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ABSTRACT 

 Profanity is an offensive use of language that is deemed impolite and rude. Profanity 

on the Internet is often associated with abusive intentions to cause psychological harm. A study 

shows that there has been a 70% increase in hate speech among teens since the COVID-19 

lockdown began [6]. To counter the increasing prevalence of profanity in digital spaces, 

automated profanity detection systems can be used. However, most of the existing profanity 

detection systems used the list-based approach, which is flawed. The user can deliberately 

alternate the spellings of profane words to bypass the detection. Even with some of them using 

the machine learning approach, they are still far from perfect as they are not able to understand 

the context of words used. Therefore, this project proposes a deep learning model to detect 

profanity in text messages. The proposed model is capable of supporting multiple languages, 

understanding the context of words, and recognizing alternating spellings of profanity in text 

messages. Moreover, the model will be deployed as a RESTful API with 2 endpoints so that it 

can be implemented in other applications and websites easily. Apart from the multilingual 

profanity detection model, this project also contributes by providing the source code of the 

proposed system. The system will be written as an open-source project, anyone on the Internet 

who is interested in profanity detection can view the source code freely. 
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CHAPTER 1: INTRODUCTION 

1.1  Background Information 

Profanity is an offensive use of language that is deemed impolite and rude. Sometimes, 

it is also known as cursing, or swearing. Profanity can be viewed as an extreme way to express 

disrespectful feelings towards something by using abusive language. In most cases, bad words 

or expletives are used to make a message profane. For each language, there are usually sets of 

words which are widely recognized by the speaker as expletive. For example, in English, some 

of the common expletives include “f*ck”, “b*tch”, “c*nt”, etc. By making use of these words, 

one can construct messages to insult and bully in a verbal manner. 

 Although it is possible for profanity to be used as a signal of informality or close 

relationship between the speaker and listener, social interactions on digital public platforms 

usually involve netizens who have distant or no relationship with each other [1]. Therefore, 

profanity on the Internet is often associated with abusive intention to offend and cause 

emotional or psychological harm. 

 To counter the increasing prevalence of profanity in digital spaces, content moderation 

is one of the solutions to this problem. Content moderation is the practice of screening user-

generated content which could be presented in a wide range of forms like images, videos, posts, 

messages, and more. In this paper, monitoring of text messages for profanity is specifically 

discussed. Profanity detection is a subset of content moderation which allows the system to 

classify if a message is offensive or not, so that appropriate action could be taken like hiding 

or censoring the message. Profanity detection not only can be applied to social networks, but 

also other platforms like community forums (Yin et al., 2009), in-game chatting systems, and 

sites with comment streams. Figure 1-1 shows a profanity filter blocking a profane message 

from being sent to public chat on a messaging software, Discord. 

 
Figure 1-1: Profanity filter in action on Discord. 
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In general, content moderation can be categorized into manual moderation and 

automated moderation, or both. Most of the social networks adopt a combination of automated 

filtering and human moderators to keep unwanted content off their platforms [3].  

For human moderation, it employs humans to manually monitor and screen the content 

generated by the users. Human moderation may filter the content with high reliability and 

accuracy, but it has its own limitations. First, humans could fail to moderate in real-time like 

messages going through the online chatting systems. Secondly, it is not feasible to utilize 

human moderation when there is a sheer amount of content generated like huge social media 

sites. This is due to the fact that human moderators often work in highly stressful conditions, 

in which they have to click through hundreds of flagged contents per day [2]. 

 Therefore, a better approach would be adopting automated moderation. Automated 

moderation refers to the screening using Artificial Intelligence (AI) without humans. For 

profanity detection, this means the text message can be fed through a program, then the 

program will automatically determine if the message is profane. There are multiple approaches 

to implement the program. One of the ways is to define a list of flagged words, then the program 

will determine the text message as profane if the message contains any one of the flagged 

words. An alternative is to use machine learning or deep learning, train a model to recognize 

profanity, and then implement it into the program. 

1.2 Problem Statement and Motivation 

1.2.1 Alternate Spellings of Words in Profanity Detection 

Most of the existing profanity detection libraries use the list-based approach, which 

requires a wordlist to identify profanity. For Python, these libraries can be found on the official 

software repository, Python Package Index (PyPI). From PyPI, almost all of the profanity 

detection library use the list-based approach like ‘profanity’ by Ben Friedland (32-word 

wordlist), ‘better-profanity’ by Son Nguyen Thanh (140-word wordlist), and ‘profanityfilter’ 

by Areeb Beigh (418-word wordlist). 

List-based approach is straightforward to implement, but it has its own limitations. 

First, it can be easily circumvented just by alternating the spellings of words. For instance, one 

can deliberately change the word ‘bitch’ to ‘b!tch’ or ‘b1tch’, and then the profanity filter will 

fail to detect profanity. This is because the algorithm of the list-based approach simply looks 
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for if there is any exact match of words inside the wordlist. This is an issue, as even with 

alternate spellings, the word still carries the same offensive meaning to humans.  

1.2.2 Context of Words used in the Sentence 

 Secondly, list-based profanity detection libraries cannot capture the context in which 

the word is used in the sentence. Considering both of the sentences in Table 1-1, assume the 

word ‘suck’ is included in the wordlist, then the profanity filter will evaluate both sentences A 

and B as profanity, but obviously sentence A does not mean to be profane whatsoever.  

Sentence A I suck my thumb. 

Sentence B You are suck. 

Table 1-1: Two sentences using the word ‘suck’. 

 Furthermore, list-based profanity will also fail if one tries to swear by using only 

permissible words. For example, ‘Your mom is a fat cow’ will pass the list-based profanity 

detection although it has serious profanity. This is because the wordlist could not include the 

word ‘fat’, nor ‘cow’ one of the flagged words.  

1.2.3 Lack of Multilingual Support for Profanity Detection 

 Another limitation of existing profanity detection libraries is that they do not support 

multilingualism. Even with non list-based libraries like ‘profanity-filter’ by Roman Inflianskas, 

and ‘profanity-check’ by Victor Zhou, which use machine learning, they are still restricted to 

only one language - English. While there are a few studies published in Chinese [8], Arabic 

[9], and Greek [7], they are still monolingual as per paper at the end. They are still not a single 

system which can truly work with multiple languages. 

1.3 Motivation 

At the end of 2019, there were 4.0 billion Internet users worldwide, which is just more 

than half of the world population. Almost 70% of the world's youth (aged 15-24 years) are 

using the Internet, and virtually all young people in developed countries are using the Internet 

[5]. 

With the number of Internet users rising [5], the amount of offensive and abusive 

content related to cyberbullying will also grow. This is an issue especially with a huge 
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proportion of the world's youth using the Internet. A UNICEF poll found that more than 33% 

of young people in 30 countries said they have been a victim of online bullying, with 20% 

reporting having skipped school due to cyberbullying. Even worse, there has been a 70% 

increase in hate speech among teens since the COVID-19 lockdown began [6]. Cyberbullying 

exists in the form of text messages like hate speech, which usually includes profanity. This is 

due to the fact that profanity mostly indicates offensive, impolite and rude attitudes, making 

them an essential feature of cyberbullying. Therefore, profanity detection is important as it can 

be adopted as one of the strategies to combat cyberbullying. 

Furthermore, as of March 2020, an estimate showed that only 25.9% Internet users 

speak English, followed by 19.4% for Chinese, and 7.9% for Spanish. So, profanity detection 

should support multiple languages in order to cover the diversity of the languages spoken on 

the Internet globally. 

Apart from cyberbullying, the regulatory framework also drives the motivation of 

building a proper profanity detection system. The European Union (EU) law makes 4 types of 

content illegal, which includes xenophobic hate speech. In May 2016, the European 

Commission launched the Code of Conduct on countering illegal hate speech online. The 

companies are committed to remove content deemed to be illegal from their online platform in 

less than 24 hours. Thus, the site should take the responsibility to moderate content generated 

by their users proactively. 

To conclude, content moderation is becoming more relevant with the increase of 

Internet users, and enforcement of laws and regulations. Thus, the motivation of profanity 

detection API is working towards creating a safer environment for all Internet users, regardless 

the language they speak. 
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1.4  Project Scopes 

 
Figure 1-2: Overview of the project scope split into research and development-based.  

This project is both research-based and development-based. The research part is to 

design and develop a profanity detection model that is capable of understanding alternative 

expletive spellings, context of the bad words, and also multiple languages. The datasets 

required for the training of the model will be collected from online sources, like Kaggle. Next, 

the datasets will be preprocessed before input to the model. The model will be evaluated and 

tested based on various performance metrics, like accuracy, recall, loss, etc. During Project 1, 

a simple functional model is trained and deployed as a proof of concept. Then in Project 2, 

multiple deep learning models will be thoroughly studied and proposed to select the best 

performing model for profanity detection. Lastly, the hyperparameters of the model will also 

be fine-tuned. 

As for the development part of this project, the deliverable is a package called 

DeepProfane with a suite of tools including a Python package, a RESTful API, and a web 

chatting application. All these tools are intended to provide a way for end users to make use of 

the proposed profanity detection model. First, the model will be packaged as a PyPI Python 

library, the use case is an average developer can import this library and perform profanity 

detection tasks without any deep learning knowledge. Next, the RESTful API is also designed 

for developers. It contains 2 endpoints, one will return a boolean value stating if the message 

is profane, and another one will return the probability of profanity. The last module built for 

Internet users to fight against profane messages. It is a web chatting application in which the 

website owners can embed the chat box with profanity filtering enabled into their website, with 

the hope to fight against profane comments.  
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1.5  Project Objectives 

The objectives of this project are summarized as the following list. 

1. To develop a profanity detection algorithm using deep learning. Unlike list-based 

approach, the proposed algorithm has to be capable of recognizing alternate spellings 

of profanity, and capable of understanding the context of words used in the sentence.  

2. To implement multilingualism in the proposed profanity detection model, supporting 

multiple languages other than English in a single model. 

3. To implement the proposed profanity detection model as a RESTful API. Two 

endpoints are included, one for checking if the message is profane, another one for 

calculating the probability of profanity of the message. 

4. To provide a chatting system with automatic profanity detection enabled that can be 

easily embedded into third-party websites. 

1.6 Contributions 

 This project improves the method to perform profanity detection using deep learning 

instead of the list-based approach. The proposed method of profanity detection is expected to 

be more accurate than the list-based approach. Thus, this project provides digital platforms a 

more reliable way to moderate profanity within their user generated content. Moreover, the 

proposed profanity detection works with multiple languages, therefore covering the diversity 

of Internet users online who speak different languages. So, this project contributes by allowing 

those websites with less-common languages being able to moderate profanity automatically. 

Furthermore, profanity detection API will be written as an open-source project. The 

source code will be publicly available to everyone interested in working in profanity detection. 

This provides developers with tools and resources to implement a better profanity detection 

system to their platform.  

1.7 Report Organization 

 There are a total of 8 chapters in this report. The following table listed all the chapters 

and its description. 
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No Chapter Description 

1 Introduction ● Provides background of the project. 
● Define problem statements, and objectives. 
● Discuss motivation and contribution. 

2 Literature Review ● Perform preliminary studies on previous papers 
and existing systems. 

● Comparison between different technologies. 

3 Methodology ● Define methods used to complete this project. 
● Specify the hardware, software, and services 

requirements. 
● Display the timeline of the project. 

4 System Model ● Study and design profanity detection model by 
using deep learning. 

5 System Design ● Design how the model deployed to end users. 
● Show the block diagram and discuss the key 

concept of the system.  
● Design tools like Python package, RESTful API, 

etc. 
● Focuses on the development part of this project. 

6 System Implementation ● Document the implementation of the system, 
including source code snippet. 

● Discuss implementation challenges. 

7 System Evaluation ● Explain performance metrics used. 
● Perform evaluation on the model. 
● Evaluate the project itself based on objectives. 

8 Conclusion ● Discuss conclusion, novelties, contributions, and 
future work. 

Table 1-2: Reporting structure.
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CHAPTER 2: LITERATURE REVIEWS 

 The literature review is organized into 2 sections. First section discusses the previous 

studies in profanity detection, while the second section discusses existing profanity detection 

systems. At the end of this chapter, solutions to the problem statement are proposed based on 

the studies and systems reviewed. 

2.1 Previous Studies in Profanity Detection 

2.1.1 Multilingual Offensive Language Identification with Cross-lingual Embeddings 

 To increase the performance of the systems with non-English languages, data 

augmentation techniques and multilingual word embeddings have been used. However, state-

of-the-art cross-lingual transformer models, XLM-R is not yet applied in offensive detection 

[7]. XLM-R has been trained on 104 languages and it proved to be highly performant in single 

language benchmarks while also recording an amazing result in multilingual benchmarks. 

Ranasinghe and Zampieri therefore proposed to use multilingual word embeddings for 

offensive language detection. English data is used to perform predictions in 3 other languages 

including Bengali, Hindi, and Spanish. Furthermore, the proposed methods not only showed 

that they can predict for multiple languages, but also for various tasks. 

Like other transformer model designs, XLM-R architecture is also suitable for text 

classification tasks. The diagram for the XLM-R transformer architecture classification task is 

shown in Figure 2-1. 
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Figure 2-1: XLM-R transformer text classification architecture [7]. 

XLM-R-large model contains about 125 million parameters with 12 layers, 768 hidden-

states, 3072 feed-forward hidden-states and 8 heads. It accepts a sequence of maximum 512 

tokens as input. The first token is [CLS] which is used to represent special classification 

embedding. In the text classification task, the final hidden state of the first token will be taken 

as the representation for the whole message. Next, a softmax classifier as shown in Equation 

2.1 is added on top of XLM-R which gives the probability of label, 𝑐, where 𝑊 represents task-

specific parameter matrix. 

𝑝(𝑐|ℎ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ) 

Equation 2-2: Softmax classifier for probability of label c[7]. 

Training a classification model with a language with large number of resources like 

English, using a cross-lingual transformer model, is the main concept of this paper. Then, the 

weights of the trained model are saved and later used to initialize the weights of the model 

during the training phase for the language with minimal number of resources. This is called 

transfer learning, and it is shown in Figure 2-2. 



CHAPTER 2 

10 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 
Figure 2-2: Transfer learning strategy [7].  

 Datasets are acquired for multiple languages, including English, Hindi, Spanish, and 

Bengali. These 4 datasets acquired haven been used in tasks in 2019 and 2021, thus 

performance of the proposed model can be compared to other approaches. For English dataset, 

Offensive Language Identification Dataset (OLID) is chosen because of its flexibility provided 

by hierarchical annotation model. The dataset is split with a training set to validation set ratio 

of 0.2. After fine tuning the hyperparameters, the learning rate of 1x10^-5 and 3 epochs is 

configured for all languages. Training time for the English language used around 60 minutes 

and other languages used around 30 minutes. 

 The performance of the system is evaluated in terms of weighted and macro F1 score. 

The performance score of the proposed methodology which is XLM-R (TL) is compared with 

other models like BERT and XLM-R. The result is tabulated in Table 2-1, and it showed that 

XLM-R (TL) outperforms all of the other methods tested. TL indicates the model used transfer 

learning strategy as discussed previously. 

Language Model M F1 W F1 

Bengali 

XLM-R (TL) 0.8415 0.8423 

Risch and Krestel (2020)  0.8219  

BERT-m (TL) 0.8197 0.8231 

XLM-R 0.8142 0.8188 

BERT-m 0.8132 0.8157 

Baseline 0.2498 0.4991 
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Hindi 

XLM-R (TL) 0.8568 0.8580 

BERT-m (TL) 0.8211 0.8220 

Bashar and Nayak (2019)  0.8149 0.8202 

XLM-R 0.8061 0.8072 

BERT-m 0.8025 0.8030 

Baseline 0.3510 0.3798 

Spanish 

XLM-R (TL) 0.7513 0.7591 

BERT-m (TL) 0.7319 0.7385 

Vega et al. (2019)  0.7300 

Perez and Luque ´ (2019)  0.7300 

XLM-R 0.7224 0.7265 

BERT-m 0.7215 0.7234 

Baseline  0.3700 0.4348 

Table 2-1: Results ordered by macro (M) F1 for Bengali and weighted (W) F1 for Hindi and 

Spanish.[7]. 

2.1.2  Method of Profanity Detection Using Word Embedding and LSTM 

 Internet users are deliberately modifying the nucleus of a word to avoid detection by 

the profanity detection system. Currently, the profanity detection system has difficulties 

identifying permissible words which have similar sounding to a swear word. Therefore, Yi, 

Lim, Ko and Shin, proposed a method using FastText model and LSTM model to accurately 

identify profanity when the nucleus of the word is modified to prevent detection, and when 

word with similar morphology to expletive is used. 

 Figure 2-3 displays the system architecture of the proposed profanity detection method. 

It is generally separated into 2 parts, which are Training Data Process which trains the model, 

and Testing Data Process which detects profanity for a given text message. 
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Figure 2-3: Overview of the system architecture[11]. 

Training Data Process involves text pre-processing, FastText and LSTM model 

training. In text preprocessing, the texts collected are normalized, and each word is separated 

into onset, nucleus, and coda. Then, the FastText model is trained with the separated text data, 

and word embedding will be performed on the text data using the vector information from the 

trained FastText model. In the LSTM model learning step, supervised learning for binary 

classification is performed. While training the LSTM model, the presence of profanity is 

checked, ‘1’ represents profanity while ‘0’ not. 

For Testing Data Process, it requires the input to have the same format as the training 

process. Therefore, the same text preprocessing steps are also executed. Then, it will go through 

the word embedding step, then the existence of profanity is predicted as ‘1’ or ‘0’ using the 

LSTM model. 

Text preprocessing includes 4 steps to be performed on the text data. First, special 

symbols and emoticons are removed. Second, one-syllable word is removed. Third, sentences 

with less than 5 words are removed. Fourth, each word is separated into onset, nucleus, and 

coda. Then, word embedding using the FastText model is performed with skip-gram at a 

learning rate of 0.05, dimension of 100, windows size of 5, 50 epochs, and n-gram of 1-6.  

To demonstrate the effectiveness of the proposed profanity detection method, the 

accuracy, recall, and precision were measured. The data set used is collected from Twitter, with 
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1.3 million posts after duplicates were removed, and also 500,000 movie reviews collected 

from Naver. The ratio of the number of sentences with profanity and without is 1:1. 

Figure 2-4 shows the analysis result. The proposed method (LSTM) is compared with 

CNN and GRU. For the CNN model, it has considerably lower performance when compared 

to other models with an accuracy of only 53%, recall of 13%, and precision of 79%. It. For the 

GRU model, the accuracy is 97.4%, recall is 95.18%, and precision is 94.32%. GRU model 

demonstrated a great performance, but it is still slightly less performant compared to the LSTM 

model. The LSTM model proposed in this study recorded an accuracy of 96.15%, which shows 

the highest performance among all compared methods. The cross-verification score for the 

LSTM model is 96%. 

 
Figure 2-4: CNN, GRU, and LSTM model results [11]. 

 To conclude, by using the FastText model, the method proposed by Yi, Lim, Ko and 

Shin, is able to capture the semantics and also the context used for the words. Furthermore, the 

flow context is trained by the LSTM, so it can recognize profanity that cannot be identified by 

other approaches. Based on the performance test result, the proposed method indicates great 

performance with an accuracy of 96.15% [11]. 

2.1.3 Automated Hate Speech Detection and the Problem of Offensive Language 

 A huge challenge for hate speech detection is to distinguish between hate speech from 

other types of offensive use of language. People often use words that are offensive to certain 

groups in a qualitatively different manner. For instance, some African Americans would use 
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‘n*gga’ as a normal phrase online. Therefore, to build a usable hate speech detection system, 

this boundary condition is critical. 

 Davidson, Warmsley, Macy and Weber, published a paper to resolve the challenges 

mentioned above. In the paper, they labelled Twitter tweets into 3 categories, which are hate 

speech, offensive language, and neither. A model is trained to classify messages within these 

classes, and results are analyzed. The results showed that classifying messages as these 3 

classes can help boost the performance for the hate speech detection task. 

 They compared a variety of models like logistic regression, linear SVM, Naive Bayes, 

decision trees, and more. Every model is tested using 5-fold cross validation, with a training 

set to test set ratio of 0.9:0.1. After performing grid-search over the models and parameters, 

Logistic Regression and Linear SVM show better performance compared to other models. 

Thus, Logistic Regression with L2 regularization is selected as the final model as the predicted 

probabilities of class can be examined more easily. 

 The final model is trained using the entire dataset. The best performing model recorded 

a precision of 0.91, recall of 0.9, and F1 score of 0.9. Figure 2-5 illustrates the confusion matrix 

of the model. From Figure 2-5, almost 40% of hate speech is wrongly classified, for the hate 

class, the precision is 0.44 and recall scores is 0.61. This suggests the model is biased towards 

identifying Twitter’s tweets as less offensive than the human.  

 Due to an overly broad definition, one of the major flaws in most of the previous works 

is the labelling, where offensive language is wrongly labeled as hate speech. The multi-class 

framework proposed by Davidson, Warmsley, Macy and Weber, minimizes these errors. Only 

5% of their true offensive language was labeled as hate. 
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Figure 2-5: True versus predicted categories [12]. 

 In conclusion, it is not that easy for a computer to differentiate between a perfectly fine 

speech and a hate speech. Many messages will be wrongly considered as hate speech if the 

meaning of hate speech and offensive language are conflated. While the results show that the 

model perform great at capturing some of the hate speeches, we should still be aware of the 

social biases that enter into the algorithms and these biases should be resolved in future work 

[12]. 

 2.2  Existing Profanity Detection System 

2.2.1 Profanity-check 

 Profanity-check is a robust Python library for checking profanity or offensive language 

in strings. It is an open-source project developed by Victor Zhou, and the source code is 

publicly available on GitHub. 

 Profanity-check provides 2 functions, predict() and predict_prob(), which can be used 

to detect profanity. Figure 2-6 shows the example usage of the functions and the output at the 

bottom of the figure. The function, ‘predict()’ returns ‘1’ if the string is profane while ‘0’ if it 

is not. Meanwhile, ‘predict_prob()’ returns the probability of profanity. Based on the output in 

Figure 2-6, it’s clearly shown that profanity-check is capable of detecting profanity accurately. 

Profanity-check successfully determines ‘hello everyone’ as not profane, ‘fuck you’ as profane, 
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and susprisngly ‘your mom is fat cow’ which has only permisible words is also determined as 

profane.  

 
Figure 2-6: Usage of profanity-check with Jupyter Notebook. 

 Profanity-check uses machine learning to perform predictions. The dataset used is 

combined from 2 sources. First one is Twitter-based dataset from Automated Hate Speech 

Detection and the Problem of Offensive Language by Tom Davidson, and second one is 

Wikipedia-based dataset from Toxic Comment Classification Challenge on Kaggle, published 

by Alphabet’s Conversation AI team. 

 After the collected text dataset is preprocessed, it will be passed to the vectorization 

process. In this case, Bag of Words (BoW) representation is used for vectorization. Basically, 

it turns a string into a numeric vector by counting the number of times each word appears in 

the strings. For example, one of the possible vectorizations results for ‘the ball drops into the 

hole’ is shown in Table 2-2. Finally, the vectorized dataset will be used to train the model. The 

model implemented in profanity-check is Linear Support Vector Machine (SVM), which is 

capable of performing different kinds of profanity detection in real-time. 

the ball drops into hole 
2 1 1 1 1 

Table 2-2: BoW representation for ‘the ball drops into the hole’. 

 Based on the performance indicators published by Victor Zhou himself, profanity-

check has high performance with an accuracy of 95%, precision of 86.1%, recall of 89.9%, and 
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F1 Score of 0.88. Although profanity-check is powerful, it is actually far from perfect as 

demonstrated in Figure 2-7. It fails to detect profanity with alternate spellings like ‘f4ck’. 

Moreover, it will determine a message as profane just because it contains the sensitive word, 

regardless of the context. 

 
Figure 2-7: Failed profanity and non-profanity classification by profanity-check. 

2.3 Critical Remarks of Previous Studies and Existing System 

All of the previous studies reviewed have their own strengths and weaknesses. For the 

first study, it’s capable of detecting profanity in multiple languages by using state-of-the-art 

cross-lingual transformer models, XLM-R. Meanwhile, the second study focuses on 

identifying profanity with alternating spellings. By using word embedding and LSTM, they 

proposed a model capable of identifying profanity even when the nucleus of the word is 

modified. The accuracy of the model is 96.15%. For the third paper, the proposed model can 

differentiate between hate speech and offensive language, which is a huge advantage.  

For the system reviewed, which is profanity-check, it has its own strengths and 

weaknesses too. Profanity-check used a machine learning approach instead of list-based 

approach to implement profanity detection. This highly increases the accuracy of the system as 

there is no need for a hardcoded list to detect profanity. However, it is still unable to tackle 

alternating profane words like ‘f4ck’. Moreover, it is also unable to understand the context of 

the words used in the messages. 

 Based on the previous studies and existing system, a model to identify profanity for the 

text messages is proposed. By combining techniques from multiple studies and systems, the 

proposed model is capable of supporting multiple languages, understanding the context of 

words, and recognizing alternating spellings of profanity in text messages.
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CHAPTER 3: METHODOLOGY 

To develop the profanity detection API, various technologies and methodologies are 

applied. In this chapter, the methodology is first discussed. Then, the hardware and software 

requirements, and services used in this project are summarized. 

3.1 Methodologies 

 In overall, the methodologies can be viewed as 2 different parts. The first part is the 

research phase which involves the system model, which the objective is to produce a profanity 

detection model. After the model is ready, the development phase which is the second part will 

focus on deploying the model as tools like API for users to use. 

3.1.1 Dataset Acquisition 

 Since the profanity detection model proposed supports multiple languages, the dataset 

is required to be multilingual. For English, the dataset of Jigsaw Multilingual Toxic Comment 

Classification Challenge will be used. As for other languages, the dataset from Jigsaw 

Unintended Bias in Toxicity Classification Challenge will be used. Both of these datasets are 

available on Kaggle, and it is provided by the team from Conversation AI. With Kaggle CLI, 

these dataset can be downloaded into the notebook directly. 

3.1.2 Model Training and Testing 

 This project proposes to use deep learning to detect profanity in the text messages, 

therefore a deep learning model will be designed and built. The model will be built by using 

various natural language processing techniques, combined with other techniques studied in 

literature review like cross-lingual emeddings, and LSTM. The dataset acquired will be split 

into training set and test set and then gone through preprocessing. Next, the training set will be 

used to train and validate the model, while the test set will be used to perform fine tuning and 

testing of the model. All of these methodologies will be done in Python programming language 

with Tensorflow library. 

3.1.3 API Implementation 

 Once the model is completed and tested, it will be deployed as a REST API so that it 

can be implemented in other applications. The REST API for the proposed profanity detection 
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model will include two endpoints, ‘is_profane’ and ‘profane_prob’. This will be implemented 

in Python using Flask-RESTful. Then, it will be deployed to localhost to perform testing on 

the system. Once final validation is completed, it is now ready to be deployed as production. 

3.2 Tools 

3.2.1 Hardware 

 The only hardware involved in this project is a computer. It will be used to develop the 

whole system. The computer used for this project is a personal laptop. The process of the 

development of the profanity detection model will be done using this personal laptop. Then, 

the REST API will be deployed on the localhost of this laptop for testing purposes.  

Specification Description 

Model Acer Aspire E1-572G 

Processor Intel Core i7-4500U 1.8GHz  

Graphic AMD Radeon HD 8750M 2GB VRAM 

Memory 8GB DDR3 L Memory 

Storage 1000GB HDD 

Operating System Windows 10 

Table 3-1: Specification of laptop. 

3.2.2 Software 

 Generally speaking, there are 3 software used to develop profanity detection API. The 

software is summarized as follows. 

1. Visual Studio Code 

Visual Studio Code is a code editor developed by Microsoft. It contains a lot of features 

like debugging, syntax highlighting and most importantly, a huge selection of 

extensions. In this project, VS Code is used together with the Python extension, and it 

will be used for the development, debugging, and testing of the RESTful API. 

2. Keras 

Keras is an open-source Python library that provides interfaces for artificial neural 

networks. It is built on top of the machine learning platform, Tensorflow. Keras 
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provides a high level of abstractions as well as being flexible enough to build custom 

models entirely from scratch. In this project, the building, training, and testing of the 

profanity detection model will be done using Keras. 

3. Flask-RESTful 

Flask-RESTful is an extension for Flask (micro web framework for Python), which 

adds support for building REST APIs easily.  It is a lightweight abstraction that can 

work with existing libraries. Flask-RESTful will be used in this project to create REST 

API endpoints for the profanity detection model.  

 

3.2.3 Services 

 Apart from hardware and software, this project also utilizes various services to aid the 

development and realization of this project. Some of the main services used are listed as 

follows. 

1. Google Colab 

Google Colab allows users to write and execute Python code through the browser in the 

form of the Jupyter notebook. The notebook environment will be run entirely in the 

cloud provided by Google. It offers free and paid plans. In this project, the free one is 

opted. Google Colab will be used as a platform to build, train, and test the model, as 

well as build a pipeline from dataset collection, preprocessing, to the output of the 

trained model. Training of the model is performed on Google Colab instead of the local 

machine because the computation power provided by Google Colab is far more 

powerful, it can speed up the computation time by a lot. 

2. Heroku 

Heroku is a cloud platform as a service (Paas) that supports several programming 

languages. Heroku provides hosted isolated Linux containers called dynos. It can be 

used to deploy and host web applications which are publicly accessible by everyone on 

the Internet. Apart from that, Heroku also provides managed SQL databases as a service 

called Heroku Postgres. In this project, free tier of the Heroku Dyno and Heroku 

Postgres are used. 

3. Vultr 

Vultr is a cloud hosting provider which provides various types of servers including 
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VPS, and also dedicated servers. It can be used to host any kind of application. It 

provides SSH access to the server, therefore the server can be set up easily. In this 

project, a paid service of Vultr is used, which is called Cloud Compute. It is used to 

perform the calculation profanity detection of the deep learning model on the cloud. 

3.3 Timeline 

 The development of the whole project is split into 2 parts, namely Project 1 and Project 

2. Project 1 completed 30% of the work. The aim of Project 1 is to build an overall architecture 

of the system as a proof of concepts. A simple deep learning model for profanity detection will 

be trained and deployed in the form of REST API locally. Meanwhile, Project 2 focuses more 

on the studies of the deep learning model, and designing, improving the profanity detection 

model so that it meets the objectives of understanding the context of bad words, alternative 

spellings, and multiple languages. The following figures show the timeline for both Project 1 

and 2. 

 
Figure 3-1: Gantt chart for the timeline of project 1.   
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Figure 3-2: Gantt chart for the timeline of project 2. 
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CHAPTER 4: SYSTEM MODEL 

As discussed in this report previously, the model used in this project to detect profanity 

is a deep learning-based model instead of a traditional dictionary-based approach. There are 2 

different models proposed in this project, one is LSTM, another one is BERT. 

4.1  LSTM with FastText Embeddings 

Therefore, a deep learning binary classification model is designed as follows. 

Conceptually, the model utilizes bidirectional Long Short Term Memory (LSTM) to perform 

feature extraction. Then, the features extracted from LSTM will be passed to the fully 

connected layer to perform prediction. 

 
Figure 4-1: Architecture of the LSTM profanity detection model. 

As shown in Figure 3-1, the model has a scalar output, ŷ, ranging from 0 to 1, which 

can be depicted as the probability of profanity for the given text message. Next, the model does 

not accept the whole sentence directly as the input. The text message has to be first tokenized 

into N tokens. Each token can be used to represent a single word in the text message. The 

following table shows an example of the tokenization process. 
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“Hi, how are you?” 

Token 1 Token 2 Token 3 Token 4 

hi how are you 

Table 4-1: Example tokenization process. 

  
Figure 4-2: Example word embeddings. 

The first layer of the model is the embedding layer. This layer is responsible for 

converting each word token into a vector which can represent the meaning of the word. It works 

by referring to an embedding matrix as shown in Figure 3-2, for instance. The word 

embeddings is designed in such a way that the words that have vectors close to each other are 

expected to have similar meaning. Therefore, word embeddings can be leveraged to bring the 

semantic meaning of the word into the deep learning model, enabling the model to perform 

even better. For example, as displayed in Figure 3-2, “male”, and “female” are mapped into [1, 

5, 0, 3], and [-1, 5, 0, 3], respectively. Notice that the vectors for both of these words are pretty 

close to each other, this suggests that “male”, and “female” have similar meanings, in this case, 

both of the words are the type of gender. In contrast, “zebra” which is an animal type has a 

very different vector. 

There are quite a few word embedding techniques proposed recently, for example, 

Google’s Word2Vec, GloVe, and also Facebook’s FastText. The embedding matrix can be 

produced from scratch by training on the datasets collected or downloaded from the pre-trained 

embedding model online. In this project, FastText’s English pre-trained model is used. 

FastText is selected over other techniques due to the fact that FastText improves Word2Vec by 

operating at a more granular level with character n-grams, taking part of the words and 

characters into account. This allows training of embeddings on smaller datasets and rare words 
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to be represented appropriately. This is important for profanity classification tasks as there are 

all kinds of less frequently used words that can appear in a profane message. Apart from that, 

the pre-trained model is used because it is trained on large datasets with specifications from 

the team of the researchers themselves, so it generally performs better for most of the tasks.  

After the tokens are converted into vectors, it can now be passed to the next layer, the 

bidirectional LSTM. The goal of this layer is to extract features from the text message so that 

the model can be trained and learn from the features provided. The LSTM layer is constructed 

from the LSTM cell. 

 
Figure 4-3: A single LSTM Cell [13]. 

 In a LSTM cell or unit, it is made up of several components, the cell state, the hidden 

state, the forget gate, input gate, and output gate. The hidden state is responsible for encoding 

the information of the data at the given time-step. The information of the hidden state depends 

on what the LSTM is asked to do (trained), the weights will be updated accordingly during the 

training phase. In this project, the hidden state can be expected to represent information about 

if this word carries any negative sentiment. As for the cell state, it acts like a memory cell, 

trying to encode all the information in the previous time-steps. Notice that the cell state is 

connected with the forget gate, input gate. This means its content can be kept, erased, and 

updated. This feature introduces complexity to the model so that it is capable of capturing the 

important feature in the profane message. 
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 Next, the output of the LSTM cell at the last time-step will be taken for the classification 

process. The information encoded at the last time-step is expected to represent the features for 

the whole sentence. This feature will be passed into a fully connected layer with output size of 

32, and ReLU activation function. This fully connected layer is responsible for learning the 

pattern of profanity from the features provided. Then, Dropout is applied after this fully 

connected layer. Dropout layer randomly dropping out input units with a specified frequency 

at each step during the training phase. By doing so, it can help prevent overfitting of the model. 

For this project, the dropping frequency for the Dropout layer is set to 0.4. Next, the features 

will pass to the classifier. The classifier is just a fully connected layer at its core, but with only 

1 output unit with sigmoid activation function. Sigmoid function squishes any input into the 

range of 0 to 1, therefore the output of this classifier layer can be treated as the probability of 

the message being profane. Finally, a threshold can be set to decide the minimum probability 

required for a message to be considered as profane. For example, a threshold of 0.5 will mark 

all the messages with probability of 0.5 and above as profane. 

4.2 Bidirectional Encoder Representations from Transformers 

Bidirectional Encoder Representations from Transformers, which is also known as 

BERT, was developed by Google back in 2018 [14]. There are 2 variants of BERT presented 

in the paper. The first one is called BERT Base, and another one is called BERT Large. BERT 

Large provides state of the art performance, but it is not preferable in this project, as the training 

time of BERT Large is long. BERT Base should achieve a satisfactory result for profanity 

detection tasks. BERT Base contains 12 Transformer Blocks, feedforward-networks with 768 

hidden units, and 16 attention heads. 

 
Figure 4-4: Input tokens and output tokens of BERT. 



CHAPTER 4 
 

27 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

Similar to LSTM, text messages have to be tokenized before input to BERT. However, 

there is a special token in BERT called [CLS], which stands for Classification. This [CLS] 

token will be supplied into BERT as the first token. Since the number of hiddens units for the 

feedforward-networks in BERT base is 768, therefore the token at each position is a vector of 

size 768. As shown in Figure 4-4, the output tokens are vectors. The output vector at the first 

position can be treated as the encoding of the meaning of the whole sentence, as the input at 

the first position is supplied with the special [CLS] token. This means this vector can be used 

to perform classification tasks. 

 
Figure 4-5: Architecture of profanity detection model based on BERT. 

 Figure 4-5 shows the model design of BERT for profanity detection tasks. The BERT 

encoder and the embedding layer used is pre-trained. The pre-trained model is open-sourced 

and provided by the original author of BERT, it is trained with the text data from Wikipedia 

and books. The pre-trained model is capable of understanding the language, like the grammar. 

There is no need to train BERT from scratch as it will take a huge amount of time and usually 
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the end-result is worse than using pre-trained. BERT is based on Transformer, and Transformer 

has a Embedding layer which includes positional embedding. There is no need to use an 

external embedding like FastText. The text input can be directly passed into the Embedding 

layer provided, and it will turn the text into tokens which are essentially embeddings. Only 

then, these tokens will be fed into the BERT encoder layer. 

 The output of the BERT encoder at the first position is taken for the classification of 

profanity. This output vector is passed into a fully connected layer with an input size of 768 

and output size of 512. Then, the result is fed into a Dropout layer with the dropping frequency 

set as 0.1. Next, the features will pass to the final layer which is the classifier. The classifier is 

another fully connected layer with output size of 1. The activation function used in the classifier 

is sigmoid, which means the final predicted output will range from 0 to 1. 
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CHAPTER 5: SYSTEM DESIGN 

 This chapter documented the development phase of the project. The deliverable of the 

development phase is a package called DeepProfane with a suite of tools for the users to filter 

profane messages effectively. By making use of the deep learning model developed from the 

previous chapters, DeepProfane is capable of recognizing profanity in the text messages and 

then leveraging it to build profanity detection API and software. The tools developed include 

a PyPI Python package (deep-profane), a RESTful API (deep-profane-rest), and a web chatting 

application capable of filtering profane messages automatically (DeepProfane Chat).  

5.1 System Block Diagram 

 
Figure 5-1: Block diagram of the DeepProfane package, which has 3 modules, including 

PyPI package, RESTful API, and a web app. 
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 As shown in the block diagram above, the final deliverable of this project is a package 

called DeepProfane which contains several modules. Each module is designed as an individual 

function that can be used publicly by end users or internally by other modules. 

 The first module in this package is the deep-profane module. The deep-profane module 

is published as a PyPI package, and it is publicly accessible by any Python program. It performs 

profanity detection by employing the trained LSTM model and BERT model from the previous 

chapter. It is the most fundamental and important module as it is the only module in the package 

to power the recognition of profanity. Based on Figure 5-1, notice that all profanity detection 

tasks in this package will be routed to this module. Since this is a Python package, this module 

can be directly downloaded and imported from PyPI, and then integrated into Python scripts to 

perform profanity detection. 

 Apart from that, this package also includes a profanity detection REST API called 

deep-profane-rest, which is publicly available to anyone. Unlike the deep-profane module 

which can only be used in Python scripts, deep-profane-rest is accessible via HTTP protocol. 

This means deep-profane-rest is more flexible and can be used by programming languages 

other than Python. At the core of deep-profane-rest, it performs profanity recognition by using 

deep-profane, the classification result retrieved from the deep-profane module is routed back 

to its user. In overview, deep-profane-rest encapsulates deep-profane and it is a gateway for its 

users to access the profanity detection API via HTTP. 

 The last and the most complex module is DeepProfane Chat. It is a web chatting 

application with profanity filtering enabled. DeepProfane Chat can be embedded into custom 

websites to replace the conventional commenting and chatting system. Public users can publish 

their messages on DeepProfane Chat, and the messages will be stored at a database. Every 

message will first be passed to profanity detection service to filter out any profanity. All 

messages detected with profanity will be flagged and will not be displayed to other uses. This 

automated moderation process is achieved by using deep-profane-rest, which uses deep-

profane at the end. 

5.2 PyPI Package (deep-profane) 

 This section describes the process of developing and packaging the profanity detection 

model as a Python package. The name of the package is called deep-profane. 
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Figure 5-2: Overview class diagram for deep-profane package. 

 First of all, the profanity detection model developed is not distributed together with 

deep-profane as a single Python package. Instead, the model weights are hosted on a third party 

file hosting service. The model will be downloaded automatically when the user installs and 

runs deep-profane on their machine. This is because the file size for model weights is too large, 

exceeding the package size limit imposed by PyPI, which is 60MB [15]. Usually, the file size 

for a single BERT model is more than 100 MB.  

 There are 2 main classes in the deep-profane package. The first one is 

ProfanityValidator. ProfanityValidator is the main interface for users to invoke and perform 

profanity detection, it exposes 2 functions for this usage. The first one is a function to get the 

probability of profanity called get_profane_prob(). This function accepts a list of strings and 

outputs a list of probabilities ranging from 0 to 1. Similar to the get_profane_prob() function, 

the second function called is_profane() returns a list of booleans to indicate if the given list of 

strings is profane or not.  

The get_profane_prob() and is_profane() function calculate the profanity result by 

using the model constructed and loaded by ProfanityValidator. In the initialization function, 

__init__(), of the ProfanityValidator, it will construct a model, and store it in the memory. 

Then, the function will call fetch_weights in ModelWeights to download weight data from the 

sources and then load it into the newly constructed model. Only at this point of time, the 

package is ready to be used. 
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5.3 RESTful API (deep-profane-rest) 

 The second module is called deep-profane-rest, it is a RESTful API for profanity 

detection. 

 
Figure 5-3: Architecture for deep-profane-rest, profanity detection RESTful API, 

Request Response (isProfane endpoint) Response (probability endpoint) 

{ 
  "msg": [ 
    "good morning", 
    "fuck you", 
    "i suck my thumb" 
  ] 
} 

{ 
  "is_profane": [ 
    false, 
    true, 
    false 
  ] 
} 

{ 
  "profane_prob": [ 
    0.3785, 
    1, 
    0.4012 
  ] 
} 

Table 5-1: Sample request and responses of Profanity Detection REST API. 

 The deep-profane-rest module serves as the gateway for third-party websites or 

applications to use the profanity detection library, deep-profane. The RESTful architecture is 

chosen because it provides a uniform and standard way of communication between the server 

and the client. This means the invocation of this API is not constrained to a particular 

programming language. Any programming language can use this API as long as the API 

request follows the specification of the RESTful API endpoint. As shown in Figure 4-5, the 

request will first go through the REST Interface layer, then routed to the classification model 

after it is pre-processed. The detection result will then pass back to the users through the REST 

Interface.  
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 There are 2 endpoints for the deep-profane-rest, which are ‘/is_profane’, and 

‘profane_prob’. The endpoint ‘/is_profane’, returns boolean values (true or false) to indicate if 

the message is profane or not. As for ‘/profane_prob’, it returns the probability of the message 

being profane. As displayed in Table 4-1, the API is designed to communicate in JSON format. 

For each request, users can send up to 8 messages. The messages must be contained in a list 

with ‘msg’ as the key. Otherwise, the request is considered as invalid, and an error will be 

thrown. This is to limit the workload of the REST API server from growing too large, making 

it impossible to handle other requests in the case where a single request sends an enormous 

number of messages. The same constraint applies to the profane_prob endpoint as well. 

5.4 Web Chatting Application (DeepProfane Chat) 

 This section will describe the design of DeepProfane Chat module. 

Figure 5-4: Simplified block diagram for DeepProfane Chat module. 

 The key feature of DeepProfane Chat is it is designed as a third-party website 

embeddable chatting system, but not as a standalone chatting system. This means that the 

website of DeepProfane Chat does not provide any chatting service, but instead the chatting 

service can be integrated into various websites. The intention of this design is to replace the 

conventional chatting or commenting system on the website in which there is usually no 
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profanity moderation. The embeddable chatting service provided by DeepProfane Chat has 

profanity detection enabled and it requires minimal setup by website owners. This requirement 

is achieved by using the iframe technology as shown in the yellow block inside Figure 5-4. By 

using iframe, DeepProfane Chat will handle the render of the chat interface called ‘Board’, and 

then the iframe setup at the website can integrate this Board into the website by specifying the 

‘src’ properties (URL) of the iframe.  

 Referring to Figure 5-4, the stack used in DeepProfane Chat is Next.js. All components 

inside the Next.js block will be integrated in the Next.js stack. The first entry point of this web 

application is the Dashboard. The users or website owners can access the Dashboard to perform 

setup and integration of DeepProfane Chat into their website. The dashboard is a protected 

component which means the users have to authenticate themselves before they can access the 

dashboard. The authentication system is implemented by using OAuth 2.0 protocol with 

NextAuth.js and Google OAuth 2.0 as the provider. This means DeepProfane Chat does not 

handle and store the username and password of the accounts, instead it is provided by Google. 

The users can simply login to the dashboard by using their Google account.  

 The dashboard allows website owners to perform various actions. First, they can create 

a new Board for their website. Then, they can view the configuration and API Key of this 

Board, in which they can copy paste the iframe code generated at the dashboard into their 

website to integrate the Board. Also, they can view the number of messages posted, and the 

number of messages blocked for profanity at the dashboard. 

 A Board is the chatting interface that can be embedded into a third party website. The 

visitor of the website can read or publish comments on the Board setup by the website. These 

messages or comments will automatically be sent to deep-profane-rest for profanity screening. 

If profanity is detected, the comments will be flagged and will not be shown to the users. 

However, the website owners can view these flagged messages at the dashboard. All messages 

will be stored in a database via an ORM library called Prisma.  



CHAPTER 5 
 

35 
Bachelor of Computer Science (Honours)  
Faculty of Information and Communication Technology (Kampar Campus), UTAR 
 

 
Figure 5-5: Entity relation diagram for the database of DeepProfane Chat. 

 The schema of the database is shown in Figure 5-5. There are a total of 3 tables. The 

first table is called User. The User table holds information about the website owner or website 

visitor who published comments at DeepProfane Chat. Each user is allowed to create more than 

one Board. The Board table contains information about the Board like its name, its domain, 

API key, the owner of the Board, etc. Each Board can have more than one Comment associated. 

In the Comment table, the column ‘content’ holds the comment text itself, and ‘profane’ is a 

boolean column which can indicate if this comment is flagged for profanity. Each comment 

must be associated with one User and one Board. This means that the users have to login into 

an account before they can publish comments on DeepProfane Chat. 

 The database and the web application itself will be hosted on Heroku Dyno and Heroku 

Postgres, respectively. This will make it accessible from the public, and its implementation 

details will be discussed in the next chapter.
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CHAPTER 6: SYSTEM IMPLEMENTATION 

In this chapter, the implementation details of the profanity detection system is 

documented. In short, there are 2 sections in implementation of the system. The first section is 

about the experiments of the profanity detection deep learning model discussed in Chapter 3. 

The second section is the development of the DeepProfane package as discussed in Chapter 4. 

6.1 Software Setup 

 First of all, prior to the implementation of the system, the development environment is 

required to be set up by installing these software on the local machine: 

1. Visual Studio Code 

2. Python extension for Visual Studio Code 

3. Python 3.9.12  

4. PyPI CLI 

5. Postman 

6. Heroku CLI 

6.2 Service Setup 

Then, a notebook document (.ipynb) is created and hosted on Google Colab, with GPU 

runtime enabled. This document will be used to build, train, and test the model. Apart from 

that, a Heroku account, a PyPI account, and a GitHub account are also required to be registered. 

6.3 Implementation of Profanity Detection Model 

 Based on the model design as discussed in Chapter 4, there are 2 models needed to be 

built and tested. The first model is LSTM-based with FastText embeddings, and another one is 

BERT model. Both of these models will be configured and trained with the notebook document 

(.ipynb) created earlier which is  hosted on Google Colab. The model with best performance 

will be chosen as the final model. 

6.3.1 Datasets Acquisition 

 In order to build and train the profanity detection model, datasets relevant to the abusive 

comments have to be collected. In this project, 2 different datasets are used: 
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1. Dataset of Jigsaw Multilingual Toxic Comment Classification by Conversation AI. 

2. Dataset of Jigsaw Unintended Bias in Toxicity Classification by Conversation AI. 

 These 2 dataset collections have their own train set, validation set, test set, and other 

metadata are separated in different CSV files. However, not all of these CSV files are used in 

this project. Only the train set (jigsaw-unintended-bias-train.csv), and test set (test.csv + 

test_labels.csv) from Multilingual Toxic Comment Classification and also the test set (test.csv 

+ test_labels.csv)  from Jigsaw Unintended Bias in Toxicity Classification are used.  

 
Figure 6-1: Source code to download and unzip Jigsaw Multilingual Toxic Comment 

Classification dataset from Kaggle. 

A pipeline to automate this process of downloading the datasets into the notebook 

document is written. Since both datasets are available on Kaggle, these datasets are downloaded 

using the Kaggle CLI tool, and then extracted using zipfile library in Python. 
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6.3.2 Datasets Exploration 

  
Figure 6-2: Preview of the train set of Multilingual Toxic Comment Classification. 

 In the train set of Multilingual Toxic Comment Classification, there are a total 45 

different columns, but the only columns relevant to the profanity detection task in this project 

are ‘comment_text’ and ‘toxic’. The column, ‘comment_text’ holds the text corpus, and the 

column ‘toxic’ specifies the probability of profanity in the range of 0 to 1. There are a total of 

1,902,194 entries in this train set. Out of these 1,902,194 entries, 152,111 of them have toxicity 

of equals or greater than 0.5, which is considered as toxic or profane. 

 
Figure 6-3: Distribution and box plot of words count for all text in the train set. 

 Since BERT is one of the models to be trained, it would be useful to gain insight about 

the number of words for the text corpus of each entry. This is because there is a hyperparameter 
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to specify the number of input tokens in the BERT model. Figure 6-2 shows the statistics of 

the word count distribution. Based on the distribution chart, most of the entries have a number 

of words less than 200. In fact, based on the analysis of boxplot and interquartile range, there 

are only 106,904 (5.62%) entries with a number of words of more than 156, which are 

considered as outliers. The implementation of BERT at the later section can select the input 

tokens to be 128-256 based on the overview provided here. 

 
Figure 6-4: Preview of the test set of Multilingual Toxic Comment Classification. 

 As shown in Figure 6-4, the text corpus in the test set consists of multiple languages 

other than English. There are a total of 3 columns in the test set, which are content, lang, and 

toxic. The column ‘content’ is the text corpus, meanwhile the column ‘lang’ recorded the 

language for the respective sentences, and the value for the column ‘toxic’ is either 0 or 1 which 

indicates non-toxic or toxic. The following table shows all the languages included in the text 

corpus of the test set, there are a total of 6 languages. 

Code Language 

tr Turkish 

ru Russian 

it Italian 

fr French 

pt Portuguese 

es Spanish 
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Table 6-1: Language code and its name for all the supported languages in the test set. 

6.3.3  Training of LSTM Model 

 LSTM is a model with no word embeddings on its own. Therefore, the dataset which is 

in text (string) form cannot be fed into the LSTM model directly. Pre-processing on the text 

corpus in the dataset has to be done before proceeding to the training of the LSTM model. 

 
Figure 6-5: Source code for tokenizing the input text corpus in the notebook document. 

 First of all, the dataset is passed to a standard Tokenizer to map every word in the text 

corpus to a number called token. As displayed in Figure 6-5, this is done by using Tokenizer 

provided from keras library. Notice that the output says there are a total of 613,611 words in 

the dictionary, but the maximum allowed size of the dictionary is capped at 120,000 words. 

This means any word ranked outside of the top 120,000 words in the dictionary will not be 

mapped into its respective token. 

 
Figure 6-6: Source code for padding the tokenized text corpus. 
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 After the tokenization process is completed, the length of the list tokens for every 

sentence will be different as each sentence has a different number of words. Therefore, padding 

is required to be performed on the list of tokens, so that every sentence in the train and test set 

have the same number of tokens. This makes it easier for the training process later in the LSTM 

model. Figure 6-6 shows the code to perform sequence padding. First, the maximum length in 

the whole text corpus is calculated and then every sentence will be padded according to this 

length. In the example shown in the Figure, the maximum length is 320. 

 
Figure 6-7: Source code for downloading FastText embeddings and transforming the words 

(tokens) into embedding vectors. 
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 Then, the last step of the pre-processing is converting the tokens into its embedding 

vector. FastText’s pretrained English embeddings data is downloaded and used to achieve this 

task. As shown in Figure 6-7, all tokens in all sentences are converted to FastText’s embeddings 

vector one by one by using a for loop. The pre-processing is completed once this conversion is 

finished.  

 
Figure 6-8: Source code for constructing the proposed LSTM profanity detection model. 

 The model is constructed according to the proposed LSTM model in Chapter 4 as 

shown in Figure 6-8. There are a total of 93,697 trainable parameters. Notice that the 

embedding layer has the trainable parameter set to false to prevent the training process from 

updating its weights. After that, the model is fed and trained with the pre-processed train set 

by using the model.fit() method. It is notable that the loss function used for the training of this 

model is Mean Squared Error (MSE), as opposed to ordinary classification tasks. This is 

because the ground truth label in the dataset is a scalar value ranging from 0 to 1. The 

hyperparameters used in the training of the model are as follows.  

Epochs Batch size Validation split Optimizer 

8 512 0.2 Adam 

Table 6-2: Training hyperparameters for the LSTM model. 

 The evaluation result of the model will be discussed in the next chapter. 
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6.3.4 Training of BERT Model 

 Unlike the LSTM model, BERT has its own embedding layer, therefore there is no need 

to perform pre-processing for the dataset. This makes the implementation of the BERT model 

fairly simple. 

 
Figure 6-9: Source code for constructing BERT profanity detection model. 

 By leveraging TensorFlow Hub, the BERT model can be rebuilt in just a few lines of 

code. TensorFlow Hub is an open repository and library for reusable machine learning. There 

are tons of pre-trained models hosted on this repository. To access it from the notebook 

document, ‘hub.KerasLayer(string)’ is used. This method will load the model from the 

repository based on the handle specified. In this case, the handle would be 

‘https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/3’ for the Bert encoder and 

‘https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3’ for the preprocessing layer. 

  
Figure 6-10: Converting dataset in Pandas DataFrame to TensorFlow Dataset. 
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 Due to the fact that the data after the tokenizing or the embedding process of BERT 

consumes quite a lot of memory, therefore the dataset could not be tokenized altogether and 

stored in memory first prior to the training process. This is because this can crash the notebook 

as the out of memory error could occur. Instead, the data can be loaded and processed 

dynamically parallel with the training process. This can be achieved by using the Dataset API 

provided by TensorFlow data module as shown in Figure 6-10. Basically, the code is 

constructing the TensorFlow Dataset by using ‘Dataset.from_tensor_slices()’, then the dataset 

is configured to randomly sample entries from a buffer with size of 2048 using ‘shuffle()’. 

 
Figure 6-11: Model summary by TensorFlow for the proposed BERT profanity detection 

model.  
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At this point, all setup is completed and the BERT model is ready to be trained. Based 

on Figure 6-11, there are a total of 295,681 trainable parameters in the model. The weights for 

the embeddings layer of the BERT and BERT itself are prohibited from updating. The model 

is trained by using the ‘model.fit()’ method with hyperparameters set as the following table. 

These hyperparameters are suggested by the original author of BERT. 

Epochs Batch size Learning rate 

3 16 Adam (3x10^-5) 

Table 6-3: Training parameters of BERT profanity detection model. 

 The trained model will be tested and evaluated on the test set, and its performance 

metrics will be discussed in the next chapter, Chapter 7. 

6.4  Development of DeepProfane Package 

 At this stage, the research part of the model is completed. The key thrust of this project 

now moves into building the DeepProfane package which utilizes the trained profanity 

detection model. 

6.4.1 Model Hosting 

 
Figure 6-12: Trained model hosted using GitHub Releases. 
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 First, the trained model needs to be hosted at a public server so that it can be accessed 

by anyone on the Internet. GitHub Releases can be used to host release packages for the users 

to download. Since this is a free and reliable service, therefore the trained model weights are 

stored here. The model weights can be accessed using the following link: 

● https://github.com/daoern/deep-profane/releases/tag/alpha 

6.4.2 Packaging as Python Package (deep-profane) 

 The first module in the DeepProfane package is deep-profane, which is designed to be 

a Python library published at PyPI. The source code of deep-profane is pushed to a GitHub 

repository and publicly available at this link:  

● https://github.com/daoern/deep-profane 

deep_profane/ 
├── LICENSE 
├── README.md 
├── src/ 
│   └── deep_profane/ 
│       ├── __init__.py 
│       ├── model_weights.py 
│       ├── thub_bert_handle.py 
│       └── validator.py 
└── pyproject.toml 

Figure 6-13: The file structure of the deep-profane, Python package. 

 The file structure for deep-profane is shown in Figure 6-12. First of all, all the main 

Python source code files are located inside the ‘src/deep_profane’ directory. There are 3 files 

in this case, which are model_weights.py, thub_bert_handle.py, and validator.py. The file 

‘validator.py’ contains the ProfanityValidator class, and ‘model_weights.py’ will handle the 

loading of model weights from GitHub Releases. Apart from these Python files, 

‘pyproject.toml’ is also important as this file specifies the build tools, dependencies, and 

metadata about how this project is going to be built. In this case, the build tool selected is 

Hatchling. The full content of this ‘pyproject.toml’ can be viewed at the GitHub repository. 
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Figure 6-14: Source code for ProfanityValidator in Python. 

 In ProfanityValidator, the 2 main methods which are get_profane_prob() and 

is_profane() that are implemented as shown in line 38, and line 41. Notice that in the 

initialization function of ProfanityValidator, it will call model_weights.fetch_weights() to 

download trained model weights, then these weights will be loaded into the model.  

 To publish this Python package to PyPI, the package has to be first compiled into a 

distribution file. This can be done by using the command, ‘python -m build’. Once the build is 

completed, 2 files will be created in the ‘dist/’ directory. The extension of one of the files is 

‘.whl’ and another one is ‘.tar.gz’. After that, this package is ready to be published to PyPI, by 

using the command ‘twine upload dist/*’. This command will ask for your PyPI account 

credentials (username and password). Both of these commands, ‘build’ and ‘twine’ can be 

installed onto a machine by using ‘python -m pip install build twine’. 
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Figure 6-15: The Python package, deep-profane, published at PyPI. 

 After the package is uploaded, deep-profane is now available at PyPI. 

6.4.3 Serving of RESTful API (deep-profane-rest) 

Next, the implementation of the RESTful API module of DeepProfane package which 

is called deep-profane-rest will be discussed in this section. The source code of deep-profane-

rest can be found at GitHub repository using the following link: 

● https://github.com/daoern/deep-profane-rest 

 
Figure 6-16: Source code, app.py for deep-profane-rest in Python, by using flask, 

flask_restful. 
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 The source code for deep-profane-rest is fairly simple, as it does not need to handle the 

computation of the probabilities of profanity by itself. The source code contains only one 

Python file called ‘app.py’. This Python file will start the RESTful server and then send back 

the profanity detection response to the client based on the messages given at the request. As 

shown in Figure 4-6, ‘app.py’ will just forward the request by passing the message list to 

ProfanityChecker as shown in line 23, and line 27. By using flask, together with flask_restful, 

the 2 profanity detection endpoints as discussed earlier can be implemented as shown in line 

29, and line 30. This server can be started just by using the command to run a Python script. 

 In order to serve this profanity detection RESTful API to the public, a server is required. 

For the demonstration purposes of this project, a paid server is rented from Vultr. The RESTful 

API is expected to stay online until October 2022. The API can be accessed by using the 

following link: 

● http://207.148.125.180:80/ 

 To set up the server to serve the profanity detection RESTful API. The source code 

must first be downloaded at the server. Since the source code is hosted at GitHub, the 

command, ‘git clone https://github.com/daoern/deep-profane-rest.git’, can be used at the 

console to clone the code. Once the source code is available, switch directory into the deep-

profane-rest folder by using ‘cd’ command. Then, install all dependencies of deep-profane-rest 

by using ‘pip install -r requirements.txt’. Last but not least, the server can now be started 

successfully by using ‘python3 app.py’. 
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Figure 6-17: Screenshot of the running of the deep-profane-rest on Vultr server. 

 Notice that in Figure 6-17, the server is now running on http://207.140.125.180:80 as 

shown in the second last line of the console output.  

6.4.4 Deployment of Web Chatting Application (DeepProfane Chat) 

 In this section, the development of DeepProfane Chat is documented. The full source 

code of DeepProfane Chat is publicly available on GitHub, and can be found in the following 

link: 

● https://github.com/daoern/deep-profane-chat 

deep-profane-chat/ 
├── components/ 
│   └── ... 
├── lib/ 
│   └── prisma.js 
├── pages/ 
│   ├── api/ 
│   │   ├── auth/ 
│   │   │   └── [...nextauth].js 
│   │   ├── board/ 
│   │   │   └── add.js 
│   │   ├── comment/ 
│   │   │   └── add.js 
│   ├── board/ 
│   │   └── [key].js 
│   ├── dashboard/ 
│   │   ├── board/ 
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│   │   │   ├── [id].js 
│   │   │   └── new.js 
│   │   └── index.js 
│   ├── _app.js 
│   ├── index.js 
│   └── login.js 
├── prisma/ 
│   └── schema.prisma 
└── pyproject.toml/ 
 

Figure 6-18: The simplified file structure of the deep-profane-chat. 

 There are many files inside the source code of DeepProfane Chat. Only the key 

components to get DeepProfane Chat running will be discussed at this section. The key 

components are displayed in Figure 6-13. 

 
Figure 6-19: The schema definition inside ‘schema.prisma’ file. 

 The CRUD operation to the database is done via an ORM library called Prisma. 

Therefore, a Prisma configuration file named ‘schema.prisma’ is created inside the ‘prisma/’ 

directory. As shown in Figure 6-19, the 3 tables, namely User, Board, and Comment are defined 

together with their relational constraints. 
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Figure 6-20: Heroku Postgres for deep-profane-chat. 

 A Heroku Postgres is created and used to host the database of DeepProfane Chat. The 

credentials of the Heroku database is available in the settings tab. The URI to the database is 

copied into the ‘.env’ file, which is saved as an environment variable named 

‘DATABASE_URL’. Prisma will look for this URI during the starting of this program to 

connect to the database. 

 
Figure 6-21: Specifying Google OAuth Provider by using NextAuth.js. 
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Figure 6-22: Setting up of OAuth 2.0 client for DeepProfane Chat at Google Cloud Console. 

 Implementing the authentication service is straightforward with the help of NextAuth.js 

library. First, as displayed in Figure 6-21, the GoogleProvider is declared at line 6, with clientId 

and clientSecret set as the values from the environment variables. Then, the clientId and 

clientSecret can be obtained by registering the app at Google Cloud Console for OAuth 2.0 as 

shown in Figure 6-22. Notice that under the section ‘Authorized redirect URIs’, 2 URIs are set, 

one is localhost, and another one is herokuapp.com. This authorized redirect URI is required 

in order for Google OAuth to allow authentication requests from the listed domain. In this case, 

localhost is intended for deployment for testing purposes on the local machine, while 

herokuapp.com is for the final deployment on Heroku. 

 
Figure 6-23: Code snippet to perform profanity detection using deep-profane-rest. 
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 In order to filter profane messages published on the platform automatically, the deep-

profane-rest module is employed. As illustrated in Figure 6-23, this code is used in 

‘pages/api/comment/add.js’. The comment is formatted as a JSON request and then sent to the 

endpoint ‘is_porfane’. Then, the response sent back by deep-profane-rest will contain the value 

of either ‘true’ or ‘false’ to indicate if the message is profane. 

 
Figure 6-24: Overview of DeepProfane Chat web app on Heroku dashboard. 

 For the deployment of DeepProfane Chat, Heroku provides deployment of the app with 

Git. By using Heroku CLI, first run the command ‘heroku login’ at the terminal. This will grant 

you the privileges to access Heroku services. Then, use the command ‘heroku create deep-

profane-chat’ to start a free-tiered Heroku Dyno project. Next, the last step is to push the code 

to Heroku by using ‘git push heroku main’. After that, DeepProfane Chat will be up and running 

as the build and deployment succeeded as shown in Figure 6-24. 

6.5 System Operation 

 The research part of this project does not contain any interactive interface that can be 

used by end users. Therefore, this section will focus on demonstrating the system operation of 

the DeepProfane package.  
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Figure 6-25: Usage of deep-profane module. 

 The users can perform profanity detection easily with the help of the deep-profane 

module. Since the module is published on PyPI, the command ‘pip install deep-profane’ can 

be used to install the library onto the machine. Then, simply initialize ProfanityValidator, and 

use it to perform profanity detection by using get_profane_prob() or is_profane(). As shown in 

Figure 6-25, deep-profane is very powerful as it enables the users to perform profanity 

detection with just a few lines of code. The deep-profane module hides the complicated 

implementation of the model away from the users. This makes it easy to use and accessible by 

an average developer with no deep learning background. 

 
Figure 6-26: The request and response of deep-profane-rest for profane_prob endpoint. 
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Figure 6-27: The request and response of deep-profane-rest for is_profane endpoint. 

This deep-profane-rest module, which is hosted publicly, can be accessed at 

http://207.148.125.180. This module provides even greater flexibility compared to deep-

profane, as it uses HTTP to communicate and it is not constrained by only the Python 

programming language. A shown in Figure 6-27, system is tested using Postman by sending 

two sample messages where one is profane (fuck you), and another one is not (good morning). 

The results are shown in Figure 6-26 and 6-27. Notice that the API is able to correctly identify 

the profane message, therefore proving the proposed profanity detection system is feasible. 

 
Figure 6-28: The comments board of DeepProfane Chat embedded inside a website. 
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 The last module in the DeepProfane package suite is DeepProfane Chat. The chatting 

interface as shown in Figure 6-28 is embedded in a blogger website. DeepProfane Chat cannot 

be used as a standalone chatting system. 

 
Figure 6-29: Profanity detection in action in DeepProfane Chat. 

 If the users make a profane comment in the DeepProfane Chat, the comment will be 

blocked and flagged. A warning will also be issued to the users, preventing the comment from 

being published. This is demonstrated in Figure 6-29. 

 
Figure 6-30: Admin dashboard for the comment board shown in Figure 6-28. 

  The blocked message will not be displayed at the chat box, but it will be shown at the 

dashboard for the admin to review, as shown in Figure 6-30. 
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6.6 Implementation Issues and Challenges 

  The most challenging part of the implementation of the system is to serve the proposed 

profanity detection model as RESTful API. This is because serving a publicly accessible API 

requires a server. While most of the cloud solution providers offer a free tier of their hosting 

services, the computing power and memory provided is limited to run a deep learning model. 

Therefore, a lot of time has been wasted trying out different platforms to look for stable yet 

free hosting services. Unfortunately, to the best of the research knowledge, there is no such 

suitable cloud solution which fulfills the requirement to host and run deep learning models for 

free. At the end, Vultr, a cloud solution provider is selected for hosting the RESTful API, and 

it is a paid service. 

 Another notable challenge in the development of the system is the file size of the trained 

model. The file size of the trained model ranges up to 600 MB. This size exceeded the 

maximum package size limit of 60 MB set by PyPI. This means the weights of the trained 

model could not be packaged and distributed together with the Python package. Instead, the 

model file should be hosted externally at a file hosting site. Fortunately, GitHub Releases can 

be used exactly for this task. 

 The last challenge faced is the lack of computing power during the training of the BERT 

model. Unlike LSTM, BERT has way more parameters compared to LSTM. Even with the 

BERT layer set as not trainable and only the last few classifier layers set as trainable, there is 

still a lot of computation during the forward propagation. Together with the huge dataset used 

in training, the time for a training epoch of the BERT model is more than 5 hours. This time is 

measured based on the BERT running on a GPU-enabled notebook on Google Colab. 

Moreover, since Google Colab is used for training, and training time is long, the training 

process can easily get terminated by Google Colab halfway due to usage limitations. This 

makes it more difficult to get the model trained, as it requires splitting the training process into 

multiple Google Colab session. 
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CHAPTER 7: SYSTEM EVALUATION 

 This chapter recorded all testing and evaluation on the system. The evaluation mainly 

focuses on the performance of the profanity detection deep learning model, but not the 

DeepProfane package. 

7.1 Performance Metrics 

Multiple performance metrics are used to evaluate the trained model in this project. 

Each metric has its own interpretation and all metrics used are discussed in this section. 

7.1.1 Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐴𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

 Accuracy is the most straightforward metric. It is calculated by dividing the number of 

correctly predicted samples with the total number of samples. Accuracy is a scalar value which 

ranges from 0 to 1. The higher, the better the model. However, there is a drawback when using 

accuracy as the performance metric. That is, high accuracy of the model does not necessarily 

mean the model performs well. This is because class imbalance might appear in the dataset, for 

example 90% of the samples is true. Then, any model can randomly guess the class for the 

samples and still achieve an accuracy of 90%. Therefore, the accuracy metric can only be 

considered as an overview of the performance of the model. 

7.1.2 Precision, Recall, and F1-Score 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 The next performance metric is precision and recall. Precision measures the percentage 

of true samples out of all samples predicted as true. In other words, high precision of the model 

means the positive prediction made by the model has a high chance that the prediction is 

correct. This means there are less false positives in the prediction. Therefore, the higher the 

precision of a model, the better. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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 Next, recall is also used as one of the performance metrics. Recall is computed by taking 

the number of true positives and then divided by the number of true samples in the dataset. 

Recall measures the ability of the model to capture all positive samples in the dataset. A high 

recall of the model means there are less false negatives in the prediction. The higher the recall, 

the better. 

𝐹1 =
𝑇𝑃

𝑇𝑃 + 1
2 (𝐹𝑃 + 𝐹𝑁)

 

 By definition, F1 score is the harmonic mean of precision and recall. In the most simple 

terms, the higher the F1 scores, the better. Generally, F1 score can be used to compare the 

performance between 2 models as it represents both precision and recall together in a single 

metric. 

7.1.3 Precision-Recall Curve 

 In a classification task, the output of the model is usually a scalar value which ranges 

from 0 to 1. It can also be interpreted as the probability of the sample being a particular class. 

Therefore, a threshold value can be set to classify the sample. For example, the threshold is 

usually set as 0.5, meaning if a sample is predicted with a probability of more than 0.5, then it 

will be classified as true.The precision and recall of the model will differ across different values 

of threshold, as the number of samples predicted as positive or negative can vary. These 

differences of precision and recall at different thresholds can be plotted as a chart called 

precision-recall curve. 

 
Figure 7-1: Example precision-recall curve [16]. 
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 As displayed in Figure 7-1, in theory, a perfect classifier should have the precision-

recall curve maxed out at top-right corner, forming a square-like plot. However, this is very 

difficult to achieve in practice, the usual curve should look more or less like the blue line in the 

figure. The closer the curve to the top-right corner, the better. Another interpretation of the 

precision-recall curve is its area under curve (AUC). AUC can be used to generalize the 

performance of the model across all different thresholds. The AUC of a perfect classifier is 1 

since the area is basically a square (1x1 = 1). Therefore, the higher the AUC, the better the 

model. 

7.1.4 Receiver Operating Characteristic Curve 

 
Figure 7-2: Example of Receiver Operating Characteristic. 

Similar to the precision-recall curve, Receiver Operating Characteristic (ROC) curve 

also summarizes the performance of the model at different thresholds. However, ROC shows 

the trade-off between true positive rate (TPR) and false positive rate (FPR). TPR is also known 

as sensitivity or recall as mentioned in the previous section, while FPR is a measure of the 

probability of the model incorrectly classifying the true negative samples as false. In short, the 

performance of a model is better if the ROC curve is closer to the top left corner.  

7.2 Testing Result of the Proposed Model 

 There are 3 different models produced in this project, which are LSTM, English BERT, 

and Multilingual BERT. Their performance results are compared and discussed in this section. 
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 Model 

Metric LSTM English BERT Multilingual BERT 

Accuracy 0.9519 0.9266 0.8760 

Precision 0.90 0.83 0.56 

Recall 0.74 0.56 0.56 

F1 score 0.80 0.59 0.56 

PR curve (AUC) 0.7733 0.4222 0.1563 

ROC curve (AUC) 0.9650 0.8478 0.6944 

Table 7-1: Performance of LSTM, English BERT, and Multilingual BERT on the test set. 

 The test performed on the model is based on the test set of Jigsaw Unintended Bias in 

Toxicity Classification Challenge. In general, the performance of all the proposed models look 

average. The metrics recorded by both BERT models show that both of them are way 

underperformed. 

 The accuracy for LSTM, English BERT, and Multilingual BERT are 0.9519, 0.9266, 

and 0.8760, respectively. The accuracy is considered satisfactory, but it could not represent the 

performance of the model accurately as explained earlier. By looking into the precision, recall, 

and F1 score, it is noticeable that LSTM performs even better than English BERT and 

Multilingual BERT. The F1 score for LSTM is 0.8, however it is only 0.59 for English BERT, 

and 0.56 for Multilingual BERT. This should not be the case since BERT is considered to be a 

more powerful model. A possible reason for this to happen is due to the limitation of computing 

power, which has caused the training to be terminated halfway, this could affect the 

effectiveness of the training of the model. 

 With these being said, the best possible profanity detection model can be produced in 

this paper is the LSTM based model. The following figures show the plot of the metrics for the 

LSTM model.  

 Although LSTM recorded higher performance results based on these metrics, it is not 

capable of achieving the understanding of the context of words used in the sentence. 

Interestingly, BERT models which recorded lower performance metrics are able to understand 

the context as demonstrated in the next sub-section. 
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Figure 7-3: Confusion matrix for LSTM model. 

 
Figure 7-4: Precision-recall curve for LSTM model. 

 
Figure 7-5: ROC curve for LSTM model. 
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7.3 Objectives Evaluation 

 
Figure 7-6: Output of the English BERT model for the sentences ‘you are suck’ and ‘i suck 

my thumb’. 

Overall, all of the objectives of this project have been achieved. First, the objective is 

to produce a profanity detection model that is capable of understanding the context of the use 

in the given sentence. Surprisingly, although the performance metric of the models looks bad, 

this objective is achieved by using the English BERT model. As shown in Figure 7-6, the 

probability of profanity for the first sentence ‘you are suck’ is way higher compared to ‘i suck 

my thumb’, even though the word ‘suck’ appears in both sentences. 

 
Figure 7-7: Output of the Multilingual BERT model with the first input as English profane 

text, second as Russian profane text, and third as English non-profane text. 

 The second objective in this project is to support multiple languages in the profanity 

detection model. As shown in Figure 7-7, this has also been achieved. The model is able to 

correctly identify profanity in multiple languages, notice that the first 2 inputs are profane 

messages in English and Russian. The predicted probability of profanity is high, which is 

classified as profane. Meanwhile, the last message which is non-profane has low probability. 

 Next, the third objective is to deploy the model as a RESTful API, so that it is publicly 

accessible by everyone. This has also been achieved in the module called deep-profane-rest as 

demonstrated in previous chapters. The sample applies to the last objective, which is to provide 

a chatting system with automatica profanity detection. This objective is exactly achieved by 

the module developed called DeepProfane Chat, its working and development is documented 

in the previous chapter. 
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7.4 Concluding Remarks 

Although there are flaws in the proposed model, and the performance result of the 

model may not be great, this project is still completed and finished every deliverable as a whole. 

The tools called DeepProfane provided in this project are especially useful and relevant to the 

real-world use-case. From the perspective of end users, DeepProfane provided them a tool to 

fight against profanity easily, by replacing the commenting system on their website with 

DeepProfane Chat, which is profanity detection enabled. Any website owner or admin can set 

up this in no time as it does not require any technical knowledge, only a few clicks are needed.  

With these being said, this serves as the motivation for the researcher of this project to 

continue to improve the proposed model and make DeepProfane can be put into greater use in 

the future.
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CHAPTER 8: CONCLUSION 

8.1 Conclusion 

 Abusive use of language has been a problem for Internet users for a long time. Websites 

have been using some form of content moderation as one of the ways to tackle this issue. Even 

so, with 4 billion Internet users worldwide, it is difficult to filter out all the offensive content 

manually by humans as the amount of content generated is too large. Therefore, computers are 

used to help identify toxic content.  

 Although the computer can help process huge amounts of data with a shorter amount 

of time, the computer still could sometimes interpret the data wrongly. This could cause some 

explicit contents to slip under the radar, or good contents being blocked. For the case of 

profanity detection in text messages, most of the existing system uses the dictionary-based 

approach to perform detection. There are a few drawbacks with this approach that have to be 

solved. First, the Internet users intentionally alternate the spellings of the profane words to 

bypass the detection. Second, the context for some of the words is important as the word will 

have very different meanings in different cases. For example, “I suck my thumb.” and “You 

are suck.”. Third, the dictionary-based profanity checkers are usually limited to only one 

language, like English, but the messages on the Internet can contain various languages. 

 With all of that, the ultimate goal of this project is to develop a profanity detection 

system that is complex enough to correctly identify all offensive messages. The solution 

proposed in this project is to build a deep learning model to perform profanity classification. 

Then, the model will be deployed as a suite of tools that can be implemented by other websites. 

The package suite is called DeepProfane, and the tools include a Python package for profanity 

detection, a RESTful API for profanity detection, and also a web chatting application with 

profanity detection.  

Based on the performance result tested on all the proposed models, LSTM performed 

the best among all models. This is quite unexpected as BERT is known to be more powerful 

and able to solve a variety of NLP tasks with great performance. Nevertheless, although the 

performance metric is average in general, the model is still capable of recognizing the context 

of words, and also multiple languages in one model. 
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8.2 Contributions 

The contribution of this project is from the development part of the project. The source 

code of the DeepProfane is open-sourced and freely available on GitHub. The access link is 

listed in the previous chapter. This will help any developer interested in developing profanity 

detection tools, reducing the work for them to build the tool from scratch. 

Apart from that, the deliverable, DeepProfane, which is built and provided by this 

project is also very relevant and useful in real-world scenarios. The Python package (deep-

profane), and also the RESTful API (deep-profane-rest) can be used by an average developer 

with no experience in deep learning. They can simply integrate profanity detection into their 

system just by importing these libraries into their project. 

Another notable contribution is this project provides website owners a way to secure 

their website from profane messages in the comment section. This can be done by embedding 

DeepProfane Chat into their website. DeepProfane Chat can replace the conventional comment 

system where there is no profanity filtering. 

In short, the key thrust of this project is working towards creating a safer and better 

digital space by minimizing the occurrences of profanity. All these tools provided in this project 

are created with this goal in mind. By providing these ready-to-use tools, it is hoped that it can 

reduce the effort to implement profanity detection, so that more and more will adopt profanity 

detection. 

8.3  Future Works 

The future work of this project will mainly focus on the improvements of the model. As the 

proposed model in this project is underperformed, a better model could be studied and 

implemented in the future, for example XML-R. 
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