

CAR DEALERSHIP WEB APPLICATION

BY

YAP JHENG KHIN

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2022

i

CAR DEALERSHIP WEB APPLICATION

By

Yap Jheng Khin

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF COMPUTER SCIENCE (HONOURS)

Faculty of Information and Communication Technology

(Kampar Campus)

JAN 2022

ii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

 Title: CAR DEALERSHIP WEB APPLICATION______________________

 __

 __

Academic Session: JAN 2022

 I YAP JHENG KHIN

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 ____________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 12A JALAN 4/2____________

 TAMAN PRIMA SAUJANA _________________________

 SEKSYEN 4 43000 KAJANG Supervisor’s name

 SELANGOR_______________

 Date: 21-04-2022____________ Date: ____________________

Sun Teik Heng @ San Teik Heng

22/4/2022

iii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 21-04-2022

SUBMISSION OF FINAL YEAR PROJECT /DISSERTATION/THESIS

It is hereby certified that YAP JHENG KHIN (ID No: 1800224) has completed this final

year project entitled “CAR DEALERSHIP WEB APPLICATION” under the supervision of

Ts Sun Teik Heng @ San Teik Heng (Supervisor) from the Department of Information

Systems, Faculty of Information and Communication Technology.

I understand that University will upload softcopy of my final year project in pdf format

into UTAR Institutional Repository, which may be made accessible to UTAR community

and public.

Yours truly,

(Yap Jheng Khin)

iv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

DECLARATION OF ORIGINALITY

I declare that this report entitled “CAR DEALERSHIP WEB APPLICATION” is

my own work except as cited in the references. The report has not been accepted for

any degree and is not being submitted concurrently in candidature for any degree or

other award.

Signature :

Name : Yap Jheng Khin

Date : 21-04-2022

v
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ACKNOWLEDGEMENTS

 I would like to express my gratitude to my supervisor, Ts Sun Teik Heng @

San Teik Heng, for being patient and understanding in guiding the final year project I

and final year project II. I learnt a lot on how to write a good proposal and report

under my supervisor’s guidance.

vi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

ABSTRACT

In countries like the US and Europe, explainable AI and AI monitoring had

become well-received as commercial companies would soon be mandated to assess

AI model risk and continuously review AI systems [1]. Thus, explainable AI and AI

monitoring become the integral components for any new development of commercial

applications, including used car dealership web application. In this project, a web

application and a web service were proposed and implemented. The used car

dealership web application was implemented with ASP.NET Core. The web

application was published and deployed to the Azure App Service. At the same time,

the application data was seeded to the Azure SQL Database by applying the Entity

Framework Core migrations. The web service performed model explaining and

monitoring by querying the application data from the Azure SQL Database.

In the web service, adaptive random forest regressor and classifier, which

were implemented by third-party River Python library, were used to train models that

automatically detected and adapted to drift over time. Tree SHAP, which was

implemented by third-party SHAP Python library, were used in model monitoring and

made the models interpretable. Explainable models could enhance business value and

application users’ trusts in machine learning with the aid of effective visualizations

like beeswarm plots. On the other hand, the data scientists could monitor and debug

the models using a SHAP monitoring function, which was improved by the author,

with the aid of effective visualizations like model loss bar plot. By making two

initially incompatible Python libraries interoperable, the web service enhanced the

functionalities of lead management application module and car inventory application

module with car price analytics and lead scoring analytics, respectively.

Besides, it was observed that the initial performance of a model that was

trained on one data instance at a time could never be as good as a model that was

trained on the whole batch of the training set at one time. Hence, two transfer learning

algorithms were proposed and implemented to provide initial performance boost to

the River adaptive random forest regressor and classifier, respectively. The transfer

learning algorithm pre-trained the River adaptive random forest regressor and

classifier by transferring the tree structures and weights from the Scikit-learn fitted

vii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

random forest regressor and classifier, respectively. Validations were conducted to

prove the correctness of the transfer learning algorithm. Experiment results proved

that the offline performance of pre-trained adaptive random forest models was always

as good as or better than traditional random forest models. The experiments also

proved that the adaptive random forest models performed better than the traditional

random forest models under the influence of drift.

viii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS viii

LIST OF FIGURES xiii

LIST OF TABLES xxii

LIST OF ABBREVIATIONS xxiv

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope 2

1.4 Contributions 4

1.5 Report Organization 5

CHAPTER 2 LITERATURE REVIEW 7

2.1 Review of Existing Car Dealership Management System 7

2.2 Review of Existing AI Cloud Services 9

2.3 Adaptive Machine Learning Algorithm 10

2.3.1 Adaptive random forests (ARF) algorithm 11

2.3.2 Hoeffding tree 11

2.4 Explainable AI 12

2.4.1 Shapley values 12

2.4.2 Tree SHAP 14

2.4.3 Review of Existing Global Explanation Methods 15

ix
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.5 Review of Existing Drift Detection Methods 16

2.5.1 Population Stability Index 17

2.5.2 ADWIN 20

2.5.3 Drift Monitoring using Tree SHAP 20

2.6 Summarisation of Previous Works 22

CHAPTER 3 SYSTEM DESIGN 23

3.1 System Architecture Diagram 23

3.2 Use Case Diagram for Web Application and Web Service 23

3.3 Activity Diagram for Web Application and Web Service 26

3.3.1 Reviewing Individual Predictions 26

3.3.2 Reviewing Models 29

3.3.3 Update Model 31

3.3.4 Reviewing Individual Model Loss 32

3.3.5 Evaluating Performance 34

3.3.6 Monitoring Drift 36

3.4 Database Design 43

3.5 Transfer Learning 44

3.5.1 Design Considerations 44

3.5.2 Adaptive random forest classifier 45

3.5.3 Adaptive random forest regressor 47

3.5.4 Performance Improvement 49

3.6 Model Tree Weight Extraction 50

3.6.1 Design Considerations 51

3.7 Tree SHAP 53

3.7.1 Setup 53

3.7.2 Review Model’s Average Prediction Behaviours 55

3.7.3 Evaluate Model’s Performances 58

x
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.7.4 Review Individual Model Predictions and Individual Model Losses 60

3.7.5 Monitor Drifts 63

3.8 Monitoring Drift 63

3.8.1 SHAP Loss Monitoring 64

3.8.2 Statistical test 67

CHAPTER 4 SYSTEM IMPLEMENTATION 69

4.1 Dataset 69

4.1.1 Lead scoring dataset 69

4.1.2 Car price dataset 71

4.2 Jupyter Notebook Artifacts 73

4.2.1 Setup 73

4.2.2 Execution Sequence 77

4.2.3 Description of IPYNB files 78

4.2.4 Description of Python libraries 84

4.3 Cloud Database 87

4.3.1 Setup Part I 87

4.3.2 Setup Part II 89

4.3.3 Procedures 90

4.4 Web Service Artifacts 92

4.4.1 Setup 92

4.4.2 Description of artifacts 96

4.5 Web application artifacts 104

4.5.1 Setup 104

4.5.2 Description of artifacts 112

CHAPTER 5 EXPERIMENT AND VALIDATION 117

5.1 Transfer Learning 117

5.2 Performance Evaluation 120

xi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2.1 Experimental dataset: AGRAWAL dataset 122

5.2.2 Application dataset: Lead scoring dataset 129

5.2.3 Experimental dataset: California housing dataset 132

5.2.4 Application dataset: Car price dataset 138

5.3 Model Tree Weight Extraction 141

5.4 Tree SHAP Explainer 144

5.5 Monitoring Drift 150

5.5.1 SHAP loss 150

5.5.2 Statistical test 153

CHAPTER 6 SYSTEM EVALUATION 154

6.1 Evaluation on Web service 154

6.2 Evaluation on Web application 163

6.3 Project Challenges 165

6.4 Objectives Evaluation 167

CHAPTER 7 CONCLUSION 168

7.1 Conclusion 168

7.2 Recommendation 169

7.2.1 Improvement on transfer learning algorithm 169

7.2.2 Other Improvements 169

BIBLIOGRAPHY 171

APPENDIX A: FORMULA OF ADAPTIVE RANDOM FORESTS ALGORITHM

 174

APPENDIX B: FORMULA OF HOEFFDING TREE 176

APPENDIX C: FORMULA OF ADWIN 179

FINAL YEAR PROJECT WEEKLY REPORT 181

POSTER 188

PLAGIARISM CHECK RESULT 189

xii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FYP2 CHECKLIST 193

xiii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF FIGURES

Figure 2.4.3.1: Tree SHAP global explanations: An example of bar chart (on the left)

and an example of beeswarm plot (on the right).. 16

Figure 2.5.3.1: Monitoring plot using model performance (at the top) and monitoring

plot using SHAP loss value (at the bottom) ... 21

Figure 3.1.1: The architecture diagram of the car dealership system 23

Figure 3.2.1: The use case diagram for used car dealership management system 24

Figure 3.3.1.1: The activity diagram for reviewing individual predicted car price 26

Figure 3.3.1.2: The activity diagram for reviewing individual predicted lead score ... 27

Figure 3.3.1.3: The activity diagram for constructing SHAP bar plots 28

Figure 3.3.2.1: The activity diagram for reviewing car price model and lead scoring

model.. 29

Figure 3.3.2.2: The activity diagram for constructing beeswarm plots and feature

importance bar plots ... 30

Figure 3.3.3.1: The activity diagram for incrementally training the adaptive random

forest models .. 31

Figure 3.3.4.1: The activity diagram for reviewing individual model loss.................. 32

Figure 3.3.4.2: The activity diagram for constructing the SHAP bar plot and SHAP

loss bar plot .. 33

Figure 3.3.5.1: The activity diagram for evaluating model performance 34

Figure 3.3.5.2: The activity diagram for constructing plots that evaluate model

performance ... 35

Figure 3.3.6.1: The activity diagram for monitoring drift on both records with truth

and without truth .. 36

Figure 3.3.6.2: The activity diagram for constructing SHAP loss monitoring plot (car

price inventories) ... 38

Figure 3.3.6.3: The activity diagram for constructing SHAP loss monitoring plot (lead

records) .. 39

xiv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.6.4: The activity diagram for constructing PSI graph, PSI table and chi-

squared table (car price inventories) .. 42

Figure 3.3.6.5: The activity diagram for constructing PSI graph, PSI table and chi-

squared table (lead records) ... 43

Figure 3.5.2.1: The required hyperparameter of the adaptive random forest classifier

for the transfer learning to work as expected ... 47

Figure 3.5.3.1: The required hyperparameter of the adaptive random forest regressor

for the transfer learning to work as expected ... 49

Figure 3.6.1.1: The split condition of River tree models for numerical features 51

Figure 3.6.1.2: The split condition of River tree models for categorical features 51

Figure 3.6.1.3: The split value conversion logic to ensure the correctness of the tree

weight extraction process ... 52

Figure 3.6.1.4: The mandatory key value pairs in the dictionary for the tree weight

extraction process to be successful .. 53

Figure 3.7.1.1: The initialization of tree SHAP explainer and tree SHAP loss

explainer (Car price dataset) .. 54

Figure 3.7.1.2: The initialization of tree SHAP explainer and tree SHAP loss

explainer (Lead scoring dataset) .. 54

Figure 3.7.2.1: Beeswarm plot (Car price dataset) .. 56

Figure 3.7.2.2: Feature importance bar plots (Car price dataset)................................. 57

Figure 3.7.3.1: Positive SHAP loss bar plot (Car price dataset) 59

Figure 3.7.3.2: Negative SHAP loss bar plot (Car price dataset) 60

Figure 3.7.4.1: SHAP bar plot and SHAP loss bar plot showing accurate prediction

(Car price dataset) .. 62

Figure 3.7.4.2: SHAP bar plot and SHAP loss bar plot showing inaccurate prediction

(Car price dataset) .. 62

Figure 3.8.1.1: The documentation of the Scott Lundberg’s SHAP loss monitoring

function in SHAP library 0.40.0 .. 64

xv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.8.1.2: An example of SHAP loss monitoring plot on “Manufacture Year”

(Car price dataset) .. 66

Figure 3.8.2.1: The visualization of PSI of “avg_page_view_per_visit” in tabular

format (Lead scoring dataset) .. 67

Figure 3.8.2.2: The visualization of PSI of “avg_page_view_per_visit” using grouped

bar chart (Lead scoring dataset) ... 68

Figure 3.8.2.3: The visualization of chi-squared goodness of fit test of

“transmission_Manual” in tabular format (Car price dataset) 68

Figure 4.2.1.1: The command that created the conda environment 73

Figure 4.2.1.2: The UI showing the convenient switching of conda environments

within the Jupyter notebook ... 75

Figure 4.2.1.3: The command that registered the kernel into the Jupyter notebook.... 75

Figure 4.2.1.4: The command that validated the setup of environment switching 76

Figure 4.2.4.1: The example showing a well-documented Python function. 85

Figure 4.2.4.2: The example showing the source code that is credited to educative.io

website author. ... 85

Figure 4.3.2.1: The UI of the Azure SQL database query editor’s login page 89

Figure 4.3.2.2: The UI of the Azure SQL database instance homepage. 90

Figure 4.3.3.1: The procedure that retrieved the lead information that had truth 91

Figure 4.4.1.1: The UI of the Azure SQL database instance homepage. 92

Figure 4.4.1.2: The UI that showed the ODBC database connection string. 93

Figure 4.4.1.3: The paste location of the database connection string. 93

Figure 4.4.1.4: Screenshot that showed on how to open the command prompt right

from the file explorer ... 94

Figure 4.4.1.5: The command output of the “docker compose build” 94

Figure 4.4.1.6: The command output of the “docker compose up” 94

Figure 4.4.1.7: The screenshot showing Postman making a POST request 95

Figure 4.4.2.1: The screenshot showing docker-compose.yml 96

xvi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4.2.2: The Dockerfile for SHAP web service .. 97

Figure 4.4.2.3: The Dockerfile for River web service ... 98

Figure 4.5.1.1: The starting menu of Visual Studio 2019 .. 104

Figure 4.5.1.2: Screenshot that demonstrated the import of sln file 104

Figure 4.5.1.3: Screenshot showing that the Microsoft Library Manager was installed

.. 105

Figure 4.5.1.4: Screenshot showing on how to launch command prompt straight from

the file explorer .. 105

Figure 4.5.1.5: Screenshot showing the right file path to execute the “npm install”

command .. 105

Figure 4.5.1.6: The command output of the “npm install” .. 106

Figure 4.5.1.7: The UI location of “Task Runner Explorer” 106

Figure 4.5.1.8: The UI location of Refresh .. 106

Figure 4.5.1.9: The screenshot showing the webpack was bind to “Before Build” .. 107

Figure 4.5.1.10: The screenshot showing on how to bind the webpack to “Before

Build” ... 107

Figure 4.5.1.11: The command output of adding and applying the migration to the

local database ... 107

Figure 4.5.1.12: Screenshot that demonstrated on how to run the web application .. 108

Figure 4.5.1.13: UI location of the “CarDealershipWebApp” as highlighted in bold

text.. 109

Figure 4.5.1.14: UI location of the “Azure App Service (Windows)” 109

Figure 4.5.1.15: Screenshot showing the name of the Azure App Service instance . 110

Figure 4.5.1.16: UI location of the “Publish (generates pubxml file)” 110

Figure 4.5.1.17: Screenshot showing the UI location of the Edit Button. 110

Figure 4.5.1.18: Screenshot used to validate the web app’s publish settings 110

Figure 4.5.1.19: Screenshot showing the configuration of the database 111

Figure 4.5.1.20: The UI of the Azure SQL database instance homepage. 111

xvii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.1.21: The UI that showed the ODBC database connection string. 112

Figure 4.5.1.22: Screenshot showing the configuration of the entity framework

migrations .. 112

Figure 4.5.1.23: Screenshot showing that the deployment was successful 112

Figure 4.5.2.2: Screenshot showing the syntax to export the TypeScript modules ... 115

Figure 4.5.2.3: Screenshot showing the syntax to export the JavaScript modules based

on the page type ... 116

Figure 5.1.1: The tables that were used to compare the number of nodes between TRF

and ARF ... 117

Figure 5.1.2: The comparison between trf_debug.txt and arf_debug.txt for validating

the transfer learning classifier algorithm ... 118

Figure 5.1.3: Screenshot showing that the incremental training of pre-trained adaptive

random forest classifier was successful ... 119

Figure 5.1.4: Screenshot showing that the incremental training of pre-trained adaptive

random forest regressor was successful ... 119

Figure 5.2.1.1: Screenshot showing the features that were generated by the

AGRAWAL stream generator ... 122

Figure 5.2.1.2: The offline training performance of tree classifiers (AGRAWAL

dataset) ... 123

Figure 5.2.1.3: The offline generalization performance of tree classifiers (AGRAWAL

dataset) ... 124

Figure 5.2.1.4: The online training performance of tree classifiers (AGRAWAL

dataset) ... 125

Figure 5.2.1.5: The online generalization performance of tree classifiers (AGRAWAL

dataset) ... 126

Figure 5.2.1.6: The performance of tree classifiers over time (AGRAWAL dataset)

.. 127

Figure 5.2.2.1: The offline training performance of tree classifier (Lead scoring

dataset) ... 129

xviii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2.2.2: The offline generalization performance of tree classifier (Lead scoring

dataset) ... 130

Figure 5.2.2.3: The table that showed the tree structure of the base learners of each

tree ensemble (Lead scoring dataset) ... 131

Figure 5.2.3.1: The offline training performance of tree regressors (California housing

dataset) ... 132

Figure 5.2.3.2: The offline generalization performance of tree regressors (California

housing dataset) ... 133

Figure 5.2.3.3: The online training performance of tree regressors (California housing

dataset) ... 134

Figure 5.2.3.4: The online generalization performance of tree regressors (California

housing dataset) ... 135

Figure 5.2.3.5: The performance of tree regressors over time (California housing

dataset) ... 136

Figure 5.2.4.1: The offline training performance of tree regressor (Car price dataset)

.. 138

Figure 5.2.4.2: The offline generalization performance of tree regressor (Car price

dataset) ... 139

Figure 5.2.4.3: The table that showed the tree structure of the base learners of each

tree ensemble (Car price dataset) ... 140

Figure 5.3.1.1: Average time taken to calculate the SAHP value for dictionary

containing the weights of ARF regressor (Car price dataset) 141

Figure 5.3.1.2: Average time taken to calculate the SHAP value for Scikit-learn TRF

regressor (Car price dataset) .. 141

Figure 5.3.1.3: Screenshot showing any problematics nodes in the dictionary

containing the weights of ARF regressor (Car price dataset) 142

Figure 5.3.1.4: Screenshot showing any problematics nodes in the dictionary

containing the weights of ARF classifier (Lead scoring dataset) 143

Figure 5.4.1.1: The SHAP value differences for tree SHAP explainer that used tree

path dependent approach across 10 different model checkpoints (Car price dataset)144

xix
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.1.2: The node sample weight of each parent node and its child nodes of the

adaptive random forest regressor at the 10th checkpoint (Car price dataset) 145

Figure 5.4.1.3: The SHAP value differences for tree SHAP explainer that used

interventional approach across 10 different model checkpoints (Car price dataset) . 146

Figure 5.4.1.4: The SHAP value differences for tree SHAP explainer that used tree

path dependent approach (on the left) and interventional approach (on the right)

across 10 different model checkpoints (Lead scoring dataset) 146

Figure 5.4.1.5: The first validation test of tree SHAP explainers (car price dataset) 147

Figure 5.4.1.6: The first validation test of tree SHAP explainers (lead scoring dataset)

.. 148

Figure 5.4.1.7: The second validation test of tree SHAP explainers (car price dataset)

.. 148

Figure 5.4.1.8: The second validation test of tree SHAP explainers (lead scoring

dataset) ... 148

Figure 5.4.1.9: The third validation test of tree SHAP explainers (car price dataset)

.. 149

Figure 5.4.1.10: The third validation test of tree SHAP explainers (lead scoring

dataset) ... 149

Figure 5.5.1.1: SHAP loss monitoring graph for “manufacture_year” plotted using

Lundberg’s function (Car price dataset) .. 151

Figure 5.5.1.2: SHAP loss monitoring graph for “mileage” plotted using Lundberg’s

function (Car price dataset) .. 151

Figure 5.5.1.3: SHAP loss monitoring graph for “brand_Proton” plotted using

Lundberg’s function (Car price dataset) .. 151

Figure 5.5.1.4: SHAP loss monitoring graph for “manufacture_year” plotted using

proposed function (Car price dataset) .. 152

Figure 5.5.1.5: SHAP loss monitoring graph for “mileage” plotted using proposed

function (Car price dataset) .. 152

Figure 5.5.1.6: SHAP loss monitoring graph for “brand_Proton” plotted using

proposed function (Car price dataset) .. 152

xx
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.5.2.1: The PSI values calculated by the program .. 153

Figure 5.5.2.2: The chi-squared values calculated by the program 153

Figure 6.1.1: Screenshot of POST request to review individual prediction (Lead

scoring dataset) .. 154

Figure 6.1.2: Screenshot of POST request to review individual model loss (Lead

scoring dataset) .. 155

Figure 6.1.3: Screenshot of GET request to review model’s overall prediction

behaviour (Lead scoring dataset) ... 155

Figure 6.1.4: Screenshot of GET request to evaluate model’s performance (Lead

scoring dataset) .. 156

Figure 6.1.5: Screenshot of POST request to incrementally train model and update

explainers (Lead scoring dataset)... 157

Figure 6.1.6: Screenshot of GET request to monitor drift on records that had no truth

(Lead scoring dataset) .. 157

Figure 6.1.7: Screenshot of GET request to monitor drift on records that had truth

(Lead scoring dataset) .. 158

Figure 6.1.8: Screenshot of POST request to review individual prediction (Car price

dataset) ... 158

Figure 6.1.9: Screenshot of POST request to review individual model loss (Car price

dataset) ... 159

Figure 6.1.10: Screenshot of GET request to review model’s overall prediction

behaviour (Car price dataset) ... 160

Figure 6.1.11: Screenshot of GET request to evaluate model’s performance (Car price

dataset) ... 160

Figure 6.1.12: Screenshot of POST request to incrementally train model and update

explainers (Car price dataset)... 161

Figure 6.1.13: Screenshot of GET request to monitor drift on records that had no truth

(Car price dataset) .. 162

Figure 6.1.14: Screenshot of GET request to monitor drift on records that had truth

(Car price dataset) .. 162

xxi
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.1: UI screenshot of the lead management page .. 163

Figure 6.2.2: UI screenshot of the car inventory management page 163

Figure 6.2.3: UI screenshot of the input validation functionality 164

Figure 6.3.1: Screenshot showing that the River library could not be loaded in the

“arf_conda_evp_env” conda environment ... 166

Figure 6.3.2: Screenshot showing the version of NumPy in the “arf_conda_evp_env”

conda environment ... 166

Figure A.1: Pseudocode of Adaptive random forest algorithm 174

Figure B.1: Pseudocode of Hoeffding tree .. 176

Figure C.1: Pseudocode of algorithm ADWIN.. 179

xxii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF TABLES

Table 1.5.1: Report organization grouped by algorithm .. 5

Table 1.5.2: Report organization grouped by application types 6

Table 2.4.1.1: Summations for calculating Shapley value... 13

Table 2.5.1.1: Table for calculating PSI .. 18

Table 2.5.1.2: Table for interpreting PSI ... 18

Table 2.5.1.3: Example of calculating Chi-squared statistics -Part I 19

Table 2.5.1.4: Example of calculating Chi-squared statistics – Part II 19

Table 4.1.1.1: Lead scoring dataset description (Part I) .. 69

Table 4.1.1.2: Lead scoring dataset description (Part II) ... 70

Table 4.1.2.1: Car price dataset description (part I) .. 71

Table 4.1.2.2: Car price dataset description (part II) ... 72

Table 4.2.2.1: The execution sequence of the remaining IPYNB files........................ 77

Table 4.3.1.1: UI options in “Create SQL Database” .. 87

Table 4.3.1.2: UI options in “Create SQL Database Server” 87

Table 4.3.1.3: UI options in the “Compute + storage” section in “Create SQL

Database” ... 88

Table 4.3.1.4: UI options in the “Networking” tab in “Create SQL Database” 88

Table 4.4.2.1: The summarization of API endpoints in SHAP and River web services

.. 103

Table 4.5.1.1: UI options in “Create Web App” .. 108

Table 4.5.2.1: The summary of Model classes .. 113

Table 4.5.2.2: The summary of Controller classes .. 114

Table 5.2.1.1: The comparison between offline and online training performance for

tree classifiers (AGRAWAL dataset) .. 124

Table 5.2.1.2: The comparison between offline and online generalization performance

for tree classifiers (AGRAWAL dataset) ... 125

xxiii
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 5.2.1.3: The table that checked the overfitting issues for tree classifiers

(AGRAWAL dataset) .. 126

Table 5.2.2.1: The table that checked the overfitting issues for tree classifier (Lead

scoring dataset) .. 131

Table 5.2.3.1: The comparison between offline and online training performance for

tree regressors (California housing dataset) ... 134

Table 5.2.3.2: The comparison between offline and online generalization performance

for tree regressors (California housing dataset) ... 135

Table 5.2.3.3: The table that checked the overfitting issues for tree regressors

(California housing dataset) ... 136

Table 5.2.4.1: The table that checked the overfitting issues for tree regressor (Car

price dataset) .. 140

Table A.2: Symbols used in pseudocode for Adaptive random forest algorithm 174

Table B.2: Symbols used in pseudocode for Hoeffding Tree 177

xxiv
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LIST OF ABBREVIATIONS

ADWIN Adaptive Windowing

AI Artificial Intelligence

API Application programming interface

ARF Adaptive random forest

CRUD Create, Read, Updated, Delete

LIME Local Interpretable Model-agnostic Explanations

ML Machine learning

PSI Population stability index

PWA Progressive web application

RF Random forest

ROC AUC Area Under the Receiver Operating Characteristic (ROC) Curve

SDK Software development kit

SHAP Shapley Additive Explanations

Tree SHAP Tree Shapley Additive Explanations

TRF Traditional random forest

VFDT Hoeffding tree

XAI Explainable Artificial Intelligence

CHAPTER 1 INTRODUCTION

1
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 1 INTRODUCTION

1.1 Problem Statement and Motivation

In 2021, according to a survey conducted by Carsome Sdn. Bhd., the intention

to purchase cars among Malaysian increased by 32% during the COVID-19 post-

lockdown [2]. It was because most Malaysians were unwilling to use ride-sharing

services or public transports due to fear of getting COVID-19 [2]. However, the

intention to sell cars among Malaysian increased by 133% at the same period. The

used car market was becoming more competitive since the supply of used cars

exceeds the demand for used cars. Hence, the author was motivated to develop a car

dealership web application with enhanced functionalities to provide competitive

advantages to its system users.

According to research conducted by Brennen in 2020, most industry people or

the end-user did not understand how AI works and did not trust them [3]. This

discouraged the adoption of sophisticated AI applications like self-driving vehicles

and financial robo-advisors in business. In the interviews conducted by Brennen,

explainable AI could help the non-tech people to see values in AI and feel

comfortable with AI without understanding how AI works [3]. Hence, the author was

motivated to implement explainable AI functionalities to promote application users’

trust in both deployed models. For example, a used car dealer could trust a car price

prediction even more if he or she understood which features that the model mainly

used in predicting the car price.

Data pattern evolved from time to time. This was due to changes in business

environment caused by multiple external factors such as pandemic or economic

recession. Some machine learning algorithms no longer served the purpose of big data

applications since they assumed that the data distribution was identical and

independent [11]. As a result, deployed AI models would become obsolete unless the

models retrained with the evolving data. Manual model performance monitoring and

model retraining would be infeasible since the occurrence of changes in data patterns

was often unpredictable. Therefore, the author was motivated to implement an

automated AI performance monitoring and apply a machine learning algorithm that

could automatically retrain themselves only when changes in data pattern was

detected.

CHAPTER 1 INTRODUCTION

2
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.2 Objectives

The project objectives were:

1. To implement lead management that was enhanced with predictive analytics for

spending less time and resources on converting leads.

2. To implement inventory management that was enhanced with predictive analytics

for setting prices that were attractive and maximize profits.

3. To implement an online AI learning and monitoring system for automatically

detecting and adapting to concept drift.

4. To implement explainable AI in predictive analytics for enhancing the business

value of AI and promoting used car dealers’ trust in AI.

1.3 Project Scope

The first deliverable of the project was a used car dealership web application

was delivered. The web application consisted of three modules which were “lead

management”, “inventory management”, and “model monitoring”.

The lead management module consisted of two submodules, which were

information management and analytics. The used car dealers could manage the lead

information using CRUD operations. Besides, the used car dealers could request the

interpretation on the lead scoring model’s global prediction behaviour to gain data

insights and validate the model. For example, the used car dealers would like to know

which factors were correlated with higher likelihood of a successful lead conversion.

When creating or updating a record, the dealers could request a local explanation on

how the model used that record to predict the lead score, in order to check whether the

prediction made sense.

The inventory management module consisted of two submodules, which were

information management and analytics. The used car dealers could manage the car

inventory information using CRUD operations. Besides, the used car dealers could

request the interpretation on the car price model’s general prediction behaviour to

gain data insights and validate the model. For example, the used car dealers would

like to know which factors were correlated with higher car price. When creating or

updating a record, the dealers could request a local explanation on how the model

used that record to predict the price, in order to check whether the prediction made

sense.

CHAPTER 1 INTRODUCTION

3
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The model monitoring module consisted of two submodules, which were

model performance evaluation, and model monitoring and debugging. The first

submodule provided visualization on the running metrics and the model loss using

standards metrics and SHAP loss values, respectively. The data scientists could know

the model’s overall performance, and the positive and negative contribution of each

feature to the model error. The second submodule displayed the alerts of potential

drift or data error found on the application data under two different conditions. The

first condition was when the application records had no truth, and the second

condition was records containing the truth. The data scientists could click on each

alert to visualize the potential drift or data error in the form of table and graph.

The second deliverable of the project was the deployment of a web service.

The web service provided explainable AI and model monitoring functionalities

backed by two optimal machine learning models that supported incremental learning.

These models included an adaptive random forest regressor for car price prediction

and an adaptive random forest classifier for lead scoring classification. The web

application would then call the web service to perform various task like performing

predictions and monitoring model performance.

CHAPTER 1 INTRODUCTION

4
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.4 Contributions

This project could be served as the stepping stone for the deployment of

sophisticated machine learning algorithms or even deep learning architecture into the

commercial application. More powerful models could mean providing higher

potential business values, and the business values were effectively communicated to

the business stakeholders using a suitable explainable AI approach like SHAP.

According to Brennen’s interviews, the interviewees demanded explainable AI to be

able to debug black-box models, detect models bias, ensure model fairness and finally

promoting AI transparency and AI trust [3]. The source code of this report would be

published to a GitHub repository under MIT license after some time. This act was to

provoke new ideas by pushing the innovations of explainable AI into commercial

fields such as customer clustering analysis, churn prediction, credit risk scoring, fraud

detection, inventory optimisation, sales forecasting, sentimental analysis, automated

investing, and more.

Besides, this project also raised awareness of the importance of explainable AI.

Over the recent years, giant tech companies like Google and Microsoft had been

actively pushed forward the responsible AI principles [4], [22]. Not only that,

according to Burt, government bodies from US and Europe had started or proposed to

regulate artificial intelligence in commercial companies [1]. Some of the regulatory

requirements included conducting independent AI risk assessments (AI auditing) and

continuous review of AI systems [1]. These regulatory requirements justified the

implementation of AI monitoring tools in this project. In short, though governments

around the world were still in the infancy stage of regulating AI, companies and

higher education should educate new generations on concepts and implementations of

responsible AI to prepare for any future regulatory compliances.

CHAPTER 1 INTRODUCTION

5
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.5 Report Organization

Below showed the organization of reports by algorithm.

Algorithm Sections

Adaptive random forest algorithm
Section 2.3, Appendix A, B, and C: Algorithm review

Section 5.2: Performance evaluation

Transfer learning algorithm
Section 3.5: Algorithm design and design considerations

Section 5.1: Validation

Tree SHAP algorithm

Section 2.4.1, 2.4.2: Algorithm review

Section 2.4.3, 2.5.3: Review on the usage of algorithm

Section 3.7: Implementation and usage of algorithm

Section 5.4: Validation

Model tree weight extraction
Section 3.6: Algorithm design and design considerations

Section 5.3: Validation

Drift monitoring

Section 2.5: Algorithm review

 Section 3.8: Algorithm design and implementations

Section 5.5: Validation

Table 1.5.1: Report organization grouped by algorithm

CHAPTER 1 INTRODUCTION

6
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Below showed the organization of reports by application type.

Application type Sections

Database

Section 3.4: ERD Diagram

Section 4.1: Dataset information

Section 4.3.1, 4.3.2: Setup

Section 4.3.3: Database procedure

Web application

Section 2.1: Review on existing car dealership systems

Section 3.1, 3.2, 3.3: System design

Section: Setup

Section 4.5.1: Setup

Section 4.5.2: Description of artifacts

Web service

Section 2.2: Review on existing AI cloud services

Section 3.1, 3.2, 3.3: System design

Section 4.4.1: Setup

Section 4.4.2: Description of artifacts

Jupyter Notebook
Section 4.2.1, 4.2.2: Setup

Section 4.2.3, 4.2.4: Description of artifacts

Table 1.5.2: Report organization grouped by application types

CHAPTER 2 LITERATURE REVIEW

7
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 2 LITERATURE REVIEW

First, one of the car dealership management systems was reviewed to

understand the common functionalities found in these systems. Second, the third-party

AI cloud services were reviewed to understand the difference between integrating the

explainable AI and AI monitoring functionalities into commercial applications and

custom development of these functionalities. Third, the global explanations methods

were reviewed to justify the use of Tree SHAP method. Fourth, the drift detection

methods were reviewed to inform the latest implementation of AI monitoring and drift

detection. Currently, there was no paper, documentation, nor tutorial that suggested

the uses of adaptive random forest with tree SHAP. Therefore, both the Tree SHAP

algorithm and adaptive random forest algorithm were extensively validated to ensure

that both algorithms could work together.

2.1 Review of Existing Car Dealership Management System

 The author reviewed one of the most widely used dealership management

systems which was DealerCenter. DealerCenter was a cloud-based dealership

management system that offered full-fledged functionalities ranging from inventory

management, customer relationship management, to digital marketing campaign

management.

 For the functionalities for managing customer relationships, DealerCenter

could synchronize leads’ information from multiple car advertisement posting

websites such as Facebook Marketplace, Autotrader, CarGuru and more into a single

platform. The dealer also could directly message customers on Facebook through the

Facebook API within the system itself. Secondly, the system also allowed the sales

representatives to automate workflows such as emailing and text messages (SMS),

which enhanced the productivity of the sales representatives. For instance, the task

automation provided custom templates for sending a batch of text messages (SMS)

and emails to a pre-defined customer segment at the same time. Thirdly, the

salesperson representative could also manage the prospect’s profile in and out of the

showroom using this system. The sales representative could check in the prospect

when he/she visits the showroom and check out when he/she leaves the showroom.

After meeting with a prospect, the sales representative manually inputted the

interested vehicle by that prospect and set up reminders for any future appointment.

Thus, the prospect’s information was stored in the system and synchronized across all

CHAPTER 2 LITERATURE REVIEW

8
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

sales representative’s devices. Fourthly, the system automatically assigned leads to

the sales representatives, and then the sales manager could track all sales activities

and key performance metrics of each salesperson.

 For the functionalities for managing inventory, DealerCenter had access to

over thirty marketing sites like Facebook Marketplace, CarGurus, eBay, TrueCar,

Craigslist, CarZing, and more. These integrations allowed sales representatives to

directly schedule the posting of inventory advertisements to the respective marketing

sites. Secondly, in order to make the car image stand out from the rest of the direct

competitors, the system prepared customizable overlay templates to watermark car

images by adding a custom dealership logo, address, phone number and logo. Thirdly,

the system provided service pricing guide features. Specifically, the system fetched

valuable vehicle data like fair purchase price, trade-in values, private party values,

expert’s reviews, and customers’ reviews from automobile research websites like

Kelley Blue Book through web service. Just as new car dealers and customers referred

to the service price guide provided by the car automaker to determine the price of a

new car; the same rule could be applied in the used car market as well. Nevertheless,

for managing digital marketing campaigns, the same web services used for guiding

service pricing also allowed the dealer to post advertisements to their websites in case

the visitors would like to book a test drive for that car model. Secondly, the system

could automate report generation by dynamically generating the buyer guide and car

history report. This could be achieved by auto-populating the specified vehicle details.

Thirdly, the sales manager could view real-time analytics about the marketing

campaigns.

 Indeed, DealerCenter had a lot of features to offer, however, the operation cost

and maintenance cost were hefty due to the overuse of APIs within the system. For

example, the dealer needed to pay $5 for each API transaction whenever they would

like to advertise their inventory directly through third party marketing sites such as

Facebook Marketplace. This was unnecessary, as the users could still manually post

the advertisement via the respective marketing sites. In other words, the system

provided greater convenience in exchange for higher fees. Furthermore, the

developers must keep track of all updates of the integrated APIs to ensure that the

system always remained operational, thus increasing the maintenance effort. Careful

consideration of cost and convenience was needed when the author was trying to

CHAPTER 2 LITERATURE REVIEW

9
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

integrate any new API into the system. Thus, to ensure the reusability and

maintainability of the proposed system in the future, the author did not integrate any

commercial API into the system.

2.2 Review of Existing AI Cloud Services

There were few big cloud service players like Microsoft, IBM and H2O that

provided AI monitoring features and AI explainability features besides deployment

options. Microsoft had introduced Azure Machine Learning; H2O had introduced

H2O Driverless AI; IBM had introduced IBM Watson Studio. To enhance readability,

the advantages and disadvantages of the system were summarised in point form as

shown below.

Advantage

1. These systems could speed up AI development by automating some manual parts

of AI development like data cleaning, feature selection, feature engineering, cross-

validated hyperparameter tunning and many more. First, the data scientists must

define an AI experiment by uploading a dataset, set a target variable, and define

main metrics for model evaluation. Then, the data scientists could run the AI

experiment by setting settings such as time limit and the cloud service provider

would find the best model using the applied settings through trial-and-error

methods like randomised search or Bayesian optimisation.

2. These systems could detect concept drift for the models in production. These

systems used various techniques like monitoring performance metrics and

detecting distribution changes in variables.

3. These systems could allow users to choose suitable explainable AI methods like

Shapley values to provide both local and global explanations. This improved the

users’ trust and understanding of the deployed model and improve the quality of

the decision making.

4. These systems allowed API access to the AI experiment and AI monitoring

through SDKs in programming languages like Python. This facilitated system

integration by incorporating these functionalities into another system.

Disadvantage

1. Users did not have the full flexibility and customisation over the ML models

offered by the cloud service provider. For example, users might not be able to

CHAPTER 2 LITERATURE REVIEW

10
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

configure specific things like configuring vendor-suppled Tree SHAP to calculate

SHAP loss values for monitoring AI performance.

2. The third-party libraries that could be used in AI experiments and AI monitoring

were limited and highly dependent on the vendor’s support. The SDKs developed

by these big companies were basically closed-sourced

3. Vendor-supplied packages might still be dependent on some old dependencies,

limiting the benefits gained from the new functionalities, bug fixes, and security

patches. For example, for the initial prototype, the author tried to develop a Flask

web service that performed a prediction using a model trained by Azure Machine

Learning SDK. The development of the web service was difficult and filled with

old bugs since the Flask framework was forced to downgrade to ensure

compatibility with the SDK.

4. Based on the disadvantages above, the software developers were required to

conduct extensive software requirements validation on these third-party services.

Lack of customizability on these services stiffened the system integration and

potentially inflated the future costs of system evolution. For example, the

evolution cost would be high if the business decided to use latest cutting-edge

deep learning frameworks and AI explainability approaches but the integrated

third-party service did not support them yet.

 In short, the initial prototype developed by the author in this project had

provided very good insights in accessing the overall project risks. In the end, the

authors avoided AI monitoring and explainable AI SDK provided by Microsoft, IBM,

H2O, and others. Instead, open-source packages like River and SHAP were used so

that source code could be directly modified to ensure compatibility between different

packages while ensuring these packages were up to date.

2.3 Adaptive Machine Learning Algorithm

In this project, two analytics functionalities were implemented which were car

price prediction and lead scoring classification. The reason that ensemble tree-based

algorithms like random forests was chosen instead of the neural network was due to

the limited amount of data available (less than 10,000 samples per dataset) for this

project. Regardless, ensemble tree-based algorithms still proved to consistently

outperform standard neural networks on structured datasets [10].

CHAPTER 2 LITERATURE REVIEW

11
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.3.1 Adaptive random forests (ARF) algorithm

ARF algorithm was innovated by Gomes and other researchers and this

algorithm was directly adapted from the classical Random Forest with ground-

breaking improvements [5]. There were few notable characteristics that made the

ARF algorithm suitable for this project. The first characteristic was that the ARF

model could be trained incrementally with as low as one single data instance while

predicting the input data at the same time. The second characteristic was that each

base leaner in the ARF model had a drift warning detector and drift detector. There

were two possible scenarios. Upon the first sign of data drift, a warning was issued,

and a background tree was created and trained with the new data. As the drift

continued, the background tree would eventually replace the existing corresponding

tree to ensure the relevancy of the model in handling volatile data in the real world.

The formula of the ARF algorithm was discussed in detail in APPENDIX A.

2.3.2 Hoeffding tree

Instead of using a decision tree, the base leaner of the ARF was the Hoeffding

tree. Note that the inner working of the Hoeffding tree was largely similar to the

decision tree, which was to split the current subset of data by choosing the feature

with the lowest variance, lowest entropy, highest information gains or lowest Gini

impurity at each level. Hoeffding tree replaced the classical machine learning

algorithm for one major reason. The major reason was that the Hoeffding tree was

designed to be compatible with the ARF algorithm. The Hoeffding tree was

compatible because of two main reasons.

The first reason was that the Hoeffding tree could be incrementally trained

with data of any size. The second reason was that the Hoeffding tree didn’t keep the

original train data after finish training for every incoming data stream. Instead,

Hoeffding tree kept important statistics of incoming data which provide minimal but

sufficient information to perform split attempt on the leaf nodes [6]. As a result, this

saved a lot of memory space and sped up the training process. To perform the split

attempt, the Hoeffding tree had a hyperparameter called grace period to control if a

split should continue based on how much data had been “kept”. The detailed formula

of the Hoeffding tree was discussed in APPENDIX B.

CHAPTER 2 LITERATURE REVIEW

12
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.4 Explainable AI

First, the right model must be used for the right kind of explainable AI task. If

the objective of the task was to “educate the user”, then random forest or its

equivalent was used; if the objective of the task was to “help them to take an

appropriate action”, then causality machine learning model like structure causal

models (SCM) was used [7]. Random forest could provide the features importance’

information for educating the business stakeholders about the most important

independent variables or factors in determining the output [7]; structural causal

models (SCM) could provide actionable insights on how to improve the output [7].

In this project, an Adaptive random forest algorithm would be both used in car

price prediction and lead scoring classification. Thus, the selected interpretability

technique must be extensively validated to ensure that the adaptive machine learning

algorithm and interpretability technique were both compatible with each other without

losing any benefit from any side. Tree SHAP was selected for this project and the

validation was shown in the next section.

2.4.1 Shapley values

In order to validate Tree SHAP, Shapley values must be first understood.

Shapley value was the local explainability method to quantify how much each feature

contributed to the difference between an individual prediction with the average

predictions [8]. Shapley values were based on game theory [8]. Metaphorically, each

player (a.k.a feature) would like to get a fair share of the gains (a.k.a difference

between a prediction with the average prediction) based on how hard they work (a.k.a

how big was the impact that feature had on the difference). In other words, important

features had higher Shapley values due to a larger influence on the predicted output.

One problem was that the interaction effect between two or more features caused the

order to become a disruption factor in the fair distribution of the contributions among

features [9]. To remove the interaction effect, the computation of Shapley values for

each feature was computed 2𝑘 times, where 𝑘 was the number of features.

To demonstrate how to calculate Shapley value, take the car price prediction

as an example, say the average price prediction was RM30,000, the current prediction

to be explained was RM33,000, and the predictive features were manufacturing year

(𝑥1), car brand (𝑥2), and transmission (𝑥3). To calculate the Shapley value of 𝑥1, the

CHAPTER 2 LITERATURE REVIEW

13
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

formula was given as follows, where 𝑛 was the number of features, |𝑆| was the

number of elements in set S, 𝑉 was the payout function given a coalition of players

[8].

𝜙𝑥1
=

1

𝑛!
× ∑ |𝑆|! (𝑛 − 1 − |𝑆|)! [𝑉(𝑆 ∪ {𝑥1}) − 𝑉(𝑆)]

𝑆⊆𝑁\{𝑥1}

𝑆 had four possible values since it meant the coalitions that did not include

player 𝑥1 , which was {}, {𝑥2}, {𝑥3} and {𝑥2, 𝑥3} . Then, for each summation, the

formula was substituted as shown below, before all these values were summed up and

divided by
1

3!
.

Variables Summation

𝑆 = {}, |𝑆| = 0 0! (3 − 1 − 0)! [𝑉({𝑥1}) − 𝑉({})]

𝑆 = {𝑥2}, |𝑆| = 1 1! (3 − 1 − 1)! [𝑉({𝑥1, 𝑥2}) − 𝑉({𝑥2})]

𝑆 = {𝑥3}, |𝑆| = 1 1! (3 − 1 − 1)! [𝑉({𝑥1, 𝑥3}) − 𝑉({𝑥3})]

𝑆 = {𝑥2, 𝑥3}, |𝑆| = 2
1! (3 − 1 − 1)! [𝑉({𝑥1, 𝑥2, 𝑥3})

− 𝑉({𝑥2, 𝑥3})]

Table 2.4.1.1: Summations for calculating Shapley value

In general, the Shapley value could produce accurate prediction since payout

was fairly distributed by satisfying the properties namely Efficiency, Symmetry,

Dummy and Additivity [8]. Using the example above, efficiency ensured that the

difference between the individual predicted price RM33,000 and the average

predicted price RM30,000 (RM3,000) was equivalent to 𝜙𝑥1
+ 𝜙𝑥2

+ 𝜙𝑥3
; symmetry

ensured that 𝜙𝑥1
= 𝜙𝑥2

 if and only if both 𝑥1 and 𝑥2 had the same contribution for all

possible coalitions; dummy ensured that 𝜙𝑥1
= 0 if and only if 𝑥1 did not have

contribution at all. Besides, Shapley values could be used in ensemble models since

the additivity property ensured that the average of Shapley value for each base learner

could be computed to explain the local prediction.

Though Shapley value was backed by solid theory, the author would need to

consider other interpretability approaches due to overwhelming high computing time

and the necessity to retain old data. First, the time complexity of the Shapley value

was exponential. Say, the Shapley value was applied in tree-based models, the time

complexity for computing Shapley value for each tree model would be 𝑂(𝐿2𝑀) ,

CHAPTER 2 LITERATURE REVIEW

14
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

where 𝐿 was the maximum number of leaves in the tree and 𝑀 was the number of

input features. Second, Shapley values were required to access the old data. This was

because the values of the features that were not included in the coalition 𝑆 were

replaced by random values drawn from old data [8]. For example, the values for 𝑥1

and 𝑥3 in the coalition {𝑥2} were randomly sampled from the old data. As mentioned

earlier, the online AI learning system was expected to receive an infinite amount of

data streams in production. Retaining data might not be a convenient option since an

extra mechanism needed to be implemented to balance between storage cost and data

availability.

2.4.2 Tree SHAP

Fortunately, in 2018, Tree SHAP came into existence to solve the two

aforementioned limitations. Tree SHAP was the SHAP version specifically designed

for tree-based models, including random forest [10]. The prerequisite of SHAP was

Shapley value and thus the properties Efficiency, Symmetry, Dummy and Additivity

were not violated.

Unlike Shapley value, Tree SHAP allowed faster computation time of local

explanations by reducing the time complexity from exponential to polynomial time.

The reduction in time complexity was because the Shapley values were computed

using the internal structure of tree-based models [10]. The reliance on the tree

structure justified the reduction of exponential time complexity 𝑂(𝑇𝐿2𝑀) to

polynomial time complexity of the algorithm, 𝑂(𝑇𝐿𝐷2), where 𝑇 was the number of

trees, 𝐿 was the number of leaves, 𝐷 was the depth of the tree, and 𝑀 was the number

of input features [10].

Similar to the concept of Shapley values, SHAP values were computed for

each feature by calculating the approximate conditional expectation function 𝑓𝑥(𝑆) =

𝐸[𝑓(𝑋)|𝑑𝑜(𝑋𝑠 = 𝑥𝑠)] by using the paths in the tree instead of training data [10]. Thus,

it was compatible with the adaptive random forest algorithm since the algorithm did

not save the data after training, keeping the storage requirement to the bare minimum.

The intuition of the tree SHAP was only discussed since the exact pseudocode

of tree SHAP was way too technical and complicated to be discussed in this project.

Intuitively, the 2𝑀 was reduce to 𝐷2 since the calculation of SHAP values for all 2𝑀

coalitions were simultaneous [10]. Since a decision tree reused features when splitting

CHAPTER 2 LITERATURE REVIEW

15
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

nodes, a single coalition could reach multiple leaf nodes. According to Lundberg and

other researchers [10], the weights of these leaf nodes for the SHAP values of each

feature were computed by descending from the root node to the leaf node one time

before reversing the traversal for one time, which explained the 𝐷2 in the 𝑂(𝑇𝐿𝐷2).

This was because some of the information was not available for the first descend. The

path to descend was determined by the following rules. When deciding which path to

follow, the algorithm would traverse only one of the decision paths if the split feature

of the current node (𝑥𝑠) was in 𝑆 [10]. This made sense since the current prediction 𝑥

would only go to either one of the child nodes after the splitting. Else if the split

feature of the current node (𝑥𝑠) was not in 𝑆, then 𝑥 did not split and went to both

branches, each with a certain assigned weight [10].

2.4.3 Review of Existing Global Explanation Methods

 Global methods described the average prediction behaviour of a machine

learning model to convey useful insights such as the relative importance of each

feature in overall predictions [8]. Global explanations using SHAP was the most

accurate as compared to permutation importance recommend by Scikit-learn [12]. It

was because Tree SHAP was not influenced by feature dependence since it used

conditional expectation instead of the marginal expectation in calculating the value

function, 𝑉 [8]. Contrarily, permutation feature importance was influenced by feature

dependence [8]. In other words, when calculating the permutation feature importance

for a feature, the model prediction error diminished since other correlated features

were used in the prediction, yielding a lower feature importance [8]. Basically, it

could not be certain that the feature with the highest permutation feature importance

was the most important feature unless there was no correlated feature.

Similar to permutation feature importance, tree SHAP global explanation

could be used to plot a bar chart to convey the magnitude of the feature effects. Note

that the length of the bar was representing the average absolute magnitude of SHAP

values [10]. On top of that, the local explanations could be aggregated in to plot a

beeswarm as shown in the diagram on the right to visualize additional information

which was the direction of the effect. Taking the beeswarm plot below as an example,

it could be observed that age was the most important feature with a strong positive

relationship with the risk of mortality. The lower magnitude of age contributed to

lower risk mortality and vice versa [10].

CHAPTER 2 LITERATURE REVIEW

16
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.4.3.1: Tree SHAP global explanations: An example of bar chart (on the left)

and an example of beeswarm plot (on the right)

2.5 Review of Existing Drift Detection Methods

Although a dealership management system like DealerCenter was a data-

driven application with some AI capabilities, these systems cannot guarantee the

dealer that the accuracy of the AI predictions in the real world. Thus, real-time AI

monitoring was needed to validate whether the AI predictions were accurate and

relevant over time.

 There were many ways to detect the concept drift. The first way was simply

by computing standard performance metrics of real-time prediction like accuracy, F1

score, recall and precision. If the standard performance metric fell below a certain

threshold, the system triggered an alert and involve human intervention. Most often,

the ground truth labels of the real-time prediction might not be available promptly or

might not be available at all.

The second way was statistical tests. Statistical tests could represent proxy

metrics by comparing distributions of the inputs and outputs to detect concept drift.

According to Gama and other researchers, one way to detect the concept drift was to

monitor the distributions on two different time windows [21]. To infer that there was

a distribution difference between the two time windows, the null hypothesis that the

two distributions were equal must be rejected with a statistically significant p-value.

There were many types of statistical tests to detect whether the distribution between

two-time windows was statistically different from one another. These tests were

CHAPTER 2 LITERATURE REVIEW

17
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Student’s t-test, Population Stability Index (PSI), Kullback-Leibler divergence, and

Jensen-Shannon Divergence, Wasserstein distance and more. The author decided to

discuss Population Stability Index (PSI) and ADWIN. PSI was discussed since it was

a standard measure recommended by most regulatory bodies in the field of credit risk

[13], while ADWIN was discussed since ADWIN was the drift detector chosen for the

Hoeffding tree and details were further discussed.

The third way was the calculation of Tree SHAP loss value to detect the drift.

Lundberg and other researchers criticised that the statistical tests like PSI and

ADWIN were prone to both false positives and false negatives and model

performance monitoring could be prone to random fluctuations and noise data [10].

AI monitoring using Tree SHAP was free from these problems by directly calculating

the contribution of each feature to the increase or loss of the model’s performance.

Conveniently, both the statistical tests and the Tree SHAP algorithm could be used to

detect data errors as well as drift.

2.5.1 Population Stability Index

 Population Stability Index (PSI) was a metric to measure the distribution shift

of an independent or a dependent variable between two samples or over time [14].

The formula of population stability index was as followed, where 𝐴𝑖 was the relative

count of data in 𝐴 in category 𝑖, 𝐵𝑖 was the relative count of data in 𝐵, and 𝐾 was the

number of categories:

𝑃𝑆𝐼 = ∑ [(𝐴𝑖 − 𝐵𝑖) × ln (
𝐴𝑖

𝐵𝑖
)]

𝐾

𝑖=1

𝐸𝑖, non-

relative

frequency

count

𝑂𝑖, non-

relative

frequency

count

𝐴𝑖 𝐵𝑖
(𝐴𝑖

− 𝐵𝑖)
ln (

𝐴𝑖

𝐵𝑖
)

(𝐴𝑖

− 𝐵𝑖) × ln (
𝐴𝑖

𝐵𝑖
)

3718 154 0.11 0.06 0.05 0.5604 0.0255

3795 172 0.11 0.07 0.04 0.4704 0.0191

3239 141 0.09 0.06 0.04 0.5107 0.0188

3537 195 0.10 0.08 0.02 0.2745 0.0066

3320 189 0.09 0.07 0.02 0.2424 0.0049

3596 301 0.10 0.12 -0.02 -0.1431 0.0023

CHAPTER 2 LITERATURE REVIEW

18
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3457 298 0.10 0.12 -0.02 -0.1725 0.0032

3515 369 0.10 0.14 -0.04 -0.3696 0.0165

3444 412 0.10 0.16 -0.06 -0.5002 0.0318

3503 317 0.10 0.12 -0.02 -0.2211 0.0055

Sum =

35124

Sum =

2548
Sum = 1

Sum =

1
 PSI = 0.1342

Table 2.5.1.1: Table for calculating PSI

The table above demonstrated the calculation of PSI. Given a variable of any

type, 10 categories were defined, and the frequency was counted for each category in

both distribution 𝐴 and 𝐵. Second, for each category, the relative frequencies were

obtained for both distribution 𝐴 and 𝐵. Third, the 𝐴 − 𝐵 and ln (
𝐴

𝐵
) were computed in

each category. Finally, the PSI was obtained by the summation of (𝐴 − 𝐵) × ln (
𝐴

𝐵
)

for each category. The order to which the distribution was order was not important

since the magnitude that quantified the difference of distributions was always positive

as shown on the first column starting from the right.

Below was the interpretation of the population stability index by a range of values:

Range of

value

Interpretation of distribution of the

variable in 2 samples

Action

PSI = 0 Same Ignore

0 < PSI <

0.1

Non-significant change Ignore

0.1 ≤ PSI

≤ 0.25

Small change Trigger warning of concept drift,

further investigation was required

PSI > 0.25 Significant change Alert concept drift and update

model

Table 2.5.1.2: Table for interpreting PSI

The disadvantage of PSI was that PSI became unreasonably large when the

binned category or category had frequency counts close to zero in either of the two

distributions [15]. The second disadvantage was that choosing the number of bin

categories required careful consideration and was specific to each variable. If the

selected number of bin categories was too many, then the minor difference in the

distribution could be more easily picked up and incorrectly classified as concept drift,

CHAPTER 2 LITERATURE REVIEW

19
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

increasing the rate of false positives [15]. Else if the selected number of categories

was too low, the difference in the distribution could be harder picked up and

incorrectly dismissed as no difference, increasing the rate of false negative [15].

Based on the disadvantage of PSI mentioned above, for categorical variables

that had less than 10 categories, other statistical measures like chi-square goodness of

fit test were used to check the distribution difference. The formula for chi-squared

statistics was shown as below:

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑛

𝑖=1

, where 𝑛 was the total number of categories, O was the observed count in the

category 𝑖, 𝐸 was the expected count in category 𝑖, and 𝜒2 was the Chi-square value.

Each 𝐸 was readjusted such that the ∑ 𝑂𝑖
𝑛
𝑖=1 was equal to ∑ 𝐸𝑖

𝑛
𝑖=1 , as shown below:

 Expected count, 𝐸𝑖 Observed count, 𝑂𝑖 Readjusted expected count

Category 1 3718 301 212.3188

Category 2 3795 172 216.7160

Category 3 3239 141 184.9652

Sum 10752 614 614

Table 2.5.1.3: Example of calculating Chi-squared statistics -Part I

 The expected count was re-adjusted using the formula
𝐸𝑖

∑ 𝐸𝑖
𝑛
𝑖=1

× ∑ 𝑂𝑖
𝑛
𝑖=1 for

each category 𝑖. Then, the Chi squared value was calculated as shown blow:

 𝐸𝑖 − 𝑂𝑖 (𝐸𝑖 − 𝑂𝑖)2 (𝐸𝑖 − 𝑂𝑖)2

𝐸𝑖

Category 1 -88.68 7864.35 37.0403

Category 2 44.72 1999.52 9.2264

Category 3 43.97 1932.94 10.4503

Sum 0.00 11796.81 56.7170

Table 2.5.1.4: Example of calculating Chi-squared statistics – Part II

Finally, the chi-squared value was calculated by summing the

(𝐸𝑖−𝑂𝑖)
2

𝐸𝑖
 for all categories. In this case, the chi-squared value was 56.7170. The p-value

of chi-square value of 56.7170 with the degree of freedom of 2 in the chi-squared

distribution was 4.831𝑒−13. The degree of freedom was 2 since the total number of

CHAPTER 2 LITERATURE REVIEW

20
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

categories was three. Given that the p-value was less than 5%, an alarm was triggered

since the distribution difference between the expected and observed categorical

feature was significantly different.

2.5.2 ADWIN

The drift detector that existed in each of the base learners for the ARF

algorithm was Adaptive windowing (ADWIN). ADWIN was one of the adaptive

windows methods for checking distribution differences between two windows of data.

Unlike most drift detectors, the window size was not a hyperparameter. Instead, as

new data was added to the window, ADWIN would automatically adjust the window

size by growing when the data was stationary or shrinking when a drift was detected

[16]. As a result, the distribution of data after adjusting 𝑊 would always represent the

latest and most accurate distribution [16]. The formula of the ADWIN was discussed

in depth in APPENDIX C.

However, there existed a major disadvantage. The disadvantage was that an

arbitrary length of recently read data must be kept in order to check the distribution

between old data and new data. This was unacceptable since each Hoeffding tree in

the ARF leaner had one data drift detector and one data drift warning detector. Every

unit increase in base learners meant a two unit increase in detectors. Assuming that

new data was the same distribution as the existing data for quite some time, then more

data had to be kept in each data drift detector, causing an explosion of storage

consumptions.

Fortunately, Bifet and Gavald improved the first version of ADWIN by using

a sophisticated data structure called exponential histograms [16]. The variation of this

data structure improved both time and memory requirements. According to Bifet and

Gavald, the data structure only tried up to log2 𝑛 times instead up to of 𝑛 times when

determining the size of the new window, where 𝑛 was the size of the current window

[16]. The memory requirement was 𝑂(log2 𝑛) . In short, some memory was still

needed to store data to represent the latest distribution while discarding data that were

not from the latest distribution.

2.5.3 Drift Monitoring using Tree SHAP

Tree SHAP could also be used to monitor AI performance and detect concept

drift. The compositional approximation was implemented with Tree SHAP to

CHAPTER 2 LITERATURE REVIEW

21
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

compute the model’s loss function called as SHAP loss value [10]. This method

would require iterating each data sample from the dataset used to compute the

expectation. According to Lundberg and other researchers, this method quantified the

impact of each feature on the performance without the influence from the global

fluctuations of model performance caused by random noise [10]. An experiment was

conducted by them and successfully proved the concept, as described below Lundberg

et al.].

Figure 2.5.3.1: Monitoring plot using model performance (at the top) and monitoring

plot using SHAP loss value (at the bottom)

The top plot showed the typical monitoring plot that visualized the model

performance over time, while the bottom plot showed the monitoring plot that

visualized the SHAP loss values of the feature that indicated whether the surgical

procedure that happened in room no. 6 [10]. At the y-axis, the negative SHAP loss

value increased the model’s accuracy while the positive SHAP loss value decreased

the model’s accuracy. For the top plot, starting from the second year 2013 to 2016, the

fluctuations of the model performance seemed natural and consistent. However, the

bottom plot showed an alternative fact where there existed a clear shift from negative

values to positive values for procedures that happened in room no. 6.

Regardless of the advantages, the major disadvantage was that the SHAP loss

value needed truth labels and the drift detection was dependent on how fast the truth

data was available. Fortunately, the true data was available after some time for car

price analytics and lead scoring. If the used car was sold, then the final selling price

was inserted into the system; if the lead conversion was successful or failed, then the

result was inserted into the system.

CHAPTER 2 LITERATURE REVIEW

22
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.6 Summarisation of Previous Works

 In conclusion, the adaptive random forest algorithm could integrate with Tree

SHAP without compromising too many memory requirements. The memory

requirement was that ADWIN discarded old data and only kept data that represented

the latest distribution, thus requiring some memory to store these data. Then for the

online AI monitoring, it could be implemented by computing model performance,

Population Stability Index (PSI), Chi-square goodness of fit test, and Tree SHAP loss.

Inevitably, storage was required to store some old data for computing PSI, Chi-

squared statistical test, and Tree SHAP loss. Online AI monitoring also worked during

the absence of truth labels since the Population Stability Index and Chi-square

goodness of fit test could serve as proxy metrics for monitoring concept drift.

CHAPTER 3 SYSTEM DESIGN

23
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 SYSTEM DESIGN

3.1 System Architecture Diagram

Figure 3.1.1: The architecture diagram of the car dealership system

 The web application was deployed to the Azure App service. An Azure SQL

server was also created to allow data communication between the web application and

the web service. The web application created, read, updated, and deleted the database

records to manage business information while the web service queried the most recent

application data to train model, review the individual model prediction, review the

individual model loss, review the model’s average prediction behaviour, evaluate the

model performance, and monitor drift.

3.2 Use Case Diagram for Web Application and Web Service

CHAPTER 3 SYSTEM DESIGN

24
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.2.1: The use case diagram for used car dealership management system

1. Manage car inventory

a) As an inventory manager, I want to create, read, update, and delete the car

stocks to keep track of the car inventory.

b) As an inventory manager, I want to determine the best price for a selling car

with the aid of predictive analytics so that the determined price is more

attractive to the prospects and fairer to justify the costs and profits of the

business.

c) As an inventory manager, I want to review the car price model so that I can

trust the car price model to use the right features to predict the car prices for

me.

d) As an inventory manager, I want to update the car price model so that the

model can remain relevant and high performing under the influence of drift.

2. Manage leads

e) As a sales employee, I want to create, read, update, and delete the basic

information about my potential customers so that I can convert them later.

f) As a sales employee, I want to know which prospects that I can most likely

successfully convert so that I can save my resources from serving non-

potential customers.

g) As a sales employee, I want to review the lead scoring model so that I can

trust the lead scoring model to use the right features to predict the lead scores

for me.

h) As a sales employee, I want to update the lead scoring model so that the model

can remain relevant and high performing under the influence of drift.

CHAPTER 3 SYSTEM DESIGN

25
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Monitor AI models

a) As a data scientist, I want to review individual model loss so that I can know

which features contribute the most to the prediction value and whether the

features are accurate or inaccurate in predicting the value.

b) As a data scientist, I want to evaluate the performance of the deployed AI

models so that I can be reassured that the online performance of deployed

models does not deteriorate, with or without the influence of drift.

c) As a data scientist, I want to monitor the drifts so that I can observe the change

in the distribution of variables overtime and determine whether to add or

delete certain independent variables to further improve a model’s performance.

CHAPTER 3 SYSTEM DESIGN

26
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3 Activity Diagram for Web Application and Web Service

3.3.1 Reviewing Individual Predictions

Figure 3.3.1.1: The activity diagram for reviewing individual predicted car price

Based on the diagram above, as the inventory manager was creating and

editing the car stock, he or she could review the predicted car price by viewing the

SHAP bar plot that was generated by the web service. Based on the predicted car

price, the inventory manager could assign his or her own choice of car price as the

selling car price. If the inventory manager would like to train the model on this record,

then he or she could select the option “update the car price analytics” to do so. After

the model had been trained with this record, the inventory manager could not choose

the train the model with this record again even it has updated. It was because the

CHAPTER 3 SYSTEM DESIGN

27
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

model could not untrain itself. Instead, the inventory manager could copy the car

specifications to a new record and deleted the current record to retrain the model.

Figure 3.3.1.2: The activity diagram for reviewing individual predicted lead score

Based on the diagram above, as the sales employee was creating and editing

the lead information, he or she could review the predicted lead score by viewing the

SHAP bar plot that was generated by the web service. The sales employee could then

use the predicted lead score to set the priorities on which leads to convert. If the

attempts to convert the lead had failed, then the sales employee updated the lead

status as “Disqualified”. Else if the lead conversion was successful, then the sales

employee updated the lead status as “Qualified”. As soon as the lead status had been

updated as “Qualified” or “Disqualified”, the model would automatically train on the

current lead record. Any subsequent edits on the current lead record would not cause

the model to re-train again since the model could not untrain the current record.

CHAPTER 3 SYSTEM DESIGN

28
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.1.3: The activity diagram for constructing SHAP bar plots

Based on the diagram above, in order to generate the SHAP bar plots needed

in the web application, the web service required the features that were submitted by

the client when creating or editing the record. First, the web service preprocessed the

car specifications and lead information, respectively. Then, the web service used the

existing Tree SHAP explainers to calculate the SHAP values for both preprocessed

car specifications and lead information, respectively. The SHAP values were then

used to construct the SHAP bar plots. Finally, the plots were converted to HTML

code and send back to the web application.

CHAPTER 3 SYSTEM DESIGN

29
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.2 Reviewing Models

Figure 3.3.2.1: The activity diagram for reviewing car price model and lead scoring

model

Based on the diagram above, the inventory manager and sales employee could

navigate in the menu to review the car price model and lead scoring model,

respectively. The web service then computed the SHAP value to display feature

importance bar plot and beeswarm plot to visualize the average prediction behaviour

of both models, respectively.

Based on the diagram below, in order to generate the beeswarm plots and

feature importance bar plots that were needed in the web application, the web service

was required to query all the recent application data that had the truth. For car

inventory record, the records with truth were the records that had the UpdateAnalytics

value set to “Yes”. For lead information, the records with truth were the records that

had the Status value set to “Qualified” or “Disqualified”. First, the web service

preprocessed the car specifications and lead information, respectively. Then, the web

service used the existing Tree SHAP explainers to calculate the SHAP values for both

preprocessed car specifications and lead information, respectively. The SHAP values

were then used to construct the beeswarm plots and feature importance bar plots.

Finally, the plots were converted to HTML code and send back to the web application.

CHAPTER 3 SYSTEM DESIGN

30
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.2.2: The activity diagram for constructing beeswarm plots and feature

importance bar plots

CHAPTER 3 SYSTEM DESIGN

31
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.3 Update Model

Figure 3.3.3.1: The activity diagram for incrementally training the adaptive random

forest models

New samples were available to train car price adaptive random forest

regressor whenever the inventory manager selected the option “update the car price

analytics” in a car inventory record. On the other hand, new samples were available to

train lead scoring adaptive random forest classifier whenever the sales employee

update the lead status to either “Qualified” or “Disqualified”. Both adaptive random

forest models only trained with one sample at a time. First, the sample was used to

update test-then-train running metrics before training the models on the same sample.

After the training, the tree weights were extracted from the models to a dictionary. It

was because Tree SHAP explainer did not directly support River models but did

support tree-like models by passing in a dictionary. The dictionary was then used to

CHAPTER 3 SYSTEM DESIGN

32
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

update both Tree SHAP explainer and Tree SHAP loss explainer. The further detail of

the tree weight extraction process was discussed in Section 3.6.

3.3.4 Reviewing Individual Model Loss

Figure 3.3.4.1: The activity diagram for reviewing individual model loss

Based on the diagram above, the data scientist could select a car inventory

record or a lead record that had the truth to review the individual model loss of that

record. The web service then displayed the SHAP bar plot and SHAP loss bar plot to

visualize the local feature importance and which features were positively or

negatively contributed to the model loss, respectively.

Based on the diagram above, in order to generate the SHAP bar plots and

SHAP loss bar plot needed in the web application, the web service required the

features that were submitted by the client when viewing the record that had the truth.

First, the web service preprocessed the car specifications and lead information,

respectively. Second, the web service used the existing Tree SHAP explainers to

calculate the SHAP values for both preprocessed car specifications and lead

information, respectively. Third, the web service also used the existing Tree SHAP

loss explainers to calculate the SHAP loss values. The SHAP values and SHAP loss

values were then used to construct the SHAP bar plots and SHAP loss bar plots,

CHAPTER 3 SYSTEM DESIGN

33
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

respectively. Finally, the plots were converted to HTML code and send back to the

web application.

Figure 3.3.4.2: The activity diagram for constructing the SHAP bar plot and SHAP

loss bar plot

CHAPTER 3 SYSTEM DESIGN

34
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.5 Evaluating Performance

Figure 3.3.5.1: The activity diagram for evaluating model performance

Based on the diagram above, the data scientist could navigate in the menu to

review the performance of both car price model and lead scoring model. The web

service then displayed the running metrics to visualize the recent model performance

on the application data. The web service also displayed the positive and negative

SHAP loss bar plot to visualize which features were positively or negatively

contributed to the model loss.

Based on the diagram below, in order to generate the plots that were needed in

the web application, the web service was required to query all the recent application

data that had the truth. First, the web service preprocessed the car specifications and

lead information, respectively. Second, the web service used the existing Tree SHAP

loss explainers to calculate the SHAP loss values for both preprocessed car

specifications and lead information, respectively. Third, the SHAP loss values were

then used to construct the positive and negative SHAP loss bar plots. Fourth, the

running metrics were retrieved from the adaptive random forest models to plot

running R-squared for regression and plot running AUC-ROC for classification.

Finally, the plots were converted to HTML code and send back to the web application.

CHAPTER 3 SYSTEM DESIGN

35
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.5.2: The activity diagram for constructing plots that evaluate model

performance

CHAPTER 3 SYSTEM DESIGN

36
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3.6 Monitoring Drift

Figure 3.3.6.1: The activity diagram for monitoring drift on both records with truth

and without truth

Based on the diagram above, the data scientist could navigate in the menu to

monitor the drift for both records with and without truth.

For monitoring car inventory records or lead records that had truth, the

webpage would show the SHAP loss monitoring graphs and their corresponding

alarm information only for features that had drifted.

 For monitoring the records that had not truth, the webpage would show the

PSI graphs, PSI tables or chi-squared table for features that had drifted. As shown in

the diagram above, the PSI was used to check for drifts if feature was “[Feature type

CHAPTER 3 SYSTEM DESIGN

37
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1]”. Else, the chi-squared goodness of fit tests was used to check for drifts if feature

was “[Feature type 2]”. A feature was considered as “[Feature type 1]” when the

feature was numerical, or the feature was categorical with 10 or more categories. On

the other hand, a feature was considered as “[Feature type 2]” when the feature was

categorical with less than 10 categories.

The two diagrams below showed the activity diagrams for constructing SHAP

loss monitoring plots based on car inventory records and lead records, respectively. In

order to generate the SHAP loss monitoring plots, the web service was required to

query all the recent application data that had the truth. First, the web service

preprocessed the car specifications and lead information, respectively. Second, the

web service used the existing Tree SHAP loss explainers to calculate the SHAP loss

values for both preprocessed car specifications and lead information, respectively.

Then, each car specification and lead attribute were iterated to check for the drift. For

each iteration, the proposed SHAP loss monitoring function was called to check for

any statistically significant difference in SHAP loss means or difference in feature

distribution between the validation set and the queried data. If the difference was

statistically significant with a p-value of less than 5%, then the alarm information was

saved and SHAP monitoring plot were constructed before converting to HTML code.

The alarm informed the data scientists on the type of statistical tests that triggered the

alarm, and the splitting point between the validation data and recent application data

where the mean difference was statistically significant.

In addition, to validate the proposed SHAP loss monitoring function, an

experiment was conducted to test the effectiveness of the proposed function as

compared to the preliminary function developed by Scott Lundberg. Hence, the author

deliberately induced drift and data errors in the car specifications after every query.

The experiment was discussed in further detail in Section 5.5.1.

CHAPTER 3 SYSTEM DESIGN

38
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.6.2: The activity diagram for constructing SHAP loss monitoring plot (car

price inventories)

CHAPTER 3 SYSTEM DESIGN

39
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.6.3: The activity diagram for constructing SHAP loss monitoring plot (lead

records)

CHAPTER 3 SYSTEM DESIGN

40
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The two diagrams below showed the activity diagrams for constructing PSI

graphs, PSI tables and chi-squared tables based on car inventory records and lead

records, respectively. In order to generate these plots, the web service was required to

query all the recent application data that had no truth. First, the web service

preprocessed the car specifications and lead information, respectively. Second, each

car specification and lead attribute were iterated to check for the drift. For each

iteration, depending on the feature type, the PSI or the chi-squared goodness of fit test

was used to check for significant distribution difference between the validation set

and the application data. If the difference was statistically significant with a p-value of

less than 5%, then the corresponding tables and plots were constructed before

converting to HTML code.

In addition, an experiment was conducted to validate that the PSI and chi-

squared goodness of fitness test could detect drifts or data errors. Hence, the author

deliberately induced drift and data errors in both car specifications and lead records

after every query. The experiments could be found in “jupyter_notebooks/

FYP2_Model_Monitoring_without_Truth.ipynb”.

CHAPTER 3 SYSTEM DESIGN

41
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 3 SYSTEM DESIGN

42
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.6.4: The activity diagram for constructing PSI graph, PSI table and chi-

squared table (car price inventories)

CHAPTER 3 SYSTEM DESIGN

43
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.3.6.5: The activity diagram for constructing PSI graph, PSI table and chi-

squared table (lead records)

3.4 Database Design

The diagram above showed the design of the database. The car inventory

records were normalized and stored into three separate table which were “CarBrands”,

“CarModels”, and “Cars”. These “Cars” table also stored “Title”,

“CreatedTimestamp”, “PricePerMonth”, and “PredictedPrice” besides storing the car

specifications that were used to train the car price model. The extra columns were

only used within the web application itself to store relevant information that was

useful to the users. In addition, the “Leads” also stores the “Name”, “Email”,

“PhoneNo”, “DontCall”, and “PredictedScore” for the same purpose.

In the “Cars” table, the “UpdateAnalytics” column was a flag to indicate

whether the application users wanted to train the existing car price model with the

current inventory record. In other words, the records with the “UpdateAnalytics” set

to “Yes” contained truth and vice versa. In the “Leads” table, the records contained

truth if the “Status” was set to “Qualified” or “Disqualified”. The “Status” with the

value set to “Active” indicated the opposite case. In both tables, the

“CreatedTimestamp” column provided temporal information required to query the

most recent records starting from a specified time.

CHAPTER 3 SYSTEM DESIGN

44
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.5 Transfer Learning

In FYP I, an experiment was conducted, and it was observed that the initial

performance of both the adaptive random forest regressor and classifier were poorer

than the traditional random forest regressor and classifier. It could be said that the

practicability of the proposed web service was greatly reduced since even the model

performance had already been an issue at the first place. Hence in FYP II, the author

proposed two transfer learning algorithms for adaptive random forest regressor and

classifier, respectively.

Basically, in Layman’s terms, the algorithms copied the whole tree structure

and its trained weights from high-performant traditional random forest regressor and

classifier to the adaptive random forest regressor and classifier, in order to boost the

initial performance of these incremental tree learners. However, the transfer of the

whole tree structure was not as straightforward as it sounded since the source model

was a batch learner, and the destination model was an incremental learner.

3.5.1 Design Considerations

First, it was important to ensure that the prediction values represented the

same concept and theory for both decision trees and Hoeffding trees. In the case of

classifiers, the prediction value of the decision tree classifiers was an array of two

numbers. For the leaf nodes, the two numbers were used to predict the class label

using majority rule. For binary classification, if the left-side number was larger than

right-side number, then the predicted class label was negative and vice versa. Since

the prediction logic of Hoeffding tree classifiers was also like that, the prediction

value was directly copied to the newly created branch node's object and leaf node's

object into the Hoeffding tree classifiers during transfer learning.

In the case of regressors, the prediction value of decision tree regressors was

directly used as the predicted output. However, the prediction value could not be

directly copied to the newly created branch node's object and leaf node's object in the

Hoeffding tree regressors during transfer learning. It was because the Hoeffding tree

regressors did not directly store the prediction value. Instead, the Hoeffding tree

regressors used “river.stats.Var” class instance to store statistical information on the

target values that arrived at the current node. The statistics was then used to calculate

the prediction value. Thus, instead of copying prediction values, a “river.stats.Var”

CHAPTER 3 SYSTEM DESIGN

45
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

class instance must be initialised and updated with the target value of the samples that

arrived at the current node.

Second, it was important to ensure that the split conditions of the decision tree

and Hoeffding tree were the same. During the weights transfer, the split value in the

Hoeffding trees were overridden with value 0 whenever the corresponding split

feature was categorical. It was because split conditions were different for both Scikit-

learn implementation of decision tree and River implementation of Hoeffding tree.

For decision trees, the split value was fixed at 0.5 and the leaf node's traversal

happened when the feature value was less than 0.5. However, for Hoeffding trees, the

split value was set at a categorical value and the leaf node's traversal happens when

the feature value was exactly equivalent to the split value. Thus, it was assumed all

the nominal features were one-hot encoded, such that the Hoeffding trees’ split value

was always 0.5 for easier implementation of transfer learning.

Last, it was important to ensure that the adaptive random forests that had

undergone transfer learning could resume training just like the ones that were trained

from scratch. From the official source code, it was observed that the algorithm

updated the statistical information and splitters information based on the new samples

that arrived at the leaf node in each base learner. The statistical information was

important for leaf nodes to output predictions, while the splitters information was

important for leaf nodes to make split attempts during incremental learning. Hence,

the training must be conducted manually by calling the learning function, in this case,

the “learn_many” function to update the information in order for the pre-trained

adaptive random forests to work as expected.

3.5.2 Adaptive random forest classifier

Below showed the pseudocode of the transfer learning algorithm for adaptive

random forest classifier. The source code for transfer learning classifier algorithm

could be found at jupyter_notebooks/arf_cf_transfer_learning.py.

FOR each hoeffding_tree

 ENQUEUE root_node to queue

 WHILE queue is not empty

 DEQUEUE node from queue

CHAPTER 3 SYSTEM DESIGN

46
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Retrieve left and right child indexes from the corresponding node in

decision_tree

 Retrieve prediction_value from the corresponding node in decision_tree

 IF left child index is -1 (node is a leaf node)

 CALL learn_many to update the node's statistics and splitters

 ELSE

 Retrieve split feature and split value from the corresponding node in

decision_tree

 IF split feature is categorical

 Update the split value to 0

 CREATE branch_node and two child_node

 ATTACH the two child_node to the branch_node

 REATTACH branch_node to its parent to update object reference

 Update the statistics at the branch_node with the prediction_value

 ENQUEUE the two child_node into queue

Limitation

The transfer learning classifier algorithm had few limitations. First, the

algorithm only supported the transfer of weights between binary classifiers, but not

multiclass classifiers or multilabel classifiers. Second, the algorithm also only

supported the update of two specific splitters in Hoeffding tree. The two splitters were

the GaussianSplitter for the numerical splitter and NominalSplitterClassif for nominal

splitter. Third, the algorithm only supported the weights transfer to Hoeffding trees

that were configured to use majority class leaf prediction mechanism, but not Naive

Bayes mechanism or Naive Bayes Adaptive mechanism. Forth, the pre-trained

Hoeffding trees could only perform binary split, but not multi-way split. The

Hoeffding tree was enforced as such since Scikit-learn decision tree only performed

binary split.

In addition, the hyperparameters must be further limited to ensure the

compatibility of the River adaptive random forest classifier with SHAP tree explainer

from SHAP library. First, “disable_weighted_vote” must be set to False to disable

weighted vote prediction. It was because the model that was ingested into SHAP tree

explainers could not perform weighted vote prediction. If the hyperparameter was not

CHAPTER 3 SYSTEM DESIGN

47
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

correctly set, then the SHAP-ingested model would output different prediction values,

which caused the SHAP value calculation to be inaccurate.

Based on the limitation above, the hyperparameters of adaptive random forest

classifier were limited to the values as shown below:

Figure 3.5.2.1: The required hyperparameter of the adaptive random forest classifier

for the transfer learning to work as expected

3.5.3 Adaptive random forest regressor

Below showed the pseudocode of the transfer learning algorithm for adaptive

random forest regressor. The source code for transfer learning regressor algorithm

could be found at jupyter_notebooks/arf_rg_transfer_learning.py.

FOR each hoeffding_tree

 ENQUEUE root_node to queue

 WHILE queue is not empty

 DEQUEUE node from queue

 Retrieve left and right child indexes from the corresponding node in

decision_tree

 IF left child index is -1 (node is a leaf node)

 CALL learn_many to update the node's statistics and splitters

 ELSE

 Retrieve split feature and split value from the corresponding node in

decision_tree

 IF split feature is categorical

 Update the split value to 0

 CREATE branch_node and two children_node

 ATTACH the two children_node to the branch_node

CHAPTER 3 SYSTEM DESIGN

48
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 REATTACH branch_node to its parent to update object reference

 CALL update_parent_stats to update the branch_node's statistics

 ENQUEUE the two children_node into queue

Similar to the proposed transfer learning classifier algorithm, the proposed

transfer learning regressor algorithm had few limitations. First, the algorithm only

supported the transfer of weights between single output regressors, but not multi-

output regressors. A multi-output regressor was a regressor that predicted more than

one numerical variable using the same set of features. Second, the algorithm also only

supported the statistics update of two specific splitters in Hoeffding tree. The two

splitters were the “EBSTSplitter” for the numerical splitter and “NominalSplitterReg”

for nominal splitter. Third, the algorithm only supported the weights transfer to

Hoeffding trees that were configured to use target mean leaf prediction mechanism,

but not model mechanism or adaptive mechanism. Fourth, the pre-trained Hoeffding

trees must only perform binary split, but not multi-way split. The reason that the

Hoeffding tree was enforced as such was because the scikit-learn decision tree only

performed binary split.

In addition, the hyperparameters must be further limited to ensure the

compatibility of the River adaptive random forest regressor with SHAP tree explainer

from SHAP library. First, the “disable_weighted_vote” must be set to False to disable

weighted vote prediction. Second, the “aggregation_method” must be set to mean. It

was because the model that was ingested into SHAP tree explainers outputted

prediction values by averaging the equally weighted predictions across all base

learners. If these two hyperparameters were not correctly set, the SHAP-ingested

model would output different prediction values, which caused the SHAP value

calculation to be inaccurate.

Based on the limitation above, the hyperparameters of adaptive random forest

regressor were limited to the values as shown below:

CHAPTER 3 SYSTEM DESIGN

49
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.5.3.1: The required hyperparameter of the adaptive random forest regressor

for the transfer learning to work as expected

3.5.4 Performance Improvement

In River library, the adaptive random forest classifiers and regressors only

implemented “learn_one” but did not implement any similar function like

“learn_many” to learn a small subset of samples at the same time. Hence, the author

vectorized the numerical operations inside the “learn_one” using Numpy to provide

some performance boost. Besides, the author also used Joblib to enable process-based

parallelism. The tree weight transfers between ensembles were broken down into

smaller tasks. For each small task, a process was spawned to transfer weights from a

decision tree to a Hoeffding tree.

CHAPTER 3 SYSTEM DESIGN

50
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.6 Model Tree Weight Extraction

 For initializing Tree SHAP explainer, the function internally extracted the tree

weights from an API-specific tree models before storing the information in the

“TreeEnsemble” class instance. The function directly supported the weights extraction

of tree models from commonly used API like Scikit-learn and XGBoost. However,

the function did not directly support the weight extraction of adaptive random forest

regressor and classifier from River API. Instead, the function accepted a Python

dictionary that stored the tree weights which were “children_left”, “children_right”,

“features”, “thresholds”, “node_sample_weight”, and “values”. Thus, the tree weights

must be manually extracted into a dictionary.

 Below showed the pseudocode of extracting the tree weights of adaptive

random forest regressor and adaptive random forest classifier into a dictionary. The

algorithm was validated as mentioned in Section 5.3.

INIT arf_dict

INIT arf_dict["internal_dtype"]

INIT arf_dict["input_dtype"]

INIT arf_dict["objective"]

INIT arf_dict["tree_output"]

INIT arf_dict["base_offset"]

FOR each hoeffding_tree

 ENQUEUE (root_node, 0) to queue

 WHILE queue is not empty

 DEQUEUE (node, node_index) from queue

 RESET flig flag to False

 INIT a dictionary named hoeffding_dict

 IF node is a child node

 Update hoeffding_dict

 ELSE IF node is a parent node

 IF node is a NumericBinaryBranch class instance

 split_threshold = node.threshold

 ELSE IF node is a NominalBinaryBranch class instance

 split_threshold = node.value

 IF split_threshold is 1

 SET flip flag to True

CHAPTER 3 SYSTEM DESIGN

51
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 split_threshold = 0.5

 node_index = node_index + 1

 left_child_index = node_index

 IF flip

 ENQUEUE (right_child_node, left_child_index) to queue

 ELSE

 ENQUEUE (left_child_node, left_child_index) to queue

 node_index = node_index + 1

 right_child_index = node_index

 IF flip

 ENQUEUE (left_child_node, right_child_index) to queue

 ELSE

 ENQUEUE (right_child_node, right_child_index) to queue

 Update hoeffding_dict

3.6.1 Design Considerations

 First, it was important to validate how to correctly perform the manual

extraction of the split feature and split value from the River models. In River API, the

“NumericBinaryBranch” class instance were used if the split feature was numerical

and the “NominalBinaryBranch” were used if the split feature was categorical. Based

on the official documentation, the split condition of “NumericBinaryBranch” was

shown in the image below. The split condition was exactly the same as the split

condition used by the Scikit-learn tree models.

Figure 3.6.1.1: The split condition of River tree models for numerical features

While the split condition of “NominalBinaryBranch” was shown in the image below:

Figure 3.6.1.2: The split condition of River tree models for categorical features

CHAPTER 3 SYSTEM DESIGN

52
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 It was discovered that the SHAP library used the split condition that was the

same as the one in the “NumericBinaryBranch” regardless of whether the feature was

numerical or categorical. Hence, some modifications must be made to ensure that the

extraction of the tree weights was done correctly given the difference in the split

conditions between SHAP library and River library.

 To solve this, the conversion logic was implemented as shown below. It was

assumed that all the nominal features were one-hot encoded when training the

adaptive random forest regressor and classifier, hence the value could only be either 0

or 1. If the split value was 0, then the split value was converted to 0.5. Else if the split

value was 1, then the split value was converted to 0.5. Since the split direction was

different, the left and right child of the current node was flipped. In other words, when

the split value was 1, flipping the left and right child of the current node would have

the same effect as if the split value was 0. Thus, the split value was also set to 0.5.

Figure 3.6.1.3: The split value conversion logic to ensure the correctness of the tree

weight extraction process

 There were other technical details required to be considered during the weight

extraction process. For example, the dictionary must contain the following key value

pairs when extracting the tree weights from the adaptive random forest classifier to

the dictionary. The author passed in the Scikit-learn random forest models into the

tree SHAP explainer to examine how the dictionary should be extracted. Put it simply,

it was just an API discovery process, and the details were not discussed here for

brevity. The discovery process was well-documented and could be found in

“jupyter_notebook/ FYP2_ARF_to_Dict_Validation.ipynb”.

CHAPTER 3 SYSTEM DESIGN

53
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.6.1.4: The mandatory key value pairs in the dictionary for the tree weight

extraction process to be successful

3.7 Tree SHAP

Tree SHAP could be used to review the individual model prediction, review

the individual model loss, review the model’s average prediction behaviour, evaluate

the model performance, and monitor drift. This section would discuss the plots that

were used to achieve these purposes. For brevity, the visualization and interpretation

plots were only discussed on car price dataset but not lead scoring dataset. It was

because both approaches and interpretations were similar. Please refer to

“jupyter_notebook/FYP2_Lead_Scoring_Explainer.ipynb” for the discussion of the

plots on lead scoring dataset.

3.7.1 Setup

There were two approaches to build a tree SHAP explainer which were tree

path dependent approach and interventional approach. The explainer using

interventional approach was much slower than tree path dependent approach as the

scaled linearly with the size of the provided background dataset. As a result,

tree_path_dependent approach was always used except for reviewing individual

model loss, evaluating model performance and monitoring drift. However, based on

the analysis and validation as mentioned in Section 5.4, only the tree SHAP explainer

with the interventional approach was used.

In the SHAP library, to initialize a tree SHAP explainer using interventional

approach to review the individual model prediction and review the model’s average

prediction behaviour, three conditions must be met as follows:

1. interventional approach must be used by setting feature_perturbation parameter to

“interventional”.

2. Background dataset must be provided when building the explainer. Scott

Lundberg, who was the author of the SHAP library, did not recommend providing

more than 1000 random background samples since it would be too slow if too

many samples were used. The number of background samples could be as little as

100.

3. The truth outputs must be provided when calculating the SHAP values.

CHAPTER 3 SYSTEM DESIGN

54
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 In the SHAP library, to initialize a tree SHAP loss explainer using

interventional approach to review the individual model loss, evaluate the model

performance, and monitor drift, the three aforementioned conditions above must be

met and also an additional parameter named “model_output” must be set to “log_loss”.

 The images below showed the initialization of the tree SHAP explainer and

the tree SHAP loss explainer for explaining car price dataset and lead scoring dataset,

respectively. The validation of these explainers was discussed in the Section 5.4.

Figure 3.7.1.1: The initialization of tree SHAP explainer and tree SHAP loss explainer

(Car price dataset)

Figure 3.7.1.2: The initialization of tree SHAP explainer and tree SHAP loss explainer

(Lead scoring dataset)

CHAPTER 3 SYSTEM DESIGN

55
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.7.2 Review Model’s Average Prediction Behaviours

Beeswarm plots

Using tree SHAP explainer, the SHAP values of each sample were calculated

and individually plotted as a single dot to form a dense data that is grouped by feature.

To prevent data points plotting on top of one another, random jittering effect was

applied to move the data points away from one another to prevent overlapping. As a

result, the dense data points looked like a beeswarm instead of a straight line.

Beeswarm plot could be used to visualize the feature importance and correlation for

each individual sample.

The x-axis showed the SHAP values while the y-axis showed the features. The

feature with the highest summed absolute SHAP values was displayed at the top,

followed by the next highest summed absolute SHAP values in a top-down fashion. A

scatterplot was drawn for each feature, where the feature value of each sample was

plotted as a point. The feature value was represented by the colour ranging from blue

to red. The more reddish the point's colour, the higher the feature value for that

sample. The opposite case was true for the bluish colour. The continuous colour scale

allowed the viewer to infer whether the feature was positively or negatively correlated

with the prediction output.

The image below showed the beeswarm plot for the car price dataset. Below

were some examples on how to interpret the beeswarm plot:

1. “Manufacture Year” was the most important feature in determining the price.

2. Features like “Manufacture Year”, “Width (mm)”, and “Peak Power Hp” were

positively correlated with car price. It was because most red points were

concentrated on the right side and most blue points were concentrated on the left

side.

3. Feature like “Direct Injection_Multi-Point Injected”, “Mileage”, and “Fuel

Type_Diesel” were negatively correlated with car price. It was because most red

points were concentrated on the left side and most blue points were concentrated

on the right side.

4. Higher “Manufacture Year” correlated with higher car price. The model predicted

high car price when the value of the “Manufacture Year” was high.

CHAPTER 3 SYSTEM DESIGN

56
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5. The “Direct Injection_Multi-Point Injected” feature negatively correlated with the

car price. The model predicted lower car price when the value of the category

value of “Direct Injection” was “Multi-Point Injected”. Note that the categorical

feature was formatted such that the categorical feature and its categorical value

were separated with an underscore.

Figure 3.7.2.1: Beeswarm plot (Car price dataset)

CHAPTER 3 SYSTEM DESIGN

57
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Feature importance bar plots

Using tree SHAP explainer, the SHAP values of each sample were calculated

and summed up by feature. Bar plot could be used to visualize the feature importance

and correlation by calculating the sum of the absolute SHAP values for each feature.

The x-axis showed the SHAP values and the y-axis showed the X features.

The feature with the highest summed absolute SHAP values was displayed at the top,

followed by the next highest summed absolute SHAP values in a top-down fashion.

The red bar represented positive correlation between the feature and the target while

the blue bar represented the negative correlation between the feature and the target.

Figure 3.7.2.2: Feature importance bar plots (Car price dataset)

The image above showed the feature importance bar plot for the car price

dataset. Below were some examples on how to interpret the plot:

Below were some examples on how to interpret the feature importance bar plot:

1. “Manufacture Year” was the most important feature in determining the price. It

was because “Manufacture Year” had the longest bar length.

2. Features like “Manufacture Year”, “Width (mm)”, and “Peak Power Hp” were

positively correlated with car price. It was because the bars were coloured in red.

CHAPTER 3 SYSTEM DESIGN

58
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Features like “Direct Injection_Multi-Point Injected”, “Mileage”, and “Fuel

Type_Diesel” were negatively correlated with car price. It was because the bars

were coloured in blue.

3.7.3 Evaluate Model’s Performances

Model loss bar plot

Using tree SHAP loss explainer, the SHAP loss value of each sample were

calculated. In every sample, the features with positive SHAP loss values increased the

prediction error while features with negative SHAP loss values decreased the

prediction error. According to Chuangxin Lin, a bar plot could be constructed to

visualize the summed positive/negative SHAP loss value across all features [17]. A

positive SHAP loss bar plot could provide information on which features contributed

the most model error, while a negative SHAP loss bar plot could provide information

on which features helped the most in reducing the model error.

To achieve better model performance, the data scientists should figure out

ways to reduce both the positive SHAP loss values and negative SHAP loss values for

as many samples as possible.

Positive SHAP loss bar plot

Below was one of the ways to interpret the positive SHAP loss bar plot:

1. “Manufacture Year” contributed the most errors in the car price predictions. Based

on the beeswarm plot and the feature importance bar plot, “Manufacture Year”

was also contributing the most values in the predicted car prices. This might

suggest that the model relied too heavily on this feature to predict the car price.

Further model inspection was required by the data scientists to investigate the

issue. The investigation was not covered since it was out of scope.

CHAPTER 3 SYSTEM DESIGN

59
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.7.3.1: Positive SHAP loss bar plot (Car price dataset)

Negative SHAP loss bar plot

Below was one of the ways to interpret the negative SHAP loss bar plot:

1. “Peak Power Hp” and “Manufacture Year” helped the most in reducing the model

error.

2. Combining the insights from the positive SHAP loss bar plot, “Manufacture Year”

was relevant in predicting car prices for some samples but not the others. Further

model inspection was required by the data scientists to investigate why

“Manufacture Year” was irrelevant in predicting those samples. The investigation

as not covered since it was out of scope.

 Note that the result was not contradictory. It was because the positive SHAP

loss bar plot only summed up positive SHAP values for each feature in each sample,

while negative SHAP loss bar plot only summed up negative SHAP values.

CHAPTER 3 SYSTEM DESIGN

60
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.7.3.2: Negative SHAP loss bar plot (Car price dataset)

3.7.4 Review Individual Model Predictions and Individual Model Losses

There were various plot types like waterfall plot, force plot, bar plot, decision

plot and more that were useful to provide explanation at a sample level. In

comparisons with other plot types, bar plot was chosen since the plot could present

the local explanation very clearly to the audience when the number of features

displayed was high.

The bar plot could visualize both SHAP values and SHAP loss values. In web

application, only SHAP values were visualized when the inventory managers and

sales employees requested for explanation on the individual model predictions. Both

SHAP values and SHAP loss values were visualized when the data scientists wanted

to review individual model losses by analysing which features contributed to the

prediction error and which features helped reducing the prediction error.

In the bar plots, the feature with the highest absolute SHAP values was

displayed at the top, followed by the next highest absolute SHAP values in a top-

down fashion. In both plots, the red bar represented positive SHAP values while the

CHAPTER 3 SYSTEM DESIGN

61
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

blue bar represented negative SHAP values. However, the red and blue bar presented

different meaning in both plots, respectively. For bar plot visualizing SHAP values,

the red bar meant the positive contribution of the feature to the difference between the

current predicted price and expected price, while the blue bar meant the negative

contribution. For bar plot visualizing SHAP loss values, the red bar meant that the

feature contributed to the prediction error while the blue bar meant that the feature

helped reducing the prediction error.

The following two plots provided examples on how to interpret the SHAP bar

plot and SHAP loss bar plot.

This plot below showed an accurate prediction. The data scientists could

derive more useful insights when comparing both bar plots side by side. For this

sample, “direct_injection_Multi-Point Injected” was the feature that contributed the

most in the car price prediction. Among the top ten features with the highest absolute

SHAP loss value, none of these features contributed to the errors in the car price

prediction.

CHAPTER 3 SYSTEM DESIGN

62
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.7.4.1: SHAP bar plot and SHAP loss bar plot showing accurate prediction

(Car price dataset)

This plot below showed an inaccurate prediction. For this sample,

“aspiration_Twin Turbo intercooled” and “peak_power_hp” were the top two features

that contributed the most in the car price prediction. Out of the top ten features with

the highest absolute SHAP loss value, the “manufacture_year”, “mileage”, and

“height_mm” were the only features that were not contributing to the errors in the car

price prediction. Since the current sample was the test sample, it was possible that the

model was not sufficiently trained with samples that represented this sample. It was

also possible that the sample was a drifted sample, errored sample, or a malicious

sample. Further investigation was required but the investigation was not covered since

it was out of scope.

Figure 3.7.4.2: SHAP bar plot and SHAP loss bar plot showing inaccurate prediction

(Car price dataset)

CHAPTER 3 SYSTEM DESIGN

63
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.7.5 Monitor Drifts

This section was discussed in the next section to avoid repetition.

3.8 Monitoring Drift

 There were two real-world scenarios when monitoring drifts. The first

scenario was that the test set contained the truth while the second scenario was that

the test set did not contain the truth. For the first scenario, the drift could be monitored

by visualizing the calculation of SHAP loss values for each feature. For the second

scenario, the drift could be monitored by performing statistical tests for each feature.

Two different samples were required to monitor the drift in both scenarios. The first

set of samples were the validation set that represented the expected distribution. The

validation set normally consisted of the offline data used in model training or older

online data. The second samples were the test set that represented recent online data

that might suffer from drift or data error. In this project, the validation set was fixed at

using model training dataset due to limited samples.

 The following sections discussed the techniques and the ways to visualize the

drift using the SHAP loss monitoring and statistical tests. The SHAP loss monitoring

function was validated in the Section 5.5.1, while the calculations of the PSI and the

chi-squared goodness of fit tests were validated in the Section 5.5.2.

CHAPTER 3 SYSTEM DESIGN

64
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.8.1 SHAP Loss Monitoring

The image below showed that the SHAP monitoring plot, that was

implemented by Scott Lundberg, was still in development and subjected to change as

of April 2022. The reviewed SHAP package version is 0.40.0. Hence, the author had

conducted an experiment to test the effectiveness of Lundberg’s model monitoring

plot against drift or data error, as mentioned in Section 5.5.1. The experiment results

showed that the preliminary function was not effective in raising alarms on gradual

drift and data error. Hence, the author added more statistical tests into the algorithm to

reduce the likelihood of having false negative alarms, even at the cost of higher

likelihood of having false positive alarms. The proposed function was also validated

as mentioned in Section 5.5.1.

Figure 3.8.1.1: The documentation of the Scott Lundberg’s SHAP loss monitoring

function in SHAP library 0.40.0

The pseudocode of the Lundberg’s function and other technical details could

be found in jupyter_notebooks/FYP2_Car_Price_Explainer.ipynb. Below showed the

pseudocode of the proposed SHAP loss monitoring function.

CHAPTER 3 SYSTEM DESIGN

65
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

LET shap_values_list[0] be shap_values for validation set

LET shap_values_list[1] be shap_values for evaluation set

LET features_list[0] be features for validation set

LET features_list[1] be features for evaluation set

LET start_index at the last sample of validation set

Concatenate the shap_values for both sets into a single list

Split the list into two partitions

WHILE number of samples at the next partition >= 1:

 Calculate the independent two-sample test and its p-value on SHAP loss mean

s difference on both partitions

 Update the smallest p-value that has seen so far

 Extend the first partition by 50 samples and shrink the next partition by 50 sa

mples

IF the smallest p-value <= 5%:

 Raise the alarm

ELSE:

 LET start_index at the last sample of validation set

 Concatenate the features for both sets into a single list

 Split the list into two partitions

 WHILE number of samples at the next partition >= 1:

 IF the feature_name is numerical:

 Calculate the Welch's t-test and its p-value on feature means difference o

n both partitions

 ELSE IF the feature_name is categorical:

 Calculate the chi-square goodness of fit test and its p-value on frequency

counts on both partitions

 Update the smallest p-value that has seen so far

 Extend the first partition by 50 samples and shrink the next partition by 50 s

amples

 IF the smallest p-value <= 5%:

 Raise the alarm

Plot the graph

There were few differences between the proposed function and the Lundberg's

function. First, the Lundberg's function expected a matrix of SHAP values and a

matrix of features. As a result, the user was forced to concatenate the values from

both (validation and evaluation) sets into one single array. In addition, there was no

function's parameter that inform the starting index of the monitoring process. As a

CHAPTER 3 SYSTEM DESIGN

66
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

result, the validation set was also partitioned and evaluated. Thus, the proposed

function was designed to expect a list of two matrices of SHAP values and also a list

of two matrices of features. The first matrix in the array represented the validation set

while the second one represented the evaluation set. The partitioning and monitoring

would start from the validation set.

Second, the Lundberg’s function only used features to extract the feature

names and converted the values into an array of colours for plotting the points. On the

other hand, the proposed function further utilized the feature values to reduce type II

error, even at the cost of having higher type I error. It was because the cost of type II

error was higher than type I error in model drift monitoring. For categorical features,

the chi-square goodness of fit test was calculated to check if the frequency counts in

the evaluation set matched with those in the validation set. For numerical features, the

Welch's t-test was calculated to check if the means difference in both sets were

statistically significant.

The plot below showed an example of the SHAP loss monitoring plot on

“Manufacture Year”. The presence of a vertical line that separated the two partitions

indicated that there was statistically significant mean difference between those

partitions.

Figure 3.8.1.2: An example of SHAP loss monitoring plot on “Manufacture Year” (Car

price dataset)

CHAPTER 3 SYSTEM DESIGN

67
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.8.2 Statistical test

 Statistical tests were conducted to compare the distribution of the features

between the validation set and the test set. Population Stability Index (PSI) was used

to compare distribution between numerical features and categorical features that had

10 or more categories. Chi-Square Goodness of Fit Test was used to compare

distribution between categorical features that have less than 10 categories. This

section described the methods used to visualize the drift monitoring result using these

statistical tests.

Population Stability Index (PSI)

 The table below visualized the calculation of the PSI. For each feature, the

data scientists could compare the relative frequencies between the (expected) train set

and the (observed) application data in each bin. The data scientists could also observe

the PSI value for each bin to identify which bin had drifted the most. For example,

based on the table below, the values in the bin [1.56, 2.63] experienced the most drift

with a PSI value of 10%. Finally, the formatted PSI table could be exported as a

HTML table to be used in the web application using Pandas API.

Figure 3.8.2.1: The visualization of PSI of “avg_page_view_per_visit” in tabular

format (Lead scoring dataset)

 Besides, the calculated PSI values could also be visualized in grouped bar

chart. The grouped bar chart enabled side-by-side comparison between expected and

observed relative frequency for each bin.

CHAPTER 3 SYSTEM DESIGN

68
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 3.8.2.2: The visualization of PSI of “avg_page_view_per_visit” using grouped

bar chart (Lead scoring dataset)

Chi-squared goodness of fit test

 The table below visualized the calculation of the chi-squared values. For each

feature, the data scientists could compare the expected count between the (expected)

train set and the (observed) application data in each category.

Figure 3.8.2.3: The visualization of chi-squared goodness of fit test of

“transmission_Manual” in tabular format (Car price dataset)

CHAPTER 4 SYSTEM IMPLEMENTATION

69
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 4 SYSTEM IMPLEMENTATION

4.1 Dataset

Car price dataset and lead scoring dataset were used to implement the lead

management module and the inventory management module, respectively.

4.1.1 Lead scoring dataset

The lead scoring dataset was used both as the application dataset and the

dataset to train the lead scoring model. The lead scoring dataset used was obtained

from Amrita Chatterjee’s published Kaggle dataset [18]. Most features were discarded

from the original dataset. It was because the theme of the lead scoring dataset was not

car dealership. Instead, the lead scoring dataset, in which the theme was online

education, was manually inspected and modified to change the theme to car

dealership.

The descriptions of each lead information were shown below. These columns

were kept since any lead scoring dataset would have these common lead attributes. In

the application dataset, additional columns which were name, email address, and

phone number were added to personally identify a lead. In the model training, the

target attribute was “Converted” while all the lead attributes below except “Do not

call” were used as the features. It was because “Do not call” did not have enough

positive samples. For further details on the dataset, please refer to

“FYP2_Lead_Scoring_Model_Training” notebook file.

Table 4.1.1.1: Lead scoring dataset description (Part I)

CHAPTER 4 SYSTEM IMPLEMENTATION

70
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 4.1.1.2: Lead scoring dataset description (Part II)

CHAPTER 4 SYSTEM IMPLEMENTATION

71
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.1.2 Car price dataset

The car price dataset was used both as the application dataset and the dataset

to train the car price model. The description of the car specifications was shown

below. The used car price data was scraped from https://www.carlist.my in 2021.

After data cleaning and pre-processing, the dataset consisted of 8,534 train samples

and 1,095 test samples. The dataset was split and stratified in advance to ensure that

every category exist in both train and test set. In the model training, the price was the

target variable while the rest of the car specifications except “model” were used as the

features. The “model” was not used since it consisted of more than 300 categories,

which slowed down the transfer learning process, model training process, and the

SHAP and the SHAP loss explaining process. For further details on the dataset, please

refer to “FYP2_Car_Price_Model_Training” notebook file.

No Feature Name Description Data type

1 manufacture_year Manufacturing year of the car Numeric

2 mileage The distance travelled by the car (in kilometer). Numeric

3 price The price of the car (in Ringgit Malaysia). Numeric

4 length_mm The length of the car in millimeter. Numeric

5 engine_cc The engine capacity of the car. Numeric

6 aspiration Type of aspiration in the car engine. Possible values

are Aspirated, Turbo intercooled, Twin-scroll turbo,

Turbocharged, Turbo supercharged intercooled, Twin

Turbo intercooled, Supercharged intercooled,

Supercharged.

Categorical

7 wheel_base_mm The wheel base of the car in millimeter. Numeric

8 width_mm The width of the car in millimeter. Numeric

9 direct_injection The direct injection in the car engine. Possible values

are Multi-Point Injected, Direct Injection, Carburettor

Single, Direct/Multi-point injection.

Categorical

Table 4.1.2.1: Car price dataset description (part I)

CHAPTER 4 SYSTEM IMPLEMENTATION

72
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

10 seat_capacity The number of available seats in the car. Numeric

11 peak_power_hp The horsepower/engine power of the car. Numeric

12 fuel_type The fuel type of the vehicle. Possible values are

Petrol - Unleaded (ULP), Diesel, Hybrid, Petrol -

Leaded.

Categorical

13 steering_type The steering type of the car. Possible values are Rack

and Pinion, Electronic Power Steering, Recirculating

Ball, Hydraulic Power, Worm, and Roller.

Categorical

14 assembled The location where the car is assembled. Possible

values are Locally Built, Official Import, Parallel

Import.

Categorical

15 height_mm The height of the car in millimeter. Numeric

16 peak_torque_nm The peak torque of the car engine in nanometer. Numeric

17 doors The number of doors that the car has. Numeric

18 brand The car brand. Possible values are Toyota, Honda,

Proton, Perodua, Nissan, BMW, Mercedes-Benz,

Mazda, Peugeot, Ford, Volkswagen, Mitsubishi, Kia,

Volvo, Hyundai, MINI, Porsche, Subaru, Lexus, Land

Rover, Renault, Jaguar.

Categorical

19 colour The main colour of the car. Possible values are White,

Black, Silver, Grey, Blue, Red, Gold, Brown, -,

Bronze, Purple, Orange, Green, Maroon, Yellow,

Beige, Pink, Magenta.

Categorical

20 model The model of the car. There are 360 possible values

such as Alza, Myvi, Triton, Almera, CX-5, Ranger,

XV, Iriz, HR-V, CR-Z. Run

car_train['model'].value_counts() to see all the values.

Categorical

21 transmission Either the car is Automatic or Manual. Categorical

Table 4.1.2.2: Car price dataset description (part II)

CHAPTER 4 SYSTEM IMPLEMENTATION

73
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2 Jupyter Notebook Artifacts

Since the proposed online AI learning and monitoring system were novel,

Jupyter notebooks were created to present the technical details that otherwise would

be impossible to document inside the web service’s source itself. Jupyter notebooks

were created to document the experimentation, validation, and testing of the system.

Then, the full-proof source code was transferred to the web service and deployed in

Docker containers.

4.2.1 Setup

There was an easy way and hard way to open the IPYNB files. For the easy was,

the viewers could directly open and view the notebooks that were converted to HTML

without any setup. If the viewers would like to execute the IPYNB files, following the

steps.

1. First, the machine must be installed with Anaconda or Miniconda. The author

would use Miniconda in Windows operating system for the setup process.

2. Open the Anaconda or Miniconda prompt. Execute the two commands below to

create two conda environments. One of the conda environment was used to work

with River library and another conda environment was used to work with SHAP

library. It was because as of April 2021, SHAP library and River library had

conflicting dependencies on NumPy library. SHAP library requires NumPy

version of 1.21.5 while River library requires NumPy version of 1.22.3. The

import of both libraries will fail if the respective requirements are not met. Please

use any name that the viewers saw fit.

>> conda env create -n arf_exp_env python=3.9

>> conda env create -n arf_exp_conda_env python=3.9

Figure 4.2.1.1: The command that created the conda environment

CHAPTER 4 SYSTEM IMPLEMENTATION

74
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3. Execute the commands below to activate the specified conda environment. First,

activate the arf_exp_env conda environment.

>> conda activate arf_exp_env

>> conda activate arf_exp_conda_env

4. Execute the commands below to install the required Python dependencies. The

requirement text file could be found in jupyter_notebook folder. After that,

execute the next command to check that there were no conflicting Python

dependencies. This command was handy to check future dependencies issues as

more third-party libraries were installed.

>> pip install pip install -r river_requirements.txt

>> pipdeptree

5. Perform the same step for the arf_exp_conda_env environment. Use

shap_requirements.txt to install the Python dependencies instead. Execute the

command below to exit the current conda environment.

>> conda deactivate

6. As documented in the next section, the notebooks required either one of the conda

environment to execute. The setup could stop here if the viewers were okay with

manually switching from one conda environment to another to execute the

notebooks. However, if the views would like to have convenient switching of

conda environments within the Jupyter notebook itself, please proceed with the

following setup.

CHAPTER 4 SYSTEM IMPLEMENTATION

75
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.1.2: The UI showing the convenient switching of conda environments within

the Jupyter notebook

7. First, activate the arf_exp_env conda environment. Execute the command below

to create the UI option to switch to River environment within the Jupyter

notebook itself.

>> python -m ipykernel install --user --name arf_conda_env --display-name "Python

(River Env)"

Figure 4.2.1.3: The command that registered the kernel into the Jupyter notebook

8. Deactivate the current environment and activate the arf_conda_exp_env conda

environment. Execute the command below to create the UI option to switch to

SHAP environment within the Jupyter notebook itself.

>> python -m ipykernel install --user --name arf_conda_exp_env --display-name

"Python (SHAP Env)"

9. Run the command below to ensure that the command output looked like the one

shown below. The setup process had been completed.

CHAPTER 4 SYSTEM IMPLEMENTATION

76
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.1.4: The command that validated the setup of environment switching

CHAPTER 4 SYSTEM IMPLEMENTATION

77
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.2.2 Execution Sequence

The table below showed the execution sequence of the Jupyter notebook files. Please

follow the execution sequence if the viewers would like to execute all the notebook

files from scratch.

The notebook should be executed in the sequence shown below.

1. Execute the files in the order specified below to run the experiment that validated

the algorithm that transferred training weights from Scikit-learn random forest

classifier to River adaptive random forest classifier.

a) FYP2_ARF_CF_Transfer_Learning.ipynb

b) FYP2_ARF_CF_Performance_Analysis.ipynb

2. Execute the files in the order specified below to run the experiment that validated

the algorithm that transferred training weights from Scikit-learn random forest

regressor to River adaptive random forest regressor.

a) FYP2_ARF_RG_Transfer_Learning.ipynb

b) FYP2_ARF_RG_Performance_Analysis.ipynb

3. The table below summarized the execution order for the rest of the IPYNB files.

IPYNB file Prerequisite of IPYNB file

FYP2_ARF_to_Dict_Validation

FYP2_ARF_to_Dict_Conversion.ipynb

FYP2_Car_Price_Explainer FYP2_Lead_Scoring_Model_Training

FYP2_ARF_to_Dict_Conversion

FYP2_Seed_Data

FYP2_Lead_Scoring_Explainer FYP2_Car_Price_Model_Training

FYP2_ARF_to_Dict_Conversion

FYP2_Seed_Data

FYP2_Explainer_Validation Execute all the files as specified in the second

and third rows. FYP2_Model_Monitoring_without_Truth

Table 4.2.2.1: The execution sequence of the remaining IPYNB files

CHAPTER 4 SYSTEM IMPLEMENTATION

78
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4. To avoid complications, just execute all the IPYNB files as shown below:

a) FYP2_ARF_CF_Transfer_Learning.ipynb

b) FYP2_ARF_CF_Performance_Analysis.ipynb

c) FYP2_ARF_RG_Transfer_Learning.ipynb

d) FYP2_ARF_RG_Performance_Analysis.ipynb

e) FYP2_Lead_Scoring_Model_Training.ipynb

f) FYP2_Car_Price_Model_Training.ipynb

g) FYP2_ARF_to_Dict_Conversion.ipynb

h) FYP2_ARF_to_Dict_Validation.ipynb

i) FYP2_Seed_Data.ipynb

j) FYP2_Explainer_Validation.ipynb

k) FYP2_Lead_Scoring_Explainer.ipynb

l) FYP2_Car_Price_Explainer.ipynb

m) FYP2_Model_Monitoring_without_Truth.ipynb

4.2.3 Description of IPYNB files

 Below was the description of each IPYNB files. Only the important

documentation and the source code were extracted and discussed in the relevant

report’s sections.

1. FYP2_ARF_CF_Transfer_Learning.ipynb

a) Purpose: A transfer learning algorithm was proposed to improve the offline

training performance of the adaptive random forest classifier by transferring

tree weights from fitted Scikit-learn traditional random forest classifier to

River adaptive random forest classifier. The notebook described the algorithm

pseudocode, improvements, limitations, and potential improvements. The

transfer learning algorithm was also validated to ensure its correctness.

b) Conda Environment: arf_conda_env (River environment)

c) Execution Time: 20 minutes

2. FYP2_ARF_CF_Performance_Analyswas.ipynb

a) Purpose: An experiment was conducted to verify that:

o The pre-trained River adaptive random forest classifier’s classification

performance was at least good or better than River adaptive random

CHAPTER 4 SYSTEM IMPLEMENTATION

79
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

forest classifier that was trained from scratch in offline settings and

online settings.

o The performance of the adaptive random forest classifier was at least

good or better than traditional random forest classifier in offline

settings.

o The performance of the adaptive random forest classifier was at least

good or better than traditional random forest classifier under the

influence of data drift or concept drift.

o Offline settings were scenarios where the dataset was full available for

training and inference. The online settings were scenarios where the

dataset was incrementally available over time and the drift occurrence

was possible.

b) Conda Environment: arf_conda_env (River environment)

c) Execution Time: 25 minutes

3. FYP2_ARF_RG_Transfer_Learning.ipynb

a) Purpose: A transfer learning algorithm was proposed to improve the offline

training performance of the adaptive random forest regressor by transferring

tree weights from fitted Scikit-learn traditional random forest regressor to

River adaptive random forest regressor. The notebook described the algorithm

pseudocode, improvements, limitations, and potential improvements. The

transfer learning algorithm was also validated to ensure its correctness.

b) Conda Environment: arf_conda_env (River environment)

c) Execution Time: 3 minutes

4. FYP2_ARF_RG_Performance_Analyswas.ipynb

a) Purpose: An experiment was conducted to verify that:

o The pre-trained River adaptive random forest regressor’s performance

was at least good or better than River adaptive random forest regressor

that was trained from scratch in offline settings and online settings.

o The performance of the adaptive random forest regressor was at least

good or better than traditional random forest regressor in offline

settings.

CHAPTER 4 SYSTEM IMPLEMENTATION

80
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

o The performance of the adaptive random forest regressor was at least

good or better than traditional random forest regressor under the

influence of data drift or concept drift.

o Offline settings were scenarios where the dataset was full available for

training and inference. The online settings were scenarios where the

dataset was incrementally available over time and the drift occurrence

was possible.

b) Conda Environment: arf_conda_env (River environment)

c) Execution Time: 10 minutes

5. FYP2_Lead_Scoring_Model_Training.ipynb

a) Purpose: The web application required a machine learning model to assign a

lead score. The first part described the data cleaning and processing process on

the lead scoring dataset. The second part trained the models and evaluated

their performance on the dataset. Even though all the models’ performance

were highly similar, the pre-trained adaptive random forest classifier was

chosen instead of the traditional random forest classifier or the adaptive

random forest classifier that was trained from scratch. It was because pre-

trained adaptive random forest classifier yielded more stable and accurate

predictions as compared to the adaptive random forest classifier that was

trained from scratch. Traditional random classifier was not chosen since it did

not support incremental learning.

b) Conda Environment: arf_conda_env (River environment)

c) Execution Time: 5 minutes

6. FYP2_Car_Price_Model_Training.ipynb

a) Purpose: The web application required a machine learning model to predict

car price. The first part described the data cleaning and processing process on

the car price dataset that was scrapped from Carlist.my website. The second

part trained the models and evaluated their performance on the dataset. Even

though all the models’ performance were highly similar, the pre-trained

adaptive random forest regressor was chosen instead of the traditional random

forest regressor or the adaptive random forest regressor that was trained from

CHAPTER 4 SYSTEM IMPLEMENTATION

81
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

scratch. It was because pre-trained adaptive random forest regressor required

less memory as compared to the adaptive random forest regressor that was

trained from scratch. Traditional random regressor was not chosen since it did

not support incremental learning.

b) Conda Environment: arf_conda_env (River environment)

c) Execution Time: 5 minutes

7. FYP2_Seed_Data.ipynb

a) Purpose: The lead scoring dataset and car price dataset that were used in

model evaluation were converted to records. The records were inserted to the

application database through Entity Framework Core migration in the C# web

application.

o To test the lead scoring prediction, the lead status of half of the test

samples were set to “Active” and the lead status of another half

samples were set to “Qualified” or “Disqualified”. The value of the

lead status was “Qualified” if the samples’ target class was positive,

while the value of the lead status was “Disqualified” if the samples’

target class was negative. In the web application, the records with the

active lead status were considered to have no truth outputs while the

records with the qualified or disqualified lead status were considered to

have truth outputs. In other words, the deployed lead scoring model

would not train on lead records with the active lead status.

o To test the car price prediction, half of the test samples were set to

“enable car price analytics” while another half samples were set to

“disable car price analytics”. In the web application, the deployed car

price model would not train on the car inventory records with value of

update analytics that was set to 0.

b) Conda Environment: arf_conda_env (River environment)

c) Execution Time: 1 minute

8. FYP2_ARF_to_Dict_Conversion.ipynb

a) Purpose: The River adaptive random forest regressor and classifier could not

be directly ingested into SHAP tree explainer since it was not supported.

Instead, SHAP tree explainer supported the ingestion of Python dictionary

CHAPTER 4 SYSTEM IMPLEMENTATION

82
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

containing common tree weights which were split feature, split threshold,

node’s prediction value and more. Thus, the tree weights must be manually

extracted from both the regressor and classifier to a Python dictionary,

respectively. The notebook showed the proposed River tree weights extraction

process and its pseudocode.

b) Conda Environment: arf_conda_env (River environment)

c) Execution Time: 2 minutes

9. FYP2_ARF_to_Dict_Validation.ipynb

a) Purpose: The notebook checked the correctness of the tree weights extraction

from the River adaptive random forest regressor and classifier. To do so, the

SHAP tree explainer objects were initialized with the Scikit-learn random

forest regressor and classifier. During the initialization, the SHAP tree

explainer would internally extract the tree weights into a class instance called

TreeEnsemble from the ingested Scikit-learn model object. After the

initialization, all the attributes of TreeEnsemble instance were accessed and

reviewed to inform the proposed River tree weight extraction process on how

to correctly format the weights.

b) Conda Environment: arf_conda_exp_env (SHAP environment)

c) Execution Time: 10 minutes

10. FYP2_Explainer_Validation.ipynb

a) Purpose: The Tree SHAP library implemented by SHAP library was not

expected to explain the predictions and model losses for incremental tree

learners like adaptive random forest regressor and adaptive random forest

classifier, and vice versa. An experiment was conducted to investigate why the

SHAP values calculated by Tree SHAP explainer using the weights extracted

from River tree models were faulty. The experimental result was able to prove

that the implementation logics of River and SHAP library crashed with one

other, causing the SHAP values calculation to be inaccurate. To resolve this,

the tree SHAP explainer using interventional approach was used instead of the

tree path dependent approach.

b) Conda Environment: arf_conda_exp_env (SHAP environment)

c) Execution time: 5 minutes

CHAPTER 4 SYSTEM IMPLEMENTATION

83
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

11. FYP2_Car_Price_Explainer.ipynb

a) Purpose: The SHAP tree explainer and SHAP tree loss explainer were

initialized by using the dictionary with the tree weights extracted from

adaptive random forest regressor. First, the explainers were validated to ensure

the correctness of the River tree weights extraction process. Then, the

notebook proposed the most efficient way to visualize global model

explanation and local model explanation. The beeswarm plot and feature

importance bar plot were used to visualize the SHAP values globally; the

model loss bar plot and the model monitoring plot were used to visualize the

SHAP loss values globally for model monitoring and debugging; the bar plot

was used to visualized SHAP values locally. The examples on the

interpretation of each plot were documented to inform the users and scientists.

In addition, the improved version of model monitoring function was proposed

to reduce the likelihood of false negative alarms. It is because false negative

alarms were expensive in model monitoring and debugging. An experiment

was conducted to compare the effectiveness of the proposed model monitoring

function and the original model monitoring function in detecting feature drifts

or data errors.

b) Conda Environment: arf_conda_exp_env (SHAP environment)

c) Execution Time: 10 minutes

12. FYP2_Lead_Scoring_Explainer.ipynb

a) Purpose: The purpose of this notebook was the same with

FYP2_Car_Price_Explainer.ipynb, but in the context of lead scoring dataset.

The only difference was that no experiment was conducted to compare the

effectiveness of the model monitoring functions.

b) Conda Environment: arf_conda_exp_env (SHAP environment)

c) Execution Time: 5 minutes

13. FYP2_Model_Monitoring_without_Truth.ipynb

a) Purpose: The purpose of this notebook was to document the drift monitoring

process on used car application data that did not contain truth. Either

CHAPTER 4 SYSTEM IMPLEMENTATION

84
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Population Stability Index (PSI) or Chi-squared goodness of fit test was used

to detect the drift for each feature. The notebook documented how the

algorithm decided to use PSI or Chi-squared goodness of fit test in checking

feature drift based on factors like feature types and number of categories. Then,

the notebook also documented the calculation, validation, and visualization of

both drift calculation method. Testing was also conducted to check that both

the calculation methods were working as expected.

b) Conda Environment: arf_conda_exp_env (SHAP environment)

c) Execution Time: 3 minutes

4.2.4 Description of Python libraries

 The IPYNB notebooks also required the Python libraries to execute. The

source code that was going to use in the web service was transferred to a standalone

file while its documentation was in the IPYNB notebook. Note that the exact function

name and its parameter values would not be discussed since it was well-documented

as shown in diagram below. The pseudocode of some important implementations like

transfer learning were discussed in Chapter 3.

CHAPTER 4 SYSTEM IMPLEMENTATION

85
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.2.4.1: The example showing a well-documented Python function.

Besides, all the Python files were implemented by the author. Credits were

explicitly stated if the source code was directly copied from somewhere else.

Figure 4.2.4.2: The example showing the source code that is credited to educative.io

website author.

The list below showed the brief descriptions of each Python file:

1. arf_cf_transfer_learning.py: This file consisted of the functions to perform

transfer learning from Scikit-learn random forest classifier to River adaptive

random forest classifier.

2. arf_rg_transfer_learning.py: This file consisted of the functions to perform

transfer learning from Scikit-learn random forest regressor to River adaptive

random forest regressor.

3. arf_to_dict_conversion.py: This file consisted of the two functions that extracted

the tree weights from the River adaptive random forest regressor and classifier,

respectively.

4. arf_training.py: This file consisted of the functions that incrementally trained the

River adaptive random forest regressor and classifier with new samples.

CHAPTER 4 SYSTEM IMPLEMENTATION

86
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5. data_preprocessing.py: This file consisted of a class that preprocessed the datasets.

6. explainer_visualization.py: This file consisted of the functions to construct the

visualizations of SHAP values and SHAP loss values using diagrams like

beeswarm plots, feature importance bar plot, positive and negative model loss bar

plot and more.

7. feature_dist_monitoring.py: This file consisted of the functions to check the

feature drift using PSI and chi-squared goodness of fit test. The file also contained

functions that formatted and constructed the PSI table, PSI plots and chi-squared

goodness of fit test.

8. general_utils.py: This file consisted of the functions to serialize and deserialize the

dictionaries containing the extracted tree weights in order for the dictionaries to be

JSON-convertible.

9. rf_cf_performance_eval.py: This file consisted of the functions to compare and

visualize the performance of the tree regressors using table and graphs.

10. rf_rg_performance_eval.py: This file consisted of the functions to compare and

visualize the performance of the tree classifiers using table and graphs.

CHAPTER 4 SYSTEM IMPLEMENTATION

87
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 Cloud Database

An Azure SQL database instance was created to serve as the database for both

web applications and web services. The database setup was separated into two stages.

The first setup was done before setting up both web application and web service. The

second setup was done after the web application had been published to the Azure App

Service.

4.3.1 Setup Part I

1. Navigate to the https://portal.azure.com/#create/Microsoft.SQLDatabase to create

a new SQL database in Azure portal.

2. For brevity, tables were constructed to document the options selected for each

field.

Field Value

Subscription Use any subscription that viewers preferred.

Resource group Use any group that viewers preferred.

Database name UsedCarDealserhipDatabase

Server Click “Create new” and refer to the next table

for the UI options.

Want to use SQL elastic pool? No

Compute + storage General Purpose. Gen5, vCores, 32 GB

storage, zone redundant disabled. Click

“Configure database” and refer to the next

two tables for the UI options.

Backup storage redundancy Geo-redundant backup storage

Table 4.3.1.1: UI options in “Create SQL Database”

Field Value

Server name used-car-dealership-utar-fyp-1800224

Location (US) East US

Authentication method Use SQL authentication. Enter the username and password as well.

Table 4.3.1.2: UI options in “Create SQL Database Server”

CHAPTER 4 SYSTEM IMPLEMENTATION

88
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Field Value

Service tier General Purpose (Scalable compute and

storage options)

Compute tier Serverless

Hardware Configuration Gen5 up to 40 vCores, up to 120 GB memory

Max vCores 2

Min vCores 0.5

Auto-pause delay Enable auto-pause. Set to 1 hour.

Data max size (GB) 1 GB

Would you like to make this database zone

redundant?

No

Table 4.3.1.3: UI options in the “Compute + storage” section in “Create SQL

Database”

3. Click “Next: Networking”. Configure the options as shown below. The fields that

were not mentioned should be left as defaults.

Field Value

Network connectivity Public endpoint

Allow Azure services and resources to access this server No

Add current client IP address Yes

Table 4.3.1.4: UI options in the “Networking” tab in “Create SQL Database”

4. Click “Next: Security”. Click “Not now” in “Enable Microsoft Defender for SQL”.

Leave the remaining options as default.

5. Click “Next: Additional settings”. Select “None” in “Use existing data”. Leave the

remaining options as default. Finally, click “Review + create” before clicking

“Create”.

CHAPTER 4 SYSTEM IMPLEMENTATION

89
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3.2 Setup Part II

1. Proceed with the following setup only after the web application had been

published to the Azure App Service.

2. Navigate to the homepage of the Azure SQL server instance. In the navigation

menu on the left, click “Query editor (Preview)”.

Figure 4.3.2.1: The UI of the Azure SQL database query editor’s login page

3. Enter the username and password under the SQL server authentication. In this

project, the auto-pause delay was enabled to save the author’s resources since

private Azure account was used. It might take 1 or 2 minutes for the dataset to

resume. Then, re-enter the credentials again.

4. Copy the content from the FYP2_Database_Procedure.txt and paste into the editor

as show in the image below. Then, click “Run” to execute the query. Refresh the

database and four procedures should be created by opening the “Stored

Procedures” folder as shown in the left side of the image.

5. Execute the “EXEC <procedure name>” command to test the procedures. The

query should return a JSON string.

CHAPTER 4 SYSTEM IMPLEMENTATION

90
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.3.2.2: The UI of the Azure SQL database instance homepage.

4.3.3 Procedures

Procedures were created to allow easy retrieval of specific subset of data by

just calling the EXEC syntax. A total of four procedures were created to retrieve the

car inventory records with truth, car inventory records without truth, lead records with

truth, and lead records without truth. Only the records with truth were queried to

review the models’ overall prediction behaviour and the models’ performance. Both

records with and without truth were queried to detect and monitor drifts or data errors.

In “Cars” table along with its parent tables, the unused columns in both

procedures were row unique identifiers, “Cars.Title”, “Cars.CreatedTimestamp”,

“Cars.UpdateAnalytics”, “Cars.PricePerMonth”, “Cars.PredictedPrice”, and

“CarModels.Name”. The “AssignedPrice” column, which was the truth of the car

inventory records, was only retrieved in the “get_car_inventories_with_truth”

procedure. If the “Cars.UpdateAnalytics” was “Yes”, then the truth was available.

The opposite case was true when the Cars.UpdateAnalytics” was “No”.

 In “Leads” table, the unused columns in both procedures were “ID”, “Name”,

“Email”, “PhoneNo”, “DontCall”, “PredictedScore”, and “CreatedTimestamp”. The

“Status” column, which was the truth of the lead records, was retrieved in the

“get_lead_info_with_truth” procedure. If the “Status” was “Qualified” or

“Disqualified”, then the truth was available. The opposite case was true when the

“Status” was “Active”.

CHAPTER 4 SYSTEM IMPLEMENTATION

91
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The image below showed an example of the four procedures. It was worth

noticing that only the columns that were used as features and truth column were

retrieved. The query result was converted into JSON when the “FOR JSON PATH”

syntax was used. One important thing to note was that the procedure should be

retrieving most recent data by setting a configurable starting date when filtering the

“CreatedTimestamp” column. In this project, the starting date was fixed to '2022-04-

01' since the data was not available in real-time.

Figure 4.3.3.1: The procedure that retrieved the lead information that had truth

CHAPTER 4 SYSTEM IMPLEMENTATION

92
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.4 Web Service Artifacts

As mentioned earlier, the SHAP library was incompatible with River library.

Thus, two Docker containers were created for the services that only used SHAP

library and the services that only used River library. Docker Compose was used to

initialize and run these Docker containers so that these containers appear to work as a

single web service. The setup and implementation were described in the next two

sections.

4.4.1 Setup

1. The setup must be done after the web application had been published to the Azure

App Service and the second stage of setup had done for the Azure SQL database.

2. First, the machine must be installed with Docker Desktop to build, run, pull, and

push the Docker images and containers. The author used Docker Desktop in

Windows operating system in this setup.

3. Open the Docker Desktop Application to start the Docker engine.

4. Copy the web service source code to a desired location.

5. Before building the image, the “docker-compose.yml” file required the connection

string of the Azure SQL database in order to query the application data needed for

explaining the models and their losses.

6. To do this, navigate to the Azure SQL database instance homepage, then click on

“Show database connection strings” as shown below.

Figure 4.4.1.1: The UI of the Azure SQL database instance homepage.

7. Then, click on the “ODBC” tab. Only copy the connection string as highlighted

below. Add the password at the end of the connection string.

CHAPTER 4 SYSTEM IMPLEMENTATION

93
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4.1.2: The UI that showed the ODBC database connection string.

8. Paste the database connection string to the location as shown below.

Figure 4.4.1.3: The paste location of the database connection string.

9. The building of the Docker contains began now. Type “cmd” in the search bar to

open the command prompt.

CHAPTER 4 SYSTEM IMPLEMENTATION

94
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4.1.4: Screenshot that showed on how to open the command prompt right

from the file explorer

10. In the command prompt, execute the command below. The initial building time

would be at most 20 minutes depending on the internet connection.

>> docker compose build

Figure 4.4.1.5: The command output of the “docker compose build”

11. Next, execute the command “docker compose up” to run the multi-container

Docker application in the local machine. Add the “-d” flag to omit the display of

application’s running logs.

>> docker compose up

Figure 4.4.1.6: The command output of the “docker compose up”

12. To check the web service was running as expected, use tools like Postman to send

a POST request to http://localhost:5000/lead/update/model. The POST response

CHAPTER 4 SYSTEM IMPLEMENTATION

95
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

must be returned as shown below. The remaining tests of web service were

discussed in Section 6.1. The request body were also shown below.

{

 "dont_email": "No",

 "dont_call": "No",

 "occupation": "Currently Not Employed",

 "received_free_copy": "Yes",

 "avg_page_view_per_visit": 9.0,

 "total_site_visit": 9.0,

 "total_time_spend_on_site": 208.0,

 "converted": 0

}

Figure 4.4.1.7: The screenshot showing Postman making a POST request

13. The setup process was completed. To shut down the application, execute the

command “docker compose down” at the root directory of the source code.

Unfortunately, the author was ashamed to declare that he was incapable of

deploying to the Azure App service the due to inexperience with Docker and Azure

cloud services. The deployment of multi-container Docker containers was not as

CHAPTER 4 SYSTEM IMPLEMENTATION

96
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

straightforward as deploying a single Docker image. Please deduct the grade

accordingly.

4.4.2 Description of artifacts

docker-compose.yml

Figure 4.4.2.1: The screenshot showing docker-compose.yml

Below showed some important configuration in docker compose.

1. ports: Nginx HTTP server was used as the production server for running Flask

RESTful API. By default, Nginx HTTP server listened for incoming connection

on port 80 in the container. Since port 80 was used in the local machine, port 5000

and port 5001 were used to map the incoming connections to the port 80 in the

container, respectively.

2. restart: Define the service to restart if encountered an error. In this project, the

error could happen when there was connection timeout when querying the

application data. This was because the cloud database instance was paused to save

cost since individual account was used.

3. depends_on: Configure the shap-web-service to start after the river-web-service

had started. It was because shap-web-service was the public facing API and

required the incremental training functionality in the backend facing API.

4. Please refer to the Docker official documentations for other configurations.

CHAPTER 4 SYSTEM IMPLEMENTATION

97
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Dockerfile for SHAP web service

Figure 4.4.2.2: The Dockerfile for SHAP web service

Based on the image above:

1. The Docker image used was from an online community developer named tiangolo.

The image was a Debian system that had pre-configured with uWSGI and Nginx

for running production Flask applications. The image abstracted away the

technical difficulties to configure uWSGI and Nginx from scratch.

2. The SHAP web service required a Microsoft ODBC driver to query the

application data from the cloud instance. First, the installation information and

Microsoft’s public keys were installed to the image. Then, msodbcsql17 was

installed into the image which was the Microsoft ODBC Driver 17 for SQL Server.

3. Finally, the source code was copied and the Python dependencies were installed

accordingly.

Dockerfile for River web service.

CHAPTER 4 SYSTEM IMPLEMENTATION

98
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.4.2.3: The Dockerfile for River web service

The Dockerfile for River web service was similar to the SHAP web service. No driver

was installed since River web service did not need the data.

Web Service’s Artifacts

This section explained the important artifacts found in the SHAP web service. Not

all details were discussed but the code was already well-documented.

A) Python third-party libraries

The three main Python libraries were used in the SHAP web service, which were

SHAP, Flask-RESTful, and Plotly. First, SHAP library was used since the program

required tree SHAP explainers and tree SHAP loss explainers. Second, a Flask

extension named Flask-RESTful was used to speed up the development of RESTful

API. Third, Plotly library was used to construct plots. Plotly was chosen since it was

built on top of Plotly JavaScript library (plotly.js). This meant that the plot could be

constructed and configured in Python (plotly.py) before converting to JavaScript code

embedded in HTML standalone file or div element. The JavaScript code enhanced

user experience with a rich set of functionalities such as image downloading, zooming,

and data hovering with little or no configuration. Open the notebook HTMLs to see

the plots in action.

B) Car Price Model and Lead Scoring Model

 The car price model used was the pre-trained adaptive random forest regressor

implemented by the River library. The lead scoring model used was the pre-trained

adaptive random forest classifier implemented by the River library. {Do Ref on how

to find other details}

CHAPTER 4 SYSTEM IMPLEMENTATION

99
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

C) Initialization

During the initialization of the web service:

a) The car price model training set and the lead scoring model training set were

loaded. Both training set were used to (1) detect feature drift when there were no

truth values and (2) to initialize the tree SHAP loss explainers to explain model

loss, respectively.

b) The data pre-processors were loaded to pre-process incoming data and queried

data.

c) The dictionaries containing the extracted weights from pre-trained car price model

and pre-trained lead scoring model were loaded to serve as the initial model in the

web service. The dictionaries would get updated from time to time as POST

requests were made to train the River models in the River Web Service. It was

important to note that the River model objects were not in SHAP web service

since the River library could not be loaded with SHAP library. Instead, only the

dictionaries representing the latest models were stored.

d) With the loaded data, pre-processors and model dictionaries loaded, the program

could initialize the tree SHAP explainers, tree SHAP loss explainers, and the

feature drift detector.

D) Database Connection

To establish the database connection to the Azure SQL server:

a) “ConnectionManager” class and “Queryable” class was created to manage the

connection. The class was directly copied from the Microsoft official GitHub

repository [19]. Please refer to the repository for better explanations.

E) SHAP API Design

The SHAP web service’s API was designed as shown below. The API design

was briefly mentioned since it had been explained in detail in the system design.

SHAP web service was the public facing API, while the River web service was the

backend facing API. The River web service only provided one functionality, which

was to incrementally trained the car price and the lead scoring model.

CHAPTER 4 SYSTEM IMPLEMENTATION

100
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1) URL: '/car/global/review/model', '/lead/global/review/model'

Method: GET

Description: HTTP GET requests could be made to review the models’ overall

prediction behaviour. As mentioned in the system design, the web service queried the

data that had truth values, calculated the SHAP values based on the data, and finally

constructed the beeswarm plot and the feature importance bar plot. The response was

a JSON object that contained the two plots that were exported in HTML, respectively.

2) URL: '/car/global/review/performance', '/lead/global/review/performance'

Method: GET

Description: HTTP GET requests could be made to review the models’ performance.

The web service queried the data that had truth values, calculated the SHAP loss

values based on the data, and finally constructed the positive and negative SHAP loss

bar plot. Unfortunately, the author was ashamed to declare that the running metrics

functionality was not implemented. The response was a JSON object that contained

the two plots that were exported in HTML, respectively.

3) URL: '/car/local/review/prediction', '/lead/local/review/prediction'

Method: POST

Description: HTTP POST requests could be made to review the individual car price

prediction and lead scoring prediction. The request body consisted of a single car

inventory record or a single lead scoring record. The web service then calculated the

SHAP value on the record, and finally constructed the SHAP bar plot. The response

was a JSON object that contained the SHAP bar plots that was exported in HTML.

4) URL: '/car/local/review/model_loss', '/lead/local/review/model_loss'

Method: POST

CHAPTER 4 SYSTEM IMPLEMENTATION

101
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Description: HTTP POST requests could be made to review the model losses in both

car price model and lead scoring model. The request body consisted of a single car

inventory record or a single lead scoring record. The web service then calculated the

SHAP value and SHAP loss value on the record, and finally constructed the SHAP

bar plot and the SHAP loss bar plot. The response was a JSON object that contained

the two plots that were exported in HTML, respectively.

URL: '/car/update/model', '/lead/update/model'

Method: POST

Description: HTTP POST requests could be made to incrementally train the car price

regressor and the lead scoring classifier with new samples, respectively. The request

body consisted of a single car inventory record or a single lead scoring record. The

SHAP web service the forwarded the same record to the River web service for

incremental training via POST requests. The River web service would completed the

training and the weights of the models would be extracted to the dictionaries. Finally,

the dictionaries were returned as the POST responses and the SHAP web service

would update the tree SHAP explainer and tree SHAP loss explainer using these

dictionaries.

URL: '/car/global/review/drift/truth', '/lead/global/review/drift/truth'

Method: GET

Description: HTTP GET requests could be made to detect and monitor the drift on the

application data that had truth values. The web service queried the data that had truth

values, calculated the SHAP loss values on the data, used the pre-computed SHAP

loss values from validation dataset, checked if there was any significant difference in

in SHAP loss mean values or in feature mean values for each feature, before finally

constructed the SHAP loss monitoring plot if an alarm was triggered for any feature.

The response was a JSON object that contained a list of alarms and a list of SHAP

loss monitoring plots constructed for each feature that had drifted or was problematic.

CHAPTER 4 SYSTEM IMPLEMENTATION

102
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Note that, in this project, the validation set was fixed to use the model training dataset

due to low availability of samples (< 10,000 samples for both datasets).

Endpoint: '/car/global/review/drift/no_truth', '/lead/global/review/drift/no_truth'

Method: GET

Description: HTTP GET requests could be made to detect and monitor the drift on the

application data that had no truth values. The web service queried the data that had no

truth values, used PSI or chi-squared goodness of fit test to check for distribution

difference between the validation data and the application data, before finally

constructed the PSI plot, PSI table, or chi-squared table if an alarm was triggered for

any feature. The response was a JSON object that contained a list of PSI plots, a list

of PSI tables, and list of chi-squared constructed for features that had drifted or was

problematic. Note that, in this project, the validation set was fixed to use the model

training dataset due to low availability of samples (< 10,000 samples for both

datasets).

Summarization of API endpoints in SHAP and River web services

For clarification, the table below categorized all the API endpoints into the system

submodules.

System submodules API endpoints

Online AI learning system Inventory management:

'/car/update/model'

Lead management:

'/lead/update/model'

AI monitoring system Inventory management:

'/car/global/review/drift/truth'

'/car/global/review/drift/no_truth'

'/car/global/review/performance'

'/car/local/review/model_loss'

Lead management:

'/lead/global/review/drift/truth'

CHAPTER 4 SYSTEM IMPLEMENTATION

103
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

'/lead/global/review/drift/no_truth'

'/lead/global/review/performance'

'/lead/local/review/model_loss'

Explainable AI in predictive analytics Inventory management:

'/car/global/review/model'

'/car/local/review/prediction'

Lead management:

'/lead/global/review/model'

'/lead/local/review/prediction'

Table 4.4.2.1: The summarization of API endpoints in SHAP and River web services

CHAPTER 4 SYSTEM IMPLEMENTATION

104
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.5 Web application artifacts

The author used ASP.NET Core MVC to develop the inventory management

module and the lead management module in the web application. The author also used

Entity Framework Core migration to seed the application data to the Azure SQL

database instance. Below was the setup of the web application from importing the

project to deploying to Azure App Service. In this setup, the author used Visual

Studio 2019 in Windows operating system.

4.5.1 Setup

Importing Project

1. Open Visual Studio. Click “Open a project or solution”.

Figure 4.5.1.1: The starting menu of Visual Studio 2019

2. Import the sln file as shown in the image below.

Figure 4.5.1.2: Screenshot that demonstrated the import of sln file

3. In Visual Studio, click “Extensions > Manage Extensions”. Ensure that Microsoft

Library Manager was installed.

CHAPTER 4 SYSTEM IMPLEMENTATION

105
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.1.3: Screenshot showing that the Microsoft Library Manager was installed

4. In the Solution Explorer, right-click on “libman.json” and then click on “Restore

Client-Side Libraries”.

5. Open a command prompt inside the “car_dealership_web_app”. The diagram

below showed one way of doing so. In the file explorer, type “cmd” in the search

bar and click enter.

Figure 4.5.1.4: Screenshot showing on how to launch command prompt straight from

the file explorer

6. Ensure that the ending file path was

“car_dealership_web_app/car_dealership_web_app” not

“car_dealership_web_app”.

Figure 4.5.1.5: Screenshot showing the right file path to execute the “npm install”

command

7. Execute the command “npm install”.

CHAPTER 4 SYSTEM IMPLEMENTATION

106
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.1.6: The command output of the “npm install”

8. Then, go back to Visual Studio. Right-click on “gulpfile.js” and then click on

“Task Runner Explorer”.

Figure 4.5.1.7: The UI location of “Task Runner Explorer”

9. Click “Refresh”.

Figure 4.5.1.8: The UI location of Refresh

10. Ensure that webpack is bind to “Before Build”. If not, right click on “webpack”,

click “Bindings”> “Before Build”.

CHAPTER 4 SYSTEM IMPLEMENTATION

107
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.1.9: The screenshot showing the webpack was bind to “Before Build”

Figure 4.5.1.10: The screenshot showing on how to bind the webpack to “Before Build”

11. Then, right click “Tools” and click “NuGet Package Manager” > “Package

Manager Console”.

12. In the Package Manager Console, execute the two commands below.

>> add-migration InitialCreate

>> update-database

Figure 4.5.1.11: The command output of adding and applying the migration to the

local database

CHAPTER 4 SYSTEM IMPLEMENTATION

108
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

13. Run the web application as shown in the diagram below.

Figure 4.5.1.12: Screenshot that demonstrated on how to run the web application

Cloud Deployment

1. Navigate to https://portal.azure.com/#create/Microsoft.WebSite to create an Azure

Web App instance in Azure portal, if the build was successful. For brevity, tables

were constructed to document the options selected for each field.

Field Value

Subscription Use any subscription that viewers preferred.

Resource group Use any group that viewers preferred.

Database name UsedCarDealserhipDatabase

Name used-car-dealership-fyp2-1800224

Publish Code

Runtime stack .NET 5

Operating System Windows

Region East US

Sku and size Free F1 Shared infrastructure, 1 GB memory

Zone redundancy Disabled

Table 4.5.1.1: UI options in “Create Web App”

2. Click “Next > Deployment”. Disable the continuous deployment. Click “Next >

Network (preview)” and disable the network injection. Click “Next > Monitoring”

and disable the application insights. Click “Review + create” before clicking

“Create”.

3. If the build was successful, right click on the “CarDealershipWebApp”. Then,

click “Publish…”.

CHAPTER 4 SYSTEM IMPLEMENTATION

109
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.1.13: UI location of the “CarDealershipWebApp” as highlighted in bold

text

4. Click the “Azure App Service (Windows)” in the specific target navigation menu.

Figure 4.5.1.14: UI location of the “Azure App Service (Windows)”

5. Click on the Azure App service instance created just now. Then, click “Next”.

CHAPTER 4 SYSTEM IMPLEMENTATION

110
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.1.15: Screenshot showing the name of the Azure App Service instance

6. Click “Publish (generates pubxml file)” before clicking “Finish”.

Figure 4.5.1.16: UI location of the “Publish (generates pubxml file)”

7. In the newly generated pubxml file, click “More actions” and then click “Edit”.

Figure 4.5.1.17: Screenshot showing the UI location of the Edit Button.

8. Ensure that the publish settings matched with the image shown below.

Figure 4.5.1.18: Screenshot used to validate the web app’s publish settings

9. Click on the “CarDealershipContext” and replace the local database connection

string with the connection string of the Azure SQL database created just now.

CHAPTER 4 SYSTEM IMPLEMENTATION

111
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.1.19: Screenshot showing the configuration of the database

10. To retrieve the connection string, navigate to the Azure SQL database instance

homepage, then click on “Show database connection strings” as shown below.

Figure 4.5.1.20: The UI of the Azure SQL database instance homepage.

11. Then, click on the “ODBC” tab. Only copy the connection string as highlighted

below. Add the password at the end of the connection string.

CHAPTER 4 SYSTEM IMPLEMENTATION

112
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.1.21: The UI that showed the ODBC database connection string.

12. Copy the same connection string to the “CarDealershipContext” under the “Entity

Framework Migration” section to seed the application data to the cloud database.

Figure 4.5.1.22: Screenshot showing the configuration of the entity framework

migrations

13. Finally, click “Publish” and the web application would be deployed to the Azure

App Service.

Figure 4.5.1.23: Screenshot showing that the deployment was successful

14. Navigate to the website to check that the application worked as expected. The

functionality testing was discussed in Section 6.2.

4.5.2 Description of artifacts

In the web application, only the important parts of the artifacts were discussed

since the implementation was quite common and could be found in online tutorials

from the internet.

Models

CS File Name
File location

relative to
Description

CHAPTER 4 SYSTEM IMPLEMENTATION

113
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Models

CarBluePrint

LeadBluePrint

./Interfaces CarBluePrint and LeadBluePrint were the blueprint

classes that converted the HTML-encoded values to the

column values that were saved in the database. For

example, if the users selected value 5 in the HTML drop-

down menu in the “Aspiration” field. Then, the

application server would map the value 5 to “Twin Turbo

intercooled”, which was the value stored in the database.

CarViewModel

LeadViewModel

./ViewModels CarViewModel and LeadViewModel were the classes

that used the “ViewModel” pattern to only extract the

necessary attributes that used to display to the user

interface. Furthermore, these classes also enforce the

constraint and format of the field values to ensure that the

values persisted to the database were not faulty so that

the models would not get corrupted from training with

erroneous data.

Car . Car, CarBrand, and CarModel were the classes that

contained the car specifications that were needed by the

car price model to perform inference. Additionally, Car

also contained some extra attributes like “Title” and

“PricePerMonth” that the inventory manager would like

to manage.

Lead . Lead was the class that contained the lead attributes that

were needed by the lead scoring model to assign lead

score. Additionally, the class also contained some extra

attributes like “Name” and “PhoneNo” that the sales

employees would like to manage.

SeedData . SeedData was the class that seeded the car inventory

records and lead records in order to populate both the

local database and the cloud database.

Table 4.5.2.1: The summary of Model classes

Controllers

Both the CarsController and the LeadsController classes defined the following

controller actions:

CHAPTER 4 SYSTEM IMPLEMENTATION

114
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Controller actions Description

/Cars

/Leads

The controller actions retrieved the up to 50 records from the database

to display in a tabular format per request. Additionally, the GET

parameters like “sortOrder” and “searchString” were added to allow

the application users to search records, sort columns in order, and

control the number of records displayed.

/Cars/Details

/Leads/Details

The controller actions returned the record where its unique identifier

was equivalent to the GET parameter named “id”.

/Cars/Create

/Leads/Create

For HTTP GET requests, the controller actions returned the record

with empty values. For HTTP POST requests, the controller actions

inserted the record to the database.

/Cars/Edit/<ID>

/Leads/Edit/<ID>

For HTTP GET requests, the controller actions returned the record

where its unique identifier was equivalent to the GET parameter named

“id”. For HTTP POST requests, the controller actions updated the

record in the database.

/Leads/Delete/<ID>

/Leads/Delete/<ID>

For HTTP GET requests, the controller actions returned the record

where its unique identifier was equivalent to the GET parameter named

“id”. For HTTP POST requests, the controller actions deleted the

record from the database.

Table 4.5.2.2: The summary of Controller classes

The basic functionalities of both lead management module and inventory

management module were implemented. Unfortunately, the author was extremely

ashamed that he did not implement the controller actions to connect the web service

functionalities to the web application. Please deduct the grade accordingly.

TypeScript and Webpack

 Various third-party libraries like Bootstrap, jQuery and TypeScript were

required and loading the libraries individually on the client’s browser would slow

down network performance. Instead, Webpack was used to compile the client-side

TypeScript codes and their dependencies into one or more single optimised, minified,

and portable versions of JavaScript codes. It could be understood that Webpack

played an important role as a linker in compiling the TypeScript codes with

dependencies into one single executable JavaScript code.

CHAPTER 4 SYSTEM IMPLEMENTATION

115
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In the artifacts, tsconfig.json and webpack.config.js were created to configure

the compiler to compile the TypeScript files into a bundled JavaScript file. First, the

TypeScript modules were exported in the main.ts in the TypeScripts folder.

Figure 4.5.2.2: Screenshot showing the syntax to export the TypeScript modules

After the compilation, the compiled JavaScript file would be stored in the

folder wwwroot/js. In the shared template named Views/Shared/_layout.cshtml, the

JavaScript modules were then loaded depending on the page type. For example, the

CarAjax JavaScript module was loaded when creating or editing car records to

automatically populate the car models input field as soon as the application users

selected a corresponding value in the “car brand” input field using AJAX.

CHAPTER 4 SYSTEM IMPLEMENTATION

116
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.5.2.3: Screenshot showing the syntax to export the JavaScript modules based

on the page type

CHAPTER 5 EXPERIMENT AND VALIDATION

117
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 5 EXPERIMENT AND VALIDATION

5.1 Transfer Learning

A total of three tests were conducted to validate the transfer learning

algorithms. The implementation of the test codes for the adaptive random forest

classifier and regressor could be found at FYP2_ARF_CF_Transfer_Learning.ipynb

and FYP2_ARF_RG_Transfer_Learning.ipynb, respectively.

The first test was conducted to compare the total number of nodes of each base

learners between the adaptive random forests (ARF) and the traditional random

forests (TRF). The transfer learning algorithm was successful if the total number

nodes in both models was the same. The number of nodes can be compared by getting

the attributes for the respective base learners. The table below on the left proved that

the transfer learning classifier algorithm was successful while the table below on the

right proved that the transfer learning regressor algorithm was successful.

Figure 5.1.1: The tables that were used to compare the number of nodes between TRF

and ARF

CHAPTER 5 EXPERIMENT AND VALIDATION

118
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The second test was conducted to compare the tree structures of each base

learners between the adaptive random forests (ARF) and the traditional random

forests (TRF). The test was conducted to ensure that the nodes were placed at the right

place in the ARF. The test code outputted the placements of each node for ARF into a

log file named arf_debug.txt, while the placements of each node for TRF was found at

trf_debug.txt. As shown in the image below, both file contents must look the same to

prove the right placements of all nodes. Each record in the file represented the

location of the current internal node, its children nodes' indexes, and the number of

samples arrived at the current internal node. For example, if the node location was

“001”, then the node was the right child of the left child of the left child of the root

node.

Figure 5.1.2: The comparison between trf_debug.txt and arf_debug.txt for validating

the transfer learning classifier algorithm

CHAPTER 5 EXPERIMENT AND VALIDATION

119
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The third test was conducted to ensure that the adaptive random forests that

had undergone transfer learning could resume training just like the ones that were

trained from scratch. The source code for training the adaptive random forest

classifier and regressor could be found at jupyter_notebooks/arf_training.py.

Figure 5.1.3: Screenshot showing that the incremental training of pre-trained adaptive

random forest classifier was successful

Figure 5.1.4: Screenshot showing that the incremental training of pre-trained adaptive

random forest regressor was successful

CHAPTER 5 EXPERIMENT AND VALIDATION

120
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2 Performance Evaluation

In the following sections, experiments were conducted to measure the

performance of models in offline and online settings. In offline settings, the offline

data was fully available and could be used to train both adaptive random forest

models and traditional random forest models. While in online settings, the online data

was incrementally available and thus could only be used to train adaptive random

forest models.

For classification, an experiment was conducted to evaluate the overall

performance of the adaptive random forest classifier that had undergone transfer

learning. In the experiment, the offline and online performance between the pre-

trained adaptive random forest (ARF) classifier and the traditional random forest

(TRF) classifier were compared. Since the tree weights of the TRF classifier was

transferred to the pre-trained ARF classifier, the performance similarity was analysed

to validate the transfer learning classifier algorithm. Besides, a new adaptive random

forest classifier was created and trained from scratch to serve as the baseline

performance for the pre-trained adaptive random forest classifier. The purpose of the

experiment was to prove that:

1. The pre-trained ARF classifier's classification performance was at least good or

better than ARF classifier that was trained from scratch in both offline settings

and online settings.

2. The performance of the pre-trained ARF classifier was at least good or better than

TRF classifier during initial training.

3. The performance of the ARF classifier was better than TRF classifier under the

influence of data drift or concept drift.

 Then, the lead scoring model selection was conducted among these three

models by analysing the model performance and the tree structure.

 The exact same setup was also applied when conducting the experiment for

tree ensemble regression models. After conducting the experiment, the car price

model selection was conducted among the three models by analysing the model

performance and the tree structure.

CHAPTER 5 EXPERIMENT AND VALIDATION

121
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Setup required to visualize model performance over time

Both experiments computed the running metrics to visualize the performance

of ARF classifier and TRF classifier over time. The running metrics were calculated

in four different stages, which were (1) offline train settings, (2) offline test settings,

(3) online train settings, and (4) online test settings. By separating the calculation of

running metrics into stages, the graph could show more useful information by

comparing performance across stages.

Below showed the calculation of the running metrics in detail:

1. Traditional random forest model

• For every increment of 100 samples, get the predictions from the beginning up

to the current increment and update the running metrics.

2. Pre-trained adaptive random forest model

• Offline train set: Running metrics were not available since the weights were

directly transferred. Thus, the calculation method was the same as traditional

random forest.

• Online train set: The running metrics were directly retrieved from the model

training process. The running metrics were updated for every 100 training

samples.

• Offline test and online test set: The calculation method was the same as

traditional random forest.

3. Adaptive random forest model that was trained from scratch

• Offline train and online train set: The running metrics were directly retrieved

from the model training process. The running metrics were updated for every

100 training samples.

• Offline test and online test set: The calculation method was the same as

traditional random forest.

CHAPTER 5 EXPERIMENT AND VALIDATION

122
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2.1 Experimental dataset: AGRAWAL dataset

An experiment was conducted to evaluate the performance of adaptive random

forest classifier and traditional random forest classifier with and without the influence

of drift. A robust concept drift generator from scikit-multiflow API was used to

simulate drift in the experiment. The AGRAWAL stream generator from the same

API was used to supply the data to the concept drift generator for generating the

drifted stream. In addition, the perturbation parameter was set to 0.10 to introduce

some noise into the data.

According to the official documentation, the image below showed the features

generated by the AGRAWAL stream generator.

Figure 5.2.1.1: Screenshot showing the features that were generated by the AGRAWAL

stream generator

To test the models’ performance without drift, the 30,000 samples were

generated using the API to represent the offline data. To test the models’ performance

with drift, the 30,000 samples were generated using the API to represent the online

data. 5,000 out of 30,000 samples were chosen as the test set to evaluate the

generalization performance of the models in online and offline settings.

CHAPTER 5 EXPERIMENT AND VALIDATION

123
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Offline Training Performance

The graph below compared the training performance between TRF classifier

and ARF classifier in the offline setting. It could be inferred that the transfer learning

process was successful as the ROC AUC score of both TRF classifier and pretrained

ARF classifier differed no more than 3%. There was a slight difference in the

performance since the leaf prediction mechanisms in the TRF classifier and the ARF

classifier were different.

On the other hand, the training performance of ARF classifier that was trained

from scratch was the lowest with the ROC AUC score difference of 5% as compared

to pretrained ARF classifier. However, the result could not guarantee the superiority

of the transfer learning classifier algorithm for other datasets, as shown in the next

section.

Figure 5.2.1.2: The offline training performance of tree classifiers (AGRAWAL dataset)

Offline Generalization Performance

The graph below compared the generalization performance between the TRF

classifier and the ARF classifier in the offline setting. The graph again proved that

transfer learning process was successful as the ROC AUC score of both TRF

classifier and pretrained ARF classifier differed no more than 1%. On the other hand,

the generalization performance of ARF classifier that was trained from scratch was

CHAPTER 5 EXPERIMENT AND VALIDATION

124
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

the lowest with a ROC AUC score difference of 2% as compared to pretrained ARF

classifier.

Figure 5.2.1.3: The offline generalization performance of tree classifiers (AGRAWAL

dataset)

Online Training Performance

Model type Offline Train ROC AUC Online Train ROC AUC Difference

TRF 0.932 0.680 -0.252

Pre-trained ARF 0.960 0.833 -0.127

ARF trained from scratch 0.908 0.755 -0.153

Table 5.2.1.1: The comparison between offline and online training performance for

tree classifiers (AGRAWAL dataset)

The graph below compared the training performance between TRF classifier

and ARF classifier in the online setting. Due to drift, all the models' performance

were affected. The train performance of TRF classifier had the most impact with a

drop of 25% as compared to offline one. The pre-trained ARF classifier's online train

performance dropped about 13% while the performance for ARF that was trained

from scratch dropped about 15%. It could be deduced that ARF algorithm was more

robust against drift as compared to TRF algorithm.

CHAPTER 5 EXPERIMENT AND VALIDATION

125
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Among the ARF models, the training performance of pre-trained ARF

classifier was better than ARF that was trained from scratch with a ROC AUC score

difference of 8%. However, the result again could not guarantee the superiority of the

transfer learning algorithm for other datasets. It is because the transfer learning

algorithm might not give any significant performance improvement for some datasets,

which was discussed in the next section.

Figure 5.2.1.4: The online training performance of tree classifiers (AGRAWAL dataset)

Online Generalization Performance

Model type Offline Test ROC AUC Online Test ROC AUC Difference

TRF 0.930 0.641 -0.289

Pre-trained ARF 0.922 0.899 -0.023

ARF trained from scratch 0.901 0.800 -0.101

Table 5.2.1.2: The comparison between offline and online generalization performance

for tree classifiers (AGRAWAL dataset)

The graph below compared the online generalization performance between

TRF classifier and ARF classifier. The table above displayed the difference between

offline and online generalization performance of each model. Due to drift, the online

generalization performance of TRF classifier dropped about 29% as compared to

offline one. The pre-trained ARF classifier's online generalization performance

CHAPTER 5 EXPERIMENT AND VALIDATION

126
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

dropped about 2% while the performance for ARF classifier that was trained from

scratch dropped about 10%. It could be deduced that ARF algorithm was robust

against drift but not TRF algorithm.

On the other hand, the online generalization performance of the pre-trained

ARF classifier was better than ARF classifier that was trained from scratch with a

difference of 10%. Again, the result could not guarantee the superiority of the transfer

learning algorithm for other datasets, which was discussed in the next section.

Figure 5.2.1.5: The online generalization performance of tree classifiers (AGRAWAL

dataset)

Overfitting Issues

Based on the table below, the difference of ROC AUC in the offline and

online set was calculated by subtracting the training ROC AUC score with the testing

ROC AUC score for each set. The result below showed that the ARF classifiers were

free from overfitting issue when training with online samples.

Model type Diff ROC AUC in Offline set Diff ROC AUC in Online set

TRF 0.932 - 0.930 = 0.002 0.680 - 0.641 = 0.039

Pre-trained ARF 0.960 - 0.922 = 0.038 0.833 - 0.899 = -0.066

ARF trained from scratch 0.908 - 0.901 = 0.007 0.755 - 0.800 = -0.045

Table 5.2.1.3: The table that checked the overfitting issues for tree classifiers

(AGRAWAL dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

127
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Visualizing Model Performance over Time

Figure 5.2.1.6: The performance of tree classifiers over time (AGRAWAL dataset)

Based on the graph above:

In the offline setting:

1. The performance of pre-trained ARF classifier was very close to TRF classifier

since the training weights was obtained from the same model.

2. The TRF classifier was better than ARF classifier that was trained from scratch in

terms of the train performance and generalized performance. This was because:

a) TRF algorithm had the complete statistics for every attempt to split a leaf node,

including the root node. This allowed the TRF algorithm to choose the best

split every single time.

b) ARF algorithm did not have the full statistics to decide on a split, nor the

foreknowledge on how big the train data was. Thus, the algorithm was

designed to split on limited number of samples using hyperparameters like

grace period and Hoeffding bound. Upon splitting the root node, for each

subsequent split attempt, the split decision was suboptimal since the first

splitting was also suboptimal.

CHAPTER 5 EXPERIMENT AND VALIDATION

128
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In the online setting:

1. TRF model's performance degraded over time when encountering drifted data.

Manual model retraining was required to replace with a new TRF model.

However, the performance for ARF models remained stable since model

retraining was automatically taking place in the background. The algorithm would

replace a base learner with the correspond background model if the base learner's

performance degraded for some time.

2. The performance of ARF classifier that was trained from scratch slowly recovered

when train on drifted sample, up to a point where the performance of both ARF

models were similar at the end. This showed that ARF classifier that was trained

from scratch required more training samples to get the same performance as pre-

trained ARF classifier.

3. The ARF algorithm could generalize well to new data. It was because the online

test performance of both ARF models was equivalent or higher than online train

performance.

In short, the pre-trained ARF classifier generally had the best performance in

both offline and online settings. Transfer learning from TRF classifier to ARF

classifier combined the advantages of both TRF and ARF algorithms. The TRF

algorithm provided batch learning that provided best split information to the pre-

trained ARF classifier. While the ARF algorithm provided incremental learning that

was robust to drift.

CHAPTER 5 EXPERIMENT AND VALIDATION

129
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2.2 Application dataset: Lead scoring dataset

The performance of traditional random forest (TRF) classifier, pre-trained

adaptive random forest (ARF) classifier, and adaptive random forest (ARF) classifier

that was trained from scratch were evaluated on the lead scoring dataset. The model

with the best overall performance would be deployed to the web service. 5219

training samples were used as the offline training set while 1305 samples were used as

the offline test set. The information of the lead scoring dataset could be found in

Section 4.1.1.

Offline Training Performance

Figure 5.2.2.1: The offline training performance of tree classifier (Lead scoring

dataset)

The graph above compared the train performance between TRF classifier and

ARF classifier in the offline setting. The result exactly matched with the one

conducted in the experiment. It could be inferred that the transfer learning process

was successful as the ROC AUC scores of both TRF classifier and pretrained ARF

classifier were the same. The performance was the same since the prediction value of

every node was directly copied from the TRF classifier to the pretrained ARF

classifier. On the other hand, the training performance of ARF classifier that was

trained from scratch was similar to the performance pretrained ARF classifier with a

negligible difference of 1%.

CHAPTER 5 EXPERIMENT AND VALIDATION

130
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Combining the results that were observed from the last section, it could be

inferred that the initial performance boost provided by transfer learning varied from

one dataset to another. Regardless, transfer learning classifier algorithm was useful in

situations where the performance was absolutely critical (e.g., data science

competitions, banking system).

Offline Generalization Performance

Figure 5.2.2.2: The offline generalization performance of tree classifier (Lead scoring

dataset)

The graph above compared the generalization performance between TRF and

ARF in the offline setting. The output again proved that transfer learning process was

successful as the ROC AUC score of both TRF and pretrained ARF was the same.

The generalization performance of ARF that was trained from scratch was as good as

the pretrained ARF with a negligible ROC AUC score difference of 1%.

Model type Diff ROC AUC in Offline set

TRF 0.834 - 0.813 = 0.021 (2.1%)

Pre-trained ARF 0.834 - 0.813 = 0.021 (2.1%)

ARF trained from scratch 0.822 - 0.799 = 0.023 (2.3%)

CHAPTER 5 EXPERIMENT AND VALIDATION

131
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 5.2.2.1: The table that checked the overfitting issues for tree classifier (Lead

scoring dataset)

The difference of R-squared in the offline set was calculated by subtracting the

training R-squared score with the testing R-squared score for each set. Based on table

above, the models did not suffer from serious overfitting issues even if the

hyperparameters used were the same as the ones in the experiment.

Figure 5.2.2.3: The table that showed the tree structure of the base learners of each

tree ensemble (Lead scoring dataset)

The model selection could not be finalized since the test performance of pre-

trained ARF classifier was similar to the ARF classifier that was trained from scratch.

Hence, the tree structure of the base learners in both ARF models were analysed.

Based on the table above, it could be observed that the pre-trained ARF's base

learners' tree structures were more consistent. For ARF model that was trained from

scratch, the tree height of its base learners varied from 0 to 17. It meant that some

base learners only consisted of shallow leaf nodes or one root leaf node. Hence, ARF

classifier that was trained from scratch yielded less stable predictions as compared to

pre-trained ARF classifier. A consistent tree structure was important since it ensured

that every base learner could contribute accurate and reliable prediction probabilities

before averaged and summed into ensemble prediction probabilities. This suggested

one of the reasons why the ARF classifier that was trained from scratch performed

slightly worse as compared to other classifiers. Thus, the pre-trained ARF classifier

was chosen.

CHAPTER 5 EXPERIMENT AND VALIDATION

132
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2.3 Experimental dataset: California housing dataset

An experiment was conducted to evaluate the performance of adaptive random

forest regressor and traditional random forest regressor with and without the influence

of drift. No concept drift stream generator was used since none of the generated

stream could train well with the traditional random forest regressor. Instead, the

famous California housing dataset was used since the traditional random forest could

be trained well with it. The target was the median house price, and the drift was

manually induced by increasing the price by 25% due to economic factors like

inflation or war.

To test the models’ performance without drift, the first 20,640 samples were

used to represent the offline data. To test the models’ performance with drift, the last

20,640 samples to represent the online data. 4,128 samples out of 20,640 samples

would be used to check model's generalisation error in both offline and online settings.

Offline Training Performance

Figure 5.2.3.1: The offline training performance of tree regressors (California housing

dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

133
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The graph above compared the training performance between TRF regressor

and ARF regressor in the offline setting. It could be inferred that the transfer learning

process was successful as the R-squared value of both TRF regressor and pretrained

ARF regressor differed no more than 1%. There was a slight difference in the

performance since the leaf prediction mechanisms in the TRF regressor and ARF

regressor were different. On the other hand, the training performance of ARF that was

trained from scratch was slightly lower than pretrained ARF with the R-squared value

difference of 1%.

Offline Generalization Performance

Figure 5.2.3.2: The offline generalization performance of tree regressors (California

housing dataset)

The graph above compared the generalization performance between TRF

regressor and ARF regressor in the offline setting. The graph again proved that

transfer learning process was successful as the R-squared score of both TRF regressor

and pretrained ARF regressor differed no more than 1%.

CHAPTER 5 EXPERIMENT AND VALIDATION

134
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

On the other hand, the generalization performance of ARF regressor that was

trained from scratch was the lowest with a ROC AUC score difference of 5% as

compared to pretrained ARF regressor. However, the result could not guarantee the

superiority of the transfer learning algorithm for other datasets, which was discussed

in the next section. In addition, it could be observed that all the models suffered from

overfitting. In business scenarios, TRF and ARF should undergo thorough

hyperparameter tunning to further reduce overfitting.

Online Training Performance

Model type Offline Train R2 Online Train R2 Difference

TRF 0.8394 0.6493 -0.1901

Pre-trained ARF 0.8298 0.7950 -0.0348

ARF trained from scratch 0.8169 0.8042 -0.0127

Table 5.2.3.1: The comparison between offline and online training performance for

tree regressors (California housing dataset)

Figure 5.2.3.3: The online training performance of tree regressors (California housing

dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

135
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The graph above compared the training performance between TRF regressor

and ARF regressor in the online setting. Due to drift, all the models' performance

were affected. The train performance of TRF regressor had the most impact with a

drop of 19% followed by both performance of ARF regressor with a drop of at most

4%. It could be deduced that ARF algorithm was more robust against drift as

compared to TRF algorithm. On the other hand, the training performance of pre-

trained ARF regressor was similar to ARF regressor that was trained from scratch

with a slight R-squared value difference of 1%.

Online Testing Performance

Model type Offline Test R2 Online Test R2 Difference

TRF 0.7718 0.5992 -0.1726

Pre-trained ARF 0.7724 0.7263 -0.0461

ARF trained from scratch 0.7249 0.7157 -0.0092

Table 5.2.3.2: The comparison between offline and online generalization performance

for tree regressors (California housing dataset)

Figure 5.2.3.4: The online generalization performance of tree regressors (California

housing dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

136
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The table above compared the online generalization performance between

TRF regressor and ARF regressor. The table above displayed the difference between

offline and online generalization performance of each model. Due to drift, the online

generalization performance of TRF dropped about 17% as compared to offline one.

The pre-trained ARF's online generalization performance dropped about 5% while the

performance for ARF that was trained from scratch dropped about 1%. It could be

deduced that ARF algorithm was robust against drift but not TRF algorithm. On the

other hand, the online generalization performance of the pre-trained ARF was similar

to ARF that was trained from scratch with a difference of 1%.

Model type Diff R2 in Offline set Diff R2 in Online set

TRF 0.8394 - 0.7718 = 0.0676 0.6493 - 0.5992 = 0.0501

Pre-trained ARF 0.8298 - 0.7724 = 0.0574 0.7950 - 0.7263 = 0.0687

ARF trained from scratch 0.8169 - 0.7249 = 0.0920 0.8042 - 0.7157 = 0.0885

Table 5.2.3.3: The table that checked the overfitting issues for tree regressors

(California housing dataset)

Visualizing Model Performance over Time

Figure 5.2.3.5: The performance of tree regressors over time (California housing

dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

137
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

In the offline setting:

1. The performance of pre-trained ARF regressor was very close to TRF since the

training weights was obtained from the same model.

In the online setting:

1. TRF model's performance rapidly dropped when encountering abruptly drifted

data. Manual model retraining was required to replace with a new TRF model.

However, the performance for both ARF models remained stable since model

retraining was automatically taking place in the background. The algorithm would

replace a base learner with the correspond background model if the base learner's

performance degraded for some time.

2. The performance of ARF regressor that was trained from scratch slowly recovered

when train on drifted sample, up to a point where the performance of both ARF

models were similar at the end. This showed that ARF regressor that was trained

from scratch required more training samples to get the same performance as pre-

trained ARF regressor.

 In short, the pre-trained ARF regressor generally had the best performance in

both offline and online settings. Transfer learning from TRF regressor to ARF

regressor combined the advantages of both TRF and ARF algorithms. The TRF

algorithm provided batch learning that provided best split information to the pre-

trained ARF regressor. While the ARF algorithm provided incremental learning that

was robust to drift.

CHAPTER 5 EXPERIMENT AND VALIDATION

138
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.2.4 Application dataset: Car price dataset

The performance of traditional random forest (TRF) regressor, pre-trained

adaptive random forest (ARF) regressor, and adaptive random forest (ARF) regressor

that was trained from scratch were evaluated on the car price dataset. The model with

the best overall performance would be deployed to the web service. 8533 training

samples were used as the offline training set while 1094 samples were used as the

offline test set. The information of the car price dataset could be found in Section

4.1.2.

Offline Training Performance

Figure 5.2.4.1: The offline training performance of tree regressor (Car price dataset)

The graph above compared the train performance between TRF regressor and

ARF regressor in the offline setting. The result exactly matched with the one

conducted in the experiment. It could be inferred that the transfer learning process

was successful as the R-squared values of both TRF regressor and pretrained ARF

regressor differed no more than 1%. There was a small difference in the performance

since the leaf prediction mechanisms in the TRF and ARF were different. On the

other hand, the training performance of ARF regressor that was trained from scratch

was similar to the performance pretrained ARF regressor with a slight R-squared

values difference of 1%.

CHAPTER 5 EXPERIMENT AND VALIDATION

139
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Combining the results that were observed from the last section, it could be

inferred that the initial performance boost provided by transfer learning varied from

one dataset to another. Regardless, transfer learning regressor algorithm was useful in

situations where the performance was absolutely critical (e.g., data science

competitions, banking system).

Offline Generalization Performance

Figure 5.2.4.2: The offline generalization performance of tree regressor (Car price

dataset)

The graph above compared the generalization performance between TRF

regressor and ARF regressor in the offline setting. The graph again proved that

transfer learning process was successful as the R-squared value of both TRF regressor

and pretrained ARF regressor were similar with negligible difference. The

generalization performance of ARF regressor that was trained from scratch was lower

than the pretrained ARF with a R-squared value difference of 2%.

CHAPTER 5 EXPERIMENT AND VALIDATION

140
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Model type Diff R-squared in Offline set

TRF 0.8742 - 0.8946 = -0.0204 (-2.04%)

Pre-trained ARF 0.8717 - 0.8899 = -0.0182 (-1.82%)

ARF trained from scratch 0.8861 - 0.8745 = 0.0116 (1.16%)

Table 5.2.4.1: The table that checked the overfitting issues for tree regressor (Car

price dataset)

The difference of R-squared in the offline set was calculated by subtracting the

training R-squared score with the testing R-squared score for each set. Based on the

table above, the models did not suffer from serious overfitting issues even if the

hyperparameters used were the same as the ones in the experiment.

Figure 5.2.4.3: The table that showed the tree structure of the base learners of each

tree ensemble (Car price dataset)

The model selection could not be finalized since the test performance of pre-

trained ARF regressor was similar to the ARF regressor that was trained from scratch.

Hence, the tree structure of the base learners in both ARF models were analysed.

Based on the table above, it could be observed that all the base learners of ARF

regressor that was trained from scratch were deeper than the base learners of

pretrained ARF. It meant that the pretrained ARF regressor could still perform as

good as ARF regressor that was trained from scratch even if the tree height was fixed

at 15. Hence, pretrained ARF regressor was chosen over ARF model regressor that

was trained from scratch since it required lesser memory. All the tree heights were 15

since the max_depth parameter of TRF regressor, that was used to perform transfer

learning, was set to 15. Hence, the pre-trained ARF regressor was chosen.

CHAPTER 5 EXPERIMENT AND VALIDATION

141
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3 Model Tree Weight Extraction

 A total of two tests were conducted to validate the correctness of the model

tree weight extraction process.

Test 1: The performance of the tree SHAP explainer and tree SHAP loss explainer

must be the same when the dictionary was passed in. Scikit-learn tree models were

passed into the explainers to serve as the baseline performance. For example, the

performance was compared between the tree SHAP explainer using the dictionary

containing the tree weights of River adaptive random forest regressor and the tree

SHAP explainer using the Scikit-learn random forest regressor. The result showed

that the execution time was the same with negligible difference. The rest of the test

results were found in jupyter_notebooks/FYP2_ARF_to_Dict_Validation.ipynb.

Figure 5.3.1.1: Average time taken to calculate the SAHP value for dictionary

containing the weights of ARF regressor (Car price dataset)

Figure 5.3.1.2: Average time taken to calculate the SHAP value for Scikit-learn TRF

regressor (Car price dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

142
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Test 2: The position of all the nodes must be the same. It must be ensured that for

every ith node, the split feature and split threshold must be the same between the two

dictionaries. Note that the node's array index position for ith node was often not the

same between the two dictionaries. Hence, the node index for decision tree and

Hoeffding tree must be tracked separately to access the respective arrays of tree

weights.

 The results showed that the test was passed for both dictionary containing the

weights of adaptive random forest regressor and dictionary containing the weights of

adaptive random forest classifier.

Figure 5.3.1.3: Screenshot showing any problematics nodes in the dictionary

containing the weights of ARF regressor (Car price dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

143
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.3.1.4: Screenshot showing any problematics nodes in the dictionary

containing the weights of ARF classifier (Lead scoring dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

144
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 Tree SHAP Explainer

Setup

First, an experiment was conducted to prove that why tree SHAP explainer

with tree_path_dependent approach could not be used.

To conduct the experiment using car price dataset, the adaptive random forest

regressor was trained with test set and 10 model checkpoints were created. Then, the

SHAP values were calculated for each model checkpoint. The difference of the SHAP

values was computed by subtracting the ingested model predictions with the expected

value. The difference should be close to 0 to indicate that the tree SHAP explainer

was accurate in explaining model's predictions. In other words, a larger SHAP values

difference indicated more inaccurate tree SHAP explainer.

Results

The result below showed the SHAP values difference for tree SHAP explainer

that used tree_path_dependent approach. The tree SHAP explainer became more

inaccurate as more samples were trained.

Figure 5.4.1.1: The SHAP value differences for tree SHAP explainer that used tree

path dependent approach across 10 different model checkpoints (Car price dataset)

 To investigate the reason behind the inaccuracies in measuring the SHAP

values, the node sample weight of each parent node and its child nodes were extracted

into a table as shown below. By analysing the results below, it turned out that the

CHAPTER 5 EXPERIMENT AND VALIDATION

145
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

River Hoeffding tree regressor did not update node sample weight on the parent node.

Tree SHAP explainer expected that for every parent node i, the node sample weight of

the left and right child of parent node i must always be smaller than parent node i

itself. Since the River only updated node sample weight at the leaf node, the

expectation was broken. With the expectation broken, the SHAP values calculation

would be inaccurate since the tree_path_dependent approach calculated SHAP values

using node sample weight. Therefore, the River developer should give the option to

update the node sample weight at the parent node to ensure compatibility and

interoperability of River models with other Python libraries like SHAP.

Figure 5.4.1.2: The node sample weight of each parent node and its child nodes of the

adaptive random forest regressor at the 10th checkpoint (Car price dataset)

 To solve the issue, the tree SHAP explainer with the interventional approach

was used instead of tree_path_dependent approach. The result below showed that the

SHAP value differences were consistent in all the model checkpoints. The differences

were negligible since the car price prediction values were in thousands and not

sensitive to SHAP value differences that were less than 1.

CHAPTER 5 EXPERIMENT AND VALIDATION

146
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.1.3: The SHAP value differences for tree SHAP explainer that used

interventional approach across 10 different model checkpoints (Car price dataset)

The same experiment was also conducted on the lead scoring dataset. The two

results below again justified the use of tree SHAP explainer with interventional since

the SHAP value differences were less than 1e-7. Note that the SHAP value

differences for explainer that used tree_path_dependent approach were significant

since the model outputted prediction probabilities ranging from 0 to 1.

Figure 5.4.1.4: The SHAP value differences for tree SHAP explainer that used tree

path dependent approach (on the left) and interventional approach (on the right)

across 10 different model checkpoints (Lead scoring dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

147
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

A total of three validation tests was conducted to further validate the tree

explainer that used interventional approach to ensure that the visualization results

were accurate. The three tests below were only valid if and only if the explainer used

interventional approach and the “model_output” was set to “raw”. There were no tests

for the SHAP loss explainer that used interventional approach and the “model_output”

was set to “log_loss”. As of April 2022, the official documentation only provided an

example of validation test on XGB gradient boosting classifier, but not classifiers like

random forest classifier [20]. The validation test could not be used in both Scikit-learn

random forest classifier and River adaptive random forest classifier since the SHAP

loss value calculation was different for random forest models and gradient boosting

models. Hence, the proposed three tests also served as a proxy test for the explainer

that used interventional approach with the “model_output” set to “log_loss”.

Furthermore, the additivity check was only conducted when the explainer used

tree_path_dependent approach or when the explainer used interventional approach

and the “model_output” was set to “raw”. In other words, there was no standardized

test on validating the ingestion of tree classifiers into the explainers that used the

interventional approach.

Test 1: Ensure that the expected value was equivalent to the average of all the model

predictions on the provided background dataset.

Figure 5.4.1.5: The first validation test of tree SHAP explainers (car price dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

148
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4.1.6: The first validation test of tree SHAP explainers (lead scoring dataset)

Test 2: Ensure that the ingested SHAP model (a TreeEnsemble object) made the same

predictions as the original model.

Figure 5.4.1.7: The second validation test of tree SHAP explainers (car price dataset)

Figure 5.4.1.8: The second validation test of tree SHAP explainers (lead scoring

dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

149
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Test 3: For each sample, ensure that the sum of the SHAP values was equivalent to

the difference between model output and the expected value. For the car price dataset,

the result below showed that there was a noticeable difference (> 1e-4). However,

since it was a regression problem, the difference was negligible since the prediction

values were around thousands.

Figure 5.4.1.9: The third validation test of tree SHAP explainers (car price dataset)

Figure 5.4.1.10: The third validation test of tree SHAP explainers (lead scoring dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

150
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5 Monitoring Drift

5.5.1 SHAP loss

Setup

An experiment to was conducted to test the effectiveness of the model

monitoring plot against drift or data error. The experiment setup was as shown below

and the car price dataset was used. Due to the absence of drifted data, the existing car

price test was manually modified to test the effectiveness of the model monitoring

plot against drift or data error. The modifications were stated below:

1. To simulate data error for categorical features, all the values for label

“brand_Proton” were converted to 0. This might happen when there was a logic

error in persisting the car inventory record to the database.

2. To simulate data error for numerical features, all the values of the mileage were

converted from kilometre to miles. This might happen when the users entered the

mileage in miles in the web application.

3. To simulate gradual feature drift, the test records were separated into five stages.

In each stage, the rows' “manufacture_year” field values were incremented by

[0, 2] ∗ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Each subsequent stage added the constant by 1.

Result

 The graphs on the next page showed the monitoring plots on SHAP loss

values of “manufacture_year”, “mileage”, and “brand_Proton” using Lundberg’s

SHAP loss monitoring function. It was expected that each of these plots had a vertical

line since all the feature values have been modified. However, the Lundberg’s

function had failed to trigger the alarms for “manufacture_year” and “mileage”

between the train data and the drifted test data.

CHAPTER 5 EXPERIMENT AND VALIDATION

151
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.5.1.1: SHAP loss monitoring graph for “manufacture_year” plotted using

Lundberg’s function (Car price dataset)

Figure 5.5.1.2: SHAP loss monitoring graph for “mileage” plotted using Lundberg’s

function (Car price dataset)

Figure 5.5.1.3: SHAP loss monitoring graph for “brand_Proton” plotted using

Lundberg’s function (Car price dataset)

 Hence, the author enhanced the Lundberg’s function to reduce the likelihood

of having false negatives, even at the cost of higher likelihood of having false

positives. The proposed function was validated with the same drifted car price test set.

 The graphs on the next page showed the monitoring plots on SHAP loss

values of “manufacture_year”, “mileage”, and “brand_Proton” using proposed SHAP

loss monitoring function. The proposed function had successfully detected drift or

error in all three modified features. In comparison with Lundberg's function, both

functions had successfully raised alarm on the faulty “brand_Proton” feature values.

Unlike Lundberg's function, the proposed function could raise alarms on the gradually

drifted “manufacture_year” and the faulty “mileage” values using Welch's t-test.

CHAPTER 5 EXPERIMENT AND VALIDATION

152
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.5.1.4: SHAP loss monitoring graph for “manufacture_year” plotted using

proposed function (Car price dataset)

Figure 5.5.1.5: SHAP loss monitoring graph for “mileage” plotted using proposed

function (Car price dataset)

Figure 5.5.1.6: SHAP loss monitoring graph for “brand_Proton” plotted using

proposed function (Car price dataset)

CHAPTER 5 EXPERIMENT AND VALIDATION

153
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5.2 Statistical test

Population Stability Index

 To check that the calculation was correct, an example of the calculation of PSI

was given in the literature review. The same inputs were then used by the program to

calculate the PSI values. The figure below showed that the calculation was accurate

when compared with the manual calculation in the literature review.

Figure 5.5.2.1: The PSI values calculated by the program

Chi-squared goodness of fit test

 To check that the calculation was correct, an example of the calculation of the

chi-squared goodness of fit test was given in the literature review. The same inputs

were then used by the program to calculate the chi-squared values. The figure below

showed that the calculation was accurate when compared with the manual calculation

in the literature review.

Figure 5.5.2.2: The chi-squared values calculated by the program

CHAPTER 6 SYSTEM EVALUATION

154
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 6 SYSTEM EVALUATION

6.1 Evaluation on Web service

 The web service was implemented as followed. The setup of the web service

could be found in Section 4.4.1. All the API endpoints were implemented but two of

the fourteen API endpoints had not been fully implemented. For the API endpoints

'/car/global/review/performance' and '/lead/global/review/performance', the running

metrics functionality was not implemented.

Lead scoring

Figure 6.1.1: Screenshot of POST request to review individual prediction (Lead

scoring dataset)

 Based on the image above, a HTTP POST request was made to the

http://localhost:5000/lead/local/review/prediction to review the individual lead

scoring prediction. The input JSON could be found in web-service-test/lead-post-req-

body.txt.

CHAPTER 6 SYSTEM EVALUATION

155
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.1.2: Screenshot of POST request to review individual model loss (Lead

scoring dataset)

 Based on the image above, a HTTP POST request was made to the

http://localhost:5000/lead/local/review/model_loss to review the individual model loss

on the lead record. The input JSON could be found in web-service-test/lead-post-req-

body.txt.

Figure 6.1.3: Screenshot of GET request to review model’s overall prediction

behaviour (Lead scoring dataset)

CHAPTER 6 SYSTEM EVALUATION

156
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Based on the image above, a HTTP GET request was made to the

http://localhost:5000/lead/global/review/model to review the lead scoring model’s

overall prediction behaviour.

Figure 6.1.4: Screenshot of GET request to evaluate model’s performance (Lead

scoring dataset)

 Based on the image above, a HTTP GET request was made to the

http://localhost:5000/lead/global/review/performance to evaluate the lead scoring

model’s performance.

CHAPTER 6 SYSTEM EVALUATION

157
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.1.5: Screenshot of POST request to incrementally train model and update

explainers (Lead scoring dataset)

 Based on the image above, a HTTP POST request was made to the

http://localhost:5000/lead/update/model to incrementally train the lead scoring model

and update the tree SHAP explainer and tree SHAP loss explainer. The input JSON

could be found in web-service-test/lead-post-req-body.txt.

Figure 6.1.6: Screenshot of GET request to monitor drift on records that had no truth

(Lead scoring dataset)

 Based on the image above, a HTTP GET request was made to the

http://localhost:5000/lead/global/review/drift/no_truth to monitor drift on lead records

that had no truth.

CHAPTER 6 SYSTEM EVALUATION

158
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.1.7: Screenshot of GET request to monitor drift on records that had truth

(Lead scoring dataset)

 Based on the image above, a HTTP GET request was made to the

http://localhost:5000/lead/global/review/drift/truth to monitor drift on lead records

that had truth.

Car price

Figure 6.1.8: Screenshot of POST request to review individual prediction (Car price

dataset)

CHAPTER 6 SYSTEM EVALUATION

159
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Based on the image above, a HTTP POST request was made to the

http://localhost:5000/car/local/review/prediction to review the individual car price

prediction. The input JSON could be found in web-service-test/car-price-post-req-

body.txt.

Figure 6.1.9: Screenshot of POST request to review individual model loss (Car price

dataset)

 Based on the image above, a HTTP POST request was made to the

http://localhost:5000/car/local/review/model_loss to review the individual model loss

on the car inventory record. The input JSON could be found in web-service-test/car-

price-post-req-body.txt.

CHAPTER 6 SYSTEM EVALUATION

160
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.1.10: Screenshot of GET request to review model’s overall prediction

behaviour (Car price dataset)

 Based on the image above, a HTTP GET request was made to the

http://localhost:5000/car/global/review/model to review the car price model’s overall

prediction behaviour.

Figure 6.1.11: Screenshot of GET request to evaluate model’s performance (Car price

dataset)

CHAPTER 6 SYSTEM EVALUATION

161
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Based on the image above, a HTTP GET request was made to the

http://localhost:5000/car/global/review/performance to evaluate the car price model’s

performance.

Figure 6.1.12: Screenshot of POST request to incrementally train model and update

explainers (Car price dataset)

 Based on the image above, a HTTP POST request was made to the

http://localhost:5000/car/update/model to incrementally train the car price model and

update the tree SHAP explainer and tree SHAP loss explainer. The input JSON could

be found in web-service-test/car-price-post-req-body.txt.

CHAPTER 6 SYSTEM EVALUATION

162
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.1.13: Screenshot of GET request to monitor drift on records that had no truth

(Car price dataset)

 Based on the image above, a HTTP GET request was made to the

http://localhost:5000/car/global/review/drift/no_truth to monitor drift on car inventory

records that had no truth.

Figure 6.1.14: Screenshot of GET request to monitor drift on records that had truth

(Car price dataset)

 Based on the image above, a HTTP GET request was made to the

http://localhost:5000/lead/global/review/drift/truth to monitor drift on lead records

that had truth.

CHAPTER 6 SYSTEM EVALUATION

163
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2 Evaluation on Web application

 The controller actions were implemented to provide CRUD operations to both

lead management module and the car inventory management module. Unfortunately,

the author did not implement the controller actions to connect the web service

functionalities to the web application. Regardless, the UI logic of these controller

actions had been documented in the activity diagrams.

Figure 6.2.1: UI screenshot of the lead management page

Figure 6.2.2: UI screenshot of the car inventory management page

CHAPTER 6 SYSTEM EVALUATION

164
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.2.3: UI screenshot of the input validation functionality

 Besides the CRUD functionalities, the input validations were also

implemented to ensure that the values persisted to the database were not faulty so that

the models would not get corrupted from training with erroneous data.

CHAPTER 6 SYSTEM EVALUATION

165
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.3 Project Challenges

Implementation Issues and Challenges

The main implementation issues and challenges were found at the web service.

When proposing the web service in FYP I, it was initially assumed that the River

library would worked with SHAP library without any technical complications. As a

result, more time could be spent on implementing functionalities on the web

application. However, that was not the case.

The first implementation issue was that the tree SHAP explainer from SHAP

library did not directly support the weight extraction of adaptive random forest

regressor and classifier from River API. The tree weights must be manually extracted

into a dictionary since tree SHAP explainer still could accept Python dictionary to

support any tree models. As a result, it was required to spend some time at reading the

source code of both libraries to ensure that the model was correctly passed in into the

tree SHAP explainer. Several new issues had emerged when implementing the

extraction process. First, the split conditions were different for both libraries. Second,

both River Hoeffding tree classifier and regressor did not update node sample weight

on the parent node.

The second implementation issue was that the hyperparameter settings of both

River adaptive random forest regressor and classifier must be limited to a certain

value in order to ensure that the SHAP values’ calculations were accurate. For

example, the River adaptive random forest classifier’s hyperparameter

“disable_weighted_vote” must be set to False since the SHAP tree explainers could

not perform weighted vote prediction. These specific technical details were obviously

not in the River and SHAP official documentation and the author had to painstakingly

identify the real issue. It was because of these two main implementation issues, the

author had to spend time on conducting extensive experiments and validation testing

to locate the problems.

The third implementation issue was the incompatibility of SHAP library with

the River library. As of April 2021, SHAP library and River library had conflicting

dependencies on NumPy library. SHAP library required NumPy version of 1.21.5

while River library required NumPy version of 1.22.3. The import of both libraries

CHAPTER 6 SYSTEM EVALUATION

166
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

would fail if the respective requirements were not met. The image below showed that

the River library could not be loaded when the NumPy version was 1.21.5.

Figure 6.3.1: Screenshot showing that the River library could not be loaded in the

“arf_conda_evp_env” conda environment

Figure 6.3.2: Screenshot showing the version of NumPy in the “arf_conda_evp_env”

conda environment

The issues would be easily resolved when running notebooks since two

separate conda environment could be created as shown in the image above. However,

the deployment of the web service became more complicated.

One simple solution was to create two entirely separated Docker containers

and deployed to the Azure Container Registry. Then, two Azure Container instances

CHAPTER 6 SYSTEM EVALUATION

167
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

would be created to separately pull the images, respectively. However, the

communication would be cut off since the public IP addresses of the Azure Container

instances that ran the River web service could change due to reasons like restarting.

Manual update of IP address was required to ensure that the SHAP web service could

communicate with River web service using the right URL. Hence, the author used

Docker compose to combine the two Docker images into a multi-container web

service. Unfortunately, the author had failed to deploy the multi-container web service

to the cloud due to lack of time.

6.4 Objectives Evaluation

 For the first and second objective, the lead management module and the

inventory management module were implemented and the web service that provided

the predictive analytics functionalities was implemented. However, the modules could

not directly use the capabilities since the API calls were not implemented. Regardless,

the activity diagram had documented the UI logics to make the API calls.

 For the third objective, the web service had implemented the online AI

learning and monitoring system. Adaptive random forest regressor and classifier were

deployed so that the models could automatically detect drifts and retrained itself. The

monitoring functionality was also implemented for two scenarios. The two scenarios

were a scenario where the truth was available and another scenario where the truth

was not available. Experiments had also been conducted to validate the techniques

used to detect and monitor the drifts, which were the tree SHAP loss monitoring and

statistical tests.

 For the fourth objective, the web service had implemented the explainable AI

functionalities to provide useful insights on individual predictions, individual model

loss, model’s overall prediction behaviour, and model’s performance by plotting

graphs. The report also discussed on how to interpret these plots so that the inventory

managers, sales employees, and data scientists could know what insights could be

derived.

CHAPTER 7 CONCLUSION

168
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

CHAPTER 7 CONCLUSION

7.1 Conclusion

 In conclusion, the web service had been successful implemented using SHAP

library and River Python library. In order to implement the full proof web service,

three tests were used to validate both transfer learning algorithms; two tests were used

to validate the tree weight extraction function; three tests were used to validate the

accuracy of the tree SHAP explainer in calculating SHAP values; an experiment was

conducted to test the effectiveness of proposed SHAP loss monitoring function.

 Besides, the performance of pre-trained adaptive random forest regressor was

evaluated on the California housing dataset (experimental dataset) and car price

dataset (application dataset), while the performance of pre-trained adaptive random

forest classifier was evaluated on the AGRAWAL dataset (experimental dataset) and

the lead scoring dataset (application dataset). In both experiments, the pre-trained

adaptive random forest regressor and classifier were proven that:

1. The pre-trained ARF classifier's classification performance was at least good or

better than ARF classifier that was trained from scratch in both offline settings

and online settings.

2. The performance of the pre-trained ARF classifier was at least good or better than

TRF classifier during initial training.

3. The performance of the ARF classifier was better than TRF classifier under the

influence of data drift or concept drift.

4. The pre-trained ARF regressor's regression performance was at least good or

better than ARF regressor that was trained from scratch in both offline settings

and online settings.

5. The performance of the pre-trained ARF regressor was at least good or better than

TRF regressor during initial training.

6. The performance of the ARF regressor was better than TRF regressor under the

influence of data drift or concept drift.

 Based on the experimental results above, the web service was usable for other

tabular datasets since the transfer learning ensured that the performance of adaptive

random forest models was always equivalent or better than the traditional random

forest models. By using the transfer learning algorithm, the node split in the pre-

CHAPTER 7 CONCLUSION

169
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

trained adaptive random forest models were guaranteed to be optimal since the

traditional random forest models had the complete statistics for every attempt to split

a leaf node, including the root node.

 In addition, the validation and the experimentation of the web service had

been well-documented in the Jupyter Notebook for future re-implementation or

references. Thus, this project could serve as the technical reference for those who

would like to customize the integration of the sophisticated models with the

explainable AI approaches. For example, the image classifier could be integrated with

Local Surrogate (LIME) to identity the sections of the image that increased or reduced

the prediction probabilities.

7.2 Recommendation

7.2.1 Improvement on transfer learning algorithm

 In the experiment, it was observed that the transfer learning process was still

slower than the training of the TRF. For example, it took about 10 minutes to transfer

15 base learners of maximum depth of 15 from a traditional random forest classifier to

an adaptive random forest classifier. There were two recommendations on improving

the performance. First, the algorithm should be implemented using Cython instead of

CPython. Cython was a superset of Python programming language that could reduce

overhead and improve performance. Cython compiled the Cython code to C code or

C++ code that ran more efficiently and faster as compared to CPython.

 Second, the part of the CPython codes could be replaced with C extensions. In

CPython, the Global Interpreter Lock (GIL) only allowed one and only one thread to

execute CPython bytecode at any given time, which caused severe bottleneck in

running the transfer learning algorithms. To solve this, the bottleneck code could be

replaced with Cython extensions. Using “with nogil” statement, Cython extensions

could temporarily release GIL when executing CPU-intensive C or C++ code,

allowing GIL to be acquired by another thread to execute CPython bytecode or access

Python objects. The examples of the implementation could be found in Scikit-learn or

Numpy official source code on GitHub.

7.2.2 Other Improvements

 The report and the notebook had documented the example usage of plots

constructed using Tree SHAP algorithm. First, the viewers could extend the insights

CHAPTER 7 CONCLUSION

170
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

that the web service provided by adding new plots like SHAP dependence plot.

Second, the web service could also be implemented with other methods like Local

Surrogate (LIME) instead of using SHAP. Third, the SHAP loss monitoring function

could be further improved such that the function was more effective in detecting drifts

or data errors. The function would not be effective if the occurrence of the false

positive alarms had become more costly than the occurrence of the false negative

alarms. In other words, the SHAP loss monitoring function would become less useful

if the false positives were too high. Fourth, developers with rich statistical knowledge

could also add more statistical tests like ANOVA to the list of techniques used to

detect the drifts when truth was not available.

 Finally, in critical situations, the online machine learning model deployed in

the web service must be secured such that the model would not train with malicious

data. Since the web service was only used in predicting car prices and assigning lead

scores, securing the machine learning models did not have to be the priority. However,

if the web service were used in critical scenarios such as in banking system, the

attackers would send malicious data to train the online models in order to manipulate

their performance and inference results.

.

BIBLOGRAPHY

171
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

BIBLIOGRAPHY

[1] A. Burt, “New AI Regulations Are Coming. Is Your Organization Ready?,”

Harvard Business Review, Apr. 30, 2021. https://hbr.org/2021/04/new-ai-regulations-

are-coming-is-your-organization-ready (accessed Aug. 16, 2021).

[2] Carsome Sdn. Bhd., “CARSOME CONSUMER SURVEY Consumer Sentiments

towards: Car Buying and Selling Usage of Public Transport / Ride-hailing Services,”

Jan. 2021. Accessed: Mar. 31, 2021. [Online]. Available:

https://carsomemy.s3.amazonaws.com/wp/Carsome-Consumer-Survey.pdf

[3] A. Brennen, “What Do People Really Want When They Say They Want

‘Explainable AI?’ We Asked 60 Stakeholders.,” in Extended Abstracts of the 2020

CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, Apr.

2020, pp. 1–7. doi: 10.1145/3334480.3383047.

[4] Google, “Our Principles – Google AI,” Google AI, 2019.

https://ai.google/principles/ (accessed Aug. 16, 2021).

[5] H. M. Gomes et al., “Adaptive Random Forests for Evolving Data Stream

Classification,” Machine Learning, vol. 106, no. 9–10, pp. 1469–1495, Jun. 2017, doi:

10.1007/s10994-017-5642-8.

[6] R. B. Kirkby, “Improving Hoeffding Trees,” PhD Thesis, University of Waikato,

2007. Accessed: Jul. 27, 2021. [Online]. Available:

https://researchcommons.waikato.ac.nz/handle/10289/2568

[7] A. Chander and R. Srinivasan, “Evaluating Explanations by Cognitive Value,” in

Lecture Notes in Computer Science, Hamburg, Germany, Aug. 2018, pp. 314–328.

doi: 10.1007/978-3-319-99740-7_23.

[8] C. Molnar, Interpretable Machine Learning. Christoph Molnar, 2021. Accessed:

Aug. 17, 2021. [Online]. Available: https://christophm.github.io/interpretable-ml-

book/

[9] S. M. Lundberg, “The Science behind InterpretML: SHAP,” www.youtube.com,

May 17, 2020. https://www.youtube.com/watch?v=-taOhqkiuIo (accessed Aug. 17,

2021).

https://hbr.org/2021/04/new-ai-regulations-are-coming-is-your-organization-ready
https://hbr.org/2021/04/new-ai-regulations-are-coming-is-your-organization-ready
https://carsomemy.s3.amazonaws.com/wp/Carsome-Consumer-Survey.pdf
10.1145/3334480.3383047
https://ai.google/principles/
10.1007/s10994-017-5642-8
https://researchcommons.waikato.ac.nz/handle/10289/2568
10.1007/978-3-319-99740-7_23
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://www.youtube.com/watch?v=-taOhqkiuIo

BIBLOGRAPHY

172
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[10] S. M. Lundberg et al., “From Local Explanations to Global Understanding with

Explainable AI for Trees,” Nature Machine Intelligence, vol. 2, no. 1, pp. 56–67, Jan.

2020, doi: 10.1038/s42256-019-0138-9.

[11] I. Žliobaitė, M. Pechenizkiy, and J. Gama, “An Overview of Concept Drift

Applications,” in Studies in Big Data, Springer, Cham, 2015, pp. 91–114. doi:

10.1007/978-3-319-26989-4_4.

[12] scikit-learn, “Permutation Importance Vs Random Forest Feature Importance

(MDI).” https://scikit-

learn.org/stable/auto_examples/inspection/plot_permutation_importance.html#sphx-

glr-auto-examples-inspection-plot-permutation-importance-py (accessed Aug. 18,

2021).

[13] V. Ivanov, “Stability-Based Model Selection in Non-Stationary Environment,”

repository.tudelft.nl, 2017, Accessed: Apr. 03, 2021. [Online]. Available:

https://repository.tudelft.nl/islandora/object/uuid%3A31bbf0f5-c43a-4dc0-b2d5-

59880368f2a3

[14] A. Lin, “Examining Distributional Shifts by Using Population Stability Index

(PSI) for Model Validation and Diagnosis.” Accessed: Apr. 03, 2021. [Online].

Available: https://wuss19.wuss.org/wp-content/uploads/2018/01/47.pdf

[15] R. Taplin and C. Hunt, “The Population Accuracy Index: a New Measure of

Population Stability for Model Monitoring,” Risks, vol. 7, no. 2, p. 53, May 2019, doi:

10.3390/risks7020053.

[16] A. Bifet and R. Gavald, “Learning from Time-Changing Data with Adaptive

Windowing,” presented at the Proceedings of the Seventh SIAM International

Conference on Data Minin, Minneapolis, Minnesota, USA, Apr. 2007. Accessed: Jul.

28, 2021. [Online]. Available:

https://www.researchgate.net/publication/220907178_Learning_from_Time-

Changing_Data_with_Adaptive_Windowing

[17] C. Lin, “Use SHAP Loss Values to debug/monitor Your Model,” Medium, Jun.

23, 2020. https://towardsdatascience.com/use-shap-loss-values-to-debug-monitor-

your-model-83f7808af40f (accessed Apr. 21, 2022).

10.1038/s42256-019-0138-9
10.1007/978-3-319-26989-4_4
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html#sphx-glr-auto-examples-inspection-plot-permutation-importance-py
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html#sphx-glr-auto-examples-inspection-plot-permutation-importance-py
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html#sphx-glr-auto-examples-inspection-plot-permutation-importance-py
https://repository.tudelft.nl/islandora/object/uuid%3A31bbf0f5-c43a-4dc0-b2d5-59880368f2a3
https://repository.tudelft.nl/islandora/object/uuid%3A31bbf0f5-c43a-4dc0-b2d5-59880368f2a3
https://wuss19.wuss.org/wp-content/uploads/2018/01/47.pdf
10.3390/risks7020053
https://www.researchgate.net/publication/220907178_Learning_from_Time-Changing_Data_with_Adaptive_Windowing
https://www.researchgate.net/publication/220907178_Learning_from_Time-Changing_Data_with_Adaptive_Windowing
https://towardsdatascience.com/use-shap-loss-values-to-debug-monitor-your-model-83f7808af40f
https://towardsdatascience.com/use-shap-loss-values-to-debug-monitor-your-model-83f7808af40f

BIBLOGRAPHY

173
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[18] A. Chatterjee, “Lead Scoring Dataset,” www.kaggle.com, Aug. 17, 2020.

https://www.kaggle.com/datasets/amritachatterjee09/lead-scoring-dataset (accessed

Apr. 21, 2022).

[19] D. Mauri, “Creating a REST API with Python and Azure SQL,” GitHub, Apr. 12,

2022. https://github.com/Azure-Samples/azure-sql-db-python-rest-api/ (accessed Apr.

21, 2022).

[20] S. Lundberg, “Explaining the Loss of a Tree Model - SHAP Latest

Documentation,” Readthedocs.io, 2018.

https://shap.readthedocs.io/en/latest/example_notebooks/tabular_examples/tree_based

_models/Explaining%20the%20Loss%20of%20a%20Model.html (accessed Apr. 21,

2022).

[21] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on

concept drift adaptation,” ACM Computing Surveys, vol. 46, no. 4, pp. 1–37, Apr.

2014, doi: 10.1145/2523813.

[22] Microsoft, “Responsible AI Principles from Microsoft,” Microsoft.

https://www.microsoft.com/en-us/ai/responsible-ai (accessed Apr. 22, 2022).

https://www.kaggle.com/datasets/amritachatterjee09/lead-scoring-dataset
https://github.com/Azure-Samples/azure-sql-db-python-rest-api/
https://shap.readthedocs.io/en/latest/example_notebooks/tabular_examples/tree_based_models/Explaining%20the%20Loss%20of%20a%20Model.html
https://shap.readthedocs.io/en/latest/example_notebooks/tabular_examples/tree_based_models/Explaining%20the%20Loss%20of%20a%20Model.html
10.1145/2523813
https://www.microsoft.com/en-us/ai/responsible-ai

APPENDIX A: FORMULA OF ADAPTIVE RANDOM FORESTS ALGORITHM

A-174
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX A: FORMULA OF ADAPTIVE RANDOM FORESTS

ALGORITHM

ARF algorithm was innovated by Gomes and other researchers and this

algorithm was directly adapted from the classical Random Forest with ground-

breaking improvements [5].

Figure A.1: Pseudocode of Adaptive random forest algorithm

The pseudocode above was the simplified and intuitive version of training

adaptive random forests given a data stream of any size.

Label/Line of code Description

𝑚 Maximum features evaluated per split

𝑛 Total number of base learners/ Hoeffding tree

𝛿𝑤 Warning threshold

𝛿𝑑 Drift threshold

𝐵 Background trees

𝑇 Current trees

𝑆 Data stream

Detector(…) Change detection method

Train_RFTree(…) See the section below for the pseudocode of the

function

Table A.2: Symbols used in pseudocode for Adaptive random forest algorithm

APPENDIX A: FORMULA OF ADAPTIVE RANDOM FORESTS ALGORITHM

A-175
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The pseudocode of the ARF algorithm as shown above. First, a total of 𝑛

Hoeffding trees (𝑡) were initialised. Then, for each of the instance (𝑠) from the data

stream (𝑆), each 𝑡 could be used to predict the input data while its learning

performance was measured and incrementally trained. With the presence of the true

label (𝑦), the test-then-train metrics could be recorded. Test-then-train metrics

evaluation allowed the maximum utilisation of data stream since the data instances

were used in prediction before training [6]. Meanwhile, the drift warning detector and

drift detector in each 𝑡 was updated with current 𝑠. If drift warning detection occurred,

then a background tree (𝑏) was initialised to be trained later. If the drift detection

occurred, then the current 𝑡 would be replaced by its corresponding 𝑏 . Besides

looping 𝑇, each 𝑏 was iterated to incrementally trained with the current 𝑠.

APPENDIX B: FORMULA OF HOEFFDING TREE

B-176
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX B: FORMULA OF HOEFFDING TREE

Hoeffding tree was the base learner of the ARF algorithm instead of the

decision tree. Hoeffding tree was the perfect solution for solving the inefficiencies of

offline machine learning algorithms. It was because the Hoeffding tree could be

incrementally trained with data of any size in the setting of high-speed data stream

processing. As a result, only the Hoeffding tree itself and other information that were

crucial to train the tree were stored in the memory [6]. This saved a lot of memory

space and sped up the training process.

Figure B.1: Pseudocode of Hoeffding tree

Label/Line of code Description

𝑙 Leaf node

𝜖 The Hoeffding bound

𝐺̅ Estimated information gain

𝑋1𝑠𝑡 The attribute with the highest 𝐺̅

𝑋2𝑛𝑑 The attribute with second-highest 𝐺̅

CONDITION_1(𝑥) A Boolean flag indicating whether x was the 𝑛𝑡ℎ 𝑛𝑚𝑖𝑛 of

data. The model was updated every 𝑛𝑚𝑖𝑛

CONDITION_2(𝑥) A Boolean flag indicating whether samples of belong than

one class was observed

IMPORTANT_STATS(𝑙) A code snippet to increase the observed number of samples

and their labels at the leaf node by one.

𝑋1𝑠𝑡 ≠ 𝑋𝜙 A form of pre-pruning to stop splitting if the 𝑋1𝑠𝑡 did not

look better than 𝑋𝜙 (Kirkby, 2007).

APPENDIX B: FORMULA OF HOEFFDING TREE

B-177
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[𝐺̅(𝑋1𝑠𝑡) − 𝐺̅(𝑋2𝑛𝑑)] > 𝜖 Logic condition for the Hoeffding bound to decide whether

𝑋1𝑠𝑡 could proceed to be split (Kirkby, 2007).

𝜖 < 𝜏 If the condition was true, then the top and first two attributes

were selected without considering other attributes (Kirkby,

2007).

Table B.2: Symbols used in pseudocode for Hoeffding Tree

The pseudocode to train the Hoeffding tree was shown in the diagram above.

First, the function Train_RFTree received four parameters, where 𝑚 represented the

maximum number of features to be evaluated per split, 𝑡 represented the current

Hoeffding tree (background or old), 𝑥 represented input features, while 𝑦 represented

output label. Then, the leaf node 𝑙 in 𝑡 that corresponds to the given current train

sample was located. In 𝑙 , some important statistics was updated to provide the

necessary information for estimating the information gain of splitting on each

attribute.

To check if the split should proceed, it must be ensured that the current single

sample being received was the 𝑛𝑡ℎ of 𝑛𝑚𝑖𝑛 observed samples, where 𝑛𝑡ℎ can be any

number from 1 to ∞. For example, if the grace period was 200, then the split only

proceeded if the sample was the 200𝑡ℎ , 400𝑡ℎ , 600𝑡ℎ , 800𝑡ℎ , … sample. The grace

period was important since insufficient samples would not provide sufficient

information to know which attribute was best to split. If the previous condition held

true, it must be ensured that the observed samples since the last split belong to more

than one class. In other words, there was nothing to split if all samples had the same

output.

If both the aforementioned logical conditions were true, then the estimated

information gain (𝐺̅) was computed for each 𝑥 feature. Then, two features with the

highest 𝐺̅ , which were 𝑋1𝑠𝑡 and 𝑋2𝑛𝑑 were obtained respectively. Along the way,

𝜖 was computed using the formula:

𝜖 =
√𝑅2 ln (

1
𝛿

)

2𝑛

, where 𝑅2 was the range of random variable, 𝛿 was the split confidence, and 𝑛 was

the number of observations. Split confidence, known as 𝛿, was one of the parameters

that influence the Hoeffding bound. When the split confidence was low, then the

APPENDIX B: FORMULA OF HOEFFDING TREE

B-178
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

probability of choosing the correct attribute to split in the current leaf node increased

[6].

After that, it must be ensured that the difference between 𝐺̅ of 𝑋1𝑠𝑡 and 𝑋2𝑛𝑑

was more than 𝜖 to proceed with the splitting process [6]. However, there might exist

a tie situation such that two or more attributes had the same estimated information

gain value. In this situation, the top two attributes with the highest estimated

information gain cannot be determined and the growth of the tree would be stagnant

[6]. To solve this, a threshold called tie-breaking threshold (𝜏) was required to break

the tie. If the 𝜖 was small than the 𝜏, then the top and first two attributes were selected

without considering others [6]. Finally, the current node was split based on 𝑋1𝑠𝑡.

APPENDIX C: FORMULA OF ADWIN

C-179
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

APPENDIX C: FORMULA OF ADWIN

Adaptive windowing (ADWIN) was one of the adaptive windows methods for

checking for any distribution difference in the current window of data. As new data

was added to the window, ADWIN would automatically adjust the window size (𝑊)

by growing when the data was stationary or shrinking when the drift was detected

[16]. As a result, the distribution of data after adjusting 𝑊 would always represent the

latest and most accurate distribution [16]. ADWIN could function as an effective data

drift detector for the Hoeffding tree. It was because ADWIN could automatically

perform these three functions without requiring manual adjustment of

hyperparameters like window size. The three included functions were detecting which

sub-window within the current W where the change occurred, deciding which data

instances to keep and which one to forgot to reduce memory footprint, and alerted the

models when significant changes were detected [16].

Mathematically, in a window (𝑊) of size 𝑛, an optimal separation between

two sub-windows, 𝑊0 and 𝑊1 needed to be located to estimate the latest data

distribution as accurate as possible and discarded the older data distribution to reduce

memory footprint. To do so, first, the formulas were applied as shown below:

𝑚 =
1

1
𝑛0

+
1
𝑛1

, 𝛿′ =
𝛿

(ln 𝑛)
, 𝑎𝑛𝑑 𝜖𝑐𝑢𝑡 = √

2

𝑚
∙ 𝜎𝑊

2 ∙ ln (
2

𝛿′
) +

2

3𝑚
∙ ln

2

𝛿′

, where 𝑛0 was the length of 𝑊0, 𝑛1 was the length of 𝑊1, 𝑚 was the harmonic means

of 𝑛0 and 𝑛1, 𝛿′ was the global threshold to ensure that all the possible 𝑛 of 𝑊0 and

𝑊1 below 𝛿, and 𝜖𝑐𝑢𝑡 was the threshold for checking whether the observed 𝜇̂𝑊0
 and

𝜇̂𝑊1
 were statistically significantly different in both 𝑊0 and 𝑊1 [16].

Figure C.1: Pseudocode of algorithm ADWIN

APPENDIX C: FORMULA OF ADWIN

C-180
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 Based on the pseudocode above, for every new value 𝑥𝑡 arrived at time 𝑡, the

size of the windows was adaptively adjusted to achieve the purposes mentioned above.

The 𝑊0 and 𝑊1 were repeatedly split for up to maximum log2 𝑛 possible times until

the observed average in both sub window differed more than 𝜖𝑐𝑢𝑡. In order to limit the

number of tries to split the 𝑊0 and 𝑊1, the formula was changed from 𝛿′ =
𝛿

𝑛
 to 𝛿′ =

𝛿

(ln 𝑛)
 [16].

FINAL YEAR PROJECT WEEKLY REPORT

181
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT

(Project II)

Trimester, Year: JAN, 2022 Study week no.: 2

Student Name & ID: YAP JHENG KHIN (18ACB00224)

Supervisor: Ts Sun Teik Heng @ San Teik Heng

Project Title: Car Dealership Web Application

1. WORK DONE

• The transfer learning algorithm was implemented to improve the initial

performance of the adaptive random classifier.

2. WORK TO BE DONE

• Develop a similar transfer learning algorithm to improve the initial performance

of the adaptive random regressor.

3. PROBLEMS ENCOUNTERED

• The transfer learning algorithm contained bugs. More time was required to

analyze the River official source code.

4. SELF EVALUATION OF THE PROGRESS

_________________________ _____________

Supervisor’s signature Student’s signature

FINAL YEAR PROJECT WEEKLY REPORT

182
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Trimester, Year: JAN, 2022 Study week no.: 4

Student Name & ID: YAP JHENG KHIN (18ACB00224)

Supervisor: Ts Sun Teik Heng @ San Teik Heng

Project Title: Car Dealership Web Application

1. WORK DONE

• Both transfer learning algorithms were implemented.

2. WORK TO BE DONE

• Analyze the performance of the pre-trained adaptive random forest regressor and

classifier.

3. PROBLEMS ENCOUNTERED

• The pre-trained random forest classifier failed when trained on new samples.

More time was needed to identity the root problem.

4. SELF EVALUATION OF THE PROGRESS

The progress was slow due to other subject’s assignment. Hence, the assignment must

be completed as soon as possible.

_________________________ _____________

Supervisor’s signature Student’s signature

FINAL YEAR PROJECT WEEKLY REPORT

183
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Trimester, Year: JAN, 2022 Study week no.: 6

Student Name & ID: YAP JHENG KHIN (18ACB00224)

Supervisor: Ts Sun Teik Heng @ San Teik Heng

Project Title: Car Dealership Web Application

1. WORK DONE

• Two experiments were conducted to measure the performance of the adaptive

random forest regressor and classifier.

2. WORK TO BE DONE

• Train the adaptive random forest regressor and classifier on the car price and lead

scoring dataset.

• Preprocess the lead scoring dataset.

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS

The progress was slow due to other subject’s assignment. Hence, the assignment must

be completed as soon as possible.

_________________________ _____________

Supervisor’s signature Student’s signature

FINAL YEAR PROJECT WEEKLY REPORT

184
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Trimester, Year: JAN, 2022 Study week no.: 8

Student Name & ID: YAP JHENG KHIN (18ACB00224)

Supervisor: Ts Sun Teik Heng @ San Teik Heng

Project Title: Car Dealership Web Application

1. WORK DONE

• The car price model and the lead scoring model had been trained and their

performance were evaluated.

2. WORK TO BE DONE

• Pass in the car price model and the lead scoring model into the tree SHAP API to

calculate the SHAP values.

• Design a function to extract the tree weights from the car price model and the lead

scoring model.

• Implement the drift monitoring using statistical tests.

3. PROBLEMS ENCOUNTERED

• The tree SHAP explainers did not support the weight extraction of the River

models. However, the explainers did accept a Python dictionary that contained the

weights of a tree model. More time was required to discover how to extract the

weights manually.

4. SELF EVALUATION OF THE PROGRESS

The progress was slow due to other subject’s assignment. Hence, the assignment must

be completed as soon as possible.

_________________________ _____________

Supervisor’s signature Student’s signature

FINAL YEAR PROJECT WEEKLY REPORT

185
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Trimester, Year: JAN, 2022 Study week no.: 10

Student Name & ID: YAP JHENG KHIN (18ACB00224)

Supervisor: Ts Sun Teik Heng @ San Teik Heng

Project Title: Car Dealership Web Application

1. WORK DONE

• The function that extracted the weights from both adaptive random forest

regressor and classifier was implemented.

• The drift monitoring using statistical tests had been implemented.

2. WORK TO BE DONE

• Re-evaluate the transfer learning algorithms.

• Initialize the tree SHAP explainers with the dictionaries and use the explainers to

visualize graphs.

• Complete the CRUD functionalities for the lead management module.

• Draw the activity diagram of the web application and the web service.

• Convert the car price dataset and lead scoring dataset into application data.

• Figure out how to seed the application data into Azure SQL database.

• Develop the web service using the source code from the Jupyter notebooks.

• Figure out how the web service could query the application data form the Azure

SQL database.

3. PROBLEMS ENCOUNTERED

• The calculation of the SHAP values were not accurate, more time was required to

debug the issue.

4. SELF EVALUATION OF THE PROGRESS

_________________________ _____________

Supervisor’s signature Student’s signature

FINAL YEAR PROJECT WEEKLY REPORT

186
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Trimester, Year: JAN, 2022 Study week no.: 12

Student Name & ID: YAP JHENG KHIN (18ACB00224)

Supervisor: Ts Sun Teik Heng @ San Teik Heng

Project Title: Car Dealership Web Application

1. WORK DONE

• The problem that caused the inaccuracies in calculating the SHAP values was

identified.

• The CRUD functionalities for the lead management module were implemented.

• The web application also had successfully deployed to the cloud. At the same

time, the application data was successfully seeded to the cloud database as well.

• The activity diagram of the web application and the web service were drawn.

2. WORK TO BE DONE

• Develop the web service by transferring the source code from the Jupyter

notebooks.

• Figure out which Docker image to use.

• Copy the important documentations from the Jupyter notebooks to the report.

• Complete the report.

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS

_________________________ _____________

Supervisor’s signature Student’s signature

FINAL YEAR PROJECT WEEKLY REPORT

187
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Trimester, Year: JAN, 2022 Study week no.: 13

Student Name & ID: YAP JHENG KHIN (18ACB00224)

Supervisor: Ts Sun Teik Heng @ San Teik Heng

Project Title: Car Dealership Web Application

1. WORK DONE

• All the functionalities of the web service had been implemented except for

constructing running metric plots.

• Two docker images were created and merged into one single application using

Docker compose.

2. WORK TO BE DONE

• Figure out how to deploy the multi-container applications to the Azure Container

Instances.

• Copy the important documentations from the Jupyter notebooks to the report.

• Complete the report.

3. PROBLEMS ENCOUNTERED

• The multi-container applications could not be deployed due to technical issues.

4. SELF EVALUATION OF THE PROGRESS

_________________________ _____________

Supervisor’s signature Student’s signature

POSTER

188
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

POSTER

PLAGIARISM CHECK RESULT

189
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

PLAGIARISM CHECK RESULT

Plagiarism Classic Report (Part I)

Plagiarism Classic Report (Part II)

PLAGIARISM CHECK RESULT

190
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Plagiarism Classic Report (Part III)

Plagiarism Classic Report (Part IV)

PLAGIARISM CHECK RESULT

191
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Plagiarism Classic Report (Part V)

Plagiarism Classic Report (Part VI)

192
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Form Title: Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1 of 1

 FACULTY OF INFORMATION AND COMMUNICATION
 TECHNOLOGY

Full Name of Candidate YAP JHENG KHIN

ID Number(s) 18ACB00224

Programme / Course Bachelor of Computer Science (Honours)

Title of Final Year Project Car Dealership Web Application

Similarity
Supervisor’s Comments

(Compulsory if parameters of originality

exceed the limits approved by UTAR)

 Overall similarity index: 2%

 Similarity by source

Internet Sources: 0 %

Publications: 2 %

Student Papers: 0 %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required, and limits approved by UTAR are as
Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words.

Note: Supervisor/Candidate(s) is/are required to provide softcopy of full set of the

originality report to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the

originality of the Final Year Project Report submitted by my student(s) as named

above.

 ______________________________ ______________________________
Signature of Supervisor

 Signature of Co-Supervisor

Name: __________________________

 Name: __________________________

Date: ___________________________ Date: ___________________________

Sun Teik Heng @ San Teik Heng

22/4/2022

193
Bachelor of Computer Science (Honours)

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION TECHNOLOGY

(KAMPAR CAMPUS)

FYP2 CHECKLIST

Student Id 18ACB00224

Student Name Yap Jheng Khin

Supervisor Name Ts Sun Teik Heng @ San Teik Heng

TICK

(√)
DOCUMENT ITEMS

 Front Plastic Cover (for hardcopy)

√ Title Page

√ Signed Report Status Declaration Form

√ Signed FYP Thesis Submission Form

√ Signed form of the Declaration of Originality

√ Acknowledgement

√ Abstract

√ Table of Contents

√ List of Figures (if applicable)

√ List of Tables (if applicable)

 List of Symbols (if applicable)

√ List of Abbreviations (if applicable)

√ Chapters / Content

√ Bibliography (or References)

√
All references in bibliography are cited in the thesis, especially in the chapter

of literature review

√ Appendices (if applicable)

√ Weekly Log

√ Poster

√
Signed Turnitin Report (Plagiarism Check Result - Form Number: FM-IAD-

005)

√

I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this

report.

I, the author, have checked and confirmed all the items listed in the table are included in

my report.

Date: 21-04-2022

	DECLARATION OF ORIGINALITY
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1 Problem Statement and Motivation
	1.2 Objectives
	1.3 Project Scope
	1.4 Contributions
	1.5 Report Organization

	CHAPTER 2 LITERATURE REVIEW
	2.1 Review of Existing Car Dealership Management System
	2.2 Review of Existing AI Cloud Services
	2.3 Adaptive Machine Learning Algorithm
	2.3.1 Adaptive random forests (ARF) algorithm
	2.3.2 Hoeffding tree

	2.4 Explainable AI
	2.4.1 Shapley values
	2.4.2 Tree SHAP
	2.4.3 Review of Existing Global Explanation Methods

	2.5 Review of Existing Drift Detection Methods
	2.5.1 Population Stability Index
	2.5.2 ADWIN
	2.5.3 Drift Monitoring using Tree SHAP

	2.6 Summarisation of Previous Works

	CHAPTER 3 SYSTEM DESIGN
	3.1 System Architecture Diagram
	3.2 Use Case Diagram for Web Application and Web Service
	3.3 Activity Diagram for Web Application and Web Service
	3.3.1 Reviewing Individual Predictions
	3.3.2 Reviewing Models
	3.3.3 Update Model
	3.3.4 Reviewing Individual Model Loss
	3.3.5 Evaluating Performance
	3.3.6 Monitoring Drift

	3.4 Database Design
	3.5 Transfer Learning
	3.5.1 Design Considerations
	3.5.2 Adaptive random forest classifier
	3.5.3 Adaptive random forest regressor
	3.5.4 Performance Improvement

	3.6 Model Tree Weight Extraction
	3.6.1 Design Considerations

	3.7 Tree SHAP
	3.7.1 Setup
	3.7.2 Review Model’s Average Prediction Behaviours
	3.7.3 Evaluate Model’s Performances
	3.7.4 Review Individual Model Predictions and Individual Model Losses
	3.7.5 Monitor Drifts

	3.8 Monitoring Drift
	3.8.1 SHAP Loss Monitoring
	3.8.2 Statistical test

	CHAPTER 4 SYSTEM IMPLEMENTATION
	4.1 Dataset
	4.1.1 Lead scoring dataset
	4.1.2 Car price dataset

	4.2 Jupyter Notebook Artifacts
	4.2.1 Setup
	4.2.2 Execution Sequence
	4.2.3 Description of IPYNB files
	4.2.4 Description of Python libraries

	4.3 Cloud Database
	4.3.1 Setup Part I
	4.3.2 Setup Part II
	4.3.3 Procedures

	4.4 Web Service Artifacts
	4.4.1 Setup
	4.4.2 Description of artifacts

	4.5 Web application artifacts
	4.5.1 Setup
	4.5.2 Description of artifacts

	CHAPTER 5 EXPERIMENT AND VALIDATION
	5.1 Transfer Learning
	5.2 Performance Evaluation
	5.2.1 Experimental dataset: AGRAWAL dataset
	5.2.2 Application dataset: Lead scoring dataset
	5.2.3 Experimental dataset: California housing dataset
	5.2.4 Application dataset: Car price dataset

	5.3 Model Tree Weight Extraction
	5.4 Tree SHAP Explainer
	5.5 Monitoring Drift
	5.5.1 SHAP loss
	5.5.2 Statistical test

	CHAPTER 6 SYSTEM EVALUATION
	6.1 Evaluation on Web service
	6.2 Evaluation on Web application
	6.3 Project Challenges
	6.4 Objectives Evaluation

	CHAPTER 7 CONCLUSION
	7.1 Conclusion
	7.2 Recommendation
	7.2.1 Improvement on transfer learning algorithm
	7.2.2 Other Improvements

	BIBLIOGRAPHY
	FINAL YEAR PROJECT WEEKLY REPORT
	POSTER
	PLAGIARISM CHECK RESULT
	FYP2 CHECKLIST

