-based method in terms of fast convergence speed, better learning 

performance, and improved network performance than the baseline approaches. 

6.2 FUTURE WORKS 

In this thesis, the channel state information’s uncertainty has not been 

considered. This work can be extended by incorporating the uncertainty in the 

wireless propagation environment. 
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Different approaches are utilized to limit the channel state information features. 

However, this process requires a lot of computation power to make the channel 

state information linear. In the future, a deep deterministic policy gradient 

(DDPG) algorithm can be used, consisting of an actor-critic neural network and 

a classifier for mapping the continuous channel gain at the input of the network 

state for different RA decisions.  

One major drawback of DRL is that it can end up having a local optimum 

instead of a global optimum. On the contrary, generative adversarial network 

(GAN) is a well-known technique for reaching global optimum because of its 

loss function (i.e., binary cross-entropy) used in training. Therefore, by 

combining GAN with RL, a GAN-RL might perform better compared to DRL. 

In the future, a GAN-RL based RA framework can be developed for CRANs. 
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