

DESIGN OF AN ADC CONTROLLER FOR 5-STAGE PIPELINE RISC32

MICROPROCESSOR

BY

TAN YAN KAI

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2022

DESIGN OF AN ADC CONTROLLER FOR 5-STAGE PIPELINE RISC32

MICROPROCESSOR

BY

TAN YAN KAI

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS) COMPUTER

ENGINEERING

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2022

ii
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: DESIGN OF AN ADC CONTROLLER FOR 5-STAGE

 PIPELINE RISC32 MICROPROCESSOR

 __

Academic Session: JAN 2022

 I TAN YAN KAI

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 (Author’s signature) (Supervisor’s signature)

 Address:

 5, LORONG TERKUKUR 4,

 TAMAN COWIN, 14300

 NIBONG TEBAL, PULAU PINANG Supervisor’s name

 Date: 15 APRIL 2022 Date:

TEOH

Teoh Shen Khang

18 April 2022

iii
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 15 April 2022

SUBMISSION OF FINAL YEAR PROJECT

It is hereby certified that Tan Yan Kai (ID No: 18ACB03478) has completed this

final year project entitled “ Design of an ADC Controller for 5-stage pipeline RISC32

Microprocessor ” under the supervision of Mr Teoh Shen Khang (Supervisor) from the

Department of Computer and Communication Technology, Faculty of Information and

Communication Technology.

I understand that University will upload softcopy of my final year project in pdf format into

UTAR Institutional Repository, which may be made accessible to UTAR community and

public.

Yours truly,

(TAN YAN KAI)

iv
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “DESIGN OF AN ADC CONTROLLER FOR 5-

STAGE PIPELINE RISC32 MICROPROCESSOR” is my own work except as cited

in the references. The report has not been accepted for any degree and is not being

submitted concurrently in candidature for any degree or other award.

Signature : _________________________

Name : TAN YAN KAI

Date : 15 APRIL 2022

v
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisors, Mr Mok

Kai Ming and Mr Teoh Shen Khang who has given me this bright opportunity to engage

in a processor design project. It definitely helps me to get familiar with my future career.

I am really thankful to him because I was able to learn a lot of new things and pick up

some skills during the project development. Again, thank you for precious time and

patience guiding me throughout the project.

Besides I would like to thank all my course mate for their sincerity, kindness, and

selfless attitude in this wonderful learning journey. I am grateful that we are able to

support each other on internet during the outbreak of Covid-19.

Last but not least, I would also like to express my special gratitude and thanks to my

beloved family members. Thanks to my brothers for teaching me the knowledge and

skills they had acquired in their university life. Also, thanks to my parents who have

been supporting me both mentally and financially over the years. Without their support,

I will not have such great opportunity to further my studies in university.

vi
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT
This project is about the Analog-to-Digital Converter (ADC) controller unit design and

implementation for academic purpose. Throughout the project, XADC from Xilinx is

used for simulation purpose. The development of this project will begin with the design

of the ADC controller unit. The datasheet of the XADC which is provided by the Xilinx

is studied in the beginning of design process in order to match all the requirements and

protocols to ensure the functionality of ADC controller unit. The RTL design flow will

be used throughout the project development and the micro-architectural level design

will be focused more as the ADC controller to be designed is in the unit level. The ADC

controller unit and the internal block will be modelled by using Verilog HDL. The

XADC with a model name of ug480 is obtained from the IP Catalog of Vivado and it

will be instantiated in RISC32. The ug480 module also comes with a constraint and a

simple dataset that are needed for simulation purpose. The specifications of the ADC

controller unit and the instantiation of ug480 will be functionally verified by writing

testbenches in Verilog HDL. Besides, the specific registers that needed for the

communication between XADC and ADC controller unit will also be tested for

functionality. Some of the functions provided by ug480 are not implemented as they

are irrelevant to the learning course.

After the ADC controller unit has been functionally verified, it will be integrated into

the existing 5-stage pipeline RISC32 processor which is developed in UTAR. This

involves the interfacing between the ADC controller and the RISC32 based on the I/O

memory mapping technique. Moreover, a simple Interrupt Service Routine will be

specifically developed and implemented on the RISC32 to perform certain instructions

whenever there is an interrupt signal sent by XADC.

Lastly, a simple assembly program code will be specifically designed to test the overall

functionality. Other than basic function in the ADC controller unit, multiple interrupt

and multiple trap case will also be tested since ADC controller unit is one of the IO

devices and it will eventually work with other IO devices at the same time after the

integration is completed.

vii
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table of Contents
TITLE PAGE ... I

REPORT STATUS DECLARATION FORM ... II
SUBMISSION OF FINAL YEAR PROJECT ... III

DECLARATION OF ORIGINALITY ... IV
ACKNOWLEDGEMENTS ... V
ABSTRACT ... VI
LIST OF FIGURES .. XI
LIST OF TABLES ... XIII

LIST OF ABBREVIATIONS ... XIV
CHAPTER 1: INTRODUCTION ... 1

1.1 Background Information .. 1

1.1.1 MIPS ... 1

1.1.2 ADC .. 2

1.2 Motivation ……………………………………………………………………..2

1.3 Problem Statement ... 3

1.4 Project Scope ... 3

1.5 Project Objectives .. 4

1.6 Impact, Significance, and Contribution ... 5

CHAPTER 2: LITERATURE REVIEW .. 6

2.1 Overview of Xilinx XADC .. 6

2.2 Memory-mapped I/O ... 10

2.3 ADC controller designed in [2] .. 11

CHAPTER 3: PROPOSED METHOD/APPROACH .. 12

3.1 Methodologies and General Work Procedures .. 12

3.1.1 RTL Design Flow ... 12
3.1.2 Micro-architecture Specification .. 13

3.1.3 RTL Modelling and Verification .. 13

3.1.4 Logic Synthesis for FPGA .. 14

3.2 Design Tools .. 14

3.2.1 ModelSim SE-64 10.5 ... 15
3.2.2 Xilinx Vivado Design Suite .. 15

3.2.3 PCSpim/QtSpim .. 16

3.3 Technologies Involved ... 16

3.3.1 Field Programmable Gate Array (FPGA) ... 16

viii
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.4 Implementation Issues and Challenges .. 16

3.5 Timeline … .. 17

3.5.1 Gantt Chart for Project I ... 17

3.5.2 Gantt Chart for Project II .. 18

CHAPTER 4: SYSTEM SPECIFICATION ... 19

4.1 System Overview of the RISC32 Pipeline Processor 19

4.1.1 RISC32 Pipeline Processor Architecture .. 19
4.1.2 Functional View of the RISC32 Pipeline Processor 21
4.1.3 Memory Map of the RISC32 Pipeline Processor 21

4.2 Chip Interface of the RISC32 Pipeline Processor .. 23

4.3 Input Pin Description of the RISC32 Pipeline Processor 23

4.4 Output Pin Description of the RISC32 Pipeline Processor 24

4.5 Input Output Pin Description of the RISC32 Pipeline Processor 24

CHAPTER 5: MICRO-ARCHITECTURE SPECIFICATION 26

5.1 Functionality/Feature of the ADC Controller Unit .. 26

5.2 Unit Interface of the ADC Controller Unit .. 26

5.3 Input Pin Description of the ADC Controller unit ... 27

5.4 Output Pin Description of the ADC Controller Unit 29

5.5 Internal Operation of the ADC Controller Unit ... 29

5.6 Example application of XADC with ADC Controller Unit in RISC32 33

5.7 Design Partitioning of the ADC Controller Unit ... 34

5.8 Micro-Architecture of the ADC Controller Unit ... 35

5.9 ADC Clock Control block ... 36

5.9.1 Functionality/Feature of ADC Clock Control block 36
5.9.2 Block interface of ADC Clock Control block................................... 36

5.9.3 Input Pin Description of the ADC Clock Control block 36

5.9.4 Output Pin Description of the ADC Clock Control block 37

5.10 Finite State Machine of the ADC Controller Unit ... 38

5.10.1 Flags in FSM ... 38
5.10.2 Internal Operation: UADC to XADC ... 41

5.10.3 Internal Operation: XADC to UADC ... 43

5.11 Register Set .. 45

ix
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6: FIRMWARE DEVELOPMENT ... 52

6.1 Exception Handler of the RISC32 Pipeline Processor 52

6.2 Interrupt Service Routine (ISR) of the ADC Controller Unit 53

CHAPTER 7: VERIFICATION SPECIFICATION AND SIMULATION

RESULT.. 55

7.1 Unit Level Functional Test Plan .. 55

7.2 Simulation Result for Unit Level Functional Test ... 59

7.2.1 Test case 1: System Reset. .. 59

7.2.2 Test case 2: Read Operation. .. 60

7.2.3 Test case 3: Write Operation... 60
7.2.4 Test case 4: Interrupt Operation. ... 62

7.3 Testbench for Integration Level Functional Test ... 64

7.4 Simulation Result for Integration Level Functional Test 65

CHAPTER 8: MULTIPLE IO SYSTEM FUNCTIONAL TEST 67

8.1 Test Case: Multiple interrupt and Multiple Trap. .. 67

8.2 Testbench for Multiple Exception Test.. 69

8.3 Simulation result .. 70

CHAPTER 9: CONCLUSION AND FUTURE WORK .. 72

9.1 Conclusion ... 72

9.2 Future Work ... 73

BIBLIOGRAPHY .. 74

APPENDIX A: XADC DATASHEET ... A-1

XADC ports and description .. A-1

Formula for temperature .. A-3

Formula for power-supply sensor .. A-3

Formula for auxiliary input .. A-3

Detail description for XADC Status register ... A-3

Detail for XADC Configuration Registers .. A-5

The Control Register for Sequence mode in XADC ... A-7

XADC Alarms Threshold Registers .. A-9

x
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Dynamic Reconfiguration Port (DRP) Timing .. A-9

XADC Verilog code from Xilinx .. A-10

Testbench code from Xilinx... A-16

Original Analog Stimulus File from Xilinx ... A-17

APPENDIX B: SIMULATION SOURCE ... B-1

Testbench for ADC Controller Unit Level Functional Test B-1

Testbench for Integration Level Functional Test and Multiple Exception Test with

assembly language. .. B-5

APPENDIX C: FINAL YEAR PROJECT WEEKLY REPORT........................ C-1
APPENDIX D: POSTER ... D-1

APPENDIX E: PLAGIARISM CHECK RESULT .. E-1

Form iad-FM-IAD-005 .. E-5

APPENDIX F: FYP 2 CHECKLIST.. F-1

xi
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure Number Title Page

Figure 1-1 MIPS 5 stage pipeline 1

Figure 2-1 XADC Primitive Ports 6

Figure 2-2 XADC Register Interface 8

Figure 2-3 The three Configuration registers in XADC 8

Figure 2-4 Unipolar data format 9

Figure 2-5 Bipolar data format 9

Figure 3-1 RTL design flow 13

Figure 3-2 Comparison among 3 different Verilog simulators 14

Figure 3-3 Gantt Chart for Project 1 17

Figure 3-4 Gantt Chart for Project 1 17

Figure 3-5 Gantt Chart for Project 2 18

Figure 4-1 An overview on the architecture of the RISC32

pipeline processor

20

Figure 4-2 The functional view of the RISC32 pipeline processor 21

Figure 4-3 Memory map of the RISC32 pipeline processor 22

Figure 4-4 Chip interface of the RISC32 pipeline processor 23

Figure 5-1 ADC controller unit interface 26

Figure 5-2 Application of XADC in RISC32 33

Figure 5-3 Partitioning of the ADC controller unit 34

Figure 5-4 ADC Clock Control block interface 36

Figure 5-5 FSM flag register priority 38

Figure 5-6 Schematic diagram for the flag register 40

Figure 5-7 Schematic diagram for FSM writing operation 41

Figure 5-8 Timing diagram for FSM writing operation 42

Figure 5-9 Schematic diagram for FSM reading operation 43

Figure 5-10 Timing diagram for FSM reading operation 43

Figure 6-1 Pseudocode describing exception handler in RISC32 53

Figure 6-2 Pseudocode describing UADC’s ISR 54

Figure 7-1 Stimulus text file 55

xii
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 7-2 Simulation result for test case 1 using Vivado

simulation tool

59

Figure 7-3 Simulation result for test case 2 using Vivado

simulation tool

60

Figure 7-4 Simulation result for test case 3(i) using Vivado

simulation tool.

60

Figure 7-5 Simulation result for test case 3(ii) using Vivado

simulation tool.

61

Figure 7-6 Simulation result for test case 3(iii) using Vivado

simulation tool.

61

Figure 7-7 Simulation result for test case 4(i) using Vivado

simulation tool.

62

Figure 7-8 Simulation result for test case 4(ii) using Vivado

simulation tool.

62

Figure 7-9 Simulation result for test case 4(iii) using Vivado

simulation tool.

63

xiii
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table Number Title Page

Table 2-1 Three general types of special purpose registers used in

MMIO

10

Table 4-1 Specification of the RISC32 pipeline processor 20

Table 4-2 Memory map description of the RISC32 pipeline

processor

22

Table 4-3 Input pin description of the RISC32 pipeline processor 23

Table 4-4 Output pin description of the RISC32 pipeline

processor

24

Table 4-5 Input output Pin description of the RISC32 pipeline

processor

24

Table 5-1 Input pin description of the ADC controller unit 27

Table 5-2 Output pin description of the ADC controller unit 29

Table 5-3 Functional description of the ADC controller unit’s

read operation

29

Table 5-4 Functional description of the ADC controller unit’s

write operation

31

Table 5-5 Input Pin description of the ADC Clock Control 36

Table 5-6 Output Pin description of the ADC Clock Control

block

37

Table 7-1 Digital value of stimulus file 59

xiv
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter

CP0 Coprocessor 0

CPU Central Processing Unit

DRP Dynamic Reconfiguration Port

EDA Electronic Design Automation

EX Execute

FICT Faculty of Information and Communication Technology

FPGA Field Programmable Gate Array

FSM Finite State Machine

GPIO General-Purpose Input Output

GPR General-Purpose Register

HDL Hardware Description Language

IC Integrated Circuit

ID Instruction Decode and Operand Fetch

IF Instruction Fetch

IO Input Output

IP Intellectual Property

ISA Instruction Set Architecture

ISR Interrupt Service Routine

JTAG Joint Test Action Group

MEM Memory Access

MIPS Microprocessor without Interlocked Pipeline Stages

MMIO Memory-mapped Input Output

Msps Mega sample per second

RAM Random Access Memory

RAW Read-After-Write

RF Radio Frequency

RISC Reduced Instruction Set Computer

ROM Read Only Memory

RTL Register Transfer Level

SPI Serial Peripheral Interface

xv
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UADC_CREG ADC Controller Unit Configuration Register

UADC_SREG ADC Controller Unit Status Register

UART Universal Asynchronous Receiver-Transmitter

UTAR University Tunku Abdul Rahman

VAUXP/VAUXN Positive / Negative terminal for auxiliary analog input

VP/VN Positive / Negative terminal for analog input

WB Write Back

CHAPTER 1: Introduction

1
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1: Introduction

1.1 Background Information

An overview of the project fields that matter is provided in the following sections to

help identify and understand some facts or knowledge related to this project.

1.1.1 MIPS

MIPS which stands for Microprocessor without Interlocked Pipelined Stage is a

microprocessor that is developed based on the Reduced Instruction Set Computer

(RISC) architecture. The book published by John L. Hennessy and David A. Patterson

as mentioned in [4] gives insight into the MIPS architecture used in this project. MIPS

processors design has always aimed to improved instruction throughput during

operation which is to complete as many instructions as possible in one clock. To achieve

the goal, MIPS processors breaks a single instruction into 5 independent stage and apply

pipelining to fully utilize every single clock cycle. Figure 1-1 shows how multiple

instructions are overlapped in execution.

Figure 1-1: MIPS 5 stage pipeline as in [9].

The instruction execution is divided into 5 stages:

• IF (Instruction Fetch): Fetch the new instruction from instruction cache and

update program counter (PC).

• ID (Instruction Decode): Decode the instruction and perform operands fetch

from register file.

• EX (Execution): Perform arithmetic and logical operation in ALU.

CHAPTER 1: Introduction

2
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• MEM (Data Memory Access): Read/write the data from/to Data Memory.

• WB (Write Back): Write the result data into the register file.

1.1.2 ADC

ADC as known as Analog-to-Digital Converter is used to convert analog signal to

digital signal for processor to use according to [3]. In computer organisation and

architecture, processor is like a brain and ADC is like a sensory organ in human. Human

can sense and react to everything in this world that have analog signal behaviour like

sound, light, heat, humidity, pressure and so on. However, in digital world there is only

1 and 0. Therefore, for computer to sense the environment like human, ADC is needed

to convert the continuous signal to digital or discreate signal before computer can make

use of it and act accordingly.

1.2 Motivation

There are a few reasons that project on 32-bit RISC pipeline microprocessor is initiated

in the Faculty of Information and Communication Technology (FICT) of University

Tunku Abdul Rahman (UTAR). The motivations are as follows:

• Getting a microprocessor design with full documentation and information on

both front-end design process (modelling and verification) and back-end

physical design (synthesis and implementation) for research and academic

purposes is not easy. Knowing that semiconductor companies are taking

microprocessors as trade secret with commercial purpose, it is hard to have their

Intellectual Property (IP) shared just for academic purpose. Even if it could

happen, the cost will be unaffordable.

• Some microprocessor cores can be obtained from the Internet and most of them

are provided by OpenCores (http://www.opencores.org/) with no charge.

However, those processors are lacking comprehensive documentation and also

not implementing the entire MIPS Instruction Set Architecture (ISA). Hence,

they are not suitable for customization and reuse.

• Verification specifications of the RISC microprocessor core on the Internet are

incomplete as well and this might slow down the overall design process.

http://www.opencores.org/

CHAPTER 1: Introduction

3
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• Without a functionality verified front-end design, the physical design phase will

also be affected. The back-end design will not be able to carry out smoothly and

the processes might need to repeat from time to time whenever the front-end

makes any changes.

The RISC32 project that has been initiated in UTAR aims to provide solutions to all

the problems mentioned above by creating a 32-bit RISC core-based development

environment in order to assist research works in the area of soft-core as well as the

application specific hardware modelling. Up to date, the RISC32 project in UTAR has

completed the CPU designs that supports basic instructions that is similar to MIPS

instructions. The Coprocessor 0 (CP0) is also available to interface with I/O devices

and handle interrupts.

Previously in this RISC32 project, three communication interfaces like UART, SPI and

GPIO have been designed. However, those interfaces are more to machine-machine

interface. While this project will be focused on making human-machine interface

possible in the RISC32 processor. Fortunately, with the available microarchitecture

design developed in the UTAR FICT as demonstrated in [5],[9],[13] and [14], we can

easily gain the software or firmware flexibility advantage without having to rely on and

wait for third party community to develop for us.

1.3 Problem Statement

So far, the MIPS ISA compatible pipeline processor has included the Central Processing

Unit (CPU), basic memory, flash controller, Coprocessor 0 (CP0), GPIO controller, SPI

controller, UART controller with all functionalities verified. However, the current

RISC32 pipeline processor still does not have the functionality to handle analog signal

that come from various analog sensor such as voltage sensor, temperature sensor,

proximity sensor, humidity sensor and light intensity sensor as mentioned in [10].

Therefore, an ADC controller unit and ADC device have to be implemented.

1.4 Project Scope

The project is to design and integrate an ADC controller unit for the RISC32 pipeline

processor that has been developed previously. The ADC device that is used in this

project is XADC model ug480 and the datasheet provided by Xilinx is going to be used

to understand the attribute and properties. The specifications of the ADC controller unit

CHAPTER 1: Introduction

4
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

and the instantiation of XADC will be functionally verified by developing testbenches.

Besides, with a new IO device controller unit implemented, there are some changes

need to be made on the memory-mapped IO address value for the new IO registers.

Furthermore, an Interrupt Service Routine (ISR) will be developed specifically to

handle the interrupt request generated by the ADC controller unit. The ISR will be

integrated into the existing IO exception handler of the RISC32 pipeline processor, and

the priority interrupt controller’s register will have one bit assigned for ADC controller

unit interrupt enable. In addition, a simple MIPS programs will also be written to test

out the functionality of ADC controller unit after integration and have the execution of

ISR verified at the same time.

On top of that, a complete documentation of the ADC controller unit will be produced

at the end of project. The documentation will include verification specification,

verification methodology, testcase with testbench coding, figures to help with

illustrating. It is important to make sure the verification specifications of the ADC

controller unit are well-developed before proceeding to physical design phase.

Otherwise, the physical design process might not be able to carry out smoothly in the

future.

1.5 Project Objectives

The objectives of this project are:

• To develop an ADC controller unit

o Review the instantiation of XADC using the Vivado IP catalog.

o Develop the microarchitecture requirements and specifications.

o Model the ADC controller unit using Verilog Hardware Description

Language (HDL).

o Develop a testbench in Verilog HDL to verify the ADC controller unit’s

functionality

• To integrate the ADC controller unit into the RISC32.

o To develop the interface between the ADC controller unit and the

RISC32 using I/O memory mapping technique.

CHAPTER 1: Introduction

5
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

o To develop an ADC controller’s Interrupt Service Routine in MIPS

assembly language and integrated into the exception handler.

o Develop a test program in assembly language to verify the overall

functionality.

1.6 Impact, Significance, and Contribution

After this project is done, RISC32 microprocessor can handle analog signal by

connecting external analog device to the chip since this project can provide a complete

core-based development environment of RISC32 microprocessor and proper

interfacing system for connecting the ADC controller unit to the microprocessor. The

development environment is referred to the availability of the following:

• A complete design documentation of the chip system specification, the

architecture specification, and the micro-architecture specification.

• A fully functional well-developed interfacing system between the CPU and the

ADC controller unit in the form of synthesis-ready RTL that is written in

Verilog HDL.

• A well-developed verification specification of the ADC controller unit. The

verification specification contains suitable verification methodology,

verification techniques, testbench architecture, test plan and so on.

• A complete system to handle various type of analog signal from external

sources.

This project can contribute to develop an environment that mentioned above by

providing support to the hardware modelling research work. With the available well-

developed basic RISC RTL model, the verification environment, as well as the design

documents, researchers will be able to initiate their own research related to RTL model

in the MIPS environment and can have their model functionality verified in a short

period. As a result, the research works in the future could be done faster and easier.

CHAPTER 2: Literature Review

6
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2: Literature Review

2.1 Overview of Xilinx XADC

Xilinx has invented a dual 12-bit 1 Mega sample per second (Msps) ADC, namely

XADC for its own 7 series FPGAs. The XADC is built into the FPGA including several

on-chip sensors. The ADCs and sensors are functionally tested, and the detail

specifications are documented in the datasheet. In fact, The XADC is seamlessly

designed for the 7 series FPGA to do the data conversion with the JTAG (Joint Test

Action Group) hardware interface as mentioned in [15]. There are many functions

implemented in the XADC, but only those related function and properties will be

discussed in this literature review.

2.1.1 Instantiation and application of XADC

Any FPGA that does not have the JTAG hardware interface must instantiate the XADC

during the design process in order to access the status register of the XADC according

to [15]. In this case, Xilinx have provided the detail for instantiation with a few

examples as a guideline for application. The figure 2-1 below shows the ports on XADC

primitive while the ports description and the Verilog instantiation code is attached in

appendix.

Figure 2-1: XADC Primitive Ports extracted from [15].

In the Verilog code provided by Xilinx, there are initialization made to set the initial

value for the XADC register which allows the XADC to function on start up without

configuration of registers. Apart from that, Xilinx also provided a sample testbench

CHAPTER 2: Literature Review

7
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

code for user to test the functionality of XADC with the aid of Vivado tools,

instantiation wizard. The following sections will review the register interface within.

2.1.2 XADC Register Interface

XADC itself contains status register and control register which are all 16-bit. Both

registers can be accessed by external device through the dynamic reconfiguration port

(DRP). DRP will be the interface to have communications with other FPGA logic port

or the RISC32 in this project. In other words, every write and read operation upon

XADC will go through DRP and it can only handle one operation at a time as stated in

[15].

XADC has used 7-bit address location to allocate Status register and Control register.

The last bit is used to differentiate Status register and Control register. First 64 address

locations are assigned to Status register with the address value DADDR [6:0] = 00h to

3FH. These addresses in XADC will only be available for read operation. The usage of

status register is to store the results of analog-to-digital conversion from all the on-chip

sensors and external analog channels. The 12-bit result will be left-aligned in the 16-bit

size status register. Each status register has a specific name and function to store the

converted value from various channel. For example, Temp, VCCINT, VCCAUX and so on.

Within status register, there is one flag register allocated in the last address(3FH) which

the function is to monitor interrupt status. In XADC, interrupt is called alarm, which

only triggered whenever analog value fall in undesired range set by user according to

[15].

While for Control registers, there are 32 of them allocated at addresses DADDR [6:0]

= 40H to 5FH and are readable and writable. These registers are used to control all

XADC functionality, some functionality that is useful for this report will be discussed

in following section.

 Figure 2-2 below shows the register interface and the full descriptions for registers are

attached in the appendix A.

CHAPTER 2: Literature Review

8
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2-2: XADC Register Interface extracted from [15].

2.1.3 XADC functionality

The first three registers in the Control Register Block are called configuration registers.

By changing the value in configuration registers, the XADC operating modes can be

changed as mentioned in [15]. Figure 2-3 shows the three configuration registers.

Figure 2-3: The three Configuration registers in XADC extracted from [15].

There are two operating modes in XADC namely single channel mode and continuous

sequence mode.

In single channel mode, there will be one analog input value acquired and converted.

While for continuous sequence mode, user can choose to have multiple analog input

value monitored and there are some further configurations that can be done to the

sequence mode itself.

CHAPTER 2: Literature Review

9
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In fact, both modes have other properties that can be configured to suite the user

requirements which are averaging, analog input mode and sampling mode.

Averaging

-User could decide to get an average from a certain amount of number of samples by

configuration. In this case, XADC provided 16, 64, 256 averaging sample. For example,

if 16 averaging example is chosen, XADC will capture the analog input 16 times and

do an average before storing into the respective status register as in [15].

Analog input mode

-There are two analog input mode provided, which are bipolar and unipolar. They are

different representation of value. There are certain cases where bipolar would be more

prefer because of its two’s complement coding especially in calculation case. Figure 2-

4 and figure 2-5 below show both modes.

Figure 2-4: unipolar data format Figure 2-5: bipolar data format

(Figures extracted from [15])

Sampling mode

-There are two sampling mode which are continuous sampling and event-driven

sampling. The former will make the XADC to keep capturing and converting the analog

value while the latter will only capture and convert whenever user send a signal to the

convert start (CONVST) port. The Event-driven sampling mode can allow user to

decide when the sampling should start according to [15].

CHAPTER 2: Literature Review

10
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Other than that, there are also registers that are used to configure the alarm as known

as interrupt namely alarm threshold registers. These registers are where the threshold

values are stored. Whenever the analog input value does not fall within the threshold,

it will trigger the alarm as shown in [15].

 In order to have full control on XADC, the role of each registers need to be understood

and all the detailed information about the registers can be reviewed in appendix.

2.2 Memory-mapped I/O

For CPU to communicate effectively with the I/O devices, IO-memory mapped

technique is implemented to have full control on the transmission of data. Memory-

map I/O (MMIO) is one of the general methods for assembly language program to

address an I/O device. It is the I/O scheme where portions of address space are allocated

specifically to I/O devices and reads and writes to those addresses are interpreted as

commands to the I/O device as mentioned in [4]. With MMIO, CPU views an I/O device

as a set of special-purpose registers. Table 2-1 discusses the three general types of the

special-purpose registers used in MMIO.

Table 2-1: Three general types of special purpose registers used in MMIO as in [9].
Register Type Description

Status register • Used to provide status information about the I/O

device.

• Store the converted analog value from the XADC.

• Usually use to read only.

Configuration/Control

register

• Used to store data that configure and control the I/O

device.

• Both readable and writable.

Data register • Used to read data from or send data to the I/O device.

• Both readable and writable.

By using MMIO method, the addresses of the registers in each of the I/O devices are

assigned in a dedicated portion of the kernel’s virtual address space. Each of the

registers in the I/O controller must have a fixed and unique memory address within the

mentioned address space in order for the CPU to access the specific register easily

CHAPTER 2: Literature Review

11
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

without crashing with other memory location. Documentation should be made carefully

to help clarify the address space allocated to each I/O devices’ registers.

The benefits of using MMIO is that it keeps the instructions set small by adhering the

design principles of MIPS, that is keeping the hardware simple via regularity as shown

in [8]. No new dedicated instructions are required in MMIO to simply read or write

those special addresses because it allows the normal load and store instructions to be

used for referencing, manipulating, and controlling both memory and I/O devices. The

memory address that is being used will determine which type of device (memory or I/O

device) to be accessed.

2.3 ADC controller designed in [2]

In [2], Tan Beng Liong has briefly designed the register transfer level (RTL) of ADC

controller unit by using Verilog HDL without any documentation. Basically, the unit is

integrated in RISC32 by applying the Wishbone interface connection. Within the unit,

there is a registered mealy model finite state machine constructed as well as the

instantiation of XADC ug480. Although the design was done quite good and simple

with all the basic function implemented, there are several problems detected in the RTL.

The problems are like:

Unnecessary register and state: After optimization of code, A few registers and state

would be redundant.

Incomplete read operation: The unit designed only allow read operation on status

registers while there is no way to read on control registers.

Absence of interrupt function: The interrupt function is not designed along, and there

is no interrupt request signal send out from the unit. Further adjustment is needed during

the integration in RISC32 in order to have a complete interrupt service routine.

CHAPTER 3: Proposed Method/Approach

12
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3: Proposed Method/Approach

3.1 Methodologies and General Work Procedures

Design methodologies is important to make sure the design process goes in plan. It will

act as a guideline to ensure the design process flow well. A suitable methodology can

also ensure the goals and objectives are being achieved with bugs detection along the

design process. At the end of design process, a well-documented project report can be

produced as well.

Generally, there are 3 types of design methodologies which are mixed design

methodology, top-down design methodology and bottom-up design methodology as

mentioned in [6]. In this project, the top-down design methodology will be used for

designing and developing the ADC controller unit. By using this methodology, the top-

level representation of a unit is first defined, followed by the lower-level representations

block and sub-block if there is any.

However, since Xilinx XADC is required in this project, the functionality and

applications are studied in advance before the unit’s design is started. Applications of

the XADC is also demonstrated first to make sure that the IP can be used without any

issue.

3.1.1 RTL Design Flow

In the RTL design flow as shown in Figure 3-1 below, physical design will be less likely

to be involved. In this report, unit level specification in the micro-architectural level

design will be emphasized because the ADC controller to be designed is in the unit

level. While for block level, there is only one block which is XADC that is already

available. Hence, no modelling and specifications are required, only application is

needed. Therefore, the ADC controller unit has to be designed specifically to interface

with the XADC Dynamic Reconfiguration Port (DRP) as in the datasheet.

CHAPTER 3: Proposed Method/Approach

13
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3-1 RTL design flow from [6]

3.1.2 Micro-architecture Specification

Micro-architecture specification will describe the internal design of the ADC controller

unit. The internal design of the ADC controller unit will be described with detailed and

design-specific technical information in order for RTL coding to begin. In this project,

the unit level of the ADC controller will include the following information:

• Functionality/feature description

• Interface and I/O pin description

• Internal operation: function table, FSM, schematic diagram, timing diagram

• Functional partitioning into block.

o Block functionality/feature

o Block interface and I/O pin description

• Test plan (focus on functional test)

3.1.3 RTL Modelling and Verification

With the development of the micro-architecture specification, the RTL coding on the

ADC controller can begin. After coding, the RTL models are verified for functional

correctness at each level. To further illustrate on this point, each block (RTL model) is

verified before they are integrated into unit level. During the development of the

project, if the design of the ADC controller unit does not meet all the specified

functional requirements, then the design flow should be repeated. After all the RTL

models have successfully met the specified functional requirements, then logic

synthesis will be carried out on the targeted technology which is the FPGA technology

in this project.

 Micro-architecture Level Design

CHAPTER 3: Proposed Method/Approach

14
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.1.4 Logic Synthesis for FPGA

After the ADC controller unit has been functionally verified, the model is said to be

ready for logic synthesis which is the process of converting RTL codes into optimized

gate level representation (a netlist). Based on the logic synthesis result, the gate level

netlist is verified again for functional correctness. If it can successfully meet all the

necessary specifications, the gate level netlist is now ready for physical design.

However, if it cannot meet the required specifications, depending on the severity,

corrections need to be made accordingly to the gate level netlist, the RTL models, or

the architecture.

3.2 Design Tools

Each stage of the design jobs requires the use of appropriate design tools to help

automate the design work. Hence, there exist Electronic Design Automation (EDA)

tools for design work at each level of abstraction. Since the RTL model of the ADC

controller unit is designed by using Verilog Hardware Description Language (HDL),

hence a simulator is needed to emulate the Verilog HDL. Figure 3-2 below shows some

simulators and the comparison between them.

Figure 3-2: Comparison among 3 different Verilog simulators from [1],[11] and [12].

Based on the comparison above, it is obvious that the ModelSim from Mentor Graphic

is the best choice among others to be used as the design tool for this project as they

offer a free license for Student Edition version. Even though there is certain degree of

limitations on the ModelSim Student Edition version, it is adequate to be used for this

CHAPTER 3: Proposed Method/Approach

15
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

project. In addition, it supports Microsoft Windows platform as well. Although the

other two simulators can also offer great features for Verilog stimulation, the price are

too expensive and certainly not affordable to be used in this project.

While for the synthesis tools, there are a few logic synthesis tools that can target FPGA.

Those logic synthesis tools include Quartus by Altera, Synplify by Synopsys, Vivado

Design Suite by Xilinx, Encounter RTL Compiler by Cadence Design System, and so

on. Among all the available logic synthesis tools, the Xilinx Vivado Design Suite from

[16] is selected for this project as it can support the FPGA that we have in UTAR and

only Vivado can provide the XADC that we need in this project.

3.2.1 ModelSim SE-64 10.5

ModelSim is the industry-leading simulation and debugging environment developed by

Mentor Graphic specifically for HDL (Hardware Description Language) based design.

The student edition of the ModelSim is used for Verilog design simulation. Besides,

ModelSim simulator supports both the Verilog and VHDL languages. This simulator

can also provide syntax error checking and waveform simulation which play an

important part in developing the project. The timing diagrams and the waveforms are

very useful in verifying the functionality of the model after writing a testbench. Also,

ModelSim has user-friendly interface as well as tutorial provided which helps user to

get started easily [11].

3.2.2 Xilinx Vivado Design Suite

Xilinx has designed the software, Vivado Design Suite for synthesis and analysis of

HDL designs which enables the developers to synthesize their designs, perform

timing analysis, examine RTL diagrams, simulate a design’s reaction to different

stimuli, and configure the target device with the programmer easily. On top of that, it

is a good design environment for FPGA products from Xilinx but it cannot be used

with those FPGA products from other vendors [16]. In this project, the XADC IP is

obtained from the IP Catalog in Vivado. The XADC Wizard can be found under the

“FPGA Features and Design” folder in IP Catalog. During the project set up in

Vivado, project part of “xc7a100tcsg324-1” from project family “Artix-7” is chosen.

CHAPTER 3: Proposed Method/Approach

16
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2.3 PCSpim/QtSpim

PCSpim is the Window version of spim. It is a software stimulator that loads and

executes assembly language program for the MIPS RISC architecture. Besides, it also

provides a simple assembler, debugger, and a simple set of operating services.

Therefore, it is used in this project for developing the MIPS test program for functional

verification. The name has changed to QtSpim for latest Window Version.

3.3 Technologies Involved

3.3.1 Field Programmable Gate Array (FPGA)

As mentioned earlier, the logic synthesis of the ADC controller unit will be eventually

carried out on the FPGA technology. The FPGA technology is an integrated circuit (IC)

that is programmable in the field after manufacture. FPGAs have been used widely by

engineers in the design of specialized integrated circuits that can be later produced hard-

wired in large qualities for distribution to computer manufacturers and end users. It is

selected for prototype development in this project due to its benefits of cost efficiency,

high flexibility and good scalability when compared to the other technologies.

3.4 Implementation Issues and Challenges

The ADC controller unit in this project will be interfacing with the XADC from Xilinx

which will be instantiated in RISC 32 also. The XADC has its own documentation about

its behaviors and functionality. Hence, in order to make sure the XADC is functioning

when it is implemented in RISC32, the datasheet need to be studied thoroughly.

Besides, the XADC possesses a lot of functionality, and it is a challenge to identify

which functionality and information are useful in this project and are able to fulfill this

project’s objectives. Although B.L Tan has briefly designed the controller unit with

Verilog HDL, it has an issue with lack of documentation and comments in the coding

which makes it hard to understand his work. If the ADC controller unit is not designed

well, RISC32 will not be able to perform any operation on the analog signal. Hence, a

Finite State Machine is needed to organize the data flow in and out of XADC since

Xilinx does not allow any developer modification on the XADC primitive.

CHAPTER 3: Proposed Method/Approach

17
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.5 Timeline

3.5.1 Gantt Chart for Project I

Figure 3-3: Gantt Chart for Project 1

Figure 3-4: Gantt Chart for Project 1

The Design of an ADC Controller for 5-stage Pipeline RISC32 Microprocessor

UTAR-FICT

Project Start Date Display Week 1

Project Lead

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1

WBS TASK LEAD START END DAYS
%

DONE

WORK

DAYS
M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S

1 Study and Research - -

1.1 Study XADC datasheet Mon 6/07/21 Sat 6/12/21 6 80% 5

1.2 Study B.L Tan ADC unit Mon 6/14/21 Fri 6/18/21 5 50% 5

1.3
Study application of

XADC in ADC unit
Mon 6/21/21 Thu 6/24/21 4 90% 4

1.4
Study the functionality

of FSM
Mon 6/28/21 Sat 7/03/21 6 80% 5

1.4.1
Sketch simple note

about the design
Mon 6/28/21 Sat 7/03/21 6 50% 5

1.5
 Installing Vivado and

learn to use it
Mon 7/05/21 Wed 7/14/21 10 80% 8

Week 4

28 Jun 2021

Week 8

26 Jul 20215 Jul 2021

Week 6

12 Jul 2021

Week 5 Week 7

19 Jul 2021Tan Yan Kai

Week 2Week 16/7/2021 (Monday)

14 Jun 20217 Jun 2021

Week 3

21 Jun 2021

The Design of an ADC Controller for 5-stage Pipeline RISC32 Microprocessor

UTAR-FICT

Project Start Date Display Week 6

Project Lead

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5

WBS TASK LEAD START END DAYS
%

DONE

WORK

DAYS
M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S

2 Design and Documentation - -

2.1
Discussion with B.L

Tan for troubleshooting
Sat 7/17/21 Sat 7/17/21 1 100% 0

2.2
RTL modelling and

verification of ADC unit.
Mon 7/19/21 Sun 8/01/21 14 100% 10

2.2.1
Solve minor problem

on FSM
Mon 7/19/21 Fri 7/23/21 5 100% 5

2.2.2
Include interrupt

function
Sat 7/24/21 Wed 7/28/21 5 100% 3

2.2.3 Optimization of coding Thu 7/29/21 Sun 8/01/21 4 100% 2

2.3
Integration of ADC unit

into RISC32
Mon 8/02/21 Wed 8/04/21 3 100% 3

2.4
ADC controller's

functionality test
Thu 8/05/21 Sat 8/07/21 3 100% 2

2.5 Documentation of FYP Sat 8/07/21 Sun 8/29/21 23 100% 15

Week 9

2 Aug 2021

Week 13

30 Aug 20219 Aug 2021

Week 11

16 Aug 2021

Week 10 Week 12

23 Aug 2021Tan Yan Kai

Week 7Week 66/7/2021 (Monday)

19 Jul 202112 Jul 2021

Week 8

26 Jul 2021

CHAPTER 3: Proposed Method/Approach

18
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.5.2 Gantt Chart for Project II

Figure 3-5: Gantt Chart for Project 2

Chapter 4: System Specification

19
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4: System Specification

4.1 System Overview of the RISC32 Pipeline Processor

4.1.1 RISC32 Pipeline Processor Architecture

The developed RISC32 pipeline processor is a 32-bit pipeline processor that consists

of 3 major components which include Central Processing Unit (CPU), memory system

and I/O system as shown in [13] and [14]. The developed CPU is said to be compatible

to the 5-stage 32-bit MIPS Instruction Set Architecture (ISA) and it can support up to

49 instructions, covering arithmetic, logical, data transfer, program control, and system

instruction classes. In addition, the memory system developed in this processor has a

2-level memory hierarchy with the first level consists of cache, Boot ROM as well as

Data and Stack RAM whereas the second level contains a Flash memory. On the other

hand, the I/O system of this processor contains GPIO controller, SPI controller, UART

controller, ADC controller (about to be designed), Priority Interrupt controller and

General-Purpose Register (GPR) unit. In addition, it also has a branch predictor that

helps to improve the performance of the RISC32 processor in running program in terms

of the number of clock cycle spent. An architectural overview on the RISC32 pipeline

processor that has been developed is shown in Figure 4-1. On the other hand, the

detailed specification of the RISC32 pipeline processor is also provided in Table 4-1.

Chapter 4: System Specification

20
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

D-CACHE

Memory arbiter Flash
Controller

SPI
Controller

UART
Controller

GPIO
Controller

Sy
st

em
 B

us

Stack
RAM

Data
RAM

Priority
interrupt
controller

Flash
Memory

I-CACHE

ZigBee EEPROM
LEDs,

Sensors

CPU
ADC

Controller

XADC
ug480

Power Supply
Sensors,Temperature

sensor, AUXN/P

Figure 4-1: An overview on the architecture of the RISC32 pipeline processor as

shown in [9] with UADC added.

Table 4-1: Specification of the RISC32 pipeline processor as shown in [9].

 Pipeline

Frequency (MHz) 50

Instruction’s cycle 5, overlapping

Branch predictor 64 entries 4 ways associative

C
o

m
m

o
n

fe
at

u
re

s
(S

ta
ti

c
R

eg
io

n
)

Memory 4kBytes boot ROM, 128kBytes user access flash,
8kBytes RAM (Data & Stack), 1kBytes i-cache, 32Bytes
d-cache, 512Bytes Memory Mapped I/O Register

Communication
interface

UART, SPI, 32 GPIO pins

Partial Bitstream start
address

0x00A8_0000

Bitstream size 1,404,992 bits / 43906 words

FPGA board Nexys 4 DDR (XC7A100T)

FP
G

A
 R

es
o

u
rc

es

(O
ve

ra
ll)

LUT 8266

LUTRAM 315

FF 5643

BRAM 3.50

IO 46

BUFG 1

Chapter 4: System Specification

21
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.1.2 Functional View of the RISC32 Pipeline Processor

The RISC32 pipeline processor that has been developed consists of 5 hardware stages

which include Instruction Fetch (IF), Instruction Decode and Operand Fetch (ID),

Execution (EX), Memory Access (MEM), and Write Back (WB) stages. Different

hardware components are allocated in each of these pipeline stages. Therefore, every

instruction will need 5 clock cycles to run through all the 5 stages in order to complete

its execution. Since the data hazard issue due to the Read-After-Write (RAW) data

dependencies always exist in a pipeline processor, additional circuitries such as the

forwarding and interlock block are built for solving the data hazards during the program

execution as mentioned in [14]. The functional view of the 5-stage RISC32 pipeline

processor is shown in Figure 4.

Forwarding Control

Interlock Control

IF
ID

_
p

ip
el

in
e_

re
gi

st
e

r

Main
Control

ALU Control

CP0

ID
EX

_
p

ip
el

in
e

_
re

gi
st

e
r

Register File
Read ALU

Address
Decoder

Branch
Predictor

Branch
Predictor

E
XM

EM
_p

ip
e

lin
e

_r
e

gi
st

er

M
E

M
W

B
_

p
ip

e
lin

e
_r

eg
is

te
r

Multiplier
Stage 1

Multiplier
Stage 2

Multiplier
Register

GPIO

SPI

UART

PIC

DCache

Stack and
Data RAM

Register
File

Write

HI_reg Write

LO_reg Write

IF ID EX MEM WB

Interlock Control

Ctrl

HI_reg Read

LO_reg Read

ICache

Boot
ROM

PC
CtrlCtrl

Ctrl

+

4

Next PC

ADC

Figure 4-2: The functional view of the RISC32 pipeline processor as shown in [9]

with UADC added.

4.1.3 Memory Map of the RISC32 Pipeline Processor

This RISC32 pipeline processor implements the MIPS memory space in two ways, that

is by having virtual and physical addresses as mentioned in [14]. The virtual addresses

are mainly used to access program instruction and data whereas the physical addresses

are used to allocate physical memory such as Flash memory, Data and Stack RAM,

boot ROM and I/O registers. The ADC registers in this project will take up the address

from 0xBFFFFE2C to 0xBFFFFE8A in the IO peripherals registers segment. The

memory map used in the RISC32 pipeline processor is presented in Figure 4-3 and the

purposes of various memory allocation are discussed in Table 4-2.

Chapter 4: System Specification

22
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

I/O peripherals register

Boot code

Exception handler

User program code

.rodata

.bss

FLASH

RAM

Physical Memory

KSEG1

KSEG0

Virtual Memory

0xA000_0000

0x8000_0000

0xC000_0000

0x8001_B400

0x8001_F400

0xA002_0800

.stack

.heap0xA002_1000

0xA002_2000

0x8001_FFFF

0xBFFF_FE00

0xBFC0_0000

0xBFC0_1000

.data

.data

0xA002_0000

0x8001_F800

KSEG0/
KSEG1

0x0000_0000

0x2000_0000

User program code

.rodata
.data

0x0001_B400

0x0001_F400
0x0001_F800

.bss0x0002_0800

.stack

.heap0x0002_1000

0x0002_2000

.data0x0002_0000

Exception handler

I/O peripherals register

Boot code

0x1FFF_FE00

0x1FC0_0000

0x1FC0_1000

BOOT ROM

Exception handler

User program code

.rodata
.data

User program code

.rodata
.data

Exception handler

Figure 4-3: Memory map of the RISC32 pipeline processor as shown in [14].

Table 4-2: Memory map description of the RISC32 pipeline processor as in [14].

Memory Usage Description Memory Size

I/O peripheral

register

Used as the memory-mapped registers for I/O

peripheral controllers.

512 bytes

Boot code Used to store bootloader program code for initial

system configuration when powered on.

4k bytes

Stack Used by procedure during execution to store

register values.

8k bytes

Heap Used to hold variables declared dynamically.

Exception handler Used to store the exception handler codes. 16k bytes

User program code Used to store user program codes 128k bytes

Chapter 4: System Specification

23
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 Chip Interface of the RISC32 Pipeline Processor

crisc

urisc_GPIO[31:0]

uiorisc_spi_mosi

uiorisc_spi_miso

uiorisc_spi_sclk

uiorisc_spi_ss_n

uorisc_ua_tx_data

uorisc_fc_sclk

uiorisc_fc_MOSI

uorisc_fc_ss

uirisc_clk_100mhz

uirisc_rst

uirisc_VP

uirisc_VN

uirisc_VAUXP[15:0]

uirisc_VAUXN[15:0]

uirisc_ua_rx_data

uirisc_fc_MISO1

uirisc_fc_MISO2

uirisc_fc_MISO3

Figure 4-4: Chip interface of the RISC32 pipeline processor as shown in [9] with four

inputs added.

4.3 Input Pin Description of the RISC32 Pipeline Processor

Table 4-3: Input pin description of the RISC32 pipeline processor.

Pin name: uirisc_clk_100mhz Pin class: Global

Source → Destination: External → crisc

Pin function: To provide a reference signal to synchronize all other signals in a

system

Pin name: uirisc_rst Pin class: Global

Source → Destination: External → crisc

Pin function: To reset the whole MIPS ISA compatible pipeline processor

Pin name: uirisc_VP Pin class: Data

Source → Destination: External → crisc

Pin function: External Analog Inputs

Pin name: uirisc_VN Pin class: Data

Source → Destination: External → crisc

Pin function: External Analog Inputs

Pin name: uirisc_VAUXP [15:0] Pin class: Data

Source → Destination: External → crisc

Pin function: External Analog Inputs

Pin name: uirisc_VAUXN[15:0] Pin class: Data

Source → Destination: External → crisc

Pin function: External Analog Inputs

Pin name: uirisc_ua_rx_data Pin class: Data

Source → Destination: External device’s UART unit → crisc

Pin function: UART standard pin – Receive Serial Data

Chapter 4: System Specification

24
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 Output Pin Description of the RISC32 Pipeline Processor

Table 4-4: Output pin description of the RISC32 pipeline processor.

4.5 Input Output Pin Description of the RISC32 Pipeline Processor

Table 4-5: Input output pin description of the RISC32 pipeline processor

Pin name: uirisc_fc_MISO1 Pin class: Data

Source → Destination: Flash memory → crisc

Pin function: SPI protocol serial input pin

Pin name: uirisc_fc_MISO2 Pin class: Data

Source → Destination: Flash memory → crisc

Pin function: SPI protocol serial input pin

Pin name: uirisc_fc_MISO3 Pin class: Data

Source → Destination: Flash memory → crisc

Pin function: SPI protocol serial input pin

Pin name: uorisc_ua_tx_data Pin class: Data

Source → Destination: crisc → External device’s UART unit

Pin function: UART standard pin – Transmit Serial Data

Pin name: uorisc_fc_sclk Pin class: Data

Source → Destination: crisc → Flash memory

Pin function: SPI protocol Serial Clock signal

Pin name: uorisc_fc_ss Pin class: Control

Source → Destination: crisc → Flash memory

Pin function: SPI protocol Slave Select

Pin name: urisc_GPIO[31:0] Pin class: Data

Source → Destination: crisc ↔ External device (LEDs, switch, etc)

Pin function: 32 GPIO pins

Pin name: uiorisc_spi_mosi Pin class: Data

Source → Destination: crisc ↔ External device’s SPI unit

Pin function: SPI standard pin – Master out Serial In (MOSI)

If the crisc is configured as a master, then uiorisc_spi_mosi will become an output,

else otherwise.

Pin name: uiorisc_spi_miso Pin class: Data

Source → Destination: crisc ↔ External device’s SPI unit

Pin function: SPI standard pin – Master In Serial Out (MISO)

If the crisc is configured as a master, then uiorisc_spi_miso will become an input,

else otherwise.

Pin name: uiorisc_spi_sclk Pin class: Control

Source → Destination: crisc ↔ External device’s SPI unit

Pin function: SPI standard pin – SPI Serial Clock signal for data synchronization

across devices.

If the crisc is configured as a master, then uiorisc_spi_clk will become an output, else

otherwise.

Pin name: uiorisc_spi_ss_n Pin class: Control

Source → Destination: crisc ↔ External device’s SPI unit

Chapter 4: System Specification

25
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Pin function: SPI standard pin – SPI Slave Select control signal.

If the crisc is configured as a master, then uiorisc_spi_ss_n will become an output,

else otherwise.

Pin name: uiorisc_fc_MOSI Pin class: Data

Source → Destination: crisc ↔ Flash memory

Pin function: SPI protocol serial input output pin

Chapter 5: Micro-Architecture Specification

26
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5: Micro-Architecture Specification

5.1 Functionality/Feature of the ADC Controller Unit

• Have 6-bit register address partially used to accommodate 47 IO register that

can support major functionality in XADC.

o UADC_CREG are registers used to store data temporarily before it is

written into the XADC control register.

o UADC_SREG are registers used to store the converted data from XADC

status register.

• Provide interrupt.

o Handle the alarm signal from the XADC whenever sensor measurement

like Temperature, VCCINT, VCCAUX, VCCBRAM exceeds thresholds value

defined in the control register.

5.2 Unit Interface of the ADC Controller Unit

uiadc_wb_w_din[31:0]

uiadc_wb_w_sel[3:0]

uiadc_wb_w_addr[5:0]

uiadc_wb_w_we

uiadc_wb_w_stb

uiadc_wb_r_sel[3:0]

uiadc_wb_r_addr[5:0]

uiadc_wb_r_we

uiadc_wb_r_stb

uiadc_wb_clk

uiadc_wb_rst

uiadc_ADCIE

uoadc_wb_w_ack

uoadc_wb_r_dout[31:0]

uoadc_wb_r_ack

uoadc_IRQ

uiadc_DO[15:0]

uiadc_DRDY

uiadc_EOC

uiadc_CHANNEL[4:0]

uiadc_ALM[7:0]

uoadc_DEN

uoadc_DWE

uoadc_DADDR[6:0]

uoadc_DI[15:0]

UADC

Figure 5-1: ADC controller unit interface.

Chapter 5: Micro-Architecture Specification

27
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3 Input Pin Description of the ADC Controller unit

Table 5-1: Input pin description of the ADC controller unit

Pin name: uiadc_wb_w_din[31:0] Pin class: Data

Source → Destination: Datapath unit → ADC controller unit

Pin function: Wishbone standard data input bus

(for write operation: 32 bit input data)

Pin name: uiadc_wb_w_sel[3:0] Pin class: Control

Source → Destination: Address decoder block → ADC controller unit

Pin function: Wishbone standard byte select signal

to determine the granularity for writing:

0001: 1st byte selected

0010: 2nd byte selected

0100: 3rd byte selected

1000: 4th byte selected

0011: lower half-word selected

1100: upper half-word selected

0111: 3 bytes from the LSB selected

1110: 3 bytes from the MSB selected

1111: word selected

Pin name: uiadc_wb_w_addr[5:0] Pin class: Control

Source → Destination: Datapath unit→ ADC controller unit

Pin function: Used to select which register to write

00H - 06H for UADC_CREG

08H - 17H for UADC_SREG

Pin name: uiadc_wb_w_we Pin class: Control

Source → Destination: Address decoder block → ADC controller unit

Pin function: Wishbone standard write enable signal – indicate current bus cycle for

write

1: write cycle – write to ADC controller

Pin name: uiadc_wb_w_stb Pin class: Control

Source → Destination: Address decoder block → ADC controller unit

Pin function: Wishbone standard strobe signal (for write operation) – indicate valid

data transfer cycle

1: activate ADC controller for write access

0: de-activate ADC controller for write access

Pin name: uiadc_wb_r_sel[3:0] Pin class: Control

Source → Destination: Address decoder block → ADC controller unit

Pin function: Wishbone standard byte select signal

To determine granularity for reading:

0001: 1st byte selected (applicable for UADC_CREG only)

0010: 2nd byte selected (applicable for UADC_CREG only)

0100: 3rd byte selected (applicable for UADC_CREG only)

1000: 4th byte selected (applicable for UADC_CREG only)

0011: lower half-word selected (applicable for UADC_CREG & UADC_SREG)

1100: upper half-word selected (applicable for UADC_CREG & UADC_SREG)

0111: 3 bytes from the LSB selected (applicable for UADC_CREG only)

1110: 3 bytes from the MSB selected (applicable for UADC_CREG only)

1111: word selected (applicable for UADC_CREG & UADC_SREG)

Chapter 5: Micro-Architecture Specification

28
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Pin name: uiadc_wb_r_addr[5:0] Pin class: Control

Source → Destination: Datapath unit→ ADC controller unit

Pin function: Used to select which register to read

00H - 06H for UADC_CREG

08H - 17H for UADC_SREG

Pin name: uiadc_wb_r_we Pin class: Control

Source → Destination: Address decoder block → ADC controller unit

Pin function: Wishbone standard read enable signal – indicate current bus cycle for

read

0: read cycle – read from ADC controller

Pin name: uiadc_wb_r_stb Pin class: Control

Source → Destination: Address decoder block → ADC controller unit

Pin function: Wishbone standard strobe signal (for read operation) – indicate valid

data transfer cycle

1: activate ADC controller for read access

0: de-activate ADC controller for read access

Pin name: uiadc_wb_clk Pin class: Global

Source → Destination: Global clock → ADC controller unit

Pin function: Global clock

Pin name: uiadc_wb_rst Pin class: Global

Source → Destination: Global reset → ADC controller unit

Pin function: Global reset

1: reset

0: no reset is required

Pin name: uiadc_ADCIE Pin class: Control

Source → Destination: Priority interrupt controller unit → ADC controller unit

Pin function: To allow the ADC to interrupt

1: enable ADC global interrupt

0: disable ADC global interrupt

Pin name: uiadc_DO[15:0] Pin class: Data

Source → Destination: XADC → ADC controller unit

Pin function: Receive 16-bit digital data

Pin name: uiadc_DRDY Pin class: Control

Source → Destination: XADC → ADC controller unit

Pin function: Receive data ready signal, indicating the new data is ready to be read

out from XADC.

Pin name: uiadc_EOC Pin class: Control

Source → Destination: XADC → ADC controller unit

Pin function: Receive end of conversion signal, indicating the new data finished

converted and read operation can be started.

Pin name: uiadc_CHANNEL[4:0] Pin class: Control

Source → Destination: XADC → ADC controller unit

Pin function: Receive address to store the new converted data in status register

Pin name: uiadc_ALM[7:0] Pin class: Control

Source → Destination: XADC → ADC controller unit

Pin function: Determine the occurrence of alarm/interrupt

Chapter 5: Micro-Architecture Specification

29
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 Output Pin Description of the ADC Controller Unit

Table 5-2: Output pin description of the ADC controller unit.

Pin name: uoadc_wb_w_ack Pin class: Status

Source → Destination: ADC controller unit → Datapath unit

Pin function: Wishbone standard acknowledge signal (for write operation)

1: normal bus cycle termination

0: no bus cycle termination

Pin name: uoadc_wb_r_dout[31:0] Pin class: Data

Source → Destination: ADC controller unit → Datapath unit

Pin function: Wishbone standard data output bus

Pin name: uoadc_wb_r_ack Pin class: Status

Source → Destination: ADC controller unit → Datapath unit

Pin function: Wishbone standard acknowledge signal (for read operation)

1: normal bus cycle termination

0: no bus cycle termination

Pin name: uoadc_IRQ Pin class: Control

Source → Destination: ADC controller unit → CP0 block & Priority interrupt

controller unit

Pin function: To request an interrupt

(The uiadc_ADCIE must be pulled high before an interrupt can be sent)

1: request to interrupt

0: no interrupt request

Pin name: uoadc_DEN Pin class: Control

Source → Destination: ADC controller unit → XADC

Pin function: Enable signal.

Pin name: uoadc_DWE Pin class: Control

Source → Destination: ADC controller unit → XADC

Pin function: Write enable signal.

Pin name: uoadc_DADDR[6:0] Pin class: Control

Source → Destination: ADC controller unit → XADC

Pin function: Address for the 16-bit data to be written.

Pin name: uoadc_DI[15:0] Pin class: Control

Source → Destination: ADC controller unit → XADC

Pin function: 16-bit data to be written.

5.5 Internal Operation of the ADC Controller Unit

Table 5-3: Functional description of the ADC controller unit’s read operation.

uiadc_wb_r_stb uiadc_wb_r_we uiadc_wb_r_sel

[3:0]

Function

1 0 0001 Enable read operation.

Read 1st byte from the

address specify by

uiadc_wb_r_addr[5:0]

Chapter 5: Micro-Architecture Specification

30
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1 0 0010 Enable read operation.

Read 2nd byte from the

address specify by

uiadc_wb_r_addr[5:0]

1 0 0100 Enable read operation.

Read 3rd byte from the

address specify by

uiadc_wb_r_addr[5:0]

1 0 1000 Enable read operation.

Read 4th byte from the

address specify by

uiadc_wb_r_addr[5:0]

1 0 0011 Enable read operation.

Read lower half-word from

the address specify by

uiadc_wb_r_addr[5:0]

1 0 1100 Enable read operation.

Read upper half-word from

the address specify by

uiadc_wb_r_addr[5:0]

1 0 0111 Enable read operation.

Read 3 bytes start from the

LSB from the address specify

by uiadc_wb_r_addr[5:0]

1 0 1110 Enable read operation.

Read 3 bytes start from the

MSB from the address

specify by

uiadc_wb_r_addr[5:0]

1 0 1111 Enable read operation.

Read word from the address

specify by

uiadc_wb_r_addr[5:0]

Chapter 5: Micro-Architecture Specification

31
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 5-4: Functional description of the ADC controller unit’s write operation.

uiadc_wb_w_stb uiadc_wb_w_we uiadc_wb_w_sel

[3:0]

Function

1 1 0001 Enable write operation.

Write 1st byte on the

address specify by

uiadc_wb_w_addr[5:0]

1 1 0010 Enable write operation.

Write 2nd byte on the

address specify by

uiadc_wb_w_addr[5:0]

1 1 0100 Enable write operation.

Write 3rd byte on the

address specify by

uiadc_wb_w_addr[5:0]

1 1 1000 Enable write operation.

Write 4th byte on the

address specify by

uiadc_wb_w_addr[5:0]

1 1 0011 Enable write operation.

Write lower half-word on

the address specify by

uiadc_wb_w_addr[5:0]

1 1 1100 Enable write operation.

Write upper half-word

from the address specify by

uiadc_wb_w_addr[5:0]

1 1 0111 Enable write operation.

Write 3 bytes start from the

LSB on the address specify

by uiadc_wb_w_addr[5:0]

1 1 1110 Enable write operation.

Chapter 5: Micro-Architecture Specification

32
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Write 3 bytes start from the

MSB on the address

specify by

uiadc_wb_w_addr[5:0]

1 1 1111 Enable write operation.

Write word on the address

specify by

uiadc_wb_w_addr[5:0]

Chapter 5: Micro-Architecture Specification

33
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 5.6 Example application of XADC with ADC Controller Unit in RISC32

uiadc_wb_w_din[31:0]
uiadc_wb_w_sel[3:0]
uiadc_wb_w_addr[5:0]

uiadc_wb_w_we
uiadc_wb_w_stb

uiadc_wb_r_sel[3:0]
uiadc_wb_r_addr[5:0]

uiadc_wb_r_we
uiadc_wb_r_stb
uiadc_wb_clk
uiadc_wb_rst

uiadc_ADCIE

uoadc_wb_w_ack

uoadc_wb_r_dout[31:0]

uoadc_wb_r_ack

uoadc_IRQ

uiadc_DO[15:0]
uiadc_DRDY
uiadc_EOC
uiadc_CHANNEL[4:0]
uiadc_ALM[7:0]

uoadc_DEN
uoadc_DWE

uoadc_DADDR[6:0]

uoadc_DI[15:0]

UADC

RISC

Power Supply Sensors,
Temperature Sensor,

Humidity Sensor,
AUXN/P

Figure 5-2: Application of XADC in RISC32

Chapter 5: Micro-Architecture Specification

34
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.7 Design Partitioning of the ADC Controller Unit

The ADC controller unit consists of UADC_CREG (ADC Configuration Register) and

UADC_SREG (ADC Status Register) and ADC Clock Control (badcclk_ctr). The

registers are designed to have same bit size and arrangement with the registers in the

XADC which have been mentioned in literature review section. UADC_CREG is used

to store the data before it is written into the XADC’s control register for configuration.

While UADC_SREG is used to store the converted data from the XADC’s status

register. Control FSM will take part in handling the signal during the writing and

reading operation as well as exception signal from XADC.

UADC_CREG UADC_SREG

ADC controller unit

Control FSM

badcclk_ctr

Figure 5-3: Partitioning of the ADC controller unit.

Chapter 5: Micro-Architecture Specification

35
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.8 Micro-Architecture of the ADC Controller Unit

ADC Configuration Register
(UADC_CREG)

Control FSM

ADC Status Register
(UADC_SREG)

uiadc_wb_w_sel[3:0]

uiadc_wb_w_din[31:0]

uiadc_wb_w_addr[5:0]

uiadc_wb_w_we

uiadc_ADCIE

uiadc_wb_w_stb

uiadc_wb_r_sel[3:0]

uiadc_wb_r_addr[5:0]

uiadc_wb_r_we

uiadc_wb_r_stb

uiadc_wb_clk

uiadc_wb_rst

Note: The shaded areas indicate the internal blocks of the designed ADC controller

uoadc_IRQ

Write

Read

uoadc_wb_w_ack

uoadc_wb_r_ack

uoadc_wb_r_dout[31:0]

reset

reset

MUX
uiadc_wb_r_addr[5:3]

== 3'b000
1 0

{2'b00,channel_to_read[4:0]}

uiadc_ALM[7]

badcclk_ctr

4

4

uiadc_EOC

uiadc_CHANNEL[4:0]

uiadc_DO[15:0]

uiadc_DRDY

uoadc_DI[15:0]

uoadc_DADDR[6:0]

uoadc_DEN

uoadc_DWE

biadcclk_ctr_data[15:0]

biadcclk_ctr_address[4:0]

biadcclk_ctr_sysclk

biadcclk_ctr_rst

biadcclk_ctr_sel[3:0]

CLK_SEL

CLK_SEL

uadcclk_ctr_idata

uadcclk_ctr_iadd
ress

5

5

uadcclk_ctr_iaddress

boadcclk_ctr_data[15:0]

boadcclk_ctr_address[4:0]

boadcclk_ctr_clk

uadcclk_ctr_odata

uadcclk_ctr_oaddress

uadcclk_ctr

16-bit data to be written to XADC

data to be read out of UADC

data to be read out of UADC

Chapter 5: Micro-Architecture Specification

36
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.9 ADC Clock Control block

5.9.1 Functionality/Feature of ADC Clock Control block

ADC Clock Control block is responsible to handle the timing on storing the digital data

in UADC_SREG. ADC Clock Control block contains user-configurable clock divider

that allow user to slow down ADC controller unit in storing the digital data. Figure 5-4

shows the block interface of the ADC Clock Control block and Table 5-5 describes the

function of each pin.

5.9.2 Block interface of ADC Clock Control block

badcclk_ctr
biadcclk_ctr_data[15:0]

biadcclk_ctr_address[4:0]

biadcclk_ctr_sysclk

biadcclk_ctr_rst

biadcclk_ctr_sel[3:0]

boadcclk_ctr_data[15:0]

boadcclk_ctr_address[4:0]

boadcclk_ctr_clk

Figure 5-4: ADC Clock Control block interface

5.9.3 Input Pin Description of the ADC Clock Control block

Table 5-5: Input Pin description of the ADC Clock Control block.

Pin name: biadcclk_ctr_data[15:0] Pin class: Data

Source → Destination: uadc → ADC Clock Control

Pin function: Receive 16-bit digital data

Pin name: biadcclk_ctr_address[4:0] Pin class: Control

Source → Destination: uadc → ADC Clock Control

Pin function: Address to store 16-bit data in SREG

Pin name: biadcclk_ctr_sysclk Pin class: Global

Source → Destination: uadc → ADC Clock Control

Pin function: global clock

Pin name: biadcclk_ctr_rst Pin class: Global

Source → Destination: uadc → ADC Clock Control

Pin function: Global reset

1: reset

Chapter 5: Micro-Architecture Specification

37
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

0: no reset is required

Pin name: biadcclk_ctr_sel[3:0] Pin class: Control

Source → Destination: uadc → ADC Clock Control

Pin function: selectable 16-speed

0000: biclk_gen_sysclk / 2

0001: biclk_gen_sysclk / 4

0010: biclk_gen_sysclk / 8

0011: biclk_gen_sysclk / 16

……

1111: biclk_gen_sysclk / 65536

5.9.4 Output Pin Description of the ADC Clock Control block

Table 5-6: Output Pin description of the ADC Clock Control block.

Pin name: boadcclk_ctr_data[15:0] Pin class: Data

Source → Destination: ADC Clock Control → uadc

Pin function: Write 16-bit digital data to SREG

Pin name: boadcclk_ctr_address[4:0] Pin class: Control

Source → Destination: ADC Clock Control → uadc

Pin function: Address to store 16-bit data in SREG

Pin name: boadcclk_ctr_clk Pin class: Control

Source → Destination: ADC Clock Control → uadc

Pin function: Generate clock for data storage in SREG.

Chapter 5: Micro-Architecture Specification

38
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.10 Finite State Machine of the ADC Controller Unit

5.10.1 Flags in FSM

In the ADC controller unit, a register mealy model FSM is built to control the data flow.

Flags generated from address decoder is used to indicate which XADC register to be

written to. Each flag signal is meant to write 16-bit data from the ADC controller unit

to the XADC except the flag_UADC_READ which is for reading 16-bit data out from

XADC. Since the Dynamic Reconfiguration Port (DRP) can only handle 16 bits of data

at one clock cycle, a 32-bit data from ADC controller unit need to break into two 16-

bit before it can be written into the XADC through DRP. Hence, each configuration of

XADC registers will become one of the states in FSM and execute one by one. Same

goes to the reading operation on XADC registers. All the configuration states will be

executed first before the reading state. There is priority level within the flag registers

as shown in Figure 5-5. The flag name is corresponding to the control registers in

XADC, indicating which XADC register will be configured in next state except the

flag_UADC_READ which only indicate that read operation will be carried out in next

state.

Figure 5-5: FSM flag register priority

Chapter 5: Micro-Architecture Specification

39
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Flag registers are purely combinational. The configuration flags like

• flag_UADCCR_0, flag_UADCCR_1, flag_UADCCR_2,

• flag_UADC_CHANNEL_SEL_0, flag_UADC_CHANNEL_SEL_1,

• flag_UADC_CHANNEL_AVG_0, flag_UADC_CHANNEL_AVG_1,

• flag_UADC_CHANNEL_AIM_0, flag_UADC_CHANNEL_AIM_0,

• flag_TEMP_UPPER, flag_TEMP_LOWER,

• flag_VCCINT_UPPER, flag_VCCINT_LOWER

will be raised whenever the wishbone writing wire is targeting the corresponding

UADC_CREG. While flag_UADC_READ is dependent on the End of Conversion

(EOC) signal output from XADC when there is a new analog signal converted. The

mechanism of flag in FSM is further discussed in internal operation section. Figure 5-

6 shows the schematic diagram.

Chapter 5: Micro-Architecture Specification

40
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

flag_UADCCR_0

uiadc_wb_rst

uiadc_wb_w_sel[0]
uiadc_wb_w_sel[1]

uiadc_wb_w_we
uiadc_wb_w_stb

uiadc_wb_w
_addr[6:0]

Decoder

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

previous_state = SET_CONFIG0
p_state = SET_IDLE

flag_UADCCR_1

uiadc_wb_rst

uiadc_wb_w_sel[2]
uiadc_wb_w_sel[3]

p_state = SET_IDLE
previous_state = SET_CONFIG1

flag_UADCCR_2

uiadc_wb_rst

uiadc_wb_w_sel[0]
uiadc_wb_w_sel[1]previous_state = SET_CONFIG2

p_state = SET_IDLE

uiadc_wb_w_we
uiadc_wb_w_stb

flag_UADC_CHANNEL_SEL_0
uiadc_wb_w_sel[0]
uiadc_wb_w_sel[1]

uiadc_wb_w_we
uiadc_wb_w_stb previous_state = SET_SEQ_CHANNEL1

p_state = SET_IDLE

flag_UADC_CHANNEL_SEL_1

uiadc_wb_rst

uiadc_wb_w_sel[2]
uiadc_wb_w_sel[3]

p_state = SET_IDLE

uiadc_wb_w_sel[0]
uiadc_wb_w_sel[1]

uiadc_wb_w_we
uiadc_wb_w_stb

p_state = SET_IDLE

uiadc_wb_rst

uiadc_wb_w_sel[2]
uiadc_wb_w_sel[3]

p_state = SET_IDLE

uiadc_wb_w_sel[0]
uiadc_wb_w_sel[1]

uiadc_wb_w_we
uiadc_wb_w_stb

p_state = SET_IDLE

uiadc_wb_rst

uiadc_wb_w_sel[2]
uiadc_wb_w_sel[3]

p_state = SET_IDLE

flag_TEMP_UPPER
uiadc_wb_w_sel[0]
uiadc_wb_w_sel[1]

uiadc_wb_w_we
uiadc_wb_w_stb previous_state = SET_TEMP_MAX

p_state = SET_IDLE

flag_TEMP_LOWER

uiadc_wb_rst

uiadc_wb_w_sel[2]
uiadc_wb_w_sel[3]

p_state = SET_IDLE

flag_VCCINT_UPPER
uiadc_wb_w_sel[0]
uiadc_wb_w_sel[1]

uiadc_wb_w_we
uiadc_wb_w_stb

p_state = SET_IDLE

flag_VCCINT_LOWER

uiadc_wb_rst

uiadc_wb_w_sel[2]
uiadc_wb_w_sel[3]

p_state = SET_IDLE

flag_UADC_CHANNEL_AVG_0

flag_UADC_CHANNEL_AVG_1

flag_UADC_CHANNEL_AIM_0

flag_UADC_CHANNEL_AIM_1

uiadc_wb_rst

uiadc_wb_rst

uiadc_wb_rst

uiadc_wb_rst

uiadc_wb_rst

previous_state = SET_SEQ_CHANNEL2

previous_state = SET_SEQ_AVG1

previous_state = SET_SEQ_AVG2

previous_state = SET_SEQ_AIM1

previous_state = SET_SEQ_AIM2

previous_state = SET_TEMP_MIN

previous_state = SET_VCCINT_MAX

previous_state = SET_VCCINT_MIN

flag_UADC_READ
DFFEOC

Figure 5-6 Schematic diagram for the flag registers

Chapter 5: Micro-Architecture Specification

41
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.10.2 Internal Operation: UADC to XADC

RPS

RO
uoadc_DADDR

uoadc_DEN

uoadc_DWE

uoadc_DI

previous_state

XADC

DADDR

DEN

DWE

DI

DRDY

flag_UADCCR_0, flag_UADCCR_1, flag_UADCCR_2,
flag_UADC_CHANNEL_SEL_0, flag_UADC_CHANNEL_SEL_1,

flag_UADC_CHANNEL_AVG_0, flag_UADC_CHANNEL_AVG_1,
flag_UADC_CHANNEL_AIM_0, flag_UADC_CHANNEL_AIM_1,

flag_TEMP_UPPER, flag_TEMP_LOWER,
flag_VCCINT_UPPER,flag_VCCINT_LOWER n_state

p_state

uiadc_wb_w_we

uiadc_wb_w_stb

uiadc_wb_w_addr

uiadc_wb_w_sel

uiadc_wb_w_din

UADC_CREG

CNS

previous_state

uiadc_DRDY

urisc_DI

urisc_DWE

urisc_DEN

urisc_DADDR

urisc_DRDY

UADC

RISC

Figure 5-7: Schematic diagram for FSM writing operation

Chapter 5: Micro-Architecture Specification

42
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5-8: Timing diagram for FSM writing operation.

Figure 5-8 shows an example on how FSM is functioning during the configuration of

XADC registers, CONFIGURE_REG_0. When the flag is raised due to the wishbone

writing input, the next clock cycle will send enable(uoadc_DEN) and write enable

(uoadc_DWE) signal to the XADC, to write the data in UADC_CREG [0] [15:0] to the

configuration register at address 40h. The SET_WAIT state is required to wait the

uiadc_DRDY signal, that indicate data has successfully written into XADC. After that,

FSM will back to SET_IDLE state and jump to the next state according to flag register.

While the use of previous state is to determine which flag to lower down after the

uiadc_DRDY signal. In fact, it is the Dynamic Reconfiguration Port (DRP) in XADC

that receive the uoadc_DEN, uoadc_DWE, uoadc_DADDR, uoadc_DI and also send

out the uiadc_DRDY signal. The detail of the DRP timing is attached in appendix A.

Chapter 5: Micro-Architecture Specification

43
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.10.3 Internal Operation: XADC to UADC

RPS

RO
uoadc_DADDR

uoadc_DEN

uoadc_DWE

previous_state
flag_UADC_READ

n_state
p_state

UADC_SREG

CNS

previous_state

uiadc_DRDY

XADC

DADDR

DEN

DWE

DRDY

EOC

CHANNEL

DO

urisc_DWE

urisc_DEN

urisc_DO

badcclk_ctr

uadcclk_ctr_idata

uadcclk_ctr_iaddress

biadcclk_ctr_data

biadcclk_ctr_address

boadcclk_ctr_address

boadcclk_ctr_data

boadcclk_ctr_clk

uiadc_EOC

uiadc_CHANNEL

UADC

RISC

Figure 5-9: Schematic diagram for FSM reading operation.

Figure 5-10: Timing diagram for FSM reading operation

The state READ_ADC is to continuously update the UADC_SREG in ADC controller

unit whenever there is a new analog value converted. Therefore, flag_UADC_READ

will be raised a clock cycle after the End of Conversion (uiadc_EOC) signal asserted,

indicating next state will be READ_ADC. During the READ_ADC state, the

uoadc_DEN need to be ‘1’ and uoadc_DWE need to be ‘0’ in order for XADC to carry

out read operation. The register address(uoadc_DADDR) to read is the same as the

CHANNEL output signal from XADC which indicating the address of status register

Chapter 5: Micro-Architecture Specification

44
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

that having the new value. While the uiadc_DRDY in this case will indicate the data

has been successfully read out from XADC status register and store temporarily in ADC

Clock Control block. The detail can be found in DRP timing attached in appendix A.

Chapter 5: Micro-Architecture Specification

45
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.11 Register Set

UADC_CREG and UADC_SREG are designed to have similar function with the

control register and status register in XADC. Some important registers that are related

to the simulation test in later section will be briefly discussed here. Complete and detail

information about the register can always be found in Appendix.

UADC_CREG

1. CONFIGURE_REG_0 (0XBFFFFE2C)

o CH4 to CH0: When operating in single channel mode, these bits are used

to select the ADC input channel. Channel assignments is shown in

Appendix A.

o BU: When operating in single channel mode, this bit is used to select

either unipolar or bipolar data format of the converted data. Logic 1 for

bipolar mode and logic 0 for unipolar mode.

o AVG1, AVG0: These bits are used to select the number of samples

needed for averaging operation on selected channel. Averaging function

in both single channel and sequence modes will depend on these bits.

The bit assignments are shown in Appendix A.

Chapter 5: Micro-Architecture Specification

46
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2. CONFIGURE_REG_1 (0XBFFFFE2E)

o ALM_EN6 to ALM_EN0: These bits are used to determine which of the

channels, VCCO_DDR, VCCPAUX, VCCPINT, VCCBRAM, VCCAUX, VCCINT,

temperature can trigger the alarm signal. Logic 1 will disable the alarm

while logic 0 will enable it.

o SEQ3 – SEQ0: These bits will determine in which mode will XADC

operate. There are six modes in total. The bit assignments are shown in

Appendix A.

Chapter 5: Micro-Architecture Specification

47
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. ALM_FLAG (0XBFFFFE32)

o These bits used to indicate which ALM has been triggered in XADC. It

is supposed to be in UADC_SREG. Normally, MSB is used to use to

detect the occurrence of alarm because it is the OR logic for the other 7

bits. The other bits are assigned to indicate different power supply

interrupt. The bits assignments are shown in Appendix A.

Chapter 5: Micro-Architecture Specification

48
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4. CLK_SEL – ADC Receiver Clock Rate (CPU clock speed is 20MHz)

o 0000: 10 MHz

o 0001: 5 MHz

o …

o 1110: 610 Hz

o 1111: 305 Hz

Chapter 5: Micro-Architecture Specification

49
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5. CHANNEL_SEL_REG_0, CHANNEL_SEL_REG_1

CHANNEL_AVG_REG_0, CHANNEL_AVG_REG_1

CHANNEL_AIM_REG_0, CHANNEL_AVG_REG_1 (0XBFFFFE34 – 3F)

o These registers are used during sequencer mode, they are used to select

channel, enable averaging, and select analog input mode respectively.

The bit assignments are shown in Appendix A.

Chapter 5: Micro-Architecture Specification

50
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6. TEMP_MAX_THRESHOLD, TEMP_MIN_THRESHOLD

VCCINT_MAX_THRESHOLD, VCCINT_MIN_THRESHOLD

(0XBFFFFE40 – 47)

o These registers are used to store the maximum and minimum threshold

value for temperature and VCCINT sensor.

o For temperature, whenever the analog value exceeds the maximum

threshold, it will trigger alarm, until the analog value is lower than the

minimum threshold.

o While for VCCINT, it will trigger alarm only when it exceeds the

maximum or lower than the minimum threshold.

o The 12-bit data stored in these registers need to be left aligned. The

calculation is discussed in following section. Appendix A attached has

the formulas for calculation.

Chapter 5: Micro-Architecture Specification

51
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UADC_SREG

1. UADC_SREG_0 - 31 (0XBFFFFE4C – 8B)

o UADC_SREG is used to store 12-bit converted value from various

sensors. The 12-bit is left aligned in the register.

o These eight highlighted registers will store Temperature, VCCINT,

VCCAUX, VCCBRAM, and VAUXP/N [3:0] respectively. They will store the

simulation result. Appendix A attached has the formula for calculation.

z z z z z z z z z z z z z z z z

UADC_SREG_0

z z z z z z z z z z z z z z z z

UADC_SREG_1

z z z z z z z z z z z z z z z z

UADC_SREG_2

z z z z z z z z z z z z z z z z

UADC_SREG_6

z z z z z z z z z z z z z z z z

UADC_SREG_16

z z z z z z z z z z z z z z z z

UADC_SREG_17

z z z z z z z z z z z z z z z z

UADC_SREG_18

z z z z z z z z z z z z z z z z

UADC_SREG_19

Chapter 6: Firmware Development

52
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6: Firmware Development

6.1 Exception Handler of the RISC32 Pipeline Processor

Exception can also be known as an interrupt. It is not scheduled in the normal flow of

instruction execution. Whenever the exception occurs, it will disrupt the flow of

instructions. Besides, the causes for exception to occur can be internal or external of

the processor which makes it even unpredictable. In order to handle the unexpected

events, an exception handler has already been created. The exception handler is like a

routine that define how an interrupt can be served. The exception handler in current

processor is able to detect and handle unexpected events such as:

• Interrupt (from IO device)

• address error trap on data load or instruction fetch

• address error trap on data store

• bus error on instruction fetch

• bus error on data load or store

• Syscall trap

• breakpoint trap

• undefined instruction trap

• arithmetic overflow trap

When the CPU detect the exception signal, it will suspend its current program execution.

First, the address of the next instruction of PC will be store in a return register called

$epc for return purpose, and then PC will jump to 0x8001_b400 where exception

handler is located. After finishing the interrupt service routine, PC will return to the

address stored in return register, where it was interrupted and continue with the normal

program execution as mentioned in [9].

A pseudocode that describes the existing exception handler of the RISC32 pipeline

processor is given in figure 6-1 below for better understanding.

Chapter 6: Firmware Development

53
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6-1: Pseudocode describing exception handler in RISC32 as mentioned in [9].

6.2 Interrupt Service Routine (ISR) of the ADC Controller Unit

An interrupt is an external event from IO device that interrupts the CPU to inform it

that a device needs its service. In this project, the device that interrupts the CPU will be

the ADC controller unit. Since interrupt is asynchronous to the program execution, the

CPU will simply suspend the normal instruction execution and proceed to execute the

corresponding Interrupt Service Routine (ISR). When CPU has finished the routine, it

will resume to the place where it was interrupted.

In this project, an ISR specifically for the ADC controller unit is developed by using

MIPS assembly language and subsequently integrated into the existing exception

handler. This ISR will be invoked by the CPU to handle the interrupt request generated

by the ADC controller unit. The interrupt request will be based on the alarm signal

generated from XADC’s logic outputs namely ALM [7:0]. The XADC are able to

monitor up to six internal sensor measurements (Temperature, VCCINT, VCCAUX,

VCCBRAM, VCCPINT, VCCPAUX, VCCO_DDR). The MSB ALM [7] is the logic OR of bus ALM

Chapter 6: Firmware Development

54
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[6:0], and it is used in the ADC controller unit with the uiadc_ADCIE(ADC interrupt

enable) to generate the Interrupt Request Signal (uoadc_IRQ). As mentioned in the

previous section, only the Temperature and VCCINT alarm threshold register are

implemented. Therefore, in this project, only the Temperature and VCCINT sensors

threshold value can be configured in XADC which is enough to observe the simulation

result and verify the functionality.

Besides, a simple Interrupt Service Routine is designed for the ADC Controller unit to

carry out certain action. In the routine, the action is simply enabling the corresponding

GPIO pin. For example, if it is Temperature sensor (ALM [0]) that trigger the Interrupt

Request Signal, GPIOEN [0] will be set to ‘1’. If it is VCCINT (ALM [1]), then GPIOEN

[1] will be set.

Hence, user could apply this function in some home automation project, like enabling

the cooling system when the temperature is too high or enable the siren whenever the

sensor’s value fall in undesired range.

Figure 6-2 below shows the pseudocode of the developed ISR for handling interrupt

request from the ADC controller unit. In this case, Each GPIO is assign respectively to

the six internal sensor measurements (Temperature, VCCINT, VCCAUX, VCCBRAM, VCCPINT,

VCCPAUX, VCCO_DDR).

Figure 6-2: Pseudocode describing UADC’s ISR.

BEGIN

 Load the ALM_FLAG value

 CASEOF ALM_FLAG

 0: Set GPIOEN [0]

 1: Set GPIOEN [1]

 2: Set GPIOEN [2]

 3: Set GPIOEN [3]

 4: Set GPIOEN [4]

 5: Set GPIOEN [5]

 6: Set GPIOEN [6]

 ENDCASE

 Return to the main exception handler

END

Chapter 7: Verification Specification and Simulation Result

55
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7: Verification Specification and Simulation Result

In this chapter, there are two simulations carried out. First simulation is for the ADC

Controller unit only. The microarchitecture is the older version in which XADC is

instantiated in the UADC. As mentioned in the Chapter 3 methodologies, this

simulation is needed to test out the application of XADC and validate the FSM of

UADC before integration with the RISC32. Hence, it only tests out 4 basic functions,

which are reset, read, write, and interrupt. While the second simulation is for the final

version of microarchitecture which is after the integration with RISC32. This

simulation will be using MIPS assembly code.

The simulation test in this project will use the sample stimulus text file provided by

Xilinx with some value altered to suit the test plan. The text file is emulating the real

time analog input. There are eight analog input use in this project to carry out

functionality test as shown in the figure 7-1.

Figure 7-1: Stimulus text file extracted from [15] with some value altered.

7.1 Unit Level Functional Test Plan

Test Test Vector/Input Expected Output Result

Test case 1: System Reset

Test Function/Description:

-To test if ADC controller

unit can be reset.

-Hold the reset signal for one

clock cycle.

tb_ip_wb_clk <= 1’b1; UADC_CREG contains the

initial value just the same as

XADC.

UADC_SREG is clear to 0.

Pass

Chapter 7: Verification Specification and Simulation Result

56
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Test case 2: Read operation

Test Function/Description:

-To test if the UADC_SREG

can be read out from ADC

controller unit.

-The reading operation occur

at the time after 167us in

which analog input does not

change anymore.

[constant]

tb_ip_wb_r_we <=1'b0;

tb_ip_wb_r_stb <=1'b1;

tb_ip_wb_r_sel <=

4'b1111;

i) Read Temp and Vccint

value.

tb_ip_wb_r_addr <=

6'b001_000;

tb_op_wb_r_dout = 32’h

5555_ae4e

Pass

ii) Read Vccaux value.

tb_ip_wb_r_addr <=

6'b001_001;

tb_op_wb_r_dout = 32’h

0000_9999

Pass

iii) Read Vccbram value.

tb_ip_wb_r_addr <=

6'b001_011;

tb_op_wb_r_dout = 32’h

0000_5555

Pass

iv) Read VAUXP/N[1] and

VAUXP/N[0] value.

tb_ip_wb_r_addr <=

6'b010_000;

tb_op_wb_r_dout = 32’h

e666_08b4

Pass

v) Read VAUXP/N[3] and

VAUXP/N[2] value.

tb_ip_wb_r_addr <=

6'b010_001;

tb_op_wb_r_dout = 32’h

0000_87ae

Pass

Test case 3: Write operation

Test Function/Description:

-To test if the data can write

into the UADC_CREG and

the operating mode of

XADC could be changed.

[constant]

tb_ip_wb_w_we <=1'b1;

tb_ip_wb_w_stb <= 1'b1;

i)Enable all channel to do

average of 16 sample

tb_ip_wb_w_din <=

32'h000f_4700;

XADC will only send out the

End of Conversion (EOC)

Pass

Chapter 7: Verification Specification and Simulation Result

57
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

(Averaging sample is 16 as

in initialization)

-Write to

channel_avg_reg_0 and

channel_avg_reg_1.

tb_ip_wb_w_sel <=

4'b1111;

tb_ip_wb_w_addr <=

6'b000_011;

signal after the channel has

finished averaging 16 samples

which will then update the

UADC_SREG.

ii)Switch to single channel

operating mode with only

temperature is sampled.

-Write to configure_reg_1,

changing the (SEQ3 – 0) to

4’b0011.

-default value on (CH4-

CH0) is 5’b0 which select

the temperature sensor

channel to sample.

tb_ip_wb_w_din <=

32'h0000_3ef0;

tb_ip_wb_w_sel <=

4'b1100;

tb_ip_wb_w_addr <=

6'b000_000;

XADC will only sample the

temperature sensor value.

Pass

iii)Configure AUXP/N [3:0]

to bipolar analog input

mode.

-Write to

channel_aim_reg_0 and

channel_aim_reg_1

-Only AUXP/N can switch

Analog-Input Mode.

Bipolar range: -0.5≤V≤0.5

Unipolar range: 0≤ V ≤1.0

tb_ip_wb_w_din <=

32'h000f_0000.

tb_ip_wb_w_sel <=

4'b1111.

tb_ip_wb_w_addr <=

6'b000_100;

When XADC operate in

bipolar mode, the maximum

voltage value that an

AUXP/N can go is 0.5V

instead of 1.0V and minimum

voltage value is -0.5V instead

of 0V.

Around 140us, VAUXP/N [1]

and VAUXP/N [2] will have a

digital value capped at 0x7ff.

(0.5V) when they have value

0.9V and 0.53V.

Around 167us, VAUXP/N [3]

will have a digital value 0xf74

that indicating a negative

Pass

Chapter 7: Verification Specification and Simulation Result

58
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

voltage value (-0.034V).

Previously in Test case 1, the

value is 0x000 due to the

unipolar analog input mode.

Test case 4: Interrupt

operation

Test Function/Description:

-to test if ADC controller

unit can send out Interrupt

request signal, when there is

alarm signal generated from

XADC.

[constant]

tb_ip_ADCIE<=1'b1;

tb_ip_wb_w_we <=1'b1;

tb_ip_wb_w_stb <= 1'b1;

i)Write to configure_reg_1

to enable only temp and

Vccint alarm signal.

-The initialize threshold

value for temp and Vccint is

60oC ≤temp≤85oC

0.95V ≤Vccint≤1.05V

tb_ip_wb_w_din <=

32'h0000_2ff8;

tb_ip_wb_w_sel <=

4'b1100;

tb_ip_wb_w_addr <=

6'b000_000;

Around 100us,

uoadc_IRQ = 1’b1;

and

both alarm for temperature

and Vccint is asserted.

Around 140us, alarm for

Vccint will be lower but alarm

for temperature will stay high

with 70oC

Pass

ii) Write to

temp_min_threshold to

change the lower threshold

value become 70 oC

tb_ip_wb_w_din <=

32'h0000_ae50;

tb_ip_wb_w_sel <=

4'b1100;

tb_ip_wb_w_addr <=

6'b000_101;

Around 140us,

uoadc_IRQ = 1’b0;

and

both alarm for temperature

and Vccint is lower.

Pass

iii) Disable interrupt

function of ADC controller

unit.

tb_ip_ADCIE<=1'b0;

uoadc_IRQ will be ‘0’,

although there is the presence

of alarm signal.

Pass

Chapter 7: Verification Specification and Simulation Result

59
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

7.2 Simulation Result for Unit Level Functional Test

To proof that the simulation result shown in waveform is correct, the analog value in

stimulus file is converted using the formulas attached in Appendix. Table 7-1 shows

the digital value for the stimulus file.

Table 7-1: digital value of stimulus file.

Time(us) VAUXP

[0]

VAUXP

[1]

VAUXP

[2]

VAUXP

[3]

TEMP VCCINT VCCAU

X

VCCBRA

M

0 U: 0x014 U: 0x333 U: 0x3ae U: 0x199 U: 0x977 U: 0x555 U: 0x999 U: 0x555

67 U: 0x051 U: 0x666 U: 0x666 U: 0x333 U: 0xb5e U: 0x599 U: 0xa22 U: 0x599

100 U: 0x0c8 U: 0x5c2 U: 0x733 U: 0x3ae U: 0xc01 U: 0x4cc U: 0x91e U: 0x511

140 U: 0x08b U: 0xe66

B: 0x7ff

U: 0x87a

B: 0x7ff

U: 0x000 U: 0xae4 U: 0x555 U: 0x999 U: 0x555

167 U: 0x08b U: 0xe66

B: 0x7ff

U: 0x87a

B: 0x7ff

U: 0x000

B: 0xf74

U: 0xae4 U: 0x555 U: 0x999 U: 0x555

U: unipolar, B: Bipolar

7.2.1 Test case 1: System Reset.

Figure 7-2: Simulation result for test case 1 using Vivado simulation tool.

• When the reset signal is asserted, the UADC_SREG will be clear to ‘0’

• While UADC_CREG will store the same value as the initialization made on

XADC, just in case user did not do configuring at the beginning of program

code.

Reset signal asserted

Chapter 7: Verification Specification and Simulation Result

60
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

7.2.2 Test case 2: Read Operation.

Figure 7-3: Simulation result for test case 2 using Vivado simulation tool.

• The value of Temperature, Vccint, Vccaux, Vccbram, VAUXP/N[3:0] is read

out successfully. The values read out are the same as unipolar value shown in

Table 7-1 when the analog stimulus has no more changes after 140us.

7.2.3 Test case 3: Write Operation.

i) Enable all channel to do average 16 sample.

Figure 7-4: Simulation result for test case 3(i) using Vivado simulation tool.

• When the XADC has been configured to do 16 sample averaging for all channel,

it happens to only EOC and EOS signal when all 16 sample has been used to

obtain the average value as shown in figure 7-4.

Vccint Temp

Vccaux Vccbram AUXP/N[0]

AUXP/N[1]

AUXP/N[2]

AUXP/N[3]

Before: All 16 samples are converted and

read out.

After: Only the average of 16 samples

value is converted and read out.

Configurations happen here

Chapter 7: Verification Specification and Simulation Result

61
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ii) Switch to single channel mode with only temperature sampled.

Figure 7-5: Simulation result for test case 3(ii) using Vivado simulation tool.

• After the XADC is configured to operate in single channel mode, only

temperature sensor value is sampled instead of all eight sensors. Since the CH4-

CH0(look for Appendix) has value of 5’b0, it indicates that temperature sensor

is the only channel monitored in XADC.

iii) Configure AUXP/N [3:0] to bipolar input mode.

Figure 7-6: Simulation result for test case 3(iii) using Vivado simulation tool.

Before: All 8 analog input are monitored in

sequencer mode.
After: Only temperature sensor is

monitored in single channel mode.

Configurations happen here

AUXP/N[3:0]

Chapter 7: Verification Specification and Simulation Result

62
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• After changing the analog input mode for AUXP/N [3:0] to bipolar mode. It

now has the same value as shown in Table 7-1 during 167us.

7.2.4 Test case 4: Interrupt Operation.

i) Write to CONFIGURE_REG_1 to enable only temp and Vccint alarm signal.

Figure 7-7: Simulation result for test case 4(i) using Vivado simulation tool.

• The initialize threshold value are like:

 60oC ≤temp≤85oC

 0.95V ≤Vccint≤1.05V

• Therefore, by referring to the stimulus file, alarm signal will be generated during

100us.

• During 140us, alarm signal for Vccint(ALM[1]) will deasserted for having 1.0

V, while the alarm signal for temperature(ALM[0]) will stay high for having

70oC.

ii) Write to TEMP_MIN_THRESHOLD to change the lower threshold value become

70 oC.

Figure 7-8: Simulation result for test case 4(ii) using Vivado simulation tool.

Chapter 7: Verification Specification and Simulation Result

63
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• By changing the threshold to 70oC ≤temp≤85oC, alarm signal (ALM[0]) for

temperature will now be reset.

iii) Disable interrupt function of ADC controller unit.

Figure7-9: Simulation result for test case 4(iii) using Vivado simulation tool.

• Interrupt request signal (tb_op_IRQ) will be ‘0’ even there are presence of alarm

signal due to the interrupt enable signal (uiadc_ADCIE) is reset.

Chapter 7: Verification Specification and Simulation Result

64
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

7.3 Testbench for Integration Level Functional Test

Full Testbench coding is in Appendix B

`timescale 1ns / 1ps
`default_nettype none
define demo006_ADC

//define multiple_exception
`ifdef demo006_ADC
 `define TEST_CODE_PATH_DUT "demo006_ADC_v2mem_02program.hex"
 `define EXC_HANDLER_DUT "demo006_ADC_mem_03exc_handler.hex"
`endif

`ifdef multiple_exception
 `define TEST_CODE_PATH_DUT "Multiple_Exception+interrupt.hex"
 `define EXC_HANDLER_DUT "exception_handler.hex"
 `define TEST_CODE_PATH_CLIENT "Uart+Spi Transmit to DUT.hex"
 `define EXC_HANDLER_CLIENT "exception_handler.hex"

`endif

module tb_r32_pipeline();
//declaration
//===== INPUT =====
//System signal
reg tb_u_clk;
reg tb_u_rst;
//~~~~~~~~~~~~~~~~~~

wire tb_u_spi_mosi_dut;
wire tb_u_spi_miso_dut;
wire tb_u_spi_sclk_dut;
wire tb_u_spi_ss_n_dut;

wire tb_u_fc_sclk_dut;

wire tb_u_fc_ss_dut;

wire tb_u_fc_MOSI_dut;
wire tb_u_fc_MISO1_dut;
wire tb_u_fc_MISO2_dut;
wire tb_u_fc_MISO3_dut;
wire tb_ua_tx_rx_dut;
wire tb_ua_RTS_dut, tb_ua_CTS_dut;

wire[31:0] tb_u_GPIO_dut;
//~~~~~~~~~~~~~~~~~~
wire tb_u_spi_mosi_client;
wire tb_u_spi_miso_client;
wire tb_u_spi_sclk_client;
wire tb_u_spi_ss_n_client;

wire tb_u_fc_sclk_client;
wire tb_u_fc_ss_client;
wire tb_u_fc_MOSI_client;

wire tb_u_fc_MISO1_client;
wire tb_u_fc_MISO2_client;
wire tb_u_fc_MISO3_client;

wire tb_ua_tx_rx_client;
wire tb_ua_RTS_client, tb_ua_CTS_client;
wire[31:0] tb_u_GPIO_client;

…

…

…

Chapter 7: Verification Specification and Simulation Result

65
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

7.4 Simulation Result for Integration Level Functional Test

Test Case 1: Write Operation

Wishbone input has targeted UADC IO register (BFFFFE2C – 34)

1) Flags that involve in the writing operation will be raised according to the wishbone

input and be lowered after the data have successfully written into by monitoring the

uiadc_DRDY.

2) uoadc_DEN and uoadc_DWE are raised for one clock cycle to signal XADC that

writing operation is on demand. While uoadc_DI and uoadc_DADDR are having the

corresponding data and address to be written in XADC.

Test Case 2: Read Operation

1) When uiadc_EOC asserted, the flag_UADC_READ will be raised in the next clock

cycle to indicate that there is a new value converted in XADC and it is ready to be read.

After One clock cycle the flag raised, uoadc_DEN and uoadc_DWE are having ‘1’ and

‘0’ value to signal XADC that reading operation is on demand, while uoadc_DADDR

is having the address of register in XADC that store the data.

2)uiadc_DRDY is a signal given by XADC to indicate that the intended data is ready

to be taken in uiadc_DO.

2

1

1

2

3

4

Chapter 7: Verification Specification and Simulation Result

66
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3) The new data read is not stored directly in UADC_SREG. Instead, it is stored

temporarily in ADC Clock Control block’s register.

4) The new data is only stored in UADC_SREG on the rising edge of boadcclk_ctr_clk.

Test Case 3: Interrupt

After configuration, uiadc_ADCIE has asserted.

In the ISR, GPIOEN [2] is asserted to indicate that Vccint trigger the interrupt.

Test Case 4: Clock Control for data storing speed

After configuration, CLK_SEL is having value ‘a’ and boadcclk_ctr_clk has

decreased in frequency.

Chapter 8: Multiple IO System Functional Test

67
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 8: Multiple IO System Functional Test

In previous chapter, we have tested out the individual interrupt test of ADC. However,

before we can say the integration of ADC Controller unit is completed, we must make

sure the ADC exception event would not clash with the other IO unit’s exception and

internal exception (trap). Hence, in this chapter, we will develop a test case in which

multiple external interrupt and trap are triggered in a single program. The expected

output is each exception event will be served, with their respective ISR being executed.

8.1 Test Case: Multiple interrupt and Multiple Trap.

In this test case, all three IO SPI, UART, and ADC interrupts are enabled. To trigger

SPI and UART interrupt, connection between Server (DUT) and Client is needed. By

connecting both, Client will keep sending data to Server (DUT) through SPI and UART

to trigger interrupt in the Server (DUT) side. The connection is established as shown in

Figure 8-1.

Client

UART
Controller

SPI
Controller

Server(DUT)

UART
Controller

SPI
Controller

Figure 8-1: Connection between Server (DUT) and Client as shown in [5]

Chapter 8: Multiple IO System Functional Test

68
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

While for ADC interrupt, it is triggered by the power supply VCCINT whenever the value

exceeds 1.05V. Figure 8-2 shows roughly when the interrupt will be triggered.

Figure 8-2: The time when the interrupt happens for ADC.

At the same time, multiple trap occurrences have intentionally programmed at the

server (DUT) side to see if there were any exception events would clash with each other.

Again, all exception events are expected to be served properly with their respective ISR

being executed, meaning if there is IRQ, we should see the initial program counter is

halted and stored into a register $epc before the program counter jump to the respective

ISR. When the ISR has run finish, program counter will return to the previous program

by reading the value in $epc.

When multiple interrupts happen, all exceptions events should be served according to

the priority level without any conflict. External exception that comes from all IO

devices have the highest priority over internal exception like Syscall, Undefined

Instruction and Sign-overflow. While the priority level between external exception is

determined by user by setting register in Priority Interrupt Controller as mentioned in

[14]. However, in this test case, the values are all default, and the priority will depend

on the vector number of IO device. The lower the vector number, the higher the priority.

Hence, priority goes UART > SPI > ADC.

Chapter 8: Multiple IO System Functional Test

69
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

8.2 Testbench for Multiple Exception Test

Full Testbench coding is in Appendix B

`timescale 1ns / 1ps
`default_nettype none
//define demo006_ADC
define multiple_exception

`ifdef demo006_ADC
 `define TEST_CODE_PATH_DUT "demo006_ADC_v2mem_02program.hex"
 `define EXC_HANDLER_DUT "demo006_ADC_mem_03exc_handler.hex"
`endif

`ifdef multiple_exception
 `define TEST_CODE_PATH_DUT "Multiple_Exception+interrupt.hex"

 `define EXC_HANDLER_DUT "exception_handler.hex"
 `define TEST_CODE_PATH_CLIENT "Uart+Spi Transmit to DUT.hex"
 `define EXC_HANDLER_CLIENT "exception_handler.hex"

`endif

module tb_r32_pipeline();

//declaration
//===== INPUT =====
//System signal
reg tb_u_clk;
reg tb_u_rst;
//~~~~~~~~~~~~~~~~~~
wire tb_u_spi_mosi_dut;

wire tb_u_spi_miso_dut;
wire tb_u_spi_sclk_dut;
wire tb_u_spi_ss_n_dut;

wire tb_u_fc_sclk_dut;
wire tb_u_fc_ss_dut;
wire tb_u_fc_MOSI_dut;

wire tb_u_fc_MISO1_dut;
wire tb_u_fc_MISO2_dut;
wire tb_u_fc_MISO3_dut;
wire tb_ua_tx_rx_dut;
wire tb_ua_RTS_dut, tb_ua_CTS_dut;
wire[31:0] tb_u_GPIO_dut;

//~~~~~~~~~~~~~~~~~~
wire tb_u_spi_mosi_client;
wire tb_u_spi_miso_client;
wire tb_u_spi_sclk_client;
wire tb_u_spi_ss_n_client;

wire tb_u_fc_sclk_client;

wire tb_u_fc_ss_client;
wire tb_u_fc_MOSI_client;
wire tb_u_fc_MISO1_client;

wire tb_u_fc_MISO2_client;
wire tb_u_fc_MISO3_client;
wire tb_ua_tx_rx_client;
wire tb_ua_RTS_client, tb_ua_CTS_client;

wire[31:0] tb_u_GPIO_client;

…

…

…

Chapter 8: Multiple IO System Functional Test

70
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

8.3 Simulation result

With the help of Co-processor 0(CP0) and Priority Interrupt Controller (PIC), we get

to see both internal and external exception event getting served according to their

priority.

1) In the figure above, when sign-overflow first happen, it is being served, and the user

program’s pc value is stored in the $epc.

2)Before sign-overflow ISR can finish, ADC has fired an IRQ, as showed by the

PICSTAT value ‘04’ which is the vector number for ADC interrupt. CP0 will then serve

ADC’s IRQ first because external exception (UART, SPI, ADC) has higher priority

than internal exception (sign-overflow, undefined instruction, syscall) as shown in [5].

PC for sign-overflow ISR is being stored in the $epc for future return purpose.

3) The same thing happens to ADC, when the SPI fire an IRQ, PC for ADC’s ISR is

stored in the $epc. Since no PICIPL value is set in this case, the priority between IO is

determine by their vector number. SPI has higher priority over ADC with vector

number of ‘03’

1

1

2

2

2

3

3

3

Chapter 8: Multiple IO System Functional Test

71
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Unlike the UART interrupt as shown in [5], there are no exception conflicting happen

between Trap and Interrupt where the two or more IRQ happen in the same clock cycle.

The best sequence we can get is ADC interrupt triggered one clock cycle earlier than

Trap. In this case, since ADC’s IRQ has higher priority, it will continue its ISR until it

finishes before servicing sign-overflow’s ISR. At this point, the integration of UADC

is completed since the CP0 can handle the exceptions with the correct priority.

Chapter 9: Conclusion and Future Work

72
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 9: Conclusion and Future Work

9.1 Conclusion

The objectives of this project have been achieved. The ADC controller unit is

successfully developed by revising and troubleshooting the previously developed ADC

Controller Unit. It has been optimized and further enhanced as the ADC Controller Unit

is now free of some unnecessary registers and state. Apart from that, the read operation

has been completed and an interrupt function is implemented. Lastly, a new Clock

Control block is integrated in the ADC controller unit to have control over the data

storing speed.

As per the second objective, the ADC Controller Unit has also been successfully

integrated into the RISC32 by using the I/O memory mapping technique,

UADC_CREG and UADC_SREG are specifically designed to suit the functionality of

XADC. Now, XADC can be easily configured, and the converted value can be easily

obtained through the ADC Controller Unit. Also, an assembly language Interrupt

Service Routine (ISR) has been specifically designed for ADC Controller Unit. The

information about the ISR can be found in Chapter 6.

At this point, the documentation of ADC Controller Unit has now completed with the

micro-architecture specification clarified in Chapter 5. Also, there are test plans,

testbenches and simulation results included in Chapter 7 and 8 to prove that the design

and integration are completed. With the availability of well-developed documents, any

further research works can be done easier and speed up significantly as the functionality

of the ADC Controller Unit has been verified.

Chapter 9: Conclusion and Future Work

73
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

9.2 Future Work

In the future, effort might be put into the synthesis and implementation of ADC

Controller Unit in real FPGA. By having a physical application of ADC Controller Unit

on FPGA, the exception handler can be further modified to carried out more meaningful

ISR depend on the use cases. Besides, other XADC’s operating mode and functions can

also be tested out in the test plan to match more use cases.

BIBLIOGRAPHY

74
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Bibliography

[1] Altera. (2013). Cadence Incisive Enterprise Simulator Support. Accessed: July

6, 2021. [Online]. Available:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb

/qts/qts_qii53003.pdf

[2] B. L. Tan, K. M. Mok, J. J. Chang, W. K. Lee and S. O. Hwang, "RISC32-LP:

Low-Power FPGA-Based IoT Sensor Nodes With Energy Reduction Program

Analyzer," in IEEE Internet of Things Journal, vol. 9, no. 6, pp. 4214-4228, 15

March15, 2022. [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9508410

[3] CONTEC. no date. Analog I/O basic knowledge. Accessed: July 1, 2021.

[Online]. Available: https://www.contec.com/support/basic-knowledge/daq-

control/analog-io/

[4] D.A. Patterson and J.L. Hennessy, Computer Organization and Design-The

Hardware_Software Interface, Third Edition. San Francisco: Morgan Kaufmann

Publishers.

[5] J.S. Goh. (2019). The development of an exception scheme for 5-stage pipeline

RISC processor. Accessed: March 1, 2022. Available:

http://eprints.utar.edu.my/3434/1/fyp_CT_2019_GJS_1503470.pdf

[6] K.M. Mok. (2020). Digital Systems Designs. Lecture notes distributed in

Faculty of Information and Communication Technology at Universiti Tunku

Abdul Rahman.

[7] K.M. Mok. (2021). Computer Organization and Architecture. Lecture notes

distributed in Faculty of Information and Communication Technology at

Universiti Tunku Abdul Rahman.

[8] M. Langer. (2016). Memory Mapped I/O, Polling, DMA. Accessed: July 6, 2021.

Available: http://www.cim.mcgill.ca/~langer/273/20-notes.pdf

[9] M.A. Yong. (2021). Design and Implementation of a SPI controller for zigbee

module. Accessed: March 1, 2022. [Online]. Available:

http://eprints.utar.edu.my/3830/1/16ACB01733_FYP.pdf

BIBLIOGRAPHY

75
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[10] Maximintegrated. (2012). Analog Solutions for Xilinx FPGAs. Accessed: July 1,

2021. [Online]. Available:

https://www.maximintegrated.com/content/dam/files/design/technical-

documents/product-guides/fpga-xilinx-product-guide.pdf

[11] Mentor Graphic. no date. ModelSim PE Student Edition. Accessed: July 6, 2021.

[Online]. Available: https://www.mentor.com/company/higher_ed/modelsim-

student-edition

[12] Synopsys. no date. VCS. Accessed: July 6, 2021. [Online]. Available:

https://www.synopsys.com/verification/simulation/vcs.html

[13] W.P. Kiat, K.M. Mok, W.K. Lee, H.G. Goh, and R. Achar. (2020). An energy

efficient FPGA partial reconfiguration based micro-architectural technique for

IoT applications. Microprocessors and Microsystems, 73, p.102966.

Presented at ELSEVIER 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0141933118304691

[14] W.P. Kiat. (2018). The design of an FPGA-based processor with reconfigurable

processor execution structure for internet of things (IoT) applications.

Accessed: April 6, 2021. [Online]. Available:

http://eprints.utar.edu.my/3146/1/CEA-2019-1601206-1.pdf

[15] Xilinx.com. (2018). 7 Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1

MSPS Analog-to-Digital Converter User Guide (UG480). Accessed: July 6,

2021. [Online]. Available:

https://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XA

DC.pdf

[16] Xilinx.com. (2021). Vivado Design Suite- HLx Editions. Accessed: January 27,

2022. [Online]. Available:

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downlo

adNav/vivado-design-tools/2020-3.html

APPENDIX A

A-1
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix A: XADC Datasheet

XADC ports and description

APPENDIX A

A-2
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX A

A-3
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Formula for temperature

Formula for power-supply sensor

Formula for auxiliary input

Note: ADC Code here represents the left-aligned 12-bit in the status register

Detail description for XADC Status register

APPENDIX A

A-4
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX A

A-5
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Detail for XADC Configuration Registers

APPENDIX A

A-6
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX A

A-7
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The Control Register for Sequence mode in XADC

APPENDIX A

A-8
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Note: ADC Channel Averaging and ADC Channel Analog-Input Mode will also have

the same bit assignments to toggle enable/disable averaging and toggle analog-input

mode respectively.

APPENDIX A

A-9
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

XADC Alarms Threshold Registers

Dynamic Reconfiguration Port (DRP) Timing

APPENDIX A

A-10
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

XADC Verilog code from Xilinx

`timescale 1ns / 1ps

module ug480 (

 input DCLK, // Clock input for DRP

 input RESET,

 input [3:0] VAUXP, VAUXN, // Auxiliary analog channel inputs

 input VP, VN,// Dedicated and Hardwired Analog Input Pair

 output reg [15:0] MEASURED_TEMP, MEASURED_VCCINT,

 output reg [15:0] MEASURED_VCCAUX, MEASURED_VCCBRAM,

 output reg [15:0] MEASURED_AUX0, MEASURED_AUX1,

 output reg [15:0] MEASURED_AUX2, MEASURED_AUX3,

 output wire [7:0] ALM,

 output wire [4:0] CHANNEL,

 output wire OT,

 output wire EOC,

 output wire EOS

);

 wire busy;

 wire [5:0] channel;

 wire drdy;

 wire eoc;

 wire eos;

 wire i2c_sclk_in;

 wire i2c_sclk_ts;

 wire i2c_sda_in;

 wire i2c_sda_ts;

 reg [6:0] daddr;

 reg [15:0] di_drp;

 wire [15:0] do_drp;

 wire [15:0] vauxp_active;

 wire [15:0] vauxn_active;

 wire dclk_bufg;

 reg [1:0] den_reg;

 reg [1:0] dwe_reg;

 reg [1:0] den_reg;

 reg [1:0] dwe_reg;

 reg [7:0] state = init_read;

 parameter init_read = 8'h00,

 read_waitdrdy = 8'h01,

 write_waitdrdy = 8'h03,

 read_reg00 = 8'h04,

 reg00_waitdrdy = 8'h05,

 read_reg01 = 8'h06,

 reg01_waitdrdy = 8'h07,

 read_reg02 = 8'h08,

 reg02_waitdrdy = 8'h09,

 read_reg06 = 8'h0a,

 reg06_waitdrdy = 8'h0b,

APPENDIX A

A-11
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 read_reg10 = 8'h0c,

 reg10_waitdrdy = 8'h0d,

 read_reg11 = 8'h0e,

 reg11_waitdrdy = 8'h0f,

 read_reg12 = 8'h10,

 reg12_waitdrdy = 8'h11,

 read_reg13 = 8'h12,

 reg13_waitdrdy = 8'h13;

 BUFG i_bufg (.I(DCLK), .O(dclk_bufg));

 always @(posedge dclk_bufg)

 if (RESET) begin

 state <= init_read;

 den_reg <= 2'h0;

 dwe_reg <= 2'h0;

 di_drp <= 16'h0000;

 end

 else

 case (state)

 init_read : begin

 daddr <= 7'h40;

 den_reg <= 2'h2; // performing read

 if (busy == 0) state <= read_waitdrdy;

 end

read_waitdrdy :

 if (eos ==1) begin

 di_drp <= do_drp & 16'h03_FF; //Clearing AVG bits for Configreg0

 daddr <= 7'h40;

 den_reg <= 2'h2;

 dwe_reg <= 2'h2; // performing write

 state <= write_waitdrdy;

 end

 else begin

 den_reg <= { 1'b0, den_reg[1] } ;

 dwe_reg <= { 1'b0, dwe_reg[1] } ;

 state <= state;

 end

write_waitdrdy :

 if (drdy ==1) begin

 state <= read_reg00;

 end

 else begin

 den_reg <= { 1'b0, den_reg[1] } ;

 dwe_reg <= { 1'b0, dwe_reg[1] } ;

 state <= state;

 end

 read_reg00 : begin

 daddr <= 7'h00;

 den_reg <= 2'h2; // performing read

 if (eos == 1) state <=reg00_waitdrdy;

 end

 reg00_waitdrdy :

 if (drdy ==1) begin

 MEASURED_TEMP <= do_drp;

 state <=read_reg01;

 end

APPENDIX A

A-12
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 else begin

 den_reg <= { 1'b0, den_reg[1] } ;

 dwe_reg <= { 1'b0, dwe_reg[1] } ;

 state <= state;

 end

 read_reg01 : begin

 daddr <= 7'h01;

 den_reg <= 2'h2; // performing read

 state <=reg01_waitdrdy;

 end

 reg01_waitdrdy :

 if (drdy ==1) begin

 MEASURED_VCCINT = do_drp;

 state <=read_reg02;

 end

 else begin

 den_reg <= { 1'b0, den_reg[1] } ;

 dwe_reg <= { 1'b0, dwe_reg[1] } ;

 state <= state;

 end

 read_reg02 : begin

 daddr <= 7'h02;

 den_reg <= 2'h2; // performing read

 state <=reg02_waitdrdy;

 end

 reg02_waitdrdy :

 if (drdy ==1) begin

 MEASURED_VCCAUX <= do_drp;

 state <=read_reg06;

 end

 else begin

 den_reg <= { 1'b0, den_reg[1] } ;

 dwe_reg <= { 1'b0, dwe_reg[1] } ;

 state <= state;

 end

 read_reg06 : begin

 daddr <= 7'h06;

 den_reg <= 2'h2; // performing read

 state <=reg06_waitdrdy;

 end

 reg06_waitdrdy :

 if (drdy ==1) begin

 MEASURED_VCCBRAM <= do_drp;

 state <= read_reg10;

 end

APPENDIX A

A-13
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 else begin

 den_reg <= { 1'b0, den_reg[1] } ;

 dwe_reg <= { 1'b0, dwe_reg[1] } ;

 state <= state;

 end

 read_reg10 : begin

 daddr <= 7'h10;

 den_reg <= 2'h2; // performing read

 state <= reg10_waitdrdy;

 end

 reg10_waitdrdy :

 if (drdy ==1) begin

 MEASURED_AUX0 <= do_drp;

 state <= read_reg11;

 end

 else begin

 den_reg <= { 1'b0, den_reg[1] } ;

 dwe_reg <= { 1'b0, dwe_reg[1] } ;

 state <= state;

 end

 read_reg11 : begin

 daddr <= 7'h11;

 den_reg <= 2'h2; // performing read

 state <= reg11_waitdrdy;

 end

 reg11_waitdrdy :

 if (drdy ==1) begin

 MEASURED_AUX1 <= do_drp;

 state <= read_reg12;

 end

 else begin

 den_reg <= { 1'b0, den_reg[1] } ;

 dwe_reg <= { 1'b0, dwe_reg[1] } ;

 state <= state;

 end

 read_reg12 : begin

 daddr <= 7'h12;

 den_reg <= 2'h2; // performing read

 state <= reg12_waitdrdy;

 end

 reg12_waitdrdy :

 if (drdy ==1) begin

 MEASURED_AUX2 <= do_drp;

 state <= read_reg13;

 end

 else begin

 den_reg <= { 1'b0, den_reg[1] } ;

 dwe_reg <= { 1'b0, dwe_reg[1] } ;

 state <= state;

 end

 read_reg13 : begin

 daddr <= 7'h13;

 den_reg <= 2'h2; // performing read

 state <= reg13_waitdrdy;

 end

APPENDIX A

A-14
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 reg13_waitdrdy :

 if (drdy ==1) begin

 MEASURED_AUX3 <= do_drp;

 state <=read_reg00;

 daddr <= 7'h00;

 end

 else begin

 den_reg <= { 1'b0, den_reg[1] } ;

 dwe_reg <= { 1'b0, dwe_reg[1] } ;

 state <= state;

 end

 default : begin

 daddr <= 7'h40;

 den_reg <= 2'h2; // performing read

 state <= init_read;

 end

 endcase

XADC #(// Initializing the XADC Control Registers

 .INIT_40(16'h9000),// averaging of 16 selected for external channels

 .INIT_41(16'h2ef0),// Continuous Seq Mode, Disable unused ALMs, Enable

calibration

 .INIT_42(16'h0400),// Set DCLK divides

 .INIT_48(16'h4701),// CHSEL1 - enable Temp VCCINT, VCCAUX, VCCBRAM,

and calibration

 .INIT_49(16'h000f),// CHSEL2 - enable aux analog channels 0 - 3

 .INIT_4A(16'h0000),// SEQAVG1 disabled

 .INIT_4B(16'h0000),// SEQAVG2 disabled

 .INIT_4C(16'h0000),// SEQINMODE0

 .INIT_4D(16'h0000),// SEQINMODE1

 .INIT_4E(16'h0000),// SEQACQ0

 .INIT_4F(16'h0000),// SEQACQ1

 .INIT_50(16'hb5ed),// Temp upper alarm trigger 85°C

 .INIT_51(16'h5999),// Vccint upper alarm limit 1.05V

 .INIT_52(16'hA147),// Vccaux upper alarm limit 1.89V

 .INIT_53(16'hdddd),// OT upper alarm limit 125°C - see Thermal

Management

 .INIT_54(16'ha93a),// Temp lower alarm reset 60°C

 .INIT_55(16'h5111),// Vccint lower alarm limit 0.95V

 .INIT_56(16'h91Eb),// Vccaux lower alarm limit 1.71V

 .INIT_57(16'hae4e),// OT lower alarm reset 70°C - see Thermal

Management

 .INIT_58(16'h5999),// VCCBRAM upper alarm limit 1.05V

.SIM_MONITOR_FILE("design.txt")// Analog Stimulus file for simulation

)

APPENDIX A

A-15
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

XADC_INST (// Connect up instance IO. See UG480 for port descriptions

 .CONVST (1'b0),// not used

 .CONVSTCLK (1'b0), // not used

 .DADDR (daddr),

 .DCLK (dclk_bufg),

 .DEN (den_reg[0]),

 .DI (di_drp),

 .DWE (dwe_reg[0]),

 .RESET (RESET),

 .VAUXN (vauxn_active),

 .VAUXP (vauxp_active),

 .ALM (ALM),

 .BUSY (busy),

 .CHANNEL(CHANNEL),

 .DO (do_drp),

 .DRDY (drdy),

 .EOC (eoc),

 .EOS (eos),

 .JTAGBUSY (),// not used

 .JTAGLOCKED (),// not used

 .JTAGMODIFIED (),// not used

 .OT (OT),

 .MUXADDR (),// not used

 .VP (VP),

 .VN (VN)

);

 assign vauxp_active = {12'h000, VAUXP[3:0]};

 assign vauxn_active = {12'h000, VAUXN[3:0]};

 assign EOC = eoc;

 assign EOS = eos;

endmodule

APPENDIX A

A-16
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Testbench code from Xilinx

`timescale 1ns / 1ps

module ug480_tb;

 reg [3:0] VAUXP, VAUXN;

 reg RESET;

 reg DCLK;

 wire [15:0] MEASURED_TEMP, MEASURED_VCCINT, MEASURED_VCCAUX;

 wire [15:0] MEASURED_VCCBRAM, MEASURED_AUX0, MEASURED_AUX1;

 wire [15:0] MEASURED_AUX2, MEASURED_AUX3;

 wire [15:0] ALM;

initial

 begin

 DCLK = 0;

 RESET = 0;

 end

always #(10) DCLK= ~DCLK;

// Instantiate the Unit Under Test (UUT)

ug480 uut (

 .VAUXP (VAUXP),

 .VAUXN (VAUXN),

 .RESET (RESET),

 .ALM (ALM),

 .DCLK (DCLK),

 .MEASURED_TEMP (MEASURED_TEMP),

 .MEASURED_VCCINT (MEASURED_VCCINT),

 .MEASURED_VCCAUX (MEASURED_VCCAUX),

 .MEASURED_VCCBRAM (MEASURED_VCCBRAM),

 .MEASURED_AUX0 (MEASURED_AUX0),

 .MEASURED_AUX1 (MEASURED_AUX1),

 .MEASURED_AUX2 (MEASURED_AUX2),

 .MEASURED_AUX3 (MEASURED_AUX3)

);

endmodule

APPENDIX A

A-17
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Original Analog Stimulus File from Xilinx

APPENDIX B

B-1
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix B: Simulation Source

Testbench for ADC Controller Unit Level Functional Test

module uadc_v3_tb(
);
 //###############################
//WRITE

//DATA AND ADDRESS BUS
reg [31:0] tb_ip_wb_w_din;
//CONTROL SIGNALS
wire tb_op_wb_w_ack; //ACKNOWLEDGE
reg [3:0] tb_ip_wb_w_sel; //GRANULARITY - SELECT WHICH BYTE /
HALFWORD / WORD

reg [5:0] tb_ip_wb_w_addr;

reg tb_ip_wb_w_we; //WRITE ENABLE
reg tb_ip_wb_w_stb; //STROBE
//READ
//DATA AND ADDRESS BUS
wire [31:0] tb_op_wb_r_dout;
//CONTROL SIGNALS
wire tb_op_wb_r_ack; //ACKNOWLEDGE

reg [3:0] tb_ip_wb_r_sel; //GRANULARITY - SELECT WHICH
BYTE/HALFWORD/WORD
reg [5:0] tb_ip_wb_r_addr;
reg tb_ip_wb_r_we; //WRITE ENABLE
reg tb_ip_wb_r_stb; //STROBE
reg tb_ip_wb_clk;

reg tb_ip_wb_rst;
//################################

reg tb_ip_ADCIE;///
wire tb_op_IRQ;///
//analog input to XADC
reg [3:0] tb_ip_VAUXP, tb_ip_VAUXN;

uadc_v3 uut
(.uiadc_wb_w_din(tb_ip_wb_w_din),
//CONTROL SIGNALS
.uoadc_wb_w_ack(tb_op_wb_w_ack), //ACKNOWLEDGE
.uiadc_wb_w_sel(tb_ip_wb_w_sel), //GRANULARITY - SELECT WHICH
BYTE/HALFWORD/WORD
.uiadc_wb_w_addr(tb_ip_wb_w_addr),

.uiadc_wb_w_we(tb_ip_wb_w_we), //WRITE ENABLE

.uiadc_wb_w_stb(tb_ip_wb_w_stb), //STROBE
//READ
//DATA AND ADDRESS BUS
.uoadc_wb_r_dout(tb_op_wb_r_dout),

//CONTROL SIGNALS

.uoadc_wb_r_ack(tb_op_wb_r_ack), //ACKNOWLEDGE

.uiadc_wb_r_sel(tb_ip_wb_r_sel), //GRANULARITY - SELECT WHICH
BYTE/HALFWORD/WORD
.uiadc_wb_r_addr(tb_ip_wb_r_addr),

APPENDIX B

B-2
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

.uiadc_wb_r_we(tb_ip_wb_r_we), //WRITE ENABLE

.uiadc_wb_r_stb(tb_ip_wb_r_stb), //STROBE

.uiadc_wb_clk(tb_ip_wb_clk),

.uiadc_wb_rst(tb_ip_wb_rst),
//################################
.uiadc_ADCIE(tb_ip_ADCIE),///**need to build
.uoadc_IRQ(tb_op_IRQ),///**need to build
//analog input to XADC
.uiadc_VP(),

.uiadc_VN(),

.uiadc_VAUXP(tb_ip_VAUXP),

.uiadc_VAUXN(tb_ip_VAUXN));

initial begin
 tb_ip_wb_clk = 1'b0;
 tb_ip_wb_rst = 1'b0;

 end

always #(5) tb_ip_wb_clk = ~tb_ip_wb_clk;

initial begin
 repeat(2) @(posedge tb_ip_wb_clk);

 tb_ip_wb_rst = 1'b1;
 repeat(1) @(posedge tb_ip_wb_clk);
 tb_ip_wb_rst = 1'b0;
//===================RESET================//
/* repeat(30000) @(posedge tb_ip_wb_clk);
 tb_ip_wb_rst <= 1'b1;
 repeat(1) @(posedge tb_ip_wb_clk);

 tb_ip_wb_rst <= 1'b0;
*/
//===============READ=====================//

/* repeat(30000) @(posedge tb_ip_wb_clk);
 tb_ip_wb_r_we <= 1'b0;
 tb_ip_wb_r_stb <= 1'b1;
 tb_ip_wb_r_sel <= 4'b1111;

/////////////READ TEMP and Vccint//////////////////
 @(posedge tb_ip_wb_clk);
 tb_ip_wb_r_addr <= 6'b001_000;

/////////////READ Vccaux//////////////////

@(posedge tb_ip_wb_clk);
 tb_ip_wb_r_addr = 6'b001_001;
/////////////READ Vccbram//////////////////
 @(posedge tb_ip_wb_clk);
 tb_ip_wb_r_addr = 6'b001_011;
/////////////READ VAUXP/N[0] and VAUXP/N[1]//////////////////

 @(posedge tb_ip_wb_clk);

 tb_ip_wb_r_addr = 6'b010_000;
/////////////READ VAUXP/N[2] and VAUXP/N[3]//////////////////
 @(posedge tb_ip_wb_clk);
 tb_ip_wb_r_addr = 6'b010_001; */

APPENDIX B

B-3
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

//====================WRITE============================//

/////////////ENABLE all channel to do average//////////////////
/* repeat(30000) @(posedge tb_ip_wb_clk);

 tb_ip_wb_w_din <= 32'h000f_4700;//CREG[3]
 tb_ip_wb_w_sel <= 4'b1111;
 tb_ip_wb_w_addr <= 6'b000_011;
 tb_ip_wb_w_we <=1'b1;
 tb_ip_wb_w_stb <= 1'b1;
 @(posedge tb_ip_wb_clk);//clear
 tb_ip_wb_w_din <= 32'h0000_000;

 tb_ip_wb_w_sel <= 4'b0000;
 tb_ip_wb_w_addr <= 6'b000_000;
 tb_ip_wb_w_we <=1'b0;
 tb_ip_wb_w_stb <= 1'b0;*/

////////////// CONFIGURE TO SINGLE CHANNEL WITH ONLY TEMP ////////////////////

/* repeat(10000) @(posedge tb_ip_wb_clk);

 tb_ip_wb_w_din <= 32'h0000_3ef0;//CREG[0] = config 1
 tb_ip_wb_w_sel <= 4'b1100;
 tb_ip_wb_w_addr <= 6'b000_000;
 tb_ip_wb_w_we <=1'b1;
 tb_ip_wb_w_stb <= 1'b1;
 //can clear the unneccessary bit also.

 @(posedge tb_ip_wb_clk);//clear
 tb_ip_wb_w_din <= 32'h0000_000;
 tb_ip_wb_w_sel <= 4'b0000;
 tb_ip_wb_w_addr <= 6'b000_000;
 tb_ip_wb_w_we <=1'b0;

tb_ip_wb_w_stb <= 1'b0; */

//////////////CONFIGURE TO BIPOLAR ANALOG INPUT MODE/////////////////////////
 /* repeat(2000) @(posedge tb_ip_wb_clk);

 tb_ip_wb_w_din <= 32'h000f_0000;//CREG[4]= ONLY AUXP/N CAN BE
CONFIGURED THIS WAY

 tb_ip_wb_w_sel <= 4'b1111;
 tb_ip_wb_w_addr <= 6'b000_100;
 tb_ip_wb_w_we <=1'b1;

 tb_ip_wb_w_stb <= 1'b1;
 @(posedge tb_ip_wb_clk);//clear
 tb_ip_wb_w_din <= 32'h0000_000;
 tb_ip_wb_w_sel <= 4'b0000;
 tb_ip_wb_w_addr <= 6'b000_000;
 tb_ip_wb_w_we <=1'b0;

 tb_ip_wb_w_stb <= 1'b0;*/

APPENDIX B

B-4
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

//===============ENABLE INTERRUPT===================
 repeat(50) @(posedge tb_ip_wb_clk);
 tb_ip_ADCIE<=1'b1;
 ///configure to have only temp and vccint alarm signal enable

 tb_ip_wb_w_din <= 32'h0000_2ff8;
 tb_ip_wb_w_sel <= 4'b1100;
 tb_ip_wb_w_addr <= 6'b000_000;
 tb_ip_wb_w_we <=1'b1;
 tb_ip_wb_w_stb <= 1'b1;
 @(posedge tb_ip_wb_clk);//clear
 tb_ip_wb_w_din <= 32'h0000_000;

 tb_ip_wb_w_sel <= 4'b0000;
 tb_ip_wb_w_addr <= 6'b000_000;
 tb_ip_wb_w_we <=1'b0;
 tb_ip_wb_w_stb <= 1'b0;
 @(posedge tb_ip_wb_clk);
 ///configure temp min threshold to have 70,it can reset the alarm for temp

 tb_ip_wb_w_din <= 32'h0000_ae50;

 tb_ip_wb_w_sel <= 4'b1100;
 tb_ip_wb_w_addr <= 6'b000_101;
 tb_ip_wb_w_we <=1'b1;
 tb_ip_wb_w_stb <= 1'b1;
 @(posedge tb_ip_wb_clk);//clear
 tb_ip_wb_w_din <= 32'h0000_000;

 tb_ip_wb_w_sel <= 4'b0000;
 tb_ip_wb_w_addr <= 6'b000_000;
 tb_ip_wb_w_we <=1'b0;
 tb_ip_wb_w_stb <= 1'b0;

 repeat(12000) @(posedge tb_ip_wb_clk);//can show difference between enable
and disable

 tb_ip_ADCIE<=1'b0;

end

endmodule

APPENDIX B

B-5
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Testbench for Integration Level Functional Test and Multiple

Exception Test with assembly language.

`timescale 1ns / 1ps
`default_nettype none
define demo006_ADC
//define multiple_exception

`ifdef demo006_ADC
 `define TEST_CODE_PATH_DUT "demo006_ADC_v2mem_02program.hex"
 `define EXC_HANDLER_DUT "demo006_ADC_mem_03exc_handler.hex"
`endif
/*
`ifdef multiple_exception
 `define TEST_CODE_PATH_DUT "Multiple_Exception+interrupt.hex"

 `define EXC_HANDLER_DUT "exception_handler.hex"
 `define TEST_CODE_PATH_CLIENT "Uart+Spi Transmit to DUT.hex"

 `define EXC_HANDLER_CLIENT "exception_handler.hex"
`endif
*/
module tb_r32_pipeline();

//declaration
//===== INPUT =====
//System signal
reg tb_u_clk;
reg tb_u_rst;
//~~~~~~~~~~~~~~~~~~
wire tb_u_spi_mosi_dut;

wire tb_u_spi_miso_dut;
wire tb_u_spi_sclk_dut;
wire tb_u_spi_ss_n_dut;

wire tb_u_fc_sclk_dut;

wire tb_u_fc_ss_dut;
wire tb_u_fc_MOSI_dut;

wire tb_u_fc_MISO1_dut;
wire tb_u_fc_MISO2_dut;
wire tb_u_fc_MISO3_dut;
wire tb_ua_tx_rx_dut;
wire tb_ua_RTS_dut, tb_ua_CTS_dut;
wire[31:0] tb_u_GPIO_dut;

//~~~~~~~~~~~~~~~~~~
wire tb_u_spi_mosi_client;
wire tb_u_spi_miso_client;
wire tb_u_spi_sclk_client;
wire tb_u_spi_ss_n_client;

wire tb_u_fc_sclk_client;

wire tb_u_fc_ss_client;
wire tb_u_fc_MOSI_client;

wire tb_u_fc_MISO1_client;
wire tb_u_fc_MISO2_client;
wire tb_u_fc_MISO3_client;
wire tb_ua_tx_rx_client;
wire tb_ua_RTS_client, tb_ua_CTS_client;

wire[31:0] tb_u_GPIO_client;

APPENDIX B

B-6
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

crisc c_risc_dut(
//*********** INSTANTIATION *************
//======= INPUT =======
//GPIO

.urisc_GPIO(tb_u_GPIO_dut),

//SPI controller
.uiorisc_spi_mosi(tb_u_spi_mosi_dut),
.uiorisc_spi_miso(tb_u_spi_miso_dut),
.uiorisc_spi_sclk(tb_u_spi_sclk_dut),
.uiorisc_spi_ss_n(tb_u_spi_ss_n_dut),

//UART controller
.uorisc_ua_tx_data(tb_ua_tx_rx_dut),
//.uorisc_ua_rts(tb_ua_RTS_dut),
.uirisc_ua_rx_data(tb_ua_tx_rx_client),
//.uirisc_ua_cts(tb_ua_CTS_dut),

//FLASH controller
.uorisc_fc_sclk(tb_u_fc_sclk_dut),
.uiorisc_fc_MOSI(tb_u_fc_MOSI_dut),
.uirisc_fc_MISO1(tb_u_fc_MISO1_dut),
.uirisc_fc_MISO2(tb_u_fc_MISO2_dut),
.uirisc_fc_MISO3(tb_u_fc_MISO3_dut),

.uorisc_fc_ss(tb_u_fc_ss_dut),

// System signal
.uirisc_clk_100mhz(tb_u_clk),
.uirisc_rst(tb_u_rst));

//--

s25fl128s
SPI_flash_dut(

.SI(tb_u_fc_MOSI_dut), //IO0

.SO(tb_u_fc_MISO1_dut), //IO1

.SCK(tb_u_fc_sclk_dut),

.CSNeg(tb_u_fc_ss_dut),

.RSTNeg(tb_u_rst),

.WPNeg(tb_u_fc_MISO2_dut), //IO2

.HOLDNeg(tb_u_fc_MISO3_dut));

//==
====================================

crisc
c_risc_client(
//*********** INSTANTIATION *************
//======= INPUT =======
//GPIO

.urisc_GPIO(tb_u_GPIO_client),

//SPI controller
.uiorisc_spi_mosi(tb_u_spi_mosi_client),
.uiorisc_spi_miso(tb_u_spi_miso_client),
.uiorisc_spi_sclk(tb_u_spi_sclk_client),
.uiorisc_spi_ss_n(tb_u_spi_ss_n_client),

APPENDIX B

B-7
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

//UART controller
.uorisc_ua_tx_data(tb_ua_tx_rx_client),
//.uorisc_ua_rts(tb_ua_RTS_client),
.uirisc_ua_rx_data(tb_ua_tx_rx_dut),
//.uirisc_ua_cts(tb_ua_CTS_client),

//FLASH controller
.uorisc_fc_sclk(tb_u_fc_sclk_client),
.uiorisc_fc_MOSI(tb_u_fc_MOSI_client),
.uirisc_fc_MISO1(tb_u_fc_MISO1_client),
.uirisc_fc_MISO2(tb_u_fc_MISO2_client),
.uirisc_fc_MISO3(tb_u_fc_MISO3_client),

.uorisc_fc_ss(tb_u_fc_ss_client),

// System signal
.uirisc_clk_100mhz(tb_u_clk),
.uirisc_rst(tb_u_rst));

//--

s25fl128s
SPI_flash_client(
.SI(tb_u_fc_MOSI_client), //IO0
.SO(tb_u_fc_MISO1_client), //IO1
.SCK(tb_u_fc_sclk_client),
.CSNeg(tb_u_fc_ss_client),
.RSTNeg(tb_u_rst),

.WPNeg(tb_u_fc_MISO2_client), //IO2

.HOLDNeg(tb_u_fc_MISO3_client));

assign tb_u_spi_mosi_dut = tb_u_spi_mosi_client;
assign tb_u_spi_miso_dut = tb_u_spi_miso_client;

assign tb_u_spi_ss_n_dut = tb_u_spi_ss_n_client;

assign tb_u_spi_sclk_dut = tb_u_spi_sclk_client;

assign tb_ua_CTS_dut = tb_ua_RTS_client;
assign tb_ua_CTS_client = tb_ua_RTS_dut;

APPENDIX B

B-8
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

//**********************Clock************************

initial tb_u_clk = 1'b1;
always #5 tb_u_clk =~ tb_u_clk;

initial begin
//For client: copy the right test program and exc handler into FPGA flash.
//$readmemh(`EXC_HANDLER_CLIENT, tb_r32_pipeline.SPI_flash_client.Mem);

//$readmemh(`TEST_CODE_PATH_CLIENT, tb_r32_pipeline.SPI_flash_client.Mem);

//For dut: copy the right test program and exc handler into FPGA flash.
$readmemh(`EXC_HANDLER_DUT, tb_r32_pipeline.SPI_flash_dut.Mem);
$readmemh(`TEST_CODE_PATH_DUT, tb_r32_pipeline.SPI_flash_dut.Mem);
//test instruction 1st

//2nd test IO seperately

//SPI
//UART
//GPIO
//ADC without client so comment out
//3rd exception handler

tb_u_rst = 1'b1;
repeat(1)@(posedge tb_u_clk);
tb_u_rst = 1'b0;
repeat(30000)@(posedge tb_u_clk);
tb_u_rst = 1'b1;

repeat(12000000)@(posedge tb_r32_pipeline.c_risc_dut.urisc_clk);
end

endmodule

APPENDIX C

C-1
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix C: FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Jan, 2022 Study week no.: 2

Student Name & ID: Tan Yan Kai 18ACB03478

Supervisor: Mr Teoh Shen Khang

Project Title: Design of an ADC Controller for 5-stage Pipeline RISC32

Microprocessor

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

• Pick up where I left in FYP 1.

• Revise FYP 1.

2. WORK TO BE DONE

• Make the changes that I have planned to do in FYP1

• Modify microarchitecture and add a new block

3. PROBLEMS ENCOUNTERED

• Not sure exactly where to move(integrate) the XADC

4. SELF EVALUATION OF THE PROGRESS

• Progressing well

• Should be able to figure out after consultation

_________________________ _________________________

 Supervisor’s signature Student’s signature

TEOH

APPENDIX C

C-2
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Jan, 2022 Study week no.: 4

Student Name & ID: Tan Yan Kai 18ACB03478

Supervisor: Mr Teoh Shen Khang

Project Title: Design of an ADC Controller for 5-stage Pipeline RISC32

Microprocessor

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

• Fix a few issues I didn’t notice.

• A new receiver block is designed

• Modifications done on drawing.

2. WORK TO BE DONE

• Check on report to see the information match with recent modifications.

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS

• Progressing well

_________________________ _________________________

 Supervisor’s signature Student’s signature

TEOH

APPENDIX C

C-3
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Jan, 2022 Study week no.: 6

Student Name & ID: Tan Yan Kai 18ACB03478

Supervisor: Mr Teoh Shen Khang

Project Title: Design of an ADC Controller for 5-stage Pipeline RISC32

Microprocessor

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

• Update the report to match new modifications

2. WORK TO BE DONE

• Try to add new chapter about multiple IO system functional Test

3. PROBLEMS ENCOUNTERED

• Not sure how to complete the new chapter like what can be mentioned and

discussed

4. SELF EVALUATION OF THE PROGRESS

• Progressing well

• Should be able to figure out after consultation.

_________________________ _________________________

 Supervisor’s signature Student’s signature

TEOH

APPENDIX C

C-4
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Jan, 2022 Study week no.: 8

Student Name & ID: Tan Yan Kai 18ACB03478

Supervisor: Mr Teoh Shen Khang

Project Title: Design of an ADC Controller for 5-stage Pipeline RISC32

Microprocessor

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

• Make the drawing more detail and correct.

2. WORK TO BE DONE

• Check on report format and content with the help of guideline and checklist

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS

• Progressing well

_________________________ _________________________

 Supervisor’s signature Student’s signature

TEOH

APPENDIX C

C-5
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Jan, 2022 Study week no.: 10

Student Name & ID: Tan Yan Kai 18ACB03478

Supervisor: Mr Teoh Shen Khang

Project Title: Design of an ADC Controller for 5-stage Pipeline RISC32

Microprocessor

1. WORK DONE
[Please write the details of the work done in the last fortnight.]

• Finish draft report

2. WORK TO BE DONE

• Double check the report format

• Ask supervisor for signature and Turnitin account

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS

• Progressing well

_________________________ _________________________

 Supervisor’s signature Student’s signature

TEOH

APPENDIX D

D-1
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix D: POSTER

APPENDIX E

E-1
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix E: PLAGIARISM CHECK RESULT

APPENDIX E

E-2
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX E

E-3
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX E

E-4
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX E

E-5
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Form iad-FM-IAD-005

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name(s) of
Candidate(s)

TAN YAN KAI

ID Number(s)

18ACB03478

Programme / Course Bachelor Of Information Technology (Honours) Computer

Engineering
Title of Final Year Project Design of an ADC Controller for 5-stage Pipeline RISC32

Microprocessor

Similarity Supervisor’s Comments
(Compulsory if parameters of originality exceed
the limits approved by UTAR)

Overall similarity index: _ 8 %

Similarity by source

Internet Sources: 7 %
Publications: 2 %
Student Papers: 4 %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required, and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note: Supervisor/Candidate(s) is/are required to provide softcopy of full set of the

originality report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the

Final Year Project Report submitted by my student(s) as named above.

 ______________________________ ______________________________

Signature of Supervisor

 Signature of Co-Supervisor

Name: TEOH SHEN KHANG

 Name: __________________________

Date: 18 April 2022 Date: ___________________________

Form Title: Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

TEOH

APPENDIX F

F-1
Bachelor of Information Technology (Honours) Computer Engineering

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Appendix F: FYP 2 CHECKLIST

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)

CHECKLIST FOR FYP2 THESIS SUBMISSION

Student Id 18ACB03478

Student Name Tan Yan Kai

Supervisor Name Mr. Teoh Shen Khang

TICK (√) DOCUMENT ITEMS

Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

√ Front Plastic Cover (for hardcopy)

√ Title Page

√ Signed Report Status Declaration Form

√ Signed FYP Thesis Submission Form

√ Signed form of the Declaration of Originality

√ Acknowledgement

√ Abstract

√ Table of Contents

√ List of Figures (if applicable)

√ List of Tables (if applicable)

√ List of Symbols (if applicable)

√ List of Abbreviations (if applicable)

√ Chapters / Content

√ Bibliography (or References)

√ All references in bibliography are cited in the thesis, especially in the chapter of literature
review

√ Appendices (if applicable)

√ Weekly Log

√ Poster

√ Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-005)

√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the ticked of these
items, and/or any dispute happening for these items in this report.

*Include this form (checklist) in the thesis (Bind together as the last page)
I, the author, have checked and confirmed all the items listed in the table are included in my report.

(Signature of Student)
Date: 15 April 2022

