
 
 
 
 

MITIGATING UNBALANCED AND OVERLAPPED 
PROBLEMS OF LARGE NETWORK INTRUSION DATA 
USING MULTIPLE-LEVEL DETECTION TECHNIQUES 

 
 

 

 

 

 

 

 

HO YAN BING 
 

 

 

 

 

MASTER OF SCIENCE  
 

 

 

 

 

 

LEE KONG CHIAN FACULTY OF ENGINEERING AND 
SCIENCE 

UNIVERSITI TUNKU ABDUL RAHMAN 
JULY 2022



 

 

 

 

MITIGATING UNBALANCED AND OVERLAPPING PROBLEMS OF 

LARGE NETWORK INTRUSION DATA USING MULTIPLE-LEVEL 

DETECTION TECHNIQUES 

 

 

 

 

 

 

 

 

 

 

 

 

By 

 

 

HO YAN BING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A dissertation submitted to the Department of Internet Engineering and 

Computer Science, 

Lee Kong Chian Faculty of Engineering and Science, 

Universiti Tunku Abdul Rahman, 

in partial fulfillment of the requirements for the degree of 

Master of Science 

July 2022 

 



ii 
 

ABSTRACT 

MITIGATING UNBALANCED AND OVERLAPPING PROBLEMS OF 

LARGE NETWORK INTRUSION DATA USING MULTIPLE-LEVEL 

DETECTION TECHNIQUES 

 

Ho Yan Bing 

 

Network intrusion data sets are usually unbalanced in class distribution because 

intrusions are rare occurrences in computer networks. Besides, data set classes 

may overlap because of their high similarity. These problems have caused a low 

detection rate for intrusions that are the minority in data sets because learning 

algorithms favour the majority class (normal traffic). Our study aims to design 

a multiple-level detection for detecting network intrusions by mitigating the 

unbalanced class distribution and overlapping class problems. We propose two 

two-level classifications (TLC) with different arrangements to improve the 

detection rate of intrusions. TLC type I detects only binary classes: one general 

intrusion and normal traffic at the first level. Then, detailly classifies the 

intrusion classes at the second level. On the other hand, TLC type II detects the 

intrusion classes and normal traffic at the first level and then passes the traffic 

that is classified as normal to the second level for further detection. To evaluate 

our proposed TLCs, we used two unbalanced and overlapped network intrusion 

data sets in this study: UNSW-NB15 and CICIDS2017. Our proposed TLC Type 

II achieved an overall accuracy of 0.9817 and 0.999 for UNSW-NB15 and 

CICIDS2017, respectively. The unbalanced and overlapped problems were 

mitigated using the proposed TLC Type II. The classifiers in TLC- Type II are 

arranged so that the occurrences of misclassified intrusions are minimised.  

 



iii 
 

ACKNOWLEDGEMENT 

 

 
 

Thanks to my supervisor and co-supervisor, Dr. Khor Kok Chin and Dr. 

Yap Wun She, for your patience, guidance, and support. I have benefited greatly 

from your wealth of knowledge and meticulous editing. I am extremely grateful 

that you took me on as a student and continued to have faith in me over the 

years. 

I am honoured to be one of the recipients of the UTAR Research 

Fund (UTARRF), which supports my research throughout my 

postgraduate study.  

 

I gratefully recognise the help of the MIMOS lab, University Tunku 

Abdul Rahman Sungai Long Campus, which provided the workstation and the 

Internet access environment for me to conduct the research.  

 

Most importantly, I am grateful for my family’s unconditional, 

unequivocal, and loving support. 

 



iv 
 

APPROVAL SHEET 

 
 

This dissertation/thesis entitled “MITIGATING UNBALANCED AND 

OVERLAPPING PROBLEMS OF LARGE NETWORK INTRUSION 

DATA USING MULTIPLE-LEVEL DETECTION TECHNIQUES” was 

prepared by HO YAN BING and submitted as partial fulfillment of the 

requirements for the degree of Master of Science at Universiti Tunku Abdul 

Rahman.   

 

 

Approved by: 
 
 
 
___________________________ 
(Dr. Khor Kok Chin)         
Date:………………….. 
Supervisor 
Department of Internet Engineering and Computer Science 
Lee Kong Chian Faculty of Engineering and Science  
Universiti Tunku Abdul Rahman 
 
 
 
___________________________ 
(Dr. Yap Wun She)         
Date:………………….. 
Co-supervisor 
Department of Electrical and Electronic Engineering 
Lee Kong Chian Faculty of Engineering and Science  
Universiti Tunku Abdul Rahman 
  

22/7/2022



v 
 

 

 

 

 

LEE KONG CHIAN FACULTY OF ENGINEERING AND 

SCIENCE, 

 

UNIVERSITI TUNKU ABDUL RAHMAN 

 

 

Date: __________________ 

 

 

SUBMISSION OF FINAL YEAR PROJECT 

/DISSERTATION/THESIS 

 

It is hereby certified that Ho Yan Bing (ID No: 20UEM02159 ) has 

completed this final year project/ dissertation/ thesis* entitled “Mitigating 

Unbalanced And Overlapping Problems Of Large Network Intrusion 

Data Using Multiple-Level Detection Techniques” under the supervision 

of Dr. Khor Kok Chin (Supervisor) from the Department of Internet 

Engineering and Computer Science, Lee Kong Chian Faculty of 

Engineering and Science, and Dr. Yap Wun She (Co-Supervisor) from the 

Department of Electrical and Electronic Engineering, Lee Kong Chian 

Faculty of Engineering and Science. 

 

 

I understand that University will upload softcopy of my dissertation in pdf 

format into UTAR Institutional Repository, which may be made accessible 

to UTAR community and public. 

 

Yours truly, 

 

____________________ 

(HO YAN BING) 

 

 

 

21/07/2022



vi 
 

DECLARATION 

 

 

 

 

I hereby declare that the dissertation is based on my original work except for 

quotations and citations which have been duly acknowledged. I also declare that 

it has not been previously or concurrently submitted for any other degree at 

UTAR or other institutions. 

 

 

 

 

 

 

 

 

 

 

       

Name    HO YAN BING  

 

 

       

Date    21/07/2022   

 



vii 
 

TABLE OF CONTENTS 

 

 

 Page 

 

 

ABSTRACT         ii 

ACKNOWLEDGEMENTS       iii 

APPROVAL SHEET        iv 

SUBMISSION SHEET       v 

DECLARATION        vi 

TABLE OF CONTENTS       vii 

LIST OF TABLES        ix 

LIST OF FIGURES        xi 

LIST OF ABBREVIATIONS      xiii 

 

 

 

CHAPTER 

 

1.0 INTRODUCTION 

 1.1  General Information      1 

 1.2  Problem Statement      2 

 1.3  Objectives       3 

 1.4  Scopes and Limitations     3 

 1.5  Organisation of the Dissertation    3 

 

 

2.0 LITERATURE REVIEW      4 

 2.1 Introduction       4 

 2.2  Intrusion Detection      4 

  2.2.1 IDS Types      5 

  2.2.2 Data Mining and Machine Learning-based IDS 6 

  2.2.3 Conclusion      7 

 2.3 Data Set Overview      8 

  2.3.1 CICIDS2017      8 

  2.3.2  UNSW-NB15      17 

  2.3.3 Conclusion      24 

 2.4 Single Classifiers      25 

  2.4.1  Naïve Bayes Classifier    25 

  2.4.2 Iterative Dichotomiser 3 (ID3)   28 

  2.4.3 Classification And Regression Tree (CART)  29 

  2.4.4  K-Nearest Neighbours (KNN)   31 

  2.4.5   Artificial Neural Networks (ANN)   35 

 2.5 Prior Works       41 

  2.5.1 Single Classifiers on Intrusion Detection  41 

  2.5.2  Multiple Classifiers Systems (MCS)   45 

  2.5.3  Conclusion      51 

 2.6 Evaluation Metrics      53 



viii 
 

 

 

3.0 METHODOLOGY       56 

 3.1 Combining Classes      57 

 3.2 Pre-Processing      58 

 3.3 Classification Architectures     59 

  3.2.1 Single Classifiers     59 

  3.2.2  Two-level classification (TLC) type I   60 

  3.2.3  Two-level classification (TLC) type II  68 

 

 

4.0 RESULTS AND DISCUSSION     64 

 4.1 Introduction       64 

 4.2 10-Fold Cross-Validation for Training Set   65 

 4.3 Single Classifiers      67 

  4.3.1  Single Classifiers for UNSW-NB15   67 

  4.3.2 Single Classifiers for CICIDS2017   69 

  4.3.3  Selecting Single Classifiers for the Proposed TLCs 71 

 4.4 Two-Level Classification (TLC) Type I   72 

  4.4.1 TLC Type I for UNSW-NB15    73 

  4.4.2  TLC Type I for CICIDS2017    74 

 4.5  Two-Level Classification (TLC) Type II   76 

  4.5.1  TLC Type II for UNSW-NB15   77 

  4.5.2 TLC Type II for CICIDS2017   78 

 4.6 Comparing with the Prior Works    80 

  4.6.1 UNSW-NB15 Data Set    80 

  4.6.2 CICIDS2017 Data Set     82 

 

5.0 CONCLUSION AND FUTURE WORKS    85 



ix 
 

LIST OF TABLES 

 

Table 

 

 

 

 

 

 

Page 

 

 

2.1 The class distribution of the CICIDS2017 data set. 9 

2.2 Label with instances of missing or infinity value 14 

2.3 Class distribution of the UNSW-NB15 data set 18 

2.4 Description of the features in the UNSW-NB15 data set 

 

20 

2.5 The description of Intrusion in the UNSW-NB15 data 

set 

 

23 

2.6 Prior works used single classifiers on the UNSW-

NB15 data set 

 

43 

2.7 Prior works used single classifiers on the CICIDS2017 

data set 

 

44 

2.8 Prior works used MCS on the UNSW-NB15 data set 50 

2.9 Prior works used MCS on the CICIDS2017 data set 49 

2.10 The confusion matrix for a two-class classification 

problem 

 

54 

3.1 The class distribution of CICIDS 2017 before and after 

combining classes. 

 

58 

4.1 Result of 10-fold cross-validation for the training set of 

the UNSW-NB15 data set. 

 

65 

4.2 Result of 10-fold cross-validation for the training set of 

the CICIDS2017 data set (15classes). 

 

65 

4.3 The result of 10-fold cross-validation for the training 

set of the CICIDS2017 data set (7classes). 

 

66 

4.4 Result of single classifiers for the UNSW-NB15. The 

numbers in bold show the low TPR for certain classes. 

 

67 

4.5 Result of single classifiers for the CICIDS2017 data set 

(15classes). The numbers in bold show the low TPR for 

certain classes. 
 

69 



x 
 

4.6 Result of single classifiers for the CICIDS2017 data set 

(7classes). The numbers in bold show the low TPR for 

certain classes. 
 

70 

4.7 Result of TLC type I for the UNSW-NB15 data set. The 

numbers in bold show the low TPR for certain classes. 

 

73 

4.8 Result of TLC type I for the CICIDS2017 data set (15 

classes). The numbers in bold show the low TPR for certain 

classes. 
 

74 

4.9 Result of TLC type I for the CICIDS2017 data set (7 

classes). The numbers in bold show the low TPR for certain 

classes. 

 

75 

4.10 Result of TLC type II for the UNSW-NB15. The 

numbers in bold show the low TPR for certain classes. 

77 

4.11 Result of TLC type II for the CICIDS2017 data set (15 

classes). The numbers in bold show the low TPR for certain 

classes. 

 

78 

4.12 Result of TLC type II for the CICIDS2017 data set (7 

classes). The numbers in bold show the low TPR for certain 

classes. 
 

79 

4.13 Comparing the proposed approaches and the prior works 

using the UNSW-NB15 data set. The bold numbers show 

the best detection rate for the classes in the data set. 

 

80 

4.14 Comparing our study and the prior work on the 

CICIDS2017 data set (15 classes). The bold numbers show 

the best detection rate for the classes in the data set. 

 

82 

4.15 Comparing our study and the prior work on the 

CICIDS2017 data set (7 classes). The bold numbers show 

the best detection rate for the classes in the data set. 

 

84 

 

 



xi 
 

LIST OF FIGURES 

 

Figures 

 

 

 

 

 

Page 

 

 

2.1 The histogram of class distribution after combine the 

network intrusion 

 

11 

2.2 The scatter plot of " Flow IAT Mean” against “Flow 

Duration” from the CICIDS2017 data set. 

12 

2.3 The scatter plot of “Bwd IAT Mean” against “Flow 

Duration” from the CICIDS2017 data set. 

12 

2.4 The histogram of the class distribution of the UNSW-

NB15 data set. 

 

17 

2.5 The scatter plot of "ct_src_ltm" against "stcpd" from 

the UNSW-NB15 data set. 
21 

2.6 The scatter plot of "ct_src_ltm" against "smeansz" 

from the UNSW-NB15 data set. 
21 

2.7 The illustration of labelling new instance using KNN. 

Adopted from Dixit et al. (2019). 
 

31 

2.8 The graph of K-value against Validation error. 

Adopted from Dixit et al. (2019). 
 

32 

2.9 An ANN model with hidden layers. Adopted from 

Dias et al. (2017) 

 

35 

2.10 A node in the ANN model. Adopted from Dias et al. 

(2017). 

 

36 

2.11 Binary Step Function. Adopted from Sharma et al. 

(2020). 
 

37 

2.12 Sigmoid Function. Adopted from Sharma et al. (2020). 37 

2.13 Hyperbolic Tangent Function. Adopted from Sharma 

et al. (2020). 
 

38 

2.14 Rectied Linear Unit (ReLU). Adopted from Sharma et 

al. (2020). 
 

39 

2.15 Various MCS combinations: (a) serial, (b) parallel, and 

(c) hybrid. Adopted from Rahman et al. (2003); 

Mohandes et al. (2018) 

 

46 

3.1 Overview of the methodology of this study 57 



xii 
 

3.2 The architecture of the Two-level Classification Type 

I 

 

61 

3.3 The architecture of the Two-level Classification Type 

II 

 

62 

 

 



xiii 
 

LIST OF ABBREVIATIONS 

 

 

IDS    Intrusion Detection System 

NB    Naïve Bayes 

GNB    Gaussian Naïve Bayes 

CART     Classification and Regression Tree 

ID3    Iterative Dichotomiser 3 

KNN    K-Nearest Neighbours 

ANN    Artificial Neural Network 

MLP     Multi-Layer Perceptron 

SVM    Support Vector Machine 

RF    Random Forest 

MCS    Multiple Classifiers Systems  

TP    True Positive 

FP    False Positive 

TN    True Negative 

FN    False Negative 

TPR    True Positive Rate 

FPR    False Positive Rate 

TLC    Two-Level Classification



1 
 

 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 General Information 

 

Nowadays, the Internet has become the primary communication tool for 

people to work and socialise. Not only that, the data traffic on the Internet has 

experienced exponential growth mainly due to the increasing number of 

network devices, such as smartphones, computers, and the Internet of Things 

(IoT) (Dias et al., 2017). As a result, the high occurrence of network intrusions 

is inevitable (Kumar et al., 2013). Besides, the difficulties of intrusion detection 

have increased because of the proliferation of heterogeneous computer networks. 

According to Malaysia Computer Emergency Response Team (MyCERT , 

2020), there were 5,508,357 botnet and malware cases in just a year of 2020. 

Thus, intrusion detection systems (IDS) are now necessities for today’s 

networks. 

 

 Network intrusions will cause data to become inaccessible and insecure. 

A secured computer network must have three components: data confidentiality, 

data integrity, and data availability (Kumar et al., 2013; Saba et al., 2022). 

Therefore, an intrusion detection system (IDS) is necessary to detect and 

prevent intrusions in the computer network (Tharewal et al., 2022; Wang et al., 

2022). The IDS should classify Internet activity as either a normal or intrusive. 



2 
 

1.2 Problem Statement 

 

There are a few challenges of IDS in detecting network intrusion 

activities. Firstly, the unbalanced class distribution of network intrusion data 

sets is a challenge for IDS. A data set is unbalanced in class distribution if it 

contains one or more classes with sizes much bigger than the others. The former 

is called the majority class, and the latter is called the minority class 

(Abdelmoumin et al., 2022). The CICIDS2017 data set used in this study 

contains the normal network activities that occupy up to 80.3% of the data set. 

Consequently, minority classes have less effect on the detection than the 

majority class (G. Weiss, 2004), and it may cause low detection rates for the 

minority classes (network intrusions). It is because general learning algorithms 

favour the majority classes so that the accuracy can be maximised. 

  

 Another challenge of this study is the overlapping class problem which 

refers to data of different classes that overlap in the same data space (Zoghi et 

al., 2022). Once the classes are overlapped, it is hard for the learning algorithms 

to differentiate them. This problem is normally associated with the unbalanced 

class distribution and will lead to a low detection rate of minority classes. Both 

unbalanced class distribution and overlapping class problems can be addressed 

using multiple-level detection techniques (Das et al., 2022). 

 

  



3 
 

1.3 Objectives 

 

This study aims to design a multiple-level detection for effectively detecting 

network intrusions by: 

a. Mitigating the unbalanced class distribution problem 

b. Mitigating the overlapping class problem 

 

1.4 Scopes and Limitations 

 

There are two research scopes for this study: 

a. The proposed intrusion detection technique is developed based on the 

CICIDS2017 and UNSW-NB15 data sets. 

b. The intrusion detection technique is developed using Python. 

 

1.5 Organisation of the Dissertation 

 

The dissertation is organised as follows. Chapter 2 reviews the data sets 

used in this study, prior works on intrusion detection techniques and evaluation 

metrics. Chapter 3 gives the methodology for building multiple-level 

classification models. Chapter 4 shows the results of single classifiers, TLC type 

I, and TLC type II, and a discussion regarding the results are made as well. 

Chapter 5 concludes the study and suggests possible future works. 



4 
 

CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction 

 

Initially, this section reviews the network intrusion detection techniques 

and the data sets used in this research: UNSW-NB15 and CICIDS2017. Then, 

the single classifiers commonly used for network intrusion detection are 

reviewed. It is then followed by reviewing prior works related to network 

intrusion detection, including single classifiers and multiple classifiers systems 

(MCS) used in multiple-level detection. Lastly, metrics for evaluating the 

classification approaches are discussed. 

 

2.2 Intrusion Detection 

 

The Internet and computer systems have become essential tools 

nowadays. They help people in many ways, for example, business operations 

using websites and e-mail services. However, network usage is growing 

exponentially, raising many security issues such as network intrusions. Network 

intrusions refer to unauthorised attempts to bypass the security system of 

computers or networks and cause undesirable outcomes (H. Liao et al., 2013; 

Zhang et al., 2019). Therefore, an intrusion detection system (IDS) is needed to 

tackle network intrusions. IDS monitors the activities in computer systems or 

networks automatically. Generally, there are two main types of IDS: signature-



5 
 

based and anomaly-based (Tsai et al., 2009; Jyothsna et al. , 2011; Otoum et al. , 

2022) 

 

2.2.1 IDS Types 

 

Signature-based IDS employs Knowledge-based Detection or Misuse 

Detection. Signature-based IDS classifies the intrusions by comparing the 

stored signatures of known intrusions to the activities occurring on networks or 

computer systems. The IDS will alert if suspicious activity is detected as an 

intrusion. The main advantage of this IDS is that it is easy to develop and 

understand, provided the behaviour of network intrusions is known. However, 

this IDS only detects intrusions with characteristics previously stored in the 

database. Therefore, a signature must be created for every intrusion, and new 

intrusions cannot be detected (H. J. Liao et al., 2013; Karoriya et al., 2022). 

Kumar (2012) proposed developing a signature-based IDS using SNORT, an 

open-source network intrusion detection system. SNORT can analyse real-time 

data flow in a network and check the packets against signatures written by users.  

 

 Anomaly-based IDS assumes that an intrusion will always differ from 

normal network activities. Therefore, anomaly-based IDS builds profiles of 

normal network activities and then compares network activities to the profiles. 

Thus, anomaly-based IDS needs a training phase to develop the profile of 

normal activities (Karoriya et al., 2022). When there is a difference between the 

normal and the observed activity, the system will alarm it as an intrusion. Thus, 

anomaly-based IDS can detect new or unseen intrusions (Kumar et al., 2013). 



6 
 

However, the false positive rate in anomaly-based IDS is higher than in the 

signature-based IDS.  

 

There are a few shortcomings of current IDS techniques (Lappas et al., 

2007; Samrin, 2017; Karoriya et al., 2022): 

 

a. Current IDS is normally adjusted to detect known service-level 

intrusions without being updated with novel intrusions. 

b. Data overload: current IDS cannot analyse the data efficiently because 

the amount of data is growing rapidly daily. 

c. False positive, also known as false alarm generated by current IDS, is a 

common problem. A false alarm happens when normal network traffic 

is wrongly classified as intrusions and treated accordingly. 

 

2.2.2 Data mining and machine learning-based IDS 

 

Data mining and machine learning can help to improve IDS by solving 

the problems mentioned in section 2.2.1 (Lappas et al., 2007; Samrin et al., 

2018; Saranyaa et al., 2020; Gümüşbaş et al., 2021). Data mining processes 

clean, identify and extract patterns from large network intrusion data. Data 

mining may improve detection, control false alarms and efficiency (Kumar et 

al., 2013). Machine learning produces classification models that help classify 

new instances into one predefined class depending on the attribute values. There 

are different types of classification approaches used in IDS, such as Artificial 

Neural Networks, Decision Trees, evolutionary algorithms, Rule Induction, 



7 
 

Bayesian methods, K-Nearest Neighbours, etc. (Sivatha et al., 2012; Moustafa 

et al., 2017; Sharafaldin et al., 2018; Ahmad et al., 2019; Bagui et al., 2019; 

Halimaa et al., 2019; Krishna et al., 2020; Kurniabudi et al., 2020; Rosay et al., 

2020; Panigrahi et al., 2021).  

 

2.2.3 Conclusion 

In summary, data mining and machine learning techniques can 

contribute significantly to IDS. Therefore, we focus on building IDS using data 

mining techniques. The related work, especially classification techniques that 

were used in IDS, shall be discussed in the later sections. 

  



8 
 

2.3 Data Set Overview 

 

2.3.1 CICIDS2017 

 

The CICIDS2017 data set used in this study is provided by the Canadian 

Institute for Cybersecurity (Sharafaldin et al., 2018). This data set has eight 

different files, every of one them containing five-day network activities. 

Sharafaldin et al. (2018) analysed and evaluated 11 IDS data sets publicly 

available since 1998. The study showed that most of the early IDS data sets lack 

traffic diversity, attack diversity, and volume and do not reflect real-world 

normal network traffic. Further, they contain some unknown and uncorrelated 

alert traffic, and the payload, protocol information and destination are 

anonymised. Therefore, CICIDS2017 was created to address all the issues. 

  



9 
 

Table 2.1 The class distribution of the CICIDS2017 data set. 

No 

 

Normal / Attack Label 

 

Number of 

instances 

 

% of the total 

instances 

 

1 BENIGN 2,273,097 80.3004 

2 DoS Hulk 231,073 8.1630 

3 PortScan 158,930 5.6144 

4 DDoS 128,027 4.5227 

5 DoS GoldenEye 10,293 0.3636 

6 FTP-Patator 7,938 0.2804 

7 SSH-Patator 5,897 0.2083 

8 DoS slowloris 5,796 0.2048 

9 DoS Slowhttptest 5,499 0.1943 

10 Bot 1,966 0.0695 

11 Web Attack - Brute 

Force  

1,507 0.0532 

12 Web Attack - XSS 652 0.0230 

13 Infiltration 36 0.0013 

14 

Web Attack - Sql 

Injection 

  

21 0.0007 

15 Heartbleed 11 0.0004 

 Total 2,830,743 100.0000 

 

 Table 2.1 shows the CICIDS2017 data set containing 2,830,743 

instances and 78 features without duplication. It contains 15 classes, one of 

which is normal network activity, and the other 14 are network intrusions. The 

data set is highly unbalanced, and the normal network activities take up 80.3% 



10 
 

of the whole data set.  

 

Feature of the data set 

 

The CICIDS2017 data set has a huge feature space. The data set contains 

78 features as follows: 

1) Destination Port  27) Bwd IAT Mean  53) Average Packet Size  

2) Flow Duration  28) Bwd IAT Std  54) Avg Fwd Segment Size  

3) Total Fwd Packets  29) Bwd IAT Max  55) Avg Bwd Segment 

Size  

4) Total Backward 

Packets  

30) Bwd IAT Min  56) Fwd Header Length 1  

5) Total Length of 

Fwd Packets  

31) Fwd PSH Flags  57) Fwd Avg Bytes/Bulk  

6) Total Length of 

Bwd Packets  

32) Bwd PSH Flags  58) Fwd Avg Packets/Bulk  

7) Fwd Packet 

Length Max  

33) Fwd URG Flags  59) Fwd Avg Bulk Rate  

8) Fwd Packet 

Length Min  

34) Bwd URG Flags  60) Bwd Avg Bytes/Bulk  

9) Fwd Packet 

Length Mean  

35) Fwd Header 

Length  

61) Bwd Avg Packets/Bulk  

10) Fwd Packet 

Length Std  

36) Bwd Header 

Length  

62) Bwd Avg Bulk Rate  

11) Bwd Packet 

Length Max  

37) Fwd Packets/s  63) Subflow Fwd Packets  

12) Bwd Packet 

Length Min  

38) Bwd Packets/s  64) Subflow Fwd Bytes  

13) Bwd Packet 

Length Mean  

39) Min Packet 

Length  

65) Subflow Bwd Packets  

14) Bwd Packet 

Length Std  

40) Max Packet 

Length  

66) Subflow Bwd Bytes  

15) Flow Bytes/s  41) Packet Length 

Mean  

67) Init Win bytes_forwa 

rd  

16) Flow Packets/s  42) Packet Length 

Std  

68) Init_Win_bytes_back 

ward  

17) Flow IAT Mean  43) Packet Length 

Variance  

69) act data pkt fwd  

18) Flow IAT Std  44) FIN Flag Count  70) min_seg_size_forwar  

19) Flow IAT Max  45) SYN Flag Count  71) Active Mean  

20) Flow IAT Min  46) RST Flag Count  72) Active Std  

21) Fwd IAT Total  47) PSH Flag Count  73) Active Max  

22) Fwd IAT Mean  48) ACK Flag Count  74) Active Min  

23) Fwd IAT Std  49) URG Flag 

Count  

75) Idle Mean  



11 
 

24) Fwd IAT Max  50) CWE Flag 

Count  

76) Idle Std  

25) Fwd IAT Min  51) ECE Flag Count  77) Idle Max  

26) Bwd IAT Total  52) Down/Up Ratio  78) Idle Min 

 

Unbalanced class distribution 

 
Figure 2.1 The histogram of class distribution after combining the 

network intrusions into one attack class. 

 

Unbalanced class distribution happens in the CICIDS2017 data set. In 

this case, the learning algorithm may bias toward the majority class. The normal 

network activities (BENIGN) are the majority class that occupies 80.32% of the 

data set, and the 14 network intrusion classes are the minority classes that 

occupy 19.68% of the data set (Figure 2.1). 

 



12 
 

Overlapping Class 

 

 

Figure 2.2 The scatter plot of “Flow IAT Mean” against “Flow Duration” 

from the CICIDS2017 data set 

 

 

Figure 2.3 The scatter plot of “Bwd IAT Mean” against “Flow Duration” 

from the CICIDS2017 data set. 



13 
 

Figure 2.2 and Figure 2.3 shows two scatter plots generated from 

CICIDS2017. The “x” marks represent network intrusions, and the orange dots 

represent BENIGN. The figures show that the classes in the data set are 

overlapped with each other. 

 

  



14 
 

Missing and Infinity Values  

 

There are a total of 5,734 missing or infinity values. Table 2.2 shows a 

label that contains missing and infinity values, most of them from BENIGN, 

DoS Hulk and PostScan. There are several methods to deal with missing and 

infinity values, such as removing missing values, replacing missing values with 

a mean value, and replacing infinity values with a maximum value. 

Table 2.2 Labels with instances of missing or infinity value 

Label Instances contain missing or infinity 

value 

BENIGN 1,777 

DoS Hulk 949 

PortScan 126 

DDoS 2 

DoS GoldenEye 0 

FTP-Patator  3 

SSH-Patator 0 

DoS slowloris 0 

DoS Slowhttptest 0 

Bot 10 

Web Attack - Brute Force 0 

Web Attack - XSS 0 

Infiltration 0 

Web Attack - Sql 

Injection 

  

0 

Heartbleed 0 



15 
 

Types of intrusions  

Seven network intrusions (Sharafaldin et al., 2018) included in the 

CICIDS2017 data set are: 

 

a. Brute force 

It is one of the widely used intrusions for password or username cracking. 

It works by calculating and testing every possible combination of passwords. 

 

b. Heartbleed 

It comes from a bug in the OpenSSL cryptography library. An important 

part of OpenSSL protocols called heartbeat allows two devices to communicate 

with each other to know they are still connected. Sometimes, one of the devices 

will send encrypted data called a heartbeat request to the other. Then the second 

device will reply to prove that the connection is still in place. Heartbleed is 

executed by making unusual small-sized heartbeat requests with large value in 

the length field to the server for leaking a victim’s information. 

 

c. Botnet 

A botnet owner uses numerous Internet-connected devices to perform 

various tasks: stealing data, sending spams, and allowing intruder access to 

devices. 

 

  



16 
 

d. Denial-of-service (DoS) 

The intruder attempts to disable a networked device temporarily. This 

attack is typically achieved by flooding and paralysing a device with 

unnecessary connections and stoping legitimate users from making connections. 

 

e. Distributed Denial-of-Service (DDoS) 

A DDoS attack requires an intruder to gain control of a network of online 

machines to carry out an intrusion. This attack happens when multiple systems 

overload the resources or bandwidth of a targeted device. The goal of DDoS is 

to cause a service disruption by consuming all the available capacity of devices. 

 

f. Web Attack 

An example of a web attack is SQL Injection, which involves an intruder 

creating a string of SQL commands and then using it to force the database to 

reply to some information. Another example is Cross-Site Scripting (XSS) 

which happens when developers do not test their code properly to find the 

possibility of script injection. 

 

g. Infiltration Attack 

The network infiltration from inside is achieved by exploiting the 

vulnerable software of a victim’s computer. After successful exploitation, a 

backdoor will be formed on the victim’s computer. For example, IP sweep, full 

port scan and service enumerations using Nmap on the victim’s network. 



17 
 

2.3.2 UNSW-NB15 

 

This data set was published by the University of New South Wales 

(UNSW) (Moustafa et al., 2015). This data set was created because old network 

data sets, such as KDD98, KDDCUP99 and NSLKDD, do not reflect real-world 

network traffic and have a low footprint attack environment. Therefore, the 

UNSW-NB15 data set was created to include modern-day normal network 

activities and synthetic attack vectors. This data set was generated using an IXIA 

traffic generator with three virtual servers. Servers 1 and 3 are set for normal 

traffic, while server 2 sets the intrusive activities in the network traffic.  

 

 
Figure 2.4 The histogram of the class distribution for the UNSW-NB15 

data set. 

 

 



18 
 

Unbalanced class distribution 

 

Table 2.3 The class distribution of the UNSW-NB15 data set 

 

Class 
Sample 

Size 
Percentage 

Normal 2,218,764 87.35% 

Analysis 2,677 0.11% 

Backdoors 2,329 0.09% 

DoS 16,353 0.64% 

Exploits 44,525 1.75% 

Fuzzers 24,246 0.96% 

Generic 215,481 8.48% 

Reconnaissance 13,987 0.55% 

Shellcode 1,511 0.06% 

Worms 174 0.01% 

Total 2,540,047 100% 

 

 From Table 2.3, this data set contains over 2.5 million samples, and 

normal network traffic takes 87.35% of the data set. This shows that UNSW-

NB15 is an unbalanced data set. Most intrusions take less than 1% of the data 

set, and these classes are the main concern for learning algorithms to learn and 

detect.  

 

 



19 
 

Features of the UNSW-NB15 data set 

The 49 features of the UNSW-NB15 data set are: 

1) srcip  18) dpkts  35) ackdat  

2) sport  19) swin  36) is_sm_ips_ports  

3) dstip  20) dwin  37) ct_state_ttl  

4) dsport  21) stcpb  38)ct_flw_http_mthd  

5) proto  22) dtcpb  39) is_ftp_login  

6) state  23) smeansz  40) ct_ftp_cmd  

7) dur  24) dmeansz  41) ct srv src  

8) sbytes  25) trans_depth  42) ct_srv_dst  

9) dbytes  26) res_bdy_len  43) ct_dst_ltm  

10) sttl  27) sjit  44) ct_src_ltm  

11) dttl  28) djit  45) ct_src_dport_ltm  

12) sloss  29) stime  46)ct_dst_sport_ltm  

13) dloss  30) ltime  47) ct_dst_src_ltm  

14) service  31) sintpkt  48) attack_cat  

15) sload  32) dintpkt  49) Label 

16) dload  33) tcprtt   

17) spkts  34) synack   

 

This data set contains six types of features: basic features, content 

features, time features, general-purpose features, connection features, and 

labelled features. Table 2.4 shows the description of each feature of the data set. 

  



20 
 

Table 2.4 Descriptions of the features in the UNSW-NB15 data set. 

 

Features Description 

Connection features The identifier features between hosts, such as 

client-to-server or server-to-client. 

Basic features The features related to protocol connections. 

Content features The features are related to TCP/IP and HTTP 

services. 

Time features The features related to time, for example, 

arrival time between packets, start/end packet 

time and round-trip time of TCP protocol. 

General-purpose features The features have their purpose of protecting 

the service of protocols, and they are built 

from the flow of 100 record connections based 

on the sequential order of the last time feature. 

Labelled features The features represent the label of each 

sample. 



21 
 

Overlapped classes of the UNSW-NB15 data set 

 

 
Figure 2.5 The scatter plot of "ct_src_ltm" against "stcpd" from the 

UNSW-NB15 data set. 

 
Figure 2.6 The scatter plot of "ct_src_ltm" against "smeansz" from the 

UNSW-NB15 data set. 



22 
 

Figure 2.5 and Figure 2.6 show the scatter plots generated from the 

UNSW-NB15 data set. The “x” marks represent network intrusions, and the 

orange dots represent normal traffic. The plots show that the classes are severely 

overlapped with each other. 

 



23 
 

Type of Intrusions in the UNSW-NB15 data set 

 

There are ten classes in this UNSW-NB15 data set: normal and nine 

intrusions. Table 2.5 shows the type of intrusions and their description. 

 

Table 2. 5 The description of intrusions in the UNSW-NB15 data set 

Intrusion Description 

Fuzzers 

 

Attempting to fuzz a program or network by feeding the 

random data traffic and causing unexpected crashes. 

Analysis 

 

It includes different intrusions of the port scan, spam and 

HTML file penetrations. 

Backdoors 

 

It is used to bypass a system’s security and authentication 

to reach a computer or its data. 

DoS 

 

A common intrusion causes a server or a network resource 

to be flooded with traffic, making it inaccessible to the 

user. 

Exploits 

 

It causes unintended or unanticipated behaviour to happen 

on computer software by taking advantage of a known bug 

or vulnerability of the systems 

Generic 

 

It is a technique against all block-ciphers (with a given 

block and key size) without considering their structure. 

Reconnaissance It includes packet sniffing, ping sweeping, port scanning 

and phishing which can simulate intrusions to gather data. 

Shellcode 

 

It injects code remotely to exploit a variety of software 

vulnerabilities. 



24 
 

Worms 

 

It replicates itself to spread to another computer via 

software vulnerabilities and causes unintended behaviour 

on the target computer. 

 

2.3.3 Conclusion 

 

Researchers commonly use the CICIDS2017 and UNSW-NB15 data 

sets to build intrusion detection models. These two data sets contain the latest 

and diversified intrusions, which reflect real-world network intrusion. Not only 

that, they also share common problems, which are unbalanced class distribution 

and overlapping classes. Therefore, these two data sets were selected to evaluate 

the proposed detection technique in this study. 



25 
 

2.4 Single Classifiers 

 

 

2.4.1 Naïve Bayes Classifier 

 

Naïve Bayes classifier performs classification based on Bayes’ Theorem. 

This classifier assumes that all features independently and equally contribute to 

the probability of the class (Berrar, 2018). 

 

 Bayes’ Theorem calculates the probability of an event happening 

provided that the probability of another event that has occurred. With regards to 

a data set, Bayes’ Theorem is stated in the following way: 

 

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
      

Where y is the class variable and X is evidence. 

• 𝑃(𝑦|𝑋) is a posteriori probability, which is the probability of class y, 

given evidence X is true. 

• 𝑃(𝑦) is a prior probability, which is the probability of class y before 

evidence is seen. 

• 𝑃(𝑋|𝑦) is a likelihood which is the probability of class y after evidence 

X is seen 

Where X is a dependent feature vector (of size n) where: 

𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)      

Hence, we reach the result: 



26 
 

𝑃(𝑦|𝑥1, … , 𝑥𝑛) =
𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)𝑛

𝑖=1

𝑃(𝑥1)𝑃(𝑥2)…𝑃(𝑥𝑛)
    

When each instance is only matched with one class, calculate the value 

of the numerator for each class and choose that class in which the value is 

maximal. This rule is called the maximum posterior rule. The class with 

maximum posterior is known as the maximum a posteriori (MAP) class and can 

be calculated �̂� for the instance x as follows: 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)𝑛
𝑖=1      

Pseudocode 1: The Naïve Bayes Classifier (adopted from Firman et al., 

(2018)) 

 

  

Input:  Training data set T, 

Features of data set, X= (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) 

Output: Predicted class of testing data set. 

Begin 

1. Read the training data set. 

2. Calculate the probability of X using the Bayes 

theorem in each class. 

3. Calculate the likelihood for each class. 

4. Get the maximum likelihood. 

End 

 



27 
 

They are a few examples of Naïve Bayes as follows: 

1. Gaussian Naïve Bayes: Continuous values associated with each feature 

are assumed to be distributed according to a normal distribution.  

2. Multinomial Naïve Bayes: Feature vectors represent the frequencies 

with which certain occurrences have been created by a multinomial 

distribution. This algorithm is usually used for text classification. 

3. Bernoulli Naïve Bayes: This algorithm is used for data that are 

distributed according to multivariate Bernoulli distributions. Each 

feature is assumed to be a binary-valued variable. For example, this 

algorithm is used to detect whether a word occurs in a document or not. 

 

There are two advantages of using Naïve Bayes. Firstly, real-time 

prediction because the Naïve Bayes classifier is a fast learning algorithm. 

Secondly, multi-class prediction because the Naïve Bayes classifier can predict 

the probability of multiple variable classes. However, the main disadvantage of 

Naïve Bayes is that it assumes the mutual independence of all variables involved, 

which is almost impossible in real life. 

 



28 
 

2.4.2 Iterative Dichotomiser 3 (ID3) 

 

ID3 is a learning algorithm that generates the decision tree based on the 

entropy of every feature of the data set (Quinlan, 1986). The entropy measures 

the amount of uncertainty in the data set and builds a tree by selecting the best 

feature that yields minimum entropy. However, ID3 can only deal with 

categorical data. It can build a model in a short time taken, but it cannot deal 

with missing values. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ −𝑝𝑖 ∗ 𝑙𝑜𝑔2(𝑝𝑖)
𝐶
𝑖=1      

Where, 

𝑝𝑖  = The proportion of the number of elements in class i to the number of 

elements in the data set. 

Pseudocode 2: ID3 (adopted from Quinlan (1986)) 

 

 

 

Input: Data set 

Output: ID3 Decision Tree 

Begin 

1. Calculate the entropy of every feature of the data set. 

2. Split the data set into subsets using the feature for which the 

resulting entropy after splitting is minimised. 

3. Make a decision tree node containing that feature. 

4. Repeat steps 2 and 3 for the remaining features. 

End 

 



29 
 

2.4.3 Classification And Regression Tree (CART ) 

 

The classification and regression tree (CART) algorithm is a set of if-

then (split) conditions that permit predictions or classification of cases (Breiman 

et al., 2017). The CART algorithm is scalable to large data set problems and can 

also handle small data sets. In the CART algorithm, binary trees are built with 

the Gini index. 

 

The Gini index measures the degree to of a particular variable is 

misclassified when it is randomly chosen. The Gini index varies from 0 to 

1, where 0 means that all elements belong to a certain class or exist in only 

one class, and 1 means that the elements are randomly distributed across 

various classes. Therefore, in the CART algorithm, a variable split with a low 

Gini Index is chosen to split the node. 

 

𝐺𝑖𝑛𝑖 (𝐷) = 1 −  ∑ (𝑝𝑖)
2𝑛

𝑖=1       

where pi  is the probability of an object being classified to a particular class 

in the data set D with n classes. 

𝐺𝑖𝑛𝑖𝐴 (𝐷) =
|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖 (𝐷1) −

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖 (𝐷2)   

where a variable A of data set D is split into two subsets 𝐷1 and 𝐷2. 

 



30 
 

Pseudocode 3: CART algorithm (adopted from Breiman et al. (2017)) 

 

 

There are three advantages of the CART algorithm (Singh, 2014). Firstly, 

CART can deal with both continuous and categorical variables. Next, the CART 

algorithm identifies the most important features and removes the irrelevant 

variables. Finally, CART can deal with outliers. However, the disadvantage of 

the CART algorithm is that it may create an unstable tree that can cause variance 

when a small change in the data set happens. 

 

 

 

 

Input:  Data set 

Output: CART decision tree 

Begin 

1. Generate the Root node of the tree. 

2. Calculate the Gini index for all features. 

3. The feature with minimum Gini index is chosen and use it to split 

the node into two child nodes. 

4. Repeat steps 2-3 until a stopping criterion is reached. 

End 

 



31 
 

2.4.4 K-Nearest Neighbours (KNN) 

 

The KNN algorithm assumes that a class with similarity will exist in 

close proximity. This assumption provides a nonparametric procedure for 

predicting an unseen class by finding the distances between the unseen class and 

all the instances in the data set (Cover et al., 1967; Keller et al., 1985). A K 

value refers to the number of nearest neighbours to an instance. The K value 

closest to the unseen class is selected then the assignment of the unseen class is 

according to the vote of the most frequent class with K. 

 

 

Figure 2.7 The illustration of labelling a new instance using KNN. 

Adopted from Dixit et al. (2019). 

 

Figure 2.7 shows the illustration of labelling a new instance using KNN. 

In this case, the K value is assigned to 3. The “star” represents a new instance 

with three nearest neighbours (red oval). Therefore the new instance is labelled 

as a red oval.   



32 
 

 

Figure 2.8 The graph of K-value against validation error. Adopted from 

Dixit et al. (2019). 

 

Selecting the best K value will help reduce the classifier’s error while 

maintaining the accuracy of the predictions of the unseen data. For the binary-

class problem, the K value is restricted to only odd values to avoid a tie. Figure 

2.8 shows that validation error drops initially to reach a minimum value and then 

increases when K becomes high. Several K values are evaluated to find the best 

K value with the lowest validation error. This method is called the elbow method.  

 



33 
 

Pseudocode 4: The KNN algorithm (adopted from Sarkar et al. (2000)) 

 

 

There are three advantages of the KNN algorithm. Firstly, the KNN 

algorithm is simple and easy to implement. Only two parameters are needed to 

apply KNN: K values and distance metrics, such as Euclidean, Manhattan, 

Minkowski, etc. Next, KNN does not build any model and needs a training phase. 

It is because KNN does not learn in the training phase; it simplifies labelling new 

data based on historical data. Lastly, KNN can be easily implemented for multi-

class problems without extra effort.  

 

However, there are also a few disadvantages of the KNN algorithm. 

Firstly, KNN has limitations in dealing with large and high dimensional data 

Input: training data set 

Output: label of the test data set 

Begin 

1. Load the training data set. 

2. Initialise the value of K. 

3. Calculate the distance between test instances and training 

instances from the data set. 

4. Sorted the distances in ascending order. 

5. Pick the first K entries from the sorted list. 

6. Get the labels of the selected K entries. 

7. Return the majority label. 

End 

 



34 
 

sets. It becomes difficult for the KNN to calculate the distance between 

instances. Next, KNN is sensitive to noise, missing values and outliers. Lastly, 

KNN cannot deal with unbalanced data. 



35 
 

2.4.5  Artificial Neural Networks (ANN) 

 

The design of ANN is inspired by the biological nervous system. It 

imitates the process of the brain processing information (Hornik et al., 1989). 

An ANN model consists of three layers: input layer, hidden layer and output 

layer. The model only consists of one input layer and one output layer. The 

number of hidden layers is based on the objective of the model. Figure 2.9 shows 

an ANN model with two hidden layers, and the hidden layers consist of 

interconnected nodes. The ANN is described as fully connected with every node 

in the next and previous layers (Choraś et al., 2021). The input layer has no 

computational role as it only passes data to the network. The hidden layer 

performs computation and transfers data from input nodes to output nodes.  

 

 

Figure 2.9 An ANN model with hidden layers. Adopted from Dias et al. 

(2017) 



36 
 

Nodes / Neurons 

 

Figure 2.10 A node in the ANN model. Adopted from Dias et al. (2017). 

 

From Figure 2.10, the equation of output is defined as, 

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑓(𝑏 + ∑ 𝑋𝑖 𝑊𝑖)   

Where, 

 f is the activation function. 

 b is the bias. 

 X is the input data. 

 W is the weight of inputs. 

Figure 2.10 shows a single node, the basic computation unit in an ANN. Each 

input (X) is associated with a weight (W) which is the importance of the output 

to other input. A node contains a bias value to shift the activation function to 

either right or left. The activation function normalises the output of the node.  

 

 

  



37 
 

Types of activation functions (Goodfellow et al., 2016): 

 

1. Binary Step Function 

 

Figure 2.11 Binary step function. Adopted from Sharma et al. (2020). 

 

Figure 2.11 shows a binary step function. If the input is above or below a 

certain value, then the node will be activated and send the same value to the 

next layer. However, this function cannot be used when dealing with multiple 

classes problem. 

 

2. Sigmoid Function 

 

Figure 2.12 Sigmoid function. Adopted from Sharma et al. (2020). 



38 
 

The sigmoid function is an S-shaped curve, which maps any real number 

into a value from 0 to 1 but never reaches those limits. Therefore, it is used for 

models where the prediction of output probability is needed. The advantages of 

this function are providing a smooth gradient and normalising the output of each 

node. The disadvantage of this function is that it will vanish the gradient, which 

means that when the input value is very high or very low, the output value 

remains almost unchanged. It will result in the slow updating of the ANN 

parameters. 

3. Hyperbolic Tangent Function (tanh) 

 

Figure 2.13 Hyperbolic Tangent Function. Adopted from Sharma et al. 

(2020). 

 

The hyperbolic tangent function is similar to the sigmoid function but 

ranges vary between -1 to 1. The advantage of this function is that a negative 

input can be mapped to a negative output. So, the neural network is less likely 

to get stuck during the training phase. The advantages and disadvantages of this 

function are similar to the sigmoid function. Additionally, this function is zero-



39 
 

centred, which makes the ANN easier to deal with inputs with very high, neutral 

and very low values.  

4. Rectified Linear Unit (ReLu) 

 

Figure 2.14 Rectified Linear Unit (ReLU). Adopted from Sharma et al. 

(2020). 

 

ReLu function is a simple calculation that outputs the same value when 

the value is more than 0. Otherwise, the output value will be 0. The advantage 

of this function is its computational efficiency. The disadvantage of this function 

is that the ANN cannot perform backpropagation if inputs are negative because 

the function’s gradient becomes 0. 

 

Backpropagation 

 

When training, the ANN performs learning at this layer. An error value 

is calculated based on the prediction and the actual value (Chiba et al., 2018). 

The error value calculated is sent back through the ANN model to adjust the 



40 
 

weight for the next input. The lower the error value, the closer the difference 

between the actual and prediction values. As long as there is still a difference, 

the weight adjustment is needed. This process is known as Back-propagation 

and is iterated in ANN until the error value is minimised.  

 

Pseudocode 5: ANN (adopted from Saad Assiri (2021)) 

 

There are two advantages of the ANN. Firstly, ANN can learn non-linear 

and complex problems. This enables ANN to solve real-life problems such as 

image processing and forecasting. Not only that, ANN can handle missing 

values. If a data set contains missing values, the computation at nodes can still 

go on. However, there are some disadvantages of the ANN. Firstly, there is no 

Input: Training data set 

Output: Label of the test data set 

Begin 

1. Initialise the input layer, output layer and hidden layer of the ANN. 

2. Loads the training data set into the model. 

3. Perform calculations at the nodes. 

4. Generates an output at the output layer. 

5. Calculates the error value between the actual value and the output. 

6. Update the weight of nodes according to the error value. 

7. Repeat steps 2 to 6 until all the training instances had been loaded 

into the model. 

8. Generate the prediction of the test data set. 

End 

 



41 
 

rule to decide the ANN architecture. The ANN architecture includes the number 

of nodes in hidden layers and the number of hidden layers. A suitable 

architecture is mostly achieved based on experience or trial and error. In 

addition, the training process is slow when the data set dimension is large. 



42 
 

2.5 Prior works 

 

2.5.1 Single Classifiers on Intrusion Detection 

 

Single classifiers refer to the classifier built using one single learning 

algorithm. The common single classifiers for intrusion detection are Decision 

Tree, K-Nearest Neighbour, Artificial Neural Network and Naïve Bayes 

(Sivatha et al., 2012; Moustafa et al., 2017; Sharafaldin et al., 2018; Ahmad et 

al., 2019; Bagui et al., 2019; Halimaa et al. , 2019; Krishna et al., 2020; 

Kurniabudi et al., 2020; Rosay et al., 2020; Panigrahi et al., 2021). 

 



43 
 

Table 2.6 Prior works used single classifiers on the UNSW-NB15 data set. 

 Khammas

si et al. 

(2017) 

 

Bagui et al. 

(2019) 

 

Ahmad et al. 

(2021) 

 

Mousta

fa et al. 

(2016) 

 

 C4.5 NB J48 SVM ANN DT 

Normal 0.90720 - - 1.0000 0.9860 - 

Fuzzer 0.69112 0.9670 0.7518 0.9520 0.5800 - 

Analysis 0.09929 0.9099 0.0664 0.8720 0.7280 - 

Backdoors 0.06925 0.9296 0.0222 0.9790 0.8100 - 

DoS 0.04113 0.8417 0.0599 0.7620 0.6670 - 

Exploits 0.92317 0.9067 0.6427 0.9050 0.8390 - 

Generics 0.97937 0.9661 0.9780 0.9790 0.9580 - 

Reconnais

ance 0.76150 0.9759 0.7950 0.9830 0.9080 - 

Shellcode 0.47468 0.9815 0.4312 0.6850 0.5420 - 

Worms 0.38462 0.9318 0.4090 - - - 

Accuracy 0.8142 - - 0.9567 0.9167 0.8556 

 

Table 2.6 compares prior works that used single classifiers on the 

UNSW-NB15 data set. Overall, the single classifiers perform well in accuracy 

but still suffer low detection rates (or true positive rate, TPR) for most intrusion 

classes. Some works did not show the TPR of each class, i.e., Kasongo et al. 

(2020) and Moustafa et al.(2016). Thus, the classifiers’ performance on the 

minority intrusion classes cannot be determined. 

 



44 
 

Table 2.7 Prior works that used single classifiers on the CICIDS2017 data 

set. 

 Alrowaily et al. 

(2019) 

Ferrag et al. 

(2020) 

Krishna 

et al. 

(2020) 

Kurniabudi et 

al. (2020) 

 KNN MLP RepTree J48 KNN J48 RT 

BENIGN - - 0.9517 0.9496 - 0.9990 0.9980 

Bot - - 0.4776 0.4776 - 0.6980 0.7320 

DDoS - - 0.9979 0.9979 - 

0.9990 0.9970 

DoS 

GoldenEye 

- - 0.6643 0.6729 - 

DoS Hulk - - 0.9222 0.9360 - 

DoS 

Slowhttptest 

- - 0.7536 0.8033 - 

DoS 

slowloris 

- - 0.9273 0.9388 - 

Heartbleed - - 1.0000 1.0000 - 

Infiltration - - 0.8333 0.6667 - 0.0000 0.0000 

PortScan - - 0.9988 0.9857 - 0.9990 0.9930 

FTP-Patator - - 0.9918 0.9955 - 

0.9930 0.9920 

SSH-Patator - - 1.0000 1.0000 - 

WA - Brute 

Force 

- - 0.7082 0.6041 - 

0.9490 0.9250 WA - Sql 

Injection 

- - 0.5000 0.5000 - 

WA - XSS - - 0.3250 0.4125 - 

Accuracy 0.9946 0.9626 0.9340 0.9348 0.9984 0.9987 0.9976 

 



45 
 

Table 2.7 compares the prior works that used single classifiers on the 

unbalanced and overlapped CICIDS2017 data set. Overall, single classifiers 

gave high accuracies. However, this does not mean that the detection rate for 

each intrusion class is good. Most authors do not show the detection rate for 

each class, and the performance against the intrusions cannot be determined. 

However, the work conducted by Kurniabudi et al.(2020) showed a true positive 

rate for each class. Their study shows that the minority classes, Infiltration and 

Bot, suffer from low and average detection rates.   

 



46 
 

2.5.2 Multiple Classifiers Systems (MCS) 

A Multiple Classifiers System (MCS) refers to multiple classifications 

that aim to produce a better prediction than single classifier systems. MCS 

minimises overlapping class and unbalanced class distribution problems 

(Podolak, 2008; Woźniak et al., 2014; Song et al., 2021). There are three types 

of MCS: (i) Serial, (ii) Parallel and (iii) Hybrid (Figure 2).  

 

(a) 

 

(b)  

 

(c)  

Figure 2.15 Various MCS combinations: (a) serial, (b) parallel, and (c) 

hybrid. Adopted from Rahman et al. (2003); Mohandes et al. (2018) 



47 
 

 As shown in Figure 2.15(a), the serial combination of MCS 

interconnected the classifiers sequentially, which means the result from the first 

classifier shall load to the next classifier for further processing (Kim et al., 2002, 

Mohandes et al., 2018). The classifier arrangement in a serial combination of 

MCS is important for performance. For example, the first classifier detects the 

general intrusion classes and the subsequent classifiers detect detail intrusion 

types.  

 

 Xiang et al. (2008) proposed a serial classifier that used decision trees 

and Bayesian clustering. The network data set used for this study was the 

KDDCUP99. For this study, a model with a four-level classification was 

proposed. At the first level, the decision tree was used to categorise three 

classes: DoS, Probe and Others (U2R, R2L and Normal traffic). U2R, R2L and 

Normal traffic were grouped because they had similar criteria and were difficult 

to differentiate. At the second level, Bayesian clustering was used to further 

classify U2R, R2L and Normal traffic by labelling U2R and R2L as “Attack”; 

therefore, they have only two classes (Attack and Normal) at this level. At the 

third level, decision trees were used to classify U2R and R2L. The final level 

further classified the attack type into a more detailed attack class by using 

decision trees. This proposed approach achieved a low false alarm of 3.23%. 

Yulianto et al. (2019) proposed a classification model using Adaptive Boosting 

(AdaBoost) on the CICIDS2017 date set. With AdaBoost, several base learners 

are serially combined, and the weight of the next base learner shall be updated 

based on the performance of the previous base learner (Freund et al., 1999). 

This proposed model achieved an overall accuracy of 81.83%. 



48 
 

 

 The parallel combination of MCS usually loads a data set to several 

classifiers simultaneously (Kim et al., 2002). Then, the final result is based on 

a decision combination algorithm, as shown in Figure 2.15(b). Majority voting 

is the common decision combination method used in parallel MCS. This method 

decides the final result depending on an agreement for more than half of the 

classifiers with the same classification decision.  

 

 Swami et al. (2020) proposed a voting-based IDS approach for intrusion 

detection. The data set used for this approach is UNSW-NB15, CICIDS2017 

and NSL-KDD data set. The data set is loaded into three different base 

classifiers, and the final decision is based on the output of the base classifiers. 

This proposed model achieved 88.05% accuracy for the UNSW-NB15, 97.77% 

for the CICIDS2017 data set and 99.68% for the NSL-KDD data set. 

 

 The hybrid MCS combines a serial MCS and a parallel MCS, as shown 

in Figure 2.15(c). The input data is loaded to the first classifier, and the output 

from the first classifier shall be the input to a parallel combination MCS. Then, 

a single classifier shall merge the output of the previous parallel combination 

MCS. The hybrid combination of MCS inherits advantages from serial and 

parallel MCS, which detect certain classes serially and use majority voting 

parallelly to decide the output.  

 

 Azzaoui et al. (2020) proposed a two-stage hybrid approach for intrusion 

detection. The data sets used for this study were CICIDS2017 and NSL-KDD. 



49 
 

The proposed approach had classifiers arranged serially, but a parallel classifier 

was applied at the first stage. Data were re-labelled into two classes at the first 

stage: Normal and Anomaly, classified using a random forest classifier that was 

arranged parallelly in the proposed approach. The instances classified as 

intrusions were then sent to the second stage. KNN was used at the second stage, 

and instances were further classified into intrusion classes. This proposed model 

achieved 99.21% accuracy for the CICIDS2017 data set and 99.56% for the 

NSL-KDD data set. 

 

The results of prior works that used MCS on UNSW-NB15 and 

CICIDS2017 are summarised in Table 2.8 and Table 2.9. 



50 
 

Table 2.8 Prior works that used MCS on the UNSW-NB15 data set. 

 Papamartzivanos 

et al. (2018) 

 

Ren et al., 

(2019) 

 

Swami et 

al. (2020) 

 

Tama et 

al. (2020) 

 

 Serial MCS 

(GA + DT) 

 

Parallel 

MCS 

(RF) 

 

Parallel 

MCS 

(Voting) 

 

Hybrid 

MCS 

(RF + 

Bagging) 

 

Normal 0.9739 0.9670 - - 

Fuzzers 0.6442 0.3810 - - 

Analysis 0.2045 0.0610 - - 

Backdoors 0.6732 0.4030 - - 

DoS 0.1429 0.4610 - - 

Exploits 0.7622 0.6630 - - 

Generics 0.8137 0.9690 - - 

Reconnaisance 0.4607 0.8200 - - 

Shellcode 0.3639 0.7800 - - 

Worms 0.1818 0.7950 - - 

Accuracy 0.8433 0.9280 0.8929 0.9245 

 



51 
 

Table 2.9 Prior works used MCS on the CICIDS2017 data set. 

 

Yulianto 

et al. 

(2019) 

 

Swami 

et al. 

(2020) 

 

Ferrag et al. 

(2020) 

 

Azzaoui et 

al. (2020) 

 

 

Serial 

MCS 

(AdaBoost 

+ EFS + 

SMOTE) 

 

Parallel 

MCS 

(Voting 

-RF, k-

NN, and 

MLP) 

 

Parallel 

MCS 

(RF) 

 

Hybrid 

MCS 

(REP 

Tree, 

Jrip, 

Random 

Forest) 

 

Hybrid 

MCS 

(Random 

Forest + k-

Nearest 

Neighbour) 

 

BENIGN / 

Normal 

- - 0.9812 0.9886 - 

Bot - - 0.4968 0.4647 - 

DDoS - - 0.9982 0.9988 0.9996 

DoS GoldenEye - - 0.6757 0.6757 

0.9990 

DoS Hulk - - 0.9516 0.9678 

DoS 

Slowhttptest  

- - 0.8135 0.9384 

DoS slowloris - - 0.9376 0.9776 

FTP-Patator - - 0.9973 0.9963 - 

Heartbleed - - 1.0000 1.0000 - 

Infiltration - - 0.8333 1.0000 0.7916 

PortScan - - 0.9988 0.9988 0.9995 

SSH-Patator - - 0.9982 0.9991 - 

WA - Brute 

Force  

- - 0.7041 0.7327 0.9990 

WA - Sql 

Injection  

- - 1.0000 0.5000 0.4625 

WA - XSS - - 0.3750 0.3063 0.9622 

Accuracy 0.8183 0.9777 0.9559 0.9667 0.9921 

 



52 
 

2.5.3 Conclusion 

 

The intrusions, which are the minorities, are the main concern for the 

research of intrusion detection. However, the prior works show that the 

detection rates for the minority intrusion classes are unsatisfactory. Single 

classifiers do not truly mitigate the unbalanced and overlapped problems with a 

low detection rate on minorities. On the other hand, MCS can improve the 

detection rate of minorities, but there is still room for improvement, especially 

for some intrusion classes. Overall, single classifiers produced lower overall 

accuracies than the MCS. 

 

Serial MCS have better properties to mitigate the unbalanced and 

overlapped problems. It is because of the structure of the serial MCS. Serial 

MCS interconnected the classifiers sequentially, and the result from the first 

classifier shall load to the next classifier for further processing will help mitigate 

the unbalanced problem, for instance, by detecting the majority class at the first 

level of the classifier and then loading the data set to the second classifier 

without the interference of the majority class. Serial MCS will also help mitigate 

the problems of the overlapping classes since the majority class is usually the 

main cause of the overlapping because the majority class will usually occupy a 

large area in the feature space and overlap with the minority class. 

 

For parallel MCS, the data set is loaded into several classifiers 

simultaneously, and then all the classifiers may still suffer from the problem of 



53 
 

the unbalanced and overlapped data set. Same for hybrid MCS because it 

contains the properties of the parallel MCS.  

 

For these reasons, it motivated us to use serial MCS for the design of 

our work to mitigate the unbalanced class distribution and overlapping classes 

problems better.  



54 
 

2.6 Evaluation Metrics 

 

Evaluation metrics are an essential part of evaluating the performance 

of a classifier. The metrics measure and summarise a classifier’s quality when 

testing it with new unseen data. The classification problem can be categorised 

into binary, multi-class and multi-labelled classification. This study only 

focused on evaluation metrics for binary and multi-class classification. The 

evaluation metrics were used to select the best learning algorithm for the 

classification problem.  

 

In this study, positive represents normal traffics, and negative represents 

intrusions. Several evaluation metrics derived from the confusion matrix are 

shown in Table 2.10.  

 

Table 2.10 The confusion matrix for a two-class classification problem. 

 Predicted Positive Predicted Negative 

Actual Positive TP FN 

Actual Negative FP TN 

 

• True positive (TP) represents the normal traffic correctly classified. 

• False positive (FP) represents the normal traffic misclassified as intrusion 

traffic. 

• True negative (TN) represents the intrusion traffic correctly classified. 

• False negative (FN) represents the intrusion traffic misclassified as normal 

traffic. 



55 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
        

Accuracy measures the ratio of the total number of correctly classified 

instances and the total number of instances (Salih et al., 2021), as in the equation 

shown above. Many of the reviewed prior works used this metric because it is 

the simplest way to review the overall classifier’s performance. However, 

accuracy is not a suitable evaluation metric for unbalanced data sets. The overall 

accuracy could be high because majority classes are well classified, even though 

the detection rate for minority classes is low (Thabtah et al., 2020). 

 

𝑇𝑃𝑅 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 

True Positive Rate (TPR), also known as Recall, refers to the percentage 

of intrusions correctly detected over the total number of actual intrusions 

(equation shown above) (Salih et al., 2021). TPR can separately review the 

detection rate for both majority and minority classes. For intrusion detection 

studies, minority intrusions are the main concern. Therefore, several prior works 

(Xiang et al., 2008; Dias et al., 2017; Wang et al., 2020; Song et al., 2021) used 

TPR as the evaluation metric. 

 



56 
 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
  

       

False Positive Rate (FPR), also known as False Alarm, refers to the 

percentage of normal traffic classified as intrusions (Salih et al., 2021), as in the 

equation shown above. In intrusion detection, a false positive is an intrusion 

alert caused by normal traffic that is classified wrongly as intrusions. A few prior 

works used FPR as the evaluation metric (Vijayanand et al., 2018; Wang et al., 

2020).  

      

2.6.1 Conclusion 

 

We used True Positive Rate (TPR) and accuracy as the evaluation 

metrics in this study. Both data sets used in this study, especially the 

CICIDS2017 data set, are unbalanced. If the majority class is correctly classified, 

then the accuracy shall be high even though the minority classes are wrongly 

classified. Therefore, accuracy is a less suitable metric for evaluating minority 

classes. Complementing accuracy with True Positive Rate (TPR) to examine 

learning algorithms’ performance is a better option. It is because TPR can 

examine the detection performance for every single data set class. 



57 
 

CHAPTER 3 

 

METHODOLOGY 

 

 

 

Figure 3.1 Overview of the methodology of this study 

This study aims to increase the detection rate for network intrusions, 

especially intrusions that are small in size. Two data sets were involved: 

CICIDS2017 and UNSW-NB15. The methodology is shown in Figure 3. At the 

pre-processing stage, data cleaning was done by replacing the missing and 

infinity value with numerical values. Not only that, Z-score normalisation is 

done to standardise the data set. We evaluated three classification architectures: 

single classifiers, TLC type I and TLC type II. We used the true positive rate 

complement with accuracy to evaluate the performance of the classification 

architectures. 

 

 

 

 



58 
 

3.1 Combining Classes 

 

Table 3.1 The class distribution of CICIDS 2017 before and after 

combining classes. 

Original Class Class 

distribution 

 

Class after 

combined 

Class distribution after 

combined 

BENIGN 80.3000% BENIGN 80.300% 

Bot 0.0690% Bot 0.069% 

DDoS 4.5227% 

DoS 13.449% 

DoS GoldenEye 0.3636% 

DoS Hulk 8.1630% 

DoS Slowhttptest 0.1943% 

DoS slowloris 0.2048% 

Heartbleed 0.0004% 

Infiltration 0.0013% Infiltration 0.001% 

PortScan 5.6144% PortScan 5.614% 

FTP-Patator 0.2804% 

Brute-Force 0.489% 

SSH-Patator 0.2083% 

WA- Brute Force 0.0532% 

Web Attack 0.077% WA- Sql Injection 0.0007% 

WA- XSS 0.0230% 

 

Besides using the original CICIDS 2017 data set, we also created 

another one by combining attack classes to reduce the unbalanced class 

distribution problem. The CICIDS2017 data set is unbalanced, where BENIGN 

occupied 80.3% of the data set. Most intrusion classes occupied less than 1% of 

the data set. Therefore, classes with similar characteristics were combined, as 



59 
 

shown in Table 3.1. Such combining can also be found in Panigrahi et al. (2018) 

study. By doing this, the small intrusion classes can be grouped into larger 

classes. For instance, by combining intrusions similar to DoS, a larger class that 

occupies 13.449% of the data set can be formed. Then, it is easier to detect this 

large class by the learning algorithm and thus, reduce the effect of the 

unbalanced class distribution problem. Classes in UNSW-NB15 were not 

combined. It is because the data set has ten distinct classes that are not possible 

for the combining purpose. 

 

3.2 Pre-processing 

 

Data pre-processing is a technique that transforms the raw data into an 

understandable data format by the machine. The issues for real-world data sets 

are usually incomplete and inconsistent data. Therefore, data pre-processing is 

often used to solve the issues. 

 

The data set utilised in this study contains missing and infinity values. 

In this study, the missing values were replaced with the mean value of the data 

set features. Infinity values were replaced with ten times the maximum values 

of the feature to represent larger values for the learning algorithm to recognise. 

𝑍 =
𝑥−𝜇

𝜎
       , where 

𝑍 = standard score 

𝑥 = observed value 

𝜇 = mean of the sample 

𝜎 = standard deviation of the sample  



60 
 

Z-score normalisation is needed for data preprocessing because real-

world data sets are usually inconsistent due to different units, ranges, or scales 

(Sahu et al., 2020). When the differences in the scales across features of the data 

set occur, it may increase the learning algorithm’s difficulty in forming the 

model. Therefore, we applied Z-score normalisation to standardise the data into 

a specific range [-1, 1]. After applying Z-score normalisation, the features were 

rescaled in the normal distribution form with a mean of zero and a standard 

deviation of one. The data set becomes consistent and more effective for the 

learning algorithm to learn the data after applying Z-score normalisation.  

 

3.3 Classification Architectures 

 

3.2.1 Single Classifiers 

 

Five single classifiers, namely, Decision Tree – Information Gain (ID3), 

Decision Tree – Gini Index (CART), K-Nearest Neighbour(KNN), Neural 

Network – Multi-Layer Perceptron(MLP) and Gaussian Naïve Bayes (GNB), 

were evaluated. It is then proceeded with evaluating the proposed TLCs. 

 



61 
 

3.2.2 Two-level classification (TLC) type I 

 

 

Figure 3.2 The architecture of the Two-level Classification Type I 

Figure 3.2 shows the architecture of TLC type I. Firstly, all the intrusions 

in the data set were combined into a group; this will form a two-class data set 

containing only a normal/benign class and a general intrusion class. A new data 

set was also created by removing the normal class and leaving it with only 

intrusion classes. The two-class data set was loaded into the first-level classifier 

for training, and the intrusions-only data set was loaded into the second-level 

classifier for training. The classification starts from an unseen data set that was 

loaded into the first-level classifier, and then the instances classified as 

intrusions will pass to the second-level classifier. The second-level classifier 

classified the detected intrusions into specific intrusion classes.  

 

Such a design mitigates the unbalanced class distribution and 

overlapping class problems. The first level requires two-class data set where all 

intrusions are combined into one general intrusion class. The combination will 

reduce the overwhelming effect from the normal/benign class (majority class) 



62 
 

on the intrusions classes. The combination will also reduce the overlapping 

classes problem because the characteristics of certain intrusions classes are 

about the same. 

 

3.2.3 Two-level classification (TLC) type II 

 

 

Figure 3.3 The architecture of the Two-level Classification Type II 

Figure 3.3 shows the architecture of TLC type II. The original data set 

was loaded into the first and second-level classifiers for training. The 

classification starts with an unseen data set being loaded into the first-level 

classifier that is good at detecting normal/benign traffic. Then, the instances 

classified as normal/benign shall be passed to the second level. A different 

classifier is used at the second level, which helps detect intrusions (minority 

classes) that are misclassified as normal/benign at the first level. Therefore, the 

classifier at the second level should be good at detecting the minority intrusion 

classes.  

 



63 
 

The TLC type II tackles the majority and minority classes separately by 

having the strong classifier detecting normal/benign traffic at the first level and 

then placing the classifier that is good in detecting minority intrusion classes at 

the second level. Such arrangement will help mitigate the unbalanced class 

distribution and overlapping class problems. The type II architecture also 

mitigates the problem that intrusions (minority classes) are misclassified as 

normal/benign at the first level.  



64 
 

CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Introduction 

 

The experiments were conducted using a workstation running Ubuntu 

16.04 system with an Intel Core i9-7920X 2.90Hz processor and 64GB RAM. 

The data sets involved were UNSW-NB15 and CICIDS2017. There were two 

types of the CICIDS2017 data set: the original data set with 15 classes and the 

other data set rearranged into seven classes. Three architectures were tested: 

single classifiers, TLC type I and TLC type II. 70% of the respective data set 

was used as the training set and 30% as the testing set. It is because the sample 

size of some minorities was small. Therefore, the ratio of 70:30 gives the 

classifier enough sample, particularly minority intrusions, to train and test. 10-

fold cross-validation was applied for the training set to optimise the parameters 

of the classifiers. 

 



65 
 

4.2 10-Fold Cross-Validation for Training Set 

 

 

K-fold cross-validation is the technique to divide the data set into K 

partitions, and it is often used to assess a classification model’s accuracy and 

robustness against unseen data. 10-fold cross-validation was applied to the 

training set (70% of the data set) to optimise the parameters of the classifiers. 

The mean accuracy and the standard deviation of the cross-validation for the 

CICIDS2017 and UNSW-NB15 training sets are shown in Tables 4.1 - 4.3.  

 

Table 4.1 Result of 10-fold cross-validation for the training set of the 

UNSW-NB15 data set. 

Classifiers Means accuracy Standard deviation 

CART 0.9815 0.00026 

ID3 0.9809 0.00032 

KNN 0.9758 0.00025 

MLP 0.9822 0.00048 

GNB 0.8202 0.00432 

 

Table 4.2 Result of 10-fold cross-validation for the training set of the 

CICIDS2017 data set (15 classes). 

Classifiers Means accuracy Standard deviation 

CART 0.9985 0.00011 

ID3 0.9986 0.00011 

KNN 0.9978 0.00010 

MLP 0.9867 0.00077 

GNB 0.2415 0.03028 

 



66 
 

Table 4.3 Result of 10-fold cross-validation for the training set of the 

CICIDS2017 data set (7classes). 

Classifiers Means accuracy Standard deviation 

CART 0.9989 0.00008 

ID3 0.9989 0.00008 

KNN 0.9982 0.00011 

MLP 0.9864 0.00091 

GNB 0.2756 0.00391 

 

Tables 4.1 - 4.3 shows that most single classifiers have good accuracy 

with low standard deviation except GNB for the CICIDS2017 data sets.  



67 
 

4.3 Single Classifiers 

 

Experiments were conducted using single classifiers, i.e., Decision Tree-

information gain (ID3), Decision Tree-Gini Index (CART), Neural Network-

Multi Layer Perceptron (MLP), Gaussian Naïve Bayes (GNB) and K-Nearest 

Neighbours (KNN). The TPR for each class and the overall accuracy of the data 

sets shall be tabulated and discussed. 

 

4.3.1 Single Classifiers for UNSW-NB15 

 

Table 4.4 Result of single classifiers for UNSW-NB15. The numbers in 

bold show the low TPR for certain classes. 

 

CART ID3 KNN MLP GNB 

Normal 0.9978 0.9979 0.9968 0.9947 0.8390 

Analysis 0.0809 0.1096 0.0100 0.0137 0.1930 

Backdoors 0.0744 0.0730 0.0072 0.0029 0.7525 

DoS 0.3426 0.3691 0.2491 0.0361 0.0086 

Exploits 0.7934 0.7665 0.7456 0.9020 0.1898 

Fuzzers 0.5800 0.5124 0.4271 0.5157 0.2260 

Generic 0.9863 0.9865 0.9787 0.9833 0.9340 

Reconnaissance 0.7541 0.7619 0.6177 0.7645 0.1213 

Shellcode 0.5673 0.5673 0.2163 0.3091 0.9912 

Worms 0.4808 0.4615 0.0000 0.1154 0.3846 

Accuracy 0.9816 0.9808 0.9760 0.9777 0.8198 

 



68 
 

From Table 4.4, CART gave the best performance with an overall 

accuracy of 0.9816. Analysis, Backdoors, DoS, Exploits, Fuzzers, 

Reconnaissance, Shellcode and Worms generally showed below-average or low 

detection rates by most single classifiers. Such detection rates were due to the 

unbalanced class distribution of the data set as the learning algorithms tend to 

favour the majority class (Normal), which occupies 87.4% of the data set. Not 

only that, the overlapping class problem, as shown in Figures 2.5 and 2.6, 

contributed to the problem as all the classes were severely overlapped. 

 
 



69 
 

4.3.2 Single Classifiers for CICIDS2017 

 

CICIDS2017 (15 classes) 

 

Table 4.5 Result of single classifiers for the CICIDS2017 data set (15 

classes). The numbers in bold show the low TPR for certain classes. 

 

CART ID3 KNN MLP GNB 

BENIGN 0.9991 0.9992 0.9986 0.9916 0.0836 

Bot 0.8220 0.8034 0.7153 0.3814 0.6356 

DDoS 0.9996 0.9997 0.9990 0.9990 0.9614 

DoS GoldenEye 0.9948 0.9958 0.9929 0.9673 0.8935 

DoS Hulk 0.9989 0.9989 0.9974 0.9421 0.6664 

DoS Slowhttptest 0.9618 0.9630 0.9879 0.9879 0.6297 

DoS Slowloris 0.9914 0.9937 0.9925 0.9885 0.5566 

FTP-Patator 0.9966 0.9979 0.9966 0.9849 0.9954 

Heartbleed 1.0000 1.0000 1.0000 1.0000 1.0000 

Infiltration 0.8182 0.8182 0.1818 0.5455 0.8182 

PortScan 0.9996 0.9997 0.9997 0.9984 0.9888 

SSH-Patator 0.9949 0.9972 0.9796 0.4941 0.9893 

WA - Brute Force 0.7345 0.7677 0.7788 0.1018 0.1018 

WA - Sql Injection 0.3333 0.3333 0.0000 0.0000 1.0000 

WA - XSS 0.3929 0.4082 0.3265 0.0255 0.9031 

Accuracy 0.9986 0.9987 0.9980 0.9859 0.2317 

 

From Table 4.5, ID3 gave the best performance with an accuracy of 

0.9987. Bot, Infiltration, WA – brute force, WA-Sql injection and WA-XSS 



70 
 

showed below-average or low detection rates by most single classifiers. The low 

detection rates were due to the unbalanced class distribution of the data set, as 

the learning algorithms tend to favour the majority class (BENIGN). Not only 

that, the overlapping class problem, as shown in Figures 2.2 and 2.3, contributed 

to the problem as all the classes were severely overlapped. 

 

CICIDS2017 (7 classes)  

Table 4.6 Result of single classifiers for the CICIDS2017 data set (7 

classes). The numbers in bold show the low TPR for certain classes. 

 

CART ID3 KNN MLP GNB 

BENIGN 0.9991 0.9992 0.9986 0.9903 0.1087 

Bot 0.8288 0.7949 0.7153 0.3695 0.6373 

Brute-Force 0.9973 0.9981 0.9899 0.7735 0.6145 

DoS 0.9985 0.9987 0.9978 0.9754 0.6914 

Infiltration 0.9091 0.7273 0.3636 0.1818 1.0000 

PortScan 0.9997 0.9997 0.9997 0.9953 0.9889 

Web Attack 0.9679 0.9740 0.9281 0.0734 0.9098 

Accuracy 0.9989 0.9990 0.9983 0.9864 0.2399 

 

As shown in Table 4.6, ID3 gave the best accuracy of 0.9990. The overall 

accuracy slightly improved compared to the 15-class data set. Good TPRs were 

also obtained after rearranging the classes into bigger groups, except for two 

intrusion classes, Bot and Infiltration. Such improvement was due to the 

grouping of the minority classes into bigger groups, thus mitigating the 

unbalanced class and overlapping problems.  



71 
 

4.3.3 Selecting Single Classifiers for the Proposed TLCs 

 

Experiments were conducted using five single classifiers, i.e., ID3, 

CART, MLP, GNB and KNN, on the data sets. The single classifiers were then 

selected based on their performance to form the proposed TLCs. 

 

 For both proposed TLCs, Classifier #1 should be good at detecting the 

majority class (Normal or BENIGN). On the other hand, Classifier #2 should 

be good in detecting the minority classes (Intrusions). Such an arrangement 

mitigates the effect of the unbalanced class distribution from the majority class.  

 

Three top-performing single classifiers were selected for each data set 

to form the proposed TLCs. Table 4.4 shows that ID3, CART, and MLP gave 

the highest TPRs in detecting the majority class (Normal) for the UNSW-NB15 

data set. On the other hand, Tables 4.5 and 4.6 show that ID3, CART, and KNN 

gave the highest TPRs in detecting the majority class (Normal) for the 

CICIDS2017 data sets (15 classes and seven classes). Therefore they were 

qualified as Classifier #1. The selected six classifiers do not have much 

difference in TPR for many of the minority intrusion classes. Therefore, they 

can be used as Classifier #2 as well. 

 



72 
 

4.4 Two-Level Classification (TLC) Type I 

 

The experiments were then conducted using the proposed two-level 

classification Type I. All intrusions were grouped to form a general intrusion 

class at the first level, forming a binary classifier that detected only “Normal” 

and “Intrusions”. The binary classifier then passed the samples classified as 

intrusions to the second-level classifier for further classification. The second 

level classifier classified the detected intrusions into specific intrusion classes. 

Such a design was attempted to mitigate the unbalanced class distribution and 

overlapping class problems. 

 



73 
 

4.4.1 TLC Type I for UNSW-NB15 

 

Table 4.7 Result of TLC type I for the UNSW-NB15 data set. The 

numbers in bold show the low TPR for certain classes. 

 

CART + 

ID3 

  

CART 

+ MLP 

 

ID3 + 

CART 

  

ID3 + 

MLP 

 

MLP + 

CART 

 

MLP + 

ID3 

 

Normal 0.9973 0.9971 0.9970 0.9974 0.9910 0.9910 

Analysis 0.1096 0.1108 0.1096 0.0772 0.1196 0.1370 

Backdoors 0.0730 0.0043 0.0801 0.0043 0.0801 0.0773 

DoS 0.3746 0.0216 0.3282 0.0210 0.3276 0.3759 

Exploits 0.7584 0.8929 0.7635 0.8941 0.7713 0.7666 

Fuzzers 0.5935 0.6079 0.5554 0.5859 0.6191 0.6195 

Generic 0.9870 0.9815 0.9861 0.9816 0.9863 0.9871 

Reconnaissance 0.7610 0.7798 0.7560 0.7822 0.7464 0.7471 

Shellcode 0.5453 0.4349 0.5806 0.4305 0.5872 0.5607 

Worms 0.4808 0.0962 0.4231 0.0962 0.4231 0.4808 

Accuracy 0.9810 0.9805 0.9801 0.9806 0.9756 0.9759 

 

 

The results of TLC Type I were obtained after applying it to UNSW-

NB15. As shown in Table 4.7, the best performer was CART + ID3, which had 

an accuracy of 0.9810. There were eight classes with average and low detection 

rates (bold numbers) by all the combinations of TLC Type I: Analysis, 

Backdoors, DoS, Exploits, Fuzzers, Reconnaissance, Shellcode and Worms. In 

general, there is no improvement in using TLC type I when compared to the 

single classifiers (Refer to Table 4.4). 



74 
 

4.4.2 TLC Type I for CICIDS2017 

Table 4.8 Result of TLC type I for the CICIDS2017 data set (15 

classes). The numbers in bold show the low TPR for certain classes. 

 

CART 

+ ID3 

  

CART 

+ KNN 

  

ID3 + 

CART 

  

ID3 + 

KNN 

  

KNN + 

CART 

  

KNN 

+ ID3 

  
BENIGN / 

Normal 

  

0.9991 0.9991 0.9991 0.9991 0.9986 0.9986 

Bot 0.8136 0.8136 0.7780 0.7780 0.7169 0.7169 

DDoS 0.9996 0.9992 0.9997 0.9993 0.9994 0.9994 

DoS GoldenEye 0.9958 0.9961 0.9958 0.9968 0.9919 0.9926 

DoS Hulk 0.9987 0.9988 0.9988 0.9989 0.9974 0.9974 

DoS 

Slowhttptest 

  

0.9485 0.9497 0.9612 0.9642 0.9855 0.9873 

DoS slowloris 0.9902 0.9908 0.9937 0.9942 0.9919 0.9914 

FTP-Patator 0.9966 0.9958 0.9975 0.9958 0.9971 0.9962 

Heartbleed 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Infiltration 0.8182 0.5455 0.5455 0.5455 0.1818 0.1818 

PortScan 0.9996 0.9997 0.9996 0.9997 0.9997 0.9997 

SSH-Patator 0.9949 0.9932 0.9960 0.9943 0.9796 0.9796 

WA - Brute 

Force 

  

0.7699 0.7920 0.7699 0.7920 0.7212 0.7212 

WA - Sql 

Injection 

  

0.5000 0.1667 0.3333 0.1667 0.0000 0.1667 

WA - XSS 0.3776 0.3622 0.3265 0.3316 0.3214 0.3418 

Accuracy 0.9986 0.9986 0.9986 0.9986 0.9980 0.9980 

 

The results of TLC Type I were collected after applying it to the CICIDS 

2017 data set (15 classes). As shown in Table 4.8, the best performer was CART 



75 
 

+ ID3, which had an accuracy of 0.9986 and only three minority classes with 

TPR below average. There were three classes with average and low detection 

rates (bold numbers) by all classifiers: WA-Brute Force and WA-Sql Injection. 

There is no improvement in TLC type I compared to the single classifiers (Refer 

to Table 4.5). 

 

Table 4.9 Result of TLC type I for the CICIDS2017 data set (7 classes). 

The numbers in bold show the low TPR for certain classes. 

 

CART 

+ ID3 

  

CART 

+ KNN 

  

ID3 + 

CART 

  

ID3 + 

KNN 

  

KNN + 

CART 

  

KNN 

+ ID3 

  
BENIGN 

/Normal 

  

0.9991 0.9991 0.9991 0.9991 0.9986 0.9986 

Bot 0.8136 0.8119 0.8186 0.8169 0.7153 0.7153 

Brute-

Force 

  

0.9973 0.9957 0.9976 0.9959 0.9901 0.9901 

DoS 0.9985 0.9985 0.9987 0.9988 0.9977 0.9978 

Infiltration 0.8182 0.6364 0.9091 0.7273 0.3636 0.3636 

PortScan 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 

Web Attack 0.9618 0.9388 0.9771 0.9434 0.9327 0.9235 

Accuracy 0.9989 0.9988 0.9989 0.9989 0.9983 0.9983 

 

Results of TLC Type I applied to the CICIDS 2017 (7 classes) were also 

collected, and they are shown in Table 4.9. The best performers were ID3 + 

CART, with an accuracy of 0.9989. There is also no improvement using the 

CICIDS 2017 data set (7 classes) when comparing the two-level classification 

type I to single classifiers overall and each intrusion class (Table 4.6).  



76 
 

4.5 Two-Level Classification (TLC) Type II 

 

 

The experiments were continued with TLC Type II. The first level 

classifier shall detect the majority class – Benign/Normal very well, and the 

samples classified as normal/benign are passed to the second level classifier for 

further classification. Referring to Table 4.4, CART, ID3 and MLP performed 

well on the majority and some minority classes for UNSW-NB15.  Tables 4.5 

and 4.6, on the other hand, showed that CART, ID3 and KNN performed well 

on the majority and some minority classes for CICIDS2017. Combining these 

single classifiers was thus attempted for TLC Type II. 

 



77 
 

4.5.1 TLC Type II for UNSW-NB15 

 

Table 4.10 Result of TLC type II for UNSW-NB15. The numbers in bold 

show the low TPR for certain classes. 

 

CART + 

ID3 

  

CART + 

MLP 

 

ID3 + 

CART 

  

ID3 + 

MLP 

 

MLP + 

CART 

 

MLP 

+ ID3 

 

Normal 0.9966 0.9941 0.9966 0.9941 0.9941 0.9940 

Analysis 0.0934 0.0809 0.0959 0.1133 0.0710 0.0822 

Backdoors 0.0887 0.0744 0.0987 0.0730 0.0114 0.0114 

DoS 0.3245 0.3430 0.3806 0.3693 0.0389 0.0397 

Exploits 0.8184 0.8008 0.7691 0.7717 0.9118 0.9122 

Fuzzers 0.6584 0.6773 0.6593 0.6439 0.6432 0.6166 

Generic 0.9850 0.9864 0.9859 0.9866 0.9835 0.9836 

Reconnaissance 0.7829 0.7574 0.7698 0.7636 0.7712 0.7714 

Shellcode 0.6799 0.5850 0.5894 0.5717 0.3201 0.3311 

Worms 0.5192 0.4808 0.4808 0.4615 0.1346 0.1154 

Accuracy 0.9817 0.9795 0.9812 0.9788 0.9787 0.9784 

  

Table 4.10 shows that when applying to the UNSW-NB15 data set, TLC 

type II showed a slight overall improvement in accuracy compared to the single 

classifiers (refer to Table 4.4) and better performance than TCL Type I (refer to 

Table 4.7). The best performer was CART + ID3, with an accuracy of 0.9817. 

There is improvement in detecting intrusions. However, certain intrusions 

classes still suffered from low TRP.   

 



78 
 

4.5.2 TLC Type II for CICIDS2017 

Table 4.11 Result of TLC type II for the CICIDS2017 data set (15 classes). 

The numbers in bold show the low TPR for certain classes. 

 

CART 

+ ID3 

  

CART + 

KNN 

  

ID3 + 

CART 

  

ID3 + 

KNN 

  

KNN + 

CART 

  

KNN 

+ ID3 

  
BENIGN / 

Normal 

  

0.9990 0.9984 0.9990 0.9985 0.9984 0.9985 

Bot 0.8661 0.8593 0.8661 0.8475 0.8593 0.8475 

DDoS 0.9997 0.9997 0.9997 0.9997 0.9993 0.9994 

DoS GoldenEye 0.9964 0.9961 0.9968 0.9971 0.9958 0.9968 

DoS Hulk 0.9990 0.9993 0.9990 0.9993 0.9993 0.9993 

DoS 

Slowhttptest 

  

0.9739 0.9903 0.9739 0.9927 0.9909 0.9927 

DoS slowloris 0.9931 0.9931 0.9937 0.9948 0.9925 0.9937 

FTP-Patator 0.9983 0.9979 0.9983 0.9992 0.9979 0.9992 

Heartbleed 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Infiltration 0.8182 0.8182 0.8182 0.8182 0.8182 0.8182 

PortScan 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 

SSH-Patator 0.9972 0.9966 0.9972 0.9972 0.9966 0.9972 

WA - Brute 

Force 

  

0.7345 0.7345 0.7721 0.7677 0.8296 0.8274 

WA - Sql 

Injection 

  

0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 

WA - XSS 0.3980 0.3980 0.4184 0.4082 0.3673 0.3571 

Accuracy 0.9986 0.9982 0.9986 0.9983 0.9982 0.9983 

 

 



79 
 

Table 4.11 shows that applying TLC Type II to CICIDS 2017 (15 

classes) showed no improvement to single classifiers and TLC Type I (Refer to 

Table 4.5 and Table 4.8). The detection rate TPR for minority classes (WA – 

brute force, WA - Sql Injection and WA-XSS) remained average or low. 

 

Table 4.12 Result of TLC type II for the CICIDS2017 data set (7 classes). 

The numbers in bold show the low TPR for certain classes. 

 

CART 

+ ID3 

  

CART 

+ KNN 

  

ID3 + 

CART 

  

ID3 + 

KNN 

  

KNN + 

CART 

  

KNN + 

ID3 

  
BENIGN / 

Normal 

  

0.9990 0.9984 0.9990 0.9985 0.9984 0.9985 

Bot 0.8627 0.8712 0.8627 0.8458 0.8712 0.8458 

Brute-

Force 

  

0.9986 0.9981 0.9986 0.9986 0.9978 0.9983 

DoS 0.9990 0.9993 0.9990 0.9993 0.9993 0.9993 

Infiltration 0.9091 0.9091 0.9091 0.7273 0.9091 0.7273 

PortScan 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 

Web 

Attack 

  

0.9755 0.9771 0.9771 0.9771 0.9740 0.9725 

Accuracy 0.9989 0.9985 0.9990 0.9985 0.9985 0.9985 

 

As shown in Table 4.12, improvement was observed applying TLC Type 

II to the CICIDS 2017 data set (7 classes) compared to single classifiers and 

TLC Type I (refer to Table 4.6 and Table 4.9). It shows that all classes obtained 

detection rates of TPR higher than 0.8. The best performer was CART + ID3, 

with an accuracy of 0.9990. The TPR of all minority classes had been improved 

to 0.8 and above. 



80 
 

4.6 Comparing with the Prior Works 

 

4.6.1 UNSW-NB15 Data Set  

 

Table 4.13. Comparing the proposed approaches and the prior works 

using the UNSW-NB15 data set. The bold numbers show the best 

detection rate for the classes in the data set. 

 

Our 

study 

(TLC 

Type I-

CART 

+ ID3) 

  

Our 

study 

(TLC 

Type II 

-CART 

+ID3)  

Papamartzivan

os et al. (2018) 

Serial MCS 

(GA + DT) 

Ren et al. 

(2019) 

(Parallel 

MCS-

Random 

forest) 

Normal 0.9973 0.9966 0.9739 0.967 

Analysis 0.1096 0.0934 0.6442 0.381 

Backdoors 0.0730 0.0887 0.2045 0.061 

DoS 0.3746 0.3426 0.6732 0.403 

Exploits 0.7584 0.8184 0.1429 0.461 

Fuzzers 0.5935 0.6584 0.7622 0.663 

Generic 0.9870 0.9863 0.8137 0.969 

Reconnaissance 0.7610 0.7829 0.4607 0.820 

Shellcode 0.5453 0.6799 0.3639 0.780 

Worms 0.4808 0.5192 0.1818 0.795 

Accuracy 0.9810 0.9817 0.8433 0.928 

 

The results of the proposed approaches are compared with the best prior 

work utilising MCS with serial and parallel architectures from Table 2.8. There 



81 
 

is no comparison with the prior work in Table 2.8 that used the hybrid 

architecture as the work does not show the detection rate for single classes. As 

shown in Table 4.13, TLC Type II (CART + ID3) outperforms the other 

researchers’ work by obtaining an accuracy of 0.9817. By comparing the 

detection rate of the minority classes between our work and the prior works, our 

work improved the detection rate for the minority classes. Nevertheless, there 

is room for improvement to improve the detection rates for the minority classes. 

 



82 
 

4.5.2 CICIDS2017 Data Set 

 

Table 4.14. Comparing our study and the prior work on the CICIDS2017 

data set (15 classes). The bold numbers show the best detection rate for 

the classes in the data set. 

 

Our Study 

(TLC Type 

I -CART + 

ID3) 

Our 

Study 

(TLC 

Type II - 

ID3 + 

CART) 

Ferrag 

et al. 

(2020) 

Parall

el 

MCS 

(RF) 

Ferrag et 

al. (2020) 

Hybrid 

MCS (REP 

Tree, Jrip, 

Random 

Forest) 

Azzaoui 

et al. 

(2020) 

Hybrid 

MCS (RF 

+ KNN) 

BENIGN 0.9991 0.9990 0.9812 0.9886 - 

Bot 0.8136 0.8661 0.4968 0.4647 - 

DDoS 0.9996 0.9997 0.9982 0.9988 0.9996 

DoS 

GoldenEye  

0.9958 0.9968 0.6757 0.6757 

0.9990 

DoS Hulk 0.9987 0.9990 0.9516 0.9678 

DoS 

Slowhttptest  

0.9485 0.9739 0.8135 0.9384 

DoS 

Slowloris  

0.9902 0.9937 0.9376 0.9776 

FTP-Patator 0.9966 0.9983 0.9973 0.9963 - 

Heartbleed 1.0000 1.0000 1.0000 1.0000 - 

Infiltration 0.8182 0.8182 0.8333 1.0000 0.7916 

PortScan 0.9996 0.9997 0.9988 0.9988 0.9995 

SSH-Patator 0.9949 0.9972 0.9982 0.9991 - 

WA - Brute 

Force  

0.7699 0.7721 0.7041 0.7327 0.9990 

WA - Sql 

Injection 

  

0.5000 0.3333 1.0000 0.5000 0.4625 

WA - XSS 0.3776 0.4184 0.3750 0.3063 0.9622 



83 
 

Accuracy 0.9986 0.9986 0.9559 0.9667 0.9921 

 

Table 4.14 compares the proposed approaches and the prior works on 

the CICIDS2017 data set (15 classes). The proposed approaches are compared 

with the best prior work utilising MCS with parallel and hybrid architectures 

from Table 2.9. There is no comparison with the prior work in Table 2.9 that 

used the serial architecture as the work does not show the detection rate for 

single classes. The TLC Type II (ID3 + CART) outperformed with an overall 

accuracy of 0.9986. Compared to the prior works, TLC Type II (ID3 + CART) 

improved the detection rate (TPR) for many minority classes. 

 



84 
 

Table 4.15 Comparing our study and the prior work on the CICIDS2017 

data set (7 classes). The bold numbers show the best detection rate for the 

classes in the data set. 

 

Our Study 

(TLC I -

ID3 

+CART) 

Our Study 

(TLC II - 

ID3 + 

CART) 

Gupta et al. (2022) 

XGBoost RF CSE-

IDS 

BENIGN / 

Normal 

 
 

0.9991 0.9990 0.9800 1.0000 0.8600 

Bot 0.8186 0.8627 0.1000 0.0100 0.8300 

Brute-Force 0.9976 0.9986 - - - 

DoS 0.9987 0.9990 0.3500 0.0500 0.9800 

Infiltration 0.9091 0.9091 0.9400 0.8100 0.5000 

PortScan 0.9997 0.9997 0.9900 0.0000 0.9900 

Web Attack 0.9771 0.9771 0.0000 0.0000 0.8100 

Accuracy 0.9989 0.9990 0.7600 0.5700 0.9200 

 

A good performance was also observed using TLC Type II on the 

CICIDS2017 data set (7 classes). Very few researchers used this variant of the 

CICIDS data set. The result obtained in this study is compared with Gupta et al. 

(2022) (Table 4.15). The TCL Type II (ID3 + CART) outperformed the 

researchers’ MCS combinations, including XGBoost, Random Forest and CSE-

IDS - a layered approach built on cost-sensitive deep learning and ensemble 

algorithms (Gupta et al., 2022), in overall accuracy and TPR for five minority 

intrusion classes. 



85 
 

CHAPTER 5 

CONCLUSION AND FUTURE WORKS 

 

The problems of network intrusion data were unbalanced class 

distribution and overlapping classes. These problems have caused classifiers to 

detect the minority intrusion classes ineffectively as classifiers normally favour 

majority classes (usually the normal network traffic).  

 

We proposed two different arrangements for the multiple classifiers 

systems to mitigate the two problems: TLC Type I and Type II. Both TLCs were 

evaluated using CICIDS2017 and UNSW-NB15 data sets. Besides using the 

original CICIDS2017 data set, we combined the data set classes to mitigate the 

two problems further. 

 

The proposed TLC Type II has successfully improved the overall 

detection rate and detection for the minority intrusion classes. The best overall 

accuracy obtained using the UNSW-NB15, and CICIDS2017 data sets was 

98.17% and 99.90% using the TLC combination of CART + ID3 and ID3 + 

CART, respectively. 

 

There is still room for improvement in detecting the minority intrusion 

classes, particularly the UNSW-NB15 data set. Other architectures of MCS are 

considered in future work to improve the detection rates for the minority 

intrusion classes. 



 

REFERENCES 

Abdelmoumin, G. et al. (2022) ‘A Survey on Data-Driven Learning for 

Intelligent Network Intrusion Detection Systems’, Electronics (Switzerland), 

11(2), pp. 1–22. doi: 10.3390/electronics11020213. 

Ahmad, M. et al. (2021) ‘Intrusion detection in internet of things using 

supervised machine learning based on application and transport layer features 

using UNSW-NB15 data-set’, Eurasip Journal on Wireless Communications 

and Networking. Springer International Publishing, 2021(1). doi: 

10.1186/s13638-021-01893-8. 

Ahmad, T. and Aziz, M. N. (2019) ‘Data preprocessing and feature selection for 

machine learning intrusion detection systems’, ICIC Express Letter, 13(2), pp. 

93–101. 

Alrowaily, M., Alenezi, F. and Lu, Z. (2019) Effectiveness of Machine Learning 

Based Intrusion Detection Systems, Lecture Notes in Computer Science 

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes 

in Bioinformatics). Springer International Publishing. doi: 10.1007/978-3-030-

24907-6_21. 

Azzaoui, H. and Boukhamla, A. (2020) ‘Two-Stages Intrusion Detection 

System Based On Hybrid Methods’, in Proceedings of the 10th International 

Conference on Information Systems and Technologies, pp. 1–7. 

Bagui, Sikha et al. (2019) ‘Using machine learning techniques to identify rare 

cyber‐attacks on the UNSW‐NB15 dataset’, Security and Privacy, 2(6), pp. 1–

13. doi: 10.1002/spy2.91. 

Berrar, D. (2018) ‘Bayes’ theorem and naive bayes classifier’, Encyclopedia of 



 

Bioinformatics and Computational Biology: ABC of Bioinformatics, 1–3, pp. 

403–412. doi: 10.1016/B978-0-12-809633-8.20473-1. 

Breiman, L. et al. (2017) Classification and regression trees, Classification and 

Regression Trees. doi: 10.1201/9781315139470. 

Chiba, Z. et al. (2018) ‘A novel architecture combined with optimal parameters 

for back propagation neural networks applied to anomaly network intrusion 

detection’, Computers and Security. Elsevier Ltd, 75, pp. 36–58. doi: 

10.1016/j.cose.2018.01.023. 

Choraś, M. and Pawlicki, M. (2021) ‘Intrusion detection approach based on 

optimised artificial neural network’, Neurocomputing, 452, pp. 705–715. doi: 

10.1016/j.neucom.2020.07.138. 

Cover, T. M. and Hart, P. E. (1967) ‘Nearest Neighbor Pattern Classification’, 

IEEE Transactions on Information Theory. doi: 10.1109/TIT.1967.1053964. 

Das, A., Pramod and Sunitha, B. S. (2022) ‘Anomaly-based Network Intrusion 

Detection using Ensemble Machine Learning Approach’, International Journal 

of Advanced Computer Science and Applications, 13(2), pp. 635–645. doi: 

10.14569/IJACSA.2022.0130275. 

Dias, L. P. et al. (2017) ‘Using artificial neural network in intrusion detection 

systems to computer networks’, 2017 9th Computer Science and Electronic 

Engineering Conference, CEEC 2017 - Proceedings, pp. 145–150. doi: 

10.1109/CEEC.2017.8101615. 

Dixit, M. et al. (2019) ‘Internet traffic detection using naïve bayes and K-

Nearest neighbors (KNN) algorithm’, 2019 International Conference on 



 

Intelligent Computing and Control Systems, ICCS 2019. IEEE, (Iciccs), pp. 

1153–1157. doi: 10.1109/ICCS45141.2019.9065655. 

Ferrag, M. A. et al. (2020) ‘RDTIDS: Rules and decision tree-based intrusion 

detection system for internet-of-things networks’, Future Internet, 12(3), pp. 1–

14. doi: 10.3390/fi12030044. 

Firman, M. et al. (2018) ‘Illiteracy Classification Using K Means-Naïve Bayes 

Algorithm’, 2, pp. 153–158. 

Freund, Y., Schapire, R. and Abe, N. (1999) ‘A short introduction to boosting’, 

Journal-Japanese Society For Artificial Intelligence. JAPANESE SOC 

ARTIFICIAL INTELL, 14(771–780), p. 1612. 

G. Weiss (2004) ‘Mining with rarity: A unifying framework.’, SIGKDD 

Explorations, 6(1), pp. 7–19. doi: 10.1145/1007730.1007734. 

Goodfellow, I., Bengio, Y. and Courville, A. (2016) Adaptive Computation and 

Machine learning, Adaptive Computation and Machine Learning Series. doi: 

10.1016/B978-0-12-391420-0.09987-X. 

Gümüşbaş, D. et al. (2021) ‘A comprehensive survey of databases and deep 

learning methods for cybersecurity and intrusion detection systems’, IEEE 

Systems Journal, 15(2), pp. 1717–1731. doi: 10.1109/JSYST.2020.2992966. 

Gupta, N., Jindal, V. and Bedi, P. (2022) ‘CSE-IDS: Using cost-sensitive deep 

learning and ensemble algorithms to handle class imbalance in network-based 

intrusion detection systems’, Computers and Security. Elsevier Ltd, 112, p. 

102499. doi: 10.1016/j.cose.2021.102499. 

Halimaa, A. and Sundarakantham, K. (2019) ‘Machine learning based intrusion 



 

detection system’, in 2019 3rd International conference on trends in electronics 

and informatics (ICOEI), pp. 916–920. 

Hornik, K., Stinchcombe, M. and White, H. (1989) ‘Multilayer feedforward 

networks are universal approximators’, Neural Networks. doi: 10.1016/0893-

6080(89)90020-8. 

Jyothsna, V. and Prasad, V. V. R. (2011) ‘A Review of Anomaly based 

IntrusionDetection Systems’, 28(7), pp. 26–35. 

Karoriya, M. T. S. B. and Gogate, G. (2022) ‘A Review of Intrusion Detection 

Systems’. 

Keller, J. M. and Gray, M. R. (1985) ‘A Fuzzy K-Nearest Neighbor Algorithm’, 

IEEE Transactions on Systems, Man and Cybernetics, SMC-15(4), pp. 580–585. 

doi: 10.1109/TSMC.1985.6313426. 

Khammassi, C. and Krichen, S. (2017) ‘A GA-LR wrapper approach for feature 

selection in network intrusion detection’, Computers and Security. Elsevier Ltd, 

70, pp. 255–277. doi: 10.1016/j.cose.2017.06.005. 

Kim, E., Kim, W. and Lee, Y. (2002) ‘Combination of multiple classifiers for 

the customer ’ s purchase behavior prediction’, 34, pp. 167–175. 

Krishna, K. V., Swathi, K. and Rao, B. B. (2020) ‘A Novel Framework for NIDS 

through Fast kNN Classifier on CICIDS2017 Dataset’, (January). doi: 

10.35940/ijrte.E6580.018520. 

Kumar, V. (2012) ‘Signature Based Intrusion Detection System Using SNORT’, 

International Journal of Computer Applications & Information Technology - 

IJCAIT. 



 

Kumar, Vinay and Kumar, Vinod (2013) ‘Intrusion Detection using Data Mining 

Techniques : A Study through Different Approach’, International Journal of 

Applied Science & Technology Research Excellence, 3(4). 

Kurniabudi et al. (2020) ‘CICIDS-2017 Dataset Feature Analysis With 

Information Gain for Anomaly Detection’, IEEE Access, 8, pp. 132911–132921. 

doi: 10.1109/access.2020.3009843. 

Lappas, T. and Pelechrinis, K. (2007) ‘Data Mining Techniques for ( Network ) 

Intrusion Detection Systems’, Department of Computer Science and 

Engineering UC Riverside, Riverside CA, 92521. 

Liao, H. et al. (2013) ‘Intrusion detection system : A comprehensive review’, 

Journal of Network and Computer Applications. Elsevier, 36(1), pp. 16–24. doi: 

10.1016/j.jnca.2012.09.004. 

Liao, H. J. et al. (2013) ‘Intrusion detection system: A comprehensive review’, 

Journal of Network and Computer Applications. doi: 

10.1016/j.jnca.2012.09.004. 

Mohandes, M., Deriche, M. and Aliyu, S. (2018) ‘Classifiers Combination 

Techniques : A Comprehensive Review’, 3536(c), pp. 1–14. doi: 

10.1109/ACCESS.2018.2813079. 

Moustafa, N. and Slay, J. (2015) ‘UNSW-NB15: A comprehensive data set for 

network intrusion detection systems (UNSW-NB15 network data set)’, 2015 

Military Communications and Information Systems Conference, MilCIS 2015 - 

Proceedings, (November). doi: 10.1109/MilCIS.2015.7348942. 

Moustafa, N. and Slay, J. (2016) ‘The evaluation of Network Anomaly 



 

Detection Systems: Statistical analysis of the UNSW-NB15 data set and the 

comparison with the KDD99 data set’, Information Security Journal, 25(1–3), 

pp. 18–31. doi: 10.1080/19393555.2015.1125974. 

Moustafa, N. and Slay, J. (2017) ‘The significant features of the UNSW-NB15 

and the KDD99 data sets for Network Intrusion Detection Systems’, 

Proceedings - 2015 4th International Workshop on Building Analysis Datasets 

and Gathering Experience Returns for Security, BADGERS 2015. IEEE, pp. 25–

31. doi: 10.1109/BADGERS.2015.14. 

MyCERT : Incident Statistics - Malaysia Botnet Drones and Malware Infection 

2020 (no date) Mycert.org.my. 

Otoum, Y., Liu, D. and Nayak, A. (2022) ‘DL-IDS: a deep learning–based 

intrusion detection framework for securing IoT’, Transactions on Emerging 

Telecommunications Technologies, 33(3). doi: 10.1002/ett.3803. 

Panigrahi, R. et al. (2021) ‘A consolidated decision tree-based intrusion 

detection system for binary and multiclass imbalanced datasets’, Mathematics, 

9(7). doi: 10.3390/math9070751. 

Panigrahi, R. and Borah, S. (2018) ‘A detailed analysis of CICIDS2017 dataset 

for designing Intrusion Detection Systems’, International Journal of 

Engineering and Technology(UAE), 7(3.24 Special Issue  24), pp. 479–482. 

Papamartzivanos, D., Gómez Mármol, F. and Kambourakis, G. (2018) 

‘Dendron: Genetic trees driven rule induction for network intrusion detection 

systems’, Future Generation Computer Systems. Elsevier B.V., 79, pp. 558–574. 

doi: 10.1016/j.future.2017.09.056. 



 

Podolak, I. T. (2008) ‘Hierarchical classifier with overlapping class groups’, 

Expert Systems with Applications, 34(1), pp. 673–682. doi: 

10.1016/j.eswa.2006.10.007. 

Quinlan, J. R. (1986) ‘Induction of decision trees’, Machine Learning, 1(1), pp. 

81–106. doi: 10.1007/bf00116251. 

Rahman, A. F. R. and Fairhurst, M. C. (2003) ‘Multiple classifier decision 

combination strategies for character recognition: A review’, International 

Journal on Document Analysis and Recognition, 5(4), pp. 166–194. doi: 

10.1007/s10032-002-0090-8. 

Ren, J. et al. (2019) ‘Building an Effective Intrusion Detection System by Using 

Hybrid Data Optimization Based on Machine Learning Algorithms’, Security 

and Communication Networks, 2019. doi: 10.1155/2019/7130868. 

Rosay, A., Carlier, F. and Leroux, P. (2020) ‘MLP4NIDS: An Efficient MLP-

Based Network Intrusion Detection for CICIDS2017 Dataset’, 1, pp. 240–254. 

doi: 10.1007/978-3-030-45778-5_16. 

Saad Assiri, A. (2021) ‘Efficient Training of Multi-Layer Neural Networks to 

Achieve Faster Validation’, Computer Systems Science and Engineering, 36(3), 

pp. 435–450. doi: 10.32604/csse.2021.014894. 

Saba, T. et al. (2022) ‘Anomaly-based intrusion detection system for IoT 

networks through deep learning model’, Computers and Electrical Engineering. 

Elsevier Ltd, 99(February), p. 107810. doi: 

10.1016/j.compeleceng.2022.107810. 

Sahu, A. et al. (2020) Data Processing and Model Selection for Machine 



 

Learning-based Network Intrusion Detection; Data Processing and Model 

Selection for Machine Learning-based Network Intrusion Detection. 

Salih, A. A. and Abdulazeez, A. M. (2021) ‘Evaluation of classification 

algorithms for intrusion detection system: A review’, Journal of Soft Computing 

and Data Mining, 2(1), pp. 31–40. 

Samrin, R. (2017) ‘Review on Anomaly based Network Intrusion Detection 

System’, Department of Computer Science and Engineering UC Riverside, 

Riverside CA, 92521. 

Samrin, R. and Vasumathi, D. (2018) ‘Review on anomaly based network 

intrusion detection system’, International Conference on Electrical, Electronics, 

Communication Computer Technologies and Optimization Techniques, 

ICEECCOT 2017, 2018-Janua, pp. 141–147. doi: 

10.1109/ICEECCOT.2017.8284655. 

Saranyaa, T. et al. (2020) ‘Performance Analysis of Machine Learning 

Algorithms in Intrusion Detection System : A Review’, Procedia Computer 

Science, 171(2020), pp. 1251–1260. doi: 10.1016/j.procs.2020.04.133. 

Sarkar, M. and Leong, T. Y. (2000) ‘Application of K-nearest neighbors 

algorithm on breast cancer diagnosis problem.’, Proceedings / AMIA ... Annual 

Symposium. AMIA Symposium, pp. 759–763. 

Sharafaldin, I., Lashkari, A. H. and Ghorbani, A. A. (2018) ‘Toward generating 

a new intrusion detection dataset and intrusion traffic characterization’, ICISSP 

2018 - Proceedings of the 4th International Conference on Information Systems 

Security and Privacy, 2018-Janua(Cic), pp. 108–116. doi: 

10.5220/0006639801080116. 



 

Sharma, Siddharth, Sharma, Simone and Anidhya, A. (2020) ‘Understanding 

Activation Functions in Neural Networks’, International Journal of 

Engineering Applied Sciences and Technology, 4(12), pp. 310–316. 

Singh, S. (2014) ‘COMPARATIVE STUDY ID3 , CART AND C4 . 5 

DECISION TREE ALGORITHM : A SURVEY’, 27(27), pp. 97–103. 

Sivatha, S. S., Geetha, S. and Kannan, A. (2012) ‘Expert Systems with 

Applications Decision tree based light weight intrusion detection using a 

wrapper approach’, Expert Systems With Applications. Elsevier Ltd, 39(1), pp. 

129–141. doi: 10.1016/j.eswa.2011.06.013. 

Song, C. et al. (2021) ‘Intrusion detection based on hybrid classifiers for smart 

grid ✩’, Computers and Electrical Engineering. Elsevier Ltd, 93(May), p. 

107212. doi: 10.1016/j.compeleceng.2021.107212. 

Swami, R., Dave, M. and Ranga, V. (2020) ‘Voting-based intrusion detection 

framework for securing software-defined networks’, Concurrency 

Computation , 32(24), pp. 1–16. doi: 10.1002/cpe.5927. 

Tama, B. A. et al. (2020) ‘An enhanced anomaly detection in web traffic using 

a stack of classifier ensemble’, IEEE Access, 8, pp. 24120–24134. doi: 

10.1109/ACCESS.2020.2969428. 

Thabtah, F. et al. (2020) ‘Data imbalance in classification: Experimental 

evaluation’, Information Sciences. Elsevier Inc., 513, pp. 429–441. doi: 

10.1016/j.ins.2019.11.004. 

Tharewal, S. et al. (2022) ‘Intrusion Detection System for Industrial Internet of 

Things Based on Deep Reinforcement Learning’, Wireless Communications and 



 

Mobile Computing, 2022. doi: 10.1155/2022/9023719. 

Tsai, C. F. et al. (2009) ‘Intrusion detection by machine learning: A review’, 

Expert Systems with Applications. Elsevier Ltd, 36(10), pp. 11994–12000. doi: 

10.1016/j.eswa.2009.05.029. 

Vijayanand, R., Devaraj, D. and Kannapiran, B. (2018) ‘Intrusion detection 

system for wireless mesh network using multiple support vector machine 

classifiers with genetic-algorithm-based feature selection’, Computers and 

Security. Elsevier Ltd, 77, pp. 304–314. doi: 10.1016/j.cose.2018.04.010. 

Wang, B. et al. (2020) ‘A deep hierarchical network for packet-level malicious 

traffic detection’, IEEE Access, 8, pp. 201728–201740. doi: 

10.1109/ACCESS.2020.3035967. 

Wang, W. et al. (2022) ‘Representation learning-based network intrusion 

detection system by capturing explicit and implicit feature interactions’, 

Computers and Security. Elsevier Ltd, 112, p. 102537. doi: 

10.1016/j.cose.2021.102537. 

Woźniak, M., Graña, M. and Corchado, E. (2014) ‘A survey of multiple 

classifier systems as hybrid systems’, Information Fusion, 16(1), pp. 3–17. doi: 

10.1016/j.inffus.2013.04.006. 

Xiang, C., Yong, P. C. and Meng, L. S. (2008) ‘Design of multiple-level hybrid 

classifier for intrusion detection system using Bayesian clustering and decision 

trees’, Pattern Recognition Letters, 29(7), pp. 918–924. doi: 

10.1016/j.patrec.2008.01.008. 

Yulianto, A., Sukarno, P. and Suwastika, N. A. (2019) ‘Improving AdaBoost-



 

based Intrusion Detection System (IDS) Performance on CIC IDS 2017 Dataset’, 

Journal of Physics: Conference Series, 1192(1). doi: 10.1088/1742-

6596/1192/1/012018. 

Zhang, Y. et al. (2019) ‘Network Intrusion Detection : Based on Deep 

Hierarchical Network and Original Flow Data’, IEEE Access. IEEE, 7, pp. 

37004–37016. doi: 10.1109/ACCESS.2019.2905041. 

Zoghi, Z. and Serpen, G. (2022) ‘Ensemble Classifier Design Tuned to Dataset 

Characteristics for Network Intrusion Detection’. 

 

 

 

 

 

 

 

 



 

List of Publication 

 

 

(a) Ho, Y.B., Yap, W.S. and Khor, K.C. (2022). ‘Mitigating Unbalanced and 

Overlapping Class Problems of Large Network Intrusion Data Using a 

Two-Level Classifier Technique’. Turkish Journal of Electrical 

Engineering & Computer Sciences. (Submitted for journal 

consideration) 

 

(b) Ho, Y. B., Yap, W. S. and Khor, K. C. (2021) ‘The Effect of Sampling 

Methods on the CICIDS2017 Network Intrusion Data Set’, IT 

Convergence and Security. Singapore: Springer Singapore, pp. 33–41. doi: 

10.1007/978-981-16-4118-3_4. 

 

 


	(four spaces from top margin)
	40313036b8a231ea27ad84e67f49a6e6fc6f85dcbe8f339eafb0662f7748961b.pdf
	f41e2b9f968694b2249bec2664ce59f0bff951bd0ef9e8a26cf3be2d3ac3b8ed.pdf
	(four spaces from top margin)

	(four spaces from top margin)

