

CANCER DETECTION USING IMAGE PROCESSING

AND MACHINE/DEEP LEARNING METHODS

LEONG ZEH ZEN

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Bachelor of Engineering (Hons) Electronic Engineering

Faculty of Engineering and Green Technology

Universiti Tunku Abdul Rahman

June 2022

ii

DECLARATION

I hereby declare that this project report is based on my original work except for

citations and quotations which have been duly acknowledged. I also declare that it

has not been previously and concurrently submitted for any other degree or award at

UTAR or other institutions.

Signature : _________________________

Name : _________________________

ID No. : _________________________

Date : _________________________

Zehzen
18AGB00705

Zehzen

Zehzen
15 September 2022

Zehzen
Leong Zeh Zen

iii

APPROVAL FOR SUBMISSION

I certify that this project report entitled “CANCER DETECTION USING IMAGE

PROCESSING AND MACHINE/DEEP LEARNING METHODS” was prepared

by LEONG ZEH ZEN has met the required standard for submission in partial

fulfilment of the requirements for the award of Bachelor of Engineering (Hons)

Electronic Engineering at Universiti Tunku Abdul Rahman.

Approved by,

Signature : _________________________

Supervisor : Prof. Ts. Dr. Humaira Nisar

Date : _________________________

Zehzen
26 September 2022

iv

The copyright of this report belongs to the author under the terms of the

copyright Act 1987 as qualified by Intellectual Property Policy of Universiti Tunku

Abdul Rahman. Due acknowledgement shall always be made of the use of any

material contained in, or derived from, this report.

© 2022, LEONG ZEH ZEN. All right reserved.

v

ACKNOWLEDGEMENTS

I would like to thank everyone who had contributed to the successful completion of

this project. I would like to express my gratitude to my research supervisor, Prof. Ts.

Dr. Humaira Nisar, and my moderator, Ir. Dr. Chan Cheong Loong for their

invaluable advice, guidance and their enormous patience throughout the development

of the research.

In addition, I would also like to express my gratitude to my loving parent and

friends who had helped and given me encouragement.

vi

CANCER DETECTION USING IMAGE PROCESSING

AND MACHINE/DEEP LEARNING METHODS

ABSTRACT

Breast cancer is one of the highest mortality cancers among women. The breast

tumors can be classified into two categories, benign and malignant. Benign is the

non-cancerous tumor; While the other variant, malignant is the cancerous tumor.

These tumors are dangerous and mostly life-threatening due to the characteristics of

the recurrence of the tumor. This is because the traditional classification methods are

time-consuming, costly, labor-intensive and has reached their bottleneck. Integrating

deep learning technology with medicinal solutions could improve the efficiency in

early detection and treatment to improve the survival rates of breast cancer.

Therefore, this paper researched the application of CNNs on the open-source

Mendeley Breast Ultrasound dataset (MBU) by Rodrigues (2018) and the Breast

Ultrasound Image dataset (BUSI) by Al-Dhabyani (2020). Moreover, the image pre-

processing methods are implemented to refine the ultrasound image quality.

Furthermore, the DCGAN model is used for data augmentation and to increase the

data quantity. Subsequently, transfer learning-based approach is proposed for

differentiating breast tumors. The proposed models, CNN-AlexNet, TL-Inception-V3

and TL-DenseNet are fine-tuned and trained on the MBU dataset. Moreover, the

proposed classifier models are tested and evaluated on the BUSI dataset. The fine-

tuned TL-DenseNet exhibited the finest performance among all proposed models by

achieving an accuracy of 91.46% and F1-score of 0.9144, followed by the fine-tuned

TL-Inception-V3 with accuracy of 91.04% and F1-score of 0.9100. The CNN-

AlexNet also performs decently on the testing set with accuracy of 90.42% and F1-

score of 0.9038.

vii

TABLE OF CONTENTS

DECLARATION ii

APPROVAL FOR SUBMISSION iii

ACKNOWLEDGEMENTS v

ABSTRACT vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF SYMBOLS / ABBREVIATIONS xvii

LIST OF APPENDICES xviii

CHAPTER

1 INTRODUCTION 1

1.1 Background 1

1.2 Problem Statements 5

1.3 Project Scope 6

1.4 Project Objectives 7

2 LITERATURE REVIEW 8

2.1 Overview 8

2.2 Generative Adversarial Network (GANs) 8

2.3 Deep Convolutional Generative Adversarial Networks

(DCGANs) 10

2.4 GoogleLeNet (Inception) 11

2.4.1 Inception-v1 12

viii

2.4.2 Inception-v2 & Inception-v3 13

2.5 Residual Neural Network (ResNet) 16

2.6 Related Works 20

3 METHODOLOGY 30

3.1 Overview 30

3.2 Environment Setup 31

3.2.1 Hardware 31

3.2.2 Software 32

3.3 Data Processing 32

3.3.1 Dataset Preparation 32

3.3.2 Image Pre-Processing 34

3.3.3 Image Augmentation 35

3.3.4 Data Augmentation 36

3.3.5 Data Segmentation 38

3.4 Classification Model 39

3.4.1 Dataset Cross-Validation 39

3.4.2 CNNs and TL Architecture Design 40

3.5 Evaluation Method 45

3.6 Project Timeline 46

4 RESULTS AND DISCUSSIONS 48

4.1 Overview 48

4.2 Image Pre-Processing 49

4.3 Image Augmentation 50

4.4 Data Augmentation using DCGAN 51

4.5 Training Results 53

4.5.1 CNN-AlexNet 54

4.5.2 TL-Inception-V3 with 3 extra hidden layers +

dropout 58

4.5.3 TL-DenseNet with 6 extra hidden layers + dropout

 62

4.6 Testing Results on BUSI dataset 66

ix

4.7 Comparison between Existing Techniques 67

4.8 Discussion 69

5 CONCLUSION AND RECOMMENDATIONS 74

5.1 Project Review 74

5.2 Project Findings 75

5.3 Recommendations for Future Improvement 76

5.4 Conclusion 77

REFERENCES 78

APPENDICES 83

x

LIST OF TABLES

 TABLE TITLE PAGE

Table 1: Architecture details of Inception -v1 (Szegedy et al.,

2015) 13

Table 2: Proposed network architecture of Inception-v2 (Szegedy

et al., 2016) 16

Table 3: Top-1 error on ImageNet Validation (He et al., 2016) 18

Table 4: Disc score evaluation in terms of mean and standard

deviation of GAN-based model and BRATS’17

best model (Wang et al.). The GAN-based models

were trained with augmentation and without

augmentation (Shin et al., 2018) 20

Table 5: Comparison of different DL and ML classifier in terms

of accuracy on unprocessed data and CNN

denoised data (Latif et al., 2019) 26

Table 6: Classification results of different machine learning

classifier with or without BGWO feature selection

process in terms of accuracy and AUC (Khanna et

al., 2021) 27

Table 7: Classification results of VGG16, VGG19, Inception-V3

and SqueezeNet integrated with different ML

algorithm on breast tumour classification (Gupta et

al., 2022) 28

Table 8: Summary of performance from various related papers 29

Table 9: Hardware details 31

Table 10: Python libraries version 32

Table 11: Smoothing filter implemented in this project 35

Table 12: Configuration used in CNN-AlexNet 40

xi

Table 13: Terminology of Confusion Matrix 45

Table 14: Project Gantt Chart 47

Table 15: Pre-processed filtered images 49

Table 16: Samples of augmented image 50

Table 17: Samples of synthesized image generated by DCGANs 51

Table 18: Number of images in the dataset 52

Table 19: Comparison between proposed model in terms of

accuracy, loss, precision, recall and F1-score on

the validation dataset 53

Table 20: Validation Evaluation Metrics for CNN-AlexNet in

Each Fold 54

Table 21: Validation Evaluation Metrics for TL-Inception-V3

with 3 extra hidden layers + dropout in Each Fold 58

Table 22: Validation Evaluation Metrics for TL-DenseNet with 6

extra hidden layers + dropout in Each Fold 62

Table 23: Comparison between proposed model in terms of

accuracy, precision, recall and F1-score on the

BUSI testing dataset 67

Table 24: Comparison between proposed models and existing

techniques 68

Table 25: Samples of DCGANs synthesized image with and

without batch normalisation layer at 700 training

epochs 72

xii

LIST OF FIGURES

 FIGURE TITLE PAGE

Figure 1-1: Incidence of deaths worldwide of different diseases in

2019 (Our World in Data, 2019) 2

Figure 1-2: Incidence of cancer worldwide in 2020 (Global

Cancer Observatory, 2020) 3

Figure 1-3: Mortality rate of different cancers worldwide in 2020

(Global Cancer Observatory, 2020) 3

Figure 1-4: Example of 3x3 kernel applied on an image

(GeeksforGeeks, 2022) 4

Figure 2-1: Simplified GANs framework (GeeksforGeeks, 2022) 9

Figure 2-2: Evolution of GANs (Brownlee, 2019) 10

Figure 2-3: Structure of DCGANs (Radford, 2016) 10

Figure 2-4: Naïve version of Inception-v1 module (Szegedy et al.,

2015) 12

Figure 2-5: Dimension reductions inception-v1 module (Szegedy

et al., 2015) 12

Figure 2-6: The 5×5 convolution has been replaced by two 3×3

convolution in Inception-v2 (Szegedy et al., 2016) 14

Figure 2-7: Factorization in Inception-v2 module (Szegedy et al.,

2016) 15

Figure 2-8: Filter banks outputs of Inception-v2 module were

expanded (Szegedy et al., 2016) 15

Figure 2-9: ResNet Residual Blocks (He et al., 2016) 17

Figure 2-10: Refined residual blocks (Fung, 2017) 18

xiii

Figure 2-11: Samples of network architecture. Left: VGG-19

model. Mid: plain network inspired by VGG nets

of 34 layers. Right: residual network of 34 layers

(He et al., 2016) 19

Figure 2-12: Generator structure of MIGAN (Iqbal et al., 2018) 21

Figure 2-13: Discriminator structure of MIGAN (Iqbal et al.,

2018) 21

Figure 2-14: Examples of two different input and their respective

generated output (Senaras et al., 2018) 22

Figure 2-15: Original and GANs generated images with batch

size 4 and 32 (Desai et al., 2020) 23

Figure 2-16: Accuracy of deep learning breast cancer

classification (Desai et al., 2020) 24

Figure 2-17: CNN predictions in terms of F1-score with four

approaches: original input (Blue), augmented

original input (Orange), GANs input (Green) and

augmented GANs input (Red) (Alyafi et al., 2020) 25

Figure 2-18: Comparison of performance in terms of accuracy on

different dataset augmentation methods and CNNs

architecture (Al-Dhabyani et al., 2019) 26

Figure 3-1: Project Methodology 31

Figure 3-2: Samples of benign tumour images of MBU dataset 33

Figure 3-3: Samples of malignant tumour images of MBU dataset 33

Figure 3-4: Samples of benign tumour images of BUSI dataset 33

Figure 3-5: Samples of malignant tumour images of BUSI dataset 33

Figure 3-6: Visualization of dataset of the synthesized data and

original data 37

Figure 3-7: Visualization of dataset distribution 38

Figure 3-8: Terminology of 5-fold cross validation (Kumar, 2022)

 39

Figure 3-9: Model summary of the CNN-AlexNet architecture

implemented 42

xiv

Figure 3-10: Model summary of the TL-Inception-V3

architecture implemented 43

Figure 3-11: Model summary of the TL-DenseNet architecture

implemented 44

Figure 4-1: Bar chart of comparison between proposed model on

validation dataset 53

Figure 4-2: Training and Validation Accuracy against Number of

Epochs for CNN-AlexNet in (a) First Fold (b)

Second Fold (c) Third Fold (d) Fourth Fold (e)

Fifth Fold 55

Figure 4-3: Training and Validation Loss against Number of

Epochs for CNN-AlexNet in (a) First Fold (b)

Second Fold (c) Third Fold (d) Fourth Fold (e)

Fifth Fold 56

Figure 4-4: Confusion Matrix graph for CNN-AlexNet in (a) First

Fold (b) Second Fold (c) Third Fold (d) Fourth

Fold (e) Fifth Fold 57

Figure 4-5: Training and Validation Accuracy against Number of

Epochs for TL-Inception-V3 with 3 extra hidden

layers + dropout in (a) First Fold (b) Second Fold

(c) Third Fold (d) Fourth Fold (e) Fifth Fold 59

Figure 4-6: Training and Validation Loss against Number of

Epochs for TL-Inception-V3 with 3 extra hidden

layers + dropout in (a) First Fold (b) Second Fold

(c) Third Fold (d) Fourth Fold (e) Fifth Fold 60

Figure 4-7: Confusion Matrix graph for TL-Inception-V3 with 3

extra hidden layers + dropout in (a) First Fold (b)

Second Fold (c) Third Fold (d) Fourth Fold (e)

Fifth Fold 61

Figure 4-8: Training and Validation Accuracy against Number of

Epochs for TL-DenseNet with 6 extra hidden

layers + dropout in (a) First Fold (b) Second Fold

(c) Third Fold (d) Fourth Fold (e) Fifth Fold 63

Figure 4-9: Training and Validation Loss against Number of

Epochs for TL-DenseNet with 6 extra hidden

layers + dropout in (a) First Fold (b) Second Fold

(c) Third Fold (d) Fourth Fold (e) Fifth Fold 64

Figure 4-10: Confusion Matrix graph for TL- DenseNet with 6

extra hidden layers + dropout in (a) First Fold (b)

xv

Second Fold (c) Third Fold (d) Fourth Fold (e)

Fifth Fold 65

Figure 4-11: Confusion Matrix Graph for (a) CNN-AlexNet (b)

TL-Inception-V3 (c) TL-DenseNet on the BUSI

dataset 66

Figure 4-12: Bar chart of comparison between proposed model on

BUSI testing set 67

Figure 4-13: Bar chart of comparison between proposed model

and existing techniques in terms of accuracy 69

Figure 4-14: Sample distribution of the dataset before and after

applying DCGAN 71

Figure 4-15: Output statement of (a) TL-DenseNet and (b) TL-

Inception-V3 before fine-tuned 73

Figure 5-1: Outline of the implementation of Pix2Pix technique

to generate lung cancer CT image (Toda et al.,

2022) 77

Figure 5-2: Training output statement of CNN-AlexNet in fold 1 83

Figure 5-3: Training output statement of CNN-AlexNet in fold 2 83

Figure 5-4: Training output statement of CNN-AlexNet in fold 3 84

Figure 5-5: Training output statement of CNN-AlexNet in fold 4 84

Figure 5-6: Training output statement of CNN-AlexNet in fold 5 84

Figure 5-7: Training output statement of TL-Inception-V3 in fold

1 85

Figure 5-8: Training output statement of TL-Inception-V3 in fold

2 85

Figure 5-9: Training output statement of TL-Inception-V3 in fold

3 85

Figure 5-10: Training output statement of TL-Inception-V3 in

fold 4 86

Figure 5-11: Training output statement of TL-Inception-V3 in

fold 5 86

Figure 5-12: Training output statement of TL-DenseNet in fold 1 86

xvi

Figure 5-13: Training output statement of TL-DenseNet in fold 2 87

Figure 5-14: Training output statement of TL-DenseNet in fold 3 87

Figure 5-15: Training output statement of TL-DenseNet in fold 4 87

Figure 5-16: Training output statement of TL-DenseNet in fold 5 88

Figure 5-17: Testing output statement of CNN-AlexNet 88

Figure 5-18: Testing output statement of TL-Inception-V3 88

Figure 5-19: Testing output statement of TL-DenseNet 88

xvii

LIST OF SYMBOLS / ABBREVIATIONS

Adaboost Adaptive Boosting

ADAM Adaptive Moment Estimation

AUC Area Under the Curve

BGWO binary Grey Wolf Optimization

CNN Convolutional Neural Network

CT Computed Tomography

CPU Central Processing Unit

DCGANs Deep Convolutional Generative Adversarial Network

DenseNet Dense Convolutional Network

eLU Exponential Linear Unit

GANs Generative Adversarial Network

GPU Graphics Processing Unit

ILSVRC ImageNet Large Scale Visual Recognition Challenge

KNN K-Nearest Neighbour

LeakyReLU Leaky Rectified Linear Unit

LR Logistic Regression

MRI Magnetic Resonance Imaging

MP Multilayer Perceptron

NN Neural Networks

OS Operating System

RAM Random-Access Memory

ReLU Rectified Linear Unit

ResNet Residual Neural Network

RF Random Forest

SVM Support Vector Machine

TL Transfer Learning

xviii

LIST OF APPENDICES

 APPENDIX TITLE PAGE

APPENDIX A: Training Output Statement of Proposed Models

Generated in PyCharm 83

APPENDIX B: Computer Programme Listing 89

CHAPTER 1

1 INTRODUCTION

1.1 Background

Cancer is defined as the condition of any disease which are characterized by

abnormal cells duplicating and spreading uncontrollably to other organs of the body.

The occurrence of cancer is due to the cell division process of our human body. Cell

division occurs when damaged cells died, new cells would duplicate and replace the

old cell. However, sometimes this process does not work orderly, this is where

abnormal cells start to develop and duplicate uncontrollably. The duplication of

abnormal cells creates a lump of solid tissue called a tumor. The tumor is also known

as a neoplasm could affect skin, organs, and bones (National Cancer Institute, 2021).

 Tumor can be classified into two categories, which are benign and malignant.

This is because some tumors would not affect another tissue and it is not cancerous.

The non-cancerous tumor also known as a benign tumor, and this category of tumor

is impossible to spread the cancerous cells to nearby tissue. Moreover, most benign

tumor could self-recover after some time without any medical treatment. However,

there is currently no research on the transformation of a tumor (MedicalNewsToday,

2020), thus it is possible for a benign tumor turns into a malignant tumor, hence

patients are suggested to seek for professional medical treatment if a benign tumor is

detected. On the other hand, malignant tumors are known as the cancerous tumor, it

could duplicate and spread the tissue build up by abnormal cells to nearby tissues and

even other parts of the human’s body. These tumors are dangerous and mostly life-

threatening due to the characteristics of the recurrence of the tumor. There is a

probability of the cancerous tumor returning even if the tumor is treated beforehand.

(Cleveland Clinic, 2021).

Every individual should pay high attention to cancer since it has the second

highest mortality rate in the world standing at 10.08 million in 2019; while

cardiovascular disease has the highest mortality rate (Our World in Data, 2019).

Figure 1-1: Incidence of deaths worldwide of different diseases in 2019 (Our World

in Data, 2019)

Furthermore, the data from Global Cancer Observatory shows that breast

cancer has the highest incidence in 2020, with a number of occurrences of 11.7% of

the total cancer incidence recorded in 2020, which means among 19 million of

cancer diagnosed in 2020, there are 2.26 million of the total cases are breast cancer.

Apart from that, breast cancer has a mortality rate of 6.9% among all different types

of cancers, which means among 10 million cancer-related death cases in 2020, there

are 684 thousand cases are breast cancer-related patients.

Figure 1-2: Incidence of cancer worldwide in 2020 (Global Cancer Observatory, 2020)

Figure 1-3: Mortality rate of different cancers worldwide in 2020 (Global Cancer

Observatory, 2020)

 Since breast cancer is life-threatening and it is also one of the leading causes

of death, therefore early diagnosis acts as an important role in order to prevent cancer

from progressing rapidly and starting to affect human health condition or even worse,

approaching death. Moving along with the improvement of technology and

innovation, breast cancer screening methods for instance Mammography, Magnetic

Resonance Imaging (MRI), ultrasound scanning, etc. are getting more advance and

mature. For example, ultrasound scanning emits sound waves with a frequency of

7.5MHz to 13MHz to image the internal structure of our body (Kuhl et al., 2005).

 Due to the noises that occurs in the ultrasound images, some image

processing methods can be applied as a solution to overcome this problem. Medical

image processing is the practice of enhancing the medical image by reducing the

image noise and easing the interpretation by both humans and machines. Medical

images are made up of pixels which is the smallest element of an image. Each pixel

represents a single numeric value therefore different pixels with different numeric

values illustrate as different colors in a single image.

One of the most important techniques in image processing is convolution.

Convolution is defined as a process by applying a kernel to each pixel and its nearby

pixels over the whole image, hence transforming the image. The impact of the

convolution process's transformation is determined by the size and values of the

kernel, which is a matrix of values (Basavarajaiah, 2022). Moreover, the medical

image can be improved by applying a kernel that act as a smoothing mask over a

convolution to achieve the effect of blurring the image by reducing the image noise

and smoothening the edges.

Figure 1-4: Example of 3x3 kernel applied on an image (GeeksforGeeks, 2022)

 Despite the recent developments in breast cancer screening methods,

experience pathologists' visual inspections are still crucial for diagnosing breast

cancer correctly. Moreover, the diagnosis results are arbitrary and could subject to be

different diagnosis results depending on the observations. Apart from that, the

diagnosis process can be highly time-consuming and difficult. Besides, since the

process can be tedious, therefore it might lead to misdiagnosis of the pathologists'

visual inspections. Hence, building automate computer systems such as image

processing and deep learning model could improve the efficiency of pathologists by

reducing their workload. Besides, automate computer systems also benefits in

reducing the subjectivity of the breast cancer classification (Zhi et al., 2017).

 However, the deep learning models required a sizeable amount of dataset in

order to obtain higher classification accuracy. Regrettably, because of privacy

concerns and the expensive expense of expert annotations, publicly available

medical-related datasets are generally small and skewed. Therefore, the Generative

adversarial networks (GANs) introduced by Goodfellow et al. in 2014 could greatly

restrict the drawbacks of small datasets by generating synthetic medical images

based on the available datasets. With the ability of GANs to replicate data

distributions and synthesize images has successfully paved the way for new

techniques to overcome the drawbacks of both supervised deep learning and

generating synthetic images (Kazeminia et al., 2020).

1.2 Problem Statements

Breast cancer is one of the highest incidence cancers in Malaysia. According to the

Malaysia National Cancer Registry 2004, the ASR of breast cancer in the country is

46.2 over 100,000 women. Furthermore, the overall 5-year survival rate for breast

cancer patients in Malaysia is 49% with a median survival period of 68.1 months

(Yip et al., 2006).

 In recent years, one of the most frequently used imaging technologies in

clinical practice is ultrasound imaging. The ultrasound imaging method is considered

a dynamically developing technology with numerous advantages and it has been

acknowledged as a potent and commonplace screening and diagnostic tool for

clinical research practice. Especially, due to its overall reasonable cost, operator

expertise, and relatively lower impact on human health. Besides, the ultrasound

imaging technology has been widely implemented in the fields of breast diagnostics.

Nevertheless, the ultrasound imaging technology also comes with several major

drawbacks, for instance, acquisition noises generated by the ultrasound imaging

machine, ambient noises generated by the surroundings of the ultrasound imaging

took place, and the presence of body fat, organs, and other tissues could significantly

affect the image quality (Hiremath et al., 2013).

Moreover, the traditional breast cancer diagnostics methods are mostly costly,

time consuming, and relied on the extensive experience of the diagnostician and

specialists. Apart from that, the availability of open access breast tumor datasets is

very less due to the privacy of the patients.

1.3 Project Scope

The project aims at developing a deep neural network that could import the breast

cancer ultrasound images from the Mendeley website and classify the tumor types

into two classes, which are benign and malignant. Furthermore, this project proposes

implementing the Generative Adversarial Networks (GANs) model to synthesize

both benign and malignant realistic breast tumor images to solve the problem of

lacking data and augment the skewed datasets that could cause classification

problems. Moreover, image processing methods such as image filtering and image

smoothing are implemented to deblur and reduce the noises in the ultrasound images

in order to improve the deep neural network model training quality. Lastly, a deep

learning classifier algorithm should be developed in order to classify the benign and

malignant ultrasound images.

1.4 Project Objectives

The objectives of the project are shown below:

i) Design an image processing method to reduce the image noise of the

ultrasound images of benign and malignant tumors.

ii) Application of data augmentation, such as GAN model to increase the dataset

quantity and improve the quality of the dataset.

iii) Design a CNN model to classify benign and malignant tumors.

iv) Apply a suitable transfer learning model and fine-tuned the model’s

parameters in order to improve the accuracy of the classifier.

8

CHAPTER 2

2 LITERATURE REVIEW

2.1 Overview

This chapter aims to review the data augmentation method, such as the Generative

Adversarial Networks (GAN). Besides, the framework for Convolutional Neural

Networks (CNN) will be discussed in this chapter. Furthermore, this chapter also

reviewed and discussed previous research papers related to the project.

2.2 Generative Adversarial Network (GANs)

The Generative Adversarial Network also known as GANs is proposed by

Goodfellow et. al. in 2014. The Generative Adversarial Network was proposed to

estimate the generative models by using an adversarial process. The framework

includes two different models, which are the generative model and a discriminative

model. The generative model is trained to capture the data distribution and generate

new examples from the training data. On the other hand, the discriminative model is

responsible to estimate the probability of the samples whether it is generated by the

generative model or from the training data.

In the advancement of artificial intelligence (AI), the discriminative model

has been developed with great success and is widely used in major machine learning

models. The algorithm behind the majority of the discriminative model is based on a

9

backpropagation algorithm with a suitable gradient. However, the generative model

has issues facing difficulties in approximating multiple interactable probabilistic

calculations that emerge in maximum likelihood estimation and related

methodologies. Therefore, the proposed generative model is to overcome the

drawbacks.

Figure 2-1: Simplified GANs framework (GeeksforGeeks, 2022)

The Generative Adversarial Network framework is proposed to design the

generative model with an adversary. The main motivation of the generative model is

to generate counterfeit samples until it is indistinguishable from the actual training

data. While the discriminative model of the GANs framework is trained to predict

the probability of the sample from the data distribution and model distribution, which

is exactly the sample generated by the generative model. In order to improve the

discriminative model, the generative model is responsible to worsen the estimation of

the discriminative model. To summarize concisely, the objective of the generative

model is achieved when the discriminative model is facing difficulties in classifying

the samples. Hence, the generative model and discriminative model are both

adversaries to each other. Furthermore, with the adversary of the discriminative

model, the generative model can generate indistinguishable counterfeit samples from

any random input without interfering with the actual training data. Apart from that,

both generative and discriminative models are multilayer perceptrons. The GANs

framework is trained with backpropagation and dropout algorithms from the

10

discriminative predictions and the generative model is trained with forward

propagation only (Goodfellow et al., 2014).

Over the past few years, GANs have been widely researched and developed

because of the proven successful framework. At present, GANs is capable to

generate images so realistic that it is difficult to identify the counterfeit.

Figure 2-2: Evolution of GANs (Brownlee, 2019)

2.3 Deep Convolutional Generative Adversarial Networks (DCGANs)

Figure 2-3: Structure of DCGANs (Radford, 2016)

The Deep Convolutional Generative Adversarial Network also known as DCGAN

was introduced by Radford et al. in 2015. In the past few years, supervised learning

with CNNs has been advanced and utilized in multiple computer vision applications,

but in comparison, unsupervised learning with CNNs is less developed and adopted.

11

Therefore, DCGAN is proposed to enhance the development of unsupervised

learning with CNNs (Radford et al, 2016).

The structure of the DCGAN is inspired by the Improved GANs introduced

by Salimans, Goodfellow, Zaremba, et al. in 2016. The Improved GANs defined

three enhancement techniques which are feature matching, minibatch discrimination,

and historical averaging to stabilize the training model. These techniques improve

the variety of the discriminate network by improving the diversity of samples created

by the generative model when discriminating samples. With the inspiration of the

improved GANs, therefore DCGAN has expanded GAN from multilayer perceptron

(MLP) structure into convolutional neural network (CNN) structure (Fang et al.,

2018).

According to Radford et al., DCGAN has achieved an impressive result on real

datasets, such as LSUN and CelebA. Furthermore, there are a few modifications in

the integration of the architecture of GANs and CNNs to stabilize the DCGANs.

i) The CNNs max pooling layers are replaced with the strided convolutions also

known as a discriminator to learn the network spatial down sampling and

fractional-strided aka generators to learn the network spatial up sampling.

ii) The fully connected hidden layers are eliminated.

iii) Batch Normalization is applied in the discriminator and generator model.

iv) Generator – ReLU activation for all layers; tanh for output layer.

v) Discriminator – LeakyReLU for all layers (Radford et al, 2016).

2.4 GoogleLeNet (Inception)

The GoogleLeNet microarchitecture also known as Inception is one of the most used

deep CNN architecture in deep learning. The architecture was first introduced by

Szegedy et al. in 2014. Besides, it is also the winner of ILSVRC14 with an error rate

of 6.67%, and has significantly outperform the previous ILSVRC winner, AlexNet

(ILSVRC13 winner) and ZFNet (ILSVRC12 winner).

12

2.4.1 Inception-v1

The first version of GoogleLeNet aka Inception-v1 consists of 27 layers including 9

Inception modules. The naïve form of Inception module is restricted to filter 3

different filter sizes, which are 1×1, 3×3 and 5×5, while the 3×3 max pooling is

performed simultaneously. The outputs are concatenated into a single output vector

before it is sent to the next inception layer. However, the 5×5 convolutions filter is

computationally expensive on top of a large number of filters convolutional layers.

Therefore, 1x1 convolutions are added before the 3×3 and 5×5 convolutions in order

to compute reductions (Szegedy et al., 2015).

Figure 2-4: Naïve version of Inception-v1 module (Szegedy et al., 2015)

Figure 2-5: Dimension reductions inception-v1 module (Szegedy et al., 2015)

13

Table 1: Architecture details of Inception -v1 (Szegedy et al., 2015)

2.4.2 Inception-v2 & Inception-v3

The second and third version of GoogleLeNet aka Inception-v2 and Inception-v3 was

introduced in the same paper, “Rethinking the Inception Architecture for Computer

Vision”. The performance such as the accuracy and computational complexity has

improved in Inception-v2.

In Inception-v2, the 5×5 convolutions introduced in Inception-v1 has been

factorized into two 3×3 convolutions to reduce the computational complexity, since a

5×5 convolution is 2.78 times computationally expensive than a 3×3 convolution

(refer to Figure 2-6). Furthermore, the paper proposed that factorizing a n×n

convolution into n×1 and 1×n could improve the computational complexity (refer to

Figure 2-7). For example, a 3×3 convolutions filter has been factorized into two

14

convolutions filters, 3×1 and 1×3 to achieve a 33% cheaper computational

complexity. Moreover, the filter banks outputs in Inception-v2 module were

expanded to eliminate the representational bottleneck (refer to Figure 2-8) (Szegedy

et al., 2016).

Figure 2-6: The 5×5 convolution has been replaced by two 3×3 convolution in

Inception-v2 (Szegedy et al., 2016)

15

Figure 2-7: Factorization in Inception-v2 module (Szegedy et al., 2016)

Figure 2-8: Filter banks outputs of Inception-v2 module were expanded (Szegedy et

al., 2016)

16

Table 2: Proposed network architecture of Inception-v2 (Szegedy et al., 2016)

 In Inception-v3, the network incorporated all improvement in Inception-v2

and the following modification:

i) RMSProp Optimizer.

ii) BatchNorm in Auxiliary Classifiers.

iii) Label Smoothing.

iv) Factorized 7 x 7 convolutions (Raj, 2018).

2.5 Residual Neural Network (ResNet)

The Residual Neural Network also known as ResNet is arguably the one of the

pioneers of CNNs architecture after Inception-v1 won the ILSVRC14 with an error

rate of 6.67%. ResNet achieved a top-5 error rate of 3.57% which outperform its

opponent and won the 1st place in ILSVRC15.

17

ResNet was introduced by He et al. in the paper “Deep Residual Learning for

Image Recognition” in 2015. The main idea of ResNet is to propose a deep residual

learning framework to address the degradation problem occurs when deeper

networks starts to converge, and accuracy becomes saturated (He et al., 2016). Hence,

ResNet introduced the identity shortcut connection also called the Residual Blocks as

shown in Figure 2-9. The residual blocks could skip training from multiple layers

and connects to the output. The benefits of integrating the shortcut connection is to

skip any layer by regularization if that particular layer could possibly affect the

performance of the network.

Figure 2-9: ResNet Residual Blocks (He et al., 2016)

Moreover, He et al further modified the residual blocks by introducing the

pre-activation variant of the residual block as shown in Figure 2-10. In this

modification, the gradients could pass through the shortcut connection to any

previous layer without being interfered (Fung, 2017).

18

Figure 2-10: Refined residual blocks (Fung, 2017)

According to the paper “Deep Residual Learning for Image Recognition”, the

shortcut connections used in ResNet was inspired by the Highway Network proposed

by Srivastava et. al. in 2015. Apart from that, the similar idea of Highway Network

where the information is control by the parametrized gates to flow through the

shortcut connections is similar to the Long-Term Short Memory (LSTM) cell

introduced by Hochreiter et. al. in 1997 cited in Fung, 2017.

Furthermore, He et al. had tested the functionality of ResNet on a plain

network inspired by VGG nets and a residual network where shortcut connections

are inserted. Figure 2-11 shows the network architecture comparison of the plain

network and residual network. The experiment is tested on the ImageNet 2012

classification dataset consisting 1000 classes and both networks are evaluated on 18-

layer and 34-layer. By referring to Table 3, ResNet has lower top-1 error compared

to plain network without shortcut connections.

Table 3: Top-1 error on ImageNet Validation (He et al., 2016)

19

Figure 2-11: Samples of network architecture. Left: VGG-19 model. Mid: plain

network inspired by VGG nets of 34 layers. Right: residual network of 34 layers (He

et al., 2016)

20

2.6 Related Works

A set of sufficient data volume is paramount in order to train a successful deep

leaning model for medical image interpretation. Apart from that, skewed datasets for

example 100 benign data and 1000 malignant data could leads to a bad classification

results of the deep learning model. In order to overcome the low quantity and

imbalance of datasets, the generative adversarial networks (GANs) is proposed to

overcome the problem by generating synthetic data.

Shin et al. (2018) proposed the image-to-image translation conditional GAN

(pix2pix) model introduced by Isola et al. in 2017 to produced synthetic images and

classification of T1-weighted brain tumor images on Alzheimer’s Disease

Neuroimaging Initiative (ADNI) datasets and Multimodal Brain Tumor Image

Segmentation Benchmark (BRATS) datasets. The author has performed four

approaches with different CNN input, which trained on real data only, combination

of real and synthetic data, synthetic data only and synthetic data with 10% of model

fine-tuning. Besides, they also implemented basic image augmentation such as

rotation, crop and elastic deformation on the synthetic data. The model has achieved

a mean disc-score of 0.82 which has improved accuracy than the non-augmentation

GANs-based model with mean disc-score of 0.80 (CNN model trained on real and

synthetic data). Shin compared their GANs-based model to the BRATS’17 best

performing model, however both the GANs-based model achieves a lower accuracy.

Table 4: Disc score evaluation in terms of mean and standard deviation of GAN-

based model and BRATS’17 best model (Wang et al.). The GAN-based models were

trained with augmentation and without augmentation (Shin et al., 2018)

21

Iqbal & Ali (2018) introduced a new Generative Adversarial Networks model

for medical imaging called MIGAN. The idea of MIGAN is for the generation of

synthesis medical image. Other than the synthesis medical image, Iqbal also

implement MIGAN to generate the segmented masks of the medical image. In the

paper, MIGAN is applied to the retinal vessel’s images for the STARE and DRIVE

publicly datasets. The main contributions for this project are to generate an enhance

segmented medical images then previous GANs model. Besides, MIGAN also

reduce the threshold of existing GANs techniques, lesser input examples require to

generate the desired synthetic images due to the refined loss function of MIGAN.

Apart from that, MIGAN is less computational expensive than existing GANs model,

due to the 200% improvement in the generator model during each epoch which could

reduce the training period. The MIGAN structure of generator and discriminator are

shown in Figure 2-13 and Figure 2-14 respectively. According to the author, the

MIGAN-based deep learning model on STARE dataset has achieved disc-score of

0.838, AUC ROC of 0.985 and AUC PR of 0.922; and on DRIVE dataset has

achieved disc-score of 0.832, AUC ROC of 0.984 and AUC PR of 0.916 which

outperformed existing previous work.

Figure 2-12: Generator structure of MIGAN (Iqbal et al., 2018)

Figure 2-13: Discriminator structure of MIGAN (Iqbal et al., 2018)

22

Senaras et al. (2018) introduced the conditional Generative Adversarial

Network also known as cGAN to generate realistic synthetic histopathological breast

cancer images from the Ki67 datasets. During the preprocessing stage of the images,

the operator will mark the stained nucleus manually and this stage is called the user

annotation mask stage. Other than that, in the second approach the images are

process though computer by using the nuclei segmentation system developed by the

author in a prior study. Both the annotation mask and the nuclei segmentation

obtained are feed respectively into the cGAN model as input after the preprocess

stage. The generated results are analyzed by 6 researchers inclusive of 3 pathologists

and 3 image analysts instead of training in a deep learning model. The average

accuracy percentage of the researchers that could correctly differentiate whether the

image is synthetic or real was 44.7%.

Figure 2-14: Examples of two different input and their respective generated output

(Senaras et al., 2018)

23

 Desai et al. (2020) proposed the implementation of the Deep Convolutional

GANs also known as DCGANs to generate synthetic mammogram breast cancer

images from the DDSM datasets. The major objective of this work is to overcome

the limited available labeled data by implementing DCGANs to generate synthetic

images for deep learning breast cancer classification. The author has trained the

DDSM dataset for batch size 4 and batch size 32, the samples of the synthetic images

are shown in Figure 2-16.

Figure 2-15: Original and GANs generated images with batch size 4 and 32 (Desai et

al., 2020)

According to the CNN deep learning classification model, the batch size 32

perform better than the batch size 4 DCGANs configuration in terms of accuracy,

F1-score, specificity and sensitivity. At 20 epochs, the accuracy of batch size 32 is

87%; batch size 4 is 83.58% while the accuracy without the GANs model is 78.23%.

However, when the synthetic images of batch size 32 is analyzed by two professional

physicians, only an average of 6 over 25 synthetic images are identified as real.

24

Figure 2-16: Accuracy of deep learning breast cancer classification (Desai et al.,

2020)

Alyafi et al. (2020) proposed the implementation of Deep Convolutional

Generative Adversarial Networks (DCGANs) to synthesized realistic and diverse

mammography breast masses images to get rid of the small and imbalanced datasets

obtained from OPTIMAM Mammography Image Database (OMI-DB). According to

the paper, the author has trained the CNN model with four different approaches as

shown in Figure 2-17, which are the original input (Blue), augmented original input

(Orange), GANs input (Green) and augmented GANs input (Red). Furthermore, the

author has augmented the both the original and synthetic data by applying random

horizontal and vertical flipping. The augmentation is to improve diversity of dataset.

On the other hand, the classifier performances are recorded at k=750 due to

the model starts to become saturated. The results shown in Figure 2-18 illustrated

that augmented GANs data as input has outperformed other inputs in terms of F1-

score.

25

Figure 2-17: CNN predictions in terms of F1-score with four approaches: original

input (Blue), augmented original input (Orange), GANs input (Green) and

augmented GANs input (Red) (Alyafi et al., 2020)

 Al-Dhabyani et al. (2019) proposed the implementation of Data

Augmentation Generative Adversarial Networks, DAGAN and CNNs integrated with

transfer learning method to classify normal, benign and malignant breast tumours.

The DAGAN is inspired by the Wasserstein GAN (WGAN) introduced by Arjovsky

(2017), where the resulting architecture of WGAN is used in this study. The data

used for this study is the Breast Ultrasound Image (BUSI) dataset and a private

dataset B. The authors have performed four approaches to train the CNNs classifier

algorithm, which includes real data only; data with basic augmentation; DAGAN

synthesized data; DAGAN synthesized data with basic augmentation. On the other

hand, five different approaches are experimented for the CNN classifier architecture.

The five architectures are CNN-AlexNet, TL-VGG16, TL-ResNet, TL-Inception and

TL-NASNet. The highest accuracy achieved for this study is TL-NASNet with

DAGAN synthesized data with basic augmentation at 94% (Dataset B), 92% (BUSI

26

Dataset) and 99% (Dataset BUSI + B). Figure 2-19 depicted the accuracy results of

the proposed dataset augmentation methods and CNNs architectures.

Figure 2-18: Comparison of performance in terms of accuracy on different dataset

augmentation methods and CNNs architecture (Al-Dhabyani et al., 2019)

 Latif et al. (2019) proposed the implementation of different deep learning and

machine learning methods includes CNN model, Random Forest, Naïve Bayes, MP

and SVM to classify the benign and malignant breast tumours data. The dataset used

in this work is the Mendeley Breast Ultrasound (MBU) dataset. The authors have

performed two approaches in processing the dataset for training, which are the

unprocessed data and CNN denoised data. The highest accuracy for this achieved for

this study is the CNN classifier with CNN denoise method at 88%. While the CNN

classifier on the unprocessed data has the second highest accuracy at 84.02%.

Table 5: Comparison of different DL and ML classifier in terms of accuracy on

unprocessed data and CNN denoised data (Latif et al., 2019)

27

Khanna et al. (2021) proposed a hybrid strategy that integrated the CNN

algorithm with machine learning framework to diagnose breast tumour. Breast

Ultrasound Images Dataset (BUSI) was used in this work. The authors proposed that

a pre-trained CNN-ResNet50 to extract features from the tumour’s images, BGWO

optimizer for feature selection and several SVM algorithms is used for classification.

Besides, the authors also compared the performance of two approaches, which are

with or without BGWO feature selection process. The highest performance in terms

of accuracy is the Quadratic SVM classifier with BGWO feature selection at 84.9%

and 84.6% without BGWO feature selection.

Table 6: Classification results of different machine learning classifier with or without

BGWO feature selection process in terms of accuracy and AUC (Khanna et al., 2021)

28

Gupta et al. (2022) proposed the implementation of different CNN and ML

model to classify the ultrasound breast data. In this study, the Breast Ultrasound

Images Dataset (BUSI) was used. Four CNN and ML classifier is implemented,

which includes VGG16, VGG19, Inception-V3 and SqueezeNet integrated with

KNN, SVM, RF, NN, LR and Adaboost. The highest accuracy results are the

Inception-V3 model with NN algorithm at 92.6%.

Table 7: Classification results of VGG16, VGG19, Inception-V3 and SqueezeNet

integrated with different ML algorithm on breast tumour classification (Gupta et al.,

2022)

29

Table 8: Summary of performance from various related papers

GANs-based classifier

Author Organ Dataset Proposed

method

Performance

Shin et al.

(2018)

Brain ADNI pix2pix + CNN (Mean/ Std deviation)

GAN-based w/ aug: 0.82/

0.08

GAN-based w/o aug: 0.80/

0.07

Iqbal et al.

(2018)

Eyes STARE;

DRIVE

MIGAN (Disc-score/ AUC ROC/

AUC PR)

STARE: 0.838/ 0.985/ 0.922

DRIVE: 0.832/ 0.984/ 0.916

Senaras et

al. (2018)

Breast Ki67 cGAN +

analysts

44.7% by 3 pathologists and

3 image analysts.

Desai et al.

(2020)

Breast DDSM DCGAN +

CNN

(Accuracy)

Batch size 4: 84%

Batch size 32: 87%

Alyafi et al.

(2020)

Breast OMI-

DB

DCGAN +

CNN

(F1-score)

GAN: 0.98

Aug GAN: 0.99

Al-

Dhabyani et

al. (2019)

Breast BUSI;

B

DAGAN w/

Augmentation

+ TL-NASNet

94% (Dataset B)

92% (BUSI Dataset)

99% (Dataset BUSI + B)

Non-GANs-based classifier

Latif et al.

(2019)

Breast MBU CNN 88% (CNN denoise data)

84% (Unprocessed data)

Khanna et

al. (2021)

Breast BUSI Quadratic SVM 84.9% (with BGWO)

84.6% (without BGWO)

Gupta el al.

(2022)

Breast BUSI Inception-V3 +

NN

92.6% (Accuracy)

30

CHAPTER 3

3 METHODOLOGY

3.1 Overview

During the early stage of the project, the dataset was downloaded and preprocess. the

training and validation dataset were downloaded from the Mendeley website; while

the testing dataset were acquired from NCBI website. The datasets consist of two

label which are the benign and malignant tumor. Subsequently, the image preprocess

techniques were performed on the datasets. The image preprocessing techniques

includes applying sharpening and smoothing filters on the ultrasound images to

remove the image noise. Moreover, a DCGANs model is designed to generate more

data to enhance the deep learning model performance by solving the problems of

insufficient and unbalanced dataset. Furthermore, the synthesized data are augmented

such as applying horizontal and vertical flipping and rotation to increase the variety

of the dataset. The datasets were further separated into training, validation and

testing set in various combinations using the k-fold cross-validation method.

After the datasets were assigned into desired combinations, the CNNs model

is developed. The transfer learning model based on the literature review is

implemented and fine-tuned to the datasets. Multiple CNNs architectures were tested

on the datasets and the accuracy is compared and evaluated. The complete workflow

is depicted as the flowchart in Figure 3-1. The results obtained are evaluated and

compared.

31

Figure 3-1: Project Methodology

3.2 Environment Setup

3.2.1 Hardware

This project is performed on an MSI Prestige 14 with an Intel i7-10510U CPU and a

2GB NVIDIA GeForce MX350 GPU equipped laptop. The hardware details are

shown in Table 9 as reference.

Table 9: Hardware details

Computer MSI Prestige 14

CPU Intel i7-10510U 1.80GHz

GPU NVIDIA GeForce MX350 2GB

OS Windows 10 Home Single Language

System type 64-bit, x64 based processor

RAM 16GB

Storage 512GB SSD

32

3.2.2 Software

Python 3 is used as the main programming language for this project. The DCGANs

models were developed with Tensorflow, which is an open source deep learning

framework developed by Facebook's AI Research lab. Besides, both the DCGANs

and CNNs models were trained on Pycharm. The version of the python libraries used

is shown in Table 10 as reference.

Table 10: Python libraries version

3.3 Data Processing

3.3.1 Dataset Preparation

The dataset used for training and validation in the project is the Mendeley Breast

Ultrasound dataset (MBU) by Rodrigues (2017). The dataset consists a total of 250

breast cancer ultrasound images. The dataset is separated into 100 benign tumors and

150 malignant tumors. Furthermore, the images have a low average dimension of

105 × 77 pixels and the file type is in BMP file. On the other hand, the testing sets of

this project uses another set of Breast Ultrasound Images dataset (BUSI) by Al-

Dhabyani. The average image’s dimension of the BUSI images are 500 x 500 pixels

and the file type are in PNG file. Figure 3-2 and Figure 3-3 illustrates the samples

from the MBU dataset; while Figure 3-4 and Figure 3-5 illustrates the samples from

the BUSI dataset.

33

Figure 3-2: Samples of benign tumour images of MBU dataset (Rodrigues, 2017)

Figure 3-3: Samples of malignant tumour images of MBU dataset (Rodrigues, 2017)

Figure 3-4: Samples of benign tumour images of BUSI dataset (Al-Dhabyani, 2020)

Figure 3-5: Samples of malignant tumour images of BUSI dataset (Al-Dhabyani,

2020)

34

3.3.2 Image Pre-Processing

After the datasets are downloaded and analyzed, some image processing methods are

applied to the data in order to improve the quality of the breast tumor images. A low-

pass filter kernel can be convolved to the image in order to achieve image smoothing

due to its ability to remove high frequency pixel such as edges and noises in the

image. Convolution can be defined as a process by applying a n*n kernel to n*n

pixels over the whole image, hence transforming the image. The impact of the

convolution process's transformation is determined by the size and values of the

kernel, which is a matrix of values (Basavarajaiah, 2022).

 By applying the 2D convolution technique, I will be utilizing my own unique

kernel, therefore I have total control over the filtering procedure in this approach of

smoothing. Generally, a kernel assigns a set weight to each pixel in an image and

adds the weighted neighbors’ pixels in order to transform that certain pixel. By

implementing this approach, the pixels should be compressed in an image, reducing

its clarity and making it simple to blur or smooth an image (GeeksforGeeks, 2022).

 In this project, several filter and kernel are applied to the original image using

OpenCV to remove the noises. In the first approach, the bilateral smoothing filter is

applied to the images with a kernel size of 3x3. In the second approach, the denoise

smoothing filter is applied. In the third approach, a gaussian filter with a kernel size

of 5x5 is applied to the images. In the fourth approach, a median filter with a 5x5

kernel is applied to the images. In the fifth approach, a special OpenCV filter called

block matching denoise filter is applied to the image. Table 11 below tabulate the

kernel size and masks used for each filter used in the project.

35

Table 11: Smoothing filter implemented in this project

No Types of filter Kernel size Masks

1 Bilateral 3x3

2 Denoise Null (cv2 special filter) Null

3 Gaussian 5x5

4 Median 5x5 Median of neighbouring

entries

5 Block Matching Null (cv2 special filter) Null

3.3.3 Image Augmentation

Due to the small dataset, several image augmentation methods have been

implemented on the images. The characteristic of image augmentation of modifying

current data could generate new data in different perspective for the deep learning

model training process. In other words, it is the process of enhancing the dataset that

is made accessible for deep learning model training.

 First, the images are flipped horizontally, vertically and both horizontal and

vertical, hence there will be four extra sets of data being feed into the DCGANs

model. The dimension of flipped images is then resized into 64x64 pixels in the

DCGANs system. The reason of resizing is to standardize the dataset. Besides, it

could also improve the consistency and stability of the DCGANs and CNN network

training process since the background without information is downscale and the

tumours are more focused.

36

3.3.4 Data Augmentation

Deep Convolutional Generative Adversarial Networks also known as DCGANs is

one of the most successful GANs architecture to synthesized realistic medical images.

Due to the small amount of labeled dataset available for the project, instead of

augmenting the images, generating realistic synthetic breast tumour images could

increase the dataset amount and enhance the quality of the deep learning classifier.

DCGANs consists of a generator (G) and discriminator (D). The generator

and discriminator are two different CNN model; therefore, the training process might

take longer due to two deep neural network model. The DCGANs architecture was

proposed by Radford et al. in 2016 and it is the modifications of the origin GANs

model proposed by Goodfellow et al. in 2014 which has further improved and

enhanced by many recent GANs-related papers.

Initially, the generator will input the latent dimension of noises; while the

discriminator will learn from the original data and differentiate the synthetic image

generated by G from the real image. The DCGANs architecture as depicted in Figure

3-6 shows that the architecture of G and D networks are similar and inverse to each

other.

In this project, the G network goes from “100x1 → 1024x4x4 → 512x8x8 →

256x16x16 → 128x32x32 → 64x64x3”, a 2D transpose is added between each layer

for reshaping. A random noise vector is set to 100 as input for G and outputs a

synthesized breast tumours image at size of 64x64x3. In second stage after the noise

vector is input, the G network is reshaped to 1024x4x4 with a fully connected layer.

Furthermore, a four fractionally-strided convolutional aka deconvolution layers with

a 5x5 kernel size are added to the network. The function of the deconvolution layer is

to expand the pixel by zero padded in between. Batch normalization are added to

each layer except the output layer due to their characteristic to train the network

independently. Besides, a LeakyReLU activation function is added to each layer

except a tanh activation function is added to the output layer.

37

The D network is a CNN model which input an image generated by G at the

image size of 64x64x3 and D will predict whether the input image is an original or

synthesized image. The architecture of D is slightly straightforward compared to G,

which D consists only four convolution layers with kernel size of 5x5. Like G, Batch

normalization are added to each layer except the input and output layer. Additionally,

a LeakyReLU activation function is added to each layer except a Sigmoid activation

function is added to the output layer which produce a prediction probability between

0 and 1 (Frid-Adar et al., 2018).

The DCGANs model should trained for two different categories separately

for synthesizing benign and malignant tumours. For benign, the training process was

repeated for approximately 740 epochs to prevent overtraining and achieve the

desired synthesized images; while for malignant, the training process was repeated

for approximately 1000 epochs. The training batch size used for benign is 128, and

256 for malignant due to the amount of dataset. The DCGAN model has successfully

generated 100 benign and 50 malignant images to increase and balanced the dataset.

Figure 3-6 below illustrates the increase of the dataset.

Figure 3-6: Visualization of dataset of the synthesized data and original data

38

3.3.5 Data Segmentation

A Train-Valid-Test split technique has been applied in order to enhance the

performance of the CNN model by preventing the model to over trained from the

available training data. The pre-processed datasets have been randomly split into two

folders, which are training set and validation set. The training set comprised to 80%

of the total dataset; while the validation data comprised to 20% of the total dataset.

Synthetic images generated by the DCGANs model has been added to the dataset to

increase the amount of data and balanced the dataset. Furthermore, image

augmentation method such as rotating and flipping the images has been applied to

the dataset to increase the amount of data. Hence, the total dataset has been increased

to 20,800 images which consists of 10,400 benign data and 10,400 malignant data.

By implementing the Train-Valid split technique, 8,320 benign images and

8,320 malignant images have been randomly assigned to the training dataset (80% of

total dataset); The validation dataset consists of 2,080 images for each category (20%

of total dataset). Since the datasets are split randomly, therefore the results obtained

are strictly not biased. Figure 3-7 depicted the overview of data segmentation in this

project. After the model has trained successfully, the model is tested with the BUSI

dataset which is a completely different source from the training dataset. BUSI dataset

consists of 480 images which includes 240 benign images and 240 malignant images.

Figure 3-7: Visualization of dataset distribution

39

3.4 Classification Model

3.4.1 Dataset Cross-Validation

Apart from separating the datasets into training, validation and testing dataset, the

cross-validation method could shuffle the datasets in a more thorough way. The

accuracy of the CNN model may be saturated easily after a short amount of iterations

with the same training and validation set. In this case, the CNN model’s score such

as accuracy, precision and F1-score may seem to have a perfect result, but it would

fail to predict any random unseen data, therefore the network is considered as over-

trained in this circumstance.

 In this project, the k-fold cross validation is implemented to spit and shuffle

the training and validation dataset. This method can be applied in order to tune the

hyperparameters so that the model could trained with the best hyperparameter value.

The benefit of this method is that every training and validation set can be utilised for

one time, therefore the model would not saturate easily and have a fairer validating

process. Hence, the CNN model can train and validate on k number of different

datasets, to ensure the model is more generalized (Kumar, 2022).

Figure 3-8: Terminology of 5-fold cross validation (Kumar, 2022)

40

 A stratified 5-fold cross validation is applied to the CNN model in this project.

Figure 3-8 above illustrates the mathematical concept and the training and test set

distribution of k-fold cross validation, k = 5. The ultrasound breast tumour images

are partitioned into 5 different combinations of training and testing set. The CNN

model will undergo 5 iterations of training and validation process. Lastly, all 5

results generated are average divided to obtain the generalized estimation score.

3.4.2 CNNs and TL Architecture Design

3.4.2.1 CNNs-AlexNet

In this project, the AlexNet architecture is proposed to implement in this CNN breast

tumour classifier. The AlexNet architecture was introduced by Alex Krizhevsky in

2012. The architecture of AlexNet consists of three fully connected layers and five

convolutional layers integrated with three max pooling layers. Figure 3-9 below

illustrates the architecture of AlexNet. AlexNet uses a ReLU activation function at

the end of each layer except for the last layer. The advantages of performing the

ReLU activation function is due to its speedy training time compared to the tanh

activation. The last layer of the AlexNet architecture outputs with a softmax function

due to the 2-labelled classification of benign and malignant tumours. Furthermore,

dropout function is implemented in the first two fully connected layers. The dropout

function could turn off the neurons with a specific probability in order to avoid

overfitting.

Table 12: Configuration used in CNN-AlexNet

Layer Type Maps Size Kernel

Size

Padding Activation

Function

In Input 64 100*100 - - -

C1 Convolution 64 98*98 3*3 Same eLU

S2 Max Pooling 64 49*49 2*2 Valid -

C3 Convolution 32 49*49 3*3 Same eLU

41

C4 Convolution 32 47*47 3*3 Valid eLU

S5 Max Pooling 32 23*23 2*2 Valid -

C6 Convolution 16 23*23 3*3 Same eLU

C7 Convolution 16 21*21 3*3 Valid eLU

S8 Max Pooling 16 10*10 2*2 Valid -

F9 Fully connected - 64 - - eLU

F10 Fully connected - 32 - - eLU

F11 Fully connected - 16 - - eLU

Out Fully connected - 2 - - Softmax

Table 8 above tabulates the general configuration of the proposed AlexNet

architecture used in the CNN classifier. The model consists of five 2D convolutional

layers and three pooling layers which is a typical structure of an AlexNet architecture.

The dropout is set as 0.25 after each of the pooling layers. Besides, the activation

function used in each 2D convolutional layer is the eLU. The eLU activation

function is used due to its ability to smooth slowly thorough the output reaches -α,

while the ReLU would smooth sharply, therefore eLU tends to perform better in

terms of accuracy. Lastly, one flattens layer and three dense layers are used to

transform the matrix into a single array to allow the softmax function to generate

results accurately. The CNNs-AlexNet algorithm uses the Adam optimizer with a

default leaning rate of 0.001. Besides, the algorithm uses binary cross entropy loss

function to evaluate the performance of the model.

42

Figure 3-9: Model summary of the CNN-AlexNet architecture implemented

43

3.4.2.2 TL-Inception-V3 with 3 extra hidden layers + dropout

The transfer learning technique can be applied to the project in order to utilise the

improved version of ILSVRC14 winner, Inception-V3 as a pre-trained model in this

breast tumour classifier project. The weights of Inception-V3 model were trained on

a gigantic amount of dataset using several high-powered GPUs, and the transfer

learning technique allows the model to be implemented in the classifier of this

project (Irla, 2019). Besides, due to the small dataset available to this project, hence

the proposed pre-trained Inception-V3 model could be beneficial to the classifier.

 All layers of the Inception-V3 except for the last fully connected is imported

to the classifier of the project. Besides, all the layers are set to non-trainable and

some lower layers are added, therefore the classifier could train the tumours data on

the lower layers while keeping the trained-parameters of Inception-V3 constant. Four

extra layers were added to the TL-InceptionV3 model, including 1 average pooling

layer with 0.2 dropout, 1 flatten layer, and 1 fully connected 128-size layer. The

output layer uses the softmax activation function to classify the benign and malignant

tumours class. Moreover, the binary cross entropy is used as the algorithm loss

function due to the two target classes of output. Besides, the Adam optimizers with a

default learning rate of 0.001 is used at the output layer. Figure 3-10 below

illustrates the general overview of the proposed TL-InceptionV3 architecture.

Figure 3-10: Model summary of the TL-Inception-V3 architecture implemented

44

3.4.2.3 TL-DenseNet with 6 extra hidden layers + dropout

DenseNet is chosen for the second transfer learning model due to the simplicity in its

algorithm architecture. Since most of the CNNs architecture are getting deeper, thus

the information from the input layer could be faded away before arriving the output

layer. Besides, DenseNet also required lesser parameters, hence it could decrease the

training time. Furthermore, according to the literature review, the implementation of

TL-DenseNet on the BUSI and MBU datasets is still unprecedented by previous

works, therefore it may be a great opportunity for contributing to related studies.

 Similar to TL-Inception-V3, all layers except the last fully connected layer of

TL-DenseNet are imported to the CNN classifier. All layers are set as non-trainable,

and 6 extra hidden layers are added to the architecture, which includes 1 average

pooling layer, 2 batch normalization layers with dropout of 0.5, and 3 fully

connected layers. The extra hidden layers are trained to classify the benign and

malignant tumours data. The output layer uses the softmax activation function to

classify the benign and malignant tumours class. Moreover, the categorical cross

entropy is used as the algorithm loss function. Besides, the Adam optimizers with a

default learning rate of 0.001 is used at the output layer. Figure 3-11 below

illustrates the general overview of the proposed TL-DenseNet architecture.

Figure 3-11: Model summary of the TL-DenseNet architecture implemented

45

3.5 Evaluation Method

The evaluation metrics used for the training and validation process are loss and

accuracy. The accuracy is defined as the amount of correct predictions. The

performance of the algorithm is evaluated using an accuracy metric. A model's

accuracy is often assessed after the model's input parameters and is expressed as a

percentage. It measures how closely your model's forecast matches the actual data.

For example, for 100 test samples, if the classifier successful predicts 95 samples

correctly, thus the classifier’s accuracy will be 95%. On the other hand, the loss

metrics is defined as the difference between the predicted and true value of the model.

Generally, the loss function is used to optimize a deep learning model by comparing

the performance of the model on training and validation set after each iteration.

 For the testing set evaluation metrics, the F1-score, accuracy, precision and

the confusion matrix are implemented. Table 13 below tabulate the terminology of

the confusion matrix. In order to enhance the performance of the deep learning

model, the model should increase the TP and TN predictions and minimize the FP

and FN predictions. Furthermore, precision is defined as the percentage of true

positive over the total predicted positive amount; while the F1-score is defined as the

harmonic mean of combination between precision and recall.

Table 13: Terminology of Confusion Matrix

 The calculations of the evaluation metrics are shown below:

Accuracy = (TP+TN) / All Predictions

Precision = TP / Predictions Positive

Recall = TP/(TP+FN)

F1 Score = 2*(Recall * Precision) / (Recall + Precision)

46

3.6 Project Timeline

Research on GANs and deep learning model has been performed in the first two

weeks of the first trimester before confirming the FYP topic. After confirming the

FYP topic with my supervisor, Dr. Humaira Nisar, the data is received and

downloaded from the Mendeley website. Besides, the testing dataset is acquired from

the NCBI website. The downloaded datasets were analysed and evaluate. The dataset

images were pre-processed by implementing image process method such as image

smoothing, flipping and rotating. The data acquisition and pre-process stage took

approximately two weeks.

 In the second phase, the DCGANs model was studied and designed

accordingly to the research paper “Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Network” proposed by Radford et al. in 2015.

The training process took more than 2 months to synthesized desired benign tumors

images. The training process has been repeated multiple times in order to obtain

desired results and the computational power of the GANs model is very high,

therefore the training takes longer period. With existing training experience of

benign data, the malignant data training process took a shorter period to generate

desired results.

 After the all desired synthesized image has been generated, the synthesized

images were added into the original dataset to increase the amount of dataset and to

balance the benign and malignant dataset. The synthesized tumors images were

preprocessed to remove the image noises. Furthermore, data augmentation for

instance flipping, rotation is performed on the synthesized images. The complete

datasets consisting 15,600 data were resampling and separated randomly into training,

validation and testing set. The data augmentation and resampling took approximately

one week.

 In the third phase, several CNN models such as Inception-V3, ResNet50,

AlexNet and DenseNet are designed and trained on the augmented dataset. The deep

learning model and fine-tuning process took approximately five weeks. The final

performance evaluation is completed in Week 12 of the second trimester.

47

Table 14: Project Gantt Chart

48

CHAPTER 4

4 RESULTS AND DISCUSSIONS

4.1 Overview

The major objective of this project is to develop a deep learning neural network

classifier algorithm that could distinguish the benign and malignant breast tumours in

any form of two-dimensional picture. The Mendeley Breast Ultrasound dataset

(MBU) by Rodrigues (2017) was acquired from the Mendeley website for the CNNs

algorithm training and validation purpose. The original 250 data inclusive of benign

and malignant images were increased to 20,800 images by adding the synthesized

images generated by DCGANs and image augmentation techniques were

implemented to the images. Besides, smoothing filters were applied to the dataset to

reduce the noises of the ultrasound images in order to enhance the image quality.

 The data were further randomly split into training, validation set with a

percentage of 0.8, 0.2. Besides, a 5-fold cross validation is implemented to ensure the

training and validation data were shuffled. Besides, the testing dataset, BUSI was

acquired from a different source to evaluate the classifier. Several CNNs model such

as Inception-V3, AlexNet and DenseNet were developed and trained. The results

obtained were recorded and compared. On the other hand, another set of open-source

breast ultrasound image, BUSI dataset (Al-Dhabyani et al., 2020) acquired from

NCBI is used as the testing set of the CNNs algorithm. The performance of the deep

learning classifier model is evaluated using confusion matrix, accuracy, precision,

recall rate and F1-score. The results for Inception-V3, AlexNet and DenseNet are

compared and discussed.

49

4.2 Image Pre-Processing

Five different smoothing filters such as bilateral, denoise, gaussian, median and

block matching filter have been applied on the original ultrasound image. According

to the filtered images, the Denoise filter seems to be the most suitable filter to

remove the ultrasound image’s noises and still maintain the edge of the tumours,

therefore the Denoise filter is chosen for the project and it is applied to all images in

the dataset. Table 15 below illustrates the pre-processed images of different filters.

Table 15: Pre-processed filtered images

 Filter Pre-processed image Masks

1 None (Original)

Null

2 Bilateral

3 Denoise

Null

4 Gaussian

5 Median

Median of neighbouring

5x5 entries

6 Block Matching

Null

50

4.3 Image Augmentation

Nine different image augmentation techniques are implemented on the pre-processed

images. The dimension of the pre-processed images was resized to 100*100 pixels

before the augmentation process. The dataset is increased in size after the

augmentation process. Table 16 below illustrates the samples of the augmented

benign tumour images.

Table 16: Samples of augmented image

 Image Orientation Augmented Image

1 Upright

2 Horizontal flipping

3 Vertical flipping

4 Horizontal Vertical flipping

5 Anticlockwise 45° rotation

6 Anticlockwise 125° rotation

7 Anticlockwise 315° rotation

51

8 Rotation horizontal flip

9 Rotation vertical flip

10 Rotation horizontal vertical

flip

4.4 Data Augmentation using DCGAN

The training process of the DCGANs model for benign data took 800 epochs and the

training duration is approximate 28 hours. While the training process of the

DCGANs model for malignant data took 1000 epochs and the training duration is

approximate 36 hours. However, the training process is repeated several iterations to

generate the most realistic synthesized image. Table 17 below illustrates the samples

of the synthesized image generated by the DCGANs model. Furthermore, the

synthesized images were pre-processed by applying the Denoise filter and

augmented using the techniques mentioned above.

Table 17: Samples of synthesized image generated by DCGANs

 Tumours type Synthesized image

1 Benign

2 Benign

52

3 Malignant

4 Malignant

Table 18 below tabulate the number of the augmented images in the dataset.

The dataset has been increased to 20800 data which consists of 10400 benign data

and 10400 malignant data.

Table 18: Number of images in the dataset

 Image Orientation Number of images

1 Upright 1-250

2 DCGAN synthesized image 251-400

2 Horizontal flipping 401-800

3 Vertical flipping 801-1200

4 Horizontal Vertical flipping 1201-1600

5 Anticlockwise 45° rotation 1601-3200

6 Anticlockwise 125° rotation 3201-4800

7 Anticlockwise 315° rotation 4801-6400

8 Rotation horizontal flip 6401-11200

9 Rotation vertical flip 11201-16000

10 Rotation horizontal vertical flip 16001-20800

53

4.5 Training Results

According to Table 14 below, all three proposed models, CNN-AlexNet model, TL-

Inception-V3 with 3 extra hidden layers + dropout model and TL-DenseNet with 6

extra hidden layers + dropout model successfully produced all evaluation metrics,

accuracy, precision, recall and F1-score rates above 90%. As illustrated in Figure 4-1,

the bar chart illustrates the comparison of the proposed models on the validation

dataset, the TL-DenseNet model performs best in terms of accuracy at 97.61%; while

the CNN-AlexNet achieved the highest F1-score among all proposed models at

0.9950.

Figure 4-1: Bar chart of comparison between proposed model on validation dataset

Table 19: Comparison between proposed model in terms of accuracy, loss, precision,

recall and F1-score on the validation dataset

Model Accuracy Loss Precision Recall F1-Score

CNN-AlexNet 95.52% 0.1210 0.9958 0.9942 0.9950

TL-Inception-V3 93.46% 0.1833 0.9238 0.9605 0.9413

TL-DenseNet 97.61% 0.0625 0.9896 0.9883 0.9889

54

4.5.1 CNN-AlexNet

The training process took 10 epochs and 5-fold cross validation. The average training

duration of one epoch is approximately 10 minutes and the total training time for 10

epochs and 5-fold cross validation process is approximately 8.3 hours. The CNNs-

AlexNet architecture achieved an average validation accuracy of 95.52%; average

validation loss of 0.1210; average validation precision of 0.9958; average validation

recalls of 0.9942; average validation F1-Score of 0.9950.

The complete 5-fold training results of CNN-AlexNet model are attached in

the Appendix A section below.

Table 20: Validation Evaluation Metrics for CNN-AlexNet in Each Fold

No of Folds Accuracy Loss Precision Recall F1-Score

1 80.90% 0.3778 0.9814 0.9736 0.9775

2 99.23% 0.0174 1.0000 0.9984 0.9992

3 98.66% 0.0395 0.9992 1.0000 0.9996

4 99.97% 0.0016 1.0000 0.9992 0.9996

5 98.86% 0.0119 0.9984 1.0000 0.9992

Average 95.52% 0.1210 0.9958 0.9942 0.9950

55

4.5.1.1 Accuracy

Figure 4-2: Training and Validation Accuracy against Number of Epochs for CNN-

AlexNet in (a) First Fold (b) Second Fold (c) Third Fold (d) Fourth Fold (e) Fifth

Fold

56

4.5.1.2 Loss

Figure 4-3: Training and Validation Loss against Number of Epochs for CNN-

AlexNet in (a) First Fold (b) Second Fold (c) Third Fold (d) Fourth Fold (e) Fifth

Fold

57

4.5.1.3 Confusion Matrix

Figure 4-4: Confusion Matrix graph for CNN-AlexNet in (a) First Fold (b) Second

Fold (c) Third Fold (d) Fourth Fold (e) Fifth Fold

58

4.5.2 TL-Inception-V3 with 3 extra hidden layers + dropout

The training process took 10 epochs and 5-fold cross validation. The average training

duration of one epoch is approximately 2 minutes and the total training time for 10

epochs and 5-fold cross validation process is approximately 1.7 hours. The TL-

Inception-V3 with 3 extra hidden layers + dropout architecture achieved an average

validation accuracy of 93.46%; average validation loss of 0.1833; average validation

precision of 0.9238; average validation recalls of 0.9605; average validation F1-

Score of 0.9413.

The complete 5-fold training results of TL-Inception-V3 with 3 extra hidden

layers + dropout model is attached in the Appendix A section below.

Table 21: Validation Evaluation Metrics for TL-Inception-V3 with 3 extra hidden

layers + dropout in Each Fold

No of Folds Accuracy Loss Precision Recall F1-Score

1 85.76% 0.3500 0.8418 0.9679 0.9005

2 93.46% 0.2033 0.9266 0.9503 0.9383

3 94.88% 0.1492 0.9375 0.9623 0.9497

4 96.13% 0.1226 0.9536 0.9543 0.9539

5 97.05% 0.0912 0.9595 0.9679 0.9639

Average 93.46% 0.1833 0.9238 0.9605 0.9413

59

4.5.2.1 Accuracy

Figure 4-5: Training and Validation Accuracy against Number of Epochs for TL-

Inception-V3 with 3 extra hidden layers + dropout in (a) First Fold (b) Second Fold

(c) Third Fold (d) Fourth Fold (e) Fifth Fold

60

4.5.2.2 Loss

Figure 4-6: Training and Validation Loss against Number of Epochs for TL-

Inception-V3 with 3 extra hidden layers + dropout in (a) First Fold (b) Second Fold

(c) Third Fold (d) Fourth Fold (e) Fifth Fold

61

4.5.2.3 Confusion Matrix

Figure 4-7: Confusion Matrix graph for TL-Inception-V3 with 3 extra hidden layers

+ dropout in (a) First Fold (b) Second Fold (c) Third Fold (d) Fourth Fold (e) Fifth

Fold

62

4.5.3 TL-DenseNet with 6 extra hidden layers + dropout

The training process took 10 epochs and 5-fold cross validation. The average training

duration of one epoch is approximately 2 minutes and the total training time for 10

epochs and 5-fold cross validation process is approximately 1.7 hours. The TL-

DenseNet with 6 extra hidden layers + dropout architecture achieved an average

validation accuracy of 97.61%; average validation loss of 0.0625; average validation

precision of 0.9896; average validation recalls of 0.9883; average validation F1-

Score of 0.9889.

The complete 5-fold training results of TL- DenseNet with 6 extra hidden

layers + dropout model is attached in the Appendix A section below.

Table 22: Validation Evaluation Metrics for TL-DenseNet with 6 extra hidden layers

+ dropout in Each Fold

No of Folds Accuracy Loss Precision Recall F1-Score

1 91.81% 0.2035 0.9759 0.9720 0.9739

2 97.77% 0.0593 0.9857 0.9920 0.9888

3 99.14% 0.0254 0.9943 0.9848 0.9895

4 99.47% 0.0168 0.9952 0.9992 0.9972

5 99.87% 0.0076 0.9968 0.9936 0.9952

Average 97.61% 0.0625 0.9896 0.9883 0.9889

63

4.5.3.1 Accuracy

Figure 4-8: Training and Validation Accuracy against Number of Epochs for TL-

DenseNet with 6 extra hidden layers + dropout in (a) First Fold (b) Second Fold (c)

Third Fold (d) Fourth Fold (e) Fifth Fold

64

4.5.3.2 Loss

Figure 4-9: Training and Validation Loss against Number of Epochs for TL-

DenseNet with 6 extra hidden layers + dropout in (a) First Fold (b) Second Fold (c)

Third Fold (d) Fourth Fold (e) Fifth Fold

65

4.5.3.3 Confusion Matrix

Figure 4-10: Confusion Matrix graph for TL- DenseNet with 6 extra hidden layers +

dropout in (a) First Fold (b) Second Fold (c) Third Fold (d) Fourth Fold (e) Fifth

Fold

66

4.6 Testing Results on BUSI dataset

According to Table 23 below, all three proposed models, CNN-AlexNet model, TL-

Inception-V3 with 3 extra hidden layers + dropout model and TL-DenseNet with 6

extra hidden layers + dropout model successfully produced all evaluation metrics,

accuracy, precision, recall and F1-score rates above 90%. As illustrated in Figure 4-

12, the bar chart illustrates the comparison of the proposed models on the testing

dataset (BUSI), the TL-DenseNet model performs best in terms of accuracy and F1-

score at 91.46% and 0.9144 respectively.

Figure 4-11: Confusion Matrix Graph for (a) CNN-AlexNet (b) TL-Inception-V3 (c)

TL-DenseNet on the BUSI dataset

67

Table 23: Comparison between proposed model in terms of accuracy, precision,

recall and F1-score on the BUSI testing dataset

Model Accuracy Precision Recall F1-Score

CNN-AlexNet 90.42% 0.9106 0.8971 0.9038

TL-Inception-V3 91.04% 0.9174 0.9027 0.9100

TL-DenseNet 91.46% 0.9172 0.9116 0.9144

Figure 4-12: Bar chart of comparison between proposed model on BUSI testing set

4.7 Comparison between Existing Techniques

As tabulated in Table 24 below, the proposed models implemented in this project are

compared to existing techniques applied on related works based on the literature

review. As observed, all proposed methods, CNN-AlexNet model, TL-Inception-V3

and TL-DenseNet were capable to obtain a high testing accuracy at 90.42%, 91.04%

and 91.46% respectively. Among the existing techniques, DCGAN + TL-NASNet

model proposed by Al-Dhabyani and TL-Inception-V3 + NN proposed by Gupta

achieve the highest and second highest average testing accuracy at 92.6% and 92%

respectively. However, this is not an accurate comparison, since these literatures did

68

not provide the evaluation metrics for precision, recall and F1-score rates. On the

other hand, it is worth mentioned that the proposed models in this work uses the

MBU dataset + DCGAN with augmentation as training dataset, while the testing

results are evaluated on BUSI dataset which is from a completely different source,

hence the results are very difficult to achieve higher accuracy due to the distinct

configuration such as lighting, ultrasound device, operators and etc. of the different

datasets. Therefore, the proposed models are capable to classify the benign and

malignant tumours accurately even on unseen datasets.

Table 24: Comparison between proposed models and existing techniques

Proposed Model Accuracy Precision Recall F1-

Score

Train

Dataset

Test

Dataset

DCGAN +CNN-

AlexNet

90.42% 0.9106 0.8971 0.9038

MBU

BUSI DCGAN + TL-

Inception-V3

91.04% 0.9174 0.9027 0.9100

DCGAN + TL-

DenseNet

91.46% 0.9172 0.9116 0.9144

Existing Techniques

DCGAN + CNN

(Desai et al., 2020)

87% - - - DDSM

DCGAN + TL-

NASNet (Al-

Dhabyani et al.,

2019)

92% - - - BUSI

CNN (Latif et al.,

2019)

88% - - - MBU

Quadratic SVM w/

BGWO (Khanna et

al., 2021)

84.9% - - - BUSI

TL-Inception-V3 +

NN (Gupta et al.,

2022)

92.6% - - - BUSI

69

Figure 4-13 below illustrates the bar chart of comparison between proposed

models and existing techniques based on literature review.

Figure 4-13: Bar chart of comparison between proposed model and existing

techniques in terms of accuracy

4.8 Discussion

In recent years, one of the most frequently used imaging technologies in clinical

practise is the ultrasound imaging. The ultrasound imaging is considered as a

dynamically developing technology with numerous advantages and it has been

acknowledged as a potent and commonplace screening and diagnostic tool for

clinical research practise. Especially, due to its overall reasonable cost, operator

expertise and its relative lower impact to human health, therefore in certain

circumstances the ultrasound imaging technology is being favoured compared to CT,

MRI and X-Ray. Besides, the ultrasound imaging technology has been widely

implemented in the fields of breast diagnostics. Nevertheless, the ultrasound imaging

technology also comes with several major drawbacks, for instance image’s noises

generated by the ultrasound imaging method could significantly affects the image

70

quality, hence the extensive experience of the diagnostician is heavily relied in order

to diagnosis the image accurately (Liu et al., 2019).

On the other hand, the machine learning, image processing techniques and

machine vision as lately emerged as the most effective machine learning technology.

It has been demonstrated that these strategies can overcome the obstacles of the

conventional techniques employed in current industrial imaging technologies.

Furthermore, the image processing methods and deep learning algorithms have a

strong potential to integrate with the ultrasound imaging technologies in order to

contribute in present medical images diagnosis by performing various automated

tasks.

In this project, several image processing techniques are implemented on both

training and testing ultrasound breast tumours images datasets in order to improve

the training process efficiency of the DCGANs and CNNs model. A denoise

smoothing filter is chosen and applied to remove the ultrasound image noises while

maintaining the tumour edges. Apart from improving the deep learning model

efficiency, the pre-processed image could simplify the diagnostics process for people

unfamiliar to medical diagnostics to analyse and identify the tumours images.

Since the deep learning algorithm requires numerous of data to fine-tune the

parameters of the algorithm after every iteration. This fine-tuning process requires a

huge dataset in order to improve the performance of the neural net. Unfortunately,

the downloaded datasets from Mendeley website consists of 100 benign and 150

malignant images, which is a very tiny and unbalanced dataset and it could easily

overfitting the training model. Therefore, the image augmentation methods are

implemented on the original dataset to increase the dataset quantity. The

augmentation methods include flipping, rotating, resizing and cropping; thus, the

deep learning classifier could train on different orientation of the tumours images in

order to allow the algorithm to classify accurately on different variety or perspectives

of tumours dataset.

 DCGANs is proposed in this project to synthesized realistic benign and

malignant breast tumours images. The DCGANs acts as a potentially useful

71

technique in order to overcome the issue of limited labelled data for the classifier

model to classify the breast tumours. Besides, the DCGANs also used for balancing

the distribution of dataset, where the minority data class (benign data) is increased to

have the same amount as the majority data class. The balanced dataset could greatly

improve the performance of the proposed CNNs classifier algorithm. Figure 4-1

below depicted the dataset distribution before and after applying DCGANs.

0

20

40

60

80

100

120

140

160

Original DCGANs

Benign

Malignant

Figure 4-14: Sample distribution of the dataset before and after applying DCGAN

 Due to the robust design of the DCGAN, the model could study and train

higher hierarchical features and extract useful information from the data rapidly and

efficiently. Apart from that, the structure of a normal GANs model consists of fully

connected neurons, thus the generated synthesized images are often poor resolution

and consists a great ratio of image’s noise. Nonetheless due to the stable architecture

of DCGANs, it could generate higher quality synthesized images in a shorter

duration compared to the basic GANs model. The DCGANs network has been

considerably aided in its training by the addition of a batch normalisation layer,

which normalises the intermediate input values and speed up the training process.

72

Table 25: Samples of DCGANs synthesized image with and without batch

normalisation layer at 700 training epochs

 Condition Synthesized image

1 With batch

normalisation layer at

700 epochs

2 Without batch

normalisation layer at

700 epochs

The MBU dataset with implementation of DCGANs was further split

randomly into training, validation and testing set. A cross-validation method known

as stratified k-fold cross validation (k=5) is implemented to the model in order to

allow the model to train and validate on 5 different set of training and validation, and

therefore enhanced the algorithm. The testing set of MBU dataset is used to evaluate

the proposed models on the unseen training set in the first evaluating stage of the

project. After the proposed models are capable to perform on the MBU dataset, the

classifier is then evaluated on another unseen dataset, BUSI dataset which is obtained

from another source.

Based on results in terms of accuracy and F1-score of the proposed CNN-

AlexNet model, TL-Inception-V3 with 3 extra hidden layers + dropout model and

TL-DenseNet with 6 extra hidden layers + dropout model has achieved 90% and

above on training and validation sets. Moreover, all proposed models have performed

remarkably and successfully attain above 90% in terms of accuracy and F1-Score on

the MBU and BUSI testing datasets. Among the proposed models, the DCGANs

with augmentation + TL-DenseNet with 6 extra hidden layers + dropout classifier

accomplishes the best performance, accuracy at 91.46% and F1-Score at 0.9144 on

the BUSI dataset. Followed by TL-Inception-V3 with 3 extra hidden layers + dropout

classifier, which accuracy at 91.04% and F1-Score at 0.91 and CNN-AlexNet model,

which accuracy at 90.42% and F1-Score at 0.9038.

73

 In the medical sectors, the deep learning classifier evaluation metrics of

precision, recall and F1-score are relatively important compared to the accuracy rates.

Undoubtedly, the performance of a medical deep learning classifier is finer if the F1-

score rate is higher. Besides, the recall rate is considered as the paramount metrics

when classifying cancer, due to its characteristics that quantifies the true positive

predictions out of total positive predictions. This is because a cancer classifier with

low recall rates may misdiagnosed a cancer positive patient as negative, thus the

patient might miss out the ideal opportunity for treatment. In a nutshell, the F1-score

is the best evaluation metrics to be considered in medical classification model, due to

its mathematical equations that integrated the precision and recall rates. Therefore,

without a doubt that the model performs better if the F1-score is approaching 1.00.

 After evaluating the testing results, the TL-DenseNet with 6 extra hidden

layers + dropout algorithm is the best performed classifier among all proposed

models. However, the TL-DenseNet before fine-tuning achieve a testing accuracy at

62.5% and F1-score at 0.6242. Figure 4-15(a) illustrates the output statement of the

TL-DenseNet before fine-tuning and still utilize the ‘sigmoid’ as output activation

function. Therefore, the architecture fine-tuned process is considered as a success

endeavour, since a significant improvement is accomplished in the testing results.

Similar attempt is applied on the TL-Inception-V3 model, Figure 4-15(b) shows the

output statement of TL-Inception-V3 model before fine-tuned. The testing accuracy

TL-Inception-V3 model before fine-tuned is 48.13% and F1-score at 0.4191, which

the performance is poor and unacceptable. Nevertheless, the performance of the

model after fine-tuned had improved in a significant way.

Figure 4-15: Output statement of (a) TL-DenseNet and (b) TL-Inception-V3 before

fine-tuned

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

5.1 Project Review

The main purpose of this project is to develop an image processing with deep

learning model to classify and detect breast tumours ultrasound images. The first

objective of the project is to design an image processing method to reduce the image

noise of the ultrasound images of benign and malignant tumours. Therefore, the

denoise smoothing filter is applied to the ultrasound images using OpenCV. The

noises in the ultrasound images are reduced while maintaining the edges of the

tumours, thus the objective is achieved.

 The second objective is to apply data augmentation methods, such as GANs

to increase the dataset quantity. Thus, a DCGANs model is developed accordingly to

the research paper by Radford (2016) to generate synthesized realistic breast tumours

images. Moreover, several data augmentation techniques, for instance flipping,

rotating, resizing and cropping images have been applied to the dataset to enhance

the data quality and increase the data quantity, therefore the objective is attained.

 The third and fourth objective is to design a CNN-based classifier to classify

benign and malignant tumors and apply a suitable transfer learning model and tune

the model’s parameters in order to improve the accuracy of the classifier. Hence,

three deep learning models which includes the CNN-AlexNet, TL-Inception-V3 and

TL-DenseNet were proposed in this project. Furthermore, the TL-Inception-V3 and

TL-DenseNet models were fine-tuned by adding several hidden layers such as fully

connected layer, batch normalization layer with dropout and replace the sigmoid

output activation function in order to improve the algorithm performance. In a

nutshell, all objectives in this project have been accomplished.

5.2 Project Findings

The transfer learning method in deep learning is defined as the approach of utilizing

a pre-trained model and the architecture is designed by the deep neural networks

related company, therefore the architecture of the transfer learning models is well

refined by deep learning scientist with proven outstanding results and strategies.

Besides, the parameters and weights of the transfer learning models are trained on a

gigantic number of datasets consisting of various features and the training process

often requires several high-powered GPUs for a long period of time since training on

large datasets are time consuming. On the other hand, in this project, among all

proposed models, before the fine-tuning technique is implemented, the CNN-

AlexNet performs best in terms of accuracy and F1-score. While the transfer learning

approach were underperformance where the TL-DenseNet achieved accuracy around

62% and TL-Inception-V3 obtained accuracy of approximately 48%. The

presumption is the transfer learning models has not trained on the tumours-related

data. Additionally, the last layer of transfer learning models is the classification layer

that often used to predict on the pre-trained dataset related image. Therefore, if the

last few layers of the transfer learning models are not freeze, the deep learning

classifier is predicting on data which has not trained previously. Furthermore, the

transfer learning models generally deep and consist of numerous layers, thus if the

earlier layers did not set to non-trainable, the tumours data will be faded out thorough

the numerous layers before arriving the final classifier layer and the training process

will be more time consuming. According to Vinithavn (2021), the earlier layer tends

to capture more generic features, while the later layers are more dataset specific.

Therefore, the approach in this project is to set the transfer learning model to non-

trainable and attach several layers for training purpose such as fully connected layers

and batch normalization layers with dropout function. This fine-tuning technique

could freeze the transfer learning model and trained on the designed hidden layers;

therefore, the model could utilize the generic features of the transfer learning model

and able to train on the prepared dataset simultaneously. Moreover, the last

classification layer of the transfer learning model is removed and replaced by the

proposed classification layer.

5.3 Recommendations for Future Improvement

First and foremost, this project has successfully developed a fine-tuned TL-

Inception-V3 and TL-DenseNet model with the implementation of DCGANs with

image augmentation and processing methods for classifying benign and malignant

breast tumors ultrasound images and capable to accomplish an outstanding

performance in terms of accuracy and F1-score. However, due to the project period, I

was unable to test the CNN algorithm with different layers and activation function.

Therefore, the suggestion is to refine the CNN algorithm by adding or replacing

suitable layers with various dropout value and test with another suitable activation

function experimentally. In addition, different transfer learning models are also

suggested to test on these datasets experimentally.

 Apart from that, the data augmentation part of the project with the

implementation of DCGANs is the most time-consuming part of the project, almost

70% of the overall project duration has been used on training and generating

synthesized images using the DCGANs model. Therefore, the recommendation is to

study on various GANs model in order to fine-tune the DCGANs architecture for

shortening the training duration and improve the performance of DCGANs in terms

of generating synthesized tumors images. Moreover, the Pix2Pix technique is

recommended for data augmentation by generating synthesized image due to its

characteristics of image-to-image translation, thus the fake tumor images can be

synthesized from free-form sketch. Figure 5-1 illustrates the outline of the

implementation of Pix2Pix technique to generate lung cancer CT image.

77

Figure 5-1: Outline of the implementation of Pix2Pix technique to generate lung

cancer CT image (Toda et al., 2022)

5.4 Conclusion

The breast cancer is life-threatening, and it is also one of the leading causes of death,

therefore early diagnosis of breast cancer acts as an important role in order to prevent

the cancer by progressing rapidly and starting to affect human’s health condition or

even worse, approaching death. The early diagnosis process could allow doctors to

provide treatments and operations that could end up saving the patients' lives. This

paper proposed three CNN models including transfer learning with integration of

DCGANs for data augmentation and image processing methods to classify the breast

tumors as benign and malignant types. The Mendeley Breast Ultrasound dataset was

used to train and validate the proposed deep learning classifier model and the Breast

Ultrasound Image dataset was used to test the accuracy of the classifier in classifying

benign and malignant tumors. Furthermore, the image processing methods have been

implemented on the datasets to remove the ultrasound noises and thus enhance the

image quality. Moreover, DCGANs model has successfully generate synthesized

both benign and malignant breast tumors ultrasound images and image augmentation

techniques such as flipping and rotating images have successfully increase the

dataset quantity. Apart from that, the proposed models, CNN-AlexNet, TL-

Inception-V3 and TL-DenseNet have successfully developed and able to classify the

tumors images accurately with a testing accuracy at 90.42%, 91.04% and 91.46%

and F1-score at 0.9038, 0.9100 and 0.9144 respectively. Without a doubt, among the

three proposed models, the fine-tuned TL-DenseNet exhibited the finest performance,

followed by the fine-tuned TL-Inception-V3. In a nutshell, all objectives of this

project are accomplished.

78

REFERENCES

Abdullah, N.A., Mahiyuddin, W.R.W., Muhammad, N.A., Ali, Z.M., Ibrahim, L.,

Tamim, N.S.I., Mustafa, A.N. and Kamaluddin, M.A. (2013). Survival Rate

of Breast Cancer Patients In Malaysia: A Population-based Study. Asian

Pacific Journal of Cancer Prevention, 14(8), pp.4591–4594.

doi:10.7314/apjcp.2013.14.8.4591.

Al-Dhabyani, W., Gomaa, M., Khaled, H. and Fahmy, A. (2019). Deep Learning

Approaches for Data Augmentation and Classification of Breast Masses using

Ultrasound Images. International Journal of Advanced Computer Science and

Applications (IJACSA), [online] 10(5). doi:10.14569/IJACSA.2019.0100579.

Al-Dhabyani, W., Gomaa, M., Khaled, H. and Fahmy, A. (2020). Dataset of breast

ultrasound images. Data in Brief, 28, p.104863.

doi:10.1016/j.dib.2019.104863.

Alyafi, B., Diaz, O. and Martí, R. (2020). DCGANs for realistic breast mass

augmentation in x-ray mammography. Medical Imaging 2020: Computer-

Aided Diagnosis. doi:10.1117/12.2543506.

Basavarajaiah, M. (2022). 6 basic things to know about Convolution. [online]

Medium. Available at: https://medium.com/@bdhuma/6-basic-things-to-

know-about-convolution-

daef5e1bc411#:~:text=In%20image%20processing%2C%20convolution%20i

s.

Brazier, Y. (2019). Tumors: Benign, premalignant, and malignant. [online]

www.medicalnewstoday.com. Available at:

https://www.medicalnewstoday.com/articles/249141.

Breast Cancer Foundation. (n.d.). About Breast Cancer. [online] Available at:

https://www.breastcancerfoundation.org.my/about-breast-cancer.

Cleveland Clinic. (2021). Tumor: What Is It, Types, Symptoms, Treatment &

Prevention. [online] Available at:

https://my.clevelandclinic.org/health/diseases/21881-

tumor#:~:text=A%20tumor%20is%20a%20solid.

Desai, S.D., Giraddi, S., Verma, N., Gupta, P. and Ramya, S. (2020). Breast Cancer

Detection Using GAN for Limited Labeled Dataset. 2020 12th International

Conference on Computational Intelligence and Communication Networks

10.7314/apjcp.2013.14.8.4591
10.14569/IJACSA.2019.0100579
10.1016/j.dib.2019.104863
10.1117/12.2543506
https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411#:~:text=In%20image%20processing%2C%20convolution%20is
https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411#:~:text=In%20image%20processing%2C%20convolution%20is
https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411#:~:text=In%20image%20processing%2C%20convolution%20is
https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411#:~:text=In%20image%20processing%2C%20convolution%20is
https://www.medicalnewstoday.com/articles/249141
https://www.breastcancerfoundation.org.my/about-breast-cancer
https://my.clevelandclinic.org/health/diseases/21881-tumor#:~:text=A%20tumor%20is%20a%20solid
https://my.clevelandclinic.org/health/diseases/21881-tumor#:~:text=A%20tumor%20is%20a%20solid

79

(CICN). doi:10.1109/cicn49253.2020.9242551.

Dinakaran, R.K., Easom, P., Bouridane, A., Zhang, L., Jiang, R., Mehboob, F. and

Rauf, A. (2019). Deep Learning Based Pedestrian Detection at Distance in

Smart Cities. Advances in Intelligent Systems and Computing, pp.588–593.

doi:10.1007/978-3-030-29513-4_43.

Fang, W., Zhang, F., S. Sheng, V. and Ding, Y. (2018). A Method for Improving

CNN-Based Image Recognition Using DCGAN. Computers, Materials &

Continua, 57(1), pp.167–178. doi:10.32604/cmc.2018.02356.

Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J. and Greenspan, H.

(2018). GAN-based synthetic medical image augmentation for increased

CNN performance in liver lesion classification. Neurocomputing, 321,

pp.321–331. doi:10.1016/j.neucom.2018.09.013.

Fung, V. (2017). An Overview of ResNet and its Variants. [online] Towards Data

Science. Available at: https://towardsdatascience.com/an-overview-of-resnet-

and-its-variants-5281e2f56035.

GeeksforGeeks. (2021). Python OpenCV - Smoothing and Blurring. [online]

Available at: https://www.geeksforgeeks.org/python-opencv-smoothing-and-

blurring/ [Accessed 15 Sep. 2022].

GeeksforGeeks. (2022). What is so special about Generative Adversarial Network

(GAN). [online] Available at: https://www.geeksforgeeks.org/what-is-so-

special-about-generative-adversarial-network-gan/ [Accessed 15 Sep. 2022].

Global Cancer Observatory (2020). Global Cancer Observatory. [online] Iarc.fr.

Available at: https://gco.iarc.fr/.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A. and Bengio, Y. (2020). Generative adversarial networks.

Communications of the ACM, 63(11), pp.139–144. doi:10.1145/3422622.

Gupta, S., Panwar, A., Yadav, R., Aeri, M. and Manwal, M. (2022). Employing Deep

Learning Feature Extraction Models with Learning Classifiers to Diagnose

Breast Cancer in Medical Images. 2022 IEEE Delhi Section Conference

(DELCON). doi:10.1109/delcon54057.2022.9752856.

He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep Residual Learning for Image

Recognition. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp.770–778. doi:10.1109/cvpr.2016.90.

Hiremath, P.S., T., P. and Badiger, S. (2013). Speckle Noise Reduction in Medical

Ultrasound Images. Advancements and Breakthroughs in Ultrasound Imaging.

doi:10.5772/56519.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8), pp.1735–1780. doi:10.1162/neco.1997.9.8.1735.

Iqbal, T. and Ali, H. (2018). Generative Adversarial Network for Medical Images

10.1109/cicn49253.2020.9242551
10.1007/978-3-030-29513-4_43
10.32604/cmc.2018.02356
10.1016/j.neucom.2018.09.013
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035
https://www.geeksforgeeks.org/python-opencv-smoothing-and-blurring/
https://www.geeksforgeeks.org/python-opencv-smoothing-and-blurring/
https://www.geeksforgeeks.org/what-is-so-special-about-generative-adversarial-network-gan/
https://www.geeksforgeeks.org/what-is-so-special-about-generative-adversarial-network-gan/
https://gco.iarc.fr/
10.1145/3422622
10.1109/delcon54057.2022.9752856
10.1109/cvpr.2016.90
10.5772/56519
10.1162/neco.1997.9.8.1735

80

(MI-GAN). Journal of Medical Systems, 42(11). doi:10.1007/s10916-018-

1072-9.

Irla, T. (2019). Transfer Learning using Inception-v3 for Image Classification.

[online] Analytics Vidhya. Available at: https://medium.com/analytics-

vidhya/transfer-learning-using-inception-v3-for-image-classification-

86700411251b.

Jason Brownlee (2019). A Gentle Introduction to Generative Adversarial Networks

(GANs). [online] Machine Learning Mastery. Available at:

https://machinelearningmastery.com/what-are-generative-adversarial-

networks-gans/.

Kazeminia, S., Baur, C., Kuijper, A., van Ginneken, B., Navab, N., Albarqouni, S.

and Mukhopadhyay, A. (2020). GANs for medical image analysis. Artificial

Intelligence in Medicine, [online] 109, p.101938.

doi:10.1016/j.artmed.2020.101938.

Khanna, P., Sahu, M. and Kumar Singh, B. (2021). Improving the classification

performance of breast ultrasound image using deep learning and optimization

algorithm. 2021 IEEE International Conference on Technology, Research,

and Innovation for Betterment of Society (TRIBES).

doi:10.1109/tribes52498.2021.9751677.

Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012). ImageNet classification with

deep convolutional neural networks. Communications of the ACM, 60(6),

pp.84–90. doi:10.1145/3065386.

Kuhl, C.K., Schrading, S., Leutner, C.C., Morakkabati-Spitz, N., Wardelmann, E.,

Fimmers, R., Kuhn, W. and Schild, H.H. (2005). Mammography, Breast

Ultrasound, and Magnetic Resonance Imaging for Surveillance of Women at

High Familial Risk for Breast Cancer. Journal of Clinical Oncology, 23(33),

pp.8469–8476. doi:10.1200/jco.2004.00.4960.

Kumar, A. (2022). K-Fold Cross Validation - Python Example. [online] Data

Analytics. Available at: https://vitalflux.com/k-fold-cross-validation-python-

example/ [Accessed 15 Sep. 2022].

Latif, G., Butt, M.O., Yousif Al Anezi, F. and Alghazo, J. (2020). Ultrasound Image

Despeckling and detection of Breast Cancer using Deep CNN. 2020 RIVF

International Conference on Computing and Communication Technologies

(RIVF). doi:10.1109/rivf48685.2020.9140767.

Liu, S., Wang, Y., Yang, X., Lei, B., Liu, L., Li, S.X., Ni, D. and Wang, T. (2019).

Deep Learning in Medical Ultrasound Analysis: A Review. Engineering, 5(2),

pp.261–275. doi:10.1016/j.eng.2018.11.020.

National Cancer Institute (2021). What Is Cancer? [online] National Cancer Institute.

Available at: https://www.cancer.gov/about-cancer/understanding/what-is-

cancer.

Our World in Data. (2019). Number of deaths by cause. [online] Available at:

10.1007/s10916-018-1072-9
10.1007/s10916-018-1072-9
https://medium.com/analytics-vidhya/transfer-learning-using-inception-v3-for-image-classification-86700411251b
https://medium.com/analytics-vidhya/transfer-learning-using-inception-v3-for-image-classification-86700411251b
https://medium.com/analytics-vidhya/transfer-learning-using-inception-v3-for-image-classification-86700411251b
https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
10.1016/j.artmed.2020.101938
10.1109/tribes52498.2021.9751677
10.1145/3065386
10.1200/jco.2004.00.4960
https://vitalflux.com/k-fold-cross-validation-python-example/
https://vitalflux.com/k-fold-cross-validation-python-example/
10.1109/rivf48685.2020.9140767
10.1016/j.eng.2018.11.020
https://www.cancer.gov/about-cancer/understanding/what-is-cancer
https://www.cancer.gov/about-cancer/understanding/what-is-cancer

81

https://ourworldindata.org/grapher/annual-number-of-deaths-by-cause.

Radford, A., Metz, L., & Chintala, S. (2016). Unsupervised Representation Learning

with Deep Convolutional Generative Adversarial Networks. CoRR,

abs/1511.06434.

Raj, B. (2018). A Simple Guide to the Versions of the Inception Network. [online]

Towards Data Science. Available at: https://towardsdatascience.com/a-

simple-guide-to-the-versions-of-the-inception-network-7fc52b863202.

Rodrigues, Paulo Sergio (2018), “Breast Ultrasound Image”, Mendeley Data, V1, doi:

10.17632/wmy84gzngw.1

Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., & Chen, X.

(2016). Improved Techniques for Training GANs. ArXiv, abs/1606.03498.

Senaras, C., Niazi, M.K.K., Sahiner, B., Pennell, M.P., Tozbikian, G., Lozanski, G.

and Gurcan, M.N. (2018). Optimized generation of high-resolution phantom

images using cGAN: Application to quantification of Ki67 breast cancer

images. PLOS ONE, 13(5), p.e0196846. doi:10.1371/journal.pone.0196846.

Shin, H.-C., Tenenholtz, N.A., Rogers, J.K., Schwarz, C.G., Senjem, M.L., Gunter,

J.L., Andriole, K.P. and Michalski, M. (2018). Medical Image Synthesis for

Data Augmentation and Anonymization Using Generative Adversarial

Networks. Simulation and Synthesis in Medical Imaging, pp.1–11.

doi:10.1007/978-3-030-00536-8_1.

Srivastava, R.K., Greff, K., & Schmidhuber, J. (2015). Highway Networks. ArXiv,

abs/1505.00387.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D. and

Vanhoucke, V. (2015). Going deeper with convolutions. 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). [online]

doi:10.1109/cvpr.2015.7298594.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. (2016). Rethinking

the Inception Architecture for Computer Vision. 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

doi:10.1109/cvpr.2016.308.

Thuy, M.B.H. and Hoang, V.T. (2020). Fusing of Deep Learning, Transfer Learning

and GAN for Breast Cancer Histopathological Image Classification. [online]

Springer Link. doi:10.1007/978-3-030-38364-0_23.

Toda, R., Teramoto, A., Kondo, M., Imaizumi, K., Saito, K. and Fujita, H. (2022).

Lung cancer CT image generation from a free-form sketch using style-based

pix2pix for data augmentation. Scientific Reports, 12(1). doi:10.1038/s41598-

022-16861-5.

Vinithavn (2021). The Power Of Transfer Learning in Deep Learning. [online]

Analytics Vidhya. Available at: https://medium.com/analytics-vidhya/the-

power-of-transfer-learning-in-deep-learning-681f86a62f79 [Accessed 15 Sep.

https://ourworldindata.org/grapher/annual-number-of-deaths-by-cause
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202
10.1371/journal.pone.0196846
10.1007/978-3-030-00536-8_1
10.1109/cvpr.2015.7298594
10.1109/cvpr.2016.308
10.1007/978-3-030-38364-0_23
10.1038/s41598-022-16861-5
10.1038/s41598-022-16861-5
https://medium.com/analytics-vidhya/the-power-of-transfer-learning-in-deep-learning-681f86a62f79
https://medium.com/analytics-vidhya/the-power-of-transfer-learning-in-deep-learning-681f86a62f79

82

2022].

Wang, G., Li, W., Ourselin, S. and Vercauteren, T. (2018). Automatic Brain Tumor

Segmentation Using Cascaded Anisotropic Convolutional Neural Networks.

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries,

pp.178–190. doi:10.1007/978-3-319-75238-9_16.

Yip, C. H., Taib, N. A., & Mohamed, I. (2006). Epidemiology of breast cancer in

Malaysia. Asian Pacific journal of cancer prevention: APJCP, 7(3), 369–374.

Zhi, W., Yueng, H.W.F., Chen, Z., Zandavi, S.M., Lu, Z. and Chung, Y.Y. (2017).

Using Transfer Learning with Convolutional Neural Networks to Diagnose

Breast Cancer from Histopathological Images. Neural Information

Processing, pp.669–676. doi:10.1007/978-3-319-70093-9_71.

10.1007/978-3-319-75238-9_16
10.1007/978-3-319-70093-9_71

83

APPENDICES

APPENDIX A: Training Output Statement of Proposed Models Generated in

PyCharm

Figure 5-2: Training output statement of CNN-AlexNet in fold 1

Figure 5-3: Training output statement of CNN-AlexNet in fold 2

84

Figure 5-4: Training output statement of CNN-AlexNet in fold 3

Figure 5-5: Training output statement of CNN-AlexNet in fold 4

Figure 5-6: Training output statement of CNN-AlexNet in fold 5

85

Figure 5-7: Training output statement of TL-Inception-V3 in fold 1

Figure 5-8: Training output statement of TL-Inception-V3 in fold 2

Figure 5-9: Training output statement of TL-Inception-V3 in fold 3

86

Figure 5-10: Training output statement of TL-Inception-V3 in fold 4

Figure 5-11: Training output statement of TL-Inception-V3 in fold 5

Figure 5-12: Training output statement of TL-DenseNet in fold 1

87

Figure 5-13: Training output statement of TL-DenseNet in fold 2

Figure 5-14: Training output statement of TL-DenseNet in fold 3

Figure 5-15: Training output statement of TL-DenseNet in fold 4

88

Figure 5-16: Training output statement of TL-DenseNet in fold 5

Figure 5-17: Testing output statement of CNN-AlexNet

Figure 5-18: Testing output statement of TL-Inception-V3

Figure 5-19: Testing output statement of TL-DenseNet

89

APPENDIX B: Computer Programme Listing

Coding for Image Processing and Augmentation.

import glob

import cv2

import os

import numpy as np

from matplotlib import pyplot as plt

inputFolder =

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/new/malignant"

os.mkdir("C:/Users/zzxn9/Documents/Py-DS-ML-Bootcamp-

master/Refactored_Py_DS_ML_Bootcamp-master/Cancer/Process/benign")

i=1

j=200

k=400

l=600

kernel_sharpening = np.array([

 [0, -1, 0],

 [-1, 5, -1],

 [0, -1, 0]

])

kernel2 = np.ones((5, 5), np.float32) / 25

dim = (100, 100)

a=1601

b=3201

c=4801

for filename in os.listdir(inputFolder):

 image = cv2.imread(os.path.join(inputFolder,filename))

 if image is not None:

 conv2d = cv2.filter2D(src=image, ddepth=-1, kernel=kernel2)

 denoise = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)

 gaussian_blur = cv2.GaussianBlur(src=image, ksize=(5, 5),sigmaX = 0,

sigmaY = 0)

 median = cv2.medianBlur(src=image, ksize=5)

 bilateral_filter = cv2.bilateralFilter(src=image, d=9, sigmaColor=75,

sigmaSpace=75)

 output = cv2.filter2D(image, -1, kernel_sharpening)

 cropped_image = image[60:410, 150:500]

 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

90

resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)

 flipVertical = cv2.flip(output, 0)

 flipHorizontal = cv2.flip(output, 1)

 flipBoth = cv2.flip(output, -1)

 # save and display images

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/new/malignant/us_m

%02i.jpg" % i,

 gray)

 i += 1

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/new/malignant/us_b

%02i.jpg" % i,

 resized)

 i += 1

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/benign/us_m%02i.jp

g" % i,

 cropped_image)

 i += 1

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Conv2d/benign/us_m%02i

.jpg" % i,

 conv2d)

 i += 1

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gans/new/malignant/us_m

%02i.jpg" % i,

 denoise)

 i += 1

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Bilateral/gans/us_m%02i.j

pg" % i,

 bilateral_filter)

 i += 1

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Median/gans/us_m%02i.jp

g" % i,

 median)

 i += 1

91

cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Gaussian/gans/us_m%02i.j

pg" % i,

 gaussian_blur)

 i += 1

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Sharp/benign/us_m%02i.j

pg" % i,

 output)

 i += 1

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Process/gans/malignant/us

_b%02i.jpg" % j,

 flipVertical)

 j += 1

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Process/gans/malignant/us

_b%02i.jpg" % k,

 flipHorizontal)

 k += 1

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Process/gans/malignant/us

_b%02i.jpg" % l,

 flipBoth)

 l += 1

#press esc to exit the program

cv2.waitKey(30)

#close all the opened windows

cv2.destroyAllWindows()

92

Coding for Rotating Images

 img = cv2.imread(os.path.join(inputFolder,filename))

 (h, w) = img.shape[:2]

 # calculate the center of the image

 center = (w / 2, h / 2)

 angle45 = 45

 angle125 = 125

 angle315 = 315

 scale = 1.0

 # Perform the counter clockwise rotation holding at the center

 # 45 degrees

 M = cv2.getRotationMatrix2D(center, angle45, scale)

 rotated45 = cv2.warpAffine(img, M, (h, w))

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Report/us_m%02i.jpg" %

a,

 rotated45)

 a += 1

 # 125 degrees

 M = cv2.getRotationMatrix2D(center, angle125, scale)

 rotated125 = cv2.warpAffine(img, M, (w, h))

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Report/us_m%02i.jpg" %

b,

 rotated125)

 b += 1

 # 315 degrees

 M = cv2.getRotationMatrix2D(center, angle315, scale)

 rotated315 = cv2.warpAffine(img, M, (h, w))

 cv2.imwrite(

"C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Report/us_m%02i.jpg" %

c,

 rotated315)

 c += 1

93

Coding for DCGANs model

import os

import numpy as np

import cv2

from glob import glob

from matplotlib import pyplot

from sklearn.utils import shuffle

import tensorflow as tf

from tensorflow.keras.layers import *

from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

from skimage import color

IMG_H = 80

IMG_W = 80

IMG_C = 3

w_init = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.02)

def load_image(image_path):

 img = tf.io.read_file(image_path)

 img = tf.io.decode_jpeg(img)

 img = tf.image.resize_with_crop_or_pad(img, IMG_H, IMG_W)

 img = tf.cast(img, tf.float32)

 img = (img - 127.5) / 127.5

 return img

def tf_dataset(images_path, batch_size):

 dataset = tf.data.Dataset.from_tensor_slices(images_path)

 dataset = dataset.shuffle(buffer_size=10240)

 dataset = dataset.map(load_image,

num_parallel_calls=tf.data.experimental.AUTOTUNE)

 dataset = dataset.batch(batch_size)

 dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

 return dataset

def deconv_block(inputs, num_filters, kernel_size, strides, bn=True):

 x = Conv2DTranspose(

 filters=num_filters,

 kernel_size=kernel_size,

 kernel_initializer=w_init,

 padding="same",

 strides=strides,

 use_bias=False

)(inputs)

 if bn:

 x = BatchNormalization()(x)

 x = LeakyReLU(alpha=0.2)(x)

 return x

94

def conv_block(inputs, num_filters, kernel_size, padding="same", strides=2,

activation=True):

 x = Conv2D(

 filters=num_filters,

 kernel_size=kernel_size,

 kernel_initializer=w_init,

 padding=padding,

 strides=strides,

)(inputs)

 if activation:

 x = LeakyReLU(alpha=0.2)(x)

 x = Dropout(0.3)(x)

 return x

def build_generator(latent_dim):

 f = [2**i for i in range(5)][::-1]

 filters = 32

 output_strides = 16

 h_output = IMG_H // output_strides

 w_output = IMG_W // output_strides

 noise = Input(shape=(latent_dim,), name="generator_noise_input")

 x = Dense(f[0] * filters * h_output * w_output, use_bias=False)(noise)

 x = BatchNormalization()(x)

 x = LeakyReLU(alpha=0.2)(x)

 x = Reshape((h_output, w_output, 16 * filters))(x)

 for i in range(1, 5):

 x = deconv_block(x,

 num_filters=f[i] * filters,

 kernel_size=5,

 strides=2,

 bn=True

)

 x = conv_block(x,

 num_filters=3,

 kernel_size=5,

 strides=1,

 activation=False

)

 fake_output = Activation("tanh")(x)

 return Model(noise, fake_output, name="generator")

95

def build_discriminator():

 f = [2**i for i in range(4)]

 image_input = Input(shape=(IMG_H, IMG_W, IMG_C))

 x = image_input

 filters = 64

 output_strides = 16

 h_output = IMG_H // output_strides

 w_output = IMG_W // output_strides

 for i in range(0, 4):

 x = conv_block(x, num_filters=f[i] * filters, kernel_size=5, strides=2)

 x = Flatten()(x)

 x = Dense(1)(x)

 return Model(image_input, x, name="discriminator")

class GAN(Model):

 def __init__(self, discriminator, generator, latent_dim):

 super(GAN, self).__init__()

 self.discriminator = discriminator

 self.generator = generator

 self.latent_dim = latent_dim

 def compile(self, d_optimizer, g_optimizer, loss_fn):

 super(GAN, self).compile()

 self.d_optimizer = d_optimizer

 self.g_optimizer = g_optimizer

 self.loss_fn = loss_fn

 def train_step(self, real_images):

 batch_size = tf.shape(real_images)[0]

 for _ in range(2):

 ## Train the discriminator

 random_latent_vectors = tf.random.normal(shape=(batch_size,

self.latent_dim))

 generated_images = self.generator(random_latent_vectors)

 generated_labels = tf.zeros((batch_size, 1))

 with tf.GradientTape() as ftape:

 predictions = self.discriminator(generated_images)

 d1_loss = self.loss_fn(generated_labels, predictions)

 grads = ftape.gradient(d1_loss, self.discriminator.trainable_weights)

 self.d_optimizer.apply_gradients(zip(grads,

self.discriminator.trainable_weights))

96

Train the discriminator

 labels = tf.ones((batch_size, 1))

 with tf.GradientTape() as rtape:

 predictions = self.discriminator(real_images)

 d2_loss = self.loss_fn(labels, predictions)

 grads = rtape.gradient(d2_loss, self.discriminator.trainable_weights)

 self.d_optimizer.apply_gradients(zip(grads,

self.discriminator.trainable_weights))

 ## Train the generator

 random_latent_vectors = tf.random.normal(shape=(batch_size,

self.latent_dim))

 misleading_labels = tf.ones((batch_size, 1))

 with tf.GradientTape() as gtape:

 predictions = self.discriminator(self.generator(random_latent_vectors))

 g_loss = self.loss_fn(misleading_labels, predictions)

 grads = gtape.gradient(g_loss, self.generator.trainable_weights)

 self.g_optimizer.apply_gradients(zip(grads,

self.generator.trainable_weights))

 return {"d1_loss": d1_loss, "d2_loss": d2_loss, "g_loss": g_loss}

def save_plot(examples, epoch, n):

 examples = (examples + 1) / 2.0

 for i in range(n * n):

 pyplot.subplot(n, n, i+1)

 pyplot.axis("off")

 pyplot.imshow(examples[i]) ## pyplot.imshow(np.squeeze(examples[i],

axis=-1))

 filename = f"samples_new1/generated_plot_epoch-{epoch+1}.png"

 pyplot.savefig(filename)

 pyplot.close()

97

Coding for training the DCGANs model

if __name__ == "__main__":

 ## Hyperparameters

 batch_size = 256

 latent_dim = 256

 num_epochs = 800

 images_path = glob("data/*")

 d_model = build_discriminator()

 g_model = build_generator(latent_dim)

 d_model.load_weights("saved_model/d_model.h5")

 g_model.load_weights("saved_model/g_model.h5")

 d_model.summary()

 g_model.summary()

 gan = GAN(d_model, g_model, latent_dim)

 bce_loss_fn = tf.keras.losses.BinaryCrossentropy(from_logits=True,

label_smoothing=0.1)

 d_optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5)

 g_optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5)

 gan.compile(d_optimizer, g_optimizer, bce_loss_fn)

 images_dataset = tf_dataset(images_path, batch_size)

 for epoch in range(num_epochs):

 gan.fit(images_dataset, epochs=1)

 g_model.save("saved_model/g_model.h5")

 d_model.save("saved_model/d_model.h5")

 n_samples = 25

 noise = np.random.normal(size=(n_samples, latent_dim))

 examples = g_model.predict(noise)

 # save_plot(examples, epoch, int(np.sqrt(n_samples)))

 if epoch % 2 != 0:

 save_plot(examples, epoch, int(np.sqrt(n_samples)))

 g_model.save(f"saved_model_acc/g_model-{epoch+1}.h5")

 d_model.save(f"saved_model_acc/d_model-{epoch+1}.h5")

98

Coding for generating synthesized images from the DCGANs model

Coding for splitting datasets into train, validation and test sets

import numpy as np

import cv2

from tensorflow.keras.models import load_model

from matplotlib import pyplot

def save_plot(examples, n):

 examples = (examples + 1) / 2.0

 for i in range(n):

 pyplot.imshow(examples[i])

 pyplot.axis("off")

 filename = f"malignant{+1}.png"

 pyplot.savefig(filename, bbox_inches='tight',pad_inches = 0)

 pyplot.close()

if __name__ == "__main__":

 model = load_model("C:/Users/zzxn9/PycharmProjects/dashproject/DCGAN-

on-Breast-tumor/saved_model/g_model.h5", compile=False)

 n = 25

 latent_dim = 256

 latent_points = np.random.normal(size=(n, latent_dim))

 examples = model.predict(latent_points)

 save_plot(examples, n)

import splitfolders

splitfolders.ratio("C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Rotation/t

est-set",

 output="C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/Cheat",

 seed=42,

 ratio=(.7, .2, .1),

 group_prefix=None,

 move=False)

99

Coding for the proposed CNN network

import numpy as np

from sklearn.metrics import accuracy_score, f1_score, precision_score,

confusion_matrix

from sklearn.model_selection import StratifiedKFold

from PIL import Image

import random

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras.applications import DenseNet121

from tensorflow.keras.applications.resnet50 import ResNet50

from tensorflow.keras.applications.inception_v3 import InceptionV3

from tensorflow.keras import layers, Model

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Conv2D

from tensorflow.keras.layers import MaxPooling2D

from tensorflow.compat.v1 import ConfigProto

from tensorflow.compat.v1 import InteractiveSession

from tensorflow.keras.layers import

Dense,GlobalAveragePooling2D,Convolution2D,BatchNormalization

import matplotlib.pyplot as plt

from sklearn import metrics

import warnings

import os

import shutil

from PIL import ImageFile

import zipfile

import matplotlib.pyplot as plt

warnings.simplefilter('error', Image.DecompressionBombWarning)

ImageFile.LOAD_TRUNCATED_IMAGES = True

from PIL import Image

Image.MAX_IMAGE_PIXELS = 10000

config = ConfigProto()

config.gpu_options.allow_growth = True

session = InteractiveSession(config=config)

root_path='C:/Users/zzxn9/PycharmProjects/dashproject/Cancer/'

datasetFolderName=root_path+'Training'

MODEL_FILENAME=root_path+"model_cv.h5"

sourceFiles=[]

classLabels=['benign', 'malignant']

X=[]

Y=[]

100

Image.MAX_IMAGE_PIXELS = None

img_rows, img_cols = 100, 100 # input image dimensions

train_path=datasetFolderName+'/train/'

validation_path=datasetFolderName+'/val/'

test_path=datasetFolderName+'/test/'

def transferBetweenFolders(source, dest, splitRate):

 global sourceFiles

 sourceFiles=os.listdir(source)

 if(len(sourceFiles)!=0):

 transferFileNumbers=int(len(sourceFiles)*splitRate)

 transferIndex=random.sample(range(0, len(sourceFiles)),

transferFileNumbers)

 for eachIndex in transferIndex:

 shutil.move(source+str(sourceFiles[eachIndex]),

dest+str(sourceFiles[eachIndex]))

 else:

 print("No file moved. Source empty!")

def transferAllClassBetweenFolders(source, dest, splitRate):

 for label in classLabels:

 transferBetweenFolders(datasetFolderName + '/' + source + '/' + label + '/',

 datasetFolderName + '/' + dest + '/' + label + '/',

 splitRate)

transferAllClassBetweenFolders('test', 'train', 1.0)

transferAllClassBetweenFolders('train', 'test', 0.20)

def prepareNameWithLabels(folderName):

 sourceFiles = os.listdir(datasetFolderName + '/train/' + folderName)

 for val in sourceFiles:

 X.append(val)

 for i in range(len(classLabels)):

 if (folderName == classLabels[i]):

 Y.append(i)

Organize file names and class labels in X and Y variables

for i in range(len(classLabels)):

 prepareNameWithLabels(classLabels[i])

X = np.asarray(X)

Y = np.asarray(Y)

batch_size = 256

epoch = 10

activationFunction = 'elu'

101

Coding for CNN-AlexNet

Coding for TL-Inception-V3

def getModel():

 # AlexNet

 model = Sequential()

 model.add(Conv2D(64, (3, 3), padding='same', activation=activationFunction,

 input_shape=(img_rows, img_cols, 3)))

 model.add(Conv2D(64, (3, 3), activation=activationFunction))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

 model.add(Conv2D(32, (3, 3), padding='same', activation=activationFunction))

 model.add(Conv2D(32, (3, 3), activation=activationFunction))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

 model.add(Conv2D(16, (3, 3), padding='same', activation=activationFunction))

 model.add(Conv2D(16, (3, 3), activation=activationFunction))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Dropout(0.25))

 model.add(Flatten())

 model.add(Dense(64, activation=activationFunction))

 model.add(Dropout(0.1))

 model.add(Dense(32, activation=activationFunction))

 model.add(Dropout(0.1))

 model.add(Dense(16, activation=activationFunction))

 model.add(Dropout(0.1))

 model.add(Dense(len(classLabels), activation='softmax'))

InceptionV3

 model_d = InceptionV3(input_shape=(100, 100,

3),include_top=False,weights='imagenet')

 model_d.trainable = False

 model = Sequential()

 model.add(model_d)

 model.add(GlobalAveragePooling2D())

 model.add(Dropout(0.2))

 model.add(Flatten())

 model.add(Dense(128, activation='relu', input_dim=(100, 100, 3)))

 model.add(Dense(len(classLabels), activation='softmax'))

102

Coding for TL-DenseNet

 # DenseNet

 model_d = DenseNet121(weights='imagenet', include_top=False,

input_shape=(100, 100, 3))

 model_d.trainable = False

 model = Sequential()

 model.add(model_d)

 model.add(GlobalAveragePooling2D())

 model.add(BatchNormalization())

 model.add(Dropout(0.5))

 model.add(Dense(1024, activation='relu'))

 model.add(Dense(512, activation='relu'))

 model.add(BatchNormalization())

 model.add(Dropout(0.5))

 model.add(Dense(len(classLabels), activation='softmax'))

 model.compile(optimizer='adam', loss='binary_crossentropy',

metrics=['accuracy'])

 model.summary()

 return model

model=getModel()

103

Coding for training and validate the proposed models in Stratified K-Fold

skf = StratifiedKFold(n_splits=5, shuffle=True)

skf.get_n_splits(X, Y)

foldNum=0

for train_index, val_index in skf.split(X, Y):

 transferAllClassBetweenFolders('val', 'train', 1.0)

 foldNum+=1

 print("Results for fold",foldNum)

 X_train, X_val = X[train_index], X[val_index]

 Y_train, Y_val = Y[train_index], Y[val_index]

 for eachIndex in range(len(X_val)):

 classLabel=''

 for i in range(len(classLabels)):

 if(Y_val[eachIndex]==i):

 classLabel=classLabels[i]

 shutil.move(datasetFolderName+'/train/'+classLabel+'/'+X_val[eachIndex],

 datasetFolderName+'/val/'+classLabel+'/'+X_val[eachIndex])

train_datagen = ImageDataGenerator(

 rescale=1./255,

 zoom_range=0.20,

 fill_mode="nearest")

 validation_datagen = ImageDataGenerator(rescale=1./255)

 test_datagen = ImageDataGenerator(rescale=1./255)

 #Start ImageClassification Model

 train_generator = train_datagen.flow_from_directory(

 train_path,

 target_size=(img_rows, img_cols),

 batch_size=batch_size,

 class_mode='categorical',

 subset='training')

 validation_generator = validation_datagen.flow_from_directory(

 validation_path,

 target_size=(img_rows, img_cols),

 batch_size=batch_size,

 class_mode='categorical', # only data, no labels

 shuffle=False)

 # fit model

 history=model.fit(train_generator,epochs=epoch, validation_data =

validation_generator)

104

 print("==============TEST RESULTS============")

 test_generator = test_datagen.flow_from_directory(

 test_path,

 target_size=(img_rows, img_cols),

 batch_size=batch_size,

 class_mode=None,

 shuffle=False)

 predictions = model.predict_generator(test_generator, verbose=1)

 yPredictions = np.argmax(predictions, axis=1)

 true_classes = test_generator.classes

 confusion_matrix = metrics.confusion_matrix(true_classes, yPredictions)

cm_display =

metrics.ConfusionMatrixDisplay(confusion_matrix=confusion_matrix,

display_labels=[False, True])

cm_display.plot()

 plt.title(f"Confusion Matrix - fold {foldNum}")

 plt.savefig(f"Confusion Matrix - {foldNum}.png", bbox_inches='tight')

 plt.close()

Plot the training and validation accuracies for each epoch

 acc = history.history['accuracy']

 val_acc = history.history['val_accuracy']

 loss = history.history['loss']

 val_loss = history.history['val_loss']

 epochs = range(len(acc))

 plt.plot(epochs, acc, 'r', label='Training accuracy')

 plt.plot(epochs, val_acc, 'b', label='Validation accuracy')

 plt.title(f"Training and validation accuracy- fold {foldNum}")

 plt.xlabel('Epoch')

 plt.ylabel('Accuracy')

 plt.legend(loc=0)

 plt.savefig(f"training-accuracy{foldNum}.png", bbox_inches='tight')

 plt.close()

 plt.plot(epochs, loss, 'r', label='Training loss')

 plt.plot(epochs, val_loss, 'b', label='Validation loss')

 plt.title(f"Training and validation loss- fold {foldNum}")

 plt.xlabel('Epoch')

 plt.ylabel('Loss')

 plt.legend(loc=0)

 plt.savefig(f"training-loss{foldNum}.png", bbox_inches='tight')

 plt.close()

model.save(MODEL_FILENAME)

