CANCER DETECTION USING IMAGE PROCESSING
AND MACHINE/DEEP LEARNING METHODS

LEONG ZEH ZEN

A project report submitted in partial fulfilment of the
requirements for the award of the degree of

Bachelor of Engineering (Hons) Electronic Engineering

Faculty of Engineering and Green Technology
Universiti Tunku Abdul Rahman

June 2022

DECLARATION

| hereby declare that this project report is based on my original work except for
citations and quotations which have been duly acknowledged. | also declare that it
has not been previously and concurrently submitted for any other degree or award at
UTAR or other institutions.

Signature :

Leong Zeh Zen
Name
ID No. : 18AGB00705

Date . 15 September 2022

Zehzen
18AGB00705

Zehzen

Zehzen
15 September 2022

Zehzen
Leong Zeh Zen

APPROVAL FOR SUBMISSION

I certify that this project report entitled “CANCER DETECTION USING IMAGE
PROCESSING AND MACHINE/DEEP LEARNING METHODS” was prepared
by LEONG ZEH ZEN has met the required standard for submission in partial
fulfilment of the requirements for the award of Bachelor of Engineering (Hons)

Electronic Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature :

Supervisor: Prof. Ts. Dr. Humaira Nisar

Date 26 September 2022

Zehzen
26 September 2022

The copyright of this report belongs to the author under the terms of the
copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku
Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2022, LEONG ZEH ZEN. All right reserved.

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of
this project. 1 would like to express my gratitude to my research supervisor, Prof. Ts.
Dr. Humaira Nisar, and my moderator, Ir. Dr. Chan Cheong Loong for their
invaluable advice, guidance and their enormous patience throughout the development

of the research.

In addition, | would also like to express my gratitude to my loving parent and

friends who had helped and given me encouragement.

Vi

CANCER DETECTION USING IMAGE PROCESSING
AND MACHINE/DEEP LEARNING METHODS

ABSTRACT

Breast cancer is one of the highest mortality cancers among women. The breast
tumors can be classified into two categories, benign and malignant. Benign is the
non-cancerous tumor; While the other variant, malignant is the cancerous tumor.
These tumors are dangerous and mostly life-threatening due to the characteristics of
the recurrence of the tumor. This is because the traditional classification methods are
time-consuming, costly, labor-intensive and has reached their bottleneck. Integrating
deep learning technology with medicinal solutions could improve the efficiency in
early detection and treatment to improve the survival rates of breast cancer.
Therefore, this paper researched the application of CNNs on the open-source
Mendeley Breast Ultrasound dataset (MBU) by Rodrigues (2018) and the Breast
Ultrasound Image dataset (BUSI) by Al-Dhabyani (2020). Moreover, the image pre-
processing methods are implemented to refine the ultrasound image quality.
Furthermore, the DCGAN model is used for data augmentation and to increase the
data quantity. Subsequently, transfer learning-based approach is proposed for
differentiating breast tumors. The proposed models, CNN-AlexNet, TL-Inception-V3
and TL-DenseNet are fine-tuned and trained on the MBU dataset. Moreover, the
proposed classifier models are tested and evaluated on the BUSI dataset. The fine-
tuned TL-DenseNet exhibited the finest performance among all proposed models by
achieving an accuracy of 91.46% and F1-score of 0.9144, followed by the fine-tuned
TL-Inception-V3 with accuracy of 91.04% and Fl1-score of 0.9100. The CNN-
AlexNet also performs decently on the testing set with accuracy of 90.42% and F1-
score of 0.9038.

TABLE OF CONTENTS

DECLARATION

APPROVAL FOR SUBMISSION
ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS / ABBREVIATIONS
LIST OF APPENDICES

CHAPTER
1 INTRODUCTION
1.1 Background
1.2 Problem Statements
1.3 Project Scope
1.4 Project Objectives
2 LITERATURE REVIEW

2.1 Overview
2.2 Generative Adversarial Network (GANSs)

2.3 Deep Convolutional Generative Adversarial

(DCGANS)
2.4 GoogleLeNet (Inception)
2.4.1 Inception-vl

Vil

Vi

vii

xii
XVii

Xviii

~N o Ol e

8
8

Networks

10
11
12

viii

2.4.2 Inception-v2 & Inception-v3 13
2.5 Residual Neural Network (ResNet) 16
2.6 Related Works 20
METHODOLOGY 30
3.1 Overview 30
3.2 Environment Setup 31
3.2.1 Hardware 31
3.2.2 Software 32
3.3 Data Processing 32
3.3.1 Dataset Preparation 32
3.3.2 Image Pre-Processing 34
3.3.3 Image Augmentation 35
3.3.4 Data Augmentation 36
3.3.5 Data Segmentation 38
34 Classification Model 39
3.4.1 Dataset Cross-Validation 39
3.4.2 CNNsand TL Architecture Design 40
35 Evaluation Method 45
3.6 Project Timeline 46
RESULTS AND DISCUSSIONS 48
4.1 Overview 48
4.2 Image Pre-Processing 49
4.3 Image Augmentation 50
4.4 Data Augmentation using DCGAN 51
4.5 Training Results 53
451 CNN-AlexNet 54

45.2 TL-Inception-V3 with 3 extra hidden layers +
dropout 58

453 TL-DenseNet with 6 extra hidden layers + dropout
62

4.6 Testing Results on BUSI dataset 66

4.7 Comparison between Existing Techniques
4.8 Discussion

5 CONCLUSION AND RECOMMENDATIONS
5.1 Project Review

5.2 Project Findings

53 Recommendations for Future Improvement
5.4 Conclusion
REFERENCES

APPENDICES

67
69

74
74
75
76
77

78

83

LIST OF TABLES

TABLE TITLE PAGE

Table 1: Architecture details of Inception -v1 (Szegedy et al.,

2015) 13
Table 2: Proposed network architecture of Inception-v2 (Szegedy

etal., 2016) 16
Table 3: Top-1 error on ImageNet Validation (He et al., 2016) 18

Table 4: Disc score evaluation in terms of mean and standard
deviation of GAN-based model and BRATS’17
best model (Wang et al.). The GAN-based models
were trained with augmentation and without
augmentation (Shin et al., 2018) 20

Table 5: Comparison of different DL and ML classifier in terms
of accuracy on unprocessed data and CNN
denoised data (Latif et al., 2019) 26

Table 6: Classification results of different machine learning
classifier with or without BGWO feature selection
process in terms of accuracy and AUC (Khanna et
al., 2021) 27

Table 7: Classification results of VGG16, VGG19, Inception-V3
and SqueezeNet integrated with different ML
algorithm on breast tumour classification (Gupta et

al., 2022) 28
Table 8: Summary of performance from various related papers 29
Table 9: Hardware details 31
Table 10: Python libraries version 32
Table 11: Smoothing filter implemented in this project 35

Table 12: Configuration used in CNN-AlexNet 40

Table 13: Terminology of Confusion Matrix

Table 14: Project Gantt Chart

Table 15: Pre-processed filtered images

Table 16: Samples of augmented image

Table 17: Samples of synthesized image generated by DCGANSs

Table 18: Number of images in the dataset

Table 19: Comparison between proposed model in terms of
accuracy, loss, precision, recall and F1-score on

the validation dataset

Table 20: Validation Evaluation Metrics for CNN-AlexNet in
Each Fold

Table 21: Validation Evaluation Metrics for TL-Inception-V3
with 3 extra hidden layers + dropout in Each Fold

Table 22: Validation Evaluation Metrics for TL-DenseNet with 6
extra hidden layers + dropout in Each Fold

Table 23: Comparison between proposed model in terms of
accuracy, precision, recall and F1-score on the
BUSI testing dataset

Table 24: Comparison between proposed models and existing
techniques

Table 25: Samples of DCGANSs synthesized image with and
without batch normalisation layer at 700 training
epochs

45

47

49

50

51

52

53

54

58

62

67

68

72

Xi

xii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 1-1: Incidence of deaths worldwide of different diseases in

2019 (Our World in Data, 2019) 2
Figure 1-2: Incidence of cancer worldwide in 2020 (Global

Cancer Observatory, 2020) 3
Figure 1-3: Mortality rate of different cancers worldwide in 2020

(Global Cancer Observatory, 2020) 3
Figure 1-4: Example of 3x3 kernel applied on an image

(GeeksforGeeks, 2022) 4
Figure 2-1: Simplified GANs framework (GeeksforGeeks, 2022) 9
Figure 2-2: Evolution of GANs (Brownlee, 2019) 10
Figure 2-3: Structure of DCGANSs (Radford, 2016) 10
Figure 2-4: Naive version of Inception-v1l module (Szegedy et al.,

2015) 12
Figure 2-5: Dimension reductions inception-v1l module (Szegedy

etal., 2015) 12
Figure 2-6: The 5x5 convolution has been replaced by two 3x3

convolution in Inception-v2 (Szegedy et al., 2016) 14
Figure 2-7: Factorization in Inception-v2 module (Szegedy et al.,

2016) 15
Figure 2-8: Filter banks outputs of Inception-v2 module were

expanded (Szegedy et al., 2016) 15
Figure 2-9: ResNet Residual Blocks (He et al., 2016) 17

Figure 2-10: Refined residual blocks (Fung, 2017) 18

Figure 2-11: Samples of network architecture. Left: VGG-19
model. Mid: plain network inspired by VGG nets
of 34 layers. Right: residual network of 34 layers
(He et al., 2016)

Figure 2-12: Generator structure of MIGAN (Igbal et al., 2018)

Figure 2-13: Discriminator structure of MIGAN (Igbal et al.,
2018)

Figure 2-14: Examples of two different input and their respective
generated output (Senaras et al., 2018)

Figure 2-15: Original and GANs generated images with batch
size 4 and 32 (Desai et al., 2020)

Figure 2-16: Accuracy of deep learning breast cancer
classification (Desali et al., 2020)

Figure 2-17: CNN predictions in terms of F1-score with four
approaches: original input (Blue), augmented
original input (Orange), GANs input (Green) and
augmented GANs input (Red) (Alyafi et al., 2020)

Figure 2-18: Comparison of performance in terms of accuracy on
different dataset augmentation methods and CNNs
architecture (Al-Dhabyani et al., 2019)

Figure 3-1: Project Methodology

Figure 3-2: Samples of benign tumour images of MBU dataset

Figure 3-3: Samples of malignant tumour images of MBU dataset

Figure 3-4: Samples of benign tumour images of BUSI dataset

Figure 3-5: Samples of malignant tumour images of BUSI dataset

Figure 3-6: Visualization of dataset of the synthesized data and
original data

Figure 3-7: Visualization of dataset distribution
Figure 3-8: Terminology of 5-fold cross validation (Kumar, 2022)

Figure 3-9: Model summary of the CNN-AlexNet architecture
implemented

Xiii

19

21

21

22

23

24

25

26

31

33

33

33

33

37

38

39

42

Figure 3-10: Model summary of the TL-Inception-V3
architecture implemented

Figure 3-11: Model summary of the TL-DenseNet architecture
implemented

Figure 4-1: Bar chart of comparison between proposed model on
validation dataset

Figure 4-2: Training and Validation Accuracy against Number of
Epochs for CNN-AlexNet in (a) First Fold (b)
Second Fold (c) Third Fold (d) Fourth Fold (e)
Fifth Fold

Figure 4-3: Training and Validation Loss against Number of
Epochs for CNN-AlexNet in (a) First Fold (b)
Second Fold (c) Third Fold (d) Fourth Fold (e)
Fifth Fold

Figure 4-4: Confusion Matrix graph for CNN-AlexNet in (a) First
Fold (b) Second Fold (c) Third Fold (d) Fourth
Fold (e) Fifth Fold

Figure 4-5: Training and Validation Accuracy against Number of
Epochs for TL-Inception-V3 with 3 extra hidden
layers + dropout in (a) First Fold (b) Second Fold
(c) Third Fold (d) Fourth Fold (e) Fifth Fold

Figure 4-6: Training and Validation Loss against Number of
Epochs for TL-Inception-V3 with 3 extra hidden
layers + dropout in (a) First Fold (b) Second Fold
(c) Third Fold (d) Fourth Fold (e) Fifth Fold

Figure 4-7: Confusion Matrix graph for TL-Inception-V3 with 3
extra hidden layers + dropout in (a) First Fold (b)
Second Fold (c) Third Fold (d) Fourth Fold (e)
Fifth Fold

Figure 4-8: Training and Validation Accuracy against Number of
Epochs for TL-DenseNet with 6 extra hidden
layers + dropout in (a) First Fold (b) Second Fold
(c) Third Fold (d) Fourth Fold (e) Fifth Fold

Figure 4-9: Training and Validation Loss against Number of
Epochs for TL-DenseNet with 6 extra hidden
layers + dropout in (a) First Fold (b) Second Fold
(c) Third Fold (d) Fourth Fold (e) Fifth Fold

Figure 4-10: Confusion Matrix graph for TL- DenseNet with 6
extra hidden layers + dropout in (a) First Fold (b)

Xiv

43

44

53

55

56

57

59

60

61

63

64

Second Fold (c¢) Third Fold (d) Fourth Fold (e)
Fifth Fold

Figure 4-11: Confusion Matrix Graph for (a) CNN-AlexNet (b)
TL-Inception-V3 (c) TL-DenseNet on the BUSI
dataset

Figure 4-12: Bar chart of comparison between proposed model on
BUSI testing set

Figure 4-13: Bar chart of comparison between proposed model
and existing techniques in terms of accuracy

Figure 4-14: Sample distribution of the dataset before and after
applying DCGAN

Figure 4-15: Output statement of (a) TL-DenseNet and (b) TL-
Inception-V3 before fine-tuned

Figure 5-1: Outline of the implementation of Pix2Pix technique
to generate lung cancer CT image (Toda et al.,
2022)

Figure 5-2: Training output statement of CNN-AlexNet in fold 1

Figure 5-3: Training output statement of CNN-AlexNet in fold 2

Figure 5-4: Training output statement of CNN-AlexNet in fold 3

Figure 5-5: Training output statement of CNN-AlexNet in fold 4

Figure 5-6: Training output statement of CNN-AlexNet in fold 5

Figure 5-7: Training output statement of TL-Inception-V3 in fold
1

Figure 5-8: Training output statement of TL-Inception-V3 in fold
2

Figure 5-9: Training output statement of TL-Inception-V3 in fold
3

Figure 5-10: Training output statement of TL-Inception-V3 in
fold 4

Figure 5-11: Training output statement of TL-Inception-V3 in
fold 5

Figure 5-12: Training output statement of TL-DenseNet in fold 1

65

66

67

69

71

73

77

83

83

84

84

84

85

85

85

86

86

XV

Figure 5-13:
Figure 5-14:
Figure 5-15:
Figure 5-16:
Figure 5-17:
Figure 5-18:

Figure 5-19:

Training output statement of TL-DenseNet in fold 2
Training output statement of TL-DenseNet in fold 3
Training output statement of TL-DenseNet in fold 4
Training output statement of TL-DenseNet in fold 5
Testing output statement of CNN-AlexNet

Testing output statement of TL-Inception-V3

Testing output statement of TL-DenseNet

XVi

87

87

87

88

88

88

88

Adaboost
ADAM
AUC
BGWO
CNN
CT

CPU
DCGANs
DenseNet
eLU
GANs
GPU
ILSVRC
KNN
LeakyReL U
LR

MRI

MP

NN

OS
RAM
ReLU
ResNet
RF
SVM
TL

LIST OF SYMBOLS / ABBREVIATIONS

Adaptive Boosting

Adaptive Moment Estimation
Area Under the Curve

binary Grey Wolf Optimization
Convolutional Neural Network
Computed Tomography

Central Processing Unit

Deep Convolutional Generative Adversarial Network
Dense Convolutional Network
Exponential Linear Unit
Generative Adversarial Network
Graphics Processing Unit
ImageNet Large Scale Visual Recognition Challenge
K-Nearest Neighbour

Leaky Rectified Linear Unit
Logistic Regression

Magnetic Resonance Imaging
Multilayer Perceptron

Neural Networks

Operating System
Random-Access Memory
Rectified Linear Unit

Residual Neural Network
Random Forest

Support Vector Machine
Transfer Learning

Xvii

LIST OF APPENDICES

APPENDIX TITLE

APPENDIX A: Training Output Statement of Proposed Models
Generated in PyCharm

APPENDIX B: Computer Programme Listing

XViil

PAGE

83

89

CHAPTER 1

INTRODUCTION

1.1 Background

Cancer is defined as the condition of any disease which are characterized by
abnormal cells duplicating and spreading uncontrollably to other organs of the body.
The occurrence of cancer is due to the cell division process of our human body. Cell
division occurs when damaged cells died, new cells would duplicate and replace the
old cell. However, sometimes this process does not work orderly, this is where
abnormal cells start to develop and duplicate uncontrollably. The duplication of
abnormal cells creates a lump of solid tissue called a tumor. The tumor is also known

as a neoplasm could affect skin, organs, and bones (National Cancer Institute, 2021).

Tumor can be classified into two categories, which are benign and malignant.
This is because some tumors would not affect another tissue and it is not cancerous.
The non-cancerous tumor also known as a benign tumor, and this category of tumor
is impossible to spread the cancerous cells to nearby tissue. Moreover, most benign
tumor could self-recover after some time without any medical treatment. However,
there is currently no research on the transformation of a tumor (MedicalNewsToday,
2020), thus it is possible for a benign tumor turns into a malignant tumor, hence
patients are suggested to seek for professional medical treatment if a benign tumor is
detected. On the other hand, malignant tumors are known as the cancerous tumor, it
could duplicate and spread the tissue build up by abnormal cells to nearby tissues and
even other parts of the human’s body. These tumors are dangerous and mostly life-

threatening due to the characteristics of the recurrence of the tumor. There is a

probability of the cancerous tumor returning even if the tumor is treated beforehand.

(Cleveland Clinic, 2021).

Every individual should pay high attention to cancer since it has the second
highest mortality rate in the world standing at 10.08 million in 2019; while
cardiovascular disease has the highest mortality rate (Our World in Data, 2019).

Our World

Number of deaths by cause, World, 2019 Ll
18.56 million

Cardiovascular diseases
Cancers 10.08 million
Respiratory diseases IEEEEEG—_—_——— .07 million
Digestive diseases I ° 55 milion
Lower respiratory infections I 2 49 million
Neonatal disorders | 1.5 million
Dementia I 1.62 million
Diabetes I 1.55 million
Diarrheal diseases I 1.53 million
Liver diseases [1-47 million
Kidney disease [1.43 million
Road injuries | 1.2 million
Tuberculosis I 1.18 million
HIV/AIDS Il 563,837
Suicide pmm 759.028
Malaria il 643,381
Homicide | 415,180
Parkinson's disease Wl 262,907
Nutritional deficiencies J§ 251.577
Drowning | 237,242
Meningitis § 236,222
Protein-energy malnutrition J| 212,242
Maternal disorders Il 196.471
Alcohol use disorders J 168,015
Drug use disorders | 128,083
Fire | 111,292
Hepatitis | 79,176
Poisonings | 77,162
Conflict | 62,985
Heat (hot and cold exposure) | 47,461
Natural disasters | 5,076

0 2 million 6 million 18 million

10 million 14 million
OurWorldInData.org/causes-of-death « CC BY

Source: IHME, Global Burden of Disease

Figure 1-1: Incidence of deaths worldwide of different diseases in 2019 (Our World
in Data, 2019)

Furthermore, the data from Global Cancer Observatory shows that breast
cancer has the highest incidence in 2020, with a number of occurrences of 11.7% of
the total cancer incidence recorded in 2020, which means among 19 million of
cancer diagnosed in 2020, there are 2.26 million of the total cases are breast cancer.
Apart from that, breast cancer has a mortality rate of 6.9% among all different types

of cancers, which means among 10 million cancer-related death cases in 2020, there

are 684 thousand cases are breast cancer-related patients.

Estimated number of new cases in 2020, worldwide, both sexes, all ages

Breast
2 261 419 (11.7%)

Lung
2206 771 (11.4%)

Other cancers
8879 B43 (46%)

Colorectum
1921 590 (10%)

Prostate
1414 259 (7.3%)
Stomach

1089 103 (5.6%)

Cervix uteri Liver
604 127 (3.1%) 905 677 (4.7%)

Total : 19 292 789

Figure 1-2: Incidence of cancer worldwide in 2020 (Global Cancer Observatory, 2020)

Estimated number of deaths in 2020, worldwide, both sexes, all ages

Luni
1796 144 (18%)

Other cancers
3932 768 (39 5%)

Colorectum
935 173 (9.4%)

Liver
830 180 (8.3%)

Stomach
768 793 (7.7%)

Pancreas
466 003 (4.7%)
Oesophagus Breast
544 076 (5.5%) 684 996 (6.9%)

Total : 9 958 133

Figure 1-3: Mortality rate of different cancers worldwide in 2020 (Global Cancer
Observatory, 2020)

Since breast cancer is life-threatening and it is also one of the leading causes
of death, therefore early diagnosis acts as an important role in order to prevent cancer
from progressing rapidly and starting to affect human health condition or even worse,
approaching death. Moving along with the improvement of technology and
innovation, breast cancer screening methods for instance Mammaography, Magnetic

Resonance Imaging (MRI), ultrasound scanning, etc. are getting more advance and
mature. For example, ultrasound scanning emits sound waves with a frequency of
7.5MHz to 13MHz to image the internal structure of our body (Kuhl et al., 2005).

Due to the noises that occurs in the ultrasound images, some image
processing methods can be applied as a solution to overcome this problem. Medical
image processing is the practice of enhancing the medical image by reducing the
image noise and easing the interpretation by both humans and machines. Medical
images are made up of pixels which is the smallest element of an image. Each pixel
represents a single numeric value therefore different pixels with different numeric

values illustrate as different colors in a single image.

One of the most important techniques in image processing is convolution.
Convolution is defined as a process by applying a kernel to each pixel and its nearby
pixels over the whole image, hence transforming the image. The impact of the
convolution process's transformation is determined by the size and values of the
kernel, which is a matrix of values (Basavarajaiah, 2022). Moreover, the medical
image can be improved by applying a kernel that act as a smoothing mask over a
convolution to achieve the effect of blurring the image by reducing the image noise

and smoothening the edges.

4*1 |4%1 |2*1

1-4| 1) 12#1 [5*-43%1

Kernel 4*1|8*1 |12*1

Image
Image

Figure 1-4: Example of 3x3 kernel applied on an image (GeeksforGeeks, 2022)

Despite the recent developments in breast cancer screening methods,

experience pathologists' visual inspections are still crucial for diagnosing breast

cancer correctly. Moreover, the diagnosis results are arbitrary and could subject to be
different diagnosis results depending on the observations. Apart from that, the
diagnosis process can be highly time-consuming and difficult. Besides, since the
process can be tedious, therefore it might lead to misdiagnosis of the pathologists'
visual inspections. Hence, building automate computer systems such as image
processing and deep learning model could improve the efficiency of pathologists by
reducing their workload. Besides, automate computer systems also benefits in

reducing the subjectivity of the breast cancer classification (Zhi et al., 2017).

However, the deep learning models required a sizeable amount of dataset in
order to obtain higher classification accuracy. Regrettably, because of privacy
concerns and the expensive expense of expert annotations, publicly available
medical-related datasets are generally small and skewed. Therefore, the Generative
adversarial networks (GANS) introduced by Goodfellow et al. in 2014 could greatly
restrict the drawbacks of small datasets by generating synthetic medical images
based on the available datasets. With the ability of GANs to replicate data
distributions and synthesize images has successfully paved the way for new
techniques to overcome the drawbacks of both supervised deep learning and

generating synthetic images (Kazeminia et al., 2020).

1.2 Problem Statements

Breast cancer is one of the highest incidence cancers in Malaysia. According to the
Malaysia National Cancer Registry 2004, the ASR of breast cancer in the country is
46.2 over 100,000 women. Furthermore, the overall 5-year survival rate for breast
cancer patients in Malaysia is 49% with a median survival period of 68.1 months
(Yip et al., 2006).

In recent years, one of the most frequently used imaging technologies in
clinical practice is ultrasound imaging. The ultrasound imaging method is considered
a dynamically developing technology with numerous advantages and it has been

acknowledged as a potent and commonplace screening and diagnostic tool for

clinical research practice. Especially, due to its overall reasonable cost, operator
expertise, and relatively lower impact on human health. Besides, the ultrasound
imaging technology has been widely implemented in the fields of breast diagnostics.
Nevertheless, the ultrasound imaging technology also comes with several major
drawbacks, for instance, acquisition noises generated by the ultrasound imaging
machine, ambient noises generated by the surroundings of the ultrasound imaging
took place, and the presence of body fat, organs, and other tissues could significantly

affect the image quality (Hiremath et al., 2013).

Moreover, the traditional breast cancer diagnostics methods are mostly costly,
time consuming, and relied on the extensive experience of the diagnostician and
specialists. Apart from that, the availability of open access breast tumor datasets is

very less due to the privacy of the patients.

1.3 Project Scope

The project aims at developing a deep neural network that could import the breast
cancer ultrasound images from the Mendeley website and classify the tumor types
into two classes, which are benign and malignant. Furthermore, this project proposes
implementing the Generative Adversarial Networks (GANs) model to synthesize
both benign and malignant realistic breast tumor images to solve the problem of
lacking data and augment the skewed datasets that could cause classification
problems. Moreover, image processing methods such as image filtering and image
smoothing are implemented to deblur and reduce the noises in the ultrasound images
in order to improve the deep neural network model training quality. Lastly, a deep
learning classifier algorithm should be developed in order to classify the benign and

malignant ultrasound images.

1.4 Project Objectives

The objectives of the project are shown below:

i) Design an image processing method to reduce the image noise of the
ultrasound images of benign and malignant tumors.

i) Application of data augmentation, such as GAN model to increase the dataset
quantity and improve the quality of the dataset.

iii) Design a CNN model to classify benign and malignant tumors.

iv) Apply a suitable transfer learning model and fine-tuned the model’s

parameters in order to improve the accuracy of the classifier.

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter aims to review the data augmentation method, such as the Generative
Adversarial Networks (GAN). Besides, the framework for Convolutional Neural
Networks (CNN) will be discussed in this chapter. Furthermore, this chapter also

reviewed and discussed previous research papers related to the project.

2.2 Generative Adversarial Network (GANSs)

The Generative Adversarial Network also known as GANs is proposed by
Goodfellow et. al. in 2014. The Generative Adversarial Network was proposed to
estimate the generative models by using an adversarial process. The framework
includes two different models, which are the generative model and a discriminative
model. The generative model is trained to capture the data distribution and generate
new examples from the training data. On the other hand, the discriminative model is
responsible to estimate the probability of the samples whether it is generated by the

generative model or from the training data.

In the advancement of artificial intelligence (Al), the discriminative model
has been developed with great success and is widely used in major machine learning

models. The algorithm behind the majority of the discriminative model is based on a

9

backpropagation algorithm with a suitable gradient. However, the generative model
has issues facing difficulties in approximating multiple interactable probabilistic
calculations that emerge in maximum likelihood estimation and related
methodologies. Therefore, the proposed generative model is to overcome the

drawbacks.

Real Data Samples

Condition

Discr Is it correct?

‘Generated
fake samples
Generator

Fine tune training

Latent random variable

Figure 2-1: Simplified GANs framework (GeeksforGeeks, 2022)

The Generative Adversarial Network framework is proposed to design the
generative model with an adversary. The main motivation of the generative model is
to generate counterfeit samples until it is indistinguishable from the actual training
data. While the discriminative model of the GANs framework is trained to predict
the probability of the sample from the data distribution and model distribution, which
is exactly the sample generated by the generative model. In order to improve the
discriminative model, the generative model is responsible to worsen the estimation of
the discriminative model. To summarize concisely, the objective of the generative
model is achieved when the discriminative model is facing difficulties in classifying
the samples. Hence, the generative model and discriminative model are both
adversaries to each other. Furthermore, with the adversary of the discriminative
model, the generative model can generate indistinguishable counterfeit samples from
any random input without interfering with the actual training data. Apart from that,
both generative and discriminative models are multilayer perceptrons. The GANs

framework is trained with backpropagation and dropout algorithms from the

10

discriminative predictions and the generative model is trained with forward

propagation only (Goodfellow et al., 2014).

Over the past few years, GANs have been widely researched and developed
because of the proven successful framework. At present, GANs is capable to
generate images so realistic that it is difficult to identify the counterfeit.

2014 2015 2016 2017
Figure 2-2: Evolution of GANs (Brownlee, 2019)

2.3 Deep Convolutional Generative Adversarial Networks (DCGANS)

3
’1.'
128 \
1024 ——— 2R
—_—) .~
NN = =
4 [—— N
100 E— —5
Z{H I::> 777777 i e
e §

8

]

[}
I\\

|

Project and reshape CONV 1

Figure 2-3: Structure of DCGANSs (Radford, 2016)

The Deep Convolutional Generative Adversarial Network also known as DCGAN
was introduced by Radford et al. in 2015. In the past few years, supervised learning
with CNNs has been advanced and utilized in multiple computer vision applications,

but in comparison, unsupervised learning with CNNs is less developed and adopted.

11

Therefore, DCGAN is proposed to enhance the development of unsupervised
learning with CNNs (Radford et al, 2016).

The structure of the DCGAN is inspired by the Improved GANs introduced
by Salimans, Goodfellow, Zaremba, et al. in 2016. The Improved GANs defined
three enhancement techniques which are feature matching, minibatch discrimination,
and historical averaging to stabilize the training model. These techniques improve
the variety of the discriminate network by improving the diversity of samples created
by the generative model when discriminating samples. With the inspiration of the
improved GANSs, therefore DCGAN has expanded GAN from multilayer perceptron
(MLP) structure into convolutional neural network (CNN) structure (Fang et al.,
2018).

According to Radford et al., DCGAN has achieved an impressive result on real
datasets, such as LSUN and CelebA. Furthermore, there are a few modifications in
the integration of the architecture of GANs and CNNSs to stabilize the DCGANS.

i) The CNNs max pooling layers are replaced with the strided convolutions also
known as a discriminator to learn the network spatial down sampling and
fractional-strided aka generators to learn the network spatial up sampling.

i) The fully connected hidden layers are eliminated.

iii) Batch Normalization is applied in the discriminator and generator model.

iv) Generator — ReL.U activation for all layers; tanh for output layer.

v) Discriminator — LeakyRelL U for all layers (Radford et al, 2016).

2.4 GoogleLeNet (Inception)

The GoogleLeNet microarchitecture also known as Inception is one of the most used
deep CNN architecture in deep learning. The architecture was first introduced by
Szegedy et al. in 2014. Besides, it is also the winner of ILSVRC14 with an error rate
of 6.67%, and has significantly outperform the previous ILSVRC winner, AlexNet
(ILSVRC13 winner) and ZFNet (ILSVRC12 winner).

12

2.4.1 Inception-vl

The first version of GoogleLeNet aka Inception-v1 consists of 27 layers including 9
Inception modules. The naive form of Inception module is restricted to filter 3
different filter sizes, which are 1x1, 3x3 and 5x5, while the 3x3 max pooling is
performed simultaneously. The outputs are concatenated into a single output vector
before it is sent to the next inception layer. However, the 5x5 convolutions filter is
computationally expensive on top of a large number of filters convolutional layers.
Therefore, 1x1 convolutions are added before the 3x3 and 55 convolutions in order
to compute reductions (Szegedy et al., 2015).

Filter
concatenation

1x1 convolutions 3x3 convolutions Sx5 convolutions 3x%3 max pooling

i &

7
Jﬁ—:":::f; o

T

Previous layer

Figure 2-4: Naive version of Inception-vl module (Szegedy et al., 2015)

Filter
concatenation

,—-“"— —_—

==
-‘__‘_;-—""-
— 3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions [[} [
‘\ 1x1 convolutions 1x1 convolutions 3x3 max pooling

Figure 2-5: Dimension reductions inception-vl module (Szegedy et al., 2015)

Previous layer

Table 1: Architecture details of Inception -v1 (Szegedy et al., 2015)

Type Patch Size/ Output Size Depth
Stride

convolution TxT7/2 112x112x64 1
max pool 3x3/2 565664 0
convolution 3%3/1 56%56x192 2
max pool 3%3/2 28x28x192 0
mnception (3a) 28x28x256 2
inception (3b) 28x28=480 2
max pool 3x3/2 14x14=480 0
inception (4a) 14x14x512 2
inception (4b) 14x14x512 2
mneeption (4c) 14x14x512 2
inception (4d) 14x14x528 2
meeption (4e) 14x14=832 2
max pool 3x3/2 7xT7x832 0
mception (5a) 7xT7%832 2
inception (5b) 7x7x1024 2
avg pool 7x7/1 1x1x1024 0
dropout (40%) 1x1x1024 0
linear 1:x1x1000 1
softmax 1x1x1000 0

2.4.2 Inception-v2 & Inception-v3

The second and third version of GoogleLeNet aka Inception-v2 and Inception-v3 was
introduced in the same paper, “Rethinking the Inception Architecture for Computer
Vision”. The performance such as the accuracy and computational complexity has

improved in Inception-v2.

In Inception-v2, the 5x5 convolutions introduced in Inception-vl has been
factorized into two 3x3 convolutions to reduce the computational complexity, since a
5%5 convolution is 2.78 times computationally expensive than a 3x3 convolution
(refer to Figure 2-6). Furthermore, the paper proposed that factorizing a nxn
convolution into nx1 and 1xn could improve the computational complexity (refer to

Figure 2-7). For example, a 3x3 convolutions filter has been factorized into two

14

convolutions filters, 3x1 and 1x3 to achieve a 33% cheaper computational
complexity. Moreover, the filter banks outputs in Inception-v2 module were
expanded to eliminate the representational bottleneck (refer to Figure 2-8) (Szegedy
etal., 2016).

Filter Concat

1x1 1x1 Pool 1%1

Base

Figure 2-6: The 5x5 convolution has been replaced by two 3x3 convolution in

Inception-v2 (Szegedy et al., 2016)

Filter Concat

1x1

Base

Figure 2-7: Factorization in Inception-v2 module (Szegedy et al., 2016)

Filter Concat

] N

1x1 1x1

Base

\/”

1x1

15

Figure 2-8: Filter banks outputs of Inception-v2 module were expanded (Szegedy et

al., 2016)

16

Table 2: Proposed network architecture of Inception-v2 (Szegedy et al., 2016)

Type Patch size/stride Input size
conv 3%3/2 299x209x3
conv 3x3/1 14914932
conv padded 3x3/1 147x147%32
pool 3%3/2 147x147=64
conv 3%3/1 73xT73x64
conv 3%3/2 T1xT71x80
conv 3%3/1 35%35x192
3xInception Asin figure 5 35%x35%288
5xInception Asin figure 6 17x17x768
2xInception Asin figure 7 8x8x1280
pool 8x8 8x8x2048
linear logits 1x1x2048
softmax classifier 1x1x1000

In Inception-v3, the network incorporated all improvement in Inception-v2

and the following modification:

i) RMSProp Optimizer.
i) BatchNorm in Auxiliary Classifiers.
iii) Label Smoothing.

iv) Factorized 7 x 7 convolutions (Raj, 2018).

2.5 Residual Neural Network (ResNet)

The Residual Neural Network also known as ResNet is arguably the one of the
pioneers of CNNs architecture after Inception-vl won the ILSVRC14 with an error
rate of 6.67%. ResNet achieved a top-5 error rate of 3.57% which outperform its
opponent and won the 1% place in ILSVRC15.

17

ResNet was introduced by He et al. in the paper “Deep Residual Learning for
Image Recognition” in 2015. The main idea of ResNet is to propose a deep residual
learning framework to address the degradation problem occurs when deeper
networks starts to converge, and accuracy becomes saturated (He et al., 2016). Hence,
ResNet introduced the identity shortcut connection also called the Residual Blocks as
shown in Figure 2-9. The residual blocks could skip training from multiple layers
and connects to the output. The benefits of integrating the shortcut connection is to
skip any layer by regularization if that particular layer could possibly affect the

performance of the network.

weight layer
Jlx) l relu
’ x
weight layer identity

Figure 2-9: ResNet Residual Blocks (He et al., 2016)

Moreover, He et al further modified the residual blocks by introducing the
pre-activation variant of the residual block as shown in Figure 2-10. In this
modification, the gradients could pass through the shortcut connection to any

previous layer without being interfered (Fung, 2017).

RelU

BN

(a) original

‘-\\\

.

weight

BN

v

RelU

weight

\

SR S .
addition

(b) BN after
addition

Xy

4
l*\

.
weight

BN

!
RelU
BN
RelLU
-

addition

Xr+1

(c) ReLU before
addition

Xy

\[\‘

“h
RelLU

BN

v

RelU

BN

~
e

addition

Xi1

(d) ReLU-only
pre-activation

Figure 2-10: Refined residual blocks (Fung, 2017)

addition

18

Xy

f~

T

BN
v
RelLU
weight
v
BN
v
RelLU

Xi+1

(e) full pre-activation

According to the paper “Deep Residual Learning for Image Recognition”, the

shortcut connections used in ResNet was inspired by the Highway Network proposed

by Srivastava et. al. in 2015. Apart from that, the similar idea of Highway Network

where the information is control by the parametrized gates to flow through the

shortcut connections is similar to the Long-Term Short Memory (LSTM) cell
introduced by Hochreiter et. al. in 1997 cited in Fung, 2017.

Furthermore, He et al. had tested the functionality of ResNet on a plain

network inspired by VGG nets and a residual network where shortcut connections

are inserted. Figure 2-11 shows the network architecture comparison of the plain

network and residual network. The experiment is tested on the ImageNet 2012

classification dataset consisting 1000 classes and both networks are evaluated on 18-

layer and 34-layer. By referring to Table 3, ResNet has lower top-1 error compared

to plain network without shortcut connections.

Table 3: Top-1 error on ImageNet Validation (He et al., 2016)

Lavers Plain network ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

19

VIGGE-19 34-layer plain 34-layer residual

irags g T

Figure 2-11: Samples of network architecture. Left: VGG-19 model. Mid: plain
network inspired by VGG nets of 34 layers. Right: residual network of 34 layers (He
etal., 2016)

20

2.6 Related Works

A set of sufficient data volume is paramount in order to train a successful deep
leaning model for medical image interpretation. Apart from that, skewed datasets for
example 100 benign data and 1000 malignant data could leads to a bad classification
results of the deep learning model. In order to overcome the low quantity and
imbalance of datasets, the generative adversarial networks (GANS) is proposed to

overcome the problem by generating synthetic data.

Shin et al. (2018) proposed the image-to-image translation conditional GAN
(pix2pix) model introduced by Isola et al. in 2017 to produced synthetic images and
classification of T1-weighted brain tumor images on Alzheimer’s Disease
Neuroimaging Initiative (ADNI) datasets and Multimodal Brain Tumor Image
Segmentation Benchmark (BRATS) datasets. The author has performed four
approaches with different CNN input, which trained on real data only, combination
of real and synthetic data, synthetic data only and synthetic data with 10% of model
fine-tuning. Besides, they also implemented basic image augmentation such as
rotation, crop and elastic deformation on the synthetic data. The model has achieved
a mean disc-score of 0.82 which has improved accuracy than the non-augmentation
GANs-based model with mean disc-score of 0.80 (CNN model trained on real and
synthetic data). Shin compared their GANs-based model to the BRATS’17 best
performing model, however both the GANs-based model achieves a lower accuracy.

Table 4: Disc score evaluation in terms of mean and standard deviation of GAN-
based model and BRATS’17 best model (Wang et al.). The GAN-based models were
trained with augmentation and without augmentation (Shin et al., 2018)

Method Real Real 4+ Synthetic | Synthetic | Synthetic only,
only fine-tune on 10% real
GAN-based | 0.64/0.14 | 0.80/0.07 0.25/0.14 | 0.80/0.18
(no aug)
GAN-based | 0.81/0.13 | 0.82/0.08 0.44/0.16 | 0.81/0.09
(with aug)
Wang et al. |0.85/0.15|0.86/0.09 0.66/0.13 1 0.84/0.15
[20]

21

Igbal & Ali (2018) introduced a new Generative Adversarial Networks model
for medical imaging called MIGAN. The idea of MIGAN is for the generation of
synthesis medical image. Other than the synthesis medical image, Igbal also
implement MIGAN to generate the segmented masks of the medical image. In the
paper, MIGAN is applied to the retinal vessel’s images for the STARE and DRIVE
publicly datasets. The main contributions for this project are to generate an enhance
segmented medical images then previous GANs model. Besides, MIGAN also
reduce the threshold of existing GANSs techniques, lesser input examples require to
generate the desired synthetic images due to the refined loss function of MIGAN.
Apart from that, MIGAN is less computational expensive than existing GANs model,
due to the 200% improvement in the generator model during each epoch which could
reduce the training period. The MIGAN structure of generator and discriminator are
shown in Figure 2-13 and Figure 2-14 respectively. According to the author, the
MIGAN-based deep learning model on STARE dataset has achieved disc-score of
0.838, AUC ROC of 0.985 and AUC PR of 0.922; and on DRIVE dataset has
achieved disc-score of 0.832, AUC ROC of 0.984 and AUC PR of 0.916 which

outperformed existing previous work.

o 128

54 a2 [)|
S Y _ 16
2568 - Real or
e [(64 [™ '] synthetic
\ 512 512 . A
128 238

266

Figure 2-13: Discriminator structure of MIGAN (lIgbal et al., 2018)

22

Senaras et al. (2018) introduced the conditional Generative Adversarial
Network also known as cCGAN to generate realistic synthetic histopathological breast
cancer images from the Ki67 datasets. During the preprocessing stage of the images,
the operator will mark the stained nucleus manually and this stage is called the user
annotation mask stage. Other than that, in the second approach the images are
process though computer by using the nuclei segmentation system developed by the
author in a prior study. Both the annotation mask and the nuclei segmentation
obtained are feed respectively into the cGAN model as input after the preprocess
stage. The generated results are analyzed by 6 researchers inclusive of 3 pathologists
and 3 image analysts instead of training in a deep learning model. The average
accuracy percentage of the researchers that could correctly differentiate whether the

image is synthetic or real was 44.7%.

: d .?\‘
. {.. o a
.“:4 .' '

ef “.‘
faa 0V
(a) (b)
Annotation based Segmentation based
input mput

Annotation based Segmentation based
output output

Figure 2-14: Examples of two different input and their respective generated output
(Senaras et al., 2018)

23

Desai et al. (2020) proposed the implementation of the Deep Convolutional
GANSs also known as DCGANSs to generate synthetic mammogram breast cancer
images from the DDSM datasets. The major objective of this work is to overcome
the limited available labeled data by implementing DCGANSs to generate synthetic
images for deep learning breast cancer classification. The author has trained the
DDSM dataset for batch size 4 and batch size 32, the samples of the synthetic images

are shown in Figure 2-16.

H
.

1) Original images

GAN generated images (Batch size 4)

1i1) GAN generated images (Batch size 32)

Figure 2-15: Original and GANs generated images with batch size 4 and 32 (Desai et
al., 2020)

According to the CNN deep learning classification model, the batch size 32
perform better than the batch size 4 DCGANs configuration in terms of accuracy,
F1-score, specificity and sensitivity. At 20 epochs, the accuracy of batch size 32 is
87%; batch size 4 is 83.58% while the accuracy without the GANs model is 78.23%.
However, when the synthetic images of batch size 32 is analyzed by two professional

physicians, only an average of 6 over 25 synthetic images are identified as real.

24

Accuracy with samples per fold

— CoOnve
~ Batch

Qinm 2
Size 32

0 BA -

Size 4
15

Ac

Epochs

Figure 2-16: Accuracy of deep learning breast cancer classification (Desai et al.,
2020)

Alyafi et al. (2020) proposed the implementation of Deep Convolutional
Generative Adversarial Networks (DCGANSs) to synthesized realistic and diverse
mammography breast masses images to get rid of the small and imbalanced datasets
obtained from OPTIMAM Mammography Image Database (OMI-DB). According to
the paper, the author has trained the CNN model with four different approaches as
shown in Figure 2-17, which are the original input (Blue), augmented original input
(Orange), GANs input (Green) and augmented GANs input (Red). Furthermore, the
author has augmented the both the original and synthetic data by applying random
horizontal and vertical flipping. The augmentation is to improve diversity of dataset.

On the other hand, the classifier performances are recorded at k=750 due to
the model starts to become saturated. The results shown in Figure 2-18 illustrated
that augmented GANSs data as input has outperformed other inputs in terms of F1-

score.

25

e P Bl T s = e m—— = -
0.98 - — C el
p - '_________———H'I.'_-_-
J_.'*F '——_____. .'"I
0.96 - o
;
.:'I
w 0.94 - H
[.-'
@]
= 0.92 - £
)
;
0904 f
' ! . Model
LA —— ORG
0.88 - Aug ORG
S W GAN
— -#- Aug GAN
G.BE L T T T T T T
100 250 500 750 1000 1300

Real Positive Training Sample Size (k)

Figure 2-17: CNN predictions in terms of F1-score with four approaches: original
input (Blue), augmented original input (Orange), GANSs input (Green) and
augmented GANs input (Red) (Alyafi et al., 2020)

Al-Dhabyani et al. (2019) proposed the implementation of Data
Augmentation Generative Adversarial Networks, DAGAN and CNNs integrated with
transfer learning method to classify normal, benign and malignant breast tumours.
The DAGAN is inspired by the Wasserstein GAN (WGAN) introduced by Arjovsky
(2017), where the resulting architecture of WGAN is used in this study. The data
used for this study is the Breast Ultrasound Image (BUSI) dataset and a private
dataset B. The authors have performed four approaches to train the CNNs classifier
algorithm, which includes real data only; data with basic augmentation; DAGAN
synthesized data; DAGAN synthesized data with basic augmentation. On the other
hand, five different approaches are experimented for the CNN classifier architecture.
The five architectures are CNN-AlexNet, TL-VGG16, TL-ResNet, TL-Inception and
TL-NASNet. The highest accuracy achieved for this study is TL-NASNet with
DAGAN synthesized data with basic augmentation at 94% (Dataset B), 92% (BUSI

26

Dataset) and 99% (Dataset BUSI + B). Figure 2-19 depicted the accuracy results of

the proposed dataset augmentation methods and CNNs architectures.

COMPARISON OF PERFORMANCE FOR DIFFERENT METHODS WHEN
TESTING ON SINGLE AND COMBINED DATASET.

Dataset BUS Dataset B Datasets (BUSHB)

accuracy

SN
NN
Gt
I
MM

VGEG1E
tion
NASNet

t
ResNe

e
NASN

Inceg

;
A
Inceg

Classification methods in different datasets
B without with TA with DAGAN with DAGAN and TA
Figure 2-18: Comparison of performance in terms of accuracy on different dataset
augmentation methods and CNNs architecture (Al-Dhabyani et al., 2019)

Latif et al. (2019) proposed the implementation of different deep learning and
machine learning methods includes CNN model, Random Forest, Naive Bayes, MP
and SVM to classify the benign and malignant breast tumours data. The dataset used
in this work is the Mendeley Breast Ultrasound (MBU) dataset. The authors have
performed two approaches in processing the dataset for training, which are the
unprocessed data and CNN denoised data. The highest accuracy for this achieved for
this study is the CNN classifier with CNN denoise method at 88%. While the CNN

classifier on the unprocessed data has the second highest accuracy at 84.02%.

Table 5: Comparison of different DL and ML classifier in terms of accuracy on
unprocessed data and CNN denoised data (Latif et al., 2019)

Classifier Unprocessed CNN Denoised
Data Data
CNN 84.02% 8E.00%
Random Forest 72.97% 81.20%
Support Vector Machine 64.75% 65.73%
Multilayer Perceptron 72.34% 74.46%
Naive Bayes 61.70% 62.00%

27

Khanna et al. (2021) proposed a hybrid strategy that integrated the CNN
algorithm with machine learning framework to diagnose breast tumour. Breast
Ultrasound Images Dataset (BUSI) was used in this work. The authors proposed that
a pre-trained CNN-ResNet50 to extract features from the tumour’s images, BGWO
optimizer for feature selection and several SVM algorithms is used for classification.
Besides, the authors also compared the performance of two approaches, which are
with or without BGWO feature selection process. The highest performance in terms
of accuracy is the Quadratic SVM classifier with BGWO feature selection at 84.9%
and 84.6% without BGWO feature selection.

Table 6: Classification results of different machine learning classifier with or without

BGWO feature selection process in terms of accuracy and AUC (Khanna et al., 2021)

Withowt feature | vip goature selection
selection
Classification
technigue
Accuracy | AUC Accuracy | AUC
(a) (%)

Linear 5VM sk (IR TEE 0595
Duadratic

84.6 .96 84.9 097
SVM
Cubic VM 3249 097 LR 097
Ml edium

) H1.8 097 1.4 087

gaussian SVM
Coarse gaussian

659 054 67.3 0.93
B4 M
Fine Decision

694 (L&D 6H2.4 0.73
tree
Ml edium

[t &7 63,1 079
Diecision tree
Coarse Decision

Gl d LET al.4 07
tree
Fine KNN T (LED 758 033
Peledium EMM 732 091 T 091
Coarse KNM G946 0.E9 TG 0.89
Cosine KNMN 73.2 92 722 0,91
Cubic KMNM T4 L5} 729 0.9
Weighted KMMN | 774 054 T6.9 094
Ciaussian Maive

6.1 .84 629 086
bayes
Kemel MNaive

G b (L&A a5d 088
hayes

28

Gupta et al. (2022) proposed the implementation of different CNN and ML
model to classify the ultrasound breast data. In this study, the Breast Ultrasound
Images Dataset (BUSI) was used. Four CNN and ML classifier is implemented,
which includes VGG16, VGG19, Inception-V3 and SqueezeNet integrated with
KNN, SVM, RF, NN, LR and Adaboost. The highest accuracy results are the
Inception-VV3 model with NN algorithm at 92.6%.

Table 7: Classification results of VGG16, VGG19, Inception-V3 and SqueezeNet
integrated with different ML algorithm on breast tumour classification (Gupta et al.,

2022)
VGGG
MODEL ALUC Accuracy Fi
’ i Pre Recall
KNN 94.2 833 83.1 834 833
SVM BOR 725 T2.8 749 72.5
RI 949 85.5 §5.2 4 85,5
NN 96.% 88.5 88.4 88.4 BR.5
LR o7 #8.2 88.2 B2 EE.2
AdaBoost 271 B35 83.6 HER 818
VGG19
MODEL ALC Accuracy Fi
’ ! Pre Recall
KNN 93.8 84.7 84.4 84.8 84.7
SV 905 75.5 T5.9 T77.4 T5.5
RF 94 Bd.5 4.2 Bd.B 8.5
NN 964 #8.3 588.2 #8.2 £8.3
LE a7 BE.G BR.5 BB.6 BE.6
AdaBoost 878 85 84.8 B3 g5
Inception V3
MODEL AUC | Aceuracy Fi Dre —
KNN 95.1 86.2 86.1 86.1 86
SVM 97.5 399 R9.9 £9.9 299
RF 94.2 83.7 83.2 84 83.7
NN 98 92.6 9216 1.6 1.6
LE 98.1 91.1 91 91 91.1
AdaBoost R6.6 22.4 822 2.3 824
SqueczeNet
MODEL - .
AUC Acenracy Fi Pre Recall
KNN 95.1 86.6 86.6 86.7 86.6
SV 95.7 %6.9 87 87 80.9
RF 96,4 87.6 87.4 87.7 87.6
NN 97 8 90.9 90.8 00,9 0.9
LR 97.1 9.3 9.3 9.3 B3
AdaBoost 90.1 254 £5.2 5.4 85.4

29

Table 8: Summary of performance from various related papers

GANs-based classifier

Author Organ | Dataset | Proposed Performance
method
Shin et al. Brain | ADNI pix2pix + CNN | (Mean/ Std deviation)
(2018) GAN-based w/ aug: 0.82/
0.08
GAN-based w/o aug: 0.80/
0.07
Igbaletal. | Eyes | STARE; | MIGAN (Disc-score/ AUC ROC/
(2018) DRIVE AUC PR)
STARE: 0.838/ 0.985/ 0.922
DRIVE: 0.832/ 0.984/ 0.916
Senaras et Breast | Ki67 cGAN + 44.7% by 3 pathologists and
al. (2018) analysts 3 image analysts.
Desai etal. | Breast | DDSM | DCGAN + (Accuracy)
(2020) CNN Batch size 4: 84%
Batch size 32: 87%
Alyafietal. | Breast | OMI- DCGAN + (F1-score)
(2020) DB CNN GAN: 0.98
Aug GAN: 0.99
Al- Breast | BUSI; DAGAN w/ 94% (Dataset B)
Dhabyani et B Augmentation | 92% (BUSI Dataset)
al. (2019) + TL-NASNet | 99% (Dataset BUSI + B)
Non-GANs-based classifier
Latif et al. Breast | MBU CNN 88% (CNN denoise data)
(2019) 84% (Unprocessed data)
Khanna et Breast | BUSI Quadratic SVM | 84.9% (with BGWO)
al. (2021) 84.6% (without BGWO)
Guptaelal. | Breast | BUSI Inception-V3 + | 92.6% (Accuracy)
(2022) NN

30

CHAPTER 3

METHODOLOGY

3.1 Overview

During the early stage of the project, the dataset was downloaded and preprocess. the
training and validation dataset were downloaded from the Mendeley website; while
the testing dataset were acquired from NCBI website. The datasets consist of two
label which are the benign and malignant tumor. Subsequently, the image preprocess
techniques were performed on the datasets. The image preprocessing techniques
includes applying sharpening and smoothing filters on the ultrasound images to
remove the image noise. Moreover, a DCGANs model is designed to generate more
data to enhance the deep learning model performance by solving the problems of
insufficient and unbalanced dataset. Furthermore, the synthesized data are augmented
such as applying horizontal and vertical flipping and rotation to increase the variety
of the dataset. The datasets were further separated into training, validation and

testing set in various combinations using the k-fold cross-validation method.

After the datasets were assigned into desired combinations, the CNNs model
is developed. The transfer learning model based on the literature review is
implemented and fine-tuned to the datasets. Multiple CNNs architectures were tested
on the datasets and the accuracy is compared and evaluated. The complete workflow
is depicted as the flowchart in Figure 3-1. The results obtained are evaluated and

compared.

31

o Hyper-parameter Training and
Sl HEE Tuning Validation on dataset
A
Iteration
process
v Y
: : Perfi
Image Preprocesing Design CINNs model E,‘_:ﬁ:f;;e
A

4

Implement GANs

model » Data Resampling

Figure 3-1: Project Methodology

3.2 Environment Setup

3.21 Hardware

This project is performed on an MSI Prestige 14 with an Intel i7-10510U CPU and a
2GB NVIDIA GeForce MX350 GPU equipped laptop. The hardware details are

shown in Table 9 as reference.

Table 9: Hardware details

Computer MSI Prestige 14
CPU Intel i7-10510U 1.80GHz
GPU NVIDIA GeForce MX350 2GB
OS Windows 10 Home Single Language
System type 64-bit, x64 based processor
RAM 16GB
Storage 512GB SSD

32

3.2.2 Software

Python 3 is used as the main programming language for this project. The DCGANSs
models were developed with Tensorflow, which is an open source deep learning
framework developed by Facebook's Al Research lab. Besides, both the DCGANSs
and CNNs models were trained on Pycharm. The version of the python libraries used

is shown in Table 10 as reference.

Table 10: Python libraries version

Package Version
Pandas 134
NumPy 1213
Matplotlib 343
TensorFlow 291
Sklearn 102
OpenCV 4.5.5.64
3.3 Data Processing

3.3.1 Dataset Preparation

The dataset used for training and validation in the project is the Mendeley Breast
Ultrasound dataset (MBU) by Rodrigues (2017). The dataset consists a total of 250
breast cancer ultrasound images. The dataset is separated into 100 benign tumors and
150 malignant tumors. Furthermore, the images have a low average dimension of
105 x 77 pixels and the file type is in BMP file. On the other hand, the testing sets of
this project uses another set of Breast Ultrasound Images dataset (BUSI) by Al-
Dhabyani. The average image’s dimension of the BUSI images are 500 x 500 pixels
and the file type are in PNG file. Figure 3-2 and Figure 3-3 illustrates the samples
from the MBU dataset; while Figure 3-4 and Figure 3-5 illustrates the samples from
the BUSI dataset.

33

Figure 3-2: Samples of benign tumour images of MBU dataset (Rodrigues, 2017)

Figure 3-5: Samples of malignant tumour images of BUSI dataset (Al-Dhabyani,
2020)

34

3.3.2 Image Pre-Processing

After the datasets are downloaded and analyzed, some image processing methods are
applied to the data in order to improve the quality of the breast tumor images. A low-
pass filter kernel can be convolved to the image in order to achieve image smoothing
due to its ability to remove high frequency pixel such as edges and noises in the
image. Convolution can be defined as a process by applying a n*n kernel to n*n
pixels over the whole image, hence transforming the image. The impact of the
convolution process's transformation is determined by the size and values of the
kernel, which is a matrix of values (Basavarajaiah, 2022).

By applying the 2D convolution technique, I will be utilizing my own unique
kernel, therefore | have total control over the filtering procedure in this approach of
smoothing. Generally, a kernel assigns a set weight to each pixel in an image and
adds the weighted neighbors’ pixels in order to transform that certain pixel. By
implementing this approach, the pixels should be compressed in an image, reducing

its clarity and making it simple to blur or smooth an image (GeeksforGeeks, 2022).

In this project, several filter and kernel are applied to the original image using
OpenCV to remove the noises. In the first approach, the bilateral smoothing filter is
applied to the images with a kernel size of 3x3. In the second approach, the denoise
smoothing filter is applied. In the third approach, a gaussian filter with a kernel size
of 5x5 is applied to the images. In the fourth approach, a median filter with a 5x5
kernel is applied to the images. In the fifth approach, a special OpenCV filter called
block matching denoise filter is applied to the image. Table 11 below tabulate the

kernel size and masks used for each filter used in the project.

35

Table 11: Smoothing filter implemented in this project

No | Types of filter Kernel size Masks
1 Bilateral 3x3 11211
1 2141 2
—_— * 2 L
16
1{2]1
2 Denoise Null (cv2 special filter) | Null
3 Gaussian 5x5 L[a7]4]1
4 16 | 26 | 16| 4
1 « | 7 26|41 26] 7]
273 4162616 4 |
1 4 7 4 1
4 Median 5x5 Median of neighbouring
entries
5 Block Matching Null (cv2 special filter) | Null

3.3.3 Image Augmentation

Due to the small dataset, several image augmentation methods have been
implemented on the images. The characteristic of image augmentation of modifying
current data could generate new data in different perspective for the deep learning
model training process. In other words, it is the process of enhancing the dataset that

is made accessible for deep learning model training.

First, the images are flipped horizontally, vertically and both horizontal and
vertical, hence there will be four extra sets of data being feed into the DCGANSs
model. The dimension of flipped images is then resized into 64x64 pixels in the
DCGANSs system. The reason of resizing is to standardize the dataset. Besides, it
could also improve the consistency and stability of the DCGANs and CNN network
training process since the background without information is downscale and the

tumours are more focused.

36

3.3.4 Data Augmentation

Deep Convolutional Generative Adversarial Networks also known as DCGANS is
one of the most successful GANSs architecture to synthesized realistic medical images.
Due to the small amount of labeled dataset available for the project, instead of
augmenting the images, generating realistic synthetic breast tumour images could

increase the dataset amount and enhance the quality of the deep learning classifier.

DCGANSs consists of a generator (G) and discriminator (D). The generator
and discriminator are two different CNN model; therefore, the training process might
take longer due to two deep neural network model. The DCGANS architecture was
proposed by Radford et al. in 2016 and it is the modifications of the origin GANs
model proposed by Goodfellow et al. in 2014 which has further improved and
enhanced by many recent GANs-related papers.

Initially, the generator will input the latent dimension of noises; while the
discriminator will learn from the original data and differentiate the synthetic image
generated by G from the real image. The DCGANSs architecture as depicted in Figure
3-6 shows that the architecture of G and D networks are similar and inverse to each

other.

In this project, the G network goes from “100x1 — 1024x4x4 — 512x8x8 —
256x16x16 — 128x32x32 — 64x64x3”, a 2D transpose is added between each layer
for reshaping. A random noise vector is set to 100 as input for G and outputs a
synthesized breast tumours image at size of 64x64x3. In second stage after the noise
vector is input, the G network is reshaped to 1024x4x4 with a fully connected layer.
Furthermore, a four fractionally-strided convolutional aka deconvolution layers with
a 5x5 kernel size are added to the network. The function of the deconvolution layer is
to expand the pixel by zero padded in between. Batch normalization are added to
each layer except the output layer due to their characteristic to train the network
independently. Besides, a LeakyReLU activation function is added to each layer

except a tanh activation function is added to the output layer.

37

The D network is a CNN model which input an image generated by G at the
Image size of 64x64x3 and D will predict whether the input image is an original or
synthesized image. The architecture of D is slightly straightforward compared to G,
which D consists only four convolution layers with kernel size of 5x5. Like G, Batch
normalization are added to each layer except the input and output layer. Additionally,
a LeakyReLU activation function is added to each layer except a Sigmoid activation
function is added to the output layer which produce a prediction probability between
0 and 1 (Frid-Adar et al., 2018).

The DCGANs model should trained for two different categories separately
for synthesizing benign and malignant tumours. For benign, the training process was
repeated for approximately 740 epochs to prevent overtraining and achieve the
desired synthesized images; while for malignant, the training process was repeated
for approximately 1000 epochs. The training batch size used for benign is 128, and
256 for malignant due to the amount of dataset. The DCGAN model has successfully
generated 100 benign and 50 malignant images to increase and balanced the dataset.

Figure 3-6 below illustrates the increase of the dataset.

Original Labeled Data

100 benign; 150 malignant

Original Data + DCGANs Data

200 benign; 200 malignant

Figure 3-6: Visualization of dataset of the synthesized data and original data

38

3.3.5 Data Segmentation

A Train-Valid-Test split technique has been applied in order to enhance the
performance of the CNN model by preventing the model to over trained from the
available training data. The pre-processed datasets have been randomly split into two
folders, which are training set and validation set. The training set comprised to 80%
of the total dataset; while the validation data comprised to 20% of the total dataset.
Synthetic images generated by the DCGANs model has been added to the dataset to
increase the amount of data and balanced the dataset. Furthermore, image
augmentation method such as rotating and flipping the images has been applied to
the dataset to increase the amount of data. Hence, the total dataset has been increased

to 20,800 images which consists of 10,400 benign data and 10,400 malignant data.

By implementing the Train-Valid split technique, 8,320 benign images and
8,320 malignant images have been randomly assigned to the training dataset (80% of
total dataset); The validation dataset consists of 2,080 images for each category (20%
of total dataset). Since the datasets are split randomly, therefore the results obtained
are strictly not biased. Figure 3-7 depicted the overview of data segmentation in this
project. After the model has trained successfully, the model is tested with the BUSI
dataset which is a completely different source from the training dataset. BUSI dataset

consists of 480 images which includes 240 benign images and 240 malignant images.

Oniginal Data + DCGANs Data

200 benign; 200 malignant

l

‘ Augmented Data ‘

10400 benign; 10400 malignant

|
' }

e ™
Training set (80%) Validation set (20%)

§320 benign; 8320 malignant 2080 benign; 2080 malignant

Testing set (BUSI dataset) |

240 benign; 240 malignant
y

Figure 3-7: Visualization of dataset distribution

39

34 Classification Model

3.4.1 Dataset Cross-Validation

Apart from separating the datasets into training, validation and testing dataset, the
cross-validation method could shuffle the datasets in a more thorough way. The
accuracy of the CNN model may be saturated easily after a short amount of iterations
with the same training and validation set. In this case, the CNN model’s score such
as accuracy, precision and F1-score may seem to have a perfect result, but it would
fail to predict any random unseen data, therefore the network is considered as over-

trained in this circumstance.

In this project, the k-fold cross validation is implemented to spit and shuffle
the training and validation dataset. This method can be applied in order to tune the
hyperparameters so that the model could trained with the best hyperparameter value.
The benefit of this method is that every training and validation set can be utilised for
one time, therefore the model would not saturate easily and have a fairer validating
process. Hence, the CNN model can train and validate on k number of different

datasets, to ensure the model is more generalized (Kumar, 2022).

All Data

Training data Test data

Fold1l || Fold2 || Fold3 || Fold4 | Folds |\

Splitl | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Split2 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
>— Finding Parameters
Spit3 | Fold1 Fold 2 Fold 3 Fold 4 Fold 5

Split4 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

SpiitS | Fold 1 Fold 2 Fold 3 Fold 4 Fods _/

Final evaluation { Test data

Figure 3-8: Terminology of 5-fold cross validation (Kumar, 2022)

40

A stratified 5-fold cross validation is applied to the CNN model in this project.
Figure 3-8 above illustrates the mathematical concept and the training and test set
distribution of k-fold cross validation, k = 5. The ultrasound breast tumour images
are partitioned into 5 different combinations of training and testing set. The CNN
model will undergo 5 iterations of training and validation process. Lastly, all 5

results generated are average divided to obtain the generalized estimation score.

3.4.2 CNNsand TL Architecture Design

3.4.2.1 CNNs-AlexNet

In this project, the AlexNet architecture is proposed to implement in this CNN breast
tumour classifier. The AlexNet architecture was introduced by Alex Krizhevsky in
2012. The architecture of AlexNet consists of three fully connected layers and five
convolutional layers integrated with three max pooling layers. Figure 3-9 below
illustrates the architecture of AlexNet. AlexNet uses a ReLU activation function at
the end of each layer except for the last layer. The advantages of performing the
RelLU activation function is due to its speedy training time compared to the tanh
activation. The last layer of the AlexNet architecture outputs with a softmax function
due to the 2-labelled classification of benign and malignant tumours. Furthermore,
dropout function is implemented in the first two fully connected layers. The dropout

function could turn off the neurons with a specific probability in order to avoid

overfitting.
Table 12: Configuration used in CNN-AlexNet
Layer Type Maps Size Kernel | Padding | Activation
Size Function
In Input 64 | 100*100 - - -
C1 Convolution 64 98*98 3*3 Same eLU
S2 Max Pooling 64 49*49 2*2 Valid -
C3 Convolution 32 49*49 3*3 Same eLU

41

C4 Convolution 32 47*47 3*3 Valid eLU
S5 Max Pooling 32 23*23 2*2 Valid -

C6 Convolution 16 23*23 3*3 Same eLU
C7 Convolution 16 21*21 3*3 Valid eLU
S8 Max Pooling 16 10*10 2*2 Valid -

F9 | Fully connected - 64 - - eLU
F10 | Fully connected - 32 - - eLU
F11 | Fully connected - 16 - - eLU
Out | Fully connected - 2 - - Softmax

Table 8 above tabulates the general configuration of the proposed AlexNet
architecture used in the CNN classifier. The model consists of five 2D convolutional
layers and three pooling layers which is a typical structure of an AlexNet architecture.
The dropout is set as 0.25 after each of the pooling layers. Besides, the activation
function used in each 2D convolutional layer is the eLU. The eLU activation
function is used due to its ability to smooth slowly thorough the output reaches -a,
while the ReLU would smooth sharply, therefore eLU tends to perform better in
terms of accuracy. Lastly, one flattens layer and three dense layers are used to
transform the matrix into a single array to allow the softmax function to generate
results accurately. The CNNs-AlexNet algorithm uses the Adam optimizer with a
default leaning rate of 0.001. Besides, the algorithm uses binary cross entropy loss
function to evaluate the performance of the model.

conv2d (Conv2D) (None, 168, 180, &4) 1792
conv2d_1 (Conv2D) (None, 98, 98, 64) 36928
max_pooling2d (MaxPooling2D (None, 49, 49, 64) B

)

dropout (Dropout) (None, 49, 49, 64) B
conv2d_2 (Conv2D) (None, 49, 49, 32) 18464
conv2d_3 (Conv2D) (None, 47, 47, 32) 9248
max_pooling2d_1 (MaxPooling (None, 23, 23, 32) 2]

20)

dropout_1 (Dropout) (None, 23, 23, 32) B
conv2d_4 (Conv2D) (None, 23, 23, 16) 4624
conv2d_5 (Conv2D) (None, 21, 21, 16) 2328
max_pooling2d_2 (MaxPooling (None, 18, 10, 1&) B

2D)

dropout_2 (Dropout) (None, 16, 18, 1&) 2]
flatten (Flatten) (None, 16080)]
dense (Dense) (None, 64) 182464
dropout_3 (Dropout) (None, 64) B
dense_1 (Dense) (None, 32) 2080
dropout_4 (Dropout) (None, 32) B
dense_2 (Dense) (None, 16) 528
dropout_5 (Dropout) (None, 16) B
dense_3 (Dense) (None, 2) 34

Total params: 178,482
Trainable params: 178,482
Non-trainable params: @

Figure 3-9: Model summary of the CNN-AlexNet architecture implemented

43

3.4.2.2 TL-Inception-V3 with 3 extra hidden layers + dropout

The transfer learning technique can be applied to the project in order to utilise the
improved version of ILSVRC14 winner, Inception-V3 as a pre-trained model in this
breast tumour classifier project. The weights of Inception-V3 model were trained on
a gigantic amount of dataset using several high-powered GPUs, and the transfer
learning technique allows the model to be implemented in the classifier of this
project (Irla, 2019). Besides, due to the small dataset available to this project, hence

the proposed pre-trained Inception-V3 model could be beneficial to the classifier.

All layers of the Inception-V3 except for the last fully connected is imported
to the classifier of the project. Besides, all the layers are set to non-trainable and
some lower layers are added, therefore the classifier could train the tumours data on
the lower layers while keeping the trained-parameters of Inception-V3 constant. Four
extra layers were added to the TL-InceptionVV3 model, including 1 average pooling
layer with 0.2 dropout, 1 flatten layer, and 1 fully connected 128-size layer. The
output layer uses the softmax activation function to classify the benign and malignant
tumours class. Moreover, the binary cross entropy is used as the algorithm loss
function due to the two target classes of output. Besides, the Adam optimizers with a
default learning rate of 0.001 is used at the output layer. Figure 3-10 below

illustrates the general overview of the proposed TL-InceptionV3 architecture.

Layer (type) Output Shape Param #
inception_v3 (Functional) (None, 1, 1, 20848) 21802784
global_average_pooling2d (6 (None, 20848) 8

lobalAveragePooling2D)

dropout (Dropout) (None, 2048) 8
flatten (Flatten) (None, 2048)]
dense (Dense) (None, 128) 262272
dense_1 (Dense) (None, 2) 258

Total params: 22,065,314
Tralnable params: 262,530
Non-trainable params: 21,882,784

Figure 3-10: Model summary of the TL-Inception-V3 architecture implemented

44

3.4.2.3 TL-DenseNet with 6 extra hidden layers + dropout

DenseNet is chosen for the second transfer learning model due to the simplicity in its
algorithm architecture. Since most of the CNNs architecture are getting deeper, thus
the information from the input layer could be faded away before arriving the output
layer. Besides, DenseNet also required lesser parameters, hence it could decrease the
training time. Furthermore, according to the literature review, the implementation of
TL-DenseNet on the BUSI and MBU datasets is still unprecedented by previous
works, therefore it may be a great opportunity for contributing to related studies.

Similar to TL-Inception-V3, all layers except the last fully connected layer of
TL-DenseNet are imported to the CNN classifier. All layers are set as non-trainable,
and 6 extra hidden layers are added to the architecture, which includes 1 average
pooling layer, 2 batch normalization layers with dropout of 0.5, and 3 fully
connected layers. The extra hidden layers are trained to classify the benign and
malignant tumours data. The output layer uses the softmax activation function to
classify the benign and malignant tumours class. Moreover, the categorical cross
entropy is used as the algorithm loss function. Besides, the Adam optimizers with a
default learning rate of 0.001 is used at the output layer. Figure 3-11 below

illustrates the general overview of the proposed TL-DenseNet architecture.

Layer (type) Output Shape Param #
densenet121 (Functional) (None, 3, 3, 1024) 7037504
global_average_pooling2d (G (None, 1824)]
lobalAveragePooling2D)

batch_normalization_94 (Bat (Nene, 1024) 4896
chNormalization)

dropout (Dropout) (None, 1824)]

dense (Dense) (None, 1024) 1049600
dense_1 (Dense) (None, 512) 524800
batch_normalization_95 (Bat (None, 512) 2848
chNormalization)

dropout_1 (Dropout) (None, 512)]
dense_2 (Dense) (None, 2) 1826

Total params: 8,619,074
Tralnable params: 1,578,498
Non-trainable params: 7,848,576

Figure 3-11: Model summary of the TL-DenseNet architecture implemented

45

35 Evaluation Method

The evaluation metrics used for the training and validation process are loss and
accuracy. The accuracy is defined as the amount of correct predictions. The
performance of the algorithm is evaluated using an accuracy metric. A model's
accuracy is often assessed after the model's input parameters and is expressed as a
percentage. It measures how closely your model's forecast matches the actual data.
For example, for 100 test samples, if the classifier successful predicts 95 samples
correctly, thus the classifier’s accuracy will be 95%. On the other hand, the loss
metrics is defined as the difference between the predicted and true value of the model.
Generally, the loss function is used to optimize a deep learning model by comparing

the performance of the model on training and validation set after each iteration.

For the testing set evaluation metrics, the F1-score, accuracy, precision and
the confusion matrix are implemented. Table 13 below tabulate the terminology of
the confusion matrix. In order to enhance the performance of the deep learning
model, the model should increase the TP and TN predictions and minimize the FP
and FN predictions. Furthermore, precision is defined as the percentage of true
positive over the total predicted positive amount; while the F1-score is defined as the

harmonic mean of combination between precision and recall.

Table 13: Terminology of Confusion Matrix

Actual Positive Actual Negative
Predicted Positive True Positive (TP) False Positive (FP)
Predicted Negative False Negafive (FIN) True Negative (TIV)

The calculations of the evaluation metrics are shown below:

Accuracy = (TP+TN) / All Predictions
Precision = TP / Predictions Positive
Recall = TP/(TP+FN)

F1 Score = 2*(Recall * Precision) / (Recall + Precision)

46

3.6 Project Timeline

Research on GANs and deep learning model has been performed in the first two
weeks of the first trimester before confirming the FYP topic. After confirming the
FYP topic with my supervisor, Dr. Humaira Nisar, the data is received and
downloaded from the Mendeley website. Besides, the testing dataset is acquired from
the NCBI website. The downloaded datasets were analysed and evaluate. The dataset
images were pre-processed by implementing image process method such as image
smoothing, flipping and rotating. The data acquisition and pre-process stage took

approximately two weeks.

In the second phase, the DCGANs model was studied and designed
accordingly to the research paper “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Network™ proposed by Radford et al. in 2015.
The training process took more than 2 months to synthesized desired benign tumors
images. The training process has been repeated multiple times in order to obtain
desired results and the computational power of the GANs model is very high,
therefore the training takes longer period. With existing training experience of
benign data, the malignant data training process took a shorter period to generate

desired results.

After the all desired synthesized image has been generated, the synthesized
images were added into the original dataset to increase the amount of dataset and to
balance the benign and malignant dataset. The synthesized tumors images were
preprocessed to remove the image noises. Furthermore, data augmentation for
instance flipping, rotation is performed on the synthesized images. The complete
datasets consisting 15,600 data were resampling and separated randomly into training,
validation and testing set. The data augmentation and resampling took approximately

one week.

In the third phase, several CNN models such as Inception-V3, ResNet50,
AlexNet and DenseNet are designed and trained on the augmented dataset. The deep
learning model and fine-tuning process took approximately five weeks. The final

performance evaluation is completed in Week 12 of the second trimester.

Research on GANs
and CNNs model
Data acquisition and
preprocess
Implementing GANs
model on benign
images
Implementing GANs
model on malignant
images

Data Augmentation
and Resampling

Design CNN's model

Training and
validation on dataset

Performance
evaluation

FYP 1 report
FYP 2 report

Table 14: Project Gantt Chart

5 6 7 8 ¢ 10 11 12 13 14

47

1 2 3 4 5 6 7 8 9 10 11 12 13 1

4

48

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Overview

The major objective of this project is to develop a deep learning neural network
classifier algorithm that could distinguish the benign and malignant breast tumours in
any form of two-dimensional picture. The Mendeley Breast Ultrasound dataset
(MBU) by Rodrigues (2017) was acquired from the Mendeley website for the CNNs
algorithm training and validation purpose. The original 250 data inclusive of benign
and malignant images were increased to 20,800 images by adding the synthesized
images generated by DCGANs and image augmentation techniques were
implemented to the images. Besides, smoothing filters were applied to the dataset to
reduce the noises of the ultrasound images in order to enhance the image quality.

The data were further randomly split into training, validation set with a
percentage of 0.8, 0.2. Besides, a 5-fold cross validation is implemented to ensure the
training and validation data were shuffled. Besides, the testing dataset, BUSI was
acquired from a different source to evaluate the classifier. Several CNNs model such
as Inception-V3, AlexNet and DenseNet were developed and trained. The results
obtained were recorded and compared. On the other hand, another set of open-source
breast ultrasound image, BUSI dataset (Al-Dhabyani et al., 2020) acquired from
NCBI is used as the testing set of the CNNSs algorithm. The performance of the deep
learning classifier model is evaluated using confusion matrix, accuracy, precision,
recall rate and F1-score. The results for Inception-V3, AlexNet and DenseNet are

compared and discussed.

49

4.2 Image Pre-Processing

Five different smoothing filters such as bilateral, denoise, gaussian, median and
block matching filter have been applied on the original ultrasound image. According
to the filtered images, the Denoise filter seems to be the most suitable filter to
remove the ultrasound image’s noises and still maintain the edge of the tumours,
therefore the Denoise filter is chosen for the project and it is applied to all images in

the dataset. Table 15 below illustrates the pre-processed images of different filters.

Table 15: Pre-processed filtered images

Filter Pre-processed image Masks

1 None (Original) Null
2 | Bilateral 11211
— * [242

16

1121

3 Denoise Null
4 Gaussian 474

16| 26 | 16

S -1 4= —_

1
4
7 | 26| 41| 26|
4

#
273

16|26 | 16 |

1 4| 7| 4

5 | Median Median of neighbouring
5x5 entries
6 Block Matching Null

[y

4.3 Image Augmentation

Nine different image augmentation techniques are implemented on the pre-processed
images. The dimension of the pre-processed images was resized to 100*100 pixels
before the augmentation process. The dataset is increased in size after the
augmentation process. Table 16 below illustrates the samples of the augmented

benign tumour images.

Table 16: Samples of augmented image

Image Orientation

Augmented Image

1 Upright

2 Horizontal flipping

3 Vertical flipping

4 Horizontal Vertical flipping

5 Anticlockwise 45° rotation

6 Anticlockwise 125° rotation

7 Anticlockwise 315° rotation

menLl

o1

8 Rotation horizontal flip

9 Rotation vertical flip

10 Rotation horizontal vertical

flip

4.4 Data Augmentation using DCGAN

The training process of the DCGANs model for benign data took 800 epochs and the
training duration is approximate 28 hours. While the training process of the
DCGANs model for malignant data took 1000 epochs and the training duration is
approximate 36 hours. However, the training process is repeated several iterations to
generate the most realistic synthesized image. Table 17 below illustrates the samples
of the synthesized image generated by the DCGANs model. Furthermore, the
synthesized images were pre-processed by applying the Denoise filter and

augmented using the techniques mentioned above.

Table 17: Samples of synthesized image generated by DCGANSs

Tumours type Synthesized image

1 Benign

2 Benign

52

3 Malignant

4 Malignant

Table 18 below tabulate the number of the augmented images in the dataset.
The dataset has been increased to 20800 data which consists of 10400 benign data
and 10400 malignant data.

Table 18: Number of images in the dataset

Image Orientation Number of images
1 Upright 1-250
2 DCGAN synthesized image 251-400
2 Horizontal flipping 401-800
3 Vertical flipping 801-1200
4 Horizontal Vertical flipping 1201-1600
5 Anticlockwise 45° rotation 1601-3200
6 Anticlockwise 125° rotation 3201-4800
7 Anticlockwise 315° rotation 4801-6400
8 Rotation horizontal flip 6401-11200
9 Rotation vertical flip 11201-16000
10 Rotation horizontal vertical flip 16001-20800

53

4.5 Training Results

According to Table 14 below, all three proposed models, CNN-AlexNet model, TL-
Inception-V3 with 3 extra hidden layers + dropout model and TL-DenseNet with 6
extra hidden layers + dropout model successfully produced all evaluation metrics,
accuracy, precision, recall and F1-score rates above 90%. As illustrated in Figure 4-1,
the bar chart illustrates the comparison of the proposed models on the validation
dataset, the TL-DenseNet model performs best in terms of accuracy at 97.61%; while
the CNN-AlexNet achieved the highest F1-score among all proposed models at
0.9950.

Comparison between proposed models on validation dataset

M F1-Score Recall ® Precision MLloss M Accuracy

TL-DenseNet

TL-Inception-V3

CNN-AlexNet

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

Figure 4-1: Bar chart of comparison between proposed model on validation dataset

Table 19: Comparison between proposed model in terms of accuracy, loss, precision,

recall and F1-score on the validation dataset

Model Accuracy Loss Precision Recall F1-Score

CNN-AlexNet 95.52% 0.1210 0.9958 0.9942 0.9950

TL-Inception-V3 | 93.46% 0.1833 0.9238 0.9605 0.9413

TL-DenseNet 97.61% 0.0625 0.9896 0.9883 0.9889

54

451 CNN-AlexNet

The training process took 10 epochs and 5-fold cross validation. The average training
duration of one epoch is approximately 10 minutes and the total training time for 10
epochs and 5-fold cross validation process is approximately 8.3 hours. The CNNs-
AlexNet architecture achieved an average validation accuracy of 95.52%; average
validation loss of 0.1210; average validation precision of 0.9958; average validation

recalls of 0.9942; average validation F1-Score of 0.9950.

The complete 5-fold training results of CNN-AlexNet model are attached in

the Appendix A section below.

Table 20: Validation Evaluation Metrics for CNN-AlexNet in Each Fold

No of Folds | Accuracy Loss Precision Recall F1-Score
1 80.90% 0.3778 0.9814 0.9736 0.9775
2 99.23% 0.0174 1.0000 0.9984 0.9992
3 98.66% 0.0395 0.9992 1.0000 0.9996
4 99.97% 0.0016 1.0000 0.9992 0.9996
5 98.86% 0.0119 0.9984 1.0000 0.9992
Average 95.52% 0.1210 0.9958 0.9942 0.9950

55

45.1.1 Accuracy

o Training and validation accuracy- fold 1 Training and validation accuracy- fold 2
— Traning accuracy 100 4
—— Valdation accuracy
294 .99 4
098
E 08 E‘
; ﬁ 5T
o7 ads
055
[—— Training acciway
— Validation accuracy
054 4 T T T T T
H 3 M H M] 2 4 [B
Epa<h Epeh

Training and validation accuracy- fold 3 Training and validation accuracy- fold 4

Lab 1000
- ﬁ/\/

0F0s
LELE
E‘ 0.4 4 i; 0996
o — Training accuracy
o — Validabon accura
5 ooz i o
Hh)
3 i
bl - 0e92
—— Training accuracy
86 — VAl ARy
0 1 a B B a 1 H H B
Epach Epech

Training and validation accuracy- fold 5

— Training accuraly
[FRER = Walidation AcCurady

o 2 4] B
Epach

(e)
Figure 4-2: Training and Validation Accuracy against Number of Epochs for CNN-
AlexNet in (a) First Fold (b) Second Fold (c) Third Fold (d) Fourth Fold (e) Fifth
Fold

56

45.1.2 Loss
Training and validation loss- fold 1 Training and validation loss- fold 2
L —— Trairang loss ols —— Training loss
— validation loss = Validatizn loss
06 014
012
054
010
- 044 -
g § ooe
034 oo
oz o0
ooz
0.1 A
T T T T T mm T T T T
o 2 4 L] L] o z 4 & B
Epech Epeth
(a) (b)
Training and wvalidation loss- fold 3 Training and validation loss- fold 4
035 4 —— Training loss
— alidation loss 0,033
0.3
525 | LT
0.20 4 aals .
] o —— Trainireg loss
E] —— Validation loss
a1s 4
o
LIBLR
- —*/\/\
0.0% 4
000 0000
o 2 a 5 B a 2 H M H
Epexh Epoch

(© (@)

Training and validation loss- fold 5

— Thartung leas
a1rs — validaton loss

oS

Epoch

(e)
Figure 4-3: Training and Validation Loss against Number of Epochs for CNN-
AlexNet in (a) First Fold (b) Second Fold (c) Third Fold (d) Fourth Fold (e) Fifth
Fold

57

45.1.3 Confusion Matrix

Confusion Matrix - fold 1 Cenfusion Matrix - fold 2

1200 1200

ilelii] 1004
False
B0 B0
w]
a a
= =
@ [=1i] @ G0
E] 5
F E
400 400
True
200
Faliz True Falsa Trug
Predicted label Predicted label

(a) (b)

Confusion Matrix - fold 3 Confusion Matrix - fold 4
1200 1200
1004 1004
False
B0 B0
w]
= E
@ [=1i] @ G0
2 =
F F
400 400
True
20 200
v ¢ - a
Faliz True Falia Trug
Predicted label Predicted label

(c) (d)

Confusion Matrix - fold 5

1200

100D

B0

&00

Trise labed

400
True

Hoa

Fakie True
Predicted label

(e)
Figure 4-4: Confusion Matrix graph for CNN-AlexNet in (a) First Fold (b) Second
Fold (c) Third Fold (d) Fourth Fold (e) Fifth Fold

58

45.2 TL-Inception-V3 with 3 extra hidden layers + dropout

The training process took 10 epochs and 5-fold cross validation. The average training
duration of one epoch is approximately 2 minutes and the total training time for 10
epochs and 5-fold cross validation process is approximately 1.7 hours. The TL-
Inception-V3 with 3 extra hidden layers + dropout architecture achieved an average
validation accuracy of 93.46%; average validation loss of 0.1833; average validation
precision of 0.9238; average validation recalls of 0.9605; average validation F1-
Score of 0.9413.

The complete 5-fold training results of TL-Inception-V3 with 3 extra hidden

layers + dropout model is attached in the Appendix A section below.

Table 21: Validation Evaluation Metrics for TL-Inception-V3 with 3 extra hidden

layers + dropout in Each Fold

No of Folds | Accuracy Loss Precision Recall F1-Score
1 85.76% 0.3500 0.8418 0.9679 0.9005
2 93.46% 0.2033 0.9266 0.9503 0.9383
3 94.88% 0.1492 0.9375 0.9623 0.9497
4 96.13% 0.1226 0.9536 0.9543 0.9539
5 97.05% 0.0912 0.9595 0.9679 0.9639
Average 93.46% 0.1833 0.9238 0.9605 0.9413

45.2.1 Accuracy

Training and validation accuracy- fold 1

Training and validation accuracy- fold 2

59

09
—— Training accuracy

=— akdation acouracy

| — Training accuracy
=— Validaticn accuracy

085
052 1
= = 081
§ oeo H]
o 5
] N 0.0
0,75 4 0ED
LELE
0.70 4
0BT
o z a 5 B o 2 H 1 e
Epath Epesch
(a) (b)
Training and validation accuracy- fold 3 Training and validation accuracy- fold 4
—— Training accuraly 0979 — Training accuraly
— validation accuracy — Validaticn accuracy
0,95 o
096
094 4
0.95 1
= =
§ g
LR z
i LR
0.92
0.93 4
091 4
.92 1
] 2 4 &]] 2 4 []
Epeh Epech

(c)

=L 1LY
0560

0955

ACcuracy
=
£

,,-,
£

0935

0930

Training and validation accuracy- fold 5

\/\’_/mi\,m
= alidation accuracy

a 2 4 & B
Epach

(&)

(d)

Figure 4-5: Training and Validation Accuracy against Number of Epochs for TL-

Inception-V3 with 3 extra hidden layers + dropout in (a) First Fold (b) Second Fold
(c) Third Fold (d) Fourth Fold (e) Fifth Fold

60

45.2.2 Loss
Traiming and valsdation loss- fold 1 Training and valsdation koss- fold 2
— Traimeg loas L — Traimeg loas
00 — it s — vadigation inss
[k
050 4
ﬁ [T
(8]
nEs
(=8 _a]
(% 2] . [§1 %
o r]] B [2 'l]]
Epach Epich
(a) (b)
Traiming and validation loss- fold 3 Training and valsdation loss- fold 4
—— Trairryg leds —— Traimey leas
(3 T et s Nﬁﬂ
[T
[54] e
ﬁ o g
014
aue
[3 F]
o4
[RTE
017 . .
] 2] []] [2 ' []]
Epich Epoch
(c) (d)

Training and valsdation loss- fold $

— Traimrey s
= Validalion lgsd
LS 1)

a4
Epech

(2)
Figure 4-6: Training and Validation Loss against Number of Epochs for TL-

Inception-V3 with 3 extra hidden layers + dropout in (a) First Fold (b) Second Fold
(c) Third Fold (d) Fourth Fold (e) Fifth Fold

61

45.2.3 Confusion Matrix

Confuzion Matrix - fold 2

Confusion Matrix - fiold 1

Trae label

False True False
Prdectid labiel Prasdectid label

(a) (b)

Confusion Matrix - fold 4

Confusion Matrix - fiold 3

1380
1080 1000
False:
&00 Ll
C T
o 0
e L1 - i
A [z
408 B
Truss
00 T
False True False True

Predicted label Predicted label

(©) (@)

Confusion Matrix - fold 5

1380
A0S0
B4
T
5
: [e
E
400
1208
200
Falze True

(e)
Figure 4-7: Confusion Matrix graph for TL-Inception-V3 with 3 extra hidden layers
+ dropout in (a) First Fold (b) Second Fold (c) Third Fold (d) Fourth Fold (e) Fifth
Fold

62

45.3 TL-DenseNet with 6 extra hidden layers + dropout

The training process took 10 epochs and 5-fold cross validation. The average training
duration of one epoch is approximately 2 minutes and the total training time for 10
epochs and 5-fold cross validation process is approximately 1.7 hours. The TL-
DenseNet with 6 extra hidden layers + dropout architecture achieved an average
validation accuracy of 97.61%; average validation loss of 0.0625; average validation
precision of 0.9896; average validation recalls of 0.9883; average validation F1-
Score of 0.9889.

The complete 5-fold training results of TL- DenseNet with 6 extra hidden

layers + dropout model is attached in the Appendix A section below.

Table 22: Validation Evaluation Metrics for TL-DenseNet with 6 extra hidden layers
+ dropout in Each Fold

No of Folds | Accuracy Loss Precision Recall F1-Score
1 91.81% 0.2035 0.9759 0.9720 0.9739
2 97.771% 0.0593 0.9857 0.9920 0.9888
3 99.14% 0.0254 0.9943 0.9848 0.9895
4 99.47% 0.0168 0.9952 0.9992 0.9972
5 99.87% 0.0076 0.9968 0.9936 0.9952
Average 97.61% 0.0625 0.9896 0.9883 0.9889

63

45.3.1 Accuracy

Training and validation accuracy- fold 1 Training and validation accuracy- fold 2
—— Traning acouracy
— yaliclation acouracy LELE
045 1
097
Qa0 4
E s ii afe
AR 095
—— Training accuracy
075 | 054 — Wl ACCuraCy
o H 4 [B [2 4 3 E
Epech Epech
(a) (b)
Training and validation accuracy- fold 3 Training and validation accuracy- fold 4
Lap
. W
LELE
e
L8]] aFes
]]
§ g
L 4 asen
87 o
T EY
aae — Training accurscy 0970 —— Training accuracy
= Validaticn accuray — validation scouracy
o 2 2 & E o 2 H M M
Epach Epoch

Training and validation accuracy- fold 5

1La0d \/\/,ﬂ
0995
R
§
5
o
4 a9es
L]
—— Training sccurscy
0873 = Validation aoCuracy
L] 2 L]]

*&m(h
(e)
Figure 4-8: Training and Validation Accuracy against Number of Epochs for TL-

DenseNet with 6 extra hidden layers + dropout in (a) First Fold (b) Second Fold (c)

Third Fold (d) Fourth Fold (e) Fifth Fold

64

453.2 Loss

Training and validation loss- fold 1 Training and validation loss- fold 2

— Trainang loss: —— Training loss
0.6 — ‘validation loss — it 1055
ald
051 a1z
0.4
H w 010
3 §
0.3 4
008
024
Q06 o
0.1 9
0,04
o 2 M M . o 2 a 6 B
Epeh Epixch
(a) (b)
Training and validation loss- fold 3 Training and validation loss- fold 4
— Training loss —— Training loss
ol — \alidaticn loss .08 — ‘validation loss
007
aos
006
- % nOs4
% 006 A
004
o4
0,03
oz ikt -4 W
] 2 4 3 B o 2 4]]
Epasih Epesch

(c) IC))

Training and validation loss- fold 5

.07 —— Trainirg loss
— alidation loss
QU0 4
0.05
] 0.0 4
3
0.03 4
0.02 4
ant 4 /\—'__w
o 2 a B B

Epeth

(e)
Figure 4-9: Training and Validation Loss against Number of Epochs for TL-
DenseNet with 6 extra hidden layers + dropout in (a) First Fold (b) Second Fold (c)
Third Fold (d) Fourth Fold (e) Fifth Fold

65

45.3.3 Confusion Matrix

Confusion Matrix - fald 1 Confusion Matrix - fold 2
L0 1200
1000 16060
False 1230 18
800 800
T T
¥ ¥
= =
w 500 @ 500
= =
= =
400 400
True 10
200 20
Fakig True Falig True
Predicted label Predicted label
(a) (b)
Confusion Matrix - fold 3 Confusion Matrix - fold 4
1200 1200
100D 1000
False
800 800
o o
¥ ¥
= =
1] [=16a] 1] [=16a]
= =
F F
400 400
True
200 200
Falkig True Falig True
Predicted label Predicted label

(c) (d)

Confusion Matrix - fold 5

1200

1000

False

B00

&00

Trise label

True

Falie True
Predicted label

(e)
Figure 4-10: Confusion Matrix graph for TL- DenseNet with 6 extra hidden layers +
dropout in (a) First Fold (b) Second Fold (c) Third Fold (d) Fourth Fold (e) Fifth
Fold

66

4.6 Testing Results on BUSI dataset

According to Table 23 below, all three proposed models, CNN-AlexNet model, TL-
Inception-V3 with 3 extra hidden layers + dropout model and TL-DenseNet with 6
extra hidden layers + dropout model successfully produced all evaluation metrics,
accuracy, precision, recall and F1-score rates above 90%. As illustrated in Figure 4-
12, the bar chart illustrates the comparison of the proposed models on the testing
dataset (BUSI), the TL-DenseNet model performs best in terms of accuracy and F1-
score at 91.46% and 0.9144 respectively.

Confusion Matrix - CNN-AlexNet

Confusion Matrix - TL-Inception-V3

200

benign benign

150

True label
True label

100

malignant malignant

Predicted label Predicted label

(a) (b)

benign

True label

malignant

Predicted label

(c)

Figure 4-11: Confusion Matrix Graph for (a) CNN-AlexNet (b) TL-Inception-V3 (c)
TL-DenseNet on the BUSI dataset

67

Table 23: Comparison between proposed model in terms of accuracy, precision,
recall and F1-score on the BUSI testing dataset

Model Accuracy | Precision Recall F1-Score
CNN-AlexNet 90.42% 0.9106 0.8971 0.9038
TL-Inception-V3 | 91.04% 0.9174 0.9027 0.9100
TL-DenseNet 91.46% 0.9172 0.9116 0.9144

Comparison between proposed models on BUSI testing dataset

F15core mRecall mPrecision mAccuracy

TL-DenseMet

TL-Inception-v3

CNMN-AlexNet

i

B9.00% 89.50% 90.00% 50.50% 91.00% 91.50% 92.00%

Figure 4-12: Bar chart of comparison between proposed model on BUSI testing set

4.7 Comparison between Existing Techniques

As tabulated in Table 24 below, the proposed models implemented in this project are
compared to existing techniques applied on related works based on the literature
review. As observed, all proposed methods, CNN-AlexNet model, TL-Inception-V3
and TL-DenseNet were capable to obtain a high testing accuracy at 90.42%, 91.04%
and 91.46% respectively. Among the existing techniques, DCGAN + TL-NASNet
model proposed by Al-Dhabyani and TL-Inception-V3 + NN proposed by Gupta
achieve the highest and second highest average testing accuracy at 92.6% and 92%

respectively. However, this is not an accurate comparison, since these literatures did

68

not provide the evaluation metrics for precision, recall and F1-score rates. On the

other hand, it is worth mentioned that the proposed models in this work uses the

MBU dataset + DCGAN with augmentation as training dataset, while the testing

results are evaluated on BUSI dataset which is from a completely different source,

hence the results are very difficult to achieve higher accuracy due to the distinct

configuration such as lighting, ultrasound device, operators and etc. of the different

datasets. Therefore, the proposed models are capable to classify the benign and

malignant tumours accurately even on unseen datasets.

Table 24: Comparison between proposed models and existing techniques

Proposed Model | Accuracy | Precision | Recall F1- Train Test
Score | Dataset | Dataset
DCGAN +CNN- 90.42% 0.9106 | 0.8971 | 0.9038
AlexNet
DCGAN + TL- 91.04% 0.9174 | 0.9027 | 0.9100 | MBU BUSI
Inception-V3
DCGAN + TL- 91.46% 0.9172 | 0.9116 | 0.9144
DenseNet
Existing Techniques
DCGAN + CNN 87% - - - DDSM
(Desai et al., 2020)
DCGAN + TL- 92% - - - BUSI
NASNet (Al-
Dhabyani et al.,
2019)
CNN (Latif et al., 88% - - - MBU
2019)
Quadratic SVM w/ | 84.9% - - - BUSI
BGWO (Khanna et
al., 2021)
TL-Inception-V3 + 92.6% - - - BUSI

NN (Gupta et al.,
2022)

69

Figure 4-13 below illustrates the bar chart of comparison between proposed

models and existing techniques based on literature review.

Comparison between proposed models and existing techniques

TL-Inception-V3 + NN (Gupta et al., 2022)
DCGAN + TL-NASNet (Al-Dhabyani et al., 2019)
DCGAN + TL-DenseNet

DCGAN + TL-Inception-V3

DCGAN +CNN-AlexNet

CNN (Latif et al., 2019)

DCGAN +CNN (Desai et al., 2020)

Quadratic SVM w/ BGWO (Khanna et al., 2021)

82.00% 84.00% 86.00% 88.00% 90.00% 92.00% 94.00%

Figure 4-13: Bar chart of comparison between proposed model and existing

techniques in terms of accuracy

4.8 Discussion

In recent years, one of the most frequently used imaging technologies in clinical
practise is the ultrasound imaging. The ultrasound imaging is considered as a
dynamically developing technology with numerous advantages and it has been
acknowledged as a potent and commonplace screening and diagnostic tool for
clinical research practise. Especially, due to its overall reasonable cost, operator
expertise and its relative lower impact to human health, therefore in certain
circumstances the ultrasound imaging technology is being favoured compared to CT,
MRI and X-Ray. Besides, the ultrasound imaging technology has been widely
implemented in the fields of breast diagnostics. Nevertheless, the ultrasound imaging
technology also comes with several major drawbacks, for instance image’s noises

generated by the ultrasound imaging method could significantly affects the image

70

quality, hence the extensive experience of the diagnostician is heavily relied in order
to diagnosis the image accurately (Liu et al., 2019).

On the other hand, the machine learning, image processing techniques and
machine vision as lately emerged as the most effective machine learning technology.
It has been demonstrated that these strategies can overcome the obstacles of the
conventional techniques employed in current industrial imaging technologies.
Furthermore, the image processing methods and deep learning algorithms have a
strong potential to integrate with the ultrasound imaging technologies in order to
contribute in present medical images diagnosis by performing various automated

tasks.

In this project, several image processing techniques are implemented on both
training and testing ultrasound breast tumours images datasets in order to improve
the training process efficiency of the DCGANs and CNNs model. A denoise
smoothing filter is chosen and applied to remove the ultrasound image noises while
maintaining the tumour edges. Apart from improving the deep learning model
efficiency, the pre-processed image could simplify the diagnostics process for people

unfamiliar to medical diagnostics to analyse and identify the tumours images.

Since the deep learning algorithm requires numerous of data to fine-tune the
parameters of the algorithm after every iteration. This fine-tuning process requires a
huge dataset in order to improve the performance of the neural net. Unfortunately,
the downloaded datasets from Mendeley website consists of 100 benign and 150
malignant images, which is a very tiny and unbalanced dataset and it could easily
overfitting the training model. Therefore, the image augmentation methods are
implemented on the original dataset to increase the dataset quantity. The
augmentation methods include flipping, rotating, resizing and cropping; thus, the
deep learning classifier could train on different orientation of the tumours images in
order to allow the algorithm to classify accurately on different variety or perspectives

of tumours dataset.

DCGANSs is proposed in this project to synthesized realistic benign and

malignant breast tumours images. The DCGANs acts as a potentially useful

71

technique in order to overcome the issue of limited labelled data for the classifier
model to classify the breast tumours. Besides, the DCGANSs also used for balancing
the distribution of dataset, where the minority data class (benign data) is increased to
have the same amount as the majority data class. The balanced dataset could greatly
improve the performance of the proposed CNNs classifier algorithm. Figure 4-1
below depicted the dataset distribution before and after applying DCGANS.

160-
140+
120+
100-
80+
60
40+
20+

O Benign
M Malignant

Original DCGANs

Figure 4-14: Sample distribution of the dataset before and after applying DCGAN

Due to the robust design of the DCGAN, the model could study and train
higher hierarchical features and extract useful information from the data rapidly and
efficiently. Apart from that, the structure of a normal GANs model consists of fully
connected neurons, thus the generated synthesized images are often poor resolution
and consists a great ratio of image’s noise. Nonetheless due to the stable architecture
of DCGANSs, it could generate higher quality synthesized images in a shorter
duration compared to the basic GANs model. The DCGANs network has been
considerably aided in its training by the addition of a batch normalisation layer,

which normalises the intermediate input values and speed up the training process.

72

Table 25: Samples of DCGANS synthesized image with and without batch
normalisation layer at 700 training epochs

Condition Synthesized image
1 With batch
normalisation layer at
700 epochs

2 Without batch
normalisation layer at
700 epochs

The MBU dataset with implementation of DCGANs was further split
randomly into training, validation and testing set. A cross-validation method known
as stratified k-fold cross validation (k=5) is implemented to the model in order to
allow the model to train and validate on 5 different set of training and validation, and
therefore enhanced the algorithm. The testing set of MBU dataset is used to evaluate
the proposed models on the unseen training set in the first evaluating stage of the
project. After the proposed models are capable to perform on the MBU dataset, the
classifier is then evaluated on another unseen dataset, BUSI dataset which is obtained

from another source.

Based on results in terms of accuracy and F1-score of the proposed CNN-
AlexNet model, TL-Inception-V3 with 3 extra hidden layers + dropout model and
TL-DenseNet with 6 extra hidden layers + dropout model has achieved 90% and
above on training and validation sets. Moreover, all proposed models have performed
remarkably and successfully attain above 90% in terms of accuracy and F1-Score on
the MBU and BUSI testing datasets. Among the proposed models, the DCGANs
with augmentation + TL-DenseNet with 6 extra hidden layers + dropout classifier
accomplishes the best performance, accuracy at 91.46% and F1-Score at 0.9144 on
the BUSI dataset. Followed by TL-Inception-V3 with 3 extra hidden layers + dropout
classifier, which accuracy at 91.04% and F1-Score at 0.91 and CNN-AlexNet model,
which accuracy at 90.42% and F1-Score at 0.9038.

73

In the medical sectors, the deep learning classifier evaluation metrics of
precision, recall and F1-score are relatively important compared to the accuracy rates.
Undoubtedly, the performance of a medical deep learning classifier is finer if the F1-
score rate is higher. Besides, the recall rate is considered as the paramount metrics
when classifying cancer, due to its characteristics that quantifies the true positive
predictions out of total positive predictions. This is because a cancer classifier with
low recall rates may misdiagnosed a cancer positive patient as negative, thus the
patient might miss out the ideal opportunity for treatment. In a nutshell, the F1-score
Is the best evaluation metrics to be considered in medical classification model, due to
its mathematical equations that integrated the precision and recall rates. Therefore,

without a doubt that the model performs better if the F1-score is approaching 1.00.

After evaluating the testing results, the TL-DenseNet with 6 extra hidden
layers + dropout algorithm is the best performed classifier among all proposed
models. However, the TL-DenseNet before fine-tuning achieve a testing accuracy at
62.5% and F1-score at 0.6242. Figure 4-15(a) illustrates the output statement of the
TL-DenseNet before fine-tuning and still utilize the ‘sigmoid’ as output activation
function. Therefore, the architecture fine-tuned process is considered as a success
endeavour, since a significant improvement is accomplished in the testing results.
Similar attempt is applied on the TL-Inception-V3 model, Figure 4-15(b) shows the
output statement of TL-Inception-V3 model before fine-tuned. The testing accuracy
TL-Inception-V3 model before fine-tuned is 48.13% and F1-score at 0.4191, which
the performance is poor and unacceptable. Nevertheless, the performance of the

model after fine-tuned had improved in a significant way.

s=============TEST RESULTS==s===s======= ==============TEST RESULTS============
Found 480 images belonging to 2 classes. Found 480 images belonging to 2 classes.
15/15 [==============================] - 13s 658ms/step 15/15 [s=============================] - 65 249ms/step
Accuracy : 0.625 Accuracy : 0.48125
Precision : 0.6260592478464878 Precision : 0.46722405996783695
flScore : 0.624210581255763 flScore : 0.41910367385820724
[[139 101] [[194 48]
[79 161]] [203 37]]
(a) (b)

Figure 4-15: Output statement of (a) TL-DenseNet and (b) TL-Inception-V3 before
fine-tuned

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Project Review

The main purpose of this project is to develop an image processing with deep
learning model to classify and detect breast tumours ultrasound images. The first
objective of the project is to design an image processing method to reduce the image
noise of the ultrasound images of benign and malignant tumours. Therefore, the
denoise smoothing filter is applied to the ultrasound images using OpenCV. The
noises in the ultrasound images are reduced while maintaining the edges of the

tumours, thus the objective is achieved.

The second objective is to apply data augmentation methods, such as GANs
to increase the dataset quantity. Thus, a DCGANs model is developed accordingly to
the research paper by Radford (2016) to generate synthesized realistic breast tumours
images. Moreover, several data augmentation techniques, for instance flipping,
rotating, resizing and cropping images have been applied to the dataset to enhance
the data quality and increase the data quantity, therefore the objective is attained.

The third and fourth objective is to design a CNN-based classifier to classify
benign and malignant tumors and apply a suitable transfer learning model and tune
the model’s parameters in order to improve the accuracy of the classifier. Hence,
three deep learning models which includes the CNN-AlexNet, TL-Inception-V3 and
TL-DenseNet were proposed in this project. Furthermore, the TL-Inception-V3 and

TL-DenseNet models were fine-tuned by adding several hidden layers such as fully

connected layer, batch normalization layer with dropout and replace the sigmoid
output activation function in order to improve the algorithm performance. In a

nutshell, all objectives in this project have been accomplished.

5.2 Project Findings

The transfer learning method in deep learning is defined as the approach of utilizing
a pre-trained model and the architecture is designed by the deep neural networks
related company, therefore the architecture of the transfer learning models is well
refined by deep learning scientist with proven outstanding results and strategies.
Besides, the parameters and weights of the transfer learning models are trained on a
gigantic number of datasets consisting of various features and the training process
often requires several high-powered GPUs for a long period of time since training on
large datasets are time consuming. On the other hand, in this project, among all
proposed models, before the fine-tuning technique is implemented, the CNN-
AlexNet performs best in terms of accuracy and F1-score. While the transfer learning
approach were underperformance where the TL-DenseNet achieved accuracy around
62% and TL-Inception-V3 obtained accuracy of approximately 48%. The
presumption is the transfer learning models has not trained on the tumours-related
data. Additionally, the last layer of transfer learning models is the classification layer
that often used to predict on the pre-trained dataset related image. Therefore, if the
last few layers of the transfer learning models are not freeze, the deep learning
classifier is predicting on data which has not trained previously. Furthermore, the
transfer learning models generally deep and consist of numerous layers, thus if the
earlier layers did not set to non-trainable, the tumours data will be faded out thorough
the numerous layers before arriving the final classifier layer and the training process
will be more time consuming. According to Vinithavn (2021), the earlier layer tends
to capture more generic features, while the later layers are more dataset specific.
Therefore, the approach in this project is to set the transfer learning model to non-
trainable and attach several layers for training purpose such as fully connected layers
and batch normalization layers with dropout function. This fine-tuning technique

could freeze the transfer learning model and trained on the designed hidden layers;

therefore, the model could utilize the generic features of the transfer learning model
and able to train on the prepared dataset simultaneously. Moreover, the last
classification layer of the transfer learning model is removed and replaced by the

proposed classification layer.

5.3 Recommendations for Future Improvement

First and foremost, this project has successfully developed a fine-tuned TL-
Inception-V3 and TL-DenseNet model with the implementation of DCGANSs with
image augmentation and processing methods for classifying benign and malignant
breast tumors ultrasound images and capable to accomplish an outstanding
performance in terms of accuracy and F1-score. However, due to the project period, |
was unable to test the CNN algorithm with different layers and activation function.
Therefore, the suggestion is to refine the CNN algorithm by adding or replacing
suitable layers with various dropout value and test with another suitable activation
function experimentally. In addition, different transfer learning models are also

suggested to test on these datasets experimentally.

Apart from that, the data augmentation part of the project with the
implementation of DCGANS is the most time-consuming part of the project, almost
70% of the overall project duration has been used on training and generating
synthesized images using the DCGANs model. Therefore, the recommendation is to
study on various GANs model in order to fine-tune the DCGANSs architecture for
shortening the training duration and improve the performance of DCGANS in terms
of generating synthesized tumors images. Moreover, the Pix2Pix technique is
recommended for data augmentation by generating synthesized image due to its
characteristics of image-to-image translation, thus the fake tumor images can be
synthesized from free-form sketch. Figure 5-1 illustrates the outline of the

implementation of Pix2Pix technique to generate lung cancer CT image.

7

5 .Ma

» ’ P|x2p|x Quality evaluation
Q i T +
} | Application as
‘ [[mﬂ ‘ a data augmentation
Chest CT Real image Generated

and sketch StyleP|x2p|x image
Figure 5-1: Outline of the implementation of Pix2Pix technigue to generate lung
cancer CT image (Toda et al., 2022)

54 Conclusion

The breast cancer is life-threatening, and it is also one of the leading causes of death,
therefore early diagnosis of breast cancer acts as an important role in order to prevent
the cancer by progressing rapidly and starting to affect human’s health condition or
even worse, approaching death. The early diagnosis process could allow doctors to
provide treatments and operations that could end up saving the patients' lives. This
paper proposed three CNN models including transfer learning with integration of
DCGANSs for data augmentation and image processing methods to classify the breast
tumors as benign and malignant types. The Mendeley Breast Ultrasound dataset was
used to train and validate the proposed deep learning classifier model and the Breast
Ultrasound Image dataset was used to test the accuracy of the classifier in classifying
benign and malignant tumors. Furthermore, the image processing methods have been
implemented on the datasets to remove the ultrasound noises and thus enhance the
image quality. Moreover, DCGANs model has successfully generate synthesized
both benign and malignant breast tumors ultrasound images and image augmentation
techniques such as flipping and rotating images have successfully increase the
dataset quantity. Apart from that, the proposed models, CNN-AlexNet, TL-
Inception-V3 and TL-DenseNet have successfully developed and able to classify the
tumors images accurately with a testing accuracy at 90.42%, 91.04% and 91.46%
and F1-score at 0.9038, 0.9100 and 0.9144 respectively. Without a doubt, among the
three proposed models, the fine-tuned TL-DenseNet exhibited the finest performance,
followed by the fine-tuned TL-Inception-V3. In a nutshell, all objectives of this
project are accomplished.

78

REFERENCES

Abdullah, N.A., Mahiyuddin, W.R.W., Muhammad, N.A., Ali, Z.M., lbrahim, L.,
Tamim, N.S.1., Mustafa, A.N. and Kamaluddin, M.A. (2013). Survival Rate
of Breast Cancer Patients In Malaysia: A Population-based Study. Asian
Pacific Journal of Cancer Prevention, 14(8), pp.4591-4594.
doi:10.7314/apjcp.2013.14.8.4591.

Al-Dhabyani, W., Gomaa, M., Khaled, H. and Fahmy, A. (2019). Deep Learning
Approaches for Data Augmentation and Classification of Breast Masses using
Ultrasound Images. International Journal of Advanced Computer Science and
Applications (IJACSA), [online] 10(5). doi:10.14569/1IJACSA.2019.0100579.

Al-Dhabyani, W., Gomaa, M., Khaled, H. and Fahmy, A. (2020). Dataset of breast
ultrasound images. Data in Brief, 28, p.104863.
d0i:10.1016/j.dib.2019.104863.

Alyafi, B., Diaz, O. and Marti, R. (2020). DCGANSs for realistic breast mass
augmentation in x-ray mammography. Medical Imaging 2020: Computer-
Aided Diagnosis. doi:10.1117/12.2543506.

Basavarajaiah, M. (2022). 6 basic things to know about Convolution. [online]
Medium. Available at: https://medium.com/@bdhuma/6-basic-things-to-
know-about-convolution-
daef5elbc411#:~:text=1n%20image%20processing%2C%20convolution%20i
.

Brazier, Y. (2019). Tumors: Benign, premalignant, and malignant. [online]
www.medicalnewstoday.com. Available at:
https://www.medicalnewstoday.com/articles/249141.

Breast Cancer Foundation. (n.d.). About Breast Cancer. [online] Available at:
https://www.breastcancerfoundation.org.my/about-breast-cancer.

Cleveland Clinic. (2021). Tumor: What Is It, Types, Symptoms, Treatment &
Prevention. [online] Available at:
https://my.clevelandclinic.org/health/diseases/21881-
tumor#:~:text=A%20tumor%20is%20a%20solid.

Desai, S.D., Giraddi, S., Verma, N., Gupta, P. and Ramya, S. (2020). Breast Cancer
Detection Using GAN for Limited Labeled Dataset. 2020 12th International
Conference on Computational Intelligence and Communication Networks

10.7314/apjcp.2013.14.8.4591
10.14569/IJACSA.2019.0100579
10.1016/j.dib.2019.104863
10.1117/12.2543506
https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411#:~:text=In%20image%20processing%2C%20convolution%20is
https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411#:~:text=In%20image%20processing%2C%20convolution%20is
https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411#:~:text=In%20image%20processing%2C%20convolution%20is
https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411#:~:text=In%20image%20processing%2C%20convolution%20is
https://www.medicalnewstoday.com/articles/249141
https://www.breastcancerfoundation.org.my/about-breast-cancer
https://my.clevelandclinic.org/health/diseases/21881-tumor#:~:text=A%20tumor%20is%20a%20solid
https://my.clevelandclinic.org/health/diseases/21881-tumor#:~:text=A%20tumor%20is%20a%20solid

79

(CICN). doi:10.1109/cicn49253.2020.9242551.

Dinakaran, R.K., Easom, P., Bouridane, A., Zhang, L., Jiang, R., Mehboob, F. and
Rauf, A. (2019). Deep Learning Based Pedestrian Detection at Distance in
Smart Cities. Advances in Intelligent Systems and Computing, pp.588-593.
d0i:10.1007/978-3-030-29513-4_43.

Fang, W., Zhang, F., S. Sheng, V. and Ding, Y. (2018). A Method for Improving
CNN-Based Image Recognition Using DCGAN. Computers, Materials &
Continua, 57(1), pp.167-178. doi:10.32604/cmc.2018.02356.

Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J. and Greenspan, H.
(2018). GAN-based synthetic medical image augmentation for increased
CNN performance in liver lesion classification. Neurocomputing, 321,
pp.321-331. doi:10.1016/j.neucom.2018.09.013.

Fung, V. (2017). An Overview of ResNet and its Variants. [online] Towards Data
Science. Available at: https://towardsdatascience.com/an-overview-of-resnet-
and-its-variants-5281e2f56035.

GeeksforGeeks. (2021). Python OpenCV - Smoothing and Blurring. [online]
Available at: https://www.geeksforgeeks.org/python-opencv-smoothing-and-
blurring/ [Accessed 15 Sep. 2022].

GeeksforGeeks. (2022). What is so special about Generative Adversarial Network
(GAN). [online] Awvailable at: https://www.geeksforgeeks.org/what-is-so-
special-about-generative-adversarial-network-gan/ [Accessed 15 Sep. 2022].

Global Cancer Observatory (2020). Global Cancer Observatory. [online] larc.fr.
Available at: https://gco.iarc.fr/.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. and Bengio, Y. (2020). Generative adversarial networks.
Communications of the ACM, 63(11), pp.139-144. doi:10.1145/3422622.

Gupta, S., Panwar, A., Yadav, R., Aeri, M. and Manwal, M. (2022). Employing Deep
Learning Feature Extraction Models with Learning Classifiers to Diagnose
Breast Cancer in Medical Images. 2022 IEEE Delhi Section Conference
(DELCON). doi:10.1109/delcon54057.2022.9752856.

He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp.770-778. doi:10.1109/cvpr.2016.90.

Hiremath, P.S., T., P. and Badiger, S. (2013). Speckle Noise Reduction in Medical
Ultrasound Images. Advancements and Breakthroughs in Ultrasound Imaging.
doi:10.5772/565109.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8), pp.1735-1780. doi:10.1162/nec0.1997.9.8.1735.

Igbal, T. and Ali, H. (2018). Generative Adversarial Network for Medical Images

10.1109/cicn49253.2020.9242551
10.1007/978-3-030-29513-4_43
10.32604/cmc.2018.02356
10.1016/j.neucom.2018.09.013
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://www.geeksforgeeks.org/python-opencv-smoothing-and-blurring/
https://www.geeksforgeeks.org/python-opencv-smoothing-and-blurring/
https://www.geeksforgeeks.org/what-is-so-special-about-generative-adversarial-network-gan/
https://www.geeksforgeeks.org/what-is-so-special-about-generative-adversarial-network-gan/
https://gco.iarc.fr/
10.1145/3422622
10.1109/delcon54057.2022.9752856
10.1109/cvpr.2016.90
10.5772/56519
10.1162/neco.1997.9.8.1735

80

(MI-GAN). Journal of Medical Systems, 42(11). doi:10.1007/s10916-018-
1072-9.

Irla, T. (2019). Transfer Learning using Inception-v3 for Image Classification.
[online] Analytics Vidhya. Available at: https://medium.com/analytics-
vidhya/transfer-learning-using-inception-v3-for-image-classification-
86700411251b.

Jason Brownlee (2019). A Gentle Introduction to Generative Adversarial Networks
(GANs). [online] Machine Learning Mastery. Available at:
https://machinelearningmastery.com/what-are-generative-adversarial-
networks-gans/.

Kazeminia, S., Baur, C., Kuijper, A., van Ginneken, B., Navab, N., Albargouni, S.
and Mukhopadhyay, A. (2020). GANs for medical image analysis. Artificial
Intelligence in Medicine, [online] 109, p.101938.
doi:10.1016/j.artmed.2020.101938.

Khanna, P., Sahu, M. and Kumar Singh, B. (2021). Improving the classification
performance of breast ultrasound image using deep learning and optimization
algorithm. 2021 IEEE International Conference on Technology, Research,
and Innovation for Betterment of Society (TRIBES).
d0i:10.1109/tribes52498.2021.9751677.

Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012). ImageNet classification with
deep convolutional neural networks. Communications of the ACM, 60(6),
pp.84-90. doi:10.1145/3065386.

Kuhl, C.K., Schrading, S., Leutner, C.C., Morakkabati-Spitz, N., Wardelmann, E.,
Fimmers, R., Kuhn, W. and Schild, H.H. (2005). Mammography, Breast
Ultrasound, and Magnetic Resonance Imaging for Surveillance of Women at
High Familial Risk for Breast Cancer. Journal of Clinical Oncology, 23(33),
pp.8469-8476. doi:10.1200/jco.2004.00.4960.

Kumar, A. (2022). K-Fold Cross Validation - Python Example. [online] Data
Analytics. Available at: https://vitalflux.com/k-fold-cross-validation-python-
example/ [Accessed 15 Sep. 2022].

Latif, G., Butt, M.O., Yousif Al Anezi, F. and Alghazo, J. (2020). Ultrasound Image
Despeckling and detection of Breast Cancer using Deep CNN. 2020 RIVF
International Conference on Computing and Communication Technologies
(RIVF). doi:10.1109/rivf48685.2020.9140767.

Liu, S., Wang, Y., Yang, X,, Lei, B, Liu, L., Li, S.X., Ni, D. and Wang, T. (2019).
Deep Learning in Medical Ultrasound Analysis: A Review. Engineering, 5(2),
pp.261-275. doi:10.1016/j.eng.2018.11.020.

National Cancer Institute (2021). What Is Cancer? [online] National Cancer Institute.
Available at: https://www.cancer.gov/about-cancer/understanding/what-is-
cancer.

Our World in Data. (2019). Number of deaths by cause. [online] Available at:

10.1007/s10916-018-1072-9
10.1007/s10916-018-1072-9
https://medium.com/analytics-vidhya/transfer-learning-using-inception-v3-for-image-classification-86700411251b
https://medium.com/analytics-vidhya/transfer-learning-using-inception-v3-for-image-classification-86700411251b
https://medium.com/analytics-vidhya/transfer-learning-using-inception-v3-for-image-classification-86700411251b
https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
10.1016/j.artmed.2020.101938
10.1109/tribes52498.2021.9751677
10.1145/3065386
10.1200/jco.2004.00.4960
https://vitalflux.com/k-fold-cross-validation-python-example/
https://vitalflux.com/k-fold-cross-validation-python-example/
10.1109/rivf48685.2020.9140767
10.1016/j.eng.2018.11.020
https://www.cancer.gov/about-cancer/understanding/what-is-cancer
https://www.cancer.gov/about-cancer/understanding/what-is-cancer

81

https://ourworldindata.org/grapher/annual-number-of-deaths-by-cause.

Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks. CoRR,
abs/1511.06434.

Raj, B. (2018). A Simple Guide to the Versions of the Inception Network. [online]
Towards Data Science. Available at: https://towardsdatascience.com/a-
simple-guide-to-the-versions-of-the-inception-network-7fc52b863202.

Rodrigues, Paulo Sergio (2018), “Breast Ultrasound Image”, Mendeley Data, V1, doi:
10.17632/wmy84gzngw.1

Salimans, T., Goodfellow, 1.J., Zaremba, W., Cheung, V., Radford, A., & Chen, X.
(2016). Improved Techniques for Training GANs. ArXiv, abs/1606.03498.

Senaras, C., Niazi, M.K.K., Sahiner, B., Pennell, M.P., Tozbikian, G., Lozanski, G.
and Gurcan, M.N. (2018). Optimized generation of high-resolution phantom
images using cGAN: Application to quantification of Ki67 breast cancer
images. PLOS ONE, 13(5), p.e0196846. doi:10.1371/journal.pone.0196846.

Shin, H.-C., Tenenholtz, N.A., Rogers, J.K., Schwarz, C.G., Senjem, M.L., Gunter,
J.L., Andriole, K.P. and Michalski, M. (2018). Medical Image Synthesis for
Data Augmentation and Anonymization Using Generative Adversarial
Networks. Simulation and Synthesis in Medical Imaging, pp.1-11.
d0i:10.1007/978-3-030-00536-8 1.

Srivastava, R.K., Greff, K., & Schmidhuber, J. (2015). Highway Networks. ArXiv,
abs/1505.00387.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D. and
Vanhoucke, V. (2015). Going deeper with convolutions. 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). [online]
d0i:10.1109/cvpr.2015.7298594.

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J. and Wojna, Z. (2016). Rethinking
the Inception Architecture for Computer Vision. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
doi:10.1109/cvpr.2016.308.

Thuy, M.B.H. and Hoang, V.T. (2020). Fusing of Deep Learning, Transfer Learning
and GAN for Breast Cancer Histopathological Image Classification. [online]
Springer Link. doi:10.1007/978-3-030-38364-0_23.

Toda, R., Teramoto, A., Kondo, M., Imaizumi, K., Saito, K. and Fujita, H. (2022).
Lung cancer CT image generation from a free-form sketch using style-based
pix2pix for data augmentation. Scientific Reports, 12(1). doi:10.1038/s41598-
022-16861-5.

Vinithavn (2021). The Power Of Transfer Learning in Deep Learning. [online]
Analytics Vidhya. Available at: https://medium.com/analytics-vidhya/the-
power-of-transfer-learning-in-deep-learning-681f86a62f79 [Accessed 15 Sep.

https://ourworldindata.org/grapher/annual-number-of-deaths-by-cause
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
10.1371/journal.pone.0196846
10.1007/978-3-030-00536-8_1
10.1109/cvpr.2015.7298594
10.1109/cvpr.2016.308
10.1007/978-3-030-38364-0_23
10.1038/s41598-022-16861-5
10.1038/s41598-022-16861-5
https://medium.com/analytics-vidhya/the-power-of-transfer-learning-in-deep-learning-681f86a62f79
https://medium.com/analytics-vidhya/the-power-of-transfer-learning-in-deep-learning-681f86a62f79

82

2022].

Wang, G., Li, W., Ourselin, S. and Vercauteren, T. (2018). Automatic Brain Tumor
Segmentation Using Cascaded Anisotropic Convolutional Neural Networks.
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries,
pp.178-190. doi:10.1007/978-3-319-75238-9_16.

Yip, C. H., Taib, N. A., & Mohamed, I. (2006). Epidemiology of breast cancer in
Malaysia. Asian Pacific journal of cancer prevention: APJCP, 7(3), 369-374.

Zhi, W., Yueng, HW.F., Chen, Z., Zandavi, S.M., Lu, Z. and Chung, Y.Y. (2017).
Using Transfer Learning with Convolutional Neural Networks to Diagnose
Breast Cancer from Histopathological Images. Neural Information
Processing, pp.669-676. doi:10.1007/978-3-319-70093-9 71.

10.1007/978-3-319-75238-9_16
10.1007/978-3-319-70093-9_71

APPENDICES

APPENDIX A: Training Output Statement of Proposed Models Generated in

Results for fold 1

Found
Found
Epach
44144
Epoch
44144
Epoch
44144
Epoch
44144
Epoch
44144
Epoch
44144
Epoch
44144
Epoch
44]44
Epoch
44144
Epoch
44) 4

11187 images belonging to 2 classes.

1997 images belonging to 2 classes.
1/10

[1 - 5728
2/10

[1 - 547s
3/10

[1 - s@5s
4/10

[1 - 628s
5/10

[1 - &15s
6/10

[1 - 6l4s
7/10

[1 - 623s
8/10

[1 - 624s
9/10

[1 - 668s
10/10

[1 - 6555

13s/step
12s/step
las/step
14s/step
las/step
14s/step
las/step
1l4s/step
15s/step

15s/step

PyCharm

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

=

@

=

@

=

@

=

@

@

=

L6865

L6836

L6220

.5127

L4547

L5414

L3541

.2888

L2132

L1784

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

@

@

@

@

@

@

@

@

@

]

.5559

. 6808

.6658

L7496

.7818

.7285

.8439

.8781

L9131

.9289

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

=

@

=

@

=

@

=

@

@

]

L6302

L6531

.5187

L5444

.5529

.3585

L2245

L1482

.0965

8598

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

Figure 5-2: Training output statement of CNN-AlexNet in fold 1

Results for fold 2

Found
Found
Epoch
44f44
Epoch
44 /44
Epoch
44/44
Epoch
44f4h
Epoch
44 /44
Epoch
44/44
Epoch
44/44
Epoch
44 /44
Epoch
44/44
Epoch
44/44

111087 images belonging to 2 classes.

1997 images belonging to 2 classes.
1/10

[1 - 621s
2/108

[1 - 625s
3/10

[] - 630s
410

[] - 6543
5/10

[1 - 670s
6/10

[] - 679s
7/10

[] - 5955
8/10

[1 - 548s
9/10

[] - 598s
108/10

[1 - 534s

14s/step

14s/step

14s/step

15s/step

15s/step

15s/step

13s/step

12s/step

13s/step

12s/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

@

@

@

=

@

@

=

@

@

=

.1568

L1137

.0978

0824

L1119

L1112

.B571

.8537

.8580

L8373

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

@

[

@

©

[

@

©

[

@

©

.9417

L9571

L9641

.9706

L9614

.9590

9790

.9812

.9841

L9866

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

=

@

=

@

@

=

=

@

=

=

0492

L8224

.0185

0147

.8384

L0145

.bogs

.8867

.0854

0033

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

Figure 5-3: Training output statement of CNN-AlexNet in fold 2

.6505

.5884

.7526

.7356

L7271

.B438

L9114

L9434

L9664

.9820

.9815

.9935

L9945

L9940

.9918

L9930

L9985

.9975

.9985

L9995

83

84

Results for fold 3
Found 111087 images belonging to 2 classes
Found 1997 images belonging to 2 classes.

Epoch 1/10

a4fag [] - 523s 12s/step - loss: 0.0341 - accuracy: 0.9880 - val_loss: 0.00822 - val_accuracy: 1.0000
Epoch 2/18

4afaaq [] - 528s 12s/step - loss: 8.3452 - accuracy: 6.8687 - val_loss: 8.2984 - val_accuracy: 0.8918
Epoch 3/10

4afag [] - 518s 12s/step - loss: 0.2779 - accuracy: 0.8831 - val_loss: 0.0447 - val_accuracy: 0.9860
Epoch 4/10

44fa4 [] - 518s 12s/step - loss: 0.1168 - accuracy: 0.9566 - val_loss: 8.08223 - val_accuracy: 0.9928
Epoch 5/10

4afaa [] - 5205 12s/step - loss: 0.0798 - accuracy: 0.9726 - val_loss: 0.0086 - val_accuracy: 0.9988
Epoch 6/10

a4fag [] - 5225 12s/step - loss: 0.8528 - accuracy: ©.9827 - val_loss: 0.00840 - val_accuracy: 1.8000
Epoch 7/10

4afaa [] - 521s 12s/step - loss: 0.0382 - accuracy: 0.9871 - val_loss: 0.0032 - val_accuracy: 1.6008
Epoch 8/10

a4fag [] - 521s 12s/step - loss: 0.0506 - accuracy: 0.9826 - val_loss: 0.0840 - val_accuracy: 0.9990
Epoch 9/18

4afaaq [] - 5225 12s/step - loss: 8.0337 - accuracy: 6.9885 - val_loss: 8.0066 - val_accuracy: 0.9998
Epoch 18/10

aafa4 [1 - 521s 12s/step - loss: 0.0217 - accuracy: 0.9923 - val_loss: 7.2733e-84 - val_accuracy: 1.0000

Figure 5-4: Training output statement of CNN-AlexNet in fold 3

Results for fold 4
Found 11187 images belonging to 2 classes.
Found 1997 images belonging to 2 classes.

Epoch 1/18

44f46q [1 - 5215 12s/step - loss: 0.8261 - accuracy: 8.9989 - val_loss: 5.1772e-84 - val_accuracy: 1.0000
Epoch 2/18

44faa [1 - 5205 12s/step - loss: 0.8209 - accuracy: 8.9926 - val_loss: 6.3614e-04 - val_accuracy: 1.0000
Epoch 3/18

44faa [1 - 5215 12s/step - loss: 0.8191 - accuracy: 8.9942 - val_loss: 7.1850e-84 - val_accuracy: 1.0000
Epoch 4/10

aafaq [1 - 5185 12s/step - loss: 0.8188 - accuracy: 8.9938 - val_loss: 4.3212e-84 - val_accuracy: 1.6000
Epoch 5/10

a4faq [1 - 5205 12s/step - loss: 0.8183 - accuracy: 8.9943 - val_loss: 5.9748e-84 - val_accuracy: 1.6000
Epoch 6/10

a4fa6 [] - 5235 12s/step - loss: 0.0173 - accuracy: 8.9941 - val_loss: 8.8020 - val_accuracy: 8.9995
Epoch 7/10

4a4fa6 |] - 519s 12s/step - loss: 8.028@ - accuracy: 0.9927 - val_loss: 9.3277e-04 - val_accuracy: 1.0008
Epoch 8/10

aafaq [1 - 5195 12s/step - loss: 0.8118 - accuracy: 8.9963 - val_loss: 0.80830 - val_accuracy: 0.9990
Epoch 9/10

aafaq [] - 5185 12s/step - loss: 0.8246 - accuracy: 8.9919 - val_loss: 0.8854 - val_accuracy: 0.9985
Epoch 18/18

aafaaq [] - 5195 12s/step - loss: 0.8256 - accuracy: 8.9918 - val_less: 0.8015 - val_accuracy: 0.9995

Figure 5-5: Training output statement of CNN-AlexNet in fold 4

Results for fold 5
Found 11188 images belonging to 2 classes.
Found 1996 images belonging to 2 classes

Epoch 1/18

44fa4 [1 - 5195 12s/step - loss: 0.8159 - accuracy: 0.9950 - val_loss: 1.5187e-04 - val_accuracy: 1.0000
Epoch 2/18

44fa4 [1 - 528s 12s/step - loss: 0.8178 - accuracy: 0.9943 - val_loss: 2.3462e-04 - val_accuracy: 1.0000
Epoch 3/18

ahfaa [] - 5215 12s/step - loss: 8.1884 - accuracy: 0.9294 - val_loss: 8.8828 - val_accuracy: 0.9664
Epoch 4/18

ahfaa [1 - 5195 12s/step - loss: 8.1299 - accuracy: 0.9515 - val_loss: 8.0138 - val_accuracy: 0.9970
Epoch 5/18

ahfaa [1 - 5225 12s/step - loss: 0.06088 - accuracy: 0.9788 - val_loss: 8.8076 - val_accuracy: 0.9980
Epoch 6/10

4afa4 [] - 5385 12s/step - loss: 8.0411 - accuracy: 0.9851 - val_loss: 0.0034 - val_accuracy: 0.9990
Epoch 7/18

4af44 [1 - 521s 12s/step - loss: 0.0447 - accuracy: 0.9846 - val_loss: 0.8044 - val_accuracy: 0.9990
Epoch 8/18

4afa4 [1 - 5215 12s/step - loss: 0.0398 - accuracy: 0.9862 - val_loss: 0.0020 - val_accuracy: 0.9995
Epoch 9/18

4afa4 [1 - 5215 12s/step - loss: 8.027@ - accuracy: 0.9986 - val_loss: 0.0024 - val_accuracy: 0.9995
Epoch 18/18

4afah [] - 521s 12s/step - loss: 8.8172 - accuracy: 0.9936 - val_loss: 8.8018 - val_accuracy: 0.9995

Figure 5-6: Training output statement of CNN-AlexNet in fold 5

Results for fold 1
11187 images belonging to 2 classes.

Found
Found
Epoch
44/44
Epoch
a4fad
Epoch
a4fad
Epoch
44/44
Epoch
4af44
Epoch
4af44
Epoch
44f64
Epoch
44f64
Epoch
44f44
Epoch
44/a4

1997
1/18

images belonging to 2 classes.

2/18

3/10

4/10

5/10

6/10

7/10

8/10

9/10
[

10/18

[

243s

122s

128s

119s

1225

119s

115s

115s

117s

115s

5s/step

3s/step

3s/step

3s/step

3s/step

3s/step

3s/step

3s/step

3s/step

3s/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

@

@

@

=

=

=

@

@

=

]

. 6825

. 4907

L4345

L4085

L3990

L3745

. 3580

L3396

3259

L3159

accuracy:

accuracy:

accuracy:

accuracy.

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

0.6540

0.7577

0.7984

0.8052

0.8137

0.8311

0.8359

0.8505

0.8563

0.8597

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

@

@

@

=

=

=

@

@

=

L4883

L4211

.3881

L3604

L3462

.3207

L3106

.3eel

2769

0.2874

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

Figure 5-7: Training output statement of TL-Inception-V3 in fold 1

Results for fold 2
11107 images belonging to 2 classes.

Found
Found
Epoch
4444
Epoch
4444
Epoch
4444
Epoch
46fas
Epoch
4444
Epoch
4444
Epoch
4444
Epoch
4h]44
Epoch
46fas
Epoch
4444

1997
1/18

images belonging to 2 classes.

2/10

3/10

4/10

5/10

6/10

7/18

8/1e

9/10

1e/18
[

115s

117s

118s

118s

117s

119s

119s

119s

118s

118s

3s/step
3s/step
3s/step
3s/step
3s/step
3s/step
3s5/step
3s/step
3s/step

3s/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

@

@

=

@

=

@

@

@

=

.3152

.2977

.2822

.2754

2604

.2577

.2550

.2531

.2426

0.2307

accuracy:

accuracy:

accuracy.

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

0.8596

0.8685

0.8808

0.8852

0.8921

0.8917

0.8921

0.8944

0.8993

0.9029

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

@

@

@

=

@

@

@

@

@

2]

L2341

L2447

.2231

L2116

L1984

L2136

.1893

.1788

L1786

L1686

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

Figure 5-8: Training output statement of TL-Inception-V3 in fold 2

Results for fold 3
11107 images belonging to 2 classes.

Found
Found
Epoch
44fé4
Epoch
44fas
Epoch
44/44
Epoch
44f44
Epoch
44f64
Epoch
44/44
Epoch
44f44
Epoch
44f64
Epoch
44fa4
Epoch
44f44

1997
1/10

images belonging to 2 classes.

2/18

3/10

4/10

5/10

6/10

7/10

8/10

9/18

1e8/18
[

116s

118s

118s

116s

1208

116s

118s

122s

117s

119s

3s/step
3s/step
3s/step
3s/step
3s5/step
3s/step
3s/step
3s/step
3s/step

3s/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

=

@

=

=

@

=

=

@

@

=

L2395

.2330

.2191

.2085

.2115

.2060

.2006

.1886

L1961

L1971

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

0.8993

0.9009

0.9078

0.9158

0.9121

0.9184

0.9182

0.9248

0.9196

0.9184

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

@

@

@

@

@

@

@

@

@

@

L1629

L1671

.1566

L1481

.1589

1447

L1362

L1442

.1457

L1434

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

Figure 5-9: Training output statement of TL-Inception-V3 in fold 3

@

@

@

=

=

@

@

=

=

@

=

=

@

@

=

.7551

L8167

.B262

8418

8568

.Bo48

8738

8738

8888

L8783

L9164

.9894

.9154

L9169

L9329

.9199

.9284

.9339

.9359

L9369

L9424

L9404

9409

.9509

L9444

L9479

L9499

L9479

L9449

9449

Results for fold 4

Found
Found
Epoch
44f44
Epoch
44[44
Epoch
44f44
Epoch
44144
Epoch
44f44
Epoch
44/44
Epoch
44f44
Epoch
44f44
Epoch
44f44
Epoch
44f44

11107 images belonging to 2 classes.
1997 images belonging to 2 classes.
1/10

[1 - 1175
2/10

[1 - 118s
3/10

[1 - 118s
4/10

[1 - 118s
5/10

[1 - 1195
6/10

[1 - 119s
7/10

[1- 119s
8/10

[1 - 116s
9/10

[1 - 127s
108/10

[1 - 1295

3s/step
3s/step
3s/step
3s/step
3s/step
3s/step
3s/step
3s/step
3s/step

3s/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

=

@

@

@

=

=

@

@

@

=

.1889

.1827

.1818

.1758

.1882

L1738

.1782

L1689

L1673

L1739

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

=

@

@

@

=

=

@

@

@

=

.9288

L9249

.9293

.9282

L9248

L9301

.9272

.9342

L9328

L9277

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

=

@

@

@

=

=

@

@

@

=

L1225

L1214

.1232

L1266

.1298

L1121

L1156

L1248

.1488

.11e1

Figure 5-10: Training output statement of TL-Inception-V3

Results for fold 5

Found
Found
Epoch
4444
Epoch
4444
Epoch
4444
Epoch
[
Epoch
4444
Epoch
[
Epoch
4444
Epoch
4é |44
Epoch
4é |44
Epoch
4é |44

11188 images belonging to 2 classes.
1996 images belonglng to 2 classes.
1/18

[] - 114s
2/18

[] - 1188
3/18

[] - 111s
4/18

[1 - 118s
5/10

[] - 113s
6/16

[1 -117s
7/18

[1 -117s
8/10

[1 - 1218
9/10

[1 - 118s
18/10

[1 - 1228

3s/step
2s/step
3s/step
2s/step
3s/step
3s/step
3s/step
3s/step
3s/step

3s/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

=

=

=

@

@

@

@

@

@

@

L1665

L1782

L1626

.1687

L1623

.1545

.1587

L1496

.1583

.1557

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

@

@

@

@

@

@

@

@

@

@

L9333

L9312

.9368

.9352

.9378

L9373

.9400

.9398

.9400

L9361

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

@

@

@

@

@

@

@

@

@

@

.0953

.0915

.0999

.0888

.0872

.0875

.0898

.0881

.1023

L0876

Figure 5-11: Training output statement of TL-Inception-V3

Results for

Found
Found
Epoch
44[44
Epoch
44[44
Epoch
44[44
Epoch
44[44
Epoch
44/44
Epoch
46144
Epoch
46144
Epoch
46[44
Epoch
44[44
Epoch
44[44

11107

fold 1
images belonging to 2 classes.

1997 images belonging to 2 classes.

1/10
[1 - 323s
2/10
[1 - 2355
3/10
[1 - 233s
4/10
[1 - 2425
5/18
[1 - 247s
6/18
[1 - 247s
7/18
[1 - 256s
8/10
[1 - 247s
9/10
[1 - 241s
10/10
[1 - 236s

7s/step
5s/step
5s/step
5s/step
6s/step
6s/step
65/step
65/step
5s/step

5s/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

=

=

=

@

@

@

@

@

@

@

L6584

L3995

L3454

L2778

.2502

L2242

.28608

L1777

L1747

.1594

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

=

=

=

@

@

@

@

@

@

@

L7484

.8289

8544

L8797

L8944

.9853

L9133

.9279

L9273

.9333

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

L4132

L3344

.3825

L2842

L1861

L1573

L1381

L1166

.1887

L8814

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

in fold 4

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

in fold 5

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

- val_accuracy:

Figure 5-12: Training output statement of TL-DenseNet in fold 1

L9564

.9559

.9544

.9514

L9439

.9579

.9539

.9539

L9464

.9584

L9704

L9724

L9669

L9689

L9699

L9784

L9784

L9729

L9624

L9719

.8072

L8433

. 8563

L9334

.9384

L9404

L9544

L9634

.9695

.9745

Results for

Found
Found
Epoch
4hfas
Epoch
4hfas
Epoch
44/44
Epoch
4hfah
Epoch
44fa4
Epoch
44fas
Epoch
4hfas
Epoch
4hfas
Epoch
4hfah
Epoch
44fa4

11107

fold 2
images belonging to 2 classes.

1997 images belonging to 2 classes.

1/18

2/18

1 - 239s 5s/step

3f10

1 - 255s 6s/step

4/10
[

1 - 291s 7s/step

5/10

1 - 253s 6s/step

6/10

1 - 257s 6s/step

7/18

1 - 243s 6s/step

8/18

1 - 243s 5s/step

9/10

1 - 2585 6s/step

18/18
[

1 - 281s 6s/step

1 - 254s 6s/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

@

@

=

@

@

@

@

@

=

]

.1527

.1459

.1335

L1326

.1285

L1196

L1226

L1172

1149

L1876

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

.9387

L9443

L9475

L9465

L9491

.9525

.9514

.9533

.9548

L9574

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

@

@

=

=

=

@

@

@

=

]

L8753

L8704

8597

L0763

.B568

L8624

L8604

L8468

0448

L0404

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

Figure 5-13: Training output statement of TL-DenseNet in fold 2

Results for fold 3

Found
Found
Epoch
44fb4
Epoch
44fb4
Epoch
44fb4
Epoch
4h]44
Epoch
4444
Epoch
44 f64
Epoch
46fa4
Epoch
46 f64
Epoch
46 f64
Epoch
46f44

11187

images belonging to 2 classes.

1997 images belonging to 2 classes.

1/18

2/18

1 - 272s 6s/step

3/18

272s 65/step

4/18

] - 274s é6s/step

5/18

1 - 248s 6s/step

6/10

1 - 244s 6sfstep

7/18

1 - 247s 6s/step

8/10

2785 65/step

9/10

2655 65/step

18/10
[

] - 261s b6s/step

] - 264s bs/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

@

@

@

@

L=

=

=

=

=

8

.1859

.1855

.1818

.0928

L0976

0870

0910

0843

.0850

.0829

accuracy:

accuracy:

accuracy:

accuracy:

accuracy.

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

@

@

@

@

L=

=

=

=

=

=

. 9554

.9597

.9628

.9622

L9628

L9671

L9629

.9689

.9680

L9668

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

@

@

@

@

L=

=

=

=

=

8

.0263

.0209

.0277

.0209

0186

0233

.B311

0415

0135

0304

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

Figure 5-14: Training output statement of TL-DenseNet in fold 3

Results for fold 4

Found
Found
Epoch
46/44
Epoch
46/44
Epoch
46/44
Epoch
46f44
Epoch
46/64
Epoch
46/a4
Epoch
44fa4
Epoch
46fa4
Epoch
44fa4
Epoch
44fa4

11107

images belonging to 2 classes.

1997 images belonging to 2 classes.

1/10

2/10

] - 257s 6s/step

3/10
[

254s 6s/step

4/10

1 - 278s 6s/step

5/10

] - 258s 6s/step

6/10

] - 240s 6s/step

7/18

] - 2508s és/step

8/10

] - 248s 6s/step

9/18

] - 254s 6s/step

18/18
[

] - 246s 6sfstep

] - 252s 6s/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

=

=

=

=

@

@

@

@

@

]

0843

L8773

L0748

L8744

.8783

L8769

.8620

L8651

L8667

L8626

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

L9675

L9704

L9717

L9723

L9694

.9690

.9780

.9748

L9743

L9763

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

@

@

@

@

@

@

@

@

@

¢]

.0225

.0188

.0153

.0148

.0184

L0147

L0211

.0151

.0137

L0146

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

Figure 5-15: Training output statement of TL-DenseNet in fold 4

.9718

.9785

.9810

L9710

.9810

L9760

L9775

.9825

.9830

.9830

.9910

L9940

.9920

.9945

.9950

.9910

L9885

.9815

.9980

.9880

.9920

.9925

.9960

.9970

.9945

.9960

.9920

.9950

.9965

.9955

88

Results Tor fold 5
Found 11188 images belonging to 2 classes.
Found 1996 images belonging to 2 classes.

Epoch 1/18

4afas | 1 - 2295 5s/step - loss: 8.8760 - accuracy: B.9744 - val_loss: 0.0098 - val_accuracy: 8.9980
Epoch 2/18

4afas | 1 - 228s 5s/step - loss: 0.0672 - accuracy: 0.9741 - val_loss: 0.0137 - val_accuracy: 8.9968
Epoch 3/18

4afas [1 - 2295 5s/step - loss: 0.0624 - accuracy: 0.9754 - val_loss: 0.08071 - val_accuracy: 8.9990
Epoch 4/18

4afa4 1 1 - 274s és/step - loss: 0.0591 - accuracy: 0.9771 - val_loss: 0.0083 - val_accuracy: 0.9975
Epoch 5/18

4afa4 | 1 - 266s 6s/step - loss: 0.0601 - accuracy: 0.9762 - val_loss: 0.0069 - val_accuracy: 8.9990
Epoch 6/18

4afas | 1 - 264s 6s/step - loss: 8.8591 - accuracy: 0.9771 - val_loss: 0.0074 - val_accuracy: 8.9985
Epoch 7/18

4afas | 1 - 2595 6s/step - loss: 8.0541 - accuracy: 0.9782 - val_loss: 0.0046 - val_accuracy: 1.0080
Epoch 8/18

4444 [1 - 253s 6s/step - loss: 8.0585 - accuracy: 0.9779 - val_loss: 0.0068 - val_accuracy: 1.0080
Epoch /18

4afa4q [1 - 251s 6s/step - loss: 0.0538 - accuracy: 0.9809 - val_loss: 0.08049 - val_accuracy: 1.0000
Epoch 18/18

4afa4q [1 - 252s 6s/step - loss: 0.0558 - accuracy: 0.9793 - val_loss: 0.0076 - val_accuracy: 0.9985

Figure 5-16: Training output statement of TL-DenseNet in fold 5

Found 480 1mages helunging to 2 classes.
15/15 [==============================] - §s 352ms/step
Accuracy : 0.9841666666666667
Precision : 0.9105820105820105
flScore : 0.9037988496732026
[[232 8]
[38 202]]

Figure 5-17: Testing output statement of CNN-AlexNet

==============TEST RESULTS============
Found 480 1mages belonging to 2 classes.
15/15 [==============================] - §5 243ms/step
Accuracy @ 0.9104166666666667
Precision : 8.9173802503575275
flScore : 0.9100414489254225
[[203 37]
[6 234]]

Figure 5-18: Testing output statement of TL-Inception-V3

Accuracy : B0.9145833333333333
Preclsion : 0.9171980642568879
flScore : B8.9144492890335987
[[229 11]

[38 210]]

Figure 5-19: Testing output statement of TL-DenseNet

APPENDIX B: Computer Programme Listing

Coding for Image Processing and Augmentation.

89

import glob

import cv2

import 0s

import numpy as np

from matplotlib import pyplot as plt

inputFolder =
"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/new/malignant™
os.mkdir("C:/Users/zzxn9/Documents/Py-DS-ML-Bootcamp-
master/Refactored_ Py DS ML_Bootcamp-master/Cancer/Process/benign™)

i=1

j=200
k=400
1=600

kernel_sharpening = np.array([
[0, -1, 0],
[-1, 5, -1],
[0, -1, 0]

D

kernel2 = np.ones((5, 5), np.float32) / 25
dim = (100, 100)

a=1601
b=3201
c=4801

for filename in os.listdir(inputFolder):
image = cv2.imread(os.path.join(inputFolder,filename))
if image is not None:

conv2d = cv2.filter2D(src=image, ddepth=-1, kernel=kernel2)

denoise = cv2.fastNIMeansDenoisingColored(image, None, 10, 10, 7, 21)

gaussian_blur = cv2.GaussianBlur(src=image, ksize=(5, 5),sigmaX = 0,
sigmaY =0)

median = cv2.medianBlur(src=image, ksize=5)

bilateral_filter = cv2.bilateralFilter(src=image, d=9, sigmaColor=75,
sigmaSpace=75)

output = cv2.filter2D(image, -1, kernel_sharpening)

cropped_image = image[60:410, 150:500]

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

90

resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)

flipVertical = cv2.flip(output, 0)
flipHorizontal = cv2.flip(output, 1)
flipBoth = cv2.flip(output, -1)

save and display images
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/new/malignant/us_m
%02i.jpg" % i,
gray)
i+=1
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/new/malignant/us_b
%02i.jpg" % i,
resized)
i+=1
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/benign/us_m%02i.jp
g"%i,
cropped_image)
i+=1
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Conv2d/benign/us_m%02i
Jpg" %1,
conv2d)
i+=1
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/new/malignant/us_m
%02i.jpg" % i,
denoise)
i+=1
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Bilateral/gans/us_m%02i.j
pg" %,
bilateral_filter)
i+=1
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Median/gans/us_m%02i.jp
9" %i,
median)
i+=1

91

cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gaussian/gans/us_m%02i.]
pg" % i,
gaussian_blur)
i+=1
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Sharp/benign/us_m%02i.]
pg" % i,
output)
i+=1
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Process/gans/malignant/us
_b%02i.jpg” % J,
flipVertical)
j+=1
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Process/gans/malignant/us
_b%02i.jpg" % K,
flipHorizontal)
k+=1
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Process/gans/malignant/us
_b%02i.jpg" % |,
flipBoth)
l+=1

#press esc to exit the program
cv2.waitKey(30)

#close all the opened windows
cv2.destroyAllWindows()

Coding for Rotating Images

92

img = cv2.imread(os.path.join(inputFolder,filename))
(h, w) = img.shape[:2]

calculate the center of the image
center=(w/2,h/2)

angle45 =45

anglel125 =125

angle315 = 315

scale = 1.0

Perform the counter clockwise rotation holding at the center
45 degrees

M = cv2.getRotationMatrix2D(center, angle45, scale)
rotated45 = cv2.warpAffine(img, M, (h, w))
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Report/us_m%02i.jpg" %

rotated45)
a+=1
125 degrees
M = cv2.getRotationMatrix2D(center, angle125, scale)
rotated125 = cv2.warpAffine(img, M, (w, h))
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Report/us_m%.02i.jpg" %

rotated125)
b+=1
315 degrees
M = cv2.getRotationMatrix2D(center, angle315, scale)
rotated315 = cv2.warpAffine(img, M, (h, w))
cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Report/us_m%02i.jpg" %

rotated315)
c+=1

Coding for DCGANSs model

93

import 0s

import numpy as np

import cv2

from glob import glob

from matplotlib import pyplot

from sklearn.utils import shuffle

import tensorflow as tf

from tensorflow.keras.layers import *

from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from skimage import color

IMG_H =80
IMG_W =80
IMG_C=3
w_init = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.02)
def load_image(image_path):
img = tf.io.read_file(image_path)
img = tf.io.decode_jpeg(img)
img = tf.image.resize_with_crop_or_pad(img, IMG_H, IMG_W)
img = tf.cast(img, tf.float32)
img = (img - 127.5) / 127.5
return img

def tf_dataset(images_path, batch_size):

dataset = tf.data.Dataset.from_tensor_slices(images_path)

dataset = dataset.shuffle(buffer_size=10240)

dataset = dataset.map(load_image,
num_parallel_calls=tf.data.experimenta AUTOTUNE)

dataset = dataset.batch(batch_size)

dataset = dataset.prefetch(buffer_size=tf.data.experimenta. AUTOTUNE)

return dataset

def deconv_block(inputs, num_filters, kernel_size, strides, bn=True):
x = Conv2DTranspose(
filters=num_filters,
kernel_size=kernel_size,
kernel_initializer=w_init,
padding="same",
strides=strides,
use_bias=False

)(inputs)

if bn:
x = BatchNormalization()(x)
x = LeakyReL U(alpha=0.2)(x)
return X

94

def conv_block(inputs, num_filters, kernel_size, padding="same", strides=2,
activation=True):
x = Conv2D(
filters=num_filters,
kernel_size=kernel_size,
kernel_initializer=w_init,
padding=padding,
strides=strides,
)(inputs)

if activation:
x = LeakyReL U(alpha=0.2)(x)
x = Dropout(0.3)(x)

return X

def build_generator(latent_dim):
f = [2**i for i in range(5)][::-1]
filters = 32
output_strides = 16
h_output = IMG_H // output_strides
w_output = IMG_W // output_strides

noise = Input(shape=(latent_dim,), name="generator_noise_input")

x = Dense(f[0] * filters * h_output * w_output, use_bias=False)(noise)
x = BatchNormalization()(x)

x = LeakyReL U(alpha=0.2)(x)

x = Reshape((h_output, w_output, 16 * filters))(x)

for i in range(1, 5):

x = deconv_block(x,
num_filters=f[i] * filters,
kernel_size=5,
strides=2,
bn=True

)

x = conv_block(x,
num_filters=3,
kernel_size=5,
strides=1,
activation=False

)
fake_output = Activation("tanh™)(x)

return Model(noise, fake_output, name="generator")

95

def build_discriminator():
f=[2**i for i in range(4)]
image_input = Input(shape=(IMG_H, IMG_W, IMG_C))
X = image_input
filters = 64
output_strides = 16
h_output = IMG_H // output_strides
w_output = IMG_W // output_strides

for i in range(0, 4):
x = conv_block(x, num_filters=f[i] * filters, kernel_size=5, strides=2)

x = Flatten()(x)
x = Dense(1)(x)

return Model(image_input, X, name="discriminator")

class GAN(Model):
def __init__(self, discriminator, generator, latent_dim):
super(GAN, self). __init_ ()
self.discriminator = discriminator
self.generator = generator
self.latent_dim = latent_dim

def compile(self, d_optimizer, g_optimizer, loss_fn):
super(GAN, self).compile()
self.d_optimizer = d_optimizer
self.g_optimizer = g_optimizer
self.loss_fn =loss_fn

def train_step(self, real_images):
batch_size = tf.shape(real_images)[0]

for _inrange(2):
Train the discriminator
random_latent_vectors = tf.random.normal(shape=(batch_size,
self.latent_dim))
generated_images = self.generator(random_latent_vectors)
generated_labels = tf.zeros((batch_size, 1))

with tf.GradientTape() as ftape:
predictions = self.discriminator(generated_images)
d1_loss = self.loss_fn(generated_labels, predictions)
grads = ftape.gradient(d1_loss, self.discriminator.trainable_weights)
self.d_optimizer.apply_gradients(zip(grads,
self.discriminator.trainable_weights))

96

Train the discriminator
labels = tf.ones((batch_size, 1))

with tf.GradientTape() as rtape:
predictions = self.discriminator(real_images)
d2_loss = self.loss_fn(labels, predictions)
grads = rtape.gradient(d2_loss, self.discriminator.trainable_weights)
self.d_optimizer.apply_gradients(zip(grads,
self.discriminator.trainable_weights))

Train the generator

random_latent_vectors = tf.random.normal(shape=(batch_size,
self.latent_dim))

misleading_labels = tf.ones((batch_size, 1))

with tf.GradientTape() as gtape:
predictions = self.discriminator(self.generator(random_latent_vectors))
g_loss = self.loss_fn(misleading_labels, predictions)
grads = gtape.gradient(g_loss, self.generator.trainable_weights)
self.g_optimizer.apply_gradients(zip(grads,
self.generator.trainable_weights))

return {"d1_loss": d1_loss, "d2_loss™: d2_loss, "g_loss": g_loss}

def save_plot(examples, epoch, n):
examples = (examples + 1) / 2.0
for i in range(n * n):
pyplot.subplot(n, n, i+1)
pyplot.axis(*off")
pyplot.imshow(examples[i]) ## pyplot.imshow(np.squeeze(examplesli],
axis=-1))
filename = f"samples_new1/generated_plot_epoch-{epoch+1}.png"
pyplot.savefig(filename)
pyplot.close()

Coding for training the DCGANs model

97

if _name__ ==" main__":
Hyperparameters
batch_size = 256
latent_dim = 256
num_epochs = 800
images_path = glob("data/*")

d_model = build_discriminator()
g_model = build_generator(latent_dim)

d_model.load_weights("saved_model/d_model.h5")
g_model.load_weights("saved_model/g_model.h5")

d_model.summary()
g_model.summary()

gan = GAN(d_model, g_maodel, latent_dim)

bce_loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True,
label_smoothing=0.1)

d_optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5)

g_optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5)

gan.compile(d_optimizer, g_optimizer, bce_loss_fn)

images_dataset = tf_dataset(images_path, batch_size)

for epoch in range(num_epochs):
gan.fit(images_dataset, epochs=1)
g_model.save("saved_model/g_model.h5")
d_model.save("saved_model/d_model.h5")

n_samples = 25

noise = np.random.normal(size=(n_samples, latent_dim))

examples = g_model.predict(noise)

save_plot(examples, epoch, int(np.sqrt(n_samples)))

if epoch % 2 !'=0:
save_plot(examples, epoch, int(np.sqrt(n_samples)))
g_model.save(f"saved_model_acc/g_model-{epoch+1}.h5")
d_model.save(f"saved_model_acc/d_model-{epoch+1}.h5")

98

Coding for generating synthesized images from the DCGANs model

import numpy as np

import cv2

from tensorflow.keras.models import load_model
from matplotlib import pyplot

def save_plot(examples, n):

examples = (examples + 1) / 2.0

for i in range(n):
pyplot.imshow(examples[i])
pyplot.axis(*off")
filename = f"malignant{+1}.png"
pyplot.savefig(filename, bbox_inches="tight',pad_inches = 0)
pyplot.close()

if _name__ =="_ main_ "™
model = load_model(*"C:/Users/zzxn9/PycharmProjects/dashproject/ DCGAN-
on-Breast-tumor/saved_model/g_model.h5", compile=False)

n=25

latent_dim = 256

latent_points = np.random.normal(size=(n, latent_dim))
examples = model.predict(latent_points)
save_plot(examples, n)

Coding for splitting datasets into train, validation and test sets

import splitfolders

splitfolders.ratio(*"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Rotation/t
est-set",
output="C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Cheat",
seed=42,
ratio=(.7, .2, .1),
group_prefix=None,
move=False)

Coding for the proposed CNN network

99

import numpy as np

from sklearn.metrics import accuracy_score, f1_score, precision_score,
confusion_matrix

from sklearn.model_selection import StratifiedKFold

from PIL import Image

import random

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.applications import DenseNet121
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras import layers, Model

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Conv2D

from tensorflow.keras.layers import MaxPooling2D

from tensorflow.compat.v1l import ConfigProto

from tensorflow.compat.v1 import InteractiveSession

from tensorflow.keras.layers import

Dense,Global AveragePooling2D,Convolution2D,BatchNormalization
import matplotlib.pyplot as plt

from sklearn import metrics

import warnings

import 0s

import shutil

from PIL import ImageFile

import zipfile

import matplotlib.pyplot as plt

warnings.simplefilter(‘error’, Image.DecompressionBombWarning)
ImageFile. LOAD_TRUNCATED_IMAGES = True

from PIL import Image

Image.MAX_IMAGE_PIXELS = 10000

config = ConfigProto()

config.gpu_options.allow_growth = True

session = InteractiveSession(config=config)

root_path="C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/'
datasetFolderName=root_path+'Training'
MODEL_FILENAME=root_path+"model_cv.h5"

sourceFiles=[]

classLabels=['benign’, 'malignant’]

X=[]

Y=[]

100

Image. MAX_IMAGE_PIXELS = None

img_rows, img_cols = 100, 100 # input image dimensions
train_path=datasetFolderName+'/train/'
validation_path=datasetFolderName+'/val/'
test_path=datasetFolderName+'/test/'

def transferBetweenFolders(source, dest, splitRate):
global sourceFiles
sourceFiles=os.listdir(source)
if(len(sourceFiles)!=0):
transferFileNumbers=int(len(sourceFiles)*splitRate)
transferindex=random.sample(range(0, len(sourceFiles)),
transferFileNumbers)
for eachIndex in transferindex:
shutil.move(source+str(sourceFiles[eachIndex]),
dest+str(sourceFiles[eachIndex]))
else:
print(""No file moved. Source empty!")

def transferAllClassBetweenFolders(source, dest, splitRate):
for label in classLabels:
transferBetweenFolders(datasetFolderName + '/ + source + /' + label + '/,
datasetFolderName + '/ + dest + '/ + label + '/,
splitRate)

transferAllClassBetweenFolders(‘test’, ‘train’, 1.0)
transferAllClassBetweenFolders(‘train’, 'test’, 0.20)

def prepareNameWithLabels(folderName):
sourceFiles = os.listdir(datasetFolderName + ‘/train/' + folderName)
for val in sourceFiles:
X.append(val)
for i in range(len(classLabels)):
if (folderName == classLabels[i]):
Y.append(i)
Organize file names and class labels in X and Y variables
for i in range(len(classLabels)):
prepareNameWithLabels(classLabels[i])

X = np.asarray(X)
Y = np.asarray(Y)

batch_size = 256
epoch =10
activationFunction = 'elu’

101

Coding for CNN-AlexNet

def getModel():

AlexNet

model = Sequential()

model.add(Conv2D(64, (3, 3), padding='same’, activation=activationFunction,
input_shape=(img_rows, img_cols, 3)))

model.add(Conv2D(64, (3, 3), activation=activationFunction))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(32, (3, 3), padding='same’, activation=activationFunction))
model.add(Conv2D(32, (3, 3), activation=activationFunction))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Conv2D(16, (3, 3), padding='same’, activation=activationFunction))
model.add(Conv2D(16, (3, 3), activation=activationFunction))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(64, activation=activationFunction))
model.add(Dropout(0.1))

model.add(Dense(32, activation=activationFunction))
model.add(Dropout(0.1))

model.add(Dense(16, activation=activationFunction))
model.add(Dropout(0.1))

model.add(Dense(len(classLabels), activation="'softmax"))

Coding for TL-Inception-V3

InceptionV3
model_d = InceptionV3(input_shape=(100, 100,
3),include_top=False,weights="imagenet')
model_d.trainable = False
model = Sequential()
model.add(model_d)
model.add(Global AveragePooling2D())
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation="relu’, input_dim=(100, 100, 3)))
model.add(Dense(len(classLabels), activation="softmax"))

Coding for TL-DenseNet

102

DenseNet

model_d = DenseNet121(weights="imagenet', include_top=False,
input_shape=(100, 100, 3))

model_d.trainable = False

model = Sequential()

model.add(model_d)
model.add(GlobalAveragePooling2D())
model.add(BatchNormalization())
model.add(Dropout(0.5))

model.add(Dense(1024, activation="relu’))
model.add(Dense(512, activation="relu"))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(len(classLabels), activation="softmax"))

model.compile(optimizer="adam’, loss='binary_crossentropy’,
metrics=['accuracy'])

model.summary()

return model

model=getModel()

Coding for training and validate the proposed models in Stratified K-Fold

103

skf = StratifiedKFold(n_splits=5, shuffle=True)
skf.get_n_splits(X, Y)

foldNum=0

for train_index, val_index in skf.split(X, Y):

transferAllClassBetweenFolders(‘val', 'train’, 1.0)
foldNum+=1
print("Results for fold",foldNum)
X_train, X_val = X]train_index], X[val_index]
Y _train, Y_val = Y[train_index], Y[val_index]
for eachIndex in range(len(X_val)):
classLabel="
for i in range(len(classLabels)):
if(Y_val[eachIndex]==i):
classLabel=classLabels[i]

shutil. move(datasetFolderName+'/train/'+classLabel+'/'+X_val[eachIndex],
datasetFolderName+'/val/'+classLabel+'/'+X _val[eachIndex])

train_datagen = ImageDataGenerator(
rescale=1./255,
zoom_range=0.20,
fill_mode="nearest")
validation_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

#Start ImageClassification Model

train_generator = train_datagen.flow_from_directory(
train_path,
target_size=(img_rows, img_cols),
batch_size=batch_size,
class_mode='"categorical’,
subset="training’)

validation_generator = validation_datagen.flow_from_directory(
validation_path,
target_size=(img_rows, img_cols),
batch_size=batch_size,
class_mode="categorical’, # only data, no labels
shuffle=False)

fit model
history=model.fit(train_generator,epochs=epoch, validation_data =
validation_generator)

104

print("::::::::::::::TEST RESU LTS::::::::::::")
test_generator = test_datagen.flow_from_directory(
test_path,

target_size=(img_rows, img_cols),
batch_size=batch_size,
class_mode=None,

shuffle=False)

predictions = model.predict_generator(test_generator, verbose=1)
yPredictions = np.argmax(predictions, axis=1)
true_classes = test_generator.classes

confusion_matrix = metrics.confusion_matrix(true_classes, yPredictions)
cm_display =
metrics.ConfusionMatrixDisplay(confusion_matrix=confusion_matrix,
display_labels=[False, True])

cm_display.plot()
plt.title(f"Confusion Matrix - fold {foldNum}")
plt.savefig(f*Confusion Matrix - {foldNum}.png", bbox_inches="tight’)
plt.close()

Plot the training and validation accuracies for each epoch

acc = history.history['accuracy']

val_acc = history.history['val_accuracy']
loss = history.history['loss']

val_loss = history.history['val_loss']

epochs = range(len(acc))

plt.plot(epochs, acc, 'r', label="Training accuracy')

plt.plot(epochs, val_acc, 'b', label="Validation accuracy")
plt.title(f"Training and validation accuracy- fold {foldNum}")
plt.xlabel("Epoch’)

plt.ylabel('Accuracy’)

plt.legend(loc=0)

plt.savefig(f'training-accuracy{foldNum}.png", bbox_inches="tight’)
plt.close()

plt.plot(epochs, loss, 'r', label="Training loss’)

plt.plot(epochs, val_loss, 'b', label="Validation loss’)
plt.title(f"Training and validation loss- fold {foldNum}")
plt.xlabel("Epoch’)

plt.ylabel('Loss")

plt.legend(loc=0)

plt.savefig(f training-loss{foldNum}.png", bbox_inches="tight)
plt.close()

model.save(MODEL_FILENAME)

