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CANCER DETECTION USING IMAGE PROCESSING 

AND MACHINE/DEEP LEARNING METHODS 

 

 

ABSTRACT 

 

 

Breast cancer is one of the highest mortality cancers among women. The breast 

tumors can be classified into two categories, benign and malignant. Benign is the 

non-cancerous tumor; While the other variant, malignant is the cancerous tumor. 

These tumors are dangerous and mostly life-threatening due to the characteristics of 

the recurrence of the tumor. This is because the traditional classification methods are 

time-consuming, costly, labor-intensive and has reached their bottleneck. Integrating 

deep learning technology with medicinal solutions could improve the efficiency in 

early detection and treatment to improve the survival rates of breast cancer. 

Therefore, this paper researched the application of CNNs on the open-source 

Mendeley Breast Ultrasound dataset (MBU) by Rodrigues (2018) and the Breast 

Ultrasound Image dataset (BUSI) by Al-Dhabyani (2020). Moreover, the image pre-

processing methods are implemented to refine the ultrasound image quality. 

Furthermore, the DCGAN model is used for data augmentation and to increase the 

data quantity. Subsequently, transfer learning-based approach is proposed for 

differentiating breast tumors. The proposed models, CNN-AlexNet, TL-Inception-V3 

and TL-DenseNet are fine-tuned and trained on the MBU dataset. Moreover, the 

proposed classifier models are tested and evaluated on the BUSI dataset. The fine-

tuned TL-DenseNet exhibited the finest performance among all proposed models by 

achieving an accuracy of 91.46% and F1-score of 0.9144, followed by the fine-tuned 

TL-Inception-V3 with accuracy of 91.04% and F1-score of 0.9100. The CNN-

AlexNet also performs decently on the testing set with accuracy of 90.42% and F1-

score of 0.9038. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background 

 

Cancer is defined as the condition of any disease which are characterized by 

abnormal cells duplicating and spreading uncontrollably to other organs of the body. 

The occurrence of cancer is due to the cell division process of our human body. Cell 

division occurs when damaged cells died, new cells would duplicate and replace the 

old cell. However, sometimes this process does not work orderly, this is where 

abnormal cells start to develop and duplicate uncontrollably. The duplication of 

abnormal cells creates a lump of solid tissue called a tumor. The tumor is also known 

as a neoplasm could affect skin, organs, and bones (National Cancer Institute, 2021). 

 

 Tumor can be classified into two categories, which are benign and malignant. 

This is because some tumors would not affect another tissue and it is not cancerous. 

The non-cancerous tumor also known as a benign tumor, and this category of tumor 

is impossible to spread the cancerous cells to nearby tissue. Moreover, most benign 

tumor could self-recover after some time without any medical treatment. However, 

there is currently no research on the transformation of a tumor (MedicalNewsToday, 

2020), thus it is possible for a benign tumor turns into a malignant tumor, hence 

patients are suggested to seek for professional medical treatment if a benign tumor is 

detected. On the other hand, malignant tumors are known as the cancerous tumor, it 

could duplicate and spread the tissue build up by abnormal cells to nearby tissues and 

even other parts of the human’s body. These tumors are dangerous and mostly life-

threatening due to the characteristics of the recurrence of the tumor. There is a 



 

probability of the cancerous tumor returning even if the tumor is treated beforehand. 

(Cleveland Clinic, 2021). 

 

Every individual should pay high attention to cancer since it has the second 

highest mortality rate in the world standing at 10.08 million in 2019; while 

cardiovascular disease has the highest mortality rate (Our World in Data, 2019).  

 

 

Figure 1-1: Incidence of deaths worldwide of different diseases in 2019 (Our World 

in Data, 2019) 

 

 

Furthermore, the data from Global Cancer Observatory shows that breast 

cancer has the highest incidence in 2020, with a number of occurrences of 11.7% of 

the total cancer incidence recorded in 2020, which means among 19 million of 

cancer diagnosed in 2020, there are 2.26 million of the total cases are breast cancer. 

Apart from that, breast cancer has a mortality rate of 6.9% among all different types 

of cancers, which means among 10 million cancer-related death cases in 2020, there 

are 684 thousand cases are breast cancer-related patients. 

 



 

 

Figure 1-2: Incidence of cancer worldwide in 2020 (Global Cancer Observatory, 2020) 

 

 

 

Figure 1-3: Mortality rate of different cancers worldwide in 2020 (Global Cancer 

Observatory, 2020) 

 

 

 Since breast cancer is life-threatening and it is also one of the leading causes 

of death, therefore early diagnosis acts as an important role in order to prevent cancer 

from progressing rapidly and starting to affect human health condition or even worse, 

approaching death. Moving along with the improvement of technology and 

innovation, breast cancer screening methods for instance Mammography, Magnetic 



 

Resonance Imaging (MRI), ultrasound scanning, etc. are getting more advance and 

mature. For example, ultrasound scanning emits sound waves with a frequency of 

7.5MHz to 13MHz to image the internal structure of our body (Kuhl et al., 2005). 

 

 Due to the noises that occurs in the ultrasound images, some image 

processing methods can be applied as a solution to overcome this problem. Medical 

image processing is the practice of enhancing the medical image by reducing the 

image noise and easing the interpretation by both humans and machines. Medical 

images are made up of pixels which is the smallest element of an image. Each pixel 

represents a single numeric value therefore different pixels with different numeric 

values illustrate as different colors in a single image.  

 

One of the most important techniques in image processing is convolution. 

Convolution is defined as a process by applying a kernel to each pixel and its nearby 

pixels over the whole image, hence transforming the image. The impact of the 

convolution process's transformation is determined by the size and values of the 

kernel, which is a matrix of values (Basavarajaiah, 2022). Moreover, the medical 

image can be improved by applying a kernel that act as a smoothing mask over a 

convolution to achieve the effect of blurring the image by reducing the image noise 

and smoothening the edges. 

 

 

Figure 1-4: Example of 3x3 kernel applied on an image (GeeksforGeeks, 2022) 

 

 

 Despite the recent developments in breast cancer screening methods, 

experience pathologists' visual inspections are still crucial for diagnosing breast 



 

cancer correctly. Moreover, the diagnosis results are arbitrary and could subject to be 

different diagnosis results depending on the observations. Apart from that, the 

diagnosis process can be highly time-consuming and difficult. Besides, since the 

process can be tedious, therefore it might lead to misdiagnosis of the pathologists' 

visual inspections. Hence, building automate computer systems such as image 

processing and deep learning model could improve the efficiency of pathologists by 

reducing their workload. Besides, automate computer systems also benefits in 

reducing the subjectivity of the breast cancer classification (Zhi et al., 2017). 

 

 However, the deep learning models required a sizeable amount of dataset in 

order to obtain higher classification accuracy. Regrettably, because of privacy 

concerns and the expensive expense of expert annotations, publicly available 

medical-related datasets are generally small and skewed. Therefore, the Generative 

adversarial networks (GANs) introduced by Goodfellow et al. in 2014 could greatly 

restrict the drawbacks of small datasets by generating synthetic medical images 

based on the available datasets. With the ability of GANs to replicate data 

distributions and synthesize images has successfully paved the way for new 

techniques to overcome the drawbacks of both supervised deep learning and 

generating synthetic images (Kazeminia et al., 2020). 

 

 

 

1.2 Problem Statements 

 

Breast cancer is one of the highest incidence cancers in Malaysia. According to the 

Malaysia National Cancer Registry 2004, the ASR of breast cancer in the country is 

46.2 over 100,000 women. Furthermore, the overall 5-year survival rate for breast 

cancer patients in Malaysia is 49% with a median survival period of 68.1 months 

(Yip et al., 2006). 

 

 In recent years, one of the most frequently used imaging technologies in 

clinical practice is ultrasound imaging. The ultrasound imaging method is considered 

a dynamically developing technology with numerous advantages and it has been 

acknowledged as a potent and commonplace screening and diagnostic tool for 



 

clinical research practice. Especially, due to its overall reasonable cost, operator 

expertise, and relatively lower impact on human health. Besides, the ultrasound 

imaging technology has been widely implemented in the fields of breast diagnostics. 

Nevertheless, the ultrasound imaging technology also comes with several major 

drawbacks, for instance, acquisition noises generated by the ultrasound imaging 

machine, ambient noises generated by the surroundings of the ultrasound imaging 

took place, and the presence of body fat, organs, and other tissues could significantly 

affect the image quality (Hiremath et al., 2013).  

 

Moreover, the traditional breast cancer diagnostics methods are mostly costly, 

time consuming, and relied on the extensive experience of the diagnostician and 

specialists. Apart from that, the availability of open access breast tumor datasets is 

very less due to the privacy of the patients. 

 

 

 

1.3 Project Scope 

 

The project aims at developing a deep neural network that could import the breast 

cancer ultrasound images from the Mendeley website and classify the tumor types 

into two classes, which are benign and malignant. Furthermore, this project proposes 

implementing the Generative Adversarial Networks (GANs) model to synthesize 

both benign and malignant realistic breast tumor images to solve the problem of 

lacking data and augment the skewed datasets that could cause classification 

problems. Moreover, image processing methods such as image filtering and image 

smoothing are implemented to deblur and reduce the noises in the ultrasound images 

in order to improve the deep neural network model training quality. Lastly, a deep 

learning classifier algorithm should be developed in order to classify the benign and 

malignant ultrasound images. 

 

 

 

 

 



 

1.4 Project Objectives 

 

The objectives of the project are shown below: 

 

i) Design an image processing method to reduce the image noise of the 

ultrasound images of benign and malignant tumors. 

ii) Application of data augmentation, such as GAN model to increase the dataset 

quantity and improve the quality of the dataset. 

iii) Design a CNN model to classify benign and malignant tumors.  

iv) Apply a suitable transfer learning model and fine-tuned the model’s 

parameters in order to improve the accuracy of the classifier.  
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CHAPTER 2 

 

 

 

2 LITERATURE REVIEW 

 

 

 

2.1 Overview 

 

This chapter aims to review the data augmentation method, such as the Generative 

Adversarial Networks (GAN). Besides, the framework for Convolutional Neural 

Networks (CNN) will be discussed in this chapter. Furthermore, this chapter also 

reviewed and discussed previous research papers related to the project. 

 

 

 

2.2 Generative Adversarial Network (GANs) 

 

The Generative Adversarial Network also known as GANs is proposed by 

Goodfellow et. al. in 2014. The Generative Adversarial Network was proposed to 

estimate the generative models by using an adversarial process. The framework 

includes two different models, which are the generative model and a discriminative 

model. The generative model is trained to capture the data distribution and generate 

new examples from the training data. On the other hand, the discriminative model is 

responsible to estimate the probability of the samples whether it is generated by the 

generative model or from the training data. 

 

In the advancement of artificial intelligence (AI), the discriminative model 

has been developed with great success and is widely used in major machine learning 

models. The algorithm behind the majority of the discriminative model is based on a 



9 

backpropagation algorithm with a suitable gradient. However, the generative model 

has issues facing difficulties in approximating multiple interactable probabilistic 

calculations that emerge in maximum likelihood estimation and related 

methodologies. Therefore, the proposed generative model is to overcome the 

drawbacks. 

 

 

Figure 2-1: Simplified GANs framework (GeeksforGeeks, 2022) 

 

 

The Generative Adversarial Network framework is proposed to design the 

generative model with an adversary. The main motivation of the generative model is 

to generate counterfeit samples until it is indistinguishable from the actual training 

data. While the discriminative model of the GANs framework is trained to predict 

the probability of the sample from the data distribution and model distribution, which 

is exactly the sample generated by the generative model. In order to improve the 

discriminative model, the generative model is responsible to worsen the estimation of 

the discriminative model. To summarize concisely, the objective of the generative 

model is achieved when the discriminative model is facing difficulties in classifying 

the samples. Hence, the generative model and discriminative model are both 

adversaries to each other. Furthermore, with the adversary of the discriminative 

model, the generative model can generate indistinguishable counterfeit samples from 

any random input without interfering with the actual training data. Apart from that, 

both generative and discriminative models are multilayer perceptrons. The GANs 

framework is trained with backpropagation and dropout algorithms from the 
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discriminative predictions and the generative model is trained with forward 

propagation only (Goodfellow et al., 2014). 

 

Over the past few years, GANs have been widely researched and developed 

because of the proven successful framework. At present, GANs is capable to 

generate images so realistic that it is difficult to identify the counterfeit. 

 

 

Figure 2-2: Evolution of GANs (Brownlee, 2019) 

 

 

 

2.3 Deep Convolutional Generative Adversarial Networks (DCGANs) 

 

 

Figure 2-3: Structure of DCGANs (Radford, 2016) 

 

 

The Deep Convolutional Generative Adversarial Network also known as DCGAN 

was introduced by Radford et al. in 2015. In the past few years, supervised learning 

with CNNs has been advanced and utilized in multiple computer vision applications, 

but in comparison, unsupervised learning with CNNs is less developed and adopted. 
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Therefore, DCGAN is proposed to enhance the development of unsupervised 

learning with CNNs (Radford et al, 2016). 

 

The structure of the DCGAN is inspired by the Improved GANs introduced 

by Salimans, Goodfellow, Zaremba, et al. in 2016. The Improved GANs defined 

three enhancement techniques which are feature matching, minibatch discrimination, 

and historical averaging to stabilize the training model. These techniques improve 

the variety of the discriminate network by improving the diversity of samples created 

by the generative model when discriminating samples. With the inspiration of the 

improved GANs, therefore DCGAN has expanded GAN from multilayer perceptron 

(MLP) structure into convolutional neural network (CNN) structure (Fang et al., 

2018). 

 

According to Radford et al., DCGAN has achieved an impressive result on real 

datasets, such as LSUN and CelebA. Furthermore, there are a few modifications in 

the integration of the architecture of GANs and CNNs to stabilize the DCGANs. 

 

i) The CNNs max pooling layers are replaced with the strided convolutions also 

known as a discriminator to learn the network spatial down sampling and 

fractional-strided aka generators to learn the network spatial up sampling. 

ii) The fully connected hidden layers are eliminated.  

iii) Batch Normalization is applied in the discriminator and generator model.  

iv) Generator – ReLU activation for all layers; tanh for output layer. 

v) Discriminator – LeakyReLU for all layers (Radford et al, 2016). 

 

 

 

2.4 GoogleLeNet (Inception) 

 

The GoogleLeNet microarchitecture also known as Inception is one of the most used 

deep CNN architecture in deep learning. The architecture was first introduced by 

Szegedy et al. in 2014. Besides, it is also the winner of ILSVRC14 with an error rate 

of 6.67%, and has significantly outperform the previous ILSVRC winner, AlexNet 

(ILSVRC13 winner) and ZFNet (ILSVRC12 winner). 
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2.4.1 Inception-v1 

 

The first version of GoogleLeNet aka Inception-v1 consists of 27 layers including 9 

Inception modules. The naïve form of Inception module is restricted to filter 3 

different filter sizes, which are 1×1, 3×3 and 5×5, while the 3×3 max pooling is 

performed simultaneously. The outputs are concatenated into a single output vector 

before it is sent to the next inception layer. However, the 5×5 convolutions filter is 

computationally expensive on top of a large number of filters convolutional layers. 

Therefore, 1x1 convolutions are added before the 3×3 and 5×5 convolutions in order 

to compute reductions (Szegedy et al., 2015).  

 

 

Figure 2-4: Naïve version of Inception-v1 module (Szegedy et al., 2015) 

 

 

 

Figure 2-5: Dimension reductions inception-v1 module (Szegedy et al., 2015) 
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Table 1: Architecture details of Inception -v1 (Szegedy et al., 2015) 

 

 

 

 

2.4.2 Inception-v2 & Inception-v3 

 

The second and third version of GoogleLeNet aka Inception-v2 and Inception-v3 was 

introduced in the same paper, “Rethinking the Inception Architecture for Computer 

Vision”. The performance such as the accuracy and computational complexity has 

improved in Inception-v2. 

 

In Inception-v2, the 5×5 convolutions introduced in Inception-v1 has been 

factorized into two 3×3 convolutions to reduce the computational complexity, since a 

5×5 convolution is 2.78 times computationally expensive than a 3×3 convolution 

(refer to Figure 2-6). Furthermore, the paper proposed that factorizing a n×n 

convolution into n×1 and 1×n could improve the computational complexity (refer to 

Figure 2-7). For example, a 3×3 convolutions filter has been factorized into two 
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convolutions filters, 3×1 and 1×3 to achieve a 33% cheaper computational 

complexity. Moreover, the filter banks outputs in Inception-v2 module were 

expanded to eliminate the representational bottleneck (refer to Figure 2-8) (Szegedy 

et al., 2016). 

 

 

Figure 2-6: The 5×5 convolution has been replaced by two 3×3 convolution in 

Inception-v2 (Szegedy et al., 2016) 
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Figure 2-7: Factorization in Inception-v2 module (Szegedy et al., 2016) 

 

 

 

Figure 2-8: Filter banks outputs of Inception-v2 module were expanded (Szegedy et 

al., 2016) 
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Table 2: Proposed network architecture of Inception-v2 (Szegedy et al., 2016) 

 

 

 

 In Inception-v3, the network incorporated all improvement in Inception-v2 

and the following modification: 

 

i) RMSProp Optimizer. 

ii) BatchNorm in Auxiliary Classifiers. 

iii) Label Smoothing. 

iv) Factorized 7 x 7 convolutions (Raj, 2018). 

 

 

 

2.5 Residual Neural Network (ResNet) 

 

The Residual Neural Network also known as ResNet is arguably the one of the 

pioneers of CNNs architecture after Inception-v1 won the ILSVRC14 with an error 

rate of 6.67%. ResNet achieved a top-5 error rate of 3.57% which outperform its 

opponent and won the 1st place in ILSVRC15.  
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ResNet was introduced by He et al. in the paper “Deep Residual Learning for 

Image Recognition” in 2015. The main idea of ResNet is to propose a deep residual 

learning framework to address the degradation problem occurs when deeper 

networks starts to converge, and accuracy becomes saturated (He et al., 2016). Hence, 

ResNet introduced the identity shortcut connection also called the Residual Blocks as 

shown in Figure 2-9. The residual blocks could skip training from multiple layers 

and connects to the output. The benefits of integrating the shortcut connection is to 

skip any layer by regularization if that particular layer could possibly affect the 

performance of the network. 

 

 

Figure 2-9: ResNet Residual Blocks (He et al., 2016) 

 

 

Moreover, He et al further modified the residual blocks by introducing the 

pre-activation variant of the residual block as shown in Figure 2-10. In this 

modification, the gradients could pass through the shortcut connection to any 

previous layer without being interfered (Fung, 2017).  
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Figure 2-10: Refined residual blocks (Fung, 2017) 

 

 

According to the paper “Deep Residual Learning for Image Recognition”, the 

shortcut connections used in ResNet was inspired by the Highway Network proposed 

by Srivastava et. al. in 2015. Apart from that, the similar idea of Highway Network 

where the information is control by the parametrized gates to flow through the 

shortcut connections is similar to the Long-Term Short Memory (LSTM) cell 

introduced by Hochreiter et. al. in 1997 cited in Fung, 2017.  

 

Furthermore, He et al. had tested the functionality of ResNet on a plain 

network inspired by VGG nets and a residual network where shortcut connections 

are inserted. Figure 2-11 shows the network architecture comparison of the plain 

network and residual network. The experiment is tested on the ImageNet 2012 

classification dataset consisting 1000 classes and both networks are evaluated on 18-

layer and 34-layer. By referring to Table 3, ResNet has lower top-1 error compared 

to plain network without shortcut connections. 

 

 

Table 3: Top-1 error on ImageNet Validation (He et al., 2016) 
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Figure 2-11: Samples of network architecture. Left: VGG-19 model. Mid: plain 

network inspired by VGG nets of 34 layers. Right: residual network of 34 layers (He 

et al., 2016) 



20 

2.6 Related Works 

 

A set of sufficient data volume is paramount in order to train a successful deep 

leaning model for medical image interpretation. Apart from that, skewed datasets for 

example 100 benign data and 1000 malignant data could leads to a bad classification 

results of the deep learning model. In order to overcome the low quantity and 

imbalance of datasets, the generative adversarial networks (GANs) is proposed to 

overcome the problem by generating synthetic data. 

 

Shin et al. (2018) proposed the image-to-image translation conditional GAN 

(pix2pix) model introduced by Isola et al. in 2017 to produced synthetic images and 

classification of T1-weighted brain tumor images on Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) datasets and Multimodal Brain Tumor Image 

Segmentation Benchmark (BRATS) datasets. The author has performed four 

approaches with different CNN input, which trained on real data only, combination 

of real and synthetic data, synthetic data only and synthetic data with 10% of model 

fine-tuning. Besides, they also implemented basic image augmentation such as 

rotation, crop and elastic deformation on the synthetic data. The model has achieved 

a mean disc-score of 0.82 which has improved accuracy than the non-augmentation 

GANs-based model with mean disc-score of 0.80 (CNN model trained on real and 

synthetic data). Shin compared their GANs-based model to the BRATS’17 best 

performing model, however both the GANs-based model achieves a lower accuracy. 

 

Table 4: Disc score evaluation in terms of mean and standard deviation of GAN-

based model and BRATS’17 best model (Wang et al.). The GAN-based models were 

trained with augmentation and without augmentation (Shin et al., 2018) 
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Iqbal & Ali (2018) introduced a new Generative Adversarial Networks model 

for medical imaging called MIGAN. The idea of MIGAN is for the generation of 

synthesis medical image. Other than the synthesis medical image, Iqbal also 

implement MIGAN to generate the segmented masks of the medical image. In the 

paper, MIGAN is applied to the retinal vessel’s images for the STARE and DRIVE 

publicly datasets. The main contributions for this project are to generate an enhance 

segmented medical images then previous GANs model. Besides, MIGAN also 

reduce the threshold of existing GANs techniques, lesser input examples require to 

generate the desired synthetic images due to the refined loss function of MIGAN. 

Apart from that, MIGAN is less computational expensive than existing GANs model, 

due to the 200% improvement in the generator model during each epoch which could 

reduce the training period. The MIGAN structure of generator and discriminator are 

shown in Figure 2-13 and Figure 2-14 respectively. According to the author, the 

MIGAN-based deep learning model on STARE dataset has achieved disc-score of 

0.838, AUC ROC of 0.985 and AUC PR of 0.922; and on DRIVE dataset has 

achieved disc-score of 0.832, AUC ROC of 0.984 and AUC PR of 0.916 which 

outperformed existing previous work. 

 

 

Figure 2-12: Generator structure of MIGAN (Iqbal et al., 2018) 

 

 

 

Figure 2-13: Discriminator structure of MIGAN (Iqbal et al., 2018) 
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Senaras et al. (2018) introduced the conditional Generative Adversarial 

Network also known as cGAN to generate realistic synthetic histopathological breast 

cancer images from the Ki67 datasets. During the preprocessing stage of the images, 

the operator will mark the stained nucleus manually and this stage is called the user 

annotation mask stage. Other than that, in the second approach the images are 

process though computer by using the nuclei segmentation system developed by the 

author in a prior study. Both the annotation mask and the nuclei segmentation 

obtained are feed respectively into the cGAN model as input after the preprocess 

stage. The generated results are analyzed by 6 researchers inclusive of 3 pathologists 

and 3 image analysts instead of training in a deep learning model. The average 

accuracy percentage of the researchers that could correctly differentiate whether the 

image is synthetic or real was 44.7%.   

 

 

Figure 2-14: Examples of two different input and their respective generated output 

(Senaras et al., 2018) 
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    Desai et al. (2020) proposed the implementation of the Deep Convolutional 

GANs also known as DCGANs to generate synthetic mammogram breast cancer 

images from the DDSM datasets. The major objective of this work is to overcome 

the limited available labeled data by implementing DCGANs to generate synthetic 

images for deep learning breast cancer classification. The author has trained the 

DDSM dataset for batch size 4 and batch size 32, the samples of the synthetic images 

are shown in Figure 2-16. 

 

 

Figure 2-15: Original and GANs generated images with batch size 4 and 32 (Desai et 

al., 2020) 

 

 

According to the CNN deep learning classification model, the batch size 32 

perform better than the batch size 4 DCGANs configuration in terms of accuracy, 

F1-score, specificity and sensitivity. At 20 epochs, the accuracy of batch size 32 is 

87%; batch size 4 is 83.58% while the accuracy without the GANs model is 78.23%. 

However, when the synthetic images of batch size 32 is analyzed by two professional 

physicians, only an average of 6 over 25 synthetic images are identified as real. 
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Figure 2-16: Accuracy of deep learning breast cancer classification (Desai et al., 

2020) 

 

 

Alyafi et al. (2020) proposed the implementation of Deep Convolutional 

Generative Adversarial Networks (DCGANs) to synthesized realistic and diverse 

mammography breast masses images to get rid of the small and imbalanced datasets 

obtained from OPTIMAM Mammography Image Database (OMI-DB). According to 

the paper, the author has trained the CNN model with four different approaches as 

shown in Figure 2-17, which are the original input (Blue), augmented original input 

(Orange), GANs input (Green) and augmented GANs input (Red). Furthermore, the 

author has augmented the both the original and synthetic data by applying random 

horizontal and vertical flipping. The augmentation is to improve diversity of dataset.  

 

On the other hand, the classifier performances are recorded at k=750 due to 

the model starts to become saturated. The results shown in Figure 2-18 illustrated 

that augmented GANs data as input has outperformed other inputs in terms of F1-

score. 
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Figure 2-17: CNN predictions in terms of F1-score with four approaches: original 

input (Blue), augmented original input (Orange), GANs input (Green) and 

augmented GANs input (Red) (Alyafi et al., 2020) 

 

 

 Al-Dhabyani et al. (2019) proposed the implementation of Data 

Augmentation Generative Adversarial Networks, DAGAN and CNNs integrated with 

transfer learning method to classify normal, benign and malignant breast tumours. 

The DAGAN is inspired by the Wasserstein GAN (WGAN) introduced by Arjovsky 

(2017), where the resulting architecture of WGAN is used in this study. The data 

used for this study is the Breast Ultrasound Image (BUSI) dataset and a private 

dataset B. The authors have performed four approaches to train the CNNs classifier 

algorithm, which includes real data only; data with basic augmentation; DAGAN 

synthesized data; DAGAN synthesized data with basic augmentation. On the other 

hand, five different approaches are experimented for the CNN classifier architecture. 

The five architectures are CNN-AlexNet, TL-VGG16, TL-ResNet, TL-Inception and 

TL-NASNet. The highest accuracy achieved for this study is TL-NASNet with 

DAGAN synthesized data with basic augmentation at 94% (Dataset B), 92% (BUSI 
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Dataset) and 99% (Dataset BUSI + B). Figure 2-19 depicted the accuracy results of 

the proposed dataset augmentation methods and CNNs architectures.  

 

 

Figure 2-18: Comparison of performance in terms of accuracy on different dataset 

augmentation methods and CNNs architecture (Al-Dhabyani et al., 2019) 

 

 

 Latif et al. (2019) proposed the implementation of different deep learning and 

machine learning methods includes CNN model, Random Forest, Naïve Bayes, MP 

and SVM to classify the benign and malignant breast tumours data. The dataset used 

in this work is the Mendeley Breast Ultrasound (MBU) dataset. The authors have 

performed two approaches in processing the dataset for training, which are the 

unprocessed data and CNN denoised data. The highest accuracy for this achieved for 

this study is the CNN classifier with CNN denoise method at 88%. While the CNN 

classifier on the unprocessed data has the second highest accuracy at 84.02%. 

 

Table 5: Comparison of different DL and ML classifier in terms of accuracy on 

unprocessed data and CNN denoised data (Latif et al., 2019) 
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Khanna et al. (2021) proposed a hybrid strategy that integrated the CNN 

algorithm with machine learning framework to diagnose breast tumour. Breast 

Ultrasound Images Dataset (BUSI) was used in this work. The authors proposed that 

a pre-trained CNN-ResNet50 to extract features from the tumour’s images, BGWO 

optimizer for feature selection and several SVM algorithms is used for classification. 

Besides, the authors also compared the performance of two approaches, which are 

with or without BGWO feature selection process. The highest performance in terms 

of accuracy is the Quadratic SVM classifier with BGWO feature selection at 84.9% 

and 84.6% without BGWO feature selection. 

 

Table 6: Classification results of different machine learning classifier with or without 

BGWO feature selection process in terms of accuracy and AUC (Khanna et al., 2021) 
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Gupta et al. (2022) proposed the implementation of different CNN and ML 

model to classify the ultrasound breast data. In this study, the Breast Ultrasound 

Images Dataset (BUSI) was used. Four CNN and ML classifier is implemented, 

which includes VGG16, VGG19, Inception-V3 and SqueezeNet integrated with 

KNN, SVM, RF, NN, LR and Adaboost. The highest accuracy results are the 

Inception-V3 model with NN algorithm at 92.6%. 

 

Table 7: Classification results of VGG16, VGG19, Inception-V3 and SqueezeNet 

integrated with different ML algorithm on breast tumour classification (Gupta et al., 

2022) 
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Table 8: Summary of performance from various related papers 

GANs-based classifier 

Author Organ Dataset Proposed 

method 

Performance 

Shin et al. 

(2018) 

Brain ADNI pix2pix + CNN (Mean/ Std deviation) 

GAN-based w/ aug: 0.82/ 

0.08 

GAN-based w/o aug: 0.80/ 

0.07 

Iqbal et al. 

(2018) 

Eyes STARE; 

DRIVE 

MIGAN (Disc-score/ AUC ROC/ 

AUC PR) 

STARE: 0.838/ 0.985/ 0.922 

DRIVE: 0.832/ 0.984/ 0.916 

Senaras et 

al. (2018) 

Breast Ki67 cGAN + 

analysts 

44.7% by 3 pathologists and 

3 image analysts. 

Desai et al. 

(2020) 

Breast DDSM DCGAN + 

CNN 

(Accuracy) 

Batch size 4: 84% 

Batch size 32: 87% 

Alyafi et al. 

(2020) 

Breast OMI-

DB 

DCGAN + 

CNN 

(F1-score) 

GAN: 0.98 

Aug GAN: 0.99 

Al-

Dhabyani et 

al. (2019) 

Breast BUSI; 

B 

DAGAN w/ 

Augmentation 

+ TL-NASNet 

94% (Dataset B) 

92% (BUSI Dataset) 

99% (Dataset BUSI + B) 

Non-GANs-based classifier 

Latif et al. 

(2019) 

Breast MBU CNN 88% (CNN denoise data) 

84% (Unprocessed data) 

Khanna et 

al. (2021) 

Breast BUSI Quadratic SVM 84.9% (with BGWO) 

84.6% (without BGWO) 

Gupta el al. 

(2022) 

Breast BUSI Inception-V3 + 

NN 

92.6% (Accuracy) 
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CHAPTER 3 

 

 

 

3 METHODOLOGY 

 

 

 

3.1 Overview 

 

During the early stage of the project, the dataset was downloaded and preprocess. the 

training and validation dataset were downloaded from the Mendeley website; while 

the testing dataset were acquired from NCBI website. The datasets consist of two 

label which are the benign and malignant tumor. Subsequently, the image preprocess 

techniques were performed on the datasets. The image preprocessing techniques 

includes applying sharpening and smoothing filters on the ultrasound images to 

remove the image noise. Moreover, a DCGANs model is designed to generate more 

data to enhance the deep learning model performance by solving the problems of 

insufficient and unbalanced dataset. Furthermore, the synthesized data are augmented 

such as applying horizontal and vertical flipping and rotation to increase the variety 

of the dataset. The datasets were further separated into training, validation and 

testing set in various combinations using the k-fold cross-validation method. 

 

After the datasets were assigned into desired combinations, the CNNs model 

is developed. The transfer learning model based on the literature review is 

implemented and fine-tuned to the datasets. Multiple CNNs architectures were tested 

on the datasets and the accuracy is compared and evaluated. The complete workflow 

is depicted as the flowchart in Figure 3-1. The results obtained are evaluated and 

compared. 
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Figure 3-1: Project Methodology 

 

 

 

3.2 Environment Setup 

 

3.2.1 Hardware 

 

This project is performed on an MSI Prestige 14 with an Intel i7-10510U CPU and a 

2GB NVIDIA GeForce MX350 GPU equipped laptop. The hardware details are 

shown in Table 9 as reference. 

 

Table 9: Hardware details 

Computer MSI Prestige 14 

CPU Intel i7-10510U 1.80GHz 

GPU NVIDIA GeForce MX350 2GB 

OS Windows 10 Home Single Language 

System type 64-bit, x64 based processor 

RAM 16GB 

Storage 512GB SSD 
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3.2.2 Software 

 

Python 3 is used as the main programming language for this project. The DCGANs 

models were developed with Tensorflow, which is an open source deep learning 

framework developed by Facebook's AI Research lab. Besides, both the DCGANs 

and CNNs models were trained on Pycharm. The version of the python libraries used 

is shown in Table 10 as reference. 

 

Table 10: Python libraries version 

 

 

 

 

3.3 Data Processing 

 

3.3.1 Dataset Preparation 

 

The dataset used for training and validation in the project is the Mendeley Breast 

Ultrasound dataset (MBU) by Rodrigues (2017). The dataset consists a total of 250 

breast cancer ultrasound images. The dataset is separated into 100 benign tumors and 

150 malignant tumors. Furthermore, the images have a low average dimension of 

105 × 77 pixels and the file type is in BMP file. On the other hand, the testing sets of 

this project uses another set of Breast Ultrasound Images dataset (BUSI) by Al-

Dhabyani. The average image’s dimension of the BUSI images are 500 x 500 pixels 

and the file type are in PNG file. Figure 3-2 and Figure 3-3 illustrates the samples 

from the MBU dataset; while Figure 3-4 and Figure 3-5 illustrates the samples from 

the BUSI dataset. 
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Figure 3-2: Samples of benign tumour images of MBU dataset (Rodrigues, 2017) 

 

 

 

Figure 3-3: Samples of malignant tumour images of MBU dataset (Rodrigues, 2017) 

 

 

 

Figure 3-4: Samples of benign tumour images of BUSI dataset (Al-Dhabyani, 2020) 

 

 

 

Figure 3-5: Samples of malignant tumour images of BUSI dataset (Al-Dhabyani, 

2020) 
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3.3.2 Image Pre-Processing 

 

After the datasets are downloaded and analyzed, some image processing methods are 

applied to the data in order to improve the quality of the breast tumor images. A low-

pass filter kernel can be convolved to the image in order to achieve image smoothing 

due to its ability to remove high frequency pixel such as edges and noises in the 

image. Convolution can be defined as a process by applying a n*n kernel to n*n 

pixels over the whole image, hence transforming the image. The impact of the 

convolution process's transformation is determined by the size and values of the 

kernel, which is a matrix of values (Basavarajaiah, 2022). 

 

 By applying the 2D convolution technique, I will be utilizing my own unique 

kernel, therefore I have total control over the filtering procedure in this approach of 

smoothing. Generally, a kernel assigns a set weight to each pixel in an image and 

adds the weighted neighbors’ pixels in order to transform that certain pixel. By 

implementing this approach, the pixels should be compressed in an image, reducing 

its clarity and making it simple to blur or smooth an image (GeeksforGeeks, 2022). 

 

 In this project, several filter and kernel are applied to the original image using 

OpenCV to remove the noises. In the first approach, the bilateral smoothing filter is 

applied to the images with a kernel size of 3x3. In the second approach, the denoise 

smoothing filter is applied. In the third approach, a gaussian filter with a kernel size 

of 5x5 is applied to the images. In the fourth approach, a median filter with a 5x5 

kernel is applied to the images. In the fifth approach, a special OpenCV filter called 

block matching denoise filter is applied to the image. Table 11 below tabulate the 

kernel size and masks used for each filter used in the project. 
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Table 11: Smoothing filter implemented in this project 

No Types of filter Kernel size Masks 

1 Bilateral 3x3 

 

2 Denoise Null (cv2 special filter) Null 

3 Gaussian 5x5 

 

4 Median 5x5 Median of neighbouring 

entries 

5 Block Matching Null (cv2 special filter) Null 

 

 

 

 

3.3.3 Image Augmentation 

 

Due to the small dataset, several image augmentation methods have been 

implemented on the images. The characteristic of image augmentation of modifying 

current data could generate new data in different perspective for the deep learning 

model training process. In other words, it is the process of enhancing the dataset that 

is made accessible for deep learning model training. 

 

 First, the images are flipped horizontally, vertically and both horizontal and 

vertical, hence there will be four extra sets of data being feed into the DCGANs 

model. The dimension of flipped images is then resized into 64x64 pixels in the 

DCGANs system. The reason of resizing is to standardize the dataset. Besides, it 

could also improve the consistency and stability of the DCGANs and CNN network 

training process since the background without information is downscale and the 

tumours are more focused. 
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3.3.4 Data Augmentation 

 

Deep Convolutional Generative Adversarial Networks also known as DCGANs is 

one of the most successful GANs architecture to synthesized realistic medical images. 

Due to the small amount of labeled dataset available for the project, instead of 

augmenting the images, generating realistic synthetic breast tumour images could 

increase the dataset amount and enhance the quality of the deep learning classifier. 

 

DCGANs consists of a generator (G) and discriminator (D). The generator 

and discriminator are two different CNN model; therefore, the training process might 

take longer due to two deep neural network model. The DCGANs architecture was 

proposed by Radford et al. in 2016 and it is the modifications of the origin GANs 

model proposed by Goodfellow et al. in 2014 which has further improved and 

enhanced by many recent GANs-related papers. 

 

Initially, the generator will input the latent dimension of noises; while the 

discriminator will learn from the original data and differentiate the synthetic image 

generated by G from the real image. The DCGANs architecture as depicted in Figure 

3-6 shows that the architecture of G and D networks are similar and inverse to each 

other.  

 

In this project, the G network goes from “100x1 → 1024x4x4 → 512x8x8 → 

256x16x16 → 128x32x32 → 64x64x3”, a 2D transpose is added between each layer 

for reshaping. A random noise vector is set to 100 as input for G and outputs a 

synthesized breast tumours image at size of 64x64x3. In second stage after the noise 

vector is input, the G network is reshaped to 1024x4x4 with a fully connected layer. 

Furthermore, a four fractionally-strided convolutional aka deconvolution layers with 

a 5x5 kernel size are added to the network. The function of the deconvolution layer is 

to expand the pixel by zero padded in between. Batch normalization are added to 

each layer except the output layer due to their characteristic to train the network 

independently. Besides, a LeakyReLU activation function is added to each layer 

except a tanh activation function is added to the output layer. 
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The D network is a CNN model which input an image generated by G at the 

image size of 64x64x3 and D will predict whether the input image is an original or 

synthesized image. The architecture of D is slightly straightforward compared to G, 

which D consists only four convolution layers with kernel size of 5x5. Like G, Batch 

normalization are added to each layer except the input and output layer. Additionally, 

a LeakyReLU activation function is added to each layer except a Sigmoid activation 

function is added to the output layer which produce a prediction probability between 

0 and 1 (Frid-Adar et al., 2018). 

 

The DCGANs model should trained for two different categories separately 

for synthesizing benign and malignant tumours. For benign, the training process was 

repeated for approximately 740 epochs to prevent overtraining and achieve the 

desired synthesized images; while for malignant, the training process was repeated 

for approximately 1000 epochs. The training batch size used for benign is 128, and 

256 for malignant due to the amount of dataset. The DCGAN model has successfully 

generated 100 benign and 50 malignant images to increase and balanced the dataset. 

Figure 3-6 below illustrates the increase of the dataset. 

 

 

Figure 3-6: Visualization of dataset of the synthesized data and original data 
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3.3.5 Data Segmentation 

 

A Train-Valid-Test split technique has been applied in order to enhance the 

performance of the CNN model by preventing the model to over trained from the 

available training data. The pre-processed datasets have been randomly split into two 

folders, which are training set and validation set. The training set comprised to 80% 

of the total dataset; while the validation data comprised to 20% of the total dataset. 

Synthetic images generated by the DCGANs model has been added to the dataset to 

increase the amount of data and balanced the dataset. Furthermore, image 

augmentation method such as rotating and flipping the images has been applied to 

the dataset to increase the amount of data. Hence, the total dataset has been increased 

to 20,800 images which consists of 10,400 benign data and 10,400 malignant data.  

 

By implementing the Train-Valid split technique, 8,320 benign images and 

8,320 malignant images have been randomly assigned to the training dataset (80% of 

total dataset); The validation dataset consists of 2,080 images for each category (20% 

of total dataset). Since the datasets are split randomly, therefore the results obtained 

are strictly not biased. Figure 3-7 depicted the overview of data segmentation in this 

project. After the model has trained successfully, the model is tested with the BUSI 

dataset which is a completely different source from the training dataset. BUSI dataset 

consists of 480 images which includes 240 benign images and 240 malignant images. 

 

 

Figure 3-7: Visualization of dataset distribution 
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3.4 Classification Model 

 

3.4.1 Dataset Cross-Validation 

 

Apart from separating the datasets into training, validation and testing dataset, the 

cross-validation method could shuffle the datasets in a more thorough way. The 

accuracy of the CNN model may be saturated easily after a short amount of iterations 

with the same training and validation set. In this case, the CNN model’s score such 

as accuracy, precision and F1-score may seem to have a perfect result, but it would 

fail to predict any random unseen data, therefore the network is considered as over-

trained in this circumstance.   

 

 In this project, the k-fold cross validation is implemented to spit and shuffle 

the training and validation dataset. This method can be applied in order to tune the 

hyperparameters so that the model could trained with the best hyperparameter value. 

The benefit of this method is that every training and validation set can be utilised for 

one time, therefore the model would not saturate easily and have a fairer validating 

process. Hence, the CNN model can train and validate on k number of different 

datasets, to ensure the model is more generalized (Kumar, 2022).  

 

 

Figure 3-8: Terminology of 5-fold cross validation (Kumar, 2022) 
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 A stratified 5-fold cross validation is applied to the CNN model in this project. 

Figure 3-8 above illustrates the mathematical concept and the training and test set 

distribution of k-fold cross validation, k = 5. The ultrasound breast tumour images 

are partitioned into 5 different combinations of training and testing set. The CNN 

model will undergo 5 iterations of training and validation process. Lastly, all 5 

results generated are average divided to obtain the generalized estimation score. 

 

 

 

3.4.2 CNNs and TL Architecture Design 

 

3.4.2.1 CNNs-AlexNet 

 

In this project, the AlexNet architecture is proposed to implement in this CNN breast 

tumour classifier. The AlexNet architecture was introduced by Alex Krizhevsky in 

2012. The architecture of AlexNet consists of three fully connected layers and five 

convolutional layers integrated with three max pooling layers. Figure 3-9 below 

illustrates the architecture of AlexNet. AlexNet uses a ReLU activation function at 

the end of each layer except for the last layer. The advantages of performing the 

ReLU activation function is due to its speedy training time compared to the tanh 

activation. The last layer of the AlexNet architecture outputs with a softmax function 

due to the 2-labelled classification of benign and malignant tumours. Furthermore, 

dropout function is implemented in the first two fully connected layers. The dropout 

function could turn off the neurons with a specific probability in order to avoid 

overfitting. 

 

Table 12: Configuration used in CNN-AlexNet 

Layer Type Maps Size Kernel 

Size 

Padding Activation 

Function 

In Input 64 100*100 - - - 

C1 Convolution 64 98*98 3*3 Same eLU 

S2 Max Pooling 64 49*49 2*2 Valid - 

C3 Convolution 32 49*49 3*3 Same eLU 
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C4 Convolution 32 47*47 3*3 Valid eLU 

S5 Max Pooling 32 23*23 2*2 Valid - 

C6 Convolution 16 23*23 3*3 Same eLU 

C7 Convolution 16 21*21 3*3 Valid eLU 

S8 Max Pooling 16 10*10 2*2 Valid - 

F9 Fully connected - 64 - - eLU 

F10 Fully connected - 32 - - eLU 

F11 Fully connected - 16 - - eLU 

Out Fully connected - 2 - - Softmax 

 

 

Table 8 above tabulates the general configuration of the proposed AlexNet 

architecture used in the CNN classifier. The model consists of five 2D convolutional 

layers and three pooling layers which is a typical structure of an AlexNet architecture. 

The dropout is set as 0.25 after each of the pooling layers. Besides, the activation 

function used in each 2D convolutional layer is the eLU. The eLU activation 

function is used due to its ability to smooth slowly thorough the output reaches -α, 

while the ReLU would smooth sharply, therefore eLU tends to perform better in 

terms of accuracy. Lastly, one flattens layer and three dense layers are used to 

transform the matrix into a single array to allow the softmax function to generate 

results accurately. The CNNs-AlexNet algorithm uses the Adam optimizer with a 

default leaning rate of 0.001. Besides, the algorithm uses binary cross entropy loss 

function to evaluate the performance of the model. 
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Figure 3-9: Model summary of the CNN-AlexNet architecture implemented 
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3.4.2.2 TL-Inception-V3 with 3 extra hidden layers + dropout 

 

The transfer learning technique can be applied to the project in order to utilise the 

improved version of ILSVRC14 winner, Inception-V3 as a pre-trained model in this 

breast tumour classifier project. The weights of Inception-V3 model were trained on 

a gigantic amount of dataset using several high-powered GPUs, and the transfer 

learning technique allows the model to be implemented in the classifier of this 

project (Irla, 2019). Besides, due to the small dataset available to this project, hence 

the proposed pre-trained Inception-V3 model could be beneficial to the classifier. 

 

 All layers of the Inception-V3 except for the last fully connected is imported 

to the classifier of the project. Besides, all the layers are set to non-trainable and 

some lower layers are added, therefore the classifier could train the tumours data on 

the lower layers while keeping the trained-parameters of Inception-V3 constant. Four 

extra layers were added to the TL-InceptionV3 model, including 1 average pooling 

layer with 0.2 dropout, 1 flatten layer, and 1 fully connected 128-size layer. The 

output layer uses the softmax activation function to classify the benign and malignant 

tumours class. Moreover, the binary cross entropy is used as the algorithm loss 

function due to the two target classes of output. Besides, the Adam optimizers with a 

default learning rate of 0.001 is used at the output layer. Figure 3-10 below 

illustrates the general overview of the proposed TL-InceptionV3 architecture. 

 

 

Figure 3-10: Model summary of the TL-Inception-V3 architecture implemented 
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3.4.2.3 TL-DenseNet with 6 extra hidden layers + dropout 

 

DenseNet is chosen for the second transfer learning model due to the simplicity in its 

algorithm architecture. Since most of the CNNs architecture are getting deeper, thus 

the information from the input layer could be faded away before arriving the output 

layer. Besides, DenseNet also required lesser parameters, hence it could decrease the 

training time. Furthermore, according to the literature review, the implementation of 

TL-DenseNet on the BUSI and MBU datasets is still unprecedented by previous 

works, therefore it may be a great opportunity for contributing to related studies. 

 

 Similar to TL-Inception-V3, all layers except the last fully connected layer of 

TL-DenseNet are imported to the CNN classifier. All layers are set as non-trainable, 

and 6 extra hidden layers are added to the architecture, which includes 1 average 

pooling layer, 2 batch normalization layers with dropout of 0.5, and 3 fully 

connected layers. The extra hidden layers are trained to classify the benign and 

malignant tumours data. The output layer uses the softmax activation function to 

classify the benign and malignant tumours class. Moreover, the categorical cross 

entropy is used as the algorithm loss function. Besides, the Adam optimizers with a 

default learning rate of 0.001 is used at the output layer. Figure 3-11 below 

illustrates the general overview of the proposed TL-DenseNet architecture. 

 

 

Figure 3-11: Model summary of the TL-DenseNet architecture implemented 
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3.5 Evaluation Method 

 

The evaluation metrics used for the training and validation process are loss and 

accuracy. The accuracy is defined as the amount of correct predictions. The 

performance of the algorithm is evaluated using an accuracy metric. A model's 

accuracy is often assessed after the model's input parameters and is expressed as a 

percentage. It measures how closely your model's forecast matches the actual data. 

For example, for 100 test samples, if the classifier successful predicts 95 samples 

correctly, thus the classifier’s accuracy will be 95%. On the other hand, the loss 

metrics is defined as the difference between the predicted and true value of the model. 

Generally, the loss function is used to optimize a deep learning model by comparing 

the performance of the model on training and validation set after each iteration. 

 

 For the testing set evaluation metrics, the F1-score, accuracy, precision and 

the confusion matrix are implemented. Table 13 below tabulate the terminology of 

the confusion matrix. In order to enhance the performance of the deep learning 

model, the model should increase the TP and TN predictions and minimize the FP 

and FN predictions. Furthermore, precision is defined as the percentage of true 

positive over the total predicted positive amount; while the F1-score is defined as the 

harmonic mean of combination between precision and recall.  

 

Table 13: Terminology of Confusion Matrix 

 

 

 

 The calculations of the evaluation metrics are shown below: 

 

Accuracy  = (TP+TN) / All Predictions 

Precision  = TP / Predictions Positive 

Recall  = TP/(TP+FN) 

F1 Score  = 2*(Recall * Precision) / (Recall + Precision) 
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3.6 Project Timeline 

 

Research on GANs and deep learning model has been performed in the first two 

weeks of the first trimester before confirming the FYP topic. After confirming the 

FYP topic with my supervisor, Dr. Humaira Nisar, the data is received and 

downloaded from the Mendeley website. Besides, the testing dataset is acquired from 

the NCBI website. The downloaded datasets were analysed and evaluate. The dataset 

images were pre-processed by implementing image process method such as image 

smoothing, flipping and rotating. The data acquisition and pre-process stage took 

approximately two weeks. 

 

 In the second phase, the DCGANs model was studied and designed 

accordingly to the research paper “Unsupervised Representation Learning with Deep 

Convolutional Generative Adversarial Network” proposed by Radford et al. in 2015. 

The training process took more than 2 months to synthesized desired benign tumors 

images. The training process has been repeated multiple times in order to obtain 

desired results and the computational power of the GANs model is very high, 

therefore the training takes longer period. With existing training experience of 

benign data, the malignant data training process took a shorter period to generate 

desired results.  

 

 After the all desired synthesized image has been generated, the synthesized 

images were added into the original dataset to increase the amount of dataset and to 

balance the benign and malignant dataset. The synthesized tumors images were 

preprocessed to remove the image noises. Furthermore, data augmentation for 

instance flipping, rotation is performed on the synthesized images. The complete 

datasets consisting 15,600 data were resampling and separated randomly into training, 

validation and testing set. The data augmentation and resampling took approximately 

one week. 

 

 In the third phase, several CNN models such as Inception-V3, ResNet50, 

AlexNet and DenseNet are designed and trained on the augmented dataset. The deep 

learning model and fine-tuning process took approximately five weeks. The final 

performance evaluation is completed in Week 12 of the second trimester.  
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Table 14: Project Gantt Chart 
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CHAPTER 4 

 

 

 

4 RESULTS AND DISCUSSIONS 

 

 

 

4.1 Overview 

 

The major objective of this project is to develop a deep learning neural network 

classifier algorithm that could distinguish the benign and malignant breast tumours in 

any form of two-dimensional picture. The Mendeley Breast Ultrasound dataset 

(MBU) by Rodrigues (2017) was acquired from the Mendeley website for the CNNs 

algorithm training and validation purpose. The original 250 data inclusive of benign 

and malignant images were increased to 20,800 images by adding the synthesized 

images generated by DCGANs and image augmentation techniques were 

implemented to the images. Besides, smoothing filters were applied to the dataset to 

reduce the noises of the ultrasound images in order to enhance the image quality. 

 

 The data were further randomly split into training, validation set with a 

percentage of 0.8, 0.2. Besides, a 5-fold cross validation is implemented to ensure the 

training and validation data were shuffled. Besides, the testing dataset, BUSI was 

acquired from a different source to evaluate the classifier. Several CNNs model such 

as Inception-V3, AlexNet and DenseNet were developed and trained. The results 

obtained were recorded and compared. On the other hand, another set of open-source 

breast ultrasound image, BUSI dataset (Al-Dhabyani et al., 2020) acquired from 

NCBI is used as the testing set of the CNNs algorithm. The performance of the deep 

learning classifier model is evaluated using confusion matrix, accuracy, precision, 

recall rate and F1-score. The results for Inception-V3, AlexNet and DenseNet are 

compared and discussed. 
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4.2 Image Pre-Processing 

 

Five different smoothing filters such as bilateral, denoise, gaussian, median and 

block matching filter have been applied on the original ultrasound image. According 

to the filtered images, the Denoise filter seems to be the most suitable filter to 

remove the ultrasound image’s noises and still maintain the edge of the tumours, 

therefore the Denoise filter is chosen for the project and it is applied to all images in 

the dataset. Table 15 below illustrates the pre-processed images of different filters. 

 

Table 15: Pre-processed filtered images 

 Filter Pre-processed image Masks 

1 None (Original) 

 

Null 

2 Bilateral 

  

3 Denoise 

 

Null 

4 Gaussian 

 
 

5 Median 

 

Median of neighbouring 

5x5 entries 

6 Block Matching 

 

Null 
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4.3 Image Augmentation 

 

Nine different image augmentation techniques are implemented on the pre-processed 

images. The dimension of the pre-processed images was resized to 100*100 pixels 

before the augmentation process. The dataset is increased in size after the 

augmentation process. Table 16 below illustrates the samples of the augmented 

benign tumour images. 

 

Table 16: Samples of augmented image 

 Image Orientation Augmented Image 

1 Upright 

 

2 Horizontal flipping 

 

3 Vertical flipping 

 

4 Horizontal Vertical flipping 

 

5 Anticlockwise 45° rotation 

 

6 Anticlockwise 125° rotation 

 

7 Anticlockwise 315° rotation 
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8 Rotation horizontal flip 

 

9 Rotation vertical flip 

 

10 Rotation horizontal vertical 

flip 

 

 

 

 

4.4 Data Augmentation using DCGAN 

 

The training process of the DCGANs model for benign data took 800 epochs and the 

training duration is approximate 28 hours. While the training process of the 

DCGANs model for malignant data took 1000 epochs and the training duration is 

approximate 36 hours. However, the training process is repeated several iterations to 

generate the most realistic synthesized image. Table 17 below illustrates the samples 

of the synthesized image generated by the DCGANs model. Furthermore, the 

synthesized images were pre-processed by applying the Denoise filter and 

augmented using the techniques mentioned above. 

 

Table 17: Samples of synthesized image generated by DCGANs 

 Tumours type Synthesized image 

1 Benign 

 

2 Benign 
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3 Malignant 

 

4 Malignant 

 

 

 

Table 18 below tabulate the number of the augmented images in the dataset. 

The dataset has been increased to 20800 data which consists of 10400 benign data 

and 10400 malignant data. 

 

Table 18: Number of images in the dataset 

 Image Orientation Number of images 

1 Upright 1-250 

2 DCGAN synthesized image 251-400 

2 Horizontal flipping 401-800 

3 Vertical flipping 801-1200 

4 Horizontal Vertical flipping 1201-1600 

5 Anticlockwise 45° rotation 1601-3200 

6 Anticlockwise 125° rotation 3201-4800 

7 Anticlockwise 315° rotation 4801-6400 

8 Rotation horizontal flip 6401-11200 

9 Rotation vertical flip 11201-16000 

10 Rotation horizontal vertical flip 16001-20800 
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4.5 Training Results 

 

According to Table 14 below, all three proposed models, CNN-AlexNet model, TL-

Inception-V3 with 3 extra hidden layers + dropout model and TL-DenseNet with 6 

extra hidden layers + dropout model successfully produced all evaluation metrics, 

accuracy, precision, recall and F1-score rates above 90%. As illustrated in Figure 4-1, 

the bar chart illustrates the comparison of the proposed models on the validation 

dataset, the TL-DenseNet model performs best in terms of accuracy at 97.61%; while 

the CNN-AlexNet achieved the highest F1-score among all proposed models at 

0.9950. 

 

 

Figure 4-1: Bar chart of comparison between proposed model on validation dataset 

 

 

Table 19: Comparison between proposed model in terms of accuracy, loss, precision, 

recall and F1-score on the validation dataset 

Model Accuracy Loss Precision Recall F1-Score 

CNN-AlexNet 95.52% 0.1210 0.9958 0.9942 0.9950 

TL-Inception-V3 93.46% 0.1833 0.9238 0.9605 0.9413 

TL-DenseNet 97.61% 0.0625 0.9896 0.9883 0.9889 
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4.5.1 CNN-AlexNet 

 

The training process took 10 epochs and 5-fold cross validation. The average training 

duration of one epoch is approximately 10 minutes and the total training time for 10 

epochs and 5-fold cross validation process is approximately 8.3 hours. The CNNs-

AlexNet architecture achieved an average validation accuracy of 95.52%; average 

validation loss of 0.1210; average validation precision of 0.9958; average validation 

recalls of 0.9942; average validation F1-Score of 0.9950. 

 

The complete 5-fold training results of CNN-AlexNet model are attached in 

the Appendix A section below. 

 

Table 20: Validation Evaluation Metrics for CNN-AlexNet in Each Fold 

No of Folds Accuracy Loss Precision Recall F1-Score 

1 80.90% 0.3778 0.9814 0.9736 0.9775 

2 99.23% 0.0174 1.0000 0.9984 0.9992 

3 98.66% 0.0395 0.9992 1.0000 0.9996 

4 99.97% 0.0016 1.0000 0.9992 0.9996 

5 98.86% 0.0119 0.9984 1.0000 0.9992 

Average 95.52% 0.1210 0.9958 0.9942 0.9950 
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4.5.1.1 Accuracy 

 

 

Figure 4-2: Training and Validation Accuracy against Number of Epochs for CNN-

AlexNet in (a) First Fold (b) Second Fold (c) Third Fold (d) Fourth Fold (e) Fifth 

Fold 

 



56 

4.5.1.2 Loss 

 

 

Figure 4-3: Training and Validation Loss against Number of Epochs for CNN-

AlexNet in (a) First Fold (b) Second Fold (c) Third Fold (d) Fourth Fold (e) Fifth 

Fold 

 



57 

4.5.1.3 Confusion Matrix 

 

 

Figure 4-4: Confusion Matrix graph for CNN-AlexNet in (a) First Fold (b) Second 

Fold (c) Third Fold (d) Fourth Fold (e) Fifth Fold 
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4.5.2 TL-Inception-V3 with 3 extra hidden layers + dropout 

 

The training process took 10 epochs and 5-fold cross validation. The average training 

duration of one epoch is approximately 2 minutes and the total training time for 10 

epochs and 5-fold cross validation process is approximately 1.7 hours. The TL-

Inception-V3 with 3 extra hidden layers + dropout architecture achieved an average 

validation accuracy of 93.46%; average validation loss of 0.1833; average validation 

precision of 0.9238; average validation recalls of 0.9605; average validation F1-

Score of 0.9413. 

 

The complete 5-fold training results of TL-Inception-V3 with 3 extra hidden 

layers + dropout model is attached in the Appendix A section below. 

 

Table 21: Validation Evaluation Metrics for TL-Inception-V3 with 3 extra hidden 

layers + dropout in Each Fold 

No of Folds Accuracy Loss Precision Recall F1-Score 

1 85.76% 0.3500 0.8418 0.9679 0.9005 

2 93.46% 0.2033 0.9266 0.9503 0.9383 

3 94.88% 0.1492 0.9375 0.9623 0.9497 

4 96.13% 0.1226 0.9536 0.9543 0.9539 

5 97.05% 0.0912 0.9595 0.9679 0.9639 

Average 93.46% 0.1833 0.9238 0.9605 0.9413 
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4.5.2.1 Accuracy 

 

 

Figure 4-5: Training and Validation Accuracy against Number of Epochs for TL-

Inception-V3 with 3 extra hidden layers + dropout in (a) First Fold (b) Second Fold 

(c) Third Fold (d) Fourth Fold (e) Fifth Fold 
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4.5.2.2 Loss 

 

 

Figure 4-6: Training and Validation Loss against Number of Epochs for TL-

Inception-V3 with 3 extra hidden layers + dropout in (a) First Fold (b) Second Fold 

(c) Third Fold (d) Fourth Fold (e) Fifth Fold 
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4.5.2.3 Confusion Matrix 

 

 

Figure 4-7: Confusion Matrix graph for TL-Inception-V3 with 3 extra hidden layers 

+ dropout in (a) First Fold (b) Second Fold (c) Third Fold (d) Fourth Fold (e) Fifth 

Fold 
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4.5.3 TL-DenseNet with 6 extra hidden layers + dropout 

 

The training process took 10 epochs and 5-fold cross validation. The average training 

duration of one epoch is approximately 2 minutes and the total training time for 10 

epochs and 5-fold cross validation process is approximately 1.7 hours. The TL- 

DenseNet with 6 extra hidden layers + dropout architecture achieved an average 

validation accuracy of 97.61%; average validation loss of 0.0625; average validation 

precision of 0.9896; average validation recalls of 0.9883; average validation F1-

Score of 0.9889. 

 

The complete 5-fold training results of TL- DenseNet with 6 extra hidden 

layers + dropout model is attached in the Appendix A section below. 

 

Table 22: Validation Evaluation Metrics for TL-DenseNet with 6 extra hidden layers 

+ dropout in Each Fold 

No of Folds Accuracy Loss Precision Recall F1-Score 

1 91.81% 0.2035 0.9759 0.9720 0.9739 

2 97.77% 0.0593 0.9857 0.9920 0.9888 

3 99.14% 0.0254 0.9943 0.9848 0.9895 

4 99.47% 0.0168 0.9952 0.9992 0.9972 

5 99.87% 0.0076 0.9968 0.9936 0.9952 

Average 97.61% 0.0625 0.9896 0.9883 0.9889 
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4.5.3.1 Accuracy 

 

 

Figure 4-8: Training and Validation Accuracy against Number of Epochs for TL-

DenseNet with 6 extra hidden layers + dropout in (a) First Fold (b) Second Fold (c) 

Third Fold (d) Fourth Fold (e) Fifth Fold 
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4.5.3.2 Loss 

 

 

Figure 4-9: Training and Validation Loss against Number of Epochs for TL-

DenseNet with 6 extra hidden layers + dropout in (a) First Fold (b) Second Fold (c) 

Third Fold (d) Fourth Fold (e) Fifth Fold 
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4.5.3.3 Confusion Matrix 

 

 

Figure 4-10: Confusion Matrix graph for TL- DenseNet with 6 extra hidden layers + 

dropout in (a) First Fold (b) Second Fold (c) Third Fold (d) Fourth Fold (e) Fifth 

Fold 
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4.6 Testing Results on BUSI dataset 

 

According to Table 23 below, all three proposed models, CNN-AlexNet model, TL-

Inception-V3 with 3 extra hidden layers + dropout model and TL-DenseNet with 6 

extra hidden layers + dropout model successfully produced all evaluation metrics, 

accuracy, precision, recall and F1-score rates above 90%. As illustrated in Figure 4-

12, the bar chart illustrates the comparison of the proposed models on the testing 

dataset (BUSI), the TL-DenseNet model performs best in terms of accuracy and F1-

score at 91.46% and 0.9144 respectively. 

 

 

Figure 4-11: Confusion Matrix Graph for (a) CNN-AlexNet (b) TL-Inception-V3 (c) 

TL-DenseNet on the BUSI dataset 
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Table 23: Comparison between proposed model in terms of accuracy, precision, 

recall and F1-score on the BUSI testing dataset 

Model Accuracy Precision Recall F1-Score 

CNN-AlexNet 90.42% 0.9106 0.8971 0.9038 

TL-Inception-V3 91.04% 0.9174 0.9027 0.9100 

TL-DenseNet 91.46% 0.9172 0.9116 0.9144 

 

 

 

Figure 4-12: Bar chart of comparison between proposed model on BUSI testing set 

 

 

 

4.7 Comparison between Existing Techniques 

 

As tabulated in Table 24 below, the proposed models implemented in this project are 

compared to existing techniques applied on related works based on the literature 

review. As observed, all proposed methods, CNN-AlexNet model, TL-Inception-V3 

and TL-DenseNet were capable to obtain a high testing accuracy at 90.42%, 91.04% 

and 91.46% respectively. Among the existing techniques, DCGAN + TL-NASNet 

model proposed by Al-Dhabyani and TL-Inception-V3 + NN proposed by Gupta 

achieve the highest and second highest average testing accuracy at 92.6% and 92% 

respectively. However, this is not an accurate comparison, since these literatures did 
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not provide the evaluation metrics for precision, recall and F1-score rates. On the 

other hand, it is worth mentioned that the proposed models in this work uses the 

MBU dataset + DCGAN with augmentation as training dataset, while the testing 

results are evaluated on BUSI dataset which is from a completely different source, 

hence the results are very difficult to achieve higher accuracy due to the distinct 

configuration such as lighting, ultrasound device, operators and etc. of the different 

datasets. Therefore, the proposed models are capable to classify the benign and 

malignant tumours accurately even on unseen datasets. 

 

Table 24: Comparison between proposed models and existing techniques 

Proposed Model Accuracy Precision Recall F1-

Score 

Train 

Dataset 

Test 

Dataset 

DCGAN +CNN-

AlexNet 

90.42% 0.9106 0.8971 0.9038  

 

MBU 

 

 

BUSI DCGAN + TL-

Inception-V3 

91.04% 0.9174 0.9027 0.9100 

DCGAN + TL-

DenseNet 

91.46% 0.9172 0.9116 0.9144 

Existing Techniques 

DCGAN + CNN 

(Desai et al., 2020) 

87% - - - DDSM 

DCGAN + TL-

NASNet (Al-

Dhabyani et al., 

2019) 

92% - - - BUSI 

CNN (Latif et al., 

2019) 

88% - - - MBU 

Quadratic SVM w/ 

BGWO (Khanna et 

al., 2021) 

84.9% - - - BUSI 

TL-Inception-V3 + 

NN (Gupta et al., 

2022) 

92.6% - - - BUSI 
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Figure 4-13 below illustrates the bar chart of comparison between proposed 

models and existing techniques based on literature review. 

 

 

Figure 4-13: Bar chart of comparison between proposed model and existing 

techniques in terms of accuracy 

 

 

 

4.8 Discussion 

 

In recent years, one of the most frequently used imaging technologies in clinical 

practise is the ultrasound imaging. The ultrasound imaging is considered as a 

dynamically developing technology with numerous advantages and it has been 

acknowledged as a potent and commonplace screening and diagnostic tool for 

clinical research practise. Especially, due to its overall reasonable cost, operator 

expertise and its relative lower impact to human health, therefore in certain 

circumstances the ultrasound imaging technology is being favoured compared to CT, 

MRI and X-Ray. Besides, the ultrasound imaging technology has been widely 

implemented in the fields of breast diagnostics. Nevertheless, the ultrasound imaging 

technology also comes with several major drawbacks, for instance image’s noises 

generated by the ultrasound imaging method could significantly affects the image 
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quality, hence the extensive experience of the diagnostician is heavily relied in order 

to diagnosis the image accurately (Liu et al., 2019). 

 

On the other hand, the machine learning, image processing techniques and 

machine vision as lately emerged as the most effective machine learning technology. 

It has been demonstrated that these strategies can overcome the obstacles of the 

conventional techniques employed in current industrial imaging technologies. 

Furthermore, the image processing methods and deep learning algorithms have a 

strong potential to integrate with the ultrasound imaging technologies in order to 

contribute in present medical images diagnosis by performing various automated 

tasks. 

 

In this project, several image processing techniques are implemented on both 

training and testing ultrasound breast tumours images datasets in order to improve 

the training process efficiency of the DCGANs and CNNs model. A denoise 

smoothing filter is chosen and applied to remove the ultrasound image noises while 

maintaining the tumour edges. Apart from improving the deep learning model 

efficiency, the pre-processed image could simplify the diagnostics process for people 

unfamiliar to medical diagnostics to analyse and identify the tumours images. 

 

Since the deep learning algorithm requires numerous of data to fine-tune the 

parameters of the algorithm after every iteration. This fine-tuning process requires a 

huge dataset in order to improve the performance of the neural net. Unfortunately, 

the downloaded datasets from Mendeley website consists of 100 benign and 150 

malignant images, which is a very tiny and unbalanced dataset and it could easily 

overfitting the training model. Therefore, the image augmentation methods are 

implemented on the original dataset to increase the dataset quantity. The 

augmentation methods include flipping, rotating, resizing and cropping; thus, the 

deep learning classifier could train on different orientation of the tumours images in 

order to allow the algorithm to classify accurately on different variety or perspectives 

of tumours dataset.  

 

 DCGANs is proposed in this project to synthesized realistic benign and 

malignant breast tumours images. The DCGANs acts as a potentially useful 
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technique in order to overcome the issue of limited labelled data for the classifier 

model to classify the breast tumours. Besides, the DCGANs also used for balancing 

the distribution of dataset, where the minority data class (benign data) is increased to 

have the same amount as the majority data class. The balanced dataset could greatly 

improve the performance of the proposed CNNs classifier algorithm. Figure 4-1 

below depicted the dataset distribution before and after applying DCGANs. 
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Figure 4-14: Sample distribution of the dataset before and after applying DCGAN 

 

 

 Due to the robust design of the DCGAN, the model could study and train 

higher hierarchical features and extract useful information from the data rapidly and 

efficiently. Apart from that, the structure of a normal GANs model consists of fully 

connected neurons, thus the generated synthesized images are often poor resolution 

and consists a great ratio of image’s noise. Nonetheless due to the stable architecture 

of DCGANs, it could generate higher quality synthesized images in a shorter 

duration compared to the basic GANs model. The DCGANs network has been 

considerably aided in its training by the addition of a batch normalisation layer, 

which normalises the intermediate input values and speed up the training process.  
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Table 25: Samples of DCGANs synthesized image with and without batch 

normalisation layer at 700 training epochs 

 Condition Synthesized image 

1 With batch 

normalisation layer at 

700 epochs 

 

2 Without batch 

normalisation layer at 

700 epochs 

 

  

 

The MBU dataset with implementation of DCGANs was further split 

randomly into training, validation and testing set. A cross-validation method known 

as stratified k-fold cross validation (k=5) is implemented to the model in order to 

allow the model to train and validate on 5 different set of training and validation, and 

therefore enhanced the algorithm. The testing set of MBU dataset is used to evaluate 

the proposed models on the unseen training set in the first evaluating stage of the 

project. After the proposed models are capable to perform on the MBU dataset, the 

classifier is then evaluated on another unseen dataset, BUSI dataset which is obtained 

from another source. 

 

Based on results in terms of accuracy and F1-score of the proposed CNN-

AlexNet model, TL-Inception-V3 with 3 extra hidden layers + dropout model and 

TL-DenseNet with 6 extra hidden layers + dropout model has achieved 90% and 

above on training and validation sets. Moreover, all proposed models have performed 

remarkably and successfully attain above 90% in terms of accuracy and F1-Score on 

the MBU and BUSI testing datasets. Among the proposed models, the DCGANs 

with augmentation + TL-DenseNet with 6 extra hidden layers + dropout classifier 

accomplishes the best performance, accuracy at 91.46% and F1-Score at 0.9144 on 

the BUSI dataset. Followed by TL-Inception-V3 with 3 extra hidden layers + dropout 

classifier, which accuracy at 91.04% and F1-Score at 0.91 and CNN-AlexNet model, 

which accuracy at 90.42% and F1-Score at 0.9038. 
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 In the medical sectors, the deep learning classifier evaluation metrics of 

precision, recall and F1-score are relatively important compared to the accuracy rates. 

Undoubtedly, the performance of a medical deep learning classifier is finer if the F1-

score rate is higher. Besides, the recall rate is considered as the paramount metrics 

when classifying cancer, due to its characteristics that quantifies the true positive 

predictions out of total positive predictions. This is because a cancer classifier with 

low recall rates may misdiagnosed a cancer positive patient as negative, thus the 

patient might miss out the ideal opportunity for treatment. In a nutshell, the F1-score 

is the best evaluation metrics to be considered in medical classification model, due to 

its mathematical equations that integrated the precision and recall rates. Therefore, 

without a doubt that the model performs better if the F1-score is approaching 1.00. 

  

 After evaluating the testing results, the TL-DenseNet with 6 extra hidden 

layers + dropout algorithm is the best performed classifier among all proposed 

models. However, the TL-DenseNet before fine-tuning achieve a testing accuracy at 

62.5% and F1-score at 0.6242. Figure 4-15(a) illustrates the output statement of the 

TL-DenseNet before fine-tuning and still utilize the ‘sigmoid’ as output activation 

function. Therefore, the architecture fine-tuned process is considered as a success 

endeavour, since a significant improvement is accomplished in the testing results. 

Similar attempt is applied on the TL-Inception-V3 model, Figure 4-15(b) shows the 

output statement of TL-Inception-V3 model before fine-tuned. The testing accuracy 

TL-Inception-V3 model before fine-tuned is 48.13% and F1-score at 0.4191, which 

the performance is poor and unacceptable. Nevertheless, the performance of the 

model after fine-tuned had improved in a significant way. 

 

 

Figure 4-15: Output statement of (a) TL-DenseNet and (b) TL-Inception-V3 before 

fine-tuned 

 



 

 

 

 

CHAPTER 5 

 

 

 

5 CONCLUSION AND RECOMMENDATIONS 

 

 

 

5.1 Project Review 

 

The main purpose of this project is to develop an image processing with deep 

learning model to classify and detect breast tumours ultrasound images. The first 

objective of the project is to design an image processing method to reduce the image 

noise of the ultrasound images of benign and malignant tumours. Therefore, the 

denoise smoothing filter is applied to the ultrasound images using OpenCV. The 

noises in the ultrasound images are reduced while maintaining the edges of the 

tumours, thus the objective is achieved. 

 

 The second objective is to apply data augmentation methods, such as GANs 

to increase the dataset quantity. Thus, a DCGANs model is developed accordingly to 

the research paper by Radford (2016) to generate synthesized realistic breast tumours 

images. Moreover, several data augmentation techniques, for instance flipping, 

rotating, resizing and cropping images have been applied to the dataset to enhance 

the data quality and increase the data quantity, therefore the objective is attained. 

 

 The third and fourth objective is to design a CNN-based classifier to classify 

benign and malignant tumors and apply a suitable transfer learning model and tune 

the model’s parameters in order to improve the accuracy of the classifier. Hence, 

three deep learning models which includes the CNN-AlexNet, TL-Inception-V3 and 

TL-DenseNet were proposed in this project. Furthermore, the TL-Inception-V3 and 

TL-DenseNet models were fine-tuned by adding several hidden layers such as fully 



 

connected layer, batch normalization layer with dropout and replace the sigmoid 

output activation function in order to improve the algorithm performance. In a 

nutshell, all objectives in this project have been accomplished. 

 

 

 

5.2 Project Findings 

 

The transfer learning method in deep learning is defined as the approach of utilizing 

a pre-trained model and the architecture is designed by the deep neural networks 

related company, therefore the architecture of the transfer learning models is well 

refined by deep learning scientist with proven outstanding results and strategies. 

Besides, the parameters and weights of the transfer learning models are trained on a 

gigantic number of datasets consisting of various features and the training process 

often requires several high-powered GPUs for a long period of time since training on 

large datasets are time consuming. On the other hand, in this project, among all 

proposed models, before the fine-tuning technique is implemented, the CNN-

AlexNet performs best in terms of accuracy and F1-score. While the transfer learning 

approach were underperformance where the TL-DenseNet achieved accuracy around 

62% and TL-Inception-V3 obtained accuracy of approximately 48%. The 

presumption is the transfer learning models has not trained on the tumours-related 

data. Additionally, the last layer of transfer learning models is the classification layer 

that often used to predict on the pre-trained dataset related image. Therefore, if the 

last few layers of the transfer learning models are not freeze, the deep learning 

classifier is predicting on data which has not trained previously. Furthermore, the 

transfer learning models generally deep and consist of numerous layers, thus if the 

earlier layers did not set to non-trainable, the tumours data will be faded out thorough 

the numerous layers before arriving the final classifier layer and the training process 

will be more time consuming. According to Vinithavn (2021), the earlier layer tends 

to capture more generic features, while the later layers are more dataset specific. 

Therefore, the approach in this project is to set the transfer learning model to non-

trainable and attach several layers for training purpose such as fully connected layers 

and batch normalization layers with dropout function. This fine-tuning technique 

could freeze the transfer learning model and trained on the designed hidden layers; 



 

therefore, the model could utilize the generic features of the transfer learning model 

and able to train on the prepared dataset simultaneously. Moreover, the last 

classification layer of the transfer learning model is removed and replaced by the 

proposed classification layer. 

 

 

 

5.3 Recommendations for Future Improvement 

 

First and foremost, this project has successfully developed a fine-tuned TL-

Inception-V3 and TL-DenseNet model with the implementation of DCGANs with 

image augmentation and processing methods for classifying benign and malignant 

breast tumors ultrasound images and capable to accomplish an outstanding 

performance in terms of accuracy and F1-score. However, due to the project period, I 

was unable to test the CNN algorithm with different layers and activation function. 

Therefore, the suggestion is to refine the CNN algorithm by adding or replacing 

suitable layers with various dropout value and test with another suitable activation 

function experimentally. In addition, different transfer learning models are also 

suggested to test on these datasets experimentally. 

 

 Apart from that, the data augmentation part of the project with the 

implementation of DCGANs is the most time-consuming part of the project, almost 

70% of the overall project duration has been used on training and generating 

synthesized images using the DCGANs model. Therefore, the recommendation is to 

study on various GANs model in order to fine-tune the DCGANs architecture for 

shortening the training duration and improve the performance of DCGANs in terms 

of generating synthesized tumors images. Moreover, the Pix2Pix technique is 

recommended for data augmentation by generating synthesized image due to its 

characteristics of image-to-image translation, thus the fake tumor images can be 

synthesized from free-form sketch. Figure 5-1 illustrates the outline of the 

implementation of Pix2Pix technique to generate lung cancer CT image.   
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Figure 5-1: Outline of the implementation of Pix2Pix technique to generate lung 

cancer CT image (Toda et al., 2022) 

 

 

 

5.4 Conclusion 

 

The breast cancer is life-threatening, and it is also one of the leading causes of death, 

therefore early diagnosis of breast cancer acts as an important role in order to prevent 

the cancer by progressing rapidly and starting to affect human’s health condition or 

even worse, approaching death. The early diagnosis process could allow doctors to 

provide treatments and operations that could end up saving the patients' lives. This 

paper proposed three CNN models including transfer learning with integration of 

DCGANs for data augmentation and image processing methods to classify the breast 

tumors as benign and malignant types. The Mendeley Breast Ultrasound dataset was 

used to train and validate the proposed deep learning classifier model and the Breast 

Ultrasound Image dataset was used to test the accuracy of the classifier in classifying 

benign and malignant tumors. Furthermore, the image processing methods have been 

implemented on the datasets to remove the ultrasound noises and thus enhance the 

image quality. Moreover, DCGANs model has successfully generate synthesized 

both benign and malignant breast tumors ultrasound images and image augmentation 

techniques such as flipping and rotating images have successfully increase the 

dataset quantity. Apart from that, the proposed models, CNN-AlexNet, TL-

Inception-V3 and TL-DenseNet have successfully developed and able to classify the 

tumors images accurately with a testing accuracy at 90.42%, 91.04% and 91.46% 

and F1-score at 0.9038, 0.9100 and 0.9144 respectively. Without a doubt, among the 

three proposed models, the fine-tuned TL-DenseNet exhibited the finest performance, 

followed by the fine-tuned TL-Inception-V3. In a nutshell, all objectives of this 

project are accomplished. 
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APPENDIX A: Training Output Statement of Proposed Models Generated in 

PyCharm 

 

 

 

 

Figure 5-2: Training output statement of CNN-AlexNet in fold 1 

 

 

 

Figure 5-3: Training output statement of CNN-AlexNet in fold 2 
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Figure 5-4: Training output statement of CNN-AlexNet in fold 3 

 

 

 

Figure 5-5: Training output statement of CNN-AlexNet in fold 4 

 

 

 

Figure 5-6: Training output statement of CNN-AlexNet in fold 5 

 



85 

 

Figure 5-7: Training output statement of TL-Inception-V3 in fold 1 

 

 

 

Figure 5-8: Training output statement of TL-Inception-V3 in fold 2 

 

 

 

Figure 5-9: Training output statement of TL-Inception-V3 in fold 3 
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Figure 5-10: Training output statement of TL-Inception-V3 in fold 4 

 

 

 

Figure 5-11: Training output statement of TL-Inception-V3 in fold 5 

 

 

 

Figure 5-12: Training output statement of TL-DenseNet in fold 1 



87 

 

Figure 5-13: Training output statement of TL-DenseNet in fold 2 

 

 

 

Figure 5-14: Training output statement of TL-DenseNet in fold 3 

 

 

 

Figure 5-15: Training output statement of TL-DenseNet in fold 4 



88 

 

Figure 5-16: Training output statement of TL-DenseNet in fold 5 

 

 

 

Figure 5-17: Testing output statement of CNN-AlexNet 

 

 

 

Figure 5-18: Testing output statement of TL-Inception-V3 

 

 

 

Figure 5-19: Testing output statement of TL-DenseNet 



89 

APPENDIX B: Computer Programme Listing 

 

Coding for Image Processing and Augmentation. 

import glob 

import cv2 

import os 

import numpy as np 

from matplotlib import pyplot as plt 

 

inputFolder = 

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/new/malignant" 

# os.mkdir("C:/Users/zzxn9/Documents/Py-DS-ML-Bootcamp-

master/Refactored_Py_DS_ML_Bootcamp-master/Cancer/Process/benign") 

 

i=1 

j=200 

k=400 

l=600 

 

kernel_sharpening = np.array([ 

  [0, -1, 0], 

  [-1, 5, -1], 

  [0, -1, 0] 

]) 

 

kernel2 = np.ones((5, 5), np.float32) / 25 

dim = (100, 100) 

 

a=1601 

b=3201 

c=4801 

 

for filename in os.listdir(inputFolder): 

    image = cv2.imread(os.path.join(inputFolder,filename)) 

    if image is not None: 

 

        conv2d = cv2.filter2D(src=image, ddepth=-1, kernel=kernel2) 

        denoise = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21) 

        gaussian_blur = cv2.GaussianBlur(src=image, ksize=(5, 5),sigmaX = 0, 

sigmaY = 0) 

        median = cv2.medianBlur(src=image, ksize=5) 

        bilateral_filter = cv2.bilateralFilter(src=image, d=9, sigmaColor=75, 

sigmaSpace=75) 

        output = cv2.filter2D(image, -1, kernel_sharpening) 

        cropped_image = image[60:410, 150:500] 

 

        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 
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resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA) 

 

        flipVertical = cv2.flip(output, 0) 

        flipHorizontal = cv2.flip(output, 1) 

        flipBoth = cv2.flip(output, -1) 

        # save and display images 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/new/malignant/us_m

%02i.jpg" % i, 

            gray) 

        i += 1 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/new/malignant/us_b

%02i.jpg" % i, 

            resized) 

        i += 1 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/benign/us_m%02i.jp

g" % i, 

            cropped_image) 

        i += 1 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Conv2d/benign/us_m%02i

.jpg" % i, 

            conv2d) 

        i += 1 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/new/malignant/us_m

%02i.jpg" % i, 

            denoise) 

        i += 1 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Bilateral/gans/us_m%02i.j

pg" % i, 

            bilateral_filter) 

        i += 1 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Median/gans/us_m%02i.jp

g" % i, 

            median) 

        i += 1 
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cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gaussian/gans/us_m%02i.j

pg" % i, 

            gaussian_blur) 

        i += 1 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Sharp/benign/us_m%02i.j

pg" % i, 

            output) 

        i += 1 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Process/gans/malignant/us

_b%02i.jpg" % j, 

            flipVertical) 

        j += 1 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Process/gans/malignant/us

_b%02i.jpg" % k, 

            flipHorizontal) 

        k += 1 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Process/gans/malignant/us

_b%02i.jpg" % l, 

            flipBoth) 

        l += 1 

 

#press esc to exit the program 

cv2.waitKey(30) 

#close all the opened windows 

cv2.destroyAllWindows() 
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Coding for Rotating Images 

 

 

 

 

 

 

        img = cv2.imread(os.path.join(inputFolder,filename)) 

        (h, w) = img.shape[:2] 

        # calculate the center of the image 

        center = (w / 2, h / 2) 

        angle45 = 45 

        angle125 = 125 

        angle315 = 315 

        scale = 1.0 

        # Perform the counter clockwise rotation holding at the center 

        # 45 degrees 

        M = cv2.getRotationMatrix2D(center, angle45, scale) 

        rotated45 = cv2.warpAffine(img, M, (h, w)) 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Report/us_m%02i.jpg" % 

a, 

            rotated45) 

        a += 1 

        # 125 degrees 

        M = cv2.getRotationMatrix2D(center, angle125, scale) 

        rotated125 = cv2.warpAffine(img, M, (w, h)) 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Report/us_m%02i.jpg" % 

b, 

            rotated125) 

        b += 1 

        # 315 degrees 

        M = cv2.getRotationMatrix2D(center, angle315, scale) 

        rotated315 = cv2.warpAffine(img, M, (h, w)) 

        cv2.imwrite( 

            

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Report/us_m%02i.jpg" % 

c, 

            rotated315) 

        c += 1 
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Coding for DCGANs model 

import os 

import numpy as np 

import cv2 

from glob import glob 

from matplotlib import pyplot 

from sklearn.utils import shuffle 

import tensorflow as tf 

from tensorflow.keras.layers import * 

from tensorflow.keras.models import Model 

from tensorflow.keras.optimizers import Adam 

from skimage import color 

 

IMG_H = 80 

IMG_W = 80 

IMG_C = 3   

w_init = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.02) 

def load_image(image_path): 

    img = tf.io.read_file(image_path) 

    img = tf.io.decode_jpeg(img) 

    img = tf.image.resize_with_crop_or_pad(img, IMG_H, IMG_W) 

    img = tf.cast(img, tf.float32) 

    img = (img - 127.5) / 127.5 

    return img 

 

def tf_dataset(images_path, batch_size): 

    dataset = tf.data.Dataset.from_tensor_slices(images_path) 

    dataset = dataset.shuffle(buffer_size=10240) 

    dataset = dataset.map(load_image, 

num_parallel_calls=tf.data.experimental.AUTOTUNE) 

    dataset = dataset.batch(batch_size) 

    dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) 

    return dataset 

 

def deconv_block(inputs, num_filters, kernel_size, strides, bn=True): 

    x = Conv2DTranspose( 

        filters=num_filters, 

        kernel_size=kernel_size, 

        kernel_initializer=w_init, 

        padding="same", 

        strides=strides, 

        use_bias=False 

        )(inputs) 

 

    if bn: 

        x = BatchNormalization()(x) 

        x = LeakyReLU(alpha=0.2)(x) 

    return x 
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def conv_block(inputs, num_filters, kernel_size, padding="same", strides=2, 

activation=True): 

    x = Conv2D( 

        filters=num_filters, 

        kernel_size=kernel_size, 

        kernel_initializer=w_init, 

        padding=padding, 

        strides=strides, 

    )(inputs) 

 

    if activation: 

        x = LeakyReLU(alpha=0.2)(x) 

        x = Dropout(0.3)(x) 

    return x 

 

def build_generator(latent_dim): 

    f = [2**i for i in range(5)][::-1] 

    filters = 32 

    output_strides = 16 

    h_output = IMG_H // output_strides 

    w_output = IMG_W // output_strides 

 

    noise = Input(shape=(latent_dim,), name="generator_noise_input") 

 

    x = Dense(f[0] * filters * h_output * w_output, use_bias=False)(noise) 

    x = BatchNormalization()(x) 

    x = LeakyReLU(alpha=0.2)(x) 

    x = Reshape((h_output, w_output, 16 * filters))(x) 

 

    for i in range(1, 5): 

        x = deconv_block(x, 

            num_filters=f[i] * filters, 

            kernel_size=5, 

            strides=2, 

            bn=True 

        ) 

 

    x = conv_block(x, 

        num_filters=3,   

        kernel_size=5, 

        strides=1, 

        activation=False 

    ) 

    fake_output = Activation("tanh")(x) 

 

    return Model(noise, fake_output, name="generator") 
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def build_discriminator(): 

    f = [2**i for i in range(4)] 

    image_input = Input(shape=(IMG_H, IMG_W, IMG_C)) 

    x = image_input 

    filters = 64 

    output_strides = 16 

    h_output = IMG_H // output_strides 

    w_output = IMG_W // output_strides 

 

    for i in range(0, 4): 

        x = conv_block(x, num_filters=f[i] * filters, kernel_size=5, strides=2) 

 

    x = Flatten()(x) 

    x = Dense(1)(x) 

 

    return Model(image_input, x, name="discriminator") 

 

class GAN(Model): 

    def __init__(self, discriminator, generator, latent_dim): 

        super(GAN, self).__init__() 

        self.discriminator = discriminator 

        self.generator = generator 

        self.latent_dim = latent_dim 

 

    def compile(self, d_optimizer, g_optimizer, loss_fn): 

        super(GAN, self).compile() 

        self.d_optimizer = d_optimizer 

        self.g_optimizer = g_optimizer 

        self.loss_fn = loss_fn 

 

    def train_step(self, real_images): 

        batch_size = tf.shape(real_images)[0] 

 

        for _ in range(2): 

            ## Train the discriminator 

            random_latent_vectors = tf.random.normal(shape=(batch_size, 

self.latent_dim)) 

            generated_images = self.generator(random_latent_vectors) 

            generated_labels = tf.zeros((batch_size, 1)) 

 

            with tf.GradientTape() as ftape: 

                predictions = self.discriminator(generated_images) 

                d1_loss = self.loss_fn(generated_labels, predictions) 

            grads = ftape.gradient(d1_loss, self.discriminator.trainable_weights) 

            self.d_optimizer.apply_gradients(zip(grads, 

self.discriminator.trainable_weights)) 
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## Train the discriminator 

            labels = tf.ones((batch_size, 1)) 

 

            with tf.GradientTape() as rtape: 

                predictions = self.discriminator(real_images) 

                d2_loss = self.loss_fn(labels, predictions) 

            grads = rtape.gradient(d2_loss, self.discriminator.trainable_weights) 

            self.d_optimizer.apply_gradients(zip(grads, 

self.discriminator.trainable_weights)) 

 

        ## Train the generator 

        random_latent_vectors = tf.random.normal(shape=(batch_size, 

self.latent_dim)) 

        misleading_labels = tf.ones((batch_size, 1)) 

 

        with tf.GradientTape() as gtape: 

            predictions = self.discriminator(self.generator(random_latent_vectors)) 

            g_loss = self.loss_fn(misleading_labels, predictions) 

        grads = gtape.gradient(g_loss, self.generator.trainable_weights) 

        self.g_optimizer.apply_gradients(zip(grads, 

self.generator.trainable_weights)) 

 

        return {"d1_loss": d1_loss, "d2_loss": d2_loss, "g_loss": g_loss} 

 

def save_plot(examples, epoch, n): 

    examples = (examples + 1) / 2.0 

    for i in range(n * n): 

        pyplot.subplot(n, n, i+1) 

        pyplot.axis("off") 

        pyplot.imshow(examples[i])  ## pyplot.imshow(np.squeeze(examples[i], 

axis=-1)) 

    filename = f"samples_new1/generated_plot_epoch-{epoch+1}.png" 

    pyplot.savefig(filename) 

    pyplot.close() 
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Coding for training the DCGANs model 

 

 

 

 

 

if __name__ == "__main__": 

    ## Hyperparameters 

    batch_size = 256 

    latent_dim = 256 

    num_epochs = 800 

    images_path = glob("data/*") 

 

    d_model = build_discriminator() 

    g_model = build_generator(latent_dim) 

 

    d_model.load_weights("saved_model/d_model.h5") 

    g_model.load_weights("saved_model/g_model.h5") 

 

    d_model.summary() 

    g_model.summary() 

 

    gan = GAN(d_model, g_model, latent_dim) 

 

    bce_loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True, 

label_smoothing=0.1) 

    d_optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5) 

    g_optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5) 

    gan.compile(d_optimizer, g_optimizer, bce_loss_fn) 

 

    images_dataset = tf_dataset(images_path, batch_size) 

 

    for epoch in range(num_epochs): 

        gan.fit(images_dataset, epochs=1) 

        g_model.save("saved_model/g_model.h5") 

        d_model.save("saved_model/d_model.h5") 

 

        n_samples = 25 

        noise = np.random.normal(size=(n_samples, latent_dim)) 

        examples = g_model.predict(noise) 

        # save_plot(examples, epoch, int(np.sqrt(n_samples))) 

        if epoch % 2 != 0: 

            save_plot(examples, epoch, int(np.sqrt(n_samples))) 

            g_model.save(f"saved_model_acc/g_model-{epoch+1}.h5") 

            d_model.save(f"saved_model_acc/d_model-{epoch+1}.h5") 
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Coding for generating synthesized images from the DCGANs model 

 

 

Coding for splitting datasets into train, validation and test sets 

 

 

 

 

 

import numpy as np 

import cv2 

from tensorflow.keras.models import load_model 

from matplotlib import pyplot 

 

def save_plot(examples, n): 

    examples = (examples + 1) / 2.0 

    for i in range(n): 

        pyplot.imshow(examples[i]) 

        pyplot.axis("off") 

        filename = f"malignant{+1}.png" 

        pyplot.savefig(filename, bbox_inches='tight',pad_inches = 0) 

        pyplot.close() 

 

if __name__ == "__main__": 

    model = load_model("C:/Users/zzxn9/PycharmProjects/dashproject/DCGAN-

on-Breast-tumor/saved_model/g_model.h5", compile=False) 

 

    n = 25 

    latent_dim = 256 

    latent_points = np.random.normal(size=(n, latent_dim)) 

    examples = model.predict(latent_points) 

    save_plot(examples, n) 

import splitfolders 

 

splitfolders.ratio("C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Rotation/t

est-set", 

                   output="C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Cheat", 

                   seed=42, 

                   ratio=(.7, .2, .1), 

                   group_prefix=None, 

                   move=False) 
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Coding for the proposed CNN network 

import numpy as np 

from sklearn.metrics import accuracy_score, f1_score, precision_score, 

confusion_matrix 

from sklearn.model_selection import StratifiedKFold 

from PIL import Image 

import random 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras.applications import DenseNet121 

from tensorflow.keras.applications.resnet50 import ResNet50 

from tensorflow.keras.applications.inception_v3 import InceptionV3 

from tensorflow.keras import layers, Model 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

from keras.preprocessing.image import ImageDataGenerator 

from tensorflow.keras.layers import Dropout 

from tensorflow.keras.layers import Flatten 

from tensorflow.keras.layers import Conv2D 

from tensorflow.keras.layers import MaxPooling2D 

from tensorflow.compat.v1 import ConfigProto 

from tensorflow.compat.v1 import InteractiveSession 

from tensorflow.keras.layers import 

Dense,GlobalAveragePooling2D,Convolution2D,BatchNormalization 

import matplotlib.pyplot as plt 

from sklearn import metrics 

import warnings 

import os 

import shutil 

from PIL import ImageFile 

import zipfile 

import matplotlib.pyplot as plt 

 

warnings.simplefilter('error', Image.DecompressionBombWarning) 

ImageFile.LOAD_TRUNCATED_IMAGES = True 

from PIL import Image 

Image.MAX_IMAGE_PIXELS = 10000 

config = ConfigProto() 

config.gpu_options.allow_growth = True 

session = InteractiveSession(config=config) 

 

root_path='C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/' 

datasetFolderName=root_path+'Training' 

MODEL_FILENAME=root_path+"model_cv.h5" 

sourceFiles=[] 

classLabels=['benign', 'malignant'] 

X=[] 

Y=[] 
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Image.MAX_IMAGE_PIXELS = None 

img_rows, img_cols = 100, 100 # input image dimensions 

train_path=datasetFolderName+'/train/' 

validation_path=datasetFolderName+'/val/' 

test_path=datasetFolderName+'/test/' 

 

def transferBetweenFolders(source, dest, splitRate): 

    global sourceFiles 

    sourceFiles=os.listdir(source) 

    if(len(sourceFiles)!=0): 

        transferFileNumbers=int(len(sourceFiles)*splitRate) 

        transferIndex=random.sample(range(0, len(sourceFiles)), 

transferFileNumbers) 

        for eachIndex in transferIndex: 

            shutil.move(source+str(sourceFiles[eachIndex]), 

dest+str(sourceFiles[eachIndex])) 

    else: 

        print("No file moved. Source empty!") 

 

def transferAllClassBetweenFolders(source, dest, splitRate): 

    for label in classLabels: 

        transferBetweenFolders(datasetFolderName + '/' + source + '/' + label + '/', 

                               datasetFolderName + '/' + dest + '/' + label + '/', 

                               splitRate) 

 

transferAllClassBetweenFolders('test', 'train', 1.0) 

transferAllClassBetweenFolders('train', 'test', 0.20) 

 

def prepareNameWithLabels(folderName): 

    sourceFiles = os.listdir(datasetFolderName + '/train/' + folderName) 

    for val in sourceFiles: 

        X.append(val) 

        for i in range(len(classLabels)): 

            if (folderName == classLabels[i]): 

                Y.append(i) 

# Organize file names and class labels in X and Y variables 

for i in range(len(classLabels)): 

    prepareNameWithLabels(classLabels[i]) 

 

X = np.asarray(X) 

Y = np.asarray(Y) 

 

batch_size = 256 

epoch = 10 

activationFunction = 'elu' 
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Coding for CNN-AlexNet 

 

Coding for TL-Inception-V3 

 

 

 

 

def getModel(): 

 

    # AlexNet 

    model = Sequential() 

    model.add(Conv2D(64, (3, 3), padding='same', activation=activationFunction, 

    input_shape=(img_rows, img_cols, 3))) 

    model.add(Conv2D(64, (3, 3), activation=activationFunction)) 

    model.add(MaxPooling2D(pool_size=(2, 2))) 

    model.add(Dropout(0.25)) 

    model.add(Conv2D(32, (3, 3), padding='same', activation=activationFunction)) 

    model.add(Conv2D(32, (3, 3), activation=activationFunction)) 

    model.add(MaxPooling2D(pool_size=(2, 2))) 

    model.add(Dropout(0.25)) 

    model.add(Conv2D(16, (3, 3), padding='same', activation=activationFunction)) 

    model.add(Conv2D(16, (3, 3), activation=activationFunction)) 

    model.add(MaxPooling2D(pool_size=(2, 2))) 

    model.add(Dropout(0.25)) 

    model.add(Flatten()) 

    model.add(Dense(64, activation=activationFunction)) 

    model.add(Dropout(0.1)) 

    model.add(Dense(32, activation=activationFunction)) 

    model.add(Dropout(0.1)) 

    model.add(Dense(16, activation=activationFunction)) 

    model.add(Dropout(0.1)) 

    model.add(Dense(len(classLabels), activation='softmax')) 

# InceptionV3 

    model_d = InceptionV3(input_shape=(100, 100, 

3),include_top=False,weights='imagenet') 

    model_d.trainable = False 

    model = Sequential() 

    model.add(model_d) 

    model.add(GlobalAveragePooling2D()) 

    model.add(Dropout(0.2)) 

    model.add(Flatten()) 

    model.add(Dense(128, activation='relu', input_dim=(100, 100, 3))) 

    model.add(Dense(len(classLabels), activation='softmax')) 
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Coding for TL-DenseNet 

 

 

 

 

 

 

    # DenseNet 

    model_d = DenseNet121(weights='imagenet', include_top=False, 

input_shape=(100, 100, 3)) 

    model_d.trainable = False 

 

    model = Sequential() 

    model.add(model_d) 

    model.add(GlobalAveragePooling2D()) 

    model.add(BatchNormalization()) 

    model.add(Dropout(0.5)) 

    model.add(Dense(1024, activation='relu')) 

    model.add(Dense(512, activation='relu')) 

    model.add(BatchNormalization()) 

    model.add(Dropout(0.5)) 

    model.add(Dense(len(classLabels), activation='softmax')) 

 

 

    model.compile(optimizer='adam', loss='binary_crossentropy', 

metrics=['accuracy']) 

 

    model.summary() 

 

    return model 

 

model=getModel() 
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Coding for training and validate the proposed models in Stratified K-Fold 

skf = StratifiedKFold(n_splits=5, shuffle=True) 

skf.get_n_splits(X, Y) 

foldNum=0 

for train_index, val_index in skf.split(X, Y): 

 

    transferAllClassBetweenFolders('val', 'train', 1.0) 

    foldNum+=1 

    print("Results for fold",foldNum) 

    X_train, X_val = X[train_index], X[val_index] 

    Y_train, Y_val = Y[train_index], Y[val_index] 

    for eachIndex in range(len(X_val)): 

        classLabel='' 

        for i in range(len(classLabels)): 

            if(Y_val[eachIndex]==i): 

                classLabel=classLabels[i] 

 

        shutil.move(datasetFolderName+'/train/'+classLabel+'/'+X_val[eachIndex], 

                datasetFolderName+'/val/'+classLabel+'/'+X_val[eachIndex]) 

 

train_datagen = ImageDataGenerator( 

            rescale=1./255, 

            zoom_range=0.20, 

            fill_mode="nearest") 

    validation_datagen = ImageDataGenerator(rescale=1./255) 

    test_datagen = ImageDataGenerator(rescale=1./255) 

 

    #Start ImageClassification Model 

    train_generator = train_datagen.flow_from_directory( 

        train_path, 

        target_size=(img_rows, img_cols), 

        batch_size=batch_size, 

        class_mode='categorical', 

        subset='training') 

 

    validation_generator = validation_datagen.flow_from_directory( 

        validation_path, 

        target_size=(img_rows, img_cols), 

        batch_size=batch_size, 

        class_mode='categorical', # only data, no labels 

        shuffle=False) 

 

    # fit model 

    history=model.fit(train_generator,epochs=epoch, validation_data = 

validation_generator) 
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    print("==============TEST RESULTS============") 

    test_generator = test_datagen.flow_from_directory( 

        test_path, 

        target_size=(img_rows, img_cols), 

        batch_size=batch_size, 

        class_mode=None, 

        shuffle=False) 

 

    predictions = model.predict_generator(test_generator, verbose=1) 

    yPredictions = np.argmax(predictions, axis=1) 

    true_classes = test_generator.classes 

 

    confusion_matrix = metrics.confusion_matrix(true_classes, yPredictions) 

cm_display = 

metrics.ConfusionMatrixDisplay(confusion_matrix=confusion_matrix, 

display_labels=[False, True]) 

 

cm_display.plot() 

    plt.title(f"Confusion Matrix - fold {foldNum}") 

    plt.savefig(f"Confusion Matrix - {foldNum}.png", bbox_inches='tight') 

    plt.close() 

 

# Plot the training and validation accuracies for each epoch 

 

    acc = history.history['accuracy'] 

    val_acc = history.history['val_accuracy'] 

    loss = history.history['loss'] 

    val_loss = history.history['val_loss'] 

 

    epochs = range(len(acc)) 

 

    plt.plot(epochs, acc, 'r', label='Training accuracy') 

    plt.plot(epochs, val_acc, 'b', label='Validation accuracy') 

    plt.title(f"Training and validation accuracy- fold {foldNum}") 

    plt.xlabel('Epoch') 

    plt.ylabel('Accuracy') 

    plt.legend(loc=0) 

    plt.savefig(f"training-accuracy{foldNum}.png", bbox_inches='tight') 

    plt.close() 

 

    plt.plot(epochs, loss, 'r', label='Training loss') 

    plt.plot(epochs, val_loss, 'b', label='Validation loss') 

    plt.title(f"Training and validation loss- fold {foldNum}") 

    plt.xlabel('Epoch') 

    plt.ylabel('Loss') 

    plt.legend(loc=0) 

    plt.savefig(f"training-loss{foldNum}.png", bbox_inches='tight') 

    plt.close() 

 

model.save(MODEL_FILENAME) 

 


