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ABSTRACT 

 

ROBUST DATA FUSION TECHNIQUES INTEGRATED MACHINE 

LEARNING MODELS FOR ESTIMATING REFERENCE 

EVAPOTRANSPIRATION 

 

Chia Min Yan 

 

 

 

Evapotranspiration (ET) is one of the most important hydrological processes as it has 

prominent effects on the environment’s energy balance and water budget. Accurate 

estimation of the ET is vital for many national-level decisions making processes, 

including water resources allocation, irrigation scheduling as well as crop management. 

To date, many related hydrological works still endorse the Penman-Monteith (PM) 

model as the standard for the computation of the reference evapotranspiration (ET0) as 

per the recommendation by the United Nations Food and Agricultural Organisation. 

ET0 is a value which can be converted to the actual crop ET (ETc) with the inclusion 

of a crop-dependent factor. However, despite the PM model being accepted as a 

universal method for determining the ET0, this method is often criticised due to the 

high number of meteorological variables needed. Thus, many researchers had resorted 

to the utilisation of machine learning models to overcome this pitfall of the PM model. 

Nonetheless, based on the literature review performed, machine learning models are 

data-hungry in nature, which increases the difficulty of training a model from scratch. 

The data hunger of machine learning models can be classified into two categories, 

namely the qualitative hunger (where machine learning models need for various 
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features for training) and quantitative hunger (need for a vast amount of historical data 

for training). This forms the major gap in the research field. The works presented in 

the thesis strive to solve the data hunger of machine learning models through the 

integration of data fusion techniques, with a minimalistic approach by using simple 

yet robust models. Besides, two scenarios (Scenario 2 and Scenario 3) were designed 

to evaluate the spatial robustness of the developed models, so that the local data 

dependency can be discounted. This study was performed at 12 meteorological stations, 

using meteorological data dated from 1st January 2000 to 31st December 2019, and 

which are distributed across Peninsular Malaysia, whereby about 19.7 % of its land is 

covered by oil palm plantations (a major contributor to the country’s agricultural 

output). The multilayer perceptron (MLP), the support vector machine (SVM) and the 

adaptive neuro-fuzzy inference system (ANFIS) were used as the base models for 

obtaining optimum input combinations as well as benchmark performances at each of 

the stations. Three different data fusion techniques were investigated, including the 

data centric bootstrap aggregating, the model centric Bayesian modelling approach and 

the black-box based non-linear neural ensemble (NNE). Observations of the results of 

this study revealed that the solar radiation (Rs) is the most essential variable for 

estimating ET0 in Peninsular Malaysia. The accuracy of the estimations using the MLP, 

SVM and ANFIS could be improved by the inclusion of different complementary 

variables, which vary depending on the geographical characteristics at the 

meteorological stations. The bootstrap aggregating failed in enhancing the 

performance of the MLP, SVM and ANFIS. The size of the dataset overwhelmed the 

problem’s dimensionality, thus rendering the bootstrap aggregating to be ineffective. 

The Bayesian model averaging (BMA) enhanced the estimation of the ensembles of 
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the base MLP, SVM and ANFIS. This was done through the Bayesian weight 

assignments to combine the favourable traits of the individual models. However, the 

BMA algorithm was found to be rigid as it was results-oriented and might opt to omit 

some base models if their performance were significantly poorer than the others. This 

happened when the number of input meteorological variables was high, and the BMA 

was converted to the Bayesian model selection (BMS). Nevertheless, when the number 

of input meteorological variables was low, the BMA based ensemble (BMA-E) 

produced satisfactory performance. As for the NNE, a novel meta-learner based on the 

stochastic-enabled extreme learning machine integrated with whale optimisation 

algorithm (WOA-ELM) was developed and used in such an application for the first 

time. The results showed that the WOA-ELM based ensemble (WOA-ELM-E) 

improved the performance of the base models in general. This was attributed to the 

flexibility of its structure and its ability to “look” at the target value once more during 

its training phase. The WOA-ELM-E was found to be the best model at most of the 

meteorological stations. Furthermore, when the best local models were tested at 

external stations (Scenario 2), only the WOA-ELM-E could produce estimations with 

satisfactory accuracy. The best models of other variants such as the BMA-E, MLP and 

ANFIS could only produce acceptable accuracy if they were applied in regions with 

similar geographical characteristics. In other words, the WOA-ELM-E can be said to 

have good spatial robustness, especially the one trained at Station 48620 (Sitiawan). 

This, in turn, could nullify the need for local model development and local data 

collection, consequently overcoming the qualitative and quantitative hungers of the 

classical machine learning models. Another scenario (Scenario 3) was designed to 

study the usefulness of globally pooled data in enhancing the spatial robustness of the 
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WOA-ELM-E. The results showed that such an approach produced a hybrid model 

which had similar robustness as the one trained at Station 48620 (Sitiawan) and was 

considered to be effective. In conclusion, the output of the research works reported in 

this thesis includes the approach for developing a one-for-all model to estimate the 

ET0 across Peninsular Malaysia accurately. This can be regarded as the major 

contribution as it could possibly eliminate the process of local data collection for the 

development or calibration of a local ET0 estimating model. Subsequently, the 

proposal and implementation of water resources-related policies can be accelerated to 

improve the social welfare at a national level. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 General Introduction 

 

The evapotranspiration (ET) is defined as the “loss of water from the 

ground, lake or pond, and vegetative surfaces to the atmosphere through 

vaporisation of liquid water” (Pokorny, 2019). In other words, the ET value is 

representing the amount of water lost from the Earth’s surface and shall be 

replenished by other hydrological processes, such as the precipitation. In 

Malaysia, particularly Peninsular Malaysia, instruments for measuring and 

monitoring the trend of ET have been lacking for decades, despite the fact the 

nation has an enormous dependency on the agricultural outputs that are greatly 

affected by the supply of water. A recent report pointed out that the agricultural 

sector was the third largest contributor to Malaysia’s gross domestic product 

(GDP) in the year 2020, with the least contraction amidst the COVID-19 

pandemic (Mahidin, 2021). Oil palm plantation remains the top performer in the 

agricultural sector with the recent uprise of global crude palm oil price. For that 

reason, many decision-makers and researchers opt to solve the problems with 

ET estimation through secondary options, such as the empirical models to 

estimate the potential evapotranspiration (PET) and reference 

evapotranspiration (ET0). 
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In a recent study conducted by Theng Hue, et al. (2022), the estimated 

ET0 rate in the year 2018 of Peninsular Malaysia ranged between 1000 – 1250 

mm/year. Owing to the global warming caused by anthropogenic activities, ET 

deficits over the East Asia would be on the rise, piling greater water stress as 

well as agricultural risk (Kim, Ha and Yeo, 2021). It is important to devise a 

clear, concise and capable strategy to tackle the aforementioned issue. With this 

respect, an accurate yet robust tool for estimating the ET needs to be developed 

so that the subsequent decisions can be made based on justifiable grounds. 

 

The PET and ET0 have been widely used in Peninsular Malaysia for the 

purpose of water budget allocation. These estimations are mainly done using 

empirical models or equations such as the Thornthwaite (PET), Priestley-Taylor 

(PET), Hargreaves-Samani (ET0) and Penman-Monteith (ET0) equations. 

However, to use these empirical models or equations effectively, a vast number 

of meteorological variables have to be collected beforehand, in turn posing 

financial burdens to the administrative agencies or institutions. In fact, for 

models like the Thornthwaite, Priestley-Taylor and Hargreaves-Samani 

equations, many historical data have to be recorded to calibrate the location-

specific coefficient and parameters, hence limiting their applications, not to 

mention low accuracy of these models had been reported frequently (Liu, et al., 

2017; Shiri, et al., 2014; Tabari, Grismer and Trajkovic, 2011). 

 

The recent development of computing technologies enables the 

application of machine learning for the estimation of ET. Many successful 
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research have been reported over the past two decades, confirming the 

capabilities of different types of machine learning models. Some of the most 

notable research reported the improvement in the ET0 estimation using methods 

such as the multilayer perceptron (MLP), support vector machine (SVM), 

extreme learning machine (ELM), and the adaptive neuro-fuzzy inference 

system (ANFIS) to estimate ET0 at different areas of the world (Abdullah, et al., 

2015; Kisi and Cimen, 2010; Kisi and Öztürk, 2007; Kumar, et al., 2002). 

 

The machine learning models have been continuously showing 

promising performances in the estimation of ET0, not to mention that many of 

the empirical models or equations were outperformed. Nevertheless, the locality 

characteristic still exists in most of the developed machine learning models 

reported in the literature. In other words, the application of the developed 

machine learning models is highly constrained to where they are originated from. 

This issue also affects the empirical models that require calibration before ET0 

estimation. Besides, the data-hungry nature of the machine learning models also 

restricted their widespread application, as data scarcity is a major problem faced 

by many developing nations (including Malaysia), not to mention the 

availability of complete sets of data. 

 

The study reported in this thesis targets to resolve these issues via the 

development of a robust and reliable machine learning model for the estimation 

of daily ET0 in Peninsular Malaysia. The problem statement, aim and objectives 
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as well as the potential contribution of the study are presented in the following 

sections. 

 

1.2 Problem Statement 

 

The machine learning models are characterised as a data-hungry 

approach to estimate the ET0. This is the major issue that has been constraining 

the widespread of the application of machine learning models in estimating ET0. 

The data hunger of machine learning models can be grouped into two categories, 

namely the qualitative hunger and the quantitative hunger, as shown in Figure 

1.1. 

 

Figure 1.1: Data Hunger of Machine Learning Models 

 

The qualitative hunger of machine learning models refers to the need for 

multiple types of input data so that they can produce estimations with 

satisfactory accuracies. For instance, to estimate ET0, a machine learning model 

would require input meteorological variables such as temperature, humidity, 

solar radiation and so forth. The removal of essential meteorological variables 

Data Hunger of Machine 

Learning Models

Qualitative Hunger

• Needs different types of 

meteorological data

• Needs data from 

different locations for 

local use

Quantitative Hunger

• Needs large amount of 

data for training
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from the input could possibly render the model irrelevant. At the same time, the 

collection of many meteorological variables can be costly in the labour and 

fiscal terms. Hence, a model with minimal input meteorological variables is 

desirable. 

 

Besides, qualitative hunger can also be reflected from the locality 

characteristic of the machine learning models. Many machine learning models 

can only be trained and tested on the spot which means that the spatial 

robustness of the models is rather poor. The issue that arises from this problem 

is that for each region of interest, local data collection infrastructures need to be 

installed and a local model must be trained from scratch. In other words, the 

pre-requisite of a workable machine learning model is the existence of various 

features in the input. This does not only incur a financial burden to the 

stakeholders, but also jeopardises the efficiency of ET0 estimation. For example, 

if the decision-makers want to estimate the ET at a new site, firstly, they need 

to build a data collection system (which is costly) and wait for a period of time 

before a model can be developed. 

 

This waiting period can be a few months, or even years before the data 

collected are sufficient for decent modelling. This is as a result of the 

quantitative hunger of machine learning models. Machine learning models need 

ample number of examples (training data) so that they can adjust their hyper-

parameters to suit the application. It is impractical if data need to be collected 

for several years before the modelling process can proceed. 
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The qualitative hunger, coupled with the quantitative hunger together 

form the bottleneck of the wide application of machine learning models in the 

estimation of ET0, and hence the major gap of this research field. Therefore, this 

research work aims to eliminate this bottleneck and bridge the gap through the 

development of a robust machine learning model using data fusion techniques 

that needs minimal input with high spatial transferability. 

 

1.3 Aim and Objectives 

 

The aim of this research is to develop a robust machine learning model 

for the estimation of ET0 with minimum data requirement, considering the 

qualitative and quantitative requirements of data, in Peninsular Malaysia. The 

aim can be accomplished by pursuing the following objectives: 

i) To identify optimum input combinations to estimate ET0 in 

Peninsular Malaysia for the MLP, SVM and ANFIS 

ii) To evaluate the ensemble hybridised using different data fusion 

techniques, namely bootstrap aggregating, Bayesian modelling 

approach and non-linear neural ensemble (NNE) on ground-

observed meteorological data 

iii) To investigate the relationship between different stations by 

estimating local ET0 using exogenous models for the reduction of 

local data dependency (Scenario 2) 

iv) To assess the spatial robustness of the hybrid model trained using 

pooled global dataset in ET0 estimation (Scenario 3) 
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1.4 Scope of Study 

 

The investigated study area is located in Peninsular Malaysia. The 

investigation was done based on the ground-observed meteorological data at 12 

different meteorological stations that were managed by the Malaysian 

Meteorological Department (MMD). A total of 20 years of data duration (1st 

January 2000 to 31st December 2019) was retrieved from the MMD, amounting 

to 7305 data points at each station. To minimise the computational cost, data 

fusion techniques were integrated with the three selected elementary base 

models for improvisation. The three elementary base models selected are the 

MLP, SVM and ANFIS due to their suitability in regression analysis. The 

decision tree was not selected as its binary nature was more suitable for 

classification task rather than being used as a regressor. The bootstrap 

aggregating (data centric), Bayesian modelling approach (model centric) and 

NNE approaches were chosen as the data fusion techniques to be integrated to 

the base models. The justification of the design of the scope of this study will 

be outlined in detail in Chapter 3. 

 

1.5 Contribution of the Study 

 

A robust data fusion integrated machine learning model was developed 

at the end of this study. This model is capable of overcoming the bottleneck 

stated in the problem statement, which arose due to the qualitative and 



8 

 

 

quantitative data hunger. The machine learning model developed has the 

following characteristics: 

i) Simple structure with high computational efficiency 

ii) Requires a minimum number of input meteorological variables 

iii) Wide spatial applicability to resolve the issue with local data 

dependency 

 

The novel output of this research is deemed to have a high contributory 

impact that can be elaborated from two aspects. Firstly, from the scientific point 

of view, this study investigated the feasibility of different data fusion techniques, 

each with a unique theoretical basis, in assisting simple machine learning 

models in the estimation of ET0. These findings laid an important foundation 

for the integration of data fusion techniques to other machine learning models 

and can be adopted to new models with more sophisticated designs. Besides, 

the nature, behaviour and interaction of different data fusion techniques with 

the selected machine learning models are discussed in detail in this thesis. 

 

From the national economic point of view, the development of a one-

for-all machine learning model for the ET0 estimation is a huge aiding tool for 

the decision-making process. The developed model can be applied across the 

whole Peninsular Malaysia, subsequently facilitating the estimation and 

mapping of ET0 across the whole region immediately when the essential data 

are available in the future. The policy makers should use this information wisely 

in drawing appropriate strategies for water resources allocation, irrigation 
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scheduling, crop planning and so on. Proper execution of these plans can help 

to catalyse the growth of the agricultural sector. This can lead to the stimulation 

of the recovery as well as the resilience of the national economy, which 

unfortunately had been dwindling in recent years. The welfare of the society can 

be further improved to spur Malaysia to become a high-income nation in the 

nearest possible future. 

 

1.6 Thesis Structure 

 

There are five chapters in this thesis, including the current chapter. 

Chapter 1 briefly introduces the background, aim and objectives as well as the 

scope and contributions of this study. Chapter 2 focusses on discussing the 

findings after reviewing the publications relevant to the ET as well as the 

application of machine learning models for the estimation of ET. This includes 

the latest trend of study and their pros and cons. At the end of Chapter 2, the 

rationale and the novelty of this research work (research gap) are outlined. In 

Chapter 3, the detailed methodology of this research study is presented, 

including the development of base and hybridised models to determine their 

optimum inputs and structures, as well as the testing strategies (different 

training and testing scenarios) to verify the robustness of the models. Chapter 4 

discusses the results obtained in terms of the performance of the base models 

using different input combinations, the effect of data fusion techniques and the 

spatial robustness of the models. A concise analysis of the results is provided in 

this chapter. Finally, in Chapter 5, a brief and conclusive remark is given, 
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together with recommendations for future works related to the foundation/basis 

laid down by this research study.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Evapotranspiration 

 

Citing from a report published by the United Nations (2019), the world 

population stood at 7.7 billion. It was anticipated that this number would 

continue to increase and reach 8.5 billion, 9.7 billion and 10.9 billion in the year 

2030, 2050 and 2100, respectively. Subsequently, agricultural activities will 

increase accordingly to sustain the food supply and thus become vital. 

Agricultural activity is being considered as the human activity that consumes 

the largest amount of water (Cascone, et al., 2019). Therefore, a good estimation 

of the components of the water cycle can assist in various water resources 

allocation activities, such as irrigation planning, agriculture scheduling and so 

on, in turn optimising the utilisation of water. 

 

Evapotranspiration (ET) is the combinatory effects of the water 

evaporation from the surfaces of land and vegetation as well as the transpiration 

from the stomatal openings of plant leaves (Stanhill, 2005). It is a natural event 

that influences the hydrological cycle, and it consists of several non-linear 

processes that make it very complex to be understood (Jovic, et al., 2018). There 
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are several components that dictate the rate of ET, including the temperature, 

solar radiation, air humidity as well as wind speed (Granata, 2019). 

 

ET is a physical process. Therefore, the rate of ET can be measured and 

represented by a numerical value. Lysimeters can be used to measure ET 

directly in the absence of assumptions (Holmes, 1984). Its operating mechanism 

involves measuring the water percolation rate through the soil (Pokorny, 2019). 

Non-weighable lysimeters are usually used for long-term monitoring, while the 

weighable lysimeters give measurements with finer temporal resolution (Wang 

and Dickinson, 2012). Lysimeters were said to be capable of providing ET 

measurement with maximum accuracy. In fact, studies related to the ET 

estimation often used the measurements of lysimeters as the calibration standard 

(Anapalli, et al., 2016; Liu, et al., 2017). Unfortunately, constructing and 

maintaining lysimeters involve a high fiscal burden and ecological footprints. 

The scarcity and availability of lysimeters also limit its coverage and hindered 

the easy measurement of ET at different places  (Stanhill, 2005). Thus, the 

development of other tools with better convenience became more in demand to 

estimate ET with better accuracy and cheaper cost. 

 

2.2 Reference Evapotranspiration 

 

According to Pereira, et al. (2015), reference evapotranspiration (ET0) 

estimates the amount or rate of water consumption based on the weather’s 

primary effect. It should be noted that this measurement is only for the 
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surrounding conditions of the reference crop at the station that conforms to the 

requirements such as no shortage of water supply. In the coefficient-reference 

system, a crop coefficient (Kc) will be multiplied by the ET0, resulting in crop 

evapotranspiration (ETc) as shown in Equation (2.1): 

 𝐸𝑇𝑐 = 𝐾𝑐 × 𝐸𝑇𝑜 (2.1) 

 

Over the years, many initiatives had been taken to obtain accurate ET0 

whilst reducing the computational complexity. Some of the most notable 

empirical approaches and models will be discussed in detail in the coming 

subsections. 

 

2.2.1 Temperature-Based Models 

 

The temperature-based models used to calculate the ET0 generally are 

modified or derived from the temperature-based model for the potential 

evapotranspiration (PET) imputation. In essence, the temperature-based models 

measure the atmospheric evaporation demand based on the temperature data 

obtained for a specific time scale. Among the temperature-based models, the 

Hargreaves-Samani (HS) model was developed and improvised in the 1980s 

(Hargreaves and Samani, 1985). The HS model is shown in Equation (2.2). 

 𝐸𝑇0 = 𝑎𝑅𝑎(𝑇𝑚𝑒𝑎𝑛 + 17.8)(𝑇𝑅)𝑏 (2.2) 

where: 

ET0 = daily reference evapotranspiration (mm/day) 

Ra = extraterrestrial radiation (MJm-2day-1) 
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Tmean = mean temperature (°C) 

TR = daily temperature range (°C) 

*a and b are empirical parameters typically assumed 0.0023 and 0.5, 

respectively 

 

Even though the Rs is needed for the imputation of ET0 using the HS 

model, however, the Rs can be estimated from the number of sunshine hours. In 

other words, the only compulsory meteorological variable needed for the HS 

model is only the maximum, minimum and mean temperature (on a daily scale 

as of Equation (2.2)). The HS model has been cited on more than 4000 different 

occasions for ET0 estimations. 

 

However, the constants and coefficients (the a and b parameters) used 

in the HS model can be specific to different locations. Hence, calibrating these 

coefficients in the HS model to suit local requirements became a norm. Luo, et 

al. (2014) validated the utilisation of calibrated HS model in Guilin, Kaifeng, 

Ganyu and Yinchuan using forecasted temperature to predict ET0. Although the 

prediction was sufficiently accurate, however, the HS model would fail (either 

overestimate or underestimate) in extreme conditions as the effects of wind 

speed and relative humidity were not accounted for. 

 

In Veneto, Italy with a sub-humid climate, an investigation was 

conducted to compare the calibrated and non-calibrated HS models (Berti, et al., 

2014). The unmodified HS model tended to overestimate the ET0, leading to 
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excess water requirements reported. Calibration of the HS model managed to 

reduce the overestimation from 18.9 % to 2.6 %, thus indicating the significance 

of calibration to the empirical HS model. 

 

Another interesting method to adjust the estimation of the HS model is 

to produce a linear relationship between the adjusted and the original HS model. 

This was done by Zanetti, et al. (2019) for a variety of thermal amplitude classes, 

climate types (tropical savanna, tropical monsoon, humid subtropical, oceanic 

and subtropical highland) and seasons (dry and rainy). In the study, combining 

thermal amplitude class and climate types during adjustment produced the 

lowest estimation error, which outperformed a simplified Penman-Monteith 

(PM) model with limited data. 

 

From the literature review, due to the constraints of the model which 

only takes temperature and radiation effect into account, the performance of the 

HS model is weaker than the PM model that is mentioned earlier in Chapter 1. 

Hence, in general cases, it cannot be considered as a good replacement for the 

relatively complex PM model. 

 

Beside the HS model, there are several temperature-based models which 

are less well known, not to mention their rare applications in real-life cases. 

These include the Xu and Singh model developed based on the first version of 

the HS model (Xu and Singh, 2000), Trajkovic model developed based on the 

Hargreaves model (Trajkovic, 2007) and so on. In general, to maintain the 
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performance of the temperature-based models for ET0 estimation, the 

correlation between the temperature as well as the ET0 should be as high as 

possible. Local calibration and modifications based on regional needs are 

definitely recommended. 

 

2.2.2 Radiation-Based Models 

 

The radiation from extraterrestrial space and the Sun provides the energy 

needed for the water to escape from the Earth’s surface. Hence radiation-based 

models are also a dominant force in the field of ET0 estimation. The first 

radiation-based model can be tracked back as early as the Ritchie model 

developed in the 1970s (Ritchie, 1972). The initial version of this model was 

used to estimate the rate of evaporation. By including the parameters which 

consider the hydraulic conductivity of plants, the ET0 can be computed using 

Equation (2.3). 

 𝐸𝑇0 =
𝛥

𝛥+𝛾
𝑅𝑛 (2.3) 

where: 

Δ = slope of vapour pressure curve (kPa/°C) 

γ = psychrometric constant 

Rn = net radiation (MJm-2day-1) 

 

The Ritchie model had been cited in almost 3000 instances. In one of 

the latest investigations, the Ritchie model was claimed to have the best 

performance among the empirical models when being applied to National 
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Aeronautics and Space Administration (NASA) and Indian Space Research 

Organisation (ISRO) data in India by using the ET0 calculated from the PM 

model as the standard. Nevertheless, the performance of the Ritchie model still 

fell far behind modern techniques such as the ANFIS (Gonzalez del Cerro, et 

al., 2021). This indicated that the Ritchie model, apart from being a convenient 

alternative, cannot be regarded as the first-choice solution for ET0 estimation. 

 

 Xu and Singh (2000) also proposed several radiation-based models for 

ET0 estimation. However, the applications of these models are highly 

constrained to their geographical origin, making them less relevant in solving 

the current issues faced by many researchers and administrators in ET0 

estimation. Xiang, et al. (2020) had made a conclusive remark on the radiation-

based models. Citing from their publication works, it was mentioned that the 

performance of the radiation-based model varies drastically, primarily affected 

by the geographical locations as well as the local climate. The authors 

recommended that these models shall be applied in regions with semi-arid and 

semi-humid climates to harvest better ET0 estimation accuracy. 

 

2.2.3 Combinatory Models 

 

The combinatory models combine different aspects that have to be 

considered in the ET process. These include the energy balance as well as the 

aerodynamic conditions. To use the combinatory models for ET0 calculation, 

various factors that would affect the rate of ET need to be included. This means 
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that the combinatory models would require a luxurious number of 

meteorological variables, which are only completely available in certain regions 

of the world.  

 

The PM model is considered as one of the most popular models in 

estimating ET0. Furthermore, the Food and Agriculture Organisation of the 

United Nations, in their publication “Crop evapotranspiration – Guidelines for 

computing crop water requirements – FAO Irrigation and Drainage Paper 56”, 

in short FAO56, revised the computation of ET0 and PET based on PM model 

(Allan, et al., 1998). This indirectly endorsed the PM model as the standard in 

estimating ET0. The PM model was cited in numerous research studies as a 

standard of comparison (Güçlü, Subyani and Şen, 2017; Saggi and Jain, 2019; 

Shiri, et al., 2019). The complete PM model is shown as Equation (2.4): 

 𝐸𝑇0 =
0.408𝛥(𝑅𝑛− 𝐺) + 𝛾(

900

𝑇 +2 73
)𝑢2(𝑒𝑠− 𝑒𝑎)

𝛥 + 𝛾(1+ 0.34𝑢2)
 (2.4) 

where: 

Rn = net radiation (MJm-2day-1) 

G = soil heat flux (MJm-2day-1) 

T = daily mean temperature at 2 m height (°C) 

u2 = wind speed at 2 m height (m/s) 

es = mean saturation vapour pressure (kPa) 

ea = actual vapour pressure (kPa) 

Δ = slope of vapour pressure curve (kPa/°C) 

γ = psychrometric constant 
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The PM model includes most of the input meteorological variables that 

are believed to explain ET0 well. However, the degree of dependency of PM 

model on the input meteorological variables (at least eight according to the 

equation) also limits its applicability in the area with limited data. As mentioned 

earlier, some regions would face difficulties using the PM model when most of 

the meteorological variables involved in the PM model could not be obtained 

from direct measurement. Therefore, a list of supporting equations and 

assumptions is needed to complement the PM model (Valiantzas, 2013). 

 

 Valiantzas (2013) did a comprehensive study on the modification of the 

PM model so that the equation can take the measured meteorological data 

directly as input. This was done by developing an equivalent PM model 

algebraically followed by further simplifications. On top of that, the author also 

produced a series of equations to cater to the needs of regions where wind speed 

and radiation data were not available. The investigation results showed that for 

humid or arid regions, the simplified PM model achieved sufficient correlation 

with the original PM model, with the reported coefficient of correlation (R2) as 

high as 0.99. Furthermore, when wind speed and radiation data were not being 

measured, the reduced PM model could still compute similar ET0 results as the 

PM model. This study has successfully proved that the potential of developing 

a more convenient and accurate tool of estimating ET0. 
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2.2.4 Comments on Conventional Acquisition of ET Value 

 

The measurement of the ET (as well as the ET0 and PET) is virtually 

impossible and impractical due to the technical limitations, coupled with the 

high fiscal commitment and ecological footprints incurred. Therefore, the need 

for a secondary approach to get such values becomes pertinent. Prior to the 

popularisation of soft computing techniques, the empirical models played 

important roles in estimating the ET0 based on the meteorological variables 

available. However, the temperature-based and radiation-based empirical 

models suffered from instability and inconsistency in the estimation accuracy. 

Moreover, the locality characteristics of these empirical models limited their 

applications over a wide range of regions unless tedious modifications or 

calibrations were conducted. 

 

Current research trend generally employs the combinatory models, 

especially the PM model as the standard to compare the accuracy of newly 

developed ET0 estimation tools. Hence, in this study, the PM model will also be 

used as a standard measure. Although the PM model shows outstanding ability 

in ET0 estimation, this however, is at the expense of the need for plenty of 

meteorological variables. A simpler approach is needed for the accurate 

estimation of ET0 with minimal input and computational effort. This will be the 

subject of discussion in the next section. 
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2.3 Machine Learning for Evapotranspiration 

 

As mentioned in the previous sections, ET can be measured using a 

lysimeter which is expensive to build and maintain, notwithstanding its 

ecological impact. Alternatively, ET0 can be computed using energy balance if 

various climatic data are available. This approach reduces the need for a costly 

lysimeter; however, it requires higher computational effort as the data obtained 

is too raw to be used. On top of that, the use of empirical models involves 

assumptions, and sometimes the exclusion of specific variables can degrade the 

accuracy of estimation. Hence, researchers now shift their direction of study to 

generate an easy-to-use model, without much understanding to the physical 

properties of ET and its causal correlation with the climate. In this context, 

machine learning came into the vision of researchers as a potential candidate to 

fulfil the objective. Chia, et al. (2020), in their recent review, showed that there 

is an exponential increase in publications reporting the use of machine learning 

methods for ET-related studies. In this section, machine learning models 

commonly used in ET0 will be discussed, alongside the evolution of the models 

across the timeline. 

 

2.3.1 Artificial Neural Network 

 

The most commonly used machine learning model is the artificial neural 

network (ANN). Specifically, the ANN used in ET0 is subdivided into several 

variations, including the multilayer perceptron (MLP), radial basis function 
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network (RBF), generalised regression neural network (GRNN), extreme 

learning machine (ELM) and the back-propagation neural network (BPNN), 

each with different architectures and estimation functions. A general illustration 

of ANN is provided in Figure 2.1. 

 

Figure 2.1: General Structure of the ANN 

The application of the ANN is a simulation of biological neurons in the 

nervous system, where neurons are connected via synapses. In the ANN, the 

neurons are connected between layers through weights and biases. This 

intrinsically establishes the relationship between the input and output layers 

during the learning process (Abiodun, et al., 2018). 

 

In recent years, the use of the ANN had been evolved by increasing the 

number of hidden layers. This was accompanied by an improvement in the types 
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of hidden neurons. Instead of using classical hidden neurons regulated by 

activation functions, advanced hidden neurons can exist in the form of long 

short-term memory (LSTM) cells, gated recurrent unit (GRU) and so on. This 

revolution sees a paradigmatic shift to the utilisation of the deep neural network 

(DNN) for various applications, including ET0 estimation. As compared to the 

classical ANN, the DNN is believed to be relatively capable of learning more 

complex relationships due to its ability to store different states within the cells 

(Hu, et al., 2018). Furthermore, the emergence of big data and cloud computing 

also provides a more conducive environment for the application of the DNN. 

However, the computational (and time) cost of the DNN is much higher than 

the conventional ANN and thus unworthy when dealing with small sets of data 

(Nagappan, Gopalakrishnan and Alagappan, 2020). The simple and easy 

applications of the ANN have attracted the attention of numerous researchers to 

estimate ET0 using ANN, and subsequently, their research has attained 

tremendous achievements. Table 2.1 summarises research using ANN in ET0 

study. 
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Table 2.1: Summary of Research using the ANN in ET0 Study 

Approach Key Findings Reference 

MLP • MLP was used to estimate mean monthly ET0 in humid subtropical 

environment 

• MLP was trained using PM model as target and compared with calibrated 

HS model 

• When Tmax, Tmin and Ra were used as input meteorological variables, MLP 

six hidden nodes achieved the best performance 

 

(Rahimikhoob, 2009) 

BPNN • Daily Tmax, Tmin, Ra, u, RH and sunshine hours were used to train the 

BPNN using PM model as reference in the area with semi-arid climate 

pattern 

• Different combinations of input meteorological variables were tested 

• Temperature-based BPNN performed better than HS model 

• Inclusion of u and RH data further enhanced the estimation accuracy 

• Ra and sunshine hours did not play a significant role in the improvement 

of model accuracy 

(Traore, Wang and 

Kerh, 2010) 
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Table 2.1 (continued): Summary of Research using the ANN in ET0 Study 

Approach Key Findings Reference 

RBF 

GRNN 
• Daily Tmax, Tmin, Tmean, u and sunshine hours were used to train the 

networks to estimate ET0 based on PM model in the temperate zone with 

mild Mediterranean climate 

• Different combinations of input meteorological variables were tested to 

investigate the best possible dataset 

• GRNN generally performed better than RBF 

• Removal of u caused a sudden drop in prediction accuracy 

• The performance of the models could be further improved by the addition 

of precipitation data 
 

(Ladlani, et al., 2012) 

MLP • Daily Tmax, Tmin, Tmean, Rs, u, RHmean, RHmin and sunshine hours were used 

to train the MLP using PM model as reference in the area with semi-arid 

climate pattern 

• The MLP was trained using different learning algorithms, including 

Levenberg-Marquardt, Delta-Bar-Delta, Step, Momentum, Conjugate 

Gradient and Quickprop 

• Levenberg-Marquardt, Delta-Bar-Delta and Conjugate Gradient 

algorithms with hyperbolic tangent transfer functions performed the best 

• The combinations of input meteorological variables with the highest 

prediction accuracy were Tmean, RHmin, u and sunshine hours, which well 

explained the properties of ET 

(Tabari and 

Hosseinzadeh Talaee, 

2012) 
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Table 2.1 (continued): Summary of Research using the ANN in ET0 Study 

Approach Key Findings Reference 

Generalised ANN 

Multi Linear Regression (MLR) 
• Daily Tmax, Tmin, Rs, u and RH were used to train the models using PM 

model as reference in humid, sub-humid, arid and semi-arid areas 

• One station was used to train in one climate region, while another was 

used for testing 

• Different combinations of input meteorological variables were tested 

• As the number of input meteorological variables decreased, the prediction 

accuracy decreased gradually 

 

• Generalised ANN performed better than MLR 

(Wang, et al., 2013) 

ELM 

Feed-Forward Back-Propagation 

(FFBP) Network 

• Daily Tmax, Tmin, Rn, u and RH were used to train and test the models using 

PM model as target in arid and semi-arid regions 

• Different combinations of input meteorological variables were tested for 

both networks 

• ELM and FFBP estimated daily ET0 with comparable accuracy 

• ELM was claimed to be more efficient 

• Reduction of input meteorological variables did not significantly affect 

the prediction accuracy 

(Abdullah, et al., 2015) 
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Table 2.1 (continued): Summary of Research using the ANN in ET0 Study 

Approach Key Findings Reference 

MLP 

Probabilistic Neural Network (PNN) 

Generalised Feed-Forward (GFF) 

Linear Regression (LR) 

• Study was carried out to forecast daily ET0 using forecasted temperature 

in humid subtropical environment 

• The four models were simulated with forecasted daily Tmax and Tmin 

• Performances of MLP, PNN and GFF were slightly better than LR 

• Errors were accumulated from the inaccuracy of forecasted temperature 

and short of climate data 

 

(Luo, et al., 2015) 

RBF 

MLP 

Support Vector Machine (SVM) 

• Monthly Tmax, Tmin, ea, u and sunshine hours were used to train the MLP 

using PM models as reference in moderate Mediterranean region 

• Optimisation of RBF network was modified, either by back-propagation 

or particle swarm optimisation 

• RBF performed better than MLP and SVM, but method of optimisation 

did not show a significant difference 
 

(Petković, et al., 2015) 

ELM • Monthly Tmax, Tmin, ea, u and sunshine hours were used to train ELM based 

on HS model, PT model as well as Turc model in the temperate region 

• The three models did not show notable differences; however, ELM could 

be employed as it reduced the complexity in calculating ET0 

(Gocic, et al., 2016) 

 

 



28 

 

 

Table 2.1 (continued): Summary of Research using the ANN in ET0 Study 

Approach Key Findings Reference 

ELM 

MLP 

Genetic Programming 

SVM 

• Monthly Tmax, Tmin, u, pan-evaporation rate, rainfall and sunshine hours 

were used to train the models using PM model as reference in humid 

subtropical region 

• Estimation of ELM was more accurate as compared to other models and 

also required lesser computational time 

• ELM using sigmoid transfer function performed better than its hard limit 

transfer function counterpart 
 

(Kumar, et al., 2016) 

ELM 

MLP 

Least-Square Support Vector Machine 

(LS-SVM) 

• Weekly Tmax, Tmin and Ra were used to train the networks to estimate ET0 

based on HS model in arid region 

• Further investigation also included ET0 value from other stations as input 

to the model 

• ELM was proved to have the best performance as it required less human 

intervention with good estimation efficiency 

• Inclusion of external ET0 value further enhanced the accuracy of 

estimation 

(Patil and Deka, 2016) 
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Table 2.1 (continued): Summary of Research using the ANN in ET0 Study 

Approach Key Findings Reference 

MLP (back-propagation) 

PNN 

GFF 

LR 

• Models were trained using daily Tmax, Tmin, Rs and Ra using PM model in 

humid subtropical environment 

• Forecasted climate data with different combinations were feed into the 

networks 

• It was found that MLP with Tmin, Tmax and Rs as input meteorological 

variables could produce the most accurate results, up to 15 days forecast 

horizon 

• Tmax was claimed to be the most significant factor for ET0 estimation 

 

(Traore, Luo and Fipps, 

2016) 

MLP • Daily Tmean, Rs, u and RH were used to train the MLP using PM model as 

reference in humid continental region 

• Different combinations of input meteorological variables were tested 

• MLP network with complete set of meteorological variables performed 

the best, followed by models that contained temperature and radiation 

data 
 

(Antonopoulos and 

Antonopoulos, 2017) 

ELM 

GRNN 
• Daily Tmax, Tmin, and Ra were used to train the networks to estimate ET0 

based on PM model in warm humid region 

• ELM and GRNN outperformed HS model by reduction of deviation 

from actual ET0 value 

(Feng, et al., 2017b) 
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Table 2.1 (continued): Summary of Research using the ANN in ET0 Study 

Approach Key Findings Reference 

Random Forest (RF) 

Extreme Gradient Boosting (XGBoost) 

MLP 

Convolutional Neural Network (CNN) 

 

• Only temperature and humidity data were used to estimate ET0 on an 

hourly basis 

• The MLP outperformed XGBoost and RF, while the CNN performed 

better in relation to the MLP 

• The authors recommended further studies on the deep learning 

approaches 

 

(Ferreira and da Cunha, 

2020) 

RBF 

CNN 
• Tmax, Tmin and u were used as the predictors after performing principal 

component analysis (PCA) 

• CNN performed better than RBF in ET0 estimation, however, the time 

needed for training was longer 

 

(Nagappan, 

Gopalakrishnan and 

Alagappan, 2020) 

DNN • DNN was designed from MLP with four hidden layers 

• It was found that input combinations that only included the temperature 

and radiation data were able to produce ET0 estimation with accuracy 

close to that of complete dataset 

(Sowmya, Santosh 

Kumar and Ambat, 

2020) 
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As shown in Table 2.1, a considerable number of studies had been done 

on the utilisation of the ANN as an ET0 estimation tool. However, the trend of 

the studies generally focused the following few aspects: 

• Minimisation of mandatory inputs 

• Generalisation of the ANN for wider applications 

• Application of novel input features 

• Improvisation of ANN’s ability to forecast 

 

It is believed that the four aspects stated above could revolutionise the 

prediction of ET0, with a more general model without the need for much climate 

data. On top of that, a longer forecasting horizon acts as an important pre-

requisite for a pro-active water management strategy. Unfortunately, using 

ANN alone seems to be insufficient in providing the solution. Hence, the 

coming subsections will be focussed on the discussion of other machine 

learning models that were employed in ET0 estimation. 

 

2.3.2 Support Vector Machine 

 

The support vector machine (SVM) is said to be capable in both 

regression and classification tasks, making it to become of the most important 

algorithms in machine learning modelling (Vapnik, 1995). Cortes and Vapnik 

(1995) proposed the foundation of the SVM. The SVM transforms the data 

points into a feature space using a kernel function. In the feature space, the 



32 

 

 

relationship between inputs and outputs mapped, where problem complexity 

and accuracy can be optimised at the same time. 

 

Since the ET0 estimation is a regression problem, the support vector 

regression (SVR) is typically used. In the working mechanism of an SVR, a loss 

(or cost) function is used to define the allowable deviation and the function to 

estimate the targeted output (Raghavendra and Deka, 2014). The working 

principle of SVM is shown in Figure 2.2. 

 

Figure 2.2: Working Principle of the SVM (Shrestha and Shukla, 2015) 

 

The SVM had been popular in hydrology applications, including the ET0 

estimations (Raghavendra and Deka, 2014). The SVM has high robustness, 

capable of solving complex problems, less vulnerable to overfitting and could 

describe the model in a more compact manner (Zendehboudi, Baseer and Saidur, 

2018). The network structure of the SVM is illustrated in Figure 2.3. 
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Figure 2.3: Network Structure of the SVM 

 

Application of the SVM in ET0 estimation has long become a practice 

in the field. This was encouraged by the ability of the SVM to learn complex 

relationship between input features and ET0, followed by the deduction of 

accurate predictions. Table 2.2 summarises some research works using the SVM 

in ET0 study. 

Input Vectors X

K(X,X1)

K(X,X2)

K(X,X3)

K(X,X4)

  Output Y

Weights
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Table 2.2: Summary of Research using the SVM in ET0 Study 

Approach Key Findings Reference 

SVM 

Adaptive Neuro-Fuzzy Inference 

System (ANFIS) 

MLR 

Multiple Non-Linear Regression 

(MNLR) 

• Mean monthly Tmax, Tmin, Tmean, RH, u and Rs were used to train SVM and 

ANFIS in cold mountainous areas based on PM model 

• Different combinations of input meteorological variables were tested 

• Optimum member function and kernel function were determined for ANFIS 

and SVM, respectively 

• It was found that for SVM, the best kernel function was RBF 

• SVM and ANFIS performed better than MLR, MNLR and other empirical 

models 

 

(Tabari, et al., 

2012) 

LS-SVM 

MLP 
• Daily Tmean, Rs, u and RH were used to train the models using PM model as 

reference at warm temperate region 

• Different combinations of meteorological variables were tested 

• When all inputs were available, least square SVM had the best performance 

• In the case where u and RH data were lacking, HS and PT models performed 

better than machine learning models 

(Kisi, 2012) 
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Table 2.2 (continued): Summary of Research using the SVM in ET0 Study 

Approach Key Findings Reference 

SVM 

BPNN 

Genetic Programming 

• Monthly Tmax, Tmin, u, ea and sunshine hours were used to train the models 

based on PM model at moderately continental area 

• Wavelet transformation and firefly algorithm were combined with SVM for 

the purpose of anticipating future ET0 

• Both SVMs performed better than BPNN and genetic programming, with the 

SVM using discrete wavelet transformed data achieving the highest estimation 

accuracy 

 

(Gocić, et al., 

2015) 

SVM 

Multivariate Adaptive Regression 

Splines (MARS) 

Gene Expression Programming 

(GEP) 

• Monthly data of Tmax, Tmin, Tmean, RH, u and Rs were used to train the models 

based on PM model at arid and semi-arid regions 

• Different combinations of meteorological variables (based on data types) were 

tested 

• The study revealed that irrespective of the data types, MARS would have the 

best performance, followed by RBF-based SVM, GEP and polynomial-based 

SVM 

 

(Mehdizadeh, 

Behmanesh and 

Khalili, 2017) 

LS- SVM • Monthly Tmax and Tmin were used to train the model using HS model as 

reference at subtropical climate area 

• The objective of the study was to obtain information on evapotranspiration in 

the future generation 

(Kundu, Khare and 

Mondal, 2017) 
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Table 2.2 (continued): Summary of Research using the SVM in ET0 Study 

Approach Key Findings Reference 

SVM 

Categorical Boosting (CatBoost) 

RF 

• Daily Tmax, Tmin, u, Rs and RH data were used to train the models using PM 

model as reference at subtropical monsoon region 

• Different combinations of inputs were tested 

• RF was overfitted easily 

• SVM had the best performance 

• However, CatBoost consumes less computational cost as compared to SVM 
 

(Huang, et al., 

2019) 

SVM 

MLP 

MLR 

• The machine learning models were trained based on the ET0 value calculated 

from the PM model 

• MLP had the best performance when the temperature, radiation and humidity 

data were fed to the model 

• However, when the humidity data was absent, the error rate of the MLP 

doubled 

• SVM was more robust towards the reduction of input meteorological variables 

(Kaya, et al., 2021) 
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Based on the literature review, it can be inferred that the SVM is a 

reliable model for estimating ET0. However, the performance of the SVM is 

strongly correlated to the kernel function as well as the quality of data inputs 

(Raghavendra and Deka, 2014), although some may find that the SVM is more 

robust towards the reduction of input meteorological variables than the ANN-

based models. Since the construction of the model is purely dependent on the 

data provided, extrapolation of the SVM is likely to produce poor results. It 

means that the SVM has to be calibrated or trained using local data to ensure its 

reliability and relevance. On top of that, the SVM can be computationally 

expensive when modelling problems with higher non-linearity as well as 

dimensions, thus consuming a significant amount of time. Hence, there is still a 

wide option of research direction involving the optimisation of SVM in ET0 

estimation. 

 

2.3.3 Fuzzy Logic 

 

Fuzzy logic was introduced by Zadeh (1965) which allows describing 

data in the form of the “degree of likeliness”. The “either A or B” description 

can be replaced with “partly A and partly B” by assigning a membership degree 

that typically ranges from 0 to 1. The application of fuzzy logic needs the 

experts to select a membership function that can describe the type of distribution 

of the data (Gaussian function is generally favoured). Besides, three essential 

elements should be supplied to the fuzzy inference system (FIS). These include 

a set of fuzzy rule base, the membership functions and a fuzzy rule application 
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mechanism (Kisi, 2013). The conceptual diagram of an FIS is illustrated in 

Figure 2.4. 

 

Figure 2.4: Conceptual Diagram of the FIS 

 

Unlike the non-linear learning in the ANN and the kernel transformation 

of the SVM, fuzzy logic offers an alternative for the machine to learn the 

complex relationship between the input meteorological variables and the ET0. 

Many recent works hybridised the fuzzy logic with the ANN to form the 

adaptive neuro-fuzzy inference system (ANFIS) to estimate ET0 (will be 

discussed further in the following subsection). 

 

2.3.4 Other Models 

 

Apart from the three most popular basic machine learning models used 

to predict the behaviour of the ET, there are some other miscellaneous models 

which were investigated by the researchers. Of all the varieties, the tree-based 

models have a larger share among the researchers’ preference. Feng, et al. 

(2017a) compared the performance of the RF and the GRNN in estimating ET0 

at an area with a warm and humid climate. The RF works to assemble multiple 

trees for regression or classification purposes to produce a more accurate 

outcome through output aggregation. In the study, it was found that the RF 

Fuzzication Defuzzication

Fuzzy Rule Base

Fuzzy Inference MechanismInput X Output Y
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performed slightly better than the GRNN, regardless of the input combinations 

and selection of the training datasets. 

 

Besides, the M5 model tree was also applied to estimate ET0 (Fan, et al., 

2018; Granata, 2019; Pal and Deswal, 2009; Rahimikhoob, 2014). Unlike the 

classical decision tree, an M5 model tree is more suitable for regression analysis. 

It works by splitting the data into binary decision trees based on the splitting 

criterion (normally the standard deviation is used). The splitting possibility with 

minimised error will be chosen and the linear regression between independent 

and dependent variables will be stored in the leaves of the tree. Due to the highly 

split tree structure, overfitting tends to occur, and to overcome this problem, 

pruning is necessary to reduce the size of the tree, where portions that are 

insignificant to the tree performance will be removed. 

 

The literature suggested that the M5 model tree could provide 

satisfactory, some even produced better predictions, as compared to the ANN 

and SVM. However, the M5 model tree only involves binary piecewise 

functions and linear correlations in its operation. This makes the computational 

complexity of the M5 model tree greatly reduced. This noble characteristic of 

the M5 model tree offers a potentially promising solution to the modelling of 

complex problems such as the ET0 estimation or forecasting. 
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2.3.5 Evolution and Hybrid of Machine Learning Models 

 

Over the past two decades, the basic machine learning models 

experienced different degrees of evolution. For example, the DNN and the deep 

belief network (DBN), which originated from the MLP network structure were 

applied in ET0 estimation. As mentioned in Section 2.3.1, the DNN works in 

such a way that the hidden layers of the MLP are increased, while the DBN 

operates on top of this basis. DBN comprises a stack of restricted Boltzmann 

machine that is trained to generate suboptimal initial parameters. It was claimed 

that a model such as DBN would require a large amount of historical climate 

data in order to work well (Xu, et al., 2018). 

 

The most pronounced characteristic of the current research culture is the 

utilisation of hybrid machine learning models. A hybrid model combines the 

traits of multiple basic models to create a new model for training. This can be 

done by combining the basic theory of more than one model (such as ANFIS), 

transformation of data (wavelet decomposition), metaheuristic approach 

(optimisation algorithm) or even ensemble models (bootstrap aggregation). It is 

believed that combining models can produce more accurate results by forming 

a decision committee. This statement was justified by previous studies 

(Alizadeh and Nikoo, 2018; Traore, Luo and Fipps, 2016). The advantages of 

using ensemble models in machine learning will be discussed further in Section 

2.5. Table 2.3 summarises some of the research works involving the utilisation 

of hybrid machine learning models in the field of ET0 estimation. 
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As can be seen in Table 2.3, many studies focused on studying the 

incorporation of data decomposition or metaheuristic methods to improve the 

performance of the base machine learning models. In fact, the recent trend of 

research shows a preference for the use of metaheuristic methods such as the 

swarm intelligence and other optimisation algorithms. However, from these 

publications, the selection of the metaheuristic methods used were mainly 

experimental based, often without the justification of their choice. This 

phenomenon is reasonable as there is a high number of optimisation algorithms 

available and it is of the researchers’ interest to test out the best algorithm that 

is relevant to the ET study. 
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Table 2.3: Research Studies using the Hybrid Machine Learning Model in ET0 Study 

Approach Key Findings Reference 

MLP (base model) 

G-ANFIS 

S-ANFIS 

• Daily Tmean, RH, u and Rs were used to train the models based on PM model 

at moderate Mediterranean climate region 

• Different combinations of input meteorological variables were tested 

• G-ANFIS and S-ANFIS had better performance as compared to MLP and 

other empirical models 

• Besides Tmean and Rs, the meteorological variable that affected the 

predictions significantly is RH 

 

(Cobaner, 2011) 

G-ANFIS 

S-ANFIS 
• Daily Tmean, Rs, u and RH were used to train the models based on PM model 

in Mediterranean region 

• Different combinations of input meteorological variables were tested 

• G-ANFIS and S-ANFIS generally performed better than empirical models 

• u was found to be the most important input meteorological variable 

• G-ANFIS achieved better accuracy even in the case of missing data and 

had higher computational efficiency 

(Kisi and Zounemat-

Kermani, 2014) 

 

 

 



43 

 

 

Table 2.3 (continued): Research Studies using the Hybrid Machine Learning Model in ET0 Study 

Approach Key Findings Reference 

ANN (base model) 

Wavelet-ANN 
• Original and decomposed daily Tmax, Tmin and u were used to train the 

models based on PM model in region with semi-arid climate 

• Decomposition of data reduced the accuracy of prediction 

• Wavelet ANN which used wavelet function as activation function, 

performed better than ANN and had better compatibility with the 

decomposed data 

 

(Falamarzi, et al., 

2014) 

ANFIS 

Firefly-ANFIS 
• Daily Tmax, Tmin, RHmax, Rs, u and ea were used to train the machine learning 

models based on the PM model in area with tropical climate 

• Different combinations of input meteorological variables were tested 

• Accuracy of prediction increased with the number of input meteorological 

variables 

• ANFIS-Firefly achieved a better performance as compared to ANFIS 

 

(Tao, et al., 2018) 

ANN (base model) 

Wavelet ANN 
• Original and decomposed daily Tmax, Tmin and Ra were used to train the 

models based on HS model in arid, semi-arid, humid and sub-humid 

regions 

• Wavelet ANN performed better than ANN with good generalisation over 

different areas 

(Adamala, 2018) 
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Table 2.3 (continued): Research Studies using the Hybrid Machine Learning Model in ET0 Study 

Approach Key Findings Reference 

ELM (base model) 

ANN (base model) 

Online Sequential ELM 

Wavelet ELM 

Wavelet ANN 

• Decomposed daily Tmax, Tmin, Rs and RH were used to train the models 

based on PM model in semi-arid area 

• Different combinations of input meteorological variables were tested 

• Machine learning models integrated with wavelet function generally had 

better performance 

• Wavelet ELM and online sequential ELM had the best performance among 

all other models 
 

(Kisi and Alizamir, 

2018) 

ANN (base model) 

RF 

ELM (base model) 

Particle Swarm Optimisation-ELM 

(PSO-ELM) 

• The machine learning models with different input combinations were 

trained based on the ET0 calculated from the PM model, and compared with 

empirical models with similar inputs 

• Radiation-based machine learning models had the best performance, 

followed by temperature and mass transfer models 

• The integration of PSO with the ELM avoided the latter from using non-

optimal network structure, thus improving the generalisation ability as well 

as accuracy 

(Zhu, et al., 2020) 
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Table 2.3 (continued): Research Studies using the Hybrid Machine Learning Model in ET0 Study 

Approach Key Findings Reference 

Bi-LSTM 

ANN-Bi-LSTM 
• Tmax, Tmin, u and sunshine duration were used to predict ET0 up to seven 

days lead time 

• It was claimed that the ANN was able to account for the large number of 

outputs of the Bi-LSTM, subsequently improved the predictions 

• However, prediction accuracy declined as the lead time increased 

 

(Yin, et al., 2020) 

Biogeography-Based Optimisation-

ANFIS (BBO-ANFIS) 

Firefly-ANFIS 

PSO-ANFIS 

Teaching-Learning-Based 

Optimisation-ANFIS (TLBO-ANFIS) 

Least Squares and Back-Propagation 

Gradient Descent-ANFIS (LSGD-

ANFIS) 

Entropy Weight Ensemble 

Coefficient of Variance Ensemble 

Grey Relational Analysis Ensemble 

• Different optimisation algorithms were used to tune the FIS parameters 

• The optimised ANFIS were assembled using three different weight 

assignment techniques 

• Firefly-ANFIS was found to be the most outstanding hybrid model for ET0 

estimation 

• The three ensembles produced very similar results 

(Roy, et al., 2020) 
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Table 2.3 (continued): Research Studies using the Hybrid Machine Learning Model in ET0 Study 

Approach Key Findings Reference 

ANN (base model) 

ANFIS 

PSO-ANFIS 

GA-ANFIS 

Classification and Regression Tree 

(CART) 

 

• Monthly temperature, radiation, humidity and wind speed data were used to 

train the models based on ET0 calculated from the PM model 

• Hybridised ANFIS (PSO-ANFIS and GA-ANFIS) were found to be more 

superior 

• Radiation data was the most critical input to ensure models’ accuracy 

(Alizamir, et al., 

2020) 

ANN (base model) 

Grey Wolf Optimisation-SVM 

(GWO-SVM) 

Genetic Algorithm-SVM (GA-SVM) 

PSO-SVM 

 

• Monthly Tmax, Tmin, RHmax, Rs, and u were used to train the machine 

learning models based on the PM model 

• The machine learning models performed better than empirical models, even 

with lesser inputs 

(Tikhamarine, et al., 

2020) 

SVM (base model) 

PSO-SVM 

Gradient Boosting Decision Tree 

(GBDT) 

PSO-GBDT 

• Input combinations were selected based on factor analysis, path analysis, 

logistic regression analysis and stepwise linear regression analysis 

• The models were trained based on the ET0 calculated from the PM model 

• Path analysis was found to be the most effective component features 

selector 

• PSO managed to improve the performance of SVM and FBDT 

(Zhao, et al., 2021) 
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2.4 Data Requirement and Priority 

 

It should be noted that the completeness of training data and 

meteorological variables poses a significant impact on the outcome of 

predictions. This has been clearly indicated in the literature review mentioned 

in the previous sections. In this section, a detailed analysis on the data 

requirement will be reviewed. It is believed that the different climatic data will 

have different weightages and effects in regions that have diverse climatic 

patterns. Hence, this literature review will be useful to prioritise data when 

limited resources are available for data collection. 

 

Many past research works compared different input combinations of 

meteorological variables to select the best input combination for specific 

model(s). However, a comprehensive study and summary of the input 

meteorological variables’ combinations according to regions or climates has not 

been discovered. In this literature review, a case study was done on the climate 

data requirements for arid and semi-arid regions. The reason for choosing arid 

and semi-arid regions is due to their frequent mention in the literature. 

Furthermore, these regions represent areas where water resource allocation 

strategy is imperative and in dire straits. Hussain, et al. (2019) mentioned in 

their publication that the arid and semi-arid regions are encountering 

bottlenecks in development due to the water shortage that threatens the food 

production and security as well as forestry sectors. Therefore, ET-related studies 

(patterns, trends and estimations approaches) are so ever popular in these 
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regions and provide important insights and references. Table 2.4 summarises 

the significant input meteorological variables for accurate machine learning 

predictions in arid and semi-arid regions. 

Table 2.4: Significant Input Meteorological Variables for the Accurate ET0 

Estimation by Machine Learning Models in Arid and Semi-Arid Regions 

Location Climate 

Significant 

Input 

Meteorological 

Variables 

Reference 

Shiyang River Basin, China 
Arid/Semi-

Arid 
Tmax, Tmin 

(Huo, et al., 

2012) 

Hamedan, Iran Semi-Arid Tmean 
(Tabari, et al., 

2012) 

Redesdale, Australia Semi-Arid Tmax, Tmin 
(Falamarzi, et 

al., 2014) 

Iraq 
Arid/Semi-

Arid 
Tmax, Tmin 

(Abdullah, et 

al., 2015) 

Ejina Basin, China Arid Rs 
(Wen, et al., 

2015) 

Anatolia, Turkey Semi-Arid Rs 

(Kisi and 

Alizamir, 

2018) 

 

From Table 2.4, temperature and solar radiation are two major input 

meteorological variables required by most machine learning models for precise 

output generation. Since the ET is a process that is strongly linked with the 

energy flux (Wang and Dickinson, 2012), which includes surface net radiation, 

sensible heat flux and ground heat flux, therefore, the two aforementioned 

meteorological variables can provide essential elements and information for the 

estimation of ET. This finding is also in agreement with the number of 

temperature and radiation-based empirical models to estimate ET0 such as the 

HS and the Ritchie models. In other words, the temperature and radiation data 
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can be deemed as the mandatory meteorological variables that have to be 

collected for the estimation of ET0 in arid and semi-arid areas. 

 

Further study in other areas with different climate patterns confirmed 

the trend in the arid and semi-arid regions. It was realised that in humid areas, 

temperature and radiation data as well as sunshine duration are useful in 

inferencing accurate ET0 using a machine learning model (Feng, et al., 2017a; 

Feng, et al., 2017b; Traore, Luo and Fipps, 2016). Sunshine hours are usually 

measured in hours, and it is highly correlated to temperature and radiation data. 

The finding is expected and does not deviate much from arid and semi-arid 

regions; hence the importance of temperature and radiation data is justified. 

 

However, when the study is conducted in a region with a Mediterranean 

climate, wind speed emerges as one of the most influential meteorological 

variables (Ladlani, et al., 2012). It is believed that the presence of aerodynamic 

swirls creates turbulence known as eddies that will assist the movement of heat 

flux and water in the atmosphere (Wang and Dickinson, 2012). In this region 

where the temperature is relatively low, the significance of wind speed increases 

as it will exert a greater effect on the ET. Nevertheless, it should be noted that 

the temperature and radiation data are still of paramount importance and that 

the wind speed data only help to further increase the accuracy to a satisfactory 

level; in other words, acting as a complementary meteorological variable 

(Cobaner, 2011; Ladlani, et al., 2012). 
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From the literature, a deduction can be made such that only certain 

meteorological variables are compulsory and essential for the computation or 

estimation of the ET0 using machine learning models. The absence of other 

meteorological variables can be tolerated as most of them only play the role of 

complementary variables during the estimation process. Hence, a desired model 

with low climatic data requirement and high accuracy can be realised based on 

this deduction, which is part of the research objective. 

 

2.5 Data Fusion 

 

According to Meng, et al. (2020), data fusion can be defined as the 

“technology that merges data to obtain more consistent, informative and 

accurate information than the original raw data that are mostly uncertain, 

imprecise, inconsistent, conflicting and alike”. As mentioned in the previous 

section, the ensemble of models is favoured due to the perception that a 

“committee” could produce a better decision than a standalone model. The 

formation of the “committee”, namely the ensemble learning model, can be 

done in several ways. It is thought that individual models can sometimes provide 

accurate results in certain cases, but not for all instances. Combining several 

models during ensemble learning can overcome this problem, subsequently 

improving the robustness of the model. The models can complement for each 

other’s weaknesses (Xiao, 2019). 
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2.5.1 Bootstrap Aggregating 

 

Bootstrap aggregating, also known as bagging was proposed by Breiman 

(1996). Bootstrap aggregating combines the resampling algorithm of 

bootstrapping and aggregates the predictions, resulting in a more reliable and 

unbiased outcome. This can be done by either using the method of simple 

averaging or the majority vote (depending on whether it is a regression or 

classification problem). In bootstrap aggregating, independent samples are 

drawn from the originally available dataset and produce several datasets with 

equivalent sizes (bags). The originally available dataset has now become an 

“apparent population”. These bags of data would be used to train independent 

machine learning models, and the outputs of the individual models will be 

aggregated into a final estimation. 

 

Bootstrap aggregating has been successfully applied in numerous 

studies in different fields. In the work of Szafranek (2019), bootstrap 

aggregating was used to forecast inflation. It was claimed that the application 

of bootstrap aggregation could prevent misspecification bias and overfitting. 

The results showed that higher prediction accuracy could be achieved when 

contrasted with the conventional methods by using the bagged samples. On top 

of that, the bagged MLP used in the research work also showed that the model 

was more sensitive and could produce meaningful estimations even when the 

inflation is low. However, the author stressed that bagging did not consider the 
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effect of the time dimension, resulting in the loss of inference when correlating 

the effect of time with inflation. 

 

Dantas and Cyrino Oliveira (2018) suggested that the bootstrap 

aggregating performed resampling technique that resulted in lower correlation 

among the members of the ensemble. The purpose of having a lower correlation 

was to ensure that the prediction of each model is independent from one another. 

The authors used bootstrap aggregating alongside the clustering technique and 

the exponential smoothing in forecasting a time series. The results agreed with 

the hypothesis of the authors, where greater accuracy was achieved. However, 

the forecasting time horizon should be long enough for the ensemble to be useful. 

 

Bootstrap aggregating was also used to predict the thermal comfort of 

occupants in buildings. It was compared with other traditional methods such as 

the standalone ANN and the SVM. It was found that the bagging technique that 

takes the results of several weak learners into account naturally could produce 

better results than the ANN and SVM. A similar finding was also discovered by 

Lee, Ahmad and Jeon (2018) and Luo (2018) where the resampling meta-

algorithm had successfully enhanced the estimation accuracy. 

 

Likewise, bootstrap aggregating was used as a tool to improve the 

accuracy of the ET0 estimation. In the work done by Carter and Liang (2019). 

Ten machine learning models were compared to estimate the ET0. It was 

reported that the bagged decision tree could tolerate with smaller tree size. This 
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in turn removed the need for the pruning process and became a preventive 

measure to avoid overfitting. The authors also opined that smaller tree sizes due 

to bootstrap aggregating provided a more remarkable ability to generalise over 

wider variations of climate pattern and geographical location. 

 

It should be noted that the bootstrap aggregating involves the resampling 

of the original dataset and uses the newly generated datasets to train individual 

models. Then, the results of the individual model will be combined to produce 

the final decision (via simple averaging or majority vote). Thus, the bootstrap 

aggregating in fact consists of a data pre-processing algorithm and the ensemble 

technique. Its reliability in overcoming bias through variance reduction in the 

estimation is well-recognised and its integration to various models is easy and 

simple. 

 

2.5.2 Bayesian Modelling Approaches 

 

Model ensembles that utilise Bayes rules are known as Bayesian 

modelling. According to Höge, Guthke and Nowak (2019), Bayesian modelling 

can be classified into two main approaches, namely the “winner-takes-all”, 

where the selection of the most relevant model is made, and “team-of-rivals” 

where the model averaging is done. The selection should be based on the goal 

and the nature of the problems. For instance, if one is convinced that a true 

model exists to explain a problem, he/she should consider Bayesian model 

selection (BMS) to identify the model, provided the true model is present among 
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the candidates. Otherwise, one can formulate several hypotheses and test the 

problem with different models. Should he/she does not want to miss out on any 

of the hypotheses, he/she shall opt for the Bayesian model averaging (BMA) to 

combine the characteristics or favourable traits of each model. 

 

In the BMS, the “true” model is selected based on the degree of 

probability that it is true. The value of the probability is updated via Bayesian 

model evidence. However, the algorithm can be indecisive when two models 

have similar performances. Bayesian model evidence can be presented in 

different forms such as model weight ratios and Bayes factor (Kass and Raftery, 

1995). Application of the Bayesian model evidence can be difficult when the 

problem is highly non-linear, requires complex computation or involves high 

dimensionality (Höge, Guthke and Nowak, 2019). 

 

As for the BMA, the weight factors of the individual model are still 

maintained. Practically, the BMA is the intermediate phase of the BMS. In the 

case that one cannot identify the true model, BMA is used to estimate the final 

output based on the weightage of each model. It should be noted that both the 

BMA and the BMS aim to search for the final true model, however the 

approaches are different due to the limitation of data size and set of models 

(Höge, Guthke and Nowak, 2019). From these two main principles, the 

Bayesian modelling approach can be highly branched into many distinct 

algorithms. For instance, the Bayesian joint probability (Zhao, Wang and 
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Schepen, 2019) and the Bayesian regression (Khoshravesh, Sefidkouhi and 

Valipour, 2015) and been used on different occasions for ET0 estimation. 

Bayesian modelling approaches have long been applied in fine-tuning 

the performance of machine learning models. Chen, et al. (2015) performed the 

BMA on the machine learning models and the conventional empirical models. 

The ensemble was done using two distinct strategies: (i) ensemble of all models 

and (ii) ensemble of the best models. The results showed that the best model 

ensemble produced ET0 estimation of the highest accuracy at both the regional 

and global scales. The findings of this study also proved that the accuracy of the 

ensemble was contributed by its constituent models. The ensemble of the best 

models would result in better performance, whereas when some of the poor 

models were included, the accuracy deteriorated.  

 

Bayesian regression was also used to estimate the ET0 (Khoshravesh, 

Sefidkouhi and Valipour, 2015). In the study, Bayesian regression was 

compared alongside with a multivariable fractional polynomial model and 

robust regression. When the temperature and radiation data were the only 

meteorological variables fed into the model, the multivariable fractional 

polynomial model outperformed the Bayesian regression, but the difference was 

insignificant. Therefore, Bayesian regression still has the potential to be fine-

tuned when other meteorological variables are used. 

 

Separately, Zhao, Wang and Schepen (2019) used Bayesian joint 

probability as their approach to forecast the ET0 based on the Australian 
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Community Climate and Earth System Simulator. The authors claimed that the 

raw forecasting by the global climate model could produce highly biased results. 

Hence, the authors attempted to integrate the Yeo-Johnson transformation, bi-

variate normal distribution and Schaake Shuffle to enhance the model’s 

forecasting ability. The combination of the aforementioned methods 

represented a form of Bayesian joint probability. The ensemble model was able 

to forecast ET0 up to two weeks in advance with satisfactory precision and 

accuracy. 

 

Despite the fact that the Bayesian model approaches had been utilised 

several times for the ET0 prediction and estimation, however, the reports on the 

details of the ensemble were very limited. For the case of the BMA, the weights 

of the individual model present in the ensemble remained unknown until He, et 

al. (2020) presented the results systematically using the Bayesian three-cornered 

hat method. In the study, the authors adopted different datasets retrieved from 

remote sensing satellites and land surface models. The influence of the 

individual datasets on the resultant ET for different seasons and land covers, 

varied accordingly. It was found that Bayesian-based ensemble could produce 

better estimation of ET than the simple averaging. The influence of other models 

on the ET0 estimation is still not clearly understood. Further investigations shall 

be carried out following this direction to produce contributing discoveries to the 

scientific community. 
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2.5.3 Boosting Algorithm 

 

Boosting is a technique in which prediction accuracy is enhanced by 

averaging outputs of a few weak learners (Hassan, et al., 2017). Unlike the BMA, 

the boosting algorithm works stepwise, whereby learners are added one at a time 

to minimise the cost function. The first learner searches for a solution with 

optimum loss. Then, the following learners will be included into the ensemble 

and the residuals of their predecessors are reduced. Numerous variants of 

boosting algorithms had been proposed, each with their novel characteristics. 

The most well-known boosting methods include the gradient boosting 

(Friedman, 2001), adaptive boosting (Freund and Schapire, 1997), XGBoost 

(Chen and Guestrin, 2016) and CatBoost (Prokhorenkova, et al., 2018). 

 

The application of the boosting algorithm in ET0 estimation can be 

found in several studies. Fan, et al. (2018) applied gradient boosting to the 

decision tree to estimate ET0. At the same time, the authors also compared the 

XGBoost and GBDT with the SVM, ELM, M5Tree and RF. Two sets of input 

meteorological variables, namely (i) the complete set (Tmax, Tmin, u, RH and Rs) 

and (ii) the temperature and radiation-based input set were partitioned to 

perform the ET0 estimation. All the models exhibited similar performance. The 

author opined that the SVM and ELM provided better accuracy and stability 

whereas the tree-based models offered greater computational efficiency, 

particularly the XGBoost which showed comparable accuracy with the SVM 

and ELM. 
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Another investigation compared the CatBoost model with the RF and 

SVM (Huang, et al., 2019). The advantage of CatBoost over the RF was that 

instead of randomly generating a set of predictors, CatBoost generates one 

predictor after another, taking into account the error of the previous tree. The 

authors concluded that although the CatBoost did not show significant 

improvement in terms of accuracy and stability as compared to the SVM, the 

CatBoost was still highly recommended to minimise computational cost and 

time. 

 

Based on the findings from the literature, it can be inferred that boosting 

algorithm could not stand alone as a model itself. This is because it cannot 

produce estimation with higher accuracy and precision. However, due to its 

nature that performs a greedy search, it can help to improve integration 

efficiency and overcome the problem of overfitting. These advantages of 

boosting algorithm should be considered when constructing a hybrid model. 

 

2.5.4 Ensemble Model for Evapotranspiration 

 

Multiple attempts had been done over the past few years to estimate ET 

using an ensemble. Zhu, et al. (2016) provided one of the examples. The authors 

collected data from the ground as well as remote sensing sources and fed the 

data into four different empirical models: PM model, two-layers Shuttleworth-

Wallace model, modified PT model and Advection-Aridity (A-A) model. Data 

gaps were filled with the mean diurnal variation method. At the end of the 
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estimation, simple averaging and the BMA were used to ensemble the four 

models to produce a final output. The results showed that the BMA gave 

predictions with higher accuracy. However, at the validation stage, the accuracy 

degraded. The authors suggested that this phenomenon could be due to the 

inappropriate assumptions of BMA which were incompatible with the ET 

process. Recently, Nourani, Elkiran and Abdullahi (2019) applied various data 

fusion strategies, including simple averaging, weighted averaging and non-

linear neural ensemble (NNE) using the ANN. Due to the non-linearity of the 

ET process, the neural ensemble produced the best result among the ensembles. 

Their work also ascertained that data assimilation techniques could generate a 

similar effect when applied to both machine learning models and empirical 

models. 

 

Ensemble learning is a common approach when dealing with remote 

sensing data and using land surface models. This is due to the high uncertainty 

in each individual land surface models. The wide variations of land surface 

models adopting different assumptions and variables during their formulations 

and increases the uncertainties. Hence, multiple land surface models must be 

used simultaneously to backup each other so that the performance can be 

improved. In the work of Liu, et al. (2016), multiple remote sensing datasets 

from Princeton, Institute of Tibetan Plateau Research and Qian were collected. 

These datasets became the input of four land surface models, namely Biosphere-

Atmosphere Transfer Scheme (BATS), Variable Infiltration Capacity (VIC), 

Community Land Model (CLM) 3.0 and CLM 3.5. The outputs were compared 
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with observed data from FLUXNET. The authors claimed that after performing 

data assimilation on the four land surface models, the resultant ensemble model 

had promising outputs of higher spatial and temporal resolution in a longer time 

scale. The authors also suggested that the utilisation of the Bayesian modelling 

approach could further reduce the uncertainties. 

 

Nowadays, the application of data fusion on remote sensing, multi-

sensor and land surface model is prominent. It was known that the application 

of data fusion could produce ET estimation at different regional scales. Apart 

from the previously mentioned literature, several other research works were also 

done on the same basis using different ensemble models. Table 2.5 summarises 

the data fusion methods and the models involved in remote sensing-based ET0 

estimations.  
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Table 2.5: Data Fusion Methods and the Models Involved in Remote 

Sensing-Based ET0 Estimations 

Data Fusion 

Methods 

Models Data 

Sources 

Reference 

STARFM ALEXI 

DisALEXI 

Landsat 

MODIS 

(Cammalleri, et al., 

2013; Cammalleri, et 

al., 2014; Knipper, et 

al., 2018; Semmens, 

et al., 2016) 

 

STARFM SEBS ASTER 

MODIS 

 

(Li, et al., 2017) 

Simple Taylor 

Skill 

RS-PM 

Shuttleworth-

Wallace 

PT-JPL 

Modified PT 

SIM 

 

Landsat (Yao, et al., 2017) 

Ensemble 

Kalman Filter 

Distribution Time 

Variant Gain Model 

MODIS (Zou, et al., 2017) 

ESTARFM SEBS 

PM model 

Landsat 

MODIS 

(Ma, et al., 2018) 

 

* ALEXI: Atmospheric – Land Exchange Inverse, DisALEXI: Disaggregated 

Atmospheric-Land Exchange Inverse, SEBS: Surface Energy Balance, RS-PM: 

Remote Sensing Penman-Monteith, PT-JPL: Priestley-Taylor-Jet Propulsion 

Laboratory, SIM: Simple Hybrid ET, STARFM: Spatial and Temporal 

Adaptive Reflectance Fusion Model, ESTARFM: Enhanced STARFM 

 

2.5.5 Metaheuristic Approach 

 

The development of machine learning models requires fine-tuning of the 

hyper-parameters so that the resultant models can perform even better in terms 
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of accuracy and generalisation ability. This is due to the fact that many training 

algorithms (such as the back-propagation) only involve the adjustment of 

weights and biases which are case-specific. The fine-tuning process can be time-

consuming, especially when the search space (possible range of solution) is 

huge. Taking the ANN as an example, the numbers of neurons in the hidden 

layers range from one to infinity, not to mention that a similar case could also 

happen when determining the number of hidden layers. Grid search and trial-

and-error methods appear to be impractical when dealing with extremely large 

search space. Therefore, in recent years, the rapid diversification of the 

metaheuristic approaches has been observed. In essence, the metaheuristic 

approach refers to the formulation of objective function(s) to represent the 

problems of interest. Subsequently, a set of algorithm is used to minimise or 

maximise the objective function(s) in order to obtain an optimum solution with 

respect to the constraints and conditions provided (Yang, Bekdaş and Nigdeli, 

2016). 

 

The metaheuristic approach can be classified into several categories: 

evolutionary computing, swarm intelligence and iterative-based algorithms 

(Goh and Lee, 2019). Evolutionary computing involves the design of a symbolic 

regression to fit the input dataset through techniques such as genetic 

programming and genetic algorithms. According to Hebbalaguppae 

Krishnashetty, et al. (2021), genetic programming supports simultaneous 

searching to perform fine-tuning and represent the problems as a linear program. 

The evolution involves the detection of feature importance (analogous to fittest 
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genes) in the dataset and the cross-mutation that occurs in each iteration. Jing, 

et al. (2019) performed an extensive review on the implementation of 

evolutionary computing in ET-related research studies. They discovered that the 

lack of variability has caused evolutionary computing to lag other metaheuristic 

approaches, such as swarm intelligence and iterative-based algorithms. 

 

The swarm intelligence, on the other hand, approaches the optimisation 

problems based on the perception that the intelligence can be obtained via the 

interactions among the individuals within a population or swarm (Janga Reddy 

and Nagesh Kumar, 2020). This is the imitation of the civilisation of the human 

society, where the development and growth become more rapid as the 

interactions among individuals (exchange of information) increase. Since the 

development of swarm intelligence is generally nature-inspired, hence many of 

the swarm-based optimisation algorithms attempt to imitate the behaviour of 

different organisms, such as the PSO, ant colony optimisation (ACO), artificial 

bee colony (ABC) and so on (Dorigo and Blum, 2005; Karaboga and Basturk, 

2007; Kennedy and Eberhart, 1995). In recent years, the integration of swarm-

based optimisation algorithms in machine learning for ET estimating 

applications has been increasing drastically. This, on the one hand, is due to the 

efficiency of the swarm intelligence in tackling various optimisation problems 

(Pham, et al., 2021), at the same time, the variation and diversity of swarm 

intelligence are still increasing on a year-on-year basis. Many new swarm-based 

optimisation algorithms had been introduced in the past few years (Rostami, et 

al., 2021), not to mention the improvements and modifications to existing 
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algorithms (Chia, et al., 2022). Despite swarm intelligence being a popular 

method among the researchers, Tang, Liu and Pan (2021) still reported the 

limitations of swarm intelligence in their publication. It was claimed that due to 

the deployment of high number of search agents in a large search space, the 

computational cost of swarm intelligence can be incredibly high, which would 

be unnecessary for simple problems. Besides, old algorithms are more likely to 

converge prematurely. This issue is being addressed by many developers of 

swarm-based optimisation algorithms during the recent extension of the swarm 

intelligence class (Mirjalili and Lewis, 2016). 

 

Unlike the evolutionary computing and swarm intelligence, studies 

conducted on iterative-based algorithms are lesser. This could be due to the 

recent trend that focusses on the studies related to swarm intelligence. 

Essentially, the iterative-based optimisation works on the improvement of the 

objective function(s) via the neighbourhood search technique (Şen, Dönmez and 

Yıldırım, 2020). Some examples of the iterative-based algorithm include the 

simple annealing (SA) and black hole algorithm (Hatamlou, 2013; Kirkpatrick, 

Gelatt and Vecchi, 1983). Iterative-based algorithm for machine learning 

application, particularly those related to ET estimation is still very limited and 

could potentially be a promising hybridisation technique in the near future. 

 

The use of metaheuristic approaches involves the improvement of the 

objective function(s), which is the mathematical representation of the problems 

of interest. Over the years, the mean square error (MSE) has been used 
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extensively as the objective function for machine learning-related applications, 

in which the hyper-parameters of machine learning models shall be tuned to 

minimise the error of predictions. Nevertheless, modern metaheuristic 

approaches can handle more than one objective function concurrently, resulting 

in the so-called multi-objective optimisation. This method has been deployed in 

many hydrological studies and yielded positive results. For instance, Yadav, 

Chatterjee and Equeenuddin (2021) used the genetic algorithm to optimise the 

ANN for suspended sediment yield modelling with the error variance and bias 

acting as competing for objective functions. The selection of objective functions 

had a significant impact on the performance of the ANN in which the overfitting 

and bias could be resolved. The successful adoption of multi-objective 

optimisation using metaheuristic approaches in hydrology implies that similar 

findings can also be replicated for ET-related problems. This can be one of the 

research directions for future studies. 

 

The metaheuristics approach (mostly single-objective optimisation) has 

been applied for ET modelling in the past few years. The optimisation 

algorithms, regardless of the class were used to tune the hyper-parameters of the 

machine learning models. Some of the important findings have been 

summarised in Table 2.3 of Section 2.3. 
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2.6 Summary and Research Rationale 

 

Chapter 2 provides a detailed discussion on ET and its 

observation/estimation methods, application of machine learning models in 

estimating ET0, data requirement of machine learning models for ET0 

estimations as well as study of data fusion or ensemble models to compute ET0. 

Individual empirical and machine learning models for ET0 estimation were 

studied and reported based on previous research works. Furthermore, a 

comprehensive analysis on the types of datasets is presented. A case study was 

performed in arid and semi-arid regions to identify the priority ranking of input 

meteorological variables. Apparently, it was established that solar radiation and 

temperature emerged as the two most important factors for the accurate and 

precise ET0 estimation. Numerous ways for integrating data fusion techniques 

on base machine learning models were also studied and discussed. 

 

Careful identification of the research gap or rationale is crucial to 

continue this research work. In this context, several gaps were deemed to be 

filled. Firstly, past studies have shown that areas with different climate patterns 

could have different priority rankings of meteorological variables. However, a 

comprehensive study in equatorial climate has been lacking. Malaysia, which 

largely depends on agricultural production becomes an interesting area of study 

due to its equatorial Monsoon climate. Therefore, it is imperative to determine 

the most influential meteorological factor on ET0 in such a region as an effort 
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to cut down the number of meteorological variables that have to be monitored 

for ET0 estimation. 

 

Machine learning models’ accuracy in ET0 estimation would be 

impaired in the case of limited input meteorological variables, which is 

undesirable. Therefore, the second research gap identified is the lack of a robust 

machine learning model that is resilient towards the reduction of input 

meteorological variables. In view of the situation, data fusion or ensemble 

model is proposed to solve the encountered problem by resampling or 

combining effects of multiple models. In fact, data fusion has not been widely 

used to assemble machine learning models with ground observation data. This 

gap could be filled with this study where different techniques of ensemble 

models are compared to enhance the performance of base machine learning 

models. 

 

Thirdly, the literature review reveals that machine learning models need 

to be trained locally for local use. This means that a spatially robust model for 

ET0 estimation is still absent. Hence, a model with broad spatial applicability 

besides having lower data requirements would be advantageous. This means 

that data need not to be collected for a long period before proceeding with the 

modelling work. The outlined research gaps align well with the problem 

statement mentioned in Section 1.2, in which the qualitative and quantitative 

hungers of the machine learning models need to be addressed and resolved.  



68 

 

 

CHAPTER 3 

 

METHODOLOGY 

 

 

3.1 Research Flow Chart 

 

The aim of this research work is to develop a robust machine learning 

model for the estimation of ET0 with minimum data requirements for Peninsular 

Malaysia. Meteorological data (from 1st January 2000 to 31st December 2019) 

were obtained from the Malaysian Meteorological Department (MMD). After 

performing suitable data pre-processing (cleaning of corrupted data, data 

normalisation), the meteorological data were used to train three base machine 

learning models, namely the MLP, the SVM and the ANFIS. The k-fold cross-

validation was applied to ensure that the models were not biased and overfitted. 

The optimum input combinations were selected as an effort to reduce the 

qualitative hunger of the machine learning models (Objective (i)). 

 

Then, data fusion techniques were employed to improve the 

performance of the base machine learning models. The data centric bootstrap 

aggregating was used to resample the original dataset and the bagged datasets 

were used to train the base models, resulting in the bagged MLP, SVM and 

ANFIS. On the other hand, the model centric BMA and black-box NNE 

combined the ET0 estimations of the base models in an attempt to produce better 
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estimations. The performance of the base and hybrid models was assessed using 

several performance evaluation metrics, such as the MAE, RMSE, MAPE, R2, 

MBE and GPI. Up to this point, all the base and hybrid models were trained and 

tested locally (Objective (ii)). This scenario was named as Scenario 1. 

 

Subsequently, the best models selected at each station were used as 

exogenous models and tested elsewhere. This was known as Scenario 2. This 

step was necessary to confirm the spatial robustness of the developed models 

by checking their performance at other stations (Objective (iii)). At the end of 

this stage, a dominant machine learning model was selected. This dominant 

model was trained using pooled global data (Scenario 3) and tested across the 

whole Peninsular Malaysia (Objective (iv)). Figure 3.1 shows the workflow of 

the overall investigation, including methods performed in this present study. 

The analysis of this study is done using the MATLAB R2016a platform. All the 

codes used in this study are either self-developed or modified from the open-

source codes. 
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Figure 3.1: Overall Workflow of the Research Study
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3.2 Meteorological Station 

 

A total of 12 meteorological stations, which represent around 132265 

km2 of Peninsular Malaysia were selected to be included in this study. Despite 

the fact that including more stations in the investigation can refine the quality 

of the results, however, this study is limited by the amount of data acquired from 

the administration. Nevertheless, the ratio between the area of Peninsular 

Malaysia and the number of meteorological stations in this study fulfilled the 

minimum requirement by the World Meteorological Organisation (WMO) 

(Chacon-Hurtado, Alfonso and Solomatine, 2017). As reported by 

Fatchurrachman, et al. (2022), Peninsular Malaysia has a tropical rainforest 

climate (Af) according to the Köppen climate classification. Table 3.1 shows the 

geographical characteristics of all the meteorological stations and their exact 

locations are shown in Figure 3.2. Throughout this thesis, the stations will be 

mentioned in the form of “Station Station_ID (Station Name)”. For example, 

the first station in Table 3.1 will be Station 48600 (Pulau Langkawi). The 

description of the data obtained is presented in Section 3.3. 
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Table 3.1: Geographical Characteristics of the Selected Stations 

Station ID Station Name Latitude Longitude Elevation (m) 

48600 Pulau Langkawi 6°20’ N 99°44’ E 6.4 

48601 Bayan Lepas 5°18’ N 100°16’ E 2.5 

48603 Alor Setar 6°12’ N 100°24’ E 3.9 

48615 Kota Bharu 6°10’ N 102°18’ E 4.4 

48620 Sitiawan 4°13’ N 100°42’ E 6.8 

48623 Lubok Merbau 4°48’ N 100°54’ E 77.5 

48625 Ipoh 4°34’ N 101°06’ E 40.1 

48632 Cameron Highlands 4°28’ N 101°22’ E 1545.0 

48647 Subang 3°08’ N 101°33’ E 16.6 

48649 Muadzam Shah 3°03’ N 103°05’ E 33.3 

48650 KLIA 2°44’ N 101°42’ E 16.1 

48657 Kuantan 3°46’ N 103°13’ E 15.2 

 

 

Figure 3.2: Locations of the Selected Stations 
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3.3 Data Pre-Processing 

 

Data pre-processing is crucial to ensure that the data used to train the 

machine learning models can meet the necessary requirements. For instance, 

corrupted or absurd data points need to be removed or replaced; data have to be 

normalised to remove the scaling effects; and so on. Otherwise, the “garbage in, 

garbage out” situation may happen during the training process. This section 

outlines the pre-processing steps performed in this study. 

 

3.3.1 Data Acquisition 

 

Meteorological data between 1st January 2000 and 31st December 2019 

were acquired from the Malaysian Meteorological Department (MMD). The 

dataset comprises of daily maximum, minimum and mean temperature (Tmax, 

Tmin and Tmean), daily mean relative humidity (RH), daily mean wind speed (u) 

and daily solar radiation (Rs), as tabulated in Table 3.2. 

Table 3.2: Details of Data Obtained from MMD 

Data Time Step Unit 

Maximum Temperature (Tmax) Daily °C 

Minimum Temperature (Tmin) Daily °C 

Mean Temperature (Tmean) Daily °C 

Mean Relative Humidity (RH) Daily % 

Mean Wind Speed (u) Daily m/s 

Solar Radiation (Rs) Daily MJ/m2 
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3.3.2 Penman-Monteith Model 

 

To train the machine learning models, a standard target must be fed into 

the model. This is also known as supervised learning. In the case of ET0 

prediction, the PM model is deemed to be the standard target as recommended 

by the Food and Agriculture Organisation of the United Nations in FAO56 

(Allan, et al., 1998). The complete equation of the PM model is shown by 

Equation (2.4). The inputs needed for ET0 calculation were computed using the 

meteorological data obtained from the MMD. The results were compared with 

ET0 values obtained from literature to ensure the correctness of computation 

steps. 

 

3.3.3 Normalisation of Data 

 

In the present study, normalisation of data was performed to rescale all 

the input meteorological variables to achieve efficient, unbiased and accurate 

estimation via the removal of the scaling effects. The purpose of rescaling was 

to bind the input meteorological variables of different ranges between 0 and 1, 

corresponding to the minimum and maximum values, respectively. Typically, 

the normalisation can be determined using Equation (3.1). 

 𝑿𝒏𝒐𝒓𝒎 =
𝑿−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (3.1) 

where: 

Xnorm = normalised data vector 

X = original data vector 



75 

 

 

xmax = maximum value in Xnorm 

xmin = minimum value in Xnorm 

 

3.3.4 K-Fold Cross-Validation 

 

To produce results with lower bias or variance, the k-fold cross-

validation was performed to ensure the generalisability of the model in this 

present study. This can be done by partitioning the original dataset into k equal 

parts. The model was trained with (k – 1) parts of the data while it was tested 

using the remaining unseen partition. The k-fold cross-validation allowed all the 

data points in the dataset to have the opportunity to become the training data as 

well as the testing data. As such, the models developed were trained and tested 

with data that had higher diversity and could cater different scenarios. 

 

3.3.5 Input Combinations 

 

A total of six meteorological variables, including Tmax, Tmin, Tmean, RH, 

u and Rs were obtained from the MMD. Hence, 63 possible input combinations 

were formed from the six meteorological variables. All the possible input 

combinations were studied to provide exhaustive preliminary results and avoid 

the possibility of missing out on any potential candidates for optimum input 

combinations. The nomenclatures and details of the 63 possible combinations 

are summarised in Figure 3.3. 
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Figure 3.3: 63 Input Combinations from the Six Meteorological Variables

Meteorological Variables Included
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3.4 Base Model Training 

 

Three base models were studied in this research work, namely the 

multilayer perceptron (MLP), the support vector machine (SVM) and the 

adaptive neuro-fuzzy inference system (ANFIS). These models were selected 

because they were the most common base machine learning models used for 

ET0 estimation. Base models were selected as they required minimal 

computational cost, which could subsequently improve the efficiency of any 

hybrid models built on these foundations. Although tree-based models are also 

simple, however, they were not included as their binary splitting nature was 

more suitable for the classification analysis. On top of that, performing 

regression analysis with tree-based models on a large amount of data would 

result in massive trees that could overfit and require pruning, which could be 

tedious. Hence this study would only proceed with the MLP, the SVM and the 

ANFIS. The technical details of these machine learning models are provided in 

the following subsections. 

 

3.4.1 Multilayer Perceptron 

 

The MLP consists of several layers of neurons, including the input layer, 

the hidden layers and the output layer. The layers of neurons are connected to 

one another via artificial synapses known as weights. Each neuron (except for 

the neurons in the input layer) accepts signals from its precedent neurons. They 

are then excited by an activation function and will decide whether to transmit 
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signal to its subsequent neurons or not. The general mathematical representation 

of the MLP is shown in Equation (3.2). 

 𝒀 = 𝑓(∑ 𝑤𝑖𝑗𝑿 + 𝑏𝑖
𝑛
𝑖=0 ) (3.2) 

where: 

Y = output vector 

X = input vector 

wij = weight connecting ith input to jth neuron of the hidden layer 

bi = ith bias term 

f = activation function 

 

The hyper-parameters of the MLP have to be fine-tuned before 

performing the simulation. The tuning process was carried out using the trial-

and-error method. A general structure of MLP was adopted for all the stations 

and input combinations with the following heuristics: 

• Single hidden layer to simplify the network structure 

• There was always one extra neuron in the hidden layer as compared 

to the input layer 

• Activation function for the MLP was the sigmoid function due to the 

range of output normalised between 0 and 1 

• The Levenberg-Marquardt algorithm was used as the training 

algorithm 
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3.4.2 Support Vector Machine 

 

The SVM works by transforming the available data into a feature space 

using suitable kernel functions. Subsequently, the relationship between the 

inputs and the output can be mapped within the feature space through high-

dimensional regression analysis. In general, Cortes and Vapnik (1995) provided 

the mathematical expression of the SVM and can be expressed in Equation (3.3). 

 𝒀 = 𝒘𝜑(𝑿) + 𝑏 (3.3) 

where: 

Y = output vector 

w = weight vector 

X = input vector 

b = bias term 

φ = kernel function 

 

Similar to the MLP, the hyper-parameters used for the training of the 

SVMs were determined by the trial-and-error method. Specifically, the two 

hyper-parameters tuned in this investigation were the box constraint as well as 

the epsilon (allowable error) of the SVM. By specifying the initialisation of the 

two hyper-parameters, the other hyper-parameters of the SVM were optimised 

by sequential minimal optimisation (SMO). The optimum box constraint should 

be able to cover at least 50 % of the target data and was set to be as wide as the 

normalised value of the interquartile range of the target ET0. On the other hand, 

the epsilon was set to be 10 times narrower than the box constraint. Both values 
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were obtained through a trial-and-error method. The radial basis function (RBF) 

was selected as the kernel function in this study, which was suggested by 

numerous literatures that performed a similar investigation (Fan, et al., 2018; 

Ferreira, et al., 2019). The RBF function is shown in Equation (3.4). 

 𝐾(𝑥𝑛, 𝑥𝑖) = 𝑒𝑥𝑝(– 𝛾||𝑥𝑛– 𝑥𝑖||2 + 𝐶1) (3.4) 

where: 

xn = nth term of the input vector 

xi = ith term of the input vector 

γ, C1 = tuneable hyper-parameters 

 

With the kernel functions selected, the SVM can be optimised by tuning 

the weights and biases in order to minimise the loss function shown in Equation 

(3.5) and Equation (3.6). 

 𝑅 = 0.5||𝒘||2 + 𝐶2 ∑ 𝐿ε(𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙)𝑛
𝑖=1  (3.5) 

 𝐿𝜀(𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑, 𝑦𝑎𝑐𝑡𝑢𝑎𝑙) = {
0, 𝑖𝑓 |𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑦𝑎𝑐𝑡𝑎𝑙| < ε

|𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑦𝑎𝑐𝑡𝑎𝑙|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.6) 

where: 

R = loss function 

0.5||w||2 = regularisation term 

C2 = penalty parameter 

ε = margin of SVM 

Lε = ε-insensitive error function 

yestimated = estimated value of ET0 

yactual = actual value of ET0 
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3.4.3 Adaptive Neuro-Fuzzy Inference System 

 

The ANFIS adopts the ANN methodology for the tuning of the fuzzy 

logic. The ANFIS is similar to the MLP, where the layers are connected by 

weights. In this study, the subtractive clustering method was embedded into the 

ANFIS for optimisation purposes. In comparison with the grid partition method, 

the subtractive clustering method is capable of handling the data by computing 

suitable clusters to minimise the complexity of the problem as a whole. 

Consequently, the modelling efficiency of subtractive clustering ANFIS can be 

improved. The Sugeno fuzzy rule was used in this study, which can be expressed 

in the following form. 

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1 

Rule 2: If x is A2 and y is B2, then f1 = p2x + q2y + r2 

 

The values of pi, qi and ri can be determined by black-box operation 

during the training process. In other words, the purpose of training the ANFIS 

is to explore the correct membership functions for the fuzzification of the inputs 

and then transform the inputs into targeted output via the optimised fuzzy rules. 

 

Since the Sugeno type ANFIS integrated by subtractive clustering 

method was used, the number of membership functions need not to be specified 

as it was determined by the algorithm after the computation of clusters. The 

membership functions and fuzzy rules were optimised through back-
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propagation. However, the Gaussian membership function was chosen for the 

ANFIS to resemble the structure of the SVM. 

 

3.5 Data Fusion 

 

According to Meng, et al. (2020), data fusion can be defined as 

“technology that merges data to obtain more consistent, informative and 

accurate information than the original raw data that are mostly uncertain, 

imprecise, inconsistent, conflicting and alike”. Data fusion is the currently 

trending hybridisation technique to improve the estimating performance of the 

base models. It incorporates algorithms to complement the weaknesses of the 

base models so that their performances can be boosted. This investigation 

applied three data fusion techniques to the base models. The data fusion 

techniques selected were aimed at different possible pitfalls of the base models. 

The three techniques are the bootstrap aggregating (or bagging), the Bayesian 

model averaging (BMA) and the non-linear neural ensemble (NNE). 

 

 

3.5.1 Bootstrap Aggregating 

 

The bootstrap aggregating, commonly known as bagging, is an 

algorithm that involves the resampling of data for training multiple base models. 

The bootstrap aggregating was chosen as the data centric approach as this data 

fusion technique would alter the structure of the original dataset before it is used 
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to train the individual models. As such, the effect of data structure can be 

evaluated. At the end of the training, the estimations of the base models are 

aggregated by simple averaging to reduce the bias of the training sets. Strictly 

speaking, the bootstrap aggregating alters and diversifies the structure of the 

original training data so that the aggregated model can be exposed to different 

scenarios. In other words, the models developed using this data fusion technique 

are data centric models. For the purpose of this study, ten bags of data were 

resampled from the kth training set to produce ten identical models learning 

using different bags of data. The ten models were aggregated by simple 

averaging. The mathematical expression of the bootstrap aggregating is 

provided as shown in Equation (3.7) (Breiman, 1996). 

 𝑦 =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  (3.7) 

where: 

y = aggregated estimation 

yi = estimation of ith model 

n = number of bags/models 

 

3.5.2 Bayesian Model Averaging 

 

Each model has its way of performing estimation and that would result 

in different accuracies as the intrinsic theory varies. The difference in 

performance can be viewed as the correctness or the appropriateness of the 

model for a particular estimation task. The BMA takes advantage of such 

characteristics and combines the estimations of different models by assigning 
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weights to the models based on their correctness. The BMA believes that there 

exists a true model that can explain the phenomenon (estimation of ET0 for this 

study). If this perfectly true model does not exist, it can be created by computing 

the weighted average of the outputs produced by different models. The weights 

assigned by the BMA algorithm are determined by calculating the probability 

distribution function of the models. In other words, this data fusion technique 

aims to improve the estimation by looking for a better model instead of altering 

the data structure as seen in the bootstrap aggregating. This is also known as the 

model centric approach. To obtain the weights of the models participating in the 

end hybrid model, firstly, the posterior probabilities of the models for each 

combination can be calculated using Equation (3.8), as proposed by Kass and 

Raftery (1995). 

 𝑃(𝑀𝑖|𝑦) =
𝑃(𝑦|𝑀𝑖)𝑃(𝑀𝑖)

∑ 𝑃(𝑦|𝑀𝑗)𝑃(𝑀𝑗)2𝑛
𝑗=1

 (3.8) 

where: 

P(Mi|y) = posterior model probability of ith model 

P(Mi) = prior model probability of ith model 

P(y|Mi) = marginal likelihood of ith model 

P(y|Mj) = marginal likelihood of model with jth combination 

P(Mj) = prior model probability with jth input combination 

n = total number of meteorological variables 

 

The weights of the constituent models can be obtained by normalising 

the posterior model probabilities of the models that are subjected to the same 
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condition (same input) as shown in Equation (3.9). The sum of the weights of 

the models with the same training condition should be unity. Subsequently, the 

averaged ET0 estimation can be obtained using Equation (3.10). 

 𝑤𝑖 =
𝑃(𝑀𝑖|𝑦)

∑ 𝑃(𝑀𝑖|𝑦)𝑛
𝑖=1

 (3.9) 

 𝑦 = ∑ 𝑤𝑖𝑦𝑖
𝑛
𝑖=1  (3.10) 

where: 

wi = weight of ith model 

n = number of models with the same training condition (same input combination) 

y = estimation after data fusion 

yi = estimation of ith model 

 

The BMA can be converted to the Bayesian model selection (BMS) by 

naively selecting the model with the highest posterior probability. 

 

3.5.3 Non-Linear Neural Ensemble 

 

The third data fusion approach used in this study is the NNE. The NNE 

does not have any statistical basis unlike the bootstrap aggregating and the BMA. 

The individual machine learning models are hybridised via black-box operation 

through a neural network, in contrast to the conventional statistical way of 

performing data fusion. In a preliminary investigation of this research work, it 

was found that the stochastic enabled ELM using the whale optimisation 

algorithm (WOA) had the best performance when it comes to ET0 estimation, 
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where the accuracy of the estimation and the time cost were optimal (Chia, 

Huang and Koo, 2021b). Therefore, the ELM integrated with WOA (WOA-

ELM) was utilised to hybridise the MLP, SVM and ANFIS to develop an 

ensemble. The mathematical expression of the ELM, as proposed by Huang, 

Zhu and Siew (2006), is shown in Equation (3.11). 

 𝒀 = ℎ(𝑿)𝜷 (3.11) 

where: 

Y = output vector 

h(X) = sum of output from each hidden neurons fed with input vector 

β = bias vector 

 

An ELM consists of only one layer of hidden neurons, with all the hyper-

parameters initialised at random. The absence of stochastic training in the 

algorithm of the ELM increases the risk of the model converging to various 

local optima instead of the desired global optimum. Hence, the WOA algorithm 

was used to complement this disadvantage and provide a continuous 

improvement mechanism for the base ELM. This can help to converge the 

model to the global optimum by increasing the iteration steps in the optimisation 

algorithm. The reason for selecting the WOA from all the swarm intelligence 

was because only three parameters (logarithmic spiral constant, number of 

iterations, distance between whales) need to be adjusted throughout the whole 

optimisation process. This number was considered low as compared to other 

swarm-based optimisation algorithms. Besides, the WOA had been tested on 29 

different test functions to prove its stability, making it one of the most tested 
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optimisation algorithms for engineering applications. The detailed comparison 

of WOA with other optimisation algorithms can be found in a review by 

Johnvictor, et al. (2020). Equation (3.12) to Equation (3.14) proposed by 

Mirjalili and Lewis (2016) show the steps to search and update the position of 

the global optimum (target or prey). 

 𝑿𝒕+𝟏 = 𝑿𝒓𝒂𝒏𝒅 + 𝑨|𝑪𝑿𝒓𝒂𝒏𝒅 − 𝑋𝑡| (3.12) 

 𝑨 = 2𝒂𝒓 − 𝒂 (3.13) 

 𝑪 = 2𝒓 (3.14) 

where: 

X = position vector of the search agents (whales) 

A, C = vectors of coefficient 

r = randomised vector between 0 and 1 

a = shrinking vector from 2 to 0 linearly throughout the iteration process 

 

In order to capture the prey, the search agents would shrink their bubble 

net, and this will only happen when |A| is sufficiently small. The best position 

of the global optimum will be updated using Equation (3.15). 

 𝑿𝒕+𝟏 = {
𝑿𝒕

∗ − 𝑨|𝑪𝑿𝒕
∗ − 𝑿𝒕|, 𝑤ℎ𝑒𝑛 𝑝 < 0.5

|𝑿𝒕
∗ − 𝑿𝒕|𝑒𝑏𝐿 cos(2πL) + 𝑿𝒕

∗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.15) 

where: 

Xt
* = best position vector at iteration t 

b = shape parameter of the bubble net 

L = spiral coefficient 

p = randomised value between 0 and 1 
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The random parameter p was used to imitate the natural behaviour of the 

whales in their marine habitat. The piecewise function shown in Equation (3.15) 

assigns a 50:50 chance for the whales to attack their prey. If the whales are not 

exploiting for the prey (approaching the global optimum), then they will 

continue to encircle the prey and wait for the next chance (exploration phase). 

By incorporating the WOA to the ELM, it helps to optimise the hyper-

parameters within the ELM model so that they are better suited for the 

hybridisation of multiple models. 

 

To improve the position of the prey after each iteration, a fitness function 

has to be evaluated to assess the goodness of the current position. Numerous 

fitness functions have been developed to assess the fitness from different 

perspectives, including the mean square error (MSE) and Taylor’s skills score 

(TSS). In this investigation, a fitness function that evaluates the positions from 

multiple aspects was selected as shown in Equation (3.16). Equation (3.16) was 

designed such that it had the advantage of a single-objective optimisation 

(efficient computation) and also multi-objective optimisation (involves 

competing aspects of a model). It incorporated the competitive nature of 

different metrics to achieve the optimum balance between accuracy and 

generalisability. 

 Fitness = (MAE + RMSE) × (1 – R2) (3.16) 

where: 

MAE = mean absolute error 

RMSE = root mean square error 
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R2 = coefficient of determination 

 

The role of the optimisation algorithm is to minimise the fitness function. 

By reaching that objective, as shown in Equation (3.16), the mean absolute error 

(MAE) and root mean square error (RMSE) would converge to the minimum 

point, whereas the coefficient of determination (R2) would approach a 

maximum value of 1. The sum of MAE and RMSE are taken instead of their 

product due to the fact that both of these metrics measure the deviation of 

estimated ET0 from the actual ET0 and exist in the same dimension as each other 

(Chia, Huang and Koo, 2021b). The working mechanism of the WOA-ELM is 

shown in Figure 3.4. 

 

Figure 3.4: Mechanism of the WOA-ELM 
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3.6 Training Scenario 

 

Various training scenarios were designed to assess the robustness of the 

developed models under different circumstances. Specifically, the developed 

model should be less data-hungry and adapt well when exposed to different data 

or deployed in different areas. The three proposed simulating scenarios adopted 

are explained in this section. Note that the k-fold cross-validation was 

performed in each of the scenarios. Hence, the training and testing set ratio was 

set to be 9:1 for each fold, where all data points had the opportunity to be the 

testing data (in rotation). 

 

3.6.1 Scenario 1: Training and Testing with Local Data 

 

The MLP, SVM and ANFIS were trained using local data in accordance 

with the k-fold cross-validation described in Section 3.3.4. All the available data 

in one station were partitioned into k (10) folds with one of the partitions being 

used for testing purposes, while the others were used for training, in rotation. 

Subsequently, the data fusion techniques were also applied accordingly to the 

data from respective stations to train and test the hybrid models locally. 

 

3.6.2 Scenario 2: Estimation of ET0 using Exogenous Models 

 

To assess the robustness of the models in a comparatively global 

condition, trained and tested models at all the stations were deployed at different 
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stations. For example, the model trained at Station 48600 (Pulau Langkawi) was 

used to estimate the ET0 at Station 48601 (Bayan Lepas) and other stations. Due 

to the large number of possible models, only the best models selected at one 

station were used for further testing. The models were selected from a list of 

candidates which include different base and hybrid models trained with various 

combinations of input meteorological variables. Six models were chosen at 

every station, representing the six different number of input meteorological 

variables. 

 

The rationale of designing Scenario 2 was one of the efforts to counter 

the lack of data or infrastructures in certain regions. The readiness of the 

exogenously trained model to be used at another station would be desirable for 

eliminating the training phase at a new area (station) and the model is deemed 

to be less data hungry. 

 

3.6.3 Scenario 3: Model with Pooled Global Data 

 

As an initiative to combat the lack of data and infrastructures, Scenario 

3 was designed with the purpose of increasing the amount of data by forming a 

pool of global data. In other words, the models will not be trained independently 

at every station with their own local data. In fact, the model was trained once 

(for each variant and input combination) using the globally pooled data. The 

global data pool was formed by combining data collected from different stations 

into a single dataset. The data were randomly shuffled to remove possible 
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patterns in the data at different stations. The models trained using the global 

data pool were tested at different stations to assess their robustness. 

 

3.7 Performance Evaluation 

 

To assess the performance of the machine learning models (base and 

hybrid), several performance evaluation metrics were used to grade the models 

from different aspects. The details and purpose of the selected metrics are 

described in the following subsections. 

 

3.7.1 Mean Absolute Error 

 

The MAE measures the differences between estimated ET0 and actual 

ET0. MAE which has a smaller magnitude indicates that the estimated ET0 

values are close to the actual values of ET0, and vice versa. The calculation of 

MAE is shown in Equation (3.17). 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖|

𝑁
𝑖=1  (3.17) 

where: 

yestimated,i = ith estimated value of ET0 

yactual,i = ith actual value of ET0 

N = number of observations 
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3.7.2 Root Mean Square Error 

 

The RMSE was used to detect large errors. As compared to the MAE, 

the RMSE assigns higher weightage to errors with larger magnitude by using 

the sum of square errors. Ideally, the RMSE should be as small as possible and 

close to the value of MAE. Difference between the RMSE and the MAE implies 

that there are many large errors within the estimation. The RMSE can be 

calculated using Equation (3.18). 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖)2𝑁

𝑖=1  (3.18) 

 

3.7.3 Mean Absolute Percentage Error 

 

The magnitude of MAE shows the exact Euclidean distance of the 

estimated ET0 from the actual ET0. The magnitude of MAE is often governed 

by the scale of the subject of interest (actual data with a high magnitude would 

scale up the MAE). Hence, the mean absolute percentage error (MAPE) is 

introduced to normalise the scaling effect. The MAPE converts the MAE into 

relative error by percentage through the normalisation against the actual value 

as shown in Equation (3.19). 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖−𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖|

𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖
× 100 %𝑁

𝑖=1  (3.19) 
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3.7.4 Mean Bias Error 

 

The mean bias error (MBE) has similar attributes as the MAE. However, 

the MBE takes the direction of error (either underestimate or overestimate) into 

consideration. In other words, by calculating the MBE metrics, one should have 

a clearer view of the generalised error of the model, whether the model tends to 

estimate a higher ET0 or vice versa. An MBE value of zero does not mean that 

there is no error, instead, it means that the underestimation is as much as 

overestimation, which implies that the model is not biased to any of the 

directions. The MBE can be computed using Equation (3.20) 

 𝑀𝐵𝐸 =
1

𝑁
∑ (𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖)

𝑁
𝑖=1  (3.20) 

 

3.7.5 Coefficient of Determination 

 

The R2 indicates the goodness-of-fit of the model. It ranges from 0 to 1, 

where the value indicates the proportion of the data explainable by or well fitted 

to a specific model. The R2 value closer to 1 is more desirable, and it can be 

calculated based on Equation (3.21). 

 𝑅2 = (
∑ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖−�̅�𝑎𝑐𝑡𝑢𝑎𝑙)(𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖−�̅�𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)𝑁

𝑖=1

√∑ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙,𝑖−�̅�𝑎𝑐𝑡𝑢𝑎𝑙)2𝑁
𝑖=1 ∑ (𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖−�̅�𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2𝑁

𝑖=1

)2 (3.21) 

where: 

�̅�𝑎𝑐𝑡𝑢𝑎𝑙 = mean value of actual ET0 

�̅�𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = mean value of estimated ET0 
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3.7.6 Global Performance Indicator 

 

It is important to have a performance evaluation metric that can compare 

different models comprehensively by considering all the aspects. The global 

performance indicator (GPI) introduced by Despotovic, et al. (2015) allows for 

such comparison. The advantages of the GPI as compared to other performance 

evaluation metrics are that it provides a comprehensive comparison that 

encompasses different aspects of the models and using the GPI eases the 

comparison with the median model. During the calculation of the GPI, the 

performance evaluation metrics of the models of interest were normalised from 

0 to 1 using an equation like Equation (3.1). Then, the scaled performances of 

the models were compared with the median performance to calculate the GPI 

score. The GPI score can be determined using Equation (3.22). 

 𝐺𝑃𝐼 = ∑ 𝛼𝑗(�̅�𝑗 − 𝑦𝑖𝑗)𝑁
𝑖=1  (3.22) 

where: 

N = number of models 

�̅�𝑗 = median value of the jth scaled performance metric 

yij = jth scaled performance metric of ith model 

αj = coefficient for jth scaled performance metric (equals to 1 except for R2) 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

4.1 Performance of Base Models at Different Stations 

 

The base MLP, SVM and ANFIS were trained and tested using the 

various input combinations at different stations under Scenario 1. In the 

following subsections, the effects of input meteorological variables, comparison 

of the base models as well as the selection of optimum input combinations are 

discussed. 

 

4.1.1 Effect of Input Meteorological Variables 

 

Six meteorological variables collected from the MMD were used to 

create a total of 63 input combinations for model training. The MLP, SVM and 

ANFIS were trained according to the k-fold cross-validation algorithm. The 

performance of the MLP is summarised in Figure 4.1. The actual values are 

available in Appendix A (Table A1 – A12). 

 

Figure 4.1(a) to Figure 4.1 (c) show the MAE, RMSE and MAPE of the 

estimations of the MLP at different stations, respectively. A darker tone in the 

heat maps indicates a higher error and vice versa. The performance of the MLP 
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using C1 to C63 can be examined by analysing Figure 4.1(a) to Figure 4.1(c) 

column-by-column. The MAE of the MLP’s estimations ranged from 0.0236 

mm/day to 0.8457 mm/day whereas the RMSE ranged between 0.0289 mm/day 

and 1.0645 mm/day. Low MAE and RMSE values are found to be concentrated 

at the left-hand side of the heat maps, which correspond to the input 

combinations that consist of higher number of meteorological variables. The 

results are reasonable such that by providing more meteorological variables to 

the MLP, the model will be able to fetch more information from the inputs given. 

That is to say, to develop a good machine learning model for ET0 estimation at 

different stations in Peninsular Malaysia, more meteorological variables have 

to be collected. 
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(a) 

 
(b) 
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(c) 

 
(d) 
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(e) 

 
Figure 4.1: (a) MAE, (b) RMSE, (c) MAPE, (d) R2 and (e) MBE of MLP Estimation at Different Stations with Different Input 

Combinations 
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In general, the error distribution in Figure 4.1(a) is similar to Figure 

4.1(b) whereby Station 48600 (Pulau Langkawi), Station 48601 (Bayan Lepas), 

Station 48603 (Alor Setar) and Station 48615 (Kota Bharu) registered the 

highest MAE and RMSE when the number of input meteorological variables 

were lesser (C50 onwards). However, when the errors were rectified by 

calculating the MAPE, Station 48647 (Subang), Station 48649 (Muadzam Shah), 

Station 48650 (KLIA) and Station 48657 (Kuantan) had the highest MAPE 

among the 12 stations as shown in Figure 4.1(c) (C50 onwards as well). In other 

words, the MLP could estimate better in the northern regions than the stations 

located in the central Peninsular Malaysia. 

 

In terms of generalisability, the MLP performed well in which the model 

could achieve R2 values of at least 0.60. Nevertheless, there are some exceptions 

observed. When trained using the input combinations C50, C59 and C62, the 

MLP had rather poor performance. This could be explained by the absence of 

key meteorological variables, which will be discussed later. From the aspect of 

the MBE, the MLP registered a maximum underestimation of -0.0126 mm/day 

and could overestimate up to 0.0159 mm/day. These values correspond to a bias 

of -0.33 % and 0.39 % at their respective stations, which can be considered 

insignificant. It is interesting to note that the occurrence of underestimation 

(blue) and overestimation (red) increased as the number of meteorological 

variables fed as inputs was reduced. On top of that, estimation bias consistently 

appeared in the MLP estimation of ET0 at Station 48620 (Sitiawan). 
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By observing Figure 4.1(a) to Figure 4.1(d), it can be seen that dark 

columns periodically appear irrespective of the stations tested. For instance, 

dark bands (poor performance) appeared at C7, followed by C12, C16, C19, 

C21, C22 and so on. When referring Figure 3.3, the mutual characteristic of 

these input combinations is the absence of Rs as one of the input meteorological 

variables. In other words, Rs can be claimed as the key meteorological variable 

in the estimation of ET0 in Peninsular Malaysia by using the MLP. This also 

explains the low R2 value attained for C50, C59 and C62. In fact, C50 is the 

union set of C59 and C62, which consist of only u and Tmin, respectively. Further 

deduction can be made to imply that the u and Tmin are the two least important 

features for ET0 estimation in Peninsular Malaysia. 

 

The finding of the key and least essential meteorological variables for 

ET0 estimation shall be supported by scientific theory as a step forward to 

reduce the opacity of the black-box operation of machine learning based 

estimation. Ndiaye, et al. (2017) analysed the sensitivity of the ET0 towards the 

change in meteorological variables in the region of Burkina Faso, which had a 

similar climate pattern to that of Peninsular Malaysia. The authors reported that 

the Rs was the most influential meteorological variable on the ET0. On top of 

that, RH would become important during dry seasons which corresponded to 

low vapour pressure. In Kenya, it was argued that the Rs alone represented 

multiple scenarios that could probably affect the ET0 (Odongo, et al., 2019). 

The authors stated that low Rs could be due to the increase in the cloud coverage 

as well as the aerosols. In other words, that would be well associated with low 
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surface temperature and higher RH. This situation had made Rs the key 

meteorological variables that dictate the regime of the ET0. 

 

Besides looking at areas with similar climates to Peninsular Malaysia, 

Pour, et al. (2020) performed a thorough analysis to study the relationship of 

different meteorological variables in Peninsular Malaysia itself. The trend 

analysis showed that the Rs correlated well with the ET0 where both exhibited 

close to identical trends throughout the study period, whereas the RH had a 

reversed trend as compared to the ET0. Moreover, the results for sensitivity of 

ET0 towards the other meteorological variables were actually the opposite of 

that reported in Burkina Faso (Ndiaye, et al., 2017). Pour, et al. (2020) 

discovered that in Peninsular Malaysia, the Rs and the RH were least influential 

towards the ET0, which contradicted their findings in the trend analysis. 

However, the authors did not provide any further explanation on this matter. 

 

The results in this study point to the fact that Rs is the key or essential 

meteorological variable for estimating ET0 in Peninsular Malaysia using the 

MLP. This finding is in agreement with all the cited research works, except for 

the sensitivity analysis of Pour, et al. (2020). This discrepancy could be due to 

the high associative relationship between the time series data of ET0 and Rs in 

the study by Pour, et al. (2020). Furthermore, despite having similar seasonal 

trends, the fluctuation of Rs in the study is very low, as compared to the ET0. 

Therefore, the change in the trend of the ET0 would be mainly driven by the 

anomaly that occurred in other meteorological variables. The significant 
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deviations in other meteorological variables would result in a coercive change 

in the values of ET0 that could not be accurately estimated by the MLP fed with 

only Rs. 

 

Besides matching many empirical sensitivity studies, the discovery of 

the Rs to be the key features for ET0 estimation also aligns well with the nature 

of the ET process. Essentially, incoming radiation from the Sun is the sole 

energy input to drive water depletion from the Earth’s surface (Cascone, et al., 

2019). Moreover, the Rs in Peninsular Malaysia is less prone to seasonal 

variation due to the geographical characteristic close to the Equator (Pour, et al., 

2020). In fact, the ET is also strongly affected by other environmental 

conditions such as temperature and humidity. Nevertheless, this study revealed 

that the MLP was able to perform good estimations of ET0 at various locations 

with only the Rs as input. This is because the other environmental conditions 

(temperature and humidity) depend on the Rs. In other words, the change Rs 

value alone can actually be translated to the change in temperature or humidity. 

High Rs would correspond to high temperature, which would in turn decrease 

the value of RH. The MLP can be improved by increasing the number of 

“complementary” meteorological variables in the training data as an effort to 

provide more explanatory features on the environmental conditions. 

 

Of all the six meteorological variables used in this research work, only 

the u is independent of the Rs. However, in Peninsular Malaysia, the average 
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value of u is relatively low, and that in turn reduces its contribution towards the 

ET. 

 

The study on the effect of input meteorological variables provides a clear 

picture that can enhance prioritisation during the data collection process. The Rs 

should be collected as it is the key meteorological variable for ET0 estimation, 

followed by other complementary meteorological variables in Peninsular 

Malaysia. It is noteworthy that the complementary meteorological variables 

needed to further enhance the ET0 estimations were different across the whole 

study area. In other words, for different stations, the optimum input 

combinations could be different. Discussion on this finding will be presented in 

this thesis in Section 4.1.3.  

 

4.1.2 Comparison of Base Models 

 

Besides training the MLP, the scope of this study also encompasses 

other base models, namely the SVM and the ANFIS. The training methodology 

was identical for all the models investigated. The performances of the SVM and 

the ANFIS are provided in Figure 4.2 and Figure 4.3, respectively. The actual 

value of MAE, RMSE, MAPE, R2 and MBE are available in Appendix A (Table 

A13 – A24 for SVM, Table A25 – A36 for ANFIS). 
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(c) 

 
(d) 
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(e) 

 
Figure 4.2: (a) MAE, (b) RMSE, (c) MAPE, (d) R2 and (e) MBE of SVM Estimation at Different Stations with Different Input 

Combinations
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(a) 

 
(b) 
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(c) 

 
(d) 
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(e) 

 

Figure 4.3: (a) MAE, (b) RMSE, (c) MAPE, (d) R2 and (e) MBE of ANFIS Estimation at Different Stations with Different Input 

Combinations
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The SVM and ANFIS exhibited similar traits to the MLP discussed 

previously. Darker bands appeared in the heat map of MAE, RMSE, MAPE and 

R2 periodically when the essential Rs was missing from the input combinations. 

However, by comparing the performances of the models numerically, 

significant differences are discovered. 

 

In comparison with the MLP, the SVM, generally estimated less 

accurately particularly for the cases with higher number of input meteorological 

variables. This phenomenon can be observed from Figure 4.2(c), where the 

MAPE of SVM is as high as 25 %. This was contributed by the high MAE as 

well as RMSE of the SVM estimated ET0. For instance, the MAE and RMSE 

of the ET0 estimated at Station 48603 (Alor Setar) by the MLP using C1 as input 

combination were 0.0277 mm/day and 0.0357 mm/day, respectively, whereas 

the corresponding values of the SVM were 0.0437 mm/day and 0.0538 mm/day. 

Despite having higher estimation errors with C1, the performance of the SVM 

did not deteriorate much as the number of input meteorological variables 

decreased. In fact, when using C44 as the input combination, the MLP registered 

MAE and RMSE of 0.1383 mm/day and 0.1835 mm/day, in which the 

performance declined significantly as compared to the C1 with all 

meteorological variables as input (MAPE increased by 2.5835 %). On the 

contrary, the MAE and RMSE of the SVM with the same condition are 0.1376 

mm/day and 0.1835 mm/day. The resultant decrement in accuracy (MAPE 

increased by 2.1954 %) was not as bad as the MLP. In fact, the accuracy of the 

SVM was higher than the MLP in this case (i.e., C44). This suggests that the 
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SVM has better generalisability and resilience towards the reduction of input 

meteorological variables. A similar phenomenon also can be observed from the 

lower variance of the R2 values at different stations when ET0 was estimated 

using the SVM with different input combinations. 

 

The performance of the SVM can be explained by examining the 

working mechanism of the model itself. The SVM transforms data into a feature 

space by using the kernel function (the RBF function for this study). Estimation 

of the SVM is accomplished by selecting a support vector structure that can 

minimise the risk or loss function. In other words, the SVM performs regression 

analysis by viewing the feature space as a big picture in contrast to the point-

by-point adjustment of the MLP. The high generalisability and robustness of 

SVM allow it to be used for many cases, but at the same time sacrifices the 

possibility of achieving very high accuracy (which could also be overfitting). 

 

Nevertheless, a major pitfall appears to be existing in the SVM. Figure 

4.2(e) shows that the SVM had the tendency to overestimate ET0 when the input 

meteorological variables were lesser. Besides, when comparing Figure 4.2(e) 

with Figure 4.1(e), it can be observed that the MBEs of the SVM’s estimations 

(ranged between -0.15 mm/day to 0.2 mm/day) were higher than those of the 

MLP (ranged between -0.015 mm/day to 0.015 mm/day). This could be 

attributed to the relatively lower accuracy of the SVM, which consequentially 

affects the MBE of the SVM. 
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The performance of the ANFIS is illustrated by the heat maps shown in 

Figure 4.3. The ANFIS shares similar structure with the MLP, whereby they are 

composed of neural networks. The distinct feature of the ANFIS from the MLP 

is that the neural network of the ANFIS is used to tune the fuzzy rules and the 

membership functions instead of the weights and biases. The utilisation of the 

fuzzy rules in the ANFIS allows the description of the data in terms of likelihood. 

 

Like the SVM, the MAE and RMSE of the ET0 estimation by the ANFIS 

at Station 48603 (Alor Setar) using C1 as the input combination were 0.0438 

mm/day and 0.0586 mm/day, respectively, which were relatively higher than 

those of the MLP. This corresponds to the MAPE of 1.0241 %. On the contrary, 

when C44 was used as the input combination, the MAPE only reduced by 

2.1995 % (2.5835 % for MLP) with the MAE and RMSE, standing at 0.1379 

mm/day and 0.1834 mm/day, respectively. Yet again, the MLP was 

outperformed by another model when input meteorological variables were 

reduced. 

 

It is interesting to note that the ANFIS can successfully overcome the 

problem of bias error. The MBE of the ANFIS estimated ET0 at all stations 

mostly lied between -0.002 mm/day and 0.002 mm/day with very few 

exceptions. Furthermore, the MBE of the ANFIS’s estimations appeared to be 

unaffected by the input combinations. This observation could justify the 

versatility of the ANFIS towards various input combinations that renders its 

robustness and generalisability. 
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4.1.3 Selection of Input Combinations 

 

As illustrated in Figure 4.1, Figure 4.2 and Figure 4.3, there were 63 

input combinations tested at each station for the estimation of ET0. The use of 

different input combinations resulted in the variance in the output accuracy, 

even though the same machine learning model was employed. For screening 

purposes, this study utilised the BMS algorithm to select the best input 

combinations in different scenarios. 

 

Specifically, C1 will be selected for the scenario when all the six 

meteorological variables are available for making ET0 estimation. When only 

five meteorological variables are available, the best input combination will be 

selected from C2 to C7 and so on. The selection was made based on the posterior 

model probability depicted in Equation (3.8). The best input combinations for 

each scenario at different stations are summarised in Table 4.1. 

 

According to Table 4.1, at all of the studied stations, it was agreed that 

C1, C4 and C58 were the best input combinations when six, five and one 

meteorological variables were fed into the models, respectively. The C4 

combination removed the Tmean from the input dataset, whereas C58 only used 

the key Rs as the sole meteorological variable. When only four meteorological 

variables were fed into the MLP, SVM and ANFIS, C13 was selected as the 

best input combination except for Station 48623 (Lubok Merbau) and Station 
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48649 (Muadzam Shah) that opted for C17. The combination C13 removed Tmin 

from C4, whereas the C17 combination excluded the RH from C4. 

 

On the other hand, for the MLP, SVM and ANFIS trained with only 

three meteorological variables, 83.33 % of the studied stations favoured C33, 

which was a result of the exclusion of RH from C13. This echoed the 

phenomenon observed when four meteorological variables were used to 

estimate ET0, where the Tmin and RH were selectively removed from the input 

combination. However, Station 48600 (Pulau Langkawi) and Station 48601 

(Bayan Lepas) preferred to use C23 as the input combination, whereby all the 

temperature variables were omitted. 

 

As for the input combinations that consist of only two meteorological 

variables, the discrepancy among the stations widens. There were three different 

input combinations selected at this stage, namely C43 (41.67 %), C44 (50 %) 

and C53 (8.33 %). Station 48632 (Cameron Highlands), located at higher 

altitudes, stood out amongst the other stations and used C53 for a two-variable 

estimation of ET0. The C53 combination consists of Tmax and Rs, which could 

be essential for the ET0 process at highland due to the lower average temperature 

throughout the year. The stations located in the northern region and east coast 

of Peninsular Malaysia, namely Station 48600 (Pulau Langkawi), Station 48601 

(Bayan Lepas), Station 48603 (Alor Setar), Station 48615 (Kota Bharu), Station 

48649 (Muadzam Shah) and Station 48657 (Kuantan) preferred to use C44. The 

C44 includes RH and Rs whereby the RH is another important driving force of 
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the ET process, and it also appeared in C1, C4 and C13. The other stations which 

are not located at the northern region and east coast of Peninsular Malaysia, 

including Station 48620 (Sitiawan), Station 48623 (Lubok Merbau), Station 

48625 (Ipoh), Station 48647 (Subang) and Station 48650 (KLIA) used C43 that 

was composed of Rs and u. It was explained in the previous sub-section that the 

Rs, being the key meteorological variable could encompass the effect of many 

other meteorological variables except for the u variable. Hence for the two-

variable estimation, it is reasonable to complement the Rs using u. 

Table 4.1: Best Input Combination using Different Number of Input 

Meteorological Variables at Different Stations 

Stations 
Number of Meteorological Variables 

6 5 4 3 2 1 

Station 48600 (Pulau Langkawi) C1 C4 C13 C23 C44 C58 

Station 48601 (Bayan Lepas) C1 C4 C13 C23 C44 C58 

Station 48603 (Alor Setar) C1 C4 C13 C33 C44 C58 

Station 48615 (Kota Bharu) C1 C4 C13 C33 C44 C58 

Station 48620 (Sitiawan) C1 C4 C13 C33 C43 C58 

Station 48623 (Lubok Merbau) C1 C4 C17 C33 C43 C58 

Station 48625 (Ipoh) C1 C4 C13 C33 C43 C58 

Station 48632 (Cameron Highlands) C1 C4 C13 C33 C53 C58 

Station 48647 (Subang) C1 C4 C13 C33 C43 C58 

Station 48649 (Muadzam Shah) C1 C4 C17 C33 C43 C58 

Station 48650 (KLIA) C1 C4 C13 C33 C44 C58 

Station 48657 (Kuantan) C1 C4 C13 C33 C44 C58 

 

By observing the sets of best input combinations, the 12 studied stations 

can be grouped accordingly into five different clusters. Stations that preferred 

the same set of input combinations were grouped into the same cluster. For 

example, both Station 48600 (Pulau Langkawi) and Station 48601 (Bayan 

Lepas) had the best input combinations of C1, C4, C13, C23, C44 and C58. 

Therefore, the two stations were being classified into the same cluster. The 



118 

 

 

clustering done in this context did not involve soft computing algorithms, but 

merely based on the observation of the preferred sets of input combinations of 

the 12 stations. This allows a closer look at the common characteristics of the 

stations and deduces the relationship among the stations. Table 4.2 shows the 

studied stations arranged in their respective clusters. 

Table 4.2: Clustering of Stations Based on Best Input Combinations 

Cluster Station Remark 

Cluster 1 Station 48603 (Alor Setar) 

Station 48615 (Kota Bharu) 

Station 48650 (KLIA) 

Station 48657 (Kuantan) 

Meteorological Stations 

in Airport 

Cluster 2 Station 48620 (Sitiawan) 

Station 48625 (Ipoh) 

Station 48647 (Subang) 

Urban Area 

Cluster 3 Station 48600 (Pulau Langkawi) 

Station 48601 (Bayan Lepas) 

Island 

Cluster 4 Station 48623 (Lubok Merbau) 

Station 48649 (Muadzam Shah) 

Thick Vegetation 

Cluster 5 Station 48632 (Cameron Highlands) Highland 

 

Although the stations can be grouped into clusters, it is important to note 

that there are large intersections between the clusters. For example, Cluster 1 

and Cluster 2 only differed when ET0 was estimated using five meteorological 

variables whereas Cluster 2 and Cluster 3 have only two disagreements in 

selecting the best input combinations. Clustering provides a better 

understanding on the relationship between the stations but not the ultimate 

guideline. 

 

Undeniably, applying the BMS for input combinations screening has 

successfully eliminated 57 less promising input combinations at each station. 
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This effort would improve the computational efficiency where the researchers 

and the authorities need not look at all the meteorological variables when 

estimating ET0 in the future. Although there was partial disagreement among 

the studied stations when two, three, and four meteorological variables were 

used for training, one can still generalise the preferred input combination based 

on the number of votes each combination gets. 

 

At this point, modelling works (training and testing) that involved the 

base MLP, SVM, and ANFIS have reached an end. The following sections will 

discuss the hybridisation of the base models to improve the model performance 

from different aspects. Also, the modelling work would not cover all the 

possible 63 input combinations, but only stress on the best input combinations 

obtained from the BMS screening (as shown in Table 4.1) as the unselected 

input combinations would produce less accurate estimations. 

 

4.2 Data Fusion I: Bootstrap Aggregating 

 

The data centric bootstrap aggregating was applied to the base MLP, 

SVM and ANFIS to observe its effects on the models’ performance by altering 

the structure of the training data. The findings of this part of the study are 

described in the following subsections. 
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4.2.1 Bootstrap Aggregating with MLP 

 

The MLP with a similar structure was trained using bootstrapped dataset 

to investigate the effects of the data fusion technique. However, instead of 

performing model training using all the input combinations, only the best input 

combinations were selected based on the clustering analysis that was done 

previously. The improvement of the bagged MLP (BMLP) model is 

summarised as in Figure 4.4 to Figure 4.8 (Cluster 1 to Cluster 5) whereas the 

actual values of the performance metrics are compiled in Appendix B (Table B1 

– B5). The stations were grouped into clusters to investigate the effect of 

geographical characteristics on the response towards the integration of various 

data fusion techniques. The change in MBE was not included as the MBE only 

reflects the direction of bias estimation and would be less meaningful for 

measuring the improvement of the BMLP. 

 

Unfortunately, the bootstrap aggregating did not consistently improve 

the performance of the MLP. As shown in Figure 4.4 to Figure 4.8, it can be 

observed that irrespective of the clusters (except for Cluster 2), most of the 

stations experienced an increment in the MAE, RMSE and MAPE when the 

trained BMLP was used to estimate ET0. The error metrics increased by at most 

2 % for all stations, except for Station 48601 (Bayan Lepas). The maximum 

increase in error for Station 48601 (Bayan Lepas) could reach as high as 

approximately 9 %. 
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On the other hand, the values of the R2 were less affected by the use of 

the BMLP. In most of the cases, the R2 values were close to those of the MLP. 

This could be due to the ability of the BMLP to maintain its generalisability as 

a high number of examples was shown to the model during the training process. 

The large number of training data fed into the BMLP helped to prevent the 

model from being “used to” and becoming biased to a small portion of the 

dataset. However, higher deviations of the R2 values were witnessed when the 

number of meteorological variables was reduced. A significant drop in the R2 

value occurred when the BMLP was fed with only the Rs variable. Although the 

drop in the R2 was within an acceptable range in most of the stations, the BMLP 

trained in Station 48601 (Bayan Lepas) once again stood out where the 

reduction of R2 was as much as 7.32 %. Furthermore, the R2 of the BMLP in 

Station 48601 (Bayan Lepas) was also reduced by 8.26 % when fed with two 

meteorological variables, namely Rs and RH. 

 

As for Cluster 2, the BMLP slightly improved the base MLP and this 

effect was only obvious in Station 48620 (Sitiawan) whereby a maximum 

reduction of MAE, RMSE and MAPE of about 3 % was achieved. However, 

the positive effect gradually faded away as the numbers of input meteorological 

variables were reduced. 
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Figure 4.4: Changes in MAE, RMSE, MAPE and R2 of BMLP (in %) based on MLP for Stations in Cluster 1 
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Figure 4.5: Changes in MAE, RMSE, MAPE and R2 of BMLP (in %) based on MLP for Stations in Cluster 2 
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Figure 4.6: Changes in MAE, RMSE, MAPE and R2 of BMLP (in %) based on MLP for Stations in Cluster 3 
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Figure 4.7: Changes in MAE, RMSE, MAPE and R2 of BMLP (in %) based on MLP for Stations in Cluster 4 
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Figure 4.8: Changes in MAE, RMSE, MAPE and R2 of BMLP (in %) based on MLP for Stations in Cluster 5 
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To sum up, the bootstrap aggregating did not establish itself as a 

universal solution to improve the ET0 estimation accuracy in Peninsular 

Malaysia. On the contrary, the BMLP exhibited a weaker performance than the 

base MLP. However, the inability of bootstrap aggregating to show its effect 

could be due to the excellent performance of the base MLP. The effectiveness 

of the bootstrap aggregating is yet to be confirmed using other poorer models 

such as the SVM and the ANFIS. 

 

 

4.2.2 Bootstrap Aggregating with SVM 

 

Similar to the BMLP, the same bootstrapped dataset was used to train 

and test the SVM developed in the previous stage. The bagged SVM (BSVM) 

models evaluated at different stations were compared with the base SVM, and 

the improvement caused by the bootstrap aggregating hybridisation approach is 

shown in Figure 4.9 to Figure 4.13. The exact values of the performance metrics 

can be found in Appendix B (Table B6 – B10). 

 

As shown in the figures, the integration of the bootstrap aggregating to 

develop BSVM returned discouraging results. There was a clear pattern in the 

improvement (or deterioration) in the performance of the BSVM as compared 

to the base SVM. Generally, the BSVM had poorer performance than the base 

SVM at all the investigated stations, except for Station 48620 (Sitiawan) and 

Station 48632 (Cameron Highlands) whereby the R2 was slightly improved 
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(approximate 0.06 % to 0.07 %). Nevertheless, any attempts to prevent the error 

metrics from decreasing would result in a decrement in the R2 values. From 

Table B6 to Table B10, it can be seen that lower MAE, RMSE and MAPE were 

normally associated with lower R2. This could be attributed to the overfitting of 

the BSVM when lesser meteorological variables were fed as input (C43, C44, 

C53 and C58), which was similar to the finding of other published work (Logue 

and Manandhar, 2018). The maximum reduction in R2 happened in Station 

48649 (Muadzam Shah), which was about 1 % when C58 was used as the input 

combination. 

 

On the other hand, attempts to maintain the generalisability of the 

BSVM (as shown in the high R2 value) would instead deteriorate the accuracy 

of the models. The MAE, RMSE and MAPE of the BSVM trained using these 

input combinations experienced a maximum increase of about 2.06 %, 2.58 % 

and 2.06 %, respectively. The increase in the error metrics suggested that the 

accuracy of the BSVM had been reduced. However, the changes in the R2 values 

were negligible. This reflects that the BSVM could not enhance ET0 estimations 

in terms of accuracy and generalisability simultaneously. 

 

Although the BSVM also experienced some degree of performance 

deterioration as compared to the base SVM, it was not as bad as that of the 

BMLP. This could be caused by the nature of the SVM which has high 

generalisability, and consequentially enhances its resilience towards overfitting 

or less accurate estimation. The comparison between the BSVM and SVM 
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showed observable but insignificant differences. Nevertheless, these results 

showed that the bootstrap aggregating data fusion technique failed to boost the 

performance of the model. The reasoning for this discovery is worthy of further 

in-depth discussion. 

 

The poor performance of the BSVM confirmed that the data centric 

approach (bootstrap aggregating) is somehow not suitable for the hybridisation 

of base models to achieve better ET0 estimation. It can be inferred that the 

current structure of the available dataset is sufficiently good without any 

processing or augmentation of data required. Performing bootstrap aggregating 

on the current dataset bears the risk of increasing the number of outliers, which 

could hamper or inhibit the development of a good and robust model. This 

opinion was suggested by Grandvalet (2004). It was stated in the study that the 

bootstrap aggregating equalises the influences of all observations, whereby 

good and bad data points would have equal weightages. This results in the 

deterioration effect, if the outliers in the original dataset have higher influences 

in the bootstrapped dataset. 
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Figure 4.9: Changes in MAE, RMSE, MAPE and R2 of BSVM (in %) based on SVM for Stations in Cluster 1 
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Figure 4.10: Changes in MAE, RMSE, MAPE and R2 of BSVM (in %) based on SVM for Stations in Cluster 2 



132 

 

 

 

Figure 4.11: Changes in MAE, RMSE, MAPE and R2 of BSVM (in %) based on SVM for Stations in Cluster 3 
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Figure 4.12: Changes in MAE, RMSE, MAPE and R2 of BSVM (in %) based on SVM for Stations in Cluster 4 
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Figure 4.13: Changes in MAE, RMSE, MAPE and R2 of BSVM (in %) based on SVM for Stations in Cluster 5
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 Besides, Skurichina, Kuncheva and Duin (2002) claimed that the 

bootstrap aggregating can only be useful if the size of the dataset is in proportion 

with the problems’ dimensionalities. It means that lesser data would be required 

for simple problems and vice versa. The SVM, which is well-known for its good 

generalisability had its R2 reduced when lesser meteorological variables were 

fed as inputs. This is in agreement with the claim of Skurichina, Kuncheva and 

Duin (2002), whereby when the dimensionality of the problem is reduced (lower 

number of input meteorological variables), lesser data are required (bootstrap 

aggregating not required). This conclusion had been reached by other studies 

(Belayneh, et al., 2016). In the case of the current study, the number of samples 

within the original dataset had already overwhelmed the problem’s 

dimensionality (maximum of six) and therefore bootstrap aggregating seemed 

to be a redundant data fusion technique. 

 

4.2.3 Bootstrap Aggregating with ANFIS 

 

Despite the pitfalls experienced by the bootstrap aggregating on the 

MLP and the SVM, it was still desirable to investigate how the bootstrap 

aggregating would behave when it is being used as the data fusion technique to 

hybridise the ANFIS. The improvement of bagged ANFIS (BANFIS) models 

as compared to the base ANFIS are illustrated in Figure 4.14 to Figure 4.18, for 

different clusters. The actual values are available in Appendix B (Table B11 – 

Table B15). 
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Surprisingly, the BANFIS achieved significant improvement, which 

contrasted with the situation of the BMLP and BSVM. For Cluster 1 and Cluster 

5, improvements in MAE, RMSE, MAPE and R2 were observed for various 

input combinations. The reduction in MAE, RMSE and MAPE could be as high 

as 2.5 % coupled with maintained R2 values. This phenomenon, however, did 

not appear in the case of Cluster 2, Cluster 3 and Cluster 4. 

 

For the improvement shown in Cluster 1 and Cluster 5, the ET0 

estimation using the BANFIS was improved in terms of accuracy or model 

generalisability except when C1 was used as the input combination. This could 

be due to the fact that the performance of ANFIS trained using C4, C13, C33, 

C44, C53 and C58 had relatively poor performance which made them have 

greater room for improvement when bootstrap aggregating was integrated. On 

the contrary, the performance of ANFIS fed with C1 had comparably better 

performance, which resulted in the deterioration in model accuracy and 

generalisability after the integration of the bootstrap aggregating data fusion 

technique. 
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Figure 4.14: Changes in MAE, RMSE, MAPE and R2 of BANFIS (in %) based on ANFIS for Stations in Cluster 1 
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Figure 4.15: Changes in MAE, RMSE, MAPE and R2 of BANFIS (in %) based on ANFIS for Stations in Cluster 2 
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Figure 4.16: Changes in MAE, RMSE, MAPE and R2 of BANFIS (in %) based on ANFIS for Stations in Cluster 3 
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Figure 4.17: Changes in MAE, RMSE, MAPE and R2 of BANFIS (in %) based on ANFIS for Stations in Cluster 4 
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Figure 4.18: Changes in MAE, RMSE, MAPE and R2 of BANFIS (in %) based on ANFIS for Stations in Cluster 5
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For Cluster 3 (Figure 4.16) and Cluster 4 (Figure 4.17), it is observable 

that the bootstrap aggregating had multiple effects on the ANFIS, depending on 

the selection of input combinations. Whereas for Cluster 2 (Figure 4.15), the 

BANFIS generally had poorer performance than the base ANFIS. This finding, 

in fact, was parallel to those found in the BMLP and BSVM. Overall speaking, 

the bootstrap aggregating data fusion technique had heterogeneous impact on 

the ANFIS, as shown by the comparison between the BANFIS and base ANFIS 

at stations of different clusters. 

 

4.2.4 Summary 

 

The integration of the bootstrap aggregating data fusion technique to 

each of the base MLP, SVM and ANFIS had caused some impacts. Overall, the 

BMLP, BSVM and BANFIS had performed slightly worse than their 

corresponding base model. Nonetheless, the degree of accuracy and 

generalisability of the models were still satisfactory. 

 

Although the BMLP and the BANFIS had significantly improved 

performance at certain meteorological stations, this inference that the data 

centric approach was not an effective data fusion technique in the context of 

ET0 estimation remained intact. This deduction is further supported by past 

literature which suggests that the bootstrap aggregating can only be helpful 

when there is an appropriate ratio between the size of dataset and the 

dimensionality of the problem. In fact, naively bootstrapping the sample bears 



143 

 

 

the risk of assigning higher influences to the “bad” leverages, which could be 

detrimental to the model’s accuracy. 

 

To sum up, the bootstrap aggregating is not a suitable data fusion 

technique if a better ET0 estimating model is desired. The structure of the 

available data obtained from the authority is sufficiently good, without any 

alteration, modification or augmentation performed on it. 

 

4.3 Data Fusion II: Bayesian Model Averaging 

 

Besides the data centric bootstrap aggregating, another data fusion 

technique, the BMA was also integrated into the base models. Unlike the 

bootstrap aggregating that altered the data structure, the BMA aggregates the 

participating models and produces a better estimation of the ET0. The details of 

the findings are reported in the subsections below. 

 

4.3.1 Bayesian Weight 

The posterior probability of the MLP, SVM and ANFIS fed with 

different input combinations can be obtained using Equation (3.8). 

Subsequently, the weight of each model can be calculated by comparing the 

relative magnitude of their posterior probabilities (Equation (3.9) and Equation 

(3.10)). The Bayesian weights of the base MLP, SVM and ANFIS at different 

meteorological stations using different numbers of input meteorological 
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variables are tabulated in Table 4.3, where the sum of the Bayesian weights for 

different models using a particular input combination is unity. 

 

From Table 4.3, it can be seen that the Bayesian weight assignments for 

the MLP, SVM and ANFIS are unique at different meteorological stations. In 

fact, the clustering effect (as shown in the selection of input combination) was 

not evident in the case of the Bayesian weight assignment. For instance, the 

distribution of Bayesian weights across the MLP, SVM and ANFIS were 

different for Station 48603 (Alor Setar), Station 48615 (Kota Bharu), Station 

48650 (KLIA) and Station 48657 (Kuantan), even though all of these stations 

were from Cluster 1. 

 

It is important to note that the MLP was usually given the highest weight. 

This coincides with the fact that the MLP outperformed the other two models in 

the comparison among the base models. However, as the number of input 

meteorological variables reduced, the dominance of the MLP decreased 

accordingly. The rarefaction left behind by the shrinkage of the MLP’s 

dominance was filled by the other two base models, whereby the ANFIS seemed 

to be favoured over the SVM. The Bayesian weight of the ANFIS gradually 

increased as the number of input meteorological variables was reduced. This is 

because the performance of the ANFIS was at par with the MLP when lesser 

meteorological variables were used due to it being more resilient towards the 

reduction of input meteorological variables. 
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As opposed to the case of the ANFIS, the SVM did not receive much 

attention from the model centric BMA approach. This could be due to the nature 

of SVM, which tends to take a balance between accuracy and generalisability. 

This, in turn, results in the SVM being a model without any “outstanding traits” 

to be justified with a higher Bayesian weight. Nevertheless, an exception 

occurred at Station 48620 (Sitiawan) where the SVM was given high Bayesian 

weights, regardless of the number of input meteorological variables. This could 

be traced back to the exceptionally excellent performance of the SVM at the 

aforementioned station (refer to Appendix A). 

 

It is worth mentioning that if the Bayesian weight of unity is given to a 

particular model, it means that the BMA approach is converted into the BMS 

approach. The Bayesian modelling approach identifies the model as the one and 

only “true” model from all the model candidates. This had happened several 

times for the MLP, especially when the number of input meteorological 

variables was relatively high. Nonetheless, the qualification of “true” model can 

be changed if the Bayesian modelling approach is shown with different sets of 

candidates, and so are the Bayesian weights. Hence, the results tabulated in 

Table 4.3 may not be reproducible if models other than the MLP, SVM and 

ANFIS are included in the candidature set. 
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Table 4.3: Bayesian Weights for MLP, SVM and ANFIS at Different 

Meteorological Stations Using Different Number of Input Meteorological 

Variables 

Station Model 
Number of Input Meteorological Variables 

6 5 4 3 2 1 

Station 48600 

(Pulau 

Langkawi) 

MLP 1.0000 1.0000 0.0064 - 0.6777 0.4742 

SVM - - 0.9936 1.0000 0.0045 - 

ANFIS - - - - 0.3178 0.5258 

Station 48601 

(Bayan Lepas) 

MLP 1.0000 1.0000 1.0000 0.9989 0.9973 0.4713 

SVM - - - 0.0011 0.0027 - 

ANFIS - - - - - 0.5287 

Station 48603 

(Alor Setar) 

MLP 1.0000 1.0000 1.0000 1.0000 0.3057 0.4440 

SVM - - - - 0.3027 - 

ANFIS - - - - 0.3916 0.5560 

Station 48615 

(Kota Bharu) 

MLP 1.0000 1.0000 0.9998 0.4450 0.8105 0.3658 

SVM - - 0.0002 0.2430 0.1448 0.0001 

ANFIS - - - 0.3120 0.0447 0.6341 

Station 48620 

(Sitiawan) 

MLP 0.3781 - - - - - 

SVM 0.6219 1.0000 1.0000 1.0000 0.9891 0.9999 

ANFIS - - - - 0.0109 0.0001 

Station 48623 

(Lubok 

Merbau) 

MLP 1.0000 1.0000 1.0000 1.0000 0.9683 0.7355 

SVM - - - - - - 

ANFIS - - - - 0.0317 0.2645 

Station 48625 

(Ipoh) 

MLP 1.0000 1.0000 1.0000 0.9989 0.0011 0.4576 

SVM - - - 0.0011 - - 

ANFIS - - - - 0.9989 0.6570 

Station 48632 

(Cameron 

Highlands) 

MLP 1.0000 1.0000 1.0000 1.0000 0.0891 0.8123 

SVM - - - - - - 

ANFIS - - - - 0.9109 0.1877 

Station 48647 

(Subang) 

MLP 1.0000 1.0000 1.0000 1.0000 0.2873 0.6294 

SVM - - - - 0.0060 0.0128 

ANFIS - - - - 0.7067 0.3578 

Station 48649 

(Muadzam 

Shah) 

MLP 1.0000 1.0000 1.0000 1.0000 0.3143 0.3501 

SVM - - - - 0.0001 0.0476 

ANFIS - - - - 0.6856 0.6023 

Station 48650 

(KLIA) 

MLP 1.0000 1.0000 1.0000 1.0000 0.9399 0.3430 

SVM - - - - 0.0001 - 

ANFIS - - - - 0.0601 0.6570 

Station 48657 

(Kuantan) 

MLP 1.0000 1.0000 1.0000 0.9996 0.8692 0.5659 

SVM - - - - 0.0495 0.0373 

ANFIS - - - 0.0004 0.0813 0.3968 
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Inter-model ensemble can be built by using the assigned Bayesian 

weights. In this study, the inter-model ensemble developed using the model 

centric BMA approach will be abbreviated as BMA-E, where the “BMA” 

represents the method, while “E” is short for ensemble. 

 

4.3.2 Inter-Model Ensemble using BMA 

 

The performance of BMA-E was studied at different stations, using their 

preferred input combinations according to the clustering effect. The 

performance of the BMA-E, in terms of MAE, RMSE, MAPE, R2 and MBE for 

the stations in different clusters, are summarised in Figure 4.19 to Figure 4.23. 

The exact values of the performance evaluation metrics can be referred to 

Appendix C. 
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Figure 4.19: Performance of BMA-E in ET0 Estimation using Different Input Combinations for Stations in Cluster 1 
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Figure 4.20: Performance of BMA-E in ET0 Estimation using Different Input Combinations for Stations in Cluster 2 
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Figure 4.21: Performance of BMA-E in ET0 Estimation using Different Input Combinations for Stations in Cluster 3 
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Figure 4.22: Performance of BMA-E in ET0 Estimation using Different Input Combinations for Stations in Cluster 4 



152 

 

 

 

Figure 4.23: Performance of BMA-E in ET0 Estimation using Different Input Combinations for Stations in Cluster 5 
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As compared to the base MLP, SVM and ANFIS, the BMA-E evidently 

enhanced the ET0 estimation, as shown in Figure 4.19 to Figure 4.23. There 

were several cases whereby the BMA algorithm was switched to BMS as shown 

by the assignment of a unity weight, comparison of such BMA-E is less 

meaningful as the resultant BMA-E merely inherited the performance of the 

selected base models. This can be observed from Table 4.3 where some models 

were given Bayesian weights of 1. Attention shall be given to the BMA-E where 

several base models were involved in the decision committee. 

 

For illustration purposes, the BMA-E developed at Station 48603 (Alor 

Setar) using the C44 as the input combination was chosen for the detailed 

explanation. In this BMA-E, the MLP, SVM and ANFIS were assigned with 

Bayesian weights of 0.3057, 0.3027 and 0.3916, respectively (refer to Table 4.3). 

In other words, the BMA algorithm opined that the ANFIS was the most truthful 

model with 39.16 % confidence, followed by MLP (30.57 %) and SVM 

(30.27 %). Again, the Bayesian weights assigned were solely based on the 

available model candidates, which can be different if another set is given. 

Although not remarkable, the BMA-E exhibited better performance at almost 

all aspects as compared to the base models. The comparison of the BMA-E with 

the base models is summarised in Table 4.4. 

 

Table 4.4 clearly shows how the BMA algorithm managed to combine 

the beneficial attributes or characteristics of different base models to produce a 

better decision committee. In this case, the base SVM exhibited good accuracy 
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with low MAE and MAPE values. However, this model also suffered from the 

lack of generalisability as depicted by the obvious overfitting. On the other hand, 

the MLP and ANFIS excelled in maintaining high R2 and low MBE which 

corresponded to good generalisability. As a result, the BMA-E which 

considered all the three models in its decision committee managed to achieve 

better accuracy than the SVM alone, at the same time had its generalisability 

improved by the inclusion of the MLP and ANFIS. The BMA-E in fact, 

outperformed all its constituent base models. Although the improvement was 

marginal, however, this proved that the model centric data fusion technique 

based on the BMA showed a positive and promising impact in improving the 

estimation of ET0. 

Table 4.4: Comparison of BMA-E with the Base Models at Station 48603 

(Alor Setar) using C44 as Input Combination 

Model 
MAE 

(mm/day) 

RMSE 

(mm/day) 

MAPE 

(%) 
R2 

MBE 

(mm/day) 

BMA-E 0.1373 0.1826 3.2080 0.9707 -0.0026 

MLP 0.1383 0.1835 3.2312 0.9704 -0.0011 

SVM 0.1376 0.1835 3.2160 0.9705 -0.0072 

ANFIS 0.1379 0.1834 3.2236 0.9703 -0.0000 

 

Besides, there were also several occasions where only two of the base 

models were considered by the BMA algorithm. This can be seen in the BMA-

E developed at Station 48603 (Alor Setar) when C58 as the input combination 

(Table 4.5). In this case, the BMA algorithm was confident that the MLP was 

44.40 % true, while the remaining 56.60 % confidence was given to the ANFIS 

(Bayesian weights can be referred from Table 4.3). 
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Table 4.5: Comparison of BMA-E with the Base Models at Station 48603 

(Alor Setar) using C58 as Input Combination 

Model 
MAE 

(mm/day) 

RMSE 

(mm/day) 

MAPE 

(%) 
R2 

MBE 

(mm/day) 

BMA-E 0.2588 0.3620 6.0474 0.8848 -0.0005 

MLP 0.2589 0.3622 6.0496 0.8848 -0.0012 

SVM 0.2499 0.3744 5.8405 0.8839 -0.0840 

ANFIS 0.2591 0.3621 6.0538 0.8847 -0.0000 

 

The BMA algorithm omitted the SVM in this case, probably due to the 

extremely high MBE which could possibly deteriorate the performance of the 

BMA-E as a whole. Hence, by only comparing the BMA-E with the base MLP 

and ANFIS, the BMA data fusion technique once again proved its ability in 

improving the ET0 performance based on the desirable properties of the selected 

constituent base models. 

 

4.3.3 Summary 

 

Figure 4.19 to Figure 4.23 show the overall performance of the BMA-E 

at different stations using their preferred input combinations (according to 

clusters) was satisfying. This is the combinatory effect of the selection of 

suitable input combinations, coupled with the positive influence brought about 

by the integration of the BMA algorithm. This study has proved the feasibility 

of this model centric data fusion approach for better ET0 estimation in 

Peninsular Malaysia. In fact, the Bayesian weights of the models in the 

ensemble were revealed, for the first time in the article published under this 

research work (Chia, Huang and Koo, 2021a). This is inspired by a previous 
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work that utilised the Bayesian-based algorithms for ET estimation using the 

product of remote sensing database (He, et al., 2020; Sun, et al., 2019). This 

makes the resultant machine learning model (BMA-E) more explainable and 

can be studied at greater resolution by the scientific community. 

 

Nevertheless, through this research work, the shortcomings of the BMA 

data fusion technique were also exposed. Firstly, it is difficult for the BMA data 

fusion technique to include all the models as its constituents. Consequentially, 

some favourable properties of the neglected or omitted models are being 

sacrificed in the process of developing the BMA-E. Most of the time, this 

algorithm is reasonable in ensuring the optimum performance of the ensemble. 

However, this would also hamper the propagation of information extracted by 

the base models into the ensemble. In other words, the rigid structure of BMA 

data fusion technique lacks the flexibility in dealing with the noble 

characteristics of its possible constituent models. 

 

Secondly, the rigidity of the BMA data fusion technique had resulted on 

many occasions where the BMA-E were not technically hybrid models or 

ensembles. This can be seen in many cases when the Bayesian weight of 1 was 

given to only one model (MLP in most of the cases). That is to say, the so-called 

BMA-E was only inheriting everything from the MLP instead of being a hybrid 

model. This had caused many hybridisations failing to take place and 

enhancement in ET0 estimation cannot be realised. Having said that, the 
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statistics-based BMA data fusion technique is still preferred over the base 

models, given a conducive modelling environment and favourable conditions. 

 

4.4 Data Fusion III: Non-Linear Neural Ensemble 

 

Like the BMA, the NNE also improves the estimation of ET0 by 

aggregating the outputs of the individual base models. However, it does not 

have any statistical theory or rule to govern the process of the aggregation. This 

study used a separate neural network as the meta-learner that performed the 

aggregation. The following subsection is dedicated to analysing and discussing 

the results for this part of the research work. 

 

4.4.1 WOA-ELM as Meta-Learner 

 

Unlike the data centric bootstrap aggregation and the model centric 

BMA, the NNE approaches the problem by resorting to the black-box operation 

(hence the name non-linear). In this study, a novel meta-learner was developed 

as the “black-box agent” to complete the NNE. The ELM, an efficient variant 

of ANN was hybridised using the metaheuristic WOA. The output of the base 

MLP, SVM and ANFIS was fed into the WOA-ELM meta-learner, which 

resulted in the final NNE-based hybrid model, addressed as the WOA-ELM-E 

in the text. 
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The ELM contained a single hidden layer with a tuneable number of 

hidden neurons. By using the WOA, the number of hidden neurons was fine-

tuned through a feedback mechanism based on a fitness value calculated using 

Equation 3.16. Hence, the stochastic training attribute was inculcated into the 

base ELM to enable it to have the self-tune ability. The “secondary” training 

stage allowed the WOA-ELM-E to have a second look at the target values in 

the training data. This enabled it to make appropriate adjustments in the WOA-

ELM meta-learner for better ET0 estimation. This distinguishes the WOA-

ELM-E from the bootstrap aggregating (mere transformation of data structure) 

and the BMA (mere combination of models by posterior probability). 

 

4.4.2 Inter-Model Ensemble using NNE 

 

Like the bootstrap aggregating and the BMA, the WOA-ELM-E were 

tested at different stations according to their affiliated clusters. The performance 

of the WOA-ELM-E, measured in terms of MAE, RMSE, MAPE, R2 and MBE 

are presented as heat maps as shown in Figure 4.24 to Figure 4.28. The 

numerical values of the performance evaluation metrics can be consulted at 

Appendix D (Table D1 – Table D5). 

 

It was well-proven in Section 4.3 that the model centric BMA-E was 

performing better than the individual base MLP, SVM and ANFIS. Hence, if 

the WOA-ELM-E managed to outperform the BMA-E, it would also mean that 

the WOA-ELM-E has better performance than the base models. 
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Figure 4.24: Performance of WOA-ELM-E in ET0 Estimation using Different Input Combinations for Stations in Cluster 1 
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Figure 4.25: Performance of WOA-ELM-E in ET0 Estimation using Different Input Combinations for Stations in Cluster 2 
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Figure 4.26: Performance of WOA-ELM-E in ET0 Estimation using Different Input Combinations for Stations in Cluster 3 
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Figure 4.27: Performance of WOA-ELM-E in ET0 Estimation using Different Input Combinations for Stations in Cluster 4 
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Figure 4.28: Performance of WOA-ELM-E in ET0 Estimation using Different Input Combinations for Stations in Cluster 5 
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From Figure 4.24 to Figure 4.28, it was observable that the MBE of the 

WOA-ELM-E decreased to the 10-4 scale as compared to the 10-3 scale of the 

BMA-E. This means that the bias of WOA-ELM-E’s estimations of ET0 was 

even lower than those of BMA-E’s. Comparing the WOA-ELM-E and BMA-E, 

the former had better generalisation ability that could cope with data from all 

clusters. 

 

Meanwhile, the R2 of the WOA-ELM-E was comparable to the BMA-

E, which means that both ensembles fit well into the data of each station, 

whereby different input combinations have been considered. On the other hand, 

the error metrics, including the MAE, RMSE and MAPE showed improvement 

when the model centric BMA data fusion was replaced with the black-box NNE 

approach. 

 

4.4.3 Summary 

 

It should be clear that the improvement in the generalisability would 

mean that some degrees of accuracy must be sacrificed. Conversely, the low 

error reported could indicate the risk of overfitting (Belkin, et al., 2019). Thus, 

it is less practical if the developed machine learning models are evaluated and 

compared from separate aspects. For instance, model A could outperform model 

B in terms of accuracy, but at the same time lose out in terms of generalisability. 

Therefore, in this study, the author adopted an all-rounded comparison approach 

to assess the developed models in a fairer and more comprehensive environment. 
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A scoring system introduced by Despotovic, et al. (2015), known as the GPI, 

was calculated for every model. The positive-oriented GPI was inclusive of all 

the performance evaluation metrics used in this study and can provide an overall 

score for the models. In this study, the GPI scores of the models were calculated 

based on the normalised values of the performance evaluation metrics according 

to the different number of input meteorological variables. The comparison of 

GPI scores of the models developed in this research work (MLP, SVM, ANFIS, 

BMLP, BSVM, BANFIS, BMA-E and WOA-ELM-E) are shown in Figure 4.29 

to Figure 4.33 (from Cluster 1 to Cluster 5). The actual values of the GPI can 

be referred to Appendix D (Table D6 to Table D10). 

 

Figure 4.29: GPI Scores of Different Machine Learning Models at Stations 

in Cluster 1 
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Figure 4.30: GPI Scores of Different Machine Learning Models at Stations 

in Cluster 2 

 

 

Figure 4.31: GPI Scores of Different Machine Learning Models at Stations 

in Cluster 3 
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Figure 4.32: GPI Scores of Different Machine Learning Models at Stations 

in Cluster 4 

 

 

Figure 4.33: GPI Scores of Different Machine Learning Models at Stations 

in Cluster 5 

 

In Figure 4.29 to Figure 4.33, WOA-ELM-E appeared to be the most 

stable model that maintained constantly in the upper bracket in terms of the GPI 

values. This can be used as strong evidence to justify the NNE developed in this 

study as a promising tool in improving the estimation of ET0 in various regions 

in Peninsular Malaysia, even though with only one input meteorological 
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variable (the essential Rs). Another inter-model ensemble, the BMA-E also had 

satisfactory performance in most cases. However, the performance of the BMA-

E was strongly correlated to the performance of the base models, in which their 

poor performance would result in a poor BMA-E (Chen, et al., 2015). This can 

be clearly seen at Station 48620 (Sitiawan) in Figure 4.30. The BMA-E had low 

GPI as the base model also performed poorly at that station. 

 

The base MLP appeared to be sufficient for ET0 estimation at some of 

the stations, such as Station 48623 (Lubok Merbau). A similar observation is 

obtained for the BMLP. However, the performance of the MLP and BMLP was 

not as stable as the BMA-E or WOA-ELM-E. In other words, the outstanding 

performance of MLP and BMLP are only exceptions that happened in certain 

regions only. 

 

Table 4.6 tabulates the best model for daily ET0 estimation at all stations. 

The WOA-ELM-E was selected as the best ET0 estimating model at most of the 

stations, regardless of the number of input meteorological variables. On the 

contrary, the BMA-E was only selected when the number of input 

meteorological variables was low. This is because the BMA-E could only 

manage to improve the model when different weights were assigned to different 

base models. Consequently, the favourable traits of different base models can 

be incorporated into the BMA-E to achieve estimations with higher quality. 

Although BMA-E was also selected at Station 48601 (Bayan Lepas) and Station 

48603 (Alor Setar) for six and five input meteorological variables, respectively, 
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however, the BMA-E was merely the MLP as the Bayesian weight of a unit was 

given to the MLP in both cases. As for the other models such as the MLP, BMLP 

and ANFIS, they were selected in some cases where they perform better 

marginally than the WOA-ELM-E and the BMA-E. Therefore, a conclusion can 

be reached at this stage, in which the WOA-ELM-E was the best ET0 estimating 

model in Peninsular Malaysia, in which it has wider spatial applicability among 

the eight models developed in this study. 

 

The next section of this thesis will discuss the transferability of the 

locally developed WOA-ELM-E at external stations to investigate their spatial 

robustness. In other words, the local ET0 values were estimated using 

exogenous models to eliminate the need for local data collection and model 

development/calibration. 
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Table 4.6: Best Models at Different Stations using Different Numbers of Input Meteorological Variables 

Station 
Number of Meteorological Variables 

1 2 3 4 5 6 

Station 48600 (Pulau Langkawi) WOA-ELM-E BMA-E WOA-ELM-E WOA-ELM-E WOA-ELM-E MLP 

Station 48601 (Bayan Lepas) BMA-E MLP WOA-ELM-E BMLP WOA-ELM-E BMA-E 

Station 48603 (Alor Setar) BMA-E WOA-ELM-E WOA-ELM-E WOA-ELM-E BMA-E WOA-ELM-E 

Station 48615 (Kota Bharu) ANFIS WOA-ELM-E WOA-ELM-E WOA-ELM-E WOA-ELM-E WOA-ELM-E 

Station 48620 (Sitiawan) WOA-ELM-E WOA-ELM-E WOA-ELM-E WOA-ELM-E WOA-ELM-E WOA-ELM-E 

Station 48623 (Lubok Merbau) MLP WOA-ELM-E WOA-ELM-E WOA-ELM-E WOA-ELM-E WOA-ELM-E 

Station 48625 (Ipoh) MLP BMA-E WOA-ELM-E WOA-ELM-E WOA-ELM-E WOA-ELM-E 

Station 48632 (Cameron Highlands) WOA-ELM-E WOA-ELM-E WOA-ELM-E WOA-ELM-E WOA-ELM-E WOA-ELM-E 

Station 48647 (Subang) WOA-ELM-E WOA-ELM-E WOA-ELM-E BMA-E WOA-ELM-E MLP 

Station 48649 (Muadzam Shah) WOA-ELM-E BMA-E MLP WOA-ELM-E WOA-ELM-E WOA-ELM-E 

Station 48650 (KLIA) WOA-ELM-E BMA-E WOA-ELM-E WOA-ELM-E WOA-ELM-E MLP 

Station 48657 (Kuantan) WOA-ELM-E BMA-E WOA-ELM-E BMLP BMLP WOA-ELM-E 
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4.5 Models Transferability 

 

Results and discussion from Section 4.1 to Section 4.4 focussed on 

Scenario 1, in which the machine learning models (both base and hybrid) were 

trained and tested locally. However, in order to curb the issue of qualitative data 

hunger, the machine learning models should be transferable. In other words, 

they must be spatially robust so that they can be applied elsewhere other than 

the location where they were trained. In this section, results involving Scenario 

2 and Scenario 3 will be discussed further to prove the spatial robustness of the 

machine learning models developed in this research work. 

 

4.5.1 Performance of Exogenous Models (Scenario 2) 

 

This section is dedicated to discussing the transferability of locally 

developed models to external stations. That is to say, the exogenous models 

were used to estimate the local ET0 in an effort to avoid local model 

development in the future. To test the robustness of the exogenous models by 

using a stricter standard, the input combinations fed to the exogenous models 

(for ET0 estimation) were the best input combinations obtained in their stations 

of origin. For instance, the best model using two input meteorological variables 

at Station 48620 (Sitiawan) was the WOA-ELM-E with C43 being used as the 

input combination. When this model was tested in another station, say Station 

48600 (Pulau Langkawi), C43 of Station 48600 (Pulau Langkawi) was used as 

the input to the model although Station 48600 (Pulau Langkawi) was 
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categorised in Cluster 3 that preferred C44 as the input combination for two 

meteorological variables. This was to simulate a more realistic scenario in 

which meteorological data will be collected according to the requirement of the 

exogenous models in the future. In this study, this part is known as Scenario 2, 

whereby the ET0 was not estimated by a locally trained model anymore (the 

exogenous model instead). The tested exogenous models were based on the 

results presented in Table 4.6. 

 

Figure 4.34 illustrates the performance of the exogenous models at 

different stations in terms of the GPI using different numbers of meteorological 

variables in the form of heat maps. The actual GPI values can be consulted in 

Appendix E (Table E6, Table E12, Table E18, Table E24, Table E30 and Table 

E36). In Figure 4.34, lighter tones correspond to higher GPI (better performance) 

and vice versa. The heat maps can be read horizontally and vertically. By 

reading horizontally, one can be informed on the performance of the best models 

trained at different stations when they were tested at other stations. Conversely, 

a vertical view of the heat maps contains information on the dependency of the 

stations on the locally trained model. For instance, if there is a vertical dark 

band on any of the stations, it means that the exogenous model performed poorly 

(low GPI) at that station, and that station would need a locally trained model for 

its ET0 estimation. 
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(e) 

 
(f) 

 
Figure 4.34: GPI Score for Cross-Station Testing using Best Models 

Trained at Different Stations with (a) Six, (b) Five, (c) Four, (d) Three, (e) 

Two and (f) One Input Meteorological Variable(s) 
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From Figure 4.34, no vertical dark bands were found. In other words, 

the hypothesis that certain stations would require local model development can 

be nullified. This finding can be taken positively, as it can be interpreted that 

the ET0 of any region can be estimated using suitable exogenous models. 

Consequently, local data collection to train a machine learning model from 

scratch becomes unnecessary. 

 

For the horizontal interpretation, several observations can be obtained 

from the heat maps in Figure 4.34. Some models were found to be incompetent 

for ET0 estimation when they were deployed in other stations, in other words, 

not spatially robust. Some examples of non-spatially robust model for Scenario 

2 are shown in Table 4.7. 

Table 4.7: Examples of Non-Spatially Robust Model for Scenario 2 

Training Station Model Type Input Combination 

Station 48601 (Bayan Lepas) BMA-E C1 

Station 48603 (Alor Setar) BMA-E C4 

Station 48601 (Bayan Lepas) BMLP C13 

Station 48657 (Kuantan) BMLP C13 

Station 48649 (Muadzam Shah) MLP C33 

Station 48649 (Muadzam Shah) BMA-E C43 

Station 48601 (Bayan Lepas) BMA-E C58 

Station 48603 (Alor Setar) BMA-E C58 

Station 48615 (Kota Bharu) ANFIS C58 

Station 48623 (Lubok Merbau) MLP C58 

 

The non-spatially robust models reported in Table 4.7 consist of various 

model types, including the MLP, ANFIS, BMLP and BMA-E. Therefore, it can 

be deduced that if the best model selected at a particular station (and input 

combination) is not the WOA-ELM-E, the model would most likely perform 

poorly at external stations. However, there was one exception case that occurred 
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at Station 48650 (KLIA) when C44 was used as the input combination. In this 

case, the BMA-E was selected as the best local model and found to be one of 

the most stable models when it was deployed at other stations in Peninsular 

Malaysia using two meteorological variables. 

 

Having said that, models other than the WOA-ELM-E could perform at 

external stations under special conditions. The most prominent observation is 

the clustering effect. For instance, models trained at Station 48601 (Bayan 

Lepas) performed poorly at most external stations. However, their performance 

at Station 48600 (Pulau Langkawi), which was also classified in Cluster 3 with 

Station 48601 (Bayan Lepas) was satisfactory. A similar observation was also 

obtained for the case of Station 48649 (Muadzam Shah) when C33 (MLP) and 

C43 (BMA-E) were the input combinations. These models delivered tolerable 

accuracy when deployed at another station in Cluster 4, which was Station 

48623 (Lubok Merbau). Hence, clustering effect (location with similar 

geographical characteristics) increases the spatial coverage of the locally 

developed models. Although the models could be non-spatially robust across 

the whole Peninsular Malaysia, however, they can still be applied in regions 

with similar geographical characteristics, thereby reducing the need for model 

calibration/development in new areas. 

 

Even though the WOA-ELM-E appeared to be the most spatially robust 

model for ET0 estimation in Peninsular Malaysia, the exception case also 

happened at Station 48601 (Bayan Lepas). When C23 was fed to the WOA-
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ELM-E trained at Station 48601 (Bayan Lepas), the model also suffered from 

low ET0 estimation accuracy at most of the external stations. However, the poor 

performance of the WOA-ELM-E for this case may be attributed to the 

characteristics of the data collected at Station 48601 (Bayan Lepas), which 

render all the models trained at that station to be non-spatially robust. This 

argument can be supported by the performance of the WOA-ELM-E trained at 

Station 48600 (Pulau Langkawi) using C23, where equally poor performance 

was observed. The C23 (only selected by Cluster 2) did not have any 

temperature related meteorological variables, which render this input 

combination that was only suitable for stations in Cluster 2 and not spatially 

robust. In fact, except for MLP trained using C4 (five meteorological variables), 

all the models developed at Station 48601 (Bayan Lepas) were poor in external 

applications, suggesting that models trained with data from Cluster 2 had 

limited spatial applicability. In other words, besides the selection of model 

variants, the data collected locally is also another deterministic factor that 

affects the transferability of the machine learning models. Of course, the 

clustering effect discussed previously can help to mitigate this issue. 

 

Across the 12 meteorological stations and six possible number of input 

meteorological variables, it was found that the models trained at Station 48620 

(Sitiawan) were the most stable yet outstanding among the 72 models tested. It 

is noteworthy to mention that all the best models selected at Station 48620 

(Sitiawan) were the WOA-ELM-E, which could possibly contribute to their 

outstanding performance due to the secondary training mechanism of the NNE 
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approach as discussed in the previous section. In Figure 4.34, the horizontal 

band of Station 48620 (Sitiawan) constantly showed tiles with light tones, 

regardless of the testing station as well as the number of meteorological 

variables. Explicitly, the local models trained at Station 48620 (Sitiawan) can 

be regarded as the most stable models for ET0 estimation in Peninsular Malaysia, 

across regions with different geographical characteristics (different clusters). 

 

4.5.2 The Global Model (Scenario 3) 

 

This subsection is devoted to discussing the feasibility of developing a 

global model for ET0 estimation in Peninsular Malaysia. Specifically, all the 

meteorological data collected from different stations were combined in a global 

data pool and reshuffled to remove the plausible geographical effects. These 

data were used to train WOA-ELM-E with different input combinations. The 

WOA-ELM-E was selected because it was found to be the most spatially robust 

model according to the findings obtained through the investigation on Scenario 

2. As for the input combination, the optimum input combinations of Cluster 1 

were applied since Cluster 1 was the largest cluster in Peninsular Malaysia. 

 

Figure 5.35 shows the GPI scores of the global WOA-ELM-E at 

different stations with the various input combinations (refer Appendix E (Table 

E37) for a detailed breakdown of performance evaluation metrics). The figure 

suggests that the performance of the global WOA-ELM-E was good and stable 

generally. This can be deduced from the GPI scores of the global WOA-ELM-
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E, which were higher than zero (the median value) most of the time. When 

comparing Figure 5.35 with Figure 5.34, it can be seen that the GPI scores of 

poor models could be as low as -4, which was not found in the case of the global 

WOA-ELM-E (minimum GPI of -0.3269). The data management scheme 

proposed under Scenario 3, coupled with NNE data fusion technique (WOA-

ELM-E) was proven to be a successful strategy in resolving the need for in-situ 

meteorological data collection which requires burdensome fiscal input. 

 

Figure 4.35: GPI Scores of WOA-ELM-E Model Trained using Global 

Data 

 

It is interesting to compare the performance of global WOA-ELM-E 

with the local WOA-ELM-E trained at Station 48620 (Sitiawan). The former 

was trained using a dataset that contained data of great variabilities, whereas the 

latter performed satisfactorily well without the need for a large amount of data. 
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Table 4.8 summarises the comparison of GPI scores for WOA-ELM-E models 

trained using meteorological data from Station 48620 (Sitiawan) and the global 

data pool. The table directly contrasts the local and global WOA-ELM-E, in 

terms of their GPI scores, at different meteorological stations in Peninsular 

Malaysia. 

 

The GPI scores tabulated in Table 4.8 generally exceed zero, which 

means that the performance of the WOA-ELM-E, regardless of the training data, 

was better than the median model. In other words, it can be said that the local 

and global WOA-ELM-E positioned themselves in the upper bracket among all 

the models developed in this study. To conduct a fair comparison between the 

local and global WOA-ELM-E, the GPI scores of the ET0 estimating models 

were compared based on the number of input meteorological variables. The GPI 

scores of the better model under various circumstances are highlighted in Table 

4.8. 

 

It was found that the local WOA-ELM-E trained using the data from 

Station 48620 (Sitiawan) outperformed its global counterpart at Station 48625 

(Ipoh) and Station 48647 (Subang). On the contrary, the global WOA-ELM-E 

trained using the global dataset had the upper hand at Station 48603 (Alor Setar), 

Station 48615 (Kota Bharu), Station 48650 (KLIA) and Station 48657 

(Kuantan). Coincidently, the local WOA-ELM-E had better performance at 

stations in Cluster 2 (its origin cluster) whereas the global WOA-ELM-E 

performed better at stations in Cluster 1 (from which it inherited the training 
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input combinations). Therefore, the selection of input combinations and 

geographical characteristics clustering once again exhibited their impacts on the 

exogenous models of ET0 estimation. 

 

As for the stations in Cluster 3, Cluster 4 and Cluster 5, the local and 

global WOA-ELM-E had comparable results. Both models excelled at one 

station each for Cluster 3 and Cluster 4. At the sole station of Cluster 5, Station 

48632 (Cameron Highlands), the two models performed equally well where 

they were reported to be suitable for three input combinations each. This finding 

further highlights that the local and global WOA-ELM-E were comparable to 

each other and could be a potential choice of ET0 estimating model at another 

new region in Peninsular Malaysia. 
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Table 4.8: Comparison of GPI Scores for WOA-ELM-E Models Trained using Meteorological Data from Station 48620 (Sitiawan) and 

Global Data Pool 

Testing Station 

Data Sources and Number of Input Meteorological Variables 

Scenario 2: Station 48620 (Sitiawan) 

(Local WOA-ELM-E) 

Scenario 3: Global Data Pool 

(Global WOA-ELM-E) 

1 2 3 4 5 6 1 2 3 4 5 6 

Station 48600 (Pulau Langkawi) -1.218 0.096 -0.091 0.200 -1.792 -0.131 0.267 0.198 0.173 0.349 0.536 0.842 

Station 48601 (Bayan Lepas) -0.313 -0.116 0.394 0.240 0.343 0.259 0.379 0.774 0.001 0.120 0.001 0.182 

Station 48603 (Alor Setar) -0.178 -0.757 0.298 0.549 0.521 0.098 0.044 0.621 0.415 0.447 0.000 0.112 

Station 48615 (Kota Bharu) 0.013 -0.028 0.028 0.389 -0.116 -0.199 0.006 0.430 0.054 0.980 0.503 0.551 

Station 48620 (Sitiawan) 0.002 0.606 0.173 0.117 0.306 0.208 0.030 0.019 -0.127 -0.079 0.220 0.339 

Station 48623 (Lubok Merbau) 0.020 0.287 0.117 0.107 0.297 0.019 0.001 0.039 0.018 -0.013 -0.009 0.061 

Station 48625 (Ipoh) 0.768 0.639 0.052 0.077 0.295 0.188 0.001 0.035 -0.327 -0.055 0.104 0.137 

Station 48632 (Cameron Highlands) 0.273 -0.305 0.189 -0.014 -0.061 0.161 0.325 0.772 0.001 -0.149 0.044 0.001 

Station 48647 (Subang) 0.079 0.987 0.088 0.131 0.314 0.000 0.070 0.098 0.195 -0.048 0.000 -0.056 

Station 48649 (Muadzam Shah) -0.031 0.311 0.098 -0.003 0.111 -0.313 0.219 0.063 1.160 0.458 0.671 0.234 

Station 48650 (KLIA) 0.590 0.012 -0.001 0.065 -0.160 0.032 0.003 0.936 0.157 0.081 0.181 0.001 

Station 48657 (Kuantan) -0.001 -0.854 0.182 -0.021 -0.001 -0.069 0.182 0.682 0.191 -0.042 0.275 -0.020 
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Nevertheless, the pros and cons of the local and global WOA-ELM-E 

have to be commented prior to the selection of models. Table 4.9 shows the 

properties of the two models, in terms of various aspects. 

Table 4.9: Comparison of the Properties of the Local and Global WOA-

ELM-E 

 
Local WOA-ELM-E Global WOA-ELM-E 

Weight Lightweight Heavyweight 

Data Collection Tougher to collect 

 

Easier to collect 

Future Improvement 
Can be updated using 

new data from Station 

48620 (Sitiawan) 

Can be updated using 

data from any other 

regions 

 

The local and global WOA-ELM-E are compared in terms of their 

weights during the deployment, the ease of data collection as well as the 

potential for future improvement on the model. Firstly, the local WOA-ELM-E 

is more advantageous from the deployment weight perspective. As the model 

was trained with a smaller amount of data, the resultant hyper-parameters of the 

local WOA-ELM-E became lower as compared to the global WOA-ELM-E. 

This leads to the smaller size and lighter weight of the local WOA-ELM-E 

which makes it easier to be deployed elsewhere, especially when cloud 

computing is not accessible. 

 

In terms of the ease of data collection, both models agreed with most of 

the optimum input combinations apart from the input combination with only 

two meteorological variables. The local WOA-ELM-E originated from a 

Cluster 2 station favoured C43 (u and Rs) whereas the global WOA-ELM-E was 
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using C44 (RH and Rs). Comparing the u and RH, collecting the data for the 

former variable is more challenging due to the high volatility (magnitude and 

direction), complex stochastic changes in the environment, noises and 

equipment failure (Wang, et al., 2021). On the other hand, the measurement of 

RH is relatively easier as the variable is rather stable with many accurate 

measuring devices available in the market. The ease of data collection can 

determine the model selection of the end-users and render the global WOA-

ELM-E more useful. 

 

Lastly, the global WOA-ELM-E has a greater potential to be improved 

to become a better model. This is because new data collected at any new (or 

existing) stations can be included into the global data pool to be used as its 

training data. Contrarily, the local WOA-ELM-E, by its design can only accept 

the new data collected from Station 48620 (Sitiawan) for further improvement. 

Consequently, the variability of the data received by the global WOA-ELM-E 

is larger than the local WOA-ELM-E. The variability of the training data has a 

positive correlation with the performance of the machine learning models (Can, 

et al., 2021). 

 

By considering the differences in the properties of the local and global 

WOA-ELM-E for ET0 estimation, the policy makers can make an appropriate 

selection on the most suitable model to be deployed in a new region by 

addressing the needs in computational power as well as data collection 

infrastructure. The two data management schemes investigated in this research 
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work, Scenario 2 and Scenario 3, were found to be promising methods with 

different integrations and applications. The machine learning models (MLP, 

SVM and ANFIS) hybridised using the NNE data fusion method is a highly 

transferable model when trained using local data as well as the global dataset. 
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

5.1 Conclusion 

 

This thesis presents the research work that focusses on devising a 

reliable resolution to the problem of estimation of ET0 in Peninsular Malaysia. 

At present, physical measurement and empirical calculation of ET0 are facing 

daunting challenges from various aspects, including financial costs, technical 

feasibility and skilled labour forces involved. The interception of the black-box 

machine learning models showed positive outcomes, but they suffered from 

qualitative as well as quantitative data hunger. 

 

The work reported in this thesis aimed to develop a robust machine 

learning model for ET0 estimation in Peninsular Malaysia with minimum data 

requirements. This was done through a minimalistic approach which employed 

three base machine learning models, namely the MLP, the SVM and the ANFIS 

and hybridising them through the implementation of the various data fusion 

techniques. Three data fusion techniques, including the data centric bootstrap 

aggregating, the model centric BMA and the black-box-based NNE were 

investigated. 
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Among the three elementary machine learning models, the MLP was 

found to be the best model in terms of estimation accuracy, while the SVM and 

the ANFIS were less sensitive towards the decrement of input meteorological 

variables. Regardless of the machine learning models used, each meteorological 

station showed preference input combinations with different numbers of input 

meteorological variables. By assessing the optimum input combinations at the 

meteorological stations, it was found that the meteorological stations can be 

grouped into five clusters of similar geographical characteristics and the 

members of each cluster shared the same optimum input combinations. 

 

Of all the meteorological variables, the Rs was the most essential feature 

that had to be included into the input combinations. The omission of the Rs 

would render the model to have increased estimation error and reduced 

goodness-of-fit. This was because the inbound radiation was the main driving 

factor and energy source for the water molecules to escape into the atmosphere, 

especially in proximity to the Equator. The other meteorological variables 

would act as complementary features that touched up the accuracy of the 

machine learning models (Objective 1). 

 

Bootstrap aggregating was integrated into the individual MLP, SVM and 

ANFIS models to create the BMLP, BSVM and BANFIS models, respectively. 

Although the bootstrap aggregating improved some of the base models at 

certain stations, overall, bagged models performed poorer than the base models. 

This was because the number of samples involved in this study had already 
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overwhelmed the dimensionality of the ET0 estimation problem, subsequently 

rendering the bootstrap aggregating to be ineffective. In fact, the integration of 

bootstrap aggregating could be risky when “bad” data points were given a 

chance to have a higher influence on the models. 

 

On the other hand, the BMA could assign Bayesian weights to the base 

machine learning models by evaluating and normalising their posterior 

probability. For the first time, the Bayesian weights of the MLP, SVM and 

ANFIS for an ET0 estimating ensemble were documented and reported in detail. 

When the number of meteorological variables was high, the BMA algorithm 

tended to assign the Bayesian weight of one to the MLP. However, when input 

meteorological variables were reduced, the influence of the SVM and ANFIS 

on the ensemble increased. The BMA-E model undoubtedly improved the ET0 

estimation as compared to the base models, but the algorithm lacked flexibility, 

and could possibly sacrifice the constituent models which led to the loss of 

information. Besides, the frequent assignment of the unit weight to the MLP 

caused the resultant ensemble to be technically a base model that did not have 

favourable traits of different models. 

 

To integrate the NNE data fusion technique, a novel meta-learner based 

on the ELM optimised with the WOA was developed in this work (WOA-ELM). 

The outputs of the MLP, SVM and ANFIS were fed into the WOA-ELM so that 

a “secondary training” could be carried out. By comparing the GPI, the WOA-

ELM-E was found to be the model with the highest consistency, in terms of 
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making it into the top brackets for model performance. The outstanding 

performance of the WOA-ELM-E was due to the flexibility of the ANN-based 

meta-learner (unlike the rigid BMA algorithm) and the development strategy 

that allowed it to have a “second look” at the target values during the training 

process. The best model (out of eight) was selected at each meteorological 

station, with the WOA-ELM-E being the dominating model at most of the 

stations (Objective 2). 

 

The spatial robustness of the best models was tested under Scenario 2 to 

ensure that these models could be applied externally so that the data collection 

process for local model calibration could be eliminated. The best models acted 

as an exogenous model at all the meteorological stations. It was found that none 

of the 12 meteorological stations studied in this research work, showed a high 

dependency on the local data because there was at least one exogenous model 

that can estimate the local ET0 at satisfactory accuracy. The best models at 

Station 48620 (Sitiawan) performed consistently at all the stations. All models 

selected at Station 48620 (Sitiawan) were of the WOA-ELM-E variant. The 

local model trained at Station 48620 (Sitiawan) had the best spatial robustness 

in Peninsular Malaysia (Objective 3). 

 

A global WOA-ELM-E was developed by using the data from all the 

meteorological stations as training data. The global dataset was shuffled to 

remove any possible geographical influence. Like the local WOA-ELM-E from 

Station 48620 (Sitiawan), the global WOA-ELM-E also showed consistent 
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performance at all the stations. To be exact, the local and global WOA-ELM-E 

had comparable performance, depending on the testing meteorological stations. 

This meant that both models could be deployed across the whole Peninsular 

Malaysia. The pros and cons of the local and global WOA-ELM-E were 

contrasted, in which the former was easier to deploy due to its light weight, 

while the training data of the latter were easier to be collected and more 

diversified (Objective 4). 

 

The spatial robustness of the local and global WOA-ELM-E developed 

in this study means that in the future, there is no need for meteorological data 

collection in a new region for the local model calibration or development. In 

other words, the qualitative as well as quantitative hunger aspect had been 

resolved with the introduction of the local and global WOA-ELM-E. 

Furthermore, this thesis reported that the Rs was the most essential 

meteorological variable for ET0 estimation in Peninsular Malaysia. Optimum 

input combinations with low number of meteorological variables were also 

reported. This means that the authorities only need to collect the essential data, 

instead of collecting all meteorological variables which could be costly and 

troublesome. In view of this, the issue of qualitative hunger has also been 

addressed. 

 

The outcome and output of this research work had significant 

contribution to the scientific community in understanding the relationship of the 

meteorological variable, base machine learning models and data fusion 
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techniques. At the national level, the development of the robust ET0 estimating 

model could provide valuable information to the authorities and decision 

makers in drawing appropriate strategies of water resources allocation and 

management in Peninsular Malaysia. 

 

5.2 Future Works and Recommendations 

 

Even though this investigation was designed and executed carefully, 

however, due to many limitations, some flaws were still being spotted during 

the research phase. Many future works can be extended based on the findings 

of this study. Some important recommendations are included in this section as 

the afterthought of the entire research phase. 

 

5.2.1 Deployment of the Models at Different Regions 

 

The work reported in the thesis was constrained by time and financial 

resources. The authors did not have the opportunity to deploy the developed 

models, particularly the local and global WOA-ELM-E in other regions of the 

world. Future works can be focussed on the application of the local and global 

WOA-ELM-E in Southeast Asia, regions with a tropical climate and then other 

parts of the world. 
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5.2.2 A Continual Improvement Framework 

 

The models developed in this study were trained using static historical 

data. However, the ET0 is highly affected by the global climate change, which 

is a dynamic process. New data can be collected at the meteorological stations 

and fed into the developed models to fine-tune the models so that their relevancy 

can be updated. The continual improvement framework of the models has to be 

designed (update threshold, degree of fine-tuning) in future works. 
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APPENDICES 

Appendix A: Performance of Base Machine Learning Models at Different Stations 

Table A1: Performance of MLP at Station 48600 (Pulau Langkawi) 
Combinations Variables Hidden Neurons MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 7 0.0280 0.0365 0.640 0.9990 0.0000 

2 5 6 0.0810 0.1147 1.850 0.9896 -0.0003 

3 5 6 0.0533 0.0751 1.216 0.9956 -0.0004 

4 5 6 0.0445 0.0638 1.015 0.9968 -0.0009 

5 5 6 0.1018 0.1526 2.326 0.9817 0.0003 

6 5 6 0.1300 0.2006 2.968 0.9685 -0.0003 

7 5 6 0.3932 0.4970 8.980 0.8060 -0.0007 

8 4 5 0.0861 0.1233 1.966 0.9880 -0.0003 

9 4 5 0.0891 0.1249 2.034 0.9877 0.0001 

10 4 5 0.1451 0.2230 3.314 0.9609 -0.0002 

11 4 5 0.1680 0.2421 3.836 0.9540 -0.0012 

12 4 5 0.4240 0.5376 9.683 0.7727 -0.0002 

13 4 5 0.0605 0.0855 1.382 0.9942 -0.0005 

14 4 5 0.1103 0.1662 2.518 0.9783 -0.0004 

15 4 5 0.1458 0.2216 3.330 0.9615 0.0001 

16 4 5 0.4159 0.5236 9.497 0.7845 0.0062 

17 4 5 0.1048 0.1605 2.392 0.9798 -0.0002 

18 4 5 0.1397 0.2123 3.190 0.9647 -0.0002 

19 4 5 0.4257 0.5330 9.721 0.7768 -0.0012 

20 4 5 0.2474 0.3622 5.650 0.8969 0.0017 

21 4 5 0.4333 0.5515 9.896 0.7610 -0.0023 

22 4 5 0.4184 0.5267 9.556 0.7820 0.0032 

23 3 4 0.1147 0.1576 2.619 0.9804 -0.0007 

24 3 4 0.1515 0.2301 3.460 0.9584 -0.0024 

25 3 4 0.1727 0.2500 3.944 0.9510 -0.0019 

26 3 4 0.4634 0.5818 10.584 0.7339 0.0009 

27 3 4 0.1659 0.2457 3.788 0.9526 -0.0002 

28 3 4 0.1714 0.2455 3.915 0.9527 -0.0015 

29 3 4 0.5396 0.6752 12.323 0.6416 -0.0020 

30 3 4 0.3210 0.4515 7.331 0.8399 -0.0015 

31 3 4 0.4757 0.6160 10.863 0.7021 -0.0045 

32 3 4 0.4544 0.5711 10.377 0.7438 0.0037 

33 3 4 0.1145 0.1702 2.615 0.9772 0.0006 

34 3 4 0.1471 0.2240 3.360 0.9607 -0.0020 

35 3 4 0.4323 0.5403 9.872 0.7707 -0.0003 

36 3 4 0.2527 0.3703 5.770 0.8922 -0.0029 

37 3 4 0.4643 0.5824 10.603 0.7337 0.0046 

38 3 4 0.4396 0.5477 10.038 0.7643 0.0014 

39 3 4 0.2481 0.3648 5.665 0.8954 0.0001 

40 3 4 0.4907 0.6131 11.207 0.7048 0.0025 

41 3 4 0.4470 0.5542 10.207 0.7588 0.0001 

42 3 4 0.4997 0.6361 11.412 0.6822 0.0025 

43 2 3 0.1943 0.2760 4.437 0.9403 -0.0029 

44 2 3 0.1875 0.2701 4.282 0.9427 -0.0003 

45 2 3 0.5439 0.6814 12.421 0.6352 -0.0008 

46 2 3 0.3290 0.4608 7.514 0.8332 -0.0034 

47 2 3 0.5314 0.6766 12.136 0.6407 -0.0124 

48 2 3 0.4857 0.6048 11.093 0.7126 -0.0036 

49 2 3 0.3538 0.4890 8.080 0.8122 -0.0024 

50 2 3 0.7460 0.9353 17.037 0.3131 0.0101 

51 2 3 0.5540 0.6905 12.651 0.6256 -0.0038 

52 2 3 0.5527 0.7167 12.623 0.5963 -0.0019 

53 2 3 0.2546 0.3728 5.814 0.8907 0.0009 

54 2 3 0.4934 0.6153 11.268 0.7026 -0.0032 

55 2 3 0.4499 0.5581 10.274 0.7552 0.0007 

56 2 3 0.5225 0.6597 11.933 0.6581 -0.0001 

57 2 3 0.5427 0.6785 12.393 0.6383 0.0005 

58 1 2 0.3799 0.5196 8.676 0.7878 -0.0027 

59 1 2 0.7733 0.9781 17.660 0.2494 -0.0014 

60 1 2 0.5597 0.6980 12.783 0.6174 -0.0006 

61 1 2 0.6071 0.7791 13.864 0.5248 -0.0017 

62 1 2 0.8457 1.0645 19.313 0.1125 0.0006 

63 1 2 0.5423 0.6784 12.385 0.6391 0.0019 
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Table A2: Performance of MLP at Station 48601 (Bayan Lepas) 
Combinations Variables Hidden Neurons MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 7 0.0269 0.0335 0.621 0.9989 -0.0002 

2 5 6 0.0705 0.0926 1.624 0.9919 -0.0005 

3 5 6 0.0494 0.0652 1.139 0.9960 0.0001 

4 5 6 0.0425 0.0565 0.981 0.9970 -0.0002 

5 5 6 0.0940 0.1367 2.168 0.9823 -0.0003 

6 5 6 0.1083 0.1764 2.496 0.9698 0.0008 

7 5 6 0.3779 0.4804 8.710 0.7815 -0.0013 

8 4 5 0.0760 0.1010 1.751 0.9904 -0.0002 

9 4 5 0.0743 0.0974 1.712 0.9910 0.0002 

10 4 5 0.1356 0.1955 3.125 0.9638 -0.0028 

11 4 5 0.1262 0.1927 2.910 0.9643 -0.0012 

12 4 5 0.4032 0.5162 9.294 0.7478 0.0000 

13 4 5 0.0517 0.0683 1.191 0.9956 0.0003 

14 4 5 0.0990 0.1431 2.282 0.9807 -0.0005 

15 4 5 0.1257 0.1944 2.898 0.9638 -0.0017 

16 4 5 0.3977 0.5046 9.168 0.7592 0.0016 

17 4 5 0.0993 0.1462 2.289 0.9797 -0.0005 

18 4 5 0.1175 0.1867 2.709 0.9664 -0.0015 

19 4 5 0.3897 0.4940 8.982 0.7691 0.0011 

20 4 5 0.2073 0.3303 4.778 0.8964 0.0033 

21 4 5 0.3996 0.5093 9.212 0.7544 -0.0038 

22 4 5 0.4435 0.5612 10.223 0.7020 -0.0010 

23 3 4 0.0979 0.1281 2.257 0.9845 -0.0003 

24 3 4 0.1414 0.2034 3.259 0.9608 0.0028 

25 3 4 0.1372 0.2046 3.163 0.9600 0.0014 

26 3 4 0.4408 0.5591 10.161 0.7050 0.0059 

27 3 4 0.1551 0.2177 3.575 0.9552 -0.0011 

28 3 4 0.1286 0.1953 2.964 0.9634 0.0009 

29 3 4 0.4733 0.6012 10.910 0.6582 0.0037 

30 3 4 0.2384 0.3679 5.494 0.8716 -0.0023 

31 3 4 0.4391 0.5624 10.122 0.7004 -0.0044 

32 3 4 0.4632 0.5876 10.676 0.6731 -0.0028 

33 3 4 0.1021 0.1480 2.353 0.9793 -0.0009 

34 3 4 0.1281 0.1980 2.952 0.9625 -0.0006 

35 3 4 0.4020 0.5085 9.265 0.7557 -0.0017 

36 3 4 0.2110 0.3350 4.863 0.8936 0.0000 

37 3 4 0.4350 0.5509 10.026 0.7130 -0.0081 

38 3 4 0.4534 0.5751 10.450 0.6867 0.0015 

39 3 4 0.2070 0.3341 4.771 0.8942 -0.0021 

40 3 4 0.4307 0.5450 9.928 0.7188 -0.0023 

41 3 4 0.4504 0.5698 10.382 0.6926 -0.0028 

42 3 4 0.5232 0.6670 12.060 0.5787 -0.0052 

43 2 3 0.1793 0.2412 4.133 0.9449 0.0005 

44 2 3 0.1506 0.2183 3.472 0.9547 0.0019 

45 2 3 0.4789 0.6067 11.039 0.6520 -0.0005 

46 2 3 0.2387 0.3685 5.502 0.8713 -0.0021 

47 2 3 0.5066 0.6388 11.677 0.6137 -0.0049 

48 2 3 0.4908 0.6217 11.312 0.6348 -0.0061 

49 2 3 0.2502 0.3803 5.767 0.8630 -0.0019 

50 2 3 0.6490 0.8218 14.959 0.3610 0.0069 

51 2 3 0.5204 0.6576 11.996 0.5907 0.0033 

52 2 3 0.5557 0.7177 12.810 0.5131 -0.0066 

53 2 3 0.2129 0.3376 4.908 0.8919 -0.0010 

54 2 3 0.4404 0.5561 10.150 0.7074 0.0010 

55 2 3 0.4571 0.5780 10.535 0.6838 0.0016 

56 2 3 0.5441 0.6938 12.542 0.5442 -0.0030 

57 2 3 0.5475 0.6920 12.620 0.5461 -0.0017 

58 1 2 0.2767 0.4041 6.377 0.8454 -0.0009 

59 1 2 0.6579 0.8381 15.164 0.3350 -0.0001 

60 1 2 0.5253 0.6612 12.108 0.5862 0.0011 

61 1 2 0.6077 0.7809 14.007 0.4225 -0.0019 

62 1 2 0.7844 0.9935 18.081 0.0654 0.0023 

63 1 2 0.5500 0.6980 12.678 0.5385 -0.0014 
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Table A3: Performance of MLP at Station 48603 (Alor Setar) 
Combinations Variables Hidden Neurons MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 7 0.0277 0.0357 0.648 0.9989 -0.0001 

2 5 6 0.0879 0.1149 2.055 0.9884 -0.0013 

3 5 6 0.0453 0.0587 1.060 0.9970 0.0008 

4 5 6 0.0400 0.0514 0.935 0.9977 -0.0001 

5 5 6 0.0722 0.1034 1.688 0.9906 -0.0006 

6 5 6 0.0901 0.1225 2.106 0.9868 -0.0007 

7 5 6 0.3119 0.4028 7.290 0.8576 -0.0014 

8 4 5 0.0911 0.1185 2.129 0.9877 0.0000 

9 4 5 0.0972 0.1286 2.273 0.9854 0.0005 

10 4 5 0.1214 0.1653 2.837 0.9760 0.0005 

11 4 5 0.1138 0.1508 2.659 0.9801 0.0015 

12 4 5 0.3676 0.4708 8.591 0.8052 -0.0008 

13 4 5 0.0508 0.0654 1.186 0.9963 -0.0001 

14 4 5 0.0726 0.1042 1.698 0.9904 -0.0008 

15 4 5 0.1071 0.1457 2.504 0.9813 -0.0004 

16 4 5 0.3357 0.4302 7.844 0.8373 0.0013 

17 4 5 0.0718 0.1035 1.677 0.9906 0.0000 

18 4 5 0.0977 0.1317 2.282 0.9848 0.0007 

19 4 5 0.3395 0.4337 7.933 0.8346 -0.0004 

20 4 5 0.1827 0.2783 4.269 0.9318 -0.0027 

21 4 5 0.3187 0.4118 7.447 0.8509 0.0009 

22 4 5 0.3837 0.4919 8.968 0.7873 -0.0012 

23 3 4 0.1117 0.1478 2.611 0.9808 -0.0006 

24 3 4 0.1404 0.1899 3.281 0.9683 0.0002 

25 3 4 0.1244 0.1645 2.906 0.9762 -0.0001 

26 3 4 0.4184 0.5331 9.778 0.7502 0.0012 

27 3 4 0.1645 0.2293 3.843 0.9537 -0.0007 

28 3 4 0.1187 0.1565 2.773 0.9785 0.0000 

29 3 4 0.5052 0.6419 11.805 0.6382 0.0068 

30 3 4 0.2063 0.2988 4.821 0.9215 0.0032 

31 3 4 0.3736 0.4792 8.732 0.7986 0.0043 

32 3 4 0.4204 0.5349 9.825 0.7486 0.0028 

33 3 4 0.0758 0.1063 1.771 0.9901 -0.0011 

34 3 4 0.1119 0.1535 2.614 0.9793 -0.0003 

35 3 4 0.3481 0.4450 8.134 0.8257 -0.0012 

36 3 4 0.1889 0.2829 4.415 0.9296 -0.0007 

37 3 4 0.3511 0.4516 8.205 0.8207 0.0023 

38 3 4 0.3994 0.5079 9.333 0.7733 0.0006 

39 3 4 0.1867 0.2861 4.363 0.9280 -0.0025 

40 3 4 0.3692 0.4708 8.627 0.8050 -0.0061 

41 3 4 0.4107 0.5202 9.598 0.7622 0.0026 

42 3 4 0.4239 0.5551 9.905 0.7288 -0.0013 

43 2 3 0.1708 0.2371 3.991 0.9505 -0.0030 

44 2 3 0.1383 0.1835 3.231 0.9704 -0.0011 

45 2 3 0.5059 0.6429 11.821 0.6364 0.0029 

46 2 3 0.2414 0.3336 5.641 0.9022 -0.0031 

47 2 3 0.4674 0.5960 10.922 0.6877 -0.0004 

48 2 3 0.4527 0.5776 10.580 0.7066 -0.0007 

49 2 3 0.2512 0.3543 5.869 0.8896 -0.0012 

50 2 3 0.6899 0.8742 16.123 0.3278 -0.0020 

51 2 3 0.5310 0.6709 12.409 0.6041 0.0001 

52 2 3 0.4597 0.5962 10.742 0.6873 -0.0039 

53 2 3 0.1880 0.2873 4.393 0.9273 -0.0024 

54 2 3 0.3704 0.4738 8.655 0.8024 -0.0007 

55 2 3 0.4169 0.5259 9.743 0.7567 -0.0017 

56 2 3 0.4645 0.5998 10.855 0.6833 -0.0038 

57 2 3 0.4923 0.6264 11.504 0.6545 -0.0007 

58 1 2 0.2589 0.3622 6.050 0.8848 -0.0012 

59 1 2 0.7012 0.8881 16.386 0.3062 0.0004 

60 1 2 0.5390 0.6785 12.597 0.5952 0.0011 

61 1 2 0.5640 0.7301 13.180 0.5309 0.0040 

62 1 2 0.8156 1.0428 19.060 0.0431 0.0029 

63 1 2 0.4947 0.6301 11.560 0.6507 0.0003 
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Table A4: Performance of MLP at Station 48615 (Kota Bharu) 
Combinations Variables Hidden Neurons MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 7 0.0236 0.0297 0.543 0.9992 0.0000 

2 5 6 0.0888 0.1169 2.046 0.9869 0.0007 

3 5 6 0.0527 0.0726 1.213 0.9950 -0.0006 

4 5 6 0.0480 0.0651 1.106 0.9959 -0.0002 

5 5 6 0.0910 0.1288 2.095 0.9841 -0.0007 

6 5 6 0.0929 0.1318 2.139 0.9834 -0.0005 

7 5 6 0.3583 0.4531 8.253 0.8041 0.0020 

8 4 5 0.0925 0.1230 2.131 0.9855 0.0005 

9 4 5 0.0934 0.1217 2.150 0.9858 -0.0001 

10 4 5 0.1292 0.1716 2.975 0.9718 0.0014 

11 4 5 0.1265 0.1654 2.913 0.9739 0.0003 

12 4 5 0.3987 0.5118 9.183 0.7502 0.0000 

13 4 5 0.0566 0.0779 1.303 0.9942 -0.0007 

14 4 5 0.0961 0.1407 2.214 0.9810 -0.0013 

15 4 5 0.1132 0.1633 2.607 0.9746 0.0008 

16 4 5 0.3845 0.4870 8.854 0.7738 -0.0028 

17 4 5 0.0925 0.1321 2.130 0.9833 0.0000 

18 4 5 0.1039 0.1431 2.392 0.9805 -0.0002 

19 4 5 0.3752 0.4741 8.640 0.7856 -0.0017 

20 4 5 0.1564 0.2255 3.603 0.9514 0.0004 

21 4 5 0.4000 0.5082 9.211 0.7538 0.0001 

22 4 5 0.4232 0.5355 9.747 0.7263 0.0016 

23 3 4 0.1226 0.1622 2.825 0.9749 -0.0004 

24 3 4 0.1312 0.1762 3.021 0.9703 -0.0009 

25 3 4 0.1432 0.1942 3.298 0.9640 0.0009 

26 3 4 0.4339 0.5574 9.993 0.7035 -0.0017 

27 3 4 0.1457 0.1893 3.354 0.9657 -0.0008 

28 3 4 0.1367 0.1802 3.149 0.9691 0.0013 

29 3 4 0.4717 0.6037 10.863 0.6522 0.0002 

30 3 4 0.1848 0.2475 4.256 0.9416 0.0017 

31 3 4 0.4369 0.5612 10.061 0.6994 0.0034 

32 3 4 0.4571 0.5805 10.527 0.6782 -0.0009 

33 3 4 0.0968 0.1407 2.230 0.9811 0.0005 

34 3 4 0.1233 0.1789 2.840 0.9695 -0.0014 

35 3 4 0.3923 0.4965 9.034 0.7645 -0.0021 

36 3 4 0.1703 0.2437 3.921 0.9435 0.0015 

37 3 4 0.4560 0.5740 10.503 0.6859 0.0003 

38 3 4 0.4424 0.5590 10.189 0.7016 0.0018 

39 3 4 0.1632 0.2304 3.758 0.9495 0.0011 

40 3 4 0.4408 0.5539 10.151 0.7077 -0.0002 

41 3 4 0.4385 0.5528 10.098 0.7081 0.0020 

42 3 4 0.4994 0.6397 11.502 0.6094 0.0004 

43 2 3 0.1752 0.2270 4.034 0.9508 0.0004 

44 2 3 0.1602 0.2160 3.690 0.9555 0.0001 

45 2 3 0.4875 0.6209 11.228 0.6317 0.0009 

46 2 3 0.1955 0.2691 4.502 0.9309 -0.0012 

47 2 3 0.5407 0.6901 12.451 0.5459 0.0029 

48 2 3 0.4988 0.6325 11.487 0.6180 0.0016 

49 2 3 0.1996 0.2646 4.597 0.9333 -0.0012 

50 2 3 0.6655 0.8582 15.326 0.2976 0.0041 

51 2 3 0.5371 0.6748 12.369 0.5651 0.0016 

52 2 3 0.5275 0.6776 12.147 0.5625 0.0024 

53 2 3 0.1822 0.2697 4.196 0.9305 0.0014 

54 2 3 0.4695 0.5897 10.813 0.6689 -0.0009 

55 2 3 0.4458 0.5630 10.268 0.6972 0.0025 

56 2 3 0.5643 0.7015 12.996 0.5307 0.0024 

57 2 3 0.5554 0.6902 12.791 0.5458 -0.0008 

58 1 2 0.2257 0.3080 5.199 0.9095 -0.0056 

59 1 2 0.6900 0.8902 15.891 0.2460 -0.0066 

60 1 2 0.5394 0.6775 12.423 0.5618 0.0031 

61 1 2 0.6327 0.7948 14.572 0.3975 0.0019 

62 1 2 0.7931 1.0059 18.266 0.0351 0.0103 

63 1 2 0.5733 0.7085 13.203 0.5214 -0.0010 
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Table A5: Performance of MLP at Station 48620 (Sitiawan) 
Combinations Variables Hidden Neurons MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 7 0.0345 0.0635 0.907 0.9884 -0.0048 

2 5 6 0.0529 0.0869 1.390 0.9835 0.0024 

3 5 6 0.0407 0.0696 1.070 0.9879 -0.0050 

4 5 6 0.0359 0.0638 0.942 0.9890 -0.0001 

5 5 6 0.0414 0.0719 1.088 0.9867 -0.0022 

6 5 6 0.0733 0.1126 1.924 0.9766 -0.0030 

7 5 6 0.2954 0.3713 7.757 0.7830 -0.0009 

8 4 5 0.0534 0.0891 1.403 0.9824 -0.0004 

9 4 5 0.0559 0.0908 1.468 0.9820 -0.0012 

10 4 5 0.0590 0.0961 1.550 0.9804 -0.0035 

11 4 5 0.0777 0.1170 2.040 0.9748 -0.0021 

12 4 5 0.3209 0.4028 8.426 0.7444 0.0028 

13 4 5 0.0434 0.0735 1.141 0.9870 -0.0013 

14 4 5 0.0432 0.0739 1.135 0.9867 -0.0015 

15 4 5 0.0812 0.1186 2.133 0.9752 -0.0016 

16 4 5 0.3135 0.3936 8.233 0.7559 0.0004 

17 4 5 0.0417 0.0723 1.096 0.9869 -0.0030 

18 4 5 0.0744 0.1129 1.953 0.9762 -0.0004 

19 4 5 0.3046 0.3826 8.000 0.7693 0.0012 

20 4 5 0.0849 0.1255 2.230 0.9718 -0.0054 

21 4 5 0.2989 0.3750 7.850 0.7785 0.0007 

22 4 5 0.3511 0.4366 9.219 0.6998 -0.0007 

23 3 4 0.0697 0.1074 1.830 0.9780 -0.0031 

24 3 4 0.0598 0.0950 1.571 0.9818 0.0023 

25 3 4 0.0855 0.1260 2.245 0.9718 -0.0020 

26 3 4 0.3637 0.4570 9.550 0.6713 -0.0010 

27 3 4 0.0726 0.1120 1.906 0.9755 0.0007 

28 3 4 0.0798 0.1204 2.096 0.9736 0.0002 

29 3 4 0.3761 0.4745 9.875 0.6456 -0.0009 

30 3 4 0.0894 0.1307 2.347 0.9692 -0.0013 

31 3 4 0.3257 0.4080 8.553 0.7382 0.0011 

32 3 4 0.3667 0.4568 9.631 0.6712 0.0002 

33 3 4 0.0486 0.0830 1.276 0.9839 -0.0027 

34 3 4 0.0887 0.1299 2.329 0.9704 -0.0010 

35 3 4 0.3160 0.3976 8.298 0.7512 0.0021 

36 3 4 0.0879 0.1281 2.309 0.9710 -0.0015 

37 3 4 0.3420 0.4263 8.981 0.7142 0.0015 

38 3 4 0.3624 0.4514 9.518 0.6791 -0.0042 

39 3 4 0.0860 0.1257 2.259 0.9723 -0.0030 

40 3 4 0.3295 0.4146 8.653 0.7293 -0.0025 

41 3 4 0.3596 0.4479 9.442 0.6843 -0.0020 

42 3 4 0.3662 0.4564 9.617 0.6718 0.0064 

43 2 3 0.0863 0.1279 2.266 0.9707 0.0001 

44 2 3 0.0976 0.1423 2.562 0.9649 0.0028 

45 2 3 0.3801 0.4791 9.981 0.6389 -0.0003 

46 2 3 0.0914 0.1328 2.399 0.9687 -0.0023 

47 2 3 0.4081 0.5106 10.717 0.5896 0.0009 

48 2 3 0.3935 0.4905 10.333 0.6211 -0.0004 

49 2 3 0.0968 0.1390 2.541 0.9665 0.0006 

50 2 3 0.5405 0.6814 14.195 0.2684 0.0014 

51 2 3 0.4097 0.5135 10.758 0.5846 0.0002 

52 2 3 0.3819 0.4766 10.028 0.6425 -0.0050 

53 2 3 0.0980 0.1411 2.573 0.9660 -0.0012 

54 2 3 0.3453 0.4328 9.067 0.7052 -0.0003 

55 2 3 0.3620 0.4514 9.506 0.6789 0.0001 

56 2 3 0.4048 0.5022 10.629 0.6032 -0.0031 

57 2 3 0.4115 0.5137 10.807 0.5845 0.0017 

58 1 2 0.1163 0.1625 3.054 0.9558 -0.0001 

59 1 2 0.5484 0.6891 14.400 0.2518 -0.0052 

60 1 2 0.4107 0.5150 10.786 0.5822 -0.0001 

61 1 2 0.4550 0.5648 11.947 0.4989 -0.0126 

62 1 2 0.6362 0.7908 16.707 0.0142 0.0068 

63 1 2 0.4170 0.5197 10.952 0.5751 -0.0021 
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Table A6: Performance of MLP at Station 48623 (Lubok Merbau) 
Combinations Variables Hidden Neurons MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 7 0.0302 0.0370 0.744 0.9978 0.0002 

2 5 6 0.0558 0.0720 1.371 0.9918 -0.0006 

3 5 6 0.0370 0.0463 0.910 0.9966 -0.0004 

4 5 6 0.0317 0.0391 0.779 0.9976 0.0004 

5 5 6 0.0363 0.0465 0.892 0.9966 0.0000 

6 5 6 0.0651 0.0864 1.600 0.9882 0.0000 

7 5 6 0.2656 0.3339 6.529 0.8236 0.0032 

8 4 5 0.0598 0.0767 1.471 0.9907 -0.0011 

9 4 5 0.0598 0.0767 1.471 0.9907 -0.0010 

10 4 5 0.0594 0.0773 1.462 0.9906 0.0000 

11 4 5 0.0756 0.0986 1.859 0.9846 -0.0004 

12 4 5 0.3507 0.4402 8.624 0.6944 -0.0027 

13 4 5 0.0423 0.0536 1.040 0.9955 -0.0001 

14 4 5 0.0400 0.0516 0.983 0.9958 -0.0003 

15 4 5 0.0705 0.0932 1.733 0.9862 -0.0013 

16 4 5 0.2771 0.3476 6.813 0.8087 0.0005 

17 4 5 0.0379 0.0490 0.931 0.9962 -0.0012 

18 4 5 0.0663 0.0884 1.631 0.9876 -0.0005 

19 4 5 0.2755 0.3457 6.772 0.8107 0.0010 

20 4 5 0.0772 0.1090 1.898 0.9812 -0.0012 

21 4 5 0.2684 0.3369 6.598 0.8204 -0.0015 

22 4 5 0.3080 0.3863 7.572 0.7639 0.0039 

23 3 4 0.0767 0.1001 1.886 0.9841 0.0000 

24 3 4 0.0617 0.0799 1.517 0.9899 0.0004 

25 3 4 0.0808 0.1044 1.986 0.9828 -0.0009 

26 3 4 0.3765 0.4725 9.257 0.6474 0.0018 

27 3 4 0.0718 0.0954 1.765 0.9856 -0.0012 

28 3 4 0.0772 0.1005 1.898 0.9840 -0.0002 

29 3 4 0.4246 0.5395 10.440 0.5399 0.0003 

30 3 4 0.0870 0.1175 2.138 0.9781 -0.0004 

31 3 4 0.3519 0.4424 8.653 0.6907 -0.0023 

32 3 4 0.3883 0.4834 9.548 0.6310 0.0013 

33 3 4 0.0459 0.0591 1.130 0.9945 -0.0001 

34 3 4 0.0747 0.0994 1.837 0.9844 -0.0013 

35 3 4 0.2822 0.3530 6.937 0.8027 0.0015 

36 3 4 0.0780 0.1094 1.917 0.9810 0.0000 

37 3 4 0.2847 0.3559 7.001 0.7994 0.0009 

38 3 4 0.3165 0.3977 7.783 0.7499 0.0032 

39 3 4 0.0794 0.1128 1.953 0.9798 -0.0007 

40 3 4 0.2838 0.3569 6.977 0.7984 -0.0025 

41 3 4 0.3143 0.3956 7.728 0.7524 -0.0032 

42 3 4 0.3146 0.3970 7.734 0.7508 -0.0018 

43 2 3 0.0858 0.1127 2.110 0.9799 -0.0008 

44 2 3 0.0921 0.1202 2.265 0.9771 -0.0009 

45 2 3 0.4232 0.5391 10.406 0.5405 0.0014 

46 2 3 0.0887 0.1196 2.180 0.9774 0.0003 

47 2 3 0.3861 0.4849 9.494 0.6282 -0.0013 

48 2 3 0.4100 0.5118 10.081 0.5870 0.0027 

49 2 3 0.0991 0.1351 2.438 0.9711 -0.0013 

50 2 3 0.5242 0.6691 12.888 0.2914 0.0051 

51 2 3 0.4535 0.5713 11.149 0.4841 0.0000 

52 2 3 0.3946 0.4905 9.701 0.6202 0.0018 

53 2 3 0.0831 0.1175 2.044 0.9781 -0.0001 

54 2 3 0.2911 0.3651 7.157 0.7890 -0.0006 

55 2 3 0.3180 0.4005 7.819 0.7463 -0.0009 

56 2 3 0.3385 0.4253 8.322 0.7140 0.0023 

57 2 3 0.3404 0.4303 8.370 0.7073 -0.0015 

58 1 2 0.1096 0.1474 2.696 0.9656 -0.0003 

59 1 2 0.5292 0.6753 13.012 0.2786 0.0021 

60 1 2 0.4546 0.5730 11.177 0.4810 0.0004 

61 1 2 0.4379 0.5460 10.766 0.5285 -0.0007 

62 1 2 0.6184 0.7818 15.206 0.0332 0.0114 

63 1 2 0.3484 0.4392 8.566 0.6947 -0.0010 
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Table A7: Performance of MLP at Station 48625 (Ipoh) 
Combinations Variables Hidden Neurons MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 7 0.0287 0.0344 0.717 0.9980 -0.0001 

2 5 6 0.0627 0.0809 1.570 0.9890 -0.0001 

3 5 6 0.0368 0.0457 0.921 0.9965 0.0004 

4 5 6 0.0324 0.0395 0.810 0.9974 0.0002 

5 5 6 0.0441 0.0567 1.102 0.9946 -0.0003 

6 5 6 0.0851 0.1117 2.129 0.9790 -0.0003 

7 5 6 0.2779 0.3481 6.953 0.7961 0.0013 

8 4 5 0.0651 0.0838 1.629 0.9882 -0.0003 

9 4 5 0.0648 0.0833 1.621 0.9884 -0.0010 

10 4 5 0.0692 0.0906 1.731 0.9862 -0.0003 

11 4 5 0.1081 0.1375 2.706 0.9682 -0.0005 

12 4 5 0.3245 0.4106 8.120 0.7164 -0.0015 

13 4 5 0.0411 0.0512 1.027 0.9956 -0.0005 

14 4 5 0.0454 0.0583 1.135 0.9943 -0.0005 

15 4 5 0.0990 0.1290 2.476 0.9720 -0.0005 

16 4 5 0.3005 0.3750 7.520 0.7631 -0.0006 

17 4 5 0.0461 0.0595 1.154 0.9940 -0.0002 

18 4 5 0.0988 0.1292 2.472 0.9719 -0.0001 

19 4 5 0.2962 0.3697 7.411 0.7698 -0.0024 

20 4 5 0.1156 0.1526 2.893 0.9608 -0.0003 

21 4 5 0.2814 0.3531 7.040 0.7903 0.0015 

22 4 5 0.3196 0.3978 7.996 0.7338 0.0001 

23 3 4 0.0791 0.1010 1.979 0.9829 0.0000 

24 3 4 0.0703 0.0913 1.758 0.9860 -0.0001 

25 3 4 0.1164 0.1479 2.912 0.9632 -0.0019 

26 3 4 0.3705 0.4672 9.270 0.6325 0.0050 

27 3 4 0.0840 0.1101 2.102 0.9796 -0.0008 

28 3 4 0.1126 0.1427 2.818 0.9657 0.0008 

29 3 4 0.4009 0.5106 10.029 0.5613 0.0011 

30 3 4 0.1340 0.1716 3.353 0.9505 -0.0013 

31 3 4 0.3284 0.4156 8.216 0.7095 0.0019 

32 3 4 0.3782 0.4703 9.463 0.6280 0.0019 

33 3 4 0.0551 0.0700 1.377 0.9918 -0.0004 

34 3 4 0.1021 0.1330 2.553 0.9702 0.0003 

35 3 4 0.3044 0.3792 7.617 0.7577 -0.0003 

36 3 4 0.1170 0.1541 2.928 0.9600 -0.0005 

37 3 4 0.3170 0.3949 7.931 0.7376 -0.0026 

38 3 4 0.3294 0.4096 8.242 0.7175 -0.0046 

39 3 4 0.1154 0.1522 2.886 0.9610 0.0002 

40 3 4 0.3297 0.4122 8.249 0.7141 0.0015 

41 3 4 0.3241 0.4035 8.108 0.7259 0.0012 

42 3 4 0.3379 0.4207 8.454 0.7021 -0.0007 

43 2 3 0.1025 0.1326 2.566 0.9704 -0.0003 

44 2 3 0.1187 0.1505 2.969 0.9619 -0.0006 

45 2 3 0.4036 0.5133 10.099 0.5570 0.0037 

46 2 3 0.1352 0.1728 3.382 0.9498 -0.0006 

47 2 3 0.3902 0.4922 9.762 0.5923 -0.0010 

48 2 3 0.4053 0.5079 10.140 0.5659 0.0003 

49 2 3 0.1390 0.1772 3.478 0.9472 0.0013 

50 2 3 0.5498 0.7058 13.755 0.1612 -0.0031 

51 2 3 0.4235 0.5329 10.595 0.5224 0.0027 

52 2 3 0.3941 0.4893 9.860 0.5972 -0.0007 

53 2 3 0.1186 0.1554 2.968 0.9593 -0.0006 

54 2 3 0.3350 0.4178 8.383 0.7062 -0.0009 

55 2 3 0.3309 0.4117 8.280 0.7145 -0.0006 

56 2 3 0.3704 0.4616 9.268 0.6412 -0.0018 

57 2 3 0.3741 0.4652 9.361 0.6355 -0.0015 

58 1 2 0.1486 0.1891 3.718 0.9398 -0.0008 

59 1 2 0.5551 0.7133 13.890 0.1431 -0.0039 

60 1 2 0.4229 0.5322 10.582 0.5236 -0.0008 

61 1 2 0.4568 0.5704 11.429 0.4526 0.0030 

62 1 2 0.5995 0.7625 14.999 0.0222 -0.0003 

63 1 2 0.3810 0.4742 9.532 0.6213 -0.0008 
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Table A8: Performance of MLP at Station 48632 (Cameron Highlands) 
Combinations Variables Hidden Neurons MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 7 0.0270 0.0323 0.854 0.9991 0.0000 

2 5 6 0.0412 0.0529 1.303 0.9975 -0.0004 

3 5 6 0.0304 0.0376 0.962 0.9988 -0.0002 

4 5 6 0.0295 0.0359 0.932 0.9989 0.0001 

5 5 6 0.0389 0.0532 1.231 0.9975 -0.0002 

6 5 6 0.0430 0.0588 1.360 0.9969 -0.0004 

7 5 6 0.3468 0.4605 10.964 0.8133 -0.0014 

8 4 5 0.0424 0.0545 1.341 0.9974 0.0001 

9 4 5 0.0481 0.0626 1.521 0.9966 0.0003 

10 4 5 0.0508 0.0701 1.607 0.9957 -0.0012 

11 4 5 0.0520 0.0703 1.644 0.9956 0.0004 

12 4 5 0.3795 0.4949 11.999 0.7845 0.0021 

13 4 5 0.0354 0.0460 1.120 0.9981 0.0002 

14 4 5 0.0400 0.0553 1.265 0.9973 -0.0002 

15 4 5 0.0472 0.0659 1.493 0.9962 -0.0002 

16 4 5 0.3635 0.4803 11.492 0.7972 0.0011 

17 4 5 0.0396 0.0537 1.252 0.9975 -0.0001 

18 4 5 0.0446 0.0613 1.410 0.9967 -0.0007 

19 4 5 0.3583 0.4734 11.327 0.8030 -0.0012 

20 4 5 0.0586 0.0927 1.853 0.9923 -0.0008 

21 4 5 0.3693 0.4913 11.675 0.7882 -0.0023 

22 4 5 0.3781 0.4924 11.955 0.7866 0.0018 

23 3 4 0.1543 0.2308 4.879 0.9531 0.0004 

24 3 4 0.0521 0.0723 1.647 0.9954 0.0007 

25 3 4 0.0531 0.0722 1.679 0.9954 -0.0012 

26 3 4 0.4249 0.5491 13.434 0.7345 0.0009 

27 3 4 0.0627 0.0868 1.982 0.9934 0.0003 

28 3 4 0.0565 0.0757 1.786 0.9950 0.0004 

29 3 4 0.4661 0.5908 14.737 0.6926 0.0019 

30 3 4 0.0658 0.1009 2.081 0.9909 0.0008 

31 3 4 0.4028 0.5309 12.734 0.7525 -0.0009 

32 3 4 0.4072 0.5255 12.874 0.7570 0.0048 

33 3 4 0.0451 0.0621 1.425 0.9966 -0.0002 

34 3 4 0.0521 0.0736 1.647 0.9952 -0.0006 

35 3 4 0.3742 0.4972 11.830 0.7824 0.0029 

36 3 4 0.0593 0.0934 1.875 0.9922 -0.0001 

37 3 4 0.4097 0.5403 12.952 0.7436 -0.0020 

38 3 4 0.3873 0.5058 12.247 0.7746 -0.0006 

39 3 4 0.0587 0.0927 1.855 0.9923 0.0000 

40 3 4 0.3956 0.5213 12.506 0.7610 -0.0026 

41 3 4 0.3847 0.5002 12.164 0.7800 0.0051 

42 3 4 0.4344 0.5630 13.733 0.7209 -0.0021 

43 2 3 0.2870 0.3645 9.074 0.8837 -0.0034 

44 2 3 0.1644 0.2411 5.198 0.9490 -0.0015 

45 2 3 0.4822 0.6111 15.247 0.6711 0.0011 

46 2 3 0.0660 0.1013 2.085 0.9909 -0.0006 

47 2 3 0.5113 0.6576 16.165 0.6193 0.0009 

48 2 3 0.4420 0.5659 13.975 0.7179 -0.0074 

49 2 3 0.0724 0.1093 2.289 0.9894 0.0000 

50 2 3 0.6150 0.7793 19.443 0.4654 0.0078 

51 2 3 0.4738 0.5998 14.980 0.6832 -0.0048 

52 2 3 0.4627 0.6003 14.629 0.6827 -0.0013 

53 2 3 0.0629 0.0965 1.990 0.9917 0.0001 

54 2 3 0.4250 0.5626 13.438 0.7218 -0.0002 

55 2 3 0.4006 0.5248 12.667 0.7576 0.0016 

56 2 3 0.4798 0.6167 15.171 0.6646 0.0012 

57 2 3 0.4589 0.5886 14.509 0.6946 0.0008 

58 1 2 0.3020 0.3786 9.548 0.8744 -0.0013 

59 1 2 0.7815 0.9861 24.709 0.1431 -0.0056 

60 1 2 0.4858 0.6151 15.358 0.6669 -0.0036 

61 1 2 0.5548 0.7090 17.541 0.5569 0.0012 

62 1 2 0.6435 0.8137 20.346 0.4186 -0.0016 

63 1 2 0.4922 0.6364 15.561 0.6434 -0.0089 

 

 



214 

 

 

Table A9: Performance of MLP at Station 48647 (Subang) 
Combinations Variables Hidden Neurons MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 7 0.0273 0.0322 0.675 0.9989 -0.0001 

2 5 6 0.0671 0.0852 1.659 0.9924 0.0000 

3 5 6 0.0416 0.0522 1.027 0.9971 -0.0002 

4 5 6 0.0361 0.0447 0.893 0.9979 0.0003 

5 5 6 0.0557 0.0725 1.376 0.9945 0.0001 

6 5 6 0.1011 0.1343 2.499 0.9811 0.0003 

7 5 6 0.3760 0.4898 9.294 0.7491 -0.0037 

8 4 5 0.0709 0.0901 1.751 0.9915 0.0000 

9 4 5 0.0706 0.0895 1.744 0.9916 -0.0003 

10 4 5 0.0768 0.0991 1.899 0.9897 0.0000 

11 4 5 0.1100 0.1434 2.720 0.9785 -0.0004 

12 4 5 0.4721 0.5993 11.668 0.6250 0.0020 

13 4 5 0.0433 0.0548 1.070 0.9969 -0.0001 

14 4 5 0.0587 0.0764 1.452 0.9939 -0.0005 

15 4 5 0.1045 0.1392 2.583 0.9797 -0.0007 

16 4 5 0.3843 0.4985 9.499 0.7402 -0.0038 

17 4 5 0.0565 0.0735 1.396 0.9944 -0.0002 

18 4 5 0.1022 0.1352 2.526 0.9809 -0.0003 

19 4 5 0.3816 0.4963 9.432 0.7425 -0.0002 

20 4 5 0.1152 0.1514 2.847 0.9760 0.0004 

21 4 5 0.4094 0.5303 10.119 0.7058 -0.0069 

22 4 5 0.4239 0.5468 10.477 0.6873 -0.0021 

23 3 4 0.0885 0.1118 2.188 0.9870 -0.0009 

24 3 4 0.0784 0.1006 1.937 0.9894 -0.0001 

25 3 4 0.1125 0.1465 2.781 0.9776 -0.0006 

26 3 4 0.4977 0.6265 12.303 0.5900 0.0002 

27 3 4 0.0883 0.1157 2.182 0.9860 0.0001 

28 3 4 0.1135 0.1467 2.805 0.9775 -0.0008 

29 3 4 0.5276 0.6644 13.040 0.5386 0.0017 

30 3 4 0.1192 0.1554 2.945 0.9748 0.0001 

31 3 4 0.4862 0.6190 12.016 0.5994 -0.0016 

32 3 4 0.4987 0.6318 12.326 0.5836 0.0023 

33 3 4 0.0640 0.0831 1.582 0.9928 -0.0001 

34 3 4 0.1105 0.1468 2.732 0.9775 -0.0003 

35 3 4 0.3919 0.5059 9.686 0.7324 -0.0051 

36 3 4 0.1152 0.1515 2.848 0.9761 0.0008 

37 3 4 0.4323 0.5546 10.686 0.6783 -0.0006 

38 3 4 0.4321 0.5564 10.679 0.6763 -0.0011 

39 3 4 0.1222 0.1587 3.021 0.9737 -0.0004 

40 3 4 0.4272 0.5514 10.560 0.6816 -0.0002 

41 3 4 0.4295 0.5533 10.615 0.6800 0.0040 

42 3 4 0.4615 0.5938 11.407 0.6310 -0.0024 

43 2 3 0.1113 0.1436 2.750 0.9785 0.0017 

44 2 3 0.1301 0.1685 3.215 0.9703 0.0000 

45 2 3 0.5294 0.6668 13.086 0.5356 0.0110 

46 2 3 0.1196 0.1557 2.957 0.9747 0.0000 

47 2 3 0.5337 0.6728 13.192 0.5271 0.0022 

48 2 3 0.5264 0.6616 13.011 0.5426 0.0006 

49 2 3 0.1342 0.1721 3.318 0.9691 0.0009 

50 2 3 0.6675 0.8391 16.498 0.2628 0.0021 

51 2 3 0.5628 0.7080 13.910 0.4760 0.0035 

52 2 3 0.5188 0.6583 12.824 0.5470 0.0002 

53 2 3 0.1326 0.1729 3.277 0.9688 -0.0001 

54 2 3 0.4375 0.5608 10.814 0.6710 -0.0019 

55 2 3 0.4351 0.5601 10.754 0.6721 -0.0025 

56 2 3 0.4907 0.6271 12.128 0.5885 -0.0001 

57 2 3 0.5091 0.6525 12.584 0.5549 -0.0018 

58 1 2 0.1561 0.2005 3.859 0.9580 0.0011 

59 1 2 0.6779 0.8535 16.755 0.2376 -0.0004 

60 1 2 0.5648 0.7116 13.961 0.4709 0.0066 

61 1 2 0.5717 0.7195 14.130 0.4597 -0.0017 

62 1 2 0.7626 0.9501 18.851 0.0562 0.0159 

63 1 2 0.5133 0.6560 12.688 0.5501 -0.0012 
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Table A10: Performance of MLP at Station 48649 (Muadzam Shah) 
Combinations Variables Hidden Neurons MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 7 0.0260 0.0352 0.746 0.9980 -0.0003 

2 5 6 0.0393 0.0535 1.130 0.9959 0.0002 

3 5 6 0.0298 0.0410 0.855 0.9974 -0.0001 

4 5 6 0.0280 0.0382 0.804 0.9977 0.0003 

5 5 6 0.0329 0.0473 0.944 0.9967 0.0003 

6 5 6 0.0589 0.0809 1.693 0.9907 -0.0008 

7 5 6 0.2655 0.3352 7.631 0.8421 -0.0027 

8 4 5 0.0406 0.0554 1.167 0.9956 0.0002 

9 4 5 0.0454 0.0615 1.304 0.9946 0.0008 

10 4 5 0.0431 0.0596 1.239 0.9949 0.0000 

11 4 5 0.0595 0.0812 1.709 0.9907 -0.0012 

12 4 5 0.3332 0.4173 9.575 0.7553 -0.0014 

13 4 5 0.0354 0.0490 1.017 0.9965 -0.0013 

14 4 5 0.0347 0.0497 0.998 0.9964 -0.0005 

15 4 5 0.0653 0.0892 1.877 0.9888 -0.0004 

16 4 5 0.2786 0.3514 8.005 0.8265 -0.0020 

17 4 5 0.0342 0.0486 0.982 0.9965 0.0001 

18 4 5 0.0599 0.0823 1.722 0.9904 0.0009 

19 4 5 0.2743 0.3471 7.882 0.8308 0.0028 

20 4 5 0.0730 0.0998 2.096 0.9860 0.0007 

21 4 5 0.2766 0.3491 7.947 0.8288 -0.0020 

22 4 5 0.3207 0.4000 9.216 0.7752 -0.0004 

23 3 4 0.0572 0.0775 1.644 0.9915 0.0001 

24 3 4 0.0443 0.0614 1.272 0.9946 -0.0007 

25 3 4 0.0662 0.0904 1.902 0.9884 -0.0005 

26 3 4 0.3825 0.4793 10.990 0.6776 -0.0019 

27 3 4 0.0506 0.0691 1.455 0.9932 0.0000 

28 3 4 0.0610 0.0834 1.753 0.9902 -0.0001 

29 3 4 0.4321 0.5451 12.417 0.5823 -0.0007 

30 3 4 0.0739 0.1017 2.123 0.9854 -0.0010 

31 3 4 0.3412 0.4283 9.804 0.7423 -0.0019 

32 3 4 0.3655 0.4547 10.502 0.7094 0.0020 

33 3 4 0.0398 0.0559 1.143 0.9955 -0.0005 

34 3 4 0.0708 0.0961 2.034 0.9870 0.0003 

35 3 4 0.2834 0.3569 8.145 0.8210 -0.0014 

36 3 4 0.0763 0.1036 2.193 0.9849 0.0004 

37 3 4 0.3090 0.3902 8.879 0.7861 -0.0020 

38 3 4 0.3261 0.4059 9.370 0.7685 -0.0019 

39 3 4 0.0741 0.1015 2.130 0.9855 0.0001 

40 3 4 0.3034 0.3831 8.718 0.7939 -0.0052 

41 3 4 0.3267 0.4069 9.388 0.7675 0.0041 

42 3 4 0.3771 0.4729 10.836 0.6858 0.0005 

43 2 3 0.0611 0.0826 1.756 0.9904 -0.0002 

44 2 3 0.0733 0.0983 2.107 0.9864 -0.0008 

45 2 3 0.4341 0.5469 12.475 0.5797 -0.0024 

46 2 3 0.0773 0.1073 2.221 0.9838 -0.0009 

47 2 3 0.4354 0.5473 12.512 0.5792 -0.0038 

48 2 3 0.4003 0.4979 11.503 0.6523 -0.0037 

49 2 3 0.0752 0.1034 2.160 0.9849 -0.0004 

50 2 3 0.6180 0.7877 17.759 0.1280 0.0027 

51 2 3 0.4417 0.5562 12.693 0.5654 0.0029 

52 2 3 0.3991 0.5012 11.467 0.6468 -0.0012 

53 2 3 0.0835 0.1129 2.398 0.9820 -0.0009 

54 2 3 0.3169 0.4000 9.106 0.7751 -0.0014 

55 2 3 0.3300 0.4100 9.484 0.7640 -0.0026 

56 2 3 0.4164 0.5194 11.967 0.6209 -0.0023 

57 2 3 0.4236 0.5281 12.173 0.6081 -0.0002 

58 1 2 0.0851 0.1146 2.446 0.9815 -0.0019 

59 1 2 0.6254 0.7947 17.973 0.1136 0.0053 

60 1 2 0.4421 0.5563 12.704 0.5651 0.0022 

61 1 2 0.4792 0.6026 13.770 0.4903 -0.0075 

62 1 2 0.6623 0.8368 19.032 0.0162 0.0029 

63 1 2 0.4352 0.5391 12.506 0.5917 0.0036 
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Table A11: Performance of MLP at Station 48650 (KLIA) 
Combinations Variables Hidden Neurons MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 7 0.0262 0.0308 0.646 0.9990 -0.0001 

2 5 6 0.0745 0.0960 1.841 0.9906 0.0004 

3 5 6 0.0438 0.0572 1.083 0.9967 0.0001 

4 5 6 0.0395 0.0502 0.976 0.9974 -0.0001 

5 5 6 0.0709 0.0994 1.752 0.9900 -0.0015 

6 5 6 0.0896 0.1289 2.213 0.9831 -0.0018 

7 5 6 0.3802 0.4793 9.389 0.7666 -0.0004 

8 4 5 0.0791 0.1021 1.953 0.9894 -0.0002 

9 4 5 0.0770 0.0990 1.902 0.9901 0.0003 

10 4 5 0.1074 0.1498 2.651 0.9773 -0.0014 

11 4 5 0.1135 0.1536 2.803 0.9760 -0.0005 

12 4 5 0.4246 0.5333 10.486 0.7111 -0.0018 

13 4 5 0.0459 0.0597 1.134 0.9964 0.0001 

14 4 5 0.0750 0.1061 1.852 0.9886 -0.0009 

15 4 5 0.1027 0.1495 2.537 0.9773 -0.0003 

16 4 5 0.3969 0.4990 9.801 0.7471 0.0006 

17 4 5 0.0720 0.1014 1.779 0.9896 -0.0009 

18 4 5 0.0976 0.1412 2.411 0.9797 -0.0003 

19 4 5 0.3933 0.4949 9.713 0.7516 0.0041 

20 4 5 0.1348 0.2117 3.329 0.9545 -0.0032 

21 4 5 0.4015 0.5063 9.917 0.7397 -0.0012 

22 4 5 0.4197 0.5306 10.365 0.7140 -0.0066 

23 3 4 0.0891 0.1152 2.201 0.9865 0.0002 

24 3 4 0.1078 0.1495 2.662 0.9774 -0.0010 

25 3 4 0.1214 0.1689 2.999 0.9713 0.0001 

26 3 4 0.4542 0.5711 11.217 0.6685 0.0014 

27 3 4 0.1236 0.1704 3.052 0.9706 0.0006 

28 3 4 0.1165 0.1595 2.876 0.9741 -0.0003 

29 3 4 0.4904 0.6244 12.110 0.6037 0.0048 

30 3 4 0.1606 0.2409 3.967 0.9411 -0.0010 

31 3 4 0.4510 0.5656 11.138 0.6750 0.0025 

32 3 4 0.4657 0.5831 11.501 0.6549 0.0074 

33 3 4 0.0785 0.1084 1.939 0.9881 -0.0002 

34 3 4 0.1034 0.1502 2.554 0.9771 0.0011 

35 3 4 0.3977 0.4999 9.821 0.7460 0.0040 

36 3 4 0.1392 0.2185 3.437 0.9515 -0.0008 

37 3 4 0.4245 0.5334 10.484 0.7110 -0.0047 

38 3 4 0.4309 0.5444 10.642 0.6988 -0.0014 

39 3 4 0.1353 0.2131 3.341 0.9538 -0.0017 

40 3 4 0.4369 0.5486 10.789 0.6943 0.0017 

41 3 4 0.4284 0.5415 10.581 0.7023 0.0012 

42 3 4 0.4668 0.5922 11.528 0.6447 0.0083 

43 2 3 0.1419 0.1928 3.504 0.9623 0.0000 

44 2 3 0.1271 0.1725 3.139 0.9697 0.0006 

45 2 3 0.4931 0.6271 12.179 0.6006 -0.0005 

46 2 3 0.1610 0.2418 3.975 0.9406 -0.0006 

47 2 3 0.4959 0.6182 12.246 0.6115 -0.0020 

48 2 3 0.4856 0.6105 11.993 0.6211 0.0010 

49 2 3 0.1733 0.2564 4.281 0.9332 -0.0018 

50 2 3 0.6653 0.8333 16.432 0.2946 0.0020 

51 2 3 0.5192 0.6570 12.821 0.5611 0.0028 

52 2 3 0.5110 0.6468 12.620 0.5751 0.0025 

53 2 3 0.1431 0.2224 3.534 0.9497 -0.0016 

54 2 3 0.4391 0.5520 10.845 0.6908 -0.0001 

55 2 3 0.4334 0.5468 10.703 0.6962 -0.0006 

56 2 3 0.4857 0.6157 11.994 0.6152 -0.0083 

57 2 3 0.5030 0.6355 12.423 0.5899 0.0025 

58 1 2 0.1928 0.2824 4.761 0.9191 -0.0028 

59 1 2 0.6848 0.8573 16.913 0.2539 0.0067 

60 1 2 0.5194 0.6577 12.827 0.5603 0.0034 

61 1 2 0.5515 0.6970 13.620 0.5070 -0.0001 

62 1 2 0.7566 0.9529 18.684 0.0790 -0.0003 

63 1 2 0.5044 0.6379 12.457 0.5866 -0.0062 
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Table A12: Performance of MLP at Station 48657 (Kuantan) 
Combinations Variables Hidden Neurons MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 7 0.0235 0.0289 0.611 0.9990 0.0001 

2 5 6 0.0637 0.0835 1.655 0.9918 0.0002 

3 5 6 0.0347 0.0439 0.902 0.9977 -0.0005 

4 5 6 0.0321 0.0402 0.833 0.9981 -0.0001 

5 5 6 0.0502 0.0665 1.303 0.9948 -0.0001 

6 5 6 0.0664 0.0873 1.725 0.9910 -0.0003 

7 5 6 0.2784 0.3591 7.227 0.8474 -0.0012 

8 4 5 0.0660 0.0858 1.713 0.9913 0.0001 

9 4 5 0.0675 0.0879 1.751 0.9909 0.0005 

10 4 5 0.0787 0.1028 2.043 0.9875 0.0001 

11 4 5 0.0834 0.1072 2.164 0.9864 -0.0006 

12 4 5 0.3493 0.4480 9.068 0.7627 -0.0001 

13 4 5 0.0388 0.0494 1.008 0.9971 -0.0002 

14 4 5 0.0514 0.0679 1.335 0.9945 0.0002 

15 4 5 0.0759 0.0990 1.971 0.9884 -0.0005 

16 4 5 0.2968 0.3823 7.706 0.8271 -0.0021 

17 4 5 0.0508 0.0672 1.318 0.9947 -0.0001 

18 4 5 0.0733 0.0952 1.904 0.9893 0.0009 

19 4 5 0.2905 0.3747 7.542 0.8337 -0.0008 

20 4 5 0.0939 0.1236 2.438 0.9819 -0.0012 

21 4 5 0.2884 0.3703 7.487 0.8378 -0.0029 

22 4 5 0.3343 0.4251 8.678 0.7860 0.0004 

23 3 4 0.0874 0.1150 2.269 0.9844 -0.0006 

24 3 4 0.0791 0.1034 2.054 0.9874 0.0009 

25 3 4 0.0878 0.1123 2.278 0.9851 -0.0004 

26 3 4 0.4026 0.5099 10.452 0.6925 0.0018 

27 3 4 0.0903 0.1200 2.343 0.9829 -0.0004 

28 3 4 0.0838 0.1075 2.175 0.9864 -0.0006 

29 3 4 0.4483 0.5675 11.638 0.6190 0.0012 

30 3 4 0.1043 0.1351 2.708 0.9784 0.0011 

31 3 4 0.3596 0.4611 9.336 0.7487 0.0000 

32 3 4 0.3911 0.4952 10.155 0.7100 -0.0025 

33 3 4 0.0553 0.0721 1.435 0.9939 -0.0005 

34 3 4 0.0787 0.1020 2.043 0.9877 0.0001 

35 3 4 0.3039 0.3906 7.889 0.8194 -0.0045 

36 3 4 0.0965 0.1258 2.506 0.9812 0.0005 

37 3 4 0.3267 0.4173 8.483 0.7938 -0.0016 

38 3 4 0.3520 0.4478 9.137 0.7625 0.0012 

39 3 4 0.0944 0.1241 2.451 0.9817 0.0003 

40 3 4 0.3166 0.4059 8.219 0.8050 -0.0017 

41 3 4 0.3468 0.4401 9.003 0.7705 0.0015 

42 3 4 0.3672 0.4647 9.533 0.7444 0.0002 

43 2 3 0.1103 0.1441 2.863 0.9754 -0.0005 

44 2 3 0.0969 0.1251 2.516 0.9815 -0.0002 

45 2 3 0.4534 0.5719 11.772 0.6132 -0.0004 

46 2 3 0.1046 0.1355 2.716 0.9783 -0.0006 

47 2 3 0.4729 0.5980 12.278 0.5771 0.0044 

48 2 3 0.4359 0.5501 11.316 0.6419 0.0028 

49 2 3 0.1069 0.1404 2.775 0.9767 0.0001 

50 2 3 0.6773 0.8544 17.584 0.1366 0.0035 

51 2 3 0.4715 0.5933 12.242 0.5834 0.0031 

52 2 3 0.4175 0.5301 10.838 0.6675 0.0024 

53 2 3 0.0981 0.1282 2.546 0.9805 -0.0010 

54 2 3 0.3368 0.4296 8.745 0.7815 -0.0005 

55 2 3 0.3618 0.4588 9.392 0.7508 -0.0039 

56 2 3 0.4221 0.5343 10.958 0.6619 0.0002 

57 2 3 0.4037 0.5098 10.480 0.6923 0.0016 

58 1 2 0.1197 0.1560 3.107 0.9712 -0.0025 

59 1 2 0.6881 0.8679 17.865 0.1083 -0.0012 

60 1 2 0.4724 0.5939 12.265 0.5827 0.0046 

61 1 2 0.5424 0.6889 14.082 0.4382 -0.0029 

62 1 2 0.7280 0.9104 18.901 0.0191 0.0006 

63 1 2 0.4373 0.5516 11.354 0.6398 -0.0052 
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Table A13: Performance of SVM at Station 48600 (Pulau Langkawi) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0480 0.0581 1.097 0.9976 -0.0180 

2 5 0.0824 0.1167 1.882 0.9893 0.0024 

3 5 0.0589 0.0788 1.345 0.9952 -0.0110 

4 5 0.0512 0.0693 1.169 0.9963 -0.0090 

5 5 0.1062 0.1591 2.426 0.9802 -0.0078 

6 5 0.1310 0.2034 2.991 0.9678 -0.0137 

7 5 0.4062 0.5150 9.276 0.7916 -0.0002 

8 4 0.0866 0.1246 1.978 0.9878 0.0010 

9 4 0.0895 0.1259 2.043 0.9876 0.0004 

10 4 0.1491 0.2307 3.404 0.9582 0.0030 

11 4 0.1663 0.2449 3.797 0.9535 -0.0250 

12 4 0.4333 0.5557 9.896 0.7580 0.0190 

13 4 0.0632 0.0846 1.443 0.9945 -0.0105 

14 4 0.1131 0.1704 2.584 0.9772 -0.0085 

15 4 0.1433 0.2232 3.272 0.9613 -0.0205 

16 4 0.4271 0.5369 9.753 0.7736 -0.0019 

17 4 0.1072 0.1626 2.448 0.9793 -0.0084 

18 4 0.1400 0.2154 3.198 0.9639 -0.0166 

19 4 0.4362 0.5451 9.961 0.7666 -0.0068 

20 4 0.2325 0.3737 5.309 0.8953 -0.0771 

21 4 0.4421 0.5680 10.097 0.7469 -0.0036 

22 4 0.4317 0.5413 9.859 0.7698 -0.0004 

23 3 0.1131 0.1547 2.583 0.9812 -0.0031 

24 3 0.1530 0.2372 3.494 0.9560 0.0050 

25 3 0.1709 0.2526 3.903 0.9505 -0.0261 

26 3 0.4680 0.5910 10.687 0.7263 0.0284 

27 3 0.1665 0.2485 3.802 0.9516 -0.0013 

28 3 0.1694 0.2490 3.868 0.9521 -0.0283 

29 3 0.5453 0.6855 12.453 0.6322 0.0423 

30 3 0.3017 0.4755 6.890 0.8371 -0.1274 

31 3 0.4774 0.6276 10.903 0.6917 0.0208 

32 3 0.4603 0.5831 10.511 0.7332 0.0096 

33 3 0.1166 0.1730 2.662 0.9765 -0.0078 

34 3 0.1461 0.2261 3.337 0.9603 -0.0212 

35 3 0.4393 0.5487 10.032 0.7637 -0.0091 

36 3 0.2375 0.3834 5.423 0.8904 -0.0843 

37 3 0.4718 0.5959 10.775 0.7215 -0.0116 

38 3 0.4459 0.5563 10.183 0.7568 -0.0015 

39 3 0.2344 0.3778 5.354 0.8934 -0.0799 

40 3 0.4965 0.6195 11.338 0.6987 -0.0069 

41 3 0.4540 0.5637 10.369 0.7504 -0.0086 

42 3 0.5036 0.6456 11.501 0.6729 -0.0224 

43 2 0.1921 0.2778 4.388 0.9395 -0.0018 

44 2 0.1852 0.2720 4.230 0.9424 -0.0252 

45 2 0.5510 0.6915 12.583 0.6250 0.0332 

46 2 0.3060 0.4799 6.987 0.8333 -0.1271 

47 2 0.5304 0.6794 12.112 0.6385 0.0148 

48 2 0.4858 0.6102 11.095 0.7083 0.0264 

49 2 0.3283 0.5156 7.498 0.8115 -0.1484 

50 2 0.7414 0.9414 16.931 0.3118 0.0983 

51 2 0.5589 0.6990 12.763 0.6171 0.0294 

52 2 0.5565 0.7277 12.708 0.5847 -0.0206 

53 2 0.2387 0.3854 5.452 0.8891 -0.0850 

54 2 0.4967 0.6199 11.344 0.6985 -0.0054 

55 2 0.4557 0.5656 10.407 0.7487 -0.0102 

56 2 0.5233 0.6634 11.951 0.6548 -0.0265 

57 2 0.5438 0.6801 12.419 0.6367 -0.0122 

58 1 0.3509 0.5453 8.014 0.7878 -0.1592 

59 1 0.7662 0.9853 17.498 0.2492 0.1168 

60 1 0.5653 0.7072 12.911 0.6079 0.0344 

61 1 0.6046 0.7796 13.807 0.5226 -0.0125 

62 1 0.8467 1.0663 19.337 0.1090 0.0331 

63 1 0.5440 0.6805 12.424 0.6363 -0.0132 
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Table A14: Performance of SVM at Station 48601 (Bayan Lepas) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0429 0.0542 0.989 0.9975 -0.0159 

2 5 0.0829 0.1112 1.910 0.9884 -0.0017 

3 5 0.0542 0.0727 1.248 0.9950 -0.0030 

4 5 0.0474 0.0641 1.092 0.9962 0.0011 

5 5 0.1027 0.1464 2.367 0.9800 -0.0051 

6 5 0.1033 0.1480 2.381 0.9795 -0.0037 

7 5 0.3822 0.4952 8.809 0.7696 -0.0123 

8 4 0.0860 0.1155 1.982 0.9875 -0.0019 

9 4 0.0895 0.1228 2.063 0.9859 -0.0043 

10 4 0.1404 0.1975 3.236 0.9635 -0.0057 

11 4 0.1275 0.1742 2.940 0.9717 -0.0098 

12 4 0.4167 0.5398 9.605 0.7263 0.0062 

13 4 0.0562 0.0755 1.296 0.9947 -0.0038 

14 4 0.1067 0.1515 2.459 0.9785 -0.0032 

15 4 0.1209 0.1718 2.787 0.9724 -0.0079 

16 4 0.4054 0.5194 9.343 0.7464 -0.0132 

17 4 0.1041 0.1485 2.399 0.9794 -0.0046 

18 4 0.1130 0.1606 2.605 0.9759 -0.0052 

19 4 0.3975 0.5066 9.163 0.7588 -0.0169 

20 4 0.2017 0.3482 4.649 0.8912 -0.0728 

21 4 0.4039 0.5249 9.311 0.7409 -0.0092 

22 4 0.4340 0.5543 10.004 0.7111 -0.0025 

23 3 0.1072 0.1405 2.471 0.9815 -0.0031 

24 3 0.1433 0.2018 3.304 0.9620 -0.0084 

25 3 0.1358 0.1856 3.129 0.9679 -0.0134 

26 3 0.4708 0.5967 10.852 0.6654 0.0083 

27 3 0.1628 0.2263 3.753 0.9522 -0.0142 

28 3 0.1324 0.1814 3.052 0.9693 -0.0127 

29 3 0.5206 0.6592 11.999 0.5919 0.0234 

30 3 0.2244 0.3717 5.172 0.8766 -0.0815 

31 3 0.4419 0.5734 10.186 0.6914 0.0119 

32 3 0.4634 0.5928 10.682 0.6702 0.0140 

33 3 0.1114 0.1559 2.568 0.9772 -0.0024 

34 3 0.1241 0.1753 2.860 0.9713 -0.0084 

35 3 0.4068 0.5194 9.377 0.7466 -0.0160 

36 3 0.2070 0.3534 4.772 0.8877 -0.0735 

37 3 0.4368 0.5606 10.068 0.7046 -0.0095 

38 3 0.4489 0.5722 10.348 0.6919 -0.0045 

39 3 0.2033 0.3503 4.687 0.8898 -0.0731 

40 3 0.4383 0.5593 10.102 0.7060 -0.0131 

41 3 0.4452 0.5645 10.261 0.7002 -0.0081 

42 3 0.5196 0.6792 11.976 0.5673 -0.0319 

43 2 0.1821 0.2438 4.198 0.9443 -0.0078 

44 2 0.1485 0.1995 3.424 0.9629 -0.0113 

45 2 0.5216 0.6603 12.024 0.5905 0.0218 

46 2 0.2261 0.3735 5.211 0.8757 -0.0840 

47 2 0.5181 0.6557 11.943 0.5961 0.0224 

48 2 0.5045 0.6373 11.630 0.6184 0.0174 

49 2 0.2395 0.3874 5.520 0.8667 -0.0878 

50 2 0.6673 0.8552 15.382 0.3194 0.0858 

51 2 0.5556 0.6962 12.807 0.5454 0.0278 

52 2 0.5481 0.7176 12.633 0.5159 -0.0155 

53 2 0.2135 0.3572 4.922 0.8848 -0.0711 

54 2 0.4464 0.5686 10.289 0.6962 -0.0112 

55 2 0.4503 0.5718 10.380 0.6925 -0.0077 

56 2 0.5440 0.7043 12.538 0.5339 -0.0277 

57 2 0.5626 0.7178 12.968 0.5164 -0.0362 

58 1 0.2643 0.4054 6.092 0.8513 -0.0793 

59 1 0.6698 0.8625 15.438 0.3086 0.0928 

60 1 0.5556 0.6960 12.806 0.5455 0.0305 

61 1 0.6116 0.7854 14.096 0.4197 -0.0039 

62 1 0.7975 1.0143 18.381 0.0379 0.0568 

63 1 0.5633 0.7194 12.983 0.5139 -0.0340 
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Table A15: Performance of SVM at Station 48603 (Alor Setar) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0437 0.0538 1.021 0.9976 -0.0134 

2 5 0.0883 0.1156 2.064 0.9883 0.0001 

3 5 0.0521 0.0677 1.217 0.9961 -0.0095 

4 5 0.0460 0.0599 1.075 0.9969 -0.0045 

5 5 0.0765 0.1080 1.788 0.9898 -0.0062 

6 5 0.0906 0.1229 2.117 0.9868 -0.0022 

7 5 0.3188 0.4122 7.449 0.8507 0.0111 

8 4 0.0915 0.1192 2.139 0.9875 -0.0011 

9 4 0.0978 0.1298 2.286 0.9852 -0.0017 

10 4 0.1236 0.1668 2.888 0.9756 -0.0023 

11 4 0.1142 0.1517 2.669 0.9798 -0.0052 

12 4 0.3699 0.4750 8.643 0.8021 0.0212 

13 4 0.0563 0.0720 1.316 0.9956 -0.0111 

14 4 0.0779 0.1095 1.821 0.9895 -0.0059 

15 4 0.1082 0.1482 2.528 0.9807 -0.0017 

16 4 0.3449 0.4434 8.060 0.8271 0.0075 

17 4 0.0768 0.1076 1.796 0.9899 -0.0056 

18 4 0.0981 0.1322 2.292 0.9847 -0.0015 

19 4 0.3552 0.4519 8.300 0.8203 0.0026 

20 4 0.1728 0.2840 4.038 0.9312 -0.0464 

21 4 0.3280 0.4219 7.665 0.8436 0.0091 

22 4 0.3874 0.4989 9.054 0.7815 0.0231 

23 3 0.1118 0.1487 2.613 0.9806 -0.0043 

24 3 0.1426 0.1918 3.333 0.9677 -0.0031 

25 3 0.1238 0.1642 2.893 0.9763 -0.0068 

26 3 0.4231 0.5434 9.887 0.7414 0.0342 

27 3 0.1678 0.2334 3.921 0.9522 -0.0103 

28 3 0.1186 0.1570 2.773 0.9784 -0.0071 

29 3 0.5142 0.6548 12.017 0.6259 0.0604 

30 3 0.2027 0.3071 4.737 0.9196 -0.0518 

31 3 0.3779 0.4851 8.832 0.7935 0.0207 

32 3 0.4235 0.5418 9.896 0.7427 0.0298 

33 3 0.0797 0.1102 1.863 0.9894 -0.0054 

34 3 0.1129 0.1557 2.639 0.9787 -0.0019 

35 3 0.3582 0.4545 8.370 0.8182 0.0049 

36 3 0.1792 0.2904 4.189 0.9285 -0.0522 

37 3 0.3571 0.4590 8.345 0.8147 0.0052 

38 3 0.4035 0.5154 9.430 0.7668 0.0194 

39 3 0.1779 0.2918 4.158 0.9278 -0.0519 

40 3 0.3755 0.4779 8.775 0.7991 0.0016 

41 3 0.4180 0.5279 9.768 0.7551 0.0187 

42 3 0.4261 0.5585 9.958 0.7257 0.0092 

43 2 0.1729 0.2379 4.040 0.9503 -0.0110 

44 2 0.1376 0.1835 3.216 0.9705 -0.0075 

45 2 0.5181 0.6577 12.109 0.6230 0.0617 

46 2 0.2310 0.3455 5.398 0.9017 -0.0793 

47 2 0.4678 0.5999 10.932 0.6841 0.0298 

48 2 0.4531 0.5818 10.590 0.7031 0.0328 

49 2 0.2424 0.3675 5.664 0.8882 -0.0831 

50 2 0.6859 0.8860 16.028 0.3198 0.1059 

51 2 0.5416 0.6870 12.657 0.5881 0.0602 

52 2 0.4623 0.6009 10.804 0.6825 0.0193 

53 2 0.1808 0.2939 4.225 0.9266 -0.0517 

54 2 0.3765 0.4794 8.799 0.7979 0.0027 

55 2 0.4214 0.5319 9.849 0.7514 0.0169 

56 2 0.4653 0.6030 10.873 0.6799 -0.0027 

57 2 0.4928 0.6283 11.517 0.6527 0.0169 

58 1 0.2499 0.3744 5.840 0.8839 -0.0840 

59 1 0.6925 0.8965 16.184 0.3069 0.1242 

60 1 0.5492 0.6941 12.835 0.5806 0.0677 

61 1 0.5643 0.7318 13.186 0.5287 0.0017 

62 1 0.8159 1.0498 19.068 0.0373 0.0901 

63 1 0.4952 0.6310 11.573 0.6496 0.0143 
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Table A16: Performance of SVM at Station 48615 (Kota Bharu) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0369 0.0490 0.851 0.9977 -0.0004 

2 5 0.0911 0.1199 2.097 0.9863 -0.0027 

3 5 0.0555 0.0760 1.279 0.9945 -0.0035 

4 5 0.0519 0.0701 1.196 0.9953 0.0010 

5 5 0.0915 0.1304 2.106 0.9838 -0.0038 

6 5 0.0967 0.1376 2.226 0.9820 -0.0056 

7 5 0.3728 0.4740 8.587 0.7865 0.0308 

8 4 0.0933 0.1246 2.149 0.9852 -0.0032 

9 4 0.0959 0.1248 2.209 0.9851 -0.0031 

10 4 0.1301 0.1729 2.997 0.9715 -0.0060 

11 4 0.1292 0.1702 2.976 0.9725 -0.0077 

12 4 0.4076 0.5274 9.388 0.7361 0.0413 

13 4 0.0578 0.0791 1.331 0.9940 -0.0001 

14 4 0.0962 0.1400 2.216 0.9813 -0.0025 

15 4 0.1168 0.1740 2.690 0.9712 -0.0120 

16 4 0.3964 0.5026 9.129 0.7597 0.0274 

17 4 0.0934 0.1338 2.151 0.9829 -0.0041 

18 4 0.1092 0.1513 2.514 0.9782 -0.0076 

19 4 0.3834 0.4857 8.830 0.7758 0.0305 

20 4 0.1597 0.2378 3.679 0.9474 -0.0358 

21 4 0.4113 0.5265 9.473 0.7369 0.0331 

22 4 0.4299 0.5522 9.901 0.7123 0.0577 

23 3 0.1240 0.1642 2.855 0.9743 0.0023 

24 3 0.1312 0.1758 3.022 0.9705 -0.0062 

25 3 0.1416 0.1956 3.261 0.9638 -0.0164 

26 3 0.4499 0.5827 10.361 0.6785 0.0493 

27 3 0.1462 0.1904 3.366 0.9654 -0.0047 

28 3 0.1361 0.1810 3.135 0.9689 -0.0103 

29 3 0.4922 0.6334 11.336 0.6202 0.0544 

30 3 0.1875 0.2630 4.318 0.9357 -0.0389 

31 3 0.4474 0.5810 10.303 0.6802 0.0469 

32 3 0.4588 0.5913 10.566 0.6701 0.0616 

33 3 0.0967 0.1407 2.227 0.9811 -0.0012 

34 3 0.1237 0.1863 2.850 0.9671 -0.0176 

35 3 0.4014 0.5088 9.243 0.7539 0.0321 

36 3 0.1679 0.2622 3.868 0.9367 -0.0460 

37 3 0.4681 0.5903 10.780 0.6693 0.0235 

38 3 0.4407 0.5667 10.150 0.6976 0.0625 

39 3 0.1633 0.2440 3.762 0.9449 -0.0382 

40 3 0.4443 0.5585 10.233 0.7034 0.0290 

41 3 0.4374 0.5604 10.073 0.7038 0.0563 

42 3 0.5114 0.6598 11.778 0.5880 0.0364 

43 2 0.1761 0.2286 4.055 0.9501 -0.0063 

44 2 0.1587 0.2167 3.655 0.9553 -0.0101 

45 2 0.5043 0.6473 11.613 0.6035 0.0562 

46 2 0.1906 0.2742 4.390 0.9304 -0.0434 

47 2 0.5564 0.7160 12.814 0.5147 0.0540 

48 2 0.4944 0.6402 11.386 0.6158 0.0783 

49 2 0.1964 0.2696 4.523 0.9322 -0.0361 

50 2 0.6935 0.9152 15.971 0.2330 0.1629 

51 2 0.5334 0.6807 12.284 0.5634 0.0691 

52 2 0.5311 0.6858 12.232 0.5548 0.0447 

53 2 0.1721 0.2798 3.963 0.9290 -0.0549 

54 2 0.4740 0.5956 10.917 0.6629 0.0189 

55 2 0.4452 0.5702 10.252 0.6934 0.0574 

56 2 0.5650 0.7111 13.012 0.5229 0.0561 

57 2 0.5586 0.6994 12.866 0.5370 0.0548 

58 1 0.2226 0.3128 5.127 0.9088 -0.0430 

59 1 0.7103 0.9395 16.357 0.1838 0.1603 

60 1 0.5362 0.6825 12.349 0.5604 0.0665 

61 1 0.6299 0.8024 14.507 0.3925 0.0651 

62 1 0.7798 1.0232 17.960 0.0374 0.1871 

63 1 0.5742 0.7162 13.223 0.5150 0.0604 
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Table A17: Performance of SVM at Station 48620 (Sitiawan) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0347 0.0600 0.912 0.9901 -0.0094 

2 5 0.0514 0.0820 1.351 0.9855 0.0023 

3 5 0.0376 0.0631 0.987 0.9898 -0.0032 

4 5 0.0349 0.0602 0.916 0.9900 -0.0043 

5 5 0.0409 0.0678 1.073 0.9887 -0.0016 

6 5 0.0717 0.1080 1.882 0.9789 -0.0018 

7 5 0.2959 0.3716 7.771 0.7826 0.0013 

8 4 0.0519 0.0823 1.364 0.9856 0.0024 

9 4 0.0550 0.0861 1.443 0.9843 0.0005 

10 4 0.0580 0.0909 1.524 0.9831 0.0002 

11 4 0.0768 0.1141 2.017 0.9766 -0.0016 

12 4 0.3222 0.4044 8.462 0.7426 0.0069 

13 4 0.0399 0.0659 1.048 0.9893 -0.0056 

14 4 0.0417 0.0686 1.094 0.9886 -0.0004 

15 4 0.0803 0.1164 2.110 0.9763 -0.0036 

16 4 0.3161 0.3974 8.301 0.7514 0.0053 

17 4 0.0410 0.0683 1.077 0.9885 -0.0027 

18 4 0.0732 0.1092 1.923 0.9785 -0.0018 

19 4 0.3053 0.3836 8.017 0.7683 0.0028 

20 4 0.0830 0.1204 2.178 0.9745 -0.0044 

21 4 0.2999 0.3771 7.877 0.7763 0.0014 

22 4 0.3510 0.4380 9.217 0.6982 0.0036 

23 3 0.0667 0.1010 1.752 0.9806 -0.0003 

24 3 0.0579 0.0906 1.522 0.9833 -0.0004 

25 3 0.0823 0.1193 2.162 0.9750 -0.0033 

26 3 0.3631 0.4576 9.534 0.6711 0.0183 

27 3 0.0722 0.1092 1.897 0.9773 -0.0024 

28 3 0.0777 0.1153 2.041 0.9760 -0.0025 

29 3 0.3756 0.4760 9.864 0.6444 0.0208 

30 3 0.0879 0.1266 2.308 0.9719 -0.0062 

31 3 0.3267 0.4095 8.580 0.7361 0.0066 

32 3 0.3672 0.4591 9.642 0.6683 0.0114 

33 3 0.0452 0.0730 1.187 0.9877 -0.0020 

34 3 0.0865 0.1243 2.271 0.9736 -0.0017 

35 3 0.3174 0.3995 8.335 0.7490 0.0067 

36 3 0.0861 0.1231 2.262 0.9738 -0.0054 

37 3 0.3423 0.4276 8.990 0.7123 0.0088 

38 3 0.3624 0.4530 9.518 0.6772 0.0042 

39 3 0.0832 0.1213 2.185 0.9740 -0.0041 

40 3 0.3288 0.4144 8.633 0.7297 -0.0008 

41 3 0.3598 0.4490 9.447 0.6830 0.0067 

42 3 0.3665 0.4580 9.625 0.6703 -0.0020 

43 2 0.0854 0.1256 2.243 0.9717 -0.0032 

44 2 0.0960 0.1371 2.521 0.9681 -0.0015 

45 2 0.3798 0.4805 9.974 0.6377 0.0204 

46 2 0.0891 0.1274 2.340 0.9718 -0.0068 

47 2 0.4087 0.5124 10.732 0.5873 0.0143 

48 2 0.3931 0.4922 10.323 0.6194 0.0165 

49 2 0.0954 0.1375 2.504 0.9673 -0.0083 

50 2 0.5377 0.6834 14.120 0.2697 0.0607 

51 2 0.4096 0.5155 10.757 0.5828 0.0230 

52 2 0.3822 0.4780 10.036 0.6402 0.0081 

53 2 0.0949 0.1350 2.492 0.9691 -0.0033 

54 2 0.3462 0.4344 9.092 0.7031 0.0075 

55 2 0.3634 0.4539 9.544 0.6761 0.0038 

56 2 0.4050 0.5031 10.636 0.6021 0.0010 

57 2 0.4128 0.5148 10.839 0.5827 -0.0011 

58 1 0.1156 0.1613 3.035 0.9568 -0.0081 

59 1 0.5454 0.6923 14.323 0.2510 0.0630 

60 1 0.4104 0.5167 10.778 0.5808 0.0225 

61 1 0.4535 0.5655 11.909 0.4975 0.0158 

62 1 0.6323 0.7959 16.605 0.0144 0.0907 

63 1 0.4178 0.5202 10.971 0.5740 0.0029 
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Table A18: Performance of SVM at Station 48623 (Lubok Merbau) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0375 0.0462 0.921 0.9968 -0.0113 

2 5 0.0576 0.0740 1.417 0.9914 0.0002 

3 5 0.0403 0.0509 0.991 0.9959 -0.0043 

4 5 0.0374 0.0460 0.919 0.9969 -0.0100 

5 5 0.0404 0.0517 0.992 0.9958 -0.0049 

6 5 0.0661 0.0877 1.624 0.9878 -0.0006 

7 5 0.2674 0.3365 6.574 0.8208 -0.0074 

8 4 0.0608 0.0781 1.496 0.9904 -0.0002 

9 4 0.0615 0.0789 1.513 0.9902 -0.0014 

10 4 0.0614 0.0800 1.510 0.9899 -0.0003 

11 4 0.0764 0.0995 1.879 0.9844 -0.0023 

12 4 0.3555 0.4459 8.741 0.6865 0.0118 

13 4 0.0450 0.0571 1.106 0.9949 -0.0055 

14 4 0.0425 0.0549 1.046 0.9953 -0.0031 

15 4 0.0713 0.0945 1.753 0.9859 -0.0025 

16 4 0.2803 0.3516 6.892 0.8042 -0.0054 

17 4 0.0414 0.0530 1.018 0.9957 -0.0055 

18 4 0.0670 0.0888 1.646 0.9875 -0.0006 

19 4 0.2775 0.3487 6.823 0.8074 -0.0072 

20 4 0.0769 0.1097 1.891 0.9810 -0.0053 

21 4 0.2697 0.3390 6.631 0.8182 -0.0095 

22 4 0.3083 0.3885 7.579 0.7617 -0.0100 

23 3 0.0777 0.1014 1.909 0.9837 -0.0023 

24 3 0.0634 0.0820 1.558 0.9894 -0.0002 

25 3 0.0813 0.1053 1.999 0.9825 -0.0031 

26 3 0.3777 0.4757 9.287 0.6429 0.0207 

27 3 0.0746 0.0986 1.835 0.9847 -0.0023 

28 3 0.0782 0.1019 1.922 0.9836 -0.0033 

29 3 0.4278 0.5458 10.518 0.5307 0.0342 

30 3 0.0878 0.1200 2.158 0.9774 -0.0086 

31 3 0.3585 0.4492 8.815 0.6817 0.0097 

32 3 0.3925 0.4886 9.651 0.6238 0.0217 

33 3 0.0481 0.0624 1.183 0.9939 -0.0044 

34 3 0.0745 0.0992 1.832 0.9844 -0.0016 

35 3 0.2832 0.3548 6.963 0.8007 -0.0069 

36 3 0.0776 0.1106 1.908 0.9807 -0.0065 

37 3 0.2860 0.3580 7.032 0.7971 -0.0077 

38 3 0.3178 0.4009 7.813 0.7461 -0.0049 

39 3 0.0795 0.1138 1.954 0.9795 -0.0059 

40 3 0.2835 0.3569 6.970 0.7982 -0.0036 

41 3 0.3155 0.3986 7.756 0.7492 -0.0094 

42 3 0.3152 0.3986 7.750 0.7492 -0.0113 

43 2 0.0882 0.1164 2.169 0.9786 -0.0041 

44 2 0.0926 0.1209 2.276 0.9769 -0.0050 

45 2 0.4289 0.5468 10.545 0.5285 0.0307 

46 2 0.0887 0.1213 2.180 0.9769 -0.0105 

47 2 0.3884 0.4882 9.550 0.6235 0.0180 

48 2 0.4113 0.5146 10.113 0.5827 0.0241 

49 2 0.0994 0.1383 2.444 0.9703 -0.0149 

50 2 0.5260 0.6734 12.934 0.2856 0.0464 

51 2 0.4588 0.5796 11.281 0.4707 0.0329 

52 2 0.3994 0.4964 9.819 0.6114 0.0158 

53 2 0.0834 0.1186 2.050 0.9778 -0.0069 

54 2 0.2908 0.3650 7.150 0.7891 -0.0037 

55 2 0.3191 0.4029 7.845 0.7437 -0.0079 

56 2 0.3380 0.4260 8.311 0.7131 -0.0047 

57 2 0.3395 0.4309 8.348 0.7067 -0.0103 

58 1 0.1103 0.1512 2.711 0.9644 -0.0151 

59 1 0.5301 0.6786 13.032 0.2747 0.0471 

60 1 0.4599 0.5810 11.306 0.4680 0.0310 

61 1 0.4404 0.5488 10.827 0.5243 0.0116 

62 1 0.6189 0.7868 15.216 0.0294 0.0555 

63 1 0.3480 0.4400 8.557 0.6941 -0.0070 
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Table A19: Performance of SVM at Station 48625 (Ipoh) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0345 0.0419 0.864 0.9972 -0.0096 

2 5 0.0642 0.0822 1.607 0.9887 -0.0009 

3 5 0.0395 0.0489 0.987 0.9960 -0.0029 

4 5 0.0356 0.0437 0.890 0.9968 -0.0047 

5 5 0.0455 0.0588 1.137 0.9942 -0.0014 

6 5 0.0856 0.1126 2.142 0.9787 0.0011 

7 5 0.2798 0.3511 7.001 0.7925 -0.0023 

8 4 0.0661 0.0845 1.655 0.9880 -0.0001 

9 4 0.0664 0.0850 1.662 0.9879 -0.0009 

10 4 0.0709 0.0923 1.774 0.9857 -0.0010 

11 4 0.1085 0.1384 2.715 0.9679 -0.0068 

12 4 0.3284 0.4171 8.216 0.7084 0.0241 

13 4 0.0427 0.0532 1.068 0.9953 -0.0040 

14 4 0.0467 0.0601 1.169 0.9939 -0.0018 

15 4 0.0991 0.1294 2.479 0.9718 0.0000 

16 4 0.3027 0.3778 7.574 0.7599 -0.0109 

17 4 0.0472 0.0610 1.181 0.9938 -0.0020 

18 4 0.0995 0.1302 2.490 0.9715 -0.0013 

19 4 0.2985 0.3730 7.469 0.7660 -0.0123 

20 4 0.1155 0.1534 2.890 0.9605 -0.0065 

21 4 0.2832 0.3551 7.085 0.7877 -0.0032 

22 4 0.3214 0.4009 8.042 0.7296 -0.0024 

23 3 0.0798 0.1018 1.996 0.9826 -0.0022 

24 3 0.0715 0.0929 1.790 0.9855 -0.0015 

25 3 0.1171 0.1488 2.929 0.9628 -0.0074 

26 3 0.3731 0.4725 9.336 0.6259 0.0299 

27 3 0.0851 0.1121 2.128 0.9789 -0.0030 

28 3 0.1131 0.1438 2.830 0.9653 -0.0082 

29 3 0.4098 0.5238 10.254 0.5413 0.0411 

30 3 0.1345 0.1737 3.364 0.9496 -0.0147 

31 3 0.3324 0.4216 8.316 0.7020 0.0255 

32 3 0.3820 0.4766 9.557 0.6194 0.0308 

33 3 0.0555 0.0707 1.388 0.9916 -0.0008 

34 3 0.1022 0.1334 2.556 0.9700 -0.0003 

35 3 0.3047 0.3800 7.625 0.7570 -0.0105 

36 3 0.1174 0.1552 2.937 0.9595 -0.0063 

37 3 0.3180 0.3969 7.957 0.7352 -0.0079 

38 3 0.3324 0.4137 8.316 0.7119 -0.0063 

39 3 0.1155 0.1536 2.891 0.9604 -0.0064 

40 3 0.3291 0.4123 8.234 0.7140 -0.0048 

41 3 0.3256 0.4058 8.147 0.7230 -0.0090 

42 3 0.3380 0.4223 8.457 0.6999 0.0048 

43 2 0.1031 0.1339 2.581 0.9700 -0.0059 

44 2 0.1189 0.1511 2.975 0.9617 -0.0078 

45 2 0.4097 0.5235 10.251 0.5421 0.0427 

46 2 0.1347 0.1740 3.371 0.9494 -0.0146 

47 2 0.3926 0.4961 9.823 0.5869 0.0253 

48 2 0.4076 0.5125 10.198 0.5597 0.0324 

49 2 0.1390 0.1800 3.477 0.9461 -0.0176 

50 2 0.5478 0.7100 13.707 0.1579 0.0631 

51 2 0.4277 0.5412 10.702 0.5105 0.0408 

52 2 0.3973 0.4945 9.940 0.5898 0.0266 

53 2 0.1185 0.1560 2.964 0.9591 -0.0046 

54 2 0.3347 0.4181 8.374 0.7058 -0.0054 

55 2 0.3338 0.4152 8.353 0.7098 -0.0063 

56 2 0.3715 0.4628 9.295 0.6394 -0.0043 

57 2 0.3741 0.4652 9.360 0.6358 -0.0051 

58 1 0.1484 0.1917 3.714 0.9390 -0.0213 

59 1 0.5546 0.7183 13.876 0.1370 0.0575 

60 1 0.4281 0.5415 10.711 0.5098 0.0423 

61 1 0.4590 0.5731 11.485 0.4481 0.0214 

62 1 0.5972 0.7641 14.941 0.0227 0.0525 

63 1 0.3812 0.4745 9.537 0.6212 -0.0105 
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Table A20: Performance of SVM at Station 48632 (Cameron Highlands) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0416 0.0517 1.315 0.9979 -0.0117 

2 5 0.0467 0.0599 1.478 0.9969 0.0067 

3 5 0.0412 0.0518 1.304 0.9978 -0.0128 

4 5 0.0391 0.0495 1.238 0.9979 -0.0068 

5 5 0.0455 0.0619 1.440 0.9966 0.0016 

6 5 0.0486 0.0664 1.535 0.9961 -0.0049 

7 5 0.3515 0.4683 11.114 0.8081 -0.0252 

8 4 0.0466 0.0598 1.473 0.9969 0.0051 

9 4 0.0515 0.0666 1.628 0.9961 0.0022 

10 4 0.0561 0.0758 1.775 0.9950 0.0017 

11 4 0.0545 0.0734 1.722 0.9953 0.0043 

12 4 0.3839 0.5042 12.138 0.7768 -0.0186 

13 4 0.0437 0.0559 1.382 0.9975 -0.0151 

14 4 0.0458 0.0622 1.448 0.9966 -0.0015 

15 4 0.0507 0.0708 1.602 0.9956 0.0047 

16 4 0.3702 0.4891 11.703 0.7901 -0.0223 

17 4 0.0455 0.0621 1.439 0.9966 -0.0014 

18 4 0.0482 0.0668 1.524 0.9962 0.0074 

19 4 0.3610 0.4777 11.413 0.8000 -0.0250 

20 4 0.0634 0.0962 2.004 0.9919 0.0103 

21 4 0.3743 0.5024 11.833 0.7797 -0.0357 

22 4 0.3807 0.4983 12.035 0.7824 -0.0306 

23 3 0.1649 0.2404 5.215 0.9495 0.0106 

24 3 0.0565 0.0765 1.787 0.9949 0.0008 

25 3 0.0555 0.0753 1.756 0.9951 0.0055 

26 3 0.4336 0.5599 13.708 0.7242 -0.0119 

27 3 0.0650 0.0891 2.055 0.9930 0.0009 

28 3 0.0573 0.0772 1.813 0.9948 0.0001 

29 3 0.4698 0.5958 14.852 0.6876 -0.0129 

30 3 0.0690 0.1039 2.182 0.9905 0.0067 

31 3 0.4116 0.5475 13.012 0.7378 -0.0270 

32 3 0.4074 0.5288 12.879 0.7545 -0.0234 

33 3 0.0480 0.0651 1.518 0.9963 -0.0059 

34 3 0.0542 0.0762 1.713 0.9949 -0.0024 

35 3 0.3959 0.5321 12.518 0.7509 -0.0003 

36 3 0.0637 0.0970 2.015 0.9918 0.0089 

37 3 0.4197 0.5543 13.270 0.7312 -0.0384 

38 3 0.3919 0.5124 12.389 0.7697 -0.0283 

39 3 0.0634 0.0960 2.003 0.9919 0.0104 

40 3 0.3973 0.5261 12.562 0.7586 -0.0430 

41 3 0.3851 0.5028 12.175 0.7783 -0.0287 

42 3 0.4404 0.5762 13.925 0.7112 -0.0619 

43 2 0.2712 0.3728 8.573 0.8806 -0.0486 

44 2 0.1682 0.2458 5.316 0.9473 0.0110 

45 2 0.4837 0.6126 15.291 0.6695 -0.0144 

46 2 0.0688 0.1036 2.174 0.9905 0.0059 

47 2 0.5344 0.6951 16.897 0.5758 -0.0212 

48 2 0.4433 0.5710 14.017 0.7131 -0.0142 

49 2 0.0733 0.1103 2.316 0.9893 0.0019 

50 2 0.6180 0.7829 19.538 0.4607 -0.0092 

51 2 0.4763 0.6025 15.059 0.6804 -0.0111 

52 2 0.4663 0.6111 14.744 0.6736 -0.0495 

53 2 0.0647 0.0982 2.044 0.9915 0.0044 

54 2 0.4531 0.6127 14.327 0.6702 -0.0093 

55 2 0.4133 0.5478 13.066 0.7360 -0.0056 

56 2 0.4826 0.6254 15.259 0.6590 -0.0630 

57 2 0.4595 0.5940 14.528 0.6921 -0.0552 

58 1 0.2807 0.3902 8.875 0.8706 -0.0651 

59 1 0.7936 1.0119 25.092 0.1077 -0.1042 

60 1 0.4872 0.6163 15.403 0.6655 -0.0163 

61 1 0.5772 0.7447 18.248 0.5141 -0.0415 

62 1 0.6449 0.8169 20.388 0.4137 -0.0247 

63 1 0.5134 0.6759 16.233 0.5998 -0.0351 
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Table A21: Performance of SVM at Station 48647 (Subang) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0401 0.0503 0.991 0.9977 -0.0131 

2 5 0.0693 0.0876 1.712 0.9920 0.0022 

3 5 0.0455 0.0583 1.124 0.9965 -0.0036 

4 5 0.0410 0.0526 1.014 0.9971 -0.0006 

5 5 0.0582 0.0762 1.438 0.9940 0.0012 

6 5 0.1018 0.1355 2.516 0.9809 -0.0046 

7 5 0.3760 0.4915 9.293 0.7481 -0.0225 

8 4 0.0723 0.0913 1.786 0.9913 0.0013 

9 4 0.0720 0.0910 1.780 0.9913 0.0016 

10 4 0.0783 0.1010 1.936 0.9893 0.0004 

11 4 0.1105 0.1443 2.731 0.9783 -0.0070 

12 4 0.4716 0.5990 11.657 0.6260 -0.0229 

13 4 0.0463 0.0594 1.145 0.9963 -0.0035 

14 4 0.0603 0.0788 1.492 0.9935 0.0019 

15 4 0.1050 0.1400 2.597 0.9796 -0.0058 

16 4 0.3837 0.4993 9.484 0.7399 -0.0276 

17 4 0.0587 0.0767 1.451 0.9939 0.0022 

18 4 0.1026 0.1359 2.535 0.9807 -0.0048 

19 4 0.3801 0.4955 9.396 0.7439 -0.0233 

20 4 0.1151 0.1520 2.846 0.9760 -0.0096 

21 4 0.4089 0.5305 10.108 0.7062 -0.0222 

22 4 0.4246 0.5496 10.494 0.6853 -0.0315 

23 3 0.0891 0.1123 2.202 0.9869 -0.0012 

24 3 0.0792 0.1019 1.958 0.9892 0.0009 

25 3 0.1125 0.1473 2.781 0.9774 -0.0072 

26 3 0.4984 0.6277 12.319 0.5889 -0.0171 

27 3 0.0896 0.1172 2.215 0.9857 -0.0006 

28 3 0.1140 0.1476 2.817 0.9773 -0.0061 

29 3 0.5299 0.6667 13.099 0.5357 -0.0105 

30 3 0.1196 0.1563 2.955 0.9746 -0.0105 

31 3 0.4872 0.6204 12.042 0.5982 -0.0208 

32 3 0.5010 0.6338 12.384 0.5811 -0.0233 

33 3 0.0656 0.0855 1.622 0.9924 0.0008 

34 3 0.1109 0.1474 2.740 0.9773 -0.0036 

35 3 0.3917 0.5069 9.682 0.7320 -0.0270 

36 3 0.1152 0.1523 2.847 0.9759 -0.0094 

37 3 0.4333 0.5566 10.710 0.6770 -0.0319 

38 3 0.4324 0.5592 10.689 0.6742 -0.0358 

39 3 0.1217 0.1597 3.008 0.9735 -0.0109 

40 3 0.4266 0.5521 10.544 0.6816 -0.0220 

41 3 0.4288 0.5545 10.599 0.6800 -0.0370 

42 3 0.4605 0.5960 11.382 0.6302 -0.0436 

43 2 0.1119 0.1444 2.766 0.9782 -0.0011 

44 2 0.1305 0.1689 3.224 0.9702 -0.0047 

45 2 0.5311 0.6685 13.126 0.5331 -0.0135 

46 2 0.1197 0.1566 2.959 0.9745 -0.0096 

47 2 0.5332 0.6724 13.180 0.5270 -0.0132 

48 2 0.5267 0.6621 13.019 0.5424 -0.0143 

49 2 0.1340 0.1733 3.313 0.9688 -0.0131 

50 2 0.6676 0.8392 16.501 0.2628 0.0062 

51 2 0.5634 0.7090 13.926 0.4748 -0.0112 

52 2 0.5212 0.6606 12.883 0.5447 -0.0279 

53 2 0.1319 0.1740 3.261 0.9686 -0.0141 

54 2 0.4366 0.5609 10.791 0.6715 -0.0264 

55 2 0.4346 0.5610 10.741 0.6717 -0.0302 

56 2 0.4911 0.6294 12.139 0.5868 -0.0385 

57 2 0.5080 0.6530 12.556 0.5553 -0.0400 

58 1 0.1559 0.2016 3.853 0.9578 -0.0171 

59 1 0.6774 0.8532 16.745 0.2383 0.0146 

60 1 0.5654 0.7122 13.976 0.4700 -0.0098 

61 1 0.5709 0.7183 14.110 0.4603 -0.0060 

62 1 0.7620 0.9495 18.836 0.0563 0.0152 

63 1 0.5118 0.6563 12.651 0.5505 -0.0389 
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Table A22: Performance of SVM at Station 48649 (Muadzam Shah) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0330 0.0441 0.948 0.9972 -0.0051 

2 5 0.0419 0.0561 1.203 0.9955 0.0032 

3 5 0.0333 0.0445 0.957 0.9971 -0.0057 

4 5 0.0334 0.0446 0.958 0.9971 -0.0058 

5 5 0.0365 0.0512 1.050 0.9962 -0.0018 

6 5 0.0595 0.0810 1.710 0.9907 0.0009 

7 5 0.2661 0.3374 7.646 0.8401 0.0025 

8 4 0.0424 0.0565 1.217 0.9955 0.0038 

9 4 0.0468 0.0630 1.345 0.9943 -0.0006 

10 4 0.0450 0.0619 1.293 0.9945 -0.0001 

11 4 0.0604 0.0818 1.736 0.9906 0.0011 

12 4 0.3365 0.4207 9.669 0.7514 -0.0012 

13 4 0.0374 0.0504 1.075 0.9963 -0.0055 

14 4 0.0372 0.0518 1.070 0.9961 -0.0043 

15 4 0.0658 0.0890 1.892 0.9888 -0.0012 

16 4 0.2796 0.3541 8.034 0.8240 0.0026 

17 4 0.0376 0.0524 1.080 0.9960 -0.0038 

18 4 0.0608 0.0826 1.747 0.9904 0.0007 

19 4 0.2739 0.3472 7.872 0.8306 0.0035 

20 4 0.0730 0.1000 2.098 0.9859 -0.0027 

21 4 0.2774 0.3510 7.973 0.8269 0.0002 

22 4 0.3220 0.4022 9.253 0.7730 0.0062 

23 3 0.0577 0.0778 1.659 0.9914 0.0005 

24 3 0.0454 0.0621 1.304 0.9945 0.0000 

25 3 0.0664 0.0901 1.908 0.9885 -0.0011 

26 3 0.3851 0.4825 11.065 0.6733 0.0079 

27 3 0.0522 0.0710 1.501 0.9928 0.0000 

28 3 0.0617 0.0838 1.773 0.9901 0.0010 

29 3 0.4367 0.5524 12.550 0.5722 0.0301 

30 3 0.0737 0.1021 2.119 0.9853 -0.0027 

31 3 0.3433 0.4309 9.865 0.7391 0.0000 

32 3 0.3659 0.4558 10.516 0.7082 0.0046 

33 3 0.0417 0.0577 1.199 0.9952 -0.0022 

34 3 0.0706 0.0954 2.029 0.9871 -0.0006 

35 3 0.2831 0.3575 8.137 0.8206 0.0003 

36 3 0.0761 0.1041 2.187 0.9848 -0.0045 

37 3 0.3099 0.3919 8.905 0.7842 -0.0002 

38 3 0.3270 0.4078 9.397 0.7666 0.0075 

39 3 0.0738 0.1014 2.121 0.9856 -0.0038 

40 3 0.3039 0.3839 8.732 0.7929 0.0058 

41 3 0.3261 0.4071 9.370 0.7674 0.0039 

42 3 0.3764 0.4752 10.817 0.6833 -0.0061 

43 2 0.0620 0.0835 1.781 0.9901 -0.0001 

44 2 0.0732 0.0978 2.105 0.9865 0.0001 

45 2 0.4370 0.5527 12.559 0.5718 0.0286 

46 2 0.0767 0.1073 2.204 0.9838 -0.0054 

47 2 0.4380 0.5511 12.586 0.5737 0.0068 

48 2 0.4003 0.4985 11.503 0.6512 0.0100 

49 2 0.0753 0.1036 2.163 0.9849 -0.0024 

50 2 0.6158 0.8039 17.697 0.1117 0.1166 

51 2 0.4420 0.5582 12.701 0.5634 0.0287 

52 2 0.3991 0.5025 11.470 0.6453 0.0019 

53 2 0.0827 0.1128 2.375 0.9821 -0.0054 

54 2 0.3172 0.4005 9.116 0.7746 0.0002 

55 2 0.3295 0.4103 9.469 0.7637 0.0049 

56 2 0.4151 0.5211 11.929 0.6194 -0.0117 

57 2 0.4230 0.5288 12.155 0.6080 -0.0051 

58 1 0.0848 0.1149 2.438 0.9814 -0.0065 

59 1 0.6214 0.8095 17.856 0.1006 0.1219 

60 1 0.4419 0.5585 12.699 0.5631 0.0302 

61 1 0.4782 0.6025 13.741 0.4902 0.0041 

62 1 0.6562 0.8436 18.857 0.0160 0.1076 

63 1 0.4343 0.5402 12.481 0.5907 -0.0117 
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Table A23: Performance of SVM at Station 48650 (KLIA) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0383 0.0492 0.947 0.9978 -0.0130 

2 5 0.0758 0.0978 1.872 0.9903 0.0014 

3 5 0.0472 0.0621 1.165 0.9961 -0.0042 

4 5 0.0430 0.0559 1.062 0.9968 -0.0009 

5 5 0.0729 0.1028 1.800 0.9893 -0.0027 

6 5 0.0927 0.1350 2.290 0.9815 -0.0017 

7 5 0.3849 0.4885 9.506 0.7586 -0.0310 

8 4 0.0796 0.1029 1.966 0.9893 0.0010 

9 4 0.0779 0.1004 1.923 0.9898 0.0004 

10 4 0.1079 0.1505 2.664 0.9771 -0.0058 

11 4 0.1158 0.1589 2.861 0.9744 -0.0062 

12 4 0.4307 0.5416 10.637 0.7023 -0.0166 

13 4 0.0483 0.0634 1.192 0.9959 -0.0041 

14 4 0.0766 0.1081 1.891 0.9881 -0.0029 

15 4 0.1040 0.1533 2.568 0.9763 -0.0061 

16 4 0.3986 0.5039 9.844 0.7428 -0.0262 

17 4 0.0733 0.1036 1.811 0.9891 -0.0025 

18 4 0.1001 0.1461 2.472 0.9784 -0.0038 

19 4 0.3942 0.4990 9.734 0.7482 -0.0330 

20 4 0.1318 0.2169 3.254 0.9533 -0.0290 

21 4 0.4060 0.5130 10.028 0.7336 -0.0298 

22 4 0.4240 0.5369 10.470 0.7079 -0.0267 

23 3 0.0897 0.1167 2.216 0.9862 -0.0020 

24 3 0.1088 0.1513 2.688 0.9768 -0.0046 

25 3 0.1219 0.1688 3.010 0.9712 -0.0098 

26 3 0.4573 0.5759 11.293 0.6631 -0.0050 

27 3 0.1238 0.1712 3.057 0.9704 -0.0076 

28 3 0.1170 0.1614 2.891 0.9736 -0.0076 

29 3 0.4913 0.6255 12.133 0.6024 0.0053 

30 3 0.1551 0.2468 3.830 0.9403 -0.0395 

31 3 0.4527 0.5679 11.181 0.6728 -0.0118 

32 3 0.4670 0.5870 11.534 0.6502 -0.0162 

33 3 0.0800 0.1104 1.977 0.9877 -0.0022 

34 3 0.1048 0.1542 2.589 0.9760 -0.0057 

35 3 0.3998 0.5051 9.875 0.7418 -0.0286 

36 3 0.1353 0.2231 3.341 0.9507 -0.0308 

37 3 0.4280 0.5387 10.571 0.7059 -0.0253 

38 3 0.4346 0.5494 10.732 0.6939 -0.0265 

39 3 0.1320 0.2178 3.259 0.9530 -0.0296 

40 3 0.4376 0.5524 10.807 0.6916 -0.0357 

41 3 0.4307 0.5452 10.636 0.6989 -0.0288 

42 3 0.4659 0.5970 11.505 0.6415 -0.0515 

43 2 0.1425 0.1939 3.519 0.9619 -0.0061 

44 2 0.1275 0.1749 3.150 0.9691 -0.0105 

45 2 0.4935 0.6288 12.188 0.5982 0.0111 

46 2 0.1558 0.2480 3.848 0.9397 -0.0405 

47 2 0.4971 0.6198 12.277 0.6099 -0.0050 

48 2 0.4885 0.6141 12.064 0.6165 -0.0051 

49 2 0.1679 0.2629 4.146 0.9325 -0.0446 

50 2 0.6651 0.8329 16.426 0.2956 0.0228 

51 2 0.5212 0.6593 12.873 0.5580 0.0097 

52 2 0.5106 0.6500 12.611 0.5735 -0.0383 

53 2 0.1389 0.2270 3.430 0.9491 -0.0333 

54 2 0.4395 0.5545 10.855 0.6891 -0.0337 

55 2 0.4355 0.5505 10.755 0.6929 -0.0292 

56 2 0.4851 0.6184 11.979 0.6142 -0.0466 

57 2 0.5014 0.6386 12.383 0.5886 -0.0521 

58 1 0.1885 0.2885 4.656 0.9183 -0.0467 

59 1 0.6834 0.8560 16.878 0.2559 0.0236 

60 1 0.5227 0.6611 12.908 0.5556 0.0057 

61 1 0.5503 0.6965 13.591 0.5084 -0.0209 

62 1 0.7544 0.9502 18.631 0.0827 0.0083 

63 1 0.5036 0.6407 12.436 0.5855 -0.0495 
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Table A24: Performance of SVM at Station 48657 (Kuantan) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0347 0.0440 0.900 0.9978 -0.0088 

2 5 0.0655 0.0851 1.701 0.9915 0.0022 

3 5 0.0399 0.0508 1.035 0.9970 -0.0062 

4 5 0.0367 0.0471 0.953 0.9974 -0.0046 

5 5 0.0528 0.0699 1.372 0.9943 -0.0026 

6 5 0.0684 0.0893 1.776 0.9906 -0.0014 

7 5 0.2826 0.3660 7.337 0.8414 0.0071 

8 4 0.0676 0.0875 1.755 0.9910 0.0020 

9 4 0.0684 0.0887 1.775 0.9907 0.0017 

10 4 0.0801 0.1039 2.079 0.9872 -0.0008 

11 4 0.0839 0.1079 2.179 0.9863 -0.0020 

12 4 0.3513 0.4513 9.120 0.7594 0.0127 

13 4 0.0412 0.0526 1.069 0.9968 -0.0064 

14 4 0.0539 0.0710 1.399 0.9941 -0.0040 

15 4 0.0771 0.1003 2.002 0.9881 -0.0008 

16 4 0.2994 0.3855 7.773 0.8242 0.0048 

17 4 0.0529 0.0701 1.374 0.9942 -0.0032 

18 4 0.0744 0.0967 1.931 0.9890 0.0009 

19 4 0.2918 0.3763 7.577 0.8324 0.0045 

20 4 0.0943 0.1246 2.449 0.9817 -0.0050 

21 4 0.2947 0.3801 7.651 0.8291 0.0096 

22 4 0.3414 0.4332 8.864 0.7778 0.0053 

23 3 0.0875 0.1153 2.273 0.9843 0.0020 

24 3 0.0803 0.1045 2.086 0.9871 -0.0007 

25 3 0.0885 0.1134 2.297 0.9848 -0.0035 

26 3 0.4026 0.5129 10.452 0.6901 0.0229 

27 3 0.0913 0.1215 2.370 0.9825 -0.0018 

28 3 0.0852 0.1092 2.211 0.9859 -0.0030 

29 3 0.4497 0.5719 11.674 0.6145 0.0284 

30 3 0.1039 0.1357 2.697 0.9783 -0.0080 

31 3 0.3610 0.4643 9.371 0.7453 0.0159 

32 3 0.3914 0.4971 10.161 0.7083 0.0231 

33 3 0.0566 0.0738 1.471 0.9936 -0.0023 

34 3 0.0789 0.1023 2.049 0.9876 -0.0001 

35 3 0.3046 0.3914 7.908 0.8188 0.0063 

36 3 0.0959 0.1259 2.489 0.9813 -0.0052 

37 3 0.3333 0.4250 8.652 0.7862 0.0013 

38 3 0.3538 0.4496 9.186 0.7607 0.0091 

39 3 0.0945 0.1247 2.453 0.9816 -0.0052 

40 3 0.3195 0.4093 8.294 0.8018 0.0061 

41 3 0.3473 0.4400 9.017 0.7708 0.0042 

42 3 0.3756 0.4764 9.751 0.7313 -0.0013 

43 2 0.1105 0.1452 2.870 0.9750 -0.0025 

44 2 0.0975 0.1257 2.532 0.9813 -0.0014 

45 2 0.4549 0.5766 11.810 0.6083 0.0304 

46 2 0.1042 0.1356 2.706 0.9783 -0.0077 

47 2 0.4709 0.5988 12.225 0.5770 0.0152 

48 2 0.4351 0.5519 11.295 0.6407 0.0279 

49 2 0.1071 0.1414 2.779 0.9764 -0.0089 

50 2 0.6730 0.8695 17.472 0.1259 0.1311 

51 2 0.4717 0.5962 12.247 0.5807 0.0313 

52 2 0.4193 0.5324 10.886 0.6650 0.0216 

53 2 0.0975 0.1281 2.530 0.9806 -0.0066 

54 2 0.3395 0.4322 8.814 0.7789 0.0024 

55 2 0.3617 0.4590 9.389 0.7507 0.0110 

56 2 0.4295 0.5431 11.150 0.6507 -0.0023 

57 2 0.4053 0.5109 10.521 0.6911 0.0065 

58 1 0.1201 0.1567 3.117 0.9710 -0.0077 

59 1 0.6806 0.8806 17.669 0.1038 0.1342 

60 1 0.4729 0.5963 12.276 0.5805 0.0284 

61 1 0.5410 0.6902 14.045 0.4375 0.0199 

62 1 0.7206 0.9180 18.708 0.0198 0.1192 

63 1 0.4368 0.5519 11.340 0.6398 -0.0031 
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Table A25: Performance of ANFIS at Station 48600 (Pulau Langkawi) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0491 0.0714 1.122 0.9960 0.0000 

2 5 0.0871 0.1238 1.989 0.9879 0.0000 

3 5 0.0644 0.0900 1.472 0.9936 0.0000 

4 5 0.0533 0.0762 1.218 0.9954 0.0000 

5 5 0.1148 0.1702 2.623 0.9772 0.0003 

6 5 0.1363 0.2060 3.112 0.9667 -0.0001 

7 5 0.4070 0.5136 9.296 0.7926 0.0005 

8 4 0.0902 0.1300 2.060 0.9867 -0.0001 

9 4 0.0925 0.1307 2.113 0.9866 0.0000 

10 4 0.1522 0.2264 3.477 0.9597 0.0000 

11 4 0.1702 0.2442 3.886 0.9532 -0.0001 

12 4 0.4403 0.5604 10.055 0.7532 0.0006 

13 4 0.0679 0.0953 1.550 0.9929 0.0000 

14 4 0.1237 0.1833 2.826 0.9736 -0.0001 

15 4 0.1492 0.2254 3.408 0.9602 0.0000 

16 4 0.4256 0.5341 9.719 0.7757 0.0001 

17 4 0.1210 0.1752 2.763 0.9759 -0.0001 

18 4 0.1437 0.2167 3.281 0.9632 -0.0001 

19 4 0.4368 0.5458 9.976 0.7658 0.0000 

20 4 0.2469 0.3625 5.639 0.8967 -0.0002 

21 4 0.4518 0.5781 10.318 0.7376 -0.0004 

22 4 0.4263 0.5350 9.736 0.7750 0.0004 

23 3 0.1154 0.1583 2.635 0.9803 -0.0001 

24 3 0.1545 0.2305 3.528 0.9583 0.0000 

25 3 0.1737 0.2510 3.967 0.9506 -0.0001 

26 3 0.4713 0.5928 10.763 0.7240 0.0001 

27 3 0.1660 0.2438 3.791 0.9534 0.0001 

28 3 0.1722 0.2463 3.933 0.9524 -0.0001 

29 3 0.5429 0.6815 12.399 0.6351 -0.0001 

30 3 0.3239 0.4536 7.396 0.8384 -0.0001 

31 3 0.4701 0.6113 10.736 0.7066 0.0008 

32 3 0.4588 0.5774 10.477 0.7380 0.0001 

33 3 0.1277 0.1837 2.917 0.9735 -0.0003 

34 3 0.1498 0.2263 3.422 0.9599 -0.0001 

35 3 0.4384 0.5473 10.011 0.7645 0.0001 

36 3 0.2520 0.3698 5.755 0.8925 -0.0003 

37 3 0.4644 0.5874 10.605 0.7297 0.0009 

38 3 0.4429 0.5514 10.114 0.7610 0.0000 

39 3 0.2515 0.3670 5.744 0.8941 -0.0003 

40 3 0.4904 0.6123 11.199 0.7055 0.0004 

41 3 0.4488 0.5577 10.250 0.7556 0.0003 

42 3 0.4987 0.6460 11.390 0.6741 0.0026 

43 2 0.1903 0.2708 4.346 0.9425 0.0000 

44 2 0.1875 0.2704 4.283 0.9426 0.0000 

45 2 0.5484 0.6881 12.523 0.6278 0.0006 

46 2 0.3288 0.4598 7.509 0.8339 -0.0001 

47 2 0.5293 0.6711 12.087 0.6460 0.0000 

48 2 0.4849 0.6051 11.073 0.7123 -0.0001 

49 2 0.3546 0.4890 8.098 0.8121 -0.0002 

50 2 0.7436 0.9305 16.982 0.3197 -0.0002 

51 2 0.5540 0.6910 12.653 0.6249 0.0001 

52 2 0.5538 0.7219 12.648 0.5910 0.0008 

53 2 0.2564 0.3740 5.856 0.8900 0.0000 

54 2 0.4935 0.6150 11.270 0.7029 0.0000 

55 2 0.4537 0.5619 10.360 0.7518 0.0002 

56 2 0.5191 0.6558 11.855 0.6621 0.0001 

57 2 0.5442 0.6797 12.427 0.6370 -0.0003 

58 1 0.3808 0.5196 8.697 0.7878 -0.0001 

59 1 0.7732 0.9768 17.657 0.2508 -0.0002 

60 1 0.5602 0.6989 12.792 0.6162 0.0001 

61 1 0.6038 0.7758 13.789 0.5269 -0.0001 

62 1 0.8443 1.0622 19.281 0.1149 -0.0003 

63 1 0.5441 0.6795 12.425 0.6373 0.0000 
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Table A26: Performance of ANFIS at Station 48601 (Bayan Lepas) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0466 0.0659 1.075 0.9959 0.0000 

2 5 0.0895 0.1200 2.063 0.9865 0.0000 

3 5 0.0587 0.0785 1.353 0.9942 0.0000 

4 5 0.0527 0.0702 1.214 0.9954 0.0000 

5 5 0.1152 0.1610 2.656 0.9756 0.0000 

6 5 0.1089 0.1540 2.510 0.9778 -0.0001 

7 5 0.3844 0.4957 8.860 0.7689 -0.0001 

8 4 0.0936 0.1257 2.158 0.9852 -0.0001 

9 4 0.0933 0.1282 2.151 0.9845 -0.0001 

10 4 0.1449 0.2029 3.339 0.9614 0.0000 

11 4 0.1344 0.1816 3.099 0.9691 -0.0003 

12 4 0.4230 0.5442 9.751 0.7220 0.0010 

13 4 0.0644 0.0867 1.485 0.9930 -0.0002 

14 4 0.1182 0.1655 2.724 0.9743 0.0000 

15 4 0.1251 0.1756 2.883 0.9711 -0.0001 

16 4 0.4044 0.5166 9.322 0.7490 0.0003 

17 4 0.1109 0.1572 2.557 0.9768 -0.0002 

18 4 0.1266 0.1773 2.919 0.9706 -0.0003 

19 4 0.3983 0.5060 9.182 0.7592 -0.0001 

20 4 0.2162 0.3382 4.982 0.8922 0.0000 

21 4 0.4073 0.5281 9.389 0.7377 0.0002 

22 4 0.4363 0.5560 10.057 0.7093 -0.0004 

23 3 0.1096 0.1450 2.525 0.9803 -0.0001 

24 3 0.1473 0.2059 3.395 0.9602 0.0000 

25 3 0.1400 0.1895 3.227 0.9664 -0.0004 

26 3 0.4769 0.6022 10.991 0.6593 0.0007 

27 3 0.1658 0.2284 3.821 0.9511 0.0002 

28 3 0.1384 0.1878 3.189 0.9670 0.0000 

29 3 0.5107 0.6473 11.772 0.6061 0.0004 

30 3 0.2394 0.3619 5.518 0.8767 0.0000 

31 3 0.4368 0.5668 10.067 0.6981 -0.0002 

32 3 0.4647 0.5911 10.712 0.6716 0.0002 

33 3 0.1183 0.1636 2.726 0.9748 -0.0001 

34 3 0.1343 0.1875 3.095 0.9671 -0.0001 

35 3 0.4004 0.5116 9.230 0.7539 0.0000 

36 3 0.2206 0.3441 5.085 0.8884 -0.0001 

37 3 0.4402 0.5638 10.146 0.7008 0.0004 

38 3 0.4487 0.5696 10.343 0.6946 0.0000 

39 3 0.2165 0.3403 4.991 0.8909 0.0000 

40 3 0.4345 0.5544 10.015 0.7108 -0.0003 

41 3 0.4396 0.5577 10.132 0.7074 -0.0001 

42 3 0.5217 0.6798 12.026 0.5653 0.0002 

43 2 0.1820 0.2439 4.195 0.9442 0.0001 

44 2 0.1515 0.2034 3.492 0.9613 -0.0001 

45 2 0.5144 0.6502 11.858 0.6024 0.0001 

46 2 0.2404 0.3628 5.542 0.8760 0.0000 

47 2 0.5153 0.6509 11.877 0.6015 0.0001 

48 2 0.5049 0.6365 11.637 0.6193 0.0002 

49 2 0.2541 0.3759 5.857 0.8669 0.0000 

50 2 0.6692 0.8465 15.425 0.3262 0.0002 

51 2 0.5510 0.6910 12.700 0.5514 0.0002 

52 2 0.5459 0.7147 12.583 0.5196 -0.0003 

53 2 0.2255 0.3495 5.198 0.8849 -0.0001 

54 2 0.4436 0.5648 10.224 0.6998 0.0000 

55 2 0.4473 0.5686 10.311 0.6958 -0.0001 

56 2 0.5459 0.7039 12.583 0.5337 -0.0001 

57 2 0.5602 0.7138 12.912 0.5204 -0.0002 

58 1 0.2734 0.3967 6.301 0.8517 0.0000 

59 1 0.6720 0.8558 15.490 0.3112 0.0001 

60 1 0.5530 0.6924 12.747 0.5493 0.0000 

61 1 0.6117 0.7855 14.099 0.4196 -0.0001 

62 1 0.7973 1.0096 18.378 0.0435 0.0001 

63 1 0.5617 0.7181 12.947 0.5147 0.0000 
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Table A27: Performance of ANFIS at Station 48603 (Alor Setar) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0438 0.0586 1.024 0.9970 0.0000 

2 5 0.0916 0.1202 2.140 0.9873 0.0001 

3 5 0.0563 0.0738 1.315 0.9952 0.0001 

4 5 0.0507 0.0672 1.184 0.9960 0.0000 

5 5 0.0880 0.1226 2.057 0.9868 -0.0004 

6 5 0.0947 0.1287 2.214 0.9854 -0.0001 

7 5 0.3187 0.4109 7.447 0.8516 0.0007 

8 4 0.0942 0.1229 2.201 0.9867 0.0002 

9 4 0.0990 0.1319 2.314 0.9847 0.0000 

10 4 0.1301 0.1749 3.041 0.9731 0.0000 

11 4 0.1167 0.1547 2.727 0.9790 -0.0001 

12 4 0.3743 0.4776 8.747 0.7994 -0.0003 

13 4 0.0580 0.0764 1.355 0.9949 0.0000 

14 4 0.0882 0.1221 2.061 0.9869 -0.0004 

15 4 0.1129 0.1542 2.638 0.9791 -0.0002 

16 4 0.3434 0.4407 8.024 0.8290 0.0000 

17 4 0.0879 0.1206 2.054 0.9872 -0.0001 

18 4 0.1035 0.1399 2.420 0.9828 0.0000 

19 4 0.3521 0.4477 8.229 0.8237 0.0001 

20 4 0.1861 0.2823 4.349 0.9299 0.0000 

21 4 0.3240 0.4180 7.571 0.8464 -0.0002 

22 4 0.3882 0.4969 9.072 0.7828 0.0008 

23 3 0.1140 0.1516 2.664 0.9798 0.0001 

24 3 0.1464 0.1952 3.421 0.9665 -0.0001 

25 3 0.1244 0.1648 2.907 0.9761 -0.0001 

26 3 0.4229 0.5398 9.883 0.7437 0.0000 

27 3 0.1684 0.2337 3.935 0.9519 -0.0001 

28 3 0.1192 0.1578 2.786 0.9781 0.0000 

29 3 0.4990 0.6358 11.661 0.6444 -0.0004 

30 3 0.2142 0.3055 5.005 0.9180 -0.0001 

31 3 0.3710 0.4767 8.669 0.8004 -0.0010 

32 3 0.4262 0.5405 9.959 0.7431 0.0010 

33 3 0.0817 0.1139 1.908 0.9886 0.0000 

34 3 0.1167 0.1601 2.726 0.9775 0.0000 

35 3 0.3582 0.4535 8.371 0.8190 0.0000 

36 3 0.1894 0.2851 4.425 0.9284 0.0000 

37 3 0.3560 0.4579 8.320 0.8154 -0.0006 

38 3 0.4015 0.5113 9.382 0.7700 0.0001 

39 3 0.1879 0.2859 4.390 0.9281 0.0001 

40 3 0.3663 0.4689 8.559 0.8066 0.0001 

41 3 0.4055 0.5135 9.477 0.7681 -0.0001 

42 3 0.4234 0.5549 9.894 0.7291 0.0002 

43 2 0.1717 0.2367 4.013 0.9507 0.0000 

44 2 0.1379 0.1834 3.224 0.9704 0.0000 

45 2 0.5096 0.6446 11.909 0.6343 -0.0002 

46 2 0.2421 0.3338 5.657 0.9020 0.0000 

47 2 0.4670 0.5953 10.914 0.6883 0.0001 

48 2 0.4537 0.5790 10.602 0.7051 0.0002 

49 2 0.2528 0.3555 5.907 0.8888 0.0000 

50 2 0.6903 0.8750 16.131 0.3267 0.0000 

51 2 0.5328 0.6723 12.452 0.6024 0.0001 

52 2 0.4568 0.5931 10.675 0.6905 0.0000 

53 2 0.1891 0.2879 4.419 0.9270 0.0000 

54 2 0.3694 0.4729 8.632 0.8031 0.0000 

55 2 0.4157 0.5239 9.715 0.7585 0.0001 

56 2 0.4654 0.6022 10.875 0.6807 0.0000 

57 2 0.4900 0.6244 11.451 0.6568 -0.0001 

58 1 0.2590 0.3621 6.054 0.8847 0.0000 

59 1 0.7012 0.8878 16.387 0.3066 0.0001 

60 1 0.5382 0.6774 12.578 0.5964 0.0001 

61 1 0.5639 0.7299 13.179 0.5310 0.0000 

62 1 0.8172 1.0434 19.098 0.0418 -0.0001 

63 1 0.4941 0.6297 11.546 0.6510 0.0000 

 

 



233 

 

 

Table A28: Performance of ANFIS at Station 48615 (Kota Bharu) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0457 0.0649 1.052 0.9960 0.0001 

2 5 0.0967 0.1266 2.226 0.9847 0.0000 

3 5 0.0634 0.0882 1.460 0.9926 0.0000 

4 5 0.0596 0.0830 1.372 0.9934 0.0000 

5 5 0.0939 0.1338 2.162 0.9828 0.0001 

6 5 0.1130 0.1572 2.601 0.9764 -0.0001 

7 5 0.3895 0.4908 8.971 0.7701 0.0004 

8 4 0.0973 0.1289 2.241 0.9841 0.0001 

9 4 0.0999 0.1291 2.300 0.9841 0.0000 

10 4 0.1305 0.1739 3.005 0.9711 0.0000 

11 4 0.1367 0.1788 3.148 0.9695 -0.0001 

12 4 0.4137 0.5313 9.528 0.7310 0.0001 

13 4 0.0645 0.0894 1.486 0.9924 0.0000 

14 4 0.0972 0.1407 2.238 0.9810 0.0000 

15 4 0.1346 0.1917 3.099 0.9649 0.0000 

16 4 0.4027 0.5079 9.274 0.7537 0.0002 

17 4 0.0952 0.1364 2.191 0.9822 0.0000 

18 4 0.1240 0.1698 2.855 0.9725 0.0001 

19 4 0.3766 0.4771 8.672 0.7827 -0.0004 

20 4 0.1683 0.2361 3.876 0.9468 0.0002 

21 4 0.4299 0.5432 9.901 0.7190 0.0002 

22 4 0.4346 0.5507 10.009 0.7104 0.0005 

23 3 0.1257 0.1652 2.895 0.9739 0.0001 

24 3 0.1309 0.1756 3.015 0.9705 0.0000 

25 3 0.1463 0.1983 3.370 0.9625 0.0000 

26 3 0.4375 0.5610 10.075 0.6994 0.0003 

27 3 0.1463 0.1906 3.369 0.9653 0.0000 

28 3 0.1379 0.1817 3.177 0.9685 0.0000 

29 3 0.4874 0.6238 11.226 0.6280 0.0012 

30 3 0.1942 0.2580 4.473 0.9365 -0.0001 

31 3 0.4367 0.5642 10.057 0.6963 -0.0004 

32 3 0.4619 0.5884 10.638 0.6697 -0.0015 

33 3 0.0975 0.1407 2.244 0.9810 0.0000 

34 3 0.1311 0.1896 3.018 0.9657 0.0001 

35 3 0.3958 0.5003 9.115 0.7610 -0.0010 

36 3 0.1782 0.2541 4.103 0.9384 0.0000 

37 3 0.4699 0.5871 10.822 0.6715 -0.0001 

38 3 0.4443 0.5604 10.232 0.7001 -0.0004 

39 3 0.1699 0.2373 3.913 0.9463 0.0000 

40 3 0.4577 0.5706 10.541 0.6894 0.0001 

41 3 0.4411 0.5563 10.160 0.7044 -0.0002 

42 3 0.5087 0.6488 11.715 0.5985 -0.0001 

43 2 0.1742 0.2263 4.011 0.9511 0.0000 

44 2 0.1612 0.2171 3.712 0.9550 0.0000 

45 2 0.5047 0.6385 11.624 0.6104 -0.0025 

46 2 0.1964 0.2697 4.523 0.9306 0.0000 

47 2 0.5485 0.6991 12.631 0.5343 0.0011 

48 2 0.4978 0.6306 11.466 0.6203 -0.0001 

49 2 0.2009 0.2646 4.627 0.9332 0.0000 

50 2 0.6747 0.8672 15.539 0.2825 0.0001 

51 2 0.5356 0.6730 12.334 0.5675 -0.0002 

52 2 0.5170 0.6651 11.907 0.5783 -0.0005 

53 2 0.1811 0.2696 4.171 0.9306 0.0000 

54 2 0.4700 0.5902 10.824 0.6680 -0.0001 

55 2 0.4461 0.5628 10.273 0.6974 -0.0001 

56 2 0.5664 0.7029 13.045 0.5288 0.0000 

57 2 0.5575 0.6917 12.840 0.5434 -0.0009 

58 1 0.2260 0.3077 5.205 0.9096 0.0000 

59 1 0.6996 0.9001 16.111 0.2268 -0.0002 

60 1 0.5405 0.6780 12.447 0.5610 0.0001 

61 1 0.6343 0.7962 14.608 0.3954 -0.0002 

62 1 0.7937 1.0039 18.280 0.0388 -0.0001 

63 1 0.5750 0.7092 13.243 0.5204 -0.0001 

 

 



234 

 

 

Table A29: Performance of ANFIS at Station 48620 (Sitiawan) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0376 0.0676 0.986 0.9874 -0.0001 

2 5 0.0539 0.0876 1.414 0.9829 -0.0002 

3 5 0.0422 0.0716 1.109 0.9869 -0.0001 

4 5 0.0388 0.0685 1.020 0.9872 0.0000 

5 5 0.0450 0.0768 1.183 0.9857 -0.0001 

6 5 0.0736 0.1129 1.932 0.9760 -0.0001 

7 5 0.2986 0.3742 7.841 0.7797 0.0004 

8 4 0.0534 0.0868 1.401 0.9831 -0.0001 

9 4 0.0570 0.0909 1.498 0.9820 -0.0003 

10 4 0.0606 0.0967 1.593 0.9805 -0.0004 

11 4 0.0786 0.1184 2.065 0.9739 -0.0002 

12 4 0.3230 0.4052 8.483 0.7416 -0.0001 

13 4 0.0445 0.0748 1.170 0.9862 0.0000 

14 4 0.0450 0.0753 1.183 0.9860 0.0000 

15 4 0.0819 0.1208 2.150 0.9737 -0.0001 

16 4 0.3198 0.4007 8.399 0.7472 0.0004 

17 4 0.0454 0.0774 1.192 0.9854 0.0000 

18 4 0.0753 0.1141 1.977 0.9757 0.0000 

19 4 0.3024 0.3804 7.942 0.7720 -0.0006 

20 4 0.0852 0.1253 2.236 0.9716 -0.0002 

21 4 0.3031 0.3795 7.959 0.7735 0.0001 

22 4 0.3504 0.4367 9.201 0.6997 0.0002 

23 3 0.0690 0.1059 1.813 0.9781 -0.0001 

24 3 0.0582 0.0934 1.529 0.9815 -0.0002 

25 3 0.0834 0.1228 2.189 0.9726 -0.0001 

26 3 0.3634 0.4566 9.542 0.6718 0.0004 

27 3 0.0724 0.1108 1.901 0.9762 -0.0001 

28 3 0.0794 0.1190 2.084 0.9738 -0.0002 

29 3 0.3741 0.4725 9.824 0.6485 -0.0003 

30 3 0.0897 0.1308 2.356 0.9692 -0.0002 

31 3 0.3239 0.4066 8.506 0.7396 0.0000 

32 3 0.3682 0.4595 9.669 0.6672 0.0004 

33 3 0.0485 0.0798 1.274 0.9850 0.0000 

34 3 0.0885 0.1295 2.325 0.9705 0.0000 

35 3 0.3173 0.3987 8.333 0.7497 0.0003 

36 3 0.0875 0.1271 2.298 0.9712 -0.0001 

37 3 0.3435 0.4280 9.021 0.7116 0.0002 

38 3 0.3629 0.4525 9.530 0.6775 0.0001 

39 3 0.0863 0.1274 2.266 0.9708 0.0000 

40 3 0.3269 0.4128 8.585 0.7315 -0.0004 

41 3 0.3581 0.4454 9.403 0.6875 -0.0002 

42 3 0.3655 0.4562 9.598 0.6724 0.0001 

43 2 0.0856 0.1274 2.248 0.9705 0.0000 

44 2 0.0977 0.1409 2.566 0.9658 -0.0001 

45 2 0.3788 0.4776 9.948 0.6408 -0.0002 

46 2 0.0899 0.1300 2.360 0.9698 -0.0001 

47 2 0.4070 0.5091 10.688 0.5917 0.0000 

48 2 0.3938 0.4908 10.342 0.6204 0.0001 

49 2 0.0965 0.1402 2.535 0.9653 -0.0001 

50 2 0.5390 0.6789 14.154 0.2739 0.0000 

51 2 0.4091 0.5122 10.744 0.5867 0.0000 

52 2 0.3809 0.4755 10.003 0.6438 -0.0002 

53 2 0.0974 0.1407 2.557 0.9659 0.0000 

54 2 0.3445 0.4323 9.046 0.7057 -0.0001 

55 2 0.3625 0.4520 9.519 0.6782 0.0000 

56 2 0.4050 0.5023 10.637 0.6028 -0.0002 

57 2 0.4110 0.5133 10.792 0.5851 -0.0001 

58 1 0.1173 0.1646 3.080 0.9545 -0.0001 

59 1 0.5472 0.6882 14.371 0.2537 0.0001 

60 1 0.4110 0.5151 10.792 0.5821 0.0000 

61 1 0.4536 0.5636 11.911 0.4995 -0.0001 

62 1 0.6365 0.7901 16.714 0.0155 0.0000 

63 1 0.4166 0.5193 10.941 0.5754 -0.0001 
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Table A30: Performance of ANFIS at Station 48623 (Lubok Merbau) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0343 0.0425 0.842 0.9971 0.0000 

2 5 0.0562 0.0721 1.382 0.9918 0.0001 

3 5 0.0404 0.0512 0.993 0.9958 0.0001 

4 5 0.0345 0.0428 0.849 0.9971 0.0000 

5 5 0.0401 0.0517 0.985 0.9958 0.0000 

6 5 0.0671 0.0893 1.651 0.9874 -0.0001 

7 5 0.2717 0.3407 6.679 0.8162 0.0002 

8 4 0.0604 0.0776 1.484 0.9905 -0.0002 

9 4 0.0602 0.0770 1.480 0.9906 0.0000 

10 4 0.0603 0.0785 1.482 0.9903 -0.0001 

11 4 0.0770 0.1000 1.893 0.9842 -0.0001 

12 4 0.3550 0.4444 8.729 0.6882 -0.0001 

13 4 0.0449 0.0577 1.103 0.9947 -0.0001 

14 4 0.0425 0.0547 1.045 0.9953 0.0000 

15 4 0.0724 0.0961 1.781 0.9854 0.0000 

16 4 0.2833 0.3547 6.966 0.8007 -0.0003 

17 4 0.0417 0.0545 1.025 0.9953 0.0000 

18 4 0.0682 0.0905 1.676 0.9870 0.0000 

19 4 0.2751 0.3451 6.764 0.8113 -0.0002 

20 4 0.0778 0.1097 1.913 0.9809 0.0000 

21 4 0.2695 0.3384 6.627 0.8189 -0.0002 

22 4 0.3099 0.3900 7.619 0.7596 -0.0001 

23 3 0.0767 0.1001 1.886 0.9841 0.0000 

24 3 0.0621 0.0804 1.526 0.9898 0.0000 

25 3 0.0814 0.1056 2.002 0.9824 0.0000 

26 3 0.3765 0.4736 9.258 0.6454 0.0013 

27 3 0.0718 0.0955 1.766 0.9856 0.0002 

28 3 0.0775 0.1011 1.906 0.9838 -0.0002 

29 3 0.4242 0.5380 10.431 0.5420 0.0004 

30 3 0.0879 0.1187 2.161 0.9777 0.0000 

31 3 0.3510 0.4405 8.631 0.6939 0.0003 

32 3 0.3884 0.4836 9.550 0.6310 -0.0001 

33 3 0.0471 0.0610 1.159 0.9941 0.0000 

34 3 0.0750 0.0989 1.844 0.9845 0.0000 

35 3 0.2795 0.3506 6.872 0.8053 -0.0003 

36 3 0.0778 0.1097 1.912 0.9809 0.0000 

37 3 0.2845 0.3559 6.995 0.7994 0.0001 

38 3 0.3177 0.4001 7.812 0.7467 -0.0004 

39 3 0.0800 0.1134 1.966 0.9796 0.0000 

40 3 0.2832 0.3564 6.963 0.7989 0.0002 

41 3 0.3132 0.3939 7.700 0.7546 -0.0002 

42 3 0.3143 0.3964 7.728 0.7515 0.0002 

43 2 0.0863 0.1134 2.122 0.9796 0.0000 

44 2 0.0920 0.1202 2.262 0.9771 0.0000 

45 2 0.4252 0.5397 10.454 0.5391 0.0000 

46 2 0.0889 0.1199 2.185 0.9773 0.0000 

47 2 0.3852 0.4841 9.470 0.6296 0.0001 

48 2 0.4098 0.5112 10.075 0.5870 0.0000 

49 2 0.0990 0.1341 2.434 0.9716 0.0000 

50 2 0.5244 0.6685 12.892 0.2924 -0.0002 

51 2 0.4553 0.5733 11.194 0.4802 0.0001 

52 2 0.3935 0.4892 9.676 0.6224 0.0000 

53 2 0.0836 0.1179 2.056 0.9779 0.0000 

54 2 0.2900 0.3641 7.131 0.7900 0.0000 

55 2 0.3167 0.3986 7.787 0.7485 0.0000 

56 2 0.3369 0.4236 8.283 0.7162 -0.0002 

57 2 0.3396 0.4298 8.350 0.7076 -0.0001 

58 1 0.1100 0.1477 2.705 0.9655 0.0000 

59 1 0.5297 0.6755 13.025 0.2778 0.0000 

60 1 0.4572 0.5759 11.241 0.4755 0.0001 

61 1 0.4379 0.5462 10.767 0.5284 0.0000 

62 1 0.6181 0.7810 15.196 0.0348 0.0001 

63 1 0.3484 0.4392 8.567 0.6947 0.0000 
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Table A31: Performance of ANFIS at Station 48625 (Ipoh) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0359 0.0454 0.899 0.9965 -0.0001 

2 5 0.0648 0.0828 1.622 0.9885 0.0000 

3 5 0.0430 0.0541 1.075 0.9951 -0.0001 

4 5 0.0373 0.0464 0.933 0.9964 0.0000 

5 5 0.0462 0.0594 1.157 0.9941 0.0000 

6 5 0.0862 0.1127 2.156 0.9786 0.0000 

7 5 0.2839 0.3552 7.104 0.7876 0.0002 

8 4 0.0662 0.0848 1.657 0.9879 0.0000 

9 4 0.0655 0.0837 1.638 0.9882 -0.0001 

10 4 0.0698 0.0910 1.747 0.9861 0.0000 

11 4 0.1081 0.1376 2.704 0.9682 -0.0001 

12 4 0.3334 0.4214 8.342 0.7010 -0.0002 

13 4 0.0445 0.0561 1.113 0.9947 0.0000 

14 4 0.0471 0.0603 1.179 0.9939 0.0002 

15 4 0.0994 0.1293 2.488 0.9718 0.0000 

16 4 0.3066 0.3817 7.671 0.7545 0.0001 

17 4 0.0468 0.0602 1.170 0.9939 -0.0001 

18 4 0.0996 0.1300 2.493 0.9715 0.0000 

19 4 0.2971 0.3719 7.435 0.7671 -0.0009 

20 4 0.1156 0.1523 2.892 0.9609 0.0000 

21 4 0.2818 0.3533 7.050 0.7899 0.0000 

22 4 0.3248 0.4043 8.127 0.7247 0.0000 

23 3 0.0791 0.1009 1.980 0.9829 -0.0001 

24 3 0.0708 0.0918 1.770 0.9858 0.0000 

25 3 0.1163 0.1478 2.911 0.9632 -0.0001 

26 3 0.3769 0.4745 9.430 0.6208 0.0001 

27 3 0.0828 0.1090 2.072 0.9800 -0.0001 

28 3 0.1123 0.1425 2.811 0.9659 0.0000 

29 3 0.4023 0.5122 10.066 0.5585 -0.0002 

30 3 0.1346 0.1722 3.368 0.9501 0.0001 

31 3 0.3284 0.4160 8.217 0.7088 -0.0004 

32 3 0.3831 0.4757 9.585 0.6189 -0.0001 

33 3 0.0559 0.0711 1.399 0.9915 0.0000 

34 3 0.1022 0.1330 2.557 0.9702 0.0000 

35 3 0.3012 0.3761 7.536 0.7617 0.0000 

36 3 0.1175 0.1544 2.940 0.9598 0.0000 

37 3 0.3162 0.3945 7.910 0.7380 -0.0002 

38 3 0.3343 0.4151 8.364 0.7096 0.0001 

39 3 0.1158 0.1529 2.896 0.9606 0.0000 

40 3 0.3290 0.4114 8.232 0.7151 0.0000 

41 3 0.3228 0.4023 8.076 0.7274 -0.0004 

42 3 0.3360 0.4191 8.408 0.7041 0.0002 

43 2 0.1014 0.1313 2.536 0.9710 0.0000 

44 2 0.1184 0.1501 2.962 0.9621 0.0000 

45 2 0.4024 0.5116 10.069 0.5592 0.0000 

46 2 0.1350 0.1726 3.378 0.9498 0.0000 

47 2 0.3884 0.4903 9.718 0.5954 -0.0002 

48 2 0.4070 0.5096 10.182 0.5627 -0.0001 

49 2 0.1387 0.1770 3.470 0.9473 0.0000 

50 2 0.5477 0.7036 13.704 0.1662 0.0000 

51 2 0.4229 0.5323 10.581 0.5233 -0.0001 

52 2 0.3934 0.4886 9.843 0.5982 -0.0001 

53 2 0.1186 0.1554 2.969 0.9593 0.0000 

54 2 0.3343 0.4171 8.365 0.7071 0.0001 

55 2 0.3293 0.4098 8.239 0.7171 0.0001 

56 2 0.3701 0.4613 9.261 0.6417 -0.0002 

57 2 0.3737 0.4647 9.351 0.6363 0.0000 

58 1 0.1487 0.1891 3.720 0.9398 0.0000 

59 1 0.5546 0.7131 13.877 0.1435 0.0000 

60 1 0.4234 0.5328 10.594 0.5222 0.0000 

61 1 0.4569 0.5704 11.432 0.4526 -0.0001 

62 1 0.5986 0.7618 14.978 0.0244 0.0000 

63 1 0.3809 0.4739 9.531 0.6218 0.0000 
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Table A32: Performance of ANFIS at Station 48632 (Cameron Highlands) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0366 0.0490 1.157 0.9979 0.0000 

2 5 0.0474 0.0626 1.499 0.9965 0.0000 

3 5 0.0404 0.0545 1.279 0.9974 0.0000 

4 5 0.0372 0.0498 1.175 0.9978 0.0000 

5 5 0.0460 0.0640 1.453 0.9964 0.0000 

6 5 0.0488 0.0687 1.542 0.9958 0.0000 

7 5 0.3586 0.4769 11.338 0.8002 0.0001 

8 4 0.0479 0.0633 1.514 0.9965 0.0000 

9 4 0.0510 0.0676 1.613 0.9960 0.0001 

10 4 0.0534 0.0736 1.688 0.9952 0.0001 

11 4 0.0556 0.0767 1.757 0.9948 0.0000 

12 4 0.3908 0.5111 12.355 0.7704 0.0000 

13 4 0.0446 0.0608 1.411 0.9967 -0.0002 

14 4 0.0460 0.0642 1.455 0.9964 0.0000 

15 4 0.0516 0.0735 1.633 0.9952 -0.0001 

16 4 0.3723 0.4925 11.770 0.7867 0.0000 

17 4 0.0462 0.0640 1.461 0.9964 -0.0001 

18 4 0.0492 0.0696 1.555 0.9957 0.0000 

19 4 0.3681 0.4865 11.639 0.7920 -0.0001 

20 4 0.0611 0.0950 1.931 0.9919 0.0000 

21 4 0.3786 0.5038 11.969 0.7769 0.0002 

22 4 0.3846 0.5027 12.159 0.7777 -0.0001 

23 3 0.1631 0.2388 5.157 0.9499 -0.0001 

24 3 0.0541 0.0745 1.712 0.9951 0.0001 

25 3 0.0567 0.0782 1.791 0.9946 0.0000 

26 3 0.4312 0.5557 13.632 0.7283 0.0001 

27 3 0.0627 0.0856 1.982 0.9935 -0.0001 

28 3 0.0576 0.0784 1.822 0.9946 -0.0001 

29 3 0.4845 0.6138 15.317 0.6685 0.0004 

30 3 0.0667 0.1021 2.108 0.9907 0.0001 

31 3 0.4091 0.5425 12.935 0.7414 0.0002 

32 3 0.4094 0.5301 12.944 0.7528 -0.0002 

33 3 0.0464 0.0641 1.468 0.9964 0.0000 

34 3 0.0534 0.0765 1.688 0.9948 -0.0001 

35 3 0.3792 0.5036 11.988 0.7769 0.0003 

36 3 0.0606 0.0946 1.917 0.9920 0.0000 

37 3 0.4172 0.5477 13.192 0.7362 0.0001 

38 3 0.3913 0.5123 12.372 0.7691 -0.0002 

39 3 0.0607 0.0946 1.920 0.9920 0.0001 

40 3 0.4027 0.5277 12.732 0.7553 0.0001 

41 3 0.3888 0.5072 12.294 0.7737 0.0003 

42 3 0.4415 0.5708 13.957 0.7132 0.0002 

43 2 0.2787 0.3617 8.810 0.8851 0.0000 

44 2 0.1648 0.2415 5.209 0.9488 0.0000 

45 2 0.4830 0.6126 15.270 0.6691 -0.0001 

46 2 0.0667 0.1018 2.108 0.9908 0.0001 

47 2 0.5115 0.6571 16.171 0.6200 0.0001 

48 2 0.4371 0.5626 13.820 0.7214 0.0000 

49 2 0.0720 0.1089 2.276 0.9895 0.0000 

50 2 0.6115 0.7758 19.333 0.4703 -0.0004 

51 2 0.4860 0.6150 15.365 0.6670 0.0004 

52 2 0.4627 0.6026 14.630 0.6804 0.0002 

53 2 0.0624 0.0962 1.974 0.9918 0.0000 

54 2 0.4235 0.5575 13.391 0.7265 0.0002 

55 2 0.3964 0.5201 12.534 0.7620 0.0001 

56 2 0.4753 0.6122 15.027 0.6698 0.0001 

57 2 0.4594 0.5891 14.526 0.6943 0.0002 

58 1 0.3020 0.3796 9.548 0.8737 0.0001 

59 1 0.7897 0.9925 24.968 0.1319 0.0002 

60 1 0.4860 0.6152 15.364 0.6665 0.0001 

61 1 0.5533 0.7067 17.492 0.5600 0.0001 

62 1 0.6401 0.8106 20.238 0.4219 0.0001 

63 1 0.4804 0.6204 15.187 0.6607 0.0002 

 

 



238 

 

 

Table A33: Performance of ANFIS at Station 48647 (Subang) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0348 0.0440 0.860 0.9980 0.0000 

2 5 0.0691 0.0878 1.709 0.9920 0.0000 

3 5 0.0468 0.0593 1.156 0.9963 0.0000 

4 5 0.0402 0.0507 0.995 0.9973 0.0000 

5 5 0.0564 0.0733 1.395 0.9944 -0.0001 

6 5 0.1015 0.1346 2.510 0.9810 0.0002 

7 5 0.3818 0.4963 9.438 0.7424 -0.0005 

8 4 0.0722 0.0918 1.785 0.9912 0.0000 

9 4 0.0724 0.0921 1.790 0.9911 0.0000 

10 4 0.0772 0.0997 1.908 0.9896 0.0000 

11 4 0.1108 0.1440 2.740 0.9783 0.0000 

12 4 0.4752 0.6024 11.746 0.6209 -0.0003 

13 4 0.0474 0.0606 1.172 0.9962 0.0000 

14 4 0.0588 0.0764 1.452 0.9939 0.0000 

15 4 0.1048 0.1391 2.589 0.9798 0.0000 

16 4 0.3857 0.4998 9.532 0.7387 -0.0002 

17 4 0.0572 0.0744 1.415 0.9942 0.0000 

18 4 0.1021 0.1350 2.523 0.9809 0.0000 

19 4 0.3828 0.4961 9.463 0.7425 -0.0002 

20 4 0.1151 0.1511 2.845 0.9761 0.0000 

21 4 0.4131 0.5329 10.211 0.7029 0.0001 

22 4 0.4288 0.5530 10.598 0.6803 0.0000 

23 3 0.0903 0.1140 2.233 0.9864 0.0000 

24 3 0.0782 0.1007 1.933 0.9894 0.0000 

25 3 0.1128 0.1469 2.787 0.9774 0.0000 

26 3 0.4973 0.6266 12.293 0.5898 0.0000 

27 3 0.0883 0.1157 2.183 0.9860 0.0000 

28 3 0.1132 0.1464 2.798 0.9776 0.0000 

29 3 0.5303 0.6667 13.106 0.5353 0.0003 

30 3 0.1193 0.1554 2.949 0.9748 0.0000 

31 3 0.4906 0.6229 12.127 0.5944 0.0001 

32 3 0.5040 0.6366 12.457 0.5766 -0.0002 

33 3 0.0650 0.0846 1.607 0.9925 0.0001 

34 3 0.1102 0.1463 2.725 0.9776 0.0000 

35 3 0.3922 0.5061 9.695 0.7321 -0.0001 

36 3 0.1152 0.1516 2.848 0.9760 0.0000 

37 3 0.4332 0.5554 10.707 0.6772 -0.0008 

38 3 0.4322 0.5577 10.684 0.6747 -0.0001 

39 3 0.1224 0.1594 3.024 0.9735 0.0000 

40 3 0.4257 0.5503 10.522 0.6831 -0.0001 

41 3 0.4294 0.5533 10.613 0.6798 0.0001 

42 3 0.4641 0.5964 11.472 0.6278 -0.0002 

43 2 0.1110 0.1434 2.744 0.9785 0.0000 

44 2 0.1298 0.1682 3.209 0.9704 0.0000 

45 2 0.5296 0.6670 13.091 0.5349 -0.0002 

46 2 0.1194 0.1556 2.952 0.9747 0.0000 

47 2 0.5321 0.6720 13.153 0.5275 -0.0002 

48 2 0.5261 0.6611 13.005 0.5435 -0.0003 

49 2 0.1341 0.1720 3.314 0.9691 0.0000 

50 2 0.6677 0.8391 16.503 0.2629 0.0001 

51 2 0.5630 0.7083 13.915 0.4754 -0.0002 

52 2 0.5191 0.6591 12.830 0.5459 -0.0002 

53 2 0.1326 0.1731 3.277 0.9687 0.0000 

54 2 0.4375 0.5605 10.813 0.6712 0.0000 

55 2 0.4349 0.5599 10.749 0.6721 -0.0003 

56 2 0.4890 0.6254 12.086 0.5906 0.0001 

57 2 0.5078 0.6511 12.551 0.5563 0.0000 

58 1 0.1563 0.2006 3.862 0.9579 0.0000 

59 1 0.6775 0.8533 16.747 0.2380 0.0000 

60 1 0.5648 0.7117 13.960 0.4704 0.0000 

61 1 0.5704 0.7181 14.099 0.4606 -0.0002 

62 1 0.7620 0.9492 18.836 0.0565 -0.0001 

63 1 0.5127 0.6554 12.673 0.5504 0.0000 
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Table A34: Performance of ANFIS at Station 48649 (Muadzam Shah) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0317 0.0441 0.912 0.9970 -0.0001 

2 5 0.0404 0.0551 1.160 0.9956 0.0001 

3 5 0.0339 0.0467 0.974 0.9967 0.0000 

4 5 0.0317 0.0443 0.911 0.9970 0.0001 

5 5 0.0343 0.0493 0.986 0.9964 0.0001 

6 5 0.0604 0.0826 1.735 0.9903 0.0000 

7 5 0.2711 0.3422 7.792 0.8354 -0.0006 

8 4 0.0415 0.0566 1.192 0.9953 0.0002 

9 4 0.0459 0.0625 1.320 0.9944 0.0001 

10 4 0.0430 0.0600 1.237 0.9948 0.0000 

11 4 0.0604 0.0825 1.736 0.9904 0.0000 

12 4 0.3409 0.4257 9.795 0.7453 0.0001 

13 4 0.0371 0.0513 1.067 0.9961 0.0000 

14 4 0.0358 0.0511 1.029 0.9961 0.0000 

15 4 0.0669 0.0908 1.924 0.9883 0.0000 

16 4 0.2846 0.3585 8.177 0.8194 0.0005 

17 4 0.0350 0.0501 1.005 0.9962 0.0000 

18 4 0.0614 0.0839 1.763 0.9900 0.0001 

19 4 0.2796 0.3526 8.033 0.8253 -0.0004 

20 4 0.0735 0.1006 2.113 0.9857 0.0000 

21 4 0.2813 0.3543 8.083 0.8235 0.0000 

22 4 0.3222 0.4016 9.259 0.7735 -0.0001 

23 3 0.0574 0.0779 1.650 0.9914 0.0000 

24 3 0.0440 0.0609 1.264 0.9946 0.0000 

25 3 0.0669 0.0913 1.924 0.9882 0.0000 

26 3 0.3853 0.4823 11.072 0.6732 -0.0001 

27 3 0.0501 0.0689 1.440 0.9932 0.0000 

28 3 0.0624 0.0849 1.794 0.9898 0.0001 

29 3 0.4328 0.5454 12.438 0.5818 0.0004 

30 3 0.0739 0.1021 2.124 0.9853 0.0000 

31 3 0.3446 0.4321 9.902 0.7376 -0.0004 

32 3 0.3657 0.4547 10.507 0.7093 0.0000 

33 3 0.0410 0.0576 1.177 0.9951 0.0000 

34 3 0.0710 0.0959 2.040 0.9870 0.0000 

35 3 0.2867 0.3606 8.238 0.8172 -0.0003 

36 3 0.0772 0.1053 2.217 0.9844 -0.0001 

37 3 0.3124 0.3945 8.978 0.7813 0.0003 

38 3 0.3287 0.4093 9.447 0.7648 -0.0001 

39 3 0.0743 0.1016 2.134 0.9855 0.0000 

40 3 0.3046 0.3844 8.754 0.7923 0.0001 

41 3 0.3265 0.4070 9.382 0.7673 0.0001 

42 3 0.3777 0.4752 10.854 0.6827 0.0001 

43 2 0.0609 0.0825 1.750 0.9903 0.0001 

44 2 0.0744 0.0996 2.137 0.9860 0.0000 

45 2 0.4338 0.5460 12.466 0.5808 0.0001 

46 2 0.0768 0.1069 2.208 0.9839 0.0000 

47 2 0.4364 0.5490 12.539 0.5766 0.0000 

48 2 0.3997 0.4974 11.485 0.6523 -0.0001 

49 2 0.0750 0.1032 2.154 0.9850 0.0000 

50 2 0.6178 0.7892 17.752 0.1253 0.0000 

51 2 0.4420 0.5563 12.701 0.5649 0.0001 

52 2 0.3990 0.5015 11.467 0.6465 0.0001 

53 2 0.0831 0.1125 2.387 0.9821 0.0000 

54 2 0.3180 0.4006 9.138 0.7745 -0.0005 

55 2 0.3296 0.4101 9.470 0.7637 -0.0001 

56 2 0.4158 0.5188 11.948 0.6219 0.0000 

57 2 0.4238 0.5282 12.180 0.6080 0.0000 

58 1 0.0849 0.1145 2.441 0.9815 0.0000 

59 1 0.6256 0.7963 17.979 0.1097 0.0000 

60 1 0.4420 0.5562 12.703 0.5651 0.0001 

61 1 0.4778 0.6017 13.730 0.4910 0.0000 

62 1 0.6621 0.8364 19.025 0.0172 0.0000 

63 1 0.4345 0.5390 12.487 0.5917 -0.0001 
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Table A35: Performance of ANFIS at Station 48650 (KLIA) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0405 0.0572 1.000 0.9967 -0.0001 

2 5 0.0785 0.1013 1.939 0.9896 0.0001 

3 5 0.0553 0.0764 1.365 0.9941 0.0001 

4 5 0.0503 0.0686 1.243 0.9952 0.0000 

5 5 0.0748 0.1051 1.847 0.9888 0.0000 

6 5 0.0945 0.1367 2.335 0.9810 -0.0002 

7 5 0.3892 0.4921 9.612 0.7540 0.0003 

8 4 0.0827 0.1070 2.042 0.9884 -0.0001 

9 4 0.0812 0.1043 2.004 0.9890 -0.0001 

10 4 0.1104 0.1523 2.725 0.9765 0.0000 

11 4 0.1166 0.1589 2.881 0.9743 -0.0001 

12 4 0.4394 0.5522 10.851 0.6902 0.0010 

13 4 0.0551 0.0755 1.361 0.9942 0.0000 

14 4 0.0823 0.1161 2.032 0.9863 -0.0001 

15 4 0.1057 0.1544 2.611 0.9758 -0.0001 

16 4 0.4002 0.5052 9.885 0.7406 0.0002 

17 4 0.0780 0.1101 1.927 0.9877 -0.0001 

18 4 0.1012 0.1465 2.500 0.9782 0.0000 

19 4 0.3973 0.5007 9.812 0.7454 -0.0003 

20 4 0.1355 0.2117 3.347 0.9544 -0.0001 

21 4 0.4033 0.5087 9.960 0.7370 0.0012 

22 4 0.4233 0.5354 10.454 0.7086 -0.0002 

23 3 0.0906 0.1177 2.238 0.9859 -0.0001 

24 3 0.1098 0.1518 2.712 0.9766 0.0002 

25 3 0.1228 0.1690 3.032 0.9710 0.0000 

26 3 0.4600 0.5779 11.359 0.6605 -0.0003 

27 3 0.1234 0.1713 3.048 0.9703 0.0001 

28 3 0.1171 0.1606 2.892 0.9738 0.0000 

29 3 0.4880 0.6215 12.053 0.6072 0.0003 

30 3 0.1601 0.2405 3.955 0.9412 0.0002 

31 3 0.4511 0.5658 11.140 0.6749 0.0000 

32 3 0.4650 0.5844 11.485 0.6528 -0.0007 

33 3 0.0848 0.1172 2.093 0.9861 -0.0001 

34 3 0.1061 0.1543 2.619 0.9758 -0.0001 

35 3 0.3961 0.4977 9.782 0.7482 0.0002 

36 3 0.1392 0.2181 3.437 0.9516 0.0000 

37 3 0.4228 0.5313 10.441 0.7132 -0.0001 

38 3 0.4326 0.5464 10.685 0.6965 0.0003 

39 3 0.1370 0.2137 3.382 0.9536 0.0000 

40 3 0.4362 0.5485 10.773 0.6946 0.0001 

41 3 0.4253 0.5381 10.502 0.7057 0.0004 

42 3 0.4637 0.5900 11.453 0.6465 -0.0006 

43 2 0.1415 0.1923 3.494 0.9625 0.0000 

44 2 0.1274 0.1732 3.146 0.9695 0.0000 

45 2 0.4918 0.6254 12.145 0.6023 0.0001 

46 2 0.1612 0.2416 3.982 0.9407 0.0000 

47 2 0.4965 0.6191 12.262 0.6107 0.0000 

48 2 0.4834 0.6073 11.938 0.6250 -0.0001 

49 2 0.1731 0.2551 4.274 0.9339 0.0000 

50 2 0.6657 0.8329 16.442 0.2950 0.0001 

51 2 0.5162 0.6543 12.748 0.5646 0.0001 

52 2 0.5104 0.6464 12.606 0.5757 0.0000 

53 2 0.1433 0.2219 3.539 0.9499 0.0000 

54 2 0.4383 0.5511 10.824 0.6916 0.0000 

55 2 0.4315 0.5441 10.656 0.6991 0.0000 

56 2 0.4817 0.6106 11.897 0.6211 -0.0001 

57 2 0.5018 0.6348 12.392 0.5905 0.0001 

58 1 0.1930 0.2821 4.766 0.9192 0.0000 

59 1 0.6839 0.8559 16.891 0.2555 0.0000 

60 1 0.5189 0.6570 12.816 0.5611 0.0001 

61 1 0.5512 0.6954 13.613 0.5087 -0.0001 

62 1 0.7546 0.9505 18.637 0.0821 0.0003 

63 1 0.5044 0.6379 12.458 0.5865 -0.0001 
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Table A36: Performance of ANFIS at Station 48657 (Kuantan) 
Combinations Variables MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

1 6 0.0326 0.0419 0.847 0.9979 0.0000 

2 5 0.0666 0.0868 1.730 0.9911 0.0000 

3 5 0.0415 0.0532 1.077 0.9967 -0.0001 

4 5 0.0386 0.0493 1.003 0.9971 0.0000 

5 5 0.0520 0.0690 1.351 0.9944 0.0000 

6 5 0.0686 0.0899 1.782 0.9904 -0.0002 

7 5 0.2876 0.3712 7.467 0.8369 -0.0001 

8 4 0.0690 0.0896 1.792 0.9905 0.0001 

9 4 0.0699 0.0906 1.814 0.9903 0.0000 

10 4 0.0792 0.1034 2.056 0.9873 0.0000 

11 4 0.0840 0.1085 2.181 0.9861 0.0000 

12 4 0.3543 0.4536 9.199 0.7566 0.0001 

13 4 0.0430 0.0550 1.117 0.9964 0.0000 

14 4 0.0533 0.0702 1.383 0.9942 0.0000 

15 4 0.0782 0.1017 2.029 0.9878 -0.0001 

16 4 0.3047 0.3908 7.909 0.8192 -0.0003 

17 4 0.0521 0.0691 1.352 0.9944 0.0000 

18 4 0.0762 0.0988 1.978 0.9885 0.0000 

19 4 0.2932 0.3774 7.612 0.8313 -0.0004 

20 4 0.0946 0.1241 2.456 0.9817 0.0000 

21 4 0.2982 0.3837 7.743 0.8257 0.0000 

22 4 0.3470 0.4388 9.009 0.7719 0.0003 

23 3 0.0892 0.1170 2.316 0.9838 0.0000 

24 3 0.0795 0.1039 2.063 0.9872 0.0001 

25 3 0.0885 0.1137 2.297 0.9847 0.0000 

26 3 0.4049 0.5132 10.513 0.6885 -0.0001 

27 3 0.0903 0.1201 2.344 0.9829 0.0000 

28 3 0.0847 0.1090 2.198 0.9860 0.0000 

29 3 0.4532 0.5724 11.766 0.6123 0.0003 

30 3 0.1041 0.1349 2.703 0.9785 -0.0001 

31 3 0.3609 0.4629 9.370 0.7465 0.0001 

32 3 0.3927 0.4972 10.196 0.7074 -0.0001 

33 3 0.0562 0.0730 1.458 0.9937 0.0000 

34 3 0.0798 0.1036 2.071 0.9873 0.0000 

35 3 0.3046 0.3911 7.907 0.8189 0.0002 

36 3 0.0962 0.1255 2.497 0.9814 0.0000 

37 3 0.3390 0.4318 8.801 0.7793 0.0000 

38 3 0.3585 0.4547 9.306 0.7551 0.0000 

39 3 0.0946 0.1243 2.457 0.9817 0.0000 

40 3 0.3179 0.4072 8.252 0.8037 0.0001 

41 3 0.3465 0.4393 8.997 0.7714 0.0000 

42 3 0.3780 0.4786 9.813 0.7286 0.0001 

43 2 0.1104 0.1443 2.866 0.9753 0.0000 

44 2 0.0973 0.1256 2.525 0.9814 0.0000 

45 2 0.4534 0.5721 11.770 0.6128 0.0001 

46 2 0.1046 0.1351 2.716 0.9784 0.0000 

47 2 0.4711 0.5965 12.232 0.5791 -0.0001 

48 2 0.4354 0.5498 11.303 0.6423 0.0001 

49 2 0.1064 0.1401 2.763 0.9767 0.0000 

50 2 0.6773 0.8546 17.585 0.1362 -0.0002 

51 2 0.4718 0.5934 12.248 0.5832 0.0000 

52 2 0.4189 0.5315 10.876 0.6656 0.0002 

53 2 0.0978 0.1277 2.538 0.9807 0.0000 

54 2 0.3366 0.4296 8.737 0.7816 0.0002 

55 2 0.3616 0.4584 9.387 0.7512 -0.0001 

56 2 0.4298 0.5422 11.159 0.6517 0.0000 

57 2 0.4040 0.5098 10.488 0.6922 0.0000 

58 1 0.1199 0.1561 3.112 0.9711 0.0000 

59 1 0.6873 0.8675 17.844 0.1092 -0.0001 

60 1 0.4724 0.5937 12.264 0.5827 0.0000 

61 1 0.5419 0.6886 14.069 0.4386 0.0000 

62 1 0.7277 0.9100 18.893 0.0201 0.0000 

63 1 0.4372 0.5514 11.350 0.6398 -0.0001 
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Appendix B: Performance of Bootstrap Aggregating Integrated Machine Learning Models at 

Different Stations 

 

Table B1: Performance of BMLP at Cluster 1 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48603 (Alor 

Setar) 

1 0.0277 (-0.23) 0.0356 (-0.27) 0.646 (-0.23) 0.9989 (0.00) 0.0000 

4 0.0402 (0.41) 0.0517 (0.67) 0.939 (0.41) 0.9977 (-0.00) -0.0001 

13 0.0514 (1.27) 0.0663 (1.38) 1.201 (1.27) 0.9961 (-0.01) -0.0005 

33 0.0764 (0.82) 0.1073 (0.92) 1.786 (0.82) 0.9899 (-0.02) -0.0003 

44 0.1379 (-0.27) 0.1829 (-0.30) 3.223 (-0.27) 0.9706 (0.02) 0.0001 

58 0.2583 (-0.22) 0.3622 (-0.01) 6.036 (-0.22) 0.8847 (-0.01) -0.0035 

       

Station 

48615 (Kota 

Bharu) 

1 0.0237 (0.35) 0.0297 (0.25) 0.545 (0.35) 0.9992 (-0.00) 0.0000 

4 0.0484 (0.84) 0.0663 (1.81) 1.116 (0.84) 0.9958 (-0.01) 0.0000 

13 0.0560 (-1.04) 0.0773 (-0.80) 1.290 (-1.04) 0.9943 (0.01) -0.0002 

33 0.0972 (0.37) 0.1411 (0.28) 2.238 (0.37) 0.9810 (-0.01) -0.0004 

44 0.1604 (0.13) 0.2165 (0.25) 3.695 (0.13) 0.9553 (-0.02) -0.0004 

58 0.2263 (0.24) 0.3081 (0.03) 5.212 (0.24) 0.9094 (-0.01) -0.0018 

       

Station 

48650 

(KLIA) 

1 0.0263 (0.41) 0.0310 (0.73) 0.649 (0.41) 0.9990 (-0.00) 0.0000 

4 0.0396 (0.15) 0.0504 (0.35) 0.978 (0.15) 0.9974 (-0.00) -0.0001 

13 0.0461 (0.30) 0.0601 (0.70) 1.138 (0.30) 0.9963 (-0.01) -0.0002 

33 0.0789 (0.47) 0.1090 (0.56) 1.949 (0.47) 0.9879 (-0.01) -0.0002 

44 0.1275 (0.31) 0.1734 (0.54) 3.148 (0.31) 0.9695 (-0.03) -0.0007 

58 0.1925 (-0.14) 0.2825 (0.02) 4.755 (-0.14) 0.9190 (-0.01) -0.0032 

       

Station 

48657 

(Kuantan) 

1 0.0237 (0.72) 0.0291 (0.73) 0.616 (0.72) 0.9990 (-0.00) 0.0000 

4 0.0320 (-0.25) 0.0401 (-0.15) 0.831 (-0.25) 0.9981 (0.00) 0.0001 

13 0.0384 (-1.00) 0.0487 (-1.26) 0.998 (-1.00) 0.9972 (0.01) -0.0001 

33 0.0555 (0.35) 0.0723 (0.29) 1..440 (0.35) 0.9938 (-0.00) -0.0001 

44 0.0973 (0.37) 0.1262 (0.84) 2.525 (0.37) 0.9812 (-0.03) -0.0003 

58 0.1198 (0.15) 0.1560 (0.02) 3.111 (0.15) 0.9712 (-0.00) -0.0005 

* Change (in %) in bracket as compared to the MLP. 

 

Table B2: Performance of BMLP at Cluster 2 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48620 

(Sitiawan) 

1 0.0305 (-11.58) 0.0576 (-9.21) 0.802 (-11.58) 0.9889 (0.05) -0.0022 

4 0.0333 (-7.17) 0.0603 (-5.45) 0.875 (-7.17) 0.9890 (0.00) -0.0008 

13 0.0405 (-6.69) 0.0694 (-5.45) 1.065 (-6.69) 0.9878 (0.07) -0.0015 

33 0.0461 (-5.10) 0.0773 (-6.96) 1.211 (-5.10) 0.9857 (0.18) -0.0013 

43 0.0862 (-0.09) 0.1287 (0.59) 2.264 (-0.09) 0.9701 (-0.06) -0.0019 

58 0.1161 (-0.19) 0.1624 (-0.05) 3.048 (-0.19) 0.9559 (0.01) -0.0018 

       

Station 

48625 (Ipoh) 

1 0.0288 (0.61) 0.0347 (0.79) 0.722 (0.61) 0.9980 (-0.00) -0.0002 

4 0.0325 (0.43) 0.0397 (0.47) 0.814 (0.43) 0.9974 (-0.00) -0.0001 

13 0.0412 (0.30) 0.0515 (0.53) 1.030 (0.30) 0.9956 (-0.00) -0.0002 

33 0.0551 (0.05) 0.0701 (0.19) 1.378 (0.05) 0.9917 (-0.00) -0.0003 

43 0.1024 (-0.14) 0.1324 (-0.16) 2.562 (-0.14) 0.9706 (0.01) -0.0002 

58 0.1161 (0.07) 0.1893 (0.07) 3.720 (0.07) 0.9398 (-0.01) -0.0013 

       

Station 

48647 

(Subang) 

1 0.0274 (0.26) 0.0324 (0.57) 0.676 (0.26) 0.9989 (-0.00) -0.0001 

4 0.0364 (0.83) 0.0452 (1.03) 0.901 (0.83) 0.9979 (-0.00) -0.0001 

13 0.0437 (0.88) 0.0553 (0.89) 1.080 (0.88) 0.9968 (-0.01) -0.0002 

33 0.0644 (0.56) 0.0836 (0.65) 1.591 (0.56) 0.9927 (-0.01) -0.0003 

43 0.1114 (0.11) 0.1437 (0.09) 2.753 (0.11) 0.9785 (-0.00) -0.0003 

58 0.1562 (0.04) 0.2009 (0.20) 3.860 (0.04) 0.9579 (-0.01) -0.0009 

* Change (in %) in bracket as compared to the MLP. 
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Table B3: Performance of BMLP at Cluster 3 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48600 (Pulau 

Langkawi) 

1 0.0281 (0.50) 0.0371 (-9.21) 0.643 (0.50) 0.9989 (-0.00) -0.0001 

4 0.0449 (0.96) 0.0642 (-5.45) 1.025 (0.96) 0.9968 (-0.01) -0.0003 

13 0.0593 (-1.98) 0.0832 (-5.45) 1.355 (-1.98) 0.9946 (0.04) -0.0002 

23 0.1133 (-1.19) 0.1550 (-6.96) 2.588 (-1.19) 0.9811 (0.07) -0.0002 

44 0.1879 (0.20) 0.2705 (0.59) 4.290 (0.20) 0.9426(-0.01) 0.0001 

58 0.3809 (0.26) 0.5198 (-0.05) 8.698 (0.26) 0.7877 (-0.01) 0.0000 

       

Station 

48601 

(Bayan 

Lepas) 

1 0.0277 (2.95) 0.0353 (1.91) 0.639 (2.95) 0.9988 (-0.01) 0.0000 

4 0.0437 (2.77) 0.0580 (0.75) 1.008 (2.77) 0.9968 (-0.01) -0.0003 

13 0.0538 (4.18) 0.0715 (-2.76) 1.241 (4.18) 0.9952 (-0.04) -0.0001 

23 0.1067 (8.94) 0.1402 (-1.64) 2.458 (8.94) 0.9815 (-0.30) 0.0003 

44 0.1488 (-1.22) 0.1990 (0.15) 3.430 (-1.22) 0.9629 (0.86) 0.0001 

58 0.2730 (-1.31) 0.3969 (0.03) 6.294 (-1.31) 0.8517 (0.74) -0.0028 

* Change (in %) in bracket as compared to the MLP. 

 

Table B4: Performance of BMLP at Cluster 4 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48623 

(Lubok 

Merbau) 

1 0.0304 (0.44) 0.0374 (0.99) 0.747 (0.44) 0.9978 (-0.00) 0.0002 

4 0.0318 (0.29) 0.0393 (0.49) 0.781 (0.29) 0.9976 (-0.00) 0.0001 

17 0.0377 (-0.52) 0.0491 (0.25) 0.927 (-0.52) 0.9962 (-0.00) 0.0000 

33 0.0461 (0.24) 0.0596 (0.76) 1.132 (0.24) 0.9944 (-0.01) 0.0000 

43 0.0863 (0.50) 0.1135 (0.71) 2.121 (0.50) 0.9796 (-0.03) -0.0005 

58 0.1098 (0.16) 0.1476 (0.14) 2.700 (0.16) 0.9655 (-0.01) -0.0005 

       

Station 

48649 

(Muadzam 

Shah) 

1 0.0260 (0.02) 0.0357 (1.55) 0.746 (0.02) 0.9980 (-0.01) -0.0002 

4 0.0286 (2.04) 0.0394 (3.19) 0.821 (2.04) 0.9976 (-0.01) -0.0001 

17 0.0343 (0.46) 0.0492 (1.16) 0.987 (0.46) 0.9964 (-0.01) -0.0001 

33 0.0404 (1.50) 0.0569 (1.82) 1.160 (1.50) 0.9953 (-0.02) -0.0003 

43 0.0615 (0.73) 0.0877 (6.28) 1.769 (0.73) 0.9874 (0.30) -0.0006 

58 0.0852 (0.09) 0.1148 (0.14) 2.448 (0.09) 0.9814 (-0.01) -0.0004 

* Change (in %) in bracket as compared to the MLP. 

 

Table B5: Performance of BMLP at Cluster 5 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48632 

(Cameron 

Highlands) 

1 0.0272 (0.64) 0.0326 (0.76) 0.860 (0.64) 0.9991 (-0.00) 0.0000 

4 0.0297 (0.87) 0.0362 (0.92) 0.940 (0.87) 0.9988 (-0.00) 0.0000 

13 0.0358 (1.10) 0.0469 (1.96) 1.132 (1.10) 0.9981 (-0.01) 0.0001 

33 0.0447 (-0.74) 0.0616 (-0.83) 1.414 (-0.74) 0.9967 (0.01) -0.0001 

53 0.0630 (0.05) 0.0967 (0.14) 1.990 (0.05) 0.9917 (-0.00) 0.0000 

58 0.3020 (-0.01) 0.3790 (0.11) 9.547 (-0.01) 0.8742 (-0.01) -0.0026 

* Change (in %) in bracket as compared to the MLP. 
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Table B6: Performance of BSVM at Cluster 1 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48603 (Alor 

Setar) 

1 0.0443 (1.43) 0.0548 (1.81) 1.035 (1.43) 0.9975 (-0.01) -0.0133 

4 0.0463 (0.61) 0.0603 (0.64) 1.082 (0.61) 0.9968 (-0.00) -0.0047 

13 0.0565 (0.35) 0.0723 (0.40) 1.321 (0.35) 0.9955 (-0.00) -0.0111 

33 0.0799 (0.18) 0.1104 (0.21) 1.867 (0.18) 0.9893 (-0.00) -0.0056 

44 0.1378 (0.11) 0.1836 (0.05) 3.220 (0.11) 0.9705 (0.00) -0.0068 

58 0.2499 (-0.02) 0.3741 (-0.07) 5.840 (-0.02) 0.8838 (-0.00) -0.0824 

       

Station 

48615 (Kota 

Bharu) 

1 0.0376 (1.71) 0.0500 (2.17) 0.865 (1.71) 0.9976 (-0.01) -0.0009 

4 0.0522 (0.59) 0.0705 (0.60) 1.203 (0.59) 0.9953 (-0.01) 0.0005 

13 0.0581 (0.59) 0.0795 (0.52) 1.339 (0.59) 0.9940 (-0.01) -0.0005 

33 0.0968 (0.17) 0.1409 (0.12) 2.230 (0.17) 0.9810 (-0.00) -0.0011 

44 0.1587 (0.02) 0.2168 (0.06) 3.656 (0.02) 0.9553 (-0.00) -0.0106 

58 0.2228 (0.08) 0.3128 (-0.00) 5.131 (0.08) 0.9088 (-0.00) -0.0428 

       

Station 

48650 

(KLIA) 

1 0.0386 (0.67) 0.0498 (1.37) 0.953 (0.67) 0.9977 (-0.01) -0.0124 

4 0.0434 (0.87) 0.0565 (1.28) 1.072 (0.87) 0.9968 (-0.01) -0.0006 

13 0.0485 (0.43) 0.0638 (0.49) 1.197 (0.43) 0.9959 (-0.00) -0.0035 

33 0.0803 (0.29) 0.1108 (0.44) 1.982 (0.29) 0.9876 (-0.01) -0.0020 

44 0.1276 (0.07) 0.1751 (0.12) 3.152 (0.07) 0.9690 (-0.01) -0.0104 

58 0.1886 (0.06) 0.2882 (-0.08) 4.659 (0.06) 0.9183 (-0.00) -0.0456 

       

Station 

48657 

(Kuantan) 

1 0.0349 (0.76) 0.0291 (1.27) 0.907 (0.76) 0.9978 (-0.01) -0.0086 

4 0.0369 (0.60) 0.0401 (0.85) 0.958 (0.60) 0.9973 (0.01) -0.0038 

13 0.0413 (0.36) 0.0487 (0.48) 1.073 (0.36) 0.9967 (-0.00) -0.0058 

33 0.0569 (0.38) 0.0723 (0.32) 1.476 (0.38) 0.9936 (-0.00) -0.0024 

44 0.0976 (0.04) 0.1262 (0.06) 2.533 (0.04) 0.9813 (-0.00) -0.0017 

58 0.1201 (0.03) 0.1560 (0.00) 3.118 (0.03) 0.9710 (0.00) -0.0076 

* Change (in %) in bracket as compared to the SVM. 

 

Table B7: Performance of BSVM at Cluster 2 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48620 

(Sitiawan) 

1 0.0351 (1.28) 0.0606 (1.03) 0.924 (1.28) 0.9901 (-0.01) -0.0091 

4 0.0353 (1.13) 0.0607 (0.81) 0.927 (1.13) 0.9900 (-0.00) -0.0044 

13 0.0401 (0.41) 0.0662 (0.43) 1.052 (0.41) 0.9893 (-0.00) -0.0055 

33 0.0453 (0.22) 0.0732 (0.18) 1.189 (0.22) 0.9877 (-0.00) -0.0018 

43 0.0855 (0.09) 0.1258 (0.10) 2.245 (0.09) 0.9717 (-0.00) -0.0031 

58 0.1156 (0.04) 0.1614 (0.02) 3.036 (0.04) 0.9568 (-0.00) -0.0083 

       

Station 

48625 (Ipoh) 

1 0.0348 (0.70) 0.0423 (0.89) 0.871 (0.70) 0.9972 (-0.01) -0.0094 

4 0.0358 (0.61) 0.0440 (0.75) 0.896 (0.61) 0.9968 (-0.00) -0.0046 

13 0.0429 (0.37) 0.0534 (0.44) 1.072 (0.37) 0.9953 (-0.00) -0.0043 

33 0.0556 (0.17) 0.0708 (0.17) 1.391 (0.17) 0.9916 (-0.00) -0.0014 

43 0.1033 (0.11) 0.1341 (0.14) 2.584 (0.11) 0.9699 (-0.01) -0.0051 

58 0.1485 (0.04) 0.1917 (0.02) 3.715 (0.04) 0.9390 (-0.00) -0.0210 

       

Station 

48647 

(Subang) 

1 0.0405 (0.94) 0.0509 (1.29) 1.000 (0.94) 0.9976 (-0.01) -0.0125 

4 0.0413 (0.71) 0.0531 (0.97) 1.021 (0.71) 0.9971 (-0.01) -0.0006 

13 0.0465 (0.39) 0.0597 (0.51) 1.149 (0.39) 0.9963 (-0.00) -0.0036 

33 0.0658 (0.31) 0.0858 (0.35) 1.627 (0.31) 0.9923 (-0.00) 0.0013 

43 0.1120 (0.05) 0.1445 (0.09) 2.767 (0.05) 0.9782 (-0.00) -0.0015 

58 0.1559 (0.03) 0.2017 (0.02) 3.855 (0.03) 0.9578 (-0.00) -0.0165 

* Change (in %) in bracket as compared to the SVM. 
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Table B8: Performance of BSVM at Cluster 3 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48600 (Pulau 

Langkawi) 

1 0.0481 (0.21) 0.0587 (0.94) 1.099 (0.21) 0.9976 (-0.01) -0.0172 

4 0.0515 (0.57) 0.0699 (0.92) 1.176 (0.57) 0.9962 (-0.01) -0.0084 

13 0.0632 (0.03) 0.0849 (0.33) 1.443 (0.03) 0.9944 (-0.00) -0.0098 

23 0.1133 (0.13) 0.1549 (0.16) 2.587 (0.13) 0.9812 (-0.01) -0.0034 

44 0.1854 (0.10) 0.2722 (0.07) 4.234 (0.10) 0.9424(-0.00) -0.0254 

58 0.3510 (0.02) 0.5452 (-0.01) 8.016 (0.02) 0.7878 (-0.00) -0.1587 

       

Station 

48601 

(Bayan 

Lepas) 

1 0.0432 (0.78) 0.0551 (1.56) 0.996 (0.78) 0.9988 (-0.01) -0.0155 

4 0.0477 (0.64) 0.0646 (0.85) 1.099 (0.64) 0.9968 (-0.01) 0.0009 

13 0.0564 (0.34) 0.0759 (0.55) 1.301 (0.34) 0.9952 (-0.01) -0.0033 

23 0.1074 (0.13) 0.1408 (0.19) 2.474 (0.13) 0.9815 (-0.01) -0.0034 

44 0.1488 (0.15) 0.1998 (0.19) 3.429 (0.15) 0.9629 (-0.01) -0.0116 

58 0.2643 (0.00) 0.4056 (0.06) 6.092 (0.00) 0.8517 (-0.00) -0.0803 

* Change (in %) in bracket as compared to the SVM. 

 

Table B9: Performance of BSVM at Cluster 4 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48623 

(Lubok 

Merbau) 

1 0.0377 (0.71) 0.0465 (0.75) 0.928 (0.71) 0.9968 (-0.00) -0.0115 

4 0.0376 (0.47) 0.0462 (0.61) 0.923 (0.47) 0.9968 (-0.00) -0.0099 

17 0.0415 (0.18) 0.0532 (0.47) 1.019 (0.18) 0.9956 (-0.00) -0.0057 

33 0.0481 (0.00) 0.0625 (0.18) 1.183 (0.00) 0.9939 (-0.00) -0.0039 

43 0.0884 (0.14) 0.1166 (0.16) 2.173 (0.14) 0.9786 (-0.01) -0.0036 

58 0.1104 (0.09) 0.1513 (0.02) 2.714 (0.09) 0.9643 (-0.00) -0.0146 

       

Station 

48649 

(Muadzam 

Shah) 

1 0.0334 (1.24) 0.0447 (1.34) 0.960 (1.24) 0.9971 (-0.01) -0.0052 

4 0.0336 (0.69) 0.0450 (0.95) 0.65 (0.69) 0.9971 (-0.01) -0.0055 

17 0.0378 (0.48) 0.0528 (0.78) 1.085 (0.48) 0.9959 (-0.01) -0.0034 

33 0.0419 (0.38) 0.0580 (0.64) 1.204 (0.38) 0.9951 (-0.01) -0.0020 

43 0.0620 (0.09) 0.0837 (0.21) 1.783 (0.09) 0.9901 (-0.00) -0.0003 

58 0.0849 (0.04) 0.1149 (-0.02) 2.439 (0.04) 0.9814 (0.00) -0.0060 

* Change (in %) in bracket as compared to the SVM. 

 

Table B10: Performance of BSVM at Cluster 5 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48632 

(Cameron 

Highlands) 

1 0.0416 (-0.03) 0.0522 (0.96) 1.314 (-0.03) 0.9978 (-0.01) -0.0099 

4 0.0400 (2.06) 0.0508 (2.58) 1.263 (2.06) 0.9978 (-0.01) -0.0069 

13 0.0443 (1.25) 0.0567 (1.37) 1.399 (1.25) 0.9974 (-0.01) -0.0154 

33 0.0482 (0.38) 0.0654 (0.37) 1.524 (0.38) 0.9963 (0.00) -0.0056 

53 0.0648 (0.24) 0.0984 (0.13) 2.049 (0.24) 0.9915 (-0.00) 0.0046 

58 0.2808 (0.05) 0.3905 (0.07) 8.879 (0.05) 0.8705 (-0.00) -0.0644 

* Change (in %) in bracket as compared to the SVM. 
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Table B11: Performance of BANFIS at Cluster 1 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48603 (Alor 

Setar) 

1 0.0443 (0.99) 0.0589 (0.58) 1.034 (0.99) 0.9989 (0.00) 0.0000 

4 0.0510 (0.64) 0.0676 (0.62) 1.192 (0.64) 0.9977 (-0.00) -0.0001 

13 0.0580 (-0.03) 0.0763 (-0.13) 1.354 (-0.03) 0.9961 (-0.01) -0.0001 

33 0.0863 (5.65) 0.1186 (4.44) 2.016 (5.65) 0.9899 (-0.02) 0.0000 

44 0.1383 (0.29) 0.1839 (0.28) 3.233 (0.29) 0.9706 (0.02) -0.0004 

58 0.2590 (-0.00) 0.3623 (0.04) 6.054 (-0.00) 0.8847 (-0.01) -0.0007 

       

Station 

48615 (Kota 

Bharu) 

1 0.0442 (-3.29) 0.0626 (-3.54) 1.017 (-3.29) 0.9992 (-0.00) 0.0001 

4 0.0597 (0.22) 0.0829 (-0.12) 1.375 (0.22) 0.9958 (-0.01) 0.0001 

13 0.0648 (0.35) 0.0897 (0.36) 1.491 (0.35) 0.9943 (0.01) 0.0001 

33 0.0976 (0.14) 0.1409 (0.16) 2.247 (0.14) 0.9810 (-0.01) 0.0002 

44 0.1614 (0.14) 0.2173 (0.07) 3.718 (0.14) 0.9553 (-0.02) -0.0002 

58 0.2262 (0.07) 0.3078 (0.03) 5.209 (0.07) 0.9094 (-0.01) 0.0001 

       

Station 

48650 

(KLIA) 

1 0.0402 (-0.72) 0.0567 (-0.89) 0.993 (-0.72) 0.9990 (-0.00) -0.0002 

4 0.0512 (1.62) 0.0700 (2.02) 1.263 (1.62) 0.9974 (-0.00) 0.0000 

13 0.0553 (0.36) 0.0759 (0.52) 1.366 (0.36) 0.9963 (-0.01) -0.0001 

33 0.0841 (-0.78) 0.1163 (-0.82) 2.077 (-0.78) 0.9879 (-0.01) -0.0001 

44 0.1277 (0.27) 0.1737 (0.31) 3.154 (0.27) 0.9695 (-0.03) 0.0001 

58 0.1930 (0.01) 0.2822 (0.04) 4.767 (0.01) 0.9190 (-0.01) -0.0003 

       

Station 

48657 

(Kuantan) 

1 0.0328 (0.56) 0.0422 (0.91) 0.851 (0.56) 0.9990 (-0.00) -0.0001 

4 0.0387 (0.04) 0.0494 (0.21) 1.003 (0.04) 0.9981 (0.00) 0.0000 

13 0.0431 (0.24) 0.0551 (0.30) 1.120 (0.24) 0.9972 (0.01) -0.0001 

33 0.0562 (0.06) 0.0731 (0.08) 1..459 (0.06) 0.9938 (-0.00) 0.0000 

44 0.0973 (0.03) 0.1257 (0.03) 2.526 (0.03) 0.9812 (-0.03) 0.0000 

58 0.1199 (0.05) 0.1561 (0.03) 3.114 (0.05) 0.9712 (-0.00) 0.0001 

* Change (in %) in bracket as compared to the ANFIS. 

 

Table B12: Performance of BANFIS at Cluster 2 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48620 

(Sitiawan) 

1 0.0383 (2.00) 0.0693 (2.49) 1.006 (2.00) 0.9870 (-0.04) -0.0005 

4 0.0395 (1.67) 0.0700 (2.23) 1.037 (1.67) 0.9869 (-0.03) -0.0005 

13 0.0457 (2.49) 0.0769 (2.74) 1.199 (2.49) 0.9858 (-0.04) -0.0003 

33 0.0500 (3.11) 0.0825 (3.35) 1.313 (3.11) 0.9844 (-0.06) -0.0004 

43 0.0869 (1.47) 0.1293 (1.51) 2.281 (1.47) 0.9699 (-0.07) 0.0001 

58 0.1178 (0.45) 0.1660 (0.85) 3.094 (0.45) 0.9538 (-0.07) -0.0002 

       

Station 

48625 (Ipoh) 

1 0.0360 (0.32) 0.0455 (0.22) 0.901 (0.32) 0.9965 (-0.00) 0.0000 

4 0.0374 (0.35) 0.0466 (0.56) 0.936 (0.35) 0.9963 (-0.00) 0.0001 

13 0.0447 (0.42) 0.0563 (0.29) 1.118 (0.42) 0.9947 (-0.00) 0.0000 

33 0.0558 (-0.25) 0.0709 (-0.20) 1.395 (-0.25) 0.9915 (0.00) 0.0001 

43 0.1018 (0.42) 0.1318 (0.33) 2.547 (0.42) 0.9708 (-0.02) -0.0001 

58 0.1487 (0.03) 0.1891 (0.02) 3.722 (0.03) 0.9398 (-0.00) 0.0001 

       

Station 

48647 

(Subang) 

1 0.0348 (0.10) 0.0440 (0.10) 0.860 (0.10) 0.9980 (-0.00) 0.0001 

4 0.0402 (-0.00) 0.0508 (0.01) 0.994 (-0.00) 0.9973 (0.00) 0.0001 

13 0.0475 (0.22) 0.0606(0.13) 1.175 (0.22) 0.9962 (-0.00) 0.0001 

33 0.0645 (-0.85) 0.0838(-0.96) 1.593 (-0.85) 0.9927 (0.01) 0.0000 

43 0.1112 (0.19) 0.1437 (0.21) 2.749 (0.19) 0.9785 (-0.01) -0.0001 

58 0.1563 (0.05) 0.2007 (0.05) 3.864 (0.05) 0.9579 (-0.00) 0.0000 

* Change (in %) in bracket as compared to the ANFIS. 

 

 

 

 

 

 

 

 

 

 

 

 



247 

 

 

 

 

Table B13: Performance of BANFIS at Cluster 3 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48600 (Pulau 

Langkawi) 

1 0.0503 (2.41) 0.0724 (1.39) 1.149 (2.41) 0.9959 (-0.01) 0.0000 

4 0.0549 (2.85) 0.0785 (3.04) 1.253 (2.85) 0.9951 (-0.03) 0.0000 

13 0.0678 (-0.09) 0.0949 (-0.35) 1.549 (-0.09) 0.9929 (0.01) -0.0001 

23 0.1156 (0.18) 0.1586 (0.21) 2.639 (0.18) 0.9802 (-0.01) -0.0002 

44 0.1879 (0.19) 0.2709 (0.18) 4.291 (0.19) 0.9424(-0.02) 0.0000 

58 0.3807 (-0.04) 0.5197 (0.02) 8.693 (-0.04) 0.7878 (-0.00) -0.0008 

       

Station 

48601 

(Bayan 

Lepas) 

1 0.0467 (0.24) 0.0659 (0.04) 1.077 (0.24) 0.9959 (-0.00) 0.0000 

4 0.0534 (2.32) 0.0721 (2.63) 1.242 (2.32) 0.9951 (-0.03) 0.0001 

13 0.0620 (-3.82) 0.0833 (-3.89) 1.428 (-3.82) 0.9935 (0.05) 0.0000 

23 0.1096 (0.03) 0.1448 (-0.13) 2.526 (0.03) 0.9803 (-0.00) 0.0001 

44 0.1516 (0.05) 0.2035 (0.05) 3.494 (0.05) 0.9613 (-0.00) 0.0000 

58 0.2736 (0.07) 0.3969 (0.04) 6.306 (0.07) 0.8516 (-0.01) 0.0001 

* Change (in %) in bracket as compared to the ANFIS. 

 

Table B14: Performance of BANFIS at Cluster 4 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48623 

(Lubok 

Merbau) 

1 0.0344 (0.46) 0.0428 (0.70) 0.846 (0.46) 0.9971 (-0.00) 0.0001 

4 0.0351 (1.50) 0.0436 (2.00) 0.862 (1.50) 0.9970 (-0.01) 0.0000 

17 0.0414 (-0.71) 0.0539 (-1.01) 1.017 (-0.71) 0.9954 (0.01) 0.0001 

33 0.0472 (0.08) 0.0610 (-0.05) 1.160 (0.08) 0.9941 (0.00) 0.0001 

43 0.0864 (0.11) 0.1135 (0.14) 2.124 (0.11) 0.9796 (-0.01) 0.0001 

58 0.1102 (0.13) 0.1478 (0.08) 2.708 (0.13) 0.9654 (-0.00) 0.0003 

       

Station 

48649 

(Muadzam 

Shah) 

1 0.0316 (-0.62) 0.0436 (-1.02) 0.907 (-0.62) 0.9971 (0.00) 0.0001 

4 0.0316 (-0.21) 0.0440 (-0.61) 0.909 (-0.21) 0.9970 (0.00) 0.0001 

17 0.0353 (0.99) 0.0507 (1.04) 1.015 (0.99) 0.9962 (-0.01) 0.0001 

33 0.0411 (0.45) 0.0578 (0.34) 1.182 (0.45) 0.9951 (-0.00) 0.0001 

43 0.0610 (0.19) 0.0826 (0.11) 1.754 (0.19) 0.9903 (-0.00) 0.0000 

58 0.0850 (0.11) 0.1146 (0.07) 2.444 (0.11) 0.9815 (-0.00) 0.0000 

* Change (in %) in bracket as compared to the ANFIS. 

 

Table B15: Performance of BANFIS at Cluster 5 Stations 
Stations Combinations MAE (mm/day) RMSE (mm/day) MAPE (%) R2 MBE 

Station 

48632 

(Cameron 

Highlands) 

1 0.0369 (0.89) 0.0494 (0.70) 1.167 (0.89) 0.9979 (-0.00) 0.0000 

4 0.0373 (0.36) 0.0500 (0.37) 1.179 (0.36) 0.9978 (-0.00) 0.0000 

13 0.0428 (-4.16) 0.0583 (-4.18) 1.352 (-4.16) 0.9970 (0.03) -0.0001 

33 0.0468 (0.90) 0.0647 (1.04) 1.481 (0.90) 0.9963 (-0.01) 0.0001 

53 0.0626 (0.33) 0.0964 (0.20) 1.980 (0.33) 0.9917 (-0.00) 0.0001 

58 0.3021 (0.03) 0.3798 (0.07) 9.551 (0.03) 0.8736 (-0.01) 0.0000 

* Change (in %) in bracket as compared to the ANFIS. 
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Appendix C: Performance of BMA-E at Different Stations 

 

Table C1: Performance of BMA-E at Cluster 1 Stations 

Stations Combinations 
MAE 

(mm/day) 

RMSE 

(mm/day) 
MAPE (%) R2 MBE 

Station 

48603 

(Alor 

Setar) 

1 0.0277 0.0357 0.648 0.9989 -0.0001 

4 0.0400 0.0514 0.935 0.9977 -0.0001 

13 0.0508 0.0654 1.186 0.9963 -0.0001 

33 0.0758 0.1063 1.771 0.9901 -0.0011 

44 0.1373 0.1826 3.208 0.9707 -0.0026 

58 0.2588 0.3620 6.047 0.8848 -0.0005 

       

Station 

48615 

(Kota 

Bharu) 

1 0.0236 0.0297 0.543 0.9992 0.0000 

4 0.0480 0.0651 1.106 0.9959 -0.0002 

13 0.0566 0.0779 1.303 0.9942 -0.0007 

33 0.0963 0.1399 2.217 0.9813 -0.0001 

44 0.1597 0.2157 3.678 0.9556 -0.0014 

58 0.2258 0.3078 5.201 0.9095 -0.0021 

       

Station 

48650 

(KLIA) 

1 0.0262 0.0308 0.646 0.9990 -0.0001 

4 0.0395 0.0502 0.976 0.9974 -0.0001 

13 0.0459 0.0597 1.134 0.9964 0.0001 

33 0.0785 0.1084 1.939 0.9881 -0.0002 

44 0.1271 0.1725 3.139 0.9698 0.0010 

58 0.1928 0.2821 4.762 0.9192 -0.0010 

       

Station 

48657 

(Kuantan) 

1 0.0235 0.0289 0.611 0.9990 0.0001 

4 0.0321 0.0402 0.833 0.9981 -0.0001 

13 0.0388 0.0494 1.008 0.9971 -0.0002 

33 0.0553 0.0721 1.435 0.9939 -0.0005 

44 0.0969 0.1251 2.515 0.9815 -0.0002 

58 0.1196 0.1559 3.106 0.9712 -0.0017 

 

Table C2: Performance of BMA-E at Cluster 2 Stations 

Stations Combinations 
MAE 

(mm/day) 

RMSE 

(mm/day) 
MAPE (%) R2 MBE 

Station 

48620 

(Sitiawan) 

1 0.0325 0.0585 0.855 0.9897 -0.0070 

4 0.0349 0.0602 0.916 0.9900 -0.0043 

13 0.0399 0.0659 1.048 0.9893 -0.0056 

33 0.0452 0.0730 1.187 0.9877 -0.0020 

43 0.0854 0.1256 2.242 0.9717 -0.0031 

58 0.1156 0.1613 3.035 0.9568 -0.0081 

       

Station 

48625 

(Ipoh) 

1 0.0287 0.0344 0.717 0.9980 -0.0001 

4 0.0324 0.0395 0.810 0.9974 0.0002 

13 0.0411 0.0512 1.027 0.9956 -0.0005 

33 0.0551 0.0700 1.378 0.9918 -0.0008 

43 0.1014 0.1313 2.536 0.9710 0.0000 

58 0.1486 0.1891 3.718 0.9399 -0.0004 

       

Station 

48647 

(Subang) 

1 0.0273 0.0322 0.675 0.9989 -0.0001 

4 0.0361 0.0447 0.893 0.9979 0.0003 

13 0.0433 0.0548 1.070 0.9969 -0.0001 

33 0.0640 0.0831 1.582 0.9928 -0.0001 

43 0.1110 0.1433 2.744 0.9786 0.0005 

58 0.1561 0.2004 3.858 0.9580 0.0005 
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Table C3: Performance of BMA-E at Cluster 3 Stations 

Stations Combinations 
MAE 

(mm/day) 

RMSE 

(mm/day) 
MAPE (%) R2 MBE 

Station 

48600 

(Pulau 

Langkawi) 

1 0.0280 0.0365 0.640 0.9990 0.0000 

4 0.0445 0.0638 1.015 0.9968 -0.0009 

13 0.0631 0.0845 1.442 0.9945 -0.0104 

23 0.1131 0.1547 2.583 0.9812 -0.0031 

44 0.1872 0.2699 4.275 0.9428 -0.0003 

58 0.3803 0.5195 8.686 0.7879 -0.0013 

       

Station 

48601 

(Bayan 

Lepas) 

1 0.0275 0.0352 0.634 0.9988 0.0000 

4 0.0437 0.0578 1.007 0.9969 -0.0002 

13 0.0544 0.0724 1.253 0.9951 0.0001 

23 0.1060 0.1390 2.443 0.9819 0.0011 

44 0.1479 0.1976 3.409 0.9635 -0.0012 

58 0.2731 0.3966 6.294 0.8519 -0.0008 

 

Table C4: Performance of BMA-E at Cluster 4 Stations 

Stations Combinations 
MAE 

(mm/day) 

RMSE 

(mm/day) 
MAPE (%) R2 MBE 

Station 

48623 

(Lubok 

Merbau) 

1 0.0302 0.0370 0.744 0.9978 0.0002 

4 0.0317 0.0391 0.779 0.9976 0.0004 

17 0.0379 0.0490 0.931 0.9962 -0.0012 

33 0.0459 0.0591 1.130 0.9945 -0.0001 

43 0.0858 0.1127 2.110 0.9799 -0.0008 

58 0.1097 0.1474 2.697 0.9656 -0.0002 

       

Station 

48649 

(Muadzam 

Shah) 

1 0.0260 0.0352 0.746 0.9980 -0.0003 

4 0.0280 0.0382 0.804 0.9977 0.0003 

17 0.0342 0.0486 0.982 0.9965 0.0001 

33 0.0398 0.0559 1.143 0.9955 -0.0005 

43 0.0609 0.0824 1.750 0.9904 0.0000 

58 0.0849 0.1145 2.441 0.9815 -0.0010 

 

Table C5: Performance of BMA-E at Cluster 5 Stations 

Stations Combinations 
MAE 

(mm/day) 

RMSE 

(mm/day) 
MAPE (%) R2 MBE 

Station 

48632 

(Cameron 

Highlands) 

1 0.0270 0.0323 0.854 0.9991 0.0000 

4 0.0295 0.0359 0.932 0.9989 0.0001 

13 0.0354 0.0460 1.120 0.9981 0.0002 

33 0.0451 0.0621 1.425 0.9966 -0.0002 

53 0.0623 0.0960 1.969 0.9918 0.0000 

58 0.3019 0.3786 9.546 0.8744 -0.0011 
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Appendix D: Performance of WOA-ELM-E at Different Stations and GPI Scores of 

Different Machine Learning Models 

 

Table D1: Performance of WOA-ELM-E at Cluster 1 Stations 

Stations Combinations 
MAE 

(mm/day) 

RMSE 

(mm/day) 
MAPE (%) R2 MBE 

Station 

48603 

(Alor 

Setar) 

1 0.0277 0.0357 0.648 0.9989 0.0000 

4 0.0401 0.0514 0.936 0.9977 0.0000 

13 0.0507 0.0652 1.184 0.9962 0.0000 

33 0.0759 0.1061 1.774 0.9900 -0.0002 

44 0.1370 0.1820 3.201 0.9708 0.0000 

58 0.2586 0.3613 6.044 0.8845 0.0000 

       

Station 

48615 

(Kota 

Bharu) 

1 0.0235 0.0294 0.542 0.9992 0.0000 

4 0.0479 0.0650 1.104 0.9960 0.0000 

13 0.0560 0.0769 1.290 0.9943 0.0000 

33 0.0956 0.1393 2.203 0.9812 0.0000 

44 0.1593 0.2149 3.668 0.9556 0.0003 

58 0.2260 0.3075 5.204 0.9090 0.0000 

       

Station 

48650 

(KLIA) 

1 0.0262 0.0308 0.647 0.9990 0.0000 

4 0.0395 0.0501 0.975 0.9975 -0.0001 

13 0.0458 0.0596 1.132 0.9964 0.0000 

33 0.0784 0.1079 1.936 0.9881 0.0001 

44 0.1271 0.1728 3.139 0.9697 -0.0001 

58 0.1929 0.2816 4.764 0.9192 0.0001 

       

Station 

48657 

(Kuantan) 

1 0.0235 0.0289 0.611 0.9990 0.0000 

4 0.0320 0.0401 0.830 0.9981 0.0000 

13 0.0387 0.0490 1.005 0.9971 0.0000 

33 0.0552 0.0720 1.433 0.9939 -0.0001 

44 0.0968 0.1251 2.514 0.9814 -0.0001 

58 0.1197 0.1557 3.108 0.9712 0.0001 

 

Table D2: Performance of WOA-ELM-E at Cluster 2 Stations 

Stations Combinations 
MAE 

(mm/day) 

RMSE 

(mm/day) 
MAPE (%) R2 MBE 

Station 

48620 

(Sitiawan) 

1 0.0299 0.0392 0.786 0.9975 0.0001 

4 0.0319 0.0393 0.838 0.9976 0.0000 

13 0.0376 0.0472 0.988 0.9965 0.0000 

33 0.0435 0.0547 1.141 0.9953 0.0000 

43 0.0836 0.1082 2.194 0.9815 0.0000 

58 0.1142 0.1454 2.998 0.9666 0.0000 

       

Station 

48625 

(Ipoh) 

1 0.0287 0.0344 0.717 0.9980 0.0000 

4 0.0324 0.0395 0.810 0.9974 0.0000 

13 0.0410 0.0511 1.026 0.9956 0.0000 

33 0.0550 0.0698 1.375 0.9918 0.0000 

43 0.1014 0.1313 2.538 0.9708 0.0000 

58 0.1487 0.1890 3.720 0.9394 0.0001 

       

Station 

48647 

(Subang) 

1 0.0273 0.0322 0.675 0.9989 0.0000 

4 0.0362 0.0448 0.894 0.9979 0.0000 

13 0.0433 0.0548 1.071 0.9968 0.0000 

33 0.0640 0.0830 1.582 0.9928 0.0000 

43 0.1108 0.1430 2.739 0.9786 -0.0003 

58 0.1558 0.2000 3.851 0.9580 0.0000 
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Table D3: Performance of WOA-ELM-E at Cluster 3 Stations 

Stations Combinations 
MAE 

(mm/day) 

RMSE 

(mm/day) 
MAPE (%) R2 MBE 

Station 

48600 

(Pulau 

Langkawi) 

1 0.0280 0.0365 0.640 0.9990 0.0000 

4 0.0444 0.0634 1.014 0.9968 0.0000 

13 0.0598 0.0821 1.365 0.9947 0.0000 

23 0.1123 0.1534 2.565 0.9815 0.0001 

44 0.1871 0.2698 4.273 0.9427 0.0001 

58 0.3804 0.5191 8.687 0.7880 0.0000 

       

Station 

48601 

(Bayan 

Lepas) 

1 0.0275 0.0351 0.635 0.9988 0.0000 

4 0.0437 0.0577 1.006 0.9969 0.0000 

13 0.0540 0.0716 1.245 0.9952 0.0001 

23 0.1058 0.1389 2.440 0.9818 0.0000 

44 0.1479 0.1974 3.410 0.9632 -0.0002 

58 0.2733 0.3955 6.299 0.8518 -0.0001 

 

Table D4: Performance of WOA-ELM-E at Cluster 4 Stations 

Stations Combinations 
MAE 

(mm/day) 

RMSE 

(mm/day) 
MAPE (%) R2 MBE 

Station 

48623 

(Lubok 

Merbau) 

1 0.0303 0.0370 0.744 0.9978 0.0000 

4 0.0317 0.0390 0.780 0.9976 0.0000 

17 0.0378 0.0488 0.930 0.9962 0.0000 

33 0.0459 0.0589 1.128 0.9945 0.0000 

43 0.0858 0.1127 2.109 0.9799 -0.0001 

58 0.1098 0.1473 2.701 0.9655 0.0002 

       

Station 

48649 

(Muadzam 

Shah) 

1 0.0257 0.0326 0.740 0.9985 -0.0002 

4 0.0286 0.0379 0.823 0.9979 0.0001 

17 0.0337 0.0450 0.968 0.9972 0.0000 

33 0.0401 0.0562 1.151 0.9955 -0.0001 

43 0.0614 0.0822 1.764 0.9905 0.0000 

58 0.0848 0.1131 2.438 0.9820 0.0000 

 

Table D5: Performance of WOA-ELM-E at Cluster 5 Stations 

Stations Combinations 
MAE 

(mm/day) 

RMSE 

(mm/day) 
MAPE (%) R2 MBE 

Station 

48632 

(Cameron 

Highlands) 

1 0.0270 0.0323 0.853 0.9991 0.0000 

4 0.0294 0.0358 0.931 0.9989 0.0000 

13 0.0353 0.0459 1.115 0.9981 0.0000 

33 0.0445 0.0607 1.407 0.9967 0.0001 

53 0.0620 0.0956 1.960 0.9919 0.0000 

58 0.3007 0.3781 9.506 0.8740 0.0000 
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Table D6: GPI Score of Different Models at Cluster 1 Stations 

Stations Combinations MLP SVM ANFIS BMLP BSVM BANFIS BMA-E 
WOA-

ELM-E 

Station 

48603 

(Alor 

Setar) 

1 1.192 -2.183 -1.730 1.212 -2.304 -1.786 1.192 1.197 

4 0.801 -1.703 -2.109 0.744 -1.807 -2.198 0.802 0.791 

13 1.050 -1.799 -1.914 0.776 -1.870 -1.903 1.050 1.082 

33 0.505 -1.210 -1.031 0.446 -1.296 -2.279 0.507 0.643 

44 -0.539 -0.746 -0.015 0.524 -0.851 -0.940 0.994 2.116 

58 0.134 -1.771 0.013 0.100 -1.759 -0.069 0.172 -0.007 

          

Station 

48615 

(Kota 

Bharu) 

1 0.828 -1.231 -2.199 0.796 -1.841 -2.017 0.829 0.848 

4 0.468 -1.255 -2.395 0.423 -0.779 -2.423 0.467 0.623 

13 -0.640 -0.067 -2.359 0.225 -0.831 -2.530 -0.646 0.560 

33 -0.010 -0.598 -0.092 -0.714 -0.760 -0.639 1.735 2.338 

44 0.490 -0.498 -1.066 -0.145 -0.655 -1.324 0.856 1.450 

58 -0.020 -1.804 0.205 -0.188 -1.870 0.088 0.185 -0.416 

          

Station 

48650 

(KLIA) 

1 1.057 -2.025 -1.944 1.038 -2.059 -1.886 1.056 1.054 

4 0.429 -1.328 -2.263 0.396 -1.076 -2.529 0.425 0.449 

13 0.370 -1.287 -2.522 0.274 -1.207 -2.610 0.372 0.398 

33 0.419 -1.162 -2.408 0.214 -1.198 -2.128 0.420 0.583 

44 1.170 -2.269 0.252 -0.195 -2.551 -0.756 1.180 1.019 

58 -0.072 -1.800 0.068 -0.087 -1.790 0.041 0.124 0.164 

          

Station 

48657 

(Kuantan) 

1 1.262 -2.620 -1.223 1.233 -2.710 -1.291 1.265 1.270 

4 1.065 -2.062 -1.858 1.100 -1.997 -1.892 1.066 1.096 

13 0.720 -1.707 -1.900 1.019 -1.711 -1.979 0.723 0.865 

33 0.803 -2.457 -0.454 0.669 -2.852 -0.544 0.814 1.118 

44 1.347 -1.210 0.145 -1.087 -1.572 0.029 1.400 1.363 

58 0.508 -2.693 -0.053 0.315 -2.731 -0.284 0.767 0.960 

 

Table D7: GPI Score of Different Models at Cluster 2 Stations 

Stations Combinations MLP SVM ANFIS BMLP BSVM BANFIS BMA-E 
WOA-

ELM-E 

Station 

48620 

(Sitiawan) 

1 -0.314 -0.563 -0.414 0.680 -0.611 -0.640 -0.023 2.402 

4 -0.130 -0.767 -0.827 0.157 -0.845 -1.097 -0.766 2.000 

13 -0.710 -0.564 -0.736 -0.172 -0.582 -1.039 -0.563 2.011 

33 -1.376 0.076 -0.158 -0.131 0.131 -0.667 0.077 2.404 

43 -0.042 -0.548 0.198 -0.679 -0.563 -0.351 -0.535 2.665 

58 -0.091 -0.725 -0.562 -0.218 -0.762 -0.839 -0.726 2.180 

          

Station 

48625 

(Ipoh) 

1 1.039 -1.964 -1.918 0.955 -2.058 -1.952 1.040 1.041 

4 0.898 -1.796 -1.966 0.832 -1.915 -2.073 0.894 0.915 

13 0.614 -1.365 -2.124 0.549 -1.564 -2.249 0.610 0.741 

33 0.866 -0.935 -1.593 0.654 -1.702 -1.255 0.562 1.414 

43 -0.668 -2.834 0.959 -0.410 -2.902 0.410 0.961 0.774 

58 0.243 -2.106 -0.081 -0.224 -2.375 -0.249 0.214 -0.490 

          

Station 

48647 

(Subang) 

1 0.953 -2.904 -0.925 0.929 -2.994 -0.934 0.953 0.950 

4 1.047 -2.294 -0.699 1.231 -2.341 -0.889 1.051 1.483 

13 1.242 -1.948 -1.659 0.983 -2.112 -1.747 1.251 1.243 

33 0.689 -2.488 -0.949 -0.064 -3.177 0.012 0.689 0.736 

43 -0.701 -2.147 0.733 -0.127 -2.634 0.045 0.623 1.023 

58 0.546 -1.580 -0.156 -0.352 -1.763 -0.511 0.624 1.249 
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Table D8: GPI Score of Different Models at Cluster 3 Stations 

Stations Combinations MLP SVM ANFIS BMLP BSVM BANFIS BMA-E 
WOA-

ELM-E 

Station 

48600 

(Pulau 

Langkawi) 

1 0.986 -1.943 -1.900 0.940 -1.948 -2.015 0.985 0.982 

4 0.671 -1.538 -1.718 0.639 -1.584 -2.183 0.670 0.814 

13 0.096 -0.949 -2.186 0.646 -0.923 -2.124 -0.932 0.762 

23 -1.593 -0.607 -1.838 0.032 -0.848 -2.064 -0.606 0.954 

44 0.388 -1.287 -0.052 -0.200 -1.507 -0.839 0.752 0.453 

58 -0.035 -0.951 0.035 -0.297 -1.028 -0.129 0.277 0.746 

          

Station 

48601 

(Bayan 

Lepas) 

1 0.950 -1.929 -2.041 0.929 -1.987 -2.048 0.951 0.949 

4 0.616 -1.425 -1.819 0.510 -1.345 -2.306 0.614 0.786 

13 0.283 -1.265 -2.587 0.452 -1.198 -1.847 0.284 0.413 

23 0.587 -0.838 -2.074 0.238 -1.041 -2.005 0.589 0.899 

44 0.703 -0.939 -2.124 0.063 -1.136 -2.165 0.702 0.693 

58 0.300 -1.532 0.033 -0.072 -1.602 -0.120 0.336 0.262 

 

Table D9: GPI Score of Different Models at Cluster 4 Stations 

Stations Combinations MLP SVM ANFIS BMLP BSVM BANFIS BMA-E 
WOA-

ELM-E 

Station 

48623 

(Lubok 

Merbau) 

1 0.936 -2.924 -0.828 0.841 -3.046 -0.924 0.940 0.949 

4 0.822 -2.991 -0.736 0.771 -3.098 -1.098 0.816 0.878 

17 1.029 -1.929 -1.676 1.228 -2.065 -1.412 1.025 1.281 

33 0.977 -2.819 -0.662 0.670 -2.802 -0.672 0.971 1.082 

43 0.528 -3.117 0.161 0.020 -3.142 0.013 0.544 0.710 

58 0.517 -3.274 -0.121 0.175 -3.403 -0.392 0.459 0.223 

          

Station 

48649 

(Muadzam 

Shah) 

1 1.030 -2.135 -1.098 0.976 -2.292 -1.015 1.033 1.605 

4 1.277 -2.217 -0.986 0.873 -2.332 -0.906 1.274 1.456 

17 0.392 -2.309 -0.190 0.211 -2.339 -0.413 0.394 1.538 

33 1.607 -1.647 -0.397 0.486 -1.993 -0.671 1.595 1.570 

43 -0.054 -0.900 0.331 -3.066 -1.416 0.246 0.444 0.025 

58 -0.614 -0.831 0.129 -0.770 -0.828 -0.191 0.132 2.112 

 

Table D10: GPI Score of Different Models at Cluster 5 Stations 

Stations Combinations MLP SVM ANFIS BMLP BSVM BANFIS BMA-E 
WOA-

ELM-E 

Station 

48632 

(Cameron 

Highlands) 

1 1.218 -2.663 -1.202 1.187 -2.621 -1.256 1.219 1.227 

4 1.301 -2.420 -1.327 1.247 -2.676 -1.373 1.298 1.324 

13 1.040 -1.962 -1.932 0.893 -2.132 -1.366 1.040 1.080 

33 0.618 -2.402 -0.603 0.963 -2.501 -1.016 0.618 1.421 

53 -0.123 -2.760 0.329 -0.223 -2.926 0.103 0.487 1.067 

58 0.180 -1.728 -0.039 0.096 -1.754 -0.084 0.194 0.203 
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Appendix E: Results for Scenario 2 and Scenario 3 

 

Table E1: MAE (in mm/day) of Local Best Models when Estimating ET0 at External Stations using Six Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.0280 0.0964 0.0500 0.0508 0.0304 0.1121 0.1060 0.1558 0.0689 0.0535 0.0573 0.0400 

Station 48601 

(Bayan Lepas) 
0.1115 0.0275 0.0526 0.0449 0.0564 0.1984 0.2006 0.3147 0.1711 0.1004 0.1544 0.1036 

Station 48603 

(Alor Setar) 
0.0581 0.0595 0.0277 0.0367 0.0326 0.1452 0.1444 0.2918 0.1104 0.0562 0.0989 0.0678 

Station 48615 

(Kota Bharu) 
0.0404 0.0308 0.0357 0.0235 0.0281 0.0497 0.0486 0.0788 0.0374 0.0365 0.0387 0.0298 

Station 48620 

(Sitiawan) 
0.0628 0.0448 0.0457 0.0503 0.0299 0.0399 0.0378 0.0614 0.0330 0.0331 0.0329 0.0310 

Station 48623 

(Lubok 

Merbau) 
0.0670 0.0689 0.0568 0.0665 0.0335 0.0303 0.0297 0.0539 0.0325 0.0301 0.0380 0.0335 

Station 48625 

(Ipoh) 
0.0597 0.0797 0.0570 0.0569 0.0302 0.0313 0.0287 0.0563 0.0301 0.0291 0.0323 0.0292 

Station 48632 

(Cameron 

Highlands) 
0.1508 0.1217 0.1004 0.0991 0.0383 0.0400 0.0476 0.0270 0.0573 0.0316 0.0758 0.0465 

Station 48647 

(Subang) 
0.0876 0.1536 0.0995 0.0910 0.0432 0.0690 0.0536 0.2419 0.0273 0.0297 0.0282 0.0270 

Station 48649 

(Muadzam 

Shah) 
0.0575 0.0496 0.0440 0.0500 0.0321 0.0334 0.0301 0.0508 0.0301 0.0257 0.0289 0.0264 

Station 48650 

(KLIA) 
0.0781 0.1515 0.0930 0.0950 0.0381 0.0815 0.0602 0.1618 0.0281 0.0374 0.0262 0.0259 

Station 48657 

(Kuantan) 
0.0365 0.0497 0.0408 0.0385 0.0283 0.0400 0.0346 0.0555 0.0286 0.0273 0.0282 0.0235 
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Table E2: RMSE (in mm/day) of Local Best Models when Estimating ET0 at External Stations using Six Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.0365 0.1206 0.0638 0.0638 0.0831 0.1356 0.1247 0.1913 0.0845 0.0715 0.0724 0.0496 

Station 48601 

(Bayan Lepas) 
0.1538 0.0352 0.0723 0.0583 0.1009 0.2266 0.2255 0.3621 0.1882 0.1179 0.1812 0.1145 

Station 48603 

(Alor Setar) 
0.0953 0.0752 0.0356 0.0556 0.0865 0.1730 0.1663 0.3754 0.1275 0.0744 0.1204 0.0792 

Station 48615 

(Kota Bharu) 
0.0518 0.0407 0.0457 0.0294 0.0351 0.0647 0.0614 0.1067 0.0473 0.0493 0.0489 0.0376 

Station 48620 

(Sitiawan) 
0.0993 0.0696 0.0654 0.0804 0.0392 0.0498 0.0470 0.0883 0.0408 0.0460 0.0410 0.0391 

Station 48623 

(Lubok 

Merbau) 
0.0986 0.1070 0.0794 0.0928 0.0418 0.0370 0.0360 0.0810 0.0405 0.0405 0.0525 0.0432 

Station 48625 

(Ipoh) 
0.0856 0.1126 0.0763 0.0779 0.0375 0.0385 0.0344 0.0754 0.0371 0.0364 0.0422 0.0369 

Station 48632 

(Cameron 

Highlands) 
0.2127 0.1916 0.1566 0.1384 0.0495 0.0525 0.0613 0.0323 0.0766 0.0406 0.1132 0.0616 

Station 48647 

(Subang) 
0.1284 0.1874 0.1295 0.1083 0.0937 0.0872 0.0671 0.2862 0.0322 0.0425 0.0356 0.0326 

Station 48649 

(Muadzam 

Shah) 
0.0944 0.0669 0.0571 0.0758 0.0394 0.0418 0.0365 0.0657 0.0371 0.0326 0.0361 0.0329 

Station 48650 

(KLIA) 
0.0973 0.1823 0.1194 0.1127 0.0896 0.0994 0.0737 0.2144 0.0343 0.0525 0.0308 0.0316 

Station 48657 

(Kuantan) 
0.0496 0.0659 0.0534 0.0513 0.0342 0.0500 0.0425 0.0731 0.0340 0.0351 0.0339 0.0289 
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Table E3: MAPE (in %) of Local Best Models when Estimating ET0 at External Stations using Six Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.640 2.502 1.297 1.318 0.788 2.910 2.752 4.046 1.789 1.389 1.487 1.038 

Station 48601 

(Bayan Lepas) 
2.895 0.634 1.367 1.166 1.464 5.151 5.208 8.170 4.441 2.607 4.008 2.689 

Station 48603 

(Alor Setar) 
1.508 1.545 0.646 0.952 0.847 3.771 3.749 7.576 2.866 1.459 2.568 1.761 

Station 48615 

(Kota Bharu) 
1.049 0.799 0.926 0.542 0.731 1.289 1.261 2.046 0.970 0.947 1.005 0.775 

Station 48620 

(Sitiawan) 
1.629 1.162 1.186 1.306 0.786 1.035 0.982 1.594 0.856 0.860 0.854 0.805 

Station 48623 

(Lubok 

Merbau) 
1.740 1.788 1.475 1.726 0.869 0.744 0.772 1.400 0.844 0.781 0.988 0.870 

Station 48625 

(Ipoh) 
1.551 2.068 1.481 1.478 0.784 0.812 0.717 1.462 0.781 0.756 0.839 0.757 

Station 48632 

(Cameron 

Highlands) 
3.914 3.159 2.606 2.574 0.994 1.039 1.235 0.853 1.488 0.820 1.969 1.208 

Station 48647 

(Subang) 
2.273 3.988 2.584 2.363 1.120 1.792 1.392 6.279 0.675 0.771 0.731 0.702 

Station 48649 

(Muadzam 

Shah) 
1.492 1.288 1.141 1.297 0.834 0.867 0.781 1.319 0.780 0.740 0.750 0.684 

Station 48650 

(KLIA) 
2.028 3.934 2.415 2.466 0.989 2.117 1.562 4.201 0.730 0.971 0.646 0.673 

Station 48657 

(Kuantan) 
0.947 1.291 1.060 0.999 0.735 1.039 0.897 1.441 0.744 0.708 0.733 0.611 
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Table E4: R2 of Local Best Models when Estimating ET0 at External Stations using Six Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.9990 0.9957 0.9983 0.9977 0.9892 0.9931 0.9937 0.9834 0.9977 0.9959 0.9981 0.9985 

Station 48601 

(Bayan Lepas) 
0.9941 0.9988 0.9979 0.9983 0.9885 0.9881 0.9881 0.9703 0.9959 0.9951 0.9943 0.9975 

Station 48603 

(Alor Setar) 
0.9952 0.9978 0.9989 0.9968 0.9888 0.9912 0.9917 0.9383 0.9970 0.9960 0.9966 0.9980 

Station 48615 

(Kota Bharu) 
0.9979 0.9984 0.9982 0.9992 0.9980 0.9934 0.9936 0.9900 0.9975 0.9964 0.9976 0.9983 

Station 48620 

(Sitiawan) 
0.9923 0.9954 0.9962 0.9938 0.9975 0.9961 0.9962 0.9931 0.9982 0.9969 0.9983 0.9982 

Station 48623 

(Lubok 

Merbau) 
0.9923 0.9893 0.9945 0.9918 0.9973 0.9978 0.9978 0.9942 0.9982 0.9976 0.9972 0.9978 

Station 48625 

(Ipoh) 
0.9943 0.9881 0.9949 0.9942 0.9978 0.9977 0.9980 0.9950 0.9986 0.9981 0.9982 0.9984 

Station 48632 

(Cameron 

Highlands) 
0.9645 0.9660 0.9784 0.9817 0.9961 0.9956 0.9937 0.9991 0.9936 0.9977 0.9871 0.9955 

Station 48647 

(Subang) 
0.9943 0.9915 0.9952 0.9961 0.9882 0.9960 0.9970 0.9705 0.9989 0.9978 0.9988 0.9988 

Station 48649 

(Muadzam 

Shah) 
0.9930 0.9958 0.9971 0.9945 0.9976 0.9972 0.9977 0.9962 0.9986 0.9985 0.9987 0.9987 

Station 48650 

(KLIA) 
0.9974 0.9924 0.9959 0.9965 0.9884 0.9961 0.9971 0.9777 0.9989 0.9977 0.9990 0.9988 

Station 48657 

(Kuantan) 
0.9981 0.9959 0.9975 0.9975 0.9982 0.9961 0.9970 0.9953 0.9988 0.9982 0.9988 0.9990 
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Table E5: MBE of Local Best Models when Estimating ET0 at External Stations using Six Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.0000 -0.0940 -0.0401 -0.0391 -0.0071 0.1116 0.1048 -0.0766 0.0673 0.0459 0.0547 0.0344 

Station 48601 

(Bayan Lepas) 
0.1098 0.0000 0.0490 0.0398 0.0524 0.1984 0.2003 0.3117 0.1710 0.0987 0.1543 0.1033 

Station 48603 

(Alor Setar) 
0.0496 -0.0538 0.0000 -0.0055 0.0177 0.1448 0.1438 0.0542 0.1099 0.0491 0.0985 0.0669 

Station 48615 

(Kota Bharu) 
0.0003 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0001 0.0004 0.0000 -0.0001 0.0001 0.0000 

Station 48620 

(Sitiawan) 
-0.0004 -0.0004 0.0001 -0.0001 0.0001 0.0001 0.0000 -0.0001 -0.0001 -0.0002 -0.0001 -0.0001 

Station 48623 

(Lubok 

Merbau) 
-0.0001 0.0001 -0.0002 0.0001 0.0000 0.0000 0.0000 0.0004 0.0000 -0.0002 0.0001 0.0001 

Station 48625 

(Ipoh) 
0.0000 -0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 -0.0001 -0.0001 0.0000 

Station 48632 

(Cameron 

Highlands) 
0.0001 0.0002 0.0002 -0.0002 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0002 0.0001 

Station 48647 

(Subang) 
-0.0819 -0.1530 -0.0969 -0.0836 -0.0354 0.0674 0.0504 -0.1950 -0.0001 0.0140 -0.0042 -0.0040 

Station 48649 

(Muadzam 

Shah) 
0.0000 0.0001 -0.0001 -0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0002 0.0001 0.0000 

Station 48650 

(KLIA) 
-0.0718 -0.1508 -0.0891 -0.0922 -0.0260 0.0811 0.0588 0.1410 0.0088 0.0311 -0.0001 0.0021 

Station 48657 

(Kuantan) 
0.0001 -0.0001 0.0001 0.0000 0.0001 -0.0001 0.0000 -0.0002 0.0000 -0.0002 0.0000 0.0000 
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Table E6: GPI Score of Local Best Models when Estimating ET0 at External Stations using Six Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
1.008 -1.480 -0.317 -0.256 -1.435 -2.159 -1.786 -1.209 -1.264 -1.924 -0.926 -0.665 

Station 48601 

(Bayan Lepas) 
-2.170 0.880 -0.569 -0.030 -4.479 -4.611 -4.456 -3.792 -4.279 -4.506 -4.124 -3.954 

Station 48603 

(Alor Setar) 
-0.399 -0.285 0.998 0.500 -1.892 -3.107 -2.851 -3.370 -2.495 -2.022 -2.306 -2.157 

Station 48615 

(Kota Bharu) 
0.661 0.757 0.627 1.308 0.460 -0.451 -0.282 -0.067 -0.220 -0.577 -0.171 0.019 

Station 48620 

(Sitiawan) 
-0.131 0.259 0.098 -0.199 0.208 0.019 0.188 0.161 0.000 -0.313 0.032 -0.069 

Station 48623 

(Lubok 

Merbau) 
-0.193 -0.543 -0.403 -0.849 -0.096 0.389 0.496 0.252 0.010 0.030 -0.221 -0.292 

Station 48625 

(Ipoh) 
0.056 -0.785 -0.364 -0.325 0.253 0.343 0.544 0.264 0.138 0.263 0.024 0.060 

Station 48632 

(Cameron 

Highlands) 
-2.993 -2.621 -3.003 -2.694 -0.666 -0.041 -0.257 0.643 -1.426 0.027 -2.053 -1.487 

Station 48647 

(Subang) 
-1.380 -3.318 -2.934 -2.288 -3.143 -0.869 -0.278 -2.681 0.283 -0.055 0.153 0.238 

Station 48649 

(Muadzam 

Shah) 
0.007 0.214 0.257 -0.110 0.068 0.257 0.484 0.352 0.138 0.475 0.159 0.271 

Station 48650 

(KLIA) 
-0.868 -3.209 -2.561 -2.499 -2.520 -1.148 -0.417 -1.617 0.187 -0.587 0.276 0.308 

Station 48657 

(Kuantan) 
0.744 0.222 0.391 0.588 0.475 0.013 0.322 0.282 0.222 0.367 0.198 0.470 
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Table E7: MAE (in mm/day) of Local Best Models when Estimating ET0 at External Stations using Five Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.0444 0.0510 0.0455 0.0585 0.0321 0.0416 0.0423 0.0633 0.0439 0.0362 0.0427 0.0397 

Station 48601 

(Bayan Lepas) 
0.0622 0.0437 0.0416 0.0600 0.0332 0.0427 0.0516 0.0785 0.0513 0.0371 0.0554 0.0391 

Station 48603 

(Alor Setar) 
0.0862 0.0602 0.0400 0.0600 0.0372 0.1338 0.1252 0.2009 0.1147 0.0625 0.1082 0.0636 

Station 48615 

(Kota Bharu) 
0.0587 0.0493 0.0472 0.0479 0.0341 0.0445 0.0436 0.0820 0.0453 0.0431 0.0491 0.0363 

Station 48620 

(Sitiawan) 
0.1006 0.0503 0.0435 0.0640 0.0319 0.0368 0.0366 0.0627 0.0376 0.0325 0.0491 0.0369 

Station 48623 

(Lubok 

Merbau) 
0.0658 0.0672 0.0585 0.0749 0.0332 0.0317 0.0330 0.0486 0.0384 0.0316 0.0483 0.0399 

Station 48625 

(Ipoh) 
0.0736 0.0824 0.0616 0.0662 0.0323 0.0330 0.0324 0.0564 0.0376 0.0291 0.0453 0.0363 

Station 48632 

(Cameron 

Highlands) 
0.1412 0.1210 0.0996 0.1014 0.0404 0.0394 0.0503 0.0294 0.0575 0.0341 0.0767 0.0454 

Station 48647 

(Subang) 
0.0561 0.0667 0.0555 0.0609 0.0312 0.0366 0.0352 0.0543 0.0362 0.0315 0.0400 0.0341 

Station 48649 

(Muadzam 

Shah) 
0.0510 0.0506 0.0519 0.0534 0.0319 0.0349 0.0347 0.0367 0.0386 0.0286 0.0426 0.0337 

Station 48650 

(KLIA) 
0.0811 0.1471 0.0966 0.1053 0.0383 0.0753 0.0499 0.1126 0.0384 0.0575 0.0395 0.0388 

Station 48657 

(Kuantan) 
0.0928 0.1309 0.1008 0.0834 0.0385 0.0721 0.0537 0.3378 0.0451 0.0377 0.0516 0.0320 
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Table E8: RMSE (in mm/day) of Local Best Models when Estimating ET0 at External Stations using Five Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.0634 0.0688 0.0589 0.0775 0.0389 0.0517 0.0527 0.0912 0.0563 0.0479 0.0540 0.0500 

Station 48601 

(Bayan Lepas) 
0.0885 0.0577 0.0530 0.0906 0.0410 0.0553 0.0653 0.1286 0.0672 0.0491 0.0727 0.0498 

Station 48603 

(Alor Setar) 
0.1505 0.0774 0.0514 0.0940 0.0889 0.1627 0.1482 0.2344 0.1382 0.0804 0.1347 0.0786 

Station 48615 

(Kota Bharu) 
0.0817 0.0661 0.0623 0.0650 0.0441 0.0568 0.0542 0.1154 0.0574 0.0557 0.0629 0.0462 

Station 48620 

(Sitiawan) 
0.1693 0.0675 0.0583 0.0917 0.0393 0.0454 0.0451 0.1007 0.0472 0.0445 0.0683 0.0476 

Station 48623 

(Lubok 

Merbau) 
0.0951 0.0998 0.0792 0.1046 0.0413 0.0390 0.0406 0.0719 0.0481 0.0435 0.0661 0.0514 

Station 48625 

(Ipoh) 
0.1117 0.1280 0.0861 0.0934 0.0400 0.0409 0.0395 0.0837 0.0470 0.0384 0.0618 0.0457 

Station 48632 

(Cameron 

Highlands) 
0.2033 0.1861 0.1542 0.1412 0.0522 0.0518 0.0652 0.0358 0.0769 0.0452 0.1127 0.0599 

Station 48647 

(Subang) 
0.0826 0.0949 0.0736 0.0857 0.0398 0.0450 0.0430 0.0762 0.0448 0.0423 0.0510 0.0428 

Station 48649 

(Muadzam 

Shah) 
0.0736 0.0678 0.0678 0.0725 0.0391 0.0432 0.0423 0.0484 0.0483 0.0379 0.0552 0.0424 

Station 48650 

(KLIA) 
0.1132 0.1819 0.1270 0.1301 0.0889 0.0923 0.0626 0.1479 0.0486 0.0765 0.0502 0.0495 

Station 48657 

(Kuantan) 
0.1728 0.1846 0.1468 0.1254 0.0901 0.0923 0.0683 0.4161 0.0599 0.0534 0.0757 0.0401 
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Table E9: MAPE (in %) of Local Best Models when Estimating ET0 at External Stations using Five Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
1.014 1.325 1.181 1.518 0.834 1.080 1.097 1.644 1.140 0.939 1.109 1.032 

Station 48601 

(Bayan Lepas) 
1.614 1.006 1.080 1.557 0.863 1.109 1.341 2.039 1.333 0.962 1.437 1.014 

Station 48603 

(Alor Setar) 
2.238 1.563 0.935 1.558 0.965 3.474 3.250 5.217 2.977 1.622 2.810 1.652 

Station 48615 

(Kota Bharu) 
1.524 1.280 1.225 1.104 0.885 1.155 1.132 2.129 1.177 1.118 1.274 0.942 

Station 48620 

(Sitiawan) 
2.611 1.305 1.129 1.663 0.838 0.955 0.951 1.628 0.977 0.843 1.275 0.957 

Station 48623 

(Lubok 

Merbau) 
1.707 1.744 1.519 1.943 0.862 0.780 0.857 1.261 0.996 0.821 1.253 1.035 

Station 48625 

(Ipoh) 
1.910 2.138 1.600 1.718 0.839 0.857 0.810 1.464 0.977 0.756 1.176 0.944 

Station 48632 

(Cameron 

Highlands) 
3.666 3.140 2.587 2.632 1.048 1.023 1.307 0.931 1.493 0.884 1.990 1.177 

Station 48647 

(Subang) 
1.457 1.731 1.440 1.581 0.809 0.949 0.913 1.409 0.894 0.817 1.038 0.885 

Station 48649 

(Muadzam 

Shah) 
1.324 1.314 1.348 1.386 0.828 0.906 0.901 0.953 1.001 0.823 1.106 0.874 

Station 48650 

(KLIA) 
2.106 3.818 2.508 2.734 0.995 1.956 1.295 2.923 0.996 1.493 0.976 1.006 

Station 48657 

(Kuantan) 
2.409 3.399 2.617 2.164 0.998 1.873 1.394 8.770 1.171 0.979 1.339 0.831 
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Table E10: R2 of Local Best Models when Estimating ET0 at External Stations using Five Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.9968 0.9956 0.9970 0.9943 0.9976 0.9958 0.9953 0.9927 0.9967 0.9967 0.9970 0.9971 

Station 48601 

(Bayan Lepas) 
0.9938 0.9969 0.9975 0.9922 0.9974 0.9952 0.9928 0.9853 0.9953 0.9966 0.9947 0.9971 

Station 48603 

(Alor Setar) 
0.9879 0.9964 0.9977 0.9918 0.9884 0.9920 0.9925 0.9783 0.9951 0.9964 0.9945 0.9970 

Station 48615 

(Kota Bharu) 
0.9947 0.9959 0.9966 0.9960 0.9969 0.9949 0.9950 0.9884 0.9964 0.9956 0.9960 0.9975 

Station 48620 

(Sitiawan) 
0.9775 0.9957 0.9970 0.9920 0.9976 0.9967 0.9965 0.9909 0.9976 0.9971 0.9953 0.9973 

Station 48623 

(Lubok 

Merbau) 
0.9928 0.9907 0.9946 0.9895 0.9973 0.9976 0.9972 0.9954 0.9974 0.9972 0.9955 0.9969 

Station 48625 

(Ipoh) 
0.9902 0.9846 0.9935 0.9917 0.9975 0.9974 0.9974 0.9938 0.9977 0.9979 0.9961 0.9975 

Station 48632 

(Cameron 

Highlands) 
0.9676 0.9677 0.9791 0.9809 0.9957 0.9958 0.9929 0.9989 0.9936 0.9971 0.9872 0.9958 

Station 48647 

(Subang) 
0.9946 0.9915 0.9952 0.9930 0.9975 0.9968 0.9969 0.9949 0.9979 0.9975 0.9974 0.9978 

Station 48649 

(Muadzam 

Shah) 
0.9958 0.9957 0.9960 0.9950 0.9976 0.9971 0.9970 0.9979 0.9976 0.9979 0.9969 0.9979 

Station 48650 

(KLIA) 
0.9939 0.9907 0.9941 0.9930 0.9882 0.9964 0.9963 0.9857 0.9976 0.9954 0.9974 0.9971 

Station 48657 

(Kuantan) 
0.9804 0.9841 0.9905 0.9878 0.9883 0.9953 0.9960 0.9445 0.9969 0.9969 0.9945 0.9981 
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Table E11: MBE of Local Best Models when Estimating ET0 at External Stations using Five Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.0000 0.0001 0.0000 0.0002 0.0001 0.0001 0.0000 -0.0002 -0.0001 0.0001 0.0000 0.0001 

Station 48601 

(Bayan Lepas) 
-0.0002 0.0000 0.0000 -0.0005 0.0002 0.0000 0.0000 0.0005 -0.0001 0.0001 -0.0001 0.0000 

Station 48603 

(Alor Setar) 
0.0773 -0.0435 -0.0001 0.0079 0.0209 0.1335 0.1242 0.0451 0.1129 0.0576 0.1067 0.0600 

Station 48615 

(Kota Bharu) 
-0.0001 0.0000 -0.0002 0.0000 0.0003 0.0001 0.0000 0.0007 -0.0001 0.0001 0.0000 0.0000 

Station 48620 

(Sitiawan) 
0.0006 -0.0001 -0.0001 0.0000 0.0000 0.0000 0.0000 -0.0010 0.0001 -0.0001 -0.0002 0.0001 

Station 48623 

(Lubok 

Merbau) 
-0.0004 0.0004 -0.0003 -0.0001 0.0000 0.0000 0.0000 -0.0003 0.0000 -0.0003 0.0000 0.0001 

Station 48625 

(Ipoh) 
-0.0002 0.0001 0.0000 -0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 -0.0001 0.0000 0.0000 

Station 48632 

(Cameron 

Highlands) 
-0.0002 0.0002 0.0005 0.0000 -0.0002 -0.0001 0.0001 0.0000 0.0000 0.0001 -0.0002 0.0000 

Station 48647 

(Subang) 
0.0002 0.0002 -0.0001 -0.0003 0.0004 0.0000 0.0000 -0.0003 0.0000 -0.0003 -0.0001 0.0000 

Station 48649 

(Muadzam 

Shah) 
0.0000 0.0001 0.0000 0.0002 0.0000 -0.0001 0.0000 -0.0001 0.0001 0.0001 0.0000 0.0000 

Station 48650 

(KLIA) 
-0.0624 -0.1446 -0.0887 -0.0942 -0.0200 0.0723 0.0378 -0.0591 0.0050 0.0460 -0.0001 -0.0056 

Station 48657 

(Kuantan) 
-0.0598 -0.1263 -0.0942 -0.0615 -0.0257 0.0681 0.0434 -0.2504 0.0165 0.0227 0.0163 0.0001 
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Table E12: GPI Score of Local Best Models when Estimating ET0 at External Stations using Five Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.815 0.313 0.446 0.409 0.312 -0.020 -0.142 -0.003 -0.143 -0.340 0.364 -0.358 

Station 48601 

(Bayan Lepas) 
0.120 0.628 0.661 0.041 -0.004 -0.182 -0.975 -0.339 -0.764 -0.467 -0.452 -0.299 

Station 48603 

(Alor Setar) 
-2.005 -0.199 0.796 -0.109 -3.549 -4.384 -4.384 -1.724 -4.160 -3.805 -3.725 -3.615 

Station 48615 

(Kota Bharu) 
0.270 0.379 0.339 1.124 -0.303 -0.273 -0.256 -0.270 -0.264 -1.368 -0.023 0.145 

Station 48620 

(Sitiawan) 
-1.792 0.343 0.521 -0.116 0.306 0.297 0.295 -0.061 0.314 0.111 -0.160 -0.001 

Station 48623 

(Lubok 

Merbau) 
-0.035 -0.403 -0.296 -0.811 -0.003 0.616 0.547 0.195 0.259 0.240 -0.090 -0.472 

Station 48625 

(Ipoh) 
-0.398 -1.117 -0.519 -0.230 0.230 0.519 0.616 0.084 0.349 0.766 0.109 0.173 

Station 48632 

(Cameron 

Highlands) 
-3.188 -2.879 -3.172 -2.745 -1.946 0.018 -0.939 0.458 -1.428 0.015 -2.267 -1.524 

Station 48647 

(Subang) 
0.311 -0.327 -0.106 0.133 0.477 0.316 0.416 0.135 0.475 0.377 0.508 0.521 

Station 48649 

(Muadzam 

Shah) 
0.520 0.332 0.102 0.690 0.359 0.409 0.447 0.381 0.283 0.744 0.341 0.578 

Station 48650 

(KLIA) 
-1.240 -3.550 -2.939 -2.929 -3.791 -1.441 -0.500 -0.838 0.250 -3.588 0.567 -0.343 

Station 48657 

(Kuantan) 
-2.330 -3.364 -3.516 -2.135 -4.051 -1.539 -0.756 -4.542 -0.305 -0.867 -0.554 0.833 
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Table E13: MAE (in mm/day) of Local Best Models when Estimating ET0 at External Stations using Four Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.0598 0.0636 0.0556 0.0614 0.0384 0.0457 0.0438 0.0559 0.0463 0.0353 0.0472 0.0403 

Station 48601 

(Bayan Lepas) 
0.1170 0.0538 0.0818 0.0864 0.0871 0.2290 0.1997 0.2479 0.1749 0.1383 0.1646 0.1232 

Station 48603 

(Alor Setar) 
0.0690 0.0584 0.0507 0.0590 0.0376 0.0498 0.0493 0.1200 0.0498 0.0407 0.0551 0.0414 

Station 48615 

(Kota Bharu) 
0.0673 0.0569 0.0539 0.0560 0.0388 0.0513 0.0469 0.0818 0.0474 0.0387 0.0532 0.0399 

Station 48620 

(Sitiawan) 
0.0673 0.0605 0.0541 0.0720 0.0376 0.0463 0.0452 0.0641 0.0461 0.0388 0.0521 0.0421 

Station 48623 

(Lubok 

Merbau) 
0.1209 0.1094 0.0928 0.1018 0.0389 0.0378 0.0445 0.0463 0.0568 0.0382 0.0785 0.0540 

Station 48625 

(Ipoh) 
0.0748 0.0838 0.0641 0.0704 0.0391 0.0431 0.0410 0.0505 0.0451 0.0369 0.0509 0.0410 

Station 48632 

(Cameron 

Highlands) 
0.1391 0.1063 0.0903 0.0863 0.0457 0.0493 0.0543 0.0353 0.0637 0.0470 0.0718 0.0466 

Station 48647 

(Subang) 
0.1282 0.1664 0.0977 0.1033 0.0445 0.0989 0.0622 0.0948 0.0433 0.0525 0.0500 0.0428 

Station 48649 

(Muadzam 

Shah) 
0.1499 0.1242 0.0968 0.0992 0.0405 0.0419 0.0493 0.0494 0.0589 0.0337 0.0885 0.0620 

Station 48650 

(KLIA) 
0.0622 0.0684 0.0557 0.0895 0.0376 0.0444 0.0428 0.0562 0.0438 0.0354 0.0458 0.0394 

Station 48657 

(Kuantan) 
0.1567 0.1911 0.1211 0.1268 0.0491 0.0866 0.0561 0.2059 0.0485 0.0531 0.0579 0.0384 
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Table E14: RMSE (in mm/day) of Local Best Models when Estimating ET0 at External Stations using Four Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.0821 0.0842 0.0720 0.0842 0.0483 0.0586 0.0550 0.0870 0.0589 0.0464 0.0615 0.0514 

Station 48601 

(Bayan Lepas) 
0.1895 0.0715 0.1143 0.1470 0.1271 0.2662 0.2285 0.3294 0.2003 0.1581 0.1955 0.1395 

Station 48603 

(Alor Setar) 
0.0953 0.0774 0.0652 0.0829 0.0476 0.0642 0.0618 0.0733 0.0639 0.0540 0.0743 0.0527 

Station 48615 

(Kota Bharu) 
0.0928 0.0762 0.0696 0.0769 0.0498 0.0674 0.0591 0.1183 0.0609 0.0495 0.0700 0.0510 

Station 48620 

(Sitiawan) 
0.1028 0.0803 0.0704 0.1018 0.0472 0.0589 0.0569 0.0909 0.0587 0.0514 0.0694 0.0535 

Station 48623 

(Lubok 

Merbau) 
0.1860 0.1595 0.1315 0.1434 0.0494 0.0488 0.0578 0.0667 0.0742 0.0550 0.1103 0.0731 

Station 48625 

(Ipoh) 
0.1078 0.1162 0.0871 0.0985 0.0491 0.0547 0.0511 0.0728 0.0570 0.0498 0.0696 0.0519 

Station 48632 

(Cameron 

Highlands) 
0.1993 0.1629 0.1395 0.1240 0.0587 0.0647 0.0713 0.0459 0.0859 0.0644 0.1137 0.0617 

Station 48647 

(Subang) 
0.1808 0.2129 0.1294 0.1376 0.0937 0.1230 0.0790 0.1312 0.0548 0.0706 0.0730 0.0554 

Station 48649 

(Muadzam 

Shah) 
0.2278 0.1883 0.1470 0.1465 0.0512 0.0537 0.0637 0.0671 0.0769 0.0450 0.1332 0.0811 

Station 48650 

(KLIA) 
0.0865 0.0916 0.0736 0.0895 0.0472 0.0563 0.0536 0.0801 0.0554 0.0477 0.0596 0.0502 

Station 48657 

(Kuantan) 
0.2360 0.2484 0.1665 0.1705 0.0986 0.1109 0.0724 0.2651 0.0633 0.0714 0.0918 0.0487 
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Table E15: MAPE (in %) of Local Best Models when Estimating ET0 at External Stations using Four Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
1.365 1.651 1.442 1.595 0.996 1.187 1.138 1.452 1.201 0.917 1.225 1.048 

Station 48601 

(Bayan Lepas) 
3.038 1.241 2.124 2.242 2.261 5.945 5.185 6.436 4.541 3.591 4.274 3.198 

Station 48603 

(Alor Setar) 
1.791 1.517 1.184 1.532 0.977 1.293 1.279 3.115 1.292 1.055 1.432 1.076 

Station 48615 

(Kota Bharu) 
1.747 1.477 1.398 1.290 1.006 1.332 1.218 2.123 1.231 1.004 1.381 1.037 

Station 48620 

(Sitiawan) 
1.748 1.572 1.405 1.869 0.988 1.202 1.173 1.665 1.196 1.008 1.354 1.094 

Station 48623 

(Lubok 

Merbau) 
3.139 2.840 2.409 2.642 1.009 0.930 1.156 1.201 1.475 0.992 2.038 1.403 

Station 48625 

(Ipoh) 
1.941 2.177 1.665 1.828 1.016 1.118 1.026 1.312 1.170 0.959 1.321 1.064 

Station 48632 

(Cameron 

Highlands) 
3.612 2.761 2.344 2.239 1.186 1.281 1.410 1.115 1.654 1.220 1.864 1.211 

Station 48647 

(Subang) 
3.328 4.321 2.537 2.681 1.155 2.567 1.614 2.461 1.070 1.363 1.297 1.110 

Station 48649 

(Muadzam 

Shah) 
3.893 3.225 2.513 2.575 1.052 1.088 1.280 1.282 1.528 0.968 2.297 1.611 

Station 48650 

(KLIA) 
1.615 1.776 1.447 2.323 0.976 1.152 1.110 1.460 1.138 0.920 1.132 1.023 

Station 48657 

(Kuantan) 
4.069 4.962 3.145 3.291 1.276 2.249 1.455 5.346 1.258 1.379 1.503 0.998 
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Table E16: R2 of Local Best Models when Estimating ET0 at External Stations using Four Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.9947 0.9933 0.9955 0.9932 0.9963 0.9946 0.9949 0.9933 0.9964 0.9970 0.9962 0.9969 

Station 48601 

(Bayan Lepas) 
0.9821 0.9952 0.9940 0.9830 0.9865 0.9855 0.9883 0.9563 0.9930 0.9944 0.9918 0.9960 

Station 48603 

(Alor Setar) 
0.9929 0.9944 0.9962 0.9934 0.9964 0.9935 0.9936 0.9873 0.9955 0.9958 0.9944 0.9967 

Station 48615 

(Kota Bharu) 
0.9932 0.9946 0.9958 0.9943 0.9961 0.9928 0.9941 0.9877 0.9959 0.9965 0.9951 0.9969 

Station 48620 

(Sitiawan) 
0.9917 0.9939 0.9957 0.9901 0.9965 0.9945 0.9945 0.9928 0.9962 0.9963 0.9951 0.9966 

Station 48623 

(Lubok 

Merbau) 
0.9727 0.9761 0.9850 0.9803 0.9962 0.9962 0.9943 0.9961 0.9939 0.9957 0.9874 0.9937 

Station 48625 

(Ipoh) 
0.9909 0.9873 0.9933 0.9907 0.9962 0.9953 0.9956 0.9953 0.9966 0.9965 0.9951 0.9968 

Station 48632 

(Cameron 

Highlands) 
0.9688 0.9752 0.9829 0.9852 0.9946 0.9934 0.9915 0.9981 0.9920 0.9941 0.9870 0.9955 

Station 48647 

(Subang) 
0.9858 0.9854 0.9928 0.9874 0.9873 0.9938 0.9946 0.9882 0.9969 0.9958 0.9948 0.9968 

Station 48649 

(Muadzam 

Shah) 
0.9593 0.9667 0.9810 0.9795 0.9959 0.9954 0.9931 0.9960 0.9938 0.9972 0.9820 0.9922 

Station 48650 

(KLIA) 
0.9941 0.9921 0.9952 0.9924 0.9965 0.9950 0.9951 0.9943 0.9968 0.9968 0.9964 0.9970 

Station 48657 

(Kuantan) 
0.9768 0.9800 0.9892 0.9845 0.9864 0.9931 0.9944 0.9637 0.9960 0.9957 0.9922 0.9972 
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Table E17: MBE of Local Best Models when Estimating ET0 at External Stations using Four Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.0000 -0.0002 0.0001 0.0000 -0.0001 -0.0001 0.0001 0.0000 -0.0001 0.0000 0.0000 0.0000 

Station 48601 

(Bayan Lepas) 
0.1009 -0.0001 0.0671 0.0688 0.0827 0.2286 0.1990 -0.0570 0.1743 0.1343 0.1640 0.1216 

Station 48603 

(Alor Setar) 
-0.0003 0.0000 0.0000 0.0003 -0.0001 -0.0002 -0.0001 0.0002 0.0002 0.0004 -0.0001 0.0000 

Station 48615 

(Kota Bharu) 
0.0000 0.0000 -0.0001 0.0000 -0.0003 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

Station 48620 

(Sitiawan) 
0.0007 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 -0.0002 -0.0001 0.0002 0.0001 -0.0001 

Station 48623 

(Lubok 

Merbau) 
-0.0004 -0.0002 0.0003 0.0003 0.0000 0.0000 0.0000 -0.0002 0.0000 0.0002 0.0001 0.0000 

Station 48625 

(Ipoh) 
-0.0003 0.0001 0.0000 -0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 

Station 48632 

(Cameron 

Highlands) 
0.0001 0.0005 0.0004 0.0001 -0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0005 -0.0001 

Station 48647 

(Subang) 
-0.1042 -0.1622 -0.0858 -0.0704 -0.0275 0.0968 0.0500 0.0293 -0.0001 0.0380 -0.0031 0.0189 

Station 48649 

(Muadzam 

Shah) 
0.0005 -0.0008 0.0003 -0.0006 0.0000 0.0004 0.0002 0.0000 -0.0001 0.0000 0.0002 0.0000 

Station 48650 

(KLIA) 
0.0002 0.0001 0.0002 0.0004 0.0001 0.0000 0.0000 -0.0001 0.0000 -0.0001 0.0000 0.0000 

Station 48657 

(Kuantan) 
-0.1418 -0.1887 -0.1134 -0.1126 -0.0330 0.0813 0.0401 -0.1097 -0.0109 0.0404 -0.0208 -0.0001 
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Table E18: GPI Score of Local Best Models when Estimating ET0 at External Stations using Four Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.644 0.152 0.481 1.073 0.065 0.119 0.161 0.093 0.156 0.344 0.278 0.102 

Station 48601 

(Bayan Lepas) 
-2.331 0.472 -1.343 -1.572 -4.862 -4.588 -4.683 -4.006 -4.451 -4.460 -3.970 -3.994 

Station 48603 

(Alor Setar) 
0.252 0.303 0.803 1.164 0.116 -0.052 -0.130 -0.618 -0.101 -0.196 -0.073 0.026 

Station 48615 

(Kota Bharu) 
0.313 0.337 0.571 1.455 0.003 -0.144 -0.020 -0.398 0.032 0.110 0.038 0.128 

Station 48620 

(Sitiawan) 
0.200 0.240 0.549 0.389 0.117 0.107 0.077 -0.014 0.131 -0.003 0.065 -0.021 

Station 48623 

(Lubok 

Merbau) 
-1.943 -1.530 -1.813 -1.527 0.016 0.412 0.050 0.323 -0.612 -0.214 -1.215 -1.101 

Station 48625 

(Ipoh) 
0.000 -0.527 -0.041 0.507 0.015 0.231 0.317 0.243 0.235 0.133 0.082 0.069 

Station 48632 

(Cameron 

Highlands) 
-2.499 -1.538 -1.966 -0.564 -0.534 -0.058 -0.537 0.514 -1.193 -0.958 -1.158 -0.442 

Station 48647 

(Subang) 
-2.416 -3.177 -2.170 -1.651 -1.975 -1.226 -0.502 -0.824 0.343 -0.871 0.035 -0.174 

Station 48649 

(Muadzam 

Shah) 
-3.171 -2.238 -2.340 -1.546 -0.101 0.261 -0.206 0.291 -0.679 0.411 -1.926 -1.676 

Station 48650 

(KLIA) 
0.481 0.000 0.446 0.196 0.127 0.183 0.213 0.139 0.303 0.266 0.347 0.165 

Station 48657 

(Kuantan) 
-3.863 -4.060 -3.659 -3.209 -2.380 -1.036 -0.361 -3.679 -0.049 -0.939 -0.524 0.238 
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Table E19: MAE (in mm/day) of Local Best Models when Estimating ET0 at External Stations using Three Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.1123 0.1066 0.1120 0.1263 0.0646 0.0841 0.0826 0.1795 0.0913 0.0605 0.0909 0.0910 

Station 48601 

(Bayan Lepas) 
0.1179 0.1058 0.1122 0.1268 0.0646 0.0868 0.0878 0.1860 0.0963 0.0611 0.0931 0.0894 

Station 48603 

(Alor Setar) 
0.1200 0.1083 0.0759 0.1203 0.0439 0.0509 0.0619 0.0902 0.0754 0.0464 0.0971 0.0653 

Station 48615 

(Kota Bharu) 
0.1318 0.1306 0.0963 0.0956 0.0456 0.0563 0.0562 0.0611 0.0679 0.0541 0.0840 0.0592 

Station 48620 

(Sitiawan) 
0.1251 0.1092 0.0838 0.1017 0.0435 0.0477 0.0565 0.0525 0.0661 0.0459 0.0833 0.0569 

Station 48623 

(Lubok 

Merbau) 
0.1252 0.1209 0.0858 0.1043 0.0446 0.0459 0.0533 0.0699 0.0628 0.0435 0.0826 0.0584 

Station 48625 

(Ipoh) 
0.1194 0.1839 0.1741 0.0997 0.0450 0.0455 0.0550 0.0547 0.0647 0.0417 0.0791 0.0571 

Station 48632 

(Cameron 

Highlands) 
0.1451 0.1436 0.1138 0.1061 0.0462 0.0493 0.0584 0.0445 0.0708 0.0458 0.0870 0.0572 

Station 48647 

(Subang) 
0.1224 0.1295 0.0904 0.0997 0.0444 0.0480 0.0567 0.0498 0.0640 0.0419 0.0817 0.0595 

Station 48649 

(Muadzam 

Shah) 
0.2451 0.2343 0.1674 0.1556 0.0695 0.0667 0.0670 0.0727 0.1098 0.0398 0.1138 0.0742 

Station 48650 

(KLIA) 
0.1200 0.1181 0.0886 0.1021 0.0439 0.0491 0.0569 0.0546 0.0675 0.0506 0.0784 0.0556 

Station 48657 

(Kuantan) 
0.1228 0.1337 0.0921 0.0978 0.0450 0.0472 0.0547 0.0520 0.0656 0.0422 0.0793 0.0552 
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Table E20: RMSE (in mm/day) of Local Best Models when Estimating ET0 at External Stations using Three Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.1534 0.1406 0.1481 0.1668 0.0839 0.1116 0.1053 0.2589 0.1151 0.0838 0.1174 0.1199 

Station 48601 

(Bayan Lepas) 
0.1610 0.1389 0.1490 0.1690 0.0834 0.1139 0.1119 0.2555 0.1209 0.0813 0.1200 0.1186 

Station 48603 

(Alor Setar) 
0.1791 0.1527 0.1061 0.1788 0.0564 0.0666 0.0816 0.1371 0.1041 0.0681 0.1389 0.0925 

Station 48615 

(Kota Bharu) 
0.1986 0.2055 0.1434 0.1393 0.0581 0.0729 0.0716 0.0851 0.0883 0.0732 0.1188 0.0767 

Station 48620 

(Sitiawan) 
0.1869 0.1552 0.1206 0.1467 0.0547 0.0618 0.0714 0.0736 0.0854 0.0644 0.1175 0.0737 

Station 48623 

(Lubok 

Merbau) 
0.1822 0.1679 0.1194 0.1474 0.0564 0.0589 0.0676 0.1024 0.0820 0.0622 0.1135 0.0766 

Station 48625 

(Ipoh) 
0.1747 0.2500 0.2405 0.1422 0.0568 0.0587 0.0698 0.0786 0.0838 0.0579 0.1084 0.0741 

Station 48632 

(Cameron 

Highlands) 
0.2137 0.2183 0.1680 0.1513 0.0592 0.0661 0.0753 0.0607 0.0933 0.0630 0.1247 0.0750 

Station 48647 

(Subang) 
0.1802 0.1841 0.1310 0.1433 0.0572 0.0616 0.0715 0.0692 0.0830 0.0591 0.1125 0.0765 

Station 48649 

(Muadzam 

Shah) 
0.4063 0.3552 0.2603 0.2558 0.1194 0.0865 0.0870 0.1010 0.1401 0.0559 0.1831 0.0981 

Station 48650 

(KLIA) 
0.1820 0.1692 0.1313 0.1511 0.0553 0.0634 0.0724 0.0781 0.0871 0.0702 0.1079 0.0720 

Station 48657 

(Kuantan) 
0.1806 0.1911 0.1320 0.1414 0.0568 0.0622 0.0698 0.0718 0.0857 0.0585 0.1097 0.0720 
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Table E21: MAPE (in %) of Local Best Models when Estimating ET0 at External Stations using Three Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
2.565 2.769 2.907 3.280 1.677 2.183 2.145 4.661 2.371 1.570 2.359 2.363 

Station 48601 

(Bayan Lepas) 
3.060 2.440 2.913 3.292 1.676 2.253 2.279 4.829 2.500 1.587 2.418 2.321 

Station 48603 

(Alor Setar) 
3.115 2.811 1.774 3.122 1.140 1.321 1.607 2.342 1.957 1.204 2.520 1.695 

Station 48615 

(Kota Bharu) 
3.423 3.391 2.500 2.203 1.183 1.462 1.460 1.587 1.763 1.405 2.182 1.536 

Station 48620 

(Sitiawan) 
3.247 2.835 2.176 2.640 1.141 1.238 1.467 1.363 1.716 1.192 2.164 1.477 

Station 48623 

(Lubok 

Merbau) 
3.250 3.138 2.229 2.708 1.158 1.128 1.384 1.815 1.630 1.129 2.144 1.517 

Station 48625 

(Ipoh) 
3.100 4.775 4.519 2.589 1.168 1.181 1.375 1.420 1.680 1.082 2.053 1.484 

Station 48632 

(Cameron 

Highlands) 
3.767 3.727 2.956 2.755 1.198 1.280 1.516 1.407 1.837 1.189 2.258 1.485 

Station 48647 

(Subang) 
3.177 3.361 2.346 2.588 1.153 1.246 1.473 1.294 1.582 1.087 2.121 1.546 

Station 48649 

(Muadzam 

Shah) 
6.363 6.084 4.345 4.041 1.805 1.733 1.739 1.888 2.851 1.143 2.954 1.927 

Station 48650 

(KLIA) 
3.114 3.065 2.299 2.651 1.140 1.275 1.478 1.417 1.752 1.313 1.936 1.443 

Station 48657 

(Kuantan) 
3.188 3.471 2.390 2.538 1.168 1.224 1.421 1.351 1.704 1.096 2.059 1.433 

 

 

 

 



275 

 

 

 

Table E22: R2 of Local Best Models when Estimating ET0 at External Stations using Three Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.9815 0.9814 0.9807 0.9735 0.9889 0.9803 0.9814 0.9413 0.9862 0.9901 0.9860 0.9830 

Station 48601 

(Bayan Lepas) 
0.9796 0.9818 0.9805 0.9727 0.9891 0.9795 0.9789 0.9428 0.9848 0.9907 0.9856 0.9834 

Station 48603 

(Alor Setar) 
0.9748 0.9781 0.9900 0.9694 0.9950 0.9930 0.9888 0.9835 0.9881 0.9934 0.9805 0.9899 

Station 48615 

(Kota Bharu) 
0.9688 0.9604 0.9820 0.9812 0.9947 0.9916 0.9913 0.9936 0.9914 0.9924 0.9858 0.9931 

Station 48620 

(Sitiawan) 
0.9727 0.9775 0.9873 0.9795 0.9953 0.9940 0.9914 0.9953 0.9920 0.9942 0.9861 0.9936 

Station 48623 

(Lubok 

Merbau) 
0.9738 0.9735 0.9876 0.9792 0.9950 0.9945 0.9922 0.9908 0.9926 0.9945 0.9867 0.9931 

Station 48625 

(Ipoh) 
0.9761 0.9412 0.9492 0.9807 0.9949 0.9945 0.9918 0.9946 0.9927 0.9953 0.9881 0.9935 

Station 48632 

(Cameron 

Highlands) 
0.9643 0.9555 0.9753 0.9781 0.9945 0.9931 0.9904 0.9967 0.9905 0.9944 0.9844 0.9933 

Station 48647 

(Subang) 
0.9743 0.9681 0.9850 0.9804 0.9949 0.9940 0.9914 0.9958 0.9928 0.9950 0.9871 0.9931 

Station 48649 

(Muadzam 

Shah) 
0.9175 0.9292 0.9632 0.9471 0.9828 0.9925 0.9879 0.9911 0.9904 0.9955 0.9731 0.9896 

Station 48650 

(KLIA) 
0.9741 0.9730 0.9848 0.9782 0.9952 0.9936 0.9911 0.9946 0.9921 0.9931 0.9881 0.9939 

Station 48657 

(Kuantan) 
0.9744 0.9657 0.9847 0.9809 0.9949 0.9939 0.9918 0.9955 0.9924 0.9951 0.9878 0.9939 
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Table E23: MBE of Local Best Models when Estimating ET0 at External Stations using Three Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.0001 -0.0002 0.0001 -0.0001 0.0002 0.0002 0.0000 0.0004 0.0002 -0.0002 0.0000 -0.0003 

Station 48601 

(Bayan Lepas) 
0.0000 0.0000 0.0003 0.0001 -0.0002 0.0000 0.0000 -0.0001 -0.0002 0.0001 0.0001 0.0000 

Station 48603 

(Alor Setar) 
0.0002 0.0001 -0.0002 0.0003 -0.0002 -0.0001 0.0002 -0.0005 0.0004 -0.0004 -0.0004 -0.0001 

Station 48615 

(Kota Bharu) 
-0.0008 0.0006 0.0002 0.0000 -0.0001 0.0002 -0.0002 -0.0002 -0.0001 0.0003 0.0001 0.0001 

Station 48620 

(Sitiawan) 
0.0004 0.0002 0.0003 0.0000 0.0000 0.0001 0.0002 -0.0001 0.0000 0.0000 0.0001 0.0002 

Station 48623 

(Lubok 

Merbau) 
-0.0006 0.0006 0.0004 -0.0003 0.0000 0.0000 0.0000 0.0006 0.0001 -0.0003 0.0001 0.0000 

Station 48625 

(Ipoh) 
-0.0001 0.0008 -0.0001 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0001 0.0000 

Station 48632 

(Cameron 

Highlands) 
0.0000 -0.0003 0.0003 0.0000 0.0002 0.0000 -0.0001 0.0001 -0.0001 0.0000 0.0005 0.0000 

Station 48647 

(Subang) 
0.0001 0.0000 0.0000 0.0002 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 

Station 48649 

(Muadzam 

Shah) 
-0.2229 -0.2183 -0.1425 -0.0955 -0.0562 0.0514 -0.0108 0.0064 -0.0992 -0.0005 -0.0668 0.0276 

Station 48650 

(KLIA) 
0.0000 0.0000 -0.0001 -0.0004 -0.0001 0.0000 0.0000 0.0003 0.0000 0.0000 0.0001 0.0000 

Station 48657 

(Kuantan) 
-0.0001 0.0009 0.0001 0.0003 -0.0002 0.0002 0.0001 0.0000 0.0000 0.0001 -0.0001 -0.0001 
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Table E24: GPI Score of Local Best Models when Estimating ET0 at External Stations using Three Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.455 0.575 -0.592 -1.080 -2.405 -3.414 -2.956 -3.591 -2.216 -3.086 -0.409 -3.663 

Station 48601 

(Bayan Lepas) 
0.225 0.687 -0.610 -1.135 -2.385 -3.638 -3.588 -3.593 -2.691 -2.791 -0.596 -3.500 

Station 48603 

(Alor Setar) 
0.046 0.433 0.686 -1.116 0.107 -0.185 -0.685 -0.950 -1.118 -0.967 -1.399 -1.015 

Station 48615 

(Kota Bharu) 
-0.297 -0.484 -0.225 0.482 -0.072 -0.654 0.055 -0.037 -0.115 -1.836 -0.080 -0.047 

Station 48620 

(Sitiawan) 
-0.091 0.394 0.298 0.028 0.173 0.117 0.052 0.189 0.088 0.098 -0.001 0.182 

Station 48623 

(Lubok 

Merbau) 
-0.058 0.083 0.274 -0.071 0.054 0.345 0.400 -0.370 0.351 -0.079 0.129 -0.004 

Station 48625 

(Ipoh) 
0.093 -1.850 -3.185 0.161 0.012 0.315 0.280 0.111 0.255 0.949 0.480 0.162 

Station 48632 

(Cameron 

Highlands) 
-0.614 -0.828 -0.893 -0.188 -0.151 -0.096 -0.202 0.330 -0.433 0.229 -0.415 0.123 

Station 48647 

(Subang) 
0.002 -0.219 0.048 0.145 0.046 0.110 0.052 0.274 0.373 0.774 0.221 -0.060 

Station 48649 

(Muadzam 

Shah) 
-4.544 -4.313 -3.836 -4.518 -4.824 -2.326 -2.148 -1.295 -3.883 0.040 -4.374 -2.650 

Station 48650 

(KLIA) 
0.026 0.114 0.077 -0.065 0.141 0.000 0.004 0.091 0.007 -0.802 0.625 0.324 

Station 48657 

(Kuantan) 
-0.005 -0.364 0.001 0.232 0.011 0.127 0.236 0.228 0.149 0.613 0.432 0.343 
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Table E25: MAE (in mm/day) of Local Best Models when Estimating ET0 at External Stations using Two Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.1872 0.1553 0.1560 0.1626 0.1358 0.1974 0.1942 0.3925 0.2170 0.2114 0.1631 0.1069 

Station 48601 

(Bayan Lepas) 
0.1987 0.1506 0.1435 0.1636 0.1763 0.2402 0.2133 0.4619 0.2223 0.2645 0.1785 0.1167 

Station 48603 

(Alor Setar) 
0.1993 0.1500 0.1370 0.1614 0.0947 0.1000 0.1228 0.1605 0.1375 0.0800 0.1283 0.0968 

Station 48615 

(Kota Bharu) 
0.1973 0.1489 0.1374 0.1593 0.0955 0.0956 0.1196 0.1592 0.1315 0.0755 0.1294 0.0984 

Station 48620 

(Sitiawan) 
0.1945 0.1800 0.1764 0.1743 0.0836 0.0860 0.1022 0.2866 0.1088 0.0649 0.1400 0.1128 

Station 48623 

(Lubok 

Merbau) 
0.2017 0.1866 0.1741 0.1731 0.0809 0.0858 0.0983 0.2819 0.1076 0.0623 0.1398 0.1106 

Station 48625 

(Ipoh) 
0.2173 0.2116 0.1942 0.2390 0.0885 0.1061 0.1014 0.5491 0.1423 0.0689 0.1494 0.1388 

Station 48632 

(Cameron 

Highlands) 
0.2599 0.2228 0.1882 0.1799 0.0931 0.0830 0.1174 0.0620 0.1321 0.0849 0.1419 0.0977 

Station 48647 

(Subang) 
0.2086 0.1851 0.1783 0.1747 0.0836 0.0870 0.1019 0.2861 0.1108 0.0639 0.1428 0.1207 

Station 48649 

(Muadzam 

Shah) 
0.3105 0.2850 0.2506 0.1959 0.0954 0.0922 0.1233 0.4602 0.1969 0.0609 0.1736 0.1157 

Station 48650 

(KLIA) 
0.1997 0.1536 0.1377 0.1665 0.0948 0.0983 0.1218 0.1665 0.1386 0.0742 0.1271 0.0968 

Station 48657 

(Kuantan) 
0.2146 0.1795 0.1552 0.1751 0.1222 0.1645 0.1402 0.3709 0.1480 0.1887 0.1337 0.0969 
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Table E26: RMSE (in mm/day) of Local Best Models when Estimating ET0 at External Stations using Two Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.2699 0.2078 0.2054 0.2234 0.1860 0.2681 0.2672 0.4744 0.2988 0.2498 0.2222 0.1351 

Station 48601 

(Bayan Lepas) 
0.2764 0.2183 0.1919 0.2220 0.2219 0.2970 0.2783 0.5435 0.2999 0.2942 0.2330 0.1448 

Station 48603 

(Alor Setar) 
0.2824 0.2040 0.1820 0.2185 0.1225 0.1334 0.1559 0.2417 0.1805 0.1073 0.1742 0.1248 

Station 48615 

(Kota Bharu) 
0.2816 0.2025 0.1828 0.2149 0.1234 0.1246 0.1515 0.2408 0.1693 0.1004 0.1746 0.1268 

Station 48620 

(Sitiawan) 
0.2821 0.2441 0.2407 0.2259 0.1082 0.1128 0.1320 0.3652 0.1394 0.0876 0.1900 0.1473 

Station 48623 

(Lubok 

Merbau) 
0.2882 0.2528 0.2399 0.2236 0.1044 0.1127 0.1268 0.3630 0.1375 0.0846 0.1910 0.1442 

Station 48625 

(Ipoh) 
0.3207 0.3006 0.2833 0.3102 0.1415 0.1341 0.1313 0.7060 0.1802 0.0957 0.2031 0.1905 

Station 48632 

(Cameron 

Highlands) 
0.3805 0.3471 0.2873 0.2675 0.1202 0.1172 0.1523 0.0956 0.1723 0.1132 0.2205 0.1276 

Station 48647 

(Subang) 
0.2962 0.2466 0.2469 0.2259 0.1084 0.1140 0.1318 0.3683 0.1430 0.0882 0.1942 0.1567 

Station 48649 

(Muadzam 

Shah) 
0.5024 0.4181 0.3817 0.2695 0.1493 0.1240 0.1662 0.5579 0.2441 0.0824 0.2634 0.1487 

Station 48650 

(KLIA) 
0.2844 0.2069 0.1829 0.2273 0.1227 0.1297 0.1556 0.2511 0.1801 0.0989 0.1728 0.1248 

Station 48657 

(Kuantan) 
0.3385 0.2589 0.2142 0.2502 0.1706 0.2052 0.1789 0.4579 0.1962 0.2185 0.1855 0.1251 
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Table E27: MAPE (in %) of Local Best Models when Estimating ET0 at External Stations using Two Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
4.275 4.031 4.049 4.222 3.525 5.126 5.041 10.189 5.635 5.488 4.234 2.774 

Station 48601 

(Bayan Lepas) 
5.158 3.472 3.727 4.248 4.576 6.235 5.537 11.993 5.770 6.868 4.634 3.031 

Station 48603 

(Alor Setar) 
5.175 3.893 3.201 4.191 2.459 2.596 3.189 4.168 3.571 2.077 3.332 2.512 

Station 48615 

(Kota Bharu) 
5.121 3.867 3.568 3.668 2.480 2.483 3.104 4.133 3.413 1.961 3.359 2.555 

Station 48620 

(Sitiawan) 
5.051 4.672 4.580 4.525 2.194 2.232 2.653 7.440 2.825 1.686 3.634 2.929 

Station 48623 

(Lubok 

Merbau) 
5.238 4.844 4.519 4.493 2.100 2.109 2.551 7.320 2.794 1.617 3.630 2.871 

Station 48625 

(Ipoh) 
5.643 5.494 5.042 6.206 2.296 2.755 2.536 14.255 3.694 1.789 3.879 3.604 

Station 48632 

(Cameron 

Highlands) 
6.748 5.785 4.887 4.671 2.418 2.154 3.048 1.960 3.429 2.204 3.684 2.535 

Station 48647 

(Subang) 
5.416 4.806 4.628 4.535 2.170 2.259 2.646 7.429 2.739 1.658 3.707 3.133 

Station 48649 

(Muadzam 

Shah) 
8.062 7.398 6.506 5.085 2.476 2.393 3.202 11.949 5.112 1.750 4.508 3.003 

Station 48650 

(KLIA) 
5.186 3.987 3.575 4.323 2.461 2.553 3.162 4.322 3.597 1.927 3.139 2.512 

Station 48657 

(Kuantan) 
5.572 4.660 4.030 4.545 3.173 4.271 3.640 9.630 3.842 4.900 3.472 2.515 
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Table E28: R2 of Local Best Models when Estimating ET0 at External Stations using Two Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.9428 0.9611 0.9638 0.9540 0.9629 0.9398 0.9266 0.9347 0.9350 0.9728 0.9596 0.9791 

Station 48601 

(Bayan Lepas) 
0.9410 0.9547 0.9679 0.9531 0.9650 0.9502 0.9385 0.9299 0.9447 0.9779 0.9644 0.9809 

Station 48603 

(Alor Setar) 
0.9374 0.9612 0.9708 0.9544 0.9764 0.9718 0.9592 0.9484 0.9644 0.9838 0.9694 0.9816 

Station 48615 

(Kota Bharu) 
0.9381 0.9617 0.9707 0.9556 0.9760 0.9755 0.9610 0.9494 0.9685 0.9858 0.9692 0.9811 

Station 48620 

(Sitiawan) 
0.9375 0.9441 0.9494 0.9514 0.9815 0.9798 0.9704 0.8831 0.9787 0.9892 0.9636 0.9744 

Station 48623 

(Lubok 

Merbau) 
0.9344 0.9398 0.9500 0.9520 0.9828 0.9799 0.9725 0.8857 0.9790 0.9899 0.9621 0.9756 

Station 48625 

(Ipoh) 
0.9247 0.9270 0.9414 0.9446 0.9694 0.9787 0.9710 0.8375 0.9765 0.9890 0.9597 0.9651 

Station 48632 

(Cameron 

Highlands) 
0.8865 0.8874 0.9274 0.9317 0.9773 0.9783 0.9610 0.9919 0.9677 0.9820 0.9509 0.9807 

Station 48647 

(Subang) 
0.9308 0.9428 0.9464 0.9513 0.9815 0.9794 0.9707 0.8808 0.9786 0.9890 0.9618 0.9710 

Station 48649 

(Muadzam 

Shah) 
0.8619 0.8962 0.9200 0.9374 0.9695 0.9769 0.9659 0.8693 0.9749 0.9904 0.9466 0.9744 

Station 48650 

(KLIA) 
0.9369 0.9597 0.9706 0.9506 0.9763 0.9734 0.9591 0.9447 0.9660 0.9862 0.9697 0.9816 

Station 48657 

(Kuantan) 
0.9214 0.9521 0.9680 0.9462 0.9667 0.9681 0.9577 0.9290 0.9620 0.9833 0.9651 0.9815 

 

 

 

 



282 

 

 

 

Table E29: MBE of Local Best Models when Estimating ET0 at External Stations using Two Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
-0.0003 -0.0429 -0.0329 -0.0401 0.1053 0.1754 0.1356 0.3806 0.1488 0.2059 0.0915 0.0033 

Station 48601 

(Bayan Lepas) 
0.0371 0.0019 0.0173 0.0124 0.1641 0.2336 0.1854 0.4575 0.1800 0.2629 0.1340 0.0687 

Station 48603 

(Alor Setar) 
-0.0003 0.0000 0.0000 -0.0003 -0.0001 0.0003 0.0000 0.0002 -0.0003 -0.0002 -0.0002 -0.0001 

Station 48615 

(Kota Bharu) 
0.0002 -0.0002 -0.0001 0.0003 0.0000 0.0000 0.0002 -0.0004 0.0000 0.0001 -0.0001 0.0003 

Station 48620 

(Sitiawan) 
-0.0001 -0.0010 -0.0003 -0.0002 0.0000 0.0001 0.0000 -0.0010 0.0000 -0.0003 0.0003 0.0003 

Station 48623 

(Lubok 

Merbau) 
-0.0006 -0.0002 0.0000 -0.0001 0.0000 -0.0001 -0.0001 0.0002 0.0002 -0.0002 -0.0004 0.0000 

Station 48625 

(Ipoh) 
-0.0837 -0.1103 -0.1116 0.1421 -0.0158 0.0672 0.0000 0.5356 -0.0948 0.0272 0.0134 0.0747 

Station 48632 

(Cameron 

Highlands) 
0.0001 -0.0001 -0.0002 -0.0001 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 

Station 48647 

(Subang) 
0.0006 -0.0002 -0.0003 0.0001 0.0001 0.0000 0.0001 -0.0007 -0.0003 0.0001 0.0005 -0.0001 

Station 48649 

(Muadzam 

Shah) 
-0.2633 -0.2508 -0.2163 -0.0786 -0.0542 0.0070 -0.0797 0.4027 -0.1862 0.0000 -0.1218 -0.0129 

Station 48650 

(KLIA) 
0.0000 -0.0004 0.0001 -0.0002 -0.0002 0.0004 0.0000 0.0002 0.0004 0.0001 -0.0001 0.0000 

Station 48657 

(Kuantan) 
-0.1130 -0.1237 -0.0875 -0.0761 0.0878 0.1461 0.0715 0.3541 0.0392 0.1838 0.0115 -0.0002 
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Table E30: GPI Score of Local Best Models when Estimating ET0 at External Stations using Two Meteorological Variables 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.477 0.454 -0.107 0.094 -2.716 -3.715 -3.533 -1.299 -3.656 -3.611 -2.045 -0.137 

Station 48601 

(Bayan Lepas) 
-0.038 0.661 0.320 0.244 -4.124 -4.401 -3.949 -1.877 -3.700 -4.269 -2.844 -1.519 

Station 48603 

(Alor Setar) 
0.021 0.718 0.723 0.470 0.005 -0.202 -0.119 0.847 -0.087 -0.237 0.867 0.693 

Station 48615 

(Kota Bharu) 
0.064 0.746 0.601 0.790 -0.040 -0.008 0.004 0.860 0.179 -0.045 0.816 0.549 

Station 48620 

(Sitiawan) 
0.096 -0.116 -0.757 -0.028 0.606 0.287 0.639 -0.305 0.987 0.311 0.012 -0.854 

Station 48623 

(Lubok 

Merbau) 
-0.078 -0.302 -0.700 0.051 0.771 0.320 0.788 -0.264 1.027 0.393 -0.058 -0.623 

Station 48625 

(Ipoh) 
-0.888 -1.478 -1.937 -3.668 -0.473 -0.399 0.704 -3.250 -0.403 0.120 -0.747 -4.303 

Station 48632 

(Cameron 

Highlands) 
-1.936 -1.935 -1.617 -1.414 0.104 0.263 0.038 1.750 0.132 -0.414 -0.940 0.555 

Station 48647 

(Subang) 
-0.260 -0.213 -0.876 -0.037 0.617 0.257 0.653 -0.322 0.971 0.312 -0.217 -1.574 

Station 48649 

(Muadzam 

Shah) 
-4.521 -4.010 -4.272 -2.112 -0.916 0.045 -0.480 -2.184 -2.265 0.414 -3.680 -1.175 

Station 48650 

(KLIA) 
0.001 0.634 0.595 0.104 -0.002 -0.123 -0.101 0.782 -0.067 0.000 1.048 0.696 

Station 48657 

(Kuantan) 
-1.076 -0.560 -0.309 -1.051 -2.005 -2.126 -0.993 -1.170 -0.629 -2.556 0.274 0.676 
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Table E31: MAE (in mm/day) of Local Best Models when Estimating ET0 at External Stations using One Meteorological Variable 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.3804 0.2722 0.2583 0.2259 0.1140 0.1096 0.1485 0.2996 0.1551 0.0848 0.1924 0.1195 

Station 48601 

(Bayan Lepas) 
0.3723 0.2731 0.2950 0.2687 0.3319 0.3663 0.2615 0.6454 0.1904 0.4260 0.2439 0.2827 

Station 48603 

(Alor Setar) 
0.3615 0.2724 0.2588 0.2698 0.2350 0.2844 0.1930 0.5637 0.1716 0.3115 0.2090 0.2009 

Station 48615 

(Kota Bharu) 
0.3585 0.2690 0.2750 0.2260 0.2534 0.2699 0.2057 0.5983 0.1737 0.3531 0.2149 0.2111 

Station 48620 

(Sitiawan) 
0.3941 0.2748 0.2597 0.2259 0.1142 0.1096 0.1448 0.3020 0.1530 0.0871 0.1887 0.1205 

Station 48623 

(Lubok 

Merbau) 
0.4211 0.3764 0.3053 0.2833 0.1168 0.1096 0.1744 0.4104 0.2585 0.1063 0.2523 0.1376 

Station 48625 

(Ipoh) 
0.3656 0.2972 0.2536 0.2383 0.1428 0.1659 0.1486 0.4699 0.1818 0.2007 0.1941 0.1283 

Station 48632 

(Cameron 

Highlands) 
0.3913 0.2766 0.2586 0.2259 0.1142 0.1096 0.1463 0.3007 0.1532 0.0868 0.1890 0.1205 

Station 48647 

(Subang) 
0.3805 0.2721 0.2581 0.2259 0.1140 0.1097 0.1474 0.2997 0.1558 0.0848 0.1920 0.1195 

Station 48649 

(Muadzam 

Shah) 
0.3845 0.2722 0.2583 0.2259 0.1140 0.1096 0.1478 0.2997 0.1551 0.0848 0.1924 0.1195 

Station 48650 

(KLIA) 
0.3521 0.2668 0.2533 0.2351 0.2109 0.2452 0.1766 0.5341 0.1581 0.2924 0.1928 0.1758 

Station 48657 

(Kuantan) 
0.3884 0.2729 0.2583 0.2258 0.1140 0.1096 0.1479 0.2998 0.1544 0.0855 0.1871 0.1197 
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Table E32: RMSE (in mm/day) of Local Best Models when Estimating ET0 at External Stations using One Meteorological Variable 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.5191 0.3950 0.3613 0.3074 0.1453 0.1473 0.1890 0.3771 0.1993 0.1138 0.2810 0.1557 

Station 48601 

(Bayan Lepas) 
0.5218 0.3966 0.3786 0.3404 0.3673 0.3886 0.2987 0.7416 0.2338 0.4424 0.3103 0.3139 

Station 48603 

(Alor Setar) 
0.5346 0.4149 0.3620 0.3579 0.2810 0.3145 0.2322 0.6703 0.2302 0.3345 0.2942 0.2421 

Station 48615 

(Kota Bharu) 
0.5501 0.4193 0.3918 0.3077 0.2960 0.2980 0.2447 0.6889 0.2183 0.3718 0.2996 0.2463 

Station 48620 

(Sitiawan) 
0.5344 0.4008 0.3629 0.3074 0.1454 0.1474 0.1839 0.3782 0.1961 0.1154 0.2768 0.1571 

Station 48623 

(Lubok 

Merbau) 
0.6454 0.5318 0.4574 0.3908 0.1718 0.1474 0.2315 0.4840 0.3195 0.1335 0.3595 0.1827 

Station 48625 

(Ipoh) 
0.5809 0.4581 0.3951 0.3383 0.1918 0.1955 0.1891 0.5651 0.2466 0.2246 0.2983 0.1651 

Station 48632 

(Cameron 

Highlands) 
0.5317 0.4005 0.3613 0.3075 0.1457 0.1473 0.1854 0.3781 0.1966 0.1156 0.2774 0.1569 

Station 48647 

(Subang) 
0.5200 0.3951 0.3612 0.3074 0.1452 0.1473 0.1879 0.3770 0.2000 0.1131 0.2803 0.1556 

Station 48649 

(Muadzam 

Shah) 
0.5233 0.3951 0.3613 0.3074 0.1453 0.1473 0.1882 0.3771 0.1994 0.1131 0.2810 0.1557 

Station 48650 

(KLIA) 
0.5438 0.4172 0.3706 0.3228 0.2554 0.2708 0.2130 0.6349 0.2079 0.3126 0.2821 0.2104 

Station 48657 

(Kuantan) 
0.5287 0.3967 0.3613 0.3072 0.1452 0.1473 0.1886 0.3771 0.1978 0.1143 0.2738 0.1557 
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Table E33: MAPE (in %) of Local Best Models when Estimating ET0 at External Stations using One Meteorological Variable 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
8.687 7.068 6.706 5.864 2.960 2.845 3.856 7.777 4.028 2.202 4.995 3.103 

Station 48601 

(Bayan Lepas) 
9.665 6.294 7.659 6.977 8.618 9.511 6.788 16.755 4.942 11.059 6.332 7.339 

Station 48603 

(Alor Setar) 
9.386 7.072 6.047 7.005 6.101 7.382 5.010 14.634 4.454 8.087 5.426 5.216 

Station 48615 

(Kota Bharu) 
9.308 6.984 7.140 5.205 6.578 7.006 5.341 15.532 4.510 9.166 5.580 5.482 

Station 48620 

(Sitiawan) 
10.232 7.135 6.742 5.865 2.998 2.846 3.759 7.840 3.972 2.262 4.900 3.130 

Station 48623 

(Lubok 

Merbau) 
10.933 9.771 7.927 7.356 3.032 2.696 4.528 10.655 6.712 2.760 6.550 3.572 

Station 48625 

(Ipoh) 
9.491 7.716 6.583 6.186 3.707 4.308 3.718 12.199 4.719 5.211 5.038 3.330 

Station 48632 

(Cameron 

Highlands) 
10.158 7.180 6.714 5.866 2.965 2.845 3.797 9.506 3.978 2.254 4.907 3.129 

Station 48647 

(Subang) 
9.879 7.064 6.701 5.866 2.960 2.847 3.826 7.781 3.851 2.201 4.985 3.103 

Station 48649 

(Muadzam 

Shah) 
9.983 7.067 6.706 5.866 2.961 2.846 3.837 7.779 4.028 2.438 4.996 3.103 

Station 48650 

(KLIA) 
9.142 6.927 6.576 6.103 5.476 6.366 4.585 13.867 4.103 7.590 4.762 4.563 

Station 48657 

(Kuantan) 
10.083 7.086 6.706 5.862 2.959 2.846 3.841 7.783 4.008 2.219 4.858 3.108 
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Table E34: R2 of Local Best Models when Estimating ET0 at External Stations using One Meteorological Variable 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.7880 0.8528 0.8850 0.9099 0.9668 0.9657 0.9400 0.8751 0.9585 0.9818 0.9198 0.9714 

Station 48601 

(Bayan Lepas) 
0.7870 0.8519 0.8815 0.9086 0.9556 0.9636 0.9393 0.8697 0.9561 0.9813 0.9185 0.9710 

Station 48603 

(Alor Setar) 
0.7859 0.8477 0.8848 0.9048 0.9550 0.9649 0.9387 0.8714 0.9512 0.9810 0.9169 0.9683 

Station 48615 

(Kota Bharu) 
0.7848 0.8505 0.8802 0.9096 0.9532 0.9630 0.9385 0.8664 0.9557 0.9787 0.9174 0.9699 

Station 48620 

(Sitiawan) 
0.7760 0.8498 0.8842 0.9099 0.9666 0.9657 0.9425 0.8747 0.9577 0.9811 0.9228 0.9708 

Station 48623 

(Lubok 

Merbau) 
0.7863 0.8477 0.8844 0.9061 0.9560 0.9656 0.9395 0.8721 0.9516 0.9813 0.9178 0.9693 

Station 48625 

(Ipoh) 
0.7866 0.8493 0.8838 0.9080 0.9557 0.9653 0.9398 0.8710 0.9498 0.9812 0.9186 0.9700 

Station 48632 

(Cameron 

Highlands) 
0.7783 0.8505 0.8852 0.9099 0.9666 0.9657 0.9422 0.8740 0.9580 0.9812 0.9226 0.9708 

Station 48647 

(Subang) 
0.7868 0.8528 0.8851 0.9100 0.9668 0.9657 0.9404 0.8752 0.9580 0.9820 0.9202 0.9714 

Station 48649 

(Muadzam 

Shah) 
0.7857 0.8528 0.8850 0.9099 0.9668 0.9657 0.9402 0.8751 0.9584 0.9820 0.9197 0.9714 

Station 48650 

(KLIA) 
0.7874 0.8512 0.8832 0.9080 0.9556 0.9650 0.9396 0.8715 0.9554 0.9815 0.9192 0.9706 

Station 48657 

(Kuantan) 
0.7809 0.8522 0.8850 0.9099 0.9668 0.9657 0.9404 0.8752 0.9595 0.9815 0.9241 0.9712 
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Table E35: MBE of Local Best Models when Estimating ET0 at External Stations using One Meteorological Variable 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0001 0.0001 -0.0001 -0.0002 0.0001 0.0001 

Station 48601 

(Bayan Lepas) 
-0.0334 -0.0008 0.0746 0.1215 0.3261 0.3577 0.2615 0.6323 0.1128 0.4246 0.1268 0.2720 

Station 48603 

(Alor Setar) 
-0.1051 -0.0777 -0.0005 0.0696 0.2195 0.2736 0.1286 0.5395 0.0279 0.3070 0.0431 0.1717 

Station 48615 

(Kota Bharu) 
-0.1449 -0.1082 -0.0366 0.0000 0.2364 0.2434 0.1365 0.5682 0.0234 0.3507 0.0368 0.1792 

Station 48620 

(Sitiawan) 
-0.0007 -0.0003 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0001 

Station 48623 

(Lubok 

Merbau) 
-0.3805 -0.3471 -0.2741 -0.2155 -0.0383 -0.0003 -0.1330 0.2903 -0.2347 0.0622 -0.2201 -0.0864 

Station 48625 

(Ipoh) 
-0.2570 -0.2218 0.2536 -0.0933 0.0914 0.1277 -0.0008 0.4099 -0.1058 0.1878 -0.0940 0.0406 

Station 48632 

(Cameron 

Highlands) 
0.0000 0.0000 0.0000 0.0000 -0.0002 -0.0001 0.0001 0.0000 -0.0001 -0.0001 0.0000 -0.0001 

Station 48647 

(Subang) 
-0.0001 0.0001 -0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0001 0.0000 

Station 48649 

(Muadzam 

Shah) 
0.0002 -0.0001 -0.0001 -0.0001 0.0000 0.0000 0.0001 0.0000 -0.0001 0.0000 0.0000 0.0000 

Station 48650 

(KLIA) 
-0.1591 -0.1264 -0.0503 0.0023 0.1912 0.2263 0.0974 0.5039 -0.0158 0.2877 -0.0010 0.1388 

Station 48657 

(Kuantan) 
0.0001 0.0001 0.0000 0.0000 0.0001 0.0000 0.0002 0.0000 -0.0001 -0.0003 -0.0002 0.0001 
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Table E36: GPI Score of Local Best Models when Estimating ET0 at External Stations using One Meteorological Variable 
 Testing Station 

Station 

48600 

(Pulau 

Langkawi) 

Station 

48601 

(Bayan 

Lepas) 

Station 

48603 

(Alor 

Setar) 

Station 

48615 

(Kota 

Bharu) 

Station 

48620 

(Sitiawan) 

Station 

48623 

(Lubok 

Merbau) 

Station 

48625 

(Ipoh) 

Station 

48632 

(Cameron 

Highlands) 

Station 

48647 

(Subang) 

Station 

48649 

(Muadzam 

Shah) 

Station 

48650 

(KLIA) 

Station 

48657 

(Kuantan) 

T
r
a

in
in

g
 S

ta
ti

o
n

 

Station 48600 

(Pulau 

Langkawi) 
0.765 0.346 0.054 0.018 0.022 0.025 0.034 0.335 0.086 0.182 0.015 0.200 

Station 48601 

(Bayan Lepas) 
0.261 0.364 -2.303 -2.463 -4.793 -4.727 -4.031 -4.280 -1.568 -3.962 -2.606 -3.910 

Station 48603 

(Alor Setar) 
0.157 -0.989 0.342 -3.198 -3.234 -3.069 -1.907 -3.271 -1.337 -2.783 -1.226 -2.968 

Station 48615 

(Kota Bharu) 
-0.078 -0.526 -1.906 0.245 -3.653 -3.508 -2.320 -4.142 -0.793 -3.930 -1.373 -2.638 

Station 48620 

(Sitiawan) 
-1.218 -0.313 -0.178 0.013 0.002 0.020 0.768 0.273 0.079 -0.031 0.590 -0.001 

Station 48623 

(Lubok 

Merbau) 
-2.960 -4.351 -3.627 -4.415 -1.030 0.003 -1.400 -1.407 -4.513 -0.293 -3.955 -1.176 

Station 48625 

(Ipoh) 
-0.654 -1.826 -1.315 -1.528 -1.539 -1.114 0.030 -2.282 -2.135 -1.447 -0.827 -0.551 

Station 48632 

(Cameron 

Highlands) 
-0.932 -0.198 0.086 0.008 0.007 0.031 0.646 0.004 0.099 -0.016 0.549 0.002 

Station 48647 

(Subang) 
0.131 0.344 0.071 0.022 0.028 0.024 0.163 0.339 0.087 0.246 0.091 0.207 

Station 48649 

(Muadzam 

Shah) 
-0.090 0.338 0.053 0.016 0.026 0.024 0.098 0.331 0.083 0.228 0.008 0.198 

Station 48650 

(KLIA) 
0.308 -0.394 -0.422 -0.831 -2.766 -2.435 -1.138 -2.936 -0.422 -2.404 0.042 -1.594 

Station 48657 

(Kuantan) 
-0.626 0.203 0.052 0.013 0.028 0.016 0.137 0.336 0.219 0.076 0.859 0.139 
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Table E37: Performance of WOA-ELM-E Trained with Global Pooled 

Data when Estimating ET0 at All Stations using Different Input 

Combinations 
 MAE (mm/day) 

C1 C4 C13 C33 C44 C58 

T
e
st

in
g

 S
ta

ti
o

n
 

Station 48600 (Pulau 

Langkawi) 
0.0330 0.0503 0.0667 0.1155 0.1921 0.3803 

Station 48601 (Bayan Lepas) 0.0506 0.0603 0.0643 0.1225 0.1488 0.2720 

Station 48603 (Alor Setar) 0.0468 0.0540 0.0560 0.0823 0.1369 0.2584 

Station 48615 (Kota Bharu) 0.0396 0.0565 0.0633 0.1015 0.1618 0.2259 

Station 48620 (Sitiawan) 0.0295 0.0324 0.0382 0.0449 0.0945 0.1140 

Station 48623 (Lubok 

Merbau) 
0.0380 0.0405 0.0481 0.0490 0.0931 0.1096 

Station 48625 (Ipoh) 0.0387 0.0392 0.0474 0.0601 0.1189 0.1485 

Station 48632 (Cameron 

Highlands) 
0.0742 0.0605 0.0707 0.0601 0.1695 0.2998 

Station 48647 (Subang) 0.0345 0.0423 0.0495 0.0654 0.1340 0.1550 

Station 48649 (Muadzam 

Shah) 
0.0295 0.0307 0.0344 0.0410 0.0731 0.0850 

Station 48650 (KLIA) 0.0339 0.0456 0.0519 0.0826 0.1272 0.1924 

Station 48657 (Kuantan) 0.0302 0.0356 0.0422 0.0567 0.0970 0.1195 

 

  RMSE (mm/day) 

  C1 C4 C13 C33 C44 C58 

T
e
st

in
g

 S
ta

ti
o

n
 

Station 48600 (Pulau 

Langkawi) 
0.0442 0.0735 0.0906 0.1717 0.2752 0.5190 

Station 48601 (Bayan Lepas) 0.0683 0.0797 0.0862 0.1736 0.1996 0.3951 

Station 48603 (Alor Setar) 0.0622 0.0699 0.0731 0.1131 0.1817 0.3613 

Station 48615 (Kota Bharu) 0.0518 0.0762 0.0860 0.1454 0.2196 0.3072 

Station 48620 (Sitiawan) 0.0361 0.0398 0.0533 0.0612 0.1224 0.1453 

Station 48623 (Lubok 

Merbau) 
0.0488 0.0520 0.0634 0.0630 0.1235 0.1472 

Station 48625 (Ipoh) 0.0490 0.0486 0.0603 0.0759 0.1509 0.1890 

Station 48632 (Cameron 

Highlands) 
0.1007 0.0860 0.1002 0.0829 0.2500 0.3769 

Station 48647 (Subang) 0.0431 0.0536 0.0636 0.0846 0.1744 0.1997 

Station 48649 (Muadzam 

Shah) 
0.0372 0.0388 0.0445 0.0555 0.0964 0.1136 

Station 48650 (KLIA) 0.0421 0.0584 0.0685 0.1132 0.1728 0.2808 

Station 48657 (Kuantan) 0.0383 0.0449 0.0541 0.0738 0.1248 0.1556 

 

  MAPE (%) 

  C1 C4 C13 C33 C44 C58 

T
e
st

in
g

 S
ta

ti
o

n
 

Station 48600 (Pulau 

Langkawi) 
0.858 1.305 1.732 2.999 4.988 9.873 

Station 48601 (Bayan Lepas) 1.315 1.565 1.670 3.181 3.863 7.063 

Station 48603 (Alor Setar) 1.215 1.402 1.453 2.136 3.555 6.709 

Station 48615 (Kota Bharu) 1.029 1.467 1.644 2.635 4.201 5.864 

Station 48620 (Sitiawan) 0.766 0.842 0.991 1.167 2.453 2.960 

Station 48623 (Lubok 

Merbau) 
0.986 1.052 1.248 1.273 2.417 2.846 

Station 48625 (Ipoh) 1.005 1.017 1.231 1.560 3.087 3.855 

Station 48632 (Cameron 

Highlands) 
1.925 1.571 1.836 1.561 4.400 7.784 

Station 48647 (Subang) 0.895 1.099 1.286 1.699 3.478 4.024 

Station 48649 (Muadzam 

Shah) 
0.765 0.798 0.894 1.066 1.898 2.206 

Station 48650 (KLIA) 0.880 1.183 1.348 2.143 3.303 4.996 

Station 48657 (Kuantan) 0.785 0.925 1.096 1.472 2.519 3.104 

 

  R2 

  C1 C4 C13 C33 C44 C58 

T e
s ti n g
 

S
t

a
t

io n
 Station 48600 (Pulau 

Langkawi) 
0.9985 0.9958 0.9936 0.9769 0.9405 0.7883 
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Station 48601 (Bayan Lepas) 0.9956 0.9940 0.9930 0.9717 0.9627 0.8530 

Station 48603 (Alor Setar) 0.9966 0.9957 0.9953 0.9888 0.9710 0.8850 

Station 48615 (Kota Bharu) 0.9974 0.9945 0.9929 0.9798 0.9539 0.9099 

Station 48620 (Sitiawan) 0.9979 0.9975 0.9954 0.9940 0.9765 0.9669 

Station 48623 (Lubok 

Merbau) 
0.9962 0.9957 0.9937 0.9937 0.9758 0.9656 

Station 48625 (Ipoh) 0.9959 0.9960 0.9939 0.9903 0.9617 0.9399 

Station 48632 (Cameron 

Highlands) 
0.9911 0.9935 0.9911 0.9939 0.9451 0.8751 

Station 48647 (Subang) 0.9981 0.9970 0.9958 0.9925 0.9681 0.9583 

Station 48649 (Muadzam 

Shah) 
0.9981 0.9979 0.9972 0.9957 0.9870 0.9819 

Station 48650 (KLIA) 0.9982 0.9965 0.9952 0.9870 0.9697 0.9197 

Station 48657 (Kuantan) 0.9983 0.9976 0.9965 0.9936 0.9816 0.9713 

 

  MBE 

  C1 C4 C13 C33 C44 C58 

T
e
st

in
g

 S
ta

ti
o

n
 

Station 48600 (Pulau 

Langkawi) 
0.0000 0.0000 -0.0001 0.0001 -0.0001 0.0000 

Station 48601 (Bayan Lepas) 0.0004 0.0000 0.0001 -0.0001 0.0000 -0.0002 

Station 48603 (Alor Setar) 0.0001 -0.0001 -0.0004 0.0001 0.0000 0.0000 

Station 48615 (Kota Bharu) 0.0000 0.0001 -0.0002 0.0000 0.0002 0.0001 

Station 48620 (Sitiawan) -0.0002 0.0000 0.0003 -0.0004 0.0000 0.0000 

Station 48623 (Lubok 

Merbau) 
0.0001 0.0000 -0.0001 0.0000 0.0002 0.0000 

Station 48625 (Ipoh) 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000 

Station 48632 (Cameron 

Highlands) 
0.0002 0.0002 0.0002 0.0002 0.0015 -0.0001 

Station 48647 (Subang) 0.0000 -0.0001 0.0000 0.0001 0.0001 -0.0001 

Station 48649 (Muadzam 

Shah) 
0.0002 0.0001 0.0001 0.0000 0.0001 -0.0001 

Station 48650 (KLIA) 0.0000 0.0000 -0.0001 0.0001 0.0002 -0.0001 

Station 48657 (Kuantan) 0.0000 0.0000 -0.0001 -0.0002 -0.0001 0.0000 

 

  GPI 

  C1 C4 C13 C33 C44 C58 

T
e
st

in
g

 S
ta

ti
o

n
 

Station 48600 (Pulau 

Langkawi) 
0.842 0.536 0.349 0.173 0.198 0.267 

Station 48601 (Bayan Lepas) 0.182 0.001 0.120 0.001 0.774 0.379 

Station 48603 (Alor Setar) 0.112 0.000 0.447 0.415 0.621 0.044 

Station 48615 (Kota Bharu) 0.551 0.503 0.980 0.054 0.430 0.006 

Station 48620 (Sitiawan) 0.339 0.220 -0.079 -0.127 0.019 0.030 

Station 48623 (Lubok 

Merbau) 
0.061 -0.009 -0.013 0.018 0.039 0.001 

Station 48625 (Ipoh) 0.137 0.104 -0.055 -0.327 0.035 0.001 

Station 48632 (Cameron 

Highlands) 
0.001 0.044 -0.149 0.001 0.772 0.325 

Station 48647 (Subang) -0.056 0.000 -0.048 0.195 0.098 0.070 

Station 48649 (Muadzam 

Shah) 
0.234 0.671 0.458 1.160 0.063 0.219 

Station 48650 (KLIA) 0.001 0.181 0.081 0.157 0.936 0.003 

Station 48657 (Kuantan) -0.020 0.275 -0.042 0.191 0.682 0.182 

 

 


