
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Development of an RTOS for the 5-Stage Pipeline RISC32 Microprocessor

By

Er Pei Qing

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JANUARY 2022

Bachelor of Information Technology (Honours) Computer Engineering i

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Bachelor of Information Technology (Honours) Computer Engineering ii

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Report Status Declaration Form

REPORT STATUS DECLARATION FORM

 Title: The Development of an RTOS for the 5-Stage Pipeline RISC32 Microprocessor

Academic Session: JAN 2022

 I ER PEI QING

__

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 No 9, Jalan 27, Taman Kota Paloh

 86600, Paloh, Kluang, Johor Chang Jing Jing

 __________________________ Supervisor’s name

 Date: _____15/4/2022________________ Date: ___22/4/2022_________

Bachelor of Information Technology (Honours) Computer Engineering i

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 FYP THESIS SUBMISSION FORM

FACULTY OF INFORMATION AND COMMUNICATION

TECHNOLOGY

UNIVERSITY TUNKU ABDUL RAHMAN

Date: 21/04/2022

SUBMISSION OF FINAL YEAR PROJECT

It is hereby certified that Er Pei Qing (ID No: 18ACB04358) has completed this final year

project entitled “The Development of an RTOS for the 5-Stage Pipeline RISC32

Microprocessor” under the supervision of Ts Dr. Chang Jing Jing (Supervisor) from the

faculty of Information and Communication Technology (FICT).

I understand that University will upload softcopy of my final year project in pdf format into

UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

 (Er Pei Qing)

Bachelor of Information Technology (Honours) Computer Engineering i

Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “The Development of an RTOS for the 5-Stage Pipeline

RISC32 Microprocessor” is my own work except as cited in the references. The report has

not been accepted for any degree and is not being submitted concurrently in candidature for

any degree or other award.

Signature : _________________________

Name : _______Er Pei Qing_________

Date : ______14/4/2022____________

Bachelor of Information Technology (Honours) Computer Engineering ii

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Mr. Mok Kai

Ming who has given me this bright opportunity to engage in RISC32 RTOS development

project. It is my first step to establish a career in RTOS development. A million thanks to you.

To a very special person in my life, Teo Sei Hau, for his patience, unconditional support, and

love, and for standing by my side during hard times. Finally, I must say thanks to my parents

and my family for their love, support, and continuous encouragement throughout the course.

Bachelor of Information Technology (Honours) Computer Engineering iii

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

 Real-Time Operating System (RTOS) is a software component that is able to rapidly

switches the tasks, making the user have the impression of running multiple programs

simultaneously on a single processor. An RTOS provides a highly deterministic reaction and

hard real time response to the external events. Because of hard real time response, it is a must

for a system to meet its deadline or an unacceptable damage may occur.

 So, development of an RTOS for RISC32 processor plays an important role to improve

its performance. RISC32 was developed by a group of FICT programmer and the processor is

involved in this project as academic purpose. Up to the current stage, the processor supported

Interrupt Service Routine (ISR) and exception handler. To improve the processor, an RTOS

software code written in C programming language is used to improve the processor

performance. To master the RTOS code, FreeRTOS is used as a reference and guidelines to

assist us in creating an RTOS code for this project. The RTOS code is divided into few

partitions storing in individual file to help the reader to understand the code easily. The code

obtained from FreeRTOS was modified in order to port the processor used in this project.

Therefore, we expect that the processor is able to switch the task rapidly and must meet the

deadline after the implementation of the compiled code.

Bachelor of Information Technology (Honours) Computer Engineering iv

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table of Contents

The Development of an RTOS for the 5-Stage Pipeline RISC32 Microprocessor i

Report Status Declaration Form .. ii

REPORT STATUS DECLARATION FORM .. ii

FYP THESIS SUBMISSION FORM .. i

DECLARATION OF ORIGINALITY ... i

ACKNOWLEDGEMENTS .. ii

ABSTRACT .. iii

Table of Contents .. iv

List of Tables .. vii

List of Figures .. i

List of Abbreviations .. iv

CHAPTER 1: Introduction ... 1

1.1 Background Information .. 1

1.1.1 MIPS .. 1

1.1.2 UART ... 2

1.1.3 RTOS ... 3

1.2 Problem Statement and Motivation .. 4

1.3 Project Scope ... 4

1.4 Project Objective .. 4

1.5 Impact, Significance and Contribution... 5

1.6 Report Organization ... 5

CHAPTER 2: Literature Review ... 6

2.1 RISC32 ... 6

2.1.1 Memory Map .. 6

Bachelor of Information Technology (Honours) Computer Engineering v

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.2 Coprocessor 0 ... 8

2.2 LLVM .. 9

2.3 FreeRTOS .. 9

2.4 RT-Thread ... 11

2.5 Comparison between FreeRTOS and RT-Thread ... 13

CHAPTER 3: Proposed Method / Approach .. 14

3.1 Methodologies and General Work Procedures .. 14

3.2 Analysis of RTOS Architecture and Components ... 14

3.2.1 Analysis of RTOS Behaviour: Multiprogramming vs Multiprocessing 15

3.2.2 Analysis of RTOS Behaviour: Task and Scheduling Algorithm 16

3.2.3 Analysis of RTOS Behaviour: Process Switching ... 17

3.3 Comparison between LLVM and GCC .. 18

3.4 RISC32 Components Involved .. 19

3.5 Exception Handling Registers ... 20

3.5.1 Status Register .. 20

3.5.2 Cause Register .. 21

3.5.3 EPC Register .. 22

3.6 Tools Involved ... 22

3.6.1 LLVM .. 22

3.6.2 Xilinx Vivado ... 23

3.7 Implementation Issues and Challenge .. 23

3.8 Timeline ... 24

3.8.1 Timeline of FYP 1 .. 24

3.8.2 FYP2 Timeline ... 24

Chapter 4 Analysis and Modification of FreeRTOS .. 26

4.1 Analysis of FreeRTOS Architecture ... 26

4.2 Demo Path ... 26

Bachelor of Information Technology (Honours) Computer Engineering vi

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 Source Path .. 27

4.3.1 The include Folder ... 28

4.3.2 The portable Folder .. 28

4.4 FreeRTOS Kernel Architecture and its Usage .. 29

4.5 FreeRTOS Functions and Code Analysis and Modification 30

4.5.1 Source Files of FreeRTOS Core .. 30

4.5.2 Configuring RTOS Scheduler .. 33

4.5.3 Portable Layer .. 35

CHAPTER 5: FreeRTOS Implementation .. 41

5.1 Setup LLVM compiler as Toolchain ... 41

5.2 Compilation results of LLVM ... 41

5.2.1 Testing the LLVM Compilation via UART Communication 41

5.2.2 FreeRTOS Source Code Compilation and Setup ... 43

5.3 FreeRTOS Simulation on RISC32 .. 46

5.3.1 RISC32 Testbench ... 46

5.3.2 FreeRTOS Assembly Code Debugging ... 50

CHAPTER 6: CONCLUSION.. 52

6.1 Conclusion ... 52

6.2 Future Work .. 52

Bibliography .. A

Appendix B – RISC 32 Coprocessor 0 Register ... C

Biweekly Report .. D

Poster .. K

Plagiarism Check Result ... L

FYP2 Checklist .. N

Bachelor of Information Technology (Honours) Computer Engineering vii

Faculty of Information and Communication Technology (Kampar Campus), UTAR

List of Tables

Table 2.5.1 Comparison of FreeRTOS and RT-Thread ... 13

Bachelor of Information Technology (Honours) Computer Engineering i

Faculty of Information and Communication Technology (Kampar Campus), UTAR

List of Figures

Figure 1.1.1 MIPS 5-stage pipeline ... 1

Figure 1.1.2 Two UART communicating with each other[1] .. 2

Figure 1.1.3 RTOS Task State (Yasen.S) .. 3

Figure 2.1.1 Structural View of RISC32 Microarchitecture [2] .. 6

Figure 2.1.2 Virtual to physical memory mapping based on 32-bit MIPS architecture. The

mapped memory segment is mapped to the Memory Management Unit (MMU) while the

cached segment used the cache memory to enhance the data accessing speed[3]. 7

Figure 2.1.3 Memory allocation on kseg0 and kseg1[3] ... 8

Figure 2.1.4 Exception handling registers in Coprocessor 0[4] .. 8

Figure 2.2.2 Internals of LLVM[3] .. 9

Figure 2.3.1 Architecture of FreeRTOS[5] .. 10

Figure 2.4.1 RT-Thread architecture ... 12

Figure 3.2.1 Process Control Block[6] .. 14

Figure 3.3.1 The internals of GCC[3] .. 18

Figure 3.4.1 Task 1 information is stored inside the .heap segment of RISC32 20

Figure 3.5.1 Layout of status register[4] .. 20

Figure 3.5.2 Graphical view of cause register[11] ... 21

Figure 3.5.3 Exception codes[11] .. 21

Figure 3.6.1 Simplified architecture of LLVM of RISC32[3] ... 23

Bachelor of Information Technology (Honours) Computer Engineering ii

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.9.1 Project Progress from Week 1 to Week 5 ... 24

Figure 3.9.2 Project Progress from Week 6 to Week 10 ... 24

Figure 3.9.3 Project Progress from Week 1 to Week 5 ... 24

Figure 3.9.4 Project Progress from Week 6 to Week 10 ... 25

Figure 3.9.5 Project Progress from Week 11 to Week 13 ... 25

Figure 4.1.1 FreeRTOS kernel directory structure[11] .. 26

Figure 4.2.1 Six RISC-V example projects ... 26

Figure 4.3.1 “Source” folder structure [11] ... 27

Figure 4.3.2 Minimal files needed to build real time kernel .. 27

Figure 4.3.3 Header files of FreeRTOS kernel .. 28

Figure 4.3.4 RISC-V uses GCC compiler .. 28

Figure 4.4.1 FreeRTOS Kernel Architecture ... 29

Figure 4.5.1 Example code of task.c .. 30

Figure 4.5.2 Example code of list.c ... 31

Figure 4.5.3 Example codes of queue.c ... 32

Figure 4.5.4 Part 1 settings .. 33

Figure 4.5.5 Mutex Example ... 34

Figure 4.5.6 Part 2 setting .. 34

Figure 4.5.7 Example function prototypes of heap_4.c ... 35

Figure 4.5.8 Example function prototypes defined in portable.h .. 36

Figure 4.5.9 Function definition of xPortStartFirstTask defined in port.c 37

Figure 4.5.10 Difference between RISC32 and RISC-V ... 38

Figure 4.5.11 Example assembly code in portASM.s .. 39

Figure 4.5.12 Difference between RISC-V and RISC32 ISA ... 40

Figure 4.5.13 The functions of memcpy, memset, and strlen defined at string2.h 40

Figure 4.5.14 The files are compiled step by step ... 41

file:///C:/Users/ASUS/Desktop/FYP2_v2.docx%23_Toc101407476
file:///C:/Users/ASUS/Desktop/FYP2_v2.docx%23_Toc101407632

Bachelor of Information Technology (Honours) Computer Engineering iii

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.1 Source code to be implemented ... 42

Figure 5.2.2 Assembly code of testing_llvm.c .. 42

Figure 5.2.3 The result of testing_llvm.c via UART ... 43

Figure 5.2.4 Queue is created and the tasks created are inserted into queue 44

Figure 5.2.5 The task will be executed in prvQueueReceiveTask() .. 44

Figure 5.2.6 Part of assembly codes generated .. 45

Figure 5.3.1 The flow of the program leading to infinite looping ... 50

Figure 5.3.2 The result of FreeRTOS simulation on RISC32.. 51

file:///C:/Users/ASUS/Desktop/FYP2_v2.docx%23_Toc101407657

Bachelor of Information Technology (Honours) Computer Engineering iv

Faculty of Information and Communication Technology (Kampar Campus), UTAR

List of Abbreviations

API Application Programming Interface

BIOS Basic Input/Output System

BRK Program Break Address

CISC Complex Instruction Set Computer

FPGA Field Programmable Gate Array

GCC GNU compiler collection

GPIO General Purpose Input/Output

ID Instruction Decode

IDE Integrated Development Environment

IF Instruction Fetch

I/O Input/Output

IOT Internet Of Things

IR Immediate Representation

IAR
Ingenjörsfirman Anders Rundgren (Anders Rundgren Engineering

Company)

MEM Memory

MEMCPY Copy Memory Block

MEMSET Set Block Values

MIPS Microprocessor without Interlocked Pipeline Stages

MTC0 Move to coprocessor 0

MFC0 Move from coprocessor 0

OS Operating System

PC Program Counter

RAM random access memory

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RTOS Real Time Operating System

SBRK Short for Program Break Address

UART Universal Asynchronous Receiver and Transmitter

Bachelor of Information Technology (Honours) Computer Engineering 1

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1: Introduction

1.1 Background Information

A computer consists of several components. Among the components, the main components

are the processor and I/O devices. A processor performance’s maybe robust, but without an

interactive interface with the user, the processor might not be fully utilized. The I/O devices

act as the interactive interface between the user and the processor. The interconnect between

I/O devices and the processor would be the bus system.

1.1.1 MIPS

MIPS is known as Microprocessor without Interlocked Pipeline Stage, which is based on RISC

architecture developed by MIPS technologies, previously known as MIPS Computer Systems.

RISC processor supports simple instruction set compared to CISC[1]. RISC architecture

emphasizes on using register rather than memory. Instead of using Intel 80x86, MIPS is used

because it has a simple design and yet high performance as embedded processor. It also has

large market for embedded app. After years of development, MIPS architecture nowadays can

support 64-bit addressing and operation and high-performance floating point making it popular

in the embedded systems implementation such as router, game machine and so on. The

instruction execution is broken by the operation of MIPS processor into multiple small

independent stages (Integrated Device Technology. Inc, 1994, pg1-2). The word “stages”

implies the datapath resources at each stage.

Figure 1.1.1 MIPS 5-stage pipeline

Bachelor of Information Technology (Honours) Computer Engineering 2

Faculty of Information and Communication Technology (Kampar Campus), UTAR

From Figure 1.1.1, the execution of an instruction is done in 5 basic stages including:

• IF: Instruction fetch and update PC

• ID: Instruction decode and register fetch

• EX: Execute R-type, calculate memory address

• MEM: Read data from memory or write data to memory

• WB: Write the result data into register file

1.1.2 UART

 UART stands for Universal Asynchronous Receiver/Transmitter, it is used for

asynchronous serial communication of data over peripheral device serial port. Most embedded

systems use UART for data communication as it is a hardware communication protocol that

only uses 2 wires for transmitting end (TX) and receiving end (RX). Figure 1.1.2 shows that

there are 2 UART communicating with each other.

Figure 1.1.2 Two UART communicating with each other[2]

Bachelor of Information Technology (Honours) Computer Engineering 3

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.1.3 RTOS

Real Time Operating System is an operating system intended to serve real time applications. It

is a software component that rapidly switches between tasks, make the user have an impression

that multiple programs are executing simultaneously on a single processor. Operating system

consists of many different parts such as file system, I/O, memory allocation, network, and

scheduler. RTOS provides a hard real time response and a highly deterministic reaction to

external event. Hard real time is a system that must always meet all deadlines or the system

will fail if the deadline is missed. RTOS can be time-sharing or event-driven. Time-sharing

system switch the task based on the timer interrupt while event-driven system switches the task

according to the task priority. The value of a real-time operating system depends on how fast

it can respond compared to the amount of work it can perform in given period of time. Most

RTOS is using a pre-emptive algorithm. A basic RTOS has 3 states which the task might be

assigned.

Figure 1.1.3 RTOS Task State (Yasen.S)

From Figure 1.1.3, a RTOS task usually has one main state such as:

• Ready: The task is ready to be executed by processor but not yet occupy the

processor.

• Running: The task is currently executed by the processor.

Bachelor of Information Technology (Honours) Computer Engineering 4

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Blocked: When the task is making an I/O request, the task will go to blocked state

until the event it is waiting occurs.

1.2 Problem Statement and Motivation

 So far, a MIPS-ISA compatible RISC32 processor had been developed. With the

peripheral interface to it, firmware is also built to test out the customizability of the RISC32

processor. However, the backend of RISC32 processor is not completed yet. Despite RISC32

processor already has Interrupt Service Routine and the exception handler, but the operating

system still needs some improvement. To guarantee the response time and the deterministic

behaviour of RISC32, a project is initiated to develop the Real Time Operating System.

1.3 Project Scope

 The project scope of the project mainly concentrates on using an open source RTOS,

FreeRTOS to perform multitasking and enable guaranteed response time. In fact, RTOS is an

embedded software as it interfaces with the hardware and dealing with numerous

simultaneously interrupts as well as scheduling concurrent task. To achieve the goal, the code

provided will be port over into the RTOS chosen. To make sure llvm compiler supports some

special function library which is not shown in the file developed in the previous work, we

convert the extra instruction and add it into that file. Therefore, a multitasking feature of

processor will be developed at the end the project.

1.4 Project Objective

The following are the objectives which are set for the project:

• Analyse the open source RTOS architecture and components.

• Develop a suitable RTOS for the RISC32 architecture which is compilable by LLVM

compiler.

• LLVM setup and RTOS compilation and debugging. By compiling the RTOS into

MIPS assembly instruction, the LLVM compiler can readjust the address.

• Simulate the RTOS in RISC32.

Bachelor of Information Technology (Honours) Computer Engineering 5

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.5 Impact, Significance and Contribution

 With the assisting of RTOS for RISC32, the processor can interleave many periodic

tasks in an easy way. As RTOS also supports priority-based scheduling, low priority tasks can

be scheduled round-robin, interrupted at a specified time interval while high priority task will

pre-empt those low priority tasks. The scheduling algorithm used is “First Come First Serve”

scheduling. So, RTOS will simplify the software and the improve the predictability of the

application. By having this contribution, we can utilize the processor more wisely.

1.6 Report Organization

The details of this project are shown in the following chapters.

• Chapter 1 : Introduction. Related information is included to help the reader to

understand easily and give a basic concept about the project. Problem statement, project

scope and its objective are discussed in this chapter.

• Chapter 2 : Literature Review. History of RTOS and its related information are

discussed. Knowledge about the open source code used will also be discussed.

• Chapter 3 : Methodology. This chapter discuss about the procedure of the project and

the project’s timeline.

• Chapter 4 : Analysis and Modification of FreeRTOS

• Chapter 5: FreeRTOS Implementation

• Chapter 6: Conclusion and Future Work.

Bachelor of Information Technology (Honours) Computer Engineering 6

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2: Literature Review

2.1 RISC32

 RISC32[3] is a MIPS Instruction Set Architecture (ISA) compatible 5-stage pipeline

32-bit IoT processor. It decodes and executes MIPS instruction in 5 stages which are Instruction

Fetch (IF), Instruction Decode (ID), Execute (EX), Read/Write data from/to Memory (MEM),

and Write Back (WB). The word “Stages” means the datapath resources at each stage. Figure

2.1.1 shows the structural view of RISC32 microarchitecture.

Figure 2.1.1 Structural View of RISC32 Microarchitecture [4]

 From Figure 2.1.1, RISC32 has a Coprocessor 0 (CP0) which is providing some

necessary functions to support Operating System such as monitoring hardware interrupt caused

by I/O controller, and software exceptions[4]. Software exceptions are abnormal events that

occur after executing a software program such as illegal instructions and arithmetic overflow.

Besides, RISC32 is integrated with I/O controllers like UART, ADC, SPI, and GPIO to provide

an interface for IoT applications. These I/O controllers are used to interact with external devices

like sensors, wireless module, printer, and so on.

2.1.1 Memory Map

 RISC32 Memory can be defined as a large and one-dimensional array with 32-bit

address, it can support up to 4GB memory space. The Physical Memory of RISC32 is the actual

size of the memory to store or access the instruction and operand which include Flash Memory,

Data and Stack RAM, boot RAM, and I/O registers[3]. The Virtual Memory is the logical view

of the address space. It is useful for planning of distribution of the various address segments

Bachelor of Information Technology (Honours) Computer Engineering 7

Faculty of Information and Communication Technology (Kampar Campus), UTAR

throughout RISC32 address space for programmer’s use. Figure 2.1.2 shows the virtual to

physical memory mapping based on MIPS32 architecture.

Figure 2.1.2 Virtual to physical memory mapping based on 32-bit MIPS architecture.

The mapped memory segment is mapped to the Memory Management Unit (MMU)

while the cached segment used the cache memory to enhance the data accessing

speed[3].

 From Figure 2.1.2, there are 5 segments distributing in virtual memory which are kernel

user segment (kuseg), kernel segment 0 (kseg0), kernel segment 1 (kseg1), kernel segment 2

(kseg2), and kernel segment 3 (kseg3). kuseg, kseg2, and kseg3 are mapped segment and they

should not be used by the processor when there is no Memory Management Unit (MMU)

because MMU takes the responsibility of the translation of virtual addresses to physical

addresses. Therefore, only kseg0 and kseg1 are available for the implementation. From Figure

2.1.2, kseg0 and kseg1 share the same physical addresses but different virtual addresses if

kseg0 is not accessed through the cache. Figure 2.1.3 shows the memory allocation on kseg0

and kseg1.

Bachelor of Information Technology (Honours) Computer Engineering 8

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.1.3 Memory allocation on kseg0 and kseg1[3]

2.1.2 Coprocessor 0

 MIPS has 2 Coprocessors which are Coprocessor 0 (c0) and Coprocessor 1 (c1). In this

project, only Coprocessor 0 will be used as it handles the exceptions and stores the information

of the corresponding exception event. Figure 2.1.4 shows the relevant exception handling

registers in Coprocessor 0. Further details about the exception handling registers will be

discussed in Chapter 3.

Figure 2.1.4 Exception handling registers in Coprocessor 0[5]

Bachelor of Information Technology (Honours) Computer Engineering 9

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.2 LLVM

 LLVM has a series of modularized compiler components and tool chains while GCC

is a static program language compiler for the GNU and Linux systems. Unlike GCC, LLVM is

not a compiler for any programming language, but it is a framework to generate object code

from any programming language source code.

Figure 2.2.1 Internals of LLVM[4]

 From Figure 2.2.2, the LLVM internals is known as three-phase design as it consists of

3 main components which are frontend, optimizer, and backend. The frontend takes the

responsibility of parsing the source codes such as C/C++ and checking for the error. The LLVM

frontend is unique to its supported programming language, for example Clang is the frontend

to C while LLVM-GCC is the frontend of Fortran. The parsed source code will be translated

into LLVM Intermediate Representation (IR) as the output of the frontend passing to the

LLVM optimizer. LLVM IR is a low-level RISC assembly language used by LLVM compiler

framework for transformation. The LLVM optimizer will then do a variety of transformation

in order to improve the run-time of the code. As a result, the LLVM IR produced from the

optimizer will be a more optimized version and pass to the backend. The backend will map the

code into the targeted machine code. Each backend can only be written for a single target family

and they are independent of each other[4].

2.3 FreeRTOS

 FreeRTOS is an open source real-time operating system for microcontroller and

microprocessor. It supports more than 35 architectures and it is distributed under MIT License.

Bachelor of Information Technology (Honours) Computer Engineering 10

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FreeRTOS was developed by Richard Berry around 2004, and was maintained by Richard’s

company, Real Time Engineers Ltd. The design goals of FreeRTOS are easy to use, small

footprint and robust. It also supports plenty of hardware architectures, making it a better choice

to be used with different IoT application. FreeRTOS is strictly quality managed and is

professional developed, it does not contain any ambiguous intellectual property and it is totally

free to use without any exposure of personal code. People are allowed to use FreeRTOS code

to create their product having market value without informing the company of FreeRTOS. In

order to make the code readable and easy to portable, it is developed in C programming

language and some assembly functions. FreeRTOS is a real-time kernel which the embedded

system can be built to meet their hard real-time requirements. Hard real-time requires us to set

a time deadline and fail to meet the deadline will result in system malfunction. For example,

the car’s air bag will be more harm compared to good if it does not respond on time to the

sensor input.

Figure 2.3.1 Architecture of FreeRTOS[6]

 From Figure 2.3.1, the FreeRTOS Kernel is contacting with all the components such as

device driver, and hardware. The FreeRTOS Kernel will schedule the tasks coming from device

driver and hardware. Device driver can be known as a software driver as it is a small piece of

software that allowing the hardware to interact with operating system or with another hardware.

Device driver plays an important rule as it keeps the system running efficiently when a

computer having the correct device drivers. Without device driver, the OS will not be able to

Bachelor of Information Technology (Honours) Computer Engineering 11

Faculty of Information and Communication Technology (Kampar Campus), UTAR

communicate with I/O device because the OS works with device driver and BIOS to perform

hardware task.

 For those single core processors, only a single task is allowed to occupy and run on the

processor at one time. FreeRTOS is a real-time kernel that decides which task to be executed

according to their priority assigned by the application designer. Thus, the task implementing

the hard real-time requirements can be assigned with a high priority. The kernel has the

responsibility for timing execution and provides a time-related API to the application. So, the

application structure is maintainability as it is simple and having smaller code size. Therefore,

most of the FreeRTOS code involves prioritizing, scheduling and running the task defined by

the user (Christopher.S).

 Besides, software is said to be totally event-driven if kernel is used in the project. It is

because no more polling for the event and no time are wasted. Event polling is the process

where the computer is waiting for an external device to check for the task state. When the

processor is idle, the scheduler will create an idle task automatically to perform background

checks and the processor is in a low-power mode. Therefore, there are numerous reasons of

using the RTOS kernel because it improves efficiency, enable code reuse and power

management.

 Apart from that, FreeRTOS is feature rich and still having continuous active

development. It is pre-emptive and the core of the RTOS kernel can be built by having only

three .c files. It is pre-emptive and using First-fit algorithm. First-fit algorithm scans memory

from the beginning and selects the available space which is sufficient for a task to be allocated.

The code style created by FreeRTOS is simple and reliable.

2.4 RT-Thread

RT-Thread is a real time operating system for embedded devices which is developed

by the RT-Thread Development Team based in China. The goal is to change the situation of

has no well-used open source RTOS in the microcontroller area in China. It is written in C

programming language in order to understand easily as well as easy to port. To making the

code elegant and structured, object-oriented programming methods was applied to real time

system design.

Bachelor of Information Technology (Honours) Computer Engineering 12

Faculty of Information and Communication Technology (Kampar Campus), UTAR

There are 2 versions in RT-Thread which are Standard and Nano. For MCU system, the

Nano kernel version which needs 3KB Flash and 1.2KB RAM memory resources is tailored

with ease-to-use tools. The RT-Thread architecture has real-time kernel and rich components.

Figure 2.4.1 RT-Thread architecture

From the figure above, we know that the architecture includes:

• Kernel layer. The core part of RT-Thread which includes the implementation of objects

in the kernel system like multi-threading, semaphore, memory management, timer, etc.

• Components and service layer. For examples, virtual file systems, device framework,

network frameworks and so on are the components that is on top of the RT-Thread

kernel. Thus, it allows high internal cohesion inside the components and low coupling

between components.

• RT-Thread software package. It acts as a general-purpose software component running

on IoT OS platform for different application areas such as source code. RT-Thread

provides open package platform with officially available packages so that there is a

Bachelor of Information Technology (Honours) Computer Engineering 13

Faculty of Information and Communication Technology (Kampar Campus), UTAR

choice of reusable packages which is an important part in RT-Thread ecosystem. RT-

Thread can support up to 180 software packages.

RT-Thread has ported for almost 90 development boards, most BSPs support, GCC

compiler and provided default MDK and IAR project, which allows the users to add their

application code directly based on the project. Also, RT-Thread supported many

architectures and covered the major architectures in current applications. The architecture

manufacturer involved are MIPS32, RISC-V, ARM Cortex-R4 and more. While the main

compilers which are supported by RT-Thread is GCC, IAR and RT-Thread Studio.

2.5 Comparison between FreeRTOS and RT-Thread

FreeRTOS RT-Thread

Scheduler Pre-emptive, optional priority Full-preemptive priority based

Compiler used GCC, IAR, Clang and so on GCC, IAR

Kernel type microkernel Single kernel

Language Support C C

Table 2.5.1 Comparison of FreeRTOS and RT-Thread

 From Table 2.5.1, it seems like a quite difference only between FreeRTOS and RT-

Thread. However, FreeRTOS is more secure and it provides plenty of demo project for various

of architectures and compilers. Its scalable size with program memory footprint as low as 9KB

makes the kernel tiny and power-saving.

Bachelor of Information Technology (Honours) Computer Engineering 14

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3: Proposed Method / Approach

3.1 Methodologies and General Work Procedures

 In order to make the RISC32 support multi-tasking, has the deterministic behaviour, a

real time operating system will be developed. By having RTOS, task can be prioritized which

depends on the importance and facilitates application expansion. So, the processor can run

more efficiently even on a limited hardware resource. it consumes little power and memory

because the kernel size is small and it able to fit the limited ROM storage of embedded systems.

3.2 Analysis of RTOS Architecture and Components

 The kernel is a core component which running at all times in the system. Each executing

process is known as task and consists of an executable program. There are 3 components for

a process:

• An executable program

• Associated data needed by a program

• Execution context (task state) of a program. All information on how a process will be

controlled by the system is included in Process Control Block (PCB).

 Figure 3.2.1 Process Control Block[1]

Bachelor of Information Technology (Honours) Computer Engineering 15

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.1 Analysis of RTOS Behaviour: Multiprogramming vs Multiprocessing

 Multiprogramming is running a group of tasks concurrently while multiprocessing is

running a group of tasks simultaneously. In multiprogramming, the processor will switch to

another task if the current running task is waiting for I/O, because there is only one processor

in the system. In multiprocessing, many processes are running on different processors when

the system has multiple processors. In fact, multiprogramming gives an impression of running

the tasks simultaneously as the scheduler helps the processor to switch the tasks rapidly when

the task is waiting for I/O. Doing so can prevent the processor from wasting time in waiting

for the task to be ready running. From Figure 3.2.2, we know that the processor is fully utilized

without idle although there is only one processor for multiprogramming.

Figure 3.2.1 Multiprocessing and multiprogramming

 Since RISC32 is a single core processor, the concept of multiprogramming will be

applied in RISC32 by using FreeRTOS source codes. From Figure 3.2.2, only one task will be

executed on the processor because there is only a processor available. The scheduler will

schedule the time slice for each task to make sure that all tasks have the chance to be executed

on the processor.

Bachelor of Information Technology (Honours) Computer Engineering 16

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.2 Analysis of RTOS Behaviour: Task and Scheduling Algorithm

Figure 3.2.2 Task state[7]

Before creating an RTOS for the project, we need to understand on how a task is

scheduled from queuing, executing and finally exiting the processor. Each process has many

states which will change when there is an interrupt occurs. To make multiprogramming

possible, an interrupt is needed to send a signal to processor in order to switch task. According

to Figure 3.2.3, CPU scheduling occurs when a task:

i. Ready to Running state

ii. Running to Ready state

iii. Running to Blocked state

iv. Blocked to Ready state

v. Running to Terminates

When only conditions i and v occur in CPU scheduling, it is a non-preemptive scheduling;

otherwise, it is pre-emptive. A process scheduler schedules different processes into CPU based

on the scheduling algorithm. There are some process scheduling algorithms which can be pre-

emptive or non-preemptive:

• First Come First Serve scheduling

Bachelor of Information Technology (Honours) Computer Engineering 17

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Shortest Job Next scheduling

• Shortest Remaining Time

• Round Robin Scheduling

 The kernel of FreeRTOS supports 2 types of scheduling algorithms which are Round-

robin scheduling and Fixed Priority Pre-emptive algorithm. Round Robin algorithm uses pre-

emption based on time quantum which means each process is allowed to use the processor

based on the amount of time determined. Fixed Priority Pre-emptive algorithm selects task to

use the processor according to the task’s priority value. So, a higher priority task always

occupies the processor than a lower priority task.

3.2.3 Analysis of RTOS Behaviour: Process Switching

 Task consists of a sequence of code which will be executed in the processor. When the

task is waiting for an event occurs, the task will be swapped out to Block State by the kernel.

According to the figure below, there are 7 steps required to switch a process and scheduler the

following task to be executed.

Figure 3.2.3 Process Switching steps[8]

Bachelor of Information Technology (Honours) Computer Engineering 18

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Step 1: Save the context of processor including the program counter and the other

registers.

• Step 2: Update the process’s PCB which is running by changing the process state.

• Step 3: Move PCB to an appropriate queue such as ready queue, block queue or

ready(suspended) queue.

• Step 4: Select another process to be executed.

• Step 5: Update the selected process’s PCB.

• Step 6: Update the memory management data structures.

• Step 7: Restore the context of the selected process.

3.3 Comparison between LLVM and GCC

Before starting the comparison, GCC compilation process will be introduced first. The

compilation processes are read the source file, pre-process the source file, transform the source

file into GCC IR, optimize and generate an assembly file, and finally an object file is created

by the assembler. Figure 3.3.1 shows the internals of GCC compiler.

Figure 3.3.1 The internals of GCC[4]

The data structure of LLVM IR is more concise than the GCC IR data structure,

meaning that less memory is occupied by LLVM IR during compilation[9]. Thus, LLVM

Bachelor of Information Technology (Honours) Computer Engineering 19

Faculty of Information and Communication Technology (Kampar Campus), UTAR

compiler has greater compilation performance than GCC compiler as LLVM has shorter

compilation time.

In terms of code complexity, GCC has well-defined frontend and backend stages,

leading it become a complicated software while LLVM is modular in design. Therefore, LLVM

is a better choice as it has rather straightforward LLVM internals and the design is easy to

understand. In this project, LLVM will be used to compile FreeRTOS source codes.

3.4 RISC32 Components Involved

 Understanding where the data will be stored in memory will help to prevent stack

overflow and memory leaks. From Figure 2.3.2, a simple C program allocating in memory will

be separated into user program code (.text), initialised data (.data), uninitialized data (.bss),

stack data (.stack), and heap data (.heap) [3]. In RISC32, those initialised global variables, and

static variables are stored in flash memory. While the .bss segment stores those uninitialized

variables in Data RAM. When the processor is powered, the bootloader will copy the content

of .data storing in flash memory to the .data segment in Data RAM. The .stack segment stores

the functions and their local variables. Due to .stack is a Last-In-First-Out (LIFO) system, the

variables can be continuously pushed to the stack when there are nested function calls. When

returning to the caller function from the called function, the variables will be popped out of the

stack as the return data or the variables will be deleted entirely when they are no longer used.

Besides, the .stack can grow in size when the compiler reserves as much stack as needed for

local variables.

 The .heap segment is similar to .stack segment as it also can grow when the program is

running, it grows toward the .stack segment. The .heap is known as dynamic data segment

because the memory space can be explicitly created to store what the programmer is desired to

store by calling a function called malloc(). There are 2 functions can be used to adjust the

memory space allocated for the calling task which are brk() and sbrk(). The brk() set the task’s

break value to a higher address while the sbrk() add an increment of storage to the heap segment

of a task[10]. When finish using the dynamic memory location, the free() function is called to

release the location or the .heap will continue growing indefinitely.

 FreeRTOS will allocate the memory of RISC32 at runtime when a new task is created

and it is assigned a portion of memory from the .heap segment. That portion of memory is

Bachelor of Information Technology (Honours) Computer Engineering 20

Faculty of Information and Communication Technology (Kampar Campus), UTAR

distributed into 2 parts, task control block (TCB) and a stack which is exclusive to the task.

TCB is a data structure storing important information of a task such as the task’s priority level,

the location of the task’s stack, and so on. Figure 3.4.1 shows the information of Task 1 stored

in the .heap segment.

Figure 3.4.1 Task 1 information is stored inside the .heap segment of RISC32

3.5 Exception Handling Registers

3.5.1 Status Register

 Status register ($stat or $12) is a read/write register containing the information of

exception. Figure 3.5.1 shows the layout of status register where bit 0 – bit 5 represent status

information while bit 8 – bit 15 represent interrupt mask.

Figure 3.5.1 Layout of status register[5]

Bachelor of Information Technology (Honours) Computer Engineering 21

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 From Figure 3.5.1, bit 8 – bit 9 are used for software interrupt level while bit 10 – bit

15 is responsible for hardware interrupt level. Bit 0 (IE) in status register is known as interrupt

enable. When it is set to 1, meaning that an interrupt is enable.

3.5.2 Cause Register

 Cause Register ($cause or $13) stores the information the pending interrupts as well as

the causes of the exception[5]. Figure 3.5.2 shows the graphical view of the cause register.

Figure 3.5.2 Graphical view of cause register[11]

 In cause register, its bit 31 is used for branch delay, meaning that there is an exception

occurring inside in branch/jump instruction. Bit 8 – bit 15 represent the pending interrupt. If

the pending bit is set to 1 means that there is an exception occurring and it is in the pending

state. Bit 2 – Bit 6 are exception code which is used to indicate what caused the exception.

Figure 3.5.3 shows the exception codes in cause register.

Figure 3.5.3 Exception codes[11]

Bachelor of Information Technology (Honours) Computer Engineering 22

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.5.3 EPC Register

 The Exception Program Counter (EPC) register is used to store the exception return

address. For example, a “jal” instruction is executed to call a procedure and the return address

should be stored in a saved register, $ra. However, the return address cannot be stored in $ra

because it may overlap the address which has been stored before the exception occurs. The

EPC register solve the problem by storing the address of the executing instruction when there

is an exception occurring[5].

3.6 Tools Involved

3.6.1 LLVM

LLVM compiler is split into 3 parts which are front-end, middle-end, back-end. LLVM

intermediate representation (LLVM IR) is used by LLVM compiler framework. Clang is the

front-end processing the C source code while MIPS is in the back-end compiles IR to machine

code (MIPS). In middle-end, LLVM contains opt(optimizer), llc(compiler), lld(linker). Clang

provides optimization which optimizes from high level language to IR.

First, opt is a modular LLVM optimizer which it takes LLVM source file as input and

run specified optimizations to output the optimized file. It performs various analyses of the

input source and print the results on standard output.

Second, llc is a second module in LLVM. It compiles LLVM IR into assembly codes(.s)

or it will generate object file(.o). The assembly code output is then passed through the linker.

Third, lld is the last module in LLVM and it acts as a linker which links all the object

files into an Executable and Linkable file(.elf). Then, the file is passed to last stage which will

strip the .elf file to raw binary files such as .txt, .dat, and .rotdata segment. Therefore, MIPS

assembly instruction can be obtained for execution. Figure 3.6.1 shows the simplified LLVM

architecture of RISC32[4].

Bachelor of Information Technology (Honours) Computer Engineering 23

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.6.1 Simplified architecture of LLVM of RISC32[4]

3.6.2 Xilinx Vivado

 Xilinx Vivado is a complex integrated development environment (IDE) tool to program

FPGA and the implementation process. To create a Verilog files, the source codes can be

written in the text editor supported by Vivado. Testbench code can be added as simulation

source code. By having the project source code, the user can choose different types of

simulation for their project. For example, behavioural simulation will launch the built-in

simulator. After simulating the project, there is schematic view of the design according to the

user source code.

3.7 Implementation Issues and Challenge

In this project, we may add new instruction in the file which is done in the previous

work if the RISC32 processor does not support the special library function. Once the compiler

compiles successfully, the address of the MIPS instruction can be readjusted in order to be read

by the RISC32 processor.

Besides, the modification of the existing code may occur logic error due to the setting

of code for our project are imprecise. Repeating error checking is needed when compiling the

code.

Bachelor of Information Technology (Honours) Computer Engineering 24

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.8 Timeline

Gantt Chart is used to describe our project:

3.8.1 Timeline of FYP 1

Figure 3.8.1 Project Progress from Week 1 to Week 5

Figure 3.8.2 Project Progress from Week 6 to Week 10

3.8.2 FYP2 Timeline

Figure 3.8.3 Project Progress from Week 1 to Week 5

Bachelor of Information Technology (Honours) Computer Engineering 25

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.8. 5 Project Progress from Week 11 to Week 13

Figure 3.8.4 Project Progress from Week 6 to Week 10CHAPTER 4: Analysis and

Modification of FreeRTOS

Bachelor of Information Technology (Honours) Computer Engineering 26

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4 Analysis and Modification of FreeRTOS

4.1 Analysis of FreeRTOS Architecture

 Real Time Engineering Ltd has distributed each of the source file and header file into

several parts according to their functionality. There are 4 folders stored in FreeRTOS folder

which are “Demo”, “License”, “Source” and “Test”. For the project, only “Demo” and “Source”

files are needed. They are used as FreeRTOS kernel structure.

Figure 4.1.1 FreeRTOS kernel directory structure[12]

4.2 Demo Path

This folder includes around 200 examples for every microarchitecture and compiler. For our

project, we refer to the 6 examples of RISC-V which are tested to different devices.

Figure 4.2.1 Six RISC-V example projects

Bachelor of Information Technology (Honours) Computer Engineering 27

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 Source Path

 This directory contains 7 source (.c)files for the RTOS core but we only take those

necessary source files for RISC32. In “Source” directory, the “include” file contains all the

header files used by C source files. The “portable” file consists of a lot of compilers and each

of the compiler has their own port layer source files.

Figure 4.3.1 “Source” folder structure [12]

 There is numerous source file which are used for the core RTOS. Each source file

contains their own functionality. For example, task.c file is used to create task, set the task

priority value and scheduling the task. Due to our project only need these 3 files, the other two

optional files are not included to make sure the code size is small. The functionality of source

files of list.c, queue.c and tasks.c are discussed in Chapter 5.

Figure 4.3.2 Minimal files needed to build real time kernel

Bachelor of Information Technology (Honours) Computer Engineering 28

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3.1 The include Folder

From Figure 4.3.3, the folder “include” contains the header files used by C source files.

Figure 4.3.3 Header files of FreeRTOS kernel

4.3.2 The portable Folder

This folder contains specific code to particular microcontroller and the compiler. For our

project, we use GCC compiler for RISC-V as the reference.

Figure 4.3.4 RISC-V uses GCC compiler

Bachelor of Information Technology (Honours) Computer Engineering 29

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 FreeRTOS Kernel Architecture and its Usage

Figure 4.4.1 FreeRTOS Kernel Architecture

 Demo application tasks can be created in main() function in main.c because it acts as

the entry point to FreeRTOS. The source files contained in #2 and #3 provides the FreeRTOS

API to the application. The source files in #2 are the basic files for FreeRTOS core. FreeRTOS

can be configured by tailoring FreeRTOSConfig.h in order to match RISC32 specific

application. Source codes in #4 play important roles to connect FreeRTOS to the hardware

model and compiler. There are 2 specific data type in portmacro.h that are the TickType_t and

BaseType_t which will be discussed later. Besides, inline assembly are used as it enables the

assembly instruction to be embedded within C code. The syntax of inline assembly is “__asm”

associated with volatile keyword.

Bachelor of Information Technology (Honours) Computer Engineering 30

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.5 FreeRTOS Functions and Code Analysis and Modification

4.5.1 Source Files of FreeRTOS Core

 FreeRTOS can be defined as a small application, the core of FreeRTOS consists of 6

source files and their respective header files, and the total code needed is under 10k lines. These

6 files are tasks.c, list.c, and queue.c, they are common to all the FreeRTOS ports. The header

files are stored in another folder named “include”[12].

• task.c - Almost 50% of FreeRTOS’s core code are dealing with task in an operating

system. Task is user-defined C function as the user assigns the priority value to the task.

This part involves in creating, scheduling and maintaining the tasks.

Figure 4.5.1 Example code of task.c

Bachelor of Information Technology (Honours) Computer Engineering 31

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• list.c - It is a data structure and the list implementation is used by the scheduler. Its

concept is similar to linked list that the items is stored in the list, but it is used to track

tasks in FreeRTOS. list.c defines the structures and functions used by task.c [6]. There

are 2 types of list items used in FreeRTOS which are list items and mini-list items.

Figure 4.5.2 Example code of list.c

Bachelor of Information Technology (Honours) Computer Engineering 32

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• queue.c – Perform thread-safe queue for synchronisation and task communication[6].

In order to make the task can communicate with each other, queue.c and queue.h are

used to handle FreeRTOS task communication. Using queue enables task and interrupt

to send data between each other and to signal the other tasks that the critical resources

are used by editing the value of semaphores and mutexes.

Figure 4.5.3 Example codes of queue.c

Bachelor of Information Technology (Honours) Computer Engineering 33

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.5.2 Configuring RTOS Scheduler

 To make FreeRTOS can be implemented in the project, a configuration file called

FreeRTOSConfig.h should be modified to tailor the RTOS kernel. Figures below will display

the code which contributes to the settings.

Figure 4.5.4 Part 1 settings

 According to the setting above, the pre-emptive RTOS scheduler is used. Idle hook and

Tick hook functions are set to 1. It is because idle task can be created automatically when the

scheduler begins to check there is at least one task is executed on the processor. The stack size

of idle task is set by using configMINIMAL_STACK_SIZE(). In RISC32, the heap segment

size is 0x1000 meaning that 4096 of size in terms of decimal base is assigned to the label

configTOTAL_HEAP_SIZE(). Tick interrupt is able to implement timer functionality by

calling vApplicationTickHook() function. RTOS tick interrupt frequency can be modified by

setting the value for configTICK_RATE_HZ() function.

 Each task is assigned with a priority value from 0 to 4. The maximum value set cannot

be higher than 32 to ensure RAM usage efficiency. The scheduler makes sure that the task is

given processor time in preference although it has lower priority in ready state while the higher

priority task is running on the processor.

 Mutex functionality is included in RTOS scheduler. Mutex is a locking mechanism

which ensures that only 1 thread can acquire the critical session at one time. Mutex will

available when the thread finishes using the critical session and release it. Mutex is different

than semaphore as semaphore is a signalling mechanism. Figure 4.2.2 is an example of mutex.

Bachelor of Information Technology (Honours) Computer Engineering 34

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.5 Mutex Example

 Task may come to deadlock when the processes is competing for the system resources

or communicating with each other. When a task tries to acquire the mutex for more than once

without returning the mutex first. As a result, the task in Blocked state is waiting for the mutex

to be returned but the mutex is holding by the task itself. Therefore, to avoid deadlock from

happening, a function named configUSE_RECURSIVE_MUTEX is set to 1. Doing so allows

a task can take more than 1 mutex.

Figure 4.5.6 Part 2 setting

Bachelor of Information Technology (Honours) Computer Engineering 35

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 From Figure 5.3.3, configUSE_CO_ROUTINE is set to 0 because the croutine.c source

file is excluded from “Source” directory and it is not used in RISC-V. The co-routines priority

value is set to 2 meaning that only 2 priorities is available and each co-routine share the same

priority. Software timer is used in the scheduler to allow function executes at a set of time in

future.

 There are macros “INCLUDE” where the function name is actually the API function.

From the figure above, all the API function is set to 1.

4.5.3 Portable Layer

The processor architecture containing specific RTOS code is stored in a folder called “portable”

as it acts as RTOS portable layer. Memory management code is also included in portable file.

• heap_4.c (in Memory Management path) – The RTOS kernel needs RAM when a task,

queue, or semaphore is created. It uses the first-fit algorithm and combine adjacent free

memory blocks into a large block. Using heap_4.c allows the application can delete

tasks, queue, semaphore or mutex repeatedly. To set the total amount of available heap

size, configTOTAL_HEAP_SIZE in FreeRTOSConfig.h is configured to the values of

4096 with unsigned integer data type. Calling pvPortMalloc() when the kernel needs

RAM while calling vPortFree to free RAM.

Figure 4.5.7 Example function prototypes of heap_4.c

Bachelor of Information Technology (Honours) Computer Engineering 36

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• port.c (in GCC compiler path) – port.c file implements the functions specified in

portable.h file. portable.h file is the portable layer API and the function must be defined

for each port. Figure 4.4.8 shows the function prototypes defined in portable.h and the

function definitions are created at port.c.

Figure 4.5.8 Example function prototypes defined in portable.h

Bachelor of Information Technology (Honours) Computer Engineering 37

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.9 Function definition of xPortStartFirstTask defined in port.c

 Since the label configASSERT_DEFINED is set to 1 in FreeRTOS.h, the codes inside

the label will be executed. In #1, the inline assembly is used for RISC-V to check whether the

register mtvec is single vector mode. When RISC-V is on single vector mode, the register

mtvec will point to the ISR base address. Then, the meaning of single vector mode in RISC32

is allowing every interrupt jumps to a single general routine in order to overcome the problem

of multiple interrupts occur at the same time. An EXL bit of $stat in CP0 is set to 1 to disable

further interrupts. Since the concept of single vector mode on RISC-V and RISC32 is similar,

and RISC32 is using single vector mode, the code of checking mode can be ignored.

Bachelor of Information Technology (Honours) Computer Engineering 38

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 After analysing the code, the default inline assembly codes were written for RISC-V

chips instead of RISC32. Thus, the code has to be modified according to the default assembly

codes. For example, the coding styles of portDISABLE_INTERRUPTS() are different in

RISC32 and RISC-V. In #2 of Figure 4.5.9, RISC-V define a label for

portDISABLE_INTERRUPT() by creating a line of inline assembly. However, 2 lines of inline

assembly are needed for RISC32 to disable interrupts. Therefore, the way of defining a label

to disable interrupt does not work in RISC32. To solve the problem, a void function prototype

is created in portmacro.h and its function definition is placed at port.c. To disable interrupts,

status register($12) is used because its bit 0 is interrupt enable bit. An instruction called “mtc0”,

move to coprocessor 0, is used to assign the value into status register in coprocessor 0. Figure

4.5.10 shows the resulting code for RISC32.

Figure 4.5.10 Difference between RISC32 and RISC-V

• portASM.s – it is an assembler file containing functions that will be used by the source

file. For example, main.c will call a function named vTaskStartScheduler() to start the

scheduler and the scheduler will call xPortStartFirstTask(). Its function definition is

created in portASM.s. Due to portASM.s is taken from RISC-V example, conversion

of coding from RISC-V ISA to MIPS2 ISA is needed. There is a big difference between

RISC-V ISA and MIPS2 ISA such as register used.

Bachelor of Information Technology (Honours) Computer Engineering 39

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.11 Example assembly code in portASM.s

Bachelor of Information Technology (Honours) Computer Engineering 40

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.12 Difference between RISC-V and RISC32 ISA

• string2.h – Due to RISC32 does not support the default functions of string.h such as

memcpy, memset, strlen, and so on, a header file named string2.h is created to solve

the problem. Figure 4.5.13 shows the functions used by FreeRTOS are created

explicitly. The function named memcpy is used to copy a memory block from one

location to the another while memset function is used to fill a block of memory with

particular value. The strlen function is used to get the length of a string.

Figure 4.5.13 The functions of memcpy, memset, and strlen defined at string2.h

Bachelor of Information Technology (Honours) Computer Engineering 41

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5: FreeRTOS Implementation

5.1 Setup LLVM compiler as Toolchain

 RISC32 has its own compiler called LLVM compiler, it is used to compile the RTOS

code. Before installing LLVM compiler, install “cmake” in order to install LLVM into

Ubuntu16.04 LTS operating system. To make sure the source file can be compiled by LLVM,

focusing on the standard library function that will be used in RTOS code. A bash script called

compile.sh is created to compile the source files and it makes debugging phase easier as the

bash script content is arranged in correct order and readable.

Figure 4.5.14 The files are compiled step by step

5.2 Compilation results of LLVM

5.2.1 Testing the LLVM Compilation via UART Communication

 Once LLVM compiler is setup as a toolchain to compile FreeRTOS code, a test program

is needed to make sure that LLVM compiler is functioning well. A source file named

testing_llvm.c is created by using UART. 4 characters(P,Q,R,S) are inserted into UART and

the results are shown in below Figure 5.2.1.

Bachelor of Information Technology (Honours) Computer Engineering 42

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.2 Assembly code of testing_llvm.c

Figure 5.2.1 Source code to be implemented

 The LLVM compiler will compile testing_llvm.c into assembly code stored in

testing_llvm_o0_o0_dis.txt. The symbol “o0” means least optimization level. Figure 5.2.2 is

the assembly code generated by LLVM with least optimization level.

Bachelor of Information Technology (Honours) Computer Engineering 43

Faculty of Information and Communication Technology (Kampar Campus), UTAR

When LLVM compiles the source codes, object file will also be generated as the

requirement to implement the source codes on RISC32 is object file which is storing

the hexadecimal codes. Figure 5.2.3 shows the result of the object file being imported

into RISC32.

 Result of UART running on RISC32

Figure 5.2.3 The result of testing_llvm.c via UART

5.2.2 FreeRTOS Source Code Compilation and Setup

 To make sure that FreeRTOS source codes are executable on RISC32, a testing code is

written on main.c of FreeRTOS. UART and GPIO are used to sent out the data. Theoretically,

main() function will create a queue before inserting the task information into the queue. Once

the queue is created, xTaskCreate() is executed to start the task. To implement the task,

prvQueueReceiveTask() is called to in order to receive task information into queue. Once the

queue has the tasks inside, vTaskStartScheduler() is called to start the scheduler and to run the

task on RISC32.

Bachelor of Information Technology (Honours) Computer Engineering 44

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.4 Queue is created and the tasks created are inserted into queue

Figure 5.2.5 The task will be executed in prvQueueReceiveTask()

Bachelor of Information Technology (Honours) Computer Engineering 45

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 For better understanding, FreeRTOS has distributed its functions into several C

language source files such as tasks.c, queue.c, list.c, main.c. and the others. To make them

interconnected to each other, a linker (lld) is used to link them up. A bash script (compile.sh)

stores the commands to be used to compile files. For example, a command with “clang” is used

to compile the source files independently. Then, the lld will link those compiled files according

to the labels which are the function names inside the files. Figure 5.2.6 shows the example part

of assembly codes generated from FreeRTOS source codes.

Figure 5.2.6 Part of assembly codes generated by LLVM

 Figure 5.2.6 shows the part of assembly codes generated by LLVM after compilation

of FreeRTOS source code completed. The total number of lines of assembly codes generated

are 10070 lines, meaning that they will use 10070 words of memory space in I-cache which is

the segment for user program code. From Figure 2.1.3, the memory space for storing the

instructions in I-cache is starting from the address of 0x8000_0000 to 0x8001_b400, which

Bachelor of Information Technology (Honours) Computer Engineering 46

Faculty of Information and Communication Technology (Kampar Campus), UTAR

means that I-cache can support up to 111617 words. Therefore, the assembly codes of

FreeRTOS can be fit into I-cache as the memory space it used does not exceed the memory

space if I-cache. Caching for the instruction cache memory will not occur when the program is

running.

5.3 FreeRTOS Simulation on RISC32

5.3.1 RISC32 Testbench

 Testbench is a Verilog module which is used for simulation purpose. A testbench of

RISC32 named tb_r32_pipeline.sv is created to test the functional behaviour of RISC32. There

is a program.txt file storing the object code (hex code) generated and the content of program.txt

will be loaded into instruction memory when the process of simulation starts. While the

exception handler object code is stored in exc_handler.txt which its content will be loaded into

an address starting from 0x8001_b400. The section below will show the testbench codes of

RISC32.

Bachelor of Information Technology (Honours) Computer Engineering 47

Faculty of Information and Communication Technology (Kampar Campus), UTAR

`timescale 1ns / 1ps

`default_nettype none

`define demo003_UART 1

module tb_r32_pipeline();

//declaration

//===== INPUT =====

//System signal

reg tb_u_clk;

reg tb_u_rst;

//~~~~~~~~~~~~~~~~~~

wire tb_u_spi_mosi_dut;

wire tb_u_spi_miso_dut;

wire tb_u_spi_sclk_dut;

wire tb_u_spi_ss_n_dut;

wire tb_u_fc_sclk_dut;

wire tb_u_fc_ss_dut;

wire tb_u_fc_MOSI_dut;

wire tb_u_fc_MISO1_dut;

wire tb_u_fc_MISO2_dut;

wire tb_u_fc_MISO3_dut;

wire tb_ua_tx_rx_dut;

wire tb_ua_RTS_dut, tb_ua_CTS_dut;

wire[31:0] tb_u_GPIO_dut;

//~~~~~~~~~~~~~~~~~~

wire tb_u_spi_mosi_client;

wire tb_u_spi_miso_client;

wire tb_u_spi_sclk_client;

wire tb_u_spi_ss_n_client;

wire tb_u_fc_sclk_client;

wire tb_u_fc_ss_client;

wire tb_u_fc_MOSI_client;

wire tb_u_fc_MISO1_client;

wire tb_u_fc_MISO2_client;

wire tb_u_fc_MISO3_client;

wire tb_ua_tx_rx_client;

wire tb_ua_RTS_client, tb_ua_CTS_client;

wire[31:0] tb_u_GPIO_client;

crisc c_risc_dut(

//*********** INSTANTIATION *************

//======= INPUT =======

//GPIO

.urisc_GPIO(tb_u_GPIO_dut),

//SPI controller

.uiorisc_spi_mosi(tb_u_spi_mosi_dut),

.uiorisc_spi_miso(tb_u_spi_miso_dut),

.uiorisc_spi_sclk(tb_u_spi_sclk_dut),

.uiorisc_spi_ss_n(tb_u_spi_ss_n_dut),

//UART controller

Bachelor of Information Technology (Honours) Computer Engineering 48

Faculty of Information and Communication Technology (Kampar Campus), UTAR

.uorisc_ua_tx_data(tb_ua_tx_rx_dut),

//.uorisc_ua_rts(tb_ua_RTS_dut),

.uirisc_ua_rx_data(tb_ua_tx_rx_client),

//.uirisc_ua_cts(tb_ua_CTS_dut),

//FLASH controller

.uorisc_fc_sclk(tb_u_fc_sclk_dut),

.uiorisc_fc_MOSI(tb_u_fc_MOSI_dut),

.uirisc_fc_MISO1(tb_u_fc_MISO1_dut),

.uirisc_fc_MISO2(tb_u_fc_MISO2_dut),

.uirisc_fc_MISO3(tb_u_fc_MISO3_dut),

.uorisc_fc_ss(tb_u_fc_ss_dut),

// System signal

.uirisc_clk_100mhz(tb_u_clk),

.uirisc_rst(tb_u_rst));

//--

s25fl128s

SPI_flash_dut(

.SI(tb_u_fc_MOSI_dut), //IO0

.SO(tb_u_fc_MISO1_dut), //IO1

.SCK(tb_u_fc_sclk_dut),

.CSNeg(tb_u_fc_ss_dut),

.RSTNeg(tb_u_rst),

.WPNeg(tb_u_fc_MISO2_dut), //IO2

.HOLDNeg(tb_u_fc_MISO3_dut));

//==

==============================

crisc

c_risc_client(

//*********** INSTANTIATION *************

//======= INPUT =======

//GPIO

.urisc_GPIO(tb_u_GPIO_client),

//SPI controller

.uiorisc_spi_mosi(tb_u_spi_mosi_client),

.uiorisc_spi_miso(tb_u_spi_miso_client),

.uiorisc_spi_sclk(tb_u_spi_sclk_client),

.uiorisc_spi_ss_n(tb_u_spi_ss_n_client),

//UART controller

.uorisc_ua_tx_data(tb_ua_tx_rx_client),

//.uorisc_ua_rts(tb_ua_RTS_client),

.uirisc_ua_rx_data(tb_ua_tx_rx_dut),

//.uirisc_ua_cts(tb_ua_CTS_client),

//FLASH controller

.uorisc_fc_sclk(tb_u_fc_sclk_client),

.uiorisc_fc_MOSI(tb_u_fc_MOSI_client),

.uirisc_fc_MISO1(tb_u_fc_MISO1_client),

.uirisc_fc_MISO2(tb_u_fc_MISO2_client),

.uirisc_fc_MISO3(tb_u_fc_MISO3_client),

.uorisc_fc_ss(tb_u_fc_ss_client),

Bachelor of Information Technology (Honours) Computer Engineering 49

Faculty of Information and Communication Technology (Kampar Campus), UTAR

// System signal

.uirisc_clk_100mhz(tb_u_clk),

.uirisc_rst(tb_u_rst));

//--

s25fl128s

SPI_flash_client(

.SI(tb_u_fc_MOSI_client), //IO0

.SO(tb_u_fc_MISO1_client), //IO1

.SCK(tb_u_fc_sclk_client),

.CSNeg(tb_u_fc_ss_client),

.RSTNeg(tb_u_rst),

.WPNeg(tb_u_fc_MISO2_client), //IO2

.HOLDNeg(tb_u_fc_MISO3_client));

assign tb_u_spi_mosi_dut = tb_u_spi_mosi_client;

assign tb_u_spi_miso_dut = tb_u_spi_miso_client;

assign tb_u_spi_ss_n_dut = tb_u_spi_ss_n_client;

assign tb_u_spi_sclk_dut = tb_u_spi_sclk_client;

assign tb_ua_CTS_dut = tb_ua_RTS_client;

assign tb_ua_CTS_client = tb_ua_RTS_dut;

//**********************Clock************************

initial tb_u_clk = 1'b1;

always #5 tb_u_clk =~ tb_u_clk;

//For Vivado: remember to add the text files into the simulation source

//add Source -> Simulation sources -> add Files -> select the files (find "All file" in file type)

initial begin

//For client: copy the right test program and exc handler into FPGA flash.

$readmemh(`EXC_HANDLER_CLIENT, tb_r32_pipeline.SPI_flash_client.Mem);

$readmemh(`TEST_CODE_PATH_CLIENT, tb_r32_pipeline.SPI_flash_client.Mem);

//For dut: copy the right test program and exc handler into FPGA flash.

$readmemh("exc_handler.txt", tb_r32_pipeline.SPI_flash_dut.Mem);

$readmemh("program.txt", tb_r32_pipeline.SPI_flash_dut.Mem);

//test instruction 1st

//2nd test IO seperately

//SPI

//UART

//GPIO

//3rd exception handler

tb_u_rst = 1'b1;

repeat(1)@(posedge tb_u_clk);

tb_u_rst = 1'b0;

repeat(30000)@(posedge tb_u_clk);

tb_u_rst = 1'b1;

repeat(12000000)@(posedge tb_r32_pipeline.c_risc_dut.urisc_clk);

end

endmodule

Bachelor of Information Technology (Honours) Computer Engineering 50

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3.2 FreeRTOS Assembly Code Debugging

 However, the actual result is unexpected because the simulation goes into an infinite

loop at the address of 0x8000_15f8. In order to trace the program flow, UART is used as a

communication mean by sending out the values assigned. There is a function called

main_blinky() containing the source code of implementing UART. Figure 5.3.1 shows the steps

that is leading the simulation to infinite loop behaviour in xQueueGenericCreate() data

structure. The highlighted label is where the simulation goes into an infinite loop as the jump

instruction is jump back to its address .

Figure 5.3.1 The flow of the program leading to infinite looping

Bachelor of Information Technology (Honours) Computer Engineering 51

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Figure 5.3.2 shows the result of FreeRTOS simulation on RISC32. The task of UART

is not created as the program goes into infinite looping during the process of creating a queue.

Figure 5.3.2 The result of FreeRTOS simulation on RISC32

 Figure 5.3.1 and Figure 5.3.2 have proved that the program goes into infinite looping

when the program executes the data structure of C program. There are 2 typed memory

allocation instructions helping the LLVM compiler in memory allocation pattern which are

malloc and alloca. The malloc instruction is used to dynamically allocate memory space on the

heap, then a typed pointer pointing to new memory is returned. When more heap memory are

allocated, the heap segment goes up. While the alloca instruction is having the similar concept

of the malloc but the alloca instruction allocates the memory on the current function’s stack

frame[13].

 In LLVM IR, the functions are defined with their name, arguments, and return type[14].

To call the function, an instruction named “call” is used associated with the function type,

function name, and the name and the type of arguments. The “call” instruction will take the

pointer to the function and the arguments as well. Thus, when a function is called, some stack

memory will be allocated for to that function. If there are local variables declaring inside the

function, more stack memory will be allocated for it. Therefore, the stack will go down

according to its allocation pattern[15].

 After analysing how a data structure and a function call will be executed in LLVM and

stored in memory, the cause of the problem of infinite looping behaviour occurring during data

structure is the LLVM is compiling the data structure onto stack segment. When the data

structure is used, it should be heap access instead of stack access. Therefore, the LLVM has

generated a function call type of instruction for the data structure which is totally wrong,

leading it storing at stack segment.

Bachelor of Information Technology (Honours) Computer Engineering 52

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6: CONCLUSION

6.1 Conclusion

 In a nutshell, the first 3 objectives are met in this project while the last objective which

is the simulation of RTOS on RISC32 is done partially. The open source RTOS architecture

and components are analysed so that the modification process can be proceed in order to make

the RTOS suitable for RISC32 since the default version of FreeRTOS source codes are built

for RISC-V examples. Second objective is met by modifying and developing RTOS for

RISC32 and the RTOS source code is compilable by LLVM compiler. In order to compile the

RTOS code, LLVM has to be setup. Thus, third objective is met because the LLVM compiler

is setup successfully and a testing file is created to make sure the LLVM compiler is functioning

well. LLVM compiler has converted the C language source file into assembly code as well as

the object code. Besides, FreeRTOS source files is compilable by the LLVM after carrying out

numerous debugging process. Until this stage, the RTOS codes can be said that it is mature

enough to be port over RISC32. Simulating the RTOS in RISC32 is the last objective and it is

done partially as there are problems coming out in the assembly codes as well as the hex codes

generated by the LLVM compiler. Because of the duplication of assembly codes and the hex

codes generated, the program runs inside a loop infinitely. There are jump instructions which

is jumping back to its address are generated twice. Thus, LLVM compiler might not get the

coding style of FreeRTOS. Simulation of RTOS failed on RISC32.

6.2 Future Work

 For future work, a heap segment needs to be created in physical memory for FreeRTOS

in order to prevent mis-generated instructions from occuring in LLVM. Some functions that

may not be supported by LLVM as well as RISC32, modification of FreeRTOS codes is

required until FreeRTOS can be simulated on RISC32. To prove the assumption, compiling

FreeRTOS codes by using GCC compiler is a required action. In addition, comparing the codes

of FreeRTOS of RISC32 and the original version of FreeRTOS of RISC-V in order to make

sure there is nothing missing out. Besides, heap segment to be used by RTOS need to be

configured to avoid overlapping or misusing memory problems occur. Therefore, checking the

functionality of LLVM, RISC32, and FreeRTOS are considered as huge processes which can

be taken as another new project. Modification of codes will be done and simulating RTOS

again on RISC32.

Bachelor of Information Technology (Honours) Computer Engineering A

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Bibliography

[1] C. Architecture and S. Engineering, “Process Control Block (PCB),” pp. 1–9, 2019.

[2] E. Peña and M. G. Legaspi, “UART: A Hardware Communication Protocol

Understanding Universal Asynchronous Receiver/Transmitter,” Visit Analog., vol. 54,

no. 4, 2020.

[3] W. P. Kiat, “THE DESIGN OF AN FPGA-BASED PROCESSOR WITH

RECONFIGURABLE PROCESSOR EXECUTION STRUCTURE FOR INTERNET

OF THINGS (IoT) APPLICATIONS KIAT WEI PAU MASTER OF SCIENCE

(COMPUTER SCIENCE) FACULTYOF INFORMATION AND

COMMUNICATION TECHNOLOGY UNIVERSITI TUNKU ABD,” no. December,

2018.

[4] J. C. See, “TOOLCHAIN DEVELOPMENT AND QUEUE SYSTEM ENHANCED

SECURITY COPROCESSOR FOR FPGA- BASED INTERNET OF THINGS (IOT)

PROCESSOR SEE JIN CHUAN MASTER OF SCIENCE (COMPUTER SCIENCE)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMA,” no. August, 2019.

[5] V. Bistriceanu, “Exception handling registers in coprocessor 0,” 1996.

[6] M. H. Qutqut, A. Al-Sakran, F. Almasalha, and H. S. Hassanein, “Comprehensive

survey of the IoT opensource OSs,” IET Wirel. Sens. Syst., vol. 8, no. 6, pp. 323–339,

2018, doi: 10.1049/iet-wss.2018.5033.

[7] O. File and T. Cases, “State Diagram for a Task,” pp. 21–22.

[8] E. Now, “What is Context Switching in Operating System?,” AfterAcademy, pp. 1–12,

2019, [Online]. Available: https://afteracademy.com/blog/what-is-context-switching-

in-operating-system.

[9] A. Tech, “GCC vs. Clang/LLVM: An In-Depth Comparison of C/C++ Compilers,” pp.

1–12, 2019.

[10] “Oracle Homeage test Documentation Home > Programming Interfaces Guide >

Chapter 1 Memory Management > Library-Level Dynamic Memory > Other Memory

Control Interfaces > brk and sbrk Programming Interfaces Guide,” p. 19683.

Bachelor of Information Technology (Honours) Computer Engineering B

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[11] “Computer Organization and Design,” Computer Organization and Design. 1994, doi:

10.1016/c2013-0-08305-3.

[12] “Mastering the FreeRTOS TM Real Time Kernel.”

[13] C. Lattner and V. Adve, “The LLVM Instruction set and compilation strategy,” CS

Dept., Univ. Illinois Urbana-Champaign, …, pp. 1–20, 2002, [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.40&rep=rep1&type=pdf.

[14] A. M. Si and C. L. Ir, “/SI413/lab/l13/Compilingto LLVM IR,” pp. 1–8.

[15] J. Chen and R. Guo, “Stack and Heap Allocation,” pp. 3–4.

Bachelor of Information Technology (Honours) Computer Engineering C

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix B – RISC 32 Coprocessor 0 Register

Bachelor of Information Technology (Honours) Computer Engineering D

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Biweekly Report

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: Jan, 2022 Study week no.: 1

Student Name & ID: Er Pei Qing

Supervisor: Ts Dr. Chang Jing Jing

Project Title: The Development of an RTOS for the 5-Stage Pipeline RISC32

Microprocessor

1. WORK DONE

• Analysis FreeRTOS source codes in order to do modification.
• Install Ubuntu 16.04 for compilation purpose.
• Setup LLVM compiler as toolchain for the project
• Setup RISC32 on Vivado

• Run the demo codes available on the folder provided by Mr.Mok

2. WORK TO BE DONE

• Analysis LLVM compiler.

• Compiling FreeRTOS source codes and debugging.

• Writing a testing code to test LLVM functionality.

3. PROBLEMS ENCOUNTERED

• The demo projects provided by FreeRTOS is not working due to lack of the demo

components.

• Need to learn how to trace the data coming out from RISC32 on Xilinx Vivado

4. SELF EVALUATION OF THE PROGRESS

• 70% in progress as FreeRTOS is a huge document and trying to write a testing code.

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering E

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: Jan, 2022 Study week no.: 3

Student Name & ID: Er Pei Qing

Supervisor: Ts Dr. Chang Jing Jing

Project Title: The Development of an RTOS for the 5-Stage Pipeline RISC32

Microprocessor

1. WORK DONE

• Analysis of FreeRTOS architecture.

• Write a testing code to check the LLVM functionality.

• After writing the testing code, write a bash script to do compilation.

• Analysis LLVM to get the compilation step.

2. WORK TO BE DONE

• Compiling the testing code and debugging.

• Compiling the testing code.

• Modification on FreeRTOS to suit RISC32.

3. PROBLEMS ENCOUNTERED

• No sure how to use UART to send data out.

• There are many commands needed to compile the source code but not sure which one is the

correct version to compile the testing code written.

4. SELF EVALUATION OF THE PROGRESS

• 90% as the codes had been complete written.

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering F

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: Jan, 2022 Study week no.: 5

Student Name & ID: Er Pei Qing

Supervisor: Ts Dr. Chang Jing Jing

Project Title: The Development of an RTOS for the 5-Stage Pipeline RISC32

Microprocessor

1. WORK DONE

• The testing code has been compiled and there are several files obtained.

• Analysis the assembly codes of the testing code generated by LLVM.

• Move the hex code generated to Xilinx Vivado for simulation.

• The testing code has been compiled and there are several files obtained.

• Analysis the assembly codes of the testing code generated by LLVM.

• Move the hex code generated to Xilinx Vivado for simulation.

• Observe the simulation result of UART.

2. WORK TO BE DONE

• Compiling the testing code.

• Modification on FreeRTOS to suit RISC32.

• Compiling FreeRTOS which has been modified for RISC32.

• Debugging if errors come out.

3. PROBLEMS ENCOUNTERED

• There are many commands needed to compile the source code but not sure which one is the

correct version to compile the testing code written.

4. SELF EVALUATION OF THE PROGRESS

• 90% as the codes had been complete written.

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering G

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: Jan, 2022 Study week no.: 7

Student Name & ID: Er Pei Qing

Supervisor: Ts Dr. Chang Jing Jing

Project Title: The Development of an RTOS for the 5-Stage Pipeline RISC32

Microprocessor

1. WORK DONE

• FreeRTOS has been compiled.

• Debugging for the undefined errors.

• Replace the original inline assembly code to RISC supported version.

• Searching for the codes that are written for RISC-V for replacement purpose.

2. WORK TO BE DONE

• Search for the information of RISC-V and do comparison of RISC-V and RISC32 for

modification purpose.

• Study those codes usage to make the modification easy.

3. PROBLEMS ENCOUNTERED

• Lack of knowledge about the inline assembly used in C program.

• The instruction set architectures are different in RISC-V and RISC32, making modification

hard.

4. SELF EVALUATION OF THE PROGRESS

• 60% as insufficient knowledge to modify the codes which is good enough for RISC32 and

modification still in progess.

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering H

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: Jan, 2022 Study week no.: 9

Student Name & ID: Er Pei Qing

Supervisor: Ts Dr. Chang Jing Jing

Project Title: The Development of an RTOS for the 5-Stage Pipeline RISC32

Microprocessor

1. WORK DONE

• Create the replaced functions for RISC32 as it does not support string.h files.

• Inline assembly code modification completed.

• Compiled the codes.

• Debugging as there are still some coding which is undefined for RISC32.

2. WORK TO BE DONE

• Compiling the codes again.

• Debugging and modifying the codes to suit RISC32.

3. PROBLEMS ENCOUNTERED

• To do function replacement part, knowledge about string.h internal function definition is

required.

• Lack of information about the instruction supported by RISC32.

• The registers used in RISC-V are different for the registers used in RISC32.

• RISC-V uses “x” to represent the register while RISC32 uses “$” to represent the register.

4. SELF EVALUATION OF THE PROGRESS

• 80% as modification almost done.

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering I

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: Jan, 2022 Study week no.: 11

Student Name & ID: Er Pei Qing

Supervisor: Ts Dr. Chang Jing Jing

Project Title: The Development of an RTOS for the 5-Stage Pipeline RISC32

Microprocessor

1. WORK DONE

• The porting codes have been modified.

• Compiling the codes and debugging.

• Modified the ISR and the Interrupt Enable bit for RISC32 in FreeRTOS source code.

• Compiled the codes to get the hex code in order to do simulation on Xilinx Vivado.

• Simulate the codes on RISC32 in Xilinx Vivado.

2. WORK TO BE DONE

• Analysis the interrupt service routine (ISR) used in RISC32 and modified the ISR in

FreeRTOS source codes.

• Start writing the report.

3. PROBLEMS ENCOUNTERED

• Not enough knowledge about ISR of RISC32.

4. SELF EVALUATION OF THE PROGRESS

• 100% as the source codes are compiled successfully.

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering J

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: Jan, 2022 Study week no.: 13

Student Name & ID: Er Pei Qing

Supervisor: Ts Dr. Chang Jing Jing

Project Title: The Development of an RTOS for the 5-Stage Pipeline RISC32

Microprocessor

1. WORK DONE

• Debugging the problems coming out from the simulation result.

• Writing the report.

2. WORK TO BE DONE

• Writing the report

3. PROBLEMS ENCOUNTERED

• The program goes to infinite looping due to memory and the compiler issues.

4. SELF EVALUATION OF THE PROGRESS

• 75% as solving the memory issue and the LLVM compiler problems are huge project.

 Supervisor’s signature Student’s signature

Bachelor of Information Technology (Honours) Computer Engineering K

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Poster

Bachelor of Information Technology (Honours) Computer Engineering L

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Plagiarism Check Result

Bachelor of Information Technology (Honours) Computer Engineering M

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Form Title: Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

Er Pei Qing

ID Number(s)

18ACB04358

Programme / Course CT

Title of Final Year Project The Development of an RTOS for the 5-Stage Pipeline RISC32

Microprocessor

Similarity Supervisor’s Comments

(Compulsory if parameters of originality exceed
the limits approved by UTAR)

Overall similarity index: _1_ %

Similarity by source

Internet Sources: 0 %
Publications: 1 %
Student Papers: 0 %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required, and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: Ts Dr Chang Jing Jing Name: __________________________

Date: 22/4/2022 Date: ___________________________

Bachelor of Information Technology (Honours) Computer Engineering N

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FYP2 Checklist

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 18ACB04358

Student Name Er Pei Qing

Supervisor Name Ts Dr. Chang Jing Jing

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

 Front Plastic Cover (for hardcopy)

√ Title Page

√ Signed Report Status Declaration Form

√ Signed FYP Thesis Submission Form

√ Signed form of the Declaration of Originality

√ Acknowledgement

√ Abstract

√ Table of Contents

√ List of Figures (if applicable)

√ List of Tables (if applicable)

 List of Symbols (if applicable)

√ List of Abbreviations (if applicable)

√ Chapters / Content

√ Bibliography (or References)

√ All references in bibliography are cited in the thesis, especially in the chapter of literature

review

√ Appendices (if applicable)

Bachelor of Information Technology (Honours) Computer Engineering O

Faculty of Information and Communication Technology (Kampar Campus), UTAR

√ Weekly Log

√ Poster

√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the ticked of these

items, and/or any dispute happening for these items in this report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in my report.

(Signature of Student)

Date: 15/4/2022

