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ABSTRACT 

 

The wide adoption of the Internet of Things (IoT) in the current digital world is 

gradually increasing with time, focusing on the various benefits and huge convenience 

IoT can bring about to the way people live. However, new technological advancements 

will always be introduced to potentially new, unknown security threats and 

vulnerabilities, hence a real-time intrusion detection system is implemented in this 

project. This research-based cybersecurity project highlights the importance of an 

intrusion detection system in improving the security level of the IoT medical devices. 

The design of the real-time IDS revolves around setting up simple IoT devices 

resembling IoT medical devices to form an IoT network, performing attacks on the 

network, capturing network packets in real-time, and classifying network data with a 

deep learning framework to help in identifying modern intrusions and network traffic 

anomalies. Some network attacks are performed within the network and the packet data 

are captured at the same time. Generative adversarial network will be used as the deep-

learning-based generative model for anomalous intrusion detection purposes. The 

model itself will be trained and tested with a network intrusion dataset for 

benchmarking the model performance. In the context of real-time IDS, this project aims 

to improve the security aspects of the IoT medical devices, and possibly spark the 

importance of security technologies like IDS in the IoT industry.  
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Chapter 1 

Introduction 

 

1.1 Problem Statement and Motivation 

Medical devices that are connected to the Internet have been significant in shaping the 

way healthcare entities treat patients with advanced technologies embedded into such 

devices. In the current digital era, patients are able to receive treatments and track their 

health status in real-time due to the wide adoption of IoT medical devices in the 

healthcare industry. However, there has been a surging number of new challenges and 

issues pertaining to the increasing demands of IoT medical devices or Internet of 

Medical Things (IoMT). There is a wide range of varieties for all kinds of IoT medical 

devices to be used in hospitals, healthcare clinics and even general IoMT for personal 

use with some examples like smartwatches that monitor heart rate and pulses. Among 

medical devices in hospitals and clinics in the context of a larger scale are remote 

patient monitoring, connected inhalers, ingestible sensors, robotic surgery equipment 

and many more [1]. However, the current phase that the healthcare industry is residing 

in has exacerbated the problems IoMT encountered from the security standpoint and 

further increased the demand of IoT medical devices since the start of the COVID-19 

worldwide pandemic. There are numerous IoMT that are being vulnerable and exposed 

to various security threats and attack vectors in many hospitals and healthcare centres 

around the globe. Today, IoMT are one of the most sought-after attack targets for 

unethical parties and cybercriminals alike for apparent reasons like monetary gains and 

social propaganda. In addition, the number of preventive measures taken to safeguard 

and protect such medical devices and systems from vulnerabilities and exploits is not 

enough to combat the severe issues of medical devices being compromised on a day-

to-day basis [2]. 
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Since the major proportion of the IoT medical devices is optimised and used in hospitals 

and healthcare clinics, there is a huge reliance on these medical devices that have the 

ability to gather and store sensitive information about patients, particularly personal 

identifiable information (PII) which includes a patient’s full name, address, contact 

details and many more. With the vast amount of security breaches and cyber-attacks in 

place, the affected IoT medical devices face a high risk of data exposure to the public 

regarding patients’ personal data, as well as healthcare organisations’ information. 

Other than that, IoT medical devices with critical functionalities that are affected by 

cyber-attacks might result in life-threatening consequences whereby patients who 

heavily depend on these types of medical devices may lose their lives. 

 

Therefore, there is a need to design a real-time intrusion detection system in every 

network architecture of all healthcare organisations and entities to ensure the safe use 

and normal operational behaviour of medical devices in real-time. The security 

robustness and reliability of IoT medical devices have to be improved by implementing 

intrusion detection systems as an extra security solution to detect known and unknown 

attacks, as well as to protect the patients’ and healthcare organisations’ data and privacy. 

 

1.2 Objectives 

The aim of the thesis is to propose a real-time IDS that is able to detect any possible 

network intrusions in IoT medical devices. The effects of exploited vulnerabilities in 

IoT medical devices of all operations result in many undesirable consequences for 

patients and healthcare industries. Such occurrences are usually the result of the 

lackadaisical of IDS in IoT medical devices or networking components in these devices. 

In this thesis, the presence of an IDS in any IoT devices will gear towards the efforts in 

securing as many IoT medical devices as possible and reducing the security risks of 

such devices. The proposed real-time IDS will be designed to be able to identify modern 

network intrusion and abnormal network traffic patterns through a deep learning 

framework, as well as to provide a viable solution for anomaly-based intrusions in 

general. 
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1.3 Project Scope 

The scopes of this project include exploring certain vulnerabilities that are presented in 

IoT medical devices and proposing an effective real-time IDS based on existing and 

unknown vulnerabilities. Highlighted vulnerabilities will be investigated and ventured 

to understand the base concepts towards the foundation of the vulnerabilities that will 

lead to cyber-attacks towards IoT medical devices in general. A network-based IDS is 

to be proposed for detecting different vulnerabilities as an additional countermeasure 

to security problems in IoT medical devices. The IoT medical devices to be used for 

measuring the effectiveness and efficiency of the proposed IDS could be sensor nodes 

or tiny computer systems that are able to mimic the representation of such medical 

devices. Any information regarding the potential vulnerabilities that might exist in the 

replica sensor nodes is useful towards the actions and decisions to be made in the 

process of simulating an IDS in real world contexts.  

 

1.4 Contributions 

The main prospect of this project is to propose an IDS that can safeguard IoT medical 

devices in real-time. With the lack of sufficient security provision in many of IoT 

medical devices today, the proposed real-time IDS will offer an extra layer of security 

measure to further solidify the security aspect of such devices. This will help the 

healthcare industry to propel towards the importance of security in the use of IoT 

medical devices, as well as to ensure the confidentiality and integrity of medical data, 

and the functionalities of such medical devices to be protected from exploits and 

vulnerabilities. 
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1.5 Report Organisation 

This report is organised into 7 chapters: Chapter 1 Introduction, Chapter 2 Literature 

Review, Chapter 3 System Model, Chapter 4 System Design, Chapter 5 

Experiment/Simulation, Chapter 6 System Evaluation and Discussion, Chapter 7 

Conclusion and Recommendation. The first chapter covers the brief introduction on IoT 

medical devices and problem statements, as well as the project objectives and the scope 

to be covered. The second chapter is the literature review regarding some of the 

technologies related to the proposed real-time IDS, as well as the previous research 

works on the IDS domain. The third chapter covers the system model of the proposed 

IDS in a top-level perspective, detailing the general flow of the implementation. The 

fourth chapter is about the system design of the proposed approach, where the IDS 

implementation will be shown in a more detailed manner, as well as to describe the 

components of the system from a block diagram. The fifth chapter entails the 

experiment or simulation of the proposed real-time IDS, where details like set-ups, 

configurations and system operation will be covered. The sixth chapter is about the 

evaluation and discussion of the system, where the testing metrics and the results are 

shown and explained. The final chapter covers the conclusion part of the report that will 

include the final remarks of this project and some recommendations for any future 

potential improvements.  
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Chapter 2 

Literature Review 

 

2.1 Review of the Technologies 

In this section, some common vulnerabilities that occur in IoT medical devices will be 

covered, as well as some relevant technologies to be used in the implementation and 

previous works on IDS in a brief manner. 

 

2.1.1 Vulnerabilities in IoT Medical Devices 

Since the introduction of IoT medical devices in the medical field, there is a range of 

new and existing threats and vulnerabilities to be presented in almost every of these 

medical devices, no matter the older or newer versions of such devices and its 

embedded software. Many IoT medical devices are prone to different kinds of attack 

vectors and there will always be new, unknown vulnerabilities to be discovered, also 

known as zero-day exploits. Such exploits are generally difficult to detect and be made 

known to security experts or researchers alike as these exploits could pose a damaging 

risk to patients and healthcare organisations. Other than that, such medical devices can 

also be susceptible to indirect attacks in which infected hosts or endpoints in a network 

may enable other forms of attacks like malicious code injection, resulting in IoT 

medical devices of the same network to be compromised [3].  

 

Vulnerabilities of varied complexity levels are generally subjected to the purpose of 

attackers performing various kinds of cyber-attacks to target specific IoT medical 

devices. Although there are no defined set of rules and procedures in a typical planning 

of a cyber-attack, some vulnerabilities that target the weaknesses of a certain aspect of 

security properties are listed as follows: 

 

2.1.1.1 Denial of Service (DoS) attacks 

DoS attacks remain one of the most common vulnerabilities towards the 

implementation of IoT medical devices. This can be seen where a network with many 

interconnected IoT medical devices and systems in a healthcare setting can be 

overwhelmed with forged traffic requests from attackers’ machines. Other than that, the 
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adoption of cloud servers for all kinds of IoT medical devices will also introduce new 

threat landscapes and evolved methodologies of DoS attacks. Although some hospitals 

or clinics in the healthcare industry in which most private networks and cloud servers 

have several security measures and tools to strengthen the security aspects of IoT 

medical devices, this is still not adequate in curbing prominent DoS attacks. As there 

are no security strategies that can fully prevent all kinds of DoS attacks, attackers will 

always try to look for new DoS attacks or even revamp existing attacks to pose negative 

effects on IoT medical devices and the network architectures.  

 

Some possible variants of DoS attacks in IoT medical devices include ICMP flooding 

attack and SYN flooding attack. Adversaries could also combine multiple forms of DoS 

attacks and transform them into multiple computer systems infecting a single target, 

also known as Distributed Denial of Service (DDoS) attacks. Internet Control 

Messaging Protocol (ICMP) flooding attack focuses on overloading a targeted medical 

device with ICMP echo packets, also known as pings in a more general term. Since the 

main function of an ICMP ping is to test the connectivity of two hosts or endpoints with 

echo requests and echo replies, there is no mechanism of determining and identifying 

the authenticity of the pings. Given that the targeted medical device in a network will 

respond with an equal number of reply packets, packets can be forged using tools like 

Scapy and hping and be used to flood the target or network devices like routers.  

 

SYN flooding attacks apply a similar concept compared to ICMP flooding attacks in 

which the idea of overloading the targeted medical devices leads to disrupting and 

halting the functionalities of such medical devices. However, SYN flooding attacks 

target IoT medical devices of more importance in transmitting medical data to 

healthcare servers using Transmission Control Protocol (TCP) in the transport layer of 

the TCP/IP networking model. Those servers that are very dependent on the data 

provided by medical devices to provide crucial web services for healthcare personnel 

and patients alike are the primary target for attackers. This kind of attack abuses the 

three-way handshake process for a TCP connection as multiple SYN packets are sent 

to the targeted server and prevent any TCP packets with RST flag enabled from being 

generated. If successful, the bandwidth and memory resources of the targeted server 
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will be depleted and might affect its operation, as well as further attacks can be carried 

out due to incomplete TCP connections. 

 

 

Figure 2.1: SYN flood attack  

 

2.1.1.2 Man-in-the-middle (MITM) attacks 

IoT medical devices function by making use of wireless sensor communications, in 

which this might be vulnerable to man-in-the-middle attacks, jeopardising the 

confidentiality, integrity, and availability of such medical devices [4]. A MITM attack 

occurs when an attacker monitors and tampers with communications between two 

legitimate parties, making changes to the transmitted data in the process of doing so. 

This is comparable to a typical eavesdropping attempt, in which the attacker listens in 

on the discussions of two individuals. MITM attacks include network content spoofing, 

network eavesdropping, session hijacking and IP spoofing.  

 

MITM attacks have evolved over the course of IoT medical devices adoption in the 

healthcare industry. Generally, there are two types of such attack: passive or active 

MITM. A passive attack is all about intercepting and reading the messages that are 

exchanged between two entities without tampering the communication aspect. Passive 

MITM attacks are initially carried out in medical devices to gather as much information 

about the functionalities of the targeted medical devices as possible, as well as the 

nature of the data flow between the two communicating entities. This would normally 

be the first step for attackers to understand how the medical devices interlink with one 
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another and the nature of the network. Active MITM attacks are then followed up after 

performing passive attacks whereby the attackers are able to gain access to targeted 

medical devices and manipulate or modify the transmitted data to operating servers. 

When parts of the functionalities of a medical device are compromised due to the 

attacker’s control, things would start to go haywire. Some undesirable scenarios like 

falsifying communications between a medical device and a server and disabling the 

core functionalities of a medical device would result in the endangerment of patients’ 

lives and the integrity of doctors or nurses that are highly responsible for the treatment 

of patients. When both passive and active MITM attacks are carried out simultaneously, 

such actions may lead to other deadly attacks that will result in further complicated 

problems and scenarios, causing the process of neutralising and mitigating cyber-

attacks by security vendors and experts to be more time-consuming and troublesome. 

  

2.1.1.3 Side channel attacks 

Side channel attacks involve the exploitation of observable physical properties emitted 

from the physical components of IoT medical devices. This form of attack focuses more 

on accessing sensor components found in IoT medical devices, such as gyroscope and 

accelerometer, that transmits data from the hardware aspects of the sensors. These 

sensors can be exploited in which the transmitted data to a remote server is intercepted, 

hence leaking private information about the medical devices and those belonging to 

users [5]. Other sensitive data emitted from environmental and electrical properties 

from internet-enabled medical devices like cryptographic key implementation and user 

inputs like passwords and PINs can be disclosed from side channel attacks as well [6]. 

 

There are a few components of side channel attacks that are responsible for the 

exploitation of physical components in IoT medical devices to perform cryptographic 

key recoveries and data extraction. Power analysis is one of the side channel attack 

components whereby the differences in power consumption of medical devices are 

monitored and differentiated to determine voltage fluctuations. Power analysis can be 

further broken down into two types: simple power analysis (SPA) that identifies the 

instructions and cryptographic operations under execution using waveforms, and 

differential power analysis (DPA) in which secret keys are traced and discovered from 

ciphertexts using advanced statistical analysis [6]. Other analysis components like 
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electromagnetic emission (EM) analysis, acoustic cryptanalysis and temperature 

analysis exploit a certain physics or environmental aspect used by a certain hardware 

sensor in IoT medical devices. The general idea behind side channel attacks is to 

discover the differences or redundancies in each sensor component in medical devices, 

so that sensitive information regarding the device, user or embedded system within the 

device itself can be extracted and captured. Such information can be used for several 

other purposes like exploiting the hardware vulnerabilities of medical devices and 

performing other cyber-attacks based on the personal information of users. 

 

2.1.2 UNSW-NB15 Dataset 

The UNSW-NB15 dataset is a network intrusion dataset that contains a mixture of real 

modern network activities and synthetic attack scenarios. It has nine type of different 

network attacks and was constructed from the IXIA PerfectStorm traffic generator tool 

configured by researchers in UNSW Canberra, along with tcpdump tool to capture 100 

GB of raw traffic. Argus and Bro-IDS, now known as Zeek, were also used to extract 

the original 49 features in the dataset [10].  

 

Regarding the dataset availability, many find it difficult to look for a reliable network 

intrusion dataset due to the scarcity of public datasets. Therefore, the creation of 

UNSW-NB15 dataset would be a more significant dataset in detecting novel attacks 

compared to existing benchmark datasets like KDD99 and NSL-KDD datasets [11]. 

Since the creation of UNSW-NB15 dataset, it was used in an increasing number of areas 

of interest fields and was proven to be comparatively good in evaluating the 

performance of the proposed frameworks in the intrusion detection/anomaly detection 

systems [12] [13]. In addition, some new datasets with modified features were created 

from the UNSW-NB15 dataset to cater for more specific use cases, with ML-based 

network IDS as an example [14]. 

 

The UNSW-NB15 dataset has a total number of 2.5 million records separated in four 

CSV (Comma-Separated Values) files. It also contains a training dataset and a testing 

dataset partitioned from the full version of the dataset, making it suitable and adequate 

to train ML algorithms. 
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2.1.3 Packet Sniffing 

Packet sniffing is a method to analyse and intercept network packets in a network. 

Packet sniffing is usually performed with network protocol analysing tools to capture 

data travelling across a network, allowing those tools to capture data packets in a very 

fast manner. Packet sniffing tools are able to capture and read packets at the network 

layer of the TCP/IP layer, along with providing important packet features within the 

captured packets like packet length and protocol types. It is normally done to monitor 

network traffic by network administrators to ensure the network traffic is not malicious. 

It is also used to assess network performance, extract features from network traffic and 

identify potential network intrusions through packet analysis [16]. 

 

2.2 Review of Previous Research Works on IDS 

Hodo et al. [7] proposed the implementation of Artificial Neural Network (ANN) as 

one form of network-based intrusion detection system. The proposed ANN model in 

IDS was tested and trained with a simulated IoT network with interconnected sensor 

nodes as IoT devices. Hodo et al. [7] also proposed the threat analysis of IoT using 

ANN model to monitor and identify the network specifically for DoS/DDoS attacks. A 

multi-level perceptron, which is a type of supervised ANN, is trained using internet 

packet traces and is tested according to its ability to thwart DDoS/DoS attacks. The 

experimental architecture used in this proposed research is made of five node sensors, 

in which one of them acts as a server and is set as the primary target for attackers. Their 

results of simulated DDoS attacks with the accumulation of more than ten million 

packets were based on the detection of normal and threat traffic patterns, making this 

proposed ANN model as an anomaly-based type IDS for DDoS/DoS attacks in the 

network layer. 
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Figure 2.2 Artificial neural network 

 

Soe et al. [8] proposed a machine learning-based botnet attack detection IDS framework 

with sequential detection architecture. Their approach of detecting botnet attacks was 

based on three different machine learning algorithms, including ANN, J48 decision tree, 

and Naive Bayes. Their proposal of the sequential attack detection architecture revolved 

around two phases, in which the first phase performs building training models and 

collecting data, and the second phase detects botnet attacks from incoming network 

traffic based on the traffic patterns analysed by their end-product IDS engine. 

 

Cervantes et al. [9] proposed an IDS to identify sinkhole attacks on 6LoWPAN systems 

for the IoT in general. Their proposed IDS is a hybrid IDS that can detect anomaly-

based and signature-based network activities on the routing services. Their approach 

combines several strategies for detection of attackers by analysing the behaviour of the 

sensor nodes. Their proposed IDS also establishes dynamic clustering to support IoT 

data transmission by reputation and trust mechanisms. Based on their simulation results, 

the sinkhole detection rate in their proposed IDS can achieve up to 92% in a fixed 

scenario and 75% in a mobile scenario. 
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Chapter 3 

System Model 

 

This chapter covers the system model at a top-level design, detailing the major 

components of the system on a surface level. A use case diagram and an activity 

diagram will also be included to briefly illustrate the use of the IDS. 

 

3.1 System Architecture Diagram 

 

 

 

Figure 3.1 Top-level system architecture diagram 

 

The system architecture of the IDS involves few main stages: training the ML model, 

packet sniffing with Tshark and classifying network packets. The first stage involves 

training the model with a deep learning method approach, utilising the GAN 

architecture where algorithms like backpropagation and feature calculations are used to 

continuously improve the model throughout the training process. The following stage 

is the packet sniffing process using a network protocol analyser tool called Tshark. This 

process will be done under a running model server where it hosts the built model file 

that is responsible for the logic of classifying network packets and captures network 

packets with the appropriate filters to obtain the relevant ones. The last stage involves 

classifying captured network packets, where the prediction functions in the model 

server will classify the packets based on the trained model file and classify them 

accordingly. 
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3.2 Use Case Diagram and Description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Use case diagram 

 

The use case scenario for the real-time IDS is applicable to everyone who requires a 

system to monitor network traffic in a private network. This may be applicable for users 

or organisations who operate many IoT devices in a network, including internet-enabled 

medical devices. A given example can be an admin in an organisation handling all the 

monitoring and the management of the network traffic and the IDS itself, respectively. 

The admin will be able to configure and modify the command for packet sniffing in the 

model server with the appropriate filters for specific use cases, like monitoring only 

TCP and UDP traffic in a network. By doing this, the admin can monitor the filtered 

network traffic for any possible network attack occurrence, and also be notified of 

network attacks if any. 

 

 

 

 

 

 



Chapter 3 System Model 

14 
Bachelor of Information Technology (Honours) Communications and Networking  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

3.3 Activity Diagram 

 

 

Figure 3.3 Activity diagram 
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The activity diagram in Figure 3.3 shows the general flow of implementing the real-

time IDS. The first few processes involve training the ML model by feeding the pre-

processed dataset into the model and obtaining the saved model file afterwards. The 

model can be improved by adjusting the necessary hyperparameters that might affect 

the performance of the model with every slight adjustment. Once the model is tested 

and is satisfactory, the trained model is built and compiled into a model file which is 

specifically used for running it with a model server. Combined with some client 

prediction software packages and necessary libraries, the model server will be ready to 

be used as a real-time IDS to classify network traffic. 
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Chapter 4 

System Design 

 

 

Figure 4.1 System block diagram 

 

The implementation of this research-based project is categorised into five 

methodological steps: data pre-processing, GAN implementation, network attack 

simulation, packet sniffing and model deployment. 
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4.1 Data Pre-processing 

Data pre-processing is the action of modifying the structure and nature of the input data 

for subsequent training of the ML model. It is typically the initial step that should be 

performed before feeding the data into the ML model. The tasks involved in this data 

pre-processing step are feature selection, categorical data encoding and data 

transformation. 

 

4.1.1. Feature Selection 

The training of the proposed ML model relied on the use of UNSW-NB15 dataset, 

originally consisting of 49 attributes in total. The features in the dataset were curated 

based on thorough analysis on the network attack simulations performed and the use of 

different algorithms and tools to extract those 49 features in the dataset itself. However, 

to ease the process of packet sniffing and due to the limitations of the packet sniffing 

method used, the features in UNSW-NB15 dataset were reduced to three instead of 49 

of them. The selected features shown in the table below constitute the main features of 

a network packet that could potentially differentiate whether the network traffic is 

normal or malicious in nature.  

 

Table 4.1 Selected features from UNSW-NB15 dataset 

No. Selected feature name 

1 proto 

2 sbytes 

3 sttl 
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 4.1.2 Categorical Data Encoding 

One-hot encoding (OHE) was used to perform categorical data encoding since most 

ML models can only take in features that are numerical in values instead of nominal 

values. In a typical ML model, nominal categorical data are encoded using ordinal 

encoding where there are known correlation between features and the order of data in 

each feature causes the ML model to assign importance to the ordinal nature of data. 

However, in this project, OHE is preferred compared to ordinal encoding due to the 

categorical features in the UNSW-NB15 dataset not belonging to any form of ordered 

relationships between them. The use of OHE in categorical data encoding creates a new 

column for each unique category value, resulting in additional columns. Therefore, 

categories with highest number of frequencies are only selected to reduce the number 

of features.  

 

4.1.3 Data Transformation 

After performing manual feature selection and categorical data encoding on the input 

data in UNSW-NB15 dataset, all the data in the training and testing UNSW-NB15 

datasets were converted to NumPy array datatype. This was done to allow the 

transformed data to fit into the ML model for training and testing purposes. Since the 

ML model made use of TensorFlow libraries and codes, data transformation was 

required in order to allow the ML model to process the data in both training and testing 

datasets.  

 

4.2 GAN Implementation 

The implementation of the real-time IDS was based on GAN as the proposed ML model. 

The original source codes for GAN were from Zander Blasingame and can be found on 

GitHub [18]. The obtained GAN source codes were used solely for experimenting the 

usefulness of GAN as the ML model for testing the effectiveness of an IDS. The 

modified version of the source codes included some changes on the source codes 

regarding the data pre-processing part, as well as changes on the compatibility issues 

of some libraries and version support.  
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The general architecture of GAN involves a deep learning framework which is based 

on the concepts of a generative model. The GAN architecture has two sub-models: a 

generator model that is responsible for generating new examples from the original ones 

and a discriminator model for differentiating real examples from the fake ones, and vice 

versa. The generator model learns to generate fake data with some random input from 

the real data based on the feedback from the discriminator and aims to make the 

discriminator model classify its output as real data. The discriminator model then tries 

to differentiate real data from the generated data and aims to correctly identify real data 

from the fake ones. 

 

 

 

Figure 4.1 A typical generative adversarial network 

 

In the GAN model, several hyperparameters were included as part of the training 

process. Some of the important hyperparameters in this model are the number of hidden 

layers, the number of features, learning rates for discriminator and generator models, 

batch size and the number of epochs. All the hyperparameters involved in the model 

have a direct impact on the performance of the model and should be adjusted 

accordingly every time the model is trained for optimal performance. 

 

In the input layer and each hidden layer of the model, all the input for these layers were 

activated using Leaky ReLU (Rectified Linear Unit) function. The Leaky ReLU 

activation function is a piecewise linear function, in which the positive input will 

remain positive output, otherwise the output will be zero. However, Leaky ReLU is 

slightly different compared to the normal ReLU function, where the Leaky ReLU has 

an extra parameter called alpha, that will covert near-zero positive values to 0 and allow 

small negative values. The equation below depicts the equation of the Leaky ReLU 

function: 
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𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 (𝑥) = max (𝑎𝑙𝑝ℎ𝑎 × 𝑥, 𝑥) 

 

The output for the generator model was activated using hyperbolic tangent (tanh) 

function, whereas the output for the discriminator model was activated using the 

Sigmoid function. The tanh function maps the generated data in the generator model to 

the range of (-1,1) for the fake discriminator model, while the real discriminator model 

generates the output of Sigmoid function, which is the result of the prediction in the 

form of probability scores and the determinant of the classification outcome. The 

equation of the Sigmoid function is depicted below:  

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =  
1

1 + 𝑒−𝑥
  

 

Based on both generator and discriminator models, there will be some errors when it 

comes to training models. The error, also known as loss, is a penalty for a bad prediction 

based on the input data. It indicates how far the predicted value is compared to the 

gradient value, during which a loss function is needed to estimate the loss of the model. 

In this case, the sparse cross entropy was used as the loss function for both sub-models, 

which the weights and bias of the model are updated in each training epoch to minimise 

the loss on subsequent model training. Since the end output of the model training 

produces probability values, sparse cross entropy loss function was preferred compared 

to the binary cross entropy. As for the optimiser in the model, Adam optimiser was used 

in both generator and discriminator models with a learning rate of 0.004 and 0.002, 

respectively. After each training epoch, backpropagation will occur where both the 

generator and discriminator neural networks have the weights and the biases adjusted 

from the previous accumulated calculations of all neurons in all layers. This is done to 

minimise the losses for both generator and discriminator networks and potentially 

increase the model performance. 
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4.3 Network Attack Simulation 

To test the performance of the trained model, network attack simulation had to be 

performed on the targeted device. Network attacks like port scan attack and DoS attacks 

were conducted as an experiment for testing the real-time network classification in the 

IDS. Some attack tools like hping3 and Nmap can be used to simulate these kinds of 

attacks, performing attack simulations on the targeted IoT device. Such tools are useful 

in analysing how the attacks are done and the details behind the idea of the attack, 

giving insights on the concepts of each attack type and ways to potentially prevent them. 

 

4.4 Packet Sniffing 

The packet sniffing method was used to extract the necessary features from a captured 

network packet for the testing of ML-trained IDS. Tshark [15] was used as the packet 

sniffing method for feature extraction. Tshark is a command-line network traffic 

analyser tool that allows packet data capturing from a live network or packet reading 

from a saved capture file. Unlike other network traffic analyser tools like Wireshark, 

Tshark provides more flexibility in terms of processing information and extracting 

custom features from captured packets in a live network. It was used to extract the few 

network features needed for feeding the processed captured packets into the ML-based 

IDS for testing purposes. 

 

Tshark works alike with tcpdump, another popular network analysis command-line tool, 

which uses the pcap library to capture network traffic from an available network 

interface and displays the standard summary output for each captured network packet. 

Tshark is generally preferred over GUI-enabled network analyser applications like 

Wireshark due to its ability of capturing network packets based on certain set of filters 

and displaying only the relevant packet fields for network analysis. Tshark is built with 

various options, also known as flags, which allow the modification of the outputs based 

on the given filters. On top of that, the captured network packets can be decoded in data 

formats like JavaScript Object Notation (JSON), pcap files and CSV files for further 

processing and analysis.  

 

 



Chapter 4 System Design 

22 
Bachelor of Information Technology (Honours) Communications and Networking  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

To feed captured packets into the trained ML model, main fields like -T flag and -e flag 

were included in the constructed Tshark command. The -T flag was used to specify a 

format of the output for the decoded packet data, whereas the -e flag was responsible 

for adding a field to a list of fields from a captured packet. The -f flag specified the 

protocols of the captured packets to be displayed, in this case there would be only 

packets with TCP or UDP protocol as the transport layer in the TCP/IP model being 

filtered out as the desired output. All these flags were combined in a Tshark command 

to capture any network packets in a live network interface and decode the packets into 

JSON format as the output for feeding the decoded data into the trained ML model. 

 

4.5 Model Deployment 

The trained ML model for the IDS has to be deployed to be able to detect possible 

network attacks in real-time. In this case, TensorFlow Serving [16] was utilised to make 

use of the ability of the ML model to predict whether the incoming network traffic is 

normal or malicious. TensorFlow Serving is a flexible, high-performance serving 

system for ML models that are designed for development and production environments. 

Most ML models that are built using TensorFlow and Keras API software libraries are 

well suited for the use of TensorFlow Serving in actual ML model deployment. To 

facilitate the use of TensorFlow Serving easily, a Docker image containing all the 

necessary libraries and components of TensorFlow Serving was used. Docker simplifies 

the use of ready-made software products and provides portability in the form of 

containers. The Docker image built with TensorFlow Serving modules was then 

containerised in a virtual container and the container was activated to start serving the 

trained ML model.  

 

The backend of the real-time prediction system in the form of Docker application was 

supported with Flask [17]. Flask is a simple, yet useful microframework written in 

Python for web development purposes. Flask can be built in the form of a web 

application without any specific external tools and libraries, making it an efficient web 

framework for actual web application deployment.  
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Figure 4.1 Model Deployment with TensorFlow Serving and Flask 

 

The final step to the completion of deploying the ML model into production use is to 

build a Flask application for the ML model under the TensorFlow Serving system to 

identify possible network intrusions. The TensorFlow Serving docker image was first 

retrieved from the official TensorFlow docker account, followed by   starting a Docker 

container which would open the specified REST API port and execute the saved ML 

model file from the training of the model itself.  
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Chapter 5 

Experiment/Simulation 

 

5.1 Hardware Setup 

In this project, there were a few hardware equipment involved in conducting the 

experimental run of the ML-based IDS. To train the ML model, any computer with 

decent specifications, specifically for processor and available memory space, would be 

sufficient. In this case, a desktop was used as the main host machine to handle all the 

training of the ML model and hosting of the Linux-based virtual machine for real-time 

IDS testing.  

 

Table 5.1 Specifications of desktop 

Description Specification 

Processor Intel Core i5-10400F @ 2.90GHz, 12 Cores 

Operating System Windows 10 

Graphic Processing Unit NVIDIA GeForce RTX 2060 

Memory 16GB DDR4 

 

 

For the training of the ML model, TensorFlow libraries require the use of GPU by 

default as a pre-requisite for the ML model training process. However, TensorFlow 

libraries also support the use of CPU in training a model, and the comparison between 

CPU and GPU in terms of model training performance is negligible. Since the ML 

model training process only involved a network traffic dataset consisting of just text-

based data rather than graphical or visual data like images and videos, either of them 

can be used with no adverse differences in performance. In the case where there are no 

compatible GPUs supported by TensorFlow libraries to be found in the computer 

system, any available CPU will be used for model training instead. 

 

 

 



Chapter 5 Experiment/Simulation 

25 
Bachelor of Information Technology (Honours) Communications and Networking  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

Table 5.2 Specifications of Linux virtual machine 

Description Specification 

Processor Intel Core i5-10400F @ 2.90GHz, 3 out of 12 Cores used 

Operating System Linux 

OS Distribution Ubuntu-based Kali Linux Rolling 

Memory 3GB 

 

As for starting up a Linux-based virtual machine, the specifications listed in Table 5.2 

were more than sufficient for the real-time prediction of network traffic. The allocation 

of the number of processor cores and the memory space can be at least two each 

respectively, to keep the Linux VM up and running in stable conditions. However, more 

allocation of these computing resources is recommended as the minimum specification 

requirements for more compute-intensive Linux distributions like Kali Linux increase, 

depending on the released distribution version and its usage. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Arduino Yun 

 

A microcontroller board was also used as a part of the hardware setup for the project. 

Arduino Yun is an Arduino board that consists of many modules that resemble typical 

functionalities that a normal IoT device constitutes, like Wi-Fi module and some pins 

to connect to environmental sensors. In this context, Arduino Yun was used as an IoT 

sensor to mimic a typical IoT device with an internet connection. This microcontroller 
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board was mainly responsible for being a targeted device for incoming network attacks, 

while packet sniffing is done at the same time to capture the network packets for 

network classification 

 

5.2 Software Setup 

The software setup for this project involved the relevant software programs and tools: 

PyCharm, Anaconda, Docker and Flask. PyCharm and Anaconda were responsible for 

the training of the ML model, whereas Docker and Flask were used for executing the 

trained ML model in the form of a saved model file and creating a Python web 

application for the real-time network traffic prediction, respectively. 

 

PyCharm is an integrated development environment (IDE) specifically built by 

JetBrains for Python programming language. It is required as a development platform 

for the process of ML model training, as the source codes for GAN were written in 

Python. PyCharm was chosen as the IDE in this project due to a built-in feature where 

a Python interpreter with the necessary Python libraries and modules can be selected to 

run for a specific use case. Having a specific interpreter creates separation of concern 

regarding any compatibility issues in certain Python libraries, as well as to isolate 

installed software packages and modules from other available Python interpreters. 

 

Anaconda is an open-source distribution program for Python and R programming 

languages. Anaconda is mainly used for managing software libraries and packages that 

are dedicated to scientific computing fields like data science, machine learning and deep 

learning. With Anaconda installed, Python packages and libraries can be easily installed, 

upgraded, and removed, as well as new virtual environments can be created where 

packages and libraries can be used and managed separately from the host environment.  
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Figure 5.2 Docker architecture from Docker 

 

Docker is a platform-as-a-service (PaaS) platform that utilises virtualisation in 

developing and running applications in separate packages called containers. The main 

advantage of using Docker is the separation of concern where a new infrastructure with 

a set of applications installed in it and is isolated from the main client infrastructure.  

As Docker uses a client-server architecture, the host machine that executes Docker 

commands, also known as Docker client, communicates with the Docker daemon, 

which is responsible for building and running Docker containers. The Docker client 

then can have the option of running and hosting a Docker container on the same system 

locally or connecting a Docker client to a remote Docker daemon via REST API and 

network interface. Docker is generally more lightweight and faster compared to 

hypervisor based VMs like VMWare and VirtualBox due to Docker containers sharing 

the same host OS rather than having a guest OS on top of the host OS. Therefore, much 

lesser computing resources are needed to run Docker containers compared to hosting 

hypervisor based VMs when it comes to system portability and managing application 

and services separately. 

 

Flask, as a microframework for Python web development, simplifies the process of 

setting up a basic web application. In the case of getting the ML model prediction work 

as intended, Flask does the job as a simple web application is sufficient to simulate the 

IDS in predicting the network traffic patterns. 



Chapter 5 Experiment/Simulation 

28 
Bachelor of Information Technology (Honours) Communications and Networking  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

5.3 Setting and Configuration 

There were numerous configurations and settings to be performed throughout the 

simulation process regarding the real-time IDS, from setting up environment variables 

for Python IDE in host machine to getting a web application up and running. 

 

 

Figure 5.3 Anaconda in GUI version 

 

The starting point of the configuration part for this project was to set up a Python 

interpreter and create a new Python virtual environment in the Windows host machine. 

Upon installing Anaconda program, the latest Python version will also be included as a 

part of the installation process. All virtual environments in the host system can be 

managed at the Environments section in the Anaconda Navigator, which is the GUI 

version of Anaconda. A new virtual environment was created, followed by the 

installation of the relevant Python packages and libraries like TensorFlow and PyPlot.  

 



Chapter 5 Experiment/Simulation 

29 
Bachelor of Information Technology (Honours) Communications and Networking  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 

Figure 5.4 Python Interpreter Settings in PyCharm IDE 

 

The next configuration step would be setting up the environment variable and selecting 

the created virtual environment with the installed Python interpreter version for 

PyCharm IDE. Upon creating a new project in PyCharm, navigate to the existing 

interpreter section and select the virtual environment that was created previously. This 

would allow the IDE to run Python scripts and programs using the specified interpreter 

in the virtual environment. From there, all packages and modules installed in the 

particular virtual environment would also take effect within the virtual environment 

itself. In other words, this would separate the virtual environment from other 

environments such that the packages and libraries of different versions could be 

installed in the chosen virtual environment, not affecting the ones installed in the main 

environment. 
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The following step after the IDE configuration would be to convert the GAN source 

codes into an older version, so that the ML model could be executed for training without 

any runtime errors. Since the obtained source codes were written with TensorFlow 1.x 

version libraries, the current TensorFlow 2.x version (TensorFlow 2.9 as of May 2022) 

included many drastic changes and improvements from TensorFlow 1.x versions. 

Therefore, TensorFlow scripts [19] could be used to automatically convert all codes 

with TensorFlow libraries into a compatible-ready TensorFlow version, by adding 

compat.v1 module in between all TensorFlow functions. 

Figure 5.5 Linux commands for creating virtual environment 

 

As for the configurations regarding Docker and Flask, these would be performed in the 

Linux VM. Before setting up Docker and Flask, a Python virtual environment had to 

be created in the Linux VM. Having a separate virtual environment is important because 

the ML model deployment requires Python 2 versions to be able to run a Python client 

script that is responsible for communicating with the TensorFlow Serving model server 

from the Docker image.  

 

 

 

 

# install pip package manager 

$ sudo apt-get install python-pip 

 

# install virtualenv library module with pip installer 

$ pip install virtualenv 

 

# create a virtualenv for python 2 version 

$ virtualenv -p /usr/bin/python2.7 virtualenv_name 

 

# activate virtualenv 

$ source virtualenv_name/bin/activate 



Chapter 5 Experiment/Simulation 

31 
Bachelor of Information Technology (Honours) Communications and Networking  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

Figure 5.6 Linux commands for installing Docker and Flask libraries 

 

To setup Docker in the Linux VM, Docker Engine, also known as docker-io for the 

package name, has to be installed in order to manage Docker containers and images. 

After that, the Docker image with TensorFlow Serving compiled on it is retrieved by 

downloading it from the official TensorFlow Docker repository hub. The downloaded 

Docker image would be used to start up a model server for TensorFlow Serving. Flask 

library should be installed using pip package manager tool to create a HTTP server for 

sending HTTP requests and response with the predict_client package designed 

specifically to be used with a model served by TensorFlow Serving. The predict_client 

package is needed to allow the ML model to perform prediction on the network traffic, 

as the TensorFlow Serving model server runs a gRPC service, which is a type of remote 

procedure call framework that simplifies client-server communications. With 

predict_client package installed, it helps to facilitate the communication as a 

middleman between the model server and the client application in sending HTTP and 

gRPC requests accordingly. 

 

 

 

 

 

 

 

 

# install Docker library 

$ pip install docker-io 

 

# download TensorFlow Serving Docker image 

$ docker pull tensorflow/serving 

 

# install Flask library for web application 

$ pip install Flask 

 

# install gPRC predict client for TensorFlow Serving 

$ pip install git+https://github.com/epigramai/tfserving-  

python-predict-client.git 
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5.4 System Operation 

First, the ML model had to be trained to be able to predict whether the network traffic 

is normal or malicious. The source codes pertaining to GAN were run in PyCharm IDE, 

with suitable hyperparameter values as the main parameters for yielding the best 

performance for the trained model possible. The main Python script to train the ML 

model was run to obtain the checkpoint files, which would be used for generating a 

saved model file to serve the model into deployment, and the performance metrics that 

determine the performance of the trained model.  

 

 

Figure 5.7 Output of trained model showing performance metrics 

 

 

Figure 5.8 Generated model checkpoint files 
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The following step would be to create a saved model file from the checkpoint file 

previously. A Python script would be run to build a servable model from all the 

information and variables in the saved model checkpoint file. The resulting files 

generated from the script contain the important information regarding the model, like 

the calculated weight and bias values for each feature, and the algorithms needed to 

generate an outcome of the prediction. 

 

 

Figure 5.9 Code snippet for creating a saved model file for TensorFlow Serving 

 

 

Figure 5.10 Saved model builder file 
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After generating the model builder files, a Python virtual environment was created in 

the Linux VM. The configurations for the creation of a new virtual environment could 

be referred to the one in Figure 5.5, followed by Figure 5.6 for installing all other 

necessary software packages and libraries prior to starting a Docker container. Upon 

doing so, a new Docker container was created with the parameters listed in Figure 5.10, 

and the downloaded TensorFlow Serving image was run inside the Docker container. 

As a result, the Docker container with the image would start to run and will be ready to 

be used for serving the ML model. 

 

 

Figure 5.11 Running TensorFlow Serving image in Docker container 
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Once the Docker container started running, another Python script that is responsible for 

the real-time classification of network traffic will be executed in the Linux VM. The 

script included the necessary codes for starting up a simple Flask web application, so 

that the prediction of network traffic based on the captured network packets will occur. 

It would also perform packet sniffing on the network with Tshark command, pre-

process the captured network packets to a NumPy array format, and feed the data into 

the client prediction library that was responsible for sending requests to the model 

server for prediction results. 

 

 

Figure 5.12 Python code for real-time prediction with Flask  
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Upon executing the client prediction script, the Flask web application would start 

running. Whenever the URL of the web application was visited, the Tshark packet 

sniffing command would start executing along with the client prediction codes to 

display the classification outcome of each captured network packet. The output for the 

classification of each network packet can be ‘Normal traffic’ or ‘Malicious traffic’ 

depending on the prediction results from the model server. 

 

 

Figure 5.13 Network traffic prediction with Flask 
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5.5 Implementation Issues and Challenges 

There were a few challenges as to implementing the relevant setup on the IDS. One of 

which was the data pre-processing of the UNSW-NB15 dataset that is important prior 

to feeding the data into the ML model for training and testing. Most of the derived 

features in the dataset had very strong correlation with the given labels that indicate 

whether the network traffic is benign or malicious. Also, many features like source and 

destination IP and ports were dropped due to the redundancy of the data and the 

irrelevancy in determining the state of the network traffic. The remaining features were 

further reduced due to the packet sniffing method used during which the live capture 

functionality has very limited capabilities in extracting the necessary features of 

network packets for IDS prediction. 

 

The setup of TensorFlow Serving model server was also a big challenge for this real-

time IDS implementation. As there are other methods as to deploy a ML model more 

efficiently and compatibly, the source codes for GAN were specifically written with an 

older version of TensorFlow library. This would result in limited options for deploying 

the said model, and more configuration steps were required to set up a functioning 

model server for model prediction compared to codes written with TensorFlow 2.x 

version libraries, which provide more APIs to simplify the deployment of an ML model. 

 

As for the packet sniffing method used, Tshark does not offer much flexibility when it 

comes to capturing live packets in a network interface. Since the UNSW-NB15 dataset 

had most features derived from the algorithms written in tools like Argus and Bro IDS, 

all of which were not publicly accessible, network packet analyser tools like Tshark 

could only extract the most basic features from the captured network packets. Although 

the display capture feature in Tshark consists of more comprehensive options that can 

decode captured network packets in a more detailed manner, it does not serve the 

purpose of simulating the nature of what a real-time IDS should be. Therefore, the live 

capture feature of Tshark was used instead. 
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5.6 Concluding Remark 

This chapter concludes the whole simulation process of the IDS, as well as covers all 

the necessary information, from the hardware and software setup to the system 

operation of the IDS in details. 
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Chapter 6 

System Evaluation and Discussion 

 

To determine the performance and the effectiveness of the real-time IDS, system 

evaluations have to be performed. This chapter will include the results obtained from 

the testing setup and some performance metrics for the approach, as well as the project 

challenges encountered, and the evaluation of the objectives mentioned in the report. 

 

6.1 System Testing and Performance Metrics 

Regarding the testing procedure of a typical IDS, the most common performance metric 

that is used to determine the effectiveness of a trained model in model prediction is the 

confusion matrix. Confusion matrix is a table measurement for ML classification 

problem where the output can be two or more classes, depending on the trained model. 

It is normally shown with at least 4 different combinations of two types of values: actual 

and predicted. The confusion matrix can be classified as true labels of normal and attack 

categories, and predicted labels of normal and attack categories, with 0 indicating 

normal and 1 indicating malicious. The predicted values in the confusion matrix are 

true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Confusion matrix 
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• TP (predicted malicious traffic correctly): predicts 1 and the actual label is 1. 

• FP (predicted malicious traffic incorrectly): predicts 1 and the actual label is 0. 

• TN (predicted normal traffic correctly): predicts 0 and the actual label is 0. 

• FN (predicted normal traffic incorrectly): predicts 0 and the actual label is 1. 

 

The confusion matrix values can be calculated through math to obtain four other metrics: 

recall, precision, accuracy, and F1-score. The equations for all four metrics are shown 

below: 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 

 

Recall (R) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

Precision (P) = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 

F1-Score = 2 × 
𝑅×𝑃

𝑅+𝑃
 

 

Accuracy calculates the total number of correct predictions out of all predictions. Recall 

determines the number of correct predictions from all the positive classes, whereas 

precision calculates how many are positive out of the total number of predictions 

classified as positive, and F1-score is derived from the average value of recall and 

precision. The performance of a model is good when all values are as high as possible 

at an ideal rate, but there will always be some discrepancies between each of them and 

every model is different in some ways. 
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6.2 Testing Setup and Result 

The performance of the GAN model was evaluated after averaging the number of 

training times with tuned main hyperparameters shown in Table 6.1. The model 

performance was also illustrated using the confusion matrix, accuracy, precision, recall, 

F1-score, discriminator loss and generator loss. 

 

Table 6.1 Tuned hyperparameter values for GAN model 

Hyperparameter Value 

Number of epochs 100 

Batch size 1000 

Discriminator learning rate 0.01 

Generator learning rate 0.001 

 

 

 

Figure 6.2 Confusion matrix of UNSW-NB15 testing dataset 
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Table 6.2 Testing set results 

Metrics Testing set values 

Accuracy 0.6956 

Recall 0.9975 

Precision 0.6916 

F1-score 0.8169 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Discriminator loss 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Generator loss 
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Based on the testing set results in Table 6.2, the accuracy of the trained model with 

tuned hyperparameters was around 69%, with many predictions skewing towards the 

FP region in the confusion matrix. Although an ideal confusion matrix requires most 

predictions to be aligned diagonally to the left, the testing set from the UNSW-NB15 

testing dataset could only achieve around 70% accuracy at best with constant 

hyperparameter tuning.  

 

According to Figure 6.3 and Figure 6.4, the discriminator loss reduced steadily, whereas 

the generator loss increases steadily. In a GAN model, the ideal situation for both 

generator and discriminator losses are for them to converge and stabilise after a certain 

number of epochs. However, based on the figures, both losses will start to diverge after 

approximately 75 epochs (150 steps divided by 2). This might mean that the 

convergence for both sub-models is very difficult to achieve based on the 

hyperparameters. From another point of view, the training of the model can be 

considered to be completed, as the generator cannot be further improved anymore due 

to the discriminator not being able to be fooled by the generator. In other words, the 

discriminator gets better at distinguishing fake data from real input data. Nevertheless, 

for each time the model is trained, the values of both losses will vary, as the resulting 

weights and biases for each training epoch will also vary due to the randomly assigned 

weight and bias values at the start of model training. 

 

 

 

Figure 6.5 TCP flood attack performed while classifying data packets 

 



Chapter 6 System Evaluation and Discussion 

44 
Bachelor of Information Technology (Honours) Communications and Networking  

Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 

Figure 6.6 Classification results 

 

As for the real-time prediction process of the IDS, the outcome of the prediction based 

on the underlined part in Figure 6.6 showed the ‘outputs’ key of the JSON returned an 

array of two probability values. To classify the data packet, the larger value from the 

two elements in the array will be taken and the result will be displayed in ‘arg_max’ 

key of the JSON output. Based on the result in Figure 6.6, the first element of the 

‘outputs’ array was larger than the second element, and so the value of 0 was returned 

for the ‘arg_max’ JSON key, indicating a normal traffic. If the second element of the 

‘outputs’ array was larger compared to the first one, value of ‘arg_max’ would be 1 and 

classified as a malicious traffic. However, it was not able to detect any signs of possible 

network intrusions while network attacks like DDoS and port scan were performed 

using hping3 and Nmap respectively. 
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Since the prediction of the network traffic depends on the trained weight and bias values 

of all the neurons in all the input, hidden and output layers, the output of the prediction 

will be constant based on the same given input data from the captured packets. With 

the Tshark command having the option of “-c 1” included, it is only able to capture a 

network packet to allow the captured data to be pre-processed for the classification 

function to work. Although the packet sniffing process occurs infinitely when the URL 

of the Flask web application is visited, packet sniffing has to be done with 1 packet 

capture at a time for data pre-processing, hence some data packets were not captured in 

the process. 

 

6.3 Project Challenges 

One of the main challenges in this project is the training of deep learning framework 

models like GAN. Generative models like GAN are typically very difficult to train as 

there is no balance for when the discriminator and generator networks achieve 

convergence and no clear indicators as to when the model is considered to be finished 

training. In that case, the occurrence of overfitting or underfitting of the model during 

the training process will be hard to identify as well. Aside from that, the hyperparameter 

tuning process was time-consuming, as it is a trial-and-error method where constant 

value adjustments for each of the hyperparameters are needed in hopes for a stable, 

trained model. There are many factors to be considered when it comes to training a 

stable GAN model, and each of them will have a direct impact on the performance of 

the GAN model, and all models that implement some sort of deep learning framework.  

 

Another challenge faced throughout this project is the real-time aspect of the network 

classification. The packet sniffing method used was quite limited in terms of filtering 

very specific packet information compared to the display filter option, where it is done 

using a saved capture file. In addition, the number of features able to be extracted with 

Tshark live capture method was very little, as most features in the UNSW-NB15 dataset 

are complex features. Hence, all the complex features had to be removed to 

accommodate to the basic features only for packet sniffing to work as intended. With 

all things put into place, the classification outcomes from the real-time network traffic 

prediction of the IDS were not desirable when it was used as in a simulation scenario. 
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6.4 Objectives Evaluation 

The objectives in the project were not able to be realised to a certain extent, as the real-

time IDS was not able to detect network intrusions most of the times. Although the 

GAN model could be trained successfully and the implementation of the real-time IDS 

was able to be conducted, the end-results obtained were not as desirable as to be 

expected for an effective IDS in a deployment environment. 

 

6.5 Concluding Remark 

This chapter concludes the testing of the real-time IDS and the simulation results from 

the IDS prediction, along with the metrics used in evaluating the performance of the 

trained GAN model. 
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Chapter 7 

Conclusion and Recommendation 

 

7.1 Conclusion 

 

This research explores the implementation of real-time IDS with a deep learning-based 

ML framework. The importance of a security technology system like IDS in the IoT 

domain, with medical devices included, must be considered to further improve the 

security aspects of the IoT devices. With the real-time IDS implementation, it is shown 

to be able to capture network data and identify any network intrusions, while being 

hosted in a web application to provide access for everyone in the medical field, 

corporate or even personal usage. The implementation procedures and techniques used 

in the project could be replicated and modified, if necessary, to further enhance the 

performance and real-time aspect of the IDS. The use of a real-time IDS is suitable for 

anyone with less knowledge on the technical aspects of the implementation and can be 

deployed on any equipment or machines with relatively low-power consumption. A 

real-time IDS would be very useful in scenarios when anyone needs to monitor the 

network traffic and identify for possible intrusions in a relatively simple manner. This 

project is done to stress the importance of a real-time IDS in adding an extra layer of 

security for IoT devices, as well as to gear the development and further improvements 

towards the implementation of real-time IDS in real-world scenarios. 
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7.2. Recommendation 

 

The implementation of the real-time IDS in this project could be further improved in 

several aspects. One of which is the use of other various ML models or those with deep 

learning frameworks to potentially improve the performance of the trained model. 

Other than that, the use of other publicly datasets like NSL-KDD and KDD99 datasets 

could be used to evaluate the performance of the trained model, as well as other publicly 

available and reliable network intrusion datasets in the future. The feature extraction 

aspect in the packet sniffing procedure could also be improved by adding more relevant 

features for IDS testing, provided that the selected dataset contains more features that 

are extractable using appropriate packet sniffing tools. In addition, the features in most 

public network intrusion datasets could be further clarified on the ways the features are 

exactly extracted to obtain those features, so that the testing of real-time IDS would be 

more effective in the future. 
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