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ABSTRACT

Real-Time Operating System (RTOS) is a software component that is able to rapidly
switches the tasks, making the user have the impression of running multiple programs
simultaneously on a single processor. An RTOS provides a highly deterministic reaction and
hard real time response to the external events. Because of hard real time response, it is a must

for a system to meet its deadline or an unacceptable damage may occur.

So, development of an RTOS for RISC32 processor plays an important role to improve
its performance. RISC32 was developed by a group of FICT programmer and the processor is
involved in this project as academic purpose. Up to the current stage, the processor supported
Interrupt Service Routine (ISR) and exception handler. To improve the processor, an RTOS
software code written in C programming language is used to improve the processor
performance. To master the RTOS code, FreeRTOS is used as a reference and guidelines to
assist us in creating an RTOS code for this project. The RTOS code is divided into few
partitions storing in individual file to help the reader to understand the code easily. The code
obtained from FreeRTOS was modified in order to port the processor used in this project.
Therefore, we expect that the processor is able to switch the task rapidly and must meet the

deadline after the implementation of the compiled code.
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CHAPTER 1: Introduction

1.1 Background Information

A computer consists of several components. Among the components, the main components

are the processor and I/O devices. A processor performance’s maybe robust, but without an

interactive interface with the user, the processor might not be fully utilized. The 1/0 devices
act as the interactive interface between the user and the processor. The interconnect between

I/0O devices and the processor would be the bus system.

1.1.1 MIPS

MIPS is known as Microprocessor without Interlocked Pipeline Stage, which is based on RISC
architecture developed by MIPS technologies, previously known as MIPS Computer Systems.
RISC processor supports simple instruction set compared to CISC[1]. RISC architecture
emphasizes on using register rather than memory. Instead of using Intel 80x86, MIPS is used
because it has a simple design and yet high performance as embedded processor. It also has
large market for embedded app. After years of development, MIPS architecture nowadays can
support 64-bit addressing and operation and high-performance floating point making it popular
in the embedded systems implementation such as router, game machine and so on. The
instruction execution is broken by the operation of MIPS processor into multiple small
independent stages (Integrated Device Technology. Inc, 1994, pgl-2). The word “stages”

implies the datapath resources at each stage.

Time
| IF IID IEx IMEIVI I WB |
I IF I\D IEX IMEM I WE |
| IF IID IEX IIVIEM IWB |
|IF IID IEX IMEM IWB |
l IF IID IEX IMEM IWB |
Program Flow

IIF IID IEX IMEIVI IWB |

Figure 1.1.1 MIPS 5-stage pipeline
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From Figure 1.1.1, the execution of an instruction is done in 5 basic stages including:

e |F: Instruction fetch and update PC

e |D: Instruction decode and register fetch

e EX: Execute R-type, calculate memory address

e MEM: Read data from memory or write data to memory

e WAB: Write the result data into register file

1.1.2 UART

UART stands for Universal Asynchronous Receiver/Transmitter, it is used for
asynchronous serial communication of data over peripheral device serial port. Most embedded
systems use UART for data communication as it is a hardware communication protocol that
only uses 2 wires for transmitting end (TX) and receiving end (RX). Figure 1.1.2 shows that

there are 2 UART communicating with each other.

UART2
RX

UART1

RX

s
vie

X

TX TX

Figure 1.1.2 Two UART communicating with each other[2]
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1.1.3RTOS

Real Time Operating System is an operating system intended to serve real time applications. It
is a software component that rapidly switches between tasks, make the user have an impression
that multiple programs are executing simultaneously on a single processor. Operating system
consists of many different parts such as file system, 1/0, memory allocation, network, and
scheduler. RTOS provides a hard real time response and a highly deterministic reaction to
external event. Hard real time is a system that must always meet all deadlines or the system
will fail if the deadline is missed. RTOS can be time-sharing or event-driven. Time-sharing
system switch the task based on the timer interrupt while event-driven system switches the task
according to the task priority. The value of a real-time operating system depends on how fast
it can respond compared to the amount of work it can perform in given period of time. Most
RTOS is using a pre-emptive algorithm. A basic RTOS has 3 states which the task might be

assigned.

Task is initialize

The task witk

highest
The task/s unblocked

Anotheheady task has
higher priority

Blocked
State

Running
State

The task is blocked

Figure 1.1.3 RTOS Task State (Yasen.S)

From Figure 1.1.3, a RTOS task usually has one main state such as:

e Ready: The task is ready to be executed by processor but not yet occupy the
processor.

¢ Running: The task is currently executed by the processor.

Bachelor of Information Technology (Honours) Computer Engineering 3

Faculty of Information and Communication Technology (Kampar Campus), UTAR



e Blocked: When the task is making an 1/0 request, the task will go to blocked state

until the event it is waiting occurs.

1.2 Problem Statement and Motivation

So far, a MIPS-ISA compatible RISC32 processor had been developed. With the
peripheral interface to it, firmware is also built to test out the customizability of the RISC32
processor. However, the backend of RISC32 processor is not completed yet. Despite RISC32
processor already has Interrupt Service Routine and the exception handler, but the operating
system still needs some improvement. To guarantee the response time and the deterministic

behaviour of RISC32, a project is initiated to develop the Real Time Operating System.

1.3 Project Scope

The project scope of the project mainly concentrates on using an open source RTOS,
FreeRTOS to perform multitasking and enable guaranteed response time. In fact, RTOS is an
embedded software as it interfaces with the hardware and dealing with numerous
simultaneously interrupts as well as scheduling concurrent task. To achieve the goal, the code
provided will be port over into the RTOS chosen. To make sure Ilvm compiler supports some
special function library which is not shown in the file developed in the previous work, we
convert the extra instruction and add it into that file. Therefore, a multitasking feature of

processor will be developed at the end the project.

1.4 Project Objective

The following are the objectives which are set for the project:

e Analyse the open source RTOS architecture and components.

e Develop a suitable RTOS for the RISC32 architecture which is compilable by LLVM
compiler.

e LLVM setup and RTOS compilation and debugging. By compiling the RTOS into
MIPS assembly instruction, the LLVVM compiler can readjust the address.

e Simulate the RTOS in RISC32.

Bachelor of Information Technology (Honours) Computer Engineering 4

Faculty of Information and Communication Technology (Kampar Campus), UTAR



1.5 Impact, Significance and Contribution

With the assisting of RTOS for RISC32, the processor can interleave many periodic
tasks in an easy way. As RTOS also supports priority-based scheduling, low priority tasks can
be scheduled round-robin, interrupted at a specified time interval while high priority task will
pre-empt those low priority tasks. The scheduling algorithm used is “First Come First Serve”
scheduling. So, RTOS will simplify the software and the improve the predictability of the

application. By having this contribution, we can utilize the processor more wisely.

1.6 Report Organization

The details of this project are shown in the following chapters.

e Chapter 1 : Introduction. Related information is included to help the reader to
understand easily and give a basic concept about the project. Problem statement, project
scope and its objective are discussed in this chapter.

e Chapter 2 : Literature Review. History of RTOS and its related information are
discussed. Knowledge about the open source code used will also be discussed.

e Chapter 3 : Methodology. This chapter discuss about the procedure of the project and
the project’s timeline.

e Chapter 4 : Analysis and Modification of FreeRTOS

e Chapter 5: FreeRTOS Implementation

e Chapter 6: Conclusion and Future Work.
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CHAPTER 2: Literature Review

2.1 RISC32

RISC32[3] is a MIPS Instruction Set Architecture (ISA) compatible 5-stage pipeline
32-bit loT processor. It decodes and executes MIPS instruction in 5 stages which are Instruction
Fetch (IF), Instruction Decode (ID), Execute (EX), Read/Write data from/to Memory (MEM),
and Write Back (WB). The word “Stages” means the datapath resources at each stage. Figure

2.1.1 shows the structural view of RISC32 microarchitecture.

Legands
— Diats Busss
To Control-path Unit Control Signals
Data Cache
J1 n::uprancesanr 5 i‘ Data FRAM E
H | Address RAM
f % | Decoder [ [5[— ’— Stk H
HCache — I } ] ;.5 - |— 5}
o = Cantroller =]
. Register 4 E 3
= ﬁ ¥
| | Cantrolier

| Forwarding Block |

[ Interiock Block |

Figure 2.1.1 Structural View of RISC32 Microarchitecture [4]

From Figure 2.1.1, RISC32 has a Coprocessor 0 (CP0) which is providing some
necessary functions to support Operating System such as monitoring hardware interrupt caused
by 1/0O controller, and software exceptions[4]. Software exceptions are abnormal events that
occur after executing a software program such as illegal instructions and arithmetic overflow.
Besides, RISC32 is integrated with 1/0 controllers like UART, ADC, SPI, and GPIO to provide
an interface for 10T applications. These I/O controllers are used to interact with external devices

like sensors, wireless module, printer, and so on.

2.1.1 Memory Map

RISC32 Memory can be defined as a large and one-dimensional array with 32-bit
address, it can support up to 4GB memory space. The Physical Memory of RISC32 is the actual
size of the memory to store or access the instruction and operand which include Flash Memory,
Data and Stack RAM, boot RAM, and I/O registers[3]. The Virtual Memory is the logical view

of the address space. It is useful for planning of distribution of the various address segments
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throughout RISC32 address space for programmer’s use. Figure 2.1.2 shows the virtual to

physical memory mapping based on MIPS32 architecture.

OxFFFF_FFFF OxFFFF_FFFF
kseg3
mapped,cached - kseg3
OxEQO0_0000 OxEQOO_DOOO
kseg2
mapped,cached ol kseg2
0x0000_DO00 0xc000_0000
ksegl
unmapped,uncached
OxAQO0_00D0
ksegl
unmapped,cached
OwB000_(000 kuseg
kuseg 0000
mapped,cached -
reserved
Ox 2000 _
ksegl, ksegl
Ce000_0000 0x0000_0000
Virtual Memory Physical Memory

Figure 2.1.2 Virtual to physical memory mapping based on 32-bit MIPS architecture.
The mapped memory segment is mapped to the Memory Management Unit (MMU)
while the cached segment used the cache memory to enhance the data accessing
speed[3].

From Figure 2.1.2, there are 5 segments distributing in virtual memory which are kernel
user segment (kuseg), kernel segment 0 (kseg0), kernel segment 1 (ksegl), kernel segment 2
(kseg2), and kernel segment 3 (kseg3). kuseg, kseg2, and kseg3 are mapped segment and they
should not be used by the processor when there is no Memory Management Unit (MMU)
because MMU takes the responsibility of the translation of virtual addresses to physical
addresses. Therefore, only kseg0 and ksegl are available for the implementation. From Figure
2.1.2, kseg0 and ksegl share the same physical addresses but different virtual addresses if
ksegO is not accessed through the cache. Figure 2.1.3 shows the memory allocation on ksegO

and ksegl.

Bachelor of Information Technology (Honours) Computer Engineering 7

Faculty of Information and Communication Technology (Kampar Campus), UTAR



Virtual Memory Physical Memory

Ouarer TE0D v i ister | 4
OwBFFF_FEOD o peripherals register CxLFFF_FEOD o peripherals register

OxBFCD 0000 Ox1FCO_1000
Ox1FCO_DD00

Boot code

KSEG1
DxAQO2_2000
FLASH
OwADDZ_1000 ' -'% =5
DxADO2_0ROO
CADOZ_0000 BOOT ROM
KSEGD/
CwADDD_0000 KSEG1
0x0002_2000 —
0x0002_1000 +-M
KSEGD ownoDZ_0S00 :’:fa
DxBOOL_FFFF = OxD002_0000 data
O0x8001_FEOD = alaia 0=0001_FEDD T
OxBO01_F400 : Q0001 _FA0D -
Exception handler Exception handler
OxB001_B4D0 fr Ox0001_B400
Uiser program oode Liser program code
DxXEDOD_00D0 " 0x0000_0000 b

Figure 2.1.3 Memory allocation on kseg0 and kseg1[3]

2.1.2 Coprocessor 0

MIPS has 2 Coprocessors which are Coprocessor 0 (c0) and Coprocessor 1 (c1). In this
project, only Coprocessor 0 will be used as it handles the exceptions and stores the information
of the corresponding exception event. Figure 2.1.4 shows the relevant exception handling
registers in Coprocessor 0. Further details about the exception handling registers will be

discussed in Chapter 3.

Register Number | Register Name Usage
g BadVAddr Memory address where exception occurred
12 Status Interrupt mask, enable bits, and status when exception
occurred
13 Cause Type of exception and pending interrupt bits
14 EPC Address of instruction that caused exception

Figure 2.1.4 Exception handling registers in Coprocessor 0[5]
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22 LLVM

LLVM has a series of modularized compiler components and tool chains while GCC
IS a static program language compiler for the GNU and Linux systems. Unlike GCC, LLVM is
not a compiler for any programming language, but it is a framework to generate object code

from any programming language source code.

Clang C/C4++/0ObjC LLwMA
C = Frontend X86 Backend — X85
_____________g e __________g
LLwM LLwM
Fortran —#=| llvm-gee Frontend Optimizer PowerPC Backend | ™ PowerPC
e __________________g e ________________g
LLWM
Haskell - GHC Frontend LM IR LVMIR ARM Backend - ARM

Figure 2.2.1 Internals of LLVM[4]

From Figure 2.2.2, the LLVM internals is known as three-phase design as it consists of
3 main components which are frontend, optimizer, and backend. The frontend takes the
responsibility of parsing the source codes such as C/C++ and checking for the error. The LLVM
frontend is unique to its supported programming language, for example Clang is the frontend
to C while LLVM-GCC is the frontend of Fortran. The parsed source code will be translated
into LLVM Intermediate Representation (IR) as the output of the frontend passing to the
LLVM optimizer. LLVM IR is a low-level RISC assembly language used by LLVVM compiler
framework for transformation. The LLVM optimizer will then do a variety of transformation
in order to improve the run-time of the code. As a result, the LLVM IR produced from the
optimizer will be a more optimized version and pass to the backend. The backend will map the
code into the targeted machine code. Each backend can only be written for a single target family

and they are independent of each other[4].

2.3 FreeRTOS
FreeRTOS is an open source real-time operating system for microcontroller and

microprocessor. It supports more than 35 architectures and it is distributed under MIT License.
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FreeRTOS was developed by Richard Berry around 2004, and was maintained by Richard’s
company, Real Time Engineers Ltd. The design goals of FreeRTOS are easy to use, small
footprint and robust. It also supports plenty of hardware architectures, making it a better choice
to be used with different 10T application. FreeRTOS is strictly quality managed and is
professional developed, it does not contain any ambiguous intellectual property and it is totally
free to use without any exposure of personal code. People are allowed to use FreeRTOS code
to create their product having market value without informing the company of FreeRTOS. In
order to make the code readable and easy to portable, it is developed in C programming
language and some assembly functions. FreeRTOS is a real-time kernel which the embedded
system can be built to meet their hard real-time requirements. Hard real-time requires us to set
a time deadline and fail to meet the deadline will result in system malfunction. For example,
the car’s air bag will be more harm compared to good if it does not respond on time to the

sensor input.

‘ Task 1 ]I Task 2 | Task 3 ‘ Task 4 1

T

L

FreeRTOS Kernel

Device driver ‘

*

L

Hardware

Figure 2.3.1 Architecture of FreeRTOS]6]

From Figure 2.3.1, the FreeRTOS Kernel is contacting with all the components such as
device driver, and hardware. The FreeRTOS Kernel will schedule the tasks coming from device
driver and hardware. Device driver can be known as a software driver as it is a small piece of
software that allowing the hardware to interact with operating system or with another hardware.
Device driver plays an important rule as it keeps the system running efficiently when a

computer having the correct device drivers. Without device driver, the OS will not be able to
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communicate with 1/O device because the OS works with device driver and BIOS to perform

hardware task.

For those single core processors, only a single task is allowed to occupy and run on the
processor at one time. FreeRTOS is a real-time kernel that decides which task to be executed
according to their priority assigned by the application designer. Thus, the task implementing
the hard real-time requirements can be assigned with a high priority. The kernel has the
responsibility for timing execution and provides a time-related API to the application. So, the
application structure is maintainability as it is simple and having smaller code size. Therefore,
most of the FreeRTOS code involves prioritizing, scheduling and running the task defined by
the user (Christopher.S).

Besides, software is said to be totally event-driven if kernel is used in the project. It is
because no more polling for the event and no time are wasted. Event polling is the process
where the computer is waiting for an external device to check for the task state. When the
processor is idle, the scheduler will create an idle task automatically to perform background
checks and the processor is in a low-power mode. Therefore, there are numerous reasons of
using the RTOS kernel because it improves efficiency, enable code reuse and power

management.

Apart from that, FreeRTOS is feature rich and still having continuous active
development. It is pre-emptive and the core of the RTOS kernel can be built by having only
three .c files. It is pre-emptive and using First-fit algorithm. First-fit algorithm scans memory
from the beginning and selects the available space which is sufficient for a task to be allocated.

The code style created by FreeRTOS is simple and reliable.

2.4 RT-Thread

RT-Thread is a real time operating system for embedded devices which is developed
by the RT-Thread Development Team based in China. The goal is to change the situation of
has no well-used open source RTOS in the microcontroller area in China. It is written in C
programming language in order to understand easily as well as easy to port. To making the
code elegant and structured, object-oriented programming methods was applied to real time
system design.
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There are 2 versions in RT-Thread which are Standard and Nano. For MCU system, the
Nano kernel version which needs 3KB Flash and 1.2KB RAM memory resources is tailored

with ease-to-use tools. The RT-Thread architecture has real-time kernel and rich components.

( mDNS / uPnP J (RTI/SystemViewJ ( Persimmon Ul J [ Al

Software Compression
Packages [ (o j ( kb ] (Decompresslon j [ GUI Engine

[ Script Engine ) ( ADBD ) ( AirKiss ) [

-y O O

{ POSIX API | C++ API | RT-Thread API 1
J
| e e Exception Key Value
i loT Connection Components *‘\Ha ndiing/ Log | | Database
: ( Cloud SDK / FOTA ) [Third»party Cloud Access SOK | ! 5
/ 14 \
i ([ usestack | oFs
i [TLS/DTLS] [ maTT J [HTTPC/S](LWMZM/CoAP) I 7 ~
! ' LowPower ) (i \
y Wi-Fi Manager
Components : SAL ) l ‘,\»Management/] ‘\ g Y, "af
J/
b ~ — N “" Network ) (  Audio F
: [ LwiP ][ AT | : \_ Framework J k Framework g
! | ETH ] WIFI { BLE ] NB M LoRa | 26/4G \I ] ”' FinSH Console] " Device ) i
. ! J ( e | £ ) \_ Framework
i 1 T s %
: Sync and Comm
: Semaphore Mutex
. ] libcpu/BSP
Hard Real-til !
" K,::., S i Event Set Message Queue
i
! Mailbox Signal
L. N S— i U=
cu ARM C-sKY MIPS Xtensa RISC-V ARC
Architecture

Figure 2.4.1 RT-Thread architecture

From the figure above, we know that the architecture includes:

o Kernel layer. The core part of RT-Thread which includes the implementation of objects
in the kernel system like multi-threading, semaphore, memory management, timer, etc.

e Components and service layer. For examples, virtual file systems, device framework,
network frameworks and so on are the components that is on top of the RT-Thread
kernel. Thus, it allows high internal cohesion inside the components and low coupling
between components.

e RT-Thread software package. It acts as a general-purpose software component running
on loT OS platform for different application areas such as source code. RT-Thread

provides open package platform with officially available packages so that there is a
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choice of reusable packages which is an important part in RT-Thread ecosystem. RT-

Thread can support up to 180 software packages.

RT-Thread has ported for almost 90 development boards, most BSPs support, GCC
compiler and provided default MDK and IAR project, which allows the users to add their
application code directly based on the project. Also, RT-Thread supported many
architectures and covered the major architectures in current applications. The architecture
manufacturer involved are MIPS32, RISC-V, ARM Cortex-R4 and more. While the main
compilers which are supported by RT-Thread is GCC, IAR and RT-Thread Studio.

2.5 Comparison between FreeRTOS and RT-Thread

FreeRTOS RT-Thread
Scheduler Pre-emptive, optional priority Full-preemptive priority based
Compiler used GCC, IAR, Clang and so on GCC, IAR
Kernel type microkernel Single kernel
Language Support C C

Table 2.5.1 Comparison of FreeRTOS and RT-Thread

From Table 2.5.1, it seems like a quite difference only between FreeRTOS and RT-
Thread. However, FreeRTOS is more secure and it provides plenty of demo project for various
of architectures and compilers. Its scalable size with program memory footprint as low as 9KB

makes the kernel tiny and power-saving.
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CHAPTER 3: Proposed Method / Approach

3.1 Methodologies and General Work Procedures

In order to make the RISC32 support multi-tasking, has the deterministic behaviour, a
real time operating system will be developed. By having RTOS, task can be prioritized which
depends on the importance and facilitates application expansion. So, the processor can run
more efficiently even on a limited hardware resource. it consumes little power and memory

because the kernel size is small and it able to fit the limited ROM storage of embedded systems.

3.2 Analysis of RTOS Architecture and Components
The kernel is a core component which running at all times in the system. Each executing
process is known as task and consists of an executable program. There are 3 components for

a Process:

e An executable program
e Associated data needed by a program
e Execution context (task state) of a program. All information on how a process will be

controlled by the system is included in Process Control Block (PCB).

Process-Id

Process state

Process Priority

Accounting
Information

Program Counter

CPU Register

PCB Pointers

Process Control Block

Figure 3.2.1 Process Control Block[1]
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3.2.1 Analysis of RTOS Behaviour: Multiprogramming vs Multiprocessing
Multiprogramming is running a group of tasks concurrently while multiprocessing is
running a group of tasks simultaneously. In multiprogramming, the processor will switch to
another task if the current running task is waiting for 1/0, because there is only one processor
in the system. In multiprocessing, many processes are running on different processors when
the system has multiple processors. In fact, multiprogramming gives an impression of running
the tasks simultaneously as the scheduler helps the processor to switch the tasks rapidly when
the task is waiting for 1/0. Doing so can prevent the processor from wasting time in waiting
for the task to be ready running. From Figure 3.2.2, we know that the processor is fully utilized

without idle although there is only one processor for multiprogramming.

All available tasks appear to be executing ...

Task 1 Executing

multiprocesshlg: Task 2 Executing - . - . . . - - .

(0 & ~Time [\
1~

... but only one task is ever executing at any time.

Task 1 Executing s —_— e "—' —

Task 2 Executing — — -—- —_—

multiprogramming: | P P
12 Time n N

Figure 3.2.1 Multiprocessing and multiprogramming

Since RISC32 is a single core processor, the concept of multiprogramming will be
applied in RISC32 by using FreeRTOS source codes. From Figure 3.2.2, only one task will be
executed on the processor because there is only a processor available. The scheduler will
schedule the time slice for each task to make sure that all tasks have the chance to be executed

on the processor.
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3.2.2 Analysis of RTOS Behaviour: Task and Scheduling Algorithm

OS Abort

TIMER
(Periodic)

TASK_TERMINATE

SIGNAL
(by other task)

kemnel dispatch

CREATE

by other task ol
(by other task) « TIMER (RR) <TIMER (System)
o« CREATE e CREATE (RR or
(task RR or Periodic, Periodic not in
new task System or current slot)
Periodic in this slot) e SIGNAL
o SIGNAL (No System waiting)
(System waiting) « EVENT_INIT
e SIGNAL_AND_NEXT e BROADCAST
« BROADCAST (No System waiting)

(System waiting)
* BROADCAST AND NEXT

Figure 3.2.2 Task state[7]

Before creating an RTOS for the project, we need to understand on how a task is
scheduled from queuing, executing and finally exiting the processor. Each process has many
states which will change when there is an interrupt occurs. To make multiprogramming
possible, an interrupt is needed to send a signal to processor in order to switch task. According

to Figure 3.2.3, CPU scheduling occurs when a task:

I.  Ready to Running state
ii.  Running to Ready state
ilii.  Running to Blocked state

iv.  Blocked to Ready state

v.  Running to Terminates

When only conditions i and v occur in CPU scheduling, it is a non-preemptive scheduling;
otherwise, it is pre-emptive. A process scheduler schedules different processes into CPU based
on the scheduling algorithm. There are some process scheduling algorithms which can be pre-

emptive or non-preemptive:

e First Come First Serve scheduling
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e Shortest Job Next scheduling
e Shortest Remaining Time

e Round Robin Scheduling

The kernel of FreeRTOS supports 2 types of scheduling algorithms which are Round-
robin scheduling and Fixed Priority Pre-emptive algorithm. Round Robin algorithm uses pre-
emption based on time quantum which means each process is allowed to use the processor
based on the amount of time determined. Fixed Priority Pre-emptive algorithm selects task to
use the processor according to the task’s priority value. So, a higher priority task always

occupies the processor than a lower priority task.

3.2.3 Analysis of RTOS Behaviour: Process Switching

Task consists of a sequence of code which will be executed in the processor. When the
task is waiting for an event occurs, the task will be swapped out to Block State by the kernel.
According to the figure below, there are 7 steps required to switch a process and scheduler the

following task to be executed.

Process P1 CPU Process P2
Executing
Interrupt or system call
i v
‘ Save state into PCB1 ’ ]
Y ~ Idle
l Reload state from PCB2 ’
L Idle Interrupt or system call Executing
* -
‘ Save state into PCB2 ’
‘ ~ Idle
‘ Reload state from PCB1 ’ ]
Executing
4 AfterAcademy
Figure 3.2.3 Process Switching steps[8]
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e Step 1: Save the context of processor including the program counter and the other
registers.

e Step 2: Update the process’s PCB which is running by changing the process state.

e Step 3: Move PCB to an appropriate queue such as ready queue, block queue or
ready(suspended) queue.

e Step 4: Select another process to be executed.

e Step 5: Update the selected process’s PCB.

e Step 6: Update the memory management data structures.

e Step 7: Restore the context of the selected process.

3.3 Comparison between LLVM and GCC

Before starting the comparison, GCC compilation process will be introduced first. The
compilation processes are read the source file, pre-process the source file, transform the source
file into GCC IR, optimize and generate an assembly file, and finally an object file is created

by the assembler. Figure 3.3.1 shows the internals of GCC compiler.

FrontEnd  Middle End Back End
Java _ m ____ ;o _[
I Inter =
|| Procedural Optimizer |
Optimizer
| B Y l
| [ SSA Final Code| | |
| |Optimizer. Generation I
| | —
..
Call Graph |,/ N
Manager Manager

Figure 3.3.1 The internals of GCC[4]

The data structure of LLVM IR is more concise than the GCC IR data structure,
meaning that less memory is occupied by LLVM IR during compilation[9]. Thus, LLVM
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compiler has greater compilation performance than GCC compiler as LLVM has shorter

compilation time.

In terms of code complexity, GCC has well-defined frontend and backend stages,
leading it become a complicated software while LLVVM is modular in design. Therefore, LLVM
IS a better choice as it has rather straightforward LLVM internals and the design is easy to
understand. In this project, LLVM will be used to compile FreeRTOS source codes.

3.4 RISC32 Components Involved

Understanding where the data will be stored in memory will help to prevent stack
overflow and memory leaks. From Figure 2.3.2, a simple C program allocating in memory will
be separated into user program code (.text), initialised data (.data), uninitialized data (.bss),
stack data (.stack), and heap data (.heap) [3]. In RISC32, those initialised global variables, and
static variables are stored in flash memory. While the .bss segment stores those uninitialized
variables in Data RAM. When the processor is powered, the bootloader will copy the content
of .data storing in flash memory to the .data segment in Data RAM. The .stack segment stores
the functions and their local variables. Due to .stack is a Last-In-First-Out (LIFO) system, the
variables can be continuously pushed to the stack when there are nested function calls. When
returning to the caller function from the called function, the variables will be popped out of the
stack as the return data or the variables will be deleted entirely when they are no longer used.
Besides, the .stack can grow in size when the compiler reserves as much stack as needed for

local variables.

The .heap segment is similar to .stack segment as it also can grow when the program is
running, it grows toward the .stack segment. The .heap is known as dynamic data segment
because the memory space can be explicitly created to store what the programmer is desired to
store by calling a function called malloc(). There are 2 functions can be used to adjust the
memory space allocated for the calling task which are brk() and sbrk(). The brk() set the task’s
break value to a higher address while the sbrk() add an increment of storage to the heap segment
of a task[10]. When finish using the dynamic memory location, the free() function is called to

release the location or the .heap will continue growing indefinitely.

FreeRTOS will allocate the memory of RISC32 at runtime when a new task is created

and it is assigned a portion of memory from the .heap segment. That portion of memory is
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distributed into 2 parts, task control block (TCB) and a stack which is exclusive to the task.
TCB is a data structure storing important information of a task such as the task’s priority level,
the location of the task’s stack, and so on. Figure 3.4.1 shows the information of Task 1 stored
in the .heap segment.

Virtual Memory

g

[l g e
OMBFFF FEDD L Bt (O
OxBFCO_1000

% Boot code Task 1
OxBFCO_0000
Stack 1
KSEG1 é
0xA002_2000 -
TCB 1
0xAD02_1000 L -'%l‘el Task 1 l
0xAD02_ 0800 |
0xAD02_0000 L
0xADOD_0000 4
KSEGO
0xB001_FFFF
0x8001 F800 "g;;fa
0x8001_F400 E
Exception handler
0x8001_B400
User program code

0x8000_0000 v

Figure 3.4.1 Task 1 information is stored inside the .heap segment of RISC32

3.5 Exception Handling Registers
3.5.1 Status Register

Status register ($stat or $12) is a read/write register containing the information of
exception. Figure 3.5.1 shows the layout of status register where bit 0 — bit 5 represent status

information while bit 8 — bit 15 represent interrupt mask.

31-16 15 14 13 12 11 14 5 8 7-6 5 4 3 2 1 a

IM7 IM& IM5 IM4 IM3 IM2 | IM1 IMO Ko IEc KUp IEp EKUc IEc

aold previous current

Figure 3.5.1 Layout of status register[5]
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From Figure 3.5.1, bit 8 — bit 9 are used for software interrupt level while bit 10 — bit
15 is responsible for hardware interrupt level. Bit O (IE) in status register is known as interrupt

enable. When it is set to 1, meaning that an interrupt is enable.

3.5.2 Cause Register
Cause Register ($cause or $13) stores the information the pending interrupts as well as
the causes of the exception[5]. Figure 3.5.2 shows the graphical view of the cause register.

31 15 8 6 2
Branch Pending Exception
delay interrupts code

Figure 3.5.2 Graphical view of cause register[11]

In cause register, its bit 31 is used for branch delay, meaning that there is an exception
occurring inside in branch/jump instruction. Bit 8 — bit 15 represent the pending interrupt. If
the pending bit is set to 1 means that there is an exception occurring and it is in the pending
state. Bit 2 — Bit 6 are exception code which is used to indicate what caused the exception.

Figure 3.5.3 shows the exception codes in cause register.

| Mumbor | Neme | Cossecfemception |

o Int interrupt (hardware)

4 AdEL address ermor exception (load or instruction fetch)
5 AdES address ermor exception (store)
& IBE bus error on instruction fetch
T DBE bus error on data load or store
g Sys syscall exception

=] BEp breakpoint exception

10 RI reserved instruction exception
11 CpU coprocessor unimplementad
12 Ov arithmetic overflow exception
i3 Tr trap

15 FPE floating point

Figure 3.5.3 Exception codes[11]
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3.5.3 EPC Register

The Exception Program Counter (EPC) register is used to store the exception return
address. For example, a “jal” instruction is executed to call a procedure and the return address
should be stored in a saved register, $ra. However, the return address cannot be stored in $ra
because it may overlap the address which has been stored before the exception occurs. The
EPC register solve the problem by storing the address of the executing instruction when there

IS an exception occurring[5].

3.6 Tools Involved

3.6.1LLVM

LLVM compiler is split into 3 parts which are front-end, middle-end, back-end. LLVM
intermediate representation (LLVM IR) is used by LLVVM compiler framework. Clang is the
front-end processing the C source code while MIPS is in the back-end compiles IR to machine
code (MIPS). In middle-end, LLVM contains opt(optimizer), lic(compiler), lld(linker). Clang
provides optimization which optimizes from high level language to IR.

First, opt is a modular LLVVM optimizer which it takes LLVM source file as input and
run specified optimizations to output the optimized file. It performs various analyses of the

input source and print the results on standard output.

Second, llc is a second module in LLVM. It compiles LLVM IR into assembly codes(.s)

or it will generate object file(.0). The assembly code output is then passed through the linker.

Third, 1ld is the last module in LLVM and it acts as a linker which links all the object
files into an Executable and Linkable file(.elf). Then, the file is passed to last stage which will
strip the .elf file to raw binary files such as .txt, .dat, and .rotdata segment. Therefore, MIPS
assembly instruction can be obtained for execution. Figure 3.6.1 shows the simplified LLVM
architecture of RISC32[4].
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Figure 3.6.1 Simplified architecture of LLVM of RISC32[4]

3.6.2 Xilinx Vivado

Xilinx Vivado is a complex integrated development environment (IDE) tool to program
FPGA and the implementation process. To create a Verilog files, the source codes can be
written in the text editor supported by Vivado. Testbench code can be added as simulation
source code. By having the project source code, the user can choose different types of
simulation for their project. For example, behavioural simulation will launch the built-in
simulator. After simulating the project, there is schematic view of the design according to the

user source code.

3.7 Implementation Issues and Challenge

In this project, we may add new instruction in the file which is done in the previous
work if the RISC32 processor does not support the special library function. Once the compiler
compiles successfully, the address of the MIPS instruction can be readjusted in order to be read
by the RISC32 processor.

Besides, the modification of the existing code may occur logic error due to the setting
of code for our project are imprecise. Repeating error checking is needed when compiling the
code.
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3.8 Timeline

Gantt Chart is used to describe our project:

3.8.1 Timeline of FYP 1

Project Title: The Development of an RTOS for the 5-Stage Pipeline RISC32 Micropr
Project Lead: Er Pei Qing

Project Start:  7-Tun-21 < >

Phase 1: Study the imple mentation of RTOS

r Multiprogramming concept 7-Tn-21 srm21 [ 100% ]

[ Task Execution 9-Jun-21 1-hm21 [ 900%

I Scheduling Algorithm 12-Fun-21 14-Jun-21

T Process Switching 15-Fun-21 16Jm21 [ 100% | [ | [ [ [
Phase 2: Determine RTOS code

I Research for a suitable open source RTOS code 17-Jun-21 27-Tun-21

r Studying the concept of the code used based on demo project  28-Tm-21 1oqu21 [ s0% |

r Research the necessary code for an RTOS project 11-Jul-21 121 [ 5%

r Select the code for the project 19-Tul-21 20-Jul-21

r Take out the wmnecessary code 21-Jul-21 23-Jul-21

r Modifying the code to suit the project 24-Jul-21 1-Aug-21 60%

r Revision of the code used to enhance the concept 2-Aug-21 10-Aug21 [ 00% |

I Documentation for FYP1 11-Aug-21 B-Aug2l [ 9%0% ]

Figure 3.8.1 Project Progress from Week 1 to Week 5

Project Title: The Development of an RTOS for the 5-Stage Pipeline RISC32 Microprocessor
Project Lead: Er Pei Qing

Project Start:  7-Tm-21 < >
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12 13 14 15 16 17 18 15 20 21 22 23 M 35 26 27 B 129 30 31 1 2 3 4 5 [3 7 § 9 0 11 12 13 14 15

Progress
. Phase 1: Study the implementation of RTOS
r Multiprogramming concept 7-Tm-21 8-Jun-21
[ Task Execution 3-Tn-21 11-m-21
r Scheduling Algorithm 12-7un-21 14-lm-21
r Process Switching 15-Tun-21 16-Jun-21 r r I r T
Phase 2: Determine RTOS code
T Rescarch for a suitable open source RTOS code 17-Jun-21 27-Jun-21
r Studying the concept of the code used based on demo project 28-Jun-21 10-Jul-21
T Rescarch the necessary code for an RTOS project 11-Tul21 18-Jul-21
r Select the code for the project 19-Jul-21 20-Tul-21
[ Take out the unnecessary code 21-Jul-21 23-Jul-21
r Modifying the code to suit the project 24-ul-21 1-Aug-21
I Revision of the code used to enhance the concept 2-Aug-21 10-Aug-21
I Documentation for FYP1 11-Aug21 23-Aug 21

Figure 3.8.2 Project Progress from Week 6 to Week 10

3.8.2 FYP2 Timeline

Project Title: The Development of an RTOS for the 5-Stage Pipeline RISC32 Microprocessor
Project Lead: Er Pei Qing

Project Start. 24-Jan-22
Week: 1

Week 2 Week 3 Week 4 Week §
31-Jan-22 7-Feb-22 14 Feb-22 21-Feb-22
3 w n

Progress
Phase 1: FreeRTOS codes and LLVM compiler analysis

Analysis of FreeRTOS codes 100%
T Analysis of LLVM compilation todichain 100%
Phase 2: LLVM setup and codes compilation
| Setup LLVM compilation tocichain 100%
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Debug for the compilation of testing_lvm.c 100%
- r Select and modify FreeRTOS source codes 50
: Compile FreeRTOS source codes 100
M Debug for the compilation of FreeRTOS sowrce codes 85%
Phase 3: Simulation and debugging
: Setup RISC32 processor 1005
Rum simmulation for trying_Bvm.c 100%
T Debug of trying_lhm ¢ based on simmilation resuts 100%
T Rum sirmulation for FreeRTOS programme 100%
T Debug on FreeRTOS C language source codes 1065
Debug on FreeRTOS assembly codes 100%
Phase 4: Documentation
T Documentaticn for FYP2 11-Apr-22 20-Ape-22 S0P
Figure 3.8.3 Project Progress from Week 1 to Week 5
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Project Title: The Development of an RTOS for the 5-Stage Pipeline RISC32 Microprocessor
Project Lead: Er Pei Qing
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Progress

Phase 1: FreeRTOS codes and LLVM compiler analysis
Analysis of FreeRTOS codes 24-Jan-22 27-Tane22 100%
Analysis of LLVM compilation toolchain 27-Jan-22 2-Feb-22 100%

Phase 2: LLVM setup and codes compilation
Senp LLVM comyilation toolchain

7-Feb-22

Create testing Ivm.c to test the fimcticnaliies of LLVM SFeb-22
i Cempile testing vm.c using LLVM 11-Feb-22
r Debug fer the compilation of testing_vm.c
. [ Select and modify FreeRTOS source codes
T Compile FreeRTOS source codes
- i Debug for the comyilation of FreeRTOS source codes
Phase 3: Simulation and debugging
T Setup RISC32 processor 1004
T Rum simulation for wying_ I c 100%
T Debug of trying_lhm ¢ based on simalation results 100%
r Rum simulation for FreeRTOS programme 100%
r Debug on FreeRTOS C hanguage source codes 1005
T Debug on FreeRTOS assembly codes 100%

Phase 4: Documentation
Documentation for FYP2 Ll-Apr-22 21-Apr-22 %

Figure 3.8.4 Project Progress from Week 6 to Week 10CHAPTER 4: Analysis and
Modification of FreeRTOS

Project Title: The Development of an RTOS for the 5-Stage Pipeline RISC32 Microprocessor
Project Lead: Er Pei Qing

Project Start: 24-Tan-22 L)
Week: 11 Week 11 Week 12 Week 13 Week 14
4Apr22 11-Apr-22 18-Apr-22 25-Apr-22
45 6 7 s s 1 1 B B 1 1516 1 15 1 0 M 1 3 M 25 2 W B s 0 1

Phase 1: FreeRTOS codes and LLVM compiler analysis

Analysis of FreeRTOS codes 24-Jan-22 27-Jan-22 100%
I Analysis of LLVM compilation toclchain 27Jam22 2Feb22 100%

Phase 2: LLVM setup and codes compilation

Setup LLVM compilation toalchain 3-Feb-22 7-Feb-22 100%
[ Create testing_Ivm.c to test the functionalities of LLVM 8 Feb-22 10-Feb-22
[ Compile testing Ivm.c using LLVM 11-Feb22 12-Feb-22
[ Debug for the compilation of testing_llvm.c 13-Feb-22 16-Feb-22 100%
* [ Select and modify FreeRTOS source codes 17-Feb-22 27-Feb-22
[ Compile FreeRTOS source codes 28-Feb22 1-Mar-22
* T Debug for the compilation of FreeRTOS source codes 2-Mar-22 12-Mar-22 85%

Phase 3: Simulation and debugging

Setup RISC32 processor 13-Mar-22 16-Mar-22 100%
[ Run simuilation for trying_livm c 17-Mar-22 18-Mar-22
| Debug of trying_llvm c based on simulation results 18-Mar-22 21-Mar-22
[ Run simulation for FreeRTOS programme 2-Mar-22 23-Mar-22
[ Debug on FreeRTOS C language sowrce codes 24-Mar-22 31-Mar-22
I Debug on FreeRTOS assembly codes 1-Apr-22 10-Apr-22 100%

Phase 4: Documentation
[ Documentation for FYP2 11-Apr22 21-Apr22 90%

===0E =SHIEEEE
2853 935558

Figure 3.8. 5 Project Progress from Week 11 to Week 13
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Chapter 4 Analysis and Modification of FreeRTOS

4.1 Analysis of FreeRTOS Architecture
Real Time Engineering Ltd has distributed each of the source file and header file into
several parts according to their functionality. There are 4 folders stored in FreeRTOS folder

which are “Demo”, “License”, “Source” and “Test”. For the project, only “Demo” and “Source’

files are needed. They are used as FreeRTOS kernel structure.

FreeRTOS
I
+-Demo Contains the demo application projects.
I
+-Source Contains the real time kernel source code.

Figure 4.1.1 FreeRTOS kernel directory structure[12]

4.2 Demo Path
This folder includes around 200 examples for every microarchitecture and compiler. For our

project, we refer to the 6 examples of RISC-V which are tested to different devices.

This PC > Documents > FreeRTOSv202012.00 > FreeRTOS » Demo v [&)] 2 Search Demo
~ Name - File ownership Date modified Type Size ~
PPC405_Xilinx_Virtex4_GCC 8/7/2021 11:04 PM File folder
PPC440_DP_FPU_Xilinx_Virtex5_GCC 8 21 11:04 PM File folder
PPC440_SP_FPU_Xilinx_Virtex5_GCC 8 21 11:.04 PM File folder
PPC440_Xilinx_Virtex5_GCC 8/7/2021 11:04 PM File folder
RISC-V_Renode_Emulator_SoftConsole 1 2 File folder
RISC-V_RV32_SiFive_HiFive1-RevB_Freed.. 8 21 11:.04 PM File folder
RISC-V_RV32_SiFive_HiFive1-RevB_IAR 8/7/2021 11:.04 PM File folder
RISC-V_RV32M1 _Vega GCC Eclipse 8 21 11:04 PM File folder
RISC-V-Qemu-sifive_e-Eclipse-GCC 1 021 11:57 PM File folder
RISC-V-Qemu-virt_GCC 8/7/2021 11:04 PM File folder
RL78 multiple_IAR. 8 21 11:04 PM File folder
RL78_RL78G13_Promo_Board_IAR 8 21 11:04 PM File folder
RX100_RX113-RSK_GCC_e2studio_IAR 8/7/2021 11:04 PM File folder
v NDWVANA NVA1Y DOWY Danaras ~esodia QFTANTNT 4404 DA Film Faldae R v

Figure 4.2.1 Six RISC-V example projects

Bachelor of Information Technology (Honours) Computer Engineering 26

Faculty of Information and Communication Technology (Kampar Campus), UTAR



4.3 Source Path

This directory contains 7 source (.c)files for the RTOS core but we only take those
necessary source files for RISC32. In “Source” directory, the “include” file contains all the
header files used by C source files. The “portable” file consists of a lot of compilers and each

of the compiler has their own port layer source files.

FreeRTOS

+-Source The core FreeRT0S kernel files

+-include The core FreeRTOS kernel header files

+-Portable Processor specific code.

+-Compiler x All the ports supported for compiler x
+-Compiler y All the ports supported for compiler y
+-MemMang The sample heap implementations

Figure 4.3.1 “Source” folder structure [12]

There is numerous source file which are used for the core RTOS. Each source file
contains their own functionality. For example, task.c file is used to create task, set the task
priority value and scheduling the task. Due to our project only need these 3 files, the other two
optional files are not included to make sure the code size is small. The functionality of source

files of list.c, queue.c and tasks.c are discussed in Chapter 5.

This PC > Documents > FreeRTOSv202012.00 > FreeRTOS > Source » ~ [&] O Search Source
~ Name . File ownership Date modified Type Size
include 8/7/2021 11:.04 PM File folder
portable 8/7/2021 11:04 PM File folder
E croutine.c 16/12/2020 3:54 AM TrueSTUDIO C file 16 KB
E event_groups.c 16/12/2020 3:54 AM TrueSTUDIO Cfile 32 KB
list.c 16/12/2020 3:54 AM TrueSTUDIO C file 10 KB
queue.c 16/12/2020 3:54 AM TrueSTUDIO C file 122 KB
E stream_buffer.c 16/12/2020 3:54 AM TrueSTUDIO C file 53 KB
E tasks.c 16/12/2020 3:54 AM TrueSTUDIO C file 221 KB I
timers.c 16/12/2020 3:54 AM TrueSTUDIO C file 5TKB
A

Figure 4.3.2 Minimal files needed to build real time kernel
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4.3.1 The include Folder

From Figure 4.3.3, the folder “include” contains the header files used by C source files.

This PC > Documents * FreeRTOSv202012.00 > FreeRTOS * Source * include

~

Name File ownership

E atomic.h

E croutine.h

E deprecated_definitions.h
E event_groups.h
E] Freertosh

El isth

E message_buffer.h
E mpu_prototypes.h
E mpu_wrappers.h
E portable.h

E projdefs.h

E queue.h

E semphr.h

E stack_macros.h
E StackMacros.h

[ ] stdintreadme
E stream_buffer.h
E taskh

E timers.h

-~

Date modified

16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 3:54 AM
16/12/2020 2:54 AM
16/12/2020 2:54 AM
16/12/2020 3:54 AM

Type

TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file
README File

TrueSTUDIO H file
TrueSTUDIO H file
TrueSTUDIO H file

Figure 4.3.3 Header files of FreeRTOS kernel

4.3.2 The portable Folder

13 KB
29 KB
8 KB
32KB
47 KB
20 KB
38 KB
18 KB
12 KB
9KB
7KB
64 KB
49 KB
9KB
2KB
3KB
39 KB
133 KB
62 KB

This folder contains specific code to particular microcontroller and the compiler. For our

project, we use GCC compiler for RISC-V as the reference.
This PC > Documents > FreeRTOSv202012.00 >|FreeR[OS » Source » portable > GCC ? I v O O Search GCC
& Name - File ownership Date modified Type Size
MicroBlazeV8 /7/2021 11:04 PM File folder
MicroBlazeV9 8/7/2021 11:04 PM File folder
MSP430F449 /7/2021 11:04 PM File folder
Niosll 8/7/2021 11:04 PM File folder
PPC405_Xilinx /772021 11:04 PM File folder
PPC440_Xilinx 8/7/2021 11:04 PM File folder
| Rriscv /7/2021 11:04 PM File folder |
RL78 /7/2021 11:04 PM File folder
RX100 8/7/2021 11:04 PM File folder
RX200 /7/2021 11:04 PM File folder
RX600 8/7/2021 11:04 PM File folder
RX600v2 /7/2021 11:04 PM File folder
RX700v3_DPFPU 8/7/2021 11:04 PM File folder
STR75x /7/2021 11:04 PM File folder
v TriCore_1782 8/7/2021 11:04 PM File folder

Figure 4.3.4 RISC-V uses GCC compiler
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4.4 FreeRTOS Kernel Architecture and its Usage

/ FreeRTOS

» tasks.c
+  liste

- queue.c

/

main.c

+ The place the application
tasks are created.

+  portc

FreeRTOS Portable
Profile
* heap 4.c
FreeRTOS +  portASM.s
Configuration +  portmacro.h

+ FreeRTOSConfig.h

-

"

Software/

Figure 4.4.1 FreeRTOS Kernel Architecture

Demo application tasks can be created in main() function in main.c because it acts as
the entry point to FreeRTOS. The source files contained in #2 and #3 provides the FreeRTOS
API to the application. The source files in #2 are the basic files for FreeRTOS core. FreeRTOS

can be configured by tailoring FreeRTOSConfig.h in order to match RISC32 specific

application. Source codes in #4 play important roles to connect FreeRTOS to the hardware

model and compiler. There are 2 specific data type in portmacro.h that are the TickType_t and

BaseType_t which will be discussed later. Besides, inline assembly are used as it enables the

assembly instruction to be embedded within C code. The syntax of inline assembly is “ _asm”

associated with volatile keyword.
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4.5 FreeRTOS Functions and Code Analysis and Modification

4.5.1 Source Files of FreeRTOS Core

FreeRTOS can be defined as a small application, the core of FreeRTOS consists of 6
source files and their respective header files, and the total code needed is under 10k lines. These
6 files are tasks.c, list.c, and queue.c, they are common to all the FreeRTOS ports. The header

files are stored in another folder named “include”[12].

e task.c - Almost 50% of FreeRTOS’s core code are dealing with task in an operating
system. Task is user-defined C function as the user assigns the priority value to the task.

This part involves in creating, scheduling and maintaining the tasks.

/* pxDelayedTaskList and pxOverflowDelayedTasklList are switched when the tick
* count overflows. */
#define taskSWITCH DELAYED LISTS()

1
List t * pxTemp;

* The delayed tasks list should be empty when the lists are switched. */
configASSERT( ( listLIST_IS EMPTY( pxDelayedTaskList ) ) );

pxTemp = pxDelayedTasklList;

pxDelayedTaskList = pxOverflowDelayedTaskList;
pxOverflowDelayedTaskList = pxTemp;
¥NumOfOoverflows++;
prvResetNextTaskUnblockTime();

e e

* Place the task represented by pxTCB into the appropriate ready list for
* the task. It is inserted at the end of the list.

#define prvAddTaskToReadylList( pxTCB )
traceMOVED TASK_TO READY STATE( pxTCE );
taskRECORD_READY PRIORITY( ( pxTCB )-»uxPricrity );
vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )-»uxPriority ] ), &( ( pxTCB )-»>xStatelListItem ) );
tracePOST_MOVED TASK_TO READY STATE({ pxTCE )

!
!
!
!

Figure 4.5.1 Example code of task.c

Bachelor of Information Technology (Honours) Computer Engineering 30

Faculty of Information and Communication Technology (Kampar Campus), UTAR



e list.c - Itis a data structure and the list implementation is used by the scheduler. Its
concept is similar to linked list that the items is stored in the list, but it is used to track
tasks in FreeRTOS. list.c defines the structures and functions used by task.c [6]. There

are 2 types of list items used in FreeRTOS which are list items and mini-list items.

void vListInitialise( List_t * const pxList )

/* The list structure contains a list item which is used to mark the
* end of the list. To initialise the list the list end is inserted
* as the only list entry. */

pxList->pxIndex = ( ListItem t * ) &( pxList-»xListEnd );

/* The list end wvalue is the highest possible value in the list to
* ensure it remains at the end of the list. */
pxList->xListEnd.xItemValue = portMAX_DELAY;

/* The list end next and previous peinters peint to itself so we know
* when the list is empty. */

pxList->xListEnd.pxNext = ( ListItem t * ) &( pxList-»xListEnd );
pxlist->xListEnd.pxPrevious = ( ListItem t * ) &( pxList->xListEnd );

pxList->uxNumberOfItems = ( UBaseType_t ) @U;

/* Write known wvalues into the list if

* configUSE_LIST_DATA INTEGRITY_CHECK_BYTES is set to 1. */
1istSET_LIST INTEGRITY CHECK 1 VALUE( pxList );
1istSET_LIST INTEGRITY CHECK_ 2 VALUE( pxList );

void viistInitialiseItem( ListTtem_t * const pxItem

/* Make sure the list item is net recorded as being on a list. */

pxItem->pxContainer = NULL;
/* Write known values into the list item if
* configUSE_LIST_DATA_INTEGRITY_CHECK_BYTES is set to 1. */

1istSET_FIRST_LIST_ITEM INTEGRITY_CHECK_VALUE( pxItem );
1istSET_SECOND_LIST ITEM_INTEGRITY CHECK_VALUE( pxItem );

Figure 4.5.2 Example code of list.c

Bachelor of Information Technology (Honours) Computer Engineering 31

Faculty of Information and Communication Technology (Kampar Campus), UTAR



e queue.c — Perform thread-safe queue for synchronisation and task communication[6].
In order to make the task can communicate with each other, queue.c and queue.h are
used to handle FreeRTOS task communication. Using queue enables task and interrupt
to send data between each other and to signal the other tasks that the critical resources
are used by editing the value of semaphores and mutexes.

typedef struct QueuePointers
1
intd3 t * pcTail; /*< Points
int8_t * pcReadFrom; /*< Points
} QueusPointers_t;

+
[a]

the byte at the end of the queue storage area.
the last place that a queued item was read from

+
[a]

typedef struct SemaphoreData
1
TaskHandle_t xMutexHolder; /*< The handle of the task that holds the mutex.
UBaseType_t uxRecursiveCallCount; /*< Maintains a count of the number of times a re
} SemaphoreData_t;

/* Semaphores do not actually store or copy data, so have an item size of

* zerg. */

#define queueSEMAPHORE_QUEUE_ITEM_LENGTH { ( UBaseType_t ) 8 )
#define queueMUTEX_GIVE_BLOCK_TIME ( ( TickType_t ) @U )
#if ( configUSE_PREEMPTION == @ )

en a yield should not be

/* If the cooperative scheduler is being used th
task has been woken. */

* performed just because a higher priority
#define queueYIELD IF USING PREEMPTION()
#telse

#define queueYIELD IF_USING_PREEMPTION() portYIELD WITHIN API()
#endif

Figure 4.5.3 Example codes of queue.c
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4.5.2 Configuring RTOS Scheduler

To make FreeRTOS can be implemented in the project, a configuration file called
FreeRTOSConfig.h should be modified to tailor the RTOS kernel. Figures below will display
the code which contributes to the settings.

#daefine configUSE_PREEMPTION 1
#define configUSE_IDLE_HOOK 1

#define configUSE_TICK_HOOK 1
#define configCPU_CLOCK_HZ {
#define configTICK_RATE_HZ

#daefine configMAX_PRIORITIES

( uint32_t ) ( SYS_CLK_FREQ ) )
(
(5
#define configMINIMAL_STACK_SIZE ((
(
1

u
TickType_t ) 1e6@ )
A
/
u

int3z_t ) 170 )

#define configTOTAL_HEAP_SIZE size_t ) ( 4896 } )

#define configMAX TASK NAME_LEN (
#define configUSE_TRACE_FACILITY 8
#define configUSE_16_BIT_TICKS 8
#define configIDLE_SHOULD_YIELD 8
#define configUSE_MUTEXES 1
#daefine configQUEUE_REGISTRY_SIZE 8
#define configCHECK_FOR_STACK_OVERFLOW 2
#define configUSE_RECURSIVE_MUTEXES 1
#define configUSE_MALLOC_FAILED HOOK 1
#define configUSE_APPLICATION TASK TAG ©
#define configUSE_COUNTING_SEMAPHORES 1
#define configGENERATE RUN_TIME_STATS @
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1

Figure 4.5.4 Part 1 settings

According to the setting above, the pre-emptive RTOS scheduler is used. Idle hook and
Tick hook functions are set to 1. It is because idle task can be created automatically when the
scheduler begins to check there is at least one task is executed on the processor. The stack size
of idle task is set by using configMINIMAL_STACK_SIZE(). In RISC32, the heap segment
size is 0x1000 meaning that 4096 of size in terms of decimal base is assigned to the label
configTOTAL_HEAP_SIZE(). Tick interrupt is able to implement timer functionality by
calling vApplicationTickHook() function. RTOS tick interrupt frequency can be modified by
setting the value for configTICK_RATE_HZ() function.

Each task is assigned with a priority value from 0 to 4. The maximum value set cannot
be higher than 32 to ensure RAM usage efficiency. The scheduler makes sure that the task is
given processor time in preference although it has lower priority in ready state while the higher

priority task is running on the processor.

Mutex functionality is included in RTOS scheduler. Mutex is a locking mechanism
which ensures that only 1 thread can acquire the critical session at one time. Mutex will
available when the thread finishes using the critical session and release it. Mutex is different

than semaphore as semaphore is a signalling mechanism. Figure 4.2.2 is an example of mutex.
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wait (mutex);
Critical Section

signal (mutex);

Figure 4.5.5 Mutex Example

Task may come to deadlock when the processes is competing for the system resources
or communicating with each other. When a task tries to acquire the mutex for more than once
without returning the mutex first. As a result, the task in Blocked state is waiting for the mutex
to be returned but the mutex is holding by the task itself. Therefore, to avoid deadlock from
happening, a function named configUSE_RECURSIVE_MUTEX is set to 1. Doing so allows

a task can take more than 1 mutex.

/* Co-routine definitions. */
#define configUSE_CO_ROUTINES e
#define configMAX C0O_ROUTINE_PRIORITIES { 2 )

* Software timer definitions. */

#define configUSE_TIMERS 1
#define configTIMER_TASK_PRIORITY ( configMAX PRIORITIES - 1 )
#define configTIMER_QUEUE_LENGTH 4

#define configTIMER_TASK_STACK_DEPTH  ( configMINIMAL_STACK_SIZE )

* Task prierities. Allow these to be overridden. */
#ifndef uartPRIMARY_PRIORITY

#define uartPRIMARY PRIORITY { configMAX PRIORITIES - 3 )
#endif

'* set the following definitions to 1 to include the API function, or zero
te exclude the API function. */

#define INCLUDE_wTaskPrioritySet 1
#define INCLUDE_uxTaskPriorityGet 1
#define INCLUDE_vTaskDelete 1
#define INCLUDE_vTaskCleanUpResources 1
#define INCLUDE_vwTaskSuspend 1
#define INCLUDE_vTaskDelayUntil 1
#define INCLUDE_wTaskDelay 1
#define INCLUDE_eTaskGetState 1
#define INCLUDE_xTimerPendFunctionCall 1
#define INCLUDE_xTaskAbortDelay 1
#define INCLUDE_xTaskGetHandle 1
#define INCLUDE_xSemaphoreGetMutexHolder 1

/* Mormal assert() semantics without relying on the provision of an assert.h
header file. */
#define configASSERT( x ) if( ( % ) == @ ) { taskDISABLE_INTERRUPTS(); _ asm wvolatile( "ebreak" ); for( ;; ); }

* Defined in main.c and used in main_blinky.c and main_full.c. */
void vSendString( const char * const pcString );

Figure 4.5.6 Part 2 setting
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From Figure 5.3.3, configUSE_CO_ROUTINE is set to 0 because the croutine.c source
file is excluded from “Source” directory and it is not used in RISC-V. The co-routines priority
value is set to 2 meaning that only 2 priorities is available and each co-routine share the same
priority. Software timer is used in the scheduler to allow function executes at a set of time in
future.

There are macros “INCLUDE” where the function name is actually the API function.

From the figure above, all the API function is set to 1.

4.5.3 Portable Layer
The processor architecture containing specific RTOS code is stored in a folder called “portable”

as it acts as RTOS portable layer. Memory management code is also included in portable file.

e heap_4.c (in Memory Management path) — The RTOS kernel needs RAM when a task,
queue, or semaphore is created. It uses the first-fit algorithm and combine adjacent free
memory blocks into a large block. Using heap_4.c allows the application can delete
tasks, queue, semaphore or mutex repeatedly. To set the total amount of available heap
size, configTOTAL_HEAP_SIZE in FreeRTOSConfig.h is configured to the values of
4096 with unsigned integer data type. Calling pvPortMalloc() when the kernel needs
RAM while calling vPortFree to free RAM.

* Inserts a block of memery that is being freed into the correct position in
* the 1list of free memory blocks. The block being freed will be merged with
* the block in front it and/or the block behind it if the memory blocks are
* adjacent to each other.

*/

static void prvInsertBlockIntoFreelist( BlockLink_t * pxBlockToInsert )} PRIVILEGED_FUMCTION;

* Called automatically to setup the required heap structures the first time
* pvPortMalloc() is called.

*f

static veoid prvHeapInit( void ) PRIVILEGED_FUNCTION;

/* The size of the structure placed at the beginning of each allocated memory
* block must by correctly byte aligned. */
static const size t xHeapStructSize = ( sizeof( BlockLink t ) + ( ( size t ) ( portBYTE_ALIGHMENT - 1 ) ) ) & ~( ( size t ) portBYTE_ALIGNMENT_MASK );

/* Create a couple of list links to mark the start and end of the list. */
PRIVILEGED DATA static BlockLink t xStart, * pxEnd = NULL;

/* Keeps track of the number of calls to allocate and free memory as well as the
* number of free bytes remaining, but says nothing about fragmentation. */
PRIVILEGED_DATA static size_t xFreeBytesRemaining = 8U;

PRIVILEGED DATA static t xMinimumEverFreeBytesRemaining = oU;

PRIVILEGED DATA static T xNumberOfsuccessfuldllocations = &;
PRIVILEGED_DATA static size_t xNumberOfSuccessfulFrees = 8;

Figure 4.5.7 Example function prototypes of heap_4.c

Bachelor of Information Technology (Honours) Computer Engineering 35

Faculty of Information and Communication Technology (Kampar Campus), UTAR



e port.c (in GCC compiler path) — port.c file implements the functions specified in
portable.h file. portable.h file is the portable layer API and the function must be defined

for each port. Figure 4.4.8 shows the function prototypes defined in portable.h and the

function definitions are created at port.c.

* Returns a HeapStats_t structure filled with information about the current
* heap state.
W

void vPortGetHeapStats( HeapStats_t * pxHeapStats });

* Map to the memory management routines required for the port.

* ."l.

void * pvPortMalloc( size t xSize ) PRIVILEGED_FUNCTION;

void vPortFree( void * pv ) PRIVILEGED_FUNCTION;

void vPortInitialiseBlocks( wvoid )} PRIVILEGED_FUNCTION;

size t xPortGetFreeHeapSize( void ) PRIVILEGED FUNCTION;

size_t xPortGetMinimumEverFreeHeapSize( void ) PRIVILEGED_FUMCTION;

[k
!

* Setup the hardware ready for the scheduler to take control. This generally
* sets up a tick interrupt and sets timers for the correct tick frequency.
* 4

BaseType_t xPortStartScheduler( void ) PRIVILEGED FUNCTION;

* Undo any hardware/ISR setup that was performed by xPortStartScheduler() so
* the hardware is left in its original condition after the scheduler stops
* executing.

'
void vPortEndScheduler( woid ) PRIVILEGED_FUNCTIOM;

Figure 4.5.8 Example function prototypes defined in portable.h
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BaseType_t xPortStartSched

extern void xPortStartFirstTask( void );

iler( void )

if( configASSERT_DEFINED == 1 )

-t

volatile uint32_t mtvec = 9;

/* Check the least significant two bits of mtvec are @@ - indicating
single vector mode. */ #1

//__asm volatile( "csrr %@, mtvec” : "=r"( mtvec ) );
//configASSERT( ( mtvec & @x@3UL ) == © );

* Check alignment of the interrupt stack - which is the same as the
stack that was being used by main() prior to the scheduler being
started. */
configASSERT( ( XISRStackTop & portBYTE_ALIGNMENT MASK ) == 8 );

#ifdef configISR_STACK_SIZE_WORDS

-~

// memset is used to fill a block of memory with particular value.
memset( ( void * ) xISRStack, portISR_STACK_FILL_BYTE, sizeof( xISRStack ) );
gendif /* configISR_STACK_SIZE_WORDS */
N

#endif /* configASSERT_DEFINED */

/* If there is a CLINT then it is ok to use the default implementation::
vPortSetupTimerInterrupt();

#if( ( configMTIME_BASE_ADDRESS != @ ) & ( configMTIMECMP_BASE_ADDRESS != @ ) )

#else
{

* Enable ext?rw?‘ i *rr.?ptsw : - ifz
//__asm volatile( "csrs mie, %0" :: "r"(©x800) ); S
portENABLE_INTERRUPTS();

b
#endif /* ( configMTIME_BASE_ADDRESS != © ) && ( configMTIMECMP_BASE_ADDRESS != @ ) */

xPortStartFirstTask();

/* Should not get here as after calling xPortStartFirstTask() only tasks
should be executing. */
return pdFAIL;

}
Figure 4.5.9 Function definition of xPortStartFirstTask defined in port.c

Since the label configASSERT _DEFINED is set to 1 in FreeRTOS.h, the codes inside
the label will be executed. In #1, the inline assembly is used for RISC-V to check whether the
register mtvec is single vector mode. When RISC-V is on single vector mode, the register
mtvec will point to the ISR base address. Then, the meaning of single vector mode in RISC32
is allowing every interrupt jumps to a single general routine in order to overcome the problem
of multiple interrupts occur at the same time. An EXL bit of $stat in CPO is set to 1 to disable
further interrupts. Since the concept of single vector mode on RISC-V and RISC32 is similar,

and RISC32 is using single vector mode, the code of checking mode can be ignored.
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After analysing the code, the default inline assembly codes were written for RISC-V
chips instead of RISC32. Thus, the code has to be modified according to the default assembly
codes. For example, the coding styles of portDISABLE_INTERRUPTS() are different in
RISC32 and RISC-V. In #2 of Figure 4.5.9, RISC-V define a label for
portDISABLE_INTERRUPT() by creating a line of inline assembly. However, 2 lines of inline
assembly are needed for RISC32 to disable interrupts. Therefore, the way of defining a label
to disable interrupt does not work in RISC32. To solve the problem, a void function prototype
is created in portmacro.h and its function definition is placed at port.c. To disable interrupts,
status register($12) is used because its bit 0 is interrupt enable bit. An instruction called “mtc0”,
move to coprocessor 0, is used to assign the value into status register in coprocessor 0. Figure
4.5.10 shows the resulting code for RISC32.

RISC32

void portDISABLE_INTERRUPTS()
{
__asm volatile("addi $t@,exeeee\n\t"” RISC-V
"mtc@ $t0, $12\n\t");

} //#define portDISABLE_INTERRUPTS() _ asm volatile( "csrc mstatus, 8" )
define portENABLE_INTERRUPTS() __asm volatile( "csrs mstatus, 8"

oid portENABLE_INTERRUPTS()
{

sm volatile("addi $t@,exeeel\n\t"
"mtc@ $t@, $12\n\t");
}

Figure 4.5.10 Difference between RISC32 and RISC-V

e portASM.s — it is an assembler file containing functions that will be used by the source
file. For example, main.c will call a function named vTaskStartScheduler() to start the
scheduler and the scheduler will call xPortStartFirstTask(). Its function definition is
created in portASM.s. Due to portASM.s is taken from RISC-V example, conversion
of coding from RISC-V ISA to MIPS2 ISA is needed. There is a big difference between
RISC-V ISA and MIPS2 ISA such as register used.
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Ltext
xPortStartFirstTask:

1w $sp, pxCurrentTCB /* Load pxCurrentTCB. */
1w $sp, @( $sp ) /* Read sp from first TCB member. */

1w $ra, @

$sp )} /* Note for starting the scheduler the exception return address is used as the function return address. */
1w $t1, 3 * portWORD_SIZE( $sp
Iw $t2, 4 * portWORD_SIZE( $sp
Lw $s@, 5 * portWORD_SIZE( $sp
1w $s1, 6 * portWORD_SIZE( $sp
1w $a@, 7 * portWORD_SIZE( $sp
Lw $al, 8 * portWORD_SIZE( $sp
1w $a2, 9 * portWORD_SIZE( $sp
1w $a3, 10 * portWORD_SIZE{ $sp )
Lw $s52, 11 * portWORD_SIZE({ $sp )
1w $s53, 12 * portWORD_SIZE( $sp )
Iw $s4, 13 * portWORD_SIZE{ $sp )
Lw $s5, 14 * portWORD_SIZE({ $sp )
1w $s6, 15 * portWORD_SIZE( $sp )
1w $57, 16 * portWORD_SIZE{ $sp )
Lw $t3, 17 * portWORD_SIZE({ $sp )
1w $t4, 18 * portWORD_SIZE( $sp )
Iw $t5, 190 * portWORD_SIZE{ $sp )
Lw $t6, 20 * portWORD_SIZE( $sp )

P

Iw $t@,21 * portWORD_SIZE( $sp ) // Load $status into $t8
addi $te, ste, exol // set IE bit of $status

// Enable Timer Interrupt

1i $t4,exseee // timer interrupt enable bit
ori $t4, $td,exl1eee // bonk interrupt bit

ori $t4, $t4,1

mtce $t4, $12

/4 Request Timer Interrupt

Lw $ve, exffffealc // read current time

addi $ve, $ve, 50 // add 58 to current time

sw $va, exffffee@lc [/ request timer interrupt in 5@ cycles
1i sae, 10

sw $a@, oxffffesie($zero) //derive

addi $sp, $sp, portCONTEXT_SIZE

jr $ra
Figure 4.5.11 Example assembly code in portASM.s

// RISC-V
* Register ABI Name Description Saver
* %0 zero Hard-wired zero -
L257¢ | ra Return address Caller
* %2 sp Stack pointer Callee
63 gp Global pointer -
* x4 tp Thread pointer -
* x5-7 t8-2 Temporaries Caller
X8 se/fp Saved register/Frame pointer Callee
e | s1 Saved register Callee
* x10-11 ae-1 Function Arguments/return values Caller
* x12-17 a2-7 Function arguments Caller
* x18-27 s2-11 Saved registers Callee
* x28-31 t3-6 Temporaries Caller
// MIPS
* NAME NUMBER Description PRESERVED ACROSS A CALL?
* $zero e The Constant Value © -
* $at : § Assembler Temporary No
* 3ve-3vl 2-3 Values for Function Results&Expression Evaluation No
* $a@-%$a3 4-7 Arguments No
* $te-$t7 8-15 Temporaries No
* $50-$57 16-23 Saved Temporaries Yes
* $t8-$t9 24-25 Temporaries No
* $ko-sk1 26-27 Reserved for 0S kernel No
* $gp 28 Global pointer Yes
* $sp 29 Stack pointer Yes
* $fp 38 Frame pointer Yes
* $ra 31 Return address No

Bach
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Figure 4.5.12 Difference between RISC-V and RISC32 ISA

e string2.h — Due to RISC32 does not support the default functions of string.h such as
memcpy, memset, strlen, and so on, a header file named string2.h is created to solve
the problem. Figure 4.5.13 shows the functions used by FreeRTOS are created
explicitly. The function named memcpy is used to copy a memory block from one
location to the another while memset function is used to fill a block of memory with
particular value. The strlen function is used to get the length of a string.

voild* memcpy({void *dest, void *src, size_t n) {
int i;
J/cast src and dest to char*®
char *src_char = (char *)src;
char *dest_char = (char *)dest;
for (i=8; i<n; i++)
dest_char[i] = src_char[i]; //copy contents byte by byte

return dest;

¥

void* |ren'set(\.foid *s, int ¢, size t len) {
unsigned char *dst = s;
while (len > 8) {
*dst = (unsigned char) c;
dst++;
len--;

return s;

unsigned int strlen{const char *s)

{

unsigned int count = @;
while(*s!="\8")
count++;
S++;

return count;

}

#endif

Figure 4.5.13 The functions of memcpy, memset, and strlen defined at string2.h
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CHAPTER 5: FreeRTOS Implementation

5.1 Setup LLVM compiler as Toolchain

RISC32 has its own compiler called LLVM compiler, it is used to compile the RTOS
code. Before installing LLVM compiler, install “cmake” in order to install LLVM into
Ubuntul6.04 LTS operating system. To make sure the source file can be compiled by LLVM,
focusing on the standard library function that will be used in RTOS code. A bash script called
compile.sh is created to compile the source files and it makes debugging phase easier as the

bash script content is arranged in correct order and readable.

Figure 4.5.14 The files are compiled step by step

5.2 Compilation results of LLVM

5.2.1 Testing the LLVM Compilation via UART Communication

Once LLVM compiler is setup as a toolchain to compile FreeRTOS code, a test program
is needed to make sure that LLVM compiler is functioning well. A source file named
testing_llvm.c is created by using UART. 4 characters(P,Q,R,S) are inserted into UART and

the results are shown in below Figure 5.2.1.
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int main(){

uint8 t status _byte=0; //For UART status reading

//Setup UART
UCR = UCR 0x82; //UARTCR = 10000010, UARTEN=>1, TXEIE->0, 9600->010

Iy N
//Send Data to UART

UDR = 0x50;
UDR = 0x51;
UDR = 0x52;
UDR = 0x53;

//Read TX Empty Flag

status byte = USR & 0x40;

//®cll URRT Status befors transmitting next word

while(1);
return 0;

1
I

Figure 5.2.1 Source code to be implemented

The LLVM compiler will compile testing_llvm.c into assembly code stored in
testing_llvm 00 o0 dis.txt. The symbol “00” means least optimization level. Figure 5.2.2 is

the assembly code generated by LLVVM with least optimization level.

testing_llvm O0_00: file format elf32-tradbigmips

w

assembly of section .text:

addiu sp, 3p,-1lé
sw s8,12 (sp)
move s8,sp
W zero, 8 (38)
1i at,0
zero,4(s8)
v0,Oxbfff
vl,wv0,0xfe28
20: al,0(vl)
24: al,al, 0x82
28: al,0(wvl)
2c: ori vl,v0,0xfeza
30: 1i a0, 80
34: zb al,0(vl)
1i 20,81
3c: sb al,0(wvl)
40: 1i a0,82
44: z=b al,0(vl)
48 1i a0,83

3442fe20
90420000
30420040

a3cz20004

v0,wv0,0xf=2C
v0,0(v0)

A A
Vvl UX2U

4
s
S
g
=]
g
=]
5

0
a4
=

)

vl,4(s8)
it at,0(38)

arcl U

Figure 5.2.2 Assembly code of testing_llvm.c
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When LLVM compiles the source codes, object file will also be generated as the
requirement to implement the source codes on RISC32 is object file which is storing
the hexadecimal codes. Figure 5.2.3 shows the result of the object file being imported
into RISC32.

Figure 5.2.3 The result of testing_llvm.c via UART

5.2.2 FreeRTOS Source Code Compilation and Setup

To make sure that FreeRTOS source codes are executable on RISC32, a testing code is
written on main.c of FreeRTOS. UART and GPIO are used to sent out the data. Theoretically,
main() function will create a queue before inserting the task information into the queue. Once
the queue is created, xTaskCreate() is executed to start the task. To implement the task,
prvQueueReceiveTask() is called to in order to receive task information into queue. Once the
queue has the tasks inside, vTaskStartScheduler() is called to start the scheduler and to run the
task on RISC32.
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®xQueue = xQueueCreate( malnQUEUE_LENGTH, sizeof( uint3z_t ) );

if( xQueue != NULL )
{
/* Start the two tasks as described in the comments at the top of this
file. */
xTaskCreate( prvQueueReceiveTask, /* The function that implements the task. */
"Rx", /* The text name assigned to the task - for debug only as it is not used by the kernel. */
configMINIMAL STACK SIZE * 2U, /* The size of the stack to allocate to the task. */
NULL, /* The parameter passed to the task - not used in this case. */
mainQUEUE_RECEIVE_TASK_PRIORITY, /* The priority assigned to the task. */
NULL )3 /* The task handle is not required, so NULL is passed. */

xTaskCreate( prvQueueSendTask, "TX", configMINIMAL_STACK_SIZE * 2U, NULL, mainQUEUE_SEND_TASK_PRIORITY, HULL );

/* Start the tasks and timer running. */
vTaskStartScheduler();

}
Figure 5.2.4 Queue is created and the tasks created are inserted into queue
static wvoid prvQueusReceiveTask( void *pvParameters )
1
unsigned long ulReceivedValue;
const unsigned long ulExpectedvalue = 188UL;
const char * const pcPassMessage = "Blinkirin”;
const char * const pcFailMessage = "Unexpected value receivedirin”;
extern void vToggleLED{ void );
/* Remove compiler warning about unused parameter. */
{ void ) pvParameters;
UCR = UCR | @x82;
for( 35 )
{
/* Wait until something arrives in the queue - this task will block
indefinitely provided INCLUDE vTaskSuspend is set to 1 in
FreeRTOSConfig.h. */
¥QueueReceive( xQueue, &ulReceivedValue, portMAX_DELAY );
/* To get here something must have been received from the queues, but
is it the expected value? If it is, toggle the LED. */
if{ ulReceivedValus == ulExpectedValue )}
i
vSendString({ pcPassMessage );
vToggleLED();
GPIC_DATA = @xceesllll;
//5end Data to UART
UDR = @x58; //Read ciphertext from memory
UDR = @x51; //Read ciphertext from memory
UDR = @x51; //Read ciphertext from memory
pDR = @x51;//Read ciphertext from memory
ulReceivedvalue = BU;
}
else
{
vSendString( pcFailMessage );
}
}
} Figure 5.2.5 The task will be executed in prvQueueReceiveTask()
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For better understanding, FreeRTOS has distributed its functions into several C
language source files such as tasks.c, queue.c, list.c, main.c. and the others. To make them
interconnected to each other, a linker (lld) is used to link them up. A bash script (compile.sh)
stores the commands to be used to compile files. For example, a command with “clang” is used
to compile the source files independently. Then, the Ild will link those compiled files according
to the labels which are the function names inside the files. Figure 5.2.6 shows the example part

of assembly codes generated from FreeRTOS source codes.
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d3c <main blinky>
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8 «<main blinky+Oxac>
<main blinky+0x34>

Figure 5.2.6 Part of assembly codes generated by LLVM

Figure 5.2.6 shows the part of assembly codes generated by LLVM after compilation
of FreeRTOS source code completed. The total number of lines of assembly codes generated
are 10070 lines, meaning that they will use 10070 words of memory space in I-cache which is
the segment for user program code. From Figure 2.1.3, the memory space for storing the
instructions in I-cache is starting from the address of 0x8000_0000 to 0x8001_b400, which
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means that I-cache can support up to 111617 words. Therefore, the assembly codes of
FreeRTOS can be fit into I-cache as the memory space it used does not exceed the memory
space if 1-cache. Caching for the instruction cache memory will not occur when the program is

running.

5.3 FreeRTOS Simulation on RISC32
5.3.1 RISC32 Testbench

Testbench is a Verilog module which is used for simulation purpose. A testbench of
RISC32 named th_r32_pipeline.sv is created to test the functional behaviour of RISC32. There
is a program.txt file storing the object code (hex code) generated and the content of program.txt
will be loaded into instruction memory when the process of simulation starts. While the
exception handler object code is stored in exc_handler.txt which its content will be loaded into
an address starting from 0x8001_b400. The section below will show the testbench codes of
RISC32.
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“timescale 1ns / 1ps
“default_nettype none
*define demo003_UART 1

module tb_r32_pipeline();
//declaration
//=====INPUT =====
//System signal

reg tb_u_clk;

reg tb_u_rst;
[/memmmnms s
wire tb_u_spi_mosi_dut;
wire tb_u_spi_miso_dut;
wire tb_u_spi_sclk_dut;
wire tb_u_spi_ss_n_dut;

wire tb_u_fc_sclk_dut;
wire tb_u_fc_ss_dut;
wire tb_u_fc_MOSI_dut;
wire tb_u_fc_MISO1_dut;
wire tb_u_fc_MISO2_dut;
wire tb_u_fc_MISO3_dut;

wire tb_ua_tx_rx_dut;
wire tb_ua_RTS_dut, tb_ua_CTS_dut;
wire[31:0] tb_u_GPIO_dut;

/MmN NS
wire tb_u_spi_mosi_client;
wire tb_u_spi_miso_client;
wire tb_u_spi_sclk_client;
wire tb_u_spi_ss_n_client;

wire tb_u_fc_sclk_client;
wire tb_u_fc_ss_client;

wire tb_u_fc_MOSI_client;
wire tb_u_fc_MISO1_client;
wire tb_u_fc_MISO2_client;
wire tb_u_fc_MISO3_client;

wire tb_ua_tx_rx_client;
wire tb_ua_RTS_client, tb_ua_CTS_client;
wire[31:0] tb_u_GPIO_client;

crisc c_risc_dut(

.urisc_GPIO(tb_u_GPIO_dut),

//SPI controller
.uiorisc_spi_mosi(tb_u_spi_mosi_dut),
.uiorisc_spi_miso(tb_u_spi_miso_dut),
.uiorisc_spi_sclk(tb_u_spi_sclk_dut),
.uiorisc_spi_ss_n(tb_u_spi_ss_n_dut),

//UART controller
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.uorisc_ua_tx_data(tb_ua_tx_rx_dut),
//.uorisc_ua_rts(tb_ua_RTS_dut),
.uirisc_ua_rx_data(tb_ua_tx_rx_client),
//.uirisc_ua_cts(tb_ua_CTS_dut),

//FLASH controller
.uorisc_fc_sclk(tb_u_fc_sclk_dut),
.uiorisc_fc_MOSI(tb_u_fc_MOSI_dut),
.uirisc_fc_MISO1(tb_u_fc_MISO1_dut),
.uirisc_fc_MISO2(tb_u_fc_MISO2_dut),
.uirisc_fc_MISO3(tb_u_fc_MISO3_dut),

.uorisc_fc_ss(tb_u_fc_ss_dut),

// System signal
.uirisc_clk_100mhz(tb_u_clk),
.uirisc_rst(tb_u_rst));

s25fl128s

SPI_flash_dut(
.SI(tb_u_fc_MOSI_dut), //100
.SO(tb_u_fc_MISO1_dut), //I01
.SCK(tb_u_fc_sclk_dut),

.CSNeg(tb_u_fc_ss_dut),
.RSTNeg(tb_u_rst),
.WPNeg(tb_u_fc_MISO2_dut), //102

.HOLDNeg(tb_u_fc_MISO3_dut));

crisc
c_risc_client(

.urisc_GPIO(tb_u_GPIO_client),

//SPI controller
.uiorisc_spi_mosi(tb_u_spi_mosi_client),
.uiorisc_spi_miso(tb_u_spi_miso_client),
.uiorisc_spi_sclk(tb_u_spi_sclk_client),
.uiorisc_spi_ss_n(tb_u_spi_ss_n_client),

//UART controller
.uorisc_ua_tx_data(tb_ua_tx_rx_client),
//.uorisc_ua_rts(tb_ua_RTS_client),
.uirisc_ua_rx_data(tb_ua_tx_rx_dut),
//.uirisc_ua_cts(tb_ua_CTS_client),

//FLASH controller
.uorisc_fc_sclk(tb_u_fc_sclk_client),
.uiorisc_fc_MOSI(tb_u_fc_MOSI_client),
.uirisc_fc_MISO1(tb_u_fc_MISO1_client),
.uirisc_fc_MISO2(tb_u_fc_MISO2_client),
.uirisc_fc_MISO3(tb_u_fc_MISO3_client),

.uorisc_fc_ss(tb_u_fc_ss_client),
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// System signal
.uirisc_clk_100mhz(tb_u_clk),
.uirisc_rst(tb_u_rst));

s25f1128s

SPI_flash_client(
.SI(tb_u_fc_MOSI_client), //I100
.SO(tb_u_fc_MISO1_client), //101
.SCK(tb_u_fc_sclk_client),

.CSNeg(tb_u_fc_ss_client),
.RSTNeg(tb_u_rst),
.WPNeg(tb_u_fc_MISO2_client), //102

.HOLDNeg(tb_u_fc_MISO3_client));

assign tb_u_spi_mosi_dut = tb_u_spi_mosi_client;
assign tb_u_spi_miso_dut = tb_u_spi_miso_client;
assign tb_u_spi_ss_n_dut = tb_u_spi_ss_n_client;
assign tb_u_spi_sclk_dut = tb_u_spi_sclk_client;

assign tb_ua_CTS_dut = tb_ua_RTS_client;
assign tb_ua_CTS_client = tb_ua_RTS_dut;

//**********************C|0Ck************************
initial tb_u_clk = 1'b1;
always #5 tb_u_clk =~ tb_u_clk;

//For Vivado: remember to add the text files into the simulation source

//add Source -> Simulation sources -> add Files -> select the files (find "All file" in file type)
initial begin

//For client: copy the right test program and exc handler into FPGA flash.

$readmemh(” EXC_HANDLER_CLIENT, tb_r32_pipeline.SPI_flash_client.Mem);

$readmemh(” TEST_CODE_PATH_CLIENT, tb_r32_pipeline.SPI_flash_client.Mem);

//For dut: copy the right test program and exc handler into FPGA flash.
$readmemh("exc_handler.txt", tb_r32_pipeline.SPI_flash_dut.Mem);
$readmemh("program.txt”, tb_r32_pipeline.SPI_flash_dut.Mem);
//test instruction 1st

//2nd test 10 seperately
//SPI

//UART

//GPIO

//3rd exception handler

tb_u_rst = 1'b1;

repeat(1l)@(posedge tb_u_clk);

tb_u_rst = 1'b0;

repeat(30000)@(posedge tb_u_clk);

tb_u_rst = 1'b1;

repeat(12000000)@(posedge tb_r32_pipeline.c_risc_dut.urisc_clk);
end

endmodule
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5.3.2 FreeRTOS Assembly Code Debugging

However, the actual result is unexpected because the simulation goes into an infinite
loop at the address of 0x8000_15f8. In order to trace the program flow, UART is used as a
communication mean by sending out the values assigned. There is a function called
main_blinky() containing the source code of implementing UART. Figure 5.3.1 shows the steps
that is leading the simulation to infinite loop behaviour in xQueueGenericCreate() data
structure. The highlighted label is where the simulation goes into an infinite loop as the jump

instruction is jump back to its address .

Program starts from main.c

a 0
.0
80001340 <x:ueue$ene:i:C:ea:ei—:::>
=T1R4

Jump to the label’s
data structure

[ERRE S L

wow o

24 , Sp
35 at,a
35¢ vl,al
358 vl,a
33 a0,172(=8)
( al,leg8(=8)
az,led4(s8)
a0,172(=8)
at,l48(28)
vl,144(=38)
v0,140(=8)

3 8000138c <xQueueGenericCreate+lx4c>
3 20001385¢c <KOUEHECENErTCCrEaEte +0xdc>

Figure 5.3.1 The flow of the program leading to infinite looping
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Figure 5.3.2 shows the result of FreeRTOS simulation on RISC32. The task of UART

is not created as the program goes into infinite looping during the process of creating a queue.

« tb_u_clk

4 tb_u_rst

™ uicac_cpu_addr31 u]l 8000158 |
> B uocac_cpu_data[31:0]§ 0800057e

W bitx_fifo_data_in[7:0] | 00

Figure 5.3.2 The result of FreeRTOS simulation on RISC32

Figure 5.3.1 and Figure 5.3.2 have proved that the program goes into infinite looping
when the program executes the data structure of C program. There are 2 typed memory
allocation instructions helping the LLVVM compiler in memory allocation pattern which are
malloc and alloca. The malloc instruction is used to dynamically allocate memory space on the
heap, then a typed pointer pointing to new memory is returned. When more heap memory are
allocated, the heap segment goes up. While the alloca instruction is having the similar concept
of the malloc but the alloca instruction allocates the memory on the current function’s stack
frame[13].

In LLVM IR, the functions are defined with their name, arguments, and return type[14].
To call the function, an instruction named “call” is used associated with the function type,
function name, and the name and the type of arguments. The “call” instruction will take the
pointer to the function and the arguments as well. Thus, when a function is called, some stack
memory will be allocated for to that function. If there are local variables declaring inside the
function, more stack memory will be allocated for it. Therefore, the stack will go down

according to its allocation pattern[15].

After analysing how a data structure and a function call will be executed in LLVM and
stored in memory, the cause of the problem of infinite looping behaviour occurring during data
structure is the LLVM is compiling the data structure onto stack segment. When the data
structure is used, it should be heap access instead of stack access. Therefore, the LLVM has
generated a function call type of instruction for the data structure which is totally wrong,

leading it storing at stack segment.
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CHAPTER 6: CONCLUSION

6.1 Conclusion

In a nutshell, the first 3 objectives are met in this project while the last objective which
is the simulation of RTOS on RISC32 is done partially. The open source RTOS architecture
and components are analysed so that the modification process can be proceed in order to make
the RTOS suitable for RISC32 since the default version of FreeRTOS source codes are built
for RISC-V examples. Second objective is met by modifying and developing RTOS for
RISC32 and the RTOS source code is compilable by LLVM compiler. In order to compile the
RTOS code, LLVM has to be setup. Thus, third objective is met because the LLVM compiler
is setup successfully and a testing file is created to make sure the LLVM compiler is functioning
well. LLVM compiler has converted the C language source file into assembly code as well as
the object code. Besides, FreeRTOS source files is compilable by the LLVVM after carrying out
numerous debugging process. Until this stage, the RTOS codes can be said that it is mature
enough to be port over RISC32. Simulating the RTOS in RISC32 is the last objective and it is
done partially as there are problems coming out in the assembly codes as well as the hex codes
generated by the LLVM compiler. Because of the duplication of assembly codes and the hex
codes generated, the program runs inside a loop infinitely. There are jump instructions which
is jJumping back to its address are generated twice. Thus, LLVM compiler might not get the
coding style of FreeRTOS. Simulation of RTOS failed on RISC32.

6.2 Future Work

For future work, a heap segment needs to be created in physical memory for FreeRTOS
in order to prevent mis-generated instructions from occuring in LLVM. Some functions that
may not be supported by LLVM as well as RISC32, modification of FreeRTOS codes is
required until FreeRTOS can be simulated on RISC32. To prove the assumption, compiling
FreeRTOS codes by using GCC compiler is a required action. In addition, comparing the codes
of FreeRTOS of RISC32 and the original version of FreeRTOS of RISC-V in order to make
sure there is nothing missing out. Besides, heap segment to be used by RTOS need to be
configured to avoid overlapping or misusing memory problems occur. Therefore, checking the
functionality of LLVM, RISC32, and FreeRTOS are considered as huge processes which can
be taken as another new project. Modification of codes will be done and simulating RTOS
again on RISC32.
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Appendix B — RISC 32 Coprocessor 0 Register

3l 12 11 10 9 5 4 3 2 1 ]
sstat [ -
31 30 29 28 27 2% 12 11

10 @ ] 2 1 o
Scause B0 T -TEN- RIPL - Exception Code -

Fizure 1.95: Graphical view of CP1) Sztat and Scauze regizters

Register bit usage
Sstat [31:12] RESERVED
IPL[11:10] store current interrupt priority level
[2:5] RESERVED
Un[4] 1=user mode, O=kernzl mode
[3:2] RESERVED
EL[1] Exception level

l=exception occurs, disable further exception to occur
J=no exception occurs

IE[O] 1=Interrupt enable
0=Interrupt disable
SCause BD[31] Indicate branch delay
TI[30] 1=enable timer interrupt
O=disable timer interrupt
[29:28] RESERVED
TEMN[27] CPQ Timer, Scount disable control
[26:12] RESERVED
RIPL[11:10] Request interrupt priority leve
[2:7] RESERVED
Exception code | encodes reasans for the exception
[6:2] O=Interrupt

4=AdEL, address error trap (load or instruction fetch)
5= AdES, address error trap {store)

6=IBE, bus error on instruction fetch trap

7=DBE, bus error on data load or store trap

E=%Sys, syscall trap

0=Bp, breakpoint trap

10=Rl, undefined instruction trap

12=0Qv, arithmetic overflow trap

[1:0] RESERVED
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The Development of an RTOS for the S-Stage
Pipeline RISC32 Microprocessor

Introduction:

RTOS - operating system intended to serve real time applications, rapidly
switches betweentasks, make the user have an impressionthat multiple
programs are executing simultaneously on a single processor.

FreeRTOS—-an open-source code real-time operating system for
microcontrollerand microprocessor.

Compiling code using llvm compiler.

Method:

» Referto FreeRTOS source code.

L

» Compare the code used by RISC-V demo projects.

» Create a file to be used by RISC32.

Discussion: Conclusion:

o Why do we need RTOS for » RTOScodecanbe
RISC327? implemented in RISC32.

o How does RTOS interact with » RISC performancewill be
the hardware component? improved.
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CHAPTER 1: Introduction 1.1 Background Information A computer consists of several p Among the p , the main p s are the processor and 1/0 devices. A processor performance’s maybe robust, but
without an interactive interface with the user, the processor might not be fully utilized. The 1/O devices act as the interactive interface between the user and the processor. The interconnect between I/0 devices and the processor
would be the bus system. 1.1.1 MIPS MIPS is known as Microprocessor without Interlocked Pipeline Stage, which is based on RISC architecture developed by MIPS technolagies, previously known as MIPS Computer Systems.
According to Neha T (2019), RISC processor supports simple instruction set compared to CISC. RISC architecture emphasizes on using register rather than memory. Instead of using Intel 80x86, MIPS is used because it has a
simple design and yet high performance as embedded pracessor. It also has large market for embedded app. (Junka 2010) After years of development, MIPS architecture nowadays can support 64-bit addressing and operation
and high- performance floating point making it popular in the embedded systems implementation such as router, game machine and so on. The instruction execution is broken by the operation of MIPS processor into multiple
small independent stages (Integrated Device Technology. Inc, 1994, pgl-2). The word “stages” implies the datapath resources at each stage. Figure 1.1.1 MIPS S-stage pipeline From Figure 1.1, the execution of an instruction is
done in 5 basic stages including: ? IF: Instruction fetch and update PC ? ID: Instruction decode and register fetch ? EX: Execute R-type, calculate memory address ? MEM: Read data from memory or write data to memory ? WB:
Write the result data into register file 1.1.2 UART UART stands for Universal Asynchronous Receiver/Transmitter, it is used for asynchroneus serial communication of data over peripheral device serial port, Most embedded systems
use UART for data communication as it is a hardware communication protocol that only uses 2 wires for transmitting end (TX) and receiving end (RX). Figure 1.1.2 shows that there are 2 UART communicating with each other.
Figure 1.1.2 Two UART communicating with each other[1] 1.1.3 RTOS Real Time Operating System is an operating system intended to serve real time applications. It is a software component that rapidly switches between tasks,
make the user have an impression that multiple programs are executing simultaneously on a single processor. Operating system consists of many different parts such as file system, I/0, memory allocation, network, an
scheduler. RTOS provides a hard real time response and a highly deterministic reaction to external event. Hard real time is a system that must always meet all deadlines or the system will fail if the deadline is missed. RTOS can
be time-sharing or event-driven. Time-sharing system switch the task based on the timer interrupt while event-driven system switches the task according to the task priority. The value of a real-time operating system depends on
how fast it can respond compared to the amount of work it can perform in given period of time. Most RTOS is using a pre-emptive algorithm. A basic RTOS has 3 states which the task might be assigned. Figure 1.1.3 RTOS Task
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