

REAL-TIME INTRUSION DETECTION SYSTEM IN IOT MEDICAL

DEVICES

BY

JOSHUA PHANG JEN HOE

A REPORT

SUBMITTED TO

Universiti Tunku Abdul Rahman

in partial fulfillment of the requirements

for the degree of

BACHELOR OF INFORMATION TECHNOLOGY (HONOURS)

COMMUNICATIONS AND NETWORKING

Faculty of Information and Communication Technology

(Kampar Campus)

JUN 2022

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ii

8/9/2022

UNIVERSITI TUNKU ABDUL RAHMAN

REPORT STATUS DECLARATION FORM

Title: REAL-TIME INTRUSION DETECTION SYSTEM IN IOT MEDICAL

DEVICES

Academic Session: JUNE 2022

 I JOSHUA PHANG JEN HOE

(CAPITAL LETTER)

 declare that I allow this Final Year Project Report to be kept in

 Universiti Tunku Abdul Rahman Library subject to the regulations as follows:

1. The dissertation is a property of the Library.

2. The Library is allowed to make copies of this dissertation for academic purposes.

 Verified by,

 _________________________ _________________________

 (Author’s signature) (Supervisor’s signature)

 Address:

 43, Hala Perajurit 6,

 Taman Kaya, GAN MING LEE

 31400 Ipoh, Perak Supervisor’s name

 Date: 7 SEPTEMBER 2022 Date: ____________________

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iii

Universiti Tunku Abdul Rahman

Form Title : Sample of Submission Sheet for FYP/Dissertation/Thesis

Form Number: FM-IAD-004 Rev No.: 0 Effective Date: 21 JUNE 2011 Page No.: 1 of 1

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TUNKU ABDUL RAHMAN

Date: 7 SEPTEMBER 2022

SUBMISSION OF FINAL YEAR PROJECT

It is hereby certified that ______Joshua Phang Jen Hoe__________ (ID No: __18ACB06775)

has completed this final year project entitled “_Real-Time Intrusion Detection System in IoT Medical

Devices_” under the supervision of Gan Ming Lee (Supervisor) from the Department of Computer

and Communication Technology, Faculty of Information and Communication Technology.

I understand that University will upload softcopy of my final year project in pdf format into UTAR

Institutional Repository, which may be made accessible to UTAR community and public.

Yours truly,

(Joshua Phang Jen Hoe)

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 iv

 DECLARATION OF ORIGINALITY

I declare that this report entitled “Real-Time Intrusion Detection System in IoT

Medical Devices” is my own work except as cited in the references. The report has not

been accepted for any degree and is not being submitted concurrently in candidature

for any degree or other award.

Signature : _________________________

Name : _Joshua Phang Jen Hoe______

Date : _7 September 2022 _________

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 v

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my supervisor, Dr Gan

Ming Lee, for giving me this opportunity to be involved in this project and guiding me

in every step of the way as much as possible.

I would also like to express my utmost gratitude to my family members for their love

and continuous support throughout my journey as a student.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vi

ABSTRACT

The wide adoption of the Internet of Things (IoT) in the current digital world is

gradually increasing with time, focusing on the various benefits and huge convenience

IoT can bring about to the way people live. However, new technological advancements

will always be introduced to potentially new, unknown security threats and

vulnerabilities, hence a real-time intrusion detection system is implemented in this

project. This research-based cybersecurity project highlights the importance of an

intrusion detection system in improving the security level of the IoT medical devices.

The design of the real-time IDS revolves around setting up simple IoT devices

resembling IoT medical devices to form an IoT network, performing attacks on the

network, capturing network packets in real-time, and classifying network data with a

deep learning framework to help in identifying modern intrusions and network traffic

anomalies. Some network attacks are performed within the network and the packet data

are captured at the same time. Generative adversarial network will be used as the deep-

learning-based generative model for anomalous intrusion detection purposes. The

model itself will be trained and tested with a network intrusion dataset for

benchmarking the model performance. In the context of real-time IDS, this project aims

to improve the security aspects of the IoT medical devices, and possibly spark the

importance of security technologies like IDS in the IoT industry.

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 vii

TABLE OF CONTENTS

TITLE PAGE i

REPORT STATUS DECLARATION FORM ii

FYP THESIS SUBMISSION FORM iii

DECLARATION OF ORIGINALITY iv

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF FIGURES x

LIST OF TABLES xii

LIST OF ABBREVIATIONS xiii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement and Motivation 1

1.2 Objectives 2

1.3 Project Scope 3

1.4 Contributions 3

1.5 Report Organisation 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Review of the Technologies 5

 2.1.1 Vulnerabilities in IoT Medical Devices 5

 2.1.1.1 Denial of Service (DoS) Attacks

 2.1.1.2 Man-in-the-Middle (MITM) Attacks

5

 7

 2.1.1.3 Side Channel Attacks 8

 2.1.2 UNSW-NB15 Dataset 9

 2.1.3 Packet Sniffing 10

2.2 Previous Research Works on IDS 10

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 viii

CHAPTER 3 SYSTEM MODEL 12

 3.1 System Architecture Diagram 12

 3.2 Use Case Diagram and Description 13

 3.3 Activity Diagram 14

CHAPTER 4 SYSTEM DESIGN 16

 4.1 Data Pre-Processing 17

 4.1.1 Feature Selection

 4.1.2 Categorical Data Encoding

 4.1.3 Data Transformation

17

18

18

 4.2 GAN Implementation 18

 4.3 Network Attack Simulation 21

 4.4 Packet Sniffing 21

 4.5 Model Deployment 22

CHAPTER 5 EXPERIMENT/SIMULATION 24

 5.1 Hardware Setup 24

 5.2 Software Setup 26

 5.3 Setting and Configuration 28

 5.4 System Operation 32

 5.5 Implementation Issues and Challenges 37

 5.6 Concluding Remark 38

CHAPTER 6 SYSTEM EVALUATION AND DISCUSSION 39

 6.1 System Testing and Performance Metrics 39

 6.2 Testing Setup and Result 41

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 ix

 6.3 Project Challenges 45

 6.4 Objectives Evaluation 46

 6.5 Concluding Remark 46

CHAPTER 7 CONCLUSION AND RECOMMENDATION 47

 7.1 Conclusion 47

 7.2 Recommendation 48

REFERENCES 49

WEEKLY LOG 51

POSTER 57

PLAGIARISM CHECK RESULT 58

FYP2 CHECKLIST 60

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 x

LIST OF FIGURES

Figure Number Title Page

Figure 2.1 SYN flood attack. 7

Figure 2.2 Artificial neural network. 11

Figure 3.1 Top-level system architecture diagram 12

Figure 3.2 Use case diagram 13

Figure 3.3 Activity diagram 14

Figure 4.1 System block diagram 16

Figure 4.2 A typical generative adversarial network 19

Figure 4.3 Model deployment with TensorFlow Serving and Flask 22

Figure 5.1 Arduino Yun 25

Figure 5.2 Docker architecture from Docker 27

Figure 5.3 Anaconda in GUI version 28

Figure 5.4 Python interpreter settings in PyCharm IDE 29

Figure 5.5 Linux commands for creating virtual environment 30

Figure 5.6 Linux commands for installing Docker and Flask

libraries

31

Figure 5.7 Output of trained model showing performance metrics 32

Figure 5.8 Generated model checkpoint files 32

Figure 5.9 Code snippet for creating a saved model file for

TensorFlow Serving

33

Figure 5.10 Saved model builder file 33

Figure 5.11 Running TensorFlow Serving image in Docker

container

34

Figure 5.12 Python code for real-time prediction with Flask 35

Figure 5.13 Network traffic prediction with Flask 36

Figure 6.1 Confusion matrix 39

Figure 6.2 Confusion matrix of UNSW-NB15 testing dataset 41

Figure 6.3 Discriminator loss 42

Figure 6.4 Generator loss 42

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xi

Figure 6.5 TCP flood attack performed while classifying data

packets

43

Figure 6.6 Classification results 44

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xii

LIST OF TABLES

Figure Number Title Page

Table 4.1 Selected features from UNSW-NB15 dataset 6

Table 5.1 Specifications of desktop 8

Table 5.2 Specifications of Linux virtual machine 11

Table 6.1 Tuned hyperparameter values for GAN model 41

Table 6.2 Testing set results 42

Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR
 xiii

LIST OF ABBREVIATIONS

IoMT Internet of Medical Things

IoT Internet of Things

IDS Intrusion Detection System

ICMP Internet Control Messaging Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

MITM Man-in-the-Middle

DDoS Distributed Denial of Service

6LoWPAN IPv6 over Low-Power Wireless Personal Area Network

PIR Passive infrared

ML Machine Learning

GAN Generative Adversarial Network

IDE Integrated Development Environment

OHE One-Hot Encoding

CSV Comma-separated Values

ReLU Rectified Linear Unit

API Application Programming Interface

URL Uniform Resource Locator

HTTP Hypertext Transfer Protocol

gRPC gRPC Remote Procedure Call

TP True Positive

TN True Negative

FP False Positive

FN False Negative

Chapter 1 Introduction

1
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 1

Introduction

1.1 Problem Statement and Motivation

Medical devices that are connected to the Internet have been significant in shaping the

way healthcare entities treat patients with advanced technologies embedded into such

devices. In the current digital era, patients are able to receive treatments and track their

health status in real-time due to the wide adoption of IoT medical devices in the

healthcare industry. However, there has been a surging number of new challenges and

issues pertaining to the increasing demands of IoT medical devices or Internet of

Medical Things (IoMT). There is a wide range of varieties for all kinds of IoT medical

devices to be used in hospitals, healthcare clinics and even general IoMT for personal

use with some examples like smartwatches that monitor heart rate and pulses. Among

medical devices in hospitals and clinics in the context of a larger scale are remote

patient monitoring, connected inhalers, ingestible sensors, robotic surgery equipment

and many more [1]. However, the current phase that the healthcare industry is residing

in has exacerbated the problems IoMT encountered from the security standpoint and

further increased the demand of IoT medical devices since the start of the COVID-19

worldwide pandemic. There are numerous IoMT that are being vulnerable and exposed

to various security threats and attack vectors in many hospitals and healthcare centres

around the globe. Today, IoMT are one of the most sought-after attack targets for

unethical parties and cybercriminals alike for apparent reasons like monetary gains and

social propaganda. In addition, the number of preventive measures taken to safeguard

and protect such medical devices and systems from vulnerabilities and exploits is not

enough to combat the severe issues of medical devices being compromised on a day-

to-day basis [2].

Chapter 1 Introduction

2
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Since the major proportion of the IoT medical devices is optimised and used in hospitals

and healthcare clinics, there is a huge reliance on these medical devices that have the

ability to gather and store sensitive information about patients, particularly personal

identifiable information (PII) which includes a patient’s full name, address, contact

details and many more. With the vast amount of security breaches and cyber-attacks in

place, the affected IoT medical devices face a high risk of data exposure to the public

regarding patients’ personal data, as well as healthcare organisations’ information.

Other than that, IoT medical devices with critical functionalities that are affected by

cyber-attacks might result in life-threatening consequences whereby patients who

heavily depend on these types of medical devices may lose their lives.

Therefore, there is a need to design a real-time intrusion detection system in every

network architecture of all healthcare organisations and entities to ensure the safe use

and normal operational behaviour of medical devices in real-time. The security

robustness and reliability of IoT medical devices have to be improved by implementing

intrusion detection systems as an extra security solution to detect known and unknown

attacks, as well as to protect the patients’ and healthcare organisations’ data and privacy.

1.2 Objectives

The aim of the thesis is to propose a real-time IDS that is able to detect any possible

network intrusions in IoT medical devices. The effects of exploited vulnerabilities in

IoT medical devices of all operations result in many undesirable consequences for

patients and healthcare industries. Such occurrences are usually the result of the

lackadaisical of IDS in IoT medical devices or networking components in these devices.

In this thesis, the presence of an IDS in any IoT devices will gear towards the efforts in

securing as many IoT medical devices as possible and reducing the security risks of

such devices. The proposed real-time IDS will be designed to be able to identify modern

network intrusion and abnormal network traffic patterns through a deep learning

framework, as well as to provide a viable solution for anomaly-based intrusions in

general.

Chapter 1 Introduction

3
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.3 Project Scope

The scopes of this project include exploring certain vulnerabilities that are presented in

IoT medical devices and proposing an effective real-time IDS based on existing and

unknown vulnerabilities. Highlighted vulnerabilities will be investigated and ventured

to understand the base concepts towards the foundation of the vulnerabilities that will

lead to cyber-attacks towards IoT medical devices in general. A network-based IDS is

to be proposed for detecting different vulnerabilities as an additional countermeasure

to security problems in IoT medical devices. The IoT medical devices to be used for

measuring the effectiveness and efficiency of the proposed IDS could be sensor nodes

or tiny computer systems that are able to mimic the representation of such medical

devices. Any information regarding the potential vulnerabilities that might exist in the

replica sensor nodes is useful towards the actions and decisions to be made in the

process of simulating an IDS in real world contexts.

1.4 Contributions

The main prospect of this project is to propose an IDS that can safeguard IoT medical

devices in real-time. With the lack of sufficient security provision in many of IoT

medical devices today, the proposed real-time IDS will offer an extra layer of security

measure to further solidify the security aspect of such devices. This will help the

healthcare industry to propel towards the importance of security in the use of IoT

medical devices, as well as to ensure the confidentiality and integrity of medical data,

and the functionalities of such medical devices to be protected from exploits and

vulnerabilities.

Chapter 1 Introduction

4
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

1.5 Report Organisation

This report is organised into 7 chapters: Chapter 1 Introduction, Chapter 2 Literature

Review, Chapter 3 System Model, Chapter 4 System Design, Chapter 5

Experiment/Simulation, Chapter 6 System Evaluation and Discussion, Chapter 7

Conclusion and Recommendation. The first chapter covers the brief introduction on IoT

medical devices and problem statements, as well as the project objectives and the scope

to be covered. The second chapter is the literature review regarding some of the

technologies related to the proposed real-time IDS, as well as the previous research

works on the IDS domain. The third chapter covers the system model of the proposed

IDS in a top-level perspective, detailing the general flow of the implementation. The

fourth chapter is about the system design of the proposed approach, where the IDS

implementation will be shown in a more detailed manner, as well as to describe the

components of the system from a block diagram. The fifth chapter entails the

experiment or simulation of the proposed real-time IDS, where details like set-ups,

configurations and system operation will be covered. The sixth chapter is about the

evaluation and discussion of the system, where the testing metrics and the results are

shown and explained. The final chapter covers the conclusion part of the report that will

include the final remarks of this project and some recommendations for any future

potential improvements.

Chapter 2 Literature Review

5
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 2

Literature Review

2.1 Review of the Technologies

In this section, some common vulnerabilities that occur in IoT medical devices will be

covered, as well as some relevant technologies to be used in the implementation and

previous works on IDS in a brief manner.

2.1.1 Vulnerabilities in IoT Medical Devices

Since the introduction of IoT medical devices in the medical field, there is a range of

new and existing threats and vulnerabilities to be presented in almost every of these

medical devices, no matter the older or newer versions of such devices and its

embedded software. Many IoT medical devices are prone to different kinds of attack

vectors and there will always be new, unknown vulnerabilities to be discovered, also

known as zero-day exploits. Such exploits are generally difficult to detect and be made

known to security experts or researchers alike as these exploits could pose a damaging

risk to patients and healthcare organisations. Other than that, such medical devices can

also be susceptible to indirect attacks in which infected hosts or endpoints in a network

may enable other forms of attacks like malicious code injection, resulting in IoT

medical devices of the same network to be compromised [3].

Vulnerabilities of varied complexity levels are generally subjected to the purpose of

attackers performing various kinds of cyber-attacks to target specific IoT medical

devices. Although there are no defined set of rules and procedures in a typical planning

of a cyber-attack, some vulnerabilities that target the weaknesses of a certain aspect of

security properties are listed as follows:

2.1.1.1 Denial of Service (DoS) attacks

DoS attacks remain one of the most common vulnerabilities towards the

implementation of IoT medical devices. This can be seen where a network with many

interconnected IoT medical devices and systems in a healthcare setting can be

overwhelmed with forged traffic requests from attackers’ machines. Other than that, the

Chapter 2 Literature Review

6
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

adoption of cloud servers for all kinds of IoT medical devices will also introduce new

threat landscapes and evolved methodologies of DoS attacks. Although some hospitals

or clinics in the healthcare industry in which most private networks and cloud servers

have several security measures and tools to strengthen the security aspects of IoT

medical devices, this is still not adequate in curbing prominent DoS attacks. As there

are no security strategies that can fully prevent all kinds of DoS attacks, attackers will

always try to look for new DoS attacks or even revamp existing attacks to pose negative

effects on IoT medical devices and the network architectures.

Some possible variants of DoS attacks in IoT medical devices include ICMP flooding

attack and SYN flooding attack. Adversaries could also combine multiple forms of DoS

attacks and transform them into multiple computer systems infecting a single target,

also known as Distributed Denial of Service (DDoS) attacks. Internet Control

Messaging Protocol (ICMP) flooding attack focuses on overloading a targeted medical

device with ICMP echo packets, also known as pings in a more general term. Since the

main function of an ICMP ping is to test the connectivity of two hosts or endpoints with

echo requests and echo replies, there is no mechanism of determining and identifying

the authenticity of the pings. Given that the targeted medical device in a network will

respond with an equal number of reply packets, packets can be forged using tools like

Scapy and hping and be used to flood the target or network devices like routers.

SYN flooding attacks apply a similar concept compared to ICMP flooding attacks in

which the idea of overloading the targeted medical devices leads to disrupting and

halting the functionalities of such medical devices. However, SYN flooding attacks

target IoT medical devices of more importance in transmitting medical data to

healthcare servers using Transmission Control Protocol (TCP) in the transport layer of

the TCP/IP networking model. Those servers that are very dependent on the data

provided by medical devices to provide crucial web services for healthcare personnel

and patients alike are the primary target for attackers. This kind of attack abuses the

three-way handshake process for a TCP connection as multiple SYN packets are sent

to the targeted server and prevent any TCP packets with RST flag enabled from being

generated. If successful, the bandwidth and memory resources of the targeted server

Chapter 2 Literature Review

7
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

will be depleted and might affect its operation, as well as further attacks can be carried

out due to incomplete TCP connections.

Figure 2.1: SYN flood attack

2.1.1.2 Man-in-the-middle (MITM) attacks

IoT medical devices function by making use of wireless sensor communications, in

which this might be vulnerable to man-in-the-middle attacks, jeopardising the

confidentiality, integrity, and availability of such medical devices [4]. A MITM attack

occurs when an attacker monitors and tampers with communications between two

legitimate parties, making changes to the transmitted data in the process of doing so.

This is comparable to a typical eavesdropping attempt, in which the attacker listens in

on the discussions of two individuals. MITM attacks include network content spoofing,

network eavesdropping, session hijacking and IP spoofing.

MITM attacks have evolved over the course of IoT medical devices adoption in the

healthcare industry. Generally, there are two types of such attack: passive or active

MITM. A passive attack is all about intercepting and reading the messages that are

exchanged between two entities without tampering the communication aspect. Passive

MITM attacks are initially carried out in medical devices to gather as much information

about the functionalities of the targeted medical devices as possible, as well as the

nature of the data flow between the two communicating entities. This would normally

be the first step for attackers to understand how the medical devices interlink with one

Chapter 2 Literature Review

8
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

another and the nature of the network. Active MITM attacks are then followed up after

performing passive attacks whereby the attackers are able to gain access to targeted

medical devices and manipulate or modify the transmitted data to operating servers.

When parts of the functionalities of a medical device are compromised due to the

attacker’s control, things would start to go haywire. Some undesirable scenarios like

falsifying communications between a medical device and a server and disabling the

core functionalities of a medical device would result in the endangerment of patients’

lives and the integrity of doctors or nurses that are highly responsible for the treatment

of patients. When both passive and active MITM attacks are carried out simultaneously,

such actions may lead to other deadly attacks that will result in further complicated

problems and scenarios, causing the process of neutralising and mitigating cyber-

attacks by security vendors and experts to be more time-consuming and troublesome.

2.1.1.3 Side channel attacks

Side channel attacks involve the exploitation of observable physical properties emitted

from the physical components of IoT medical devices. This form of attack focuses more

on accessing sensor components found in IoT medical devices, such as gyroscope and

accelerometer, that transmits data from the hardware aspects of the sensors. These

sensors can be exploited in which the transmitted data to a remote server is intercepted,

hence leaking private information about the medical devices and those belonging to

users [5]. Other sensitive data emitted from environmental and electrical properties

from internet-enabled medical devices like cryptographic key implementation and user

inputs like passwords and PINs can be disclosed from side channel attacks as well [6].

There are a few components of side channel attacks that are responsible for the

exploitation of physical components in IoT medical devices to perform cryptographic

key recoveries and data extraction. Power analysis is one of the side channel attack

components whereby the differences in power consumption of medical devices are

monitored and differentiated to determine voltage fluctuations. Power analysis can be

further broken down into two types: simple power analysis (SPA) that identifies the

instructions and cryptographic operations under execution using waveforms, and

differential power analysis (DPA) in which secret keys are traced and discovered from

ciphertexts using advanced statistical analysis [6]. Other analysis components like

Chapter 2 Literature Review

9
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

electromagnetic emission (EM) analysis, acoustic cryptanalysis and temperature

analysis exploit a certain physics or environmental aspect used by a certain hardware

sensor in IoT medical devices. The general idea behind side channel attacks is to

discover the differences or redundancies in each sensor component in medical devices,

so that sensitive information regarding the device, user or embedded system within the

device itself can be extracted and captured. Such information can be used for several

other purposes like exploiting the hardware vulnerabilities of medical devices and

performing other cyber-attacks based on the personal information of users.

2.1.2 UNSW-NB15 Dataset

The UNSW-NB15 dataset is a network intrusion dataset that contains a mixture of real

modern network activities and synthetic attack scenarios. It has nine type of different

network attacks and was constructed from the IXIA PerfectStorm traffic generator tool

configured by researchers in UNSW Canberra, along with tcpdump tool to capture 100

GB of raw traffic. Argus and Bro-IDS, now known as Zeek, were also used to extract

the original 49 features in the dataset [10].

Regarding the dataset availability, many find it difficult to look for a reliable network

intrusion dataset due to the scarcity of public datasets. Therefore, the creation of

UNSW-NB15 dataset would be a more significant dataset in detecting novel attacks

compared to existing benchmark datasets like KDD99 and NSL-KDD datasets [11].

Since the creation of UNSW-NB15 dataset, it was used in an increasing number of areas

of interest fields and was proven to be comparatively good in evaluating the

performance of the proposed frameworks in the intrusion detection/anomaly detection

systems [12] [13]. In addition, some new datasets with modified features were created

from the UNSW-NB15 dataset to cater for more specific use cases, with ML-based

network IDS as an example [14].

The UNSW-NB15 dataset has a total number of 2.5 million records separated in four

CSV (Comma-Separated Values) files. It also contains a training dataset and a testing

dataset partitioned from the full version of the dataset, making it suitable and adequate

to train ML algorithms.

Chapter 2 Literature Review

10
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

2.1.3 Packet Sniffing

Packet sniffing is a method to analyse and intercept network packets in a network.

Packet sniffing is usually performed with network protocol analysing tools to capture

data travelling across a network, allowing those tools to capture data packets in a very

fast manner. Packet sniffing tools are able to capture and read packets at the network

layer of the TCP/IP layer, along with providing important packet features within the

captured packets like packet length and protocol types. It is normally done to monitor

network traffic by network administrators to ensure the network traffic is not malicious.

It is also used to assess network performance, extract features from network traffic and

identify potential network intrusions through packet analysis [16].

2.2 Review of Previous Research Works on IDS

Hodo et al. [7] proposed the implementation of Artificial Neural Network (ANN) as

one form of network-based intrusion detection system. The proposed ANN model in

IDS was tested and trained with a simulated IoT network with interconnected sensor

nodes as IoT devices. Hodo et al. [7] also proposed the threat analysis of IoT using

ANN model to monitor and identify the network specifically for DoS/DDoS attacks. A

multi-level perceptron, which is a type of supervised ANN, is trained using internet

packet traces and is tested according to its ability to thwart DDoS/DoS attacks. The

experimental architecture used in this proposed research is made of five node sensors,

in which one of them acts as a server and is set as the primary target for attackers. Their

results of simulated DDoS attacks with the accumulation of more than ten million

packets were based on the detection of normal and threat traffic patterns, making this

proposed ANN model as an anomaly-based type IDS for DDoS/DoS attacks in the

network layer.

Chapter 2 Literature Review

11
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 2.2 Artificial neural network

Soe et al. [8] proposed a machine learning-based botnet attack detection IDS framework

with sequential detection architecture. Their approach of detecting botnet attacks was

based on three different machine learning algorithms, including ANN, J48 decision tree,

and Naive Bayes. Their proposal of the sequential attack detection architecture revolved

around two phases, in which the first phase performs building training models and

collecting data, and the second phase detects botnet attacks from incoming network

traffic based on the traffic patterns analysed by their end-product IDS engine.

Cervantes et al. [9] proposed an IDS to identify sinkhole attacks on 6LoWPAN systems

for the IoT in general. Their proposed IDS is a hybrid IDS that can detect anomaly-

based and signature-based network activities on the routing services. Their approach

combines several strategies for detection of attackers by analysing the behaviour of the

sensor nodes. Their proposed IDS also establishes dynamic clustering to support IoT

data transmission by reputation and trust mechanisms. Based on their simulation results,

the sinkhole detection rate in their proposed IDS can achieve up to 92% in a fixed

scenario and 75% in a mobile scenario.

Chapter 3 System Model

12
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 3

System Model

This chapter covers the system model at a top-level design, detailing the major

components of the system on a surface level. A use case diagram and an activity

diagram will also be included to briefly illustrate the use of the IDS.

3.1 System Architecture Diagram

Figure 3.1 Top-level system architecture diagram

The system architecture of the IDS involves few main stages: training the ML model,

packet sniffing with Tshark and classifying network packets. The first stage involves

training the model with a deep learning method approach, utilising the GAN

architecture where algorithms like backpropagation and feature calculations are used to

continuously improve the model throughout the training process. The following stage

is the packet sniffing process using a network protocol analyser tool called Tshark. This

process will be done under a running model server where it hosts the built model file

that is responsible for the logic of classifying network packets and captures network

packets with the appropriate filters to obtain the relevant ones. The last stage involves

classifying captured network packets, where the prediction functions in the model

server will classify the packets based on the trained model file and classify them

accordingly.

Chapter 3 System Model

13
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.2 Use Case Diagram and Description

Figure 3.2 Use case diagram

The use case scenario for the real-time IDS is applicable to everyone who requires a

system to monitor network traffic in a private network. This may be applicable for users

or organisations who operate many IoT devices in a network, including internet-enabled

medical devices. A given example can be an admin in an organisation handling all the

monitoring and the management of the network traffic and the IDS itself, respectively.

The admin will be able to configure and modify the command for packet sniffing in the

model server with the appropriate filters for specific use cases, like monitoring only

TCP and UDP traffic in a network. By doing this, the admin can monitor the filtered

network traffic for any possible network attack occurrence, and also be notified of

network attacks if any.

Chapter 3 System Model

14
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

3.3 Activity Diagram

Figure 3.3 Activity diagram

Chapter 3 System Model

15
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The activity diagram in Figure 3.3 shows the general flow of implementing the real-

time IDS. The first few processes involve training the ML model by feeding the pre-

processed dataset into the model and obtaining the saved model file afterwards. The

model can be improved by adjusting the necessary hyperparameters that might affect

the performance of the model with every slight adjustment. Once the model is tested

and is satisfactory, the trained model is built and compiled into a model file which is

specifically used for running it with a model server. Combined with some client

prediction software packages and necessary libraries, the model server will be ready to

be used as a real-time IDS to classify network traffic.

Chapter 4 System Design

16
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 4

System Design

Figure 4.1 System block diagram

The implementation of this research-based project is categorised into five

methodological steps: data pre-processing, GAN implementation, network attack

simulation, packet sniffing and model deployment.

Chapter 4 System Design

17
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.1 Data Pre-processing

Data pre-processing is the action of modifying the structure and nature of the input data

for subsequent training of the ML model. It is typically the initial step that should be

performed before feeding the data into the ML model. The tasks involved in this data

pre-processing step are feature selection, categorical data encoding and data

transformation.

4.1.1. Feature Selection

The training of the proposed ML model relied on the use of UNSW-NB15 dataset,

originally consisting of 49 attributes in total. The features in the dataset were curated

based on thorough analysis on the network attack simulations performed and the use of

different algorithms and tools to extract those 49 features in the dataset itself. However,

to ease the process of packet sniffing and due to the limitations of the packet sniffing

method used, the features in UNSW-NB15 dataset were reduced to three instead of 49

of them. The selected features shown in the table below constitute the main features of

a network packet that could potentially differentiate whether the network traffic is

normal or malicious in nature.

Table 4.1 Selected features from UNSW-NB15 dataset

No. Selected feature name

1 proto

2 sbytes

3 sttl

Chapter 4 System Design

18
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

 4.1.2 Categorical Data Encoding

One-hot encoding (OHE) was used to perform categorical data encoding since most

ML models can only take in features that are numerical in values instead of nominal

values. In a typical ML model, nominal categorical data are encoded using ordinal

encoding where there are known correlation between features and the order of data in

each feature causes the ML model to assign importance to the ordinal nature of data.

However, in this project, OHE is preferred compared to ordinal encoding due to the

categorical features in the UNSW-NB15 dataset not belonging to any form of ordered

relationships between them. The use of OHE in categorical data encoding creates a new

column for each unique category value, resulting in additional columns. Therefore,

categories with highest number of frequencies are only selected to reduce the number

of features.

4.1.3 Data Transformation

After performing manual feature selection and categorical data encoding on the input

data in UNSW-NB15 dataset, all the data in the training and testing UNSW-NB15

datasets were converted to NumPy array datatype. This was done to allow the

transformed data to fit into the ML model for training and testing purposes. Since the

ML model made use of TensorFlow libraries and codes, data transformation was

required in order to allow the ML model to process the data in both training and testing

datasets.

4.2 GAN Implementation

The implementation of the real-time IDS was based on GAN as the proposed ML model.

The original source codes for GAN were from Zander Blasingame and can be found on

GitHub [18]. The obtained GAN source codes were used solely for experimenting the

usefulness of GAN as the ML model for testing the effectiveness of an IDS. The

modified version of the source codes included some changes on the source codes

regarding the data pre-processing part, as well as changes on the compatibility issues

of some libraries and version support.

Chapter 4 System Design

19
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The general architecture of GAN involves a deep learning framework which is based

on the concepts of a generative model. The GAN architecture has two sub-models: a

generator model that is responsible for generating new examples from the original ones

and a discriminator model for differentiating real examples from the fake ones, and vice

versa. The generator model learns to generate fake data with some random input from

the real data based on the feedback from the discriminator and aims to make the

discriminator model classify its output as real data. The discriminator model then tries

to differentiate real data from the generated data and aims to correctly identify real data

from the fake ones.

Figure 4.1 A typical generative adversarial network

In the GAN model, several hyperparameters were included as part of the training

process. Some of the important hyperparameters in this model are the number of hidden

layers, the number of features, learning rates for discriminator and generator models,

batch size and the number of epochs. All the hyperparameters involved in the model

have a direct impact on the performance of the model and should be adjusted

accordingly every time the model is trained for optimal performance.

In the input layer and each hidden layer of the model, all the input for these layers were

activated using Leaky ReLU (Rectified Linear Unit) function. The Leaky ReLU

activation function is a piecewise linear function, in which the positive input will

remain positive output, otherwise the output will be zero. However, Leaky ReLU is

slightly different compared to the normal ReLU function, where the Leaky ReLU has

an extra parameter called alpha, that will covert near-zero positive values to 0 and allow

small negative values. The equation below depicts the equation of the Leaky ReLU

function:

Chapter 4 System Design

20
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 (𝑥) = max (𝑎𝑙𝑝ℎ𝑎 × 𝑥, 𝑥)

The output for the generator model was activated using hyperbolic tangent (tanh)

function, whereas the output for the discriminator model was activated using the

Sigmoid function. The tanh function maps the generated data in the generator model to

the range of (-1,1) for the fake discriminator model, while the real discriminator model

generates the output of Sigmoid function, which is the result of the prediction in the

form of probability scores and the determinant of the classification outcome. The

equation of the Sigmoid function is depicted below:

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥) =
1

1 + 𝑒−𝑥

Based on both generator and discriminator models, there will be some errors when it

comes to training models. The error, also known as loss, is a penalty for a bad prediction

based on the input data. It indicates how far the predicted value is compared to the

gradient value, during which a loss function is needed to estimate the loss of the model.

In this case, the sparse cross entropy was used as the loss function for both sub-models,

which the weights and bias of the model are updated in each training epoch to minimise

the loss on subsequent model training. Since the end output of the model training

produces probability values, sparse cross entropy loss function was preferred compared

to the binary cross entropy. As for the optimiser in the model, Adam optimiser was used

in both generator and discriminator models with a learning rate of 0.004 and 0.002,

respectively. After each training epoch, backpropagation will occur where both the

generator and discriminator neural networks have the weights and the biases adjusted

from the previous accumulated calculations of all neurons in all layers. This is done to

minimise the losses for both generator and discriminator networks and potentially

increase the model performance.

Chapter 4 System Design

21
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

4.3 Network Attack Simulation

To test the performance of the trained model, network attack simulation had to be

performed on the targeted device. Network attacks like port scan attack and DoS attacks

were conducted as an experiment for testing the real-time network classification in the

IDS. Some attack tools like hping3 and Nmap can be used to simulate these kinds of

attacks, performing attack simulations on the targeted IoT device. Such tools are useful

in analysing how the attacks are done and the details behind the idea of the attack,

giving insights on the concepts of each attack type and ways to potentially prevent them.

4.4 Packet Sniffing

The packet sniffing method was used to extract the necessary features from a captured

network packet for the testing of ML-trained IDS. Tshark [15] was used as the packet

sniffing method for feature extraction. Tshark is a command-line network traffic

analyser tool that allows packet data capturing from a live network or packet reading

from a saved capture file. Unlike other network traffic analyser tools like Wireshark,

Tshark provides more flexibility in terms of processing information and extracting

custom features from captured packets in a live network. It was used to extract the few

network features needed for feeding the processed captured packets into the ML-based

IDS for testing purposes.

Tshark works alike with tcpdump, another popular network analysis command-line tool,

which uses the pcap library to capture network traffic from an available network

interface and displays the standard summary output for each captured network packet.

Tshark is generally preferred over GUI-enabled network analyser applications like

Wireshark due to its ability of capturing network packets based on certain set of filters

and displaying only the relevant packet fields for network analysis. Tshark is built with

various options, also known as flags, which allow the modification of the outputs based

on the given filters. On top of that, the captured network packets can be decoded in data

formats like JavaScript Object Notation (JSON), pcap files and CSV files for further

processing and analysis.

Chapter 4 System Design

22
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

To feed captured packets into the trained ML model, main fields like -T flag and -e flag

were included in the constructed Tshark command. The -T flag was used to specify a

format of the output for the decoded packet data, whereas the -e flag was responsible

for adding a field to a list of fields from a captured packet. The -f flag specified the

protocols of the captured packets to be displayed, in this case there would be only

packets with TCP or UDP protocol as the transport layer in the TCP/IP model being

filtered out as the desired output. All these flags were combined in a Tshark command

to capture any network packets in a live network interface and decode the packets into

JSON format as the output for feeding the decoded data into the trained ML model.

4.5 Model Deployment

The trained ML model for the IDS has to be deployed to be able to detect possible

network attacks in real-time. In this case, TensorFlow Serving [16] was utilised to make

use of the ability of the ML model to predict whether the incoming network traffic is

normal or malicious. TensorFlow Serving is a flexible, high-performance serving

system for ML models that are designed for development and production environments.

Most ML models that are built using TensorFlow and Keras API software libraries are

well suited for the use of TensorFlow Serving in actual ML model deployment. To

facilitate the use of TensorFlow Serving easily, a Docker image containing all the

necessary libraries and components of TensorFlow Serving was used. Docker simplifies

the use of ready-made software products and provides portability in the form of

containers. The Docker image built with TensorFlow Serving modules was then

containerised in a virtual container and the container was activated to start serving the

trained ML model.

The backend of the real-time prediction system in the form of Docker application was

supported with Flask [17]. Flask is a simple, yet useful microframework written in

Python for web development purposes. Flask can be built in the form of a web

application without any specific external tools and libraries, making it an efficient web

framework for actual web application deployment.

Chapter 4 System Design

23
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 4.1 Model Deployment with TensorFlow Serving and Flask

The final step to the completion of deploying the ML model into production use is to

build a Flask application for the ML model under the TensorFlow Serving system to

identify possible network intrusions. The TensorFlow Serving docker image was first

retrieved from the official TensorFlow docker account, followed by starting a Docker

container which would open the specified REST API port and execute the saved ML

model file from the training of the model itself.

Chapter 5 Experiment/Simulation

24
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 5

Experiment/Simulation

5.1 Hardware Setup

In this project, there were a few hardware equipment involved in conducting the

experimental run of the ML-based IDS. To train the ML model, any computer with

decent specifications, specifically for processor and available memory space, would be

sufficient. In this case, a desktop was used as the main host machine to handle all the

training of the ML model and hosting of the Linux-based virtual machine for real-time

IDS testing.

Table 5.1 Specifications of desktop

Description Specification

Processor Intel Core i5-10400F @ 2.90GHz, 12 Cores

Operating System Windows 10

Graphic Processing Unit NVIDIA GeForce RTX 2060

Memory 16GB DDR4

For the training of the ML model, TensorFlow libraries require the use of GPU by

default as a pre-requisite for the ML model training process. However, TensorFlow

libraries also support the use of CPU in training a model, and the comparison between

CPU and GPU in terms of model training performance is negligible. Since the ML

model training process only involved a network traffic dataset consisting of just text-

based data rather than graphical or visual data like images and videos, either of them

can be used with no adverse differences in performance. In the case where there are no

compatible GPUs supported by TensorFlow libraries to be found in the computer

system, any available CPU will be used for model training instead.

Chapter 5 Experiment/Simulation

25
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Table 5.2 Specifications of Linux virtual machine

Description Specification

Processor Intel Core i5-10400F @ 2.90GHz, 3 out of 12 Cores used

Operating System Linux

OS Distribution Ubuntu-based Kali Linux Rolling

Memory 3GB

As for starting up a Linux-based virtual machine, the specifications listed in Table 5.2

were more than sufficient for the real-time prediction of network traffic. The allocation

of the number of processor cores and the memory space can be at least two each

respectively, to keep the Linux VM up and running in stable conditions. However, more

allocation of these computing resources is recommended as the minimum specification

requirements for more compute-intensive Linux distributions like Kali Linux increase,

depending on the released distribution version and its usage.

Figure 5.1 Arduino Yun

A microcontroller board was also used as a part of the hardware setup for the project.

Arduino Yun is an Arduino board that consists of many modules that resemble typical

functionalities that a normal IoT device constitutes, like Wi-Fi module and some pins

to connect to environmental sensors. In this context, Arduino Yun was used as an IoT

sensor to mimic a typical IoT device with an internet connection. This microcontroller

Chapter 5 Experiment/Simulation

26
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

board was mainly responsible for being a targeted device for incoming network attacks,

while packet sniffing is done at the same time to capture the network packets for

network classification

5.2 Software Setup

The software setup for this project involved the relevant software programs and tools:

PyCharm, Anaconda, Docker and Flask. PyCharm and Anaconda were responsible for

the training of the ML model, whereas Docker and Flask were used for executing the

trained ML model in the form of a saved model file and creating a Python web

application for the real-time network traffic prediction, respectively.

PyCharm is an integrated development environment (IDE) specifically built by

JetBrains for Python programming language. It is required as a development platform

for the process of ML model training, as the source codes for GAN were written in

Python. PyCharm was chosen as the IDE in this project due to a built-in feature where

a Python interpreter with the necessary Python libraries and modules can be selected to

run for a specific use case. Having a specific interpreter creates separation of concern

regarding any compatibility issues in certain Python libraries, as well as to isolate

installed software packages and modules from other available Python interpreters.

Anaconda is an open-source distribution program for Python and R programming

languages. Anaconda is mainly used for managing software libraries and packages that

are dedicated to scientific computing fields like data science, machine learning and deep

learning. With Anaconda installed, Python packages and libraries can be easily installed,

upgraded, and removed, as well as new virtual environments can be created where

packages and libraries can be used and managed separately from the host environment.

Chapter 5 Experiment/Simulation

27
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.2 Docker architecture from Docker

Docker is a platform-as-a-service (PaaS) platform that utilises virtualisation in

developing and running applications in separate packages called containers. The main

advantage of using Docker is the separation of concern where a new infrastructure with

a set of applications installed in it and is isolated from the main client infrastructure.

As Docker uses a client-server architecture, the host machine that executes Docker

commands, also known as Docker client, communicates with the Docker daemon,

which is responsible for building and running Docker containers. The Docker client

then can have the option of running and hosting a Docker container on the same system

locally or connecting a Docker client to a remote Docker daemon via REST API and

network interface. Docker is generally more lightweight and faster compared to

hypervisor based VMs like VMWare and VirtualBox due to Docker containers sharing

the same host OS rather than having a guest OS on top of the host OS. Therefore, much

lesser computing resources are needed to run Docker containers compared to hosting

hypervisor based VMs when it comes to system portability and managing application

and services separately.

Flask, as a microframework for Python web development, simplifies the process of

setting up a basic web application. In the case of getting the ML model prediction work

as intended, Flask does the job as a simple web application is sufficient to simulate the

IDS in predicting the network traffic patterns.

Chapter 5 Experiment/Simulation

28
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.3 Setting and Configuration

There were numerous configurations and settings to be performed throughout the

simulation process regarding the real-time IDS, from setting up environment variables

for Python IDE in host machine to getting a web application up and running.

Figure 5.3 Anaconda in GUI version

The starting point of the configuration part for this project was to set up a Python

interpreter and create a new Python virtual environment in the Windows host machine.

Upon installing Anaconda program, the latest Python version will also be included as a

part of the installation process. All virtual environments in the host system can be

managed at the Environments section in the Anaconda Navigator, which is the GUI

version of Anaconda. A new virtual environment was created, followed by the

installation of the relevant Python packages and libraries like TensorFlow and PyPlot.

Chapter 5 Experiment/Simulation

29
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.4 Python Interpreter Settings in PyCharm IDE

The next configuration step would be setting up the environment variable and selecting

the created virtual environment with the installed Python interpreter version for

PyCharm IDE. Upon creating a new project in PyCharm, navigate to the existing

interpreter section and select the virtual environment that was created previously. This

would allow the IDE to run Python scripts and programs using the specified interpreter

in the virtual environment. From there, all packages and modules installed in the

particular virtual environment would also take effect within the virtual environment

itself. In other words, this would separate the virtual environment from other

environments such that the packages and libraries of different versions could be

installed in the chosen virtual environment, not affecting the ones installed in the main

environment.

Chapter 5 Experiment/Simulation

30
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The following step after the IDE configuration would be to convert the GAN source

codes into an older version, so that the ML model could be executed for training without

any runtime errors. Since the obtained source codes were written with TensorFlow 1.x

version libraries, the current TensorFlow 2.x version (TensorFlow 2.9 as of May 2022)

included many drastic changes and improvements from TensorFlow 1.x versions.

Therefore, TensorFlow scripts [19] could be used to automatically convert all codes

with TensorFlow libraries into a compatible-ready TensorFlow version, by adding

compat.v1 module in between all TensorFlow functions.

Figure 5.5 Linux commands for creating virtual environment

As for the configurations regarding Docker and Flask, these would be performed in the

Linux VM. Before setting up Docker and Flask, a Python virtual environment had to

be created in the Linux VM. Having a separate virtual environment is important because

the ML model deployment requires Python 2 versions to be able to run a Python client

script that is responsible for communicating with the TensorFlow Serving model server

from the Docker image.

install pip package manager

$ sudo apt-get install python-pip

install virtualenv library module with pip installer

$ pip install virtualenv

create a virtualenv for python 2 version

$ virtualenv -p /usr/bin/python2.7 virtualenv_name

activate virtualenv

$ source virtualenv_name/bin/activate

Chapter 5 Experiment/Simulation

31
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 5.6 Linux commands for installing Docker and Flask libraries

To setup Docker in the Linux VM, Docker Engine, also known as docker-io for the

package name, has to be installed in order to manage Docker containers and images.

After that, the Docker image with TensorFlow Serving compiled on it is retrieved by

downloading it from the official TensorFlow Docker repository hub. The downloaded

Docker image would be used to start up a model server for TensorFlow Serving. Flask

library should be installed using pip package manager tool to create a HTTP server for

sending HTTP requests and response with the predict_client package designed

specifically to be used with a model served by TensorFlow Serving. The predict_client

package is needed to allow the ML model to perform prediction on the network traffic,

as the TensorFlow Serving model server runs a gRPC service, which is a type of remote

procedure call framework that simplifies client-server communications. With

predict_client package installed, it helps to facilitate the communication as a

middleman between the model server and the client application in sending HTTP and

gRPC requests accordingly.

install Docker library

$ pip install docker-io

download TensorFlow Serving Docker image

$ docker pull tensorflow/serving

install Flask library for web application

$ pip install Flask

install gPRC predict client for TensorFlow Serving

$ pip install git+https://github.com/epigramai/tfserving-

python-predict-client.git

Chapter 5 Experiment/Simulation

32
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.4 System Operation

First, the ML model had to be trained to be able to predict whether the network traffic

is normal or malicious. The source codes pertaining to GAN were run in PyCharm IDE,

with suitable hyperparameter values as the main parameters for yielding the best

performance for the trained model possible. The main Python script to train the ML

model was run to obtain the checkpoint files, which would be used for generating a

saved model file to serve the model into deployment, and the performance metrics that

determine the performance of the trained model.

Figure 5.7 Output of trained model showing performance metrics

Figure 5.8 Generated model checkpoint files

Chapter 5 Experiment/Simulation

33
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

The following step would be to create a saved model file from the checkpoint file

previously. A Python script would be run to build a servable model from all the

information and variables in the saved model checkpoint file. The resulting files

generated from the script contain the important information regarding the model, like

the calculated weight and bias values for each feature, and the algorithms needed to

generate an outcome of the prediction.

Figure 5.9 Code snippet for creating a saved model file for TensorFlow Serving

Figure 5.10 Saved model builder file

Chapter 5 Experiment/Simulation

34
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

After generating the model builder files, a Python virtual environment was created in

the Linux VM. The configurations for the creation of a new virtual environment could

be referred to the one in Figure 5.5, followed by Figure 5.6 for installing all other

necessary software packages and libraries prior to starting a Docker container. Upon

doing so, a new Docker container was created with the parameters listed in Figure 5.10,

and the downloaded TensorFlow Serving image was run inside the Docker container.

As a result, the Docker container with the image would start to run and will be ready to

be used for serving the ML model.

Figure 5.11 Running TensorFlow Serving image in Docker container

Chapter 5 Experiment/Simulation

35
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Once the Docker container started running, another Python script that is responsible for

the real-time classification of network traffic will be executed in the Linux VM. The

script included the necessary codes for starting up a simple Flask web application, so

that the prediction of network traffic based on the captured network packets will occur.

It would also perform packet sniffing on the network with Tshark command, pre-

process the captured network packets to a NumPy array format, and feed the data into

the client prediction library that was responsible for sending requests to the model

server for prediction results.

Figure 5.12 Python code for real-time prediction with Flask

Chapter 5 Experiment/Simulation

36
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Upon executing the client prediction script, the Flask web application would start

running. Whenever the URL of the web application was visited, the Tshark packet

sniffing command would start executing along with the client prediction codes to

display the classification outcome of each captured network packet. The output for the

classification of each network packet can be ‘Normal traffic’ or ‘Malicious traffic’

depending on the prediction results from the model server.

Figure 5.13 Network traffic prediction with Flask

Chapter 5 Experiment/Simulation

37
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.5 Implementation Issues and Challenges

There were a few challenges as to implementing the relevant setup on the IDS. One of

which was the data pre-processing of the UNSW-NB15 dataset that is important prior

to feeding the data into the ML model for training and testing. Most of the derived

features in the dataset had very strong correlation with the given labels that indicate

whether the network traffic is benign or malicious. Also, many features like source and

destination IP and ports were dropped due to the redundancy of the data and the

irrelevancy in determining the state of the network traffic. The remaining features were

further reduced due to the packet sniffing method used during which the live capture

functionality has very limited capabilities in extracting the necessary features of

network packets for IDS prediction.

The setup of TensorFlow Serving model server was also a big challenge for this real-

time IDS implementation. As there are other methods as to deploy a ML model more

efficiently and compatibly, the source codes for GAN were specifically written with an

older version of TensorFlow library. This would result in limited options for deploying

the said model, and more configuration steps were required to set up a functioning

model server for model prediction compared to codes written with TensorFlow 2.x

version libraries, which provide more APIs to simplify the deployment of an ML model.

As for the packet sniffing method used, Tshark does not offer much flexibility when it

comes to capturing live packets in a network interface. Since the UNSW-NB15 dataset

had most features derived from the algorithms written in tools like Argus and Bro IDS,

all of which were not publicly accessible, network packet analyser tools like Tshark

could only extract the most basic features from the captured network packets. Although

the display capture feature in Tshark consists of more comprehensive options that can

decode captured network packets in a more detailed manner, it does not serve the

purpose of simulating the nature of what a real-time IDS should be. Therefore, the live

capture feature of Tshark was used instead.

Chapter 5 Experiment/Simulation

38
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

5.6 Concluding Remark

This chapter concludes the whole simulation process of the IDS, as well as covers all

the necessary information, from the hardware and software setup to the system

operation of the IDS in details.

Chapter 6 System Evaluation and Discussion

39
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 6

System Evaluation and Discussion

To determine the performance and the effectiveness of the real-time IDS, system

evaluations have to be performed. This chapter will include the results obtained from

the testing setup and some performance metrics for the approach, as well as the project

challenges encountered, and the evaluation of the objectives mentioned in the report.

6.1 System Testing and Performance Metrics

Regarding the testing procedure of a typical IDS, the most common performance metric

that is used to determine the effectiveness of a trained model in model prediction is the

confusion matrix. Confusion matrix is a table measurement for ML classification

problem where the output can be two or more classes, depending on the trained model.

It is normally shown with at least 4 different combinations of two types of values: actual

and predicted. The confusion matrix can be classified as true labels of normal and attack

categories, and predicted labels of normal and attack categories, with 0 indicating

normal and 1 indicating malicious. The predicted values in the confusion matrix are

true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN).

Figure 6.1 Confusion matrix

Chapter 6 System Evaluation and Discussion

40
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

• TP (predicted malicious traffic correctly): predicts 1 and the actual label is 1.

• FP (predicted malicious traffic incorrectly): predicts 1 and the actual label is 0.

• TN (predicted normal traffic correctly): predicts 0 and the actual label is 0.

• FN (predicted normal traffic incorrectly): predicts 0 and the actual label is 1.

The confusion matrix values can be calculated through math to obtain four other metrics:

recall, precision, accuracy, and F1-score. The equations for all four metrics are shown

below:

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

Recall (R) =
𝑇𝑃

𝑇𝑃+𝐹𝑁

Precision (P) =
𝑇𝑃

𝑇𝑃+𝐹𝑃

F1-Score = 2 ×
𝑅×𝑃

𝑅+𝑃

Accuracy calculates the total number of correct predictions out of all predictions. Recall

determines the number of correct predictions from all the positive classes, whereas

precision calculates how many are positive out of the total number of predictions

classified as positive, and F1-score is derived from the average value of recall and

precision. The performance of a model is good when all values are as high as possible

at an ideal rate, but there will always be some discrepancies between each of them and

every model is different in some ways.

Chapter 6 System Evaluation and Discussion

41
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.2 Testing Setup and Result

The performance of the GAN model was evaluated after averaging the number of

training times with tuned main hyperparameters shown in Table 6.1. The model

performance was also illustrated using the confusion matrix, accuracy, precision, recall,

F1-score, discriminator loss and generator loss.

Table 6.1 Tuned hyperparameter values for GAN model

Hyperparameter Value

Number of epochs 100

Batch size 1000

Discriminator learning rate 0.01

Generator learning rate 0.001

Figure 6.2 Confusion matrix of UNSW-NB15 testing dataset

Chapter 6 System Evaluation and Discussion

42
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

L
o
s
s
 v

a
lu

e

Step/2 = Epoch

Step/2 = Epoch

L
o
s
s
 v

a
lu

e

Table 6.2 Testing set results

Metrics Testing set values

Accuracy 0.6956

Recall 0.9975

Precision 0.6916

F1-score 0.8169

Figure 6.3 Discriminator loss

Figure 6.4 Generator loss

Chapter 6 System Evaluation and Discussion

43
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Based on the testing set results in Table 6.2, the accuracy of the trained model with

tuned hyperparameters was around 69%, with many predictions skewing towards the

FP region in the confusion matrix. Although an ideal confusion matrix requires most

predictions to be aligned diagonally to the left, the testing set from the UNSW-NB15

testing dataset could only achieve around 70% accuracy at best with constant

hyperparameter tuning.

According to Figure 6.3 and Figure 6.4, the discriminator loss reduced steadily, whereas

the generator loss increases steadily. In a GAN model, the ideal situation for both

generator and discriminator losses are for them to converge and stabilise after a certain

number of epochs. However, based on the figures, both losses will start to diverge after

approximately 75 epochs (150 steps divided by 2). This might mean that the

convergence for both sub-models is very difficult to achieve based on the

hyperparameters. From another point of view, the training of the model can be

considered to be completed, as the generator cannot be further improved anymore due

to the discriminator not being able to be fooled by the generator. In other words, the

discriminator gets better at distinguishing fake data from real input data. Nevertheless,

for each time the model is trained, the values of both losses will vary, as the resulting

weights and biases for each training epoch will also vary due to the randomly assigned

weight and bias values at the start of model training.

Figure 6.5 TCP flood attack performed while classifying data packets

Chapter 6 System Evaluation and Discussion

44
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Figure 6.6 Classification results

As for the real-time prediction process of the IDS, the outcome of the prediction based

on the underlined part in Figure 6.6 showed the ‘outputs’ key of the JSON returned an

array of two probability values. To classify the data packet, the larger value from the

two elements in the array will be taken and the result will be displayed in ‘arg_max’

key of the JSON output. Based on the result in Figure 6.6, the first element of the

‘outputs’ array was larger than the second element, and so the value of 0 was returned

for the ‘arg_max’ JSON key, indicating a normal traffic. If the second element of the

‘outputs’ array was larger compared to the first one, value of ‘arg_max’ would be 1 and

classified as a malicious traffic. However, it was not able to detect any signs of possible

network intrusions while network attacks like DDoS and port scan were performed

using hping3 and Nmap respectively.

Chapter 6 System Evaluation and Discussion

45
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Since the prediction of the network traffic depends on the trained weight and bias values

of all the neurons in all the input, hidden and output layers, the output of the prediction

will be constant based on the same given input data from the captured packets. With

the Tshark command having the option of “-c 1” included, it is only able to capture a

network packet to allow the captured data to be pre-processed for the classification

function to work. Although the packet sniffing process occurs infinitely when the URL

of the Flask web application is visited, packet sniffing has to be done with 1 packet

capture at a time for data pre-processing, hence some data packets were not captured in

the process.

6.3 Project Challenges

One of the main challenges in this project is the training of deep learning framework

models like GAN. Generative models like GAN are typically very difficult to train as

there is no balance for when the discriminator and generator networks achieve

convergence and no clear indicators as to when the model is considered to be finished

training. In that case, the occurrence of overfitting or underfitting of the model during

the training process will be hard to identify as well. Aside from that, the hyperparameter

tuning process was time-consuming, as it is a trial-and-error method where constant

value adjustments for each of the hyperparameters are needed in hopes for a stable,

trained model. There are many factors to be considered when it comes to training a

stable GAN model, and each of them will have a direct impact on the performance of

the GAN model, and all models that implement some sort of deep learning framework.

Another challenge faced throughout this project is the real-time aspect of the network

classification. The packet sniffing method used was quite limited in terms of filtering

very specific packet information compared to the display filter option, where it is done

using a saved capture file. In addition, the number of features able to be extracted with

Tshark live capture method was very little, as most features in the UNSW-NB15 dataset

are complex features. Hence, all the complex features had to be removed to

accommodate to the basic features only for packet sniffing to work as intended. With

all things put into place, the classification outcomes from the real-time network traffic

prediction of the IDS were not desirable when it was used as in a simulation scenario.

Chapter 6 System Evaluation and Discussion

46
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

6.4 Objectives Evaluation

The objectives in the project were not able to be realised to a certain extent, as the real-

time IDS was not able to detect network intrusions most of the times. Although the

GAN model could be trained successfully and the implementation of the real-time IDS

was able to be conducted, the end-results obtained were not as desirable as to be

expected for an effective IDS in a deployment environment.

6.5 Concluding Remark

This chapter concludes the testing of the real-time IDS and the simulation results from

the IDS prediction, along with the metrics used in evaluating the performance of the

trained GAN model.

Chapter 7 Conclusion and Recommendation

47
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Chapter 7

Conclusion and Recommendation

7.1 Conclusion

This research explores the implementation of real-time IDS with a deep learning-based

ML framework. The importance of a security technology system like IDS in the IoT

domain, with medical devices included, must be considered to further improve the

security aspects of the IoT devices. With the real-time IDS implementation, it is shown

to be able to capture network data and identify any network intrusions, while being

hosted in a web application to provide access for everyone in the medical field,

corporate or even personal usage. The implementation procedures and techniques used

in the project could be replicated and modified, if necessary, to further enhance the

performance and real-time aspect of the IDS. The use of a real-time IDS is suitable for

anyone with less knowledge on the technical aspects of the implementation and can be

deployed on any equipment or machines with relatively low-power consumption. A

real-time IDS would be very useful in scenarios when anyone needs to monitor the

network traffic and identify for possible intrusions in a relatively simple manner. This

project is done to stress the importance of a real-time IDS in adding an extra layer of

security for IoT devices, as well as to gear the development and further improvements

towards the implementation of real-time IDS in real-world scenarios.

Chapter 7 Conclusion and Recommendation

48
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

7.2. Recommendation

The implementation of the real-time IDS in this project could be further improved in

several aspects. One of which is the use of other various ML models or those with deep

learning frameworks to potentially improve the performance of the trained model.

Other than that, the use of other publicly datasets like NSL-KDD and KDD99 datasets

could be used to evaluate the performance of the trained model, as well as other publicly

available and reliable network intrusion datasets in the future. The feature extraction

aspect in the packet sniffing procedure could also be improved by adding more relevant

features for IDS testing, provided that the selected dataset contains more features that

are extractable using appropriate packet sniffing tools. In addition, the features in most

public network intrusion datasets could be further clarified on the ways the features are

exactly extracted to obtain those features, so that the testing of real-time IDS would be

more effective in the future.

49
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

References

[1] Ordr, "10 internet of things (IoT) healthcare examples," [Online]. Available:

https://ordr.net/article/iot-healthcare-examples/.

[2] J.-P. A. Yaacoub, M. Noura, H. N. Noura, O. Salman, E. Yaacoub, R. Couturier

and A. Chehab, "Securing Internet of Medical Things Systems: Limitations,

Issues and Recommendations," Future Generation Computer Systems, vol. 105,

pp. 581-606, 2020.

[3] L. Pycroft and T. Z. Aziz, "Security of implantable medical devices with wireless

connections: The dangers of cyber-attacks," Expert Review of Medical Devices,

pp. 403-406, 2018.

[4] A. Khraisat and A. Alazab, "A critical review of intrusion detection systems in

the internet of things: techniques, deployment strategy, validation strategy,

attacks, public datasets and challenges," Cybersecurity, 2021.

[5] A. Nahapetian, "Side-Channel Attacks on Mobile and Wearable Systems," in 13th

IEEE Annual Consumer Communications and Networking Conference (CCNC),

Las Vegas, 2016.

[6] C. Shepherd, K. Markantonakis, N. van Heijningen, D. Aboulkassimi, C. Gaine,

T. Heckmann and D. Naccache, "Physical Fault Injection and Side-Channel

Attacks on Mobile Devices: A Comprehensive Survey," Computerse & Security,

2021.

[7] E. Hodo, X. Bellekens, A. Hamilton, P.-L. Dubouilh, E. Iorkyase, C. Tachtatzis

and R. Atkinson, "Threat analysis of IoT networks using artificial neural network

intrusion detection system," in International Symposium on Networks, Computers

and Communications (ISNCC), Yasmine Hammamet, 2016.

[8] Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto and K. Sakurai, "Machine Learning-

Based IoT-Botnet Attack Detection with Sequential Architecture," in 4th IEEE

Cyber Science and Technology Congress, Fukuoka, 2020.

[9] C. Cervantes, D. Poplade, M. Nogueira and A. Santos, "Detection of sinkhole

attacks for supporting secure routing on 6LoWPAN for Internet of Things," in

IFIP/IEEE International Symposium on Integrated Network Management (IM),

Ottawa, 2015.

[10] N. Moustafa and J. Slay, "UNSW-NB15: A Comprehensive Data set for Network

Intrusion Detection Systems (UNSW-NB15 Network Data Set)," in Military

Communications and Information Systems Conference (MilCIS), 2015.

[11] N. Moustafa and J. Slay, "The evaluation of Network Anomaly Detection

Systems: Statistical analysis of the UNSW-NB15 data set and the comparison

with the KDD99 data set," in Information Security Journal: A Global Perspective,

2016.

50
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

[12] N. Moustafa, J. Slay and G. Creech, "Novel Geometric Area Analysis Technique

for Anomaly Detection Using Trapezoidal Area Estimation on Large-Scale

Networks," in IEEE Transactions on Big Data, 2017.

[13] N. Moustafa, G. Creech and J. Slay, "Big Data Analytics for Intrusion Detection

System: Statistical Decision-Making Using Finite Dirichlet Mixture Models," in

Data Analytics and Decision Support for Cybersecurity, Springer, Cham, 2017.

[14] M. Sarhan, S. Layeghy, N. Moustafa and M. Portmann, "NetFlow Datasets for

Machine Learning-based Network Intrusion Detection Systems," in Big Data

Technologies and Applications: 10th EAI International Conference, BDTA 2020,

and 13th EAI International Conference on Wireless Internet, WiCON 2020, 2020.

[15] Tshark, "Capture Lifecycle with Tshark," [Online]. Available: https://tshark.dev/.

[16] TensorFlow, "Serving Models," [Online]. Available:

https://www.tensorflow.org/tfx/guide/serving.

[17] Flask, "A Minimal Application," [Online]. Available:

https://flask.palletsprojects.com/en/2.2.x/quickstart/.

[18] Z. Blasingame, "Github," [Online]. Available:

https://github.com/zblasingame/ADD-GAN.

[19] TensorFlow, "Automatically rewrite TF 1.x and compat.v1 API symbols,"

[Online]. Available: https://www.tensorflow.org/guide/migrate/upgrade.

51
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 4

Student Name & ID: Joshua Phang Jen Hoe, 18ACB06775

Supervisor: Dr Gan Ming Lee

Project Title: Real-Time Intrusion Detection System in IoT Medical Devices

1. WORK DONE

- Planned the structure flow of the implementation

2. WORK TO BE DONE

- Start the system implementation

- Continue the prototype development

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS

- Started with initial progression

_________________________ _________________________

 Supervisor’s signature Student’s signature

52
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 6

Student Name & ID: Joshua Phang Jen Hoe, 18ACB06775

Supervisor: Dr Gan Ming Lee

Project Title: Real-Time Intrusion Detection System in IoT Medical Devices

1. WORK DONE

- Finished debugging source codes

- Done configurations for training the model

2. WORK TO BE DONE

- Research for a suitable network dataset

- Start setting up TensorFlow model server

3. PROBLEMS ENCOUNTERED

- Some runtime and compatibility issues on training ML source codes

4. SELF EVALUATION OF THE PROGRESS

- Able to keep up with current progress

_________________________ _________________________

 Supervisor’s signature Student’s signature

53
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 8

Student Name & ID: Joshua Phang Jen Hoe, 18ACB06775

Supervisor: Dr Gan Ming Lee

Project Title: Real-Time Intrusion Detection System in IoT Medical Devices

1. WORK DONE

- Trained ML model

- Done initial setup on Linux VM

2. WORK TO BE DONE

- Perform hyperparameter tuning for the model

- Modify network dataset features

- Set up model server for serving the trained model

3. PROBLEMS ENCOUNTERED

- Configuration issues for model server setup

- Trained model returned abnormal results

4. SELF EVALUATION OF THE PROGRESS

- Able to cope with self-assigned tasks within the timeframe

_________________________ _________________________

 Supervisor’s signature Student’s signature

54
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 10

Student Name & ID: Joshua Phang Jen Hoe, 18ACB06775

Supervisor: Dr Gan Ming Lee

Project Title: Real-Time Intrusion Detection System in IoT Medical Devices

1. WORK DONE

- Reduced network dataset features

- Researched on Tshark operations

2. WORK TO BE DONE

- Continuously perform hyperparameter tuning

- Research on Flask usage

- Start writing report

3. PROBLEMS ENCOUNTERED

- Encountered configurations errors in model server setup

4. SELF EVALUATION OF THE PROGRESS

- Felt a bit behind the planned schedule, but still manageable

_________________________ _________________________

 Supervisor’s signature Student’s signature

55
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 12

Student Name & ID: Joshua Phang Jen Hoe, 18ACB06775

Supervisor: Dr Gan Ming Lee

Project Title: Real-Time Intrusion Detection System in IoT Medical Devices

1. WORK DONE

- Done model server setup with Docker

- Done Flask web app setup

- Completed most parts of the report

2. WORK TO BE DONE

- Deploy the IDS in Linux VM

- Test the IDS

- Finish the remaining parts of the report

3. PROBLEMS ENCOUNTERED

- IDS could not classify network traffic correctly

4. SELF EVALUATION OF THE PROGRESS

- Able to complete the implementation part

_________________________ _________________________

 Supervisor’s signature Student’s signature

56
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

FINAL YEAR PROJECT WEEKLY REPORT
(Project II)

Trimester, Year: Trimester 3, Year 3 Study week no.: 13

Student Name & ID: Joshua Phang Jen Hoe, 18ACB06775

Supervisor: Dr Gan Ming Lee

Project Title: Real-Time Intrusion Detection System in IoT Medical Devices

1. WORK DONE

- Finished writing the report

- Deployed IDS in VM

2. WORK TO BE DONE

- Finalise the report for submission

3. PROBLEMS ENCOUNTERED

4. SELF EVALUATION OF THE PROGRESS

- Able to finish up all self-assigned tasks

_________________________ _________________________

 Supervisor’s signature Student’s signature

57
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Poster

58
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

Plagiarism Check Results

59
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

8/9/2022

FACULTY OF INFORMATION AND COMMUNICATION
TECHNOLOGY

Full Name(s) of
Candidate(s)

 Joshua Phang Jen Hoe

ID Number(s)

 18ACB06775

Programme / Course CN

Title of Final Year Project Real-Time Intrusion Detection System in IoT Medical Devices

Similarity Supervisor’s Comments

(Compulsory if parameters of originality exceeds
the limits approved by UTAR)

Overall similarity index: __6_ %

Similarity by source
Internet Sources: ____3_________ %
Publications: __4_______ %
Student Papers: ___N/A______ %

Number of individual sources listed of
more than 3% similarity: 0

Parameters of originality required and limits approved by UTAR are as Follows:

 (i) Overall similarity index is 20% and below, and
(ii) Matching of individual sources listed must be less than 3% each, and
(iii) Matching texts in continuous block must not exceed 8 words

Note: Parameters (i) – (ii) shall exclude quotes, bibliography and text matches which are less than 8 words.

Note: Supervisor/Candidate(s) is/are required to provide softcopy of full set of the originality report

to Faculty/Institute

Based on the above results, I hereby declare that I am satisfied with the originality of the Final

Year Project Report submitted by my student(s) as named above.

Signature of Supervisor

Name: Gan Ming Lee

Date: ___________________________

Universiti Tunku Abdul Rahman

Form Title : Supervisor’s Comments on Originality Report Generated by Turnitin

for Submission of Final Year Project Report (for Undergraduate Programmes)

Form Number: FM-IAD-005 Rev No.: 0 Effective Date: 01/10/2013 Page No.: 1of 1

60
Bachelor of Information Technology (Honours) Communications and Networking

Faculty of Information and Communication Technology (Kampar Campus), UTAR

UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF INFORMATION & COMMUNICATION

TECHNOLOGY (KAMPAR CAMPUS)
CHECKLIST FOR FYP2 THESIS SUBMISSION

Student ID 18ACB06775

Student Name Joshua Phang Jen Hoe

Supervisor Name Dr Gan Ming Lee

TICK (√) DOCUMENT ITEMS
Your report must include all the items below. Put a tick on the left column after you have

checked your report with respect to the corresponding item.

 Front Plastic Cover (for hardcopy)

√ Title Page
√ Signed Report Status Declaration Form
√ Signed FYP Thesis Submission Form
√ Signed form of the Declaration of Originality
√ Acknowledgment
√ Abstract
√ Table of Contents
√ List of Figures (if applicable)
√ List of Tables (if applicable)

 List of Symbols (if applicable)
√ List of Abbreviations (if applicable)
√ Chapters / Content
√ Bibliography (or References)
√ All references in bibliography are cited in the thesis, especially in the chapter

of literature review

 Appendices (if applicable)
√ Weekly Log
√ Poster
√ Signed Turnitin Report (Plagiarism Check Result – Form Number: FM-IAD-005)
√ I agree 5 marks will be deducted due to incorrect format, declare wrongly the

ticked of these items, and/or any dispute happening for these items in this
report.

*Include this form (checklist) in the thesis (Bind together as the last page)

I, the author, have checked and confirmed all the items listed in the table are included in
my report.

(Signature of Student)
Date: 7 September 2022

