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ABSTRACT 
 
 

DESIGN, MODELLING AND CONTROL OF HYBRID ENERGY 
STORAGE SYSTEM FOR ELECTRIC VEHICLES 

 
 

Taha Mohammed Ahmed Sadeq 
 
 
 
 
 
 

The energy storage system (ESS) is a critical factor in electric vehicle (EV) 

applications. Batteries represent a wide solution for clean energy, and they are 

among the most popular energy storage devices. Low power density and limited 

life-time are the main defects in Pure Battery Electric Vehicles (PBEVs). The 

Hybrid energy storage system (HESS) is the solution to the disadvantages of the 

single energy storage system in EV applications. In HESS, the battery is used 

to supply the low traction power and steady-state load current; whereas the 

supercapacitor is used to supply the peak demand current and absorb the 

regenerative energy during braking. This research aims to design a battery-

supercapacitor HESS for EV. A semi-active topology had been used to interface 

the battery and supercapacitor with the DC bus. The energy consumption of the 

selected drive cycles was estimated considering the topographical information. 

The contour positioning system (CPS) was used to extract the road slope of the 

selected drive cycle along the journey. The proposed energy management 

strategy of HESS includes three control layers. The standard rule-based 

controller, the optimal adaptive rule-based controller, and the fuzzy adaptive 

rule-based controller were proposed to manage the energy flow of the HESS. 

The linear quadratic regulator (LQR) was designed to control the current flow 
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of the DC-DC converter. To validate the proposed control strategies, the system 

was modelled and tested in Matlab/Simulink environment. The proposed 

control algorithms were tested in three real drive cycles (uphill, downhill, and 

city-tour) at three different speeds (50, 60, and 70 Km/h) and in three different 

standard drive cycles (UDDS, NYCC, and Japan1015). The results of the 

proposed energy management system proved that the controller succeeded in 

reducing the battery stress compared to that of the single energy storage battery 

system. The results of the proposed HESS using the optimal adaptive controller 

succeed to extend the number of possible drive cycles compared to those of the 

rule-based controller and the fuzzy adaptive controller. 



vi 
 

 

 

 

 

 

 

 
 

Specially dedicated to  
my beloved wife, my parents and, my family for their  

patience, support, prayers, encouragement and blessings 
 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

ACKNOWLEDGEMENT 

First and foremost, I would like to express my thanks to Allah Subhanho wa 

ta’ala who is lead me to finish this study. Second, I would like to express my sincere 

appreciation to my supervisor, Ts. Dr. CHEW KUEW WAI for his continuous 

guidance, professional advices, support, motivation, and encouragement to 

complete this study. Also, I would like to extend my thanks to my co-supervisor, Dr. 

EZRA MORRIS ABRAHAM GNANAMUTHU for his effort and guidance. 

Moreover, I would like to express my gratitude to all my professors, lecturers, 

and staff in Universiti Tunku Abdul Rahman for their continuous guidance and help 

during my study. 

Last but not least, I would like to extend my grateful thanks to Universiti Tunku 

Abdul Rahma Research Fund (UTARRF), KL Automation Engineering Sdn Bhd, and 

Ministry of Higher Education and Scientific Research-YEMEN for supporting my 

study. 



viii 

APPROVAL SHEET 

This dissertation/thesis entitled “DESIGN, MODELLING AND CONTROL 

OF HYBRID ENERGY STORAGE SYSTEM FOR ELECTRIC 

VEHICLES” was prepared by TAHA MOHAMMED AHMED SADEQ and 

submitted as partial fulfillment of the requirements for the degree of Doctor of 

Philosophy (Engineering) at at Universiti Tunku Abdul Rahman.   

Approved by: 

___________________________ 
(Ts. Dr. CHEW KUEW WAI)  
Date:………………….. 
Supervisor 
Department of Electrical and Electronic Engineering 
Lee Kong Chian Faculty of Engineering and Science 
Universiti Tunku Abdul Rahman 

____________ 
(Dr. EZRA MORRIS ABRAHAM GNANAMUTHU) 
Date:………………….. 
Co-supervisor 
Department of Electrical and Electronic Engineering 
Lee Kong Chian Faculty of Engineering and Science 
Universiti Tunku Abdul Rahman

27-10-2021



ix 

LEE KONG CHIAN FACULTY OF ENGINEERING AND SCIENCE 

UNIVERSITI TUNKU ABDUL RAHMAN 

Yours truly, 

____________________ 
(TAHA MOHAMMED AHMED SADEQ) 

*

Date: 18/10/2021 __________________ 

SUBMISSION OF THESIS 

It is hereby certified that TAHA MOHAMMED AHMED SADEQ (ID No: 

16UED01149) has completed this final thesis entitled “DESIGN, MODELLING 

AND CONTROL OF HYBRID ENERGY STORAGE SYSTEM FOR ELECTRIC 

VEHICLES” under the supervision of Ts. Dr. CHEW KUEW WAI (Supervisor) 

from the Department of Electrical and Electronic Engineering, Lee Kong Chian 

Faculty of Engineering and Science, and Dr. EZRA MORRIS ABRAHAM 

GNANAMUTHU (Co-Supervisor) from the Department of Electrical and 

Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science. 

I understand that University will upload softcopy of my thesis in pdf format into 

UTAR Institutional Repository, which may be made accessible to UTAR 

community and public. 



x 

DECLARATION 

I hereby declare that the dissertation is based on my original work except for 
quotations and citations which have been duly acknowledged. I also declare that 
it has not been previously or concurrently submitted for any other degree at 
UTAR or other institutions. 

 Name: TAHA MOHAMMED AHMED SADEQ 

Date: __________________________________18/10/2021



xi 
 

TABLE OF CONTENTS 

 

 

 Page 

 

 

ABSTRACT         iv 

ACKNOWLEDGEMENTS       vii 

APPROVAL SHEET       

 viii 

SUBMISSION SHEET       ix 

DECLARATION        x 

LIST OF TABLES        xv 

LIST OF FIGURES        xvii 

LIST OF ABBREVIATIONS                xxiii 

 

 

CHAPTER 

 

1.0  INTRODUCTION       1 

1.1 Background of Study       1 

1.2  Problem Statement      6 

1.3  Research Objectives      8 

1.4  Scopes of Work      9 

1.5  Thesis Organizations      10 

1.6  List of Publications      11 

 

 

       

2.0 A REVIEW OF HYBRID ENERGY STORAGE SYSTEM 

 OF ELECTRIC VEHICLES     12 

2.1 Introduction       12 

2.2 Electric vehicles      13 

2.3  Energy Sources in Electric Vehicles    14 



xii 
 

2.3.1 Batteries      15 

2.3.2 Supercapacitors     17 

2.3.3 Fuel Cells      19 

2.3.4 Flywheels                              19 

2.4 The Topologies of the Hybrid Energy Storage System 21

 2.5 The Energy Management Strategy of the HESS  23 

2.5.1  Optimization Energy Management Strategy  24 

2.5.2  Rule-based Energy Management Strategy  31 

2.5.3  Pattern recognition Energy Management Strategy 36 

2.6 The Impact of the Topography on the Energy  

Consumption for Electric Vehicle    37  

2.7 Chapter Summary      39 

 

 

 

3.0 MODELLING THE HYBRID ENERGY STORAGE SYSTEM 

AND ELECTRIC VEHICLE     41 

3.1 Introduction       41 

3.2 System Modelling and Configuration    42 

3.2.1 Battery Model      43 

3.2.2 Supercapacitor Model     47 

3.2.3 DC-DC converter Model    50 

3.3 Electric Vehicle Model     53 

3.4 Contour Positioning System     57 

3.5 Standard drive cycles      61 

3.6 Sizing the Hybrid energy storage system   64 

3.7 Chapter Summary      67 

 

 

 

4.0 ENERGY MANAGEMENT SYSTEM OF HYBRID  

ENERGY STORAGE SYSTEM     68 

4.1 Introduction       68 

4.2 The Rule-Based Controller of HESS    69 



xiii 
 

4.3 The Adaptive Rule-Based Controller of HESS  71 

4.3.1 The Optimal Adaptive Rule-Base Controller of   

HESS        71 

  4.3.2 The Fuzzy Adaptive Rule-Base Controller of HESS 74 

4.4 The Linear Quadratic Regulator (LQR)   76 

 4.5 The Proposed Hybrid Energy Storage System Model              

in Matlab       80 

4.6 Chapter Summary      84 

 

 

 

5.0 RESULTS AND DISCUSSION      85 

5.1 Introduction       85 

5.2 Single Energy Storage Battery System   86 

 5.2.1 Uphill Drive Cycle     86 

 5.2.2 Downhill Drive Cycle     88 

` 5.2.3 City-tour Drive Cycle     91 

 5.2.4 Standard Drive Cycles    94 

5.3 The Results of Rule-Based Controller for HESS  96 

 5.3.1 Uphill Drive Cycle     97 

 5.3.2 Downhill Drive Cycle     100 

` 5.3.3 City-tour Drive Cycle     104 

 5.3.4 Standard Drive Cycles    107 

5.4 The Results of the Optimal Adaptive Rule-Based  

Controller for HESS      112 

 5.4.1 Uphill Drive Cycle     112 

 5.4.2 Downhill Drive Cycle     116 

` 5.4.3 City-tour Drive Cycle     119 

 5.4.4 Standard Drive Cycles    123 

5.5 The Results of Fuzzy Adaptive Rule-Based Controller for  

HESS        128 

 5.5.1 Uphill Drive Cycle     128 

 5.5.2 Downhill Drive Cycle     132 

` 5.5.3 City-tour Drive Cycle     135 



xiv 
 

 5.5.4 Standard Drive Cycles    138 

5.6 Chapter Summary      143 

 

6.0 CONCLUSION AND FUTURE WORK     145 

6.1 Conclusion       145 

6.2  Limitations and Future Work     148 

 

 

 

LIST OF REFERENCES       149 

 
 
 



xv 
 

LIST OF TABLES 
 
 

Table 
 

1.1 

 
 
List of the Publication of this research 
 

Page 
 

11 

3.1 The parameters of battery model 
 

47 

3.2 The Parameters of Supercapacitor Model 
 

50 

3.3 The Parameters of Electric Vehicle Model 
 

57 

4.1 The transient time characteristics for different 
values of q and R 
 

78 

5.1 The effect of considering road slope in the uphill 
drive cycle 
 

88 

5.2 The effect of considering road slope in the downhill 
drive cycle 
 

91 

5.3 The effect of considering road slope in the city-tour 
drive cycle 
 

93 
 

5.4 The total energy consumption in a standard drive 
cycle 
 

96 

5.5 The HESS details in uphill drive cycle using a rule-
based controller 
 

100 

5.6 The HESS details in downhill drive cycle using a 
rule-based controller 
 

103 

5.7 The HESS details in city-tour drive cycle using a 
rule-based controller 
 

107 

5.8 The HESS details in UDDS, NYCC, and Japan 1015 
drive cycles using a rule-based controller 
 

110 

5.9 The battery energy reduction ratio using the rule-
based controller 
 

111 

5.10 The HESS details in uphill drive cycle using an 
optimal adaptive rule-based controller 
 

115 

5.11 The HESS details in downhill drive cycle using an 
optimal adaptive rule-based controller 
 

119 

5.12 The HESS details in city-tour drive cycle using an 123 



xvi 
 

optimal adaptive rule-based controller 
 
 

5.13 The HESS details in UDDS, NYCC, and Japan 1015 
drive cycles using an optimal adaptive rule-based 
controller 
 

127 

5.14 The battery energy reduction ratio using the optimal 
adaptive rule-based controller 
 

127 

5.15 The HESS details in uphill drive cycle using fuzzy 
adaptive rule-based controller 
 

131 

5.16 The HESS details in downhill drive cycle using a 
fuzzy adaptive rule-based controller 
 

135 

5.17 The HESS details in city-tour drive cycle using a 
fuzzy adaptive rule-based controller 
 

137 

5.18 The HESS details in UDDS, NYCC, and Japan 1015 
drive cycles using an optimal adaptive rule-based 
controller 
 

142 

5.19 The battery energy reduction ratio using the fuzzy 
adaptive rule-based controller 

143 

 
5.20 

 
The number of the possible drive cycles using the 
proposed controllers 

 
144 

 



xvii 
 

LIST OF FIGURES 
 
 

Figures 
 

1.1 

 
 
The main components for the Battery Electric 
Vehicles 
 

Page 
 
2 

1.2 Ragone chart and location of several storage 
devices 
 

4 

2.1 The architecture of the main types of HEV in the 
market (Richardson, 2013) 
 

14 

2.2 Schematic of Li-ion cell (Zhang et al., 2018) 
 

16 

2.3 The schematic of charged Electrostatic double-layer 
capacitor (Conway, 2013) 
 

18 

2.4 The schematic diagram of a FC (Fathabadi, 2018) 
 

19 

2.5 
 

The main component of flywheel (Dixon, 2010) 
 

20 

2.6 The main topologies for the HESS in literature 
 

22 

2.7 The Classification of Energy Management System 
for HESS  
 

24 

2.8 The topology of the HESS in (Zheng et al., 2018) 
 

25 

2.9 The Architecture of the HESS in (Pan et al., 2019) 
 

26 

2.10 The topology of the proposed HESS in (Lu et al., 
2019) 
 

27 

2.11 The Schematic of the driving cycle prediction 
algorithm in (Zhao et al., 2019) 
 

28 

2.12 The structure of the optimization level of the EMS 
in (Gonsrang and Kasper, 2018) 
 

29 

2.13 The HESS load power based on the proposed EMS 
in (Mesbahi et al., 2017) 
 

30 

2.14 The scheme of the three control modes of HESS in 
(Veneri et al., 2018) 
 

32 

2.15 The diagram of the control strategy of HESS in (Liu 
et al., 2020) 
 

33 



xviii 
 

2.16 The flowchart of the fuzzy logic controller in 
(Sellali et al., 2019) 
 

34 

2.17 The structure of the fuzzy  logic controller in (Wang 
et al., 2016) 
 

35 

2.18 The configuration of the EV in (Eckert et al., 2020) 
 

35 

2.19 The configuration of the HESS in (Javorski Eckert 
et al., 2018) 
 

3.6 

3.1 Architecture of HESS for Electric Vehicle in this 
research 
 

42 

3.2 Different equivalent circuit model of the battery (a) 
Thevenin model, (b) impedance model, and (c) 
runtime-based electrical battery model(Chen and 
Rincon-Mora, 2006) 
 

44 

3.3 Equivalent model of the battery in 
SimPowerSystems library  
 

46 

3.4 Equivalent circuit models for the supercapacitor in 
literature 
 

48 

3.5 The main components of the DC-DC converter 
 

51 

3.6 The equivalent model of the DC-DC converter 
 

53 

3.7 The Forces affect the vehicle during movement  
 

54 

3.8 The dynamic model of vehicle in Matlab\Simulink 
 

57 

3.9 The uphill drive cycle (a) road elevation, (b) road 
slope 

59 

3.10 The downhill drive cycle (a) road elevation, (b) road 
slope 
 

60 

3.11 The city-tour drive cycle (a) road elevation, (b) road 
slope 
 

61 

3.12 The UDDS speed profile 
 

62 

3.14 The NYCC speed profile  
 

63 

3.14 The Japan1015 speed profile 
 

63 

3.15 The sizing step for electric vehicle application 
(Sadoun et al., 2011) 
 

64 



xix 
 

3.16 The steps to select the supercapacitor size for HESS 
 

65 

3.17 The steps to select the maximum value of the 
battery current (Ib_max ) 

66 

4.1 The flowchart of the proposed rule-based controller 
 

70 

4.2 Flowchart of optimal adaptive rule-based controller 
 

73 

4.3 The fuzzy logic controller surface 
 

74 

4.4 Flowchart of Fuzzy adaptive rule-based controller 
 

75 

4.5 The feedback gains of the LQR controller 
 

77 

4.6 The transient responses of battery current with 
several values of q and R 
 

78 

4.7 MATLAB/Simulink model of the EV using the 
single energy storage battery based on the real drive 
cycles  
 

80 

4.8 MATLAB/Simulink model of the EV using the 
single energy storage battery based on the standard 
drive cycles 
 

81 

4.9 MATLAB/Simulink model of the HESS using the 
rule-based controller based on the real drive cycles 
 

82 

4.10 MATLAB/Simulink model of the HESS using the 
rule-based controller based on the standard drive 
cycles 
 

82 

4.11 MATLAB/Simulink model of the HESS using the 
adaptive rule-based controller based on the real 
drive cycles  
 

83 

4.12 MATLAB/Simulink model of the HESS using the 
adaptive rule-based controller based on the standard 
drive cycles 
 

84 

5.1 Total EV load currents based on an uphill drive 
cycle for a single energy storage battery system (a) 
50km/h, (b) 60km/h, and (c) 70km/h 
 

87 

5.2 The battery states of charge in an uphill drive cycle 
for a single energy storage battery system 
 

88 

5.3 Total EV load currents based on a downhill drive 
cycle for a single energy storage battery system (a) 
50km/h, (b) 60km/h, and (c) 70km/h 

90 



xx 
 

 
5.4 The battery states of charge in a downhill drive 

cycle for a single energy storage battery system 
 

90 

5.5 Total EV load currents based on a city-tour drive 
cycle for a single energy storage battery system (a) 
50km/h, (b) 60km/h, and (c) 70km/h 
 

92 

5.6 The battery states of charge in city-tour drive cycle 
for a single energy storage battery system 
 

93 

5.7 Total EV load currents for a single energy storage 
battery system based on (a) UDDS, (b) NYCC, and 
(c) Japan1015 drive cycles  
 

95 

5.8 The battery states of charge in UDDS, NYCC and 
Japan1015 drive cycles for a single energy storage 
battery system  
 

96 

5.9 Total HESS currents based on uphill drive cycle 
using the rule-based controller (a) 50km/h, (b) 
60km/h and (c) 70km/h 
 

98 

5.10 The battery states of charge in an uphill drive cycle 
using the rule-based controller  
 

99 

5.11 The supercapacitor states of charge in an uphill 
drive cycle using the rule-based controller 
 

99 

5.12 Total HESS currents based on downhill drive cycle 
using the rule-based controller (a) 50km/h, (b) 
60km/h and (c) 70km/h 
 

101 

5.13 The battery states of charge in a downhill drive 
cycle using the rule-based controller 
 

102 

5.14 The supercapacitor states of charge in a downhill 
drive cycle using the rule-based controller 
 

103 

5.15 Total HESS currents based on city-tour drive cycle 
using the rule-based controller (a) 50km/h, (b) 
60km/h and (c) 70km/h 
 

105 

5.16 The battery states of charge in city-tour drive cycle 
using the rule-based controller 
 

105 

5.17 The supercapacitor states of charge in city-tour 
drive cycle using the rule-based controller  

106 

5.18 Total HESS currents based on standard drive cycle 
using the rule-based controller (a) UDDS, (b) 

108 



xxi 
 

NYCC and (c) Japan1015 
 

5.19 The battery states of charge in UDDS, NYCC, and 
Japan1015 drive cycles using the rule-based 
controller 
 

109 

5.20 The supercapacitor states of charge in UDDS, 
NYCC, and Japan1015 drive cycles using the rule-
based controller 
 

109 

5.21 Total HESS currents based on uphill drive cycle 
using optimal adaptive rule-based controller (a) 
50km/h, (b) 60km/h and (c) 70km/h 
 

113 

5.22 The battery states of charge in an uphill drive cycle 
using the optimal adaptive rule-based controller 
 

114 

5.23 The supercapacitor states of charge in an uphill 
drive cycle using the optimal adaptive rule-based 
controller 
 

115 

5.24 Total HESS currents based on downhill drive cycle 
using optimal adaptive rule-based controller (a) 
50km/h, (b) 60km/h and (c) 70km/h 
 

117 

5.25 The battery states of charge in a downhill drive 
cycle using the optimal adaptive rule-based 
controller 
 

118 

5.26 The supercapacitor states of charge in a downhill 
drive cycle using the optimal adaptive rule-based 
controller  
 

118 

5.27 Total HESS currents based on city-tour drive cycle 
using optimal adaptive rule-based controller (a) 
50km/h, (b) 60km/h and (c) 70km/h  
 

121 

5.28 The battery states of charge in city-tour drive cycle 
using the optimal adaptive rule-based controller 
 

121 

5.29 The supercapacitor states of charge in city-tour 
drive cycle using the optimal adaptive rule-based 
controller 
 

122 

5.30 Total HESS currents based on standard drive cycle 
using the optimal adaptive rule-based controller (a) 
UDDS, (b) NYCC and (c) Japan1015 
 

124 

5.31 The battery states of charge in UDDS, NYCC, and 
Japan1015 drive cycles using the optimal adaptive 

125 



xxii 
 

rule-based controller 
 

5.32 The supercapacitor states of charge in UDDS, 
NYCC, and Japan1015 drive cycles using the 
optimal adaptive rule-based controller 
 

126 

5.33 Total HESS currents based on uphill drive cycle 
using the fuzzy adaptive rule-based controller (a) 
50km/h, (b) 60km/h and (c) 70km/h 
 

129 

5.34 The battery states of charge in an uphill drive cycle 
using the fuzzy adaptive rule-based controller 
 

130 

5.35 The supercapacitor states of charge in an uphill 
drive cycle using the fuzzy adaptive rule-based 
controller 
 

131 

5.36 Total HESS currents based on a downhill drive 
cycle using the fuzzy adaptive rule-based controller 
(a) 50km/h, (b) 60km/h and (c) 70km/h 
 

133 

5.37 The battery states of charge in a downhill drive 
cycle using the fuzzy adaptive rule-based controller 
 

133 

5.38 The supercapacitor states of charge in a downhill 
drive cycle using the fuzzy adaptive rule-based 
controller 

134 

5.39 Total HESS currents based on city-tour drive cycle 
using the fuzzy adaptive rule-based controller (a) 
50km/h, (b) 60km/h and (c) 70km/h 
 

136 

5.40 The battery states of charge in city-tour drive cycle 
using the fuzzy adaptive rule-based controller 
 

137 

5.41 The supercapacitor states of charge in city-tour 
drive cycle using the fuzzy adaptive rule-based 
controller 
 

137 

5.42 Total HESS currents based on standard drive cycle 
using the fuzzy adaptive rule-based controller (a) 
UDDS, (b) NYCC and (c) Japan1015 
 

140 

5.43 The battery states of charge in UDDS, NYCC, and 
Japan1015 drive cycles using the fuzzy adaptive 
rule-based controller 

140 

5.44 The supercapacitor states of charge in UDDS, 
NYCC, and Japan1015 drive cycles using the fuzzy 
adaptive rule-based controller 

141 

 



xxiii 
 

LIST OF ABBREVIATIONS 
 
 
 

ESS Energy Storage System  
 

EV Electric Vehicles 
 

HEV Hybrid Electric Vehicles 
 

ICE Internal Combustion Engine  
 

BEV Battery Electric Vehicle 
 

HESS Hybrid Energy Storage System 
 

DC Direct Current 
 

CPS Contour Positioning System 
 

LQR Linear Quadratic Regulator 
 

FCV Fuel Cell Vehicles 
 

NiCad Nickel Cadmium  
 

NiMH Nickel Metal Hydride 
 

PbO2 Lead Oxide 
 

Pb Pure-Lead  
 

H2SO4 Sulphuric Acid  
 

H2O Water 
 

Ɛ r Electrolyte Dielectric Constant 
  
Ɛ 0 Permittivity Of A Vacuum  

 
d Effective Thickness of the EDL  

  
v Cell Voltage 

 
C Cell Capacity 

 
FC Fuel Cell  

 
CO2 Carbon Dioxide  

 



xxiv 
 

SOC State Of Charge 
 

DP Dynamic Programming  
 

MDP Markov Decision Process  
 

CBDC China Bus Driving Cycle  
 

UDDS Urban Dynamometer Driving Schedule  
 

MOO Multi-Objective Optimization 
  

NYCC New York City Cycle 
 

NMPC Non-Linear Model Predictive Control  
 

LMPC Linear Model Predictive Control  
 

Q Electric Charge 
 

Ib Battery Current 
 

rb Battery Internal Resistance 
 

Eb Battery Potential 
 

t Time 
 

Vb Battery Terminal Voltage 
 

SOC(0) Initial State of Charge 
 

Csc Total Capacity of Supercapacitor module 
 

Vsc Terminal Voltage of Supercapacitor module 
 

PWM Pulse Width Modulation  
 

IGBT Insulated-Gate Bi-polar Transistor  
 

d Switching period (duty cycle) 
 

rc Capacitor Resistance  
 

rL Inductor Resistance  
 

Ftotal Total Vehicle Forces   
 

Faero Aerodynamic Force  
 



xxv 
 

Froll Rolling Force  
 

Fgr Grading Force 
 

Faccel Acceleration force  
 

ρ Air Density 
 

Af Vehicle Front Area 
 

Cd Drag Coefficient  
 

µrr Rolling Resistance Coefficient 
 

g Earth Gravity 
 

Mv Vehicle Mass  
 

Jeq Total Value Of Moment Of Inertia Indicates To 
Motor Shaft  
 

Jm Total Moment Of Inertia Of The Electrical 
Motor  
 

V Vehicle Speed  
 

θ Road Angle  
 

D(k) Distance 
 

E(k) Elevation 
 

Nbat_s Number Of The Batteries In Series 
  

Nbat_P Number Of The Batteries In Parallel 
  

Pbat Battery Power 
 

Psc Supercapacitor Power 
  

It Total Electric Vehicle Load Current 
  

Ico DC-DC Converter Output Current 
  

Ib_max Maximum Value Of Battery Current 
  

SOCsc Supercapacitor State of Charge 
  

SOCsc_mn Minimum Supercapacitor State Of Charge 
  



xxvi 
 

SOCsc_max Maximum Supercapacitor State Of Charge 
  

R Percentage Of Power Split Between The Battery 
And Supercapacitor 
  

Ireg Total Regenerative Current 
 

Itp Total Positive EV Load Current 
  

q Weighting element of states 
 

Rr Weighting Matrix of Inputs 
  

Qr Weighting Matrix of States 
  

SOCb Battery State of Charge 
 

EnVar Energy Variance 

 



 



 1 

CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background of Study  

 

The considerable interest around the Energy Storage System (ESS) is 

motivated by a necessity to employ renewable resources to produce energy 

instead of fossil fuel. This need is related to two concerns: the depletion of 

petroleum reservoir in the future and global warming. Nowadays, based on the 

drive trains, the landed vehicles are classified into three main categories; 

conventional motor vehicles, hybrid electric vehicles (HEV), and electric 

vehicles (EV).  The most common types are the conventional vehicles that use 

the internal combustion engine (ICE). The chemical energy resources such as 

(gasoline, ethanol, diesel, etc.) are converted to kinetic energy in a complicated 

process in poor efficiency by using ICE. 

 

On the other hand, EV is an alternative-design automobile that uses an 

electric motor to power the vehicle with ESS's electricity. Furthermore, ICE and 

electrical motor with ESS are the two types of energy sources that power the 

HEVs. It combines the benefits of high fuel economy and low emissions. A 

strong support is given to HEVs and EVs' development to reduce air pollution 

and harmful vehicle emissions.  

 



 2 

There are six main styles of the EV's in the market classified as follows: 

The pure battery electric vehicle BEV which comes first to ordinary people's 

minds when the electric vehicles are mentioned. The second type is the hybrid 

electric vehicle which depends on an ICE and ESS; this type became the most 

common type in the market in the last few years. Thirdly, vehicles that rely on 

power lines to move. Fourthly, vehicles that are supplied by replaceable energy 

sources such as metal-air batteries or fuel cells. Fifthly, vehicles that use 

alternative means to store the power like supercapacitor or flywheels. Sixthly, 

vehicles that are directly supplied by solar systems (Larminie and Lowry, 2003). 

 

The numbers of electric vehicles increase significantly in today's market 

due to the advancement in the power electronic converter, being 

environmentally friendly, and the possibility of energy regeneration through 

braking. The efficiency of the EV's is better than that of the conventional 

vehicles. In addition, the maintenance of the EVs is less due to the limited 

moving parts. Furthermore, they have a high impact to reduce air pollution. 

Figure 1.1 represents the main components of the battery electric vehicles. 

 

 
Figure 1.1   The main components of the Battery Electric Vehicles 
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An electric vehicle is a vehicle energized by electricity in the ESS. 

Batteries are one of the most common energy storage devices, and they 

represent a significant promise of the clean energy (Paladini et al., 2007). Many 

researchers (Udhaya Sankar et al., 2019, Ren et al., 2019, Fotouhi et al., 2016, 

Devillers et al., 2014) have demonstrated that in order to achieve a performance 

similar to that of the internal combustion engines, a single electric system (like 

a fuel cell) is not enough. Many efforts are devoted to studying the battery cell 

for electric vehicles in which the battery provides the main power. 

 

Batteries, which are stacked cells, convert chemical energy to electrical 

energy and vice versa.  The batteries use energy and power capacities as rating 

terms. Batteries play a major role in improving the ESS asset utilization, 

reliability, energy availability, and performance. They also provide economical 

ESS for the big sectors of energy management and power system applications. 

The main drawbacks of batteries are the need for a long time to charge, a low 

power density, and a short lifetime. Furthermore, the battery's lifetime is 

reduced by instantly responding to high load changes in charging and 

discharging. 

 

Lead-acid batteries are the most popular battery type and dominate 

approximately 40–45% of the total universal battery sales. Lead-acid batteries 

can be found in several designs and sizes in the market. The availability, 

reliability, and low cost are the strengths of this kind of batteries (Balog and 

Davoudi, 2013).  Lithium-Ion batteries are used widely in the EV application 

due to their high rate of specific power. BEVs require to have the minimum 
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specific capacity 0.470 KW/kg and particular energy of 0.235 KWh/kg. Also, 

the user of the electrical vehicle has to drive in a range of 20,000 km per year. 

The standard vehicle consumes about 2.7 kWh for every 50 km of a driving 

distance. To have a driving range of 500 KM, 100 Kg of Lithium-Ion is used 

which is equivalent to the energy of one tank of petrol (Pearre et al., 2011, 

Neubauer et al., 2014). Figure 1.2 represents the specific energy against specific 

power of several energy storage devices in the market (Shim et al., 2013). 

 
 

Figure 1.2 Ragone chart and location of several storage devices 

 

The ESS of EV also needs a charging system. The charging system 

needs to be capable to reduce the losses of the battery pack during charging and 

to charge the batteries in a short time. Various energy sources can be 

implemented to charge the batteries. Moreover, the regenerative braking system 

in the EVs is used to harvest energy instead of dissipating it in a form of heat 

during braking. Nevertheless, the number of EVs sold are not comparable to 

that of the conventional vehicles due to the cost and driving range of EVs. 
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The electric vehicles are still facing many issues that need to be 

developed (Schaltz, 2011, Jordán et al., 2018, Ren et al., 2019). The limited 

lifetime and the low power density are the main issues in Battery Electric 

Vehicle.  Hybrid Energy Storage System (HESS) is the practical solution that 

can be implemented for EV applications (Li et al., 2019b, Veneri et al., 2018, 

Capasso et al., 2018). HESS is a combination of two different types or more 

energy storage devices like batteries, fuel cells, flywheel, or supercapacitor. In 

HESS, a primary storage device with high energy density like batteries or fuel 

cells is used to provide constant power to the load while an auxiliary storage 

device with high power density like supercapacitor or flywheel is used to 

provide a fast dynamic response for load power changes (Mellor et al., 2000, 

Zhang et al., 2008). 

 

The supercapacitor is a regular capacitor that allows to store a high 

amount of energy in a limited space. Unlike the electrochemical process of the 

battery, supercapacitor store energy as a static electronic charge and that makes 

them have a higher power density. It is then advantageous to combine these two 

energy storage devices to gain a better power and energy performances. The 

supercapacitor are implemented to supply the fast power load changes while the 

battery is used as primary ESS to meet the energy demand (Zhang et al., 2008). 

 

In this research, the implementation of a battery-supercapacitor HESS 

in an EV is studied. Batteries remain the primary energy storage devices due to 

their high energy density. On the other hand, a supercapacitor has a lower 
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energy density but a higher power density. The supercapacitor possesses the 

unique properties that can complement the other energy storage technologies.  

 

Generally, a HESS is designed using a bidirectional DC-DC converter 

to mitigate the limitations of a supercapacitor-battery combination. One of the 

primary challenges in HESS design is the configuration of the supercapacitor 

and battery with the DC bus. 

 

 

1.2 Problem Statement 

 

Nowadays, the number of electric vehicles in the roads is still limited 

due to the limited driving range, the long charging time, and the short lifetime 

of the battery. All these challenges are related to the ESS of the EV. The ESS 

should contain enough energy to have a specific driving range, and it should 

also have a sufficient power capability for the accelerations and decelerations. 

Many researchers are trying to improve the efficiency of and ESS for the EV by 

using a combination of two or more energy storage devices. The fused device is 

called Hybrid Energy Storage System (HESS). In HESS, the batteries can 

supply the main power to the load due to its high energy density; however, they 

cannot supply peaks of power in short periods due to its limited power density. 

Likewise, supercapacitor have a low energy density but a high power density. 

Therefore, combining these two devices can achieve an efficient, light, and 

high-performance ESS for the EV (Gonzlez, 2009). 
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 The energy storage hybridization in HESS will improve the energy 

storage system efficiency and extend the battery lifetime of the electric vehicles. 

Furthermore, the regenerative braking energy can be absorbed by the HESS 

instead of converting the kinetic energy into heat via friction brakes. HESS 

possesses two critical issues: the topology of HESS and the Energy 

Management System (EMS). There are several topologies of HESS used in 

literature, and each topology has its advantages and disadvantages. On the other 

hand, EMS is a critical affair to control the power flow between the HESS and 

the load. There are several control strategies used to manage HESS power such 

as the optimisation control strategies and the rule-based strategies. EMS aims 

to improve the performance and efficiency of HESS. The control strategy of the 

EV is implemented in a standalone mode to manage the power flow in real-time. 

Therefore, most of the optimised control strategies presented in literature 

require high computational time.  

 

Many studies in the literature proved the advantage of HESS for electric 

vehicles in extending the battery lifetime, the energy availability, and the 

reduction of the battery temperature. Also, road conditions have a significant 

impact on the total energy demand in a drive cycle. Neglecting this factor leads 

to an inaccurate estimation of the EV energy consumption. Most of these 

researches ignored the road slope in the drive cycles and considered standard 

drive cycles to validate the performance of HESS for electric vehicle 

applications. Furthermore, the control strategies in the literature did not consider 

the conditions which guarantee the ability of HESS to operate continuously for 

various types of drive cycles.  
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1.3 Research Objectives 

 

This research aims to propose an energy management system of HESS 

for EV to prolong the battery lifetime and enhance the vehicle performance. The 

aim of the proposed management system is to utilise the terrain information of 

the drive cycle to improve the performance of the HESS and achieve a 

maximum number of drive cycles. This objective includes the following: 

 

i. To model the battery, the supercapacitor, the DC-DC converter, and the 

electric vehicle. The accurate model of HESS and electric vehicle leads 

to achieve the optimal design for the close-loop control system and the 

valid estimation of the EV energy consumption. 

ii. To determine the drive cycles road slope angle and estimate the energy 

consumption and the regenerative energy along with the drive cycles 

by using Contour Positioning System (CPS). 

iii. Design the optimal adaptive rule-based controller which guarantees the 

ability of HESS to operate continuously along with various drive 

cycles and obtain the maximum number of cycles.  

iv. To design a Linear Quadratic Regulator (LQR) controller to control the 

energy flow between the supercapacitor and the DC-Bus by driving the 

bidirectional DC-DC converter. 

v. To validate the proposed control algorithms of HESS for EV in three 

different types of real-drive cycles (Uphill, Downhill and City tour) in 

three different speeds and three different types of standard drive cycles 

(UDDS, NYCC and Japan1015). 
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1.4  Scope of the Work 

 

The scope of the current research is as follows: 

 

i. Design the HESS of pure electric vehicles without considering 

other vehicles like Hybrid Electric Vehicles containing Internal 

Combustion Engine. 

ii. This research employs the lithium-ion battery and the 

supercapacitor module as the energy storage devices for the 

HESS of EV.  A semi-active topology is used to interface the 

supercapacitor in parallel with the battery through a bidirectional 

DC-DC converter.  

iii. Other energy devices like fuel cells or flywheel are not 

considered in the scope of this research. 

iv. Matlab/Simulink software is used to model and simulate the 

system components such as the battery, the supercapacitor, the 

DC-DC Converter, and EV. The response of the proposed energy 

management system is tested in Matlab/Simulink environment 

as well. 

v. The proposed energy management system is tested with real 

drive cycles. The driver is required to set the driving speed 

before the commencement of the journey. 

vi. During the deceleration, the regenerative braking energy is to be 

solely absorbed by the supercapacitor to avoid the fast charging 

of the battery. 
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1.5 Thesis Organisation 

 

This thesis is organised into six chapters. The outline of the chapters is 

described below. After the current introductory chapter, the literature review of 

the energy management system and HESS architectures for an electric vehicle 

is summarised in Chapter 2. The main challenge is to control the load current of 

the electric vehicle. 

 

Chapter 3 presents the topology and the configuration of the proposed 

HESS. The details of the HESS components mathematical models for the 

battery, the supercapacitor, and the bidirectional DC-DC are explained. The 

model of the electric vehicle is described clearly. Furthermore, the contour 

positioning system, the selected real drive cycles, and the standard drive cycles 

are explained. Finally, the sizing method for the battery and supercapacitor is 

investigated. 

 

Chapter 4 includes the design of the proposed energy management 

system of the HESS for the EV. The designs of the rule-based controller and the 

proposed algorithms of the adaptive rule-based controller are explained in 

details. 

 

The results and the discussions of the proposed controllers are presented 

in Chapter 5. While chapter 6 highlights the conclusions, limitations, and the 

future work of this research. 
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CHAPTER 2 

 

A REVIEW OF HYBRID ENERGY STORAGE SYSTEM OF 

ELECTRIC VEHICLES 

 

2.1 Introduction 

 

Nowadays, attention is highly demanded to green and clean 

technologies. In today's cities, transport has experienced a high rate of growth. 

The typical internal combustion engine vehicle emits gases such as carbon 

dioxides, carbon monoxide, oxides of nitrogen, hydrocarbons, and water 

resulting in a higher earth's surface temperature. Electric cars are one of the best 

solutions to degrade fossil fuels and global warming. Many scientists focus 

primarily on Energy Storage System (ESS) in terms of cost reduction, rise in 

age, and growth in energy density. In the industrial section, the ESS is motivated 

by the necessity to employ renewable resources to produce energy instead of 

fossil fuels. 

 

This chapter discusses the hybrid energy storage system for electric 

vehicles. The current state-of-the-art is summarized to solve the limitations of 

the energy storage systems in EVs. The advantages and disadvantages of several 

types of energy storage devices are presented. The combination of a high energy 

density energy storage technology and high power density technology offers a 

solution to solve energy storage device challenges. 

 



 13 

2.2 Electric vehicles 

 

 The development of electrical vehicles (EVs) started in the 

second half of the 19th century, and they were used in Europe in the early 1880s 

(Haley, 2012). In current days, many researchers consider electric vehicles in 

their researches due to their features like high efficiency, elimination of local 

pollution, absence of noise, and provision of opportunities for a transportation 

sector powered by renewable energy. However, electric vehicles are still facing 

critical challenges that need to be solved (Schaltz, 2011).  

 

This research will focus on electric vehicles that use energy storage 

devices to produce power. There are three main types of these vehicles: Battery 

Electric Vehicle (BEV), Hybrid Electric vehicles (HEV), and Fuel Cell Vehicles 

(FCV). BEV is fully powered by grid electricity stored in a large on-board 

battery. Several types of the battery had been used with EV as presented in the 

studies of (Yang and Knickle, 2002, Thomas, 2009, Khaligh and Li, 2010). 

HEV is a combination of a conventional vehicle and an electric vehicle, and it 

is driven by four different parts: electric motor, ESS, ICE, and transmission 

system.  

 

Furthermore, the architecture of HEV is classified into two basic types: 

series and parallel. But presently, HEVs are classified into four kinds: series 

hybrid, parallel hybrid, series-parallel hybrid, and complex (Ehsani et al., 2009). 

FCV is another category of an electric vehicle. In this type, the fuel cell is used 

to generate the electrical power through an electrochemical reaction in the fuel 

cell chamber. FCV has an on-board fuel source, like hydrogen or natural gas. It 
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also can either be fully dependent on the fuel cell or designed with a battery in 

a hybrid arrangement (Richardson, 2013). Figure 2.1 illustrates the architecture 

of the most common types of HEV in the market. 

 

 

Figure 2.1   The architecture of the main types of HEV in the market 

(Richardson, 2013) 

 

 

2.3 Energy Sources in Electric Vehicles 

 

The energy storage devices are used to supply the electric vehicle with 

the needed traction power. The main characteristics that should be offered in 

ESS are energy density, power density, lifetime, cost, and maintenance-free. 

Various types of energy storage devices are used in EVs such as batteries, 

supercapacitor, flywheels, and fuel cell. 
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2.3.1 Batteries 

 

A battery is a storage device that consists of one or more electrochemical 

cells that convert the stored chemical energy into electrical energy. Batteries 

have many features such as high energy density, compact size, and reliability.  

Due to these characteristics, the batteries became widely used in electric 

vehicles. On the other hand, there are some energy losses from the battery cells 

during the charging and/or discharging due to the internal resistance of the 

battery.  

 

Currently, there are several kinds of chemical batteries available in the 

market and the most commonly used in the EV are Lead-Acid, Nickel Cadmium 

(NiCad), Nickel Metal Hydride (NiMH), and Lithium-Ion (Tie and Tan, 2013). 

In general terms, the lead-acid cell consists of a lead oxide (PbO2) cathode and 

a pure-lead (Pb) anode immersed in aqueous sulphuric acid (H2SO4 + H2O) 

(Reddy, 2002). Equation 2.1 and Equation 2.2 describe the overall chemical 

reaction during charge and/or discharge for lead-acid and lithium-ion batteries, 

respectively. 

            PbO2 + Pb + 2H2SO4↔2PbSO4 + 2H2O                (2.1) 

            C6Lix + MyOz↔6C + LixMyOz                                (2.2) 

 

Batteries are designated by the nominal capacity in ampere-hours (Ah) 

and the nominal voltage which has been standardized at 2.1V/cell for the lead-

acid battery. This value applies to the nominal electrolyte temperature and 

density. Higher voltages are achieved by the series connection of individual 
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cells. Battery capacity is increased by using cells of greater capacity rather than 

a parallel connection. The parallel connection of cells increases reliability but 

this increases the total battery weight. 

 

The common battery type in mobile electronics is Lithium-ion; however, 

these days it can be implemented in high power demand applications such as 

grid systems and electric vehicles.  Lithium-ion batteries have a long life-time 

comparing with other kinds of batteries like lead-acid. Since the emergence of 

Lithium-ion batteries in 1991, Lithium batteries occupied the second place of 

the most consumed mobile energy in the market. Lithium-ion batteries have 

high specific energy density because Lithium is the lightest of all metals and 

has the greatest electrochemical potential. Low weight, temperature, volume, 

and, sensitivity are the main features of Lithium-ion batteries. Figure 2.2 shows 

the schematic of a single Lithium-ion battery. 

 

 
Figure 2.2   Schematic of Li-ion cell (Zhang et al., 2018). 
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2.3.2 Supercapacitor 

 

There are two different ways to store the electrical energy: indirectly in 

batteries as potentially available in chemical energy which requires Faradaic 

oxidation and reduction of the electrochemically active reagents to release 

charges that can perform electrical work and directly in an electrostatic way as 

negative and positive electric charges on the plates of a capacitor, a process 

known as non-Faradaic electrical energy storage (Conway, 2013). Generally, 

capacitors consist of two metallic plates separated and insulated from each other 

by a non-conductive material such as glass or porcelain, Supercapacitor is a 

regular capacitor with very high capacitance in a small package (Burke, 2000). 

Supercapacitor are based on the double-layer capacitance concept, first 

described by the German physicist Hermann von Helmholtz in 1853. The first 

patent based on the double-layer structure was taken out by General Electric 

Company in 1957 (Becker, 1957).  

 

Supercapacitor have two types: the electric double-layer capacitor 

(EDLC) and the pseudo-capacitor, and every type differs in the way of charge 

storing (Sharma and Bhatti, 2010). The supercapacitor has relatively high 

specific power and relatively low specific energy compared to those of the 

chemical batteries. Due to their low specific energy density and the dependence 

of voltage on the SOC, it is difficult to use supercapacitor alone as an energy 

storage device for high load applications. Nevertheless, some advantages can be 

achieved by using the supercapacitor as an auxiliary power source (Ehsani et 

al., 2009). Figure 2.3 represents the Schematic of EDLC. 
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The main limitation of the supercapacitor is its low operation voltage. 

The maximum voltage that can be offered by a supercapacitor is nearly 2.5 V 

but most powerful applications require considerably higher voltages. To reach 

the required application voltage, the supercapacitor are connected in series. The 

capacity and the stored energy of the supercapacitor can be calculated using 

Equations 2.3 and 2.4, respectively. 

𝐶𝐶 = 𝜀𝜀𝑟𝑟𝜀𝜀0
𝑑𝑑

 𝐴𝐴     (2.3) 

𝐸𝐸 = 1
2

 𝐶𝐶 𝑉𝑉2    (2.4) 

Where: 

Ɛ0 ≡ the permittivity of a vacuum. 

Ɛr ≡ the electrolyte dielectric constant. 

A ≡ the specific surface area of the electrode accessible to electrolyte ions. 

d ≡ the effective thickness of the EDL (the Debye length). 

C ≡ the capacitance of the cell (in farads). 

V ≡ the cell voltage (in volts). 
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2.3.3 Fuel Cells 

 

Fuel cells (FC) are electrochemical instrument used to convert energy 

from a chemical form to an electrical form directly. The FC generates the 

electrical energy as long as the reactant flows are maintained. The main 

advantages of FC are high conversion efficiency, low emission of Carbon 

dioxide CO2, quiet operation, fuel flexibility, durability waste heat 

recoverability, and reliability (Khaligh and Li, 2010). Figure 2.4 presents the 

schematic diagram of the FC. 

 

 
Figure 2.4 The schematic diagram of the FC (Fathabadi, 2018) 

 

 

2.3.4 Flywheels 

 

A flywheel energy storage system is a mechanical device that stores 

kinetic energy. FC consists of a cylinder with a shaft connected to an electrical 
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generator. Electric energy is converted by the generator to kinetic energy which 

is stored by increasing the flywheel rotational speed. The stored energy is 

converted to electric energy via the generator (Rekioua, 2014). Flywheel is 

classified as an electro-mechanical battery made of wheel of carbon fibre, 

bearing, converter and generator (Dixon, 2010). Figure 2.5 shows the main 

components of the flywheel. The flywheel characteristics as following: 

 Low Specific energy. 

 High Specific power. 

 No pollution. 

 Long life-cycle. 

 High efficiency. 

 Less maintenance 

 

 

Figure 2.5 The main component of flywheel (Dixon, 2010) 
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2.4 The Topologies of the Hybrid Energy Storage System  

 

 The storage technology, operational characteristics, and particular 

strengths are varied in the energy storage devices. Different structures of hybrid 

energy storage systems were compared such as battery-Supercapacitor and 

battery-flywheel in (Kędra and Malkowski, 2018). The conclusion of this 

comparison is that the flywheel required special work conditions such as 

maintain the speed of the wheel while the main limitation of the supercapacitor 

is that has a fast drop in the terminal voltage. For EV applications the auxiliary 

energy storage device like supercapacitor and flywheel is used to store the 

regenerative energy during the braking. Due to the operation limitation of the 

flywheel and the big size of the flywheel compare with the supercapacitor 

module the battery-supercapacitor hybrid energy storage system was selected to 

supply the energy of the electric vehicle in this research. 

 

 Generally, HESS is designed by interfacing the supercapacitor and 

battery via a bidirectional DC-DC converter to take advantage of the two and 

mitigate their limitations. Many topologies for battery-supercapacitor interfaces 

have been attempted. Numerous studies in the literature have attempted to 

design battery-supercapacitor hybrid energy storage systems for EVs with 

various topologies to interface between the battery and the supercapacitor (Tie 

and Tan, 2013, Ju et al., 2014, Cao and Emadi, 2012, Xiang et al., 2014). Figure 

2.6 illustrates different topologies of HESS. Furthermore, different types of 

bidirectional DC-DC converters have been used in a HESS for EV applications 

(Ostadi et al., 2013).  
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 Figure 2.6(a) presents the simplest topology of a battery-supercapacitor 

system. Due to the direct connection, the battery and the supercapacitor voltage 

terminal is the same, and the DC-DC converter is used to maintain the power 

flow. In this topology, the supercapacitor characteristics are limited. 

Furthermore, a full-sized DC-DC converter is needed to manage the delivered 

energy (Aharon and Kuperman, 2011). 

 

 
Figure 2.6   The main topologies for the HESS in literature 

 

 Another configuration of a HESS is shown in Figure 2.6(b). In this 

topology, the power flow of the battery is maintained within a safe range via the 

DC-DC converter. The supercapacitor operational range is limited, and it 

responds as an energy buffer (Ju et al., 2014). 

 

 The configuration in Figure 2.6(c) is widely used in literature (Iannuzzi 

and Tricoli, 2012, Armenta et al., 2015). The DC-DC converter was inserted 
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between the supercapacitor and the DC bus as an interface to control the power 

flow from the supercapacitor. This topology offers a wide range of voltage for 

the supercapacitor and enhances the performance of the battery by decreasing 

the battery current. The reliability is another feature of this topology; the power 

flow is not affected by the failure of the DC-DC converter. This configuration 

is known as the semi-active HESS. 

 

 The topologies represented in Figure 2.6(d, e) use two DC-DC 

converters to manage the power flow from the battery and supercapacitor 

separately. These topologies require a full and medium-size DC-DC converter 

for every source. Besides, the loss, cost, and weight are increased in these 

topologies compared with the other topologies regarding the need for full-sized 

DC-DC converters (Kuperman and Aharon, 2011, Laldin et al., 2013).  

 

 The scheme in Figure 2.6(f) uses a parallel connection of batteries and 

supercapacitor via two DC-DC converters separately and suffers from the same 

constraints in Figure 2.2(d, e). This configuration is called the active HESS. 

 

 

2.5 The Energy Management Strategy of the HESS 

 
 

 The Energy Management System (EMS) is the most critical issue in the 

active and semi-active topologies of HESS. The EMS aims to split the power 

between the battery and the supercapacitor and increase the performance of the 

HESS. Currently, the EMS of EV can be mainly categorized into optimization 
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energy management strategies, rule-based energy management strategies, and 

pattern recognition energy management strategies. Various researches 

highlighted the different characteristics of energy management strategies. This 

section summarises the information and the various aspects of the energy 

management strategies. Figure 2.7 summarized the main categories of energy 

management system.  

 

 

Figure 2.7    The Classification of Energy Management System for HESS  

 

 

2.5.1 Optimization Energy Management Strategy 

 

 The energy management system uses an optimization method to 

improve the performance of the EV. The diversity of the control problems leads 

to the description of several cost functions. There are two different optimization 

energy management systems introduced in the literature; the real-time 

optimization energy management strategy and the global optimization energy 

management strategy.  
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 The work in (Zheng et al., 2018) proposed an energy management 

system for HESS based on Pontryagin’s minimum principle to extend the 

battery life-time and achieve extra driving hours compared with the rule-based 

management system and single storage system. The semi-active topology was 

used to interface the battery and supercapacitor of HESS. Figure 2.8 presents 

the topology of HESS in this work. The proposed controller estimates the 

optimal supercapacitor state of charge (SOC) for the selected drive cycle and 

finds the required battery and supercapacitor energy to supply the EV to follow 

the estimated SOC of the supercapacitor.  The proposed controller in this 

research was validated by being tested on three drive cycles: FTP72, NEDC, 

and Japan1015 drive cycles. 

 

 

Figure 2.8   The topology of the HESS in (Zheng et al., 2018). 

 

 Other works consider the dynamic programming (DP) optimization 

method to manage energy flow in the battery-supercapacitor system presented 

in (Pan et al., 2019). The semi-active HESS is used to validate the proposed 

controller. The architecture of the HESS in this work is presented in Figure 2.9. 

The proposed controller reduced the energy consumption of an EV by 17.6% 

compared to the energy consumption when a battery was used. 

 



 26 

 

Figure 2.9   The architecture of the HESS in (Pan et al., 2019). 

 

 Other works presented in (Li et al., 2019a) proposed an energy 

management system using the Markov Decision Process (MDP) to manage the 

power flow for HESS of an EV. The active topology of HESS using two DC-

DC converters was implemented in this research. The controllers aimed to 

reduce the battery fluctuation current to extend the battery life. China Bus 

Driving Cycle (CBDC) drive cycle and Urban Dynamometer Driving Schedule 

(UDDS) were used to test the controller response. A down-scale prototype of 

HESS was used to verify the proposed controller experimentally. 

 

 A real-time control strategy for HESS was studied in (Lu et al., 2019). 

The Multi-Objective Optimization (MOO) problem was formulated using three 

loss functions which are the battery life-cycle, power loss, and the stability of 

DC link voltage. The no-preference method and weighted method are two 

different methods used to change the optimized problem to a unity problem. The 

HESS model and controller algorithm were tested using ADVISOR. The 

proposed controllers were validated with four standard drive cycles UDDS, 

NYCC, NEDC, and INDIA_URBAN_SAMPLE. The proposed EMS in this 
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work managed the energy flow from the battery in semi-active HESS as 

illustrated in Figure 2.10. The results proved the proposed control strategy 

enhances the performance of the HESS in terms of minimizing the power loss, 

extends the battery life-cycle, and maintains the voltage of the dc-link in a stable 

range. 

 

Figure 2.10  The topology of the proposed HESS in (Lu et al., 2019). 

 

 A comparative study was done to compare the control response of a 

Non-Linear Model Predictive Control (NMPC), rule-base control and Linear 

Model Predictive Control (LMPC) for the battery supercapacitor HESS in EVs 

(Golchoubian and Azad, 2017). A Toyota Rav4EV model was tested and 

showed the improved response of NMPC compared to that of LMPC. 

 

 A more complex control scheme was designed to split the load power 

between the battery and supercapacitor to increase the efficiency of the HESS 

and overall battery life in (Shen and Khaligh, 2016b). The predictive controller 

was used to manipulate the duty cycle of the DC-DC converter to control the 

current of the supercapacitor during operations. Furthermore, the predictive 

controller reduced the frequent variation of battery load in the EV’s HESS. A 

non-uniform sampling time approach was investigated in (Gomozov et al., 

2016). 
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  The Markov Chain method was cooperated with the Monte Carlo 

method to propose a stochastic model from the history of the driving cycle in 

(Zhao et al., 2019). The predictive drive cycle was used to update the equivalent 

consumption minimization strategy in real-time. The proposed energy 

management strategy was validated for HEV model. Figure 2.11 represents the 

schematic of the driving cycle prediction algorithm. 

 

 

Figure 2.11   The schematic of the driving cycle prediction algorithm in (Zhao 
et al., 2019) 

 
 
 A new control strategy was proposed in (Hu et al., 2020) based on the 

driving pattern recognition. The driving cycle was classified into different 

patterns based on the historical driving data. An adaptive wavelet transform was 

used to assign the high power demand to the supercapacitor while the low 

frequency power demand was supplied by a battery. This strategy was 

implemented in a standard drive cycle and decreased the maximum 
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charge/discharge current of the battery, improved the battery lifetime, and 

extended the vehicle range. 

  

 In (Gonsrang and Kasper, 2018), the power management system was 

proposed for HESS to extend the driving range of the electric vehicle. The 

proposed EMS aimed to split the vehicle load power between the battery and 

supercapacitor based on solving the formulated problem. The implementation 

of the proposed EMS in real-time could be achieved due to the small 

computation time. Multiple objectives problem was formulated based on the 

driving speed, the terminal voltage of the supercapacitor, and the battery peak 

power demand. The optimization problem was solved by a nonlinear model 

predictive control program and constrained quadratic program. Figure 2.12 

shows the structure of the optimization level. 

 

 

Figure 2.12   The structure of the optimization level of the EMS in (Gonsrang 
and Kasper, 2018). 
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 The optimal energy management strategy was designed in (Mesbahi et 

al., 2017) to manage the battery/supercapacitor HESS. The proposed EMS 

aimed to manage the supercapacitor SOC around the initial value. The 

integration of the Particle Swarm Optimization and the Nelder–Mead was used 

to define the control parameter of the proposed EMS. The ARTEMIS drive 

cycle was used to test the performance of the proposed EMS. The results proved 

that the proposed EMS decreases the battery stress, reduces the system cost, and 

increases the battery life-time. Figure 2.13 represents the power split concept of 

the proposed controller in this research.  

 

 

Figure 2.13  The HESS load power based on the proposed EMS in (Mesbahi et 
al., 2017). 

 

 The power management strategy based on dynamic programming (DP) 

was proposed to prolong the battery lifetime and extend the driving range of the 
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EV in  (Chen et al., 2014). The performance of the DP was investigated with 

two cost functions: battery loss oriented and fuel loss oriented power 

management strategies. The minor drawback of the DP is the complicated 

interpolation and quantization; therefore, it needs a super microprocessor for 

implementation.  

 

 

 Rule-based control system is a group of rules that depends on the value 

of the control variables in real-time. The main advantages of the rule-based 

control strategy are that it does not require any information regarding the type 

of drive cycle being used, and it is simple to implement. 

 

 The response of the laboratory size scale of the semi-active HESS 

prototype was investigated using the emulate of the real road electric vehicle 

(Veneri et al., 2018). The proposed HESS in this work was controlled by three 

different strategies of rule-based energy management. The responses of the 

proposed rule-based controllers were evaluated in terms of the effects on the 

battery peck current. This study discussed the harmful effect of the high 

discharging rate current for the urban driving cycles in terms of battery life-time 

and efficiency. Figure 2.14 depicts the scheme of the three control modes of 

HESS. 

 



 32 

 

Figure 2.14   The scheme of the three control modes of HESS in (Veneri et al., 
2018). 

 

An adaptive power split strategy was used to split the load between the 

battery and the supercapacitor in the HESS for EVs in (Sun et al., 2017). The 

controller drove the interleaved DC-DC converter in the semi-active HESS, and 

the Zero Voltage Switching Method minimized the switching losses in the 

converter. The system was evaluated over four drive cycles in an EV. 

 

A real-time rule-based power-split control strategy based on a 

Lyapunov-based nonlinear approach was proposed in (Zhang et al., 2020) for 

energy management of the battery-Supercapacitor HESS for EV. The proposed 

controller was tested to consider the speed of two standard drive cycles and the 

slope of a city road drive cycle. 

 

The control strategy illustrated in Figure 2.15 was implemented to drive 

the switching bi-directional buck-boost converter for vehicles- to-grid systems 

(Liu et al., 2020). A state-space averaging approach was used to test the system 

stability. The controller considered the SOC of HESS to regulate the power flow 
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in the system. The experimental results for laboratory prototypes were presented 

to verify the design.  

 

 

Figure 2.15   The diagram of the control strategy of HESS in (Liu et al., 2020). 

 

A fuzzy logic controller was applied to control the HESS for EVs in 

(Sellali et al., 2019). The aim of the controller was to split the load power 

between the battery and supercapacitor, regulate the DC bus voltage, and 

monitor the SOC of the supercapacitor. The proposed control algorithm aimed 

to manage the power flow from HESS by the Fuzzy Logic Controller. 

Furthermore, the sliding mode controllers was implemented to control the 

vehicle traction. Figure 2.16 illustrates the flow chart of the proposed controller 

in this work. The results showed that the proposed controller improved the 

battery life by supplying the load energy from the battery at a steady state and 

from the supercapacitor during the transients. 
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Figure 2.16   The flowchart of the Fuzzy Logic Controller in (Sellali et al., 
2019). 

 

The rule-based energy management strategy was proposed in (Armenta 

et al., 2015) to reduce the battery current peak and extend the driving time. The 

proposed EMS in this study aimed to control the power flow from the 

supercapacitor to enhance the ability of the supercapacitor to absorb all the 

regenerative energy during the braking. The efficiency of the EV increased by 

8%–25% in terms of driving range when including the regenerative energy. 

 

The rule-based fuzzy logic control approach was applied in (Wang et al., 

2016) to manage the power flow in the HESS. The accuracy in measurement 

noise and adaptation of Fuzzy Logic was used as an energy management 

strategy. However, human experience was implemented to design the 

membership function and fuzzy rule.  The proposed Fuzzy Logic Controller 

considered three inputs: the total power, the battery SOC, and the supercapacitor 

SOC. Figure 2.17 shows the structure of the proposed fuzzy controller. 
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In (Bharath and Pandey, 2017), they designed a Fuzzy Logic Controller 

to manage the power distributed between the battery and the supercapacitor. 

The total vehicle load demand, supercapacitor SOC, and battery SOC were used 

as the controller’s input. The ADVISOR platform was utilised to implement the 

model vehicle control strategy.  In (Eckert et al., 2020), a genetic algorithm 

multi-objective optimization was applied to reduce the HESS sizing and extend 

the driving range of the EV. A fuzzy control strategy was used to split the power 

between the front and rear HESS to achieve better performance. The proposed 

configuration was tested in three standard drive cycles, and it succeeded to 

increase the driving range and reduce the HESS total weight. The architecture 

of the electric vehicle is shown in Figure 2.18. 

 

 

Figure 2.18   The configuration of the EV in (Eckert et al., 2020). 
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Figure 2.19   The configuration of the HESS in (Javorski Eckert et al., 2018). 

 

 

2.5.3 Pattern recognition Energy Management Strategy 

 

A different control strategy was applied in HESS for EV in (Alobeidli 

and Khadkikar, 2018). A two-stage neural network was used to control the SOC 

of the supercapacitor. This control strategy was used to extend the 
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supercapacitor life and guarantee continuous hybridization. This concept was 

tested for three standard drive cycles and underwent both numerical and 

experimental investigations. The performance of a rule-based and a fuzzy 

adaptive controller was compared and the results showed improvements in the 

battery life. 

 

Other researchers attempted to improve the HESS and battery life in the 

EVs by formulating real-time energy problems. This helped determine the 

optimal current split point between the battery and the supercapacitor. A cost 

objective function was derived to minimize the battery current variations and 

amplitude, and reduce the error between the supercapacitor current and the 

reference current. A neural network-based strategy was used to split the load 

current between the battery and the supercapacitor (Shen and Khaligh, 2016a).  

 

Another work investigated a new energy management system for HESS 

for six standard drive cycles using a neural network (Zhang and Deng, 2016). 

The characteristic parameters were taken in real-time from the different drive 

cycles employing a slide time window to determine the load distributed 

components between the battery and the supercapacitor.  

 

2.6 The Impact of the Topography on the Energy Consumption for 

Electric Vehicle 

 

The Pontryagin’s Minimum Principle was used to develop an algorithm 

for eco driving for electric vehicle (Shen et al., 2020). The real-world 
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parameters such as traffic laws, road slope, safety concerns, and power train 

were used to adapt the proposed algorithm. The eco-driving algorithms were 

tested in three different scenarios and compared with human driving behaviours. 

 

Other research was aimed to predict the energy consumption of the 

selected drive cycle for the battery electric vehicles (Wang et al., 2018a). The 

general effects of the weather conditions, road topography information, traffic 

condition, and driver behaviour are considered in the total energy estimation. 

The error between the results of the proposed prediction algorithm and the 

measured energy consumption within 5% for all tested trips. 

 

In (Cheng et al., 2019) a driving control algorithm was proposed to 

improve the climbing performance of pure electric vehicles. The road slope, 

vehicle speed, rate of acceleration pedal, and battery state of charge were used 

to design the fuzzy controller. The proposed control method improved the 

dynamic and operation performance of the electric vehicle in terms of climbing 

conditions. 

 

The energy estimation model for electric vehicle was proposed in (Wang 

et al., 2015). In this study Battery model, regenerative model, road load model, 

energy loss model, and auxiliary system model were used to predict the total 

energy consumption of electric vehicles for real routes.  

 

Similar to the normal way to find the fastest way or shortest distance for 

the selected journey, a new design for route planner was presented in (Perger 
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and Auer, 2020). The aim of this method is to find the driving path for the 

selected route which have less energy consumption.  The multi-objective 

problem was identify based on energy consumption, driving time, and battery 

lifetime. The major impact of topography on the energy consumption of electric 

vehicle was validated. 

 

Other research proposed an instant control energy strategy to improve 

the efficacy of electric vehicle depends on road slope and vehicle speed (Qu et 

al., 2019). The total energy consumption was decreased by including the kinetic 

energy of the electric vehicle in real-time. The proposed speed controller was 

saving 5.9% compared with driving with constant speed. 

 

The effects of the road slope and traffic conditions on the total energy 

consumption of EV were investigated (Neaimeh et al., 2012). The presented 

data prove the impact of the topographical conditions of the selected route in 

terms of energy consumption. 

 

2.7 Chapter Summary 

 

This chapter presents a review of the architecture of the electric vehicle, 

the energy sources used commonly in the EVs, the main topologies 

implemented in the EVs, and the energy management system in the EVs. With 

a view to achieve the optimal energy management system for EVs, researchers 

should develop the optimization method of the rule-based energy management 

system. 
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The presented control strategies of the EVs in the literature have 

different characteristics. The Rule-based controller was implemented widely in 

mercantile vehicles due to the simplicity; however, the optimal solution is 

difficult to obtain.  The review reveals a research gap in terms of the effect of 

road slopes and traffic information on the design of the energy storage system 

in EVs. Ignoring road topography informations can lead to incorrect estimation 

of the total energy demand in a drive cycle. An uphill drive consumes more 

energy when the vehicle accelerates while less energy is used when the vehicle 

goes downhill. There are several methods used to measure the road elevation 

and slopes such as DEM, GPS, and CPS (Han et al., 2012, Chew et al., 2014). 

Vehicle-to-vehicle communications can also be used to collect information 

regarding the slope of the road (Coelingh and Solyom, 2012). 
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CHAPTER 3 

 

MODELLING THE HYBRID ENERGY STORAGE SYSTEM AND 

ELECTRIC VEHICLE 

 

 

3.1 Introduction 

 

This chapter presents the Hybrid Energy Storage System proposed 

topology for the Electric Vehicle and the system components mathematical 

models. Battery model, Supercapacitor model, DC-DC converter model and 

Electric Vehicle model are explained in details. Determining an accurate and 

precise hybrid energy storage system is required to design the energy 

management system with optimal electric vehicles performance. Also, the 

Contour Positioning System is discussed and explained. The purpose of 

obtaining the slope and angles of a road based on the road contour distance and 

elevation is clarified. The study considered several natural drive cycles with 

different characteristics and different speeds to validate the proposed system. 

At the same time, the design of the energy management system of the Hybrid 

Energy Storage System for Electric Vehicle is discussed in detail in the next 

chapter. Finally, the sizing method to select the proper size for the battery and 

supercapacitor of the Hybrid Energy Storage System for Electric Vehicles 

application is presented. 
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3.2 System Modelling and Configuration  

 

This research implements the semi-active topology of HESS to deliver 

the required energy for EV. In this topology, the supercapacitor are connected 

to the DC bus through a bidirectional DC-DC converter in parallel with a battery 

to capitalise on the two systems advantages and mitigate their limitations. 

 

 The proposed energy management system is designed to split the 

demand energy between the battery and supercapacitor and limit the battery 

current. The battery provides low traction and steady-state EV load current 

whilst the supercapacitor supplies the peak demand EV load current and absorbs 

the regenerative energy during braking. The Rule-based adaptive controller is 

designed to manage the super capacitor energy flow by tuning the drive cycle 

of the DC-DC converter. Figure 3.1 shows the HESS architecture for the EV in 

this research. 

 

 

FIGURE 3.1  Architecture of HESS for Electric Vehicle in this research 
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3.2.1 Battery Model 

 

As presented in the literature, many researchers focused on battery 

modelling. Battery models can be categorised based on the used modelling 

approaches. The major categories are mathematical models, electrochemical 

models, and electrical equivalent circuit networks. Usually, some empirical 

formulas or heuristic techniques are used to obtain the specific characteristics 

and mathematical models of batteries. One of the simplest and oldest analytical 

methods is the Peukert’s equation which shows that battery capacity depends 

on the battery current discharge rate. The electrochemical models rely on the 

internal chemical reactions between the materials inside the battery. 

 

Consequently, these models have high accuracy compared with other 

models since they simulate the cells at the microscopic scale. They often involve 

six-coupled non-linear differential equations. The complexity of the 

electrochemical models and limitations of the computers computing power in 

the past led researchers to investigate another modelling approach called 

equivalent circuit model. Generally, this model uses electrical components to 

model the behaviour of the battery. Batteries may be modelled with a constant 

voltage source in series with resistance in its simplest form. Adding more 

components to the capacitor can show different effects. Many examples of 

battery models can be found in literature and will not be reviewed in this 

chapter. Most of them are not directly applicable to the EV application. Instead, 

the focus will be on a group of works which involves the simplification of these 

battery models. The electrical equivalent circuit model for the battery will be 
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considered in this research. There are many ways to represent the electrical 

equivalent circuit model for the battery. Most of these models fall under three 

main categories: Thevenin, impedance, and runtime-based models. Figure 3.2 

illustrates the different electrical equivalent circuit models for the battery (Chen 

and Rincon-Mora, 2006, Shafiei et al., 2011, Fotouhi et al., 2016). 

 

 

Figure 3.2  Different equivalent circuit model of the battery (a) Thevenin 
model, (b) impedance model, and (c) runtime-based electrical battery 
model(Chen and Rincon-Mora, 2006). 

 

After choosing the electrical equivalent circuit model construction, the 

parameters or the values of the model components need to be determined. These 

parameters can be found using the real data for charging and discharging the 

battery. For EV application, a fast battery model that is accurate at different 

SOC levels subjected to various charge/discharge current amplitudes, a wide 

range of temperature, etc. is needed (Fotouhi et al., 2016). The electrochemical 

batteries, like Lead-acid battery, have complex and non-linear behaviour during 

charging and discharging depending on battery state-of-charge and electrolyte 
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temperature. For those reasons, (Ceraolo, 2000, Barsali and Ceraolo, 2002) tried 

to find dynamic model to represent this nonlinearity. Furthermore, the 

equivalent electric model was used to estimate the values of this model 

parameters using two ways: a complete identification procedure involving 

extensive lab tests and a simplified one that combined information from lab tests 

and data supplied by the manufacturer. The accuracy of these models was 

acceptable, and the proposed models behaviour was validated via the 

comparison with lab tests data.  

 

Some researchers used the system identification technique to estimate 

the parameters of the battery model (Fotouhi et al., 2015). The real-time model 

identification technique combined with an adaptive neuro-fuzzy inference 

system (ANFIS) was used to estimate the battery SOC in the real-world electric 

vehicle applications.  
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SOC, the average current, and the electrolyte temperature. The parameter 

estimation result constitutes the look-up tables for the parameter values of the 

equivalent circuit elements that represent the battery behaviour in a different 

SOC (Ahmed et al., 2015).  

 

 The battery model can be found in the MATLAB/Simulink/ 

SimPowerSystems library. This equivalent model contains a control voltage 

source and an internal resistance, as shown in Figure 3.3. The relationship 

between the time-varying parameters in the battery model is shown in Equation 

3.1. Table 1.1 shows the main parameters of the battery model used in this study. 

 

⎩
⎨

⎧
Vb(t) = Eb(t)− rb. ib(t)                

SOC(t) = 100�SOC(0)−
1
Q
� i(t)dt
t

0

�                         (3.1) 

 

 

Figure 3.3   Equivalent model of the battery in SimPowerSystems library 
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Table 3.1   The parameters of battery model 

 

 

 

 

 

 

 

3.2.2 Supercapacitor Model 

 

Supercapacitor have a widespread use in academia and the automotive 

industry due to their characteristics, high efficiency, low internal resistance high 

power density, long cycle life, fast charging, and wide operational temperature 

range. A model that can emulate supercapacitor dynamics with high precision 

and good robustness is of utmost importance for energy management design. 

The model should also avoid complexity to be easily incorporated into real-time 

controllers. Therefore, it is vital to strike a balance between the model accuracy, 

robustness, and model complexity (Zhang et al., 2015). Many supercapacitor 

models are presented in the literature (Faranda et al., 2007, Johansson and 

Andersson, 2008, Zubieta and Bonert, 2000, Sharma and Bhatti, 2010). The 

supercapacitor models can be generally categorised into three groups: 

electrochemical models, equivalent circuit models, and artificial-neural-

network-based (ANN-based) models. This research will rely on the equivalent 

circuit model for the supercapacitor. 

 

Parameter Value 

Capacity (Ah) 100 

Internal Resistance (Ohms) 0.125 

Nominal voltage (V) 500 

Stored energy (kWh) 50 

Initial  𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃(𝟎𝟎) 0.95 
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One of the practical models for the supercapacitor was proposed in 

(Zubieta and Bonert, 2000). The model consisting of three RC branches was 

suggested to achieve a better fit for the collected data. The capacitance of the 

branch with the fastest response was modelled as a voltage-dependent capacitor. 

The model parameters were determined from the terminal measurements of the 

charging and discharging of the supercapacitor. Figure 3.4 represents the 

different equivalent circuit models for the supercapacitor in the literature. This 

model was verified using MATLAB/Simulink as in (Shah et al., 2012).  

                         

Figure 3.4 Equivalent circuit models for the supercapacitor in the literature. 

 

Other researchers presented the two branches equivalent circuit model 

for the supercapacitor (Faranda et al., 2007). The process of identifying the 

model parameters was easier and faster than the previous model. Additionally, 
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a dynamic model that describes the behaviour of supercapacitor can be used for 

the simulation and the analysis of the supercapacitor transient behaviour as 

mentioned in the literature. According to (Devillers et al., 2014), the model 

parameters are identified with adapted characterisation tests, such as charge and 

discharge test at constant current and Electrochemical Impedance Spectroscopy 

in environmental constraints. 

 

Furthermore, other studies included the thermal effect to obtain an 

accurate model that represents the supercapacitor behaviour (Al Sakka et al., 

2009, Rafik et al., 2007, Marie-Francoise et al., 2006). In (Rafik et al., 2007), 

an electrical model consisting of 14 RLC elements has been proposed to 

describe the supercapacitor behaviour. Electrochemical impedance 

spectroscopy was used to find the parameters values from the experimental data. 

The simulation and experimental results verified the accuracy of this method. 

Generally, the most common way to identify the parameters representing the 

dynamic behaviour of the supercapacitor is based on the impedance 

spectroscopy. However, it requires specialised instrumentation and cannot be 

easily implemented for model identification in a large frequency band. On the 

other hand, different researches tried to estimate the supercapacitor model 

parameters using the online identification method (Bertrand et al., 2010). 

  

MATLAB/Simulink/SimPowerSystems elements are used to model the 

supercapacitor in this research. Table 2 lists the parameters of the supercapacitor 

module used in this study. The terminal voltage Vsc and the total capacity Csc of 

the supercapacitor module can be calculated as per Equation 3.2.  
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�Csc =
Ccell. Nparallel

Nseries
Vsc = Vcell. Nseries

                                    (3.2) 

 

 

Table 3.2.  The Parameters of Supercapacitor Model 

 

 

 

 

 

 

3.2.3 DC-DC converter Model 

 

The model that describes the DC-DC converter behaviour is important 

for designing the HESS controller because the controller aims to drive the DC-

DC converter to supply the required energy from the supercapacitor. The DC-

DC converter output voltage and current are regulated by changing the duty 

cycle of the Pulse Width Modulation (PWM) which is applied to the IGBT of 

the DC-DC converter. In this research, a single layer bidirectional DC-DC 

converter is used to control the supercapacitor energy flow in both directions. 

The boost converter is used to discharge the supercapacitor, and the buck 

converter is utilised to charge the supercapacitor. Figure 3.5 represents the 

bidirectional DC-DC converter construction and main components (Machado et 

al., 2015). 

 

Parameter Value 

Rated voltage (V) 300 

Rated capacitance (F) 100 

Resistance (mΩ) 2.1 

Initial 𝑺𝑺𝑺𝑺𝑺𝑺𝒔𝒔𝒔𝒔(𝟎𝟎) 0.9224 
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Figure 3.5   The main components of the DC-DC converter 

 

The state-space average model is used to model the DC-DC converter in 

this research. This method approximates the DC-DC converter non-linear 

characteristics to the linear system (Abdullah et al., 2012) whereas the ON and 

OFF state of the IGBT is considered in modelling the DC-DC converter. The 

time averaging is performed as in Equation 3.3: 

𝑥̇𝑥 =  [𝑑𝑑𝐴𝐴𝑂𝑂𝑂𝑂 + (1− 𝑑𝑑)𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂]𝑋𝑋 + ⌈𝑑𝑑𝐵𝐵𝑂𝑂𝑂𝑂 + (1 − 𝑑𝑑)𝐵𝐵𝑂𝑂𝑂𝑂𝑂𝑂⌉𝑉𝑉𝑠𝑠𝑠𝑠   (3.3)       

Where: 

        








=
=

=

matricescontrolB
matricesstateA

periodswitchingthed

offon

offon

_
_

__

,

,

 

According to the main components of the bidirectional DC-DC 

converter in Figure 3.5, the following matrices represent the state and control 

matrices of the DC-DC converter in ON and OFF states: 

𝑋𝑋 = [𝐼𝐼L 𝑉𝑉𝑐𝑐]𝑇𝑇 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

𝐴𝐴ON = �
−
𝑟𝑟𝐿𝐿
𝐿𝐿 0

0
−1

𝐶𝐶. (𝑅𝑅 + 𝑟𝑟𝐶𝐶)

�  ,   𝐵𝐵ON = �
1
𝐿𝐿
0
� 
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  ,
𝐴𝐴OFF = �

−𝑅𝑅.𝑟𝑟𝐶𝐶−𝑅𝑅.𝑟𝑟𝐿𝐿−𝑟𝑟𝐶𝐶.𝑟𝑟𝐿𝐿
𝐿𝐿(𝑅𝑅+𝑟𝑟𝐶𝐶)

− 𝑅𝑅
𝐿𝐿(𝑅𝑅+𝑟𝑟𝐶𝐶)

𝑅𝑅
𝐶𝐶(𝑅𝑅𝑜𝑜+𝑅𝑅𝑐𝑐)

− 1
𝐶𝐶(𝑅𝑅𝑜𝑜+𝑅𝑅𝑐𝑐)

�    ,    𝐵𝐵OFF = �
1
𝐿𝐿
0
�      

 

The state-space model of the DC-DC converter is represented by the 

following Equations (Wangsupphaphol et al., 2013): 

 

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑖𝑖𝐿𝐿𝑉𝑉𝑐𝑐
� = �

𝑅𝑅.𝑟𝑟𝐶𝐶.(𝑑𝑑−1)−𝑟𝑟𝐿𝐿(𝑅𝑅+𝑟𝑟𝐶𝐶)
𝐿𝐿(𝑅𝑅+𝑟𝑟𝐶𝐶)

𝑅𝑅.(𝑑𝑑−1)
𝐿𝐿(𝑅𝑅+𝑟𝑟𝐶𝐶)

𝑅𝑅.(1−𝑑𝑑)
𝐶𝐶(𝑅𝑅+𝑟𝑟𝐶𝐶)

− 1
𝐶𝐶(𝑅𝑅+𝑟𝑟𝐶𝐶)

� �𝑖𝑖𝐿𝐿𝑉𝑉𝑐𝑐
� + �

1
𝐿𝐿
0
� 𝑉𝑉𝑠𝑠𝑠𝑠     (3.4) 

 

𝑉𝑉𝑐𝑐𝑐𝑐 = �𝑅𝑅.(𝑑𝑑−1)
(𝑅𝑅+𝑟𝑟𝐶𝐶)

𝑅𝑅
(𝑅𝑅+𝑟𝑟𝐶𝐶)� �

𝑖𝑖𝐿𝐿
𝑣𝑣𝑐𝑐
�                                                 (3.5) 

 

�
𝐴𝐴𝑠𝑠 = 𝐴𝐴 = 𝑑𝑑𝐴𝐴ON + (1− 𝑑𝑑)𝐴𝐴OFF                 
𝐵𝐵𝑑𝑑 = (𝐴𝐴ON − 𝐴𝐴OFF)𝑋𝑋 − (𝐵𝐵ON − 𝐵𝐵OFF)𝑉𝑉𝑠𝑠𝑠𝑠
𝐵𝐵𝑠𝑠 = [𝐵𝐵𝑑𝑑 𝐵𝐵]                                                    

         (3.6) 

 

   𝐵𝐵𝑑𝑑 = �

𝑅𝑅.𝑟𝑟𝐶𝐶
𝐿𝐿(𝑅𝑅+𝑟𝑟𝐶𝐶)

. 𝑖𝑖𝐿𝐿 + 𝑅𝑅.𝑟𝑟𝐶𝐶
𝐿𝐿(𝑅𝑅+𝑟𝑟𝐶𝐶)

.𝑉𝑉𝑐𝑐

− 𝑅𝑅
𝐶𝐶.(𝑅𝑅+𝑟𝑟𝐶𝐶)

. 𝑖𝑖𝐿𝐿
�                            (3.7) 

 

The parameters of the DC-DC converter are designed based on (Mohan 

and Undeland, 2007). The DC-DC converter model in Figure 3.5 is simplified 

by replacing the switching elements using a combination of controlled current 

and voltage sources as shown in Figure 3.6. This simplified model has good 

accuracy and a low computational time (Abdullah et al., 2014). Another method 

to estimate the discrete transfer function of the DC-DC converter using system 

identification technique is presented in (Sadeq and Wai, 2019). The state and 
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control matrices of the state-space model of the DC-DC converter is used to 

design the linear quadratic regulator LQR controller to obtain the desired duty 

cycle of the PWM. 

 

 

Figure 3.6   The equivalent model of the DC-DC converter 

 

 

3.3 Electric Vehicle Model 

 

A proper model representing the EV performance is required to obtain a 

better energy consumption. Many researchers used MATLAB/Simulink to 

develop the model for EVs whilst others used ADVISOR or other software to 

perform comprehensive performance analyses for a wide range of vehicles 

(Wipke et al., 1999, Fotouhi et al., 2015, Wai et al., 2015, Bampoulas et al., 

2016, Kaloko et al., 2011, Mahmud and Town, 2016). The vehicle dynamic 

system was explained clearly in (Larminie and Lowry, 2003, Ehsani et al., 2010, 

Schaltz, 2011). In term of the fundamental of the vehicle dynamics and 

Newton’s second law of motion, the total forces  (F𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) affecting the vehicle 

momentum are aerodynamic force (Faero), rolling force (Froll), grading force 
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(Fgr), and acceleration force (Faccel) as presented in Equation 3.7. Figure 3.7 

represents the main forces that affect the vehicle during movement. 

 

∑FTotal = Faero + Froll + Fgrad + Faccel     (3.7) 

 

 

FIGURE 3.7 Forces affecting the vehicle during movement 

 

 The glutinous resistance that impedes movement of the vehicle body 

through air is called the aerodynamic resistance force. This force is a function 

of few factors such as the vehicle shape, the front area, the air passages, and the 

side mirrors. The aerodynamic resistance force depends on the following 

constants: air density (ρ = 1.29) (kg/m3), the vehicle front area (Af = 2.57 m2), 

and the drag coefficient (Cd= 0.26). Equation 3.8 represents the aerodynamic 

resistance. 

     Faero = 0.5.ρ. Af. Cd. V2       (3.8) 
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The force that arises from the contact between the vehicle tires and the 

road surface is called the Rolling force( Froll). This force is proportional to the 

road slope angle and the total vehicle mass. The tire properties such as the 

structure, the material, the temperature, and the air pressure play a significant 

role in the rolling resistance coefficient (μrr). Furthermore, the road 

specifications such as the materials, the roughness, and the percentage of liquids 

on the road surface affect the value of the rolling resistance coefficient. In this 

research, the rolling resistance coefficient in Equation 3.9 is chosen as 0.0048.          

Equation 3.9 represents the rolling resistance force. 

Froll = µrr. MV.g. cosθ         (3.9) 

 

The effects of the road elevation and topography information in which 

the vehicle is moving are called the grading force.  This force is of two types: 

downhill and uphill climbing. The grading resistance force of the movement in 

downhill helps the vehicle move forward while the movement in uphill impedes 

the vehicle movement. This force is equal to the parallel component effect of 

the road multiplied by the vehicle mass and gravity as shown in Equation 3.10. 

Fgrad = MV.g. sinθ           (3.10) 

 

The vehicle acceleration force can be calculated based on Newton's laws 

of motion with friction forces. This force is equal to the sum of the tractive 

resistance force and the tractive effort. The acceleration force is given by 

Equation 3.11. 

Faccel = MV.
∂V
∂t

       (3.11) 
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In the translational motion, the total torque applied to motor's shaft can 

be calculated by Equation (3.12). 

   

�
Teqωm,max = FtrvV,max

ηmech

Teq = Ftr
ηmech

� vV,max
ωm,max

�
                          (3.12) 

    

In term of simplification, the transmission loss is neglected at the 

calculation of the total value of moment of inertia indicates to motor shaft, Jeq.  

So, the summation of kinetic energy of the different moving parts is equal to the 

kinetic energy due to the inertia's total moment. The value of Jeq can be 

calculated by Equation (3.13), where Jm is the total moment of inertia of the 

electrical motor. 

 

�
Jeq = Jm + MV( vV,max

ωm,max
)2                                                              

1
2

 Jeqωm,max
2 = 1

2
 Jmωm,max

2 + 1
2

MVvV,max
2                                

 (3.13) 

 

MATLAB/Simulink/Vehicle Component library is used to model the 

behaviour of the EV. Table 3 shows the main coefficients of the EV model. 

Figure 4 shows the completed model of the EV's HESS using 

MATLAB/Simulink. The inverter and the induction motor use the inner loop 

intelligent controller (Tarbosh et al., 2020, Farah et al., 2019). 
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FIGURE 3.8    The dynamic model of vehicle in Matlab\Simulink 

 

Table 3.3 The Parameters of Electric Vehicle Model. 

 

 

 

 

 

 

 

 

 

 

3.4 Contour Positioning System 

 

Road elevation is an essential factor which affects the energy 

consumption in EVs. Total energy consumption in EVs is affected by 15% to 

20% when road slopes are taken into account (Boriboonsomsin and Barth, 

Parameter Value 

Mv ≡ Vehicle Mass [kg] 1325 

Cd ≡ Drag coefficient 0.26 

Af ≡ Frontal area [m2] 2.57 

Wheel radius [m] 0.3 

μrr ≡ rolling resistance 0.0048 

 g ≡ Gravity acceleration (g) [ms-2] 9.8 

ρ ≡ Air density [kgm-3] 1.29 

θ ≡ Road angle [radian] Variable 

V ≡ Vehicle Speed [ Km/h] 50, 60, 70  
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2009). The driving road information is available in many data sources such as 

Google Maps, Inter-map, and Google Earth. Contour Positioning System (CPS) 

is an algorithm designed to estimate the driving journey energy consumption 

for electric vehicles. The CPS depends on the contour lines to estimate how 

much energy is needed in the specific journey to reach the desired destination. 

This algorithm considers the road slope in the journey to identify the total 

energy consumption which does not take into account the conventional distance 

estimation system. CPS uses Python programming to extract the elevation from 

Google Earth and simulates the results in the MATLAB.  

 

In this research, the driver needs to set the desired destination before 

starting the journey. The automated CPS obtains the road slope in terms of 

elevation and uses it to estimate the total energy consumption for the desired 

drive cycle. Google Earth is used as a source of topography information to 

obtain the road elevation. Three real routes, namely, uphill, downhill, and city 

tour are selected in this study to investigate the influence of slopes of the road 

on the EV energy consumption and validate the proposed HESS energy 

management system effectiveness. The CPS and vehicle speed are used to 

control and estimate the required energy consumption for each drive cycle. The 

three journeys elevation profiles are used to measure the road slope calculated 

by CPS using Equation 3.14.  

 

�
∠θ = |∆E|

∆E
× sin−1 |∆E|

∆D
∆D(k) = D(k) − D(k − 1)
∆E(k) = E(k) − E(k − 1)

        (3.14)   
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Where: 

⎩
⎪
⎨

⎪
⎧

D(k) = Distance                          
D(k − 1) = Previous Distance
∆D = Distance Difference         
E(k) = Elevation                          
E(k − 1) = Previous Elevation
∆E = ElevationDifference         

 

The uphill data is obtained for the drive from Berinchang 

(4°29’30.16’’N 101°23’15.65’’E) to Equatorial Hotel (4°30’17.64”N 

101°24’31.18”E) in Cameron Highlands, Malaysia. The distance covered is five 

kilometres, and the elevations at the starting and destination points measured 

every ten meters are 1496 m and 1627 m, respectively. CPS is used to obtain 

the data and calculate the road slope along the journey. Figure 3.9 shows the 

road elevation profile and the road slope against the distance based on the uphill 

drive cycle. 

 
(a) 

 
(b) 

FIGURE 3.9   The uphill drive cycle (a) road elevation, (b) road slope. 

0 1000 2000 3000 4000 5000 6000
1480

1500

1520

1540

1560

1580

1600

1620

1640

Distance (m)

El
ev

at
io

n 
(m

)

 

 

Uphill

0 1000 2000 3000 4000 5000 6000
-10

-5

0

5

10

15

Distance (m)

R
oa

d 
Sl

op
e 

(D
eg

re
e)

 

 

Uphill



 60 

Meanwhile, the downhill elevation starts from 1615 m and goes down 

to 1496m. The total distance travelled is five Kilometres, and the elevation is 

measured every ten meters. Figure 3.10 represents the road elevation profile and 

the road slope against the distance based on the downhill drive cycle. 

 
(a) 

 
(b) 

FIGURE 3.10   The downhill drive cycle (a) road elevation, (b) road slope. 

 

 Furthermore, the city tour involves travelling from University Tunku 

Abdul Rahman (UTAR) Old Campus in Setapak, Kuala Lumpur, to Technology 

Park Malaysia (TPM) in Bukit Jalil. The elevation levels at the starting and 

destination points are 61 m and 66 m, respectively. The city tour total distance 

is 15.85 Kilometres, and the elevation is measured every ten meters. The road 

elevation profile and the road slope against the distance based on the downhill 

drive cycle are represented in Figure 3.11. 
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(a) 

 
(b) 

FIGURE 3.11   The city-tour drive cycle (a) road elevation, (b) road slope. 

 

 

3.5 Standard drive cycles 

 

The standard drive cycles are defined as a concatenation of data points 

simulating the vehicle speed against time. Driving cycles are issued by several 

organizations and countries to assess the performance of vehicles in various 

ways as for instance fuel consumption, electric vehicle autonomy, and polluting 

emissions (Ericsson, 2000). The drive cycles are used to estimate the fuel 

consumption in conventional vehicles and the energy consumption in electric 

vehicles. There are several types of standard drive cycles with different 
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characteristics. In this research, three standard drive cycles represent the 

diversity of the driver's behaviour in different countries and are selected to 

validate the proposed controller performance. In the standard drive cycles, the 

road slope is ignored while the vehicle speed profile changes during the journey. 

 

The Urban Dynamometer Driving Schedule (UDDS) represents an 

urban route with several traffic stops in Europe with a total distance of 12.07 

km. The average and the maximum speeds in the UDDS drive cycle are 31.5 

km/h and 91.25 km/h, respectively. The total duration of this drive cycle is 0.39 

hours. Figure 3.12 depicts the speed profile based on the UDDS drive cycle. 

 

FIGURE 3.12 The UDDS speed profile 

 

The New York City Cycle (NYCC) is a test drive cycle which includes 

the city traffic. This drive cycles is developed for chassis dynamometer testing 

of light vehicles. The total Distance of NYCC is 1.89km while the driving 

duration is 0.16 hour. The maximum speed in NYCC is 44.6km/h, and the 

average speed is 11.4km/h. Figure 3.13 represents the speed profile based on 

the NYCC drive cycle. 
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FIGURE 3.13  The NYCC speed profile 

 

The Japan1015 drive cycle includes repeatable driving accelerations 

with several traffic stops. The total distance of the drive cycle is 4.16 km while 

the driving duration is 0.183 hours. The average and the maximum speed in 

Japan1015 drive cycle are 22.7 km/h and 70km/h, respectively. Figure 3.14 

represents the speed profile based on Japan1015 drive cycle. 

 

 

FIGURE 3.14   The Japan1015 speed profile 
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3.6 Sizing the Hybrid energy storage system 

 

 The energy requirement in electric vehicles applications depends on 

many factors such as the depth of discharge, the load current, the operation 

temperature, the charging time, and the longest distance. Due to the battery 

working principles, the current discharge rate is different compared with the 

charging rate. In most batteries, the discharge power density is higher than the 

charging power density. The most critical step in sizing the battery is obtaining 

the number of batteries in series (Nbat_s), and the number of batteries in parallel 

(Nbat_p). This number depends on many parameters such as the mission, the 

vehicle dynamics, and the energy management strategy. The mission includes 

the speed profile, the slope of the desired journey, the rate of power recovery 

during braking phases, and the depth of discharge of the battery. The operating 

range of the batteries in electric vehicle applications is around 80% of the total 

capacity (Sadoun et al., 2011, Wang et al., 2018b). Figure 3.15 illustrates the 

sizing step of electric vehicle application. 

 

 

Figure 3.15   The sizing step for electric vehicle application (Sadoun et al., 

2011) 



 65 

 In this research, the total power of electric vehicle (𝑃𝑃𝐸𝐸𝐸𝐸) equals the 

battery power (𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏) and the supercapacitor power(𝑃𝑃𝑠𝑠𝑠𝑠). Equations (3.15-3.18) 

are used to size the EV battery.  

𝑃𝑃𝐸𝐸𝐸𝐸 =  𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 +  𝑃𝑃𝑠𝑠𝑠𝑠     (3.15) 

𝑖𝑖𝑏𝑏 =
𝑉𝑉𝑏𝑏−�𝑉𝑉𝑏𝑏

2−4 .𝑅𝑅𝑏𝑏 .𝑃𝑃𝑏𝑏

2 .𝑅𝑅𝑏𝑏
               (3.16) 

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏_𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

     (3.17) 

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏_𝑝𝑝 = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏_𝑠𝑠.(𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

         (3.18) 

 

 Based on (Roy and Rengarajan, 2015, Douglas and Pillay, 2005), the 

flowchart in Figure 3.16 summarises the procedure for selecting the 

supercapacitor module proper size for EV applications. 

 

Figure 3.16   The steps to select the supercapacitor size for HESS 
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 The proposed rule-based controller is used the estimated total current of 

the selected drive cycles to calculate the practical value of the maximum value 

of the battery current (Ib_max ). The functions of the root-mean-square (RMS) 

and the mean value are implemented to estimate the maximum value of the 

battery current. Figure illustrates the algorithm of selected the (Ib_max ). 

Equations 3.19 and 3.20 describe the root-mean-square (RMS) and the mean 

functions. Figure 3.17 shows the to select the maximum value of the battery 

current (Ib_max ). 

 

𝑅𝑅𝑅𝑅𝑅𝑅 = ��1
𝑛𝑛
∑ 𝑋𝑋𝑛𝑛2𝑛𝑛
0 �   (3.19) 

𝑀𝑀 = ∑ 𝑋𝑋𝑛𝑛𝑛𝑛
0
𝑛𝑛

    (3.20) 

 

 
 

Figure 3.17   The steps to select the maximum value of the battery current 
(Ib_max ) 
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3.7 Chapter Summary 

 

This chapter presented the models of the hybrid energy storage system 

of the electric vehicle. The model of batteries, supercapacitor and DC-DC 

converters are described in details. Furthermore, the dynamic model of the 

vehicle are discussed. In addition, the method to calculate the road slope using 

contour positioning system is also explained. The three different real driving 

cycles (uphill, downhill, and city-tour) used in this research are presented. 

Moreover, the characteristics of the standard drive cycles (UDDS, NYCC, and 

Japan1015 drive cycle) are summarised. Finally, the algorithms of sizing the 

HESS (battery and supercapacitor) are carried out. 
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CHAPTER 4 

 

DESIGN THE ENERGY MANAGEMENT SYSTEM OF HYBRID 

ENERGY STORAGE SYSTEM  

 

 

4.1 Introduction 

 

One of the primary challenges in designing a battery–supercapacitor 

Hybrid Energy Storage System for Electric Vehicle is distributing the energy 

demand in real-time between the primary energy storage device and the 

auxiliary energy storage device. This Chapter presents the proposed energy 

management of the semi-active HESS for electric vehicles. The proposed 

control algorithm aimed to split the vehicle demand current between battery and 

supercapacitor optimally to extend battery life and ensure continuous HESS 

hybridization (Sadeq et al., 2020). The battery provides low traction current 

while the supercapacitor supplies the peak traction current and absorbs the 

regenerated current during braking. In this research, two different algorithms 

were designed to adapt the proposed rule-based controller to distribute the total 

operating current of an EV between the HESS battery and the supercapacitor. 

The adaptive rule-based controller controlled the DC-DC converter Ico(t) 

output current to manage the supercapacitor energy output in different operation 

conditions. The total electric vehicle load current It(t) is defined as per Equation 

4.1. 

It(t) =  Ib(t) + Ico(t)          (4.1) 
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This research proposed energy management strategy contains three 

control layers to manage the power flow between the battery and the 

supercapacitor of the HESS. The first layer is an adaptive control to obtain the 

optimal energy sharing percentage (R) between the battery and the 

supercapacitor depending on the road slope and the vehicle speed. CPS was used 

to estimate the road slope for the selected drive journey. The second control 

layer is a rule-based controller to determine the optimal reference current for 

the supercapacitor online during the journey. The third control layer is the LQR 

control to drive the bidirectional DC-DC converter by changing the duty cycle 

of the PWM online. 

 

 

4.2 The Rule-Based Controller of HESS 

 

The proposed rule-based controllers allocate the HESS’s current 

instantaneously for different drive cycles. The proposed controller is designed 

to limit the battery current  Ib(t) to the desired value (Ib_max) and split the 

vehicle load current between the battery and the supercapacitor during any drive 

cycle. The controller is designed to manage the HESS energy flow under various 

operation conditions accounting for the total demand load current (It(t)), the 

supercapacitor state of charge (SCsoc), and the energy flow direction. The 

controller working conditions are defined as per Equation 4.2. 

 

�
𝐈𝐈𝐈𝐈 (𝐈𝐈𝐭𝐭 > 𝟎𝟎) 𝐚𝐚𝐚𝐚𝐚𝐚 (𝐈𝐈𝐭𝐭 < 𝐈𝐈𝐛𝐛_𝐦𝐦𝐦𝐦𝐦𝐦) 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭    𝐈𝐈𝐜𝐜𝐜𝐜 = 𝟎𝟎
𝐈𝐈𝐈𝐈 (𝐈𝐈𝐭𝐭 > 𝟎𝟎) 𝐚𝐚𝐚𝐚𝐚𝐚 �𝐈𝐈𝐭𝐭 > 𝐈𝐈𝐛𝐛_𝐦𝐦𝐦𝐦𝐦𝐦�𝐚𝐚𝐚𝐚𝐚𝐚 (𝐒𝐒𝐒𝐒𝐒𝐒𝐬𝐬𝐬𝐬 > 𝐒𝐒𝐒𝐒𝐒𝐒𝐬𝐬𝐬𝐬_𝐦𝐦𝐦𝐦𝐦𝐦)  𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭    𝐈𝐈𝐜𝐜𝐜𝐜 = (𝐈𝐈𝐭𝐭 − 𝐈𝐈𝐛𝐛_𝐦𝐦𝐦𝐦𝐦𝐦)
𝐈𝐈𝐈𝐈 (𝐈𝐈𝐭𝐭 < 𝟎𝟎) 𝐚𝐚𝐚𝐚𝐚𝐚 (𝐒𝐒𝐒𝐒𝐒𝐒𝐬𝐬𝐬𝐬 < 𝐒𝐒𝐒𝐒𝐒𝐒𝐬𝐬𝐬𝐬_𝐦𝐦𝐦𝐦𝐦𝐦)            𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭    𝐈𝐈𝐜𝐜𝐜𝐜 = 𝐈𝐈𝐭𝐭

    (4.2)   
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The proposed rule-based controller allows the HESS to supply the EV 

with current from the battery when the EV total load current is less than the 

maximum value of the battery current (Ib_max ). The proposed controller also 

limits the battery current to (Ib_max ) during a high load drive cycle. On the other 

hand, the proposed rule-based controller is designed to use the supercapacitor 

to absorb all the regenerative energy during the drive cycle deceleration. The 

total regenerative energy absorbed by the supercapacitor from the initial voltage 

to the final voltage is defined as per Equation 4.3. The state of the charge 

condition for the supercapacitor in the proposed rule-based controller is defined 

as per Equation 4.4.  

∆EnSC = C0
2

(Vsc(0)− Vsc(t))                                   (4.3) 

SOCsc_max ≥ SOCsc > SOCsc_min                   (4.4)  

 

Figure 4.1   The flowchart of the proposed rule-based controller. 
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4.3 The Adaptive Rule-Based Controller of HESS 

 

Adaptive control is a control approach implemented to achieve the 

optimal performance of the system by adapting and tuning the controller 

coefficients. In the proposed algorithm, the EV destination is selected before the 

journey initiated. The adaptive algorithm estimates the total current demand 

needed for the drive cycle and the regenerative current depending on the road 

slope, the vehicle speed, and the EV model parameters. The percentage of power 

split between the battery and the supercapacitor (R) in HESS can be determined 

independently. Two methods are investigated to adapt the rule-based controller 

in terms of energy split between the battery and the supercapacitor. The first 

method is called the optimal method which compares the total current demand 

and the electric vehicle regenerative current during the drive cycle. The second 

one is called the fuzzy adaptive rule-based controller using the concept of the 

fuzzy logic controller. The energy sharing percentage between the battery and 

the supercapacitor (R) is used to regulate the controller to save energy during 

the drive cycle. The adaptive rule-based controller is defined as per Equation 

4.5. 

�
𝐈𝐈𝐈𝐈 (𝐈𝐈𝐭𝐭 > 𝟎𝟎) 𝐚𝐚𝐚𝐚𝐚𝐚 �(𝟏𝟏−𝐑𝐑)𝐈𝐈𝐭𝐭 < 𝐈𝐈𝐛𝐛𝐦𝐦𝐦𝐦𝐦𝐦�𝐚𝐚𝐚𝐚𝐚𝐚 (𝐒𝐒𝐒𝐒𝐒𝐒𝐬𝐬𝐬𝐬 > SOCsc_min)  𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭    𝐈𝐈𝐜𝐜𝐜𝐜 = 𝐈𝐈𝐭𝐭 ∗ 𝐑𝐑

𝐈𝐈𝐈𝐈 (𝐈𝐈𝐭𝐭 > 𝟎𝟎) 𝐚𝐚𝐚𝐚𝐚𝐚 �(𝟏𝟏− 𝐑𝐑)𝐈𝐈𝐭𝐭 > 𝐈𝐈𝐛𝐛𝐦𝐦𝐦𝐦𝐦𝐦�𝐚𝐚𝐚𝐚𝐚𝐚 (𝐒𝐒𝐒𝐒𝐒𝐒𝐬𝐬𝐬𝐬 > SOCscmin)  𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭    𝐈𝐈𝐜𝐜𝐜𝐜 = (𝐈𝐈𝐭𝐭 − 𝐈𝐈𝐛𝐛_𝐦𝐦𝐦𝐦𝐦𝐦)
𝐈𝐈𝐈𝐈 (𝐈𝐈𝐭𝐭 < 𝟎𝟎) 𝐚𝐚𝐚𝐚𝐚𝐚 (𝐒𝐒𝐒𝐒𝐒𝐒𝐬𝐬𝐬𝐬 < SOCsc_max)    𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭    𝐈𝐈𝐜𝐜𝐜𝐜 = 𝐈𝐈𝐭𝐭

   (4.5) 

 

4.3.1 The Optimal Adaptive Rule-Base Controller of HESS 

 

In this method, the percentage of energy sharing between the battery and 

the supercapacitor in HESS is tuned one time for the distance travelled during a 
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specific drive cycle. After setting the destination and the road slope is calculated 

by CPS; the proposed energy management system then estimates the total 

energy required for the desired drive cycle. The road slope and the vehicle 

approximated speed are considered along the journey to the desired destination. 

The accumulation method for the total positive EV load supplied current (Itp) 

and the regenerative EV current  (Ireg) during the drive cycle is applied. The 

energy split percentage between the battery and the supercapacitor is set by 

comparing the total load current demand and the EV total regenerative current 

during the desired drive cycle. The total positive EV load supplied current (Itp) 

and the total regenerative current (Ireg) are defined as in Equation 4.6. 

  

⎩
⎪
⎨

⎪
⎧Ireg = � It(t)        

t

0

             It < 0 

Itp = � It(t)            
t

0

           It > 0

                      (4.6)     

 

This proposed method reduces the battery stress and saves the energy 

inside the HESS. The proposed energy management system predicts the 

approximate amount of regenerative energy depending on the road slope. Then, 

the percentage of energy sharing between the battery and the supercapacitor (R) 

is set to ensure that the HESS is working properly. The supercapacitor can 

absorb all the regenerative energy during the desired drive cycle. Figure 4.2 

presents the flowchart of the proposed optimal adaptive rule-based controller. 
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FIGURE 4.2.  Flowchart of optimal adaptive rule-based controller 
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4.3.2 The Fuzzy Adaptive Rule-Base Controller of HESS 

 

Most researches in the literature on terrain information take the instant 

effect of the road slope in the control action. In this method, the value of energy 

sharing percentage between the battery and the supercapacitor in HESS varies 

during the drive cycle. A fuzzy logic controller is used to manipulate the 

percentage of energy sharing between the battery and the supercapacitor online 

during the journey. The road slope and the vehicle speed are considered as 

inputs for the fuzzy logic controller in controlling the journey. Figure 4.3 shows 

the fuzzy logic controller surface plot which represents the relationship between 

the inputs (road slope and vehicle speed) and the percentage of energy sharing 

between the battery and the supercapacitor (R).  

 

 

FIGURE 4.3.  The fuzzy logic controller surface. 
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 Here, the supercapacitor assist the battery in delivering the total EV load 

current continuously with different values of energy sharing percentages (R) 

along the drive cycle. The energy management system measures the actual total 

EV load current and the state of charge of the supercapacitor to consider the 

identified values of the energy sharing percentage between the battery and the 

supercapacitor in HESS. Furthermore, the operation effect of the fuzzy adaptive 

rule-based controller is shown in Figure 4.4. 

 

 

FIGURE 4.4.  Flowchart of Fuzzy adaptive rule-based controller 
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4.4 The Linear Quadratic Regulator (LQR) 

  

This section presents the linear quadratic regulator (LQR) controller to 

drive the interfacing DC-DC bidirectional converter in the proposed semi-active 

HESS. LQR is a control method that depends on generated feedback gains to 

improve the system response by controlling one state of the model. Equation 

4.7 represents the cost function for a continuous-time linear. 

          𝐽𝐽(𝑢𝑢) = ∫ (𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄 + 𝑢𝑢𝑇𝑇𝑅𝑅𝑅𝑅 + 2𝑥𝑥𝑇𝑇𝑁𝑁𝑢𝑢)𝑑𝑑𝑑𝑑∞
0            (4.7) 

where Q is a symmetric positive definite matrix and R is a positive 

scalar.  

LQR provides a systematic computing method that relies on the state 

feedback control gain matrix (Katshiko, 2010). Q and R are the weighting 

matrices and strongly affect the closed-loop poles positions (Abdullah et al., 

2012, Sadeq and Wai, 2020). Depending on the chosen value of these matrices, 

the closed-loop system will exhibit a different response. The values of the 

weighting matrices can be selected depending on several optimization methods. 

 

 LQR returns the solution S of the associated Riccati equation presented 

in Equation 4.8. The closed-loop Eigenvalues are defined as in Equation 4.9. 

𝐴𝐴𝑇𝑇𝑆𝑆 + 𝑆𝑆𝑆𝑆 − (𝑆𝑆𝑆𝑆 + 𝑁𝑁)𝑅𝑅−1(𝐵𝐵𝑇𝑇𝑆𝑆 + 𝑁𝑁𝑇𝑇) + 𝑄𝑄 = 0        (4.8) 

                         e= eig(A-B×K)                                      (4.9) 

where K is derived from variable S using Equation 4.10. 

              𝐾𝐾 = 𝑅𝑅−1(𝐵𝐵𝑇𝑇𝑆𝑆 + 𝑁𝑁𝑇𝑇)                            (4.10)      
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The purpose of designing LQR in the proposed algorithm is to drive the 

DC-DC converter to supply the desired current from the supercapacitor module. 

The DC-DC converter output current is controlled by varying the duty cycle of 

the Pulse Width Modulation (PWM). LQR is selected to be implemented in the 

EVs application due to its simplicity and ease of implementation. The feedback 

gains can be directly obtained from the matrices of the DC-DC converter model. 

Moreover, the closed-loop response of LQR is stable and insensitive to external 

disturbances (Sadeq and Wai, 2020).  

  

 

Figure 4.5   The feedback gains of the LQR controller. 

 

To discover the response of the proposed LQR for semi-active HESS, 

the step current load profile is applied to the system. A simulation using 

MATLAB/Simulink is carried out for several values of Q and R. The close loop 

response results of the step function are plotted in Figure 4.6. In the first case, 

the weighting values of q are changed with three different values (106, 108, 1010) 

while the value of R is fixed at 1. The battery current is measured in every value 

of q (Ib1, Ib2, Ib3), respectively. 
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Figure 4.6  The transient responses of battery current with several values of q 
and R. 

 

In the second case, R value is tested with three different values (1, 10, 

100), and the weighting value of q is fixed at q= 1010. The battery current is 

measured in every value of R (Ib3, Ib4, Ib5). The transient characteristics of these 

responses are represented in table 4.1. 

 

Table 4.1   The transient time characteristics for different values of q and R. 

Battery Current Ib1 Ib2 Ib3 Ib4 Ib5 

q 106 108 1010 1010 1010 

R 1 1 1 10 100 

Rise Time 2.23×10-06 2.24×10-06 2.19×10-06 2.25×10-06 2.25×10-06 

Settling Time 0.0242 0.0205 0.0201 0.0201 0.0201 

Overshoot 189% 153% 124% 138% 145% 

SSerror 0.023 0.023 0.023 0.023 0.023 

 

The results prove that an increment in q leads to a decreased settling 

time and overshoot of the battery current. On the other hand, the increment in 
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the R value increases the overshoot of the battery current. In this research, the 

values of q and R are selected as 1010 and 1, respectively. 

 

 Furthermore, the DC-DC converter mathematical model is used to 

design the switching elements controller of the DC-DC converter (Sadeq and 

Wai, 2019). In this research, the proposed Rule-Based control primary task is to 

obtain the reference input current of the DC-DC converter. Simultaneously, the 

LQR controller aims to get the desired duty cycle to drive the DC-DC converter. 

The LQR function in MATLAB is used to obtain the desired closed-loop 

feedback gains while the steady-state errors are cancelled by adding an 

integration (Kedjar and Al-Haddad, 2009) as shown in Figure 4.5. 

 

  The feedback gains obtained using Matlab function K= lqr(As, Bs, Q, 

R); where A and B represent the matrices of the state-space model of the DC-

DC converter presented in section 3.2.3. The results give the feedback gain 

matrix (K) as: 

 

𝐾𝐾 = [1.49𝑒𝑒 − 01     2.37𝑒𝑒 − 03    − 1.414𝑒𝑒 + 03] 

For  

 R=1,   

         𝑄𝑄 = �
1 0 0
0 1 0
0 0 1010

� 
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4.5 The Proposed Hybrid Energy Storage System Model in Matlab 

 

 To validate the performance and the effectiveness of the proposed 

energy management system of HESS for the EV, a MATLAB/Simulink 

modelling is carried out. The performance of EV is tested with three real drive 

cycles and three standard drive cycles. The performances of the battery-

supercapacitor HESS with adaptive rule-base controllers are compared with the 

performances of the battery-supercapacitor HESS with the rule-based controller 

and the single energy storage battery. Figure 4.7 depicts the 

MATLAB/Simulink model of the EV using the single energy storage battery 

based on the real drive cycles, uphill, downhill, and city tour. Figure 4.8 

illustrates the model of EV using the single energy storage battery based on the 

standard drive cycles.  

 

 

Figure 4.7   MATLAB/Simulink model of the EV using the single energy 
storage battery based on the real drive cycles 
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Figure 4.8    MATLAB/Simulink model of the EV using the single energy 
storage battery based on the standard drive cycles 

 
 

  
 To verify the effect of the road slope in the total energy consumption for 

any real drive cycle, the energy variance between the drive cycles total energy 

consumption is calculated by Equation 4.11; where, SOCb(0) is the initial state 

of charge for the battery, SOCb(t)slope=CPS is the final state of charge for the 

battery considering the road slope, and SOCb(t)slope=0 is the final state of 

charge for the battery without the road slope. 

 

 

EnVar = �SOCb(0)−SOCb(t)slope=CPS�−�SOCb(0)−SOCb(t)slope=0�
SOCb(0)

× 100           (4.11) 

  

 The MATLAB/Simulink models of the rule-base controller of HESS for 

the EV based on the real drive cycles and the standard drive cycles are presented 

in Figures 4.9 and 4.10, respectively. These models are used to measure the 

performance of the HESS in the selected drive cycle. 
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Figure 4.9   MATLAB/Simulink model of the HESS using the rule-based 
controller based on the real drive cycles 

 

 

Figure 4.10   MATLAB/Simulink model of the HESS using the rule-based 
controller based on the standard drive cycles 

 

To validate the improvement in the energy consumption of HESS, the 

final value of the state of charge for the battery (SOCb(t)CPS) and the 

supercapacitor (SOCSC(t)CPS) are measured at the end of the journey and 

compared with the different proposed controllers. The percentage of the total 

energy consumption for the battery and the supercapacitor are given by 

Equation 4.12.  
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⎩
⎪
⎨

⎪
⎧Battery Consumption =

SOCb(0)− SOCb(t)CPS
SOCb(0) x100                  

Supercapacitor Consumption =
SOCSC(0)− SOCSC(t)CPS

SOCSC(0) x100
 (4.12) 

   

 Figure 4.11 shows the completed MATLAB/Simulink model of the 

proposed HESS, the optimal adaptive rule-based controller, and the fuzzy 

adaptive rule-based controller for the EV based on the real drive cycles. Figure 

4.12 shows the completed MATLAB/Simulink model based on the standard 

drive cycles. 

 

 

Figure 4.11   MATLAB/Simulink model of the HESS using the adaptive rule-
based controller based on the real drive cycles 
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Figure 4.12   MATLAB/Simulink model of the HESS using the adaptive rule-
based controller based on the standard drive cycles 

 
 
 

4.6 Chapter Summary 

 

 In this chapter, the new energy management systems have been 

proposed. The design of the proposed rule-based controller for the HESS is 

presented in detail. Furthermore, two adaptive methods are proposed for the 

rule-based controller named the optimal adaptive and the fuzzy adaptive. The 

algorithms of the optimal adaptive rule-based controller and the fuzzy adaptive 

rule-based are described clearly. In addition, the design steps of the linear 

quadratic regulator are explained. Finally, the Matlab\Simulink model for the 

proposed controllers, the models of HESS components, and the EV model are 

presented. 
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CHAPTER 5 

 

RESULTS AND DISCUSSION 

 

 

5.1 Introduction 

 

This chapter presents the electric vehicle performance results with a 

single energy storage battery system and with HESS for several types of drive 

cycles. Firstly, the results of the energy variance between an electric vehicle 

performances with and without the road slope are presented. The performance 

evaluated by comparing the final value of the battery state of charge for the 

single energy storage battery system in different drive cycles. Furthermore, the 

proposed HESS results with the energy management systems rule-based 

controller, the optimal adaptive rule-based controller, and the fuzzy adaptive 

rule-based controller are presented. The proposed control algorithms are tested 

in three real drive cycles (uphill, downhill, and city-tour) at three different 

speeds (50, 60, and 70 Kilometres per hour) and in three different standard drive 

cycles (UDDS, NYCC, and Japan1015). The state of charge for the HESS 

components (battery and supercapacitor) are measured at the end of the drive 

cycles to obtain the total energy consumption in HESS and calculate the 

maximum number of drive cycles that can be achieved by HESS. All the results 

are discussed and analyzed in detail to prove the contributions of this research. 
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5.2 The Results of the Single Energy Storage Battery System 

 

In this section, the effect of the road slope in a single energy storage 

battery system is investigated. The comparison is presented between the battery 

states of charge with and without the road slope (measured using CPS). 

 

5.2.1 Uphill Drive Cycle 

 

 The first tested real drive cycle is 5 Km uphill, and the road elevation 

and slope for the uphill drive cycle are illustrated in Figure 3.9. In this case, the 

total load current is supplied from the battery and no regenerated energy is 

absorbed during the braking. Figure 5.1 presents the EV total load currents 

based on the uphill drive cycle in different driving velocities (50, 60, and 70 

Kilometres per hour). The load current rises by increasing the road slope. The 

total times to reach the desired destination by driving velocities (50, 60, and 70 

Kilometres per hour) are 370, 305, and 265 seconds, respectively. 
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(b) 

 
(c) 

Figure 5.1   Total EV load currents based on an uphill drive cycle for a single 
energy storage battery system (a) 50km/h, (b) 60km/h, and (c) 70km/h 

 
 

The changes of battery states of charge during the uphill drive cycle are 

illustrated in Figure 5.2. According to these results, the energy consumption of 

the uphill drive cycle increases with the increase of the vehicle speed. 

 

Table 5.1 summarizes the initial values of the state of charge for 

battery SOCb(0), the final values of state of charge for battery without the road 

slope SOCb(t)slope=0, the final values of state of charge for battery with the road 

slope SOCb(t)slope=CPS, and the energy variance EnVar for uphill drive cycles 

for three speeds.   
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Figure 5.2   The battery states of charge in an uphill drive cycle for a single 
energy storage battery system 

 

The energy variance represents the difference between the battery 

energy consumption with and without the road slope and are calculated using 

Equation 4.11. The results demonstrate that the EV using CPS consumes more 

energy going uphill taking up to 1% of the total energy.  

 

Table 5.1   The effect of considering road slope in the uphill drive cycle. 

 

 

5.2.2 Downhill Drive Cycle 

 

The second tested real drive cycle is 5 Km downhill, the road elevation 

and slope for this drive cycle presented in Figure 3.10. In this case, the battery's 

total load is supplied during the acceleration, and no regenerated energy is 
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50km/h
60km/h
70km/h

Speed 𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃(𝟎𝟎) 𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃(𝒕𝒕)𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔=𝟎𝟎 𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃(𝒕𝒕)𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔=𝑪𝑪𝑪𝑪𝑪𝑪 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 
Energy 

consumption 

50km/h 0.95 0.9407 0.9306 1% 2.04% 

60km/h 0.95 0.9385 0.9292 1% 2.19% 

70km/h 0.95 0.9360 0.9270 1% 2.42% 
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absorbed during the braking. Figure 5.3 presents EV's total load currents based 

on the downhill drive cycle in different driving velocities (50, 60, and 70 

Kilometres per hour). The load current rise by increasing the road slopes. The 

total time to reach the desired destination by driving velocities (50, 60, and 70 

Kilometres per hour) is 370, 305, and 265 seconds. 
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(c) 

Figure 5.3   Total EV load currents based on a downhill drive cycle for a 
single energy storage battery system (a) 50km/h, (b) 60km/h, and (c) 70km/h 

 

 

The diversity of battery states of charge during the downhill drive cycle 

are illustrated in Figure 5.4. These results prove the energy consumptions of the 

downhill drive cycle increased by increasing the vehicle speed. The final battery 

states of charge for driving velocities (50, 60, and 70 Kilometres per hour) are 

0.9428, 0.9418, and 0.9401. 

 

 

Figure 5.4   The battery states of charge in a downhill drive cycle for a single 
energy storage battery system 
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Table 5.2 summarises the road's effect based on the downhill drive cycle 

in terms of total energy consumptions. The results proved that the EV (using 

CPS) earned more energy going downhill, taking up to 0.22%, 0.35%, and 

0.43% of the total energy for the driving velocities (50, 60, and 70 Kilometres 

per hour) respectively.  

 

Table 5.2   The effect of considering road slope in the downhill drive cycle. 

 

 

5.2.3 City-tour Drive Cycle 

 

The Third tested real drive cycle is a 15.85 Km city-tour, the road 

elevation and slope for this drive cycle presented in Figure 3.11. In this drive 

cycle, the battery's total load is supplied during the acceleration and no 

regenerated energy is absorbed during the braking. Figure 5.5 shows EV's total 

load currents based on the city-tour drive cycle in different driving velocities 

(50, 60, and 70 Kilometres per hour). The load current rise by increasing the 

road slopes. The total time to reach the desired destination by driving velocities 

(50, 60, and 70 Kilometres per hour) is 1100, 910, and 775 seconds. 

 

Speed 𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃(𝟎𝟎) 𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃(𝒕𝒕)𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔=𝟎𝟎 𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃(𝒕𝒕)𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔=𝑪𝑪𝑪𝑪𝑪𝑪 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 
Energy 

consumption 

50km/h 0.95 0.9407 0.9428 -0.22% 0.76% 

60km/h 0.95 0.9385 0.9418 -0.35% 0.86% 

70km/h 0.95 0.9360 0.9401 -0.43% 1.04% 
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(a) 

 
(b) 

 
(c) 

Figure 5.5   Total EV load currents based on a city-tour drive cycle for a single 
energy storage battery system (a) 50km/h, (b) 60km/h, and (c) 70km/h 

 

 

The alterations of battery states of charge in the city-tour drive cycle are 

illustrated in Figure 5.6. These results prove the energy consumptions of the 
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city-tour drive cycle increased by increasing the vehicle speed. The final battery 

states of charge for driving velocities (50, 60, and 70 Kilometres per hour) are 

0.9165, 0.9106, and 0.9055 respectively 

 

Figure 5.6   The battery states of charge in city-tour drive cycle for a single 
energy storage battery system 

 

 

The results in Table 5.2 proved the effect of the road based on the city-

tour drive cycle in terms of total energy consumptions. The EV (using CPS) 

consumed more energy taking up to 0.7%, 0.6%, and 0.4% of the total energy 

for the driving velocities (50, 60, and 70 Kilometres per hour) respectively.  

 

Table 5.3   The effect of considering road slope in the city-tour drive cycle. 
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70km/h

Speed 𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃(𝟎𝟎) 𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃(𝒕𝒕)𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔=𝟎𝟎 𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃(𝒕𝒕)𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔=𝑪𝑪𝑪𝑪𝑪𝑪 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 
Energy 

consumption 

50km/h 0.95 0.9231 0.9165 0.7% 3.53% 

60km/h 0.95 0.9165 0.9106 0.6% 4.15% 

70km/h 0.95 0.9095 0.9055 0.4% 4.68% 
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5.2.4 Standard Drive Cycles 

 

The dynamic responses of three standard drive cycles, namely, UDDS 

Urban Dynamometer Driving Schedule, NYCC New York City Cycle, and 

Japan1015 drive cycle for EV with a single energy battery system were 

investigated. The road slope is ignored in the standard drive cycles, and the 

vehicle speed profile is variable. The battery supplies the total load current while 

no regenerative energy absorbed by the battery in this case. The speed profiles 

of the standard drive cycles (UDDS, NYCC, and Japan1015 drive cycle) are 

presented in Figures 3.12, 3.13, and 3.14, respectively. Figure 5.7 shows EV's 

total load currents based on three standard drive cycles selected in this research 

(UDDS, NYCC, and Japan1015 drive cycle). The total load current rises by 

increasing vehicle speed. The total time of the Urban Dynamometer Driving 

Schedule is 1400 seconds, the total time of the New York City Cycle is 600 

seconds, and the total time of the Japan1015 drive cycle is 660 seconds. 
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(b) 

 
(c) 

Figure 5.7   Total EV load currents for a single energy storage battery system 
based on (a) UDDS, (b) NYCC, and (c) Japan1015 drive cycles 

 

 

The changes in the battery states of charge for UDDS, NYCC, and 

Japan1015 drive cycle are presented in Figure 5.8. The final battery states of 

charge for UDDS, NYCC, and Japan1015 drive cycles are 0.9171, 0.9446, and 

0.9398. 
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Figure 5.8   The battery states of charge in UDDS, NYCC and Japan1015 

drive cycles for a single energy storage battery system 
 

 

Table 5.4 presents the energy consumption of the standard drive cycles. 

The total energy consumption for a single cycle of the Urban Dynamometer 

Driving Schedule, New York City Cycle and Japan1015 drive cycle are 3.4%, 

0.57% and 1.07%, respectively from the total energy. 

 

Table 5.4   The total energy consumption in a standard drive cycle. 

 

 

 

 

 

5.3 The Results of the Rule-Based Controller for HESS 

 

This section represent the results of the rule-based controller for the real 

drive cycles and the standard cycles. The total current of the EV, the battery 

current, and the supercapacitor current of HESS are presented. The state of 

Speed UDDS NYCC Japan1015  

𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃(𝟎𝟎) 0.95 0.95 0.95 

𝑺𝑺𝑺𝑺𝑺𝑺𝒃𝒃(𝒕𝒕) 0.9171 0.9446 0.9398 
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charge for the battery and the supercapacitor were measured at the end of the 

drive cycle. The total percentage of energy consumptions for the battery and 

supercapacitor were calculated by using Equation 4.12. The main aim of the 

rule-based controller is to limit the battery current Ib(t) to the desired 

value Ib_max. 

 

5.3.1 Uphill Drive Cycle 

 

 In the rule-based controller the battery and the supercapacitor supply 

the total load current and the supercapacitor absorbs the regenerated energy. 

Figure 5.9 shows the HESS current based on the rule-based controller on an 

uphill drive cycle in different driving velocities (50, 60, and 70 Kilometres per 

hour). The presented results the total load currents of the EV, the battery current 

and the supercapacitor current proved that the rule-based controller success to 

reduce the battery stress and limit the battery current to (Ib_max ). 
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(b) 

 
(c) 

Figure 5.9   Total HESS currents based on uphill drive cycle using the rule-
based controller (a) 50km/h, (b) 60km/h and (c) 70km/h 

 

The changes of battery states of charge during the uphill drive cycle are 

illustrated in Figure 5.10. The final battery states of charge for the driving 

velocities (50, 60, and 70 Kilometres per hour) are 0.9364, 0.9379, and 0.9390 

respectively while the total energy consumptions from the battery are 1.43%, 

1.27%, and 1.16% for the driving velocities (50, 60, and 70 Kilometres per hour) 

respectively. The rule-based controller was decreased the battery consumptions 

in the uphill drive cycle compare with the single energy storage battery system 

in all driving velocities. 
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Figure 5.10   The battery states of charge in an uphill drive cycle using the 
rule-based controller 

 

On the other hand, the variation of the states of charge for supercapacitor 

during the uphill drive cycle are presented in Figure 5.11. The supercapacitor 

supplying the high load current and it charges by absorbing the regenerative 

energy during the braking. The final supercapacitor states of charge are 0.8177, 

0.7309, and 0.6246 for different driving velocities (50, 60, and 70 Kilometres 

per hour). These results prove the energy consumptions of the supercapacitor 

are increased by increasing the vehicle speed. 

 

Figure 5.11   The supercapacitor states of charge in an uphill drive cycle using 
the rule-based controller 
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Table 5.5 presents the total energy consumption for battery and 

supercapacitor during the uphill drive cycles for the driving velocities (50, 60, 

and 70 Kilometres per hour). These results prove the rule-based controller 

success to reduce the battery energy consumption compared with the single 

energy storage battery system for the uphill drive cycle. The number of possible 

uphill drive cycles for HESS by using the rule-based controller are 6.6, 3.6, and 

2.3 for the driving velocities (50, 60, and 70 Kilometres per hour) respectively. 

 

Table 5.5   The HESS details in uphill drive cycle using the rule-based 
controller 

 
 

5.3.2 Downhill Drive Cycle 

 

The rule-based controller was designed to manage the energy flow of 

the HESS for the downhill drive cycle. The low load current is supplied from 

the battery while the high peak load current is supplied from the supercapacitor. 

The regenerated energy absorbed by the supercapacitor. Figure 5.12 presents 

the total load currents of the EV, the battery current, and the supercapacitor 

current based on the downhill drive cycle in different driving velocities (50, 60, 

and 70 Kilometres per hour). In the downhill drive cycle the amount of the 

regenerative energy is high compared with the regenerative energy in the uphill 

 50km/h 60km/h 70km/h 

SOCb(t)CPS 0.9364 0.9379 0.9390 

SOCsc(t)CPS 0.8177 0.7309 0.6246 

Battery Consumption 1.43% 1.27% 1.16% 

Supercapacitor Consumption 11.35% 20.76% 32.29% 

Cycles No. 6.6 3.6 2.3 
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drive cycle. The presented results of HESS currents proved the rule-based 

controller success to limit the battery current to (Ib_max ) and reduce the peak 

current compared with the results of the single energy storage battery system. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.12   Total HESS currents based on downhill drive cycle using the 
rule-based controller (a) 50km/h, (b) 60km/h and (c) 70km/h 
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The changes of battery states of charge during the downhill drive cycle 

are illustrated in Figure 5.13. The final battery states of charge are 0.9471, 

0.9446, and 0.9441 for the driving velocities (50, 60, and 70 Kilometres per 

hour).  Moreover, the total energy consumptions from the battery for the driving 

velocities (50, 60, and 70 Kilometres per hour) are 0.31%, 0.57%, and 0.62% 

respectively. The results show the battery energy consumptions have a 

proportional relation to the vehicle speed. 

 

 

Figure 5.13   The battery states of charge in a downhill drive cycle using the 
rule-based controller 

 

 

Furthermore, the changes in the states for the supercapacitor during the 

downhill drive cycle are illustrated in Figure 5.14. The supercapacitor 

discharges to supply the high load current while it is charged by absorbing the 

regenerative energy. The final supercapacitor state of charge is the maximum 

value of the state of charge which is 0.95 for the driving velocities 50km/h and 

60km/h, while the supercapacitor state of charge for a driving velocities of 

70km/h is 0.9028. These results prove the HESS earns more energy during the 

downhill drive cycle.  
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Figure 5.14   The supercapacitor states of charge in a downhill drive cycle 

using the rule-based controller 
 

Table 5.6 summarize the total energy consumption of the battery and the 

supercapacitor during the downhill drive cycles at the driving velocities (50, 60, 

and 70 Kilometres per hour). These results demonstrate the rule-based controller 

success in reducing battery energy consumption compared with the single 

energy storage battery system for the downhill drive cycle. For example, the 

battery energy consumption at 50 km/h in a downhill drive cycle using a single 

energy storage battery system is 0.76%. It decreased to 0.31% by using HESS 

with the rule-based controller. The number of possible downhill drive cycles for 

HESS using the rule-based controller for the driving velocities (50, 60, and 70 

Kilometres per hour) are 242, 132, and 35 respectively. 

 
Table 5.6 The HESS details in downhill drive cycle using the rule-based 

controller 

0 50 100 150 200 250 300 350 400
0.84

0.86

0.88

0.9

0.92

0.94

0.96

Time (S)

Su
pe

rc
ap

ac
ito

r 
SO

C

 

 

50km/h
60km/h
70km/h

 50km/h 60km/h 70km/h 

SOCb(t)CPS 0.9471 0.9446 0.9441 

SOCsc(t)CPS 0.95 0.95 0.9028 

Battery Consumption 0.31% 0.57% 0.62% 

Supercapacitor Consumption -3% -3% 2.13% 

Cycles No. 242 132 35 
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5.3.3 City-tour Drive Cycle 

 

This section discusses the performance of HESS for EV by using the 

rule-based controller in the city-tour drive cycle. The EV performance has a 

minor effect by the road slope in the city-tour drive cycle. Figure 5.15 illustrated 

the total load currents of the EV, the battery current, and the supercapacitor 

current based on the city-tour drive cycle in different driving velocities (50, 60, 

and 70 Kilometres per hour). In this drive cycle, the presented results of HESS 

currents are proved the rule-based controller success to limit the battery current 

to (Ib_max ) during the journey while the supercapacitor supplies the high peak 

load EV current and absorbs the regenerative energy during the braking. 
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(c) 

Figure 5.15   Total HESS currents based on city-tour drive cycle using the 
rule-based controller (a) 50km/h, (b) 60km/h and (c) 70km/h 

 

 

The battery states of charge during the city-tour drive cycle are presented 

in Figure 5.16. The final battery states of charge are 0.9200, 0.9193, and 0.9191 

for the driving velocities (50, 60, and 70 Kilometres per hour). The battery 

energy consumptions are increased by increasing the driving velocities. The 

total battery energy consumptions are 3.16%, 3.23%, and 3.25% for the driving 

velocities (50, 60, and 70 Kilometres per hour) respectively.  

 

 

Figure 5.16   The battery states of charge in city-tour drive cycle using the 
rule-based controller 
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Moreover, the changes in the supercapacitor states during the city-tour 

drive cycle are presented in Figure 5.17. The supercapacitor is discharged to 

supply the high load current while it is charged by absorbing the regenerative 

energy. The final supercapacitor states of charge are 0.9312, 0.8211, and 0.6537 

at the driving velocities (50, 60, and 70 Kilometres per hour). These results 

prove the energy consumptions of the supercapacitor are increased by 

increasing the vehicle speed.  

 
Figure 5.17   The supercapacitor states of charge in city-tour drive cycle using 

the rule-based controller 
 

Table 5.7 presents the total energy consumption for the battery and the 

supercapacitor of HESS during the city-tour drive cycles at different driving 
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based controller successes to reduce the battery energy consumption compared 

with the single energy storage battery system for the city-tour drive cycle. In the 
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Table 5.7 The HESS details in city-tour drive cycle using the rule-based 
controller 

 

 

5.3.4 Standard Drive Cycles 

 

This section discusses the response of the rule-based controller of thr 

HESS based on three different standard drive cycles UDDS, NYCC, and 

Japan1015 drive cycle for the EV. The total EV current is changing depends on 

the vehicle speed profile. In this case, the battery is supplying the low load 

current while the supercapacitor is supplying the peak load current. The 

supercapacitor absorbs the regenerative energy during the deceleration. Figure 

5.18 shows the total EV load current, the battery current, and the supercapacitor 

current during the drive cycles (UDDS, NYCC, and Japan1015). These results 

are proved the HESS implementation with the rule-based leads to a reduction in 

battery stress compared with the single energy storage battery system. The rule-

based controller limits the battery current to (Ib_max ) during the journey while 

the supercapacitor supply the high peak load EV current and absorb the 

regenerative energy. 

 

 

 50km/h 60km/h 70km/h 

SOCb(t)CPS 0.9200 0.9193 0.9191 

SOCsc(t)CPS 0.9312 0.8211 0.6537 

Battery Consumption 3.16% 3.23% 3.25% 

Supercapacitor Consumption -1% 11% 29% 

Cycles No. 23.7 6.8 2.6 
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 (a) 

 
(b) 

 
(c) 

Figure 5.18   Total HESS currents based on standard drive cycle using the 
rule-based controller (a) UDDS, (b) NYCC and (c) Japan1015 

 

Also, the changes of the battery states of charge during (UDDS, NYCC, 

and Japan1015) drive cycles are illustrated in Figure 5.19. After a single drive 

cycle the final battery state of charge is 0.9255, 0.9379, and 0.9419 for the 

UDDS, NYCC, and Japan1015 drive cycles respectively.   
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Figure 5.19   The battery states of charge in UDDS, NYCC, and Japan1015 
drive cycles using the rule-based controller 

 

 

Otherwise, the changes in states of charge for the supercapacitor during 

UDDS, NYCC, and Japan1015 drive cycles are presented in Figure 5.20. The 

supercapacitor discharges to supply the high load current while it charges by 

absorbing the regenerative energy. The final supercapacitor states of charge are 

the maximum value which is 0.95 for UDDS, NYCC, and Japan1015 drive 

cycles. These results are proved the supercapacitor of HESS with the rule-based 

controller earns energy during the tested drive cycles. 

 

Figure 5.20   The supercapacitor states of charge in UDDS, NYCC, and 
Japan1015 drive cycles using the rule-based controller 
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Table 5.8 summarize the total energy consumption for the battery and 

the supercapacitor of the HESS with the rule-based controller during UDDS, 

NYCC, and Japan1015 drive cycles. The battery consumptions for UDDS, 

NYCC, and Japan1015 drive cycles are 2.58%, 0.33%, and 0.85% respectively. 

The results are proved the rule-based controller successes in reducing battery 

consumption compared with the single energy storage battery system in all drive 

cycles. The battery consumption of the UDDS by using the HESS with the rule-

based controller is decreased to 2.58% compared with 3.46% in the single 

energy storage battery system. And the battery consumption of NYCC is 

decreased to 0.33% compared with 0.57% in the single energy storage battery 

system. Also, the battery consumption of the Japan1015 drive cycle is decreased 

to 0.85% compared with 1.07% in the single energy storage battery system. 

Furthermore, the number of possible drive cycles of the HESS with the rule-

based controller are 29 drive cycles for UDDS, 227 drive cycles for NYCC, and 

88 drive cycles for Japan1015.  

 

Table 5.8 The HESS details in UDDS, NYCC, and Japan1015 drive cycles 
using the rule-based controller 

 

 

 UDDS NYCC Japan1015 
SOCb(t)CPS 0.9255 0.9469 0.9419 

SOCsc(t)CPS 0.95 0.95 0.95 

Battery Consumption 2.58% 0.33% 0.85% 

Supercapacitor Consumption -3% -3% -3% 

Cycles No. 29 227 88 
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Table 5.9 summarizes the comparison between the energy consumption 

on the single energy storage battery system (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑩𝑩𝑩𝑩𝑩𝑩) and the battery 

energy consumption on the HESS using the rule-based 

controller(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯). The energy variance (EngVar) and the Battery 

Energy Reduction Ratio demonstrate the effectiveness of the HESS using the 

rule-based controller in terms of decrease the battery stress and prolong the 

battery aging.  

 
 
 

Table 5.9   The battery energy reduction ratio using the rule-based controller 
 

 
 

 

 

Drive cycle Speed 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑩𝑩𝑩𝑩𝑩𝑩 
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯  

Rule-Based 
EngVar Battery Energy 

Reduction Ratio 

Uphill 

50Km/h 2.04% 1.43% 0.61% 29.9% 

60Km/h 2.19% 1.27% 0.92% 42% 

70Km/h 2.42% 1.16% 1.26% 52% 

Downhill 

50Km/h 0.76% 0.31% 0.45% 59% 

60Km/h 0.86% 0.57% 0.29% 33.7% 

70Km/h 1.04% 0.62% 0.42% 40% 

City tour 

50Km/h 3.53% 3.16% 0.37% 10.5% 

60Km/h 4.15% 3.23% 0.92% 22.2% 

70Km/h 4.68% 3.25% 1.43% 30.6% 

Standard  

drive cycles 

UDDS 3.46% 2.58% 0.88% 25.4% 

NYCC 0.57% 0.33% 0.24% 42.1% 

Japan1015 1.07% 0.85% 0.22% 20.6% 
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5.4 The Results of the Optimal Adaptive Rule-Based Controller for 

HESS 

 

This section presents the results of the optimal adaptive rule-based 

controller for the real drive cycles and the standard cycles. The investigation of 

the proposed optimal adaptive rule-based controller, the total current of EV, the 

battery current, and the supercapacitor current of the HESS are presented. The 

state of charge for the battery and the supercapacitor are measured at the end of 

the drive cycles. The total percentage of energy consumptions for the battery 

and the supercapacitor were calculated using Equation 4.12. The optimal 

adaptive rule-based controller aims to limit the battery current Ib(t) to a 

maximum value Ib_max  and to obtain the optimal value of energy sharing 

between the battery and the supercapacitor during the selected journey. Section 

3.3.1 described the design and the working principles of the optimal adaptive 

rule-based controller in detail. This controller is estimated a fixed value of the 

energy sharing percentage R for the entire journey. 

 

5.4.1 Uphill Drive Cycle 

 

In this drive cycle, the total load current is supplied by the battery and 

the supercapacitor with the optimal adaptive rule-based controller while the 

supercapacitor absorbed the regenerated energy. Figure 5.21 shows the total 

load currents of the EV, the battery current, and the supercapacitor current based 

on the uphill drive cycle in different driving velocities (50, 60, and 70 

Kilometres per hour). The battery is supplied the low load current while the 
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supercapacitor is supplied the peak load current. The energy sharing percentage 

between the battery and the supercapacitor (R) was estimated before the journey 

start depends on the road slope and it is equal to zero at all driving velocities. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.21   Total HESS currents based on uphill drive cycle using optimal 
adaptive rule-based controller (a) 50km/h, (b) 60km/h and (c) 70km/h 
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The changes of the battery states of charge during the uphill drive cycle 

are illustrated in Figure 5.22. The final value of the battery states of charge for 

the driving velocities (50, 60, and 70 Kilometres per hour) are 0.9364, 0.9379, 

and 0.9390 respectively.  The optimal adaptive rule-based controller is succeed 

to reduce the battery stress and limit the battery current to (Ib_max ). In this drive 

cycle the optimal adaptive controller acts like the rule-based controller due to 

the road slope characteristics which required a high peak load current compared 

with the regenerative energy.  

 

Figure 5.22   The battery states of charge in an uphill drive cycle using the 
optimal adaptive rule-based controller 

 
 

The changes in the states of charge of the supercapacitor during the 

uphill drive cycle are presented in Figure 5.23. The supercapacitor discharges 

to supply the high peak load current while it charges by absorbing the 

regenerative energy. The final values of the supercapacitor states of charge are 

0.8177, 0.7309, and 0.6246 for the driving velocities (50, 60, and 70 Kilometres 

per hour). These results are proved that the energy consumption of the 

supercapacitor is increased by increasing the vehicle speed. 
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Figure 5.23   The supercapacitor states of charge in an uphill drive cycle using 
the optimal adaptive rule-based controller 

 

Table 5.10 presents the total energy consumption of the HESS based on 

the optimal adaptive rule-based controller during the uphill drive cycles for the 

driving velocities (50, 60, and 70 Kilometres per hour). These results are proved 

the optimal adaptive rule-based controller is succeed to reduce the battery 

energy consumption compared with the single energy storage battery system for 

the uphill drive cycle. Furthermore, the number of possible uphill drive cycles 

for the HESS using the optimal adaptive rule-based controller are 6.6, 3.6, and 

2.3 for the driving velocities (50, 60, and 70 Kilometres per hour) respectively. 

 

Table 5.10    The HESS details in uphill drive cycle using the optimal adaptive 
rule-based controller 
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 50km/h 60km/h 70km/h 

SOCb(t)CPS 0.9364 0.9379 0.9390 

SOCsc(t)CPS 0.8177 0.7309 0.6246 

Battery Consumption 1.43% 1.27% 1.16% 

Supercapacitor Consumption 11.35% 20.76% 32.29% 

Cycles No. 6.6 3.6 2.3 
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5.4.2 Downhill Drive Cycle 

 

In this drive cycle the load current was supplied by the battery and 

supercapacitor using the optimal adaptive controller. The supercapacitor is 

absorbed the regenerated energy. Figure 5.24 shows the HESS currents of EV 

based on the downhill drive cycle in different driving velocities (50, 60, and 70 

Kilometres per hour). The battery and the supercapacitor are supplied the low 

load current while the supercapacitor is supplied the peak current. The values 

of the energy sharing percentage between the battery and the supercapacitor (R) 

is estimated before the journey start by using the CPS and are equal 0.67, 0.23, 

and zero for driving velocities 50km/h, 60km/h, and 70km/h respectively.  

These results prove this controller improve the performance of the HESS in the 

downhill drive cycle compared with the single energy storage battery system. 

 
(a) 

0 50 100 150 200 250 300 350 400
-40

-20

0

20

40

60

80

Time (S)

C
ur

re
nt

 (A
)

 

 

EV total current
Battery current
Supercapacitor current



 117 

 
(b) 

 
(c) 

Figure 5.24   Total HESS currents based on downhill drive cycle using optimal 
adaptive rule-based controller (a) 50km/h, (b) 60km/h and (c) 70km/h 

 

The changes of the battery states of charge during the downhill drive 

cycle are illustrated in Figure 5.25. The final values of the battery states of 

charge are 0.94720, 0.9451, and 0.9441 for the driving velocities (50, 60, and 

70 Kilometres per hour).  Moreover, in the downhill drive cycle the HESS with 

the optimal adaptive rule-based controller is reduced the battery energy 

consumptions for the driving velocities 50km/h and 60km/h compared with the 

rule-based controller from 0.31% to 0.3% in 50km/h and from 0.57% to 0.52% 

in 60km/h. The battery energy consumption is maintained in both controllers at 

0.62% for the driving velocities 70km/h. 
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Figure 5.25   The battery states of charge in a downhill drive cycle using the 
optimal adaptive rule-based controller 

 
 

Moreover, the supercapacitor discharged to supply the high peak load 

current and assisted the battery in providing low load current. The regenerative 

energy charged the supercapacitor. The final supercapacitor states of charge are 

0.9464, 0.9386, and 0.9028 for the driving velocities 50km/h, 60km/h, and 

70km/h. These results prove the HESS earns more energy during the downhill 

drive cycle. The changes in the states of charge for the supercapacitor during 

the downhill drive cycle are illustrated in Figure 5.26. 

 

 

Figure 5.26   The supercapacitor states of charge in a downhill drive cycle 
using the optimal adaptive rule-based controller 
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Table 5.11 summarizes the total energy consumption for the battery and 

the supercapacitor during the downhill drive cycles for the driving velocities 

(50, 60, and 70 Kilometres per hour) by using the optimal adaptive rule-based 

controller. These results demonstrate that the HESS with optimal adaptive rule-

based controller is increased the number of possible downhill drive cycles 

compared with the rule-based controller from 242 to 250 drive cycles in the 

driving velocities 50km/h, from 132 to 144 drive cycles in the driving velocities 

60km/h and maintained the number of possible downhill drive cycles in driving 

velocities 70km/h with 35 drive cycles in both controllers. 

 

Table 5.11    The HESS details in downhill drive cycle using the optimal 
adaptive rule-based controller 

 

 

 

5.4.3 City-tour Drive Cycle 

 

In the city-tour drive cycle the HESS with optimal adaptive rule-based 

controller is supplied the load current from the battery and the supercapacitor. 

The supercapacitor absorbed the regenerated energy. Figure 5.27 shows the total 

load currents of the EV, the battery current, and the supercapacitor current based 

on the city-tour drive cycle in different driving velocities (50, 60, and 70 

 50km/h 60km/h 70km/h 

SOCb(t)CPS 0.9472 0.9451 0.9441 

SOCsc(t)CPS 0.9464 0.9386 0.9028 

Battery Consumption 0.3% 0.52% 0.62% 

Supercapacitor Consumption -2.6% -1.47% 2.13% 

Cycles No. 250 144 35 
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Kilometres per hour). The low load current is supplied by the battery and the 

supercapacitor while the peak load current is supplied by the supercapacitor. 

The value of the energy sharing percentage between the battery and 

supercapacitor R is equal 0.02 in the driving velocities 50km/h, while R is equal 

zero in 60km/h and 70km/h.  The performance of the HESS in this drive cycle 

is proved the HESS with optimal rule-based controller limit the battery current 

to (Ib_max ) and reduced the battery stress compared with the single energy 

storage battery system. 
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(c) 

Figure 5.27   Total HESS currents based on city-tour drive cycle using optimal 
adaptive rule-based controller (a) 50km/h, (b) 60km/h and (c) 70km/h 

 

The battery states of charge during the city-tour drive cycle are presented 

in Figure 5.28. The final battery states of charge are 0.9212, 0.9193and 0.9191 

for the driving velocities (50, 60, and 70 Kilometres per hour). Furthermore, the 

battery energy consumption was increased by increasing the driving velocities. 

In the driving velocities 50km/h the HESS with optimal adaptive rule-based 

controller reduced the battery energy consumptions compared with the rule-

based controller from 3.16% to 3.03%. At the same time the battery energy 

consumptions in both controllers were the same in driving velocities 60km/h 

and 70km/h. 

 

Figure 5.28   The battery states of charge in city-tour drive cycle using the 
optimal adaptive rule-based controller 
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Moreover, the HESS with the optimal adaptive rule-based controller 

manages the supercapacitor to supply the high load peak current and assist the 

battery to supply low load current in the driving velocities of 50km/h while the 

regenerated energy was used to charge the supercapacitor. On the other hand, 

in the driving velocities 60km/h and 70km/h the supercapacitor is supplied the 

high load peak current only and absorb regenerative energy. The final values of 

the supercapacitor states of charge for the driving velocities 50km/h, 60km/h, 

and 70km/h are 0.9312, 0.8211, and 0.6573. The changes in the states of charge 

for the supercapacitor during the city-tour drive cycle are presented in Figure 

5.29. 

 

Figure 5.29   The supercapacitor states of charge in city-tour drive cycle using 
the optimal adaptive rule-based controller 
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the driving velocities 50km/h and maintains the number of possible city-tour 

drive cycles in driving velocities 60km/h and 70km/h with 6.8 and 2.6 drive 

cycles. 

 
 

Table 5.12    The HESS details in city-tour drive cycle using the optimal 
adaptive rule-based controller 

 

 

5.4.4 Standard Drive Cycles 

 

This section presents the response of the HESS by using the optimal 

adaptive rule-based controller based on three different standard drive cycles, 

UDDS, NYCC, and Japan1015 drive cycle for the EV. The low load current is 

supplied by the battery and the supercapacitor while the supercapacitor supplied 

the peak load current and absorbed the regenerative energy during the 

deceleration. The values of the percentage of energy sharing between the battery 

and the supercapacitor are current are 0.22, 0.6, and 0.26 for UDDS, NYCC, 

and Japan1015 drive cycle respectively. The results of the HESS with the 

optimal adaptive rule-based controller for the EV are proved that the controller 

reduces the battery stress compared to single energy storage battery system and 

limit the battery current to (Ib_max ) during the journey. Figure 5.30 illustrates 

 50km/h 60km/h 70km/h 

SOCb(t)CPS 0.9212 0.9193 0.9191 

SOCsc(t)CPS 0.9312 0.8211 0.6573 

Battery Consumption 3.03% 3.23% 3.25% 

Supercapacitor Consumption -0.95% 10.98% 28.74% 

No. Cycles  24.8 6.8 2.6 
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the total EV load current, the battery current, and the supercapacitor current 

during the drive cycles (UDDS, NYCC, and Japan1015).  

 

(a)  

 
(b) 

 
(c) 

Figure 5.30   Total HESS currents based on standard drive cycle using the 
optimal adaptive rule-based controller (a) UDDS, (b) NYCC and (c) 
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The changes of battery states of charge during (UDDS, NYCC, and 

Japan1015) drive cycles are presented in Figure 5.31. After a single drive cycle, 

the final battery states of charge are 0.9284, 0.9480, and 0.9431 for UDDS, 

NYCC, and Japan1015 drive cycles respectively. Furthermore, the battery 

energy consumption was decreased using the optimal rule-based controller 

compared with the rule-based controller and the single energy storage battery 

system in the three standard drive cycles. 

 

Figure 5.31   The battery states of charge in UDDS, NYCC, and Japan1015 
drive cycles using the optimal adaptive rule-based controller 

 

 

On the other hand, the final supercapacitor states of charge are 0.9214, 

0.9289, and 0.9345 for UDDS, NYCC, and Japan1015 drive cycles, 

respectively. These results are proved the supercapacitor of the HESS with 

optimal adaptive rule-based controller earns energy during the Japan1015 drive 

cycles. The changes in the supercapacitor states during UDDS, NYCC, and 

Japan1015 drive cycles are presented in Figure 5.32. 
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Figure 5.32   The supercapacitor states of charge in UDDS, NYCC, and 
Japan1015 drive cycles using the optimal adaptive rule-based controller 

 
 

Table 5.13 summarizes the total energy consumption for the battery and 

the supercapacitor of the HESS by using the optimal adaptive rule-based 

controller. The battery energy consumptions for UDDS, NYCC, and Japan1015 

drive cycles are 2.27%, 0.21%, and 0.73%. The presented results are proved the 

optimal adaptive rule-based controller succeed to reduce the battery energy 

consumption compared with the rule-based controller and the single energy 

storage battery system for all drive cycles. Furthermore, in UDDS, the number 

of drive cycles are increased by using the optimal adaptive rule-based to 33 

compared with 29 in the rule-based controller. Likewise, in the NYCC, the 

number of drive cycles are increased by using the optimal adaptive rule-based 

to 357 compared with 227 in the rule-based controller. Also, in Japan1015 drive 

cycle, the number of drive cycles are increased by using the optimal adaptive 

rule-based to 102.7 compared with 95 in the rule-based controller. 

 
Table 5.14 summarizes the comparison between the energy 

consumption on the single energy storage battery system (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑩𝑩𝑩𝑩𝑩𝑩) and 
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Table 5.13 The HESS details in UDDS, NYCC, and Japan1015 drive cycles 
using the optimal adaptive rule-based controller 

 

 

The energy variance (EngVar) and the Battery Energy Reduction Ratio 

demonstrate the effectiveness of the HESS using the optimal adaptive rule-

based controller in terms of decrease the battery stress and prolong the battery 

aging. 

 

Table 5.14   The battery energy reduction ratio using the optimal adaptive 
rule-based controller 

 UDDS NYCC Japan1015 
SOCb(t)CPS 0.9284 0.9480 0.9431 

SOCsc(t)CPS 0.9214 0.9289 0.9345 

Battery Consumption 2.27% 0.21% 0.73% 

Supercapacitor Consumption 0.1% -0.7% -1.3% 

Cycles No. 33 357 102.7 

Drive cycle Speed 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑩𝑩𝑩𝑩𝑩𝑩 
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 

Optimal adaptive 
EngVar 

Battery Energy 

Reduction Ratio 

Uphill 

50Km/h 2.04% 1.43% 0.61% 29.9% 

60Km/h 2.19% 1.27% 0.92% 42% 

70Km/h 2.42% 1.16% 1.26% 52% 

Downhill 

50Km/h 0.76% 0.3% 0.46% 60.5% 

60Km/h 0.86% 0.52% 0.34% 39.5% 

70Km/h 1.04% 0.62% 0.42% 40.4% 

City tour 

50Km/h 3.53% 3.03% 0.5% 15.2% 

60Km/h 4.15% 3.23% 0.92% 22.2% 

70Km/h 4.68% 3.25% 1.43% 30.6% 

Standard  

drive cycles 

UDDS 3.46% 2.27% 1.19% 34.4% 

NYCC 0.57% 0.21% 0.36% 63.2% 

Japan1015 1.07% 0.73% 0.34% 31.8% 
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5.5 The Results of the Fuzzy Adaptive Rule-Based Controller for 

HESS 

 
The results of the HESS with the Fuzzy adaptive rule-based controller 

for the real drive cycles and the standard cycles are presented in this section. 

The total current of EV, the battery current, and the supercapacitor current are 

investigated. The state of charge for the battery and the supercapacitor were 

measured at the end of the drive cycles. The total percentage of the battery and 

the supercapacitor energy consumption were calculated using Equation 4.12. 

The main tasks of the fuzzy adaptive rule-based controller are to limit the battery 

current Ib(t) to a maximum value Ib_max  and obtain the energy sharing 

percentage R between the battery and the supercapacitor online during the 

selected journey. Section 3.3.2 described the design and the working principles 

of the fuzzy adaptive rule-based controller in detail. 

 

5.5.1 Uphill Drive Cycle 

 

In this drive cycle, the HESS with the fuzzy adaptive rule-based 

controller supplied the total load current from the battery and the supercapacitor 

while the supercapacitor absorbed the regenerated energy. Figure 5.33 shows 

the total load currents of the EV, the battery current, and the supercapacitor 

current based on the uphill drive cycle in different driving velocities (50, 60, 

and 70 Kilometres per hour). The battery and the supercapacitor are sharing to 

supply the low load current while the supercapacitor is supplying the peak load 

current. The energy sharing percentage between battery and supercapacitor R in 

this drive cycle was calculated instantly during the journey. The sharing 
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percentage is a variable value which depends on the road slope and vehicle 

speed. 

 
(a) 

 

(b) 

 

(c) 

Figure 5.33   Total HESS currents based on uphill drive cycle using the fuzzy 
adaptive rule-based controller (a) 50km/h, (b) 60km/h and (c) 70km/h 
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Figure 5.34 represents the changes of the battery states of charge during 

the uphill drive cycle based on the fuzzy adaptive rule-based controller. The 

final battery states of charge are 0.9396, 0.9390, and 0.9391 for the driving 

velocities (50, 60, and 70 Kilometres per hour).  The fuzzy adaptive rule-based 

controller is succeed to limit the battery current to (Ib_max ). In this drive cycle, 

the battery energy consumption is decreased compared with the optimal 

adaptive rule-based controller and the rule-based controller.  

 

Figure 5.34   The battery states of charge in an uphill drive cycle using the 
fuzzy adaptive rule-based controller 

 

Furthermore, Figure 5.35 presents the changes in the states of charge for 

the supercapacitor during the uphill drive cycle at the different velocities. The 

supercapacitor discharges to supply the load current together with the battery 

while the supercapacitor charges by absorbing the regenerative energy during 

the braking. The final values of the supercapacitor states of charge for the 

driving velocities (50, 60, and 70 Kilometres per hour) are 0.7315, 0.7005, and 

0.6209 respectively. These results are proved the energy consumptions of the 

supercapacitor is increased by increasing the vehicle speed. 
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Figure 5.35   The supercapacitor states of charge in an uphill drive cycle using 
the fuzzy adaptive rule-based controller 

 

Table 5.15 presents the total energy consumption of HESS with the 

fuzzy adaptive rule-based controller during the uphill drive cycles for the 

driving velocities (50, 60, and 70 Kilometres per hour). These results prove that 

the fuzzy adaptive rule-based controller is consuming more energy from the 

supercapacitor than the optimal adaptive rule-based controller for the uphill 

drive cycle. Furthermore, the number of possible uphill drive cycles of HESS 

using the fuzzy adaptive rule-based controller were 3.6, 3.1, and 2.3 for the 

driving velocities (50, 60, and 70 Kilometres per hour) respectively. 

 

Table 5.15   The HESS details in uphill drive cycle using the fuzzy adaptive 
rule-based controller 
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 50km/h 60km/h 70km/h 

SOCb(t)CPS 0.9396 0.9390 0.9391 

SOCsc(t)CPS 0.7315 0.7005 0.6209 

Battery Consumption 1.09% 1.16% 1.15% 

Supercapacitor Consumption 20.70% 24.06% 32.69% 

Cycles No. 3.6 3.1 2.3 
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5.5.2 Downhill Drive Cycle 

 

The HESS currents of the EV based on the downhill drive cycle in 

different driving velocities (50, 60, and 70 Kilometres per hour) were presented 

in Figure 5.36. The battery and the supercapacitor are supplied the low load 

current while the supercapacitor supplies the peak load current. The energy 

sharing percentage between the battery and supercapacitor is estimated instantly 

during the journey.  These results are proved the fuzzy adaptive controller is 

succeed to limit the battery current to (Ib_max ). 
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(c) 

Figure 5.36   Total HESS currents based on a downhill drive cycle using the 
fuzzy adaptive rule-based controller (a) 50km/h, (b) 60km/h and (c) 70km/h 

 

Figure 5.37 presents the changes of the battery states of charge during 

the downhill drive cycle with different speeds. The final values of the battery 

states of charge for the driving velocities (50, 60, and 70 Kilometres per hour) 

are 0.9471, 0.9448, and 0.9441.  In the downhill drive cycle, the battery energy 

consumptions of the HESS with the fuzzy adaptive rule-based controller for the 

driving velocities (50, 60, and 70 Kilometres per hour) are 0.31%, 0.55% and 

0.62% respectively. These results proved the battery energy consumption of the 

HESS using the fuzzy adaptive controller is bigger than the consumption of the 

HESS with the optimal adaptive controller on the downhill drive cycle.  

 

Figure 5.37   The battery states of charge in a downhill drive cycle using the 
fuzzy adaptive rule-based controller 
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Otherwise, Figure 5.38 illustrates the changes in the states of charge of 

the supercapacitor during the downhill drive cycle. The final value of the 

supercapacitor states of charge are 0.95, 0.9461, and 0.9030 for the driving 

velocities 50km/h, 60km/h, and 70km/h. These results prove the HESS earns 

more energy during the downhill drive cycle.  

 

Figure 5.38   The supercapacitor states of charge in a downhill drive cycle 
using the fuzzy adaptive rule-based controller 

 

 

Table 5.16 presents the total energy consumption of HESS with the 

fuzzy adaptive rule-based controller during the downhill drive cycles for the 

driving velocities (50, 60, and 70 Kilometres per hour). These results 

demonstrate that the fuzzy adaptive rule-based controller consumes less energy 

from the supercapacitor compared with the optimal adaptive rule-based 

controller for the downhill drive cycle. Furthermore, the number of possible 

downhill drive cycles for the HESS using the fuzzy adaptive rule-based 

controller are 242, 136, and 35 for the driving velocities (50, 60, and 70 

Kilometres per hour) respectively. The total performance of the fuzzy adaptive 

controller is less than the optimal adaptive controller in terms of the number of 

the possible downhill drive cycles. 
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Table 5.16   The HESS details in downhill drive cycle using the fuzzy 
adaptive rule-based controller 

 

5.5.3 City-tour Drive Cycle 

 

In the city-tour drive cycle, the HESS with fuzzy adaptive rule-based 

controller is supplied the load current by using the battery and the 

supercapacitor. The supercapacitor using to absorb the regenerated energy. 

Figure 5.39 shows the total load currents of the EV, the battery current, and the 

supercapacitor current based on the city-tour drive cycle in different driving 

velocities (50, 60, and 70 Kilometres per hour). The energy sharing percentage 

between the battery and the supercapacitor R is variable and calculated during 

the journey.  The performance of the HESS elucidated the fuzzy adaptive rule-

based controller is limiting the battery current to (Ib_max ). 

 
(a) 

 50km/h 60km/h 70km/h 

SOCb(t)CPS 0.9471 0.9448 0.9441 

SOCsc(t)CPS 0.95 0.9461 0.9030 

Battery Consumption 0.31% 0.55% 0.62% 

Supercapacitor Consumption -3% -2.57% 2.1% 

Cycles No. 242 136 35 
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 (b) 

 
(c) 

Figure 5.39   Total HESS currents based on city-tour drive cycle using the 
fuzzy adaptive rule-based controller (a) 50km/h, (b) 60km/h and (c) 70km/h 

 

The battery states of charge during the city-tour drive cycle are 

illustrated in Figure 5.40. The final values of the battery states of charge for the 

driving velocities (50, 60, and 70 Kilometres per hour) are 0.9258, 0.9215, and 

0.9193 respectively. Furthermore, the battery energy consumptions of the HESS 

with the fuzzy adaptive controller are less than the optimal adaptive controller 

in the city-tour drive cycles. In the driving speed 50km/h the battery energy 

consumption is 2.55% and the battery consumption is 3% for the driving speed 

60km/h while the battery energy consumption for the driving velocities 70km/h 

is 3.23%. 
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Figure 5.40   The battery states of charge in city-tour drive cycle using the 
fuzzy adaptive rule-based controller 

 

 

On the other hand, Figure 5.29 presents the changes in the states of 

charge for the supercapacitor during the city-tour drive cycle. The final values 

of the supercapacitor states of charge for the driving velocities 50km/h, 60km/h, 

and 70km/h are 0.8220, 0.7650, and 0.6531. The results prove the 

supercapacitor energy consumption in the fuzzy adaptive controller increased 

proportionally with driving velocity.   

 

 

Figure 5.41   The supercapacitor states of charge in city-tour drive cycle using 
the fuzzy adaptive rule-based controller 
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Table 5.17 presents the total energy consumption for the battery and the 

supercapacitor during the city-tour drive cycles for the driving velocities (50, 

60, and 70 Kilometres per hour) using the fuzzy adaptive rule-based controller. 

The total supercapacitor energy consumption is 10.89%, 17.06%, and 29.2% for 

the driving velocities (50, 60, and 70 Kilometres per hour). The number of the 

possible city-tour drive cycles in the fuzzy adaptive controller are 6.9, 4.4, and 

2.6% for the driving velocities (50, 60, and 70 Kilometres per hour) 

respectively. The performance of the HESS with the optimal adaptive controller 

is better than the HESS with the fuzzy adaptive controller in terms of the number 

of the possible city-tour drive cycles. 

 
Table 5.17   The HESS details in city-tour drive cycle using the fuzzy adaptive 

rule-based controller 

 

 

5.5.4 Standard Drive Cycles 

 

The responses of the HESS using the fuzzy adaptive rule-based 

controller based on three different standard drive cycles UDDS, NYCC, and 

Japan1015 drive cycle are analyzed in this section. The percentage of the energy 

sharing between the battery and the supercapacitor in the low load current is 

variable and it is estimated instantly during the drive cycle. The value of the 

 50km/h 60km/h 70km/h 

SOCb(t)CPS 0.9258 0.9215 0.9193 

SOCsc(t)CPS 0.8220 0.7650 0.6531 

Battery Consumption 2.55% 3% 3.23% 

Supercapacitor Consumption 10.89% 17.06% 29.2% 

Cycles No. 6.9 4.4 2.6 
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energy sharing percentage between the battery and the supercapacitor depends 

on the vehicle speed. Figure 5.30 illustrates the total load currents of the EV, 

the battery current, and the supercapacitor current during the drive cycles 

(UDDS, NYCC, and Japan1015). The results of the HESS using the fuzzy 

adaptive rule-based controller for the EV demonstrate that the controller was 

succeed in reducing the battery stress compared to a single energy storage 

battery system and limited the battery current to (Ib_max ) during the journey. 
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(c) 

Figure 5.42   Total HESS currents based on standard drive cycle using the 
fuzzy adaptive rule-based controller (a) UDDS, (b) NYCC and (c) Japan1015 

 

Figure 5.43 illustrated the changes of battery states of charge during 

(UDDS, NYCC, and Japan1015) drive cycles using the fuzzy adaptive 

controller. After a single drive cycle the final values of the battery states of 

charge are 0.9275, 0.9470, and 0.9425 for UDDS, NYCC, and Japan1015 drive 

cycles respectively. Furthermore, the battery energy consumption of the HESS 

using the fuzzy adaptive rule-based controller was increased comparing with 

the battery energy consumption of the HESS using the optimal adaptive 

controller. The battery energy consumption for UDDS, NYCC, and Japan1015 

drive cycles is 2.37%, 0.32%, and 0.79%. 

 
Figure 5.43   The battery states of charge in UDDS, NYCC, and Japan1015 

drive cycles using the fuzzy adaptive rule-based controller 
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Otherwise, the final values of the supercapacitor states of charge for 

UDDS, NYCC, and Japan1015 drive cycles are 0.9291, 0.95, and 0.9453, 

respectively. These results elucidated the supercapacitor of the HESS using the 

fuzzy adaptive rule-based controller earns energy during all tested drive cycles. 

Figure 5.44 presents the changes in the states for supercapacitor during UDDS, 

NYCC, and Japan1015 drive cycle. 

 

 

Figure 5.44   The supercapacitor states of charge in UDDS, NYCC, and 
Japan1015 drive cycles using the fuzzy adaptive rule-based controller 

 

 

Table 5.18 summarizes the total energy consumption for the battery and 

the supercapacitor of HESS using the fuzzy adaptive rule-based controller 

during UDDS, NYCC, and Japan1015 drive cycles. The battery energy 

consumptions using the fuzzy adaptive controller for UDDS, NYCC, and 

Japan1015 drive cycles are increased compared with the battery energy 

consumptions using the optimal adaptive controller. Furthermore, in UDDS the 

number of drive cycles of the HESS was decreased using the fuzzy adaptive 
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based controller decreased to 234 compared to 357 using the optimal adaptive 

controller. Besides, in Japan1015 drive cycle the number of drive cycles 

decreased by using the fuzzy adaptive controller to 95 compared with 102.7 in 

the optimal adaptive controller. 

 

 

Table 5.18 The HESS details in UDDS, NYCC, and Japan1015drive cycles 
using the fuzzy adaptive rule-based controller 

 

 

 

Table 5.19 summarizes the comparison between the energy 

consumption on the single energy storage battery system (𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑩𝑩𝑩𝑩𝑩𝑩) and 

the battery energy consumption on the HESS using the fuzzy adaptive rule-

based controller(𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯). The energy variance (EngVar) and the 

Battery Energy Reduction Ratio demonstrate the effectiveness of the HESS 

using the fuzzy adaptive rule-based controller in terms of decrease the battery 

stress and prolong the battery aging. 

 

 

 

 

 UDDS NYCC Japan1015 
SOCb(t)CPS 0.9275 0.9470 0.9425 

SOCsc(t)CPS 0.9291 0.95 0.9453 

Battery Consumption 2.37% 0.32% 0.79% 

Supercapacitor Consumption -0.73% -3% -2.5% 

Cycles No. 31.6 234 95 
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Table 5.19   The battery energy reduction ratio using the fuzzy adaptive rule-
based controller 

 

 

 

5.6 Chapter Summary 

 

This chapter presents the results of the proposed controller of HESS for 

EV. The results of the single energy storage system of the EV are presented for 

the selected real drive cycles and the standard drive cycles. Furthermore, the 

results of the proposed rule-based controller of HESS for the EV are presented 

and discussed in detail. In addition, the performance of the proposed optimal 

adaptive rule-based controller and the fuzzy adaptive rule-based controller are 

carried out and compared with the rule-based controller. The performances of 

the proposed controllers are validated using the three real drive cycles (uphill, 

downhill, and city-tour) at three different speeds (50,60, and 70) Km/h. 

Drive cycle Speed 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑩𝑩𝑩𝑩𝑩𝑩 
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 

Fuzzy adaptive 
EngVar 

Battery Energy 

Reduction Ratio 

Uphill 

50Km/h 2.04% 1.09% 0.95% 46.6% 

60Km/h 2.19% 1.16% 1.03% 47% 

70Km/h 2.42% 1.15% 1.27% 52.5% 

Downhill 

50Km/h 0.76% 0.31% 0.45% 59.2% 

60Km/h 0.86% 0.55% 0.31% 36% 

70Km/h 1.04% 0.62% 0.42% 40.4% 

City tour 

50Km/h 3.53% 2.55% 0.98% 27.8% 

60Km/h 4.15% 3% 1.15% 27.7% 

70Km/h 4.68% 3.23% 1.45% 31% 

Standard 

drive cycles 

UDDS 3.46% 2.37% 1.09% 31.5% 

NYCC 0.57% 0.32% 0.25% 44.9% 

Japan1015 1.07% 0.79% 0.28% 26.2% 
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Moreover, three standard drive cycles (UDDS, NYCC, and Japan1015 drive 

cycle) are implemented to validate the performances of the proposed controllers. 

Table 5.19 presents the number of possible drive cycles using the rule-based 

controller, the optimal adaptive controller, and the fuzzy adaptive controller 

 

Table 5.20   The number of the possible drive cycles using the proposed 
controllers 

 

 

 

 

 

 

 

 

Drive cycle Speed The Rule-
Based 

Optimal Adaptive 
 Rule-Based  

Fuzzy Adaptive 
 Rule-Based 

Uphill 

50Km/h 6.6 6.6 3.6 

60Km/h 3.6 3.6 3.1 

70Km/h 2.3 2.3 2.3 

Downhill 

50Km/h 242 250 242 

60Km/h 132 144 136 

70Km/h 35 35 35 

City tour 

50Km/h 23.7 24.8 6.9 

60Km/h 6.8 6.8 4.4 

70Km/h 2.6 2.6 2.6 

Standard 

drive cycles 

UDDS 29 33 31.6 

NYCC 227 357 234 

Japan1015 88 102.7 95 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 

 

 

6.1 Conclusion  

 

The electric vehicle in the market uses batteries as the main energy 

source. The batteries in the EV have weaknesses in terms of the energy delivery 

and the life-cycle. Researchers tried to propose a hybrid energy storage system 

via the combination of two different types of energy storage devices (batteries 

and supercapacitor). Batteries are used as the main storage device due to their 

high energy density while the supercapacitor are used as an auxiliary storage 

device due to their high power density. There are many studies presented in the 

literature proposed several types of hybrid topologies of energy storage devices. 

 

This thesis presents the proposed semi-active topology and the energy 

management system of the hybrid energy storage system for the electric 

vehicles. The proposed HESS is designed by connecting the battery directly to 

the DC bus while, the supercapacitor is connected to the DC bus via a 

bidirectional DC-DC converter. This topology aims to control the power flow 

of the supercapacitor by manipulating the duty cycle of the PWM of the 

bidirectional DC-DC converter. 
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In Hybrid energy storage applications, the rule-based strategy is 

commonly used as the energy management system to control the power flow to 

the DC-bus. The rule-based strategy lacks the ability to find the optimal solution 

compared with the optimization energy management strategy. The optimization 

methods are difficult to implement in a real-time control system due to the long 

computational time. Therefore, this research proposes an adaptive rule-based 

energy management strategy to control the power flow of the HESS for the 

electric vehicles. The road slope is involved in this work to estimate the energy 

consumption for the electric vehicle in a single drive cycle. The Contour 

Positioning System (CPS) is used to extract the road slope of the selected drive 

cycle along the journey. The characteristics of the road in the selected drive 

cycles are used to adapt the proposed energy management system of the HESS. 

 

Three control layers are used in the proposed energy management 

strategy in this research. Three different types of rule-based controllers are 

proposed and investigated. The standard rule-based controller, the optimal 

adaptive rule-based controller, and the fuzzy adaptive rule-based controller are 

implemented to manage the energy flow of the HESS for the EV while the linear 

quadratic regulator is used to drive the DC-DC converter. The parameters of the 

standard rule-based controller are fixed and not related to the topographical 

conditions of the selected journey.  The parameters of the optimal adaptive rule-

based controller are modified after selecting the desired destination and before 

the movement of the electric vehicle. The parameters of the fuzzy adaptive rule-

based controller are modified continuously along the journey. 
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The proposed control algorithms are tested in three real drive cycles 

(uphill, downhill, and city-tour) at three different speeds (50, 60, and 70 

kilometres per hour) and in three different standard drive cycles (UDDS, 

NYCC, and Japan1015). The results demonstrate the variance of the energy 

consumption for the electric vehicle by considering and ignoring the 

topographical conditions. The results of the simulations prove that an uphill 

drive consumes more energy while the regenerative energy increases when 

going downhill. It is also found that the road slope has a limited effect for a city 

tour drive cycle. The state of charge and the energy consumption of the battery 

and supercapacitor are inspected for all drive cycles with the proposed 

controllers. 

 

Furthermore, the results of the proposed HESS with the rule-based 

controller prove the controller success to reduce the current peak and the energy 

consumption of the battery compared with the single energy storage battery 

system. On the other hand, the proposed HESS with the fuzzy adaptive rule-

based controller succeeds to reduce the battery current peak and the battery 

consumption while the number of possible drive cycles decreases compared 

with those of the rule-based controller and the optimal adaptive controller. 

Moreover, the proposed HESS with the optimal adaptive controller reduces the 

battery current peak and extends the number of possible drive cycles compared 

with those of the rule-based controller and the fuzzy adaptive controller. The 

proposed controllers extend the battery life-time by limiting the battery demand 

current. 
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6.2  Limitations and Future Work 

 

The limitations of the proposed optimal adaptive controller are that it 

requires the driver to define the desired destination and the driving velocities 

before the vehicle starts moving. However, there is a difficulty in determining 

the appropriate vehicle speed for the selected journey by the driver. In addition, 

the road slope, the road situation, the weather conditions, and the traffic are the 

main factors to determine the vehicle speed during the journey. Furthermore, 

changing the destination path or the vehicle speed during the journey leads to a 

change in the total energy consumption of the drive cycle which requires a new 

calculation for the energy sharing percentage between the battery and the 

supercapacitor. 

 

For future work, developing an algorithm to estimate the proper vehicle 

speed of the selected journey according to the topographical information, the 

weather conditions, and traffic conditions will improve the estimation of the 

energy consumption which in turn will lead to improve the accuracy of the 

energy sharing percentage between the battery and the supercapacitor to extend 

the number of the possible drive cycles. Moreover, in case of changing the 

destination, the road path, or the vehicle speed during the journey, the optimal 

adaptive algorithm should be improved to update the values of the controller 

parameters automatically. In addition, to validate whether the proposed HESS 

and the energy management system are suitable to perform practically, an 

experimental work for a down-scale prototype of HESS and the electric vehicle 

has to be carried out. 
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