
 

 

 

 
 
 

DESIGN OF PROTECTED IRIS RECOGNITION 
SYSTEMS WITH IMPROVED AUTHENTICATION 

PERFORMANCE 
 
 

 

 

 

 

 

 

CHAI TONG YUEN 
 

 

 

 

 

DOCTOR OF PHILOSOPHY (ENGINEERING)  
 

 

 

 

 

 

 

LEE KONG CHIAN FACULTY OF ENGINEERING AND 
SCIENCE 

UNIVERSITI TUNKU ABDUL RAHMAN 
JANUARY 2022 

 



 

 

 

 

DESIGN OF PROTECTED IRIS RECOGNITION SYSTEMS WITH 

IMPROVED AUTHENTICATION PERFORMANCE 

 

 

 

 

 

 

 

 

 

 

 

 

By 

 

 

CHAI TONG YUEN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A PHD thesis submitted to 

Lee Kong Chian Faculty of Engineering and Science, 

Universiti Tunku Abdul Rahman, 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy (Engineering) 

January 2022 
 

 

 



iii 

 

ABSTRACT 

 

 

DESIGN OF PROTECTED IRIS RECOGNITION SYSTEMS WITH 

IMPROVED AUTHENTICATION PERFORMANCE 
 

 Chai Tong Yuen  

 

 

 

 

Iris is unique with higher confidence in matching as compared to other 

biometric traits. No physical contact, difficult to spoof and not easily 

replaceable are among the advantages of iris recognition system. However, 

permanent identity loss will be experienced if the raw iris code is being stolen. 

Biometric template protection (BTP) schemes are implemented to increase 

public confidence in biometric systems regarding data privacy and security. The 

design of BTP has naturally incurred a loss of information which leads to 

performance degradation at the matching stage. Despite some extended works 

from these iris BTP schemes, there is still lack of a generalized solution for this 

problem. A trainable model that requires no further modification on the 

protected iris templates has been proposed in this thesis to improve the 

authentication performance. Improvement between 14% - 82% has been 

reported against four publicly available iris research databases: CASIAv1, 

CASIAv3, CASIAv4 and ND0405. Another BTP technique, namely key binding 

scheme can become vulnerable due to the inherent dependency of biometric 

features and the capacity of error correction code (ECC). Previous literature has 

shown deterioration in performance without the alignment process at iris codes. 

In this thesis, an alignment free cancelable iris key binding scheme without ECC 

has been proposed. The highest genuine acceptance rate (GAR) of 96.37% at 

zero false acceptance rate (FAR) has been achieved on CASIA-v3-interval iris 
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database. The best performance can also be preserved with key length up to 200 

bits. Next, focus has been put on the security concern caused by the iris code’s 

alignment process during matching. This process can only be conducted on 

probe iris codes for most of the protected iris recognition systems. In addition, 

high correlation between adjacent iris codes has indicated dependency along 

vertical direction. Thus, an iris template transformation method and a matching 

strategy are proposed to mitigate the alignment and inherent dependency issues 

of iris codes in this work. The proposed model has optimized the authentication 

performance of iris code by achieving EER as low as 0.46% on CASIA-v3-

interval iris database. Thus, vertical dependency in iris code has been mitigated 

while bit-shifting alignment can be applied directly onto the transformed 

cancelable iris template through the proposed method. In a nutshell, three 

methods have been proposed in this thesis to improve the authentication 

performance and flexibility of protected iris recognition systems.   
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Biometric System 

 Over the last few decades, biometric systems had been widely 

implemented in our daily life through biometric authentication and verification. 

Its applications can be ranged from smartphone unlocking system to identity 

authentication system at international airport. Biometrics system becomes a 

reliable alternative compared to traditional security systems which are mostly 

based on PINs, tokens and passwords. This is because the traditional approach 

can be easily forgotten, lost and stolen.  

 Biometric system serves as an advanced security system that uses 

biometric information of a person for the purposes of verification or 

authentication. There are human traits that contain measurable characteristics 

due to its distinctiveness, universality and permanence. These biometric 

identifiers can often be categorized as physiological characteristics and 

behavioural characteristics. Examples of physiological characteristics include 

but are not limited to face recognition, fingerprint, hand geometry, ear geometry, 

iris recognition and palm print. Behavioural characteristics are referring to the 

pattern of an individual’s behavior which includes but is not limited to keystroke, 

voice, gait recognition, signature recognition and typing rhythm.  
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 Among these biometric traits, iris recognition can be achieved without 

physical contact and even at a distance with the advancement of technology. Iris 

recognition is reliable due to its natural randomness. Iris started to form since 

the third month of gestation and the iris features are largely completed by the 

eighth month of gestation. According to Daugman (Daugman, 2004b), the 

inventor of the favourite iris feature representation known as iris code, every iris 

is unique even from the same person or identical twins. The entropy of the iris 

pattern is typically higher than other biometric traits based on his validation in 

(Daugman, 2006). This infers that the false matches between Iris codes are very 

unlikely to happen. Therefore, iris provides higher confidence for identification 

task apart from the verification. Moreover, iris is not affected much by ageing 

and will remain stable for many years. In this case, data update needs not to be 

done frequently like other biometric traits (Flom and Safir, 1987). As an internal 

organ, iris is safely protected by eyelid, cornea layer and aqueous humour from 

the outer environment. Iris as a human organ, cannot be stolen and is hard to 

replicate under normal circumstances. 

 Biometrics can be used for different purposes. When comes to 

biometrics-based system, there are mainly divided into either an authentication 

system or an identification system. Authentication systems aim to answer the 

questions “are you the person who you say you are?” In this system, an 

individual presents and claims himself or herself as a specific identity. The 

system will then check against an existing profile in database which is linked to 

the claimed identity for authentication purpose. This process can be better 

described as a 1-to-1 matching. Authentication process is often faster and more 

accurate then identification process even when the database becomes larger in 
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size. This is because authentication systems only compare the presented 

biometric with the claimed biometric reference in the database. Thus, results can 

be generated more quickly. On the other side, identification systems aim to ask 

“who are you?” or answer “who generated this biometric?” The system will 

check against all the registered biometric profiles in the database to identify the 

unknown biometric. This process can be described as a 1-to-n matching system, 

where n is the total number of biometric profiles in the database. This system is 

particularly useful when government needs to identify a latent fingerprint at a 

crime scene to see if it matches any of the registered fingerprints in forensic 

database.   

 For both iris authentication or identification tasks, an individual has to 

first enrol his/her iris data into the system. The iris data is then stored as a 

template (e.g., iris code) in the database. During the authentication process, only 

the right person can be authenticated or identified successfully by achieving a 

higher score when matching with the iris code of the genuine user. With the 

successful deployment of larger-scale iris recognition systems at the airports and 

hospitals (Sasse, 2007), many concerns have been raised. More people started to 

question the security aspects of biometric system. Biometric applications are 

often considered as unsecure due to the misuse of biometric data and identity 

management (Cimato et al., 2009). This concern is acceptable because biometric 

information is tied to a person inherently by using one’s biometric traits as the 

“key”. This means that the token cannot be easily replaced with a new one unlike 

traditional security system. Therefore, if the biometric information of a person, 

for instance an iris code is being compromised, such biometric trait will become 
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useless in all the involved biometric applications. This indicates a lifetime 

permanent identity loss to the user.  

Other than security issue in iris authentication, non-ideal conditions have 

limited for the growth of biometric technology especially when users’ 

cooperation is not required. Iris segmentation plays an essential part as well in 

the performance of iris recognition system. Traditional iris segmentation 

methods are based on specific underlying presumptions which often involve 

complicated algorithms with heavy calculations and parameters, sensitive to 

noise and time-consuming (He et al., 2008). These algorithms cannot cope with 

all the non-ideal constraints such as occlusion, illumination challenges, motions 

and user cooperation captured in different iris databases. These constraints 

caused the iris boundaries to show unexpected variation across their contours 

and intensities (Bowyer and Burge, 2016). During the iris image acquisition 

process, off-angle iris, motion blur, non-cooperative subjects and usage of 

contact lenses are among the main causes of low quality iris images. The 

intensity dissimilarity between iris and pupil might be reduced, thus, affecting 

the performance of the segmentation algorithms. Before the introduction of deep 

learning, the hypothesis of the non-ideal iris segmentation method is mainly 

based on the conditions set by the researchers. The robustness of these 

algorithms is indeed arguable when dealing with infinite non-ideal situations. 

For future work, deep learning in another way provides a generalized solution 

for this issue in order to develop a full-stack protected iris recognition system 

(Höft et al., 2014).  
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1.2 Biometric Template Protection (BTP) 

 The practicality and the risk of key management on storage and release 

remain challenging in cryptography. A simple password is susceptible to 

dictionary attacks (Klein, 1990) while lengthy passwords are difficult to 

remember and maintain. The security of generic cryptographic systems is weak 

due to practicality and nonrepudiation. This is because the password is not 

directly tied to a user, thus it is unable for the system to differentiate a legitimate 

user from an attacker. The limitations of traditional cryptographic key 

management incorporating passwords can be meliorated by biometric 

authentication. However, it is still vulnerable, as biometric data can be 

intercepted, stolen, altered, and replayed. This causes an invasion of identity 

privacy when unauthorized parties can get access through various attacks such 

as spoofing attacks, replay attacks, and masquerade attacks (Jain et al., 2006). 

These attacks affect user’s confidence and lead to a lack of acceptance in 

biometric technology.  

 Apparently, encryption of the biometric templates seems to be the 

solution to this problem. However, cryptography does not tolerate single bit error 

while hashed versions of the same users can be different due to the variance in 

biometric samples. The idea to bind biometrics with cryptographic keys then 

paves an alternative in managing cryptographic keys and template protection at 

one go (Juels and Wattenberg, 1999). This makes biometrics security an 

important field of research. In this field, biometric template protection (BTP) 

serves as a protection step in securing biometric system by repeatedly distorting 

the biometric data through different transformations. The authentication of the 
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transformed template will be conducted in a secured domain. The transformed 

templates under BTP scheme are irreversible and non-decryptable to protect the 

privacy and security of the raw biometric information. Thus, it is more secure to 

store the transformed templates into the database rather than the original 

biometric templates (Cavoukian and Stoianov, 2011). Since the matching stage 

can be held in a transformed domain, raw biometric information will not be 

exposed to any potential threat. There are several types of BTP schemes which 

can be normally categorized into Biometric Cryptosystem (BCS) and Cancelable 

Biometric (CB). These schemes are designed to fulfill irreversibility, 

revocability, and unlinkability for data privacy’s preservation.  

 The main concept of BCS is to securely bind a digital key to a biometric 

(key binding), or extract a key from the biometric (key generation) to ensure that 

it must be computationally difficult to retrieve either the key or the biometric 

from the stored template, which is also known as the “helper data” (Jain et al., 

2008). In key binding systems, BCS is required to store helper data that is 

biometric trait dependent. This information is a combination of the biometric 

template and the cryptography key. Helper data is used to retrieve the 

cryptographic key from the templates.  The key will be retrieved only if the query 

template contains sufficient similarity during authentication. BCS will store the 

biometric-dependent helper data instead of the cryptographic key. All of these 

properties of BCSs offer substantial security benefits to biometrics (Jain et al., 

2004). For key generation, keys can be generated directly from the helper data 

and a given query biometric template. These schemes are also known as fuzzy 

extractors or secure sketch, as defined in (Dodis et al., 2004, Verbitskiy et al., 

2010). The difficulty in realizing key generation schemes is the high intra-user 
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variability in biometrics that causes contradiction in achieving high key entropy 

and stability in authentication (Jain et al., 2008). The fact that the original design 

is not catered for cancelability and unlinkability also makes this scheme less 

popular compared to the key binding. 

 On the other hand, helper data is generated by binding a cryptographic 

key to a biometric template. Therefore, helper data is actually the fusion of the 

cryptographic key and biometric template. Fuzzy commitment (Juels and 

Wattenberg, 1999) and fuzzy vault (Juels and Sudan, 2006) are two main 

schemes designed for key binding. These schemes usually apply error correction 

code (ECC) to deal with the variance of biometric data in authentication. The 

independently generated cryptographic key is revocable, but re-enrollment is 

required whenever an update of the key is necessary. Despite the security 

properties and stability of this scheme, there are several drawbacks and 

vulnerabilities which will be discussed in the upcoming sections. 

 Cancelable biometrics is another scheme for biometric template 

protection involving repeated efforts to distort the biometric template through 

transformation. Authentication can then be conducted in the transformed domain 

(Ratha et al., 2007). The transformed templates are irreversible and 

computationally impossible to be decrypted. Thus, it is more secure to be stored 

in the database (Cavoukian and Stoianov, 2011). New templates can always be 

regenerated through different transformations for compromised cases. There are 

four important criteria to be fulfilled for the design of a good cancelable 

biometric scheme (Simoens et al., 2012): 

1. Unlinkability (Gomez-Barrero et al., 2017): It should be computationally 

hard to determine whether the protected biometric templates originate from 
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the same biometric instance or not to avoid cross-matching across different 

applications.  

2. Revocability: It should be computationally infeasible to derive its 

 original data from multiple protected templates.  

3. Non-Invertibility of Irreversibility (Inuma, 2014): It should be 

computationally  infeasible to derive its original biometric data from the 

protected  template and/or the helper data.  

4. Performance: The accuracy of the cancelable template in recognition 

 performance should be approximately preserved with respect to its 

 original counterparts without the template protection scheme. 

 

1.3 Problem Statements  

1.3.1 Performance Degradation in Cancelable Iris BTP Schemes 

 Iris code contains discriminative information of a user for iris 

recognition. The exposure of the iris code to an adversary may lead to security 

breaches such as masquerade attack and replay attack (Venugopalan and 

Savvides, 2011, Galbally et al., 2013, Cappelli et al., 2007). The privacy concern 

and related challenges of iris code can be tackled by BTP technology 

(Natgunanathan et al., 2016, Jain et al., 2008). While the BTP schemes which 

fulfil the requirements above can secure a biometric system, there are still 

drawbacks and remaining issues in the search of optimum balance between 

system’s performance and security. BTP schemes which emphasize more on 

security protection most often distort the biometric data severely via different 

transformations in order to achieve better entropy, irreversibility and 

unlinkability. These processes inevitably cause higher loss of useful information 
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and thus performance degradation in exchange for better security. In other 

words, most of the good iris BTP schemes which provide stronger security 

features will expect weaker performance as the drawback. Knowing the effect of 

this tradeoff, there are also efforts by respective iris BTP schemes 

(Mitzenmacher, 2002, Lai et al., 2017a) to introduce remedies such as optimizing 

the selection of parameters and some of the steps to mitigate the performance 

degradation. It is a non-trivial task to offer security guaranty to biometric 

template while preserving the recognition rate. This has been one of the major 

requirements in designing an iris BTP scheme. Some works have been done (see 

(Prabhakar et al., 2003, Rathgeb and Uhl, 2011d, Patel et al., 2015, 

Natgunanathan et al., 2016) for complete surveys) to support security of 

biometric template without severely deteriorate the system performance. 

Nevertheless, since there is a plethora of iris BTP schemes being proposed, it 

introduces another issue on how to determine and select the best iris BTP 

scheme. To address the above-mentioned issues, a method that can be generally 

adopted for different iris template protection schemes to improve their 

recognition performance is indeed required. 

 

1.3.2 Issues in Iris Key Binding Schemes 

 BCS aims to protect and secure cryptographic key by binding it with the 

biometric information. The binding process is expected to be stable despite the 

intrinsic variability of biometric templates from the same user. One desired 

feature of key binding techniques is the generation of revocable helper data. 

Therefore, a new key can be generated for the same user when the previous 

cryptographic key is compromised.  
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 Generally, cryptographic keys are embedded into the biometric templates 

to make the key recovery computationally hard or impossible during 

authentication (Nandakumar and Jain, 2015). Two well-known BCSs, fuzzy 

commitment scheme (FCS) (Juels and Wattenberg, 1999) and fuzzy vault 

scheme (FVS) (Juels and Sudan, 2006) have implemented error correction codes 

(ECC) to mitigate the effect of intra-class variability between biometric 

templates. Hence, the performance of these schemes particularly key length and 

decoding accuracy are bounded by the capability of the deployed ECC (Ouda et 

al., 2021). Inevitably, trade off issue exists between the key length and system 

accuracy for similar techniques.  

 Privacy leakage is another issue bothering BCSs. For example, adversary 

can first encodes the compromised key using the ECC deployed in FCS. Then, 

the biometric information can be recovered when the result is being XORed with 

the secure sketch. The recovery of the biometric information seems straight 

forward once the secure sketch and its linked cryptographic key are 

compromised (Natgunanathan et al., 2016). In terms of feature representation of 

these key binding techniques, FCS is designed for the security of binary 

templates, for instance iris codes while FVS suits fingerprint templates (minutiae 

based) better since it requires the biometric features to be represented as point 

sets. Additional conversion or processing steps will be needed to overcome this 

restriction if the biometric data of a protected template has a different 

representation. Thus, a more generic and flexible key binding framework is 

needed to address the issues regarding privacy leakage and biometric data 

representation. To avoid unnecessary processing efforts, a more flexible and 
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representation-independent key binding framework is therefore being proposed 

in this thesis. 

 

1.3.3 Performance and Security Issues of Iris Code 

 One of the challenges in designing the cancelable transformation 

function for iris template is the requirement on alignment. This is particularly 

important for iris codes because the matching between different iris codes has to 

be conducted iteratively with arbitrary number of left or right bit shifts over the 

query iris code. The purpose of having different number of left / right bits 

shifting is to calculate the best match among all possible variations caused by 

the head tilt or cyclovergence (Daugman, 1993). Despite the fact that a lot of 

externals constraints can be applied for more stable and concise iris image 

acquisition, the inherited alignment issues due to the slight rotation cannot be 

completely eliminated. In designing a BTP scheme, the non-invertibility can 

only be achieved with additional auxiliary data (i.e., random matrices used in 

Bio-hashing) that introduces randomization to the input. Without pre-alignment, 

cancelable transformation with extra randomization would result in lower 

distinguishability for genuine authenticity, hence deteriorating system’s 

recognition performance. This impact has been reported in most of the state-of-

the-arts working on iris template protection schemes (Lai et al., 2016, Sadhya 

and Raman, 2019, Zuo et al., 2008).  

 A pre-alignment is necessary to account for the rotational inconsistencies 

which require the shifting of the probe iris code before conducting every 

matching in a secure domain. However, implementing a pre-alignment method 

increases the risk of the probe iris code being compromised since the system for 
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matching can potentially be hacked or hijacked by a third party. In view of this, 

for an Iris template protection scheme to be practically useful, the pre-alignment 

step which takes probe iris code as the input must be avoided. Instead, it is 

desirable that the system accepts only the protected iris template during matching 

stage without any pre-alignment steps. One notable approach of the alignment-

free cancelable transformation without pre-alignment has been proposed by 

Rathgeb et al. (Rathgeb et al., 2013). This method has shown promising 

authentication performance while facing security issues due to the small key 

space (i.e., around 10 bits) in order to preserve the accuracy performance. Thus, 

designing an alignment-free cancelable transformation for iris features, for 

instance iris code remains a great challenge for the future implementation of 

protection iris recognition system. 

 

1.4 Motivation and Contribution  

1.4.1 Performance Improvement for Protected Iris Recognition System with 

Confidence Matrix 

 The proposed method contributes to tackle the performance degradation 

issue of iris BTP via the generation of confidence matrix. This matrix can be 

generally adopted for different iris protected templates of different BTP 

schemes. This generic solution is able to further improve the recognition 

performance of the protected (hashed) iris templates in iris biometric systems. 

Firstly, the proposed method requires no modification in order to integrate into 

the original algorithms of iris BTP scheme. The design of this method is kept 

simple and implementable onto iris protected templates of arbitrary BTP 

schemes. Another important feature of the proposed method is the ability to 
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improve the iris recognition performance further through training samples. Apart 

from this, the potential security threat of using confidence matrix is analyzed in 

terms of information leakage and security attacks through irreversibility and 

unlinkability studies. 

 Some publicly available iris research databases come with noise masks. 

This is another potential factor affecting recognition performance of a protected 

iris biometric system especially when this feature cannot be utilized by certain 

schemes in matching stage. This method has incorporated the information from 

noise masks with the proposed confidence matrix in matching stage. This allows 

the scheme to work on noise masks associated iris database. In this work, the 

proposed method has improved the recognition performance involving integer 

hashed values in matching stage. Probability based confidence matrix has been 

proposed to accelerate the authentication performance of protected iris templates 

from iris databases with different image quality. In a nutshell, the proposed 

method has shown great flexibility in dealing with the implemented iris template 

protection scheme, different hashed iris data types and iris databases with 

varying image quality. The proposed method has high adaptability on various 

iris databases with or without noise masks while having good potential to further 

improve its recognition performance via its trainable capability.  

1.4.2 Cancelable Iris Key Binding Scheme 

 As highlighted in the previous section, there are limitations in both 

biometric cryptosystem and cancelable biometrics. ECC based biometric 

cryptosystem is often limited by its error correcting capacity and feasibility. It is 

susceptible to attacks such as statistical attack and trade-off between 
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performance and security. In addition, the performance of biometrics such as iris 

and fingerprint are always affected by alignment issue and the processes to 

reduce this effect are often tedious and time consuming.   

 The proposed iris key binding design is leveraging on both biometric 

systems to tackle this open problem. In this thesis, an alignment free cancelable 

iris key binding scheme is proposed without depending on ECC. The idea of this 

scheme is based on chaffing and winnowing besides Jin’s scheme (Jin et al., 

2016). This concept is often used in cryptology for data encryption when 

transferring through an insecure channel where direct application to biometrics 

is inappropriate due to the randomness and variability nature. This work has 

adopted Indexing-First-One (IFO) hashing to achieve non-invertible and 

cancelable transformation for iris templates in cryptographic key binding 

process. The contributions of this work are presented as follows: 

1. Key regeneration: A new formulation to measure the success rate for key 

retrieval under genuine query is proposed and defined as Key Retrieval 

Rate (KRR). Thorough analysis has been conducted to prove that KRR is 

in relation to Jaccard similarity. The calculation of KRR has been 

demonstrated under certain configurations and implementations in 

security analysis for indistinguishability game as well as false accept 

attack.  

2. Cancelability and renewal: A fast and simple method for key renewal is 

proposed. The proposed method requires neither re-enrollment of 

biometrics nor constant storage for seeds. This can be achieved by 

reshuffling the hashing functions randomly.  
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3. Security analysis: Adequate security analysis is performed on the 

indistinguishability between synthetic and genuine biometric templates 

under the proposed scheme. The adversary’s advantages in 

distinguishing the genuine and synthetic templates have been evaluated 

through our proposed indistinguishability game. Besides that, potential 

brute force attack and false accept attack are also investigated in detail. 

4. Feature representation and hashed code’s length: In this non-

hierarchical key binding design, biometric template size and key length 

will have critical effects on the storage space and computation power. 

Thus, the proposed format for biometric template in (Jin et al., 2016) is 

not directly applicable for all types of biometrics especially iris features. 

In view of this, flexibility in terms of tunable hashed code length has 

been proposed in this scheme. This is achievable via IFO hashing’s 

controllable hash code length.     

5. Performance discrepancy: Key binding scheme in (Jin et al., 2016) has 

reported FAR more than zero in their implementation on fingerprint. This 

implies the potential of this scheme being compromised through FAR 

related attacks. This can lead to significant reduction in security and 

severe privacy leakage. Thus, there is a need to conduct an in-depth 

analysis on security and privacy leakage for iris data to understand the 

full potential and the bottleneck of chaffing and winnowing based key 

binding scheme.  
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1.4.3 Transformation and Optimization Model for Iris Code based 

Cancelable Authentication System 

 This proposed method takes into consideration the required pre-

alignment for original iris code in matching. Direct application of any cancelable 

transformation over the original iris code without considering the inherent 

vertical dependency would result in poor recognition performance (Hu et al., 

2016). For a protected iris code based recognition system, only the protected iris 

templates are accepted for matching. Thus, we have designed a paired 

transformation and matching mechanism which is able to fulfil this requirement. 

One advantage of this proposed mechanism is that alignment can be conducted 

directly onto the protected template rather than reverting to original iris code 

during matching stage.  

 Specifically, the structure of the iris code, its vertical dependency and 

horizontal independence is also exploited. This study is aligned with the 

statement that the distinguishable information of an iris code is mostly displayed 

in the horizontal direction as mentioned in (Liu et al., 2013). On the contrary, 

the iris texture itself, processes inherited correlations along the radial direction. 

Hence, the bits in a vertically aligned iris code is expected to contain high 

dependency, i.e., less discriminative. The idea is to perform pre-alignment in the 

transformation to prevent the presence of probe iris code during matching stage. 

In view of the concern on vertical dependency, the proposed transformation is 

applied in a column-wise manner. This can mitigate the poor recognition 

performance caused by the vertical dependency of iris codes. In addition, a 

mapping function is proposed to concatenate an arbitrary number of columns 

within the transformed iris code as part of the proposed matching mechanism. 
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Results have shown that the employed mapping function could reduce the 

vertical dependency of iris code and improve the recognition performance of the 

transformed iris code. Moreover, the key space of iris codes can be increased to 

at least 40 bits after the proposed transformation without significantly 

deteriorating the original performance. 

 Other than this, experiment conducted using the proposed matching 

mechanism showed that the matching performance of the original iris code can 

be further improved with higher decidability score obtained. The measure of 

decidability (Daugman, 2004b) reflects the degree to which any improvement, 

for instance, in reducing the false acceptance error rate, will be paid by the 

increment of false rejection error rate. Apart from higher decidability score 

obtained using the proposed matching mechanism, it is also demonstrated 

empirically that the matching performance of the iris recognition system has 

reported lower false rejection rate (FRR), especially, under the case when only 

low false acceptance rate (i.e., <0.5%) is permissible. In short, the focus of this 

work is laid on the performance, protection and transformation for iris code in 

cancelable iris authentication.  
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1.5 Objectives 

This thesis aims to improve the authentication performance, flexibility and 

security of iris template protection scheme. 

1. Improve the authentication performance of protected iris recognition 

system. 

2. Devise an alignment-free cancelable iris key binding scheme. 

3. Mitigate the performance, pre-alignment and dependency issues in iris 

code based cancelable iris template protection scheme 

 

 

1.6 Organization of Thesis 

The thesis is organized as follows. Previous work related to iris codes, iris 

biometric template protection schemes and their recognition performance is 

described in Chapter 2. The presentation of my proposed schemes and their 

implementations are shown in Chapter 3. The experimental results, discussion 

and security analysis are provided in Chapter 4. Finally, concluding remarks and 

future recommendation are given in 5 followed by Appendices. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 Iris recognition was first introduced by John Daugman (Daugman, 

2004b). The author encoded the iris features using quadrature 2-D Gabor wavelet 

demodulation. The complexity of the phase information across different persons 

spans about 249 degrees of freedom and discrimination entropy of about 

3.2 𝒃/𝒎𝒎𝟐. It was also proven improbable that two different irises might 

disagree by chance in fewer than at least one third of their bits. The probability 

of such event was approximated to be 1 in 16 million. In this method, fractional 

Hamming Distance (HD) was used as the measure of dissimilarity between two 

irises for iris recognition. When HD of two iris codes were calculated, one of the 

iris code templates was shifted left and right bit-wise to compensate for 

rotational inconsistencies. Bit-wise shifting method corresponded to an angle of 

rotation at the original iris region depending on the angular resolution. This 

method was proposed (Daugman, 2004b) to rectify the misalignments in iris 

pattern due to the rotational differences during image acquisition. The best match 

between two iris code templates could be determined by a series of HD 

calculated from successive shifts.  

 A statistical analysis was then conducted by Kong (Kong, 2014) on the 

risk associated with two patented template protection schemes deployed for 

producing application-specific iris code is analyzed. The study showed that the 

application-specific iris code could be unlocked and the key could be retrieved 
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through statistical dependence detected. His results showed that partial statistical 

dependence was induced through the Gabor filters that produced iris codes. In 

this case, the belief where iris codes were secure as long as the key was not 

compromised had to be reconsidered. The security risk in these schemes as well 

as iris codes might endanger numerous people and organizations due to the wide 

deployment of iris recognition in commercial systems.  

 

2.1 Iris Segmentation 

 As discussed in the previous chapter, the accuracy of iris recognition 

could be affected severely by iris segmentation. Conventionally, there were three 

essential steps in a standard iris segmentation process: localising the inner and 

outer iris boundaries, detecting the upper and lower eyelids based on the different 

formulations and lastly cornea identification and displacement of reflections 

(Bastys et al., 2009). Firstly, boundary fitting based methods were the most 

common type in the implementation of iris segmentation. The principle of this 

method started from locating the inner iris boundary as the baseline of the image 

and separate unimportant parameters outside the iris like eyelashes and eyelids 

(Arsalan et al., 2017). For instance, Daugman’s integro-differential operator and 

Hough transform were both well-known methods for segmenting the iris 

boundary (Daugman, 2004b). However, this process required user to vary radii 

and centre coordinates in order to search for maximum normalised integral along 

circular contours. Recent work from Farmanullah Jan et al. (Jan et al., 2021) had 

reported an average accuracy of 97.7% on more challenging databases like 

CASIAv4 Iris-Distance. Viola Jones algorithm detected eye region using 

geometrical information of human face. Circular region of interest (ROI) 
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containing iris was marked after some pre-processing steps to enhance contrast, 

suppress reflections and smoothen gray level variations. Hough transform was 

used to segment iris while non-circular iris contours were extracted through a 

scheme that was based on Lagrange interpolating polynomial. However, noise 

detection was still needed to eliminate the hairs, eyebrows and eyelids within the 

segmented iris contour. 

 The second category of iris segmentation methods called pixel-based 

segmentation. This method differentiates the iris pixel and non-iris pixel by 

employing characteristics of illuminance, colour gradient and specific colour 

texture across the image. Khan et al. (Khan et al., 2011) proposed the method to 

localise the pupil using the eccentricity-based bisection. Gradients were 

calculated pixel-by-pixel between the sclera and iris boundary and looks for 

maximum changes across that region to represent the iris boundary. Colour-

based clustering method had been proposed in (Parikh et al., 2014) to determine 

the iris boundary. The non-iris region and iris region were clustered by applying 

several statistical algorithms like the intersection area of two circular boundaries.  

Overall, most of the segmentation methods focused more on solving some 

constraint conditions but the noise at iris region such as eyelashes and hairs can 

still affect the overall iris recognition performance severely.  

 Active contour was another type of classical but more accurate 

segmentation method. This method was able to work on any arbitrary shape in 

an image with more accurate segmentation accuracy. Geodesic active contour 

(GAC) (Shah and Ross, 2009) provided a solution for the iris segmentation under 

non-ideal environment. An improved framework (Chang et al., 2020) that used 

Hough transform to segment the pupil and estimate iris circle according to the 
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result of GAC has yielded 79% for UBIRIS. It was mentioned that the accuracy 

of the algorithm could be further improved after a larger amount of data was 

applied. Chan-Vese active contour method was proven to be accurate on noisy 

and non-ideal iris images. Localised algorithm introduced by Chai et al. (Chai et 

al., 2016) had shown good ability in avoiding occlusions during the segmentation 

while demonstrating acceptable segmentation accuracy with 𝐸1 error between 

0.01-0.02 on visible wavelength iris databases, NICE.I and NICE.II. However, 

there were common drawbacks in the active contour-based methods. Most of the 

time, these methods needed to couple with pre- and post-processing methods, 

semi-automated, sensitive to initialization, multiresolution and multiscale 

transforms and limitation in handling intensity inhomogeneity especially in 

detecting the pupillary boundary due to low contrast.   

 To mitigate the drawbacks of prevailing classical segmentation methods, 

the proposal of deep-learning based iris segmentation method could overcome 

the stated challenges. Researchers started to apply convolutional neural network 

(CNN) in iris segmentation to enhance the robustness of their algorithms. 

Hierarchical convolutional neural network (HCNN) and multi-scale fully 

convolutional networks (MFCN) was an advanced technique for locating and 

segmenting the iris boundaries without any assistance from the handcrafted. The 

architecture of MFCN comprised 31 convolutional layers which were separated 

into six different layers with pooling. All the six layers were fused at the last part 

to formulate a multi-layer network for feature engineering and the prevention of 

information loss. The robust MFCN model had outperformed the conventional 

methods by 25.62% on the UBIRISv2 and 13.24% on CASIAv4 Iris-distance 

databases (Liu et al., 2016). HCNN incorporated three layers of the 
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convolutional neural network with different patch sizes of inputs and all these 

layers were fused at the last layer. It was a binary classification model like other 

iris deep learning models for categorising iris and non-iris pixels. The 

overlapping regions in three different CNNs were repeated throughout the 

training process before fusing them into a fully connected network indicates 

lower efficiency in this model. 

 Arsalan et al. (Arsalan et al., 2017) proposed a two-division iris 

segmentation method with the hybrid of convolutional neural network and the 

pre-processing techniques to compensate for the shortcoming of CNN. In the 

first stage, image pre-processing such as grayscale conversion and 

morphological operations were applied to the input image. Then, image’s region 

of interest was processed and loaded into the CNN to detect the iris area 

precisely. The information about ratio between dilation and pupil contraction 

was performed to get the exact iris boundary. The CNN model came from a pre-

trained VGG model. There were thirteen convolutional layers and five pooling 

layers in fusing with three fully connected layers to back up the learning process 

of the iris segmentation. Despite outstanding segmentation performance by 

implementing CNN for iris segmentation, this system required many handcrafted 

processes to determine the true boundary of the input images.  

 Bazrafkan et al. (Bazrafkan et al., 2018) used an end-to-end semi parallel 

deep neural networks (SPDNN) which merged several deep networks into a 

single model to take the advantage of every design fully. Wang et al. (Wang et 

al., 2021) introduced a lightweight fully convolutional iris segmentation for 

mobile devices. Improved weight loss, multi-level feature dense fusion module, 

multi-supervised training of multi scale image and generative adversarial 
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network were among the initiatives to improve the segmentation performance. 

An average accuracy of approximately 99% had been achieved on UBIRISv2 

and CASIAv4 Iris-Thousand databases. The iris segmentation time taken for an 

image from UBIRISv2 was only 41.56ms.  

 Although most of the deep learning networks showed good performance 

in iris segmentation, there was still a lack of research works which utilized small 

training samples, no pre- or post-processing steps and no data augmentation 

while testing with various non-ideal factors, such as illumination variations, 

blurring, off-angle (Jalilian et al., 2021), reflections and ghost effect in both 

visible light and infrared environments. 

 

2.2 Iris Cancelable Biometrics 

 In this section, previous works of cancelable iris template protection 

scheme were revisited. The concrete idea of cancelable biometrics was proposed 

by Bolle et al. (Bolle et al., 2002). The work from Ratha et al. (Ratha et al., 2007) 

had extended the initial idea into cancelable fingerprint templates. Non-

invertible geometric transformations consisting block permutation and surface 

folding were applied on biometric template. Fingerprint minutiae in Cartesian 

and polar domains were permuted to generate a cancelable template. The 

proposed scheme preserved the change in minutiae positions after the 

transformation while introducing many-to-one mapping for non-invertibility, 

Despite satisfactory accuracy performance was reported, the non-invertibility 

property was found vulnerable (Quan et al., 2008). Since then, this work had 

inspired more research works into the field of biometric template protection. In 
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general, cancelable biometrics could be categorized into biometric salting and 

non-invertible transformation.  

 Biometric salting followed the principle that independent auxiliary data 

such as user-specific password or random numbers were combined with 

biometric data to create a distorted version of the biometric template. Biohashing 

was first introduced by Teoh et al. (Jin et al., 2004) for fingerprint using user-

specific random projection. A user-specific random matrix 𝑀 with size 𝑟 × 𝑐 

was created such that 𝑐 columns of 𝑀 were orthonormal. The extracted biometric 

feature was represented as a fixed length vector, 𝑥. Projection was carried out 

through inner product operation 𝑦 = 𝑀𝑇𝑥 and 𝑦 was then thresholded by 𝑏𝑖. If 

𝑦𝑖 >  𝜏, 𝑏𝑖 = 1, otherwise 𝑏𝑖 = 0 for 𝑖 = 1,2, … , 𝑐. The binary vector 𝑏𝑖 = {0,1} 

was stored as the final template. This method with its optimal setting had been 

tested with different biometric modalities such as iris, palm print, fingerprint and 

face with nearly zero error rates. However, the performance of this method 

degraded considerably under stolen-token scenario. The non-invertibility of 

biohashing was at risk when 𝑀 and 𝑦 were known while 𝑟, 𝑐 were merely the 

same (Teoh et al., 2010). The stolen-token performance issue was then addressed 

by Lumini et al. (Lumini and Nanni, 2007) using score fusion and threshold 

values. Exponential increase in the size of the transformed template is solved 

recently by double bloom filter based transformation (Ajish and AnilKumar, 

2020). 

 Another method of user-specific random projection was proposed by 

Chong et al. (Chin et al., 2006), namely S-iris code. Firstly, the vector of iris 

Gabor feature vector 𝜔 ∈ ℂ𝑛 was generated by convoluting the 1-D log-Gabor 
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filter with the normalized iris image that was reshaped later into a 𝑛-dimensional 

feature vector. Then, the magnitude of 𝜔, denoted as 𝓌, was projected into a 

lower-dimensional feature space. The projection was achieved through the 

iterated inner-products of 𝓌 with a set of user-specific orthonormal pseudo-

random vectors {𝑟𝑖 ∈ ℝ𝑛|𝑖 = 1, … , 𝑚} where 𝑚 ≤ 𝑛. Quantization process was the 

final step to compute the 𝑚 bits S-Iris, 𝑠𝑖 ∈ 2𝑚.  𝑠𝑖 = 0 when 𝛼 ≤ 𝜇; 𝑠𝑖 = 1 when 𝛼 >

𝜇 where {𝛼 = 𝓌|𝑟𝑖} with . |. indicated the inner-product operation and 𝜇 was a 

preset threshold. If a template was compromised, a new cancelable template 

could be regenerated by issuing a new set of pseudo-random vectors from the 

user-specific token. To achieve higher recognition accuracy, noise mask was 

proposed to act as a control bit is introduced to determine the validity of the 𝑠𝑖 

bits by eliminating the weak inner product. It was proven that noise mask can 

improve the performance in hamming distance matching.  

 Pioneering work in the field of iris biometric was proposed (Zuo et al., 

2008). There were 4 non-invertible and revocable transformations. The first 

method, GRAY-COMBO transformed Gabor features by circular shifting 

followed by random rows addition. The non-invertibility criterion had been 

achieved through the distortion caused by data shifting. Similar transformations 

on iris codes were performed in the second method, BIN-COMBO but the 

combination was conducted through XOR operation. These methods reduced the 

amount of information available for recognition for better security. However, 

global linear transformation included outliers which could degrade the 

performance. The other two methods could be referred as biometric salting, 

namely GRAY-SALT and BIN-SALT where random patterns were added to the 

iris features in binary or integer representation. It was found to be difficult in 



 

 

 

 

 

27 

determining the relative strength of the noise patterns to be added to gain the 

balance between recognition performance and security. If the added patterns 

were weak and compromised, original iris pattern could be obtained by a simple 

subtraction operation. A recent cancelable iris template generation using salting 

approach has been proposed (Asaker et al., 2021). Iris code was mixed with a 

synthetic patterns, also known as cover pattern using XOR operation. The 

synthetic patterns were obtained from by the user specific cover images 

encrypted using the proposed enhanced AES algorithm. EER as low as 0.43% 

was reported when tested on CASIA v3-interval.  

 Another idea of iris template protection is based on the sectored random 

projections (Pillai et al., 2010). Random projections were applied to sectored iris 

features via a user-specific random Gaussian matrix. The random matrices were 

then concatenated to form a new cancelable iris template. A new template could 

be generated by using different random projection matrices if the existing one 

was compromised. This method limited the effect of outliers but reduced the size 

of useful information. The author pointed out that direct projection of the entire 

image might lead to performance degradation due to the effects of external 

noises such as specular reflections and eyelashes. Further research (Lacharme et 

al., 2013, Kong et al., 2006) found that the performance of this method was 

degraded when the same random matrix was being applied to different users. In 

addition, the protected template is likely to be inverted when the user-specific 

random matrices were disclosed or the adversary possesses the secret token. 

Thus, biometric salting is feasible for template protection if the auxiliary data is 

kept secret.  A recent work had created iris transformed cancelable template 

through encryption and one-way transformation function. Double Random 
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Phase Encryption (DRPE) was used to generate cancelable iris code in Fractional 

Fourier Transform (FFT) domain (Rajasekar et al., 2021). This framework 

proposed to utilize both left and right iris images to form a single cancelable iris 

template. Low EER of 0.46% was achieved on CASIAv4 iris database.  

 Hamerle-Uhl et al. (Hämmerle-Uhl et al., 2009) proposed a cancelable 

scheme that incorporated block-remapping and image warping for non-invertible 

transformation. The normalized iris image was first partitioned into different 

image blocks. Then, random permutation was applied to each block and mapped 

randomly to blocks from the source texture. A key was used as a seed to represent 

one particular distortion on the remapped image to prevent the reconstruction of 

the original iris data. Jenisch et al. (Jenisch and Uhl, 2011) highlighted the 

vulnerability of the remapping process in the scenario of coalition attack 

presuming that single or multiple templates are available to an attacker. 

Increasing the security to the recommended level would sacrifice the 

performance of the system with more than 100% of EER degradation from 1.244 

to 2.846. This work had demonstrated that 60 per cent of the original iris image 

could be reconstructed from the stolen template.    

 Ouda et al. (Ouda et al., 2011) proposed a tokenless cancelable 

biometrics scheme, BioEncoding. The consistent bits, 𝒘 ∈ {𝟏, 𝟎}𝒏 where 𝒏 

denoted the length of the bit vector with lower probability of flipping, were 

extracted from a series of iris codes of each user. This eliminated bits with higher 

probability to flip from an individual. The bits were then grouped into 𝒏 𝒎⁄  

blocks with 𝒎 binary codewords in each block. Each block was mapped to a 

single bit of a random binary sequence with length 𝒍 = 𝟐𝒎 where the location 
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was determined by the decimal value of that specific block. The mapped binary 

values were then arranged according to the associated positions of the blocks to 

form the BioCodes. The many-to-one mapping used in the generation of 

BioCode fulfilled the non-invertibility requirement by making the recovery of 

original iris code computationally infeasible. BioEncoding scheme recorded the 

best EER of 6.27% for CASIAv3. However, Larcharme (Lacharme, 2012) 

revisited bioencoding scheme and regarded that it was an application of random 

Boolean function on the original iris code which was indeed invertible.  

 An alignment-free cancelable iris template protection scheme based on 

adaptive Bloom filters was introduced by Rathgeb et al. (Rathgeb et al., 2013). 

Bloom filter-based representations of biometric templates such as iris codes enabled 

an efficient alignment-invariant biometric comparison at matching stages. Besides, 

the many-to-one mapping of biometric features to a Bloom filter was non-invertible. 

For cancelable template refreshment, they applied an application-specific secret 

key, for example, seed values to fulfill the unlinkability criterion. To resolve the 

alignment issues in iris code, the Bloom filter technique (Rathgeb et al., 2013) 

transformed original iris code 𝑰 ∈ {0,1}𝑛1×𝑛2 into an alignment-free binary 

matrix named Bloom-filtered iris code, 𝑩 through Bloom_filter (𝑊, 𝐿, 𝑰). 

Suppose that 𝑊 and 𝐿 were denoted as the number of columns and rows, 

respectively. The matrix of iris code was first split into 𝑙1 ∙  𝑙2 blocks with a size 

𝐿 × 𝑊 each, where 𝑙1 =
𝑛1

𝐿
 and 𝑙2 =

𝑛2

𝑊
. Each block constituted the formation of 

a Bloom filter with values within 𝑏 ∈ {0,1}2𝐿
. All elements of 𝑏 were initially 

zeros and element '1' was added to 𝑏 according to its decimal position at the 

column codeword, 𝑥𝑗 ∊ {1,0}𝐿|𝑗 = 1,2, … , 𝑊 in each block. In the scenario 
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where the same 𝑥𝑗  was being mapped multiple times within a Bloom filter, 𝑏 thus 

results in a many-to-one mapping and loss of information. Hence, the 

reconstruction of the original iris code could be prevented with this feature of 

non-invertibility. The collection of every Bloom filter 𝑏𝑖 of each block (for 𝑖 =

1,2, … , 𝑙1 ∙  𝑙2) in an input matrix constituted the final matrix of Bloom filtered 

iris code, 𝑩 ∈ {0, 1}𝑙1∙ 𝑙2 × 2𝐿
. An application specific secret bit vector was 

XORed with each codeword prior to mapping to provide unlinkability between 

multiple cancelable templates of a subject. The basic operation of Bloom filter 

has been highlighted in Figure 6.2 in Appendix B. This representation allowed 

iris codes to have alignment-invariant comparison at matching stage without 

degrading the performance of the iris recognition system. The best EER reported 

was 1.49% for CASIAv3. Undesirably low attack complexities of 225 for 

restoration of biometric template and 22 - 28 for key recovery were then reported 

(Hermans et al., 2014). Although it was proven that this method was susceptible 

to cross-matching attack, Bringer et al. (Bringer et al., 2015) successfully 

performed brute force attack on each block of codewords by analyzing the 

cancelable templates generated from two different intra-class iris codes. 

Unlinkability attacks pruned to happen especially when smaller key space was 

used to preserve the accuracy performance. However, (Gomez-Barrero et al., 

2016, Gomez-Barrero et al., 2018) had demonstrated the solutions to circumvent 

the security limitations of the Bloom filter.  

 Dwivedi et al. (Dwivedi and Dey, 2015) proposed a cancelable template 

protection scheme based on randomized look-up table mapping. Rotation 

invariant iris templates were first selected based on the minimum hamming distance. 
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The row vector 𝑪 ∈ {𝟎, 𝟏}𝟏×𝑵 was divided into 𝒍 groups of 𝒎 bits binary 

codewords. The corresponding decimal values for all these groups were encoded 

through a look-up table 𝑴 ∈ {𝟎, 𝟏}𝑹×𝒎 where 𝑹 ≥ 𝟐𝒎 − 𝟏 with 𝒎 randomly 

generated bits for all possible decimal values ranging from 𝟎 to 𝟐𝒎 − 𝟏. The newly 

mapped binary codewords became the final cancelable template. A degradation of 

10% to 49% in EER performance was reported. The iris codes could be at risk 

with information about block size and 𝒎 being stolen, since look-up table and 

cancelable templates were both stored in the database as well. The author 

emphasized the need to further secure the look-up table generation for stolen-token 

scenarios. A recent research proposed an iris protection scheme by ranking the 

decimal value of each group of codewords locally instead (Zhao et al., 2018). 

The highest degradation experienced was 5% when compared to a traditional iris 

recognition system with EER reported at 1.32% for CASIAv3. A recent 

publication (Ouda, 2021) proposed a new attack to reverse the local ranking-

based cancelable biometrics (LRCB). The attack reversed the protected rank 

values using the distribution of order statistics for discrete random variables. The 

reversibility attack recovered more than 95% of the iris code bits while achieving 

100% success rate for the proposed correlation attack. Umer et al. (Umer et al., 

2017) demonstrated a feature learning method for a cancelable iris recognition 

system. Among other feature representations, a sparse representation coding 

technique showed better discriminability, employing a multi-class linear support 

vector machine (SVM) classifier. The existing Biohashing scheme was applied and 

extended by using two tokens, which were subject specific and subject independent, 
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respectively. Despite the flexibility in template renewal, no in-depth security 

analysis was discussed regarding the proposed scheme.  

 A newer non-invertible transformation, IFO hashing scheme was introduced 

by Lai et al. (Lai et al., 2017b) based on Min-hashing scheme from the field of 

similar item detection or clustering (Broder, 1997, Hollingsworth et al., 2009). 

First, any arbitrary binary input of iris code with a dimension  𝑛1  ×   𝑛2 was 

permuted with 𝑝 number of random permutation sequences in a column-wise 

manner. All the randomly permuted iris codes were multiplied to generate a 𝑝-

ordered Hadamard product code. Hadamard product imposed information loss to 

prevent the reconstruction of original iris code. It could exclude certain amount of 

fragile bits (Hollingsworth et al., 2009). Utilizing the concept of min-hashing, the 

first ‘1’ was selected from the first 𝜅 elements for each row of the product code. The 

index value of the first occurrence of ‘1’ was then recorded. This process invited 

merit such as implicit ordering of iris code rather than explicit bit information to 

prevent inversion attack. To strengthen further the non-invertibility of this method, 

a modulo-thresholding function was imposed as the final step. The imposed security 

threshold value 𝜏 could be used to regulate the security leakage while inducing a 

many-to-one mapping in strengthening the non-invertibility properties of this 

scheme. An  𝑛1 × 𝑚 matrix of IFO hashed codes 𝑪 ∈ ℤ𝜅−𝜏
𝑛1×𝑚

 was obtained by 

repeating these steps with 𝑚 independent hash functions. The basic operation of 

IFO hashing was illustrated in Figure 6.3 in Appendix B. This cancelable iris 

template protection scheme was able to achieve low EER of 0.54% with 

degradation around 40% in performance as compared to iris code without 

template protection. Despite the significant improvement in performance and 
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security of recent iris template protection schemes, degradation in performance 

was still observable when comparing against unsecured iris recognition system.  

 Recently, Sadhya et al. (Sadhya and Raman, 2019) proposed to generate 

cancelable iris code based on Locality Sensitive Hashing (LSH) with the best 

EER 0.105% for CASIAv3. Generally, the bit sampling strategy utilized 

arbitrary 𝑛 number of random and independent hash functions ℎ1, … , ℎ𝑛 to 

sample 𝑛 independent random binary string 𝑆1, … , 𝑆𝑛. First, the input iris code 

was being divided into 𝑏 number of blocks. Independent hash functions 

ℎ1, … , ℎ𝑛 could then be created under each block. For each hash function ℎ𝑖, a 

series of bit symbols say 𝑚 > 0 bits were being extracted according to a 

randomly generated indices set to form the binary string. Those were known as 

marked position bits. To demonstrate the non-invertibility, the sampled binary 

strings 𝑆1, … , 𝑆𝑛 were then converted to their corresponding decimal values. 

Thus, a string of decimal values 𝐶 ∈ [0, 2𝑚 − 1]𝑛 was formed. After that, each 

element c ∈ 𝐶 was being mapped into an output space of size at most 2𝐾using a 

modulo threshold function, for instance, 𝑐′ = 𝑐 𝑚𝑜𝑑 2𝐾. The hashed templates 

which could be denoted as C′ = [𝑐1
′ , … , 𝑐𝑛

′ ] were stored together with their 

corresponding hash function 𝐻 = [ℎ1, … , ℎ𝑛] as 𝑀𝐴𝑃(𝐶′, 𝐻) =

[(𝑐1
′ ℎ1), … , (𝑐𝑛

′ ℎ𝑛). The same process was repeated for all the 𝑏 blocks in order 

to generate the final template named as the locality sampled code (LSC). The 

collection of all the maps could be further summarized as 

[𝑀𝐴𝑃(𝐶′, 𝐻)1, … , 𝑀𝐴𝑃(𝐶′, 𝐻)𝑏] for all the 𝑏-blocks of the input iris code. 

Under this framework, intra-class samples were expected to be close to each 

other and thus, they would be hashed to the same location. In contrary, inter-
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class samples were dissimilar and consequently hashed to different locations. 

Low EER was reported due to the collision guarantees from bit sampling based 

LSH. However, EER performance at zero FAR was not available in the report. 

Besides issue regarding performance degradation, there was also lack of a 

generalized method which could improve the performance of these reputed 

cancelable iris template protection schemes.  

 

2.3 Iris Biometric Cryptosystem 

Besides cancelable biometrics, biometric cryptosystem was another 

alternative to biometric template protection aiming at generating cryptographic 

keys out of or with biometric traits. Generally, key generation schemes required 

exact recovery of the input biometric feature via error tolerance, for instance, 

error correction code (ECC). This was to ensure that the same key could be 

regenerated from the varying biometric feature for authentication. Using error 

correction code in biometric system introduced high tension between error 

correcting capability and security (Noto et al., 2011). In particular, there was an 

existing tradeoff between the error correcting capability of an ECC and the 

system security (in terms of false acceptance), duped as the granular effect, 

where it was crucial to know the genuine and imposter distribution before 

designing a biometric system with ECC. Analysis had been done in (Merkle et 

al., 2010, Tams, 2013) and reported that correcting large number of errors in the 

input feature imposed high information loss, further leads to low attack 

complexity. It was still an open problem on how to choose the best ECC for 

BCS. 
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The first iris biometric key generation scheme was proposed by Davida 

et al. (Davida et al., 1998). In their private template scheme, helper data was used 

for error correction check for differing bits of iris codes. This research showed 

the possibility of storing biometric templates directly as secret keys or in the 

form of hashed values. Although the empirical results of this method showed 

large entropy of 173 bits but there was still possibility to reconstruct raw 

biometric data from compromise biometric hashes (Davida et al., 1999). Juels 

and Wattenberg (Juels and Wattenberg, 1999) introduced fuzzy commitment 

scheme combining knowledge from the area of Error Correction Codes (ECC) 

and cryptography to protect cryptography key. Fuzzy commitment scheme had 

a function 𝐹, which was used to commit a codeword 𝑐 ∈ 𝐶 and a witness 𝑤 ∈

{0,1}𝑛. The witness was the enrolled biometric template represented by 𝑛-bits 

binary string while 𝐶 was a set of error correcting codewords 𝑐 of length 𝑛. The 

difference vector of 𝑤 and 𝑐, 𝛿 ∈ {0,1}𝑛 could be obtained through bit-wise 

XOR operation: 𝛿 = 𝑐 ⊕ 𝑤. The 𝛿 was denoted as the helper data which would 

be stored together with ℎ(𝑐) into the database where ℎ(. ) was the hash function. 

The commitment was termed 𝐹(𝑐, 𝑤). Given a query biometric template 𝑤′, a 

corrupted codeword 𝑐′ could be reconstructed through 𝑐′ = 𝛿 ⊕ 𝑤′using the 

stored helper data. At authentication stage, if the query binary string was 

sufficiently similar to the enrolled template within the capability of the ECC, a 

hash of the result tested against ℎ(𝑐)would yield a successful authentication if 

ℎ(𝑐′) = ℎ(𝑐).  

The first application of fuzzy commitment scheme to iris codes was 

implemented by Hao et al. (Hao et al., 2006). Hadamard and Reed-Solomon 
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error correction codes were used in their scheme to bind 2048-bit iris codes into 

140-bit cryptographic keys. The main idea was to apply Hadamard codes to 

eliminate bit errors caused by the natural variance such as background errors 

while burst errors were corrected by Reed-Solomon codes. Genuine Acceptance 

Rate (GAR) of 99.53% and zero False Acceptance Rate (FAR) were reported on 

an in-house dataset. Two-dimensional iterative min-sum decoding was then 

introduced (Bringer et al., 2008) for iris-based fuzzy commitment scheme with 

higher correction capacity and efficiency. High False Rejection Rate (FRR) was 

discovered on noisy channel using Reed-Solomon code. Instead, two different 

Reed-Muller codes were used to form a matrix for efficient decoding. This 

method had achieved GAR of 94.38% and zero FAR on the ICE 2005 iris 

database (Phillips et al., 2008) with 40 bits of bound keys. A context-based 

method that constructed keys based on reliable bits within the iris codes bound 

by BCH-code is proposed in (Rathgeb and Uhl, 2011a). User-specific masks and 

check bits were used to form the helper data. A variety of techniques focusing 

on biometric template protection, random bit-permutation, biometric feature 

binarization and concatenated coding scheme were then proposed to improve the 

performance and security of iris fuzzy commitment schemes, for e.g. (Maiorana 

et al., 2014, Kelkboom et al., 2011, Teoh and Kim, 2007, Zhang et al., 2009). A 

context-based method (Rathgeb and Uhl, 2011a) for iris biometric key 

generation scheme had produced revocable and reasonable system performance 

(70-bit, 140-bit and 280-bit). The respective GARs at these key lengths were 

84.26%, 95.52% and 94.68%. A most recent enhanced iris fuzzy commitment 

scheme (Adamovic et al., 2017) which identified and used only certain iris 

regions instead of the entire iris region was proposed. The proposed scheme had 



 

 

 

 

 

37 

reported good recognition accuracy of FRR 3.75% when FAR was zero with 

high entropy of 400 bits in key length.  

Ideally, fuzzy commitment was proven secure under random oracle 

model, hence, helper data contained no information about the secret. In other 

words, secret was expected to be uniformly and independently distributed where 

an adversary could only perform brute force attack. However, this was 

practically hard to achieve due to the inherent structure of the biometric data and 

correlation between features (Zhou et al., 2011). Privacy leakage was another 

concern in fuzzy commitment caused by the redundancy in an ECC which was 

unavoidable (Zhou et al., 2011). Cross matching could happen if large privacy 

leakage was discovered. Several attacks such as decodability attack (Teoh and 

Kim, 2007), statistical attack (Carter and Stoianov, 2008) and Attack via Record 

Multiplicity (ARM) (Scheirer and Boult, 2007) were indeed possible. 

Kelkboom et al. (Kelkboom et al., 2011) proposed a bit-permutation 

process for fuzzy commitment scheme to prevent it from decodability attack that 

exploited the correlation of multiple helper data generated from the biometric 

data of a same subject. The decodability attack was first initiated by Carter and 

Stoinov (Carter and Stoianov, 2008) to verify the possibility of whether decoding 

two helper data led to a valid codeword. When there were two helper data 

𝛿1, 𝛿2 being generated by two biometric data from the same subject, 𝑤1, 𝑤2, in 

decommitment process, the attacker could leverage on the helper data by 

performing 𝛿1⨁𝛿2 = (𝑤1⨁𝑤2)⨁(𝑐1⨁𝑐2) which was equivalent to 𝛿1⨁𝛿2 =

(𝑤1⨁𝑤2)⨁𝑐. If the two helper data derived from the same subject, 𝑤1⨁𝑤2 was 

small and the outcome would be most likely close to the correct codeword. In 
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short, the bit-permutation mechanism helped to improve the security through the 

distribution of entropy across biometric feature vectors.  

Rathgeb et al. (Rathgeb and Uhl, 2011c) presented a statistical attack 

against iris fuzzy commitment scheme. Binary biometric feature vectors of 

impostor were randomly chosen and decommitment was performed successively 

with the stored helper data assuming that attackers were in knowledge of the 

applied ECC. The frequency of each possible codeword was collected and a 

corresponding histogram was generated for each chunk. The ECC based 

histograms of all the chunks could be analysed after repeating the chunk-based 

decommitment processes using an adequate amount of imposter templates. The 

most likely error correction codeword for a chunk was decided based on the bin 

which corresponds to the histogram maximum.  

Scheirer and Boult (Scheirer and Boult, 2007) had launched an attack via 

record multiplicity on fuzzy vault. This referred to an imposter in possession of 

multiple invocations of the same secret which were combined to reconstruct 

secrets that led to the retrieval of biometric templates. The introduced attack on 

fuzzy vault, namely Surreptitious Key-Inversion (SKI) was an equivalent attack 

against fuzzy commitment. Under this attack, the biometric string blended with 

the codeword could be recovered through XOR operation using the 

compromised cryptographic key (secret) and the secure sketch.  

Privacy and security leakages of fuzzy commitment schemes were 

investigated in (Ignatenko and Willems, 2010) for several biometric data 

statistics. The scheme was found to leak information in bound keys and non-

uniform templates. For instance, keys bound of 44 bits in fuzzy commitment 

schemes (Hao et al., 2006) suffered from low entropy, reducing the complexity 
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for brute force attacks (Teoh and Kim, 2007). Zhou et al. (Zhou et al., 2011) 

conducted a quantitative assessment on the privacy and security leakage of fuzzy 

commitment scheme. Biometric data was not uniformly and independently 

distributed which further contributes to the security issue. Several evaluation 

metrics had been proposed to conclude that fuzzy commitment was highly 

vulnerable due to the inherent dependency of the biometric features.  

Apart from that, fuzzy commitment was often bounded by the limitations 

introduced by ECC. The scheme was found to be affected by the tradeoff 

between security and performance (Kelkboom et al., 2012). Similar perspective 

was reported by Bringer et al. (Bringer et al., 2008) where the decoding accuracy 

and maximum key length were bounded by the error correction capacity of the 

adopted ECC. Besides, another limitation came from the design of fuzzy 

commitment scheme in terms of input representation and matching (Dodis et al., 

2004). The input feature to fuzzy commitment was restricted to binary 

representation in order to conduct matching in hamming domain. This hindered 

the scheme from achieving better performance since many effective feature 

extraction and matching techniques did not comply with this requirement. 

Considering the discussed attacks and limitations, the security and privacy 

provided by iris-based fuzzy commitment still have room for improvement.  

Rathgeb et al. (Rathgeb and Uhl, 2010a) had proposed an iris key 

generation scheme based on interval mapping for iris features in real values. The 

highest key generation rate reported on CASIAv3 was 95.09% for five 

enrollment samples. However, our proposed scheme did not require exact 

recovery of the input biometric. Authentication was done by computing the 

similarity score between two biometric templates. This avoided the usage of 
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ECC that lead to another code selection problem. A new post-quantum fuzzy 

commitment scheme (PQFC) that did not rely on ECCs like the conventional 

fuzzy commitment scheme was designed (Al-Saggaf, 2021). It was proven to be 

secured based on the hardness of Short Vector Problem (SVP) of the lattice. The 

authentication performance of this iris recognition was reported as 99.1% with 

0% of FAR against CASIAv1 iris database. The PQFC authentication system 

was mentioned to be suitable for any biometric trait. 

  Another design provided protection and error-tolerant verification, the 

fuzzy vault scheme was first introduced by Juels et al. (Juels and Sudan, 2006). 

A secret key could be encoded as the coefficients of polynomial, 𝐹. This 

polynomial was evaluated with a set of points that represented the genuine 

biometric features {𝑏1, … , 𝑏𝑘, }. A set of pairs were then constructed in the form 

of {(𝑏1, 𝐹(𝑏1)), … , (𝑏𝑘, 𝐹(𝑏𝑘))}. To conceal the true features, large number of 

chaff point pairs that were not related to the polynomial, were fused together 

with the set of pairs from the genuine features. This combination formed a vault. 

If a sufficient number of genuine biometric features could successfully 

reconstruct the hidden polynomial, the vault could be unloacked. This process in 

separating the genuine points and the chaff points was indeed analogous to the 

chaffing and winnowing technique proposed by Rivest (Rivest, 1998).  

There was an initial implementation of a fuzzy vault scheme on iris data 

presented in (Lee et al., 2008, Lee et al., 2007). In this method, Independent 

Component analysis (ICA) was employed to extract important coefficients from 

multiple local regions in iris image. K-mean based pattern clustering method 

aimed to solve the variance of the extracted iris features while ICA created 
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unordered sets for fuzzy vault. On a challenging CASIAv3 Iris-Interval iris 

database (2002a), GAR of 80% was achieved at a zero FAR employing 128 bit 

keys. Then, Lee et al. made another attempt to introduce iris fuzzy vault system 

(Lee et al., 2008) based on local iris features. Iris features were extracted from 

multiple regions with shift-matching applied to solve the alignment issue. Reed-

Solomon (RS) coding scheme was used for error correction. The best Genuine 

Acceptance Rate (GAR) reported was 83.4% and 91.1% respectively for 

CASIAv1 and CASIAv3 iris databases under adequate system security. 

Reddy et al. (Reddy and Babu, 2008) had hardened the fuzzy vault using 

user’s password to prevent from attacks via record multiplicity. Iris features were 

extracted from minutiae-like coordinates obtained through image enhancement 

steps. At zero FAR, a degradation of 2% to 90% GAR was reported for CASIAv1 

(2002b) and MMU iris database (2004) when the degree of polynomial was set 

to 7 or 8. More proposals on iris vaults (Mariño et al., 2012, Fouad et al., 2011) 

had omitted a detail explanation about iris feature encoding or protocols. 

Majority of the proposed schemes in biometric cryptosystem were lack of 

thorough security analysis, for example, larger entropy loss could be possible 

especially for neighbouring bits dependencies and this reduced the security all 

the way to 40 bits (Hao et al., 2006). 

Anyhow, the implementations of fuzzy vault scheme by Juels and Sudan 

(Juels and Sudan, 2006) in biometrics had exposed its vulnerability to correlation 

attack and linkage attack (Scheirer and Boult, 2007, Kholmatov and Yanikoglu, 

2008). This conflicted with the unlinkability and irreversibility requirements 

defined for biometric template protection. The basic idea of fuzzy vault 

fingerprint systems to include auxiliary data was to help in alignment issues 
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affected by translation, rotation and non-linear distortion. However, attacker 

could make use of the publicly unprotected auxiliary alignment data in 

performing linkage attacks. An implementation for absolute fingerprint pre-

alignment that resisted any correlation between related records of the fuzzy vault 

scheme had been proposed as the countermeasure (Tams et al., 2015). In 

designing an effective fuzzy vault-based cryptosystem, practical decoding 

strategy was important. The error correcting capacity of Reed-Solomon decoder 

in the original fuzzy vault was insufficient to achieve practical implementation 

for biometrics especially single finger. To overcome this, Lagrange-based 

decoder (Nandakumar et al., 2007) had been proposed but the decoding 

complexity would then become infeasible for implementation.  

In our proposed cancelable iris key binding scheme, the principle of 

chaffing and winnowing was applied. This could be regarded as a confidential 

way to send data without encryption over an insecure channel. The idea was to 

first separate the message into different blocks or packets. The process of 

chaffing, enclosed these raw blocks (without encryption) by fusing them with 

some bogus blocks of data. Next, genuine and fake message authentication codes 

(MAC) were generated and appended to the raw blocks and bogus blocks before 

sending out. The recipient filtered out the chaff and identify the genuine MACs 

using a secret key shared between the sender and the receiver.  

The latest work from Ouda et al. (Ouda et al., 2021) had adopted chaffing 

and winnowing principle in their key binding biometric cryptosystem 

framework, known as Cancelabe Biometrics Vault (CBV). This proposed 

framework had cited our publication (Chai et al., 2019b) about cancelable iris 

key binding scheme with similar design. Both works focused in two limitations, 
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which were the trade-off between key length and matching accuracy, as well as 

potential privacy issue related to key binding scheme. Under chaffing and 

winnowing concept, both frameworks had utilized CB to generate protected 

biometric templates, in order to encode bits of a cryptography key. Extended 

BioEncoding was implemented to obtain the bit string. Similar to our proposed 

scheme, CBV framework was generic and did not rely on single or specific 

biometric representation. The framework had preserved the performance at FRR 

6.92% with increasing key size up to 256. It was also proven through this similar 

framework that our proposed cancelable iris key binding framework under the 

principle of chaffing and winnowing had satisfied the requirements of 

performance preservation, non-invertibility and unlinkability.  

 The literature review of the related works above had highlighted a few 

problems. First issue, the degradation of authentication performance caused by 

biometric template protection scheme. Second, the trade-off issue existed 

between security and authentication performance of an iris key binding scheme 

and limitations due to the implementation of ECC. Third, iris code was widely 

applied in iris template protection scheme. The rotation and inherent dependency 

issues in iris code had affected the authentication performance and security of 

iris code based template protection schemes. 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Preliminaries: Performance Degradation in BTP schemes  

 From the literature review, performance degradation in terms of accuracy 

and error rate are inevitable after the implementation of biometric template 

protection scheme (BTP). This is due to the fact that intentional matrix 

distortion, random permutation and remapping are among the techniques used to 

achieve irreversibility and unlinkability in most of the BTP schemes. This 

implies loss and distortion of biometric information in this process. In the 

methodology of Bloom filter (Rathgeb et al., 2013), binary to decimal value 

function is used along with index remapping technique. Therefore, certain 

degree of information loss can be expected through this mapping. For instance, 

using a word size of five for Bloom filter, five neighboring binary bits in a 

column will be converted to a decimal value. The decimal value will then be 

remapped into its respective index position in the Bloom filter. In this process, 

part of the information contained by these binary bits might lost in exchange of 

a decimal value as the final outcome. Referring to the recommended level of 

information for better security (Jenisch and Uhl, 2011) against coalition attack, 

an information loss of 80% can be anticipated through block remapping. If we 

consider this as the reference to a decimal value ‘1’ produced by ‘5’ binary 

values, the total information loss can be higher for longer word size. This 
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improves the security strength of the system but false non-match rate will 

increase as well. Hence, there is always a tradeoff between security and usability 

of a system.  

 In another separate example, different type of information loss can be 

anticipated in the process of Hadamard multiplication between permuted iris 

codes in BTP scheme such as IFO hashing (Lai et al., 2017b). In Figure 3.1 

(right), there are 3 permuted iris codes. Hadamard multiplication process of IFO 

hashing can be represented by AND-operation between the permuted iris codes. 

The new iris code is now ‘01000’ which has experienced information loss 

through AND-operation as illustrated. This is a common methodology in 

designing BTP scheme because the anticipated information loss is to prevent the 

restoration of biometric data. The scheme has experienced loss of information 

through the product codes generated from the permuted biometric data instead 

of value remapping as shown in Figure 3.1 (left) like in Bloom filter. These two 

methodologies are commonly introduced in BTP schemes with the purpose of 

strengthening the privacy or security protection through loss of information.  

 The purpose of stating the examples above is not to point out the degree 

of information loss nor the weakness of the BTP systems. In fact, information 

loss can happen in almost every biometric template protection scheme. It serves 

as a double edge sword in BTP scheme. The more information we lose in the 

process of template protection, the harder it is for others to reconstruct the raw 

biometric features. In contrary, this also means that information loss will 

inevitably cause performance degradation. Ideally, an optimum iris BTP scheme 

will need to achieve extensive information loss while maintaining minimal 

performance degradation. However, the requirement of stronger security 
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imposes a trade-off between information loss and recognition performance. 

Stronger security in protection scheme is likely to have more severe performance 

degradation (Nandakumar and Jain, 2015) while schemes which maintain 

recognition accuracy are often left with unattended doubts in security. 

Figure 3.1: Number of Matching Outcomes Before / After Binary-To-

Decimal Transformation (left) And Information Loss Through The 

Product Of Binary Codes (right) 

  

3.1.1 Overview of the Proposed Method 1: Confidence Matrix for Protected 

Iris Recognition Systems 

 To mitigate the problems outlined in previous section, confidence matrix 

generation scheme is proposed to improve the performance of protected 

biometric systems. The proposed method relaxes the tradeoff suffered by most 

of the BTP schemes in finding a balance between security strength and 

recognition performance. In other words, the proposed method enables BTP 



 

 

 

 

 

47 

schemes to gain adequate security strength without worrying its drawback in 

recognition performance. Preliminary work regarding confidence bits was tested 

on one BTP scheme in (Chai et al., 2019a). In this thesis, confidence matrix 

generation scheme will be reviewed together with its experiments and analysis 

on various publicly available iris databases. 

 The proposed method, confidence matrix generation will take place after 

the implementation of BTP scheme. Figure 3.2 shows the basic design of a 

protected iris based biometric system with and without confidence matrix 

generation scheme. A standard system will first acquire, process and extract 

pertinent features given raw iris data. The extracted iris features will then 

undergo BTP scheme in order to conduct matching in a secured domain during 

authentication stage. This proposed design consists of confidence matrix 

generation stage and authentication stage. After BTP, confidence matrix can be 

generated directly with at least two protected biometric samples from each 

enrolled personnel. When an arbitrary iris data is being tested against another 

biometric sample, authentication can be carried out in a secured domain between 

hashed templates based on our proposed confidence scoring system.  

 The main concept of confidence matrix is to identify the confidence 

locations in the matrix, verify the results of collision between two hashed 

templates and authenticate based on the final confidence score computed. The 

proposed method is flexible in the sense that there are no limitations in terms of 

ways to construct the confidence matrix and its properties. In this work, two 

methods have been proposed to construct confidence matrix into binary and 

fraction forms with their corresponding computation for confidence scores.  
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Figure 3.2: Overview of A Standard And The Proposed Protected Iris 

Biometrics System 

 

3.1.2 Generation Method for Binary Confidence Matrix  

 In confidence matrix generation stage, multiple hashed templates can be 

used to generate a final confidence matrix. The process of generating confidence 

matrix is illustrated below (Figure 3.3). 
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Figure 3.3: Process of Generating Binary Confidence Matrix 

 From this illustrated example, three samples are selected randomly. For 

the generation of confidence matrix, element-based collision matching can be 

carried out between hashed samples: 

𝑁 = 𝑛𝐶𝑟 =
𝑛!

𝑟! (𝑛 − 𝑟)!
 (1) 

Where 𝑁 denotes the maximum possible combinations, 𝑛 is the number of 

training samples to choose from and 𝑟 is the number of selected samples. For 

this example, the number of combinations, 𝑁 will equal to 3 when 𝑟 = 2 and 

𝑛 = 3. Therefore, 3 sets of collision matching outcomes 𝑅𝑛 will be obtained. 

Element-wise product rule is then used to obtain the collision matching outcomes 

to form the final confidence matrix, 𝑀 as shown below: 

 

𝑀(𝑥, 𝑦) = {
1, 𝑖𝑓 ∏ 𝑅𝑛(𝑥, 𝑦) = 1

𝑁

𝑛=1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

 

 The construction phase starts by creating a zero output matrix with the 

same size as the hashed samples. Our proposed scheme will cross-match every 

element within the 𝑛 −selected hashed training samples. The collision formula 

in the equation above is mainly indicating the confidence locations across 

multiple hashed samples by fusing all the outcomes of collision via product rule. 

The main purpose of confidence matrix here is to identify hashed bits which can 

be categorized as confidence bits. When all the paired training samples gives the 

same value in particular location, a matched collision is fulfilled and this is 
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defined as the confidence bit location. For instance, if the same value is found at 

the same respective location (𝑥, 𝑦) in all the hashed training samples, the 

value "1" will be assigned to that specific confidence location (𝑥, 𝑦). If this 

condition is not fulfilled, the particular bit location will be labeled as "0" under 

“no confidence” location. Finally, a binary confidence matrix will be generated. 

 

3.1.3 Generation Method for Probability Confidence Matrix  

 In this section, the flexibility of the proposed concept is demonstrated by 

constructing the confidence matrix alternatively. A confidence location can be 

determined from hashed matrix based on the frequency of matched collisions. 

This process generate the final matrix in fraction form instead of binary form. 

Note that our proposed method is different than fragile bits method 

(Hollingsworth et al., 2009). First, fragile bits method identifies bits which have 

flipped more than a preset threshold to determine inconsistent bits. In this 

proposed method, no threshold is being set. Mathematical fraction is being used 

to represent the frequency of collisions for real values instead of flipping times 

of binary bits in fragile bits method, as the main idea is to construct the proposed 

confidence matrix for authentication.  

 The method of generating probability confidence matrix is different 

compared to binary confidence matrix. Instead of using product rule to combine 

all the collision results, probability confidence matrix captures the frequency of 

matched collisions over the total number of collisions in a particular location. In 

binary confidence matrix, confidence location exists only if all the collisions at 

this particular location are matched collisions while disabling other locations 
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which do not fulfil this criteria. In contrary, probability confidence matrix takes 

every location in its matrix into account by calculating its respective frequency 

of matched collisions. The process of generating probability confidence matrix 

is shown as below (Figure 3.4). 

 

 

 

 

 

 

Figure 3.4: Process of Generating Probability Confidence Matrix 

 Referring to the visual aid above, the process of generating probability 

confidence matrix has been illustrated. A reference template, 𝑅(𝑥, 𝑦) can be 

generated for authentication later. It can be constructed in many ways, for 

example, taking values of all the matched locations (𝑥, 𝑦) across the hashed 

samples for training. Otherwise, the default value at sample 1 will be taken. As 

information from multiple hashed samples are utilized in this formation, the 

reference template has higher reliability in representing the characteristic of a 

class. The probability confidence matrix tabulates the corresponding percentage 

of matched collisions in each location of the hashed template. This matrix is very 

important to determine the degree of confidence in each location. For instance, 
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𝑅(1,1) in Figure 3.4 indicates a confidence of 2/3 which is equivalent to 66.7%. 

The confidence in probability is calculated based on the matched collisions for 

value ‘6’ in 2 out of 3 hashed samples. Taking 𝑅(3,3) as another example, the 

corresponding confidence is 3/3 (100%) indicating that 3 matched collisions out 

of 3 hashed samples. As a result, the location at 𝑅(3,3) of the reference template 

has higher confidence compared to the location at 𝑅(1,1). Thus, the generation 

of a reference template and its corresponding fraction matrix will form the final 

probability confidence matrix.  

3.1.4 Authentication Stage 

 Authentication stage takes place after the confidence matrix of each class 

is successfully constructed. The proposed strategy is different from the 

traditional method where two hashed templates are directly compared to produce 

the matching result. Instead, the confidence matrix serves as the reference in 

validating matching (collisions) outcomes to improve the recognition 

performance. The main focus of this work is to have a generalized solution to 

improve the performance of BTP schemes without any modification. Knowing 

the information from the confidence mask would imply that the attacker has 

succeed in performing the frequency analysis based attack on protected template. 

In order to address the mentioned security threat, security analysis has been 

conducted based on non-invertibility (irreversibility), revocability and 

unlinkability by referring to ISO/IEC Standard 24745 (Bassit et al., 2021).  
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3.1.5 Matching Strategy for Binary Confidence Matrix  

 In authentication, hashed template 1 as the reference template will first 

undergo our proposed element-wise collision matching function with another 

hashed template 2 (query) to produce a resulted collision matrix (Figure 3.5). 

After that, apply AND logic function to validate the collision result with a class 

specific confidence matrix. This authentication process can be carried out by 

determining the total number of matched collisions at the confidence locations. 

Finally, a proposed matching score can be formulated as follows: 

 

𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 =
∑ (𝐴𝑖 ∩ 𝐵𝑖)

𝑛
𝑖

∑ (𝐶𝑖)
𝑁
𝑖

 (3) 

 

Where hashed template 1 and 2 are denoted as A and B respectively with 𝑖 =

1,2, … , 𝑛 is the number of matched collisions. Thus, the numerator part of the 

Eq. (3) is representing the number of matched collisions between the two hashed 

templates while denominator is representing 𝑁 total confidence locations in 

confidence matrix. Referring to the figure below, the matching score of this 

example is equivalent to 0.667 where there are two collided bits identified at the 

confidence bit locations over a total of 3 confidence bit locations as indicated in 

the binary confidence matrix. The matching score of Eq. (3) is also formulated 

mathematically in more detail at Eq. (7). 
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Figure 3.5: Proposed Matching Strategy for Binary Confidence Matrix 

3.1.6 Matching Strategy for Probability Confidence Matrix  

 On the other hand, class-specific reference template generated at earlier 

stage will be used to authenticate any query hashed template to produce the 

collision result matrix. This is then followed by the dot product between the 

probability confidence matrix and collision result to obtain the final matrix. The 

proposed strategy not only determines the collided bits but also estimates the 

degree of confidence at the collided bit-locations. As a result, the final matching 

score can then be computed as follows: 

𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 =
𝑘1 (

1
𝑡) + 𝑘2 (

2
𝑡) + 𝑘3 (

3
𝑡) . .

𝑛1 (
1
𝑡) + 𝑛2 (

2
𝑡) + 𝑛3 (

3
𝑡) . .

=
𝑠𝑢𝑚 𝑜𝑓 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝐹𝑖𝑛𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡)

𝑠𝑢𝑚 𝑜𝑓 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥)
 

(4) 

Where 𝑖 = 1,2, … 𝑡 is the number of training samples used to construct the 

confidence matrix, 𝑘𝑖 is the bit location of collisions while 𝑛𝑖 is location of 

confidence bits. The matching score for the example below (Figure 3.6) is 

equivalent to 0.5291 (3.00/5.67). 
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Figure 3.6: Proposed Matching Strategy for Probability Confidence Matrix  
 

 

3.1.7 Iris Database with Noise Mask 

 In order to increase the flexibility in implementing our proposed method, 

the existence of noise masks in several publicly available iris databases are 

utilized by the proposed algorithm in the experiments to improve the recognition 

performance. As one of the contributions in this work, a solution is proposed to 

enable the integration of noise mask into popular BTP schemes, Bloom filter 

(Rathgeb et al., 2013) and IFO (Lai et al., 2017a) with no feature alignment 

process will be used in our experiments. An example of noise mask is shown 

below (Figure 3.7): 

 

 Figure 3.7: Visualization of Iris Code (top) and Noise Mask (bottom) 
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 First, a preliminary explanation on the methodology of Bloom filter is 

demonstrated in Figure 3.8 below. Any arbitrary matrix of iris code will be 

separated into multiple iris blocks according to the word size, 𝑤 and number of 

codeword, 𝑛. In each iris block, a column-wise binary to decimal function is used 

to convert binary values into decimal values. The converted decimal values are 

then remapped into its associated index location (column) of a row matrix, 𝑅𝑛. 

The process will be repeated for the next iris block (𝑤 × 𝑛) and the converted 

decimal values will be remapped again according to the indices of the next row 

matrix, 𝑅𝑛+1. 

 

Figure 3.8: Overview of The Methodology of Bloom Filter  

 In order to enable the implementation of Bloom filter onto database with 

noise mask, a threshold based method is proposed to determine which iris block 

can be considered as “noisy block”. By pre-setting a threshold 𝑇 (𝑇 = 0.1 is used 

in our experiment), if the number of noisy bits in any iris block is more than the 

preset threshold, the corresponding row matrix 𝑅𝑛 will be considered as ‘null’ 

row and excluded from the calculation of matching score as illustrated in Figure 
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3.9. The proposed method is also applicable for IFO hashing with Bloom filter 

integration to solve alignment-issue when biometric template acquisition. 

Figure 3.9: Overview of The Methodology of Bloom Filter with The 

Proposed Solution Utilizing Noise Mask 

 

3.2 Overview of the Proposed Method 2: Cancelable Iris Key Binding 

Scheme 

 The proposed scheme is based on the Chaffing and Winnowing concept 

in cryptosystem (Rivest, 1998). The idea is to bind a random binary 

cryptographic key by using a set of protected iris templates named as 

“cancelable” iris templates. Particularly, given a random cryptographic key 

which is represented in binary form, i.e. [1,0,1,1], the proposed method enables 

the binding of different cancelable iris templates according to a randomly 

generated sequence of ‘1’ and ‘0’. As a result, a cryptographic key can now be 

represented by a sequence of cancelable templates which can be stored into a 

database for future authentication.  
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 For key regeneration process, the genuine cancelable template will be 

matched and authenticated with the formerly stored cancelable templates. For 

every matched instance, it enables the regeneration of partial information of the 

bound cryptographic key. If a binary bit ‘1’ represents an anticipated match, this 

outcome will eventually allow the regeneration of the entire key (retrieval) when 

all the stored templates have been authenticated successfully. The design of the 

proposed key binding scheme is illustrated in Figure 3.10 to give a clear 

overview for all the processes involved. The original iris template will be Bloom 

filtered first followed by IFO hashing before entering the proposed key binding 

scheme.  

 

 

Figure 3.10: Overview of The Design for The Proposed Key Binding Scheme 
 

3.2.1 Key Binding Process 

To further explain the methodology of our proposed key binding scheme, let the 

input iris code denotes as 𝑰, a random permutation function denotes as Perm (. )  

and 𝑩𝑔 is the Bloom filtered iris code. Our proposed key binding scheme can be 

divided into several steps: 

1. Cryptographic key generation: A random binary cryptographic 

key, 𝑲 = {𝑘𝑗}𝑗=1
𝑛  is generated, where 𝑘𝑗 ∈ {0,1} and 𝑛 is the input 

parameter determining the cryptographic key length. 

2. Genuine & synthetic template generation: iris code, 𝑰 will go 

through feature transformation to generate genuine iris template (Bloom 
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filtered iris code), 𝑩𝑔  while synthetic iris template can be generated 

through permutation as 𝑩𝑠 ← Perm (𝑩𝑔). 

3. Key binding: Given a key, 𝑲 ∈ {0,1}𝑛, we can define 𝑛 number 

of IFO hash groups{𝐻1, … , 𝐻𝑛}. Each hash group, 𝐻𝑗 (for 𝑗 = 1: 𝑛) is 

used to generate the 𝑗-th IFO hashed code, 𝑪𝑗 based on the input matrix 

of either genuine or synthetic Bloom filtered iris code. For example, if 

𝑘𝑗 = 1, the j-th hashed code can be described as 𝑪𝑗 ← 𝐻𝑗(𝑩𝑔), where 

𝐻𝑗(𝑩𝑔) = {ℎ𝑖(𝑗)(𝑩𝑔)|𝑖 = 1, … , 𝑚 ℎ𝑎𝑠ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠}; otherwise (if 𝑘𝑗 =

0), the 𝑗-th hashed code is described as 𝑪𝑗 ← 𝐻𝑗(𝑩𝑠). 

4. Hashed code generation: 𝑛 number of hashed codes shall be 

constructed [𝑪1, 𝑪2, … , 𝑪𝑛] and stored in the database instead of the 

corresponding cryptographic key, 𝑲. 

5. Storage: The collection of output IFO hashed codes 

[𝑪1, 𝑪2, … , 𝑪𝑛]will then be stored together with the collection of IFO 

hash groups {𝐻1, … , 𝐻𝑛} used in the process of key binding. 

The binary key binding processes of our proposed method are defined in Figure 

3.11. 

3.2.2 Key Retrieval Process 

Let 𝑆(𝑪, 𝑪′) denotes a matching score between a reference (stored) IFO hashed 

code, 𝑪 and a query hashed code,  𝑪′. Given a query iris code as the input denoted 

as 𝑰′, our proposed key retrieval scheme can be divided into several steps as 

follows:  
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1. Genuine template generation: 𝑰′ has to go through similar 

transformation to first generate a query Bloom filtered iris code matrix 

which can then be described as𝑩′ ← Bloom_filter (𝑊, 𝐿, 𝑰′). 

2. Query hashed code generation: By using the same IFO hash 

groups [𝐻1(𝑩′), … , 𝐻𝑛(𝑩′)] with their respective permutations, 𝑛 

number of query hashed codes [𝑪𝟏
′ , 𝑪𝟐

′ , … , 𝑪𝒏
′ ] can be generated. 

3. Key retrieval: To prepare for key retrieval, we first generate an 

empty array denoted as 𝑲′ = {𝑘𝑗′}𝑗=1
𝑛  where 𝑘𝑗′ ∈ {0,1} and 𝑛 is the 

cryptographic key length generated via the matching between query and 

reference hashed codes. Given any pre-defined threshold 𝑡, matching can 

be carried out by calculating the similarity score S(𝑪𝒋, 𝑪𝒋
′) between the 

reference hashed code 𝑪𝒋 and the query hashed code 𝑪𝒋
′ . If S(𝑪𝒋, 𝑪𝒋

′)  ≥ t, 

set 𝑘𝑗′ = 1, otherwise, 𝑘𝑗′ = 0.  

4. Eventually, a final key 𝑲′ = {0,1}n can be retrieved. The 

matching score, 𝑆(𝑪𝑗, 𝑪𝑗
′) can be measured by finding the number of 

agreed positions in between 𝑪𝒋 and 𝑪𝑗
′, for example, 

No.  of agreed positions

𝑚∙ 𝑙1∙ 𝑙2
. 

The whole process of key retrieval is being outlined in Figure 3.11. 
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Algorithm 1: Key binding Algorithm 2: Key retrieval 

Input: genuine Bloom filtered iris code 

𝑩𝑔 and collection of IFO hash groups 

{𝐻1, … , 𝐻𝑛}.  

 

1. Random key generation: 𝑲 = {𝑘𝑗}𝑗=1
𝑛  

𝑪 ← Ø  
 

2. Generate synthetic Bloom filtered iris 

code: 

𝑩𝑠 ← Perm (𝑩𝑔)  

 

3. Key binding: 

For 𝑗 = 1 to 𝑛 

       If 𝑘𝑗 = 1 

            𝑪𝑗 ← 𝐻𝑗(𝑩𝑔) 

       Else if 𝑘𝑗 = 0 

            𝑪𝑗 ← 𝐻𝑗(𝑩𝒔)        

End if 

 

4. Hashed code generation: 

Set  𝑪 ← 𝑪 ⋃ 𝑪𝑗  

End for 

 

5. Storage: Collection of IFO hashed 

codes [𝑪1, 𝑪2, … , 𝑪𝑛] and IFO hash 

groups {𝐻1, … , 𝐻𝑛}. 

 

Input:  query Bloom filtered iris code 𝑩′, 
collection of the reference IFO hashed 

codes [𝑪1, 𝑪2, … , 𝑪𝑛], threshold 𝑡 ∈ ℝ, and 

collection of IFO hash groups {𝐻1, … , 𝐻𝑛}. 

 

1. Genuine template generation: 𝑩′ 
𝑪′ ← Ø  

𝑲′ ← Ø  
 

For 𝑗 = 1 to 𝑛 

2. Query hashed code generation:                    

       𝑪𝑗
′ ← 𝐻𝑗(𝑩′) 

            If S(𝑪𝑗, 𝑪𝑗
′)  ≥ 𝑡 

                 𝑘𝑗
′ = 1 

             Else  

                 𝑘𝑗
′ = 0 

             End if 

      Set 𝑪′ ← 𝑪′ ⋃ 𝑪𝑗
′ 

 

3. Key retrieval: 

     Set 𝑲′ = 𝑲′ ⋃ 𝑘𝑗
′ 

End for 

 

4. Retrieved key, 𝑲′ 

 

Figure 3.11: Algorithms for Iris Key Binding (left) and Iris Key Retrieval 

(right) 

 

3.2.3 The Relation of Key Retrieval Rate to Jaccard Similarity  

 For an efficient biometric cryptosystem, it ensures the regeneration of 

exact key given a similar (genuine) query Bloom filtered iris code during key 

retrieval. In this case, the success rate of the key retrieval attempt under genuine 

query can be measured through the proposed key retrieval rate (KRR). In this 

section, the relation of KRR to the Jaccard similarity between the enrolled and 

query Bloom filtered iris codes which are denoted as JA(𝑩𝑔, 𝑩′) will be briefly 
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discussed. For the ease of understanding, given a threshold 𝑡, suppose that we 

are now considering only single binary bit, 𝑘𝑗
′where (𝑗 = 1) of a cryptographic 

key. Let’s consider a single bit of the key as 𝑘𝑗=1
′ ∈ {0,1} which is being 

retrieved by matching query hashed code 𝑪𝑗=1
′  against reference hashed code 

𝑪𝑗=1.The correctness of the regenerated key 𝑘𝑗=1
′  can indeed be described as 

follows: 

𝑘𝑗=1
′ = {

  1,                                   S(𝑪, 𝑪′)  ≥ t

0,                                   S(𝑪, 𝑪′)  < t
   (5) 

Referring to the procedures under the IFO hashing scheme, hashing of Bloom 

filtered iris code, 𝐻𝑗=1(𝑩𝒈) is conducted through independently and randomly 

generated permutation seeds {𝑵1, … , 𝑵𝑚}𝑗=1. Treating each bloom filter 𝑏𝑖 as 

independent, the number of agreed positions (collisions) between query and 

reference hashed codes can be defined as 𝑧 = ∑ 𝜒𝑖
𝑚∙𝑙1∙ 𝑙2
𝑖=1   where 𝜒𝑖  refers to a 

Bernoulli variable of 𝑋𝑖 = 1 (if 𝑪𝑗=1 = 𝑪𝑗=1
′ ) or  𝜒𝑖 = 0 (if 𝑪𝑗=1 ≠ 𝑪𝑗=1

′ ). Thus, 

each element of 𝑪𝑗=1/𝑪𝑗=1
′  can then be treated as independent to each other. The 

independency of different bloom filters can be further strengthened by applying 

different public random permutations on the bloom filters. Therefore, 

𝑧~B(𝑀, 𝑃) follows a binomial distribution of probability of success, 𝑃 =

𝑆(𝑩𝑔, 𝑩′) where 𝑀 = 𝑚 ∙ 𝑙1 ∙  𝑙2 denotes the total number of elements 

{𝑐𝑖=1, … , 𝑐𝑖=𝑚∙𝑙1∙ 𝑙2
}

𝑗
 in 𝑪𝑗/𝑪𝑗

′ (for 𝑗 = 1, 2, … , 𝑛). This probability provides a 

similarity measurement between 𝑩𝑔 and 𝑩′ through 𝑆(𝑩𝑔, 𝑩′).  

  Since the publicly known random permutations are merely applied to 

strengthen independency, we therefore highlight only its resultant effect on the 
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independency of the bloom filters here. This helps to simplify the computation 

of the expected value 𝚬(𝑧) = 𝑀𝑃. Particularly, referring to the convention of 

IFO as an instance of min hash (Lai et al., 2017b), one has 𝑃 =

ℙ[𝑐𝑖 = 𝑐𝑖
′|𝑖 = 1,2, … , 𝑀] = 𝑆(𝑩𝑔, 𝑩′) = JA(𝑩𝑔, 𝑩′), which is corresponding to 

Jaccard similarity of 𝑩𝑔 and 𝑩′. Thus, we can infer that 𝑆(𝑪𝑗 , 𝑪𝑗
′) =

𝑧

𝑀
 while the 

probability of success 𝑃 is 𝑀 dependence. Therefore, the KRR for a single binary 

bit cryptographic key can be described as the probability: 

𝐾𝑅𝑅 = ℙ(𝑘j
′ = 𝑘j) 

= ℙ(𝑆(𝑪𝑗 , 𝑪𝑗
′) ≥ 𝑡) 

= ℙ (
1

𝑀
 ∑ 𝜒𝑖

𝑀

𝑖=1
≥ 𝑡) = ℙ(𝑧 ≥ 𝑡𝑀) 

(6) 

The definition of the probability in Eq. (6) can be further extended for longer 

key length with 𝑛∗ being denoted as the number of binary bit ‘1’ (successful 

genuine matching) in a cryptography key. Thus, KRR can be redefined again as:  

𝐾𝑅𝑅 = ℙ[𝑘𝑗
′ = 𝑘𝑗 = 1|𝑗 = 1,2, … , 𝑛] = (ℙ(𝑧 ≥ 𝑡𝑀))

𝑛∗

 (7) 

Theoretically, 𝑛∗ ≈
𝑛

2
 is the approximation for maximum key entropy (Gács and 

Körner, 1973). Nevertheless, one can easily notice from the equation that as long 

as the probability ℙ(𝑧 ≥ 𝑡𝑀) comes close or equal to 1, 𝑛 can be further 

increased. This allows the flexibility to bind even longer cryptographic key in 

such a way that 𝐾𝑅𝑅 = (≈ 1)𝑛∗
≈ 1 maintains optimum success rate for key 

retrieval. This implies that the exact cryptographic key can be retrieved as long 

as ℙ(𝑧 ≥ 𝑡𝑀) ≈ 1 for a selected threshold 𝑡. The selection of 𝑡 will affect the 

KRR significantly in two folds: 1) given a fixed value of 𝑃, decreasing the value 
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of threshold 𝑡 will increase  ℙ(𝑧 ≥ 𝑡𝑀) as well as 𝐾𝑅𝑅 and vice versa. In 

contrary, the failure rate of a genuine query can also be computed using our 

proposed method through 𝐾𝑅𝑅. 2) Lower 𝐾𝑅𝑅 is expected from the equation if 

we increase the value of 𝑛∗ further and vice versa. This is another highlight of 

KRR through its amplification factor contributed by 𝑛∗ which always ensures 

that an imposter query will have way lower 𝐾𝑅𝑅 compared to a genuine query. 

3.2.4 Example: Calculate Key Retrieval Rate (KRR) 

For better illustration, hereby an example is given to calculate 𝐾𝑅𝑅 under certain 

configurations. Suppose that, 𝑀 = 200, 𝑛 = 40 𝑛∗ ≈ 20, and 𝑡 = 0.75 is set 

given 𝑩𝑔 and 𝑩′ such that 𝑃 = 𝑆(𝑩𝑔, 𝑩′) = 0.85 (i.e. 85% similar in terms of 

Jaccard similarity between the enrolled and query iris templates), we can then 

calculate the 𝐾𝑅𝑅 = (ℙ(𝑧 ≥ 150))
20

= 0.9985 that is close to 1 with 

ℙ(𝑧 ≥ 150) = 0.9999. For higher similarity, for instance, 𝑆(𝑩𝑔, 𝑩′) = 0.9, we 

can obtain optimum 𝐾𝑅𝑅 = (ℙ(𝑧 ≥ 150))
20

= 1. 

 

3.3 Overview of the Proposed Method 3: Cancelable Iris Template 

Protection Scheme 

 In this section, LSH technique and the implementation of our proposed 

transformation and matching strategy for iris codes. The optimisation in the 

matching and the vertical dependency are explained and analysed in this section. 
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3.3.1 Preliminaries – Local Sensitive Hashing (LSH) 

 LSH technique and its implementation in bit sampling will be briefly 

discussed in this section. These preliminaries would facilitate in understanding 

the underlying motivations of our work. Firstly, LSH technique will be 

discussed, followed by its implementation in randomized sampling.  

 LSH is based on the general idea that, if two points are close together, 

these two points will remain close together after going through a projection 

operation. LSH is a hashing technique that can be used for dimensional 

reduction. This can happen when similar high dimensional data is being mapped 

into the same bucket with high probability. However, the size of the buckets will 

be smaller than the input data after hashing. The main difference between LSH 

and conventional cryptographic hashing is that LSH aims to maximize the 

probability of collisions for similar data while cryptographic hashing minimizes 

the probability of collisions. The formal definition of LSH (Charikar, 2002) can 

be defined as follows: 

Definition 3.1. Given that probability 𝑃2 > 𝑃1, a collection of input data 𝑀 

where two arbitrary inputs 𝜔, 𝜔′ ∈ 𝑀 and 𝐻 is the family of the hash 

functions ℎ . The locality sensitive hashing scheme involves the application of 

𝑖 local hash functions  ℎ𝑖 onto the input data 𝐻 =  ℎ𝑖 . 𝑀 → 𝑈, where output 𝑈 

refers to the hashed metric space that comes along with a similarity function 𝑆. 

To give an overview, this scheme can be viewed as a probability distribution 

over a family of hash functions such that 𝑃ℎ∈𝐻[ℎ(𝜔) = ℎ(𝜔′)] = 𝑆(𝜔, 𝜔′).  

 The similarity function 𝑆 particularly defined the collision probability 

between two hashed input data, 𝜔 and 𝜔′. Apart from providing the local 
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hashing facilities, LSH also ensures that two similar inputs will render a higher 

probability of collision. Alternatively, dissimilar inputs will be transformed into 

hashes with low probability of collision. These properties can be further defined 

as: 

𝑃ℎ∈𝐻(( ℎ𝑖 (𝜔) =  ℎ𝑖  (𝜔′)) ≤ 𝑃1,   𝑖𝑓 𝑆(𝜔, 𝜔′) < 𝑅1 

          𝑃ℎ∈𝐻(( ℎ𝑖 (𝜔) =  ℎ𝑖  (𝜔′)) ≥ 𝑃2,   𝑖𝑓 𝑆(𝜔, 𝜔′) > 𝑅2        (8) 

Where 𝑅2 > 𝑅1 given that 𝑃2 > 𝑃1 is ascertained by the properties of LSH 

scheme.  

 

3.3.2 Bit Sampling LSH for Hamming Distance 

 One of the most efficient ways of constructing a LSH family is via 

random bit sampling strategy (Indyk and Motwani, 1998). Precisely, given a 

binary string 𝑥 ∈ {0,1}𝑘, one can construct LSH family 𝐻 = {ℎ: {0,1}𝑘 → {0,1}} 

subject to the sampling function ℎ(𝑥) = 𝑥𝑖 where 𝑖 ∈ {1, … , 𝑛} is the index 

(location) chosen randomly over 𝑛 indices while 𝑥𝑖 refers to the 𝑖-th symbol of 𝑥. 

Thus, this generates a random binary string 𝑣 ∈ {0,1}𝑛 using a LSH family of 

sampling functions 𝐻 = { ℎ1,  ℎ2, … ,  ℎ𝑛}. Each individual sampling function is 

expected to generate a single symbol value of 𝑣 which is equivalent to the  𝑥𝑖, 

for instance, 𝑣 = [ ℎ1(𝑥),  ℎ2(𝑥), … ,  ℎ𝑛(𝑥)]. The LSH family can then be 

constructed using bit sampling for similarity score as follows: 

          Pr[ℎ(𝑥) ≠ ℎ(𝑦)] = 1 − (
‖𝑥⊕𝑦‖

𝑘
)                                             (9) 

Where ‖𝑥 ⊕ 𝑦‖ is the hamming distance function between 𝑥 and 𝑦. For similar 

inputs, i.e., 𝑥 ≈ 𝑦 renders smaller ‖𝑥 ⊕ 𝑦‖/𝑘 while dissimilar inputs, i.e., 𝑥 ≠

𝑦 renders larger ‖𝑥 ⊕ 𝑦‖/𝑘. 
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 In the proposed scheme with iris code as the input biometric, the usage 

of the bit sampling strategy for LSH comes at two folds. Firstly, the bit sampling 

strategy is designed to accept a binary string as input. Therefore, it is naturally a 

close fit for iris code without additional needs of quantization or normalization 

process. Secondly, this strategy exhibits binary-wise operation, which offers 

simplicity and efficiency properties to our proposed scheme. Furthermore, the 

hashed binary string inherits LSH property. Each sampled random bit should 

hold as i.i.d. variable that follows the distribution of the input. This gives an 

insight of the relation between the original data and the hashed data when 

designing a non-linear cancelable transformation function.  

 Thus, our proposed transformation inherits the properties of LSH where 

each column is independent and random. This characteristic allows the 

application of bit-shifting straight onto the transformed template for performance 

optimization. Bit-shifting is indeed a powerful solution in compensating 

orientations that inevitably appeared in iris samples (Daugman, 2004b, Masek, 

2006). Most of the transformations in BTP schemes are not able to provide this 

flexibility (Lai et al., 2016, Lai et al., 2017b). Meaning that, bit-shifting can only 

be conducted on the original iris codes and the transformation needs to be 

repeated each time bit-shifting is applied. This requirement makes some of the 

iris BTP schemes inefficient and insecure. The proposed transformation model 

aims to solve this problem and bit-shifting can be applied repeatedly onto our 

transformed iris templates straight. The following section will discuss about the 

steps of the proposed transformation of our iris template protection scheme.   
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3.3.3 Proposed Transformation for Iris Code  

 This section presents the details about our proposed transformation for 

generating cancelable iris templates. A family of LSH sampling functions is 

denoted as 𝐻 = { ℎ1,  ℎ2, … ,  ℎ𝑛}. Let 𝑥 ∈ {0,1}𝑎×𝑏 be the input iris code of size 

𝑎 ×  𝑏 where 𝑎 is the number or rows and 𝑏 is the number of columns. Let 𝑚 >

0 is an integer subject to 𝑛|𝑚 (i.e., 𝑛 is divisible by 𝑚. The proposed 

transformation for cancelable iris templates can be described using a function 

𝐹(𝑥, 𝐻, 𝑚, 𝑛) with following steps: 

Function 𝑭(𝒙, 𝑯, 𝒎, 𝒏): 

Step 1: Denote 𝑐𝑖 as the 𝑖-th column of 𝑥. Perform bit sampling strategy with  

𝐻 = { ℎ1,  ℎ2, … ,  ℎ𝑛} to generate hashed outputs 𝑣 = (𝑣1, … , 𝑣𝑏) of each 

column. Here, 𝑣𝑖 ∈ {0,1}𝑛 denotes the output vector corresponds to the 𝑛 

sampling functions for 𝑖-th column of 𝑥, i.e., 𝐻(𝑐𝑖) = 𝑣𝑖 .   

 

Step 2: For each 𝑣𝑖, set 𝑟 = 𝑛/𝑚 and divide 𝑣𝑖 into 𝑟-tuple sub-strings (each 

sub-string will contain 𝑚 bits). Then, convert the sub-strings into their respective 

decimal values. This leads to a mapping of  𝑣𝑖 → 𝑇𝑖 ∈ [0, 2𝑚 − 1]𝑟 .  

 

Step 3: Construct a template as 𝑇 = [𝑇1, … , 𝑇𝑏] ∈ [0, 2𝑚 − 1]𝑟×𝑏. A random salt, 

𝑅 with 256 bits are generated and prepended to every element of 𝑇.  

Finally, perform an element-wise one-way hashing on 𝑇. For testing purpose, 

MD5 encryption (Rivest and Dusse, 1992) has been adopted in this experiment. 

Note that, this step can be replaced by a more secure one-way hashing scheme 
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in future for real time implementation. The steps of this transformation have been 

illustrated in below (Figure 3.12).  

 

Figure 3.12: An Example of The proposed Transformation with 𝑚 = 2 and 

𝑛 = 6. Step 1: Perform bit sampling strategy for each column independently and 

randomly. Step 2: Select a desired key size e.g., 𝑚 = 2, then convert each 

column (𝑚-bitwise) to its respective decimal value. Step 3: Construction of the 

final template 𝑇 (in decimal values) with random salt 𝑅 followed by one-way 

hashing scheme.  

 

3.3.4 Proposed Matching Strategy for Iris Code Based Cancelable Template 

Protection Scheme 

 Given two transformed iris templates (𝑇, 𝑇′) ∈ [0, 2𝑚 − 1]𝑟×𝑏 , the 

matching between 𝑇 and 𝑇′ can be carried out by measuring their hamming 

distance, i.e., the number of symbols where 𝑇 and 𝑇′ are different. Similar to the 

conventional iris code, the matching for the transformed templates can be 
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conducted iteratively via several times of left and right shifting. This is to 

compensate the orientation variance of different iris codes. Thus, the best match 

for 𝑇′ can be obtained by selecting the matching with the lowest error rate.  

 According to the studies in (Daugman, 1993, Hu et al., 2016, Liu et al., 

2013), inherent correlations within an iris codes are substantially conveyed in 

radial direction. Therefore, iris texture made up of furrow or ciliary pattern tend 

to propagate in radial direction, exerting its influence on the vertically adjacent 

bits of iris code. The iris texture is said to have inherited correlations along the 

radial direction while the discriminative information is distributed along the 

horizontal direction. The vertically adjacent bits in an iris code are suggested to 

be dependent, i.e., the columns of the iris code after unwrapping the human iris 

to its 2D-polar equivalent space using Daugman’s rubber sheet model (Masek, 

2006). In view of this dependency, additional constrains have been introduced 

over the matching strategy between two different transformed templates (𝑇, 𝑇′). 

The purpose of having this additional measure is to minimize the vertical 

dependency within the transformed iris template to achieve higher level of 

system’s performance and security.  

 Given the stored iris template after our proposed transformation 𝑇 ∈

[0, 2𝑚 − 1]𝑟×𝑏  and a query iris code 𝑥′ ∈ {0,1}𝑎×𝑏 . The proposed matching 

strategy can be described using a function 𝐹′(𝑇, 𝑥′, 𝐻, 𝑚, 𝑛, 𝑛𝑐, 𝑞, 𝜏) with 

𝑇, 𝑥′, 𝐻 as the inputs and integers 𝑚, 𝑛, 𝑛𝑐, 𝑞, 𝜏 as the parameters where 𝑏|𝑛𝑐.   

Function 𝑭′(𝑻, 𝒙′, 𝑯, 𝒎, 𝒏, 𝒏𝒄, 𝒒, 𝝉): 

Step 1: Divide the stored iris template 𝑇 into 𝑏/𝑛𝑐 –tuples, each consists of 𝑛𝑐 

columns of 𝑇. Concatenate all 𝑛𝑐 columns in each tuple to form one single 
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column of data. This step leads to a change in the dimension of the transformed 

template from 𝑇 ∈ [0, 2𝑚 − 1]𝑟×𝑏 to 𝑇 ∈ [0, 2𝑚 − 1](𝑟𝑛𝑐)×(𝑏 𝑛𝑐⁄ ) . 

Step 2: Perform transformation 𝐹′(𝑥′, 𝐻, 𝑚, 𝑛) → 𝑇′ onto the query iris code to 

obtain the transformed iris template 𝑇′ ∈ [0, 2𝑚 − 1]𝑟×𝑏. 

Step 3: Repeat the concatenation in step 1 for 𝑇′ to form a single column of data. 

This changes the dimension of the transformed query template to 𝑇′ ∈

[0, 2𝑚 − 1](𝑟𝑛𝑐)×(𝑏 𝑛𝑐⁄ ). 

Step 4: Initialize a score count, 𝑧 = 0. Let 𝑇𝑖 and 𝑇𝑖′ are referring to the same bit 

location at 𝑖-th column of 𝑇 and 𝑇′ respectively where 𝑇𝑖 ∈ 𝑇 and 𝑇𝑖
′ ∈ 𝑇′. 

Compute the hamming distance ‖𝑇𝑖 ⊕ 𝑇𝑖′‖ which means the number of different 

symbols between 𝑇𝑖 and 𝑇𝑖′. If ‖𝑇𝑖 ⊕ 𝑇𝑖′‖ ≤ 𝜏, set 𝑧 = 𝑧 + 1. Otherwise, do 

nothing.  

Step 5: Set 𝑇′ as the bit-shifted transformed template. After applying bit-shifting 

technique (see (Lai et al., 2017b), Section 4.4), repeat step 3 and step 4 for 𝑞 

number of times (𝑞 is equivalent to the number of bit-shifting applied) to yield a 

set of score counts (𝑧1, … , 𝑧𝑞). Normalize the final similarity score 𝑠 ∈ [0,1] as 

𝑠 = 𝑚𝑎𝑥(𝑧1, … , 𝑧𝑞)/(𝑏 𝑛𝑐⁄ ). The steps of the proposed matching strategy for 

iris codes are illustrated in Figure 3.13.  
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Figure 3.13: An Example of The Proposed Matching Strategy with 𝑚 =

2, 𝜏 = 2, 𝑛 = 6, 𝑛𝑐 = 2 and q= 1. Step 1: The transformed template is mapped 

from 𝑇 ∈ [0, 2𝑚 − 1]𝑟×𝑏 to 𝑇 ∈ [0, 2𝑚 − 1](𝑟𝑛𝑐)×(𝑏 𝑛𝑐⁄ ) .  Step 2: Perform our 

proposed transformation for the query iris code  𝐹′(𝑥′, 𝐻, 𝑚, 𝑛) → 𝑇′. Step 3: 

Map 𝑇′ to 𝑇′ ∈ [0, 2𝑚 − 1](𝑟𝑛𝑐)×(𝑏 𝑛𝑐⁄ ). Step 4: Compute the hamming distance 

of each column between  𝑇 and 𝑇′. Record the score count 𝑧 for 𝑖 –th column 

with hamming distance ‖𝑇𝑖 ⊕ 𝑇𝑖′‖ ≤ 𝜏. Step 5: Perform bit-shifting on 𝑇′. 
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Repeat step 3 and step 4 to yield a set of score counts (𝑧1, … , 𝑧𝑞). The final 

similarity score can be computed as 𝑠 = 𝑚𝑎𝑥(𝑧1, … , 𝑧𝑞)/(𝑏 𝑛𝑐⁄ ). 

 

3.3.5 Optimize the Matching of Transformed Iris Codes 

 Given a bit sampling function ℎ ∈ 𝐻. The 𝑖-th column of the iris codes 𝑥 

and 𝑦 are denoted as 𝑐𝑖 ∈ 𝑥 and 𝑐𝑖′ ∈ 𝑦 respectively. If 𝑥 and 𝑦 are two different 

iris codes, a dissimilarity of 𝜀𝑑 = ‖𝑐𝑖 ⊕ 𝑐𝑖′‖/𝑘 will be obtained. Referring to 

Eq. (9), the probability for the matching between the bits sampling function can 

be derived as: 

    ℎ(𝑐𝑖) ≠ ℎ(𝑐𝑖′) = 𝜀𝑑              (10) 

After our proposed transformation, the stored iris template and query iris 

template can be represented by 𝑇 and 𝑇′. Any symbol at the 𝑖-th column of the 

transformed templates 𝑇 and 𝑇′ shall consist of 𝑚 bits as (Figure 3.12). Meaning 

that, the probability for a symbol (under the same column) between two 

transformed templates to be different depends upon 𝑚 independent bit sampling 

functions (ℎ1, … , ℎ𝑚) can be further described as: 

    (ℎ(𝑐𝑖) ≠ ℎ(𝑐𝑖′))𝑚 = (𝜀𝑑)𝑚             (11) 

It is arguable that different pair of columns within the iris codes 𝑥 and 𝑦 might 

result in different distances, i.e., ‖𝑐𝑖 ⊕ 𝑐𝑖′‖ ≠ ‖𝑐𝑗 ⊕ 𝑐𝑗′‖ for (𝑖 ≠ 𝑗) mapping 

the transformed template from (𝑇, 𝑇′) ∈ [0, 2𝑚 − 1]𝑟×𝑏 to (𝑇, 𝑇′) ∈ [0, 2𝑚 −

1](𝑟𝑛𝑐)×(𝑏 𝑛𝑐⁄ ) (refer to Step 1 and Step 3 under the function  𝐹′(𝑥′, 𝐻, 𝑚, 𝑛)). 

This problem can be analyzed by deriving the minimum distance between the 𝑖-

th columns of (𝑇, 𝑇′): 

‖𝑇𝑖 ⊕ 𝑇𝑖′‖ ≥ min ((‖𝑐1 ⊕ 𝑐1′‖/𝑘)𝑚, … , (‖𝑐𝑏 𝑛𝑐⁄ ⊕ 𝑐𝑏 𝑛𝑐⁄ ′‖ 𝑘⁄ )𝑚)𝑟𝑛𝑐  (12) 
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On the other hand, the maximum distance between the 𝑖-th columns of (𝑇, 𝑇′) 

follows 

 ‖𝑇𝑖 ⊕ 𝑇𝑖′‖ ≥ max ((‖𝑐1 ⊕ 𝑐1′‖/𝑘)𝑚, … , (‖𝑐𝑏 𝑛𝑐⁄ ⊕ 𝑐𝑏 𝑛𝑐⁄ ′‖ 𝑘⁄ )𝑚)𝑟𝑛𝑐   

                    (13) 

 Based on Eq. (12) and Eq. (13), when the computed value for ‖𝑇𝑖 ⊕ 𝑇𝑖′‖ 

is small, this implies a higher score count of 𝑧 (refer to Step 4 in the previous 

section) given that the input iris codes (𝑥, 𝑦) exhibit small pair-wise hamming 

distance over their columns. In the contrary, large value for ‖𝑇𝑖 ⊕ 𝑇𝑖′‖ implies 

a lower score count of 𝑧 given that the input iris codes (𝑥, 𝑦) exhibit large pair-

wise hamming distance over their columns. This asserts our claim over the 

distance-preserving property of the proposed matching mechanism. This 

property guarantees that similar iris codes with small pair-wise distance over 

their columns results in high similarity score 𝑠 while dissimilar iris codes with 

small pair-wise hamming distance over their columns will render lower 

similarity score as formulated in Step 5 in previous section. More formally, let 

𝜀𝑚𝑖𝑛 = min ((‖𝑐1 ⊕ 𝑐1′‖/𝑘)𝑚, … , (‖𝑐𝑏 𝑛𝑐⁄ ⊕ 𝑐𝑏 𝑛𝑐⁄ ′‖ 𝑘⁄ )𝑚) and 𝜀𝑚𝑎𝑥 =

max ((‖𝑐1 ⊕ 𝑐1′‖/𝑘)𝑚, … , (‖𝑐𝑏 𝑛𝑐⁄ ⊕ 𝑐𝑏 𝑛𝑐⁄ ′‖ 𝑘⁄ )𝑚). The parameter 𝜏 can be 

described in terms of any random 𝜀∗ > 0, 𝑛𝑐 and 𝑟 follows  𝜏 = 𝑟𝑛𝑐𝜀∗. For an 

arbitrary value of  𝜏 ∈ [ 𝑟𝑛𝑐𝜀𝑚𝑖𝑛, 𝑟𝑛𝑐𝜀𝑚𝑎𝑥], clearly it means 𝜀∗ ∈ [𝜀𝑚𝑖𝑛, 𝜀𝑚𝑎𝑥]. 

Taking into account that the random bit sampling for different columns of the 

iris code are independent, the outcome of the matching in terms of probability 

can be modeled by binomial distribution as shown below with mean equals to 𝜏 

and variance equals to 𝜏(1 − 𝜀∗), thus: 

  Pr[‖𝑇𝑖 ⊕ 𝑇𝑖′‖ ≤ 𝜏] = ∑ (𝑟𝑛𝑐
𝑖

)(𝜀∗)𝑖𝑟𝑛𝑐
𝑖=1 (1 − 𝜀∗)𝑟𝑛𝑐−𝑖                (14) 
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The solution for Pr[‖𝑇𝑖 ⊕ 𝑇𝑖′‖ ≤ 𝜏] can be found given an appropriate value of 

𝜀∗ ∈ [𝜀𝑚𝑖𝑛, 𝜀𝑚𝑎𝑥], which implies an appropriate chosen value of 𝜏 ∈

[ 𝑟𝑛𝑐𝜀𝑚𝑖𝑛, 𝑟𝑛𝑐𝜀𝑚𝑎𝑥]. In particular, the relation between Pr[‖𝑇𝑖 ⊕ 𝑇𝑖′‖ ≤ 𝜏]  

versus 𝜀∗ has been illustrated (Figure 3.14). The analysis and its formulation 

demonstrated that a right choice of 𝜏 ensures the iris codes with small columns 

pair-wise hamming distance, i.e.,  at most 𝜏, renders high probability and thus 

the expected similarity score 𝑠 is overwhelmingly close to one.  

 The solution only exists for Eq. (14) given the value of 𝜏 ∈

[ 𝑟𝑛𝑐𝜀𝑚𝑖𝑛, 𝑟𝑛𝑐𝜀𝑚𝑎𝑥]. In other words, the distribution of the columns pair-wise 

distance of input iris codes (𝑥, 𝑦), for instance, 𝜀𝑚𝑖𝑛 and 𝜀𝑚𝑎𝑥 must be known. 

Ideally, we wish that |𝜀𝑚𝑎𝑥 − 𝜀min | can be as large as possible so that wider 

range of 𝜏 can be chosen to solve this problem. It is also impractical to assume 

that |𝜀𝑚𝑎𝑥 − 𝜀min | can be determined precisely without precise knowledge on 

the distribution of the columns’ pair-wise distance of the input iris codes. A naïve 

way to maximize the range of |𝜀𝑚𝑎𝑥 − 𝜀min | is to increase the value of 𝑛𝑐 which 

leads to the concatenation of more columns. Hence, the variance of the columns 

pair-wise distance’s distribution will be increased with the increase of 

|𝜀𝑚𝑎𝑥 − 𝜀min |. 

 

 

 

 

 

Figure 3.14: The Relation of 𝐏𝐫[‖𝑻𝒊 ⊕ 𝑻𝒊′‖ ≤ 𝝉]  vs 𝜺∗ 
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 To support further the impact of 𝑛𝑐 on the variance of the pair-wise 

distance distribution of the input iris codes, the relation of the output similarity 

score 𝑠 versus the normalized original hamming distance [0,1] of different iris 

codes is plotted for analysis (Figure 3.15). Referring to the results generated, a 

higher value of  𝑛𝑐 increases the separation of points over the x-axis. The spread 

of the distribution is greater, meaning that the variance of the columns pair-wise 

distance’s in the input iris codes has been increased. This outcome is aligned 

with the proposed strategy to accept various iris codes with their columns pair-

wise distances being characterized in terms of probability (refer to Eq. 14 and 

Figure 3.14). 

 

 

 

 

(a) 𝑛𝑐 = 2, 𝜏 = 8                      (b) 𝑛𝑐 = 8, 𝜏 = 30              (c) 𝑛𝑐 = 16, 𝜏 = 60 

Figure 3.15: Relation Between the Similarity Score, 𝒔 and The Normalized 

Original Hamming Distance of Different Iris Codes Under The Same 

Parameter Setting 𝒎 = 𝟏𝟎, and 𝒏 = 𝟓𝟎. 

 

3.3.6 Minimizing the Vertical Dependency of Iris Code 

 Due to vertical dependency in iris codes (Hu et al., 2016, Liu et al., 2013), 

the pair-wise hamming distance of iris codes’ columns are expected to be small. 

The similarity score (1 − 𝜀∗) between columns of the transformed templates will 

also be suppressed. In the matching strategy, a mapping is proposed to 
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concatenate 𝑛𝑐 number of columns of (𝑇, 𝑇′) ∈ [0, 2𝑚 − 1]𝑟×𝑏 to form (𝑇, 𝑇′) ∈

[0, 2𝑚 − 1](𝑟𝑛𝑐)×(𝑏 𝑛𝑐⁄ ). This is necessary to minimize the vertical dependency 

of the iris codes hence optimize our matching results. 

 To be more specific, the distance-preserving property ensures that the 

column based pair-wise hamming distance of the mapped templates as shown in 

Eq. (12) is proportionally related to the number of rows in the original iris code, 

𝑎. For example, if the value of 𝑎 is smaller, indicating lesser number of rows at 

the iris code, the minimum columns pair-wise hamming distance of the mapped 

templates (𝑇, 𝑇′) will be smaller. The pigeonhole principle can well explain such 

scenario. Smaller 𝑎 means lesser row-wise symbols in each column could lead 

to higher collision of symbols over the same column between different iris codes. 

Hence, this scenario increases the chance of false acceptance. 

 In view of this, the proposed mapping imposes the concatenation of 

𝑛𝑐  columns to increase the minimum pair-wise hamming distance of the iris 

codes (𝑥, 𝑦) when matching. At the same time, note that the number of columns, 

𝑏 in the iris codes are being reduced from 𝑏 to 𝑏/𝑛𝑐. The effect of 𝑛𝑐 on the 

matching score in overall has been depicted in Figure 3.16. The matching of 

similar iris codes (genuine) is shown in red solid line while the matching of 

dissimilar iris codes (imposter) is shown in blue solid line. Note that the 

matching score here indicates the columns’ minimum pair-wise hamming 

distance of the iris codes. As observed, the columns pair-wise hamming distance 

(minimum) has been increased with the increasing 𝑛𝑐, yielding a left-shifted 

matching distribution in overall. In addition, the degree of overlap between the 

genuine and imposter distributions has been reduced subsequently. This implies 
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the reduction of vertical dependency in iris codes which increases the 

distinguishability among genuine and imposter matching results.  

 

 

 

 

 

 

 

 

  

 

 

 

Figure 3.16: The Matching Scores of Genuine (red) and Imposter (blue) 

Cases with Increasing 𝒏𝒄 
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CHAPTER 4 

 

RESULTS AND DISCUSSIONS 

 

4.1 Performance of the Proposed Method 1 - Confidence Matrix  

For experiments related to confidence matrix, four publicly available 

Near Infrared (NIR) iris databases, CASIAv1 (2003), CASIAv3 Iris-Interval 

(2002a), CASIAv4 Iris-Thousand (2014) and ND0405 (Phillips et al., 2009) 

databases are used. The information of these experimented databases are shown 

in Table 4.1: 

Table 4.1: List of Iris Databases 

Database 

Number 

of Eye 

Images 

Number 

of class 

Resolution Wavelength Noise 

mask 

(Y/N) 

CASIAv1 756 108 320 x 280 NIR Yes 

CASIAv3 868 124 320 x 280 NIR No 

CASIAv4 331 100 640 x 480 NIR Yes 

ND0405 784 100 720 x 100 NIR Yes 

 

CASIAv1 consists of iris images which are captured in two sessions by 

a self-developed camera with 850nm NIR illuminators. All images are stored in 

BMP format with resolution 320 × 280. The pupil region is automatically 

detected and specular reflections from the NIR illuminators are masked out by a 

circular region of constant intensity. CASIAv3 Iris-Interval (referred as 

CASIAv3 in this thesis) is another database constructed through two sessions by 
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a close-up homemade iris camera. The 320 × 280 iris images have very clear 

iris texture details due to its circular NIR LED array with optimal luminous flux 

for iris imaging. Left eye images from CASIAv3 are chosen to form a subset of 

database which contains 7 eye images for each class in this project.          

           CASIAv4 Iris-Thousand (referred as CASIAv4 in this thesis) contains 

images collected using a dual-eye iris camera IKEMB-100. The high quality iris 

images with resolution 640 × 480 are captured with optimal pose adjustment. 

The intra-class variation are mainly specular reflections and eyeglasses. ND0405 

is a large-scale database captured in NIR wavelength at a close distance by a 

LG2200 iris imaging system. Many real world conditions appear in this iris 

database, leading to degradations such as blurring, occlusion, specular reflection, 

off-angle, etc. Some subjects wore contact lenses which cause distortion on iris 

textures. Same as CASIAv4, both databases have uneven number of images per 

class. Referring to a similar work (Hu et al., 2016), CASIAv3 has the highest 

image quality followed by CASIAv4, CASIAv1 and ND0405. To have a 

compatible variability and reasonable benchmarking between the databases, the 

first 100 classes of CASIAv4 and ND0405 are selected for following 

experiments in this project. There are a few important evaluation metrics used in 

this work. Genuine Acceptance Rate (GAR) is the success rate after deducting 

False Rejection Rate (FRR): 100% − 𝐹𝑅𝑅. Basically, FAR is the percentage 

where the imposter will be accepted by the system whereas FRR is the 

percentage where the genuine users are being rejected by the system. These two 

metrics can be related to EER with their total sum divided by two: (𝐹𝐴𝑅 +

𝐹𝑅𝑅)/2 . Ideally, we would like to avoid the occurrence of false acceptance and 
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false rejection at the same time, therefore, the EER shall be as low as possible to 

satisfy these conditions. On the other hands, the decidability is the normalised 

distance between the mean of the genuine and imposter score distributions. 

Higher decidability is much more desirable as it would indicate that the 

difference between the genuine and imposter template are huge, thus it would be 

much easier to be separated by a threshold as the overlapping region would be 

small.  

 The experiment below aims to examine the ability of the proposed 

scheme in improving the performance of iris template protection scheme when 

tested against iris databases with and without noise masks. The state-of-the-art 

BTP schemes, Bloom filter (Rathgeb et al., 2013) and enhanced IFO hashing 

(Lai et al., 2017a) are selected for performance evaluation as these schemes have 

been experimented thoroughly and widely applied in this field. Both schemes 

are well known with their good recognition performance and resistance against 

multiple attacks. Note that, enhanced IFO has incorporated Bloom filter to solve 

its alignment issue. In this experiment, these schemes have been tested by the 

selected databases with their respective recognition performance. The results are 

tabulated in terms of equal error rate (EER) when the false acceptance rate (FAR) 

is equal to the false rejection rate (FRR). 
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Table 4.2: Recognition Performance of the Proposed Scheme and 

State-of-the-arts BTP Schemes 

Database 

Equal Error Rate, % 

Bloom 

filter 

Enhanced 

IFO hashing 

Proposed 

binary 

confidence 

matrix 

Proposed 

probability 

confidence 

matrix 

CASIAv1 5.91 5.81 4.80 2.01 

CASIAv3 1.14 0.69 0.20 0.20 

CASIAv4 8.11 6.17 1.64 1.08 

ND0405 10.74 7.28 2.28 2.48 

 

 Table 4.2 above shows the best Equal Error Rate (EER) performance of 

the proposed confidence matrices using not more than 3 training samples for iris 

databases hashed by enhanced IFO. During the process of obtaining the best 

results of Bloom filter from different word size, minimum word size of 3 is set. 

Smaller word size is ignore as the security strength will reduce. Different range 

of parameters of enhanced IFO are tested by referring to the optimal setting 

published in (Lai et al., 2017a, Lai et al., 2016). In this experiment, a clear 

decrease in EER (%) is observed from 4 different sets of databases. For iris 

databases that come with noise mask (CASIAv1, CASIAv4, ND0405), 

performance improvement ranging from 17% to 73% is observed when using for 

binary confidence matrix. On the other hand, performance improvement ranging 

from 65.40% to 82.33% is achieved using probability confidence matrix. For 

CASIAv3, the database without noise-mask had achieved a reasonable 
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performance improvement of 70% for both binary and probability confidence 

matrices.  

 As a result, both proposed confidence matrix generation methods have 

successfully improved the recognition performance of the biometric template 

protection scheme. On top of that, the results also proved the reliability of this 

method when dealing with noise-masks associated databases. In upcoming 

experiment, the construction of confidence matrices by using different number 

of training samples and their performance are evaluated in Table 4.3. Probability 

confidence matrix is able to generate lowest EER with 3 training samples. For 

instance, EER as low as 1.08% is reported for CASIAv4 database. In terms of 

performance, the observed deviation of error rate using 2 to 4 samples is less 

than 2% and 3% for binary and probability confidence matrix respectively. 

 From Table 4.3, probability confidence matrix has outperformed binary 

confidence matrix in our experiments conducted on CASIAv1 and CASIAv3. 

The deviation in performance can range from 0.5 to 3%. Both methods have 

reported equally low EER for CASIAv4. Binary confidence matrix which 

extracts only the exact collisions has slightly better performance compared to 

probability confidence matrix for ND0405 which is noisier. This is expected as 

the former method tends to eliminate more noise where there is no collision 

within all the training samples used.  
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Table 4.3: Recognition Performance of the Proposed Scheme with Different 

Number of Training Samples 

Iris Database Training 

Sample 

Equal Error Rate (%) 

Binary Confidence 

Matrix 

Probability Confidence 

Matrix 

CASIAv1 2 4.80 4.40 

3 5.01 2.01 

4 4.67 2.17 

5 3.11 2.12 

CASIAv4 2 3.02 3.90 

3 1.64 1.08 

4 1.41 2.82 

5 0.97 2.99 

ND0405 2 3.43 4.27 

3 2.28 2.48 

4 2.34 3.12 

5 2.11 3.17 

CASIAv3 2 0.51 0.49 

3 0.20 0.20 

4 0.27 0.05 

5 0.76 0.03 

 

 Figure 4.1 has shown the examples of normalized genuine-imposter 

matching scores for CASIAv1 (top row), CASIAv4 and CASIAv3 (bottom row) 

iris databases. The score distributions generated by confidence mask are shown 

at the right column whereas the plots without the implementation of confidence 

matrix are shown at the left column. It is observable that confidence matrix 
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enables better spread between genuine and imposter distributions visually. The 

mean matching scores of genuine and imposter are separated in a wider manner. 

This phenomena has greatly reduced the area of overlapped region between 

genuine and imposter while shifting the intersected matching score more to the 

right. Empirically, the decidability indices (Daugman, 2000) between IFO and 

the confidence based proposed method are recorded in Table 4.4. According to 

John Daugman (Daugman, 2000), “decidability” of a decision is determined by 

the degree of overlap between two distributions. A standard measure of 

decidability for genuine-imposter score distribution can be defined as follows if 

the means of the two distributions are 𝜇1 and 𝜇2 and their standard deviations are 

𝜎1 and 𝜎2: 

    𝑑 =
|𝜇1−𝜇2|

√
1

2
(𝜎1

2+𝜎2
2)

                                                (14) 

Better decidability indices for genuine-imposter distributions are proven 

achievable through the implementation of our proposed scheme as shown in 

Table 4.4. As an additional reference, Receiver Operating Characteristic curves 

(ROCs) are also plotted with True Positive Rate (TPR) against the False Positive 

Rate (FPR) to measure the separability of classes. The ROCs of binary 

confidence matrix in Figure 4.2 (a) and probability confidence matrix in Figure 

4.2 (b) are plotted against enhanced IFO for iris databases CASIAV1, CASIAV4 

and ND0405 (arranged in rows). Improvement in recognition performance have 

been observed in all ROC graphs. In overall, all the statistical and empirical 

studies conducted on the proposed method have indicated an increase in 

recognition performance and decidability. 
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Figure 4.1: Genuine-Imposter Score Distributions for a) CASIAv1 b) 

CASIAv4 c) CASIAv3 
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Table 4.4 Decidability Measure for IFO and Confidence matrix 

Methods 

Iris Databases 

CASIAv1 CASIAv4 ND0405 CASIAV3 

Enhanced IFO 2.772 2.521 2.641 4.94 

Confidence Matrix 

(binary/probability) 

3.624 / 3.404 4.567 / 3.859 4.12 / 3.7064 5.92 / 4.91 

 

 

Figure 4.2: Example of ROC plots for the Implementation of a) Binary and 

b) Probability Confidence against Enhanced IFO 
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4.1.1 Security Model 

 Security model will be focused on the case when attacker is trying to 

attack the reference template to get the confidence information. If confidence 

information leaks, it leads to permanent identity loss as biometric is individually 

associated. In view of this, frequency analysis based attacks like Attack via 

Record Multiplicity (ARM) is the common threat for this method.  

 For binary confidence matrix, reference template contains the locations 

of confidence bits. Compromising the reference template indeed enables the 

construction of binary mask. Thus, we would like to calculate the complexity in 

getting all ones in the mask. Randomly taking a hashed reference template of 

size 𝟓𝟗𝟒𝟎 × 𝟓𝟎 from the databases, which is equivalent to 𝟐𝟗𝟕, 𝟎𝟎𝟎 elements 

with 143038 confident bits. The complexity of this attack to be successful can 

be estimated as 297000C143038 ≫ 𝟔. 𝟑𝟗 × 𝟏𝟎𝟖𝟗𝟑𝟏𝟓
  combinations.  

 For probability confidence matrix, non-binary values in each reference 

template are non-zero. The confidence values are calculated as probability 

instead of binary. It is difficult for attacker to know the exact confidence location 

where the perfect matched collision happens (i.e. confidence score of 3/3 if the 

same number occurs at the same position across 3 hashed samples). Given a 

more relaxing security situation by assuming that the system can be 

compromised with a success probability of 0.33 instead of 1, the complexity of 

this probability can be assessed. In another words, his scenario is equivalent to 

the probability of guessing the positions in the reference template with 

probability of 1/3 (1 occurrence out of 3) correctly. The probability of the 
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attacker in getting 𝒌 positions among 𝒏 tries given unlimited computation power 

can be estimated through:  

  𝒑𝑿(𝒌) = 𝐏𝐫(𝑿 = 𝒌) =
(𝑲

𝒌)(𝑵−𝑲
𝒏−𝒌 )

(𝑵
𝒏)

              (15) 

Where 𝑵 is the population size, 𝑲 is the number of success states in the 

population, 𝒏 is the number of draws, 𝒌 is the number of observed successes and 

(𝒂
𝒃
) is a binomial coefficient.  

 The success probability of attacker 𝒑𝑿(𝒌) in this case is equivalent to the 

matching score of our probability confidence matrix since 

(#𝟏/𝟑)

𝒔𝒖𝒎 𝒐𝒇 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒊𝒆𝒔 𝒇𝒓𝒐𝒎 𝒂𝒍𝒍 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔
 . In another words, the attacker can only 

achieve the matching score if he can get 𝒌 positions with probability 1/3. Same 

scenario is applicable to obtain positions for other probabilities such 2/3 or 3/3. 

If an attacker is able to get most of the positions of a probability, other 

probabilities can be revealed. Using the same random protected template, the 

number of positions with probability 1/3 are found to be 𝑲 = 𝟐𝟓𝟓𝟒𝟑 from a 

template size of 𝑵 = 𝟐𝟗𝟕𝟎𝟎𝟎. Referring to Rathgeb et al. (Rathgeb and Uhl, 

2010b), it is acceptable that 𝟐𝟐𝟎𝟎 can be considered as computationally infeasible 

for an attack on arbitrary secure iris template. Thus, this is approximately 297000 

C 13 for our case where the number of trials allowed are only as low as 𝒏 = 𝟏𝟑. 

Using the determined parameter, the success probability for an attack can then 

be estimated at: 

 𝒑𝑿(𝒌) = 𝐏𝐫(𝑿 = 𝒌) =
(𝟐𝟓𝟓𝟒𝟑

𝒌 )(𝟐𝟗𝟕𝟎𝟎𝟎−𝟐𝟓𝟓𝟒𝟑
𝟏𝟑−𝒌 )

(𝟐𝟗𝟕𝟎𝟎𝟎
𝟏𝟑 )

=
(𝟐𝟓𝟓𝟒𝟑

𝒌 )(𝟐𝟕𝟏𝟒𝟓𝟕
𝟏𝟑−𝒌 )

(𝟐𝟗𝟕𝟎𝟎𝟎
𝟏𝟑 )

             (16) 
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The success probability in Eq. 16 is positive when 𝟎 ≤ 𝒌 ≤ 𝟏𝟑. Theoretically, 

𝒌 ≈
𝒏

𝟐
 can be the approximation for the lower bound of the observed success 

while the highest observed success can be 12 out of 13 draws.  As a result, the 

success probability of an attack is estimated to be within the range of 𝟏. 𝟗𝟐 ×

𝟏𝟎−𝟏𝟐 ≤ 𝐏𝐫(𝑿 = 𝒌) ≤ 𝟑. 𝟒𝟖 × 𝟏𝟎−𝟓. An attacker needs to go through a 

computation complexity of 𝟐𝟐𝟎𝟎 steps before he can achieve a low success 

probability of 𝟏. 𝟗𝟐 × 𝟏𝟎−𝟏𝟐. In view of this, the attack becomes highly 

complicated. This is because more 𝒏 positions are needed to increase the 

matching score in real case scenario and this will extensively increase the 

computation complexity of N C n before obtaining the low success probability. In 

addition, note that the increase of template size,  𝑵 will increase the complexity 

exponentially. Using the example above, the matching score of the confidence 

matrix can be further expressed as:  

 𝑴𝒂𝒕𝒄𝒉𝒊𝒏𝒈 𝒔𝒄𝒐𝒓𝒆 =
𝒌𝟏(

𝟏

𝒕
)+𝒌𝟐(

𝟐

𝒕
)+𝒌𝟑(

𝟑

𝒕
)

𝒏𝟏(
𝟏

𝒕
)+𝒏𝟐(

𝟐

𝒕
)+𝒏𝟑(

𝟑

𝒕
)

= (
𝒌𝒊

∑ 𝒏𝒊
𝒕
𝒊=𝟏

)             (17) 

Where 𝒊 = 𝟏, 𝟐, … , 𝒕 is the 𝒊 − 𝒕𝒉 number of training samples used for the 

construction of confidence matrix (𝒕 = 𝟑 is used for the example above). 

Theoretically, the higher the expected number of collisions 𝒌𝒊, the higher is the 

matching score. However, the increase of 𝒌𝟏 will inevitably reduce the success 

probability of an attacker as shown in Eq. 16. Hence, we can fairly say that it is 

computationally infeasible by looking at the large amount of steps incurred even 

before achieving the success probability which can be negligible. This is because 

the computation will also become infeasible if a larger template size is used due 
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to the asymptotic behaviour caused by the increase of 𝑵 or 𝒌. Thus, the 

requirement of irreversibility for our proposed scheme has been fulfilled. 

 The ARM analysis has revealed that it is computationally infeasible to 

guess the positions in the reference template even for the probability of 1/3 under 

a more relaxing security situation. Non-invertibility of confidence matrix has 

been achieved. Besides, a detail non-invertibility analysis based on various 

attacks such as single hash attack (SHA) and ARM has been conducted on IFO 

hash code (Lai et al., 2017b). Therefore, it is computationally infeasible to derive 

the original iris code from IFO hashed code. The confirmation on irreversibility 

property of IFO hashing assures the achievement of revocability since multiple 

IFO hashed codes can be generated from a single iris code. In addition, new 

confidence matrix can also be generated from the new IFO hashed codes once it 

is compromised. A quantitative experiment was conducted to evaluate the 

revocability of IFO hashed codes (Lai et al., 2017b). The large degree of 

overlapping between imposter and pseudo-imposter distribution indicated that 

the refreshed IFO hashed codes were distinctive although they were generated 

from the same iris code. This verifies that IFO hashing is able to fulfil the 

revocability requirement. Old hashed code can be replaced by new hashed code 

with different permutation tokens. Thus, the revocability property of confidence 

matrix has been achieved. 

 Unlinkability emphasizes that multiple protected templates generated 

from the same iris code should be indistinguishable from each other. To evaluate 

the unlinkability of our proposed scheme, the method proposed by Gomez et al. 

(Gomez-Barrero et al., 2017) is adopted. The unlinkability can be evaluated by 
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the mated and non-mated score distributions using this method. The mated 

scores are generated by matching between protected templates of the same 

subject using different sets of hashing functions, ℎ while non-mated scores refer 

to the matching of protected templates belonged to different subjects using 

different sets of ℎ. The unlinkability property of a biometric system is fulfilled 

if there is an overlap between the score distributions of mated and non-mated 

distributions (Gomez-Barrero et al., 2017).  

 Let 𝑃(𝑠|𝑀𝑠 ) be the conditional probability of a similarity score 𝑠 ∈

[0,1] that belongs to the mated matching group 𝑀𝑠  and 𝑃(𝑠|𝑀𝑠
′) denotes the 

conditional probability of a similarity score 𝑠 that belongs to the non-mated 

group 𝑀𝑠
′ . Two protected templates are said to have linkage if it is more likely 

that both templates are mated samples (𝑀𝑠 ) rather than non-mated samples 

(𝑀𝑠
′) given a score 𝑠: 𝑃(𝑀𝑠 |𝑠) > 𝑃(𝑀𝑠

′|𝑠). The unlinkability property can be 

characterized by the local linkability: 

    𝐷(𝑠) = 2
𝜔𝐿𝑅(𝑠)

1+𝜔𝐿𝑅(𝑠)
− 1                      (18) 

Given that 𝜔𝐿𝑅(𝑠) =
𝑃(𝑠|𝑀𝑠 )

𝑃(𝑠|𝑀𝑠
′

)
> 1 where 𝐿𝑅(𝑠) is the likelihood ratio between 

the known probabilities 𝑃(𝑠|𝑀𝑠 )/𝑃(𝑠|𝑀𝑠
′) and 𝜔 = 𝑃(𝑀𝑠 )/ 𝑃(𝑀𝑠

′) denotes 

the ratio between the unknown probabilities of the mated samples and non-mated 

samples distributions. We can assume that 𝑃(𝑀𝑠 ) = 𝑃(𝑀𝑠
′), thus set 𝜔 = 1. 

The system’s overall linkability can be further defined as: 

 

   𝐷𝑠𝑦𝑠 = ∫ 𝐷(𝑠). 𝑃(𝑠|𝑀𝑠 )𝑑𝑠              (19) 
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This measure is within the range of 𝐷𝑠𝑦𝑠 ∈ [0,1] with zero represents full 

unlinkability and unity for system which is completely linkable. Therefore, to 

attain the unlinkability of a BTP scheme, it is desirable to show that 𝐷𝑠𝑦𝑠 is 

negligibly small.  

 Figure 4.3 depicted three different graphs of CASIAv1, CASIAv4 and 

ND0405 generated using our proposed binary (first row) and probability (second 

row) confidence matrices using the same parameter settings with 3 training 

samples. All the mated and non-mated score distributions showed significant 

overlapping and negligibly small value of 𝐷𝑠𝑦𝑠 (𝑏𝑖𝑛𝑎𝑟𝑦) =

0.09,0.07,0.05; 𝐷𝑠𝑦𝑠 (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) = 0.04,0.06,0.05 respectively. Therefore, we 

assert that the proposed scheme fulfils the criteria on unlinkability. 

 

 

 

 

 

 

Figure 4.3: Unlinkability Analysis of the Proposed Binary (first row) and 

Probability (second row) Confidence Matrices for Databases a) CASIAv1 

b) CASIAv4 c) ND0405  
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4.1.2 Discussion 

 From the result obtained in the previous section, improvement in 

performance has been proven on all the four different publicly available iris 

databases using our proposed methods. The proposed scheme is able to mitigate 

the performance degradation caused by BTP scheme in existing biometrics 

recognition system. However, there are still several key points which are worth 

to be discussed. First, a solution has to be formulated to overcome the 

implementation problem since most of the publicly available databases come 

with noise masks. The conventional Bloom filter and Indexing-first-one hashing 

scheme did not attempt to solve this problem which can potentially be a 

roadblock in mitigating performance degradation.  

 Noise mask serves as an aid to determine the noisy pixels within the 

biometric template. These pixels will be excluded at the matching stage of 

protected biometric templates. The enhanced IFO hashing scheme, which does 

not require alignment, will first divide the iris data into different blocks of Bloom 

filters. Our proposed solution is to first determine the acceptable noise level of 

protected iris recognition system through a noise threshold. When a Bloom filter 

block has exceeded the acceptable noise level, the corresponding row of hashed 

data will be considered as null and thus excluded during matching stage in the 

secure domain. This enables our proposed method to work with any iris database 

with associated noise masks. However, note that higher requirement on the noise 

level of your protected iris recognition system might cause larger amount of null 

rows. This can lead to unnecessary information loss and greatly reduce the 

amount of information available for confidence matrix generation. Therefore, 
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our proposed probability confidence matrix is useful in optimizing the matching 

accuracy though probabilities of collision in this situation.   

 On the other hand, experiments between the two proposed methods have 

been carried out in this research. Firstly, we studied the relationship between the 

number of training samples and the performance of our proposed methods. The 

generated results have indicated that, three training samples have the optimum 

performance in most of the tested databases. Our proposed binary confidence 

matrix has shown better performance when it is tested with noisier iris images 

while probability confidence matrix performs better when dealing with better 

quality iris images. In a nutshell, the proposed binary confidence matrix has 

higher tolerance to noise because of its nature in eliminating noise via the 

implementation of AND logic operation. Thus, this is more suitable to improve 

the performance of protected biometric templates which are captured under 

challenging and non-cooperative environment. 

4.2 Performance of the Proposed Method 2 - Cancelable Iris Key Binding 

Scheme 

 A thorough analysis about the performance and security of our proposed 

key binding scheme has been conducted on a public iris database CASIA v3-

interval (2002a). This dataset contains 2639 iris images from 396 different 

classes (eyes). In our experiments, left eye images are chosen since the patterns 

of genetically identical eyes appear to be uncorrelated as they are among 

imposters’ eyes statistically (Daugman, 2004a). To standardize the matching 

from all the left eye images, we have selected any subset that contained at least 
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7 iris samples per class. This results to a total of 124 classes with 868 iris images 

(Lai et al., 2017b). Each iris image has gone through iris code generation 

(Daugman, 2004a) to generate iris code 𝐼 ∈ {0,1}𝑛1×𝑛2 of dimension 𝑛1 =

20, 𝑛2 = 512 with a total of 10240 bits. 

 The experiments have been designed with the purpose to emphasize more 

on the implementation and security analysis. The proposed key binding scheme 

here has not been addressed or analyzed thoroughly to provide insights regarding 

its potential, limitation and tradeoff in iris biometric. Firstly, the performance 

tradeoff upon introducing an alignment-free cancelable iris code is being 

presented. Besides, IFO hashing has shown its ability in preserving the system’s 

performance in the following section. Next, an overview on the performance of 

the proposed key binding scheme is presented through standard metrics 

evaluation. The inter-relation of the main parameters: similarity threshold (𝑡), 

cryptographic key length (𝑛) and IFO hashed code length (𝑚) have been tested 

and examined in this studies. In addition, the proposed scheme has demonstrated 

flexibility in managing various hashed code sizes due to the integration of IFO 

into the key binding’s design without sacrificing security strength with reducing 

key length. All the experiments are conducted under a PC with processor core 

i7- 2.60 GHz, 8GB RAM and with MATLAB R2013b. 

4.2.1 Performance of Original Iris Code and Bloom Filtered Iris Code 

 The first experimental testing is conducted on the original iris code 𝐼 ∈

{0,1}20×512 and Bloom filtered iris code respectively. The parameters used for 

Bloom filter generation (Rathgeb et al., 2013) are fixed as 𝑊 = 7 and 𝐿 = 20, 

yielding 𝑙1 ∙  𝑙2 = 50 blocks and Bloom filtered iris code 𝐵𝑔 ∈ {0,1}50×128 as the 
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outputs. This testing has covered different matching protocols such as genuine 

matching and imposter matching. For genuine matching, all iris images are used 

to generate iris codes. The matching is done by calculating the hamming distance 

between different iris codes of the same user which then yields 
7×6×124

2
= 2604 

genuine matching scores in total. Same genuine matching protocol has been 

implemented all the respective Bloom filtered iris codes. For imposter matching, 

the matching is done by calculating the hamming distance between iris codes of 

different users, interclass matching in this case. Each user comes with 7 iris 

codes, this yields a total of  
7×123×7×124

2
= 373674 imposter matching scores. 

Same imposter matching protocol has been implemented as well for Bloom 

filtered iris codes. Besides, we have also tested the performance of Bloom 

filtered iris codes after applying IFO hashing in (Lai et al., 2017b) (𝑚 =

200, 𝑝 = 3, 𝜅 = 64, 𝜏 = 30) by using the same genuine and imposter protocols.  

 In biometric systems, Equal Error Rate (EER) has been widely used for 

performance evaluation by calculating the False Acceptant Rate (FAR) and False 

Rejection Rate (FRR) between the collected genuine and imposter scores, where 

lower EER implies higher performance. In our context, EER is approximated 

as EER ≈ (FAR + FRR)/2. The result is tabulated in Table 4.5 as shown below. 

The result from Table 4.5 indicates that the system performance does not 

experience significant deterioration after applying Bloom filter to resolve the 

alignment issues originated from iris code’s generation process (rotational 

inconsistency due to head tilt during eye image acquisition). Moreover, IFO 

hashing which has inherited properties such as distance and similarity 
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preservation from Jaccard similarity and min hashing shows compatible 

performance after the its application to form Bloom filtered iris code. 

Table 4.5: System Performance for The Original, Alignment-free and 

Hashed Iris Codes 

CASIAv3 Database (Lai et al., 2017b) Equal Error Rate (EER %) 

Iris code 0.38 

Bloom filtered Iris code 0.50 

Bloom filtered Iris code (IFO applied) 0.58 

 

4.2.2 Performance of the Proposed Key Binding Method 

 This section provides the evaluation and overview on the performance of 

our proposed key binding method. For performance evaluation, intensive 

experiments have been carried out under different parameters configurations. 

The metrics used for performance evaluation are FAR and FRR as discussed in 

earlier session. Lower FAR and FRR implies higher system performance.  

   In order to measure the system’s performance, similar protocols have 

been applied in the following experiments. The first one refers to the genuine 

matching protocol where the first Bloom filtered iris code is used for key binding 

(enrollment) purpose and the remaining Bloom filtered iris codes from the same 

class will be used for key retrieval (query). Hence, this protocol yields a total of 

2604 testing results. The genuine matching protocol is then used to calculate the 

system’s FRR =
No.  of wrongly retrieved key

2604
 x100%. The second protocol refers 

to the imposter matching protocol where the first Bloom filtered iris code of each 

class is used for key binding (enrollment). The key retrieval (query) is then 
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conducted over the second Bloom filtered iris codes of all the classes excluding 

the samples from the enrolled class, hence, yields a total of (124 × 123) 2⁄ =

7626 testing results. The imposter matching protocol is then used to calculate 

the FAR =
No.correctly retrieved key

7626
 x100%. 

4.2.3 Evaluation on Similarity Score Threshold, 𝒕  

 As mentioned earlier, there are three main parameters (𝑡, 𝑛, 𝑚) in our 

proposed cancelable iris key binding scheme . Several tests have been carried 

out to study the relation of these important parameters to the system 

performance. By using the same parameter setting for IFO in previous section, 

the evaluation for similarity score threshold, 𝑡 have been carried out by fixing 

parameters 𝑚 = 100 and 𝑛 = 10. The genuine matching and imposter matching 

protocols are performed under a range of values, 𝑡 = [0.16, 0.17, … ,0.25]. The 

results of FAR and FRR for every 𝑡, given the parameter set (𝑡, 10,100) are 

recorded. Meanwhile, we have also calculated their corresponding EERs as 

tabulated in Table 4.6. 

 From the result showed in Table 4.6, the best EER (0.62%) obtained is 

close to the original Bloom Filtered iris code’s performance (0.58%) in Table 

4.5 under a slightly different setting. This is mainly attributed to the Jaccard 

similarity’s preserving property which allows us to measure the similarity 

between different Bloom filtered iris codes under IFO’s hashed domain. The best 

performance at optimum security where FAR is zero percent is 1.33% of EER. 

This can be achieved by setting the similarity score threshold, 𝑡 at 0.20. Although 

FAR remains zero if the threshold is being increased but EER has increased 

accordingly.  
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Table 4.6: System Performance for Parameter Set (𝒕, 𝟏𝟎, 𝟏𝟎𝟎) 

𝒕 FRR (%) FAR (%) EER (%) 

0.16 0.15 12.14 6.97 

0.17 0.31 3.23 1.77 

0.18 0.62 0.62 0.62 

0.19 1.65 0.05 0.85 

0.20 2.65 0.00 1.33 

0.21 3.80 0.00 1.90 

0.22 5.61 0.00 2.81 

0.23 8.26 0.00 4.13 

0.24 11.56 0.00 5.78 

0.25 15.40 0.00 7.70 

 

 Besides, the matching scores between each IFO hashed code 𝑗 =

1,2, … , 𝑛 under genuine matching and imposter matching have been plotted and 

depicted in Figure 4.4. It shows an overlapped region between genuine and 

imposter matching scores. This scenario is mainly due to the imposed synthetic 

Bloom filtered iris codes. The matching between a hashed synthetic Bloom 

filtered iris code and the query hashed code always results in a smaller matching 

score. This observation has further supported the claim where synthetic template 

is indeed acting like an imposter template in chaffing and winnowing process to 

conceal and protect the genuine IFO hashed code in our proposed method. 

Moreover, the best threshold value, 𝑡 = 0.2 has been highlighted in the zoomed 

region in Figure 4.4 to avoid any imposter from potentially getting access into 

the system with FAR equals to zero. In fact, this has been justified by our results 

in Table 4.6 where the system has reported EER of 1.33% when FAR is 0 at 𝑡 =
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0.2. The table summarizes an observable trend that an increase in 𝑡 will result in 

higher FRR but lower FAR and vice versa.  

 For a cryptosystem to be useful, it is normally suggested that the FAR 

should be 0, hence any imposter or adversary can certainly be rejected by our 

proposed system for higher level of system security. Therefore, our analysis 

suggests that the optimal value of 𝑡 for this iris database lies under the range such 

that 𝑡 ≥ 0.2. 

 

Figure 4.4: Graph for the Genuine and Imposter Matching Score 

 

4.2.4 Evaluation on Cryptographic Key Length, 𝒏 

 The evaluation on the effect of cryptographic key length, 𝑛 on system 

performance have been carried out by fixing the values for parameters 𝑡 and 𝑚. 

The genuine and imposter matching protocols are performed by setting different 
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key lengths where 𝑛 = [10, 20, 40, 60, 80,100, 150, 200]. As a result, FAR and 

FRR for every 𝑛 given 𝑡 = 0.2 and 𝑚 = 100 are recorded. Meanwhile, their 

corresponding Genuine Acceptance Rate, 𝐺𝐴𝑅 = 100 − 𝐹𝑅𝑅 and EER are also 

calculated and tabulated in Table 4.7. 

Table 4.7: System Performance for Parameter Set (0.2, 𝒏,100) 

𝒏 GAR (%) FAR (%) EER (%) 

10 97.35 0.00 1.33 

20 96.67 0.00 1.67 

40 96.67 0.00 1.67 

60 96.37 0.00 1.82 

80 96.37 0.00 1.82 

100 96.37 0.00 1.82 

150 96.37 0.00 1.82 

200 96.37 0.00 1.82 

 

 From Figure 4.5, EER as low as 1.33% can be observed when shorter key 

length (𝑛 = 10) is being used. The EER has gradually increased when the key 

length becomes longer and remains stagnant at 1.82% even though the key length 

has been increased further from 60 to 200. In contrary, GAR has shown a slight 

reduction of 0.98% when the key length is being increased from 10 to 200. 

Besides that, the result in Table 4.7 shows that the increase in key length 𝑛 will 

reduce the FAR as emphasized and explained in our proposed 𝐾𝑅𝑅. Given 𝑡 =

0.2, the system performance is preserved even though the key length 𝑛 is being 

increased up to 200. This implies that the binding of long cryptographic key with 
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bit length as long as 200 bits is feasible while maintaining the same 𝐾𝑅𝑅 and 

system performance as captured by GAR.  

 

 

Figure 4.5: Graph for the Evaluation on Cryptographic Key Length  

 

4.2.5 Evaluation on Hashed Code Length, m 

 The evaluation on the effect of IFO hashed code length, 𝑚 on system 

performance have been conducted by fixing the parameters 𝑡 and 𝑛 which can 

be obtained from the experiments earlier. The genuine and imposter matching 

protocols are performed through different 𝑚 =

[10, 50, 100, 150, 200, 250, 300] for this study. The tested results of FAR and 

FRR for every value of 𝑚 given 𝑡 = 0.2 and 𝑛 = 10 in the parameter set 

(0.2,10, 𝑚) are recorded. Meanwhile, their corresponding GAR, EER and 

storage per bit kB/𝑛 are computed and tabulated in Table 4.8. The unit of storage 

per bit is also measured in kilo bytes (kB) to serve as reference for the space 

required (for single bit of key binding, 𝑛 = 1) for different hashed code length, 

𝑚 used in IFO hashed code generation. 
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The IFO hashed code length plays a critical role in terms of system 

storage as the proposed method binds the key by using IFO hashed code. In order 

to serve as an efficient biometric cryptosystem, the storage requirement 

especially for storing the helper data must be kept within an acceptable limit 

apart from high system security and performance. A system can become 

infeasible in actual implementation if it requires infinite storage for helper data 

to facilitate the key retrieval process despite high performance and security. 

Table 4.8: System Performance for Parameter Set (0.2,10,m) 

𝒎 GAR (%) FAR (%) EER (%) Storage/bit  (𝐤𝐁/𝒏) 

10 89.51 0 5.25 0.19 

50 95.97 0 2.02 0.94 

100 96.37 0 1.82 1.90 

150 96.37 0 1.82 2.81 

200 96.37 0 1.82 3.75 

250 96.37 0 1.82 4.69 

300 96.37 0 1.82 5.63 

 

 

Figure 4.6: Graph for the Evaluation on Hashed Code Length 
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 On the other hand, the proposed key binding method offers flexibility in 

terms of variable hashed code length. In our scheme, the IFO hashing provides 

flexible and controllable code length (regulated by parameter 𝑚). This feature 

allows us to tune our storage space while maintaining acceptable system 

performance. As shown in Table 4.8, the proposed method achieves high GAR 

around 95-96% with storage consumption from 0.94 to 1.90kB. The form of 

storage consumption offered by this proposed scheme is more compact than the 

records generated by other schemes such as (Li et al., 2010). It is also 

demonstrated that the system’s storage requirement can be decreased further 

with shorter hashed code length (for e.g. decreasing from 𝑚 = 300 to 100) 

while maintaining the same system performance as shown in Figure 4.6. 

Therefore, the system storage factor in this scheme is indeed controllable with 

respect to 𝑚. Figure 4.6 shows that EER is being reduced sharply from 5.25% 

(𝑚 = 10) to 1.82% (𝑚 = 100) and remains stable even with the further 

increment of hashed code length until 𝑚 = 300. Thus, the proposed key binding 

method has achieved its optimum performance (GAR of 96.37%) at 𝑚 =

100 which requires a storage space of 1.90kB for each hashed instance through 

thorough evaluation of the three main parameters in our scheme which are  

similarity score threshold (𝑡), key length (𝑛) and hashed code length (𝑚). 

4.2.6 Security analysis: Cancelable Iris Key Binding Scheme 

 As this proposed method utilizes synthetic templates to conceal the 

genuine templates (with IFO hashing applied), it is important to examine the 

indistinguishability property in such a way that any attacker cannot gain 

advantages in distinguishing whether the stored IFO hashed code is generated 
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from genuine or synthetic Bloom filtered iris code. The security of this proposed 

method focuses in the aspect of indistinguishability between genuine and 

synthetic templates. Besides, analysis has also been extended to potential 

security attacks on the proposed system such as brute force attack and false 

accept attack. 

4.2.7 Indistinguishability Between Genuine and Synthetic Templates 

 The indistinguishability property is examined in such a way that an 

attacker is allowed to accumulate certain information during matching process 

and gain advantages that may be useful to retrieve the secret key. In this case, 

the indistinguishability between genuine and synthetic templates is measured in 

an indistinguishability game between a challenger and an adversary to achieve 

the objective. The proposed indistinguishability game has been designed as 

follows: 

1. To start the game, given a group of IFO hash function 𝐻, challenger 

allows adversary to choose any class/individual from the database. 

2. After a class is being chosen by the adversary, the challenger will select 

a random Bloom filtered iris code of that individual and generate 𝑩𝑔 ←

Bloom_filter(𝑊 = 7, 𝐿 = 20, 𝑰).  

3. The challenger can then produce IFO hashed code 𝑪𝑔 ← 𝐻(𝑩𝑔) and give 

𝑪𝑔 to the adversary. 

4. After that, the challenger flips a fair coin 𝑏 ∈ {0,1}. If 𝑏 = 1, the 

challenger selects another Bloom filtered iris code of the selected person 

𝑩𝑔′ with a threshold 𝑡′ ∈ [0,1], such that JA(𝑩𝑔, 𝑩𝑔′) ≤ 𝑡′ and generate 
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𝑪 ← 𝐻(𝑩𝑔′). In addition, hashed code, 𝑩𝑔′ can also be generated by 

adding random noise to the filtered iris code as long as JA(𝑩𝑔, 𝑩𝑔′) ≤ 𝑡′. 

If 𝑏 = 0, the challenger permutes the Bloom filtered iris code 𝑩𝑠 ←

Perm (𝑩𝑔) and generates 𝑪 ← 𝐻(𝑩𝑠). Then challenger gives 𝑪 to the 

adversary. 

5. The adversary outputs a word �̂� ∈ {0,1} and wins if �̂� = 𝑘. 

 Based on the game above, it is valid to say that if �̂� = 𝑘, then the 

adversary has successfully retrieved a single bit of the cryptography key. It is 

important to note that the adversary does not know whether 𝑪 is generated from 

genuine, 𝑩𝑔 or synthetic 𝑩𝑠 Bloom filtered iris templates. Therefore, the 

adversary is required to find out the answer by matching the hashed codes and 

get 𝑆(𝑪, 𝑪𝑔). We hereby describe the adversary in this game as AdvGen−Syn for 

advantages gained in retrieving a single bit of the cryptographic key 

successfully. When AdvGen−Syn = 0, we say that the scheme is perfectly 

indistinguishable between genuine and synthetic templates. The advantages 

gained by AdvGen−Syn can be described as follows: 

AdvGen−Syn = |ℙ[�̂� = 𝑘] −
1

2
| (20) 

Given that: 

ℙ[�̂� = 𝒌] ==
𝟏

𝟐
ℙ[𝑺(𝑪, 𝑪𝒈)  ≥ 𝒕|𝒌 = 𝟎] +

𝟏

𝟐
ℙ[𝑺(𝑪, 𝑪𝒈)  ≥ 𝒕|𝒌 = 𝟏] 
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Assuming that for the case where 𝑆(𝑪, 𝑪𝑔)  ≥ 𝑡, the adversary can surely 

differentiate 𝑪 is generated by 𝑩𝑔, we can therefore define 

ℙ[𝑆(𝑪, 𝑪𝑔)  ≥ 𝑡|𝑘 = 1] = 1 and yield the final formulation: 

AdvGen−Syn =
1

2
|ℙ[𝑆(𝑪, 𝑪𝒈) ≥ 𝑡|𝑘 = 0]| 

=
1

2
|ℙ[z ≥ 𝑡𝑀|𝑘 = 0]| 

(21) 

 As aforementioned, ℙ[z ≥ 𝑡𝑀|𝑘 = 0] is highly depending on 𝑃 =

𝑆(𝑩𝑔, 𝑩′). From our matching result depicted in Figure 4.4, we are expected to 

gain zero FAR with threshold 𝑡 = 0.2 while 𝑆(𝑪, 𝑪𝑔) < 0.2 indicates imposter 

matching score (showed in red-blue overlapped imposter distribution region). 

Thus, we let 𝑡 = 0.2 and calculate ℙ[z ≥ 𝑡𝑀|𝑘 = 0] to estimate the adversary 

advantages various 𝑆(𝑩𝑔, 𝑩′) in this analysis. For further estimation, let 

AdvGen−Syn
𝑛 = 𝑛AdvGen−Syn which describes the total adversary advantages 

gained from 𝑛 bits cryptographic key. The total advantages are estimated by 

running the indistinguishability game 𝑛 times independently (repeating Step 4 

and 5 of the indistinguishability game). Table 4.9 shows the results with 

𝑆(𝑩𝑔, 𝑩′)  = [0.16,0.17,0.18,0.19] for 𝑛 = [1,50,100,200] and 𝑀 = 10000. 

 From this table, the adversary’s advantages in distinguishing the genuine 

and synthetic iris templates can be quantitatively estimated through our proposed 

indistinguishability game. It is important to take into consideration the level of 

similarity between synthetic and genuine templates for chaffed key binding 

scheme to evaluate fairly the indistinguishability property in terms of security. 

For instance, the computed adversary’s advantage is AdvGen−Syn = 0.58 with 
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𝑆(𝑩𝑔, 𝑩′) = 0.19 when 𝑛 = 100. The total advantages will go up to more than 

1 when 𝑛 is being increased to 200. This is because more iris templates are 

needed in order to bind longer key length, thus, greater information leakage. 

Particularly, with AdvGen−Syn
𝑛 ≥ 1 one can expect weaker security due to 

excessive information leakage. Nevertheless, our result shows that with 

𝑆(𝑩𝑔, 𝑩′) = 0.16, 0.17 and 0.18, the total adversary advantages to learn single 

bit of information at the key length of 200 bits are estimated to be 2−78, 2−41 and 

2−15 bits respectively (lower bounded at 2−11). The security of this scheme is 

based upon the selected threshold value and the similarity score which determine 

the amount of information leakage (i.e. mutual information) due to the linkability 

between 𝐵𝑔 and 𝐵′. To the best of our knowledge, there is still no known 

algorithm to extract this information for the purpose of full iris code 

reconstruction practically in relation to similarity score. 

Table 4.9: Indistinguishability Between Genuine and Synthetic Iris 

Templates 

𝑺(𝑩𝒈, 𝑩′) 𝐀𝐝𝐯𝐆𝐞𝐧−𝐒𝐲𝐧 

(𝒏 = 𝟏) 

𝐀𝐝𝐯𝐆𝐞𝐧−𝐒𝐲𝐧
𝒏  

(𝒏 = 𝟓𝟎) 

𝐀𝐝𝐯𝐆𝐞𝐧−𝐒𝐲𝐧
𝒏  

(𝒏 = 𝟏𝟎𝟎) 

𝐀𝐝𝐯𝐆𝐞𝐧−𝐒𝐲𝐧
𝒏  

(𝒏 = 𝟐𝟎𝟎) 

0.16 2.0561× 10−26 1.0281× 10−24 2.0561× 10−24 4.1122× 10−24 

0.17 3.0075× 10−15 1.5038× 10−13 3.0075× 10−13 6.015× 10−13 

0.18 1.4936× 10−7 7.6480× 10−6 1.4936× 10−5 2.9872× 10−5 

0.19 0.0058 0.29 0.58 1.16 
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4.2.8 Cancelability and Renewal 

 For renewal process, a new key needs to be reissued when the current 

cryptographic key is compromised. Our proposed key binding method requires 

no re-enrollment in this scenario. Key update can be achieved by interchanging 

the positions of the genuine and synthetic iris templates randomly together with 

their corresponding hashing groups. Thus, a new binary key string can be 

updated automatically. Our proposed design aims to provide a simple and fast 

key renewal process. The proposed algorithm has achieved GAR of more than 

96% at zero FAR with hashed code length, 𝑚 and key length, n up to 300 and 

200 respectively. 

 In terms of cancelability, the regeneration of cancelable template has 

been guaranteed by the revocability and unlinkability of IFO hashing scheme.  It 

has been verified through security analysis (Lai et al., 2017b) that it is 

computationally infeasible to derive the original biometric information from the 

IFO hashed code. The revocability has been evaluated thoroughly by analyzing 

the pseudo-imposter score distribution of the randomly generated hashed codes 

of multiple subjects. The refreshed hashed codes are distinctive and uncorrelated 

to the old hashed code albeit they are generated from the same iris code. With 

rigorous analysis backed by empirical data, IFO hashing scheme has satisfied 

the revocability and unlinkability requirements while users are not required to 

keep their permutation token in secret. 
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4.2.9 Potential Attacks 

 Besides the indistinguishability between genuine and synthetic template, 

we extended our analysis into potential security attacks. In this section, the 

proposed method is being evaluated against potential security attacks. 

4.2.10 Brute Force Attack 

 For brute force attack, it relies on randomly guessing of the 𝑛 bit 

cryptographic key without the needs of actual interception between the 

adversaries and the cancelable templates’ storage. Therefore, the complexity of 

this attack is merely depending on the cryptographic key length which is 

controlled by the parameter 𝑛 in our proposed method. Straightforwardly, the 

brute force attack complexity can be described as follows: 

𝐵𝑓𝑛 = 2𝑛    (22) 

 Higher 𝑛 indicates higher attack complexity which also requires more 

cancelable templates for key binding process. For instance, key length of 𝑛 =

100, the brute force attack complexity is measured as Bf𝑛 = 2100. Our best 

performance is preserved even up to a cryptographic key length of 200 as shown 

in Table 4.8. This is equal to an upper bound brute force attack’s complexity of  

2200 which is already sufficient in cryptography applications. The proposed 

method has demonstrated the flexibility to allow potentially key length longer 

than 200 while preserving acceptable performance when there is a need for 

higher attack complexity. 
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4.2.11 False Accept Attack 

 Apart from brute force attack, another security attack that needs to be 

taken into consideration is the false accept attack. In conjunction to brute force 

attack, this kind of attack requires the interception of the adversary with the 

cancelable storage. Instead of randomly guessing, the false accept attack relies 

on the continuous trials of an attacker through conventional matching between 

the stored cancelable templates and the imposter templates. In our context, 

unlimited number of trials are allowed. Therefore, the false accept attack is not 

constrained only to the usage of several imposter templates but also infinite 

number of artificial/synthetic templates instead.  

    Since the false accept attack relies on the conventional matching 

mechanism, the false accept attack complexity can be calculated based on our 

proposed key retrieval rate, 𝐾𝑅𝑅. To avoid confusion, we denote the key 

retrieval rate for false accept attack by arbitrary attacker as 𝐾𝑅𝑅imp. Thus, false 

accept attack’s complexity, 𝐟𝐚𝐾𝑅𝑅imp
 can be described directly as: 

𝐟𝐚𝐾𝑅𝑅imp
= ℙ[𝑘𝑗

′ = 𝑘𝑗|𝑗 = 1,2, … , 𝑛] = (ℙ(𝑧 ≥ 𝑡𝑀))
𝑛∗

 (23) 

 We can estimate the 𝐟𝐚𝐾𝑅𝑅imp
by assuming that the adversary is able to 

generate a cancelable template, 𝑪𝑗
′ with 𝑆(𝑩𝑔, 𝑩′) < 0.2. In this experiment, 

the 𝐟𝐚𝐾𝑅𝑅imp
 is estimated using synthetic templates which showed high 

similarity score when compared with genuine template. Thus, 𝑆(𝑩𝑔, 𝑩′) =

[0.195,0.196,0.197,0.198,0.199,0.20]are being tested in Table 6 with 

following parameters: 𝑛∗ =
𝑛

2
 for maximum key entropy, 𝑚 = 200 and 𝑡 =

0.20. 
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Table 4.10: Estimation of Complexity for Brute Force and False 

Accept Attacks 

𝑆(𝑩𝑔, 𝑩′) 𝐁𝐟𝑛=100 𝐟𝐚𝐾𝑅𝑅imp
 

0.195 2100 2162 

0.196 2100 2133 

0.197 2100 2107 

0.198 2100 285 

0.199 2100 266 

 

The calculated result shows that the false accept attack’s complexity is 

lower compared to brute force attack given 𝑆(𝑩𝑔 , 𝑩′) > 0.198. This indicates 

that if any attacker is able to generate hashed code with similarity 𝑆(𝑩𝑔, 𝑩′) >

0.198, he/she can potentially get access into the system due to lower attack 

complexity. Referring to Figure 4.4, the region where an imposter can launch a 

false accept attack is typically within the range of 0.1 − 0.2 with the mean of the 

imposter matching distribution around 0.14. It is expected that any false accept 

attack at similarity score around 𝑆(𝑩𝑔, 𝑩′) = 0.14 or < 0.195 will likely be 

infeasible (𝐟𝐚𝐾𝑅𝑅imp
≫ 2162) due to much higher false accept attack’s 

complexity.  

In fact, the worst case scenario has been taken into consideration by 

calculating the 𝐟𝐚𝐾𝑅𝑅imp
 according to a list of high similarity scores 𝑆(𝑩𝑔, 𝑩′) 

ranging from 0.195 to 0.199 according to the threshold set. The proposed 

method shows false accept complexity of 266 bits. It is important to note that the 

overlapped region from 0.1 to 0.15 in Figure 4.4 is mainly contributed by the 
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synthetic iris templates which act like imposter iris templates as an extra layer 

of protection to chaff the genuine iris templates. 

4.2.12 Comparison 

 In reviewing the performance of the state-of-the-art, Rathgeb and Uhl 

(Rathgeb and Uhl, 2011b) conducted a compact survey compiling the key binding 

schemes in iris biometric cryptosystems. Representing one of the simplest key 

binding schemes, fuzzy commitment scheme has been successfully applied to iris. 

More significant performance evaluation on iris based fuzzy commitment scheme 

(Rathgeb and Uhl, 2011b) has been applied after analyzing the error distribution 

of iris codes of different iris recognition algorithms. The method reported a GAR 

of 95.08% at zero FAR. In another extended work (Rathgeb and Uhl, 2009), the 

authors apply a context-based reliable component selection in order to extract 

cryptographic keys from iris codes which are then bound to Hadamard codewords 

achieving a lower GAR of around 93%. Emphasizing on the security, a 

cryptosystem based on iris key generation is proposed (Wu et al., 2008). The 

Reed-Solomon ECC and Hash function are employed to transform iris features to 

cipher key through encryption and decryption. The FRR of this system is nearly 

6%. This means that 6% of the genuine users have to present their iris more than 

one time for decryption. A most recent work aiming to improve the security and 

performance of fuzzy vault scheme using multi-biometrics (Rathgeb et al., 2016), 

the best GAR of approximately 95% has been achieved with security level around 

50 bits. As for fuzzy vault using single iris, lower GAR around 90% are reported 

with similar security levels.  
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 The proposed iris key binding scheme is competitive by generating 

approximately 96% of GAR with security level of 66 bits at zero FAR as shown 

in Table 4.6 and Table 4.10. Our proposed algorithm has better security assurance 

compared to another chaffing and winnowing based approach for fingerprint (Jin 

et al., 2016) of having zero FAR and able to increase the key length from 40 to 

200 bits while maintaining optimum performance for GAR. A more precise 

estimation on the success/failure rate for key retrieval by genuine query has been 

covered through our proposed 𝐾𝑅𝑅. At brute force security of 2100, GAR of 

above 96% can be achieved while the scheme in (Jin et al., 2016) do not have any 

accompanying analysis that shows its resistance against this attack.  

 One advantage of the proposed scheme is ECC free and alignment free 

without scarifying the performance. In our exposition, the ARM attacks are indeed 

possible when information can be collected from genuine and synthetic iris 

templates to retrieve the biometric template. In this case, information leakage from 

helper data can still be possible even though the adversary has no prior knowledge 

about the key to distinguish between genuine and synthetic iris templates. In 

conjunction to this, we have further estimated the possible information leakage by 

calculating the adversary’s advantages gained via our proposed 

indistinguishability game. Referring to the mean of the imposter distribution at 

0.14, the effort for the adversary to learn a single bit is expected to be lower 

than 2−78. Thus, ARM attacks (Scheirer and Boult, 2007) and correlation related 

attacks can be prevented through the proposed key binding scheme. ECC-based 

key binding scheme (Rathgeb and Uhl, 2011c) are often bounded to separate parts 

of a binary template among which biometric entropy is dispersed. Chunks of 
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helper data are prone to statistical significant false acceptance caused by the 

variation in binomial distributions. This forms the basis of statistical attacks as key 

retrieval attempts are more likely to succeed when binomial distributions of the 

matching are flattened (Rathgeb and Uhl, 2011c). In our proposed method, the 

hashed codes can be viewed as the chunks of helper data in the security analysis 

while false accept attacks complexity can be used as the measure against statistical 

attacks. False acceptance attacks are prone to happen below the set threshold 0.20 

as shown in Figure 4.4. The false acceptance complexity is found to be within the 

range from 266 to 2162. The complexity is deemed acceptable and sufficient 

when compared to the best false acceptance security of a multi-biometric iris 

based fuzzy fault (Rathgeb et al., 2016) which is around 52 bits at zero FAR with 

GAR approximately 95%. A summarized results of state-of-the-arts iris key 

binding methods are shown in Table 4.11 below.  

Another advantage of our implementation is the flexibility and 

compactness of the stored helper data. As discussed in previous researches, the 

records from an alignment free minutiae-based fuzzy vault implementation 

which consume typically from 896 bytes to 1780 bytes (Tams et al., 2015) can 

be used as a benchmark. Our experimental results in Table 4.8 has showed a 

flexible range within 190 − 1900 bytes with higher GAR. This shows 

significant storage management of the helper data given that iris features are 

commonly larger in size. 
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Table 4.11: Summarized Results of State-of-the-arts 

Methods Databases GAR 

(%) 

FAR (%) 

Iris-based fuzzy commitment 

schemes (Rathgeb and Uhl, 2011b) 

CASIAv3 95.08 0 

Iris-biometric key generation 

(Rathgeb and Uhl, 2009) 

CASIAv3 93.47 0 

Iris fuzzy vault (Rathgeb et al., 

2016) 

CASIAv3 93.93 0 

Iris key generation (Wu et al., 

2008) 

CASIAv1 94.45 0 

Proposed method CASIAv3 97.35 0 

 

4.3 Performance of The Proposed Method 3: Tranformation and Matching 

Strategy for Iris Code 

In this section, the performance of the proposed transformation and 

matching strategy for iris template protection scheme are evaluated. In our 

experiment, the CASIA v3-interval iris database is adopted. This dataset 

contains 2639 iris images from 396 different subjects (eyes). For intra-class 

comparison, each template is matched against the templates from different iris 

samples of the same subject, leading to a total of 4406 genuine comparisons. As 

for inter-class comparisons, every template is matched with the first template 

generated from the first iris samples of different subjects. This yields a total of 

199110 imposter comparison. The false acceptance rate (FAR) and false 

rejection rate (FRR) are used for the evaluation of recognition performance. 
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Specifically FAR refers to the rate of imposter samples being recognized as a 

genuine user (falsely accepted) whereas FRR refers to the rate of genuine 

samples being recognized as an imposter (falsely rejected). The equal error rate 

(EER) is also being used in the evaluation, which refers to the error rate when 

FAR = FRR. 

 

4.3.1 Appropriate Selection of the Parameter 𝝉  

In this section, experiments are conducted based on different values of 𝝉 

with increasing key size, 𝒎 = 𝟓, 𝟏𝟎, 𝟏𝟓, 𝟐𝟎 and constant 𝒓 = 𝟓𝟎 for the setting 

of 𝒏 = 𝒓 × 𝒎 using 𝟐𝟎 × 𝟓𝟏𝟐 iris codes as the input. 𝒏𝒄 = 𝟐 and 𝒒 = 𝟗 are set 

while considering the left (−) and right (+) shifting of bits from 

−𝟒, −𝟑, −𝟐, −𝟏, 𝟎, 𝟏, 𝟐, 𝟑, 𝟒 during matching. The result is tabulated in Table 

4.12, showing that an appropriate selection of the parameter 𝝉 is necessary to 

show promising recognition performance of the proposed scheme with low FAR 

and FRR. 

 

4.3.2 Performance  

 The achievable EER (lowest) with different parameter settings are tested 

and tabulated in Table 4.13. It is noticeable that the performance shows slight 

degradation when 𝑚 increases. This is due to the trade-off between security and 

recognition where larger 𝑚 is necessary to show higher security in terms of non-

invertibility.  
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Table 4.12: Performance of the Proposed Scheme with Varying 𝝉 and 𝒎 

 

τ 99 95 90 80 60 40 20 

 

m = 5 
FRR,% 12.4 6.50 2.33 0.65 0.61 1.15 3.54 

  FAR,% 33.4 6.27 2.00 0.78 0.56 1.00 1.85 

 

m = 10 
FRR,% 3.08 3.08 0.68 0.65 0.86 2.33 4.26 

  FAR,% 3.04 0.74 0.79 0.93 2.76 7.04 3.97 

 

m = 15 
FRR,% 0.93 0.83 1.27 2.65 7.73 8.55 24.5 

  FAR,% 1.05 0.86 1.59 2.64 3.73 7.91 0.97 

 

m = 20 
FRR,% 0.70 1.18 2.22 3.42 7.12 14.5 37.0 

  FAR,% 0.74 1.30 1.70 4.10 8.57 4.46 0.52 

 

 

 

 

Table 4.13: Performance of the Proposed Scheme with Different Parameter 

Settings 

 

 

nc 

 

r 

Performance EER,%  

m = 5 m = 10 m = 15 m = 20 m = 40  

 

 

4 

50 
0.46 

(τ = 125) 

0.69 

(τ = 180) 

0.76 

(τ = 190) 

0.79 

(τ = 199) 

1.97 

(τ =199) 

 

100 
0.49 

(τ = 250) 

0.69 

(τ = 380) 

0.75 

(τ = 385) 

0.84 

(τ = 390) 

1.67 

(τ =399) 

 

200 
0.48 

(τ = 500) 

0.71 

(τ = 780) 

0.71 

(τ = 790) 

0.79 

(τ = 790) 

1.36 

(τ =799) 

 

800 
0.70 

(τ = 3120) 

0.88 

(τ = 3140 

0.78 

(τ = 3160) 

0.81 

(τ = 3180) 

0.92 

(τ =3199) 

 

 

 

8 

50 
0.58 

(τ = 250) 

0.71 

(τ = 360) 

0.81 

(τ = 385) 

1.08 

(τ = 396) 

2.32 

(τ =199) 

 

100 
0.56 

(τ = 650) 

0.81 

(τ = 760) 

0.91 

(τ = 770) 

1.13 

(τ = 785) 

1.62 

(τ =399) 

 

200 
0.56 

(τ = 1000) 

0.66 

(τ = 1480) 

0.85 

(τ = 1540) 

1.00 

(τ = 1580) 

1.32 

(τ =799) 

 

800 
0.60 

(τ = 3120) 

0.70 

(τ = 3140) 

0.88 

(τ = 3160) 

1.11 

(τ = 3180) 

1.36 

(τ =3199) 

 

 

 

16 

50 
0.55 

(τ = 500) 

0.84 

(τ = 720) 

0.98 

(τ = 780) 

1.18 

(τ = 790) 

2.50 

(τ = 3299) 

 

100 
0.58 

(τ = 1000) 

0.96 

(τ = 1520) 

1.01 

(τ = 1555) 

1.24 

(τ = 1575) 

2.55 

(τ = 3299) 

 

200 
0.58 

(τ = 2000) 

0.67 

(τ = 2960) 

1.05 

(τ = 3130) 

1.24 

(τ = 3160) 

2.36 

(τ = 3299 

 

800 
0.74 

(τ = 3120) 

0.70 

(τ = 3140) 

1.18 

(τ = 3160) 

1.31 

(τ = 3180) 

2.70 

(τ = 3299 
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4.3.3 Security Analysis: Non-Invertibility 

 The non-invertibility of the proposed scheme can be achieved by the one-

way hashed of the transformed template (𝑇, 𝑇′). The usage of cryptographic one-

way hashing in this scheme is an unorthodox manner instead. Specifically, the 

matching between the transformed templates is done by counting the number of 

non-collided entries in between the pair-wise (columns) transformed template 

(after one-way hashed). Only the column of the enrolled and query templates 

that show at most 𝜏 non-collided entries, i.e., ‖𝑇𝑖 ⊕ 𝑇𝑖′‖ ≤ 𝜏, will contribute to 

the count (𝑧) for the final similarity matching score. This is to assert a strong 

prerequisite for the attacker in reverting the original iris code, where the attacker 

is required to look for the pre-image of the hashed entry that consists of 𝑚 bits 

in order to revert the original iris code. For instance, given an original entry of 

the transform template x = 7 (where 𝑚 = 3), its corresponding binary value 

would be 111, which indicates different bit locations of the original iris code. 

Since x is one-way hashed, i.e., hash(x), the attacker would have to look for a 

pre-image x′ s.t. hash(x′) = hash(x). Given x′, reverting 𝑚 = 3 bits 

information of the original iris code thus can be done trivially by ‘reverse 

permutation’ using the published bit-sampling functions.  

 In view of above, for an arbitrary key length 𝑚, the non-invertibility of 

our proposed scheme reduced to the computational hardness in looking for a 

preimage of the one-way hash function. Nevertheless, due to the dimensional 

compatibility requirement, i.e., the key length must same for each transformed 

templates, which is necessary for template matching; The number of trials in 

looking for a preimages of the one-way hashed function must be bounded by 
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O(2𝑚). Therefore, large 𝑚 is necessary to show strong non-invertibility claim 

of this proposed scheme. 

 Besides from this, consider that the attacker is capable of pre-computing 

a hash table for all possible 2𝑚 entries of the transformed template, we proposed 

to use a random salt that is used as an additional input to a one-way function 

such as md5 or AES encryption. Using additional random salt can defend against 

attacks that use precomputed tables for e.g. rainbow tables (Hellman, 1980) as 

they can make the size of table needed for a successful attack prohibitively large 

without burdening users. Since salts differ from one another, they also protect 

redundant (e.g. commonly-used, re-used) passwords as different salted hashes 

are created for different instances of the same transformed entries(Anderson, 

2020). 

 For different system/application, a new salt can be randomly generated 

for each transformed template, and fed together with the template entries to 

a one-way cryptographic hash function. Noting that the salt don't need to be 

encrypted or stored separately from the hashed password itself, because even if 

an attacker has access to the database with the hash values and the salts, a pre-

image x′ is still necessary to obtain any bit information of the original iris code. 

This has been assured by the non-invertibility of our proposed transformation. 

Correlation in between iris codes: Because the distribution of a biometric source 

is random and not necessary to be uniformly distributed. Two Iris codes 

generated from different users may show some degree of similarity by 

correlation. One example as shown in Figure 3.16 (a) demonstrated that when 

https://en.wikipedia.org/wiki/One-way_function
https://en.wikipedia.org/wiki/Rainbow_tables
https://en.wikipedia.org/wiki/Cryptographic_hash_function
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𝑛𝑐 = 1, it is hard to distinguish whether the query iris code (column) is belonged 

to the genuine user or imposter. This result implies that the attacker is capable 

of making use of the vertical dependency property in iris codes and try to revert 

the original iris code while intercept with the transformed template. A 

straightforward way of doing this is by sampling a random iris code and follows 

the proposed transformation and matching mechanism. Since hashing leaks 

information, the attacker can look for any collided entries in between the stored 

and query template. Then, perform a reverse engineering process to recovery the 

original iris code. In such a case, the non-invertibility of the proposed scheme 

can be examined upon the capability of the attacker to sample an iris code that 

shows at least one collided entries with the stored template when taking into 

consideration the correlation in between iris codes. To show the resistance of a 

scheme against this kind of attack, one needs to ensure that, in average-case, the 

attacker cannot obtain a single or more than one collided entries by random 

sampling on an iris code. In view of this, reducing the number of hash entries 

(reduce information loss) of the stored template would be necessary to achieve 

strong non-invertibility property against different correlated iris codes.  

 In the favour of reducing the number of hash entries, the parameters 𝑟 is 

meant to be minimized. Table 4.14 below tabulates the performance (EER, %) 

of the proposed scheme with different parameter settings for 𝑟 ranging from 10 

to 40 with constant 𝜏 = 𝑟 − 1 and 𝑛𝑐 = 1. This result shows that minimizing 𝑟 

will lead to performance degradation (while 𝜏 and  𝑛𝑐 are fixed), resulting a 

trade-off in between non-invertibility and system performance.  
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Table 4.14: Trade-off between non-invertibility and system performance 

Performance 

EER,% 

r = 10 r = 15 r = 20 r = 25 r = 30 r = 35 r = 40 

Proposed Method 0.92 0.87 0.83 0.66 055 0.53 0.48 

 

Besides, Figures 4.7 depicts the average number of collided entries for individual 

columns of the transformed templates (1 to 512). It is clearly observable that the 

transformed templates show several peaks due to the number of the collided 

entries under different columns. Such peaks indicate the columns of the iris 

codes that exhibit strong correlation. Such correlation can be minimized using 

smaller value of 𝑟 which render, in average, less than single collided entries over 

the one-way hashed template to resist against the abovementioned attack. 

 

Figure 4.7: Correlation Between Different One-way Hashed Templates   
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4.3.4 Security Analysis: Revocability 

 To evaluate the revocability of the algorithm pair, the same experimental 

setup has been adopted to generate 4406 mated-matching scores. These scores 

are obtained by performing intra-class comparison among the transformed 

templates where each transformed template is generated by using a LSH family 

of sampling function 𝐻. The revocability of the proposed scheme is evaluated 

under different values of 𝑚 = 10; 20; 30. The genuine and imposter similarity 

score distributions using a single set of sampling function 𝐻 are plotted together 

with the mated-scores distribution (4406 different sets of 𝐻) in a single graph. 

Figure 4.8 depicts three different graphs generated by using different parameter 

settings and constants 𝑛𝑐 = 2; 𝑟 = 50; 𝑞 = 9. In this experiment, a large degree 

of overlapping in between the mated-matching scores’ distribution and the 

imposter’s similarity score distributions are observed. This result implies that the 

refreshed templates are sufficiently distinctive, albeit they are generated from 

the same subject. Indeed, the new transformed samples generated with different 

sets of 𝐻 act as the ‘imposter’ as opposed to the distribution of genuine similarity 

score. The outcome has verified the revocability of the proposed scheme in 

generating new transformed templates to replace the old one if it is 

compromised.   
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(a) 𝑚 = 10, 𝜏 = 20   (b) 𝑚 = 20, 𝜏 = 1   

(b) (c) 𝑚 = 30, 𝜏 = 1  

 

Figure 4.8: Evaluate the Revocability of the Proposed Scheme 

 

 

4.3.5 Security Analysis: Unlinkability 

 Unlinkability highlights that multiple transformed templates generated 

from the same iris code should be indistinguishable from each other. To evaluate 

the unlinkability of the proposed scheme, the method proposed by Gomez et al. 

(Gomez-Barrero et al., 2017) is adopted as explained in section 4.1.1 Security 

Model.  

 In figure 4.9 four different graphs are depicted. Each graph contains 4406 

mated-matching scores and 199110 non-mated matching scores generated under 

different parameter settings with constant 𝑛𝑐 = 2; 𝑟 = 50; 𝑞 = 9 and different 

(a) 𝜏 = 20, (b) 𝜏 = 1, (c) 𝜏 = 1 respectively. All the mated and non-mated score 

distributions show significant overlapping and negligibly small value of 𝐷𝑠𝑦𝑠 =

0.01,0.03,0.01 respectively. Therefore, the proposed scheme fulfils the criteria 

on unlinkability. 
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(a) 𝑚 = 10, 𝜏 = 20         (b) 𝑚 = 20, 𝜏 = 1 

(c) 𝑚 = 30, 𝜏 = 1 

Figure 4.9: Evaluate the Unlinkability of the Proposed Scheme 

 

4.3.6 Comparison 

 In this section, the proposed scheme has been benchmarked with respect 

to the performance of the original iris code and the state-of-the-art BTP schemes 

for iris code. To maintain the consistency, the comparison is carried out by using 

the iris code generated from the public available CASIA v3-interval iris 

database.  

 

Table 4.15 tabulates the outcome of this benchmarking. All the methods in this 

table have adopted the subsets or full version of CASIAv3 iris database for their 

experiments. Thus, the comparison is fair and compatible based on the best 

authentication performance of these methods. The results show that the proposed 

scheme is able to preserve the performance of the original iris code by achieving 
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the lowest EER (0.47%) before the transformation and no degradation is 

observed after the proposed transformation. 

 

 

Table 4.15: Performance of The State-of-the-arts in Iris Template 

Protection 

 

 

BTP scheme 

No. iris 

images used 

EER (%) 

Before BTP 

scheme apply 

After BTP 

scheme apply 

IFO hashing (Lai et al., 2017b) 868(left eye) 0.38 0.54 

Block Remapping (Hämmerle-

Uhl et al., 2009) 

2653 1.10 1.30 

Bio-Encoding (Ouda et al., 2011) 740 6.02 6.27 

Bloom filter (Rathgeb et al., 

2013) 

1332(left eye) 1.18 1.14 

Bin-Combo (Zuo et al., 2008) 1332(left eye) 0.81 4.41 

LSC (Sadhya and Raman, 2019) 1332(left eye) 0.57 0.11 

Proposed Method 1332(left eye) 0.46 0.46 
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CHAPTER 5 

 

CONCLUSION 

 

 For this PhD work, the conclusion has been summarized into 3 parts 

according to the 3 objectives set in the beginning of this thesis; proposed method 

1: confidence matrix, proposed method 2: cancelable iris key binding scheme 

and proposed method 3: improvements on iris code through cancelable 

transformation and matching strategy. 

 

5.1 Proposed Confidence Matrix to Mitigate Performance Degradation 

To summarize this work, two methods have been proposed to mitigate 

the performance degradation in protected iris recognition system due to the 

implementation of biometric template protection scheme. The reported EER 

with three training samples is within the range from 0.20% to 2.48% for four 

different publicly available iris databases with varying image quality. As shown 

in the section 4.1, the proposed methods have successfully improved the 

performance of state-of-the-art enhanced IFO scheme through experiments from 

17% to 90% under the best scenario by using not more than 3 training samples. 

Thus, objective 1 to improve the performance of cancelable iris template 

protection scheme has been achieved. In overall, the proposed probability-based 

method seems to outperform binary-based confidence matrix in mitigating the 

performance degradation.  
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5.2 Proposed Cancelable Iris Based Key Binding Scheme 

In this work, a cancelable iris based key binding scheme which is freed 

from the limitation of error correcting capacity and tedious alignment process 

has been proposed. This proposed scheme has achieved objective 2 of this thesis. 

The reason of introducing IFO hashing as part of the proposed method is to 

enable tunable hashed code length besides fulfilling the non-invertibility and 

unlinkability requirements. Storage (kB) per bit has been adopted as the metric 

to vindicate the significant effect of controllable hashed code length in managing 

the storage space and preserving the accuracy performance. As a result, highest 

GAR of 96.37% at zero FAR has been achieved by our proposed scheme. A 

precise and useful key retrieval metric, KRR is proposed and implemented for 

security analysis such as false accept attack and indistinguishability game.  

In addition, the complexity and security level of the proposed method are 

also justified against potential attacks. For example, this proposed method shows 

brute force attack complexity of 2100 and sufficient false accept complexity of 

266 bits under worst case scenario for key length of 100 bits. The proposed 

method embraces the flexibility while maintaining significant accuracy 

performance and security level. The security-performance tradeoff has been 

attended through experiments where the optimum GAR ranges from 96.37% to 

97.35% and zero FAR remains stagnant regardless of the increasing key length 

all the way from 10 to 200 bits. This implies that quality preservation of accuracy 

performance at higher security level is achievable through the proposed key 

binding scheme. Finally, the proposed method requires no re-enrollment in case 

of compromise.  
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5.3 Proposed Improvements on Iris Code Based Biometric Template 

Protection Scheme  

 The demand for protected Iris recognition has raised to make it more 

trustable and secure in identity verification nowadays. A cancelable iris template 

protection scheme has been introduced for protected iris recognition system to 

achieve objective 3 of this thesis. The work has considered the existence of pre-

alignment and vertical dependency issues in iris codes when designing the 

proposed cancelable transformation and matching mechanism for iris BTP 

scheme. Therefore, this model allows bits-shifting to be conducted directly onto 

the transformed iris template without the need to present or revert to the original 

iris code during matching stage. It is important to highlight that the proposed 

method does not face performance degradation due to the strong collision 

probability guaranteed by the underlying bit-sampling based Locality Sensitive 

Hashing (LSH) technique. This theoretical claim is further justified by our 

satisfactory equal error rates (EERs) for the CASIA v3-interval iris database 

under multiple parameter settings. EER as low as 0.48% is preserved with key 

space of iris code being increased to at least 40 bits. The proposed model has 

been verified according to the security requirements for BTP scheme: non-

invertibility, revocability and unlinkability. In a nutshell, the proposed iris BTP 

transformation and matching strategy provides strong theoretical security while 

preserving satisfactory authentication accuracy. This model can be extended and 

improved further for its implementation in multi-modal biometrics in future. 
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5.4 Future Recommendation 

 Non-cooperative iris recognition system is indeed referring to recognize 

individuals automatically by utilizing the captured iris patterns without requiring 

any cooperative actions from them. This encourages the needs to strengthen 

system security and extend the robustness of iris segmentation algorithms in a 

user friendly manner. However, under uncontrolled conditions, obtained iris 

images are often deformed, defocused, off-angle, low contrast, blurred, occluded 

and disturbed by background noise. To cater for this issue, related databases such 

as UBIRISv2 (Proença et al., 2009), MICHE (Hu et al., 2015) and WVU 

(Crihalmeanu et al., 2007) have been created and shared openly for this purpose. 

Accurate classification depends on the accuracy of the segmentation algorithms. 

Poor quality images especially those captured under unconstrained environment 

or without the cooperation of the subjects will affect the efficiency of the iris 

segmentation. It is reported that most failures in iris recognition systems are 

resulted from inaccurate segmentation (Proença and Neves, 2017).  

 In view of the issues in segmentation inaccuracy, a learning based 

network, U-Net has been devised for the purpose of end-to-end iris segmentation 

(Chai et al., 2020). The proposed CNN-based segmentation model has proven to 

be very successful in segmenting the iris and outperformed most of the state-of-

the-arts. The proposed model does not require a great amount of training data 

like other deep learning networks while performing well without the use of data 

augmentation during training. The proposed method provides an automated end-

to-end solution for iris segmentation with insignificant segmentation error 

reported in our preliminary testing on non-cooperative iris datasets (refer to 

Appendix A for more details). Note that, this generic solution avoids the needs 
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to go through complex and expensive hand-crafted image processing steps for 

iris detection, localization and segmentation. As future work, the proposed 

framework can be extended to test with more challenging non-cooperative iris 

databases. By replacing inefficient iris detection, localization and segmentation 

methods for non-cooperative system with the proposed automated end-to-end 

segmentation framework, iris codes with lesser noise can then be generated. 

Better authentication accuracy for non-cooperative protected iris recognition 

systems is thus feasible.  

 In conjunction with this, the proposed transformation and matching 

strategy for iris template protection scheme can be integrated for the construction 

of protected non-cooperative iris recognition system. In addition, the effects of 

non-cooperative factors such as occlusions, incomplete data and noise on the 

improved iris template protection scheme can be further investigated. 

Alternatively, the proposed iris protected template can be used as the input to the 

proposed cancelable iris key binding scheme for future work.  

 The devised key binding scheme can be extended into the area of 

multimodal biometrics, particularly fingerprint and iris. A couple of 

modifications can be made. For instance, the synthetic hashed code 𝐶𝑗 ← 𝐻𝑗(𝐵𝑠) 

is replaceable with the existence of other biometric modalities such as 

fingerprint. There are a lot of uncertainties with non-cooperative factors being 

considered. There is no single biometric feature that can perform well all the 

time in different environments. A protected multimodal biometric system that 

adopts iris and fingerprint in its authentication can improve its resistance against 

these challenges. However, different biometric features perform differently due 
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to many reasons such as uniqueness of such feature, quality of the acquisition 

devices, environmental factors and user behaviours. For an efficient protected 

multimodal biometric system, the contribution of each biometric feature should 

be weighted to get the optimum performance based on this hypothesis. 

Therefore, a weighted protected multimodal biometric system should be 

developed for future work.   

 To shed more lights on the future work of weighted protected multimodal 

biometric system, a feature level fusion scheme is necessary to create the 

protected multimodal templates. The scheme needs to be flexible in terms of 

variance in template sizes of different biometrics and contribution in the 

matching. IFO hashing scheme is preferable as adaptive Bloom filters hash 

templates of different biometric modalities into different matrix sizes according 

to the respective parameters set. Although a flexible weighted system can still 

be applied but larger hashed template tends to influence the performance at the 

higher degree if this is not adjustable. For further explanation about this future 

idea, iris and fingerprint will be used as the multimodal biometric modalities. 

IFO hashing scheme will be first applied onto the extracted iris and fingerprint 

features respectively. A flexible weighted feature level fusion scheme can be 

achieved by tuning the number of hash functions, 𝑚 of different biometric 

modalities. This proposed idea represents the desired weightage as the number 

of hashing functions set for different biometric modalities. For example, if higher 

weightage on fingerprint samples is desired, higher number of hash functions 

should be applied on fingerprint features when generating protected templates. 

In this case, if the desired weightage for fingerprint features and iris features is 

2:1, the hash code length of fingerprint protected templates can be set as 𝑚 =
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2𝑎 while the hash code length of iris protected templates will become 𝑚 = 𝑎. 

This indicates that the number of columns in the protected template of fingerprint 

will double the amount of columns in the protected template of iris.   

 Adaptive Bloom filters can then be generated based on the hashed codes 

of iris and fingerprint features. For instance, if a single hashed value of iris IFO 

template is 8, then the initial value ‘0’ at 8-th location of the Bloom filter of iris 

will be updated to ‘1’. Many to one mapping will happen when multiple identical 

hashed values are mapped to the same location in the Bloom filter. The Bloom 

filters of iris and fingerprint can have a feature level fusion through a logical OR 

function. This is to combine the Bloom filters of different modalities into a fused 

protected multimodal biometric template. Using the example above, protected 

template of fingerprint is expected to contribute approximately twice during the 

integer to binary mapping process during the fusion stage. Under the proposed 

future work, any weighted, cancelable and protected template can then be 

generated for different biometric modalities using different weightage for 

performance optimization. In a nutshell, a weighted and protected multimodal 

biometric system can be achieved in future by integrating the proposed 

cancelable key binding scheme in this thesis with the newly proposed feature 

level fusion scheme.  
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APPENDIX A 

 

End-to-End Segmentation Framework for protected iris recognition 

system 

 

 

 The U-Net (Ronneberger et al., 2015) model represents a popular CNN 

architecture for solving biomedical problems, for instance, segmenting different 

kinds of cells and detecting boundaries between very dense cell structures and 

other image translation tasks. The main advantage of this model is its ability to 

learn relatively accurate models from very small datasets, which is a common 

problem for data-scarce computer-vision tasks, including iris segmentation. 

 

6.1 Model Architecture 

 U-Net is a fully convolutional network that consists of the contracting 

path (down-sampling path) and an expansive path (up-sampling path), which 

form a U-shaped design at last. The contracting path is the basis of the typical 

convolutional network that undergoes repeated application of convolutions in 

each layer where the max pooling operation and the activation function – 

rectified linear unit (ReLu) take place. The purpose of the max pooling operation 

and activation function is to reduce the spatial information and increase the 

feature information for substituting this input to the expansive path. A sequence 

of concatenating great solution features from the contracting path with the 

respective layer and deconvolution methods to upsample the feature is going 

through the expansive path to combine the feature and spatial information for 
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greater segmentation outcome. When the process is finished, the model outputs 

a segmentation map at the last stage of this architecture and will compare with 

the ground truth. In overall, the modification of this U-net architecture is the 

pooling operator in the fully convolutional network (FCN) are substituted by 

upsampling operators with a large number of feature channels to preserve the 

feature information to high-resolution layers. This modification makes the 

symmetric structure with the contracting path which looks like alphabet U. 

 

 

 

 

 

 

 

Figure 6.1: U-Net Architecture Design 

 

Table 6.1: Setting and architecture of U-Net model 

Name Filters size Filters number Output shape 

Input Layer - 0 (400,400,1) 

conv2d_1 (3,3) 64 (400,400,64) 

conv2d_2 (3,3) 64 (400,400,64) 

max_pooling_2d_1 (2,2) - (200,200,64) 

conv2d_3 (3,3) 128 (200,200,128) 

conv2d_4 (3,3) 128 (200,200,128) 

max_pooling_2d_2 (2,2) - (100,100,128) 

conv2d_5 (3,3) 256 (100,100,256) 

conv2d_6 (3,3) 256 (100,100,256) 

max_pooling_2d_3 (2,2) - (50,50,256) 
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conv2d_7 (3,3) 512 (50,50,512) 

conv2d_8 (3,3) 512 (50,50,512) 

max_pooling_2d_4 (2,2) - (25,25,512) 

conv2d_9 (3,3) 1024 (25,25,1024) 

conv2d_10 (3,3) 1024 (25,25,1024) 

conv2d_transpose_1 (2,2) - (50,50,512) 

concatenate_1 - - (50,50,1024) 

conv2d_11 (3,3) 256 (50,50,256) 

conv2d_12 (3,3) 256 (50,50,256) 

conv2d_transpose_2 (2,2) - (100,100,256) 

concatenate_2 - - (100,100,512) 

conv2d_13 (3,3) 128 (100,100,128) 

conv2d_14 (3,3) 128 (100,100,128) 

conv2d_transpose_3 (2,2) - (200,200,128) 

concatenate_3 - - (200,200,256) 

conv2d_15 (3,3) 64 (200,200,64) 

conv2d_16 (3,3) 64 (200,200,64) 

conv2d_transpose_4 (2,2) - (400,400,64) 

concatenate_4 - - (400,400,128) 

conv2d_17 (3,3) 32 (400,400,32) 

conv2d_18 (3,3) 32 (400,400,32) 

 
 

 

6.2 Datasets and Experiment Protocol 

 For this research, several publicly available iris datasets are adopted: 

NICE.I, NICE.II and MICHE as in (Hu et al., 2015). All the images have been 

resized to 400 x 400 pixels for standardization to provide square inputs to U-Net. 

The validation split of 0.1 is used to form the validation set within the training 

set. Hence, In U-Net training process, the training set and test set are split into 

80:20, 70:30 and 60:40 to study the overall performance of the proposed method. 

A well accepted evaluation metric, E1 is used to assess the performance of our 

proposed algorithm. The result is shown in Table 6.2. 

NICE.I: This is the NICE.I contest subset that selected by (Hu et al., 2015) 
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NICE.II: Combining two 1000 images subsets that retained by the NICE.II 

committee during the NICE.II contest as the test set. The images in this dataset 

are captured at a distance and suffer from realistic noise such as illumination 

variance, motion blur and occlusion of glasses and eyelids. 

MICHE: MICHE-I is a challenging dataset captured with mobile devices to 

ensure the developing algorithms in non-ideal difficult situations. This database 

is collected using three smartphones: iPhone5 with 8 MP (72 dpi) back camera 

and 1.2 MP (72 dpi) frontal camera, Samsung Galaxy S4 with 13 MP (72 dpi) 

back camera and 2 MP (72 dpi) frontal camera. This dataset is also based on the 

selection by (Hu et al., 2015).  

 All the images including ground truth are first divided by 255 for data 

normalization. All datasets are trained to operate Adam optimiser with a learning 

rate of 10-4, and no decay is set. Kernel initialiser is added into the model to 

improve the segmentation results. There are no image augmentations applied to 

the datasets. The model is trained from 10 epochs to 20 epochs on the original 

U-net model and choose the best E1 values and tabulate the metrics in Table 6.2, 

Table 6.3 and Table 6.4. This model is implemented in Python using Keras deep 

learning libraries with the backend of Tensorflow to support the training process 

in this project. The experiment is carried out using an online platform with 16GB 

of RAM and NVIDIA Tesla P100 12GB GPU. 

 

6.3 Performance Metric 

 The performance of the proposed method is evaluated by using the 

NICE.I evaluation protocol. This evaluation method is well accepted by the 

researchers of the field of iris segmentation to evaluate segmentation 
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performance. Ei, the evaluation protocol that takes account of seeking out the 

differences between the resultant image 𝐼𝑖(𝑚′, 𝑛′)and ground truth image 

𝐺𝑖(𝑚′, 𝑛′) by XOR function, given as: 

                                  𝐸𝑖 =
1

𝑚∗𝑛 
∑ 𝐼𝑖(𝑚′, 𝑛′)⨂𝐺𝑖(𝑚′, 𝑛′)(𝑚′,𝑛′)                            (24) 

Where 𝑚′ and 𝑛′ are the respective width and height of the image. 𝐸𝑖 is 

computed as the pixel classification accuracy which is only valid for a single 

image. The segmentation error rate, 𝐸1 is given by the average of errors on the 

input images, 𝐸𝑖: 

                                         𝐸1 =
1

𝑡
∑ 𝐸𝑖𝑖                                                                     (25) 

Where 𝑡 is the total number of images to be evaluated. The value of 𝐸1 is within 

the range of [0,1] interval. In this context, "1" and 0 will be respectively the 

worst and optimal matching between ground truth and resultant images. 

 

Table 6.2: Segmentation Error of Proposed Method for Different Ratio of 

Training Set / Test Set 

Training set / Test set NICE.I NICE.II MICHE IP5 MICHE GS4 

80:20 0.01084 0.01467 0.01282 0.01737 

70:30 0.01192 0.01197 0.01261 0.01705 

60:40 0.01330 0.01117 0.01324 0.01637 

 The proposed U-net method has achieved the lowest segmentation error 

(𝐸1) with 0.01084, 0.01117, 0.01261 and 0.01637 on the NICE.I, NICE.II, 

MICHE GS4 subset and MICHE IP4 subset databases respectively. Although 

there is difficulty to compare the results against different model of architectures 
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and settings, it is still meaningful to benchmark the proposed method with the 

state-of-the-art deep learning based iris segmentation methods which use the 

same evaluation protocol. From Table 6.3 and Table 6.4, the proposed U-Net 

model is among the top 3 methods with segmentation error as low as 0.01084 

and 0.01117 even though the training sets are limited on NICE.I and NICE.II. 

Most of the methods in the table trained their model using more than 1000 

images and conducted data augmentation. This might gradually improve the 

effectiveness of the model but we use lesser images in the training as the iris data 

is defined as protected personal data and it is reasonable to predict that only 

limited samples per individual will be collected for identification purpose. 

Besides that, no data augmentation is performed in our experiment to avoid the 

regularization effect which sometimes causes the net to be under fit.  

 

Table 6.3: Performance of the Proposed Method and State-of-the-arts in Iris 

Segmentation using NICE.I Iris Dataset 

State-of the-art Methods (Proenca and Alexandre, 2011) 𝑬𝟏 

Luengo-Oroz et al. 0.0305 

Scotti and Labbati 0.0301 

Chen et al. 0.0297 

Jeong et al. 0.0282 

Li et al. 0.0224 

P. Almeida 0.0180 

Sankowski et al. 0.0162 

Tan et al. 0.0131 

Proposed Method 0.01084 
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Table 6.4: Performance of the Proposed Method and State-of-the-arts in Iris 

Segmentation using NICE.II Iris Dataset 

State-of the-art Methods 𝑬𝟏 

Proenca et al. (Arsalan et al., 2018) 0.0187 

Tan et al. (Arsalan et al., 2018) 0.0172 

Hu et al. (Hu et al., 2015) 0.0143 

Haindl et al. (Arsalan et al., 2018) 0.0124 

Zhao et al. (Arsalan et al., 2018) 0.0121 

Arsalan et al. (Arsalan et al., 2017) 0.0082 

IrisDenseNet (Arsalan et al., 2018) 0.00695 

Proposed Method 0.01117 
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APPENDIX B 

 

 

 

 

 

 

 

 

 

Figure 6.2: Basic Operation of Adaptive Bloom Filter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Basic Operation of IFO Hashing 


