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ABSTRACT 

 

A LEAK LOCALISATION SYSTEM IN WATER 

DISTRIBUTED NETWORK USING MACHINE LEARNING 

 

Png Wen Hao 

 

 

Water crisis has preponderated worldwide due to non-effective resource 

management and uncontrolled water losses. Leakage appears to be one of the 

major factors of the water losses. In the past decades, various detection and 

localisation approaches have been established to solve the problem, acoustic 

sensing is an effective localisation technique which has been extensively 

implemented in single pipeline system. However, the conventional acoustic 

sensing technique faces multiple challenges such as analytics complexity and 

time-consuming issue in complex piping network system. In this thesis, two 

leak localisation systems based on machine learning and remote-acoustic sensor 

network were developed as the solution. 

In the first part of thesis, a multi-level analytics framework (MLAF) was 

formulated for adaptive leak localisation in piping networks. The MLAF  

analyses the complex spatial acoustic signals from the sensor network and 

predicts the leak location through multi-level hierarchical analyses and 

sequential reasoning processes. The system aggregated path analysis, time-

correlation location analysis, and machine learning methods to predict the leak 

location. The processes were handled by an automated flow control to ensure 

time-effective prediction without needs of human supervision. The performance 

of MLAF in varying shaped piping networks has been validated by a set of 
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characterisation tests. The result of a field prediction in a local district metered 

area (DMA) with excellent root mean square error (RMSE) has further 

confirmed the feasibility of the MLAF. 

In the second part of thesis, a mixed-model deep neural network 

(MDNN) was designed for alternative leak localisation. The system serves for 

non-adaptive application in a targeted piping network. The MDNN model 

comprises multi-layer classification and regression neural networks which was 

constructed based on Keras module. The MDNN was trained with a set of 

simulated leak data of the targeted piping network to identify the leak segment 

and location. Various neural network’s hyperparameters such as tensor shape, 

batch size and sample size were tuned during the training processes to identify 

the optimal model of prediction. The optimal MDNN model was validated with 

2.3% mean absolute percentage error (MAPE) and 0.99 training accuracies. 

Finally, the optimal MDNN model was implemented to predict the leak location 

in the local DMA and achieved an excellent result of an average 3.2% location 

error.  
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CHAPTER 1 

 

1 INTRODUCTION 

 

In this work, two machine learning based leak localisation systems were 

developed for avant-garde application using acoustic sensing technology in 

water distribution network (WDN). The methods were priorly proposed to solve 

the analytical issues faced by the conventional acoustic-based localisation 

method in WDN. The first chapter describes the research background, problem 

statements, and objectives. 

1.1 Background 

Piping networks are extensively utilised in water distribution system 

(WDS) to cater for multipurpose fluid transmissions. Continuous supply of 

water resource is vital and challenging for ever-growing urban population and 

consistently expanding service areas. Water supply through the distribution 

network faced high-level water loss caused by leakage every year. 

In the past decade, leakage in WDS had caused up to 60% of non-

revenue water (NRW) worldwide (Levenson & Daley, 2010). Malaysia as a 

developing country in Southeast Asia, had suffered from an average 37.7% 

NRW loss back in 2005 (MWA, 2017). Soon, a restructuring exercise was 

initiated by the Malaysian government in 2006 to incentivise the reduction of 
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NRW, by standardising policies and addressing expenditures in reforming the 

water supply sector (Teo, 2014). However, the effect was insignificant with 

2.5% NRW reduction after 11 years of the reformations. By 2016, Malaysia still 

suffered from 35.2% NRW nationwide, while severe losses were reported in the 

States of Kelantan and Perlis, which recorded 67% and 76% NRWs, 

respectively (Hidir, 2018). In early 2016, Malaysia had lost up to 5,846 million 

litres per day (MLD) of treated water. The NRW was consistently high with an 

average daily loss of 5,929 MLD in 2019. The amount was sufficient to cover 

the water demand in the States of Selangor (3,316 MLD) and Johor (1,320 

MLD) for one year (TheSun, 2019). 

To deal with the persistently high NRW loss, Malaysian government 

initiated a National NRW Reduction Programme to reduce the NRW to 31% 

nationwide by the end of the 11th Malaysia Plan (11MP) (TheSun, 2019). 

RM1.39 billion was allocated for implementation of the programme in 2018 and 

to assist the operators in achieving the nationwide NRW target by 2020. The 

programme was prior to change and replace the old pipelines in some critical 

regions. Apropos of the NRW reduction programme, water supply companies 

such as Ranhill SAJ and Air Selangor Sdn Bhd have showed great commitments 

by experimenting a few remote monitoring systems. 

In 2018, a technology trial was implemented by Ranhill SAJ for 

SMART District Monitored Area in the State of Johor (WWA, 2018). In the 

initial phase, 295 remote noise loggers were deployed in five local district 

metered areas (DMAs) for a three-month real-time monitoring. The trial has 

successfully reduced the net night flow of the one monitored DMA by one-third. 
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The result of the trail was remarkable with 115 found leaks during the entire 

monitoring period (WaterWorld, 2019). 

Meanwhile, Air Selangor has reduced the NRW of Capital Kuala 

Lumpur by 1.78% in 2019 through their in-house Smart Operation Control 

Centre (TheSun, 2019). Data loggers were deployed in 1,601 reservoirs and 731 

pump houses to detect the water pressure transient and monitored by SCADA 

system (SelangorJournal, 2020). The leak detection programme has successful 

with  108,759 closed leak cases in 2019, compared to 104,033 cases in 2018. 

 

1.2 Problem statements 

In the past decades, research in water leakage detection and localisation 

have been well-established. Acoustic sensing is one of the most common 

methods and practically implemented by many water industries. Acoustic 

sensing has advantages over other detection methods in terms of portability, as 

most devices come with plug-and play feature. The localisation method using 

acoustic sensing is relativbely straight-forward. By correlating two acoustic 

signals from the adjacent sensors, the leak location can be predicted based on 

time-distance relation. The two-sensor localisation method was proven feasible 

by many experiments in the single pipeline system. 

However, in practical, WDN exists in form of complex piping network 

instead of the single pipeline system. The conventional two-sensor localisation 

system is not effective and time-consuming to localise a leak in a WDN. 

Moreover, multi-directional waves of leak in the WDN appears to be the biggest 
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challenge of the conventional localisation technique as the leak-induced 

acoustic waves tend to propagate through multiple paths to reach the sensors.  

Although in most practical cases, acoustic wave tends to survive through 

the shortest transmission path due to damping property of pipeline, leak location 

analysis based on the shortest path assumption seems to be oversimplifying the 

problem. Generalisation of the problem may affect the localisation result to 

different extents in different piping networks. The effect becomes obvious when 

the shortest path does not vary significantly from other transmission paths in a 

piping network. In that case, unknown transmission paths are taken by the 

acoustic waves to reach the sensors. The conventional leak localisation based 

on time-distance relation fails to predict the leak location due to unknown path 

distance. Besides, interference and superposition of waves might further 

increase the analytics complexity in WDN due to the path uncertainty issue. 

 

1.3 Aims and objectives  

This objective of this thesis is to develop the machine learning based 

leak localisation system incorporates with acoustic sensing for single leak 

localisation in WDNs. In addressing the problems faced by the conventional 

acoustic-based leak localisation technique, as discussed in the previous section, 

four objectives were set wittingly as follows:  

1. To formulate a systematic methodology with full analytics consideration 

of the multi-directional acoustic waves for proper leak localisation in 

WDNs.  
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2. To develop an automated control flow system for fluent data flow 

handling, seamless analytics, and reasoning processes, thereby 

achieving time-effective leak localisation. 

3. To characterise and validate the adaptiveness of the leak localisation 

system in various piping networks of different network topologies. 

4. To develop an alternative leak localisation system based on deep neural 

networks to predict leak location in a WDN through feature learning of 

the simulated time differences. 

 

1.4 Research Contributions    

The major contributions of this thesis were summarised as follows: 

1. A Multi-Spatial Acoustic-based Leak Localisation Scheme  

Traditional acoustic localisation method based on two-sensor 

setup is less efficient and heavily dependent on human decision. The 

sensors are usually installed after pre-localisation examination to 

determine the best location for installation. The examination methods 

include pressure monitoring and field tour by humans. By utilizing the 

acoustic sensor network setup, time-effective localisation was achieved 

by multi-spatial leak localisation scheme. The multi-spatial acoustic 

signals from leak in a piping network were simultaneously collected for 

aggregated analysis, thereby achieving prompt localisation. The multi-

spatial leak localisation scheme has advantages over the conventional 

method in terms of effectiveness and less demand of human forces.  

2. An Autonomous and Adaptive Leak Localisation Algorithm  
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An automated machine learning algorithm was developed for 

intelligent and time-effective leak localisation in WDN. The analyses 

the multi-spatial acoustic data and the sunsequent localisation processes 

are fully automated and without need of human supervision. In 

conjunction with the high flexibility and portability of the acoustic 

sensors, the leak localisation algorithm is formulated to be adaptive so 

that the multi-spatial leak localisation scheme is applicable in varying 

piping networks. The autonomous and adaptive leak localisation 

algorithm incorporates the plug-and-play features of acoustic sensors 

together delivers a favorable and effective localisation for WDN.  

3. Alternative Leak Localisation Method using Deep Neural Network 

In continuing with multi-spatial leak localisation scheme in part 

1, a deep neural network (DNN) based leak localisation was developed 

as another alternative. Different from high portability of 2, the system 

was formulated to work independently as a fixed monitoring system in 

a WDN. A multi-level DNN was specifically built and trained to fit the 

leak localisation problem based on the targeted WDN. Features such as 

the piping network topology, size of the sensor network, and the 

placement of sensor within the network are essential in the DNN 

model’s customisation.  

 

1.5 Thesis outline 

The first chapter of this thesis provides a brief introduction to the 

background of the research. The importances of leak detection and localisation 
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were discussed to solve the alarming NRW losses in both Malaysia and 

nationwide. A few problems faced by the conventional acoustic-based 

localisation techniques were shortly presented. Three corresponding objectives 

were set at the end of this chapter in addressing the previous problems.  

Chapter 2 provides a general review on existing leak detection methods 

in pipeline system and followed by comparison of various leak detection 

methods in WDN. Subsequently, an in-depth review of acoustic-based leak 

detection was presented to discuss the limitations and challenges of the methods 

in WDN.  

The detailed methodologies of the two intelligent leak localisation 

systems were discussed in Chapter 3. Multi-level analytics framework (MLAF) 

is first presented for adaptive localisation. Subsequently, MDNN is formulated 

for fixed monitoring system. Lastly, a mathematical modeling was discussed as 

the possible way of mimicking the real measurement from the piping networks. 

In the first part of Chapter 4, the MLAF was characterised and validated 

based on various piping network of different topologies. A field test was 

conducted in a local DMA for further verification. In the second part, the 

optimal model of MDNN was trained and identified through hyperparameter 

optimisation. The optimal model was tested by a field prediction similar in the 

first part. The performances of the two systems were compared in terms of 

localisation accuracy, processing time, flexibility, and the limitations.  

Chapter 5 concludes the practicalities and limitations of the MLAF and 

MDNN based on their performances in Chapter 4. Finally, some 
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recommendations to the systems were discussed for the future works and 

possible improvements.  
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CHAPTER 2 

 

2 LITERATURE REVIEW 

 

In this chapter, existing leak detection methods in pipeline system were 

generally reviewed. Various leak detection methods in WDN were compared 

and followed by an in-depth review of acoustic-based leak detection. 

Limitations and challenges of the method in WDN were summrizaed at the end 

of this section.  

 

2.1 Leak detection methods 

 

Figure 2.1: Internal and external leak detection methods. 

The existing leakage detection methods can be generally classified into 

two groups: internal and external detection methods (Anon., 1999; Santos, et al., 
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2011). Internal leak detection methods detect leak by investigating the internal 

conditions of pipelines and the physical observables such as water volume and 

pressure. As shown in Figure 2.1, mass balance, transient state analysis, 

pressure-flow deviation, visual inspection, hydroscope, and permeability scan 

are the common internal detection methods. In general, these methods shown 

effective results in detecting leak and the characterizing the leak features. 

Internal scanning techniques have achieved accurate leak localisation in many 

practical inspections. However, leak localisation is impossible through 

investigations of water volume and pressure (Ghazali, et al., 2010; Makeen, et 

al., 2014; Abdulshaheed, et al., 2017).  

Mass balance is one of the most common internal detection methods 

used in water audits and assessments (Wang, et al., 2001). The method is simple 

and straight-forward by measuring the difference between the inlet volume and 

the outlet volume. Leakage can be easily identified by calculating the change of 

mass. However, this method fails to detect the exact leak location in pipelines. 

Transient state analysis is another internal detection method which relies 

on damping of the transient pressure waves in a pipeline (Makeen, et al., 2014). 

During leakage, flow disturbance at leak hole generates transient pressure 

waves. The transients pressure waves decay as they propagate through the 

pipeline due to attenuation. Instruments such as strain gauge pressure transducer 

and Piezotronics pressure sensor are commonly used for transient state analysis. 

The method detected leak by monitoring water pressure at single points along 

the pipeline, which is also called pressure point analysis (Afifi, et al., 2011).  
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Pressure-flow deviation is a model-based leak detection method which 

detects and estimates the leak location by analysing the deviation of water 

pressures and flowrates (Wang, et al., 2001). The method requires installation 

of pressure and flow sensors in strategic points of a pipeline. The detection was 

carried out by matching the actual measurements to the to the simulation model 

measurements. Leak location was identified by measuring the deviation of the 

measurements from the expected values. 

Closed-circuit television (CCTV) and laser scan are the popular visual 

inspection techniques. Both techniques require installation of camera or 

scanning device inside a pipeline to examine the  internal conditions of the 

pipeline in finding leak (Zangenhmadar & Moselhi, 2014). Laser scan is a costly 

inspection system which caters for in-depth monitoring includes finding minor 

defections and the corrosion. Comparatively, CCTV is a cheaper alternative 

which monitors the internal condition of a pipeline in real-time and often 

operates in conjunction with image processing techniques.  

Hydroscope is an internal inspection method based on the principle of 

eddy current (Makar & Mcdonald, 1996; Rizzo, 2010). Time-varying magnetic 

field was generated by magnetic coil in the hydroscope. Different characteristics 

of the pipeline such as wall thickness, discontinuities, corrosion, and crack 

induce different degrees opposing magnetic field to the magnetic coil. Thus, the 

wall of pipeline can be examined by measuring the changes of impedance 

changes. However, the method is limited to pipeline of electrically conductive 

materials.  
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On the other hand, external detection methods such as sonar profiling, 

visual inspection, acoustic sensing, magnetic flux leakage, and infrared 

thermography have advantage over the internal detection methods in terms of 

flexibility and ease of implementation (Hunaidi & Wang, 2004). The devices 

are usually plug-and-play and portable. The sensing set up can be easily 

installed and operated from the exterior of pipeline. Besides, pinpointing of leak 

locations are possible and proven with high accuracies by these methods (Sun 

& Li, 2010; Maninder, et al., 2010; Butterfield, et al., 2017).   

The sonar profiling system consists of a movable scanner device 

(transmitter) to send sound waves through the pipeline and a receiver to measure 

the reflected waves caused by discontinuity on the pipeline (Zangenehmada, 

2014). Operational frequency of the sonar profiling system is adjustable for 

different pipelines and detection proposes. In general, sonar profiling system 

under higher frequencies resulted a better resolution, whereas low frequencies 

operation has a higher sound wave penetration. 

Acoustic sensing is another external detection method which is 

commonly implemented in practical inspection by many water services. In the 

previous study, leak detection based on leak-induced acoustic wave has been 

validated experimentally in a closed-loop pipeline system (Law, et al., 2018; 

Png, et al., 2018). Devices such as accelerometers, hydrophones, and noise 

loggers were utilised to capture the leak-induced acoustic waves in detecting 

leakage (Eiswirth, et al., 2001; Kleij & Stephenson, 2002; Ravichandran, et al., 

2021). Furthermore, the method was commonly adopting time-correlation 

technique in localising leak (Li, et al., 2014; Foo, et al., 2018). 
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Magnetic flux leakage method has shown high feasibility in detecting 

minor defections and corrosion in pipelines (Nestleroth & Bubenik, 1999; 

Mukhopadhyay & Srivastava, 2000; Afzal & Udpa, 2002). During inspection, 

electro-magnetic pig was mounted onto the exterior wall of a pipeline. Magnetic 

flux generated by the pig travels in the axial direction of the pipeline. The 

density of magnetic flux was measured by the flux-sensitive sensor during the 

surface scanning. Leak can be detected by measuring the variation of magnetic 

flux in a pipeline as reduction of wall thickness and discontinuity in pipeline 

may cause drop in flux density. 

Infrared thermography detects water leakage by measuring the ambient 

soil temperature of a pipeline (Wang, et al., 2001). Thermographic camera and 

scanner were commonly used to capture the thermographic images of soil. The 

method is effective in locating underground leak, as the ambient temperature of 

soil around the pipeline drops when leak happens. However, the method was 

limited by the depth of underground leak. The results also affected by the 

surface conditions and moisture of the ambient ground. Lastly,  Table 2.1 

summaries the capabilities of the existing leak detection methods in terms of 

detection and localisation.  
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Table 2.1: Summary of existing leak detection methods. 

Methods Detection Localisation 

Mass balance ✓  

Transient state analysis ✓  

Pressure-flow deviation ✓ ✓ 

Visual Inspection ✓ ✓ 

Hydroscope ✓ ✓ 

Sonar profiling ✓ ✓ 

Acoustic sensing ✓ ✓ 

Magnetic flux leakage ✓ ✓ 

Infrared thermography ✓ ✓ 

 

2.2 Leak localisation systems in WDS 

In the previous section, some common and reliable leak detection 

methods in single pipeline system were discussed. However, most of the 

methods are having difficulty to locate leak in WDS. Complexities in both field 

inspections and post measurement analyses are the major challenges faced by 

the conventional methods in WDN. Additional manpower, hardware system 

integrations, and supplementary analyses may be required to solve the 

complexion of localisation in WDN. 

 

2.2.1 Heterogeneous sensing and hardware integrations 

Heterogeneous sensing and hardware integrations were commonly 

implemented to solve the localisation problems in WDS. In this section, a few 

groups of researchers have integrated multiple sensing devices such as pressure, 
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flow, temperature, and acoustic sensors to deliver a thorough monitoring 

system. 

A distributed ad-hoc wireless sensor network (WSN) was demonstrated 

by Agathokleous et al. for urban water distribution management (UWDM) in 

2015. The monitoring system was experimented in a controlled laboratory 

environment with different cases of leakage simulations. The WSN was 

supported by an integrated management system which combines the analytic, 

geographic information system (GIS), and neuro-fuzzy decision support 

systems to provide a real-time data acquisition and signals processing 

(Agathokleous, et al., 2015). The method had achieved reliable results in 

detecting leak within the WDNs, by monitoring the soil and air conditions such 

as the temperature and humidity, as well as the water pressure and flow. 

However, the preliminary findings showed that leak detecting leak based on the 

moisture readings is less effective compared to the pressure sensors and noise 

loggers. Furthermore, an entropy-based sensor placement was proposed as a 

strategic planning to optimise the sensor placement so that the least possible 

number of sensors is required to achieve equivalent monitoring. A mathematical 

model incorporated with graph theory and GIS-based spatial analysis is utilised 

in optimizing for the placement of the pressure sensors and the noise loggers 

within the WDN. The optimisation was carried out by subcategorised the noise 

loggers in each regional DMAs of the WDN after the placement of the pressure 

sensors. In overall, the research focused on multiple devices monitoring system 

with optimisation of sensors distribution for minimum power consumption and 

quick converging leak detection. However, leak localisation and field 

application were not properly addressed in the research.  
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PipeTECT is another heterogenous sensing system incorporating micro-

electro-mechanical systems (MEMS)-based WSN proposed by Shinozuka et al 

in 2010. The system was experimented on a lab-scaled Polyvinyl chloride 

(PVC) piping network with reliable result in detecting multiple leaks 

(Shinozuka, et al., 2010). The WSN consists of eight Gophers (sensing units), 

four pressure gauges, and one Roocas (wireless communication unit). Both 

wired and wireless interfaces were used in the node connection for data 

transmission and communication uplink. Each Gopher sensing node is equipped 

MEMS-based accelerometer in X, Y, and Z directions, in order to measure the 

axial vibration on the pipe surface and determine the change in water pressure 

caused by artificial leaks. Their preliminary results shown significant 

acceleration changes in sensing nodes located nearer to the leak locations. In the 

experiment, the peak amplitudes of accelerations from the WSN were used as 

the main parameter in detecting leak. The peak accelerations of each sensor 

node were plotted in contour map of the piping network. The leak locations were 

identified though the intensity levels of the contour map. However, the positions 

of leak were known regionally by referring to the nearest sensing units, without 

a detailed numerical value of the exact leak location.  

Sun et al. introduced a magnetic induction-based wireless sensor 

network architecture for underground pipeline monitoring (MISE-PIPE) to 

detect and localise leakages in underground pipelines. MISE-PIPE integrated 

internal and external detection methods such as pressure sensors, acoustic 

sensors, and soil property sensors in the monitoring system (Sun, et al., 2011). 

A three-phase detection strategic framework was adopted with implementation 

of MISE-PIPE system in a straight pipeline section in a WDN for effective 
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monitoring. The 1st phase detection was carried out through measurement of the 

transient event by the pressure sensors. Anomalies in measurement triggered 

response in 2nd phase, where requests were sent by the pressure sensors to the 

soil property sensors. The soil property sensors in the suspicious areas were 

activated from the sleep mode and followed by initiation the measurements. The 

soil properties measurements were aggregated with the pressure measurements 

and transmitted to the processing hubs above the ground. In 3rd phases detection, 

the processing hubs further examine possibility of leaks in the suspicious areas 

based on the aggregated measurements from underground. Leakage and the 

position were reported to the remote administration centre upon confirmation of 

detection. MISE-PIPE has delivered a full and thorough detection strategic 

framework for underground pipeline system. However, the proposed method 

was only experimented in a straight pipeline section in a WDN. Leak 

localisation results and the accuracies were also not discussed properly in the 

work. 

In 2014, Sadeghioon et al. proposed another smart WSD system to 

detect underground leak by integrating force sensitive resistor (FSR) based 

pressure sensors and temperature sensors for internal and external detection. 

The detection of leak was based on aggregated measurements of the relative 

indirect pressure changes and the soil temperature (Sadeghioon, et al., 2014). 

The sensing system consists of four main operating parts: a sensor unit, micro 

controller unit (MCU), transmission unit, and power management unit. Each 

sensor unit was equipped with two temperature sensors and one FSR based 

pressure sensor. In field experiment, the two temperature sensors were installed 

on the pipe wall and the ambient soil, to measure the pipe wall temperature and 
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the ambient temperature, respectively. The MCU was attached to the sensor unit 

for purposes of data acquisition and processing. The measurements data 

collected by the MCU was sent to other sensor unit via radio frequency 

transmission. Every four or five sensor units made up one aggregated sensing 

unit where the signals were handled by one master node. The master unit was 

capable in transmitting the aggregated data to the cloud through internet 

connection.  Lastly, the power management unit was responsible for effective 

power consumption through conversion between sleep mode and the active 

mode of the MCU and transmission unit. The WSN system was experimented 

in a leak testing facility and showed reliable results in leak detection.  

In the end of this section, Table 2.2 summarises all the heterogeneous 

sensing methods and hardware integration systems discussed previously for 

comparison. Most of the methods have achieved effective leak detection but not 

capable of localising the position of leak in the WDN. 
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Table 2.2: Summary of heterogeneous sensing leak localisation systems in 

WDN. 

Systems Sensing principles Limitations 

ad-hoc WSN 

(Agathokleous, et 

al., 2015) 

 

• Temperature  

• Humidity 

• Water pressure 

and flow 

• Leak localisation was not 

achieved 

• Pipe access was limited in a 

controlled laboratory environment 

PipeTECT 

(Shinozuka, et al., 

2010) 

• Acoustic  

• Pressure  

 

• Leak localisation was not 

achieved 

• Pipe access was limited in a 

controlled laboratory environment 

MISE-PIPE 

(Sun, et al., 2011) 

• Water pressure  

• Acoustic 

• Soil property  

• Leak localisation was claimed 

without a proper discussion on the 

accuracies 

• Pipe access was limited in a 

straight pipeline section of a WDN 

FSR-based WSN 

(Sadeghioon, et 

al., 2014) 

• Water pressure  

• Temperature  

• Leak localisation was not 

achieved 

• Pipe access was limited in a leak 

testing facility 

 

2.2.2 Modelling and supplementary analyses 

Modelling and various supplementary analyses based on machine 

learning are becoming popular in solving complex problems recent years. 

EPANET is a prevailing hydraulic modelling software in WDS. The software 

was used by many researchers in approximating leak location based on fluid 

dynamics formulation such as mass conservation equation at pipe junctions and 
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the energy conservation equation around the pseudo-loops of the piping network  

(Ferziger & Peric, 2002; Bakker, et al., 2003). 

In 2012, Wang et al. presented a model-based leak detection method by 

monitoring the pressure heads in a simulated network model. The network 

model was simulated using EPANET based on few parameters such as the 

location and extend of the damage in WSN (Wang, et al., 2012). During the test, 

a leak was simulated by taps revolving on the pipe up to the 45 degrees 

clockwise.  A statistical prediction models were developed based on the error 

estimation of the historical pipeline failure data. Genetic algorithm was used to 

optimise the model in predicting future breakage by identifying the failure 

patterns. The model has successfully estimated the leakage location and sizes in 

the small pipelines. However, the estimated leakages in real pipelines were 

usually smaller than the measured amounts, as the model was built based on the 

virtual network, where the deviations of the inlet and outlet pressures due to 

water consumption and supply in the real piping network were ignored in the 

modelling.  

Besides, EPANET is capable to model the WDS by computing the 

pressures and flows through the demand-driven approach (DDA). The DDA 

assumes that the water demand is always fulfilled a WSD regardless of the 

existing pressure, resultant inaccurate estimations in pressure-deficient 

conditions. In addressing to this problem, Muranho et al. introduced an 

EPANET extension to compute the pressure–demand/leakage relationship. A 

pump scheduling was defined using WaterNetGen to effectively reduce the 

operational costs  and the background leakage (Muranho, et al., 2014). 

However, the pressure-driven solver often incurred numerical instability to the 



21 

 

system loop and caused convergence problems. Therefore, Muranho et al. 

proposed the relaxation coefficients in the pressure–demand/leakage equation 

and a smoothing technique for a differentiable pressure–demand/leakage 

relationship to improve the convergence of the iterative process. The smoothing 

technique has resulted improvements in most of the simulations but did not 

promise all-time convergence in every case.  

Aside from modelling, soft computing and deep learning have becoming 

popular in solving complex problems which are unable to be solved by the 

conventional computing and modelling techniques. Of late, artificial neural 

network (ANN) have gained high attention in wide ranges of applications. ANN 

as a mimicry of biological neural system, is effective in many applications such 

as pattern recognizing and learning through a series of known examples. 

Without being explicitly programmed, the ANNs are able to solve the complex 

problems by learning from the large sample of observables (Jafar, et al., 2010). 

Leakage predictions in WDNs based on the ANN methodologies have been 

proven feasible by many researchers through analysis of the statistical, 

environmental, and operational factors. 

In 2003, Caputo et al. made an early attempt to implement the ANN in 

leak localisation for a piping network. Samples of leak and non-leak data were 

generated through inverse problem of the correlate effects between pressure and 

flowrate conditions within the network’s boundary conditions  (Caputo & 

Palegagge, 2003). Different sets of data characterizing several states including 

the perturbations incurred by leaks were used in the training. By recognizing 

the transient patterns among the data, the ANN was trained to classify the leak 

data and identify the leak location. Lastly, the trained model of ANNs were 
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applied for a case study to investigate a leaking pipeline network. The 

investigation result shown an estimation accuracy within 50−100m of the actual 

leak location.  

Another application of the ANNs in leak detection was efforted by 

Mounce et al. in 2007. Leak identification was achieved by data classification 

based on the hydraulic parameters including the water flow and pressure in a 

treated WDS  (Mounce & Machell, 2007). A static and time delay neural 

networks were used to classify the time series pattern for comparison. The static 

neural network converts a temporal sequence into the static spatial pattern 

whereas the time-delay neural network (TDNN) stores the past data as short-

term memory, allowing the ANN to learn the relationships over time and makes 

the network dynamic. Both networks were able to recognise the patterns of leaks 

during the training process. However, the results showed TDNN outperformed 

the static network, in terms of the mean square error (MSE) of both training and 

validation test. In burst detection, the TDNN successfully identified 75% of the 

cases whereas the static neural network only achieved 4%. Additional  

performance test was conducted based on the experimental data in a DMA of a 

UK water company where the pipeline bursts were simulated by the opening the 

hydrant. The estimation of pipeline burst was excellent with accuracy of 

98.33%.  

In 2014, Salam et al. demonstrated an on-line monitoring system for leak 

detection in WDS based on the Radial Basis Function neural network (RBF-

NN). The RBF-NN consisted of three network layers: an input layer, hidden 

layer, and an output layer with two neurons. The number of neurons in the 

hidden layer was determined by trial and error, within the range of maximum 
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number of neurons which is equal to the number of junctions in the network 

system (Salam, et al., 2014). The training was conducted based on the simulated 

data to optimise the  parameters such as the smallest training error and the 

learning rate. Both input data and output data such as the pressure at each 

junction, magnitude and location of leakage were simulated using EPANET for 

the network training. The magnitiude of simulated leak was manipulated by 

changing the emitter coefficients with control of leak sizes between 0.01l/s and 

0.6l/s. The RBF-NN has achieved 98% prediction accuracy in the magnitude 

and location of leakage.  

Table 2.3: Summary of modelling and supplementary analyses. 

Methods Parameters Limitations 

EPANET modelling 

(Wang, et al., 2012) 

 

• Mass 

conservation 

• Only satisfied the engineering 

applications in the small pipelines 

EPANET modelling 

with pressure-driven 

analysis (Muranho, 

et al., 2014) 

• Mass 

conservation 

• Did not promised an all-time 

convergence in every case 

ANN  (Caputo & 

Palegagge, 2003) 

• Water 

pressure and 

flow 

• Location accuracy achieved 

within 50−100m 

ANNs with static and 

TDNN  (Mounce & 

Machell, 2007) 

• Water 

pressure and 

flow 

• Leak localisation was not 

achieved (only detection) 

 

RBF-NN (Salam, et 

al., 2014) 

• Water 

pressure 

• Leak localisation was not 

achieved (only detection) 

• Test was performed based on 

simulated data. 
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2.3 Existing leak localisation system in Malaysia 

Of late, Ranhill SAJ performed a technology trial of the SMART District 

Monitored Area in the State of Johor (WWA, 2018). In the initial phase, 295 

remote noise loggers were implemented for real-time monitoring programme 

and successfully reduced the net night flow in five local DMAs by one-third. 

During the entire monitoring period, a total number of 115 leaks were found 

and closed. 

The leak monitoring programme continued for an extensive coverage in 

the multiple areas of the State of Johor. Each logger was equipped with global 

positioning system (GPS) communication module for daily data transmission 

and sustained monitoring. Primayer provided the company a cloud-based data 

collection platform, PrimeWeb to check on the leakage data in all monitoring 

areas, but only with limited accessibility to it. Figure 2.2 shows the leak 

confident factor (LCF) of the initial phase of monitoring programme, where the 

red markers indicate the locations with high possible of leak. 

 

Figure 2.2: Deployment of the 295 remote noise loggers in the State of Johor 

(WaterWorld, 2019). 
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A field visit was conducted by me and my research group on 15th -17th 

July 2019 to several sites listed in the SMART monitoring area. The tour was 

guided by a technical crew to provide us detailed demonstration of the 

monitoring procedures. The early stage of leak detection was done by 

examining the regions of high LCF through the monitoring system. 

Subsequently, technical crews were sent to the suspected region for further 

inspection. Leak around the vicinity of the anomaly region was commonly 

confirmed by traditional methods such as visual inspection and metal rod 

listening.  

Recently, the inspection teams have started to utilise field detection 

loggers to localise leak. A set of loggers (usually 2 to 6) were installed on the 

wall the underground pipe valves to measure the acoustic signal and the 

collected data will be sent to the local PC for further localisation processes. 

Conventional  cross-correlation method was used to localise the leak. However, 

manually correlate the multiple signals from the loggers was ineffective. 

Numerous of trial-and-errors were required to complete the cross-correlation of 

all pairs of signals from every logger. In some of the tries, the leak location 

might be undetermined as the leak was out of bound between the two correlated 

loggers. Therefore, the leak localisation based on trial-and-error correlation was 

the major challenge for the inspection method. 

 

2.4 Leak detection based on acoustic sensing 

Acoustic sensing has advantages over other leak detection methods in 

terms of ease of implementation and the capability of localising leak. Besides, 
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a sole acoustic sensing system has a lower implementation and maintenance 

costs compare to the heterogenous sensing systems.  

During leakage, turbulent and water outlet at the leak spot cause acoustic 

vibration in pipeline. The frequency of vibration is varied by pipeline material, 

water flow pressure and the size of leak (Hunaidi, et al., 2004).  The leak-

induced acoustic vibration is constantly generated by the turbulence in the 

leaking pipeline. It can be observed as a new emerging spike in the frequency 

spectrum, where the frequency is distinct from the normal flow-induced 

acoustic wave. The detection method by differentiating the anomaly flow based 

on frequency variation has been verified by previous experiments (Khulief & 

Khalifa, 2012; Png, et al., 2018).  

The effectiveness of leak localisation based on the time-correlation 

principle has been generally proven in the single pipeline systems (Maninder, 

et al., 2010; Li, et al., 2018; Foo, et al., 2018). Figure 2.3 shows the conventional 

acoustic-based leak localisation setup in the single pipeline system, where two 

individual sensors are mounted on exterior of pipeline at two sides of a 

suspected leakage.  

 

Figure 2.3: The conventional acoustic-based leak localisation setup (Li et al., 

2014). 

During the leak event, the leak-induced acoustic waves originate from 

the leak site and propagates along the pipeline in two directions. The sensors 
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receive the signals of waves at different times, due to difference in the spatial 

distances. The two corresponding signals can be mathematically modelled as: 

{
𝑥1(𝑡) = 𝑠(𝑡) + 𝑛1(𝑡)

𝑥2(𝑡) = 𝛿𝑠(𝑡 − 𝜏1) + 𝑛2(𝑡)
 

(1) 

where x1(t) and x2(t) are the received signals by sensors 1 and 2, respectively. 

s(t) is the signal from leak with the zero-mean random noises possibly due to 

ambient interferences, n1(t) and n2(t). 𝛿  is the attenuation factor due to the 

acoustic path difference and 𝜏12  is the time delay between the two acoustic 

signals, which is also known as the time difference of arrival (TDoA).  

𝑅12(𝜏) = 𝐸[𝑥1(𝑡)𝑥2(𝑡 − 𝜏)] 

𝜏12 = arg𝑚𝑎𝑥 𝑅𝑥1𝑥2(𝜏) 

(2) 

(3) 

The TDoA, 𝜏12  can be determined from equation (3) through the 

argument of maximum cross-correlation function 𝑅12(𝜏) , where E is the 

expectation operator of the corresponding time function. Then, the leak location 

can be estimated from equation (4). 

𝑙1 =
𝐿 + 𝑣𝜏12

2
 

(4) 

Where v is the propagation speed of the acoustic vibration in the given pipeline, 

L is the distance between two corresponding sensors and l1 is the location of 

leak relative to sensor 1.  

 

2.4.1 Frequency-varying acoustic speed 

The propagation speed of the acoustic wave is another important key 

parameter in localising leak. In many applications, the propagation speed is 



28 

 

assumed to be a constant in pipeline. However, the acoustic speed is highly 

dependent on the material of pipeline, flow pressure and magnitude of leak. In 

fact, the acoustic speed varies as a function of the frequency where the acoustic 

speed-frequency relationship is governed by the dispersive curve of the 

dominated leakage-induced guided wave mode. In solving the frequency-

varying acoustic speed issue, Foo et al. proposed an acoustic speed 

identification method based on cross-time-frequency spectrum (CTFS) and 

dispersion curve. The derivation was based on the Fourier transform of the 

generalised instantaneous cross-correlation function, 𝜒𝑥,𝑦 with respect to time 

(Li, et al., 2014), thereby generating the CTFS equation in delay-frequency 

domain: 

𝐶𝑥,𝑦(𝜏, 𝜔) = ∫𝜒𝑥,𝑦
′ (𝑡, 𝜏)𝑒−𝑖𝜔𝑡𝑑𝑡 

(5) 

[𝜔0, 𝐷] = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝐶𝑥,𝑦(𝜏, 𝜔) (6) 

The TDoA, D and peak frequency, ω0 were then obtained from the 

CTFS as in equation (6). Figure 2.4 shows the TDoA and peak frequency 

obtained based on the acoustic data collected from a leaking gas pipeline. With 

the TDoA and peak frequency, the acoustic speed of the acoustic wave in the 

investigating pipeline was then determined from the dispersion curve as in  

Figure 2.5. Lastly, the acoustic wave at the peak frequency, v(ω0) was 

substituted into equation (4) to estimate the leak location.  
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Figure 2.4: The TDoA and peak frequency in the CTFS (Foo, et al., 2018). 

 

Figure 2.5: Dispersion curve of the copper pipeline plotted using a free 

software package developed in MATLAB by (Seco & Jiménez, 2012). 

Foo et al. have presented a complete and deliberate analytic method to 

determine the speed of acoustic wave for leak localisation. The method based 

on the dominant frequency of leak-induced acoustic wave and the material of 

the pipeline is practical in the real application of leak localisation. The 

experimental result in a single pipeline leak testing facility was excellent with 

high localisation accuracy. 
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2.4.2 Multi-directional waves issue 

Acoustic sensing incorporated with time-correlation method has been 

commonly implemented in both research and field application to localise leak 

in single pipeline system. However, multi-directional waves appear to be the 

major issue encountered by the conventional method in the piping network. 

During leakage, acoustic waves originate from the source of leak tend to 

propagate in various directions throughout the piping network. Figure 2.6 

depicts the multi-directional waves propagation in the piping network. The leak-

induces acoustic waves are possibly reaching the sensor through various paths. 

The leak-induces acoustic waves from different paths also tend to interfere with 

each other and form a super-positioned wave. The phenomenon causes 

uncertainty in the transmission distance between sensors 1 and 2, therefore leads 

to confusion of  L in equation (4). 

 

Figure 2.6: Multi-directional waves in piping network. 

Although the leak signal tends to survive through the shortest 

transmission path due to damping property of pipeline in most practical cases, 

the location analysis solely based on the shortest distance seems oversimplifies 

the waves transmission problem. Furthermore, the shortest path assumption 

fails to support the cases that the shortest path does not vary significantly from 
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other transmission paths in a piping network. Without knowing the exact 

transmission path taken by leak signal, manual time-correlation method based 

on trial and error is time-consuming. The leak localisation process takes even 

longer when involves large number of sensors. Besides, multiple correlation sets 

of different sensor pairs with unknown transmission paths will eventually leads 

to an inconclusive localisation result. 

For these reasons, two intelligent leak localisation systems are 

formulated in Chapter 3, to address the issues faced by the conventional time-

correlation method and to deliver a time-effective and accurate leak localisation 

in WDN. 

 

2.5 Leak detection methods in oil and gas pipelines 

Leakage in oil and gas pipelines are commonly caused by the aging 

process. Corrosion and external wear are the major factor of pipeline aging. The 

process of aging usually takes 15–20 years in a stable operating pipeline (Clair 

& Sinha, 2014). Oil and gas pipelines have relatively higher pressure than water 

pipelines (Dong & Yu, 2005). Besides, risk of leakage in oil and gas pipelines 

is considerably critical with its medium. The leak detection methods in oil and 

gas pipeline are generally similar with water pipelines. Lidar system, thermal 

imaging, spectral imaging, acoustic emission, ultrasonic guided wave method, 

and sonar system are extensively used for leakage detection in the oil and gas 

pipeline. Due to the high-risk property of oil and gas pipelines, most of the 

applications focus on corrosion detection to prevent leak, rather than finding the 

leak. (Lu, et al., 2020)  
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CHAPTER 3 

 

3 METHODOLOGY 

 

In this chapter, the detailed methodologies of the MLAF and MDNN 

were deliberately presented. A mathematical modeling of the arrival times was 

introduced to mimic the real measurement of leak in the virtual environment. 

The modeling served as an alternative to simulate leak data for the 

characterisation tests of MLAF and the MDNN training. 

 

3.1 MLAF 

the MLAF was formulated for an adaptive and time-effective leak 

localisation in all piping networks. By analyzing the multi-spatial acoustic 

signal from a sensor network, the MLAF automatically predicts and concludes 

a leak location. To ensure fluent and seamless localisation process, an 

automated control flow system was adopted. The overall outline of the MLAF 

was summarised in Figure 3.1. The MLAF consists of eight hierarchical 

analytics and reasoning processes, each process was  presented and discussed 

detailly in the following sections respectively.  
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Figure 3.1: The eight heirarchical analytics levels of the MLAF. 

In 1st level path analysis, all transmission paths between each sensor 

available in the piping network were identified and stored into individual matrix 

by 2nd level paths storing. The process was followed by location analysis to 
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determine leak locations based on each path in 3rd level. The calculated leak 

locations were then traced back and reorganised in subsequent two levels. In the 

last 3 levels, the leak locations were filtered, pruned, and pinpointed through 

various statistical analytics methods. The detail operation and method of each 

analytics level will be clearly discussed in the following sections. 

 

3.1.1 Path analysis  

Path analysis is widely utilised in many routing applications such as  

GPS, network routing and computer graphics application (Zafar, 2016). Route 

searching at the lowest cost is a very common application in many shortest path 

problems. In MLAF, the path analysis was modified for a continuing search of 

k numbers of subsequent shortest paths from the source sensor i to the target 

sensor j, 𝑝𝑖𝑗
𝑘  ,where i and j =1, 2, 3, …N, N is the total number of sensors in a 

sensor network, k = 1, 2, 3, …n, n is the total number of shortest paths 

predefined by the user. The subsequent shortest paths always fulfil the criteria 

such that {  𝑝𝑖𝑗
𝑘  | 𝑑𝑖𝑗

𝑘 > 𝑑𝑖𝑗
𝑘−1 } in the iterative search. The initiation of 1st level 

path analysis was based on network topological inputs such as the number of 

sensors, number of respective neighbours, and distance between respective 

neighbours. The subsequent k shortest paths were searched through an iterative 

breadth-first search (BFS) algorithm. The algorithm continued to explore the 

piping network until the n numbers of shortest paths have been thoroughly 

searched. The searching algorithm then moved on to search for the paths 

between the next i and j sensor pair.  
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Figure 3.2: Outline of the path analysis and paths storing. 

 

3.1.2 Paths storing 

The process was followed by the 2nd level paths storing upon completion 

of the 1st level path analysis. All the searched paths were stored into two 

separated matrices, the all-path analysis (APA) matrices and the shortest-path 

analysis (SPA) matrices. The shortest paths were stored in the 𝑝𝑖𝑗
𝑆𝑃𝐴  matrix 

while all the n paths are stored in the 𝑝𝑖𝑗
𝐴𝑃𝐴 matrix. The corresponding distances 

were stored in the 𝑑𝑖𝑗
𝐴𝑃𝐴 and 𝑑𝑖𝑗

𝑆𝑃𝐴 matrices, respectively. The separated storing 

system based on APA and SPA ensured two distinct flows of hierarchical 

analyses: one solely based on the shortest paths, another based on multiple 

transmission paths (up to n subsequent shortest paths). The SPA retained the 
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conventional assumption that the shortest path will survive through the 

transmission due to damping property of pipeline. The APA on the other hand, 

prevented oversimplification of the wave transmission complexity by 

considering multiple transmission paths of the leak signal. 

 

3.1.3 Location analysis 

The 3rd level location analysis focused on the analysis of the multi-

spatial acoustic signals from the sensor network. At this stage, TDoAs between 

each pair of signals were determined through a recursive time-correlation 

analysis. Leak locations, 𝑙𝑖 were estimated based on three parameters, 𝜏𝑖𝑗, 𝑑𝑖𝑗
𝐴𝑃𝐴 

and 𝑑𝑖𝑗
𝑆𝑃𝐴 through the time-distance equation. The estimated leak locations were 

stored in matrices 𝑙𝑖𝑗
𝐴𝑃𝐴 and 𝑙𝑖𝑗

𝑆𝑃𝐴 where each leak location was relative to the 

corresponding source sensor i.  

 

Figure 3.3: Location analysis based on APA and SPA. 

However, the leak locations 𝑙𝑖𝑗
𝐴𝑃𝐴 and 𝑙𝑖𝑗

𝑆𝑃𝐴  were inconclusive and hard 

to be compared statistically, as each leak location was only known by distance 

relative to respective source sensor. Thus, in the following section, the leak 

locations were generalised to a common source of reference through the 

backward path analysis and data reorganisation. 
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3.1.4 Backward path analysis and data reorganisation 

Before the statistical analyses and pruning, backward path analysis and 

data reorganisation were introduced as pre-processing stages to generalised and 

redistribute the leak locations into classes of the common source of reference. 

Figure 3.4 shows the outline of backward path analysis, where an example case 

of estimated leak locations correlated from sensors 2 and 4 is used for 

demonstration.  

 

Figure 3.4: The backward path analysis and data reorganisation (example case: 

APA estimation results of correlation between sensors 2 and 4). 

Each of the leak location was backtracked according to respective paths 

𝑝𝑖𝑗
𝐴𝑃𝐴 and 𝑝𝑖𝑗

𝑆𝑃𝐴 through the backward path analysis. The nearest pipe segment 

of the leak location was pruned from respective path through process of 

segmentation. The segmented leak locations, 𝑙𝑠𝑒𝑔
𝐴𝑃𝐴 and 𝑙𝑠𝑒𝑔

𝑆𝑃𝐴  were represented 

by the distance from the nearest sensor in the pipe segment, and grouped by 

classes with respect to the pipe segment.  
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3.1.5 General statistical analysis 

Figure 3.5 shows the reasoning processes of the MLAF, which 

comprises of three stages. General statistical analysis served as first screening t 

statistically deduce the final leak location from the estimations set. All the 

segmented leak locations were compared in terms of degrees of dominance and 

convergence at this stage. The degree of dominance, Δmax was determined by 

calculating the difference between the mode frequency, Nmode and the mean of 

all classes. The value tells us how much the modal class dominates the total 

estimations over the standard mean.  

 

Figure 3.5: General statistical analysis, pruning and pinpointing. 
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3.1.6  Pruning  

In the subsequent pruning process, density-based spatial clustering of 

applications with noise (DBSCAN) was implemented to further identify the 

density of  class of segmented leak locations. Clusters were formed by grouping 

MinPts numbers of neighbouring data points within a maximum radius 𝜀. The 

cluster with the highest density (or number of cluster points, CPts) shows 

superior degree of convergence among the estimations set. Thus, at the end of 

the pruning process, the pipe segment with the highest cluster’s density 

(CPtsmax) and degree of dominance (Δmax) was concluded as the. 

 

3.1.6.1 DBSCAN 

DBSCAN is a density-based clustering method to group a set of 

observations into one or more regions of high density based on two parameters: 

the radius, 𝜀 and MinPts (Liu & Özsu, 2009). Figure 3.6 depicts the DBSCAN 

result based on MinPts = 3 and radius = 𝜀, the cluster with number of points, 

CPts > MinPts forms a ‘circle’ centres at a core point, where the border points 

are the rest of the points lie within the radius = 𝜀. The data points in low density 

region do not form a cluster and known as the noise points (outliers). 
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Figure 3.6: Core points, border points, and noise points (outliers). 

 

 

Figure 3.7: DBSCAN clustering process. 

Figure 3.7 shows the process of the DBSCAN in determining the CPts. 

The process searched through all density-reachable points within a dataset and 
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determined whether the criteria CPts > MinPt based on the 𝜀 were met. All the 

CPts (core point and border points) of the cluster were stored and the process 

kept repeating until all points in a dataset in all available classes (pipe segments) 

were visited. The cluster with the highest density, CPtsmax has the highest degree 

of convergence among the estimations set. At the end of this stage, the pipe 

segment with the highest degrees of dominance and convergence was deduced 

as the final leak segment. 

 

3.1.7 Pinpointing 

In the next stage, the leak location was further pinpointed within the 

final leak segment based on expectation maximisation (EM) and K-means 

clustering. The segmented leak locations were grouped into clusters based on 

the centricity of the given distributed set. Each cluster was represented by the 

respective central vectors (EM mean and K-means centroid), where the final 

leak locations, 𝐿𝐴𝑃𝐴  and 𝐿𝑆𝑃𝐴  were statistically concluded  by these central 

vectors  

 

3.1.7.1 Expectation Maximisation Clustering 

EM clustering is an algorithm commonly used to partition i observations 

into cluster by performing maximum likelihood estimation in statistical models 

based on unobserved latent variables. The clustering process takes place by 

iteratively alternating the expectation (E) step and maximisation (M) step. In 



42 

 

the general case, with observations 𝑥𝑖 and latent variables 𝑧𝑖, we have the log-

likelihood function as follows: 

𝑙(𝜃) =∑log 𝑝(𝑥𝑖 , 𝑧𝑖|𝜃)

𝑁

𝑖=1

 (6) 

Where θ = (𝜇𝑖 , 𝜎𝑖
2, 𝜋) , means 𝜇𝑖  and variances 𝜎𝑖

2  are the Gaussians 

parameters, 𝜋  is the categorical variables. In E step, the log likelihood 

estimation function of θ, with respect to the current conditional distribution of 

𝑧𝑖 given 𝑥𝑖 and the current estimates of the parameters 𝜃𝑡 is given by: 

𝑄(𝜃|𝜃𝑡) =∑𝐸[log[ 𝑝(𝑧𝑖|𝜃)

𝑁

𝑖=1

𝑝(𝑥𝑖, 𝑧𝑖|𝜃)]] (7) 

In M step, the log likelihood estimation function is maximised as: 

𝜃𝑡+1 = argmax𝑄 (𝜃|𝜃𝑡)  (8) 

The parameters in the maximised log likelihood estimation function are 

used to determine the distribution of the latent variables in the next E step, 

therefore maximise the log likelihood estimation function in E step. During each 

iteration, parameters 𝜇𝑖 and 𝜎𝑖
2 are updated until 𝜎𝑖

2 have been minimised. The 

final leak location of each segment is represented by means 𝜇𝑖
𝑡. 

 

3.1.7.2 K-means clustering 

K-means clustering is another unsupervised learning method to partition 

i observations into k clusters based om their nearest mean. The algorithm 

alternates between the calculation of the centroid and the sum of squares error 

(SSE). Initial search of centroid 𝑐𝑖 starts with a random guess. 
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Equation (9) calculates the SSE between set of data points and centroids. 

During each iteration, new centroids of clusters are updated by equation as the 

mean values (10) until SSEs have been minimised. The final leak location of 

each segment is represented by a central vector (centroid) of each cluster, 𝑐𝑖. 

𝑆𝑆𝐸 =∑∑‖𝑥 − 𝑐𝑖‖
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 (9) 

𝑐𝑖 =
1

𝑚𝑖
∑ 𝑥

𝑥∈𝐶𝑖

 (10) 

Where 𝑥 is set of data points, 𝐶𝑖 is ith cluster, 𝑐𝑖 is centroid of cluster 𝐶𝑖, 𝑚𝑖 is 

the number of points in ith cluster, k is number of clusters.   

 

3.2 MDNN 

In this section, the MDNN was designed based on the inverse problem 

analysis methodology to localise a leak in piping network. The leak localisation 

was achieved by a series of custom training based on a few sets of training data. 

The training was conducted through supervised learning based on input features 

such as the TDoAs, receival sensors, and distances between sensors. The outline 

of the MDNN localisation is depicted in Figure 3.8. The overall architecture 

comprises of 3 levels: data preparation, MDNN training, and field prediction.  

In 1st level data preparation, multiple sets of distributed leaks were 

emulated through the inverse location analysis. The leak locations were 

emulated with an equal separation distance along all pipe segments in the 

targeted piping network. Each leak location and the corresponding TDoA 
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served as the training data for an individual cases of multiple single-leak events 

at different locations. 

 In 2nd level MDNN’s training, the MDNN was trained to identify the 

leak segments and locations through recognition of the input features. The 

training was repeated with different hyperparameters such as tensor shapes 

(numbers of hidden layers and dropout layers), number of epochs, batch sizes 

and the sample size of training data to identify the optimal model.  

 

Figure 3.8: Outline of MDNN localisation. 

Lastly, the optimal model was implemented for the field prediction in a 

local DMA. The prediction of actual leak was based on the field measured 

TDoAs as discussed in section 3.1.2, and the corresponding features (receival 
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sensors and the distances between sensors).  The leak segment and location were 

predicted based on the optimal trained model. 

 

3.2.1 Feed-forward and back-propagation 

Feed-forward and back-propagation are the two essential operational 

mechanisms of the neural network training. These two mechanisms describe 

how the data spread through a network and improve the prediction gradually 

during the training. A basic deep neural network model consists of multi-layer 

feed-forward backpropagated ANNs with multiple hidden layers between the 

input and output layers. Figure 3.9 illustrates the basic deep neural network 

model with an input layer, n hidden layers and an output layer.  

 

Figure 3.9: Basic neural network model. 

Each neuron in the input layer holds a single value of input feature. The 

data is passed from the previous layer to the following layer by mean of the 

feed-forward mechanism. The general feed-forward function can be represented 

by equation (11), where xi-1 represents the neuron in previous layer, yi is the 
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neuron in the subsequent layer, 𝜎 is the activation function, Wi is the weightage, 

and Bi is the bias.  

𝑦𝑖 = 𝜎(𝑊𝑖𝑥𝑖−1 + 𝐵𝑖) (11) 

The values of output neurons vary with Wi and Bi and be normalised by 

the activation function, 𝜎 during the feed-forward process. At the end of the 

feed-forward process, quadratic error between the network output and 

respective targets, E are calculated through loss function. In the back-

propagation process, the Wi and Bi are adjusted with the correcting factors ∆𝑊𝑖 

and ∆𝐵𝑖. The correcting factors ∆𝑊𝑖 and ∆𝐵𝑖 can determined from the partial 

derivative of the error function as in equations (12) and (13), respectively.  

∆𝑊𝑖 = −𝛾
𝜕𝐸

𝜕𝑊𝑖
, 𝑓𝑜𝑟 𝑖 = 1,2⋯𝑛 

(12) 

∆𝐵𝑖 = −𝛾
𝜕𝐸

𝜕𝐵𝑖
, 𝑓𝑜𝑟 𝑖 = 1,2⋯𝑛 

(13) 

In the subsequent feed-forward process, the neural network continues to 

estimate the new outputs based on the adjusted activation function. The feed-

forward and back-propagation mechanisms are repeated iteratively until the 

training is optimised. Equation (14) indicates the gradient ∇E which is a 

continuous differentiable function of all weights W1, W2, ⋯Wn in the network. 

The training of neural network is optimised as the minimum of the error 

function, ∇E = 0 is achieved.  

∇𝐸 = (
𝜕𝐸

𝜕𝑊1
,
𝜕𝐸

𝜕𝑊2
, ⋯

𝜕𝐸

𝜕𝑊𝑛
) 

(14) 
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3.2.2 Mixed-model architecture 

To effectively localised leak location in 2-dimensional layout piping 

network, the MDNN was constructed for simultaneous predictions of both pipe 

segment and location. The prediction involved both classification and 

regression tasks. Thus, two neural network architectures were aggregated to 

achieve the simultaneous predictions.  

Classification neural network (CNN) was utilised as a classifier in 

predicting the leak segments, whereas regression neural network (RNN) was 

implemented to pinpoint the leak location. Figure 3.10 depicts the mixed-model 

architecture of MDNN which comprises four working subnetworks: the 1st 

level CNN, 1st level RNN, 2nd level CNN, and 2nd level RNN.  

 

Figure 3.10: The mixed-model architecture of MDNN. 
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In 1st level subnetwork, the categorical input (receival sensors a and b) 

and the numerical input (TDoAs and distances between each pair of receival 

sensors) wefed into the CNN and RNN, respectively. In 1st and 2nd level 

subnetworks, all the neurons of the previous layers were fully connected to 

subsequent layers. The 1st level subnetworks were linked to the 2nd level 

subnetwork by concatenating the output neurons in the 1st level subnetworks. 

The concatenation allows aggregated features learning based on the 

intermediate result from the preliminary learning of the four primitive input 

features. In 2nd level subnetworks, the leak segment and location were predicted 

by the CNN and RNN, respectively.  

 

3.2.2.1 CNN 

CNN is commonly utilised for prediction of categorical data. In MDNN, 

the receival sensors a and b in numerical labels (1, 2, 3, ⋯, n) were one-hot 

encoded as categorical data and input into 1st level CNN. The feed forward and 

back-propagation processes were based on the Softmax activation function and 

categorical cross-entropy loss function, which are equated in eq. (15) and (16), 

respectively. Where 𝑆(𝑥𝑖) is the Softmax function, m is the number of samples, 

and 𝑡𝑖  is the actual probability of the targeted class. The Softmax function 

normalise the output of neuron to values of 0 and 1 so that the prediction is 

always converged. In the backpropagation process, the  cross-entropy loss 

function measures the loss of respective output based on its probability values 

between 0 and 1.  
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𝑆(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝑚
𝑖

 
(15) 

𝐿𝐶𝐸 = −
1

𝑚
∑𝑡𝑖 log 𝑆(𝑥𝑖)

𝑚

𝑖

 
(16) 

 

3.2.2.2 RNN 

The 1st and 2nd level RNNs are commonly governed by the rectified 

linear unit (ReLU) activation function and mean square error (MSE) loss 

function. In most of the cases, vanishing gradient problem is generally faced by 

RNN training, as the gradient of MSE loss function tends to become vanishingly 

small. The vanishing gradient problem inhibits the weights of a RNN from 

changing their values and leads to non-progressive training. ReLU function as 

expressed in eq. (17) is a piecewise linear function to exclude the negative 

output in the RNN. The function is well-known as an effective solution for the 

vanishing gradient problem with validated applications [23, 24]. Equation (18) 

further shows the MSE loss function utilised in the RNN, where m is the number 

of samples, 𝑡𝑖 is the target value, and 𝑦𝑖 is the predicted output of regression 

neural network. 

𝑦𝑖 = {
𝑥    𝑖𝑓 𝑥 > 0

   0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(17) 

𝐿𝑀𝑆𝐸 =
1

𝑚
∑(𝑡𝑖 − 𝑦𝑖)

2

𝑚

𝑖

 
(18) 
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3.2.3  Overfitting in neural network 

One of the most common problems in the deep neural network training  

is overfitting. There are several reasons that a deep neural network can overfit. 

A noisy training dataset or highly complex model with too many parameters can 

eventually causes the deep neural network to overfit.  Figure 3.11 shows an 

example of the overfitting issue in training which can solved by stopping the 

training at an optimal point. The solution is commonly known as the ‘early 

stopping’. In general, there are several ways of preventing overfitting in a deep 

neural network, including simplify the complexity of the neural network by 

changing tensor shape, introducing dropout layers, changing the training batch 

sizes and ‘early stop’. 

 

Figure 3.11: Overfitting and early stopping (Serveh, et al., 2019). 

 

3.2.3.1 Number of epochs 

Epoch is a complete process of feed-forward and back-propagation in a 

neural network.  Number of epochs refer to the number of iterations the neural 

network went through the process. The number of epochs is conventionally 

large, often hundreds or thousands, to ensure the sufficient training. As 
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discussed in previous section, overfitting is a very common issue in neural 

network training.  Early stopping can be achieved by limiting the number of 

epochs in training. 

 

3.2.3.2 Tensor shapes  

Modifications of the neural network’s tensor shapes is another effective 

ways to prevent the neural network from overfitting. The neural network can 

overfit during a training due to the network complexity. Therefore,  the key 

ideas are to reduce the network complexity by changing the number of hidden 

layers and the number of neurons in each layer to obtain the optimal tensor 

shape for training. 

 

3.2.3.3 Dropout 

Dropout is a regularisation technique to prevent the neural networks 

from overfitting. The technique modifies the network layout by randomly 

dropping some connections of the neurons from each layer during the training. 

The technique is equivalent to the modification of tensor shapes with a constant 

number of layers, as the training is performed in different ‘dropped’ neural 

networks in every epoch. Figure 3.12 shows an example of dropout during a 

neural network training. This technique has proven to degrade the overfitting 

issue in a variety of problems such as image segmentation, image classification, 

word and semantic embedding. 
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Figure 3.12: ropout of neural network (Mohamed & Hichem, 2018) 

 

3.3 Mathematical modelling of the arrival times 

In this section, a mathematical modelling technique was proposed to 

simulate leak data for the characterisation tests of MLAF and the MDNN 

training. It is an inevitable challenge to characterize and validate the 

performance of MDNN, due to limited access of piping networks with various 

topologies. The accesses to piping networks of varying network sizes, network 

shapes, and locations of leak are practically unachievable. Moreover, MDNN’s 

training requires data of different leak locations in the targeted piping network, 

which is simply impossible to be achieved experimentally. Therefore, the 

mathematical modelling was proposed as an alternative to mimic the real 

measurement of leak in a virtual piping network and simulate the temporal data 

of the arrival time for the characterisation tests of MLAF and training data in 

MDNN.  

Figure 3.13 shows a sample case of leak data simulation with 

consideration of the multi-directional waves issue. During leakage, the multi-

directional waves, x1,  x2,  x3, ⋯, xn from the leak source tend to arrive at two 

individual sensors 1 and 2 at different times, due to different in transmission 
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paths. The arrival times of multi-directional waves were therefore noted as t1,  

t2,  t3, ⋯, tn, respectively. Based on the superposition theorem of waves, the 

resultant leak wave is expected to arrive at sensors 1 and 2 in the resultant waves 

xs1 and xs2. The waves representation of xs1 can thus be derived from the 

superposition of waves, x1,  x2,  x3, ⋯, xn as in eq. (19). Each of the wave function 

carry the respective phases shifts, α2,  α 3, ⋯  αn resultant from the time 

differences, due to the respective differences in path lengths. 

 

Figure 3.13: Sample case of leak data simulation. 

𝑥𝑠1(𝑡) =

{
 

 
𝑥1(𝑡1) = 𝑥0 sin(𝜔𝑡1)

𝑥2(𝑡2) = 𝑥0 sin(𝜔𝑡1 + 𝛼2)  

⋮
𝑥𝑛(𝑡𝑛) = 𝑥0 sin(𝜔𝑡1 + 𝛼𝑛) 

 

(19) 

𝛼2 = 2𝜋𝑓∆𝑡2,    ∆𝑡2 = 𝑡2 − 𝑡1 (20) 

𝛼𝑛 = 2𝜋𝑓∆𝑡𝑛,     ∆𝑡𝑛 = 𝑡𝑛 − 𝑡1 (21) 

𝑥𝑠1(𝑡) = 𝑥1(𝑡1) + 𝑥2(𝑡2)⋯+ 𝑥𝑛(𝑡3) (22) 

The resultant wave at sensor 1, xs1 and the phases shift, α can thus be 

written as in eq. (23) and (24). The resultant wave at sensor 2, xs2 can be derived 

through the similar method. Finally, the TDoAs between resultant waves xs1 and 

xs2 can be calculated by subtracting respective arrival times ts1 and ts2 as in eq. 

(26). 
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𝑥𝑠1(𝑡𝑠1) = 𝑥0(𝑡) sin(𝜔𝑡1 + 𝛼) (23) 

𝛼 = tan−1 [
∑ sin 𝛼𝑖
𝑛
𝑖=2

∑ cos 𝛼𝑖
𝑛
𝑖=2

] ,    𝛼 = 2𝜋𝑓∆𝑡𝑠1 
(24) 

 ∆𝑡𝑠1 = 𝑡𝑠1 − 𝑡1,    𝑡𝑠1 = 𝑡1 + ∆𝑡𝑠1 (25) 

𝜏12 = 𝑡𝑠1 − 𝑡𝑠2 (26) 

In part 3.13, the acoustic signals of leak were retrieved experimentally 

and the TDoA between two acoustic signals was determined through a recursive 

time-correlation analysis. In this part, the acoustic signals and TDoA were 

simulated based on the proposed mathematical modelling. The mathematical 

modelling provides an alternative solution for the characterisation tests and 

training data which are impractical and time-costly to be achieved 

experimentally. 

3.4 Summary 

This this chapter, two leak localisation methodologies based on the 

forward and inverse analysis methods were proposed. The detailed localisation 

processes of MLAF and MDNN have been discussed deliberately in Sections 

3.1 and 3.2, respectively. The summary of the methodologies was depicted as 

flow diagram in Figure 3.14. 
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Figure 3.14: Summary of methodologies 1 and 2.  
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CHAPTER 4 

 

4 RESULTS AND DISCUSSIONS 

 

In the first part of this chapter, various characterisation tests were 

devised based on different topologies (sizes and shapes) of the piping networks 

to validate the performance and flexibility of the MLAF in different scenarios. 

The discussion was followed by a field prediction in a local DMA to further 

verify the reliability. 

In the second part, the MDNN was trained to predict the leak location in 

similar DMA. The optimal model was applied for similar field prediction as in 

the first part. Finally, the localisation results of both methodologies were 

compared in terms of the localisation accuracy, processing time, and flexibility. 

 

4.1 MLAF leak localisation 

4.1.1 Characterisation based on network sizes 

The first characterised was conducted based on the network sizes, 

deviation of leak locations within each size of network, and the number of multi-
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directional waves involved in leakage. 20 piping networks with different 

network sizes and leak locations were prepared for the characterisation tests.  

 

Figure 4.1: The 20 emulated piping networks with different network sizes and 

leak locations. 

Figure 4.1 shows the 20 piping networks with varying network sizes 

from 4 sensors to 16 sensors. A consistent segment length of 50m was fixed in 

each network to study the sole effect of network sizes. Deferent positions of 
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leak were included in each size of the network to verify the possible effect to 

the localisation accuracy. Besides, a maximum number of 5 multi-directional 

waves was considered in each case of emulation to study the corresponding 

effects. The leak locations of all emulated cases were predicted using the MLAF. 

The performances of MLAF were evaluated in two stages: first based on 

the degrees of dominance and convergence to evaluate the accuracy of pruning 

and followed by the RMSE to evaluate the accuracy of pinpointing. Figures 4.2 

3 (a) and (b) show the degree of dominance and convergence show the first 

stage APA results. Both degrees of dominance and convergence of the APA 

results show increasing trend with higher number of multi-directional waves. 

However, both results do not show an obvious trend corresponding to varying 

network sizes and leak locations.  

Figures 4.3 (a) and (b) show the degree of dominance and convergence 

of the first stage SPA results. The degree of dominance shows a decreasing trend 

while the degree of convergence remains constant. It is worth to note that the 

APA outperformed SPA in the pruning results, but the pruning based on SPA 

was still decent in all the tested cases. Besides, pruning results of both APA and 

SPA are not affected significantly by the size of network as there are no 

noticeable trend can be observed in Figures 4.2 (b) and  4.3 (b). 
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Figure 4.2 (a): First stage evaluations of 

APA results based on the degree of 

dominance. 

 

Figure 4.2 (b): First stage evaluations of 

APA results based on the degree of 

convergence. 

 

Figure 4.3 (a): First stage evaluations of 

SPA results based on the degree of 

dominance. 

 

Figure 4.3 (b): First stage evaluations of 

SPA results based on the degree of 

convergence. 

Subsequently, the results of localisation were further compared in term 

the RMSEs. The RMSEs of the final leak locations based on APA and SPA 
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were plotted in Figures 4.4 (a) and (b). The results show the localising 

accuracies of both APA and SPA did not vary significantly with different sizes 

of network and deviation of the leak locations. However, both APA and SPA 

had lower localisation accuracies when higher number of multi-directional 

waves involved in the leakage. A maximum RMSE > 0.9m were achieved by 

both APA and SPA localisations, which was considerably accurate in a 50 m 

pipe segment. 

 

Figure 4.4 (a): Second stage evaluations 

of APA based on the RMSEs 

 

Figure 4.4 (b): Second stage evaluations 

of SPA based on the RMSEs 

  

  

4.1.2 Characterisation based on network shapes 

The characterisation tests in the previous section have shown that the 

performances of MLAF is independent to the sizes of network and the different 

positions of the leak locations. The following characterisation was conducted to 

further study the performances against different network shapes. The 

characterisation tests also studied the effect when one side of the network is 
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deviating from another. Figure 4.5 shows five quadrilateral piping networks 

with a fixed size of 9 sensors . where each of the segments x and y were set with 

lengths y = 50, x = ny, and the ratio n = 1, 2, 3, 4, and 5. The extreme case such 

that x = 5y have been included in the characterisation tests. Four different leak 

locations a, b, c, and d were simulated in each network to characterise the 

localising accuracy when leak locations were strayed to one side of network. 

 

Figure 4.5: Five quadrilateral DMAs with different length ratios. 

Figures 4.6 and 4.7 present the results of first stage evaluation based on 

the APA and SPA, respectively. The pruning results show similar trends with 

the previous characterisation tests corresponding to the number of multi-

directional waves. However, the results did not vary significantly with different 

shapes of network and deviation of the leak locations, even in the extreme case 

of x = 5y. Nevertheless, the characterisation further affirmed the outperformance 

of the APA over the SPA in terms of the pruning.  
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Figure 4.6 (a): First stage evaluations 

of APA results based on the degree of 

dominance. 

 

Figure 4.6 (b): First stage evaluations 

of APA results based on the degree of 

convergence.  

 

Figure 4.7 (a): First stage evaluations 

of SPA results based on the degree of 

dominance. 

 

Figure 4.7 (b): First stage evaluations 

of SPA results based on the degree of 

convergence. 

The RMSEs of leak locations a, b, c, and d are presented in Figures 4.8, 

(a), (b), (c) and (d), respectively. In general, the RMSEs show an increasing 

trend with higher number of multi-directional waves. Besides, a noticeable 
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deviation of leak locations c can be observed in Figure 4.8 (c). The RMSEs of 

leak locations c were comparatively large in network shapes 50-150, 50-200, 

and 50-250 when five multi-directional waves involved. However, the 

deviations in range of (1.5m < RMSE < 3m) were insignificant in the pipe 

segment of length >150m, as the error were only >2% of the total length. 

 

Figure 4.8 (a): Second stage 

evaluations based on the RMSEs of 

estimated leak location a 

 

Figure 4.8 (b): Second stage 

evaluations based on the RMSEs of 

estimated leak location b 

 

Figure 4.8 (c): Second stage 

evaluations based on the RMSEs of 

estimated leak location c 

 

Figure 4.8 (d): Second stage 

evaluations based on the RMSEs of 

estimated leak location d 
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4.1.3 Validation tests based on non-uniform DMAs 

Excellent performances and the high adaptiveness of MLAF in various 

networks with different topologies have been proven by the previous 

characterisations. The results showed that APA and SPA were preferable in  

pruning and location pinpointing, respectively. Continuingly, two piping 

networks with non-uniform shapes and sizes were simulated to further validate 

the performances of the MLAF. Figure 4.9 depicts an emulated piping network 

with a single leak in segment 4-5. The leak location was set at 15m from sensor 

4 and the case of leak was simulated based on three multi-directional waves.  

 

Figure 4.9: Emulated DMA 1. 

The localisation results of general statistical analysis, pruning and 

pinpointing were plotted in Figures 4.10, 4.11, and 4.12, respectively. 

Significant results of pruning were achieved by the APA, with superior 30.3 

degree of dominance and 34 degree of convergence in the leak segment 4-5. 

Figure 4.12 further shows the pinpointing result within the leak segment 4-5. 

The final leak locations were represented by the centroids of K-means and 

means of EM. The results were excellent with 0.38m and 0.31m RMSEs 

achieved by APA and SPA, respectively.  In the first validation test, the MLAF 

localisation was time-effective with total processing time of 4.16s. 
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Figure 4.10: 6th level general statistical analysis. 

 

Figure 4.11: 7th level pruning. 

 

Figure 4.12: 8th level pinpointing. 

∆ = 30.3 

𝐶𝑃𝑡𝑠 = 34 
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Figure 4.13: Simulated DMA 2 with non-uniform shape. 

The validation test 2 was conducted based on emulated piping network 

2 in Figure 4.13. A single leak location was simulated in segment 2-5, 15m from 

sensor 2, based on four multi-directional waves. The localisation results of 

general statistical analysis, pruning and pinpointing are presented in Figures 

4.14, 4.15, and 4.16, respectively. The APA pruning was excellent with 

appreciable degree of dominance of 42.7 and degree of convergence of 64. The  

pinpointing results based on APA and SPA were both remarkable with RMSEs  

of 1.41m and 0.16m, respectively. The 4.74s localisation process was time-

effective. The localisation results of validation tests 1 and 2 were summarised 

in Table 4.1. 

 

Figure 4.14: 6th level general statistical analysis. 

∆ = 42.7 
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Figure 4.15: 7th level pruning. 

 

Figure 4.16: 8th level pinpointing. 

Table 4.1: Localisation results of validation tests 1 and 2. 

 
  Test 1 Test 2 

Δmax 
APA 30.3 42.7 

SPA 4 2.5 

CPtsmax 
APA 34 64 

SPA 4 8 

K-mean (m) 
APA 15.2 15.0 

SPA 15.4 14.8 

EM-mean (m) 
APA 14.5 13.0 

SPA 15.2 15.1 

RMSE (m) 
APA 0.38 1.41 

SPA 0.31 0.16 

Time (s)  4.16 4.72 

𝐶𝑃𝑡𝑠 = 64 
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4.1.4 Field prediction in the local DMA 

A case study was conducted by experimenting the MLAF in a local 

DMA in Taman Scientex, Masai, Pasir Gudang, Johor (GPS coordinate: 

1°30'42.3"N 103°54'57.8"E). A remote-acoustic sensor network consists of six 

hydrophone sensors was deployed in the DMA. The placement of the six sensors 

was shown in Figure 4.17. During the field test, each sensor was installed onto 

the underground valve of pipeline as shown in Figure 4.18. The acoustic signals 

of leak were collected through a 60s time-frame continuous data acquisition. 

Figure 4.19 shows the acoustic signal captured by six hydrophone sensors 

during the field test. Noticeable higher amplitudes can be observed in the signals 

from sensors s1, s6 and s2, as those sensors were closer to the leak source. 

Figure 4.20 further shows the time-corelation result of the leak signals from 

each pair of sensor in the sensor network.  

 

Figure 4.17: Local DMA at Jalan Pelanduk, Taman Scientex, Masai, Pasir 

Gudang, Johor. (GPS coordinate: 1°30'42.3"N 103°54'57.8"E). 
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Figure 4.18: Installation of the hydrophone sensor. 

 

Figure 4.19: Acoustic signals captured by the six hydrophone sensors. 
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Figure 4.20: TDoAs between respective acoustic signals. 

Figures 4.21 (a), 4.22 (a) and 4.23 (a) show the localisation results based 

on the field measurement. The results were compared to the localisation results 

based on the simulated input in Figures 4.21 (b), 4.22 (b) and 4.23 (b). The 

simulated leak input was prepared based on the mathematic modelling of three 

multi-directional waves.  

Figures 4.21 (a) and (b) present the general statistical analysis based on 

the field measurement and simulated input. Both results had a close value of 

means and an identical mode in pipe segment s1-s6. The degrees of dominance 

of the simulated input and field measurement were considerably high, which 

were 10 and 20.1, respectively. Both of the results generally deducted the leak 

segment in s1-s6. The APA pruning based on the field measurement shows a 

minor confusion in pipe segment s3-s6 with a degree of dominance of 6. 

However, the results of SPA pruning are equivalent for both the field 

measurement and simulated input. 

Figures 4.22 (a) and (b) further shows the pruning results based on 

degrees of convergence. The CPts based on field measurement and simulate 
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input were 18 and 34, respectively. The high degrees of convergence clearly 

deducted leak segment in s1-s6 without any confusion.  

In 6th level statistical analysis and 7th level pruning, the leak segment in 

s1-s6 was concluded. Subsequently, the leak location in s1-s6 was determined 

by 8th level pinpointing. As shown in Figures 4.23 (a) and (b), both results of 

the field measurement and simulate input achieved accurate prediction with 

significantly low RMSEs. The APA achieved a RMSE of 3.76m and the SPA 

has achieved a RMSE of 0.69m in the field prediction. In the simulated case, 

RMSEs of 0.07m and 0.31m were achieved by APA and SPA, respectively. The 

localisation accuracies were appreciable in the pipe segment with a span of 

53.5m. Both predictions based on the field measurement and simulated input 

were time-effective, which took 4.22s in the simulated case and 7.37s in the 

field prediction. Lastly, the localisation results based on both field measurement 

and simulated input were summarised in Table 4.2. 

 

Figure 4.21 (a): 6th level general 

statistical analysis based on field 

measurement. 

 

Figure 4.21 (b): 6th level general statistical 

analysis based on simulated input. 

∆ = 10 
∆ = 20.1 
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Figure 4.22 (a): 7th level pruning based on field measurement. 

 

Figure 4.22 (b): 7th level pruning based on simulated input. 

 

Figure 4.23 (a): 8th level pinpointing based on field measurement. 

𝐶𝑃𝑡𝑠 = 18 

𝐶𝑃𝑡𝑠 = 34 
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Figure 4.23 (b): 8th level pinpointing based on simulated input. 

Table 4.2: Localisation results based on the field measurements and simulated 

inputs. 

  
 

Field 

measurements 

Simulated 

inputs 

Δmax 
 

APA 10.0 20.1 

SPA 5.7 5.9 

CPtsmax  
APA 18 34 

SPA 8 10 

K-mean (m) 
 

APA 26.5 31.8 

SPA 32.7 31.6 

EM-mean (m) 
 

APA 31.4 31.9 

SPA 31.4 31.4 

RMSE (m) 
APA 3.76 0.07 

SPA 0.69 0.31 

Time (s)  7.37 4.22 
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4.2 MDNN leak localisation 

4.2.1 Data preparation 

In the section, the MDNN was trained to predict the leak location in the 

same local DMA as experimented in section 4.1.4. Multiple sets of distributed 

leaks were simulated for the MDNN training with respect to single leak at 

different locations. As shown in Figure 4.24, n distributed leaks with equal 

separation distances, s were simulated along the 7 pipe segments of the local 

DMA. The TDoA of each leak location was simulated through the inverse 

location analysis and mathematic modelling. Table 4.3 shows the simulated 

dataset which consists of the input (TDoAs, receival sensors, and distance 

between sensors) and the targets (leak segments and locations). The training 

data, validation data and testing data was split with ratio 70:15:15 of the whole 

dataset. 

 

Figure 4.24: Simulated leaks in the targeted DMA. 
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Table 4.3: Simulated input data and respective targets. 

Input (I)  Target (T) 

Receivals sensors  

(a-b) 

Distances TDoAs  Leak segments  

(c-d) 

Leak 

locations 

1-2 𝐿12 𝜏1, 𝜏2, ⋯ 𝜏𝑎  1-2 𝑙1, 𝑙2, 𝑙3,⋯ , 𝑙𝑎 

 

1-3 𝐿13 𝜏1, 𝜏2, ⋯ 𝜏𝑎, 

𝜏1, 𝜏2, ⋯ 𝜏𝑏 

 1-2, 

2-3 

𝑙1, 𝑙2, 𝑙3,⋯ , 𝑙𝑎 

𝑙1, 𝑙2, 𝑙3,⋯ , 𝑙𝑏 
 

⋮ ⋮ ⋮  ⋮ ⋮ 
 

1-6 𝐿36 𝜏1, 𝜏2, ⋯ 𝜏𝑎, 

𝜏1, 𝜏2, ⋯ 𝜏𝑏, 

𝜏1, 𝜏2, ⋯ 𝜏𝑐, 

𝜏1, 𝜏2, ⋯ 𝜏𝑑 

𝜏1, 𝜏2, ⋯ 𝜏𝑒 

𝜏1, 𝜏2, ⋯ 𝜏𝑓 

 1-2, 

2-3, 

3-4, 

4-5, 

5-6, 

1-6 

𝑙1, 𝑙2, 𝑙3,⋯ , 𝑙𝑎 

𝑙1, 𝑙2, 𝑙3,⋯ , 𝑙𝑏 

𝑙1, 𝑙2, 𝑙3,⋯ , 𝑙𝑐 

𝑙1, 𝑙2, 𝑙3,⋯ , 𝑙𝑑 

𝑙1, 𝑙2, 𝑙3,⋯ , 𝑙𝑒 

𝑙1, 𝑙2, 𝑙3,⋯ , 𝑙𝑓 

 

⋮ ⋮ ⋮  ⋮ ⋮ 
 

5-6 𝐿56 𝜏1, 𝜏2, ⋯ 𝜏𝑒  5-6 𝑙1, 𝑙2, 𝑙3,⋯ , 𝑙𝑒 
 

 

Training based on different tensor shapes 

Modifications of tensor shapes and dropouts during the training are the 

most fundamental ways to determine the optimal model of a neural network. 

The key ideas are to constrain the network complexity by changing the number 

of hidden layers and randomly drop some connections from each layer during 

the training. Figures 4.25, 4.46, 4.47, and 4.48 illustrated The MDNN with 

tensor shapes 1, 2, 3, and 4, respectively. The tensor shapes were varied by the 

number of hidden layers, number of dropout layers, and the size of layer. A 

consistent 32 samples batch size and training data of sample size, n = 3525 (s = 
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1m) were used in the training to determine the optimal tensor shape of the 

MDNN.  

 

Figure 4.25: Tensor shape 1. 
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 Figure 4.26: Tensor shape 2. 
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Figure 4.27: Tensor shape 3. 
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Figure 4.28: Tensor shape 4. 

Figures 4.29, 4.30, 4.31, and 4.32 presented the results of training 

corresponding to the four tensor shapes. MAPE, accuracies, and the training 

losses were tabulated in Table 4.4 for ease of comparison. The training results 

with the higher accuracies, lower MAPE and training losses are preferable. In 
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general, tensor shape 2 showed the best training results and highest learning rate 

(least epochs needed). The tensor shape 2 fitted the training fastest, which was 

around 500 epochs while other tensor shapes took around 3000 epochs to 

achieve the equivalent accuracies. Thus, the tensor shape 2 was concluded as 

the optimal tensor shape of the MDNN. 

 

Figure 4.29: Training results of tensor shape 1. 

 

Figure 4.30: Training results of tensor shape 2. 
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Figure 4.31: Training results of tensor shape 3. 

 

Figure 4.32: Training results of tensor shape 4. 
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Table 4.4: Training results based on tensor shapes 1, 2, 3, and 4. 

Tensor 

shape Epochs 

 MAPE (%) Accuracy  Training loss 

Leak 

location  

Leak 

segment 

 
Leak 

location 

Leak 

segment 

c d  c d 

1 3000 
T 377.2 0.78 0.56  184.5 0.62 1.10 

V 855.7 0.85 0.69  31.9 0.44 0.93 

2 2000 
T 139.6 0.92 0.93  108.7 0.22 0.19 

V 486.4 0.98 0.92  130.7 0.16 0.18 

3 3000 
T 146.0 0.69 0.65  171.9 0.78 0.95 

V 139.1 0.84 0.79  160.9 0.46 0.57 

4 3000 
T 192.5 0.52 0.48  146.4 0.91 0.98 

V 128.6 0.62 0.61  137.5 0.81 0.81 

 

 

4.2.2 Training based on different batch sizes 

During the training, a dataset can always be divided into one or more 

batches. The batch size indicates the number of samples to work through in each 

iteration during a single training epoch. The popular batch sizes in neural 

network training are 32, 64, and 128 samples. In this section, the optimal batch 

size of the MDNN (tensor shape 2) was determined through training with a 

consistent training data of sample size, n = 3525 (s = 1m). 

The training results based on 32, 64, and 128 samples were plotted in 

Figures 4.33, 4.34, and 4.35, respectively. The MAPE, accuracies, and the 

training losses were tabulated in Table 4.5. An overall improvement can be 

observed in the training with larger batch sizes. Both MAPE and training loss 

of the leak location reduced significantly as the batch size increased from 32 

samples to 128 samples. Whereas the accuracies and training losses of the leak 

segments did not vary significantly with the batch sizes. However, the learning 
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rate degraded slightly as the training fitted slower when larger batch sizes were 

applied. 500, 750, and 1250 epochs were required by the batch sizes 32, 64, and 

128 to achieve the equivalent fitting. Despite of the low learning rate, 128 

samples was concluded to be the best batch size for the MDNN training due to 

the lowest MAPE. 

 

Figure 4.33: Training results based on 32 samples batch size.  

 

Figure 4.34:Training results based on 64 samples batch size. 
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Figure 4.35: Training results based on 128 samples batch size. 

Table 4.5: Training results based on batch sizes 32, 64, and 128. 

Batch 

sizes Epochs 

 MAPE (%) Accuracy  Training loss 

Leak 

location  

Leak 

segment 

 
Leak 

location 

Leak 

segment 

c d  c d 

32 2000 
T 139.6 0.92 0.93  108.7 0.22 0.19 

V 486.4 0.98 0.92  130.7 0.16 0.18 

64 2000 
T 77.4 0.92 0.94  103.0 0.22 0.18 

V 49.7 0.94 0.95  99.8 0.15 0.16 

128 2000 
T 72.6 0.92 0.92  94.4 0.22 0.21 

V 14.3 0.97 0.98  23.7 0.08 0.07 

 

 

4.2.3 Training based on different sample sizes  

In this section, the sample size of the training data was varied by n = 

3525, 7050, 35254, 70508, and 352540 with s = 1m, 0.5m, 0.1m, 0.05m, and 

0.01m, respectively. The results of the corresponding training were presented in 
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Figures 4.36, 4.37, 4.38, 4.39, and 4.40. In overall, the training with larger 

sample size achieved earlier fitting. Besides, the number of epochs to complete 

the training had significantly reduced from 2000 to the minimum 250 as the 

sample size varied from 3525 to the maximum 352540. Training results based 

on the five sample sizes were summarised in Table 4.6. Noticeable decrements 

of the MAPEs and training losses with increasing sample size can be observed 

in Table 4.6. The best training result was achieved by the training data of sample 

size 352540, with MAPE of 8.7% and leak segment accuracies of 0.99. 

 

 

Figure 4.36: Training results based on 3525 sample size. 
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Figure 4.37: Training results based on  7050 sample size. 

 

 

Figure 4.38: Training results based on 35254 sample size. 
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Figure 4.39: Training results based on 70508 sample size. 

 

 

Figure 4.40: Training results based on 352540 sample size. 

 

 

 



88 

 

Table 4.6: Training results based on the five sample sizes. 

Sample 

size Epochs 

 MAPE (%) Accuracy  Training loss 

Leak 

location  

Leak 

segment 

 
Leak 

location 

Leak 

segment 

c d  c d 

3525 2000 
T 72.6 0.92 0.92  94.4 0.22 0.21 

V 14.3 0.97 0.98  23.7 0.08 0.07 

7050 1000 
T 51.8 0.92 0.92  124.4 0.21 0.22 

V 26.4 0.98 0.99  5.99 0.07 0.06 

35254 600 
T 29.9 0.93 0.95  82.9 0.17 0.14 

V 11.5 0.99 0.99  5.6 0.04 0.03 

70503 600 
T 23.3 0.96 0.96  60.4 0.12 0.11 

V 10.6 0.99 0.99  6.19 0.03 0.03 

352540 250 
T 19.9 0.97 0.97  45.2 0.11 0.11 

V 8.7 0.99 0.99  2.3 0.04 0.06 

 

In the previous training, the optimal model of MDNN was identified 

with optimal tensor shape 2, 128 samples batch size and the training data of 

sample size 352540. A performance test was conducted based on the testing 

data and the result was presented in Table 4. In the performance test, the optimal 

model achieved accurate predictions in both the leak segment and location, with 

an average percentage error of 0.2. 
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Table 4.7: Results of the performance test. 

Input 

distance 

(m) 

Input 

TDoA 

(s) 

Receival 

sensor 

a          b 

Actual 

leak 

location 

(m) 

Predicted 

leak 

location 

(m) 

Predicted 

leak 

segment 

c           d 

Percentage 

error (%) 

143.6 -0.0668 1 3 25.05 25.1 1 6 0.2 

200.1 -0.0357 1 4 75.05 75.3 6 3 0.3 

104.1 0.0686 2 3 100.05 100.1 2 3 0.0 

211.7 0.0989 2 5 175.05 175.2 4 5 0.1 

143.6 0.0046 3 1 75.05 75.1 3 6 0.1 

107.6 -0.0411 3 5 25.05 25.1 3 4 0.2 

107.6 0.0304 3 5 75.05 75.3 4 5 0.3 

200.1 -0.0357 4 1 75.05 75.5 3 6 0.6 

160.6 -0.0432 4 2 50.05 50.3 4 3 0.5 

146.6 0.0739 4 6 125.05 125.2 3 6 0.1 

160.7 0.0281 5 1 100.05 100.0 5 6 0.0 

211.7 0.0632 5 2 150.05 150.2 3 2 0.1 

111.4 0.0276 6 2 75.05 75.4 1 2 0.5 

146.6 0.0025 6 4 75.05 75.1 6 3 0.1 

        0.2 

 

 

4.2.4 Prediction based on the field measurements 

In this section, the optimal model of MDNN was used to predict the 

actual leak location in the local DMA. Field measurements were fed into the 

MDNN model as the input features. Table 4.8 presented the results of field 

prediction where the predicted leak locations and the actual leak locations were 

compared in term of percentage error. The overall result shows that the MDNN 

had accurately predicted the leak segment 1-6 and achieved an average 3.2% 

leak location error. The deviations between the predictions and the actual leak 
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locations were plotted in Figure 4.41 for results visualisation. The results of 

field prediction were excellent based on the optimal model of MDNN. 

Table 4.8: Results of the field prediction. 

Input 

distance 

(m) 

Input 

TDoAs 

(s) 

Receival 

sensor  

a          b 

Actual 

leak 

location 

(m) 

Predicted 

leak 

location 

(m) 

Predicted 

leak 

segment 

c          d 

Percentage 

error (%) 

143.6 -0.0851 1 3 31.8 32.4 1 6 1.9 

200.1 -0.0981 1 4 31.8 30.5 1 6 4.1 

160.7 -0.0596 1 5 31.8 32.5 1 6 2.2 

53.5 0.0084 1 6 31.8 32.2 1 6 1.2 

111.4 0.0623 2 6 89.7 91.8 1 6 2.3 

143.6 0.0851 3 1 102.8 107.8 6 1 4.9 

200.1 0.0981 4 1 168.3 165.2 6 1 1.8 

160.7 0.0596 5 1 128.9 119.3 6 1 7.4 

        3.2 
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Figure 4.41: Results of the field prediction. 

 

4.3 Comparisons of the MLAF and MDNN 

In this section, the performances of the MLAF and MDNN were 

compared in terms of the localisation accuracies, time taken for the localisation 

process, and flexibility of application. 

4.3.1 Localisation accuracies 

The localisation accuracies of both MLAF and MDNN have been 

validated in the field prediction. The MLAF has achieved the best RMSE of 

0.69m in the APA localisation, which was 2.2% location error. The location 

error was slightly better than the MDNN which was 3.2%. In overall, both the 

localisation accuracies were excellent in the pipe segment of 31.8m span. 
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4.3.2 Localisation times 

Both localisation processes of the MLAF and MDNN were time-

effectively. The localisation time of the MLAF during the field test was 7.37s, 

whereas the localisation time of the MDNN was less than 1s. However, the 

MDNN required a pre-training before the localisation and took time to 

determine the optimal model. The training durations were varied with the 

sample size of the training data, the time ranged from 15 minutes to more than 

3 hours in the previous trials. The optimal model of MDNN took 3.5 hours to 

complete the training, which is less practical for the application of adaptive 

localisation system. 

4.3.3 Flexibilities of application 

The high adaptiveness of MLAF in various topological different piping 

networks has been proven in the previous characterisation tests. Thus, the 

flexible in application and can be widely implemented in various topological 

different piping networks. On the other hand, the MDNN is suitable for a fixed 

monitoring system in a targeted piping network. However, the MDNN can 

always be trained for localisation in different piping networks. In other words, 

the MDNN can be applied to any piping network, but requires pre-application 

training. 
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CHAPTER 5 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

In the past decades, the conventional acoustic methods have been well-

engineered to localise the leak in the single pipeline system. In this thesis, two 

intelligent leak localisation systems based on monogenous sensing principle of 

acoustic devices were developed to localise a single leak in the WDNs.  

In the first methodology, the MLAF was formulated for adaptive leak 

localisation. The multi-directional waves issue and the analytical complexity in 

piping networks were solved by the multi-level hierarchical analytics and 

reasoning process. The overall MLAF localisation processes were prompt and 

seamless by adopting an automated flow control system. The accuracies and 

adaptiveness of the MLAF has been validated through multiple sets of 

characterisation tests in respect of different network topologies. A field 

prediction in a local DMA with excellent localisation result of 2.2% location 

error further affirmed the feasibility of the MLAF in the real application of 

localising leak. 
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In the second methodology, the MDNN was developed based on the 

Keras module. The mixed-model neural networks architecture of the MDNN 

has achieved simultaneous predictions of both leak segment and location. The 

prediction was based on aggregated regression and classification sequential 

learnings of input features such as the TDoAs, receival sensors, and the 

distances between sensors. The MDNN was trained with different tensor shapes, 

batch sizes and sample sizes of training data to determine the optimal model. 

The optimal model of MDNN was validated with 2.3% MAPE and 0.99 training 

accuracies. Finally, the prediction of the optimal model was validated with 3.2% 

location error in the field prediction. 

Finally, both MLAF and MDNN have achieved time-effective and 

accurate localisations in the WDNs. The adaptiveness of the MLAF has been 

well-proven through a series of characterisation tests in respect of the 

topological variation. The MDNN on the other hand, can be flexibly applied for 

different piping networks with a pre-application training. However, the MDNN 

is slightly inferior to the MLAF in term of the adaptiveness. In conclusion, the 

MLAF fitted perfectly with the high portability of acoustic sensing system to 

cater for flexible leak localisation. Whereas the MDNN is suitable for a long-

term monitoring where the sensing system is fixed in one specific DMA.  

 

5.2 Recommendations for future works 

The capabilities to localise single leak in piping networks of the 

proposed leak localisation systems have been verified with high accuracies. In 

the future works, it is of interest to further develop the leak localisation systems 
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for multiple leaks localisation. Some possible future research directions in 

respect of the multiple leaks localisation are presented as follows: 

• The location analyses and reasoning processes of the MLAF can be 

further modified to cater the multiple leaks localisation. Thresholds can 

be characterised and set in the cluster analyses to prune the multiple leak 

segments. 

• A method to test and validate the multiple leaks localisation shall be 

formulated as an alternative for the field experiments.  

• The mathematical modelling can be further improved based on multiple 

sources superposition theorem. Besides, a deliberate way of simulating 

possible noises and paths damping will be better to mimic the real leak 

cases for both characterisation and training purposes.  

• Modification of mixed-model architecture with more layers for leak 

locations differentiation can be considered. However, the modification 

depends on the capability of the present model in predicting multiple 

leaks. 

Furthermore, proceeding works of the present methods can be 

considered. If the MDNN is possibly implemented for long term monitoring in 

a fixed DMA, the training can be fed with the real field measurements instead 

of the simulated data for a better prediction. Besides, more field predictions can 

be conducted by further accessing more real DMA with single and multiple 

leaks in the future. 
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