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ABSTRACT 

DISTRIBUTED CONTROL OF AN AUTONOMOUS 

WHEELCHAIR USING STEADY STATE VISUAL EVOKED 

POTENTIAL BASED BRAIN COMPUTER INTERFACE  

 

Danny Ng Wee Kiat  

 

 

Having the capability to control a wheelchair using brain signals would 

be a major benefit to patients suffering from motor disabling diseases. However, 

one major challenge facing such systems is the number of inputs needed over 

time by the patient for control. The objective of this study is to develop a “hybrid” 

system that requires less inputs from a subject to operate a wheelchair compared 

to the ones driven directly using BCI. A distributed control system using an 

autonomous wheelchair with inputs from a steady-state visual evoked potential-

based brain-computer interface was developed to achieve the objective. A dual-

mode system was implemented in this study to allow the autonomous 

wheelchair to work in both unknown and known environments. Such system is 

suitable for a person with physical and mobility impairments. The developed 

system required an average of 16.6 selections compared to a BCI wheelchair 

with direct control where an average of 32.8 selections was needed to complete 

a navigation task in this study. The lower number of required inputs reduces the 

number of mental tasks by the subjects. This is the first system that incorporates 

robotic and BCI to control a wheelchair, relegating the responsibility of 

navigation control from the subjects to the navigation software. 
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CHAPTER 1  

INTRODUCTION 

1.1 Brain-Computer Interface 

A Brain-computer Interface (BCI) is a type of human-computer 

interaction where a pathway is formed between the human brain to the computer 

for control and communication (Wolpaw, et al., 2002). Some of the common 

methods to capture brain signals are electroencephalography (EEG), 

(Pfurtscheller & Neuper, 2001), functional near-infrared spectroscopy (fNIRS), 

(Ito, et al., 2013) or electrocorticography (ECoG) (Fifer, et al., 2013). Features 

extracted from the captured brain signals can be used as inputs for the BCI. 

Steady-state visual evoked potential (SSVEP) or event-related potential (ERP) 

such as P300 and motor imagery signals are some examples of brain signals 

used as inputs to a BCI. Software algorithms to capture, process, extract and 

classify these signals were the focus of numerous studies (Ramadan & Vasilakos, 

2017; Blankertz, et al., 2011; Li, et al., 2011; Lotte, et al., 2018). The algorithms 

can associate these classified features to specific inputs in the developed 

applications. The BCI enables a person to convey commands to the computer 

without physical interactions. 

1.2 Application of BCI 

Multiple applications in communication (Yu, et al., 2017; Wolpaw, et al., 

2018), robotics (Leeb, et al., 2015; Zhang, et al., 2017), prosthetics (Muller-Putz 

& Pfurtscheller, 2008; Goh, et al., 2005), and rehabilitation (Bockbrader, et al., 
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2018) were developed using BCI as the control methods in recent years. These 

studies show the promising potential in the utilization of BCI technology as a 

means of control. The BCI is proven to be very useful for a person with physical 

and mobility impairments to interact with a computer. 

Wheelchair control using BCIs is one of the areas where studies were 

conducted by numerous researchers. BCIs utilizing signals such as steady-state 

visual evoked potential (SSVEP), P300, motor imagery signal, or hybrid signals 

are applied as the means to control the wheelchairs (Fernández-Rodríguez, et 

al., 2016).These signals are mapped to specific commands such as a destination 

(Ng, et al., 2014) or direction (Muller-Putz & Pfurtscheller, 2008) for the control 

of the wheelchair. A BCI-controlled wheelchair allows a person with physical 

and mobility impairments to control a wheelchair without physical interactions. 

This is important as a study by Kübler (Kübler, et al., 2005)shows that freedom, 

defined as the capability to move around without assistance, as the third relevant 

aspect that affects the quality of life after relationship and health for a patient 

with amyotrophic lateral sclerosis (ALS). The BCI is a very powerful tool that 

allows a person to regain independence for mobility. 

However, the BCI is a complex system where training is needed to 

ensure that the users can operate the system as intended (Thompson, 

2019).Besides this, mental fatigue is another problem faced by users of a BCI 

system. An increase in mental load and fatigue was observed when the users 

were stimulated by a continuous flickering light stimulus (Xie, et al., 2016)when 

using a SSVEP-based BCI system. A slight decrease in the quality of SSVEP 

response was observed during long-time usage of the BCI system (Seo, et al., 
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2019). These problems affect the classification accuracy of the BCI causing an 

issue for users to pass valid commands to the computer. 

1.3 Motivation and Research Objective 

A BCI system has its limitation when the user needs to operate the 

system for a long time or needs to issue multiple commands in succession 

despite having the advantage of being an interface that operates without physical 

interactions. It is important to address this issue for the BCI system. This study 

focused on the application of BCI for the control of a wheelchair as the ability 

for a person with physical and mobility impairments to be able to move 

independently is important. 

The objective of this study is to develop a “hybrid” system that requires 

less inputs from a subject to operate the BCI wheelchair compared to the ones 

driven directly using BCI. There are two specific requirements that the 

developed wheelchair need to fulfil in order to achieve this objective. The first 

is a BCI system that can capture EEG signals and classify SSVEP. The classified 

SSVEP will act as the trigger to move the wheelchair. The second is the 

capability to control the wheelchair independent of the BCI system. This can be 

achieved through the development of a distributed control system using an 

autonomous wheelchair. Techniques from robotic systems will be incorporated 

into the wheelchair for autonomous movements. Experiments will be conducted 

on the wheelchair to study the operation of the developed wheelchair in an 

indoor environment.  
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1.4 Thesis Overview 

There are five chapters in this thesis. Chapter 1 gives a short introduction 

to the overview, applications, pros, and cons of a BCI system. The motivation 

and research objective are included in the last part of this chapter. Chapter 2 

contains the literature survey of SSVEP-based BCI systems and their 

applications. The use of robotics techniques in wheelchair systems is also 

discussed in this chapter. Chapter 3 focuses on the methodology used in the 

design of this wheelchair. This chapter explains the algorithm, technique, and 

device developed for this study. Chapter 4 provides the results and discussions 

on the experiments conducted to test the operation of the developed autonomous 

wheelchair in an indoor environment. Chapter 5 summarises and concludes the 

finding of this study. Future recommendations for future works are also given 

in this chapter. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

This chapter starts with a review of SSVEP-based BCI. The application 

of SSVEP for BCI with its pros and cons are discussed next. After that, a review 

is conducted on the implementation of BCI for the control of the wheelchair. 

Lastly, the application of robotic techniques on a wheelchair was reviewed and 

discussed. 

2.2 SSVEP-based BCI 

Evoked potentials are detectable changes of electrical activity in the 

brain triggered by sensory stimuli. Adrian & Matthews (1934) were the first to 

show that rhythmic potential changes can be detected from the occipital region 

when a subject was stimulated by bright flickering lights (Adrian & Matthews, 

1934). In the study, flickering lights between 8Hz and 24Hz were used and the 

corresponding electrical potential was recorded. This study described the 

SSVEP phenomena where the frequency of brain electrical potentials recorded 

was like the frequency of stimulus shown to the subjects. Since the discovery, 

SSVEP became the focus of a wide variety of scientific studies and applications 

(Norcia, et al., 2015). 

A typical setup for SSVEP-based BCI consists of a device to generate 

light stimulus, an EEG acquisition unit, the computer algorithms to interpret the 

acquired signals and to control external devices as needed by the applications 
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(Zhang, et al., 2019).Figure 2.1 shows an example of a typical SSVEP-based 

BCI setup. Source of flickering lights are used to elicit SSVEP response in the 

subject. The study by Herrmann (2001) showed that the frequency of SSVEP 

can be detected for stimulus frequency up to 90Hz (Herrmann, 2001). Computer 

monitors and light emitting diode (LED) are common devices used to generate 

flickering lights (Zhu, et al., 2010). The range of frequencies that can be 

generated on a computer screen is lower than the LEDs. Computer monitors 

have a usual refresh rate of 60Hz limiting the stimulus frequencies to be below 

30Hz. LED can be used to generate any frequencies for stimulus. However, 

extra electronic components and control circuitry are required.  

 

Figure 2.1: Typical setup of a SSVEP-based BCI system. The three main 

parts of a SSVEP-based BCI are the source of stimulus, the EEG 

acquisition unit, and the software for the BCI. 

Besides frequency information, phase information can also be obtained 

from SSVEP. Study by Wilson et al. (2014) had shown that phase information 

can be obtained from SSVEP signals if the duty cycle of the stimulus is varied. 

It is also worth noting that the colour of the light stimulus will affect the 

performance of SSVEP. A Previous study showed that white colour stimulus led 
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to the best performance (Cao, 2012). 

The next component in the SSVEP-based BCI is the EEG acquisition 

unit. EEG signals from the occipital lobe will be captured by the EEG 

acquisition unit. Measurements are taken from electrodes are placed on the 

occipital region according to the 10-20 system. Figure 2.2 shows the placement 

of electrodes according to the 10-20 system. There are five types of electrodes 

for the measurement of EEG, which are disposable electrodes, reusable 

electrodes, cup electrodes, saline-based electrodes, and needle electrodes 

(Teplan, 2002). High impedance at the site of measurements will lead to noisy 

EEG recording. Conductive gel and skin abrasive are used at the site of 

measurement to achieve low impedance. The amplitude of EEG potentials is in 

the range of 10µV to 100µV (Aurlien, et al., 2004). Amplification and signal 

conditioning are implemented in this step to prepare the signals for digital 

conversion by the acquisition unit (Teplan, 2002). Amplifiers having high 

common-mode rejection ratio is important for EEG amplifiers (Texas 

Instruments, 2017). This is to ensure that the noise that is present on each of the 

electrode is attenuated by the amplifiers. It is important to obtain a good signal-

to-noise ratio of the measured EEG as the presence of noise in the signal might 

affect the accuracy of the classification software. Once the EEG signals are 

digitized, the signals can be transmitted to the computer for further processing. 

Another aspect that is important for an EEG acquisition unit is the safety of the 

device. The EEG acquisition unit creates a low impedance connection to the 

human body. It is therefore important to ensure that the leakage current from the 

device does not harm the users of the EEG acquisition unit (Webster, 1998). 
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Figure 2.2: 10-20 EEG System placement system (Sazgar & Young, 2019). 

PO and O are the electrode positions where the measurements of 

EEG signals from the occipital lobe of the brain can be made. 

 

Figure 2.3: SSVEP spectrogram obtained from a subject looking at a 15Hz 

stimulus evoked by stimulators generated on a Liquid Crystal 

Display (LCD) monitor (Mah, et al., 2019).SSVEP response of 

15Hz (red area) can be observed from the captured signals. 

Once transmitted to the computer, further signal processing such as 

filtering and Fast Fourier Transform (FFT) can be performed on the acquired 

EEG. Digital filters such as notch filters and bandpass filters can be 

implemented in the software to remove movement artifacts and powerline noise 

(Widmann, et al., 2015). EEG spectrogram can be obtained by performing short-

time Fourier transform of the EEG signals. The spectrogram can show the 
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changes in the frequency component of the measured signals over time. Figure 

2.3 shows an example of a spectrogram where SSVEP is present. The EEG 

spectrogram gives a visual representation of brainwave measured in the 

frequency domain over time, allowing for easy identification of SSVEP through 

visual inspection. 

BCI software algorithms to extract features and classifiers were 

developed to automatically classify SSVEP. Features extractions methods such 

as power spectrum density analysis (PSDA) using Fourier transform, Wavelet 

transform and Hilbert-Huang transform (HHT) were implemented to extract 

SSVEP features from the recorded brain signals (Liu, et al., 2014). These 

methods work by decomposing the recorded EEG signals into simpler 

components. Fourier Transform decomposes the recorded signals into weighted 

sums of sinusoidal signals giving information on the contribution of individual 

frequency towards the signal. Wavelet transforms decompose the signals into a 

set of basis functions (wavelet) (Daubechies, 1990). The wavelet component 

containing the frequency of interest can be extracted as a feature. HHT 

decomposes the signals into intrinsic mode functions (Boashash, 2015). These 

functions represent the local characteristics of non-stationary signals. PSDA 

extracted using FFT is one of the common features used in other studies (Al-

maqtari, et al., 2009; Diez, et al., 2011; Diez, et al., 2013; Cheng, et al., 2002; 

Hwang, et al., 2012; Muller-Putz & Pfurtscheller, 2008; Wang, et al., 2010) for 

SSVEP-based BCI due to the simplicity of the FFT algorithm. After feature 

extractions, feature classification needs to be conducted to classify the signals 

for SSVEP. Value thresholding and classifier such as Linear Discriminant 
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Analysis (LDA), Linear Fisher classifier, or Support Vector Machine are the two 

common methods used for SSVEP (Liu, et al., 2014). Value thresholding such 

as the power of the intended frequency (Cheng, et al., 2002), or the dwell time 

of the subject on the stimulus (Muller-Putz & Pfurtscheller, 2008) is used to 

detect SSVEP. Once the classification is successful, the chosen SSVEP feature 

can be correlated to a pre-set function in the BCI application. 

One area of application for SSVEP-based BCI is in communication. BCI 

spelling system where a QWERTY style keyboard with flickering LED lights 

was developed for the users to type with (Hwang, et al., 2012). This enables the 

user to interact with a computer using existing interfaces such as a QWERTY 

keyboard. There are also simplified forms of communication such as SSVEP 

selection of pictures and phrases (Dehzangi & Farooq, 2018). These simplify 

the communications and categorize them into a set of preselected phrases that 

the users can convey. Another area of application for SSVEP-based BCI is for 

the control of a prosthetic arm. SSVEP was used to control the axis of motion 

for a robotic arm in one of the studies conducted (Muller-Putz & Pfurtscheller, 

2008). SSVEP-based target control of the robotic arm was also implemented in 

another study (Chen, et al., 2018). In the study, SSVEP was used to select one 

of the 15 pre-set targets in the software for the robotic arm to move to. SSVEP-

based BCI was also used to control an avatar in a virtual environment where the 

user’s avatar can navigate around the environment (Faller, et al., 2010) allowing 

for social interaction in a virtual environment. Similarly, for social interaction, 

a SSVEP-based BCI was used to control the gesture of a telepresence robot  

(Kishore, et al., 2014). All these applications show the usefulness of SSVEP as 
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a means of input for different applications. 

2.3 BCI Controlled System 

One of the earliest published studies on BCI wheelchairs was conducted 

by Tanaka et al. (2005) (Tanaka, et al., 2005). In the study, the subjects were 

tasked with thinking of moving left or right to drive the wheelchair to the left or 

right goal. Since then, there are numerous studies on BCI wheelchairs using 

different types of brain signals, navigation, and control systems (Fernández-

Rodríguez, et al., 2016). 

 

Figure 2.4 Block diagram of a BCI wheelchair. EEG is captured from the 

subject by the acquisition system using electrodes. Raw EEG 

signals are analysed to get features for classification. The 

classification algorithm will determine the state of the EEG 

signals captured. After classification, the system will trigger the 

software to move the wheelchair. 

Figure 2.4 shows a block diagram of how BCI wheelchair functions. All 

studies that are reviewed later in this section have a similar system as shown by 

the block diagram in Figure 2.4. EEG features such as Event-Related 

Desynchronization (ERD) and Event-Related Desynchronization (ERS) 
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triggered by Motor Imagery (MI) (Tanaka, et al., 2005; Millan, et al., 2009), 

P300 (Rebsamen, et al., 2007; Iturrate, et al., 2009), and SSVEP (Mandel, et al., 

2009; Xu, et al., 2012). The classification method implemented in the studies 

depends on the EEG feature selected. The classifier developed by Tanaka et al. 

(2005) used FFT features classified using pattern recognition trained by a 

recursive training algorithm. For P300, EEG features in the time domain were 

used for classification. Classifier methods such as linear discriminant analysis 

(Iturrate, et al., 2009) or support vector machine (Rebsamen, et al., 2007) were 

used for P300. For SSVEP, EEG features in the frequency domain such as 

amplitude extracted using FFT (Mandel, et al., 2009) or canonical correlation 

analysis coefficient (Xu, et al., 2012) was used for classification. Depending on 

the feature used, classification of SSVEP was conducted by using thresholding 

(Mandel, et al., 2009) or Bayesian classifier (Xu, et al., 2012). Besides these 

methods, the peak frequency in an EEG window was also used for the 

classification of SSVEP (Müller, et al., 2013). 

Once the classification stage is completed, the software will issue 

commands for the wheelchair to move. Depending on the EEG features and 

classification used, the control of the wheelchairs can be of discrete commands 

or continuous control (Fernández-Rodríguez, et al., 2016). Discrete controls 

present the users with a choice for motion, for example, the choice to move 

forward/backward, left/right, or stop at a prefixed distance or angle (Varona-

Moya, et al., 2015).Continuous control gives the users the ability to control the 

movement of the wheelchair directly, for example, the duration of turning or the 

acceleration of the wheelchair using BCI (Li, et al., 2014). A BCI-controlled 
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wheelchair allows for the control of a wheelchair using brain signals only 

without the need for physical control. 

Shared-control BCI is one of the techniques that previous researchers 

had demonstrated in the control of robotics system. A study by Chung et al. 

(2011) demonstrated the use of a hierarchical architecture BCI for the control 

of a humanoid robot. In this architecture the user of the system can teach the 

robot new tasks using the SSVEP-based BCI. Comparison was done by the 

researcher to show the reduction of SSVEP tasks required to control the robot 

using the hierarchical architecture. Another example of the shared-control 

system was the use of BCI and vision systems for robotic arm control (Tang, 

2017). In this system, machine vision was used to identify the potential targets 

for the robotic arm that were then used as selection choices by the BCI system. 

Another study also showed the use of share control of BCI system in the 

telepresence robot (Tonin, 2010). In this study, a low-level obstacle avoidance 

system was included in the telepresence robot. This allowed the subject to drive 

the telepresence robot around using BCI without hitting into obstacles. All 

These studies showed that it is possible to increase the usability of a BCI system 

through the addition of techniques from other fields of study such as robotics, 

machine vision and user interface design. 
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Patients suffering from Amyotrophic Lateral Sclerosis (ALS), 

neuromuscular disorder or spinal cord injuries would benefit from a BCI- 

controlled system. These patients have difficulties in moving their muscles to 

complete their daily tasks. System such as BCI spellers (Massari, 2013) was 

developed to help ALS patients to communicate with the outside world. Li et al. 

(2014) developed a direct control BCI wheelchair for spinal cord injury patients. 

Do et al. (2013) developed a motor-imagery BCI system to control a robotic leg 

orthosis. These studies demonstrated some use case of a BCI system to assist 

patients for communication and mobility. 

2.4 Smart wheelchair 

One challenge when controlling a powered wheelchair for a person with 

physical and mobility impairments is the difficulty to perform specific 

manoeuvres on the wheelchair (Torkia, et al., 2015). BCI wheelchairs with a 

low number of inputs and slow control presents a challenge for the users when 

the wheelchair requires precise control to navigate through a confined area or 

an area with a high amount of foot traffic. One solution that previous studies 

explored is the integration of navigation techniques from other robotic 

applications for use with the wheelchair (Cruz, et al., 2010). 

A smart wheelchair integrates a powered wheelchair with sensors, 

navigation algorithms, and intelligent control algorithms to achieve autonomous 

navigation (Simpson, 2005). Sensors such as depth cameras, ultrasonic range 

sensors, laser range finders, and inertial measurement units (IMU) were 

incorporated into smart wheelchairs (Rockey, et al., 2013). Depth cameras can 
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provide images as well as depth information of objects in the field of view of 

the camera that are useful for the autonomous navigation of a smart wheelchair 

(Li, et al., 2017). The 2D laser range finder is another common sensor used for 

smart wheelchairs (He, et al., 2017; Grewal, et al., 2017). The 2D laser range 

finder provides accurate distance measurements with high angular resolution. 

Another sensor that was used on smart wheelchairs is the ultrasonic range 

finders (Tan, et al., 2008; Punsawad & Wongsawat, 2013). Ultrasonic range 

finders can only provide measurement for the nearest object in its field of view. 

Although the resolution is the lowest compared to the depth camera and laser 

range finder, the ultrasonic range finder is still applied in smart wheelchairs 

because of its low cost (Rockey, et al., 2013). The IMU measures the angular 

rotation and acceleration of the wheelchair. Measurements obtained from the 

IMU can be used for dead reckoning calculations to localize the wheelchair 

(Khan, 2012). These sensors enable the wheelchair to perceive the surrounding, 

allowing the navigation algorithms to conduct path planning and to navigate 

while avoiding obstacles. 

Simultaneous localization and mapping (SLAM) techniques enable the 

generation of a map from measurements obtained by sensors (Tsubouchi, 2019) 

attached to the wheelchair. The ability to generate maps using SLAM allows the 

wheelchair to plan for navigation beyond the sensing range of attached sensors. 

Global path planning can be conducted by the software of the wheelchair with 

the generated map (Koubaa, et al., 2018). Algorithms such as A* and Dijkstra’s 

algorithm (Zhang & Zhao, 2014) can be implemented for global path planning 

once the map is generated. Local path planning with collision avoidance can be 
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implemented when the wheelchair is on route to the destination determined by 

the global path planner. Approaches such as Dynamic Window Approach 

(DWA), (Fox, et al., 1997) and Timed-Elastic-Band (TEB), (Rosmann, et al., 

2013) can be implemented for local navigation. DWA conducts forward 

simulation based on the current location to predict the final location after a short 

period in the future. The optimal path is selected based on the trajectory 

generated by the DWA algorithm. TEB obtains the optimal trajectory by running 

sparse scalarized multi-objective optimization equations. Multiple trajectories 

are generated and optimized in parallel to select the optimal path to traverse. 

Both algorithms conduct planning with the latest sensor information. Once the 

algorithm is implemented, the wheelchair will be able to navigate to the 

destination while avoiding obstacles along the way. 

2.5 Challenges in the implementation of a SSVEP-based BCI 

wheelchair 

One of the challenges in the implementation of a BCI system is the 

complexity of the system. As reviewed above in Sections 2.1 and 2.2, there are 

multiple steps involved in the process of producing an action using a BCI system. 

Any misstep in any one of the processes involved will affect the accuracy of the 

BCI system. The quality of the recorded EEG, the generated stimuli and the 

effectiveness of the signal processing algorithm affect how well the system can 

classify the EEG event (Chabuda, et al., 2020). A study by Lee at al. (2019) (Lee, 

et al., 2019) conducted on 44 subjects where 38 subjects were first-time BCI 

users on the use of MI, ERP, and SSVEP found that only 15 subjects were able 

to control all three BCI paradigms proficiently. It is also noted in this study that 
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at least one type of BCI was usable by all the participants. This further 

complicates the implementation of BCI as more training was needed to increase 

proficiency in the usage of the system. Proper training protocols customized to 

individual users were needed to improve the usability of a BCI system 

(Thompson, 2019). 

Besides, as mentioned in Section 1.2, mental fatigue is another problem 

faced by users of a BCI system. Subjects in the study conducted by Xie, et al. 

(2016) were required to perform 4 to 8 SSVEP BCI trials (Xie, et al., 2016). 

Each of the trial required the subject to focus on a stimulus for 5s for 20 times. 

There was a rest period of 5s between the stimulus. This study found that CCA 

results of the EEG signals recorded showed an offline accuracy of 74.33% ± 

10.83 for fatigue level 4 state compared to the accuracy of 88.52% ± 11.07 for 

fatigue level 1 state. The study by Seo et al. (2019) found that there was a slight 

attenuation in the quality of SSVEP signals measured at the Oz location in the 

second session after subjects completed a session of ERP-, MI- and SSVEP-

based BCI tasks. Changes in the signal amplitude due to fatigue may affect the 

accuracy of the system due to changes in the signal to noise ratio. 

For a SSVEP-based BCI system, the number of distinct selections is 

limited by the size of the LCD monitor or the location of LED stimulators. 

Previous studies showed that the distance to the stimulus (Wu & Lakany, 2013) 

and the separation between the stimulus (Ng, et al., 2011) both affected the 

amplitude of SSVEP detected. This limits the number of choices a person can 

make when controlling the wheelchair with SSVEP. Another challenge in 

implementing the BCI wheelchair is the control of a moving wheelchair (Al-
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qaysi, et al., 2018). Navigating a SSVEP wheelchair is a challenging task, 

involving making multiple control decisions in a dynamic environment. The 

wheelchair may pose a threat to the users or people nearby if unintended or 

wrong commands are issued by the users due to inappropriate use of the BCI. 

2.6 Proposed design of a SSVEP-based BCI wheelchair 

The challenges highlighted in Section 2.4 need to be overcome in the 

design of a SSVEP-based BCI wheelchair. The proposed wheelchair developed 

in this study will combine algorithms for navigation on a wheelchair with that 

for BCI-based SSVEP to reduce the number of inputs for control of BCI tasks. 

This is based on the idea of applying distributed controls for BCI applications 

initially explored by Goh et al. (Goh, et al., 2005) for the control of a prosthetic 

hand. The paper describes a prosthetic hand that has 4 fingers each with 3 

segments and a thumb with 3 segments that can also rotate giving a total of 16 

degrees of freedom. The hand movements were reduced to 4 main tasks – grab, 

pulp to pulp pinch, tripod pinch and key pinch so that the BCI only needs to 

provide one of four input selections to perform the desired task. The rest of the 

finger movements were carried out by a distributed controller.  

Similarly, in the current study, it would require great mental effort by the 

user to provide the many successive inputs to move the wheelchair right, left, 

forward, backward or rotate and to avoid obstacles on the way to the destination. 

Instead, the task of controlling the motion of the wheelchair will be distributed 

to the navigation software for the wheelchair. The focus of the BCI will be to 

pass high-level commands such as one of several intended destinations to the 
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navigation software that will drive the wheelchair to the destination. More 

importantly, this approach will enable the incorporation of a safe controlled 

automatic emergency stop, without any intervention from the user, should a 

moving obstacle suddenly appear within the path of the wheelchair. In this 

context, the distributed wheelchair controller acts as a distributed controller, 

taking in the inputs from the sensors to make decision for navigation 

independent of the BCI system. The next chapter of this thesis will describe 

more details of the design of the SSVEP BCI autonomous wheelchair.  
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CHAPTER 3  

DESIGN OF A SSVEP-BASED BCI AUTONOMOUS WHEELCHAIR 

WITH DISTRIBUTED CONTROLS 

3.1 Introduction 

In this chapter, the details on the design and implementation of the 

SSVEP-based BCI wheelchair are discussed. Figure 3.1 shows the block 

diagram of the design. The BCI portion consists of an EEG acquisition hardware, 

signal processing with classification software, and SSVEP stimulus generation. 

The wheelchair portion consists of the navigation software interfacing with the 

sensors and motor controllers. Interactions between these components are 

shown in Figure 3.1. Each component shown in the block diagram will be 

discussed in detail in their respective sections later in this chapter. 

 

Figure 3.1 Block diagram for the design of SSVEP-based BCI autonomous 

wheelchair developed in this study. 
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A custom EEG acquisition unit was designed and developed for the 

wheelchair developed in this study. The details for the design of the hardware 

and firmware developed are described in Section 3.2 of this chapter. Section 3.3 

covers the BCI software created for this study. The wheelchair used in this study 

is a modified version of a commercially available powered wheelchair. The 

details on the modification of the wheelchair are described in Section 3.4 of this 

chapter. The final section of this chapter will describe the methods implemented 

in the wheelchair navigation software. 

3.2 EEG Acquisition Unit 

A custom EEG acquisition unit for use with the wheelchair was 

developed. The requirement for the BCI acquisition unit for this study is to 

acquire EEG signals using the gold cup wet electrodes on a moving wheelchair. 

An analogue front-end that is capable of amplifying and applying signal 

conditioning on EEG signal between the range of 10µV to 100µV will be 

constructed. Besides, the EEG unit needs to be small, portable and can be 

powered through the USB port of a computer for its operation. A low-noise 24-

bit Delta-Sigma analogue front-end, TI ADS1299 was used in this design for 

signal conditioning. ADS1299 have 8 differential analogue inputs for 8- channel 

EEG signal acquisition. This analogue front-end also has built-in bias drive 

amplifier and lead-off detection which are useful for EEG measurements. 

Programmable gains of 1, 2, 4, 6, 8, 12, or 24 can be selected through Serial 

Peripheral Interface (SPI) of the ADS1299. The differential amplifier of 

ADS1299 has a typical value of -120dB.The integrated programmable gain 

amplifiers (PGA) in ADS1299 coupled with the low noise characteristic and 
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high precision of the analogue front-end allow the acquisition of EEG signals 

with minimal extra components (Soundarapandian & Berarducci, 2010). 

Figure 3.2 and Figure 3.3 show the schematic diagram of the EEG 

acquisition unit developed for this study. The detail bill of materials to build the 

circuit is listed in Appendix C. Each of the inputs is filtered by differential 

capacitors before the signals are fed into the differential inputs. A bias output 

from the ADS1299 is connected to the output pins for the bias electrode 

connection. The register of the ADS1299 can be configured to set the gain and 

the mode for each of the differential inputs. The ADS1299 is connected to a 16-

bit microcontroller, PIC24FJ64GB8044 from Microchip. This microcontroller 

has all the required hardware such as internal oscillators, SPI peripheral and 

USB transceivers built-in. This reduces the need for external components to use 

the microcontrollers. Both the microcontroller and the analogue front-end are 

powered from a 3.3V source. A low drop out voltage regulator is used in the 

design to convert 5V from the USB to 3.3V to power both the microcontroller 

and the analogue front-end. 
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Figure 3.2 Schematic diagram of the EEG acquisition unit sheet 1 of 2. The ADS1299 is the PGA used in the design of the EEG Acquisition 

unit. 
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Figure 3.3 Schematic diagram of the EEG acquisition unit sheet 2 of 2. APIC24FJ64GB8044 is used as the USB microcontroller to transfer 

the data obtained from the ADS1299.  
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Figure 3.4 Best practice for the layout of components recommended by 

Texas Instruments for printed circuit board (PCB) using 

ADS1299 (Texas Instruments, 2017). 

Based on the schematic diagrams, a PCB for the EEG acquisition unit 

was designed. Figure 3.4 shows the best practice when designing the layout of 

components to prevent noise from the high-frequency digital coupling back into 

the analogue signals. Ground fill or planes are recommended for void areas 

underneath the signal’s routes. Splitting of ground planes between the analogue 

and digital ground planes is recommended. Figure 3.5 shows the design of a 

two-layer PCB for the EEG acquisition unit following the recommendations 

given by Texas Instruments. The board is separated into two portions by a split 

ground cut at 45° in the middle of the board. The digital portion of the circuitry 

which contains the microcontroller and USB is at the top right portion whereas 

the analogue circuitry is at the bottom left portion. The substrate use for the PCB 

fabrication is FR-4 with a thickness of 1.6mm and 1 oz copper. PCB surface 

finishing is conducted using electroless nickel immersion gold plating. 
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Figure 3.5 Two-layer PCB layout for the EEG acquisition unit. a) red layer 

is the copper traces for the top layer. b) blue layer is the copper 

traces for the bottom layer. Green colour traces in the figure pads 

for vias and components. 

Digital signals from the ADS1299 analogue front-end are then fed to the 

microcontroller through SPI. Custom firmware was developed to interface with 

the ADS1299 through the USB. All the register of ADS1299 can be configured 

through the USB using the developed firmware. This allows the BCI software 

on the computer to access and configure all the features on the ADS1299 during 

operation. Settings such as the sampling rate, the number of channels sampled, 

and the PGA’s gain can be adjusted through the firmware. The firmware is 

designed to send data according to the settings provided by the BCI software. 

Every EEG sample is 3 bytes in size. Depending on the number of channels and 

the sampling rate requested the packet size will change accordingly.  The 

maximum sampling rate that the firmware can cater for is 250 samples per 

second for eight channels which translates to a data rate of 6kB per second.  

Pseudocode 3.1 shows the operation of the firmware created for the EEG 

acquisition unit.  
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After power-on reset, the first routine the microcontroller performs is to 

initialize the ADS1299. There is a power-up sequence to power up the internal 

oscillator, the analogue and digital circuitries of the ADS1299. Once the power-

up sequence is completed, the microcontroller will run an initialization routine 

for the USB communication stack. After the stack is initialized the software on 

the computer can communicate with the USB device. The firmware will wait 

for commands from the computer in the main loop. If the device receives new 

register settings for the ADS1299, the firmware will update the corresponding 

register in the ADS1299 accordingly. Start of acquisition can be triggered by the 

software in the computer through the USB. Leadoff detection is enabled during 

measurement to ensure that the EEG leads are connected properly during the 

acquisition. A notification will be sent to the computer if leadoff is detected. 

Raw ADC data will be stream to the computer once every sample is obtained 

from the ADS1299. No signal processing steps are conducted in the firmware. 

All further digital signal processing steps are conducted in the BCI software on 

the computer. 

Pseudocode 3.1: EEG Acquisition Firmware  

01. Perform ADS1299 power-up sequence 

02. Initialization of USB communication stack 

03. Main loop: 

04.    if new register setting is available 

05.        update ADS1299 Register 

06.    end 

07.    if start acquisition 

08.        while stop acquisition == false 

09.            send raw adc data through USB 

10.     end 

11.    end 

12. end 
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3.3 BCI Software 

The BCI software developed in this study is responsible for the 

collection, processing and classification of EEG signals measured by the EEG 

acquisition unit. After a successful classification, the software will generate the 

corresponding control signals to drive the wheelchair. A user interface was also 

created to allow the users access to all the features developed to control the BCI 

wheelchair. Besides EEG-related tasks, the software is responsible for the 

generation of SSVEP stimulus. Figure 3.6 shows the block diagram and the 

sequence of the algorithm for the developed BCI software.  

The software is responsible for the generation of visual stimulus. The 

visual stimuli used are white square patches flickering on black background. 

The stimuli are generated on an LCD screen. There will be a maximum of six 

stimuli present at any one time on the screen for selection. Each of the patches 

flickers at a different frequency, providing the subject with six different choices 

when looking at the stimuli. The frequencies at which the patches flickered are 

7Hz, 11Hz, 12 Hz, 13 Hz, 14 Hz, and 15Hz. The frequency and location of the 

patches can be adjusted in the developed software. 

 

Figure 3.6 Block diagram of the developed BCI software. The software is 

responsible for the generation of stimulus and the classification 

of SSVEP. 
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Data obtained from the EEG acquisition unit are raw ADC values of the 

voltages detected on the electrode after amplification. The ADC values are 

converted into voltages before the filtering step. Equation (3.1) shows the 

calculation to obtain the voltage from the ADC value.  

𝑣 = (
X

2𝑛
∗ 𝑉𝑟𝑒𝑓) ∗

1

𝐺
    (3.1) 

where X is the ADC value, n is the bit of ADC, 𝑉𝑟𝑒𝑓 is the reference voltage and 

G is the gain of the PGA. The ADS1299 has a built-in 24-bit ADC and an 

internal reference of 4.5 volts. These 2 values are substituted in equation (3.1) 

for the calculation of voltage measured. The gain of the amplifier, G, can be 

adjusted in the software and will vary depending on the configuration used 

during measurement. The gain used throughout this study is 24. Using this 

equation, the value of the electric potential measured on the electrode can be 

obtained. The sampling rate of the EEG acquisition unit is set at 250Hz in this 

study. According to Nyquist theorem, the sampling frequency must at least be 2 

times higher the maximum frequency in the measured signal (Ravanshad & 

Rezaee-Dehsorkh, 2020). The maximum frequency of interest measured in this 

study is 15Hz. The sampling rate of 250Hz is a suitable value for the EEG 

acquisition unit in this study. 

After conversion, the sampled signal will passthrough a finite impulse 

response (FIR) filter. The FIR digital filter used in this study is a bandpass filter 

with a passband of 2Hz to 23Hz. The lower range of 2Hz is selected to remove 

low-frequency artefacts that may arise due to motion of the subject. The upper 

range of 23Hz is selected to remove powerline noise at 50Hz in Malaysia and 
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other high-frequency noise. The range of frequency for the measured EEG 

signal is in between the passband selected. FIR filter coefficients used by the 

software is created using filter designer from the signal processing toolbox of 

MATLAB. The filter is designed using the Equiripple method with the structure 

of Direct-Form FIR. The magnitude for the stopband is set at 80dB and 0.01dB 

is set for the passband. This results in a 1019 order FIR filter. Figure 3.7 shows 

the magnitude response of the designed filter. The large initial delay in the FIR 

filter is unavoidable in order to fulfil the passband, stopband, and slope 

requirements of the filter. The coefficients from the designer are exported for 

use in the BCI software. 

 

 

 

Figure 3.7 Magnitude response of the 1019 order Direct-Form FIR 

bandpass filter with a passband of 2Hz to 23Hz. 
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The step after filtering is to perform FFT on the filtered data. The power 

spectrum obtained from FFT is used as the feature for classification in this study. 

A sliding window is used to frame the data for FFT. The width of the window 

and step size can be adjusted in the software. Figure 3.8 shows an example of 

the sliding window used in the software developed. In this example, incoming 

EEG signals are segmented into a 2000ms sliding window with a step size of 

250ms. FFT is conducted on each of the sliding window to obtain the power 

spectrum of the measured EEG signals. 

 

Figure 3.8 Sliding window over the measured signals. Window length used 

in this study is 2000ms. The step size of 250ms is used for the 

sliding window. 

 An adaptation of the PSDA classification algorithm is implemented for 

the classification. A successful classification of SSVEP is attained if the 

resultant FFT magnitude of the stimuli’s fundamental frequency is higher than 

the threshold set for five consecutive windows. The threshold for detection was 

n times the mean value of the amplitude spectrum between 3Hz and 23Hz. The 
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multiplier, n for detection can be adjusted in the developed software. An event 

will be generated when a successful classification is generated. In this study, the 

threshold of n = 3 is used. This value is determined based on the data collected 

from the previous studies of my research team (Chin, 2017; Mah, 2017).  

The BCI software was developed for both Windows and Ubuntu. In 

Windows, the software was developed as a .Net application written in the C# 

programming language. DirectX renderer is used to ensure the timing of patches 

can be controlled. For Ubuntu environment, the software was developed as a 

Robot Operating System (ROS) Node written in the C++ programming 

language. OpenGL was used in Ubuntu environment for the generation of the 

flickering. 

3.4 Wheelchair Hardware 

The wheelchair used in this study is a commercially available powered 

wheelchair Titan X23 from Drive DeVilbiss Healthcare. This wheelchair is a 24 

V battery-operated wheelchair with a dimension of 952.5mm length, 596.9mm 

width, and 1104.9mm height. The maximum load that the wheelchair can carry 

is 136kg. The wheelchair is differentially driven by 2 motors each with a power 

of 270W. The wheelchair was modified to convert it to a wheelchair capable of 

autonomous function. Sensors were added and the driver for the motor was 

changed so that the wheelchair can be driven autonomously. Extra mechanical 

structures were also added to cater for the mounting of sensors used for the 

wheelchair. 
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Sensors added to the wheelchair include wheel encoders, ultrasonic 

range sensors, an inertial measurement unit (IMU), and laser range finders. The 

wheel shaft was modified to enable the installation of wheel encoders on both 

the left and right drive wheels. Two incremental type shaft encoders with a 

resolution of 500 pulses per revolution with two phase output were installed in 

the wheelchair. Each of them was connected to the wheel through a pulley 

system. The pulley mounted on the encoder is connected to the pulley mounted 

on the wheel by a synchronous belt. The diameter of the pulley mounted to the 

wheel shaft is 48mm with 30 teeth and the pulley mounted to the encoder is 

15.66mm with 10 teeth. The wheel diameter of the wheelchair is 257. 

8mm.From these values, the distance travelled by each of the wheel can be 

calculated from the encoder readings. Equation 3.2 shows the calculation for the 

distance per pulse, 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑒𝑟 𝑝𝑢𝑙𝑠𝑒 =
d𝑤ℎ𝑒𝑒𝑙

3∗4∗n
= 0.043𝑚𝑚   (3.2) 

where d𝑤ℎ𝑒𝑒𝑙 is the diameter of the wheel, 3 is the ratio of the pulley, 4 is the 

multiplier for encoder running in quadrature mode and n is the number of pulses 

per revolution for the encoder. From the calculations, the distance per pulse 

detected is 0. 043mm.This value was used as one of the inputs for the odometry 

calculation of the wheelchair. 

Ranged sensors such as ultrasonic and laser range finders were installed 

on the wheelchair to detect the surrounding environment. A tray was added in 

front of the seat for the mounting of front-facing sensors. This tray was also 

used to place the computer and the EEG acquisition unit. Ultrasonic sensors 
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from MaxBotix operating at 42KHz with a detection range of 0.03m to 5m was 

mounted at the front of the wheelchair. Besides the ultrasonic sensors, a laser 

range finder, URG-04LX-UG01 from Hokuyo with a maximum detection 

distance of 5.6m over 240° angle with an angular resolution of 0.325° was also 

fitted at the front tray. Both sensors provide information about the surrounding 

to the navigation software. 

A navigation laser range finder, NAV350 from Sick was also added to 

the wheelchair to allow the wheelchair to see further. The navigation laser range 

finder has a maximum scanning range of 250m with the capabilities to detect 

specific reflectors landmark within a range of 70m. This laser range finder can 

obtain readings over 360° angle with an angular resolution of 0.1°. Besides this, 

the navigation laser range finder also has a position function where the 

navigation laser range finder can calculate it’s position relative to the landmarks 

detected given a map and odometry values. However, due to the 360° angle 

operation range of the navigation laser range finder, it was mounted above the 

head of the passenger on the wheelchair. The wheelchair was modified with 

extra supporting structures at the back so that the navigation laser range finder 

can be mounted. The support was designed so that the laser operating height 

was set at 1.8m. This height was selected so that the bottom of the navigation 

laser range finder was 0.5m above the headrest of the wheelchair. This will 

ensure that the wheelchair and the subject sitting on the wheelchair will not 

block the line of sight of the navigation laser range finder. Figure 3.9 shows the 

modification on the wheelchair to accommodate the wheel encoders, ultrasonic 

sensors, obstacle, and navigation laser range finders. 
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Figure 3.9 The modification conducted on the wheelchair for the mounting 

of sensors. Extra structures are added to the wheelchair so that 

the navigation laser pole can be added at the back of the 

wheelchair. The front-facing tray is mounted to the armrest of 

the wheelchair. Pulleys were added to both wheels as the 

interface with the wheel encoders through the belts. 

The obstacle laser range finder was connected to the computer directly 

through the USB interface while the navigation laser range finder was connected 

to the Ethernet interface of the computer. A wheelchair control board was 

designed to interface with other sensors and to control the wheelchair motor. 

Other sensors such as the ultrasonic range sensor and the wheel encoders were 

connected to the wheelchair control board. Figure 3.10 shows the schematic 

diagram of the wheelchair control board. The control board was designed to be 

able to interface with two wheel encoders and a maximum of five ultrasonic 

sensors. The board and sensors connected were powered through the USB port. 
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Figure 3.10 Schematic diagram of the wheelchair control board. 
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A microcontroller designed for motor control from Microchip, 

DSPIC33FJ64MC804 was used as the controller for the wheelchair control 

board. A 9 axis IMU, MPU-9250 was incorporated into the wheelchair control 

board as well. The IMU consists of a 3-axis accelerometer, a 3-axis gyroscope 

and a 3-axis magnetometer. The I2C communication protocol was used for the 

communication between the IMU and the microcontroller. A digital to analogue 

converter was used to control the motor driver of the wheelchair. The motor 

driver used for the wheelchair is a 60A dual-channel DC Motor Driver, 

MDDS60 from Cytron. The analogue operating mode of the driver is used for 

driving the motors of the wheelchair. A USB to UART convertor was used to 

interface the wheelchair controller board and the wheelchair software in the 

computer. Figure 3.11 shows the PCB designed based on the schematic diagram 

in Figure 3.9. 

 

Figure 3.11 2-layer PCB layout for the wheelchair control board. a) red layer 

is the copper traces for the top layer. b) blue layer is the copper 

traces for the bottom layer. Green colour in the figure traces pads 

for vias and components. 
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Pseudocode 3.2 shows the routine conducted by the firmware every 

50ms. The control speed for the wheelchair was determined by the navigation 

software in the computer. For safety purposes, if the wheelchair controller 

firmware does not receive any control value from the computer within the 50ms 

timeframe, the firmware will execute an emergency stop. This is to prevent any 

unwanted incidents when there is an accidental disconnection between the 

computer and the wheelchair control card. For odometry calculations, the 

firmware implementation for the calculation of odometry through the fusion of 

encoders and gyroscope value using indirect feedback Kalman filter by Soh is 

used (Soh, 2018). Once the firmware obtained the IMU values from the sensor 

and odometry values from the calculation, the data will be sent to the computer 

through the UART interface. 

3.5 Wheelchair Navigation Software 

The software designed for the wheelchair must be able to integrate all 

the sensors provided to perform the navigation task and to conduct navigation 

decisions by interpreting the EEG software output. This is needed to ensure that 

Pseudocode 3.2: Wheelchair Controller Firmware  

01. Perform IMU9250 power-up sequence 

02. Setup UART and Digital to Analogue Convertor 

03. For every 50ms: 

04.    Sample IMU sensors value 

05.    Update control value obtained through UART 

06.    Calculate Odometry values using indirect  

       feedback Kalman filter. 

07.    Send Odometry and IMU values through UART 

08. end 
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the wheelchair can navigate autonomously. This is important to achieve the 

distributed control system needed to control the wheelchair autonomously using 

SSVEP BCI. To achieve autonomous navigation, the wheelchair navigation 

software needs to interface with all the sensors that were installed. The 

developed software interfaces with the sensors and controller through the USB 

and Ethernet interface. Figure 3.12 shows the block diagram for the software 

created.  

 

Figure 3.12 Block diagram of the wheelchair navigation software. The 

software is responsible for, SLAM, path planning and obstacle 

avoidance. 

Two modes of operation were developed for the wheelchair. The first is 

the destination mode where the user only selects a destination. The wheelchair 

will be moving to the destination without further input needed from the user. 

For this mode, the wheelchair can only operate in a known environment where 

the map of the surrounding is available. The second mode of operation 

developed for the wheelchair is the directional mode. In this mode, the user will 

be selecting a direction of travel for the wheelchair, the wheelchair will move 

in the direction selected while planning the path with a custom exploration 

algorithm. For this mode, the wheelchair can be operated in a known or 

unknown environment. SLAM will be conducted by the wheelchair in this mode. 
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The map generated in the directional mode can later be used in the destination 

mode. 

SLAM in the directional mode is implemented using Cartographer 

SLAM (Hess, et al., 2016). Cartographer is a system that can conduct real-time 

SLAM in 2D and 3D environments. Cartographer SLAM has two main 

subsystems, the local SLAM and Global SLAM subsystems. The local SLAM 

is tasked with generating good submap from the input sensors. The global 

SLAM takes in the submap generated by the local SLAM and performs scan-

matching for loop closure joining the submaps to generate a map of the 

surrounding. Laser range finders mounted on the wheelchair are used as the 

input sensor for SLAM. Fixed cell maps generated from SLAM can be used for 

both directional and destination mode. 

A custom exploration algorithm for the wheelchair was developed for 

the directional operation mode. The custom exploration algorithm is a laser-

based frontier detection and waypoint generation. Pseudocode 3.3 shows the 

steps taken for the generation of waypoints for navigation in directional mode. 

 

Pseudocode 3.3: Exploration Algorithm 

01. For every Laser Scan: 

02.    Obtain the robot location from SLAM 

03.    Identify new region from laser scan 

04.    Calculate centroid of traversable region 

05.    Publish centroid of marker as viable  

       waypoints for motion 

06.    Update waypoints status 

06. End 
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A frontier is defined as a segment that separates the explored and the 

unknown regions for a robot (Yamauchi, 1997). A frontier can be detected by 

overlapping the scan region from laser scans and the map generated by SLAM. 

Figure 3.13 shows an example of a frontier in the directional operation mode. 

The laser scan result will determine whether the frontier is traversable or not. If 

no obstacle is detected by the obstacle sensors, the frontier region will be 

marked as traversable by the algorithm. 

 

Figure 3.13 The explored region is indicated by the light grey colour in the 

map generated. The unknown region of the map is coloured dark 

grey. The intersection between the unknown region and the 

explored region is the frontier. 

 

Figure 3.14 An example of a traversable unknown region, α is the angle 

between the start and end of the traversable region as detected 

by the laser range finder. 
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Waypoints are generated from the centroid of newly detected traversable 

regions. A traversable region is defined as a continuous region between two laser 

scans where the underlying region is unknown. Figure 3.14 shows an example 

of an unknown traversable region. α is the angle between the start and the end 

of the traversable region. The angle α of a region needs to be larger than 10°. 

This is to ensure that the wheelchair can move past the frontier region detected. 

If the angle α is larger than 45°, a new traversable region is created. This is to 

ensure that waypoints in multiple directions were generated by the exploration 

algorithm when the wheelchair is in wide open space. Equation 3.3 shows how 

the centroid distance of the region is calculated. 

𝑑𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =  
2 sin(∝)∗𝑠𝑐𝑎𝑛𝑚𝑎𝑥

3∝
    (3.3) 

where α is the angle between the start and end of the traversable region and 

𝑠𝑐𝑎𝑛𝑚𝑎𝑥 is the maximum scan distance of the laser range finder used for the 

exploration algorithm. 

 

Figure 3.15 Coordinate of centroid and the coordinate of the wheelchair 

referenced to the generated map. 

The centroid is located at ∝/2  from the start of the traversable at a 
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distance of 𝑑𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 from the current position of the wheelchair. Figure 3.15 

shows an example of a centroid obtained from using Equation 3.3. The next step 

for the exploration algorithm is to generate the coordinates of the waypoints to 

the map frame from 𝑑𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 and the angle. Equation 3.4 shows the calculation 

of the waypoint coordinates referenced to the map frame generated by SLAM, 

[
𝑥𝑐

𝑦𝑐
] = [

𝑥𝑤

𝑦𝑤
] + [

cos (𝜃𝑠 +
∝

2
)

sin (𝜃𝑠 +
∝

2
)

] ∗ 𝑑𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑  (3.4) 

where (𝑥𝑐,𝑦𝑐) is the coordinate of the centroid, (𝑥𝑤,𝑦𝑤) is the coordinate of the 

wheelchair, 𝜃𝑠angle for the start of the traversable regionreferenced to the map 

frame, ∝/2 is the angle of the centroid and 𝑑𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 is the distance obtained 

from equation 3.3 .Once the coordinate of the centroid referenced to the map 

frame is generated, a conditional check is performed to ensure that the Euler 

distance between the newly generated waypoint is at least 0.3 times of 

𝑠𝑐𝑎𝑛𝑚𝑎𝑥for the new waypoint to be registered. At the end of every laser range 

finder scan cycle, all waypoints will be checked and updated. If any of the 

waypoints on the explored region of the map, the waypoints will be marked as 

explored else the status will be kept as unexplored. 

The directional mode uses the waypoints generated by the exploration 

algorithm for navigation. In this mode, four quadrants (front, back, left and 

right) will be presented to the user. Once the user of the wheelchair made a 

selection, the wheelchair will move towards the nearest waypoint detected in 

the quadrant selected by the user. For directional mode, the wheelchair will 

continue to move until there is no new waypoint generated in the direction of 
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travel selected by the user. The envelope of travel for the quadrant depends on 

the location of the wheelchair when the directional travel is initiated. Figure 

3.16 shows an example of the four quadrants available for selection in the 

directional mode. In the directional mode, the user can trigger and save the 

current coordinate of the wheelchair for use in the destination mode. 

 

Figure 3.16 The 4 quadrants of travel available for the wheelchair in 

directional mode. 

For the destination mode, the wheelchair will be using a predefined map 

for navigation. The predefined map can be the map generated by SLAM in the 

directional mode or a pre-programmed map in the software. In this mode, the 

wheelchair can only move within the explored region up to the boundary as 

defined by the map. Any goals given to the wheelchair in the unknown region 

will not trigger any movements. Adaptive Monte Carlo localization (AMCL) 

was applied to localize the wheelchair in the map selected. Monte Carlo 

localization is a set of probabilistic algorithms which utilizes particle filter to 

determine the position information of a robot on a map (Thrun, et al., 

2001).Adaptation of the sample size during the estimation process for MCL 

using KLD-resampling increases the efficiency of the particle filter (Fox, 2003). 
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AMCL will generate an estimated position for the wheelchair reference to the 

map frame. Path planning and navigation can be conducted by the wheelchair 

in destination mode when the wheelchair knows the current position. 

Both destination and directional modes use the same navigation stack to 

control the motion of the wheelchair. The navigation stack is separated into 

global navigation and local navigation. The global navigation will seek out the 

path needed for the travel to a given destination. A* path planning algorithm is 

used to get the global path for the robot to travel to. A* path planning aims to 

find a path to the given goal with the shortest distance from the current position 

(Ferguson, et al., 2005). The algorithm achieves this by doing an iterative search 

measuring the Manhattan distance to the goal at every step and creating the 

shortest path incrementally. 

Once a path is found, the wheelchair can navigate to the destination 

following the path. The local path planner is responsible for the control of the 

local trajectory of the wheelchair in the local frame. The local frame is a 4m x 

4m square region with the wheelchair in the middle of the region. Time Elastic 

Band (TEB) path planner is implemented as the local path planner. TEB can 

compute the optimal trajectory by solving a sparse scalarized optimization 

problem (Rosmann, et al., 2013). The weights for the optimization problem can 

be changed to specify the behaviour of the local planner on the motion of the 

wheelchair. The local planner for the wheelchair is set to run the optimization 

step every 50ms. Any obstacle newly detected by the ultrasonic or the laser 

range finders is added to the local costmap used for TEB path planning. The 

local planner will avoid any obstacle while following the global path to the 
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destination selected. Control signals for the wheelchair will be generated by the 

navigation stack and passed to the wheelchair controller through the USB to 

serial converter. 

 

Figure 3.17 Flowchart of the navigation software for both the destination and 

the directional modes.  

In the event where there is no viable path within the local space, the 

wheelchair will attempt to search for a new global path. If both the local and 

global planner failed to find a viable path, the wheelchair will stop and inform 

the user to select a new direction or destination. Figure 3.17 shows a flowchart 

summary for the navigation software. 
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3.6 SSVEP BCI Autonomous Wheelchair with Distributed Controls 

The SSVEP BCI autonomous wheelchair with distributed controls is 

achieved by combining the EEG acquisition unit, EEG software, wheelchair 

controllers, sensors and the wheelchair software as described in section 3.2 to 

3.4. The main objective of this study is to create a system to minimize inputs 

from the user to get to an intended destination. To achieve this the multiple 

decision-making processes of navigating the wheelchair needs to be separated 

from the BCI. The SSVEP based BCI selection can be considered as a discreet 

selection where there are 2 states detected or not detected for each of the 

stimulus frequency. The number of distinct actions that can be triggered by the 

SSVEP BCI depends on the number of stimuli available on-screen at any one 

time. In this study, the number of stimulus on screen is limited to a maximum 

of 6 at any one time resulting in a maximum of 6 different selections available 

to the user of the BCI wheelchair. 

 

Figure 3.18 Interface between the user interface, software, and hardware for 

the SSVEP BCI Autonomous Wheelchair. 

Figure 3.18 shows the interface between each of the components of the 

wheelchair. Inputs from the user will determine the operation mode of the 
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wheelchair. The user does not control the wheelchair directly using the SSVEP 

BCI. The user only gives high-level commands through the BCI to control the 

wheelchair. In directional mode, the direction of travel is passed to the 

wheelchair software. In the destination node, the destination of travel is passed 

to the wheelchair software. The task of controlling the motion of the wheelchair 

is distributed to the software and firmware level from the user. As described in 

section 3.4, the wheelchair software will conduct path planning and obstacle 

avoidance to navigate the wheelchair to a destination automatically. While the 

wheelchair is moving, the user can trigger the wheelchair to stop using the BCI 

user interface. Task such as obstacle avoidance that is not easily achieved with 

direct BCI driven wheelchair can be done autonomously by the wheelchair 

control software. The capability of avoiding an obstacle as well as a safe 

controlled emergency stop when a moving obstacle suddenly appears in the path 

of the wheelchair are very important features for a wheelchair operated using 

BCI. These features are integrated into the wheelchair path planner to ensure 

the safety of user with severe mobility impairment when using the wheelchair. 

In the firmware and hardware level, the system is designed so that the 

wheelchair will also perform a safe controlled emergency stop when there is any 

disconnection between the software level and the hardware interfaces. Issues 

such as loss of sensors reading and the disconnection with the EEG interface or 

the wheelchair controller will put the wheelchair into the emergency stop mode. 

The safety of the user is one of the key factors that is considered when the 

wheelchair is designed.  
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CHAPTER 4  

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter focuses on the results and discussion from this study. 

Section 4.2 focuses on the EEG obtained using the acquisition system and the 

accuracy of the BCI software. The result for the destination-based control of 

autonomous wheelchair using SSVEP-based BCI is discussed in Section 4.3. 

Section 4.4 details the functions and experimental results for the wheelchair 

software. The last part of this chapter covers the comparison between distributed 

control scheme against SSVEP-based BCI to control the wheelchair directly. 

4.2 EEG Acquisition System and BCI Software 

The EEG acquisition unit described in Section 3.2 was fabricated and 

used as the acquisition unit for the wheelchair in this study. Figure 4.1 shows 

the fabricated EEG module housed in an aluminium case. In this study, EEG 

was obtained from the gold-plated reusable EEG cup electrode placed on the Oz 

position. The mastoid positions, M1 and M2 served as the reference and the 

ground for the measurements. For all measurements conducted in this study, 

each location where the electrode was placed was prepped with a mild abrasive 

(NuPrep skin prep gel). The cup electrode was filled with Ten20 electrode paste 

and covered with a piece of cotton and secured with medical tape to ensure that 

the electrode was in proper contact during measurements. A 2.2GHz Intel Core 

I5 laptop with 4GB RAM was used to run the developed BCI software. 
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Figure 4.1 Fabricated EEG acquisition unit housed in an aluminium case 

with 3 terminals for signal, ground and reference. 

 

Figure 4.2 Selection GUI for the accuracy test. A green triangle arrow 

indicates the stimulus targeted for selection. 

A study was conducted to test the accuracy of the developed EEG 

acquisition and BCI software. In the study, each subject was required to undergo 

three accuracy trials. The subject was required to complete a 12-selection task 

by looking at the stimulus on the selection GUI as shown in Figure 4.2 in each 

of the accuracy trial. Each selection task consists of a rest period of 5s where 

the screen was fully black and another 5s of selection period where the screen 
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contained the stimulus. A target location was chosen randomly out of the 6 

frequencies for selection. A triangle green arrow would appear beside the 

stimulus 1s before the stimulus started to flicker. The arrow only indicates the 

target for selection and will not affect the classification result. 

 

Figure 4.3 Experimental steps taken for the accuracy trial. Black colour in 

the bar represents the time when the screen is black without 

stimulus while white represents the time when the stimuli were 

flickering. The green triangle below the bar indicates the time 

when the cue is given by the software. A 15s baseline is added in 

front of the study to record EEG baseline of the subject before 

the starts of the trial. The selection task where the subject is 

required to select were repeated 12 times for each trial. 

Figure 4.3 shows the experimental steps conducted for the accuracy trial. 

Each frequency would be chosen twice within a single duration of the accuracy 

trial. The frequencies used for the accuracy test were 7Hz, 11Hz, 12Hz, 13Hz, 

14Hz, and 15Hz. Each of the participants in this study was required to repeat 

the accuracy trial 3 times. EEG signal recorded when the stimuli were on would 

be passed to the classifier as described in Section 3.3 for classification. The 

result for classification was recorded and saved for review after the accuracy 

trials. The classification accuracy was calculated using Equation 4.1, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∗ 100%   (4.1) 

where TP represents true positive, FP represents false positive, TN represents 
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true negative, and FN represents false negative. TP is when the classification 

result of SSVEP matches the stimulus frequency of the flickering patch shown 

by the green triangle arrow for a given task. For the accuracy trials, TN is always 

equal to zero because no selection can be done during the rest period. FP is when 

the classified SSVEP indicates a different frequency compared to the one that is 

pointed out by the green triangle arrow. FN is counted when there is no 

successful classification during the 10s period for a task. For a given accuracy 

trial the denominator of the equation can be simplified to 12 as the sum of TP, 

FP and FN will be 12 given the number of tasks for one accuracy trial. This will 

simplify equation 4.1 to the equation (4.2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

12
∗ 100%   (4.2) 

A total of five subjects were recruited for the study to test the accuracy 

of the developed EEG acquisition and BCI software. All the participants of this 

test had previous experience of using a BCI system. Participants of this study 

were aged between 23 and 28 when this study was conducted. Instructions and 

training for the accuracy trials were given to the subjects before the 

commencement of this study. All three trials were conducted on the same day 

and the result for the study is shown in Table 4.1. 

Table 4.1: Accuracy results obtained by the 5 subjects for the 3 trials. 

  Trial 1 Trial 2 Trial 3 Average 

Subject 1 100.00% 91.67% 100.00% 97.22% 

Subject 2 91.67% 83.33% 91.67% 88.89% 

Subject 3 66.67% 91.67% 83.33% 80.56% 

Subject 4 83.33% 75.00% 100.00% 86.11% 

Subject 5 91.67% 83.33% 83.33% 86.11% 
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Overall Accuracy: 87.78% 

The BCI system that was implemented for this study achieved an overall 

accuracy of 87.78%. Table 4.2 listed the number of false positives and false 

negatives recorded over the 3 trials. FP occurred when the classified frequency 

was different compared to the frequency of the stimulus pointed by the green 

arrow. This might be due to the subject looking at stimulus a frequency other 

than the one that was pointed out by the green arrow during the trial. FN might 

occur if the resultant FFT magnitude of the stimuli’ fundamental frequency was 

not higher than the threshold set for 5 consecutive windows. 

Table 4.2 Number of false positives and false negatives from the accuracy 

study 

 False Positive False Negative 

Subject 1 1 0 

Subject 2 2 2 

Subject 3 3 4 

Subject 4 1 2 

Subject 5 1 4 

 

 

Figure 4.4 EEG Spectrogram of a subject undergoing an SSVEP accuracy 

trial. The baseline and 6 tasks are shown in the EEG spectrogram. 

The label on the x-axis indicates the start time of the first task 

and the frequency of stimulus pointed by the green arrow. 

Figure 4.4 shows an example of the EEG spectrogram of a subject during 
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the first 6 tasks within the accuracy trial. The spectrogram shows the SSVEP 

measured in the EEG signal of the subject. During the period of stimulation, the 

resultant FFT magnitude of the stimuli’ fundamental frequency indicated by 

yellow colour is higher compare to the magnitude of other frequencies. 

The accuracy study showed that the developed EEG unit can classify 

SSVEP signals when the subject was looking at the stimulus. In this study, the 

threshold for the BCI system was fixed at three times the average of the FFT 

window. If the threshold is to be customized individually for each of the subject, 

the number of false negative would be reduced. The setup similar to the 

accuracy study would be used as the BCI input for the control of the autonomous 

wheelchair. Besides the current study, the BCI system developed was also used 

for the study to develop an SSVEP based communication interface (Mah, 2017; 

Mah, et al., 2019) and study of the effect of age on SSVEP signals (Chin, 2017).  

The EEG acquisition device was designed to be safely operated using a 

battery-powered laptop. Any connections to the main power supply (240V, 

50Hz) are not allowed during the EEG acquisition. This is to ensure that there 

is no pathway of current flow from the subject to any AC power source. The 

leakage current for the electrodes is rated at 110pA (Texas Instruments, 2017). 

This leakage current is safe for the users of the EEG acquisition unit. 

4.3 Preliminary Study on Destination based Control of an Autonomous 

Wheelchair 

A preliminary study was conducted to study the feasibility of controlling 
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an autonomous wheelchair through the selection of destination using SSVEP-

based BCI. Figure 4.5 shows the block diagram of the SSVEP-based BCI 

autonomous wheelchair used in this study. The setup of the wheelchair used in 

the study is shown in Figure 4.6.The wheelchair software was configured to 

work with a preconfigured map for navigation. The built-in capabilities of the 

NAV-350 navigation laser range finder for localization was used to localize the 

wheelchair in the given map. Ultrasonic sensors were mounted in the front of 

the wheelchair for obstacle avoidance. 

 

Figure 4.5 System block diagram for the SSVEP BCI wheelchair in the 

preliminary study. 



 

56 

 

 

Figure 4.6 Prototype autonomous wheelchair with PC, BCI acquisition unit, 

NAV350 navigation laser range finder and ultrasonic sensors 

Figure 4.7 shows the placement of the stimulus on the computer screen. 

Each of the stimulus represents a pre-set location the wheelchair can move to. 

Once a destination is selected, the navigation software will plan the shortest path 

to the destination using A* algorithm. The wheelchair will navigate 

autonomously from the current location to the selected destination. 

 

Figure 4.7 Interface for destination selection. There are four destinations (A, 

B, C, D) to choose from in the BCI GUI. The return selection is 

to close the application. 
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Figure 4.8 Preconstructed map with the 4 locations corresponding to the 

selections marked. Yellow colour in the map indicates areas 

which the wheelchair can navigate, while red indicates areas 

where it cannot. 

The trial for the wheelchair was conducted in a lab located at Universiti 

Tunku Abdul Rahman. Figure 4.8 shows the pre-constructed map used by the 

wheelchair for navigation. The yellow colour on the map indicates the area 

where the wheelchair can move through. For this trial, four locations indicated 

by A, B, C and D were set at the fixed location when the map was constructed. 

The same subjects that had gone through the accuracy study described in 

Section 4.2 were recruited to undergo the preliminary study for the destination-

based control of the wheelchair. In this study, the subjects were required to 

complete a series of selections to move the wheelchair around the 

preconstructed map. Figure 4.8  shows the start location and the four 

destinations that the subjects were required to select for the trial. The subjects 

were required to select and move the wheelchair in the following sequence, Start, 

D, C, B, A. Figure 4.9 shows an example of the path generated once the subject 

selected D as the destination for the wheelchair. From the trials, all subject 

successfully completed the tasks of moving the wheelchair to the four 

destinations. 
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Figure 4.9 Path taken by the wheelchair after a subject selected to move to 

location D using BCI SSVEP from the start location. 

This study showed the prospect of using an autonomous wheelchair 

where the SSVEP BCI system was only used for destination selection. On 

receiving the destination information, the distributed wheelchair controller 

successfully navigated the wheelchair to the selected destination avoiding 

obstacles on the way (Ng, et al., 2014). However, a destination only system is 

not that useful in the real-world setting. There is a possibility that the location 

the subject wanted to go to is not part of the pre-programmed destination. This 

is a drawback of using a destination only system. Therefore, a directional based 

system as described in Section 3.4 is added to the wheelchair software. 

4.4 SSVEP BCI Autonomous Wheelchair with Distributed Controls 

Robot Operating System (ROS) is used to implement the wheelchair 

software for the full system which incorporates the directional and destination 

systems. ROS is an open-source robotics middleware for the control of a robotic 

system with a well-established ecosystem for tools related to autonomous robots. 

In ROS, nodes are the execution blocks that are responsible for the execution of 

algorithms. Nodes can be combined into a graph and communicate with each 

other using predefined message structures in a topic. Each of the nodes created 
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in ROS is an independent process which focuses on a single algorithm or task 

reducing the complexity of the overall program.  

 

Figure 4.10 Block diagram of the software nodes developed in ROS for the 

function of the autonomous wheelchair. 

Toolsets and packages which were relevant and useful for the 

application in this study were adapted and applied for use with the autonomous 

wheelchair. These packages were implemented as nodes in ROS and could be 

imported for use in this application. AMCL, Cartographer SLAM and Path 

planners were implemented using the libraries from the existing toolbox. Three 

new libraries -- EEG, wheelchair state, and exploration were developed in ROS 

for the wheelchair to function. The EEG node contains the algorithm for 

acquisition, classification, and stimulus generation. This node was created based 

on the algorithm for BCI software described in Section 3.3. The robot state node 

interacts with the differential drive robot controller described in Section 3.4. 

The exploration node contains the algorithm for robot exploration described in 

Section 3.4. Figure 4.10 shows the simplified block diagram of the developed 

software nodes. 

The wheelchair state node handles the data communication for the 
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wheelchair control board. Encoder, odometry and ultrasonics sensor 

information received from the wheelchair control board was published to ROS. 

This node is also responsible to take in velocity commands from the motion 

planner and forward it to the wheelchair control board driving the wheels of the 

wheelchair. Besides that, this node also published information regarding the 

location where all the sensors were mounted on the wheelchair. 
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Figure 4.11 GUI developed for the control of the autonomous wheelchair. In 

the middle is the Robot Visualization (RViz) interface from the 

ROS framework. Six stimuli are placed on the left and right sides 

of the GUI, marked 1 to 6. Stimulus frequency for the boxes 

marked 1 to 6 are 7Hz, 11Hz, 12Hz, 13Hz, 14Hz, and 15Hz. 

The EEG Node contains the classification algorithm, stimulus 

generation and handles the communication with the EEG acquisition unit for 

data acquisition. Figure 4.11 shows an example of the GUI developed for the 

wheelchair. A total of six stimuli for SSVEP are generated using OpenGL, 3 

each on the left and right sides of the GUI. The algorithm described in Section 

3.3 is implemented in this node. This node will generate a message when there 

is a successful SSVEP classification. The frequency used for the stimulus were 

7Hz, 11Hz, 12Hz, 13Hz, 14Hz, and 15Hz. 

The subject has the following two choices once the program starts: i) 

Directional Mode and ii) Destination mode. At the start of the program, the 

subject can select the mode of operation for the wheelchair. The directional 

mode will be triggered if a SSVEP corresponding to the stimulus on the left of 

the GUI is detected. Destination mode will be triggered if an SSVEP 

corresponding to stimulus 4, 5, or 6 is detected. Both directional and destination 

modes have the same interface as shown in Figure 4.11. 
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In directional mode, the subject will choose the direction of travel for 

the wheelchair. Successful SSVEP classification is used to trigger the direction 

of travel for the autonomous wheelchair. Only one input from the subject is 

needed to drive the wheelchair in this mode. The exploration algorithm will 

identify the waypoints for the wheelchair to travel. The path planner will plan 

the path and move towards the selected direction through the generated 

waypoints. SLAM will be running in this mode to record the map created over 

time. The subject can save any location in the map for use in destination mode. 

Figure 4.11 shows the location and the frequency for each of the 

stimulus. Stimulus 1 will trigger the wheelchair to explore the front. Stimulus 2 

will trigger the wheelchair to explore the back. Stimulus 4 will trigger the 

wheelchair to explore the left. Stimulus 5 will trigger the wheelchair to explore 

the right. The 4 quadrants directions are referenced to the current location of the 

wheelchair. Figure 4.12 shows an example of the four directions that the subject 

can select at any point of using the wheelchair. Stimulus 3 will stop the 

wheelchair if the wheelchair is exploring. If the wheelchair is not moving a 

trigger on stimulus 3 will bring the user back to the mode selection screen. 

Stimulus 6 will save the current location that can be used in the destination mode. 

A total of 16 location can be saved using directional mode. 
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Figure 4.12 The 4 directions of travel for the wheelchair exploration to move 

to in directional mode. The red quadrant is front, blue is back, 

yellow is right and green is left. 

 

Figure 4.13 ROS node graph for the program when the wheelchair is 

operating in directional mode. 

Once a direction of travel is triggered by the subject after SSVEP 

classification, the wheelchair will start to look for waypoints using the frontier 

algorithm as explained in Section 3.4.Figure 4.13 shows the nodes that are 

active in the directional node. Cartographer node contains the SLAM algorithm 

to generate the map of the surrounding. URG node is the node that publishes the 

sensor reading from the laser range finder. Robot state node is responsible for 

the wheelchair state and communication with the wheelchair control board. 

Move base node contains the algorithm for path planning and navigation. The 

EEG node includes the algorithm developed for the stimulus generation, 

acquisition, and classification of SSVEP. Lastly is the explorer node which 
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contains the exploration algorithm developed. 

 

Figure 4.14 (a) Example of a wheelchair selected to explore in the front 

direction. The green dot in the figure shows the waypoint for the 

wheelchair to move towards. (b) The waypoint will be marked 

as explored and appear as blue in the map once the wheelchair 

passed the waypoint. New waypoints are generated 

automatically in the direction of travel selected. 

 

Figure 4.15 Example of a map generated after the wheelchair operated in the 

directional mode. Green waypoints in the map are located on 

parts where the map is still not explored. Blue waypoints in the 

map are waypoints where the wheelchair have explored. 
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Figure 4.14 shows an example of the exploration algorithm execution. 

In this example, the wheelchair is selected to move to the front. A waypoint 

marked as a green dot in Figure 4.14(a) is generated by the exploration 

algorithm. The green dot is located on an area where the map is not formed by 

SLAM. The wheelchair will proceed to move towards the waypoint generated 

in the direction of travel. The exploration algorithm will generate new 

waypoints while the wheelchair is moving. Figure 4.14(b) shows an example of 

a new waypoint generated while the wheelchair is moving forward in the 

direction of travel. These new waypoints that are generated will serve as the 

goals for the navigation algorithm in directional mode. Figure 4.15 shows the 

map and waypoints generated after the wheelchair is driven around using the 

directional mode. The directional mode allows the subject to move the 

wheelchair in the direction of travel with only one input provided. 

 

Figure 4.16 ROS node graph for the program when the wheelchair is 

operating in destination mode. 

In the destination mode, the map generated, and location saved in the 

directional mode will be used for navigation. Figure 4.16 shows the nodes which 

are active in the destination mode. URG, move base, and robot state node are 

similar to the nodes created for the directional mode. Localization of the 

wheelchair in the map provided is performed by the AMCL node that runs the 

AMCL algorithm. On top of the task in the directional mode, the EEG node will 
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also send the coordinates of the selected location directly to the navigation 

algorithm in this mode. 

Figure 4.11 shows the location of the stimulus of the GUI. The stimulus 

1, 2, 4, and 5 are used for selection of destination to travel to. The target 

locations A, B, C, and D are tied to stimulus 1, 2, 4, and 5. Stimulus 3 will stop 

the wheelchair if the wheelchair is moving. If the wheelchair is not moving a 

trigger on stimulus 3 will bring the user back to mode selection. Stimulus 6 will 

cycle through the saved location, showing different sets of save location on the 

map shown in the GUI. 

 

Figure 4.17 An example of the map shown to the subject in destination mode. 

Location A, B, C, and Dare the destinations where the subject 

can choose using SSVEP BCI. 

Figure 4.17 shows the wheelchair navigating to position A on the map 

generated by SLAM. This map is obtained by SLAM when the wheelchair is 

operating in the directional mode. The wheelchair moves towards position A 
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following the path generated by the TEB path planner. 

With both directional and destination modes, the wheelchair would be 

able to operate in an unknown environment, generating the map of the 

surrounding area using SLAM. After mapping, the subject on the wheelchair 

will be able to save destinations using SSVEP-based BCI to reduce the number 

of BCI tasks needed to move the wheelchair. By implementing these features 

for wheelchair control, the amount of input needed would be reduced for the 

navigation of the wheelchair. The next section will describe the result from the 

study conducted to measure the reduction of inputs for the control of an SSVEP-

based BCI wheelchair. 

4.5 Comparison between Distributed Control and Direct Control 

 

Figure 4.18 Wheelchair configuration used for the comparison trial. 

Figure 4.18 shows the wheelchair setup used for this study. The laser 

mounted at the front of the tray is used for SLAM and obstacle avoidance. A 
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2.2GHz Intel Core I5 laptop with 4GB RAM is used to run all the packages and 

algorithms created for the wheelchair. Five student volunteers were recruited to 

test the functionality of the wheelchair.  

 

Figure 4.19 (a) EEG spectrogram showing SSVEP response of a subject to 

stimulus frequency in the order 13Hz, 15Hz, 7Hz, 12Hz, 11Hz, 

14Hz during the training session.(b,c,d,e,f,g) Frequency 

components of the SSVEP measured at Oz for all 5 subjects 

during the training session. The stimulus frequencies are in the 

order 7Hz, 11Hz, 12Hz, 13Hz, 14Hz, and 15Hz. 

A training for SSVEP selection was conducted to ensure that these five 
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student volunteers were familiar with the selection system before the trial with 

the wheelchair. The training required the subject to select the stimulus indicated 

by the interface when an arrow was shown beside the selection box. The training 

interface was similar to the training interface described in section 4.2. The 

subject was required to make 20 randomized selections for a single training 

session that lasted 4 hours. The subject would proceed to the wheelchair trial 

upon achieving a selection accuracy rate of at least 80%. Figure 4.19a shows 

the EEG spectrogram from one of the subjects. SSVEP responses can be 

observed when the subject is looking at the stimulus during training the training 

session. Figure 4.19b-g shows examples of SSVEP response measured on all 5 

subjects during the training session. 

 

Figure 4.20 The highlighted region indicates the area where the experiment 

was conducted. The blue dot on the map is the start position of 

the experiment. Green dots marked the 3 ends of the corridor in 

the experiment area. 



 

70 

 

After the completion of training, the subject proceeded with the 

wheelchair control trial. Figure 4.20 shows the layout of the area the test was 

conducted. The total area of the highlighted region is 157.9m2. The distance to 

the three green dots from the starting position is 15.675m for the left, 23.925m 

for the top and 5.775m for the right. In this part of the study, 4 tasks were given 

to the subject. (1) Save the initial location of the wheelchair using the user 

interface. (2) Explore the test area to create a map of the corridor. (3) Navigate 

to the end of the corridor as shown in Figure 4.20. (4) Navigate back to the 

initial location using location saved in step 1. The theoretical minimum number 

of selections needed to complete the map and navigate the area indicated are 10 

selections. 

Table 4.3 Total number of SSVEP selections, time is taken, and accuracy 

for each of the subject to complete the wheelchair trial with 

directional and destination mode. 

 Total Selection 
Time Spent 

(Minutes:Seconds) 
Accuracy (%) 

Subject 1 15 16:10 93.33 

Subject 2 16 17:20 93.75 

Subject 3 15 16:45 100.00 

Subject 4 18 18:32 83.33 

Subject 5 19 20:40 78.95 

Table 4.3 shows the number of total selections taken by the subject to 

complete the trial. The accuracy is calculated by taking the percentage of 

intended selections by the subject over total selections. Any selections by the 

subject to stop the wheelchair during directional or destination mode indicates 

that there is an unintended selection. Similarly, if the wheelchair is moving in a 

direction or destination that is not what the subject wanted to, it is also 
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considered an unintended selection. This definition of accuracy is taken to give 

the users the freedom for choosing their own pathways. Due to the accuracy in 

the selection and different approaches taken by the subject for step 2, the total 

number of selections is higher than the ideal case where 10 selections can 

complete the task given to them and thus the longer time spent to complete the 

trial. Despite having a higher number of selections, all the subjects managed to 

complete the trial given. 

For comparison, an SSVEP-based BCI to control the wheelchair directly 

was implemented on the wheelchair developed. Four selections (forward, left, 

right, and stop) were used to control the motion of the wheelchair directly. The 

subject was required to explore the area similar to the wheelchair control trial 

using this control method. Table 4.4 shows the number of selections needed by 

the subject to fully explore the highlighted region and return to the initial 

location as shown in Figure 4.20. The accuracy was calculated by taking the 

percentage of the intended selection by the subject over the total selections. Any 

selections by the subject to stop the wheelchair within 2s after selecting forward 

left or right indicated that there was an unintended selection. 
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Table 4.4 Total number of SSVEP selections, time is taken, and accuracy 

for each of the subject to complete the wheelchair trial with 

direct (forward, left, right, and stop) controls. 

 Total Selection 
Time Spent 

(Minutes:Seconds) 
Accuracy (%) 

Subject 1 42 24:31 90.48 

Subject 2 42 20:30 93.75 

Subject 3 24 19:23 100.00 

Subject 4 30 20:56 93.33 

Subject 5 36 21:30 83.33 

In the comparison trials, extra selections were taken by the subject to 

guide the wheelchair while navigating the corridor. More inputs from the user 

are required to control the wheelchair without the use of sensors for navigation. 

By delegating the navigational control task from the subject to the wheelchair, 

no constant BCI input is required when the wheelchair is navigating. The 

developed system required an average of 16.6 selections compare to a direct 

control system (Müller, et al., 2013) where an average of 32.8 selections was 

needed to complete the trial.  

A smaller number of selections was needed in the developed system as 

no direct control of the wheelchair was required once a direction was selected. 

The navigation software acted as a distributed controller, controlling the 

wheelchair with information obtained from the laser range finder independent 

from the BCI system. The autonomous capabilities of the developed wheelchair 

allow for fewer inputs compared to a wheelchair system (Müller, et al., 2013; 

Wang & Bezerianos, 2017) which directly steers the wheelchair. This reduced 

the number of mental tasks required for a subject to control the wheelchair. With 

the dual-mode implementation of directional and destination controls, the 
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developed system would also overcome the problem of having only pre-set 

destinations for selection. In the real-world setting, the smaller number of 

selections is required to reduce the chances of false positive selection. This will 

reduce accidental triggering of the wheelchair by the user. If there is any false 

negative in the BCI system, the wheelchair will maintain its current state. Since 

the developed wheelchair has an autonomous navigation system, the wheelchair 

will navigate autonomously avoiding any danger while the user attempt to give 

new commands to the wheelchair. 

The reduction in the inputs needed reduced the number of mental tasks 

required by the subject to operate the wheelchair (Ng & Goh, 2020). Similar to 

the shared-control BCI architectures for BCI control applications (Tonin et al., 

2010; Chung et al. 2011 & Tang et al. 2017), the design developed in this study 

can reduce the number of BCI tasks needed to achieve a goal. One of the key 

features developed in this study is the EEG library node for SSVEP developed 

for ROS. This is a library that could help fastening any future developments that 

need to interface an EEG system with any robotic applications. A study for the 

use of this wheelchair on subjects with mobility impairments in the homecare 

settings was recently being conducted (Krishnan, et al., 2019). In the study, the 

subjects were able to command the wheelchair to move around in the compound 

of the homecare facility.  
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CHAPTER 5  

CONCLUSION 

5.1 Conclusion 

In summary, a SSVEP-based BCI autonomous wheelchair with 

distributed controls that can function with minimal inputs from users was 

developed. By shifting the control task from the subject to an autonomous 

system, the system reduces the number of inputs required by a user to control 

the motion of the wheelchair. Once a selection is made in the directional mode, 

the wheelchair can continue to move in the direction selected without additional 

inputs. In destination mode, the wheelchair will move autonomously to the 

destination once a selection is made. The novelty of this study arises from the 

combination of techniques from autonomous robotics applications and BCI. A 

BCI wheelchair that can be operated with the least number of inputs has been 

developed. 

One limitation of the current study is the cohort of the subject tested. All 

the subject volunteers that participated in the test were healthy undergraduate 

students. While the capability of the developed BCI wheelchair system was 

studied and tested, how does this result translate to the intended user group with 

mobility impairment is still unknown. Further studies should be conducted in 

the short term to address this limitation. 
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5.2 Future Direction 

Studies to measure the effect of mental load and the quality of life of a 

subject using this wheelchair should be conducted. A preliminary study for the 

use of this wheelchair on subjects with mobility impairments in the home care 

settings was recently conducted (Krishnan, et al., 2019). More studies on 

subjects with severe mobility impairments using the wheelchair should be 

conducted. Results obtained from such studies are important to further improve 

the control scheme of the wheelchair. 

Another direction for further studies is through the implementation of 

sensors and algorithm to enable the wheelchair to function outdoors. The 

algorithm created in this study needs to be expanded to cater for a wider area of 

operation and obstacle detection when operating outdoors. It is important to 

have both indoor and outdoor navigations for a person to fully regain the 

capability for mobility independence. 

This study also demonstrated the use of robotics technology for BCI 

assistive technology. The application of robotics in BCI system is one of the 

directions that future research can embarked in. The control of telepresence 

robots or robotic arm using BCI is some examples of the area where the 

distributed approach developed in this study can be applied. 
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APPENDIX A 

INFORMED CONSENT FORM 

 

 
Participant Name: __________________ I/C No.: __________________  

 

 

Contact No.: _________________ Researcher Name: _______________ 

 

 

You are invited to participate in the following study. Your participation into this 

study is entirely voluntary. Your participation may not benefit you directly, but 

it will help us in improving the designs and operations of SSVEP-BCI system.  

 

Title of Study: Trial of Brain-Computer Interface (BCI) controlled wheelchair 

using steady-state visual evoked potential (SSVEP)  

 

Purpose of Study: To investigate the effectiveness of the SSVEP-BCI 

controlled wheelchair. 

 

Procedures: First, the researchers will place some EEG electrodes at certain 

locations on the participant’s scalp based on the International 10-20 system of 

EEG sensor placement. The researcher will check the SSVEP of participant when 

looking at a flickering patch or patches on a computer screen. After that, the 

researcher will guide the participant to use the SSVEP-BCI to control a 

wheelchair. The estimated duration for the experiment will last a maximum of 

1.5 hours per trial including 30 minutes for setting up the EEG electrodes. 
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Potential Risks:  
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There may be some discomfort experienced by attaching the electrodes on the 

scalp or skin with electro-gel and secured with stickers. Under rare 

circumstances, people with very sensitive skin may have some minor irritation 

or redness on the skin in reaction to the application of electro-gel.  

 

The participant may find the experiment to be uncomfortable and unpleasant 

because of the duration of the experiment and the nature of the experiment that 

requires the participant has to look at the flickering patches on the computer 

screen.  

 

The participant may also have eye fatigue after continually looking at the 

flickering stimuli over a long period. 

 

 Additionally, there is also a potential risk to induce cognitive side-effects 

including photo epileptic seizures by repetitive flickering stimuli modulated at 

certain frequencies.  

 

The investigator will always check with the participant to determine if the 

participant is having any negative sensations during the experiment. 

 

Confidentiality:  

 

Information gathered from the study may be published or presented in public 

forums. However, your name and other identifying information will not be used 

or revealed.  

 

Researcher's Signature: ________________ Date: _________________  
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I have been fully informed and understood the above information. I have had the 

opportunity to discuss with the researcher and I have had my questions answered 

by him/her in a language that I understand. In signing this consent form, I agree 

to follow the procedures of the study, and I understand that my participation is 

voluntary, and I am free to withdraw my consent and discontinue my 

participation in this study at any time without any penalty.  

 

I agree to take part in this study.  

 

Participant's Signature: ____________________ Date: _______________  

 

Relationship to Participant: ___________________  

(If other than participant giving consent) 

 

Witness Name: ________________ Witness Signature: ______________  
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APPENDIX B 

UNIVERSITY ETHICAL APPROVAL 
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APPENDIX C 

EEG ACQUISITION UNIT BILL OF MATERIALS 

Part Value Device Package 

C1 4.7n C-USC0603K C0603K 

C2 4.7n C-USC0603K C0603K 

C3 4.7n C-USC0603K C0603K 

C4 4.7n C-USC0603K C0603K 

C5 4.7n C-USC0603K C0603K 

C6 4.7n C-USC0603K C0603K 

C7 4.7n C-USC0603K C0603K 

C8 4.7n C-USC0603K C0603K 

C9 4.7n C-USC0603K C0603K 

C10 4.7n C-USC0603K C0603K 

C11 4.7n C-USC0603K C0603K 

C12 4.7n C-USC0603K C0603K 

C13 4.7n C-USC0603K C0603K 

C14 4.7n C-USC0603K C0603K 

C15 4.7n C-USC0603K C0603K 

C16 4.7n C-USC0603K C0603K 

C17 1u C-USC0603K C0603K 

C18 1u C-USC0603K C0603K 

C19 0.01u C-USC0603K C0603K 

C20 0.1u C-USC0603K C0603K 

C21 1u C-USC0603K C0603K 

C22 0.1u C-USC0603K C0603K 

C23 1u C-USC0603K C0603K 

C24 1u C-USC0603K C0603K 

C25 100u C-USC1210K C1210K 

C26 1u C-USC0603K C0603K 

C27 10u C-USC0805K C0805K 

C28 0.1u C-USC0603K C0603K 

C29 10u C-USC0805K C0805K 

C30 10u C-USC0805K C0805K 

C31 0.1u C-USC0603K C0603K 

C32 10u C-USC0805K C0805K 

C33 1u C-USC0603K C0603K 

C34 1u C-USC0603K C0603K 

C35 0.1u C-USC0603K C0603K 

C36 0.1u C-USC0603K C0603K 

C37 0.1u C-USC0603K C0603K 

C38 0.1u C-USC0603K C0603K 

IC1 ADS1299IPAG ADS1299IPAG TQFP64-10X10 

IC2 OPA376 OPA376AIDBVTG4 SOT23-5 

IC3 OPA376 OPA376AIDBVTG4 SOT23-5 

IC4 PIC24FJ64GB004 PIC24FJ64GB004 TQFP44 

IC5 MCP1700 MCP1700 SOT23 

L1 3.3u R-US_R0805 R0805 
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Part Value Device Package 

R1 4.99k R-US_R0603 R0603 

R2 4.99k R-US_R0603 R0603 

R3 4.99k R-US_R0603 R0603 

R4 4.99k R-US_R0603 R0603 

R5 4.99k R-US_R0603 R0603 

R6 4.99k R-US_R0603 R0603 

R7 4.99k R-US_R0603 R0603 

R8 4.99k R-US_R0603 R0603 

R9 4.99k R-US_R0603 R0603 

R10 4.99k R-US_R0603 R0603 

R11 4.99k R-US_R0603 R0603 

R12 4.99k R-US_R0603 R0603 

R13 4.99k R-US_R0603 R0603 

R14 4.99k R-US_R0603 R0603 

R15 4.99k R-US_R0603 R0603 

R16 4.99k R-US_R0603 R0603 

R17 2M R-US_R0603 R0603 

R18 2M R-US_R0603 R0603 

R19 392k R-US_R0603 R0603 

R20 10k R-US_R0603 R0603 

R21 10k R-US_R0603 R0603 

R22 10k R-US_R0603 R0603 

R23 10k R-US_R0603 R0603 

R24 10k R-US_R0603 R0603 

SV1 
 

MA08-1 MA08-1 

SV2 
 

MA10-1 MA10-1 

SV3 
 

MA05-1 MA05-1 

X2 USBSMD USBSMD USB-MINIB 

 

 


